
Oracle® Database
Application Developer's Guide - Large Objects

10g Release 2 (10.2)

Part No. B14249-01

June 2005

Oracle Database Application Developer's Guide - Large Objects 10g Release 2 (10.2)

Part No. B14249-01

Copyright © 1996, 2005, Oracle. All rights reserved.

Primary Authors: Jack Melnick, Eric Paapanen

Contributing Authors: K. Akiyama, Geeta Arora, S. Banerjee, Yujie Cao, Thomas H. Chang, E. Chong, S.
Das, C. Freiwald, C. Iyer, M. Jagannath, R. Krishnan, M. Krishnaprasad, S. Lari, Li-Sen Liu, D. Mullen, V.
Nimani, A. Roy, S. Shah, A. Shivarudraiah, J. Srinivasan, R. Toohey, Anh-Tuan Tran, G. Viswana, A.
Yalamanchi

Contributors: J. Balaji, Debarun Banerjee, Subhranshu Banerjee, D. Cruceanu, M. Chien, G. Edmiston, M.
Fry, J. Kalogeropoulos, M. Kamani, S. Kotsovolos, K. Kunchithapadam, Geoff Lee, Scott Lynn, P. Manavazhi,
S. Muthulingam, R. Ratnam, C. Shay, A. Shehade, E. Shirk, Jan Syssauw, S. Vedala, E. Wan, J. Yang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xvi
Related Documents ... xvi
Conventions ... xviii

What's New in Large Objects? .. xxi

LOB Features Introduced in Oracle Database 10g Release 2 .. xxi
Restrictions Removed in Oracle Database 10g Release 2.. xxii
LOB Features Introduced in Oracle Database 10g Release 1 ... xxii
Restrictions Removed in Oracle Database 10g Release 1... xxiv
LOB Features Introduced in Oracle9i Release 2.. xxiv
Restrictions Removed in Oracle9i Release 2.. xxiv
LOB Features Introduced in Oracle9i Release 1.. xxv
Restrictions Removed in Oracle9i Release 1.. xxvi

Part I Getting Started

1 Introduction to Large Objects

What Are Large Objects? ... 1-1
Why Use Large Objects? ... 1-1

Using LOBs for Semi-structured Data ... 1-2
Using LOBs for Unstructured Data ... 1-2

Why Not Use LONGs? ... 1-3
Different Kinds of LOBs .. 1-3

Internal LOBs .. 1-3
External LOBs and the BFILE Datatype.. 1-4

Introducing LOB Locators .. 1-4
Database Semantics for Internal and External LOBs ... 1-5
Large Object Datatypes ... 1-5
Object Datatypes and LOBs .. 1-5
Storing and Creating Other Datatypes with LOBs .. 1-6

VARRAYs Stored as LOBs.. 1-6
XMLType Columns Stored as CLOBs... 1-6
LOBs Used in Oracle interMedia.. 1-6

iv

2 Working with LOBs

LOB Column States.. 2-1
Locking a Row Containing a LOB .. 2-1
Opening and Closing LOBs ... 2-2
LOB Locator and LOB Value .. 2-2

Using the Data Interface for LOBs... 2-2
Using the LOB Locator to Access and Modify LOB Values... 2-3

LOB Locators and BFILE Locators... 2-3
Table print_media .. 2-3
Initializing a LOB Column to Contain a Locator... 2-4

Initializing a Persistent LOB Column .. 2-4
Initializing BFILEs... 2-5

Accessing LOBs .. 2-5
Accessing a LOB Using SQL... 2-5
Accessing a LOB Using the Data Interface ... 2-5
Accessing a LOB Using the Locator Interface.. 2-6

LOB Rules and Restrictions ... 2-6
Rules for LOB Columns... 2-6
Restrictions for LOB Operations .. 2-8

3 Managing LOBs: Database Administration

Database Utilities for Loading Data into LOBs ... 3-1
Using SQL*Loader to Load LOBs .. 3-1
Using SQL*Loader to Populate a BFILE Column.. 3-2
Using Oracle DataPump to Transfer LOB Data... 3-4

Managing Temporary LOBs ... 3-4
Managing Temporary Tablespace for Temporary LOBs.. 3-4

Managing BFILEs ... 3-5
Rules for Using Directory Objects and BFILEs .. 3-5
Setting Maximum Number of Open BFILEs ... 3-5

Changing Tablespace Storage for a LOB ... 3-5

Part II Application Design

4 LOBs in Tables

Creating Tables That Contain LOBs ... 4-1
Initializing Persistent LOBs to NULL or Empty ... 4-1

Setting a Persistent LOB to NULL.. 4-2
Setting a Persistent LOB to Empty ... 4-2

Initializing LOBs... 4-2
Initializing Persistent LOB Columns and Attributes to a Value .. 4-2
Initializing BFILEs to NULL or a File Name.. 4-3
Restriction on First Extent of a LOB Segment.. 4-3

Choosing a LOB Column Datatype .. 4-3
LOBs Compared to LONG and LONG RAW Types .. 4-3
Storing Varying-Width Character Data in LOBs... 4-4

v

Implicit Character Set Conversions with LOBs ... 4-4
Selecting a Table Architecture ... 4-4
LOB Storage... 4-5

Inline and Out-of-Line LOB Storage .. 4-5
Defining Tablespace and Storage Characteristics for Persistent LOBs 4-6

Assigning a LOB Data Segment Name .. 4-6
LOB Storage Characteristics for LOB Column or Attribute... 4-7
TABLESPACE and LOB Index ... 4-7

Tablespace for LOB Index in Non-Partitioned Table .. 4-7
PCTVERSION ... 4-8
RETENTION ... 4-8
CACHE / NOCACHE / CACHE READS ... 4-9

CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache 4-9
LOGGING / NOLOGGING ... 4-10

LOBs Will Always Generate Undo for LOB Index Pages .. 4-10
When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages 4-10

CHUNK .. 4-10
Choosing the Value of CHUNK... 4-11
Set INITIAL and NEXT to Larger than CHUNK .. 4-11

ENABLE or DISABLE STORAGE IN ROW Clause ... 4-12
Guidelines for ENABLE or DISABLE STORAGE IN ROW ... 4-12

Indexing LOB Columns ... 4-12
Using Domain Indexing on LOB Columns ... 4-12
Indexing LOB Columns Using a Text Index ... 4-13
Function-Based Indexes on LOBs ... 4-13
Extensible Indexing on LOB Columns... 4-13

Extensible Optimizer ... 4-14
Oracle Text Indexing Support for XML ... 4-14

Manipulating LOBs in Partitioned Tables ... 4-14
Partitioning a Table Containing LOB Columns.. 4-14
Creating an Index on a Table Containing Partitioned LOB Columns..................................... 4-15
Moving Partitions Containing LOBs .. 4-15
Splitting Partitions Containing LOBs... 4-15
Merging Partitions Containing LOBs... 4-16

LOBs in Index Organized Tables ... 4-16
Restrictions for LOBs in Partitioned Index-Organized Tables ... 4-17
Updating LOBs in Nested Tables ... 4-17

5 Advanced Design Considerations

LOB Buffering Subsystem.. 5-1
Advantages of LOB Buffering .. 5-1
Guidelines for Using LOB Buffering ... 5-1
LOB Buffering Subsystem Usage... 5-3

LOB Buffer Physical Structure .. 5-3
LOB Buffering Subsystem Usage Scenario.. 5-3

Flushing the LOB Buffer ... 5-4
Flushing the Updated LOB... 5-5

vi

Using Buffer-Enabled Locators .. 5-6
Saving Locator State to Avoid a Reselect .. 5-6
OCI Example of LOB Buffering.. 5-6

Opening Persistent LOBs with the OPEN and CLOSE Interfaces ... 5-9
Index Performance Benefits of Explicitly Opening a LOB .. 5-9
Working with Explicitly Open LOB Instances .. 5-9

Read Consistent Locators... 5-10
A Selected Locator Becomes a Read Consistent Locator... 5-10
Example of Updating LOBs and Read-Consistency .. 5-10
Example of Updating LOBs Through Updated Locators.. 5-12
Example of Updating a LOB Using SQL DML and DBMS_LOB... 5-13
Example of Using One Locator to Update the Same LOB Value ... 5-14
Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable 5-16

LOB Locators and Transaction Boundaries ... 5-17
Reading and Writing to a LOB Using Locators .. 5-18
Selecting the Locator Outside of the Transaction Boundary .. 5-18
Selecting the Locator Within a Transaction Boundary .. 5-19
LOB Locators Cannot Span Transactions .. 5-20
Example of Locator Not Spanning a Transaction .. 5-20

LOBs in the Object Cache.. 5-21
Terabyte-Size LOB Support... 5-22

Maximum Storage Limit for Terabyte-Size LOBs .. 5-22
Using Terabyte-Size LOBs with JDBC ... 5-23
Using Terabyte-Size LOBs with the DBMS_LOB Package.. 5-23
Using Terabyte-Size LOBs with OCI.. 5-23

Guidelines for Creating Gigabyte LOBs .. 5-23
Creating a Tablespace and Table to Store Gigabyte LOBs.. 5-24

6 Overview of Supplied LOB APIs

Programmatic Environments That Support LOBs ... 6-1
Comparing the LOB Interfaces .. 6-2
Using PL/SQL (DBMS_LOB Package) to Work with LOBs ... 6-5

Provide a LOB Locator Before Running the DBMS_LOB Routine ... 6-5
Guidelines for Offset and Amount Parameters in DBMS_LOB Operations 6-6
Determining Character Set ID .. 6-6
PL/SQL Functions and Procedures for LOBs.. 6-7
PL/SQL Functions and Procedures to Modify LOB Values... 6-7
PL/SQL Functions and Procedures for Introspection of LOBs... 6-7
PL/SQL Operations on Temporary LOBs.. 6-8
PL/SQL Read-Only Functions and Procedures for BFILEs... 6-8
PL/SQL Functions and Procedures to Open and Close Internal and External LOBs 6-8

Using OCI to Work with LOBs .. 6-8
Setting the CSID Parameter for OCI LOB APIs ... 6-9
Fixed-Width and Varying-Width Character Set Rules for OCI... 6-9

Other Operations .. 6-10
NCLOBs in OCI.. 6-10

OCILobLoadFromFile2() Amount Parameter... 6-10

vii

OCILobRead2() Amount Parameter... 6-10
OCILobLocator Pointer Assignment.. 6-10
LOB Locators in Defines and Out-Bind Variables in OCI .. 6-10
OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs 6-10
OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values.................... 6-11
OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE) Values....... 6-11
OCI Functions for Temporary LOBs .. 6-11
OCI Read-Only Functions for BFILEs .. 6-11
OCI LOB Locator Functions .. 6-12
OCI LOB-Buffering Functions... 6-12
OCI Functions to Open and Close Internal and External LOBs... 6-12
OCI LOB Examples ... 6-12
Further Information About OCI ... 6-13

Using C++ (OCCI) to Work with LOBs ... 6-13
OCCI Classes for LOBs... 6-13

Clob Class.. 6-14
Blob Class .. 6-14
Bfile Class .. 6-14

Fixed-Width Character Set Rules.. 6-14
Varying-Width Character Set Rules ... 6-14
Offset and Amount Parameters for Other OCCI Operations .. 6-15

NCLOBs in OCCI... 6-15
Amount Parameter for OCCI LOB copy() Methods .. 6-16
Amount Parameter for OCCI read() Operations .. 6-16
Further Information About OCCI... 6-16
OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs 6-16
OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values................... 6-16
OCCI Methods to Read or Examine Persistent LOB and BFILE Values 6-17
OCCI Read-Only Methods for BFILEs... 6-17
Other OCCI LOB Methods... 6-17
OCCI Methods to Open and Close Internal and External LOBs.. 6-17

Using C/C++ (Pro*C) to Work with LOBs .. 6-17
First Provide an Allocated Input Locator Pointer That Represents LOB................................ 6-18
Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs................. 6-18
Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values........................... 6-18
Pro*C/C++ Embedded SQL Statements for Introspection of LOBs.. 6-19
Pro*C/C++ Embedded SQL Statements for Temporary LOBs.. 6-19
Pro*C/C++ Embedded SQL Statements for BFILEs.. 6-19
Pro*C/C++ Embedded SQL Statements for LOB Locators .. 6-19
Pro*C/C++ Embedded SQL Statements for LOB Buffering... 6-20
Pro*C/C++ Embedded SQL Statements to Open and Close LOBs ... 6-20

Using COBOL (Pro*COBOL) to Work with LOBs .. 6-20
First Provide an Allocated Input Locator Pointer That Represents LOB................................ 6-20
Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs................ 6-21
Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values 6-21
Pro*COBOL Embedded SQL Statements for Introspection of LOBs....................................... 6-21
Pro*COBOL Embedded SQL Statements for Temporary LOBs... 6-22

viii

Pro*COBOL Embedded SQL Statements for BFILEs... 6-22
Pro*COBOL Embedded SQL Statements for LOB Locators ... 6-22
Pro*COBOL Embedded SQL Statements for LOB Buffering.. 6-22
Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and BFILEs 6-22

Using Visual Basic (Oracle Objects for OLE) to Work with LOBs .. 6-23
OO4O Syntax Reference... 6-23
OraBlob, OraClob, and OraBfile Object Interfaces Encapsulate Locators 6-23

OraBlob and OraClob Objects Are Retrieved as Part of Dynaset 6-23
Use the Clone Method to Retain Locator Independent of the Dynaset Move 6-24

Example of OraBlob and OraBfile .. 6-24
OO4O Methods and Properties to Access Data Stored in LOBs .. 6-25
OO4O Methods to Modify BLOB, CLOB, and NCLOB Values.. 6-25
OO4O Methods to Read or Examine Internal and External LOB Values 6-26
OO4O Methods to Open and Close External LOBs (BFILEs) ... 6-26
OO4O Methods for Persistent LOBBuffering ... 6-26
OO4O Properties for Operating on LOBs.. 6-27
OO4O Read-Only Methods for External Lobs (BFILEs).. 6-27
OO4O Properties for Operating on External LOBs (BFILEs).. 6-27

Using Java (JDBC) to Work with LOBs ... 6-27
Modifying Internal Persistent LOBs Using Java... 6-27
Reading Internal Persistent LOBs and External LOBs (BFILEs) with Java............................. 6-28

BLOB, CLOB, and BFILE Classes .. 6-28
Calling DBMS_LOB Package from Java (JDBC) ... 6-29
Referencing LOBs Using Java (JDBC) .. 6-29

Using OracleResultSet: BLOB and CLOB Objects Retrieved... 6-29
JDBC Syntax References and Further Information... 6-29
JDBC Methods for Operating on LOBs.. 6-29
JDBC oracle.sql.BLOB Methods to Modify BLOB Values ... 6-30
JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values.. 6-30
JDBC oracle.sql.BLOB Methods and Properties for BLOB Buffering...................................... 6-30
JDBC oracle.sql.CLOB Methods to Modify CLOB Values .. 6-31
JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value... 6-31
JDBC oracle.sql.CLOB Methods and Properties for CLOB Buffering 6-31
JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values 6-31
JDBC oracle.sql.BFILE Methods and Properties for BFILE Buffering 6-32
JDBC Temporary LOB APIs .. 6-32
JDBC: Opening and Closing LOBs ... 6-33
JDBC: Opening and Closing BLOBs... 6-33

Opening the BLOB Using JDBC... 6-33
Checking If the BLOB Is Open Using JDBC... 6-34
Closing the BLOB Using JDBC... 6-34

JDBC: Opening and Closing CLOBs... 6-34
Opening the CLOB Using JDBC .. 6-34
Checking If the CLOB Is Open Using JDBC... 6-35
Closing the CLOB Using JDBC .. 6-35

JDBC: Opening and Closing BFILEs .. 6-35
Opening BFILEs ... 6-35

ix

Checking If the BFILE Is Open... 6-36
Closing the BFILE .. 6-36
Usage Example (OpenCloseLob.java)... 6-36

Truncating LOBs Using JDBC ... 6-38
JDBC: Truncating BLOBs .. 6-38
JDBC: Truncating CLOBs.. 6-38

JDBC BLOB Streaming APIs ... 6-39
JDBC CLOB Streaming APIs ... 6-40
BFILE Streaming APIs .. 6-41

JDBC BFILE Streaming Example (NewStreamLob.java) ... 6-41
JDBC and Empty LOBs .. 6-44

Oracle Provider for OLE DB (OraOLEDB)... 6-45
Overview of Oracle Data Provider for .NET (ODP.NET) ... 6-45

7 Performance Guidelines

LOB Performance Guidelines .. 7-1
Chunk Size .. 7-1
Performance Guidelines for Small LOBs ... 7-1
General Performance Guidelines... 7-1
Temporary LOB Performance Guidelines .. 7-2
Performance Considerations for SQL Semantics and LOBs .. 7-4

Moving Data to LOBs in a Threaded Environment... 7-4
LOB Access Statistics... 7-5

Example of Retrieving LOB Access Statistics... 7-6

Part III SQL Access to LOBs

8 DDL and DML Statements with LOBs

Creating a Table Containing One or More LOB Columns ... 8-1
Creating a Nested Table Containing a LOB .. 8-3
Inserting a Row by Selecting a LOB From Another Table ... 8-4
Inserting a LOB Value Into a Table... 8-5
Inserting a Row by Initializing a LOB Locator Bind Variable .. 8-6

PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable 8-7
C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable 8-7
COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable............ 8-8
C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable.............. 8-9
Visual Basic (OO4O): Inserting a Row by Initializing a LOB Locator Bind Variable 8-9
Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable 8-10

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() ... 8-11
Updating a Row by Selecting a LOB From Another Table ... 8-11

9 SQL Semantics and LOBs

Using LOBs in SQL.. 9-1
SQL Functions and Operators Supported for Use with LOBs .. 9-2

UNICODE Support ... 9-5

x

Codepoint Semantics ... 9-5
Return Values for SQL Semantics on LOBs.. 9-6
LENGTH Return Value for LOBs .. 9-6

Implicit Conversion of LOB Datatypes in SQL ... 9-6
Implicit Conversion Between CLOB and NCLOB Datatypes in SQL .. 9-7

Unsupported Use of LOBs in SQL .. 9-8
VARCHAR2 and RAW Semantics for LOBs ... 9-9

LOBs Returned from SQL Functions .. 9-9
IS NULL and IS [NOT] NULL Usage with VARCHAR2s and CLOBs 9-10
WHERE Clause Usage with LOBs .. 9-10

10 PL/SQL Semantics for LOBs

PL/SQL Statements and Variables ... 10-1
Implicit Conversions Between CLOB and VARCHAR2.. 10-1
Explicit Conversion Functions.. 10-2

VARCHAR2 and CLOB in PL/SQL Built-In Functions .. 10-2
PL/SQL CLOB Comparison Rules ... 10-4

CLOBs Follow the VARCHAR2 Collating Sequence... 10-4

11 Migrating Columns from LONGs to LOBs

Benefits of Migrating LONG Columns to LOB Columns... 11-1
Preconditions for Migrating LONG Columns to LOB Columns ... 11-2

Dropping a Domain Index on a LONG Column Before Converting to a LOB...................... 11-2
Preventing Generation of Redo Space on Tables Converted to LOB Datatypes 11-2

Using utldtree.sql to Determine Where Your Application Needs Change 11-3
Converting Tables from LONG to LOB Datatypes... 11-3

Using ALTER TABLE to Convert LONG Columns to LOB Columns 11-3
Migration Issues .. 11-4

Copying a LONG to a LOB Column Using the TO_LOB Operator... 11-4
Online Redefinition of Tables with LONG Columns... 11-5

Migrating Applications from LONGs to LOBs ... 11-7
LOB Columns Are Not Allowed in Clustered Tables.. 11-8
LOB Columns Are Not Allowed in UPDATE OF Triggers .. 11-8
Indexes on Columns Converted from LONG to LOB Datatypes .. 11-8
Empty LOBs Compared to NULL and Zero Length LONGs ... 11-9
Overloading with Anchored Types.. 11-9
Some Implicit Conversions Are Not Supported for LOB Datatypes..................................... 11-10

Part IV Using LOB APIs

12 Operations Specific to Persistent and Temporary LOBs

Persistent LOB Operations .. 12-1
Inserting a LOB into a Table ... 12-1
Selecting a LOB from a Table .. 12-1

Temporary LOB Operations .. 12-2
Creating and Freeing a Temporary LOB ... 12-2

xi

Creating Persistent and Temporary LOBs in PL/SQL .. 12-3

13 Data Interface for Persistent LOBs

Overview of the Data Interface for Persistent LOBs ... 13-1
Benefits of Using the Data Interface for Persistent LOBs .. 13-2
Using the Data Interface for Persistent LOBs in PL/SQL.. 13-2

Guidelines for Accessing LOB Columns Using the Data Interface in SQL and PL/SQL..... 13-3
Implicit Assignment and Parameter Passing .. 13-4
Passing CLOBs to SQL and PL/SQL Built-In Functions... 13-5
Explicit Conversion Functions .. 13-5
Calling PL/SQL and C Procedures from SQL.. 13-5
Calling PL/SQL and C Procedures from PL/SQL... 13-5
Binds of All Sizes in INSERT and UPDATE Operations... 13-6
4000 Byte Limit on Results of a SQL Operator ... 13-6
Example of 4000 Byte Result Limit of a SQL Operator.. 13-6
Restrictions on Binds of More Than 4000 Bytes ... 13-7
Parallel DML Support for LOBs.. 13-7
Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and UPDATE 13-7
Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT Operations........ 13-8
Using the Data Interface for LOBs in Assignments and Parameter Passing 13-8
Using the Data Interface for LOBs with PL/SQL Built-In Functions...................................... 13-9

Using the Data Interface for Persistent LOBs in OCI ... 13-10
Binding LOB Datatypes in OCI... 13-10
Defining LOB Datatypes in OCI ... 13-10
Using Multibyte Character Sets in OCI with the Data Interface for LOBs 13-11
Using OCI Functions to Perform INSERT or UPDATE on LOB Columns........................... 13-11

Simple INSERTs or UPDATEs in One Piece .. 13-11
Using Piecewise INSERTs and UPDATEs with Polling... 13-11
Piecewise INSERTs and UPDATEs with Callback.. 13-11
Array INSERT and UPDATE Operations... 13-12

Using the Data Interface to Fetch LOB Data in OCI .. 13-12
Simple Fetch in One Piece... 13-12
Piecewise Fetch with Polling.. 13-12
Piecewise with Callback.. 13-12
Array Fetch ... 13-13

PL/SQL and C Binds from OCI .. 13-13
Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner..................................... 13-13
Calling PL/SQL Out-binds in the "call foo(:1);" Manner ... 13-13

Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE................... 13-13
Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs 13-14

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner..................................... 13-14
Calling PL/SQL Out-binds in the "call foo(:1);" Manner ... 13-14

Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes 13-15
Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling................... 13-15
Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback................ 13-16
Binding LONG Data to LOB Columns Using an Array INSERT... 13-17
Selecting a LOB Column into a LONG Buffer Using a Simple Fetch 13-18

xii

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling 13-19
Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback 13-20
Selecting a LOB Column into a LONG Buffer Using an Array Fetch 13-21

Using the Data Interface for Persistent LOBs in Java .. 13-22
Using the Data Interface with Remote LOBs... 13-22

Remote Data Interface Example in PL/SQL ... 13-23
Remote Data Interface Example in OCI... 13-23
Remote Data Interface Examples in JDBC... 13-24

14 LOB APIs for Basic Operations

Supported Environments... 14-2
Appending One LOB to Another ... 14-4
Determining Character Set Form ... 14-5
Determining Character Set ID .. 14-5
Loading a LOB with Data from a BFILE ... 14-6
Loading a BLOB with Data from a BFILE .. 14-7
Loading a CLOB or NCLOB with Data from a BFILE.. 14-9

PL/SQL: Loading Character Data from a BFILE into a LOB.. 14-10
PL/SQL: Loading Segments of Character Data into Different LOBs 14-10

Determining Whether a LOB is Open ... 14-10
Java (JDBC): Checking If a LOB Is Open ... 14-11

Checking If a CLOB Is Open .. 14-11
Checking If a BLOB Is Open... 14-11

Displaying LOB Data ... 14-11
Reading Data from a LOB.. 14-13
LOB Array Read... 14-14
Reading a Portion of a LOB (SUBSTR) ... 14-20
Comparing All or Part of Two LOBs ... 14-21
Patterns: Checking for Patterns in a LOB Using INSTR ... 14-22
Length: Determining the Length of a LOB... 14-22
Copying All or Part of One LOB to Another LOB .. 14-23
Copying a LOB Locator .. 14-24
Equality: Checking If One LOB Locator Is Equal to Another .. 14-25
Determining Whether LOB Locator Is Initialized .. 14-26
Appending to a LOB ... 14-26
Writing Data to a LOB .. 14-28
LOB Array Write .. 14-30
Trimming LOB Data.. 14-35
Erasing Part of a LOB.. 14-36
Enabling LOB Buffering ... 14-37
Flushing the Buffer .. 14-38
Disabling LOB Buffering .. 14-39
Determining Whether a LOB instance Is Temporary ... 14-40

Java (JDBC): Determining Whether a BLOB Is Temporary .. 14-41
Converting a BLOB to a CLOB .. 14-41
Converting a CLOB to a BLOB ... 14-41

xiii

15 LOB APIs for BFILE Operations

Supported Environments for BFILE APIs .. 15-2
Accessing BFILEs... 15-3
Directory Objects... 15-3

Initializing a BFILE Locator ... 15-3
How to Associate Operating System Files with a BFILE .. 15-4

BFILENAME and Initialization.. 15-5
Characteristics of the BFILE Datatype .. 15-5

DIRECTORY Name Specification ... 15-5
On Windows Platforms... 15-6

BFILE Security .. 15-6
Ownership and Privileges.. 15-6
Read Permission on a DIRECTORY Object... 15-6
SQL DDL for BFILE Security... 15-7
SQL DML for BFILE Security .. 15-7
Catalog Views on Directories .. 15-7
Guidelines for DIRECTORY Usage .. 15-8
BFILEs in Shared Server (Multithreaded Server) Mode.. 15-8
External LOB (BFILE) Locators ... 15-9

When Two Rows in a BFILE Table Refer to the Same File .. 15-9
BFILE Locator Variable ... 15-9
Guidelines for BFILEs.. 15-9

Loading a LOB with BFILE Data .. 15-10
Opening a BFILE with OPEN ... 15-11
Opening a BFILE with FILEOPEN... 15-12
Determining Whether a BFILE Is Open Using ISOPEN ... 15-13
Determining Whether a BFILE Is Open with FILEISOPEN ... 15-14
Displaying BFILE Data .. 15-15
Reading Data from a BFILE... 15-16
Reading a Portion of BFILE Data Using SUBSTR .. 15-17
Comparing All or Parts of Two BFILES .. 15-18
Checking If a Pattern Exists in a BFILE Using INSTR... 15-18
Determining Whether a BFILE Exists.. 15-19
Getting the Length of a BFILE .. 15-20
Assigning a BFILE Locator .. 15-20
Getting Directory Object Name and File Name of a BFILE.. 15-21
Updating a BFILE by Initializing a BFILE Locator ... 15-22
Closing a BFILE with FILECLOSE... 15-23
Closing a BFILE with CLOSE ... 15-23
Closing All Open BFILEs with FILECLOSEALL ... 15-24
Inserting a Row Containing a BFILE... 15-25

A LOB Demonstration Files

PL/SQL LOB Demonstration Files ... A-1
OCI LOB Demonstration Files ... A-3
Visual Basic OO4O LOB Demonstration Files .. A-4

xiv

Java LOB Demonstration Files ... A-6

Glossary

Index

xv

Preface

This guide describes database features that support applications using Large Object
(LOB) datatypes. The information in this guide applies to all platforms and does not
include system-specific information.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database Application Developer's Guide - Large Objects is intended for
programmers developing new applications that use LOBs, as well as those who have
already implemented this technology and now want to take advantage of new
features.

The increasing importance of multimedia data as well as unstructured data has led to
this topic being presented as an independent volume within the Oracle Application
Developers documentation set.

Feature Coverage and Availability

Oracle Database Application Developer's Guide - Large Objects contains information that
describes the features and functionality of Oracle Database 10g.

What You Need To Use LOBs

The database includes all of the resources you need to use LOBs in your application;
however, there are some restrictions on how you can use LOBs as described in the
following:

See Also:

■ "LOB Rules and Restrictions" on page 2-6

■ "Restrictions Removed in Oracle Database 10g Release 2" on
page -xxii

■ "Restrictions for LOBs in Partitioned Index-Organized Tables"
on page 4-17

xvi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following manuals:

■ Oracle Database PL/SQL Packages and Types Reference: Use this book to learn PL/SQL
and to get a complete description of this high-level programming language, which
is a procedural extension to SQL.

■ Oracle Call Interface Programmer's Guide: Describes Oracle Call Interface (OCI). You
can use OCI to build third-generation language (3GL) applications in C or C++
that access Oracle Server.

■ Oracle C++ Call Interface Programmer's Guide

■ Pro*C/C++ Programmer's Guide: Oracle Corporation also provides the Pro* series of
precompilers, which allow you to embed SQL and PL/SQL in your application
programs.

■ Pro*COBOL Programmer's Guide: The Pro*COBOL precompiler enables you to
embed SQL and PL/SQL in your COBOL programs for access to Oracle Server.

■ Programmer's Guide to the Oracle Precompilers and Pro*Fortran Supplement to the
Oracle Precompilers Guide: Use these manuals for Fortran precompiler
programming to access Oracle Server.

■ Java: Oracle Database offers the opportunity of working with Java in the database.
The Oracle Java documentation set includes the following:

xvii

■ Oracle Database JDBC Developer's Guide and Reference

■ Oracle Database Java Developer's Guide

■ Oracle Database JPublisher User's Guide

Oracle Database error message documentation is only available in HTML. If you only
have access to the Oracle Documentation CD, you can browse the error messages by
range. Once you find the specific range, use your browser "find in page" feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Multimedia

You can access the Oracle development environment for multimedia technology in a
number of different ways.

■ To build self-contained applications that integrate with the database, you can learn
about how to use the Oracle extensibility framework in Oracle Database Data
Cartridge Developer's Guide

■ To use the Oracle interMedia applications, refer to the following:

■ Oracle interMedia Reference.

■ Oracle interMedia Java Classes Reference

■ Oracle Text Reference

■ Oracle Text Application Developer's Guide

■ Oracle interMedia Reference

Basic References

■ For SQL information, see the Oracle Database SQL Reference and Oracle Database
Administrator's Guide

■ For information about using LOBs with Oracle XML DB, refer to Oracle XML DB
Developer's Guide

■ For information about Oracle XML SQL with LOB data, refer to Oracle Database
Advanced Replication

■ For basic Oracle concepts, see Oracle Database Concepts.

■ For information on using Oracle Data Pump, SQL*Loader, and other database
utilities, see Oracle Database Utilities

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at:

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at:

xviii

http://www.oracle.com/technology/documentation/

Conventions
This section describes the conventions used in the text and syntax examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Syntax Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Conventions in Syntax Examples
Syntax examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated from
normal text as shown in this example:

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where
old_release refers to the release you
installed prior to upgrading.

xix

SELECT username FROM dba_users WHERE username =
'MIGRATE'
;

The following table describes typographic conventions used in syntax examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

xx

xxi

What's New in Large Objects?

This section describes the new features in the following releases:

■ LOB Features Introduced in Oracle Database 10g Release 2

■ Restrictions Removed in Oracle Database 10g Release 2

■ LOB Features Introduced in Oracle Database 10g Release 1

■ Restrictions Removed in Oracle Database 10g Release 1

■ LOB Features Introduced in Oracle9i Release 2

■ Restrictions Removed in Oracle9i Release 2

■ LOB Features Introduced in Oracle9i Release 1

■ Restrictions Removed in Oracle9i Release 1

LOB Features Introduced in Oracle Database 10g Release 2
Insert, update, and select of remote LOBs is supported, subject to some remaining
restrictions.

Read and write of LOB data for multiple locators is supported by new OCI functions.

The JDBC 3.0 API is now supported for Java access to LOBs.

The Data Interface is now supported in Java.

Some phases of online redefinition of LONG-to-LOB migration can execute in parallel.

See Also:

■ "LOB Rules and Restrictions" on page 2-6 for changes

■ "Using the Data Interface with Remote LOBs" on page 13-22

See Also:

■ "LOB Array Read" on page 14-14

■ "LOB Array Write" on page 14-30

See Also: "Using Java (JDBC) to Work with LOBs" on page 6-27

See Also: "Using the Data Interface for Persistent LOBs in Java"
on page 13-22

xxii

Directory objects can be managed by Enterprise Manager Web console.

Three new LOB session-level statistics are now available to users: LOB reads, LOB
writes, and LOB writes unaligned.

Restrictions Removed in Oracle Database 10g Release 2
The following restrictions on LOB features were removed in Oracle Database 10g
Release 2.

■ You can initialize a LOB attribute to character or raw data of any size. Earlier, this
feature was available only for top-level LOB columns.

See "Initializing Persistent LOB Columns and Attributes to a Value" on page 4-2

■ Select of remote LOB data defined as character or raw datatype is supported for
the OCI, JDBC, and PL/SQL interfaces.

See "Using the Data Interface with Remote LOBs" on page 13-22.

LOB Features Introduced in Oracle Database 10g Release 1
The following features are introduced in Oracle Database 10g Release 1 (10.1):

■ Increased LOB Size Limit

The maximum size limit for LOBs is 8 to 128 terabytes, depending on your
database block size. The following APIs support this new size limit:

■ DBMS_LOB PL/SQL package

■ OCI

■ JDBC

Previous releases supported LOBs up to a maximum size of 4 GB. For details see
"Terabyte-Size LOB Support" on page 5-22.

■ Performance Enhancements

A number of performance enhancements have been added for this release
including:

■ LOB performance in INSERT, UPDATE, and SELECT operations is greatly
enhanced in this release. For more information on maximizing LOB
performance, see "Temporary LOB Performance Guidelines" on page 7-2.

■ Direct support for LOBs in the JDBC Thin driver.

The JDBC Thin driver now provides direct support for BFILEs, BLOBs, and
CLOBs. Prior to this release, it supported them through calls to PL/SQL
routines.

See Also:

■ "Parallel Online Redefinition" on page 11-6

■ "Parallel DML Support for LOBs" on page 13-7

See Also: "Directory Objects" on page 15-3

See Also: "LOB Access Statistics" on page 7-5

xxiii

■ Heterogeneous Cross-Platform Transportable Tablespace Support for LOBs

Support for LOBs in heterogeneous cross-platform transportable tablespaces is
introduced in this release.

■ Regular Expression Support

A set of SQL functions introduced in this release allow you to perform queries and
manipulate string data stored in LOB types and other character datatypes using
regular expressions.

■ Implicit Conversion Between NCLOB and CLOB Datatypes

This release introduces support for implicit conversions between NCLOB and
CLOB datatypes. You can perform operations such as cross-type assignments and
parameter passing between these types without losing data or character set
formatting properties.

■ Partitioned Index-Organized Tables - LOB Support

LOB columns are now supported in all types of partitioned index-organized
tables.

■ LogMiner Support for More Types: LONG, Multibyte CLOB and NCLOB

LogMiner and SQL Apply now support multibyte CLOB and NCLOB data. SQL
Apply now also supports LONG data. Support of additional datatypes means that
you can now mine a greater variety of data.

■ New Column in V$TEMPORARY_LOBS

A new column named 'ABSTRACT_LOBS' has been added to the
V$TEMPORARY_LOBS table. This column displays the number of abstract LOBs
accumulated in the current session. Abstract LOBs are temporary lobs returned

See Also: Oracle Database Administrator's Guide for details on
transportable tablespaces

See Also:

■ Oracle Database Application Developer's Guide - Fundamentals for
information on supported regular expression syntax.

■ Oracle Database SQL Reference for additional details on Oracle
SQL functions for regular expressions.

■ Oracle Database Globalization Support Guide for details on using
SQL regular expression functions in a multilingual
environment.

■ Mastering Regular Expressions published by O'Reilly &
Associates, Inc.

See Also: "Implicit Conversion Between CLOB and NCLOB
Datatypes in SQL" on page 9-7

See Also: "LOBs in Index Organized Tables" on page 4-16

See Also: Oracle Data Guard Concepts and Administration

xxiv

from queries involving XMLType columns. See the Oracle Database Reference for
details on the V$TEMPORARY_LOBS table.

Restrictions Removed in Oracle Database 10g Release 1
The following restrictions on LOB features were removed in Oracle Database 10g
Release 1:

■ NCLOB as an attribute of an object type at table creation

In previous releases you could not specify an NCLOB as an attribute of an object
type when creating a table. This restriction no longer applies.

■ Restrictions on LOBs in index organized tables were removed. See "Restrictions for
LOBs in Partitioned Index-Organized Tables" on page 4-17 for more information.

LOB Features Introduced in Oracle9i Release 2
This section describes features introduced in Oracle9i Release 2 (9.2).

This release introduces new PL/SQL APIs with improved features for loading binary
and character data from LOBs:

■ DBMS_LOB.LOADBLOBFROMFILE

This API enables you to load binary large objects from operating system files into
internal persistent LOBs and temporary LOBs.

■ DBMS_LOB.LOADCLOBFROMFILE

This API enables you to load character large objects from operating system files
into internal persistent LOBs and temporary LOBs. This API performs the proper
character set conversions from the BFILE data character set to the destination
CLOB/NCLOB character set.

■ Parallel Execution Support for DML Operations on LOBs

Restrictions Removed in Oracle9i Release 2
The following restrictions are removed in Oracle9i Release 2 (9.2):

■ Trigger restrictions removed

This release supports DML BEFORE ROW Trigger :new for LOBs. This means that
triggers on LOBs follow the same rules as triggers on any other type of column.

Prior to Release 9.2, in a PL/SQL trigger body of an BEFORE ROW DML trigger,
you could read the :old value of the LOB, but you could not read the :new
value.

In releases prior to 9.2, if a view with a LOB column has an INSTEAD OF
TRIGGER, then you cannot specify a string INSERT/UPDATE into the LOB
column. This restriction is removed in release 9.2. For example:

See Also: "Loading a BLOB with Data from a BFILE" on page 14-7

See Also: "Loading a CLOB or NCLOB with Data from a BFILE"
on page 14-9

See Also: "Parallel DML Support for LOBs" on page 13-7

xxv

CREATE TABLE t(a LONG);
CREATE VIEW v AS SELECT * FROM t;
CREATE TRIGGER trig INSTEAD OF insert on v....;
ALTER TABLE t MODIFY (a CLOB);
INSERT INTO v VALUES ('abc'); /* works now */

■ Locally managed tablespaces restriction removed

You can now create LOB columns in locally managed tablespaces.

■ LOBs in AUTO segment-managed tablespaces restriction removed

You can now store LOBs in AUTO segment-managed tablespaces.

■ NCLOB parameters

NCLOB parameters are now allowed as attributes in object types.

■ Partitioned Index Organized Tables

Partitioned Index Organized Tables (PIOT) are now supported.

■ Client-side PL/SQL DBMS_LOB procedures

Client-side PL/SQL DBMS_LOB procedures are now supported.

■ Selecting a bind variable into a LOB column

For fetch, in prior releases, you could not use SELECT INTO to bind a character
variable to a LOB column. SELECT INTO used to bind LOB locators to the
column. This constraint has been removed.

LOB Features Introduced in Oracle9i Release 1
The following LOB features were introduced in Oracle9i Release 1 (9.0.1):

■ Data Interface for LOBs

Using the data interface for LOBs, you can bind and define character data for
CLOB columns and binary data for BLOB columns. Doing so, enables you to insert
data directly into the LOB column and select data from the LOB column without
using a LOB locator.

When using a version of the Oracle Database client that differs from the version of
the Oracle Database server, queries produce different results when a client
application selects a LOB column defining it as a character type or a LOB type. The
following table outlines the characteristics of various Oracle Database client and
server combinations in this release and prior to this release.

Client Release
LOB Column Defined
on the Client Side As

Result Using Server
from Oracle Database
Release 1 (9.0.1) and
higher

Result Using Server
prior to Oracle
Database Release 1
(9.0.1)

9.0.1 and higher Character type Server sends data. Client raises error.

9.0.1 and higher LOB type Server sends locator. Server sends locator.

Prior to Rel.9.0.1 Character type Client raises error. Client raises error.

Prior to Rel.9.0.1 LOB type Server sends locator. Server sends locator.

See Also: Chapter 13, "Data Interface for Persistent LOBs"

xxvi

■ Using SQL Semantics with LOBs

In this release, for the first time, you can access (internal persistent) LOBs using
SQL VARCHAR2 semantics, such as SQL string operators and functions. By
providing you with an SQL interface, which you are familiar with, accessing LOB
data can be greatly facilitated. These semantics are recommended when using
small-sized LOBs (~ 10-100KB).

■ Using Oracle C++ Call Interface (OCCI) with LOBs

Oracle C++ Call Interface (OCCI) is a new C++ API for manipulating data in an
Oracle database. OCCI is organized as an easy-to-use set of C++ classes which
enable a C++ program to connect to a database, run SQL statements,
insert/update values in database tables, retrieve results of a query, run stored
procedures in the database, and access metadata of database schema objects. OCCI
API provides advantages over JDBC and ODBC.

■ New JDBC LOB Functionality

The following are new JDBC LOB-related functionality:

■ Temporary LOB APIs: create temporary LOBs and destroy temporary LOBs

■ Trim APIs: trim the LOBs to the specified length

■ Open and Close APIs: open and close LOBs explicitly

■ New Streaming APIs: read and write LOBs as Java streams from the specified
offset.

■ Empty LOB instances can now be created with JDBC. The instances do not
require database round trips.

■ Support for LOBs in Partitioned Index-Organized Tables

Oracle9i introduces support for LOB, VARRAY columns stored as LOBs, and
BFILEs in partitioned index-organized tables. Results of queries on LOB columns
in these tables is similar to that of LOB columns in conventional (heap-organized)
partitioned tables, except for a few minor differences.

■ Using OLEDB and LOBs (new to this manual)

OLE DB is an open specification for accessing various types of data from different
stores in a uniform way. OLEDB supports the following functions for these LOB
types:

■ Persistent LOBs: READ/WRITE through the rowset.

■ BFILEs: READ-ONLY through the rowset.

Restrictions Removed in Oracle9i Release 1
This section describes restrictions removed in Oracle9i Release 1 (9.0.1).

See Also: Chapter 9, "SQL Semantics and LOBs"

See Also: Chapter 6, "Overview of Supplied LOB APIs"

See Also: Chapter 5, "Advanced Design Considerations"

See Also: "Oracle Provider for OLE DB (OraOLEDB)" on
page 6-45

xxvii

In earlier releases, you could not call functions and procedures in DBMS_LOB
packages from client-side PL/SQL. This restriction is removed in release version 9.0.1.
In this release, you can call DBMS_LOB functions and procedures from client-side or
server-side PL/SQL.

xxviii

Part I
Getting Started

This part gives an introduction to Large Objects and introduces general concepts you
need to be familiar with to use LOBs in your application.

This part contains these chapters:

■ Chapter 1, "Introduction to Large Objects"

■ Chapter 2, "Working with LOBs"

■ Chapter 3, "Managing LOBs: Database Administration"

Introduction to Large Objects 1-1

1
Introduction to Large Objects

This chapter introduces Large Objects (LOBs) and discusses how LOB datatypes are
used in application development. This chapter contains these topics:

■ What Are Large Objects?

■ Why Use Large Objects?

■ Why Not Use LONGs?

■ Different Kinds of LOBs

■ Introducing LOB Locators

■ Database Semantics for Internal and External LOBs

■ Large Object Datatypes

■ Object Datatypes and LOBs

■ Storing and Creating Other Datatypes with LOBs

What Are Large Objects?
Large Objects (LOBs) are a set of datatypes that are designed to hold large amounts of
data. A LOB can hold up to a maximum size ranging from 8 terabytes to 128 terabytes
depending on how your database is configured. Storing data in LOBs enables you to
access and manipulate the data efficiently in your application.

Why Use Large Objects?
This section introduces different types of data that you encounter when developing
applications and discusses which kinds of data are suitable for large objects.

In the world today, applications must deal with the following kinds of data:

■ Simple structured data.

This data can be organized into simple tables that are structured based on business
rules.

■ Complex structured data

This kind of data is complex in nature and is suited for the object-relational
features of the Oracle database such as collections, references, and user-defined
types.

■ Semi-structured data

Why Use Large Objects?

1-2 Oracle Database Application Developer's Guide - Large Objects

This kind of data has a logical structure that is not typically interpreted by the
database. For example, an XML document that is processed by your application or
an external service, can be thought of as semi-structured data. The database
provides technologies such as Oracle XML DB, Advanced Queueing, and
Messages to help your application work with semi-structured data.

■ Unstructured data

This kind of data is not broken down into smaller logical structures and is not
typically interpreted by the database or your application. A photographic image
stored as a binary file is an example of unstructured data.

Large objects are suitable for these last two kinds of data: semi-structured data and
unstructured data. Large objects features allow you to store these kinds of data in the
database as well as in operating system files that are accessed from the database.

With the growth of the internet and content-rich applications, it has become
imperative that the database support a datatype that:

■ Can store unstructured and semi-structured data in an efficient manner.

■ Is optimized for large amounts of data.

■ Provides a uniform way of accessing data stored within the database or outside
the database.

Using LOBs for Semi-structured Data
Examples of semi-structured data include document files such as XML documents or
word processor files. These kinds of documents contain data in a logical structure that
is processed or interpreted by an application, and is not broken down into smaller
logical units when stored in the database.

Applications involving semi-structured data typically use large amounts of character
data. The Character Large Object (CLOB) and National Character Large Object (NCLOB)
datatypes are ideal for storing and manipulating this kind of data.

Binary File objects (BFILE datatypes) can also store character data. You can use
BFILEs to load read-only data from operating system files into CLOB or NCLOB
instances that you then manipulate in your application.

Using LOBs for Unstructured Data
Unstructured data cannot be decomposed into standard components. For example,
data about an employee can be structured into a name, which is stored as a string; an
identifier, such as an ID number, a salary and so on. A photograph, on the other hand,
consists of a long stream of 1s and 0s. These bits are used to switch pixels on or off so
that you can see the picture on a display, but are not broken down into any finer
structure for database storage.

Also, unstructured data such as text, graphic images, still video clips, full motion
video, and sound waveforms tends to be large in size. A typical employee record may
be a few hundred bytes, while even small amounts of multimedia data can be
thousands of times larger.

SQL datatypes that are ideal for large amounts of unstructured binary data include the
BLOB datatype (Binary Large Object) and the BFILE datatype (Binary File object).

Different Kinds of LOBs

Introduction to Large Objects 1-3

Why Not Use LONGs?
The database supports LONG as well as LOB datatypes. When possible, change your
existing applications to use LOBs instead of LONGs because of the added benefits that
LOBs provide. LONG-to-LOB migration enables you to easily migrate your existing
applications that access LONG columns, to use LOB columns.

Applications developed for use with Oracle Database version 7 and earlier, used the
LONG or LONG RAW data type to store large amounts of unstructured data.

With the Oracle8i and later versions of the database, using LOB datatypes is
recommended for storing large amounts of structured and semi-structured data. LOB
datatypes have several advantages over LONG and LONG RAW types including:

■ LOB Capacity: LOBs can store much larger amounts of data. LOBs can store 4GB
of data or more depending on you system configuration. LONG and LONG RAW
types are limited to 2GB of data.

■ Number of LOB columns in a table: A table can have multiple LOB columns. LOB
columns in a table can be of any LOB type. In Oracle Database Release 7.3 and
higher, tables are limited to a single LONG or LONG RAW column.

■ Random piece-wise access: LOBs support random access to data, but LONGs
support only sequential access.

■ LOBs can also be object attributes.

Different Kinds of LOBs
Different kinds of LOBs can be stored in the database or in external files.

Internal LOBs
LOBs in the database are stored inside database tablespaces in a way that optimizes
space and provides efficient access. The following SQL datatypes are supported for
declaring internal LOBs: BLOB, CLOB, and NCLOB. Details on these datatypes are given
in "Large Object Datatypes" on page 1-5.

Persistent and Temporary LOBs
Internal LOBs (LOBs in the database) can be either persistent or temporary. A
persistent LOB is a LOB instance that exists in a table row in the database. A
temporary LOB instance is created when you instantiate a LOB only within the scope
of your local application.

A temporary instance becomes a persistent instance when you insert the instance into
a table row.

Persistent LOBs use copy semantics and participate in database transactions. You can
recover persistent LOBs in the event of transaction or media failure, and any changes
to a persistent LOB value can be committed or rolled back. In other words, all the
Atomicity Consistency Isolation Durability (ACID) properties that pertain to using
database objects pertain to using persistent LOBs.

See Also: Chapter 11, "Migrating Columns from LONGs to LOBs"

Note: LOBs in the database are sometimes also referred to as
internal LOBs or internal persistent LOBs.

Introducing LOB Locators

1-4 Oracle Database Application Developer's Guide - Large Objects

External LOBs and the BFILE Datatype
External LOBs are data objects stored in operating system files, outside the database
tablespaces. The database accesses external LOBs using the SQL datatype BFILE. The
BFILE datatype is the only external LOB datatype.

BFILEs are read-only datatypes. The database allows read-only byte stream access to
data stored in BFILEs. You cannot write to a BFILE from within your application.

The database uses reference semantics with BFILE columns. Data stored in a table
column of type BFILE, is physically located in an operating system file, not in the
database tablespace.

You typically use BFILEs to hold:

■ Binary data that does not change while your application is running, such as
graphics.

■ Data that is loaded into other large object types, such as a BLOB or CLOB where
the data can then be manipulated.

■ Data that is appropriate for byte-stream access, such as multimedia.

■ Read-only data that is relatively large in size, to avoid taking up large amounts
database tablespace.

Any storage device accessed by your operating system can hold BFILE data, including
hard disk drives, CD-ROMs, PhotoCDs and DVDs. The database can access BFILEs
provided the operating system supports stream-mode access to the operating system
files.

Introducing LOB Locators
A LOB instance has a locator and a value. The LOB locator is a reference to where the
LOB value is physically stored. The LOB value is the data stored in the LOB.

When you use a LOB in an operation such as passing a LOB as a parameter, you are
actually passing a LOB locator. For the most part, you can work with a LOB instance in
your application without being concerned with the semantics of LOB locators. There is
no need to dereference LOB locators, as is required with pointers in some
programming languages.

There are some issues regarding the semantics of LOB locators and how LOB values
are stored that you should be aware of. These details are covered in the context of the
discussion where they apply throughout this guide.

Note: External LOBs do not participate in transactions. Any
support for integrity and durability must be provided by the
underlying file system as governed by the operating system.

See Also:

■ "LOB Locator and LOB Value" on page 2-2

■ "LOB Locators and BFILE Locators" on page 2-3

■ "LOB Storage" on page 4-5

Object Datatypes and LOBs

Introduction to Large Objects 1-5

Database Semantics for Internal and External LOBs
In all programmatic environments, database semantics differ between internal LOBs
and external LOBs as follows:

■ Internal LOBs use copy semantics.

With copy semantics, both the LOB locator and LOB value are logically copied
during insert, update, or assignment operations. This ensures that each table cell
or each variable containing a LOB, holds a unique LOB instance.

■ External LOBs use reference semantics.

With reference semantics, only the LOB locator is copied during insert operations.
(Note that update operations do not apply to external LOBs as external LOBs are
read-only. This is explained in more detail later in this section.)

Large Object Datatypes
Table 1–1 describes each large object datatype supported by the database and describes
the kind of data each datatype is typically used for. The names of datatypes given here
are the SQL datatypes provided by the database. In general, the descriptions given for
the datatypes in this table and the rest of this book also apply to the corresponding
datatypes provided for other programmatic environments. Also, note that the term
"LOB" is generally used to refer to the set of all large object datatypes.

Object Datatypes and LOBs
You can declare LOB datatypes as fields, or members, of object datatypes. For
example, you can have an attribute of type CLOB on an object type. In general, there is
no difference in the usage of a LOB instance in a LOB column and the usage of a LOB

Table 1–1 Large Object Datatypes

SQL Datatype Description

BLOB Binary Large Object

Stores any kind of data in binary format. Typically used for
multimedia data such as images, audio, and video.

CLOB Character Large Object

Stores string data in the database character set format. Used for
large strings or documents that use the database character set
exclusively. Characters in the database character set are in a
fixed width format.

NCLOB National Character Set Large Object

Stores string data in National Character Set format. Used for
large strings or documents in the National Character Set.
Supports characters of varying width format.

BFILE External Binary File

A binary file stored outside of the database in the host
operating system file system, but accessible from database
tables. BFILEs can be accessed from your application on a
read-only basis. Use BFILEs to store static data, such as image
data, that does not need to be manipulated in applications.

Any kind of data, that is, any operating system file, can be
stored in a BFILE. For example, you can store character data in
a BFILE and then load the BFILE data into a CLOB specifying
the character set upon loading.

Storing and Creating Other Datatypes with LOBs

1-6 Oracle Database Application Developer's Guide - Large Objects

instance that is a member or of an object datatype. Any difference in usage is called
out when it applies. When used in this guide, the term LOB attribute refers to a LOB
instance that is a member of an object datatype. Unless otherwise specified,
discussions that apply to LOB columns also apply to LOB attributes.

Storing and Creating Other Datatypes with LOBs
You can use LOBs to create other user-defined datatypes or store other datatypes as
LOBs. This section discusses some of the datatypes provided with the database as
examples of datatypes that are stored or created with LOB types.

VARRAYs Stored as LOBs
An instance of type VARRAY in the database is stored as an array of LOBs when you
create a table in the following scenarios:

■ If the VARRAY storage clause— VARRAY varray_item STORE AS —is not
specified, and the declared size of varray data is more than 4000 bytes.

■ If the varray column properties are specified using the STORE AS LOB clause—
VARRAY varray_item STORE AS LOB ...

XMLType Columns Stored as CLOBs
A good example of how LOB datatypes can be used to store other datatypes is the
XMLType datatype. The XMLType datatype is stored as a CLOB type. Setting up your
table or column to store XMLType datatypes as CLOBs enables you to store
schema-less XML documents in the database.

LOBs Used in Oracle interMedia
Oracle interMedia uses LOB datatypes to create datatypes specialized for use in
multimedia application such as interMedia ORDAudio, ORDDoc, ORDImage, and
ORDVideo. Oracle interMedia uses the database infrastructure to define object types,
methods, and LOBs necessary to represent these specialized types of data in the
database.

See Also:

■ Oracle XML DB Developer's Guide for information on creating
XMLType tables and columns and how XML is stored in
CLOBs.

■ Oracle XML Developer's Kit Programmer's Guide, for information
about working with XML.

See Also:

■ Oracle interMedia User's Guide for more information on using
interMedia.

■ Oracle interMedia Reference for more information on using
interMedia datatypes.

Working with LOBs 2-1

2
Working with LOBs

This chapter describes the usage and semantics of LOBs that you need to be familiar
with to use LOBs in your application. Various techniques for working with LOBs are
covered.

Most of the discussions in this chapter regarding persistent LOBs assume that you are
dealing with LOBs in tables that already exist. The task of creating tables with LOB
columns is typically performed by your database administrator. See Chapter 4, "LOBs
in Tables" of this guide for details on creating tables with LOB columns.

This chapter contains these topics:

■ LOB Column States

■ Locking a Row Containing a LOB

■ Opening and Closing LOBs

■ LOB Locator and LOB Value

■ LOB Locators and BFILE Locators

■ Accessing LOBs

■ LOB Rules and Restrictions

LOB Column States
The techniques you use when accessing a cell in a LOB column differ depending on
the state of the given cell. A cell in a LOB Column can be in one of the following states:

■ NULL

The table cell is created, but the cell holds no locator or value.

■ Empty

A LOB instance with a locator exists in the cell, but it has no value. The length of
the LOB is zero.

■ Populated

A LOB instance with a locator and a value exists in the cell.

Locking a Row Containing a LOB
You can lock a row containing a LOB to prevent other database users from writing to
the LOB during a transaction. To lock a row containing a LOB, specify the FOR

Opening and Closing LOBs

2-2 Oracle Database Application Developer's Guide - Large Objects

UPDATE clause when you select the row. While the row is locked, other users cannot
lock or update the LOB, until you end your transaction.

Opening and Closing LOBs
The LOB APIs include operations that enable you to explicitly open and close a LOB
instance. You can open and close a persistent LOB instance of any type: BLOB, CLOB,
NCLOB, or BFILE. You open a LOB to achieve one or both of the following results:

■ Open the LOB in read-only mode.

This ensures that the LOB (both the LOB locator and LOB value) cannot be
changed in your session until you explicitly close the LOB. For example, you can
open the LOB to ensure that the LOB is not changed by some other part of your
program while you are using the LOB in a critical operation. After you perform
the operation, you can then close the LOB.

■ Open the LOB in read write/mode—persistent BLOB, CLOB, or NCLOB instances
only.

Opening a LOB in read write mode defers any index maintenance on the LOB
column until you close the LOB. Opening a LOB in read write mode is only useful
if there is an extensible index on the LOB column and you do not want the
database to perform index maintenance every time you write to the LOB. This
technique can increase the performance of your application if you are doing
several write operations on the LOB while it is open.

If you open a LOB, then you must close the LOB at some point later in your session.
This is the only requirement for an open LOB. While a LOB instance is open, you can
perform as many operations as you want on the LOB—provided the operations are
allowed in the given mode.

LOB Locator and LOB Value
There are two techniques that you can use to access and modify LOB values:

■ Using the Data Interface for LOBs

■ Using the LOB Locator to Access and Modify LOB Values

Using the Data Interface for LOBs
You can perform bind and define operations on CLOB and BLOB columns in C
applications using the data interface for LOBs in OCI. Doing so, enables you to insert
or select out data in a LOB column without using a LOB locator as follows:

■ Using a bind variable associated with a LOB column to insert character data into a
CLOB, or RAW data into a BLOB.

■ Using a define operation to define an output buffer in your application that will
hold character data selected from a CLOB, or RAW data selected from a BLOB.

See Also: "Opening Persistent LOBs with the OPEN and CLOSE
Interfaces" on page 5-9 for details on usage of these APIs.

See Also: Chapter 13, "Data Interface for Persistent LOBs" for
more information on implicit assignment of LOBs to other
datatypes.

LOB Locators and BFILE Locators

Working with LOBs 2-3

Using the LOB Locator to Access and Modify LOB Values
The value of a LOB instance stored in the database can be accessed through a LOB
locator, a reference to the location of the LOB value. Database tables store only locators
in CLOB, BLOB, NCLOB and BFILE columns. Note the following with respect to LOB
locators and values:

■ To access or manipulate a LOB value, you pass the LOB locator to the various LOB
APIs.

■ A LOB locator can be assigned to any LOB instance of the same type.

■ The characteristics of a LOB as being temporary or persistent have nothing to do
with the locator. The characteristics of temporary or persistent apply only to the
LOB instance.

LOB Locators and BFILE Locators
There are differences between the semantics of locators for LOB types BLOB, CLOB,
and NCLOB on one hand, and the semantics of locators for the BFILE type on the other
hand:

■ For LOB types BLOB, CLOB, and NCLOB, the LOB column stores a locator to the
LOB value. Each LOB instance has its own distinct LOB locator and also a distinct
copy of the LOB value.

■ For initialized BFILE columns, the row stores a locator to the external operating
system file that holds the value of the BFILE. Each BFILE instance in a given row
has its own distinct locator; however, two different rows can contain a BFILE
locator that points to the same operating system file.

Regardless of where the value of a LOB is stored, a locator is stored in the table row of
any initialized LOB column. Note that when the term locator is used without an
identifying prefix term, it refers to both LOB locators and BFILE locators. Also, when
you select a LOB from a table, the LOB returned is always a temporary LOB. For more
information on working with locators for temporary LOBs, see "LOBs Returned from
SQL Functions" on page 9-9.

Table print_media
The table print_media of the Oracle Database Sample Schema PM, is used in many
examples in this documentation and is defined as:

CREATE TABLE print_media
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

See Also: "Creating a Table Containing One or More LOB
Columns" on page 8-1 for the details of how print_media and its
associated tables and files are created.

LOB Locators and BFILE Locators

2-4 Oracle Database Application Developer's Guide - Large Objects

Initializing a LOB Column to Contain a Locator
Any LOB instance that is NULL does not have a locator. Before you can pass a LOB
instance to any LOB API routine, the instance must contain a locator. For example, you
can select a NULL LOB from a row, but you cannot pass the instance to the PL/SQL
DBMS_LOB.READ procedure. The following sub-sections describe how to initialize a
persistent LOB column and how to initialize a BFILE column.

Initializing a Persistent LOB Column
Before you can start writing data to a persistent LOB using the supported
programmatic environment interfaces (PL/SQL, OCI, OCCI, Pro*C/C++, Pro*COBOL,
Visual Basic, Java, or OLEDB), the LOB column/attribute must be made non-NULL,
that is, it must contain a locator.

You can accomplish this by initializing the persistent LOB to empty in an
INSERT/UPDATE statement using the functions EMPTY_BLOB for BLOBs or
EMPTY_CLOB for CLOBs and NCLOBs.

Running the EMPTY_BLOB() or EMPTY_CLOB() function in and of itself does not
raise an exception. However, using a LOB locator that was set to empty to access or
manipulate the LOB value in any PL/SQL DBMS_LOB or OCI function will raise an
exception.

Valid places where empty LOB locators may be used include the VALUES clause of an
INSERT statement and the SET clause of an UPDATE statement.

The following INSERT statement in the PM, table print_media:

■ Populates ad_sourcetext with the character string 'my Oracle',

■ Sets ad_composite, ad_finaltext, and ad_fltextn to an empty value,

■ Sets ad_photo to NULL, and

■ Initializes ad_graphic to point to the file my_picture located under the logical
directory my_directory_object.

CREATE OR REPLACE DIRECTORY my_directory_object AS 'oracle/work/tklocal';

Note: You can use SQL to populate a LOB column with data even
if it contains a NULL value.

See Also: Chapter 4, "LOBs in Tables" for more information on
initializing LOB columns.

See Also:

■ "Directory Objects" on page 15-3 for details of CREATE
DIRECTORY and BFILENAME usage

■ CREATE DIRECTORY statement in Oracle Database Reference. for
more information about creating a directory object

■ Oracle Database SQL Reference, CREATE DIRECTORY statement

Note: Character strings are inserted using the default character set
for the instance.

Accessing LOBs

Working with LOBs 2-5

INSERT INTO print_media VALUES (1726, 1, EMPTY_BLOB(),
 'my Oracle', EMPTY_CLOB(), EMPTY_CLOB(),
 NULL, NULL, BFILENAME('my_directory_object', 'my_picture'), NULL);

Similarly, the LOB attributes for the ad_header column in print_media can be
initialized to NULL, empty, or a character/raw literal, which is shown in the following
statement:

INSERT INTO print_media (product_id, ad_id, ad_header)
 VALUES (1726, 1, adheader_typ('AD FOR ORACLE', sysdate,
 'Have Grid', EMPTY_BLOB()));

Initializing BFILEs
Before you can access BFILE values using LOB APIs, the BFILE column or attribute
must be made non-NULL. You can initialize the BFILE column to point to an external
operating system file by using the BFILENAME function.

Accessing LOBs
You can access a LOB instance using the following techniques:

■ Accessing a LOB Using SQL

■ Accessing a LOB Using the Data Interface

■ Accessing a LOB Using the Locator Interface

Accessing a LOB Using SQL
Support for columns that use LOB datatypes is built into many SQL functions. This
support enables you to use SQL semantics to access LOB columns in SQL. In most
cases, you can use the same SQL semantics on a LOB column that you would use on a
VARCHAR2 column.

Accessing a LOB Using the Data Interface
You can select a LOB directly into CHAR or RAW buffers using the LONG-to-LOB API in
OCI and PL/SQL. In the following PL/SQL example, ad_finaltext is selected into
a VARCHAR2 buffer final_ad.

DECLARE

See Also:

■ "Inserting a Row by Selecting a LOB From Another Table" on
page 8-4

■ "Inserting a LOB Value Into a Table" on page 8-5

■ "Inserting a Row by Initializing a LOB Locator Bind Variable"
on page 8-6

■ "OCILobLocator Pointer Assignment" on page 6-10 for details
on LOB locator semantics in OCI

See Also: "Accessing BFILEs" on page 15-3 for more information
on initializing BFILE columns.

See Also: For details on SQL semantics support for LOBs, see
Chapter 9, "SQL Semantics and LOBs".

LOB Rules and Restrictions

2-6 Oracle Database Application Developer's Guide - Large Objects

 final_ad VARCHAR(32767);
BEGIN
 SELECT ad_finaltext INTO final_ad FROM print_media
 WHERE product_id = 2056 and ad_id = 12001 ;
 /* PUT_LINE can only output up to 255 characters at a time */
 ...
 DBMS_OUTPUT.PUT_LINE(final_ad);
 /* more calls to read final_ad */
 ...
END;

Accessing a LOB Using the Locator Interface
You can access and manipulate a LOB instance by passing the LOB locator to the LOB
APIs supplied with the database. An extensive set of LOB APIs is provided with each
supported programmatic environment. In OCI, a LOB locator is mapped to a locator
pointer which is used to access the LOB value.

LOB Rules and Restrictions
This section provides details on LOB rules and restrictions.

Rules for LOB Columns
LOB columns are subject to the following rules and restrictions:

■ You cannot specify a LOB as a primary key column.

■ Oracle Database has limited support for remote LOBs. You can perform create
table as select and insert/update as select of LOB columns.

For example:

CREATE TABLE t AS SELECT * FROM table1@remote_site;
INSERT INTO t SELECT * FROM table1@remote_site;
UPDATE t SET lobcol = (SELECT lobcol FROM table1@remote_site);
INSERT INTO table1@remote_site SELECT * from local_table;
UPDATE table1@remote_site SET lobcol = (SELECT lobcol FROM local_table);
DELETE FROM table1@remote_site <WHERE clause involving non_lob_columns>

In statements structured like the preceding examples, only standalone LOB
columns are allowed in the select list.

SQL functions and DBMS_LOB APIs are not supported for use with remote LOB
columns. For example, the following statement is supported:

See Also: For more details on accessing LOBs using the data
interface, see Chapter 13, "Data Interface for Persistent LOBs".

Note: In all environments, including OCI, the LOB APIs operate
on the LOB value implicitly—there is no need to "dereference" the
LOB locator.

See Also:

■ Chapter 6, "Overview of Supplied LOB APIs"

■ "OCILobLocator Pointer Assignment" on page 6-10 for details
on LOB locator semantics in OCI

LOB Rules and Restrictions

Working with LOBs 2-7

CREATE TABLE AS SELECT clob_col FROM tab@dbs2;

However, the following statement is not supported:

CREATE TABLE AS SELECT DBMS_LOB.SUBSTR(clob_col) from tab@dbs2;

In addition, you can insert a character or binary buffer into a remote CLOB or
BLOB, and select a remote CLOB or BLOB into a character or binary buffer. For
example (in PL/SQL):

SELECT clobcol1, type1.blobattr INTO varchar_buf1, raw_buf2 FROM
 table1@remote_site;
INSERT INTO table1@remotesite (clobcol1, type1.blobattr) VALUES varchar_buf1,
 raw_buf2;

This is the only supported syntax involving LOBs in remote tables. No other usage
is supported.

■ Clusters cannot contain LOBs, either as key or nonkey columns.

■ The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

– VARRAY of any LOB type

– VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute

– ANYDATA of any LOB type

– ANYDATA of any type containing a LOB

■ You cannot specify LOB columns in the ORDER BY clause of a query, or in the
GROUP BY clause of a query or in an aggregate function.

■ You cannot specify a LOB column in a SELECT... DISTINCT or SELECT... UNIQUE
statement or in a join. However, you can specify a LOB attribute of an object type
column in a SELECT... DISTINCT statement or in a query that uses the UNION or
MINUS set operator if the column's object type has a MAP or ORDER function
defined on it.

■ You cannot specify LOB columns in ANALYZE... COMPUTE or ANALYZE...
ESTIMATE statements.

■ The first (INITIAL) extent of a LOB segment must contain at least three database
blocks.

■ When creating an UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause.

■ You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the indextype specification of a domain index. In
addition, Oracle Text lets you define an index on a CLOB column.

■ In an INSERT... AS SELECT operation, you can bind up to 4000 bytes of data to
LOB columns and attributes.

■ If a table has both LONG and LOB columns, you cannot bind more than 4000 bytes
of data to both the LONG and LOB columns in the same SQL statement. However,
you can bind more than 4000 bytes of data to either the LONG or the LOB column.

LOB Rules and Restrictions

2-8 Oracle Database Application Developer's Guide - Large Objects

Restrictions for LOB Operations
Other general LOB restrictions include the following:

■ In SQL Loader, A field read from a LOBFILE cannot be used as an argument to a
clause. See "Database Utilities for Loading Data into LOBs" on page 3-1 for more
information.

■ Session migration is not supported for BFILEs in shared server (multithreaded
server) mode. This implies that operations on open BFILEs can persist beyond the
end of a call to a shared server. In shared server sessions, BFILE operations will be
bound to one shared server, they cannot migrate from one server to another.

Note: For a table on which you have defined a DML trigger, if you
use OCI functions or DBMS_LOB package to change the value of a
LOB column or the LOB attribute of an object type column, the
database does not fire the DML trigger.

See Also:

■ "Restrictions Removed in Oracle Database 10g Release 2" on
page xxii

■ "Restrictions Removed in Oracle Database 10g Release 1" on
page xxiv

■ "Restrictions Removed in Oracle9i Release 2" on page xxiv

■ "Restrictions for LOBs in Partitioned Index-Organized Tables"
on page 4-17

■ Chapter 11, "Migrating Columns from LONGs to LOBs" under
"Migrating Applications from LONGs to LOBs" on page 11-7,
describes LONG to LOB migration limitations for clustered
tables, replication, triggers, domain indexes, and
function-based indexes.

■ "Unsupported Use of LOBs in SQL" on page 9-8 for restrictions
on SQL semantics.

■ For details on the INITIAL extent of a LOB segment, see
"Restriction on First Extent of a LOB Segment" on page 4-3.

■ LOBs in partitioned index-organized tables are also subject to a
number of other restrictions. See "Restrictions for LOBs in
Partitioned Index-Organized Tables" on page 4-17 for more
information.

Managing LOBs: Database Administration 3-1

3
Managing LOBs: Database Administration

This chapter describes administrative tasks that must be performed to set up,
maintain, and use a database that contains LOBs.

This chapter contains these topics:

■ Database Utilities for Loading Data into LOBs

■ Managing Temporary LOBs

■ Managing BFILEs

■ Changing Tablespace Storage for a LOB

Database Utilities for Loading Data into LOBs
The following utilities are recommended for bulk loading data into LOB columns as
part of database setup or maintenance tasks:

■ SQL*Loader

■ Oracle DataPump

Using SQL*Loader to Load LOBs
There are two general techniques for using SQL*Loader to load data into LOBs:

■ Loading data from a primary data file

■ Loading from a secondary data file using LOBFILEs

Consider the following issues when loading LOBs with SQL*Loader:

■ For SQL*Loader conventional path loads, failure to load a particular LOB does not
result in the rejection of the record containing that LOB; instead, the record ends
up containing an empty LOB.

For SQL*Loader direct-path loads, the LOB could be empty or truncated. LOBs are
sent in pieces to the server for loading. If there is an error, then the LOB piece with
the error is discarded and the rest of that LOB is not loaded. In other words, if the
entire LOB with the error is contained in the first piece, then that LOB column will
either be empty or truncated.

Note: Application Developers: If you are loading data into a LOB
in your application, then using the LOB APIs is recommended. See
Chapter 14, "LOB APIs for Basic Operations" for details on APIs
that allow you to load LOBs from files.

Database Utilities for Loading Data into LOBs

3-2 Oracle Database Application Developer's Guide - Large Objects

■ When loading from LOBFILEs specify the maximum length of the field
corresponding to a LOB-type column. If the maximum length is specified, then it is
taken as a hint to help optimize memory usage. It is important that the maximum
length specification does not underestimate the true maximum length.

■ When using SQL*Loader direct-path load, loading LOBs can take up substantial
memory. If the message "SQL*Loader 700 (out of memory)" appears when loading
LOBs, then internal code is probably batching up more rows in each load call than
can be supported by your operating system and process memory. A work-around
is to use the ROWS option to read a smaller number of rows in each data save.

■ You can also use the Direct Path API to load LOBs.

■ Using LOBFILEs is recommended when loading columns containing XML data in
CLOBs or XMLType columns. Whether you perform a direct-path load or a
conventional path load with SQL*Loader depends on whether you need to
validate XML documents upon loading.

■ If the XML document must be validated upon loading, then use conventional
path load.

■ If it is not necessary to ensure that the XML document is valid or you can
safely assume that the XML document is valid, then you can perform a
direct-path load. Performance is higher when you use direct-path load because
the overhead of XML validation is incurred.

A conventional path load executes SQL INSERT statements to populate tables in an
Oracle database. A direct path load eliminates much of the Oracle database
overhead by formatting Oracle data blocks and writing the data blocks directly to
the database files.

A direct-path load does not compete with other users for database resources, so it
can usually load data at near disk speed. Considerations inherent to direct path
loads, such as restrictions, security, and backup implications, are discussed in
Oracle Database Utilities.

■ Tables to be loaded must already exist in the database. SQL*Loader never creates
tables. It loads existing tables that either already contain data or are empty.

■ The following privileges are required for a load:

■ You must have INSERT privileges on the table to be loaded.

■ You must have DELETE privilege on the table to be loaded, when using the
REPLACE or TRUNCATE option to empty out the old data before loading
the new data in its place.

Using SQL*Loader to Populate a BFILE Column
This section describes how to load data from files in the file system into a BFILE
column.

See Also: For details on using SQL*Loader to load LOBs and
other details on SQL*Loader usage, refer to the Oracle Database
Utilities guide.

See Also: "Supported Environments for BFILE APIs" on
page 15-2

Database Utilities for Loading Data into LOBs

Managing LOBs: Database Administration 3-3

Note that the BFILE datatype stores unstructured binary data in operating system files
outside the database. A BFILE column or attribute stores a file locator that points to a
server-side external file containing the data.

SQL*Loader assumes that the necessary DIRECTORY objects have already been
created.

A control file field corresponding to a BFILE column consists of column name
followed by the BFILE directive.

The BFILE directive takes as arguments a DIRECTORY object name followed by a
BFILE name. Both of these can be provided as string constants, or they can be
dynamically sourced through some other field.

The following two examples illustrate the loading of BFILES.

In the following example only the file name is specified dynamically.

Control file:

LOAD DATA
INFILE sample9.dat
INTO TABLE Print_media
FIELDS TERMINATED BY ','
(product_id INTEGER EXTERNAL(6),
 FileName FILLER CHAR(30),
 ad_graphic BFILE(CONSTANT "modem_graphic_2268_21001", FileName))

Data file:

007, modem_2268.jpg,
008, monitor_3060.jpg,
009, keyboard_2056.jpg,

Note: A particular file to be loaded as a BFILE does not have to
actually exist at the time of loading.

See Also: See "Directory Objects" on page 15-3 and the sections
following it for more information on creating directory objects.

See Also: Oracle Database Utilities for details on SQL*Loader
syntax.

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager
GRANT CREATE ANY DIRECTORY to samp;
CONNECT samp/samp
CREATE OR REPLACE DIRECTORY adgraphic_photo as '/tmp';
CREATE OR REPLACE DIRECTORY adgraphic_dir as '/tmp';

Managing Temporary LOBs

3-4 Oracle Database Application Developer's Guide - Large Objects

In the following example, the BFILE and the DIRECTORY object are specified
dynamically.

Control file:

LOAD DATA
INFILE sample10.dat
INTO TABLE Print_media
FIELDS TERMINATED BY ','
(
 product_id INTEGER EXTERNAL(6),
 ad_graphic BFILE (DirName, FileName),
 FileName FILLER CHAR(30),
 DirName FILLER CHAR(30)
)

Data file:

007,monitor_3060.jpg,ADGRAPHIC_PHOTO,
008,modem_2268.jpg,ADGRAPHIC_PHOTO,
009,keyboard_2056.jpg,ADGRAPHIC_DIR,

Using Oracle DataPump to Transfer LOB Data
You can use Oracle DataPump to transfer LOB data from one database to another.

Managing Temporary LOBs
The database keeps track of temporary LOBs in each session, and provides a v$ view
called v$temporary_lobs. From the session, the application can determine which
user owns the temporary LOB. As a database administrator, you can use this view to
monitor and guide any emergency cleanup of temporary space used by temporary
LOBs.

Managing Temporary Tablespace for Temporary LOBs
Temporary tablespace is used to store temporary LOB data. As a database
administrator you control data storage resources for temporary LOB data by
controlling user access to temporary tablespaces and by the creation of different
temporary tablespaces.

Note: product_ID defaults to (255) if a size is not specified. It is
mapped to the file names in the data file. ADGRAPHIC_PHOTO is the
directory where all files are stored. ADGRAPHIC_DIR is a
DIRECTORY object created previously.

Note: DirName FILLER CHAR (30) is mapped to the data file
field containing the directory name corresponding to the file being
loaded.

See Also: For details on using Oracle DataPump, refer to the
Oracle Database Utilities guide.

See Also: Refer to the Oracle Database Administrator's Guide for
details on managing temporary tablespaces.

Changing Tablespace Storage for a LOB

Managing LOBs: Database Administration 3-5

Managing BFILEs
This section describes administrative tasks for managing databases that contain
BFILEs.

Rules for Using Directory Objects and BFILEs
When creating a directory object or BFILEs, ensure that the following conditions are
met:

■ The operating system file must not be a symbolic or hard link.

■ The operating system directory path named in the Oracle DIRECTORY object
must be an existing operating system directory path.

■ The operating system directory path named in the Oracle DIRECTORY object
should not contain any symbolic links in its components.

Setting Maximum Number of Open BFILEs
A limited number of BFILEs can be open simultaneously in each session. The
initialization parameter, SESSION_MAX_OPEN_FILES defines an upper limit on the
number of simultaneously open files in a session.

The default value for this parameter is 10. That is, you can open a maximum of 10 files
at the same time in each session if the default value is used. If you want to alter this
limit, then the database administrator can change the value of this parameter in the
init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files reaches the SESSION_MAX_OPEN_FILES value, then
you will not be able to open any more files in the session. To close all open files, use
the DBMS_LOB.FILECLOSEALL call.

Changing Tablespace Storage for a LOB
As the database administrator, you can use the following techniques to change the
default storage for a LOB after the table has been created:

■ Using ALTER TABLE... MODIFY: You can change LOB tablespace storage as
follows:

ALTER TABLE test MODIFY
 LOB (lob1)
 STORAGE (

Note:

■ The ALTER TABLE syntax for modifying an existing LOB
column uses the MODIFY LOB clause, not the LOB...STORE
AS clause. The LOB...STORE AS clause is only for newly
added LOB columns.

■ There are two kinds of LOB storage clauses: LOB_storage_
clause and modify_LOB_storage_clause. In the ALTER
TABLE MODIFY LOB statement, you can only specify the
modify_LOB_storage_clause.

Changing Tablespace Storage for a LOB

3-6 Oracle Database Application Developer's Guide - Large Objects

 NEXT 4M
 MAXEXTENTS 100
 PCTINCREASE 50
)

■ Using ALTER TABLE... MOVE: You can also use the MOVE clause of the ALTER
TABLE statement to change LOB tablespace storage. For example:

ALTER TABLE test MOVE
 TABLESPACE tbs1
 LOB (lob1, lob2)
 STORE AS (
 TABLESPACE tbs2
 DISABLE STORAGE IN ROW);

Part II
Application Design

This part covers issues that you need to consider when designing applications that use
LOBs.

This part contains these chapters:

■ Chapter 4, "LOBs in Tables"

■ Chapter 5, "Advanced Design Considerations"

■ Chapter 6, "Overview of Supplied LOB APIs"

■ Chapter 7, "Performance Guidelines"

LOBs in Tables 4-1

4
LOBs in Tables

This chapter describes issues specific to tables that contain LOB columns. This chapter
contains these topics:

■ Creating Tables That Contain LOBs

■ Choosing a LOB Column Datatype

■ Selecting a Table Architecture

■ LOB Storage

■ Indexing LOB Columns

■ Manipulating LOBs in Partitioned Tables

■ LOBs in Index Organized Tables

■ Updating LOBs in Nested Tables

Creating Tables That Contain LOBs
When creating tables that contain LOBs, use the guidelines described in the following
sections:

■ Initializing Persistent LOBs to NULL or Empty

■ Initializing Persistent LOB Columns and Attributes to a Value

■ Initializing BFILEs to NULL or a File Name

■ LOB Storage, "Defining Tablespace and Storage Characteristics for Persistent
LOBs"

Initializing Persistent LOBs to NULL or Empty
You can set a persistent LOB — that is, a LOB column in a table, or a LOB attribute in
an object type that you defined— to be NULL or empty:

■ Setting a Persistent LOB to NULL: A LOB set to NULL has no locator. A NULL value
is stored in the row in the table, not a locator. This is the same process as for all
other datatypes.

■ Setting a Persistent LOB to Empty: By contrast, an empty LOB stored in a table is a
LOB of zero length that has a locator. So, if you SELECT from an empty LOB
column or attribute, then you get back a locator which you can use to populate the
LOB with data using supported programmatic environments, such as OCI or
PL/SQL(DBMS_LOB). See Chapter 6, "Overview of Supplied LOB APIs" for more
information on supported environments.

Creating Tables That Contain LOBs

4-2 Oracle Database Application Developer's Guide - Large Objects

Details for these options are given in the following discussions.

Setting a Persistent LOB to NULL
You may want to set a persistent LOB value to NULL upon inserting the row in cases
where you do not have the LOB data at the time of the INSERT or if you want to use a
SELECT statement, such as the following, to determine whether the LOB holds a NULL
value:

SELECT COUNT (*) FROM print_media WHERE ad_graphic IS NOT NULL;

SELECT COUNT (*) FROM print_media WHERE ad_graphic IS NULL;

Note that you cannot call OCI or DBMS_LOB functions on a NULL LOB, so you must
then use an SQL UPDATE statement to reset the LOB column to a non-NULL (or empty)
value.

The point is that you cannot make a function call from the supported programmatic
environments on a LOB that is NULL. These functions only work with a locator, and if
the LOB column is NULL, then there is no locator in the row.

Setting a Persistent LOB to Empty
You can initialize a persistent LOB to EMPTY rather that NULL. Doing so, enables you
to obtain a locator for the LOB instance without populating the LOB with data. To set a
persistent LOB to EMPTY, use the SQL function EMPTY_BLOB() or EMPTY_CLOB() in
the INSERT statement:

INSERT INTO a_table VALUES (EMPTY_BLOB());

As an alternative, you can use the RETURNING clause to obtain the LOB locator in
one operation rather than calling a subsequent SELECT statement:

DECLARE
 Lob_loc BLOB;
BEGIN
 INSERT INTO a_table VALUES (EMPTY_BLOB()) RETURNING blob_col INTO Lob_loc;
 /* Now use the locator Lob_loc to populate the BLOB with data */
END;

Initializing LOBs
You can initialize the LOBs in print_media by using the following INSERT
statement:

INSERT INTO print_media VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of ad_sourcetext, ad_fltextn, ad_composite, and
ad_photo to an empty value, and sets ad_graphic to NULL.

Initializing Persistent LOB Columns and Attributes to a Value
You can initialize the LOB column or LOB attributes to a value that contains more than
4G bytes of data, the limit before release 10.2.

See Also: Chapter 13, "Data Interface for Persistent LOBs"

Choosing a LOB Column Datatype

LOBs in Tables 4-3

Initializing BFILEs to NULL or a File Name
A BFILE can be initialized to NULL or to a filename. To do so, you can use the
BFILENAME() function.

Restriction on First Extent of a LOB Segment
The first extent of any segment requires at least 2 blocks (if FREELIST GROUPS was 0).
That is, the initial extent size of the segment should be at least 2 blocks. LOBs
segments are different because they need at least 3 blocks in the first extent. If you try to
create a LOB segment in a permanent dictionary managed tablespace with initial = 2
blocks, then it will still work because it is possible for segments in permanent
dictionary managed tablespaces to override the default storage setting of the
tablespaces.

But if uniform locally managed tablespaces or dictionary managed tablespaces of the
temporary type, or locally managed temporary tablespaces have an extent size of 2
blocks, then LOB segments cannot be created in these tablespaces. This is because in
these tablespace types, extent sizes are fixed and the default storage setting of the
tablespaces is not ignored.

Choosing a LOB Column Datatype
When selecting a datatype, consider the following topics:

■ LOBs Compared to LONG and LONG RAW Types

■ Storing Varying-Width Character Data in LOBs

■ Implicit Character Set Conversions with LOBs

LOBs Compared to LONG and LONG RAW Types
Table 4–1 lists the similarities and differences between LOBs, LONGs, and LONG
RAW types.

See Also: "BFILENAME and Initialization" on page 15-5.

Table 4–1 LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type

You can store multiple LOBs in a single row You can store only one LONG or LONG RAW
in each row.

LOBs can be attributes of a user-defined
datatype

This is not possible with either a LONG or
LONG RAW

Only the LOB locator is stored in the table
column; BLOB and CLOB data can be stored
in separate tablespaces and BFILE data is
stored as an external file.

For inline LOBs, the database will store
LOBs that are less than approximately 4000
bytes of data in the table column.

In the case of a LONG or LONG RAW the
entire value is stored in the table column.

When you access a LOB column, you can
choose to fetch the locator or the data.

When you access a LONG or LONG RAW, the
entire value is returned.

A LOB can be up to 8 terabytes or more in
size depending on your block size.

A LONG or LONG RAW instance is limited to
2 gigabytes in size.

Selecting a Table Architecture

4-4 Oracle Database Application Developer's Guide - Large Objects

Storing Varying-Width Character Data in LOBs
Varying-width character data in CLOB and NCLOB datatypes is stored in an internal
format that is compatible with UCS2 Unicode character set format. This ensures that
there is no storage loss of character data in a varying-width format. Also note the
following if you are using LOBs to store varying-width character data:

■ You can create tables containing CLOB and NCLOB columns even if you use a
varying-width CHAR or NCHAR database character set.

■ You can create a table containing a datatype that has a CLOB attribute regardless of
whether you use a varying-width CHAR database character set.

Implicit Character Set Conversions with LOBs
For CLOB and NCLOB instances used in OCI (Oracle Call Interface), or any of the
programmatic environments that access OCI functionality, character set conversions
are implicitly performed when translating from one character set to another.

The DBMS_LOB.LOADCLOBFROMFILE API, performs an implicit conversion from
binary data to character data when loading to a CLOB or NCLOB. With the exception of
DBMS_LOB.LOADCLOBFROMFILE, LOB APIs do not perform implicit conversions
from binary data to character data.

For example, when you use the DBMS_LOB.LOADFROMFILE API to populate a CLOB
or NCLOB, you are populating the LOB with binary data from a BFILE. In this case,
you must perform character set conversions on the BFILE data before calling
DBMS_LOB.LOADFROMFILE.

Selecting a Table Architecture
When designing your table, consider the following design criteria:

■ LOB Storage

■ Inline and Out-of-Line LOB Storage

■ Defining Tablespace and Storage Characteristics for Persistent LOBs

■ LOB Storage Characteristics for LOB Column or Attribute

There is greater flexibility in manipulating
data in a random, piece-wise manner with
LOBs. LOBs can be accessed at random
offsets.

Less flexibility in manipulating data in a
random, piece-wise manner with LONG or
LONG RAW data.LONGs must be accessed
from the beginning to the desired location.

You can replicate LOBs in both local and
distributed environments.

Replication in both local and distributed
environments is not possible with a LONG
or LONG RAW (see Oracle Database Advanced
Replication)

See Also: Oracle Database Globalization Support Guide for more
detail on character set conversions.

Note: The ALTER DATABASE command will not work when
there are CLOB or NCLOB columns in the tables.

Table 4–1 (Cont.) LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type

LOB Storage

LOBs in Tables 4-5

■ TABLESPACE and LOB Index

* PCTVERSION

* CACHE / NOCACHE / CACHE READS

* LOGGING / NOLOGGING

* CHUNK

* ENABLE or DISABLE STORAGE IN ROW Clause

■ LOBs in Index Organized Tables

■ Manipulating LOBs in Partitioned Tables

■ Using Domain Indexing on LOB Columns

LOB Storage
This section summarizes LOB storage characteristics to consider when designing
tables with LOB column types.

Inline and Out-of-Line LOB Storage
LOB columns store locators that reference the location of the actual LOB value.
Depending on the column properties you specify when you create the table, and
depending the size of the LOB, actual LOB values are stored either in the table row
(inline) or outside of the table row (out-of-line).

LOB values are stored out-of-line when any of the following situations apply:

■ By default. That is, if you do not specify a LOB parameter for the LOB storage
clause when you create the table.

■ When you explicitly specify DISABLE STORAGE IN ROW for the LOB storage
clause when you create the table.

■ When the size of the LOB is greater than 3964 bytes, the LOB value for the LOB
instance (regardless of the LOB storage properties for the column).

■ If you update a LOB that is stored out-of-line and the resulting LOB is less than
3964 bytes in size, it is still stored out-of-line.

LOB values are stored inline when any of the following conditions apply:

■ When you explicitly specify ENABLE STORAGE IN ROW for the LOB storage
clause when you create the table, and the size of the LOB stored in the given row is
small, 4K bytes or less.

■ When the LOB value is NULL (regardless of the LOB storage properties for the
column).

Using the default LOB storage properties (inline storage) can allow for better database
performance; it avoids the overhead of creating and managing out-of-line storage for
smaller LOB values. If LOB values stored in your database are frequently small in size,
then using inline storage is recommended.

LOB Storage

4-6 Oracle Database Application Developer's Guide - Large Objects

Defining Tablespace and Storage Characteristics for Persistent LOBs
When defining LOBs in a table, you can explicitly indicate the tablespace and storage
characteristics for each persistent LOB column as shown in the following example:

CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
 lob (c) STORE AS SEGNAME (TABLESPACE lobtbs1 CHUNK 4096
 PCTVERSION 5
 NOCACHE LOGGING
 STORAGE (MAXEXTENTS 5)
);

If you need to modify the LOB storage parameters on an existing LOB column, then
use the MODIFY LOB clause of the ALTER TABLE statement.

Assigning a LOB Data Segment Name
As shown in the in the previous example, specifying a name for the LOB data segment
makes for a much more intuitive working environment. When querying the LOB data

Note:

■ LOB locators are always stored in the row.

■ A LOB locator always exists for any LOB instance regardless of
the LOB storage properties or LOB value - NULL, empty, or
otherwise.

■ If the table is created with DISABLE STORAGE IN ROW
properties and the LOB holds any data, then a minimum of one
CHUNK of out-of-line storage space is used; even when the size
of the LOB is less than the CHUNK size.

■ If a LOB column is initialized with EMPTY_CLOB() or
EMPTY_BLOB(), then no LOB value exists, not even NULL. The
row holds a LOB locator only. No additional LOB storage is
used.

■ LOB storage properties do not affect BFILE columns. BFILE
data is always stored in operating system files outside the
database.

Note: There are no tablespace or storage characteristics that you
can specify for external LOBs as they are not stored in the database.

Note: Only some storage parameters can be modified. For
example, you can use the ALTER TABLE ... MODIFY LOB
statement to change RETENTION, PCTVERSION, CACHE or NO
CACHE LOGGING or NO LOGGING, and the STORAGE clause.

You can also change the TABLESPACE using the ALTER TABLE
... MOVE statement.

However, once the table has been created, you cannot change the
CHUNK size, or the ENABLE or DISABLE STORAGE IN ROW
settings.

LOB Storage

LOBs in Tables 4-7

dictionary views USER_LOBS, ALL_LOBS, DBA_LOBS (see Oracle Database Reference),
you see the LOB data segment that you chose instead of system-generated names.

LOB Storage Characteristics for LOB Column or Attribute
LOB storage characteristics that can be specified for a LOB column or a LOB attribute
include the following:

■ TABLESPACE

■ PCTVERSION or RETENTION

Note that you can specify either PCTVERSION or RETENTION, but not both.

■ CACHE/NOCACHE/CACHE READS

■ LOGGING/NOLOGGING

■ CHUNK

■ ENABLE/DISABLE STORAGE IN ROW

■ STORAGE

For most users, defaults for these storage characteristics will be sufficient. If you want
to fine-tune LOB storage, then consider the following guidelines.

TABLESPACE and LOB Index
Best performance for LOBs can be achieved by specifying storage for LOBs in a
tablespace different from the one used for the table that contains the LOB. If many
different LOBs will be accessed frequently, then it may also be useful to specify a
separate tablespace for each LOB column or attribute in order to reduce device
contention.

The LOB index is an internal structure that is strongly associated with LOB storage.
This implies that a user may not drop the LOB index and rebuild it.

The system determines which tablespace to use for LOB data and LOB index
depending on your specification in the LOB storage clause:

■ If you do not specify a tablespace for the LOB data, then the tablespace of the table
is used for the LOB data and index.

■ If you specify a tablespace for the LOB data, then both the LOB data and index use
the tablespace that was specified.

Tablespace for LOB Index in Non-Partitioned Table
When creating a table, if you specify a tablespace for the LOB index for a
non-partitioned table, then your specification of the tablespace will be ignored and the
LOB index will be co-located with the LOB data. Partitioned LOBs do not include the
LOB index syntax.

Specifying a separate tablespace for the LOB storage segments will allow for a
decrease in contention on the tablespace of the table.

See Also: "STORAGE clause" in Oracle Database SQL Reference

Note: The LOB index cannot be altered.

LOB Storage

4-8 Oracle Database Application Developer's Guide - Large Objects

PCTVERSION
When a LOB is modified, a new version of the LOB page is produced in order to
support consistent read of prior versions of the LOB value.

PCTVERSION is the percentage of all used LOB data space that can be occupied by old
versions of LOB data pages. As soon as old versions of LOB data pages start to occupy
more than the PCTVERSION amount of used LOB space, Oracle Database tries to
reclaim the old versions and reuse them. In other words, PCTVERSION is the percent
of used LOB data blocks that is available for versioning old LOB data.

PCTVERSION has a default of 10 (%), a minimum of 0, and a maximum of 100.

To decide what value PCTVERSION should be set to, consider the following:

■ How often LOBs are updated?

■ How often the updated LOBs are read?

Table 4–2, " Recommended PCTVERSION Settings" provides some guidelines for
determining a suitable PCTVERSION value.

If your application requires several LOB updates concurrent with heavy reads of LOB
columns, then consider using a higher value for PCTVERSION, such as 20%.

Setting PCTVERSION to twice the default value allows more free pages to be used for
old versions of data pages. Because large queries may require consistent reads of LOB
columns, it may be useful to retain old versions of LOB pages. In this case, LOB
storage may grow because the database will not reuse free pages aggressively.

If persistent LOB instances in your application are created and written just once and
are primarily read-only afterward, then updates are infrequent. In this case, consider
using a lower value for PCTVERSION, such as 5% or lower.

The more infrequent and smaller the LOB updates are, the less space must be reserved
for old copies of LOB data. If existing LOBs are known to be read-only, then you could
safely set PCTVERSION to 0% because there would never be any pages needed for old
versions of data.

RETENTION
As an alternative to the PCTVERSION parameter, you can specify the RETENTION
parameter in the LOB storage clause of the CREATE TABLE or ALTER TABLE
statement. Doing so, configures the LOB column to store old versions of LOB data for
a period of time, rather than using a percentage of the table space. For example:

CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
 lob (c) STORE AS SEGNAME (TABLESPACE lobtbs1 CHUNK 4096
 RETENTION
 NOCACHE LOGGING
 STORAGE (MAXEXTENTS 5)
);

Table 4–2 Recommended PCTVERSION Settings

LOB Update Pattern LOB Read Pattern PCTVERSION

Updates XX% of LOB data Reads updated LOBs XX%

Updates XX% of LOB data Reads LOBs but not the updated LOBs 0%

Updates XX% of LOB data Reads both updated and non-updated LOBs XX%

Never updates LOB Reads LOBs 0%

LOB Storage

LOBs in Tables 4-9

The RETENTION parameter is designed for use with Undo features of the database,
such as Flashback Versions Query. When a LOB column has the RETENTION property
set, old versions of the LOB data are retained for the amount of time specified by the
UNDO_RETENTION parameter.

Note the following with respect to the RETENTION parameter:

■ Undo SQL is not enabled for LOB columns as it is with other datatypes. You must
set the RETENTION property on a LOB column to use Undo SQL on LOB data.

■ You cannot set the value of the RETENTION parameter explicitly. The amount of
time for retention of LOB versions in determined by the UNDO_RETENTION
parameter.

■ Usage of the RETENTION parameter is only supported in Automatic Undo
Management mode. You must configure your table for use with Automatic Undo
Management before you can set RETENTION on a LOB column.

■ The LOB storage clause can specify RETENTION or PCTVERSION, but not both.

CACHE / NOCACHE / CACHE READS
When creating tables that contain LOBs, use the cache options according to the
guidelines in Table 4–3, " When to Use CACHE, NOCACHE, and CACHE READS":

CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
■ CACHE: Oracle places LOB pages in the buffer cache for faster access.

■ NOCACHE: As a parameter in the STORE AS clause, NOCACHE specifies that LOB
values are not brought into the buffer cache.

■ CACHE READS: LOB values are brought into the buffer cache only during read
and not during write operations.

See Also:

■ Oracle Database Application Developer's Guide - Fundamentals for
more information on using flashback features of the database.

■ Oracle Database SQL Reference for details on LOB storage clause
syntax.

Table 4–3 When to Use CACHE, NOCACHE, and CACHE READS

Cache Mode Read Write

CACHE READS Frequently Once or occasionally

CACHE Frequently Frequently

NOCACHE (default) Once or occasionally Never

Note: Using the CACHE option results in improved performance
when reading and writing data from the LOB column. However, it
can potentially age other non-LOB pages out of the buffer cache
prematurely.

LOB Storage

4-10 Oracle Database Application Developer's Guide - Large Objects

LOGGING / NOLOGGING
[NO] LOGGING has a similar application with regard to using LOBs as it does for other
table operations. In the usual case, if the [NO]LOGGING clause is omitted, then this
means that neither NO LOGGING nor LOGGING is specified and the logging attribute of
the table or table partition defaults to the logging attribute of the tablespace in which it
resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

■ CACHE is specified and [NO]LOGGING clause is omitted, LOGGING is
automatically implemented (because you cannot have CACHE NOLOGGING).

■ CACHE is not specified and [NO]LOGGING clause is omitted, the process defaults
in the same way as it does for tables and partitioned tables. That is, the
[NO]LOGGING value is obtained from the tablespace in which the LOB value
resides.

The following issues should also be kept in mind.

LOBs Will Always Generate Undo for LOB Index Pages
Regardless of whether LOGGING or NOLOGGING is set LOBs will never generate
rollback information (undo) for LOB data pages because old LOB data is stored in
versions. Rollback information that is created for LOBs tends to be small because it is
only for the LOB index page changes.

When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages
 NOLOGGING is intended to be used when a customer does not care about media
recovery. Thus, if the disk/tape/storage media fails, then you will not be able to
recover your changes from the log because the changes were never logged.

NOLOGGING is Useful for Bulk Loads or Inserts. For instance, when loading data into the
LOB, if you do not care about redo and can just start the load over if it fails, set the
LOB data segment storage characteristics to NOCACHE NOLOGGING. This provides
good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the
LOB storage characteristics for the LOB data segment for normal LOB operations, for
example, to CACHE or NOCACHE LOGGING.

CHUNK
A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the data size used
by Oracle Database when accessing or modifying the LOB value. Part of the chunk is
used to store system-related information and the rest stores the LOB value. The API
you are using has a function that returns the amount of space used in the LOB chunk
to store the LOB value. In PL/SQL use DBMS_LOB.GETCHUNKSIZE. In OCI, use
OCILobGetChunkSize().

Note: CACHE implies that you also get LOGGING.

LOB Storage

LOBs in Tables 4-11

Choosing the Value of CHUNK
Once the value of CHUNK is chosen (when the LOB column is created), it cannot be
changed. Hence, it is important that you choose a value which optimizes your storage
and performance requirements.

Space Considerations The value of CHUNK does not matter for LOBs that are stored
inline. This happens when ENABLE STORAGE IN ROW is set, and the size of the LOB
locator and the LOB data is less than 4000 bytes. However, when the LOB data is
stored out-of-line, it will always take up space in multiples of the CHUNK parameter.
This can lead to a large waste of space if your data is small, but the CHUNK is set to a
large number. The following table illustrates this point:

Performance Considerations Accessing lobs in big chunks is more efficient. You can set
CHUNK to the data size most frequently accessed or written. For example, if only one
block of LOB data is accessed at a time, then set CHUNK to the size of one block. If you
have big LOBs, and read or write big amounts of data, then choose a large value for
CHUNK.

Set INITIAL and NEXT to Larger than CHUNK
If you explicitly specify storage characteristics for the LOB, then make sure that
INITIAL and NEXT for the LOB data segment storage are set to a size that is larger
than the CHUNK size. For example, if the database block size is 2KB and you specify a
CHUNK of 8KB, then make sure that INITIAL and NEXT are bigger than 8KB and
preferably considerably bigger (for example, at least 16KB).

Put another way: If you specify a value for INITIAL, NEXT, or the LOB CHUNK size,
then make sure they are set in the following manner:

■ CHUNK <= NEXT

■ CHUNK <= INITIAL

Note: If the tablespace block size is the same as the database block
size, then CHUNK is also a multiple of the database block size. The
default CHUNK size is equal to the size of one tablespace block, and
the maximum value is 32K.

See Also: "Terabyte-Size LOB Support" on page 5-22 for
information about maximum LOB sizes

Table 4–4 Data Size and CHUNK Size

Data Size CHUNK Size Disk Space Used to Store the LOB
Space Utilization
(Percent)

3500 enable storage in row irrelevant 3500 in row 100

3500 disable storage in row 32 KB 32 KB 10

3500 disable storage in row 4 KB 4 KB 90

33 KB 32 KB 64 KB 51

2 GB +10 32 KB 2 GB + 32 KB 99+

Indexing LOB Columns

4-12 Oracle Database Application Developer's Guide - Large Objects

ENABLE or DISABLE STORAGE IN ROW Clause
You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether the LOB
should be stored inline (in the row) or out-of-line.

The default is ENABLE STORAGE IN ROW.

Guidelines for ENABLE or DISABLE STORAGE IN ROW
The maximum amount of LOB data stored in the row is the maximum VARCHAR2 size
(4000). This includes the control information as well as the LOB value. If you indicate
that the LOB should be stored in the row, once the LOB value and control information
is larger than 4000, then the LOB value is automatically moved out of the row.

This suggests the following guidelines:

The default, ENABLE STORAGE IN ROW, is usually the best choice for the following
reasons:

■ Small LOBs: If the LOB is small (< 4000 bytes), then the whole LOB can be read
while reading the row without extra disk I/O.

■ Large LOBs: If the LOB is big (> 4000 bytes), then the control information is still
stored in the row if ENABLE STORAGE IN ROW is set, even after moving the
LOB data out of the row. This control information could enable us to read the
out-of-line LOB data faster.

However, in some cases DISABLE STORAGE IN ROW is a better choice. This is
because storing the LOB in the row increases the size of the row. This impacts
performance if you are doing a lot of base table processing, such as full table scans,
multi-row accesses (range scans), or many UPDATE/SELECT to columns other than
the LOB columns.

Indexing LOB Columns
This section discusses different techniques you can use to index LOB columns.

Using Domain Indexing on LOB Columns
You might be able to improve the performance of queries by building indexes
specifically attuned to your domain. Extensibility interfaces provided with the
database allow for domain indexing, a framework for implementing such domain
specific indexes.

Note: You may not alter this specification once you have made it:
if you ENABLE STORAGE IN ROW, then you cannot alter it to
DISABLE STORAGE IN ROW and vice versa.

Note: You cannot build a B-tree or bitmap index on a LOB
column.

See Also: Oracle Database Data Cartridge Developer's Guide for
information on building domain specific indexes.

Indexing LOB Columns

LOBs in Tables 4-13

Indexing LOB Columns Using a Text Index
Depending on the nature of the contents of the LOB column, one of the Oracle Text
options could also be used for building indexes. For example, if a text document is
stored in a CLOB column, then you can build a text index to speed up the performance
of text-based queries over the CLOB column.

Function-Based Indexes on LOBs
A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

Function-based indexes cannot be built on nested tables or LOB columns. However,
you can build function-based indexes on VARRAYs.

Like extensible indexes and domain indexes on LOB columns, function-based indexes
are also automatically updated when a DML operation is performed on the LOB
column. Function-based indexes are also updated when any extensible index is
updated.

Extensible Indexing on LOB Columns
The database provides extensible indexing, a feature which enables you to define new
index types as required. This is based on the concept of cooperative indexing where a
data cartridge and the database build and maintain indexes for data types such as text
and spatial for example, for On-line-Analytical Processing (OLAP).

The cartridge is responsible for defining the index structure, maintaining the index
content during load and update operations, and searching the index during query
processing. The index structure can be stored in Oracle as heap-organized, or an
index-organized table, or externally as an operating system file.

To support this structure, the database provides an indextype. The purpose of an
indextype is to enable efficient search and retrieval functions for complex domains
such as text, spatial, image, and OLAP by means of a data cartridge. An indextype is
analogous to the sorted or bit-mapped index types that are built-in within the Oracle
Server. The difference is that an indextype is implemented by the data cartridge
developer, whereas the Oracle kernel implements built-in indexes. Once a new
indextype has been implemented by a data cartridge developer, end users of the data
cartridge can use it just as they would built-in indextypes.

When the database system handles the physical storage of domain indexes, data
cartridges

■ Define the format and content of an index. This enables cartridges to define an
index structure that can accommodate a complex data object.

■ Build, delete, and update a domain index. The cartridge handles building and
maintaining the index structures. Note that this is a significant departure from the
medicine indexing features provided for simple SQL data types. Also, because an
index is modeled as a collection of tuples, in-place updating is directly supported.

See Also: Oracle Text Reference for more information regarding
Oracle Text options.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for more information on using function-based indexes

Manipulating LOBs in Partitioned Tables

4-14 Oracle Database Application Developer's Guide - Large Objects

■ Access and interpret the content of an index. This capability enables the data
cartridge to become an integral component of query processing. That is, the
content-related clauses for database queries are handled by the data cartridge.

By supporting extensible indexes, the database significantly reduces the effort needed
to develop high-performance solutions that access complex datatypes such as LOBs.

Extensible Optimizer
The extensible optimizer functionality allows authors of user-defined functions and
indexes to create statistics collections, selectivity, and cost functions. This information
is used by the optimizer in choosing a query plan. The cost-based optimizer is thus
extended to use the user-supplied information.

Extensible indexing functionality enables you to define new operators, index types,
and domain indexes. For such user-defined operators and domain indexes, the
extensible optimizer functionality will allow users to control the three main
components used by the optimizer to select an execution plan: statistics, selectivity, and
cost.

Oracle Text Indexing Support for XML
You can create Oracle Text indexes on CLOB columns and perform queries on XML
data.

Manipulating LOBs in Partitioned Tables
You can partition tables that contain LOB columns. As a result, LOBs can take
advantage of all of the benefits of partitioning including the following:

■ LOB segments can be spread between several tablespaces to balance I/O load and
to make backup and recovery more manageable.

■ LOBs in a partitioned table become easier to maintain.

■ LOBs can be partitioned into logical groups to speed up operations on LOBs that
are accessed as a group.

This section describes some of the ways you can manipulate LOBs in partitioned
tables.

Partitioning a Table Containing LOB Columns
LOBs are supported in RANGE partitioned, LIST partitioned, and HASH partitioned
tables. Composite heap-organized tables can also have LOBs.

You can partition a table containing LOB columns using the following techniques:

■ When the table is created using the PARTITION BY ... clause of the CREATE
TABLE statement.

See Also: Oracle Database Data Cartridge Developer's Guide

See Also:

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle Text Reference

■ Oracle Text Application Developer's Guide

Manipulating LOBs in Partitioned Tables

LOBs in Tables 4-15

■ Adding a partition to an existing table using the ALTER TABLE ... ADD
PARTITION clause.

■ Exchanging partitions with a table that already has partitioned LOB columns
using the ALTER TABLE ... EXCHANGE PARTITION clause. Note that
EXCHANGE PARTITION can only be used when both tables have the same storage
attributes, for example, both tables store LOBs out-of-line.

Creating LOB partitions at the same time you create the table (in the CREATE TABLE
statement) is recommended. If you create partitions on a LOB column when the table
is created, then the column can hold LOBs stored either inline or out-of-line LOBs.

After a table is created, new LOB partitions can only be created on LOB columns that
are stored out-of-line. Also, partition maintenance operations, SPLIT PARTITION
and MERGE PARTITIONS, will only work on LOB columns that store LOBs
out-of-line.

Note that once a table is created, storage attributes cannot be changed. See "LOB
Storage" on page 4-5 for more information about LOB storage attributes.

Creating an Index on a Table Containing Partitioned LOB Columns
To improve the performance of queries, you can create indexes on partitioned LOB
columns. For example:

CREATE INDEX index_name
 ON table_name (LOB_column_1, LOB_column_2, ...) LOCAL;

Note that only domain and function-based indexes are supported on LOB columns.
Other types of indexes, such as unique indexes are not supported with LOBs.

Moving Partitions Containing LOBs
You can move a LOB partition into a different tablespace. This is useful if the
tablespace is no longer large enough to hold the partition. To do so, use the ALTER
TABLE ... MOVE PARTITION clause. For example:

ALTER TABLE current_table MOVE PARTITION partition_name
 TABLESPACE destination_table_space
 LOB (column_name) STORE AS (TABLESPACE current_tablespace);

Splitting Partitions Containing LOBs
You can split a partition containing LOBs into two equally sized partitions using the
ALTER TABLE ... SPLIT PARTITION clause. Doing so permits you to place one or
both new partitions in a new tablespace. For example:

ALTER TABLE table_name SPLIT PARTITION partition_name
 AT (partition_range_upper_bound)
 INTO (PARTITION partition_name,
 PARTITION new_partition_name TABLESPACE new_tablespace_name
 LOB (column_name) STORE AS (TABLESPACE tablespace_name)
 ... ;

See Also: "Restrictions for LOBs in Partitioned Index-Organized
Tables" on page 4-17 for additional information on LOB restrictions.

LOBs in Index Organized Tables

4-16 Oracle Database Application Developer's Guide - Large Objects

Merging Partitions Containing LOBs
You can merge partitions that contain LOB columns using the ALTER TABLE ...
MERGE PARTITIONS clause. This technique is useful for reclaiming unused partition
space. For example:

ALTER TABLE table_name
 MERGE PARTITIONS partition_1, partition_2
 INTO PARTITION new_partition TABLESPACE new_tablespace_name
 LOB (column_name) store as (TABLESPACE tablespace_name)
 ... ;

LOBs in Index Organized Tables
Index Organized Tables (IOTs) support internal and external LOB columns. For the
most part, SQL DDL, DML, and piece wise operations on LOBs in IOTs produce the
same results as those for normal tables. The only exception is the default semantics of
LOBs during creation. The main differences are:

■ Tablespace Mapping: By default, or unless specified otherwise, the LOB data and
index segments will be created in the tablespace in which the primary key index
segments of the index organized table are created.

■ Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index
organized table created without an overflow segment will be stored out of line. In
other words, if an index organized table is created without an overflow segment,
then the LOBs in this table have their default storage attributes as DISABLE
STORAGE IN ROW. If you forcibly try to specify an ENABLE STORAGE IN ROW clause
for such LOBs, then SQL will raise an error.

On the other hand, if an overflow segment has been specified, then LOBs in index
organized tables will exactly mimic their semantics in conventional tables (see
"Defining Tablespace and Storage Characteristics for Persistent LOBs" on
page 4-6).

Example of Index Organized Table (IOT) with LOB Columns
Consider the following example:

CREATE TABLE iotlob_tab (c1 INTEGER PRIMARY KEY, c2 BLOB, c3 CLOB, c4
VARCHAR2(20))
 ORGANIZATION INDEX
 TABLESPACE iot_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
 PCTTHRESHOLD 50 INCLUDING c2
 OVERFLOW
 TABLESPACE ioto_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
 STORE AS lobseg (TABLESPACE lob_ts DISABLE STORAGE IN ROW
 CHUNK 16384 PCTVERSION 10 CACHE STORAGE (INITIAL 2M)
 INDEX lobidx_c1 (TABLESPACE lobidx_ts STORAGE (INITIAL 4K)));

Executing these statements will result in the creation of an index organized table
iotlob_tab with the following elements:

■ A primary key index segment in the tablespace iot_ts,

■ An overflow data segment in tablespace ioto_ts

■ Columns starting from column C3 being explicitly stored in the overflow data
segment

Updating LOBs in Nested Tables

LOBs in Tables 4-17

■ BLOB (column C2) data segments in the tablespace lob_ts

■ BLOB (column C2) index segments in the tablespace lobidx_ts

■ CLOB (column C3) data segments in the tablespace iot_ts

■ CLOB (column C3) index segments in the tablespace iot_ts

■ CLOB (column C3) stored in line by virtue of the IOT having an overflow segment

■ BLOB (column C2) explicitly forced to be stored out of line

Other LOB features, such as BFILEs and varying character width LOBs, are also
supported in index organized tables, and their usage is the same as for conventional
tables.

Restrictions for LOBs in Partitioned Index-Organized Tables
LOB columns are supported in range-, list-, and hash-partitioned index-organized
tables with the following restrictions:

■ Composite partitioned index-organized tables are not supported.

■ Relational and object partitioned index-organized tables (partitioned by range,
hash, or list) can hold LOBs stored as follows; however, partition maintenance
operations, such as MOVE, SPLIT, and MERGE are not supported with:

■ VARRAY datatypes stored as LOB datatypes

■ Abstract datatypes with LOB attributes

■ Nested tables with LOB types

Updating LOBs in Nested Tables
To update LOBs in a nested table, you must lock the row containing the LOB explicitly.
To do so, you must specify the FOR UPDATE clause in the subquery prior to updating
the LOB value.

Note that locking the row of a parent table does not lock the row of a nested table
containing LOB columns.

Note: If no overflow had been specified, then both C2 and C3
would have been stored out of line by default.

See Also: Additional restrictions for LOB columns in general are
given in "LOB Rules and Restrictions" on page 2-6.

Note: Nested tables containing LOB columns are the only data
structures supported for creating collections of LOBs. You cannot
create a VARRAY of any LOB datatype.

Updating LOBs in Nested Tables

4-18 Oracle Database Application Developer's Guide - Large Objects

Advanced Design Considerations 5-1

5
Advanced Design Considerations

This chapter describes design considerations for more advanced application
development issues.

This chapter contains these topics:

■ LOB Buffering Subsystem

■ Opening Persistent LOBs with the OPEN and CLOSE Interfaces

■ Read Consistent Locators

■ LOB Locators and Transaction Boundaries

■ LOBs in the Object Cache

■ Terabyte-Size LOB Support

■ Guidelines for Creating Gigabyte LOBs

LOB Buffering Subsystem
The database provides a LOB buffering subsystem (LBS) for advanced OCI-based
applications such as Data Cartridges, Web servers, and other client-based applications
that need to buffer the contents of one or more LOBs in the client address space. The
client-side memory requirement for the buffering subsystem during its maximum
usage is 512 KBytes. It is also the maximum amount that you can specify for a single
read or write operation on a LOB that has been enabled for buffered access.

Advantages of LOB Buffering
The advantages of buffering, especially for client applications that perform a series of
small reads and writes (often repeatedly) to specific regions of the LOB, are:

■ Buffering enables deferred writes to the server. You can buffer up several writes in
the LOB buffer in the client address space and eventually flush the buffer to the
server. This reduces the number of network round-trips from your client
application to the server, and hence, makes for better overall performance for LOB
updates.

■ Buffering reduces the overall number of LOB updates on the server, thereby
reducing the number of LOB versions and amount of logging. This results in better
overall LOB performance and disk space usage.

Guidelines for Using LOB Buffering
The following caveats apply to buffered LOB operations:

LOB Buffering Subsystem

5-2 Oracle Database Application Developer's Guide - Large Objects

■ Explicitly flush LOB buffer contents. The LOB buffering subsystem is not a cache.
The contents of a LOB buffer are not always the same as the LOB value in the
server. Unless you explicitly flush the contents of a LOB buffer, you will not see
the results of your buffered writes reflected in the actual LOB on the server.

■ Error recovery for buffered LOB operations is your responsibility. Owing to the
deferred nature of the actual LOB update, error reporting for a particular buffered
read or write operation is deferred until the next access to the server based LOB.

■ LOB Buffering is Single User, Single Threaded. Transactions involving buffered
LOB operations cannot migrate across user sessions — the LBS is a single user,
single threaded system.

■ Maintain logical savepoints to rollback to. Oracle does not guarantee
transactional support for buffered LOB operations. To ensure transactional
semantics for buffered LOB updates, you must maintain logical savepoints in your
application to rollback all the changes made to the buffered LOB in the event of an
error. You should always wrap your buffered LOB updates within a logical
savepoint (see "OCI Example of LOB Buffering" on page 5-6).

■ Ensure LOB is not updated by another bypassing transaction. In any given
transaction, once you have begun updating a LOB using buffered writes, it is your
responsibility to ensure that the same LOB is not updated through any other
operation within the scope of the same transaction that bypasses the buffering
subsystem.

You could potentially do this by using an SQL statement to update the
server-based LOB. Oracle cannot distinguish, and hence prevent, such an
operation. This will seriously affect the correctness and integrity of your
application.

■ Updating buffer-enabled LOB locators. Buffered operations on a LOB are done
through its locator, just as in the conventional case. A locator that is enabled for
buffering will provide a consistent read version of the LOB, until you perform a
write operation on the LOB through that locator. See also, "Read Consistent
Locators" on page 5-10.

Once the locator becomes an updated locator by virtue of its being used for a
buffered write, it will always provide access to the most up-to-date version of the
LOB as seen through the buffering subsystem. Buffering also imposes an additional
significance to this updated locator — all further buffered writes to the LOB can be
done only through this updated locator. Oracle will return an error if you attempt to
write to the LOB through other locators enabled for buffering. See also, "Example
of Updating LOBs Through Updated Locators" on page 5-12.

■ Passing a buffer-enabled LOB locator an IN OUT or OUT parameter. You can
pass an updated locator that was enabled for buffering as an IN parameter to a
PL/SQL procedure. However, passing an IN OUT or an OUT parameter will
produce an error, as will an attempt to return an updated locator.

■ You cannot assign an updated locator that was enabled for buffering to another
locator. There are a number of different ways that assignment of locators may
occur — through OCILobAssign(), through assignment of PL/SQL variables,
through OCIObjectCopy() where the object contains the LOB attribute, and so
on. Assigning a consistent read locator that was enabled for buffering to a locator
that did not have buffering enabled, turns buffering on for the target locator. By
the same token, assigning a locator that was not enabled for buffering to a locator
that did have buffering enabled, turns buffering off for the target locator.

LOB Buffering Subsystem

Advanced Design Considerations 5-3

Similarly, if you SELECT into a locator for which buffering was originally enabled,
then the locator becomes overwritten with the new locator value, thereby turning
buffering off.

■ When two or more locators point to the same LOB do not enable both for
buffering. If two or more different locators point to the same LOB, then it is your
responsibility to make sure that you do not enable both the locators for buffering.
Otherwise Oracle does not guarantee the contents of the LOB.

■ Buffer-enable LOBs do not support appends that create zero-byte fillers or spaces.
Appending to the LOB value using buffered write(s) is allowed, but only if the
starting offset of these write(s) is exactly one byte (or character) past the end of the
BLOB (or CLOB/NCLOB). In other words, the buffering subsystem does not support
appends that involve creation of zero-byte fillers or spaces in the server based
LOB.

■ For CLOBs, Oracle requires the client side character set form for the locator bind
variable be the same as that of the LOB in the server. This is usually the case in
most OCI LOB programs. The exception is when the locator is selected from a
remote database, which may have a different character set form from the database
which is currently being accessed by the OCI program. In such a case, an error is
returned. If there is no character set form input by the user, then Oracle assumes it
is SQLCS_IMPLICIT.

LOB Buffering Subsystem Usage
Here are some details of the LOB buffering subsystem:

LOB Buffer Physical Structure
Each user session has the following structure:

■ Fixed page pool of 16 pages, shared by all LOBs accessed in buffering mode from
that session.

■ Each page has a fixed size of up to 32K bytes (not characters) where page size = n x
CHUNK ~= 32K.

A LOB buffer consists of one or more of these pages, up to a maximum of 16 in each
session. The maximum amount that you ought to specify for any given buffered read
or write operation is 512K bytes, remembering that under different circumstances the
maximum amount you may read/write could be smaller.

LOB Buffering Subsystem Usage Scenario
Consider that a LOB is divided into fixed-size, logical regions. Each page is mapped to
one of these fixed size regions, and is in essence, their in-memory copy. Depending on
the input offset and amount specified for a read or write operation, the database
allocates one or more of the free pages in the page pool to the LOB buffer. A free page is
one that has not been read or written by a buffered read or write operation.

For example, assuming a page size of 32KBytes:

■ For an input offset of 1000 and a specified read/write amount of 30000, Oracle
reads the first 32K byte region of the LOB into a page in the LOB buffer.

■ For an input offset of 33000 and a read/write amount of 30000, the second 32K
region of the LOB is read into a page.

LOB Buffering Subsystem

5-4 Oracle Database Application Developer's Guide - Large Objects

■ For an input offset of 1000, and a read/write amount of 35000, the LOB buffer will
contain two pages — the first mapped to the region 1 — 32K, and the second to the
region 32K+1 — 64K of the LOB.

This mapping between a page and the LOB region is temporary until Oracle maps
another region to the page. When you attempt to access a region of the LOB that is not
already available in full in the LOB buffer, Oracle allocates any available free page(s)
from the page pool to the LOB buffer. If there are no free pages available in the page
pool, then Oracle reallocates the pages as follows. It ages out the least recently used page
among the unmodified pages in the LOB buffer and reallocates it for the current
operation.

If no such page is available in the LOB buffer, then it ages out the least recently used
page among the unmodified pages of other buffered LOBs in the same session. Again, if
no such page is available, then it implies that all the pages in the page pool are
modified, and either the currently accessed LOB, or one of the other LOBs, need to be
flushed. Oracle notifies this condition to the user as an error. Oracle never flushes and
reallocates a modified page implicitly. You can either flush them explicitly, or discard
them by disabling buffering on the LOB.

To illustrate the preceding discussion, consider two LOBs being accessed in buffered
mode — L1 and L2, each with buffers of size 8 pages. Assume that 6 of the 8 pages in
the L1 buffer are dirty, with the remaining 2 containing unmodified data read in from
the server. Assume similar conditions in the L2 buffer. Now, for the next buffered
operation on L1, Oracle will reallocate the least recently used page from the two
unmodified pages in the L1 buffer. Once all the 8 pages in the L1 buffer are used up for
LOB writes, Oracle can service two more operations on L1 by allocating the two
unmodified pages from the L2 buffer using the least recently used policy. But for any
further buffered operations on L1 or L2, Oracle returns an error.

If all the buffers are dirty and you attempt another read from or write to a buffered
LOB, then you will receive the following error:

Error 22280: no more buffers available for operation

There are two possible causes:

1. All buffers in the buffer pool have been used up by previous operations.

In this case, flush the LOBs through the locator that is being used to update the
LOB.

2. You are trying to flush a LOB without any previous buffered update operations.

In this case, write to the LOB through a locator enabled for buffering before
attempting to flush buffers.

Flushing the LOB Buffer
The term flush refers to a set of processes. Writing data to the LOB in the buffer
through the locator transforms the locator into an updated locator. Once you have
updated the LOB data in the buffer through the updated locator, a flush call will

■ Write the dirty pages in the LOB buffer to the server-based LOB, thereby updating
the LOB value,

■ Reset the updated locator to be a read consistent locator, and

■ Free the flushed buffers or turn the status of the buffer pages back from dirty to
unmodified.

LOB Buffering Subsystem

Advanced Design Considerations 5-5

After the flush, the locator becomes a read consistent locator and can be assigned to
another locator (L2 := L1).

For instance, suppose you have two locators, L1 and L2. Let us say that they are both
read consistent locators and consistent with the state of the LOB data in the server. If
you then update the LOB by writing to the buffer, L1 becomes an updated locator. L1
and L2 now refer to different versions of the LOB value. If you want to update the LOB
in the server, then you must use L1 to retain the read consistent state captured in L2.
The flush operation writes a new snapshot environment into the locator used for the
flush. The important point to remember is that you must use the updated locator (L1),
when you flush the LOB buffer. Trying to flush a read consistent locator will generate
an error.

The technique you use to flush the LOB buffer determines whether data in the buffer is
cleared and has performance implications as follows:

■ In the default mode, data is retained in the pages that were modified when the
flush operation occurs. In this case, when you read or write to the same range of
bytes, no round-trip to the server is necessary. Note that flushing the buffer, in this
context, does not clear the data in the buffer. It also does not return the memory
occupied by the flushed buffer to the client address space.

■ In the second case, you set the flag parameter in OCILobFlushBuffer() to
OCI_LOB_BUFFER_FREE to free the buffer pages, and so return the memory to
the client address space. Flushing the buffer using this technique updates the LOB
value on the server, returns a read consistent locator, and frees the buffer pages.

Flushing the Updated LOB
It is very important to note that you must flush a LOB that has been updated through
the LOB buffering subsystem in the following situations:

■ Before committing the transaction

■ Before migrating from the current transaction to another

■ Before disabling buffering operations on a LOB

■ Before returning from an external callout execution into the calling function,
procedure, or method in PL/SQL

Note that when the external callout is called from a PL/SQL block and the locator
is passed as a parameter, all buffering operations, including the enable call, should
be made within the callout itself. In other words, adhere to the following sequence:

■ Call the external callout

■ Enable the locator for buffering

■ Read or write using the locator

■ Flush the LOB

■ Disable the locator for buffering

■ Return to the calling function, procedure, or method in PL/SQL

Remember that the database never implicitly flushes the LOB buffer.

Note: Unmodified pages may now be aged out if necessary.

LOB Buffering Subsystem

5-6 Oracle Database Application Developer's Guide - Large Objects

Using Buffer-Enabled Locators
Note that there are several cases in which you can use buffer-enabled locators and
others in which you cannot.

■ When it is OK to Use Buffer-Enabled Locators:

■ OCI — A locator that is enabled for buffering can only be used with the
following OCI APIs:

OCILobRead2(), OCILobWrite2(), OCILobAssign(),
OCILobIsEqual(), OCILobLocatorIsInit(), OCILobCharSetId(),
OCILobCharSetForm()

■ When it is Not OK to Use Buffer-Enabled Locators: The following OCI APIs will
return errors if used with a locator enabled for buffering:

■ OCI — OCILobCopy2(), OCILobAppend(), OCILobErase2(),
OCILobGetLength2(), OCILobTrim2(), OCILobWriteAppend2()

These APIs will also return errors when used with a locator which has not
been enabled for buffering, but the LOB that the locator represents is already
being accessed in buffered mode through some other locator.

■ PL/SQL (DBMS_LOB) — An error is returned from DBMS_LOB APIs if the
input lob locator has buffering enabled.

■ As in the case of all other locators, buffer-enabled locators cannot span
transactions.

Saving Locator State to Avoid a Reselect
Suppose you want to save the current state of the LOB before further writing to the
LOB buffer. In performing updates while using LOB buffering, writing to an existing
buffer does not make a round-trip to the server, and so does not refresh the snapshot
environment in the locator. This would not be the case if you were updating the LOB
directly without using LOB buffering. In that case, every update would involve a
round-trip to the server, and so would refresh the snapshot in the locator.

Therefore to save the state of a LOB that has been written through the LOB buffer,
follow these steps:

1. Flush the LOB, thereby updating the LOB and the snapshot environment in the
locator (L1). At this point, the state of the locator (L1) and the LOB are the same.

2. Assign the locator (L1) used for flushing and updating to another locator (L2). At
this point, the states of the two locators (L1 and L2), as well as the LOB are all
identical.

L2 now becomes a read consistent locator with which you are able to access the
changes made through L1 up until the time of the flush, but not after. This assignment
avoids incurring a round-trip to the server to reselect the locator into L2.

OCI Example of LOB Buffering
The following OCI pseudocode example is based on the PM schema included with the
Oracle Database Sample Schemas.

OCI_BLOB_buffering_program()
{
 int amount;

LOB Buffering Subsystem

Advanced Design Considerations 5-7

 int offset;
 OCILobLocator lbs_loc1, lbs_loc2, lbs_loc3;
 void *buffer;
 int bufl;

 -- Standard OCI initialization operations - logging on to
 -- server, creating and initializing bind variables...

 init_OCI();

 -- Establish a savepoint before start of LOB buffering subsystem
 -- operations
 exec_statement("savepoint lbs_savepoint");

 -- Initialize bind variable to BLOB columns from buffered
 -- access:
 exec_statement("select ad_composite into lbs_loc1 from Print_media
 where ad_id = 12001");
 exec_statement("select ad_composite into lbs_loc2 from Print_media
 where ad_id = 12001 for update");
 exec_statement("select ad_composite into lbs_loc2 from Print_media
 where ad_id = 12001 for update");

 -- Enable locators for buffered mode access to LOB:
 OCILobEnableBuffering(..., lbs_loc1);
 OCILobEnableBuffering(..., lbs_loc2);
 OCILobEnableBuffering(..., lbs_loc3);

 -- Read 4K bytes through lbs_loc1 starting from offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 OCILobRead2(.., lbs_loc1, &amount, 0, offset, buffer, bufl, ...);
 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a page (call it page_A) in the LOB
 -- client-side buffer.
 -- lbs_loc1 is a read consistent locator.

 -- Write 4K of the LOB throgh lbs_loc2 starting from
 -- offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 buffer = populate_buffer(4096);
 OCILobWrite2(.., lbs_loc2, &amount, 0, offset, buffer, bufl, ..);

 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a new page (call it page_B) in the
 -- LOB buffer, and modify the contents of this page
 -- with input buffer contents.
 -- lbs_loc2 is an updated locator.

 -- Read 20K bytes through lbs_loc1 starting from
 -- offset 10K
 amount = 20480; offset = 10240;
 OCILobRead2(.., lbs_loc1, &amount, 0, offset, buffer, bufl, ..);

 if (exception)
 goto exception_handler;
 -- Read directly from page_A into the user buffer.

LOB Buffering Subsystem

5-8 Oracle Database Application Developer's Guide - Large Objects

 -- There is no round-trip to the server because the
 -- data is already in the client-side buffer.

 -- Write 20K bytes through lbs_loc2 starting from offset
 -- 10K
 amount = 20480; offset = 10240; bufl = 20480;
 buffer = populate_buffer(20480);
 OCILobWrite2(.., lbs_loc2, &amount, 0, offset, buffer, bufl, ..);

 if (exception)
 goto exception_handler;
 -- The contents of the user buffer will now be written
 -- into page_B without involving a round-trip to the
 -- server. This avoids making a new LOB version on the
 -- server and writing redo to the log.

 -- The following write through lbs_loc3 will also
 -- result in an error:
 amount = 20000; offset = 1000; bufl = 20000;
 buffer = populate_buffer(20000);
 OCILobWrite2(.., lbs_loc3, amount, 0, offset,buffer, bufl, ..);

 if (exception)
 goto exception_handler;
 -- No two locators can be used to update a buffered LOB
 -- through the buffering subsystem

 -- The following update through lbs_loc3 will also
 -- result in an error
 OCILobFileCopy(.., lbs_loc3, lbs_loc2, ..);

 if (exception)
 goto exception_handler;
 -- Locators enabled for buffering cannot be used with
 -- operations like Append, Copy, Trim and so on
 -- When done, flush the LOB buffer to the server:
 OCILobFlushBuffer(.., lbs_loc2, OCI_LOB_BUFFER_NOFREE);

 if (exception)
 goto exception_handler;
 -- This flushes all the modified pages in the LOB buffer,
 -- and resets lbs_loc2 from updated to read consistent
 -- locator. The modified pages remain in the buffer
 -- without freeing memory. These pages can be aged
 -- out if necessary.

 -- Disable locators for buffered mode access to LOB */
 OCILobDisableBuffering(..., lbs_loc1);
 OCILobDisableBuffering(..., lbs_loc2);
 OCILobDisableBuffering(..., lbs_loc3);

 if (exception)
 goto exception_handler;
 -- This disables the three locators for buffered access,
 -- and frees up the LOB buffer resources.
 exception_handler:
 handle_exception_reporting();
 exec_statement("rollback to savepoint lbs_savepoint");
}

Opening Persistent LOBs with the OPEN and CLOSE Interfaces

Advanced Design Considerations 5-9

Opening Persistent LOBs with the OPEN and CLOSE Interfaces
The OPEN and CLOSE interfaces enable you to explicitly open a persistent LOB
instance. When you open a LOB instance with the OPEN interface, the instance
remains open until you explicitly close the LOB using the CLOSE interface. The
ISOPEN interface enables you to determine whether a persistent LOB is already open.

Note that the open state of a LOB is associated with the LOB instance, not the LOB
locator. The locator does not save any information indicating whether the LOB
instance that it points to is open.

Index Performance Benefits of Explicitly Opening a LOB
Explicitly opening a LOB instance can benefit performance of a persistent LOB in an
indexed column.

If you do not explicitly open the LOB instance, then every modification to the LOB
implicitly opens and closes the LOB instance. Any triggers on a domain index are fired
each time the LOB is closed. Note that in this case, any domain indexes on the LOB are
updated as soon as any modification to the LOB instance is made; the domain index is
always valid and can be used at any time.

When you explicitly open a LOB instance, index triggers do not fire until you explicitly
close the LOB. Using this technique can increase performance on index columns by
eliminating unneeded indexing events until you explicitly close the LOB. Note that
any index on the LOB column is not valid until you explicitly close the LOB.

Working with Explicitly Open LOB Instances
If you explicitly open a LOB instance, then you must close the LOB before you commit
the transaction.

Committing a transaction on the open LOB instance will cause an error. When this
error occurs, the LOB instance is closed implicitly, any modifications to the LOB
instance are saved, and the transaction is committed, but any indexes on the LOB
column are not updated. In this situation, you must rebuild your indexes on the LOB
column.

If you subsequently rollback the transaction, then the LOB instance is rolled back to its
previous state, but the LOB instance is no longer explicitly open.

You must close any LOB instance that you explicitly open:

■ Between DML statements that start a transaction, including SELECT ... FOR
UPDATE and COMMIT

■ Within an autonomous transaction block

■ Before the end of a session (when there is no transaction involved)

If you do not explicitly close the LOB instance, then it is implicitly closed at the
end of the session and no index triggers are fired.

Keep track of the open or closed state of LOBs that you explicitly open. The following
will cause an error:

■ Explicitly opening a LOB instance that is already explicitly open.

■ Explicitly closing a LOB instance that is already explicitly closed.

See Also: "Opening and Closing LOBs" on page 2-2 for general
information on situations that you would open a LOB instance.

Read Consistent Locators

5-10 Oracle Database Application Developer's Guide - Large Objects

This occurs whether you access the LOB instance using the same locator or different
locators.

Read Consistent Locators
Oracle Database provides the same read consistency mechanisms for LOBs as for all
other database reads and updates of scalar quantities. Refer to Oracle Database Concepts
for general information about read consistency. Read consistency has some special
applications to LOB locators that you must understand. These applications are
described in the following sections.

A Selected Locator Becomes a Read Consistent Locator
A selected locator, regardless of the existence of the FOR UPDATE clause, becomes a
read consistent locator, and remains a read consistent locator until the LOB value is
updated through that locator. A read consistent locator contains the snapshot
environment as of the point in time of the SELECT operation.

This has some complex implications. Suppose you have created a read consistent
locator (L1) by way of a SELECT operation. In reading the value of the persistent LOB
through L1, note the following:

■ The LOB is read as of the point in time of the SELECT statement even if the
SELECT statement includes a FOR UPDATE.

■ If the LOB value is updated through a different locator (L2) in the same
transaction, then L1 does not see the L2 updates.

■ L1 will not see committed updates made to the LOB through another transaction.

■ If the read consistent locator L1 is copied to another locator L2 (for example, by a
PL/SQL assignment of two locator variables — L2:= L1), then L2 becomes a read
consistent locator along with L1 and any data read is read as of the point in time of
the SELECT for L1.

You can use the existence of multiple locators to access different transformations of the
LOB value. However, in doing so, you must keep track of the different values accessed
by different locators.

Example of Updating LOBs and Read-Consistency
Read consistent locators provide the same LOB value regardless of when the SELECT
occurs.

The following example demonstrates the relationship between read-consistency and
updating in a simple example. Using the Print_media table and PL/SQL, three
CLOB instances are created as potential locators:

■ clob_selected

■ clob_update

■ clob_copied

Observe these progressions in the code, from times t1 through t6:

■ At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_selected.

■ In the second operation (at t2), the value in ad_sourcetext is associated with
the locator clob_updated. Because there has been no change in the value of

Read Consistent Locators

Advanced Design Considerations 5-11

ad_sourcetext between t1 and t2, both clob_selected and clob_updated
are read consistent locators that effectively have the same value even though they
reflect snapshots taken at different moments in time.

■ The third operation (at t3) copies the value in clob_selected to clob_copied.
At this juncture, all three locators see the same value. The example demonstrates
this with a series of DBMS_LOB.READ() calls.

■ At time t4, the program uses DBMS_LOB.WRITE() to alter the value in
clob_updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ() of the value through clob_selected (at t5)
reveals that it is a read consistent locator, continuing to refer to the same value as
of the time of its SELECT.

■ Likewise, a DBMS_LOB.READ() of the value through clob_copied (at t6) reveals
that it is a read consistent locator, continuing to refer to the same value as
clob_selected.

INSERT INTO PRINT_MEDIA VALUES (2056, 20020, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
 SELECT ad_sourcetext INTO clob_selected
 FROM Print_media
 WHERE ad_id = 20020;

 -- At time t2:
 SELECT ad_sourcetext INTO clob_updated
 FROM Print_media
 WHERE ad_id = 20020
 FOR UPDATE;

 -- At time t3:
 clob_copied := clob_selected;
 -- After the assignment, both the clob_copied and the
 -- clob_selected have the same snapshot as of the point in time
 -- of the SELECT into clob_selected

 -- Reading from the clob_selected and the clob_copied will
 -- return the same LOB value. clob_updated also sees the same
 -- LOB value as of its select:
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

Read Consistent Locators

5-12 Oracle Database Application Developer's Guide - Large Objects

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t4:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset, buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t5:
 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t6:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

Example of Updating LOBs Through Updated Locators
When you update the value of the persistent LOB through the LOB locator (L1), L1
(that is, the locator itself) is updated to contain the current snapshot environment as of
the point in time after the operation was completed on the LOB value through locator L1. L1
is then termed an updated locator. This operation enables you to see your own changes
to the LOB value on the next read through the same locator, L1.

Any committed updates made by a different transaction are seen by L1 only if your
transaction is a read-committed transaction and if you use L1 to update the LOB value
after the other transaction committed.

Note: The snapshot environment in the locator is not updated if
the locator is used to merely read the LOB value. It is only updated
when you modify the LOB value through the locator using the
PL/SQL DBMS_LOB package or the OCI LOB APIs.

Note: When you update a persistent LOB value, the modification
is always made to the most current LOB value.

Read Consistent Locators

Advanced Design Considerations 5-13

Updating the value of the persistent LOB through any of the available methods, such
as OCI LOB APIs or PL/SQL DBMS_LOB package, updates the LOB value and then
reselects the locator that refers to the new LOB value.

Note that updating the LOB value through SQL is merely an UPDATE statement. It is
up to you to do the reselect of the LOB locator or use the RETURNING clause in the
UPDATE statement so that the locator can see the changes made by the UPDATE
statement. Unless you reselect the LOB locator or use the RETURNING clause, you may
think you are reading the latest value when this is not the case. For this reason you
should avoid mixing SQL DML with OCI and DBMS_LOB piecewise operations.

Example of Updating a LOB Using SQL DML and DBMS_LOB
Using table Print_media in the following example, a CLOB locator is created as
clob_selected. Note the following progressions in the example, from times t1
through t3:

■ At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_selected.

■ In the second operation (at t2), the value in ad_sourcetext is modified through
the SQL UPDATE statement, without affecting the clob_selected locator. The
locator still sees the value of the LOB as of the point in time of the original
SELECT. In other words, the locator does not see the update made using the SQL
UPDATE statement. This is illustrated by the subsequent DBMS_LOB.READ call.

■ The third operation (at t3) re-selects the LOB value into the locator clob_selected.
The locator is thus updated with the latest snapshot environment which allows the
locator to see the change made by the previous SQL UPDATE statement. Therefore,
in the next DBMS_LOB.READ, an error is returned because the LOB value is empty,
that is, it does not contain any data.

INSERT INTO Print_media VALUES (3247, 20010, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN

 -- At time t1:
 SELECT ad_sourcetext INTO clob_selected
 FROM Print_media
 WHERE ad_id = 20010;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:

See Also: Oracle Database PL/SQL User's Guide and Reference

Read Consistent Locators

5-14 Oracle Database Application Developer's Guide - Large Objects

 UPDATE Print_media SET ad_sourcetext = empty_clob()
 WHERE ad_id = 20010;
 -- although the most current current LOB value is now empty,
 -- clob_selected still sees the LOB value as of the point
 -- in time of the SELECT

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 SELECT ad_sourcetext INTO clob_selected FROM Print_media WHERE
 ad_id = 20010;
 -- the SELECT allows clob_selected to see the most current
 -- LOB value

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 -- ERROR: ORA-01403: no data found
END;
/

Example of Using One Locator to Update the Same LOB Value

In the following example, using table Print_media, two CLOBs are created as
potential locators:

■ clob_updated

■ clob_copied

Note these progressions in the example at times t1 through t5:

■ At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_updated.

■ The second operation (at time t2) copies the value in clob_updated to
clob_copied. At this time, both locators see the same value. The example
demonstrates this with a series of DBMS_LOB.READ calls.

■ At time t3, the program uses DBMS_LOB.WRITE to alter the value in
clob_updated, and a DBMS_LOB.READ reveals a new value.

■ However, a DBMS_LOB.READ of the value through clob_copied (at time t4)
reveals that it still sees the value of the LOB as of the point in time of the
assignment from clob_updated (at t2).

■ It is not until clob_updated is assigned to clob_copied (t5) that
clob_copied sees the modification made by clob_updated.

INSERT INTO PRINT_MEDIA VALUES (2049, 20030, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

Note: Avoid updating the same LOB with different locators. You
will avoid many pitfalls if you use only one locator to update a
given LOB value.

Read Consistent Locators

Advanced Design Considerations 5-15

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

-- At time t1:
 SELECT ad_sourcetext INTO clob_updated FROM PRINT_MEDIA
 WHERE ad_id = 20030
 FOR UPDATE;

 -- At time t2:
 clob_copied := clob_updated;
 -- after the assign, clob_copied and clob_updated see the same
 -- LOB value

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 clob_copied := clob_updated;

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcdefg'

Read Consistent Locators

5-16 Oracle Database Application Developer's Guide - Large Objects

END;
/

Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
When a LOB locator is used as the source to update another persistent LOB (as in a
SQL INSERT or UPDATE statement, the DBMS_LOB.COPY routine, and so on), the
snapshot environment in the source LOB locator determines the LOB value that is
used as the source. If the source locator (for example L1) is a read consistent locator,
then the LOB value as of the point in time of the SELECT of L1 is used. If the source
locator (for example L2) is an updated locator, then the LOB value associated with the
L2 snapshot environment at the time of the operation is used.

In the following example, using the table Print_media, three CLOBs are created as
potential locators:

■ clob_selected

■ clob_updated

■ clob_copied

Note these progressions in the example at times t1 through t5:

■ At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied.
At this juncture, both locators see the same value.

■ Then (at t3), the program uses DBMS_LOB.WRITE to alter the value in
clob_updated, and a DBMS_LOB.READ reveals a new value.

■ However, a DBMS_LOB.READ of the value through clob_copied (at t4) reveals
that clob_copied does not see the change made by clob_updated.

■ Therefore (at t5), when clob_copied is used as the source for the value of the
INSERT statement, the value associated with clob_copied (for example, without
the new changes made by clob_updated) is inserted. This is demonstrated by
the subsequent DBMS_LOB.READ of the value just inserted.

INSERT INTO PRINT_MEDIA VALUES (2056, 20020, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

 -- At time t1:
 SELECT ad_sourcetext INTO clob_updated FROM PRINT_MEDIA
 WHERE ad_id = 20020
 FOR UPDATE;

LOB Locators and Transaction Boundaries

Advanced Design Considerations 5-17

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 clob_copied := clob_updated;

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset, buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'
 -- note that clob_copied does not see the write made before
 -- clob_updated

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 -- the insert uses clob_copied view of the LOB value which does
 -- not include clob_updated changes
 INSERT INTO PRINT_MEDIA VALUES (2056, 20022, EMPTY_BLOB(),
 clob_copied, EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL)
 RETURNING ad_sourcetext INTO clob_selected;

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

LOB Locators and Transaction Boundaries
This section discusses the use of LOB locators in transactions and transaction IDs. A
basic description of LOB locators and their operations is given in "LOB Locators and
BFILE Locators" on page 2-3.

Note the following regarding LOB locators and transactions:

■ Locators contain transaction IDs when:

You Begin the Transaction, Then Select Locator. If you begin a transaction and
subsequently select a locator, then the locator contains the transaction ID. Note
that you can implicitly be in a transaction without explicitly beginning one. For
example, SELECT... FOR UPDATE implicitly begins a transaction. In such a case, the
locator will contain a transaction ID.

LOB Locators and Transaction Boundaries

5-18 Oracle Database Application Developer's Guide - Large Objects

■ Locators Do Not Contain Transaction IDs When...

■ You are Outside the Transaction, Then Select Locator. By contrast, if you select a
locator outside of a transaction, then the locator does not contain a transaction
ID.

■ When Selected Prior to DML Statement Execution. A transaction ID will not be
assigned until the first DML statement executes. Therefore, locators that are
selected prior to such a DML statement will not contain a transaction ID.

Reading and Writing to a LOB Using Locators
You can always read the LOB data using the locator irrespective of whether the locator
contains a transaction ID.

■ Cannot Write Using Locator: If the locator contains a transaction ID, then you cannot
write to the LOB outside of that particular transaction.

■ Can Write Using Locator: If the locator does not contain a transaction ID, then you
can write to the LOB after beginning a transaction either explicitly or implicitly.

■ Cannot Read or Write Using Locator With Serializable Transactions: If the locator
contains a transaction ID of an older transaction, and the current transaction is
serializable, then you cannot read or write using that locator.

■ Can Read, Not Write Using Locator With Non-Serializable Transactions: If the
transaction is non-serializable, then you can read, but not write outside of that
transaction.

The following examples show the relationship between locators and non-serializable
transactions

Selecting the Locator Outside of the Transaction Boundary
The following scenarios describe techniques for using locators in non-serializable
transactions when the locator is selected outside of a transaction.

Scenario:
1. Select the locator with no current transaction. At this point, the locator does not

contain a transaction id.

2. Begin the transaction.

3. Use the locator to read data from the LOB.

4. Commit or rollback the transaction.

5. Use the locator to read data from the LOB.

6. Begin a transaction. The locator does not contain a transaction id.

7. Use the locator to write data to the LOB. This operation is valid because the locator
did not contain a transaction id prior to the write. After this call, the locator
contains a transaction id.

Scenario:
1. Select the locator with no current transaction. At this point, the locator does not

contain a transaction id.

2. Begin the transaction. The locator does not contain a transaction id.

LOB Locators and Transaction Boundaries

Advanced Design Considerations 5-19

3. Use the locator to read data from the LOB. The locator does not contain a
transaction id.

4. Use the locator to write data to the LOB. This operation is valid because the locator
did not contain a transaction id prior to the write. After this call, the locator
contains a transaction id. You can continue to read from or write to the LOB.

5. Commit or rollback the transaction. The locator continues to contain the
transaction id.

6. Use the locator to read data from the LOB. This is a valid operation.

7. Begin a transaction. The locator already contains the previous transaction id.

8. Use the locator to write data to the LOB. This write operation will fail because the
locator does not contain the transaction id that matches the current transaction.

Selecting the Locator Within a Transaction Boundary
The following scenarios describe techniques for using locators in non-serializable
transactions when the locator is selected within a transaction.

Scenario:
1. Select the locator within a transaction. At this point, the locator contains the

transaction id.

2. Begin the transaction. The locator contains the previous transaction id.

3. Use the locator to read data from the LOB. This operation is valid even though the
transaction id in the locator does not match the current transaction.

4. Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator does not match the current transaction.

Scenario:
1. Begin a transaction.

2. Select the locator. The locator contains the transaction id because it was selected
within a transaction.

3. Use the locator to read from or write to the LOB. These operations are valid.

4. Commit or rollback the transaction. The locator continues to contain the
transaction id.

5. Use the locator to read data from the LOB. This operation is valid even though
there is a transaction id in the locator and the transaction was previously
committed or rolled back.

6. Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator is for a transaction that was previously committed or
rolled back.

See Also: "Read Consistent Locators" on page 5-10 for more
information about using the locator to read LOB data.

See Also: "Read Consistent Locators" on page 5-10 for more
information on the using the locator to read LOB data.

LOB Locators and Transaction Boundaries

5-20 Oracle Database Application Developer's Guide - Large Objects

LOB Locators Cannot Span Transactions
Modifying a persistent LOB value through the LOB locator using DBMS_LOB, OCI, or
SQL INSERT or UPDATE statements changes the locator from a read consistent locator
to an updated locator. The INSERT or UPDATE statement automatically starts a
transaction and locks the row. Once this has occurred, the locator cannot be used
outside the current transaction to modify the LOB value. In other words, LOB locators
that are used to write data cannot span transactions. However, the locator can be used
to read the LOB value unless you are in a serializable transaction.

In the following example, a CLOB locator is created: clob_updated

■ At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_updated.

■ The second operation (at t2), uses the DBMS_LOB.WRITE function to alter the value
in clob_updated, and a DBMS_LOB.READ reveals a new value.

■ The commit statement (at t3) ends the current transaction.

■ Therefore (at t4), the subsequent DBMS_LOB.WRITE operation fails because the
clob_updated locator refers to a different (already committed) transaction. This
is noted by the error returned. You must re-select the LOB locator before using it in
further DBMS_LOB (and OCI) modify operations.

Example of Locator Not Spanning a Transaction
INSERT INTO PRINT_MEDIA VALUES (2056, 20010, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
 SELECT ad_sourcetext
 INTO clob_updated
 FROM PRINT_MEDIA
 WHERE ad_id = 20010
 FOR UPDATE;
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcd'

 -- At time t2:
 write_amount := 3;

See Also: "LOB Locators and Transaction Boundaries" on
page 5-17, for more information about the relationship between
LOBs and transaction boundaries.

LOBs in the Object Cache

Advanced Design Considerations 5-21

 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset, buffer);
 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcdefg'

 -- At time t3:
 COMMIT;

 -- At time t4:
 dbms_lob.write(clob_updated , write_amount, write_offset, buffer);
 -- ERROR: ORA-22990: LOB locators cannot span transactions
END;
/

LOBs in the Object Cache
Consider these object cache issues for internal and external LOB attributes:

■ Persistent LOB attributes: Creating an object in object cache, sets the LOB attribute
to empty.

When you create an object in the object cache that contains a persistent LOB
attribute, the LOB attribute is implicitly set to empty. You may not use this empty
LOB locator to write data to the LOB. You must first flush the object, thereby
inserting a row into the table and creating an empty LOB — that is, a LOB with 0
length. Once the object is refreshed in the object cache (use OCI_PIN_LATEST),
the real LOB locator is read into the attribute, and you can then call the OCI LOB
API to write data to the LOB.

■ External LOB (BFILE) attributes: Creating an object in object cache, sets the BFILE
attribute to NULL.

When creating an object with an external LOB (BFILE) attribute, the BFILE is set
to NULL. It must be updated with a valid directory object name and file name
before reading from the BFILE.

When you copy one object to another in the object cache with a LOB locator attribute,
only the LOB locator is copied. This means that the LOB attribute in these two different
objects contain exactly the same locator which refers to one and the same LOB value.
Only when the target object is flushed is a separate, physical copy of the LOB value
made, which is distinct from the source LOB value.

Therefore, in cases where you want to modify the LOB that was the target of the copy,
you must flush the target object, refresh the target object, and then write to the LOB
through the locator attribute.

See Also: "Example of Updating LOBs and Read-Consistency" on
page 5-10 for a description of what version of the LOB value will be
seen by each object if a write is performed through one of the
locators.

Terabyte-Size LOB Support

5-22 Oracle Database Application Developer's Guide - Large Objects

Terabyte-Size LOB Support
Terabyte-size LOBs—LOBs up to a maximum size of 8 to 128 terabytes depending on
your database block size—are supported by the following APIs:

■ Java using JDBC (Java Database Connectivity)

■ PL/SQL using the DBMS_LOB Package

■ C using OCI (Oracle Call Interface)

You cannot create and use LOB instances of size greater than 4 gigabytes
—"terabyte-size LOBs"— in the following programmatic environments:

■ COBOL using the Pro*COBOL Precompiler

■ C or C++ using the Pro*C/C++ Precompiler

■ Visual Basic using OO4O (Oracle Objects for OLE)

Maximum Storage Limit for Terabyte-Size LOBs
In supported environments, you can create and manipulate LOBs that are up to the
maximum storage size limit for your database configuration.

Oracle Database lets you create tablespaces with block sizes different from the
database block size, and the maximum size of a LOB depends on the size of the
tablespace blocks. CHUNK is a parameter of LOB storage whose value is controlled by
the block size of the tablespace in which the LOB is stored.

When you create a LOB column, you can specify a value for CHUNK, which is the
number of bytes to be allocated for LOB manipulation. The value must be a multiple of
the tablespace block size, or Oracle Database rounds up to the next multiple. (If the
tablespace block size is the same as the database block size, then CHUNK is also a
multiple of the database block size.)

The maximum allowable storage limit for your configuration depends on the
tablespace block size setting, and is calculated as (4 gigabytes - 1) times the value
obtained from DBMS_LOB.GETCHUNKSIZE or OCILobGetChunkSize(). This value,
in number of bytes for BLOBs or number of characters for CLOBs, is actually less than
the size of the CHUNK parameter due to internal storage overhead. With the current
allowable range for the tablespace block size from 2K to 32K, the storage limit ranges
from 8 terabytes to 128 terabytes.

For example, suppose your database block size is 32K bytes and you create a
tablespace with a nonstandard block size of 8K. Further suppose that you create a table
with a LOB column and specify a CHUNK size of 16K (which is a multiple of the 8K
tablespace block size). Then the maximum size of a LOB in this column is (4 gigabytes
- 1) * 16K.

Note: Oracle Database does not support BFILEs larger than
2^64-1 bytes (UB8MAXVAL in OCI) in any programmatic
environment. Any additional file size limit imposed by your
operating system also applies to BFILEs.

See Also:

■ Oracle Database Administrator's Guide for details on the
initialization parameter setting for your database installation.

■ "CHUNK" on page 4-10

Guidelines for Creating Gigabyte LOBs

Advanced Design Considerations 5-23

This storage limit applies to all LOB types in environments that support terabyte-size
LOBs. However, note that CLOB and NCLOB types are sized in characters, while the
BLOB type is sized in bytes.

Using Terabyte-Size LOBs with JDBC
You can use the LOB APIs included in the Oracle JDBC classes to access terabyte-size
LOBs.

Using Terabyte-Size LOBs with the DBMS_LOB Package
You can access terabyte-size LOBs with all APIs in the DBMS_LOB PL/SQL package.
Use DBMS_LOB.GETCHUNKSIZE to obtain the value to be used in reading and writing
LOBs. The number of bytes stored in a chunk is actually less than the size of the CHUNK
parameter due to internal storage overhead. The DBMS_LOB.GET_STORAGE_LIMIT
function returns the storage limit for your database configuration. This is the
maximum allowable size for LOBs. BLOBs are sized in bytes, while CLOBs and NCLOBs
are sized in characters.

Using Terabyte-Size LOBs with OCI
The Oracle Call Interface API provides a set of functions for operations on LOBs of all
sizes. OCILobGetChunkSize() returns the value, in bytes for BLOBs, or in characters
for CLOBs, to be used in reading and writing LOBs. For varying-width character sets,
the value is the number of Unicode characters that fit. The number of bytes stored in a
chunk is actually less than the size of the CHUNK parameter due to internal storage
overhead. The function OCILobGetStorageLimit() returns the maximum
allowable size, in bytes, of internal LOBs in the current database installation. If
streaming mode is used, where the whole LOB is read, there is no need to get the
chunk size.

Guidelines for Creating Gigabyte LOBs
To create gigabyte LOBs in supported environments, use the following guidelines to
make use of all available space in the tablespace for LOB storage:

■ Single Data File Size Restrictions: There are restrictions on the size of a single
data file for each operating system. For example, Solaris 2.5 only allows operating
system files of up to 2 gigabytes. Hence, add more data files to the tablespace
when the LOB grows larger than the maximum allowed file size of the operating
system on which your Oracle Database runs.

■ Set PCT INCREASE Parameter to Zero: PCTINCREASE parameter in the LOB
storage clause specifies the percent growth of the new extent size. When a LOB is
being filled up piece by piece in a tablespace, numerous new extents get created in

See Also: "Using Java (JDBC) to Work with LOBs" on page 6-27

See Also: Oracle Database PL/SQL Packages and Types Reference for
details on the initialization parameter setting for your database
installation.

See Also: Oracle Call Interface Programmer's Guide, the chapter
"LOB and BFILE Operations", section "Using LOBs of Size Greater
than 4GB" for details on OCI functions that support LOBs.

Guidelines for Creating Gigabyte LOBs

5-24 Oracle Database Application Developer's Guide - Large Objects

the process. If the extent sizes keep increasing by the default value of 50 percent
every time, then extents will become unmanageable and eventually will waste
unnecessary space in the tablespace. Therefore, the PCTINCREASE parameter
should be set to zero or a small value.

■ Set MAXEXTENTS to a Suitable Value or UNLIMITED: The MAXEXTENTS
parameter limits the number of extents allowed for the LOB column. A large
number of extents are created incrementally as the LOB size grows. Therefore, the
parameter should be set to a value that is large enough to hold all the LOBs for the
column. Alternatively, you could set it to UNLIMITED.

■ Use a Large Extent Size: For every new extent created, Oracle generates undo
information for the header and other metadata for the extent. If the number of
extents is large, then the rollback segment can be saturated. To get around this,
choose a large extent size, say 100 megabytes, to reduce the frequency of extent
creation, or commit the transaction more often to reuse the space in the rollback
segment.

Creating a Tablespace and Table to Store Gigabyte LOBs
The following example illustrates how to create a tablespace and table to store
gigabyte LOBs.

CREATE TABLESPACE lobtbs1 DATAFILE '/your/own/data/directory/lobtbs_1.dat'
SIZE 2000M REUSE ONLINE NOLOGGING DEFAULT STORAGE (MAXEXTENTS UNLIMITED);
ALTER TABLESPACE lobtbs1 ADD DATAFILE
'/your/own/data/directory/lobtbs_2.dat' SIZE 2000M REUSE;

CREATE TABLE print_media_backup
 (product_id NUMBER(6),
 ad_id NUMBER(6),
 ad_composite BLOB,
 ad_sourcetext CLOB,
 ad_finaltext CLOB,
 ad_fltextn NCLOB,
 ad_textdocs_ntab textdoc_tab,
 ad_photo BLOB,
 ad_graphic BLOB,
 ad_header adheader_typ)
 NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab5
 LOB(ad_sourcetext) STORE AS (TABLESPACE lobtbs1 CHUNK 32768 PCTVERSION 0
 NOCACHE NOLOGGING
 STORAGE(INITIAL 100M NEXT 100M MAXEXTENTS
 UNLIMITED PCTINCREASE 0));

Note the following with respect to this example:

■ The storage clause in this example is specified in the CREATE TABLESPACE
statement.

■ You can specify the storage clause in the CREATE TABLE statement as an
alternative.

■ The storage clause is not allowed in the CREATE TEMPORARY TABLESPACE
statement.

■ Setting the PCTINCREASE parameter to 0 is recommended for gigabyte LOBs. For
small, or medium size lobs, the default PCTINCREASE value of 50 is
recommended as it reduces the number of extent allocations.

Overview of Supplied LOB APIs 6-1

6
Overview of Supplied LOB APIs

This chapter contains these topics:

■ Programmatic Environments That Support LOBs

■ Comparing the LOB Interfaces

■ Using PL/SQL (DBMS_LOB Package) to Work with LOBs

■ Using OCI to Work with LOBs

■ Using C++ (OCCI) to Work with LOBs

■ Using C/C++ (Pro*C) to Work with LOBs

■ Using COBOL (Pro*COBOL) to Work with LOBs

■ Using Visual Basic (Oracle Objects for OLE) to Work with LOBs

■ Using Java (JDBC) to Work with LOBs

■ Oracle Provider for OLE DB (OraOLEDB)

■ Overview of Oracle Data Provider for .NET (ODP.NET)

Programmatic Environments That Support LOBs
Table 6–1 lists the programmatic environments that support LOB functionality.

See Also: APIs for supported LOB operations are described in detail in:

■ Chapter 12, "Operations Specific to Persistent and Temporary LOBs"

■ Chapter 14, "LOB APIs for Basic Operations"

■ Chapter 15, "LOB APIs for BFILE Operations"

Comparing the LOB Interfaces

6-2 Oracle Database Application Developer's Guide - Large Objects

Comparing the LOB Interfaces
Table 6–2 and Table 6–3 compare the eight LOB programmatic interfaces by listing
their functions and methods used to operate on LOBs. The tables are split in two
simply to accommodate all eight interfaces. The functionality of the interfaces, with
regards to LOBs, is described in the following sections.

Table 6–1 Programmatic Environments That Support LOBs

Language

Precompiler or
Interface
Program Syntax Reference In This Chapter See...

PL/SQL DBMS_LOB
Package

Oracle Database PL/SQL Packages
and Types Reference

"Using PL/SQL (DBMS_LOB
Package) to Work with LOBs" on
page 6-5.

C Oracle Call
Interface for C
(OCI)

 Oracle Call Interface Programmer's
Guide

"Using OCI to Work with LOBs" on
page 6-8.

C++ Oracle Call
Interface for C++
(OCCI)

Oracle C++ Call Interface
Programmer's Guide

"Using C++ (OCCI) to Work with
LOBs" on page 6-13.

C/C++ Pro*C/C++
Precompiler

Pro*C/C++ Programmer's Guide "Using C/C++ (Pro*C) to Work
with LOBs" on page 6-17.

COBOL Pro*COBOL
Precompiler

Pro*COBOL Programmer's Guide "Using COBOL (Pro*COBOL) to
Work with LOBs" on page 6-20.

Visual Basic Oracle Objects
For OLE (OO4O)

Oracle Objects for OLE (OO4O) is a
Windows-based product included
with the database.

There are no manuals for this
product, only online help. Online
help is available through the
Application Development
submenu of the database
installation.

"Using Visual Basic (Oracle Objects
for OLE) to Work with LOBs" on
page 6-23."

Java JDBC
Application
Programmatic
Interface (API)

Oracle Database JDBC Developer's
Guide and Reference.

"Using Java (JDBC) to Work with
LOBs" on page 6-27.

OLEDB OraOLEDB, an
OLE DB provider
for Oracle.

Oracle Provider for OLE DB
Developer's Guide

"Oracle Provider for OLE DB
(OraOLEDB)" on page 6-45

Table 6–2 Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

C (OCI)

(ociap.h)

C++ (OCCI)

(occiData.h). Also for
Clob and Bfile classes.

Pro*C/C++ and
Pro*COBOL

DBMS_LOB.COMPARE N/A N/A N/A

DBMS_LOB.INSTR N/A N/A N/A

DBMS_LOB.SUBSTR N/A N/A N/A

DBMS_LOB.APPEND OCILobAppend() Blob.append() APPEND

N/A (use PL/SQL assign
operator)

OCILobAssign() ASSIGN

Comparing the LOB Interfaces

Overview of Supplied LOB APIs 6-3

N/A OCILobCharSetForm() Clob.getCharsetForm
(CLOB only)

N/A

N/A OCILobCharSetId() Clob.getCharsetId()

(CLOB only)

N/A

DBMS_LOB.CLOSE OCILobClose() Blob.close() CLOSE

N/A N/A Clob.closeStream() N/A

DBMS_LOB.COPY OCILobCopy2() Blob.copy() COPY

N/A OCILobDisableBuffering() N/A DISABLE BUFFERING

N/A OCILobEnableBuffering() N/A ENABLE BUFFERING

DBMS_LOB.ERASE OCILobErase2() N/A ERASE

DBMS_LOB.FILECLOSE OCILobFileClose() Clob.close() CLOSE

DBMS_LOB.FILECLOSEALL OCILobFileCloseAll() N/A FILE CLOSE ALL

DBMS_LOB.FILEEXISTS OCILobFileExist() Bfile.fileExists() DESCRIBE [FILEEXISTS]

DBMS_LOB.GETCHUNKSIZE OCILobGetChunkSize() Blob.getChunkSize() DESCRIBE [CHUNKSIZE]

DBMS_LOB.FILEGETNAME OCILobFileGetName() Bfile.getFileName() and
Bfile.getDirAlias()

DESCRIBE [DIRECTORY,
FILENAME]

DBMS_LOB.FILEISOPEN OCILobFileIsOpen() Bfile.isOpen() DESCRIBE [ISOPEN]

DBMS_LOB.FILEOPEN OCILobFileOpen() Bfile.open() OPEN

N/A (use BFILENAME operator) OCILobFileSetName() Bfile.setName() FILE SET

N/A OCILobFlushBuffer() N/A FLUSH BUFFER

DBMS_LOB.GETLENGTH OCILobGetLength2() Blob.length() DESCRIBE [LENGTH]

N/A OCILobIsEqual() Use operator = ()=/!= N/A

DBMS_LOB.ISOPEN OCILobIsOpen() Blob.isOpen() DESCRIBE [ISOPEN]

DBMS_LOB.LOADFROMFILE OCILobLoadFromFile2() Use the overloadedcopy()
method.

LOAD FROM FILE

N/A OCILobLocatorIsInit() Clob.isinitialized() N/A

DBMS_LOB.OPEN OCILobOpen() Blob.open OPEN

DBMS_LOB.READ OCILobRead() Blob.read READ

DBMS_LOB.TRIM OCILobTrim2() Blob.trim TRIM

DBMS_LOB.WRITE OCILobWrite2 Blob.write WRITEORALOB.

DBMS_LOB.WRITEAPPEND OCILobWriteAppend2() N/A WRITE APPEND

DBMS_LOB.CREATETEMPORARY OCILobCreateTemporary() N/A N/A

Table 6–2 (Cont.) Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

C (OCI)

(ociap.h)

C++ (OCCI)

(occiData.h). Also for
Clob and Bfile classes.

Pro*C/C++ and
Pro*COBOL

Comparing the LOB Interfaces

6-4 Oracle Database Application Developer's Guide - Large Objects

DBMS_LOB.FREETEMPORARY OCILobFreeTemporary() N/A N/A

DBMS_LOB.ISTEMPORARY OCILobIsTemporary() N/A N/A

N/A OCILobLocatorAssign() use operator = () or copy
constructor

N/A

Table 6–3 Comparing the LOB Interfaces, 2 of 2

PL/SQL: DBMS_LOB (dbmslob.sql) Visual Basic (OO4O) Java (JDBC OLEDB

DBMS_LOB.COMPARE ORALOB.Compare Use DBMS_LOB. N/A

DBMS_LOB.INSTR ORALOB.Matchpos position N/A

DBMS_LOB.SUBSTR N/A getBytes for BLOBs or
BFILEs

getSubString for CLOBs

N/A

DBMS_LOB.APPEND ORALOB.Append Use length and then
putBytes or PutString

N/A

N/A [use PL/SQL assign operator] ORALOB.Clone N/A [use equal sign] N/A

N/A N/A N/A N/A

N/A N/A N/A N/A

DBMS_LOB.CLOSE N/A use DBMS_LOB. N/A

DBMS_LOB.COPY ORALOB.Copy Use read and write N/A

N/A ORALOB.DisableBuffering N/A N/A

N/A ORALOB.EnableBuffering N/A N/A

DBMS_LOB.ERASE ORALOB.Erase Use DBMS_LOB. N/A

DBMS_LOB.FILECLOSE ORABFILE.Close closeFile N/A

DBMS_LOB.FILECLOSEALL ORABFILE.CloseAll Use DBMS_LOB. N/A

DBMS_LOB.FILEEXISTS ORABFILE.Exist fileExists N/A

DBMS_LOB.GETCHUNKSIZE N/A getChunkSize N/A

DBMS_LOB.FILEGETNAME ORABFILE.DirectoryName

ORABFILE.FileName

getDirAlias

getName

N/A

DBMS_LOB.FILEISOPEN ORABFILE.IsOpen Use DBMS_LOB.ISOPEN N/A

DBMS_LOB.FILEOPEN ORABFILE.Open openFile N/A

N/A (use BFILENAME operator) DirectoryName

FileName

Use BFILENAME N/A

N/A ORALOB.FlushBuffer N/A N/A

DBMS_LOB.GETLENGTH ORALOB.Size length N/A

N/A N/A equals N/A

Table 6–2 (Cont.) Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

C (OCI)

(ociap.h)

C++ (OCCI)

(occiData.h). Also for
Clob and Bfile classes.

Pro*C/C++ and
Pro*COBOL

Using PL/SQL (DBMS_LOB Package) to Work with LOBs

Overview of Supplied LOB APIs 6-5

Using PL/SQL (DBMS_LOB Package) to Work with LOBs
The PL/SQL DBMS_LOB package can be used for the following operations:

■ Internal persistent LOBs and Temporary LOBs: Read and modify operations,
either entirely or in a piece-wise manner.

■ BFILEs: Read operations

Provide a LOB Locator Before Running the DBMS_LOB Routine
As described in more detail in the following, DBMS_LOB routines work based on LOB
locators. For the successful completion of DBMS_LOB routines, you must provide an
input locator representing a LOB that exists in the database tablespaces or external file
system, before you call the routine.

■ Persistent LOBs: First use SQL to define tables that contain LOB columns, and
subsequently you can use SQL to initialize or populate the locators in these LOB
columns.

■ External LOBs: Define a DIRECTORY object that maps to a valid physical directory
containing the external LOBs that you intend to access. These files must exist, and
have READ permission for Oracle Server to process. If your operating system uses

DBMS_LOB.ISOPEN ORALOB.IsOpen use DBMS_LOB. IsOpen N/A

DBMS_LOB.LOADFROMFILE ORALOB.

CopyFromBfile

Use read and then write N/A

DBMS_LOB.OPEN ORALOB.open Use DBMS_LOB. N/A

DBMS_LOB.READ ORALOB.Read BLOB or BFILE: getBytes
and getBinaryStream

CLOB: getString and
getSubString and
getCharacterStream

IRowset::GetD
ata and
ISequentialStr
eam::Read

DBMS_LOB.TRIM ORALOB.Trim Use DBMS_LOB. N/A

DBMS_LOB.WRITE ORALOB.Write BLOB: setBytes and
setBinaryStream

CLOB: setString and
setCharacterStream

IRowsetChang
e::SetData

and

ISequentialStr
eam::Write

DBMS_LOB.WRITEAPPEND N/A Use length and then
putString or putBytes

N/A

DBMS_LOB.CREATETEMPORARY N/A N/A N/A

DBMS_LOB.FREETEMPORARY N/A N/A N/A

DBMS_LOB.ISTEMPORARY N/A N/A N/A

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed documentation, including parameters, parameter types,
return values, and example code.

Table 6–3 (Cont.) Comparing the LOB Interfaces, 2 of 2

PL/SQL: DBMS_LOB (dbmslob.sql) Visual Basic (OO4O) Java (JDBC OLEDB

Using PL/SQL (DBMS_LOB Package) to Work with LOBs

6-6 Oracle Database Application Developer's Guide - Large Objects

case-sensitive path names, then specify the directory in the correct case. See
"Directory Objects" on page 15-3 for more information.

Once the LOBs are defined and created, you may then SELECT a LOB locator into a
local PL/SQL LOB variable and use this variable as an input parameter to DBMS_LOB
for access to the LOB value.

Examples provided with each DBMS_LOB routine will illustrate this in the following
sections.

Guidelines for Offset and Amount Parameters in DBMS_LOB Operations
The following guidelines apply to offset and amount parameters used in procedures in
the DBMS_LOB PL/SQL package:

■ For character data—in all formats, fixed-width and varying-width—the amount
and offset parameters are in characters. This applies to operations on CLOB and
NCLOB datatypes.

■ For binary data, the offset and amount parameters are in bytes. This applies to
operations on BLOB datatypes.

■ When using the following procedures:

■ DBMS_LOB.LOADFROMFILE

■ DBMS_LOB.LOADBLOBFROMFILE

■ DBMS_LOB.LOADCLOBFROMFILE

you cannot specify an amount parameter with a value larger than the size of the
BFILE you are loading from. To load the entire BFILE with these procedures, you
must specify either the exact size of the BFILE, or the maximum allowable storage
limit.

■ When using DBMS_LOB.READ, the amount parameter can be larger than the size
of the data. The amount should be less than or equal to the size of the buffer. The
buffer size is limited to 32K.

Determining Character Set ID
To determine the character set ID, you must know the character set name (a user can
select from the V$NLS_VALID_VALUES view, which lists the names of the character
sets that are valid as database and national character sets). Then call the function
NLS_CHARSET_ID with the desired character set name as the one string argument.
The character set ID is returned as an integer. UTF16 does not work because it has no
character set name. Use character set ID = 1000 for UTF16. Although UTF16 is not
allowed as a database or national character set, the APIs in DBMS_LOB support it for

See Also:

■ "Loading a LOB with Data from a BFILE" on page 14-6

■ "Loading a BLOB with Data from a BFILE" on page 14-7

■ "Loading a CLOB or NCLOB with Data from a BFILE" on
page 14-9

See Also: "Reading Data from a LOB" on page 14-13

Using PL/SQL (DBMS_LOB Package) to Work with LOBs

Overview of Supplied LOB APIs 6-7

database conversion purposes. DBMS_LOB.LOADCLOBFROMFILE and other
procedures in DBMS_LOB take character set ID, not character set name, as an input.

PL/SQL Functions and Procedures for LOBs
PL/SQL functions and procedures that operate on BLOBs, CLOBs, NCLOBs, and BFILEs
are summarized in the following:

■ To modify persistent LOB values, see Table 6–4

■ To read or examine LOB values, see Table 6–5

■ To create, free, or check on temporary LOBs, see Table 6–6

■ For read-only functions on external LOBs (BFILEs), see Table 6–7

■ To open or close a LOB, or check if LOB is open, see Table 6–8

PL/SQL Functions and Procedures to Modify LOB Values

PL/SQL Functions and Procedures for Introspection of LOBs

See Also: Oracle Database Globalization Support Guide, Appendix A,
for supported languages

Table 6–4 PL/SQL: DBMS_LOB Procedures to Modify LOB Values

Function/Procedure Description

APPEND Appends the LOB value to another LOB

CONVERTTOBLOB Converts a CLOB to a BLOB

CONVERTTOCLOB Converts a BLOB to a CLOB

COPY Copies all or part of a LOB to another LOB

ERASE Erases part of a LOB, starting at a specified offset

LOADFROMFILE Load BFILE data into a persistent LOB

LOADCLOBFROMFILE Load character data from a file into a LOB

LOADBLOBFROMFILE Load binary data from a file into a LOB

TRIM Trims the LOB value to the specified shorter length

WRITE Writes data to the LOB at a specified offset

WRITEAPPEND Writes data to the end of the LOB

Table 6–5 PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External LOB values

Function/Procedure Description

COMPARE Compares the value of two LOBs

GETCHUNKSIZE Gets the chunk size used when reading and writing. This only works on
persistent LOBs and does not apply to external LOBs (BFILEs).

GETLENGTH Gets the length of the LOB value

Using OCI to Work with LOBs

6-8 Oracle Database Application Developer's Guide - Large Objects

PL/SQL Operations on Temporary LOBs

PL/SQL Read-Only Functions and Procedures for BFILEs

PL/SQL Functions and Procedures to Open and Close Internal and External LOBs

These procedures are described in detail for specific LOB operations, such as, INSERT
a row containing a LOB, in "Opening Persistent LOBs with the OPEN and CLOSE
Interfaces" on page 5-9.

Using OCI to Work with LOBs
Oracle Call Interface (OCI) LOB APIs enable you to access and make changes to LOBs
and read data from BFILEs in C. OCI functions for LOBs are discussed in greater
detail later in this section.

INSTR Returns the matching position of the nth occurrence of the pattern in the LOB

READ Reads data from the LOB starting at the specified offset

SUBSTR Returns part of the LOB value starting at the specified offset

Table 6–6 PL/SQL: DBMS_LOB Procedures to Operate on Temporary LOBs

Function/Procedure Description

CREATETEMPORARY Creates a temporary LOB

ISTEMPORARY Checks if a LOB locator refers to a temporary LOB

FREETEMPORARY Frees a temporary LOB

Table 6–7 PL/SQL: DBMS_LOB Read-Only Procedures for BFILEs

Function/Procedure Description

FILECLOSE Closes the file. Use CLOSE() instead.

FILECLOSEALL Closes all previously opened files

FILEEXISTS Checks if the file exists on the server

FILEGETNAME Gets the directory object name and file name

FILEISOPEN Checks if the file was opened using the input BFILE locators.
Use ISOPEN() instead.

FILEOPEN Opens a file. Use OPEN() instead.

Table 6–8 PL/SQL: DBMS_LOB Procedures to Open and Close Internal and External LOBs

Function/Procedure Description

OPEN Opens a LOB

ISOPEN Sees if a LOB is open

CLOSE Closes a LOB

Table 6–5 (Cont.) PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External LOB values

Function/Procedure Description

Using OCI to Work with LOBs

Overview of Supplied LOB APIs 6-9

Setting the CSID Parameter for OCI LOB APIs
If you want to read or write data in 2 byteUunicode (UCS2) format, then set the csid
(character set ID) parameter in OCILobRead2() and OCILobWrite2() to
OCI_UCS2ID. The csid parameter indicates the character set id for the buffer
parameter. You can set the csid parameter to any character set ID. If the csid
parameter is set, then it will override the NLS_LANG environment variable.

Fixed-Width and Varying-Width Character Set Rules for OCI
In OCI, for fixed-width client-side character sets, the following rules apply:

■ CLOBs and NCLOBs: offset and amount parameters are always in characters

■ BLOBs and BFILEs: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

■ Offset parameter: Regardless of whether the client-side character set is
varying-width, the offset parameter is always as follows:

■ CLOBs and NCLOBs: in characters

■ BLOBs and BFILEs: in bytes

■ Amount parameter: The amount parameter is always as follows:

■ When referring to a server-side LOB: in characters

■ When referring to a client-side buffer: in bytes

■ OCILobFileGetLength(): Regardless of whether the client-side character set is
varying-width, the output length is as follows:

■ CLOBs and NCLOBs: in characters

■ BLOBs and BFILEs: in bytes

■ OCILobRead2(): With client-side character set of varying-width, CLOBs and
NCLOBs:

■ Input amount is in characters. Input amount refers to the number of characters
to read from the server-side CLOB or NCLOB.

■ Output amount is in bytes. Output amount indicates how many bytes were
read into the buffer bufp.

■ OCILobWrite2(): With client-side character set of varying-width, CLOBs and
NCLOBs:

■ Input amount is in bytes. The input amount refers to the number of bytes of
data in the input buffer bufp.

■ Output amount is in characters. The output amount refers to the number of
characters written into the server-side CLOB or NCLOB.

See Also:

■ Oracle Call Interface Programmer's Guide for information on the
OCIUnicodeToCharSet() function and details on OCI
syntax in general.

■ Oracle Database Globalization Support Guide for detailed
information about implementing applications in different
languages.

Using OCI to Work with LOBs

6-10 Oracle Database Application Developer's Guide - Large Objects

Other Operations
For all other LOB operations, irrespective of the client-side character set, the amount
parameter is in characters for CLOBs and NCLOBs. These include OCILobCopy2(),
OCILobErase2(), OCILobLoadFromFile2(), and OCILobTrim2(). All these
operations refer to the amount of LOB data on the server.

NCLOBs in OCI
NCLOBs are allowed as parameters in methods.

OCILobLoadFromFile2() Amount Parameter
When using OCILobLoadFromFile2() you cannot specify amount larger than the
length of the BFILE. To load the entire BFILE, you can pass the value returned by
OCILobGetStorageLimit().

OCILobRead2() Amount Parameter
To read to the end of a LOB using OCILobRead2(), you specify an amount equal to
the value returned by OCILobGetStorageLimit(). See "Reading Data from a LOB"
on page 14-13 for more information.

OCILobLocator Pointer Assignment
Special care must be taken when assigning OCILobLocator pointers in an OCI
program—using the "=" assignment operator. Pointer assignments create a shallow
copy of the LOB. After the pointer assignment, the source and target LOBs point to the
same copy of data.

These semantics are different from using LOB APIs, such as OCILobAssign() or
OCILobLocatorAssign() to perform assignments. When the these APIs are used,
the locators logically point to independent copies of data after assignment.

For temporary LOBs, before performing pointer assignments, you must ensure that
any temporary LOB in the target LOB locator is freed by calling
OCIFreeTemporary(). In contrast, when OCILobLocatorAssign() is used, the
original temporary LOB in the target LOB locator variable, if any, is freed
automatically before the assignment happens.

LOB Locators in Defines and Out-Bind Variables in OCI
Before you reuse a LOB locator in a define or an out-bind variable in a SQL statement,
you must free any temporary LOB in the existing LOB locator buffer using
OCIFreeTemporary().

OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
OCI functions that operate on BLOBs, CLOBs, NCLOBs, and BFILEs are as follows:

■ To modify persistent LOBs, see Table 6–9

■ To read or examine LOB values, see Table 6–10

■ To create or free temporary LOB, or check if Temporary LOB exists, see Table 6–11

■ For read only functions on external LOBs (BFILEs), see Table 6–12

See also: Oracle Database Globalization Support Guide

Using OCI to Work with LOBs

Overview of Supplied LOB APIs 6-11

■ To operate on LOB locators, see Table 6–13

■ For LOB buffering, see Table 6–14

■ To open and close LOBs, see Table 6–15

OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values

OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE) Values

OCI Functions for Temporary LOBs

OCI Read-Only Functions for BFILEs

Table 6–9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values

Function/Procedure Description

OCILobArrayWrite() Writes data using multiple locators in one round trip.

OCILobAppend() Appends LOB value to another LOB.

OCILobCopy2() Copies all or part of a LOB to another LOB.

OCILobErase2() Erases part of a LOB, starting at a specified offset.

OCILobLoadFromFile2() Loads BFILE data into a persistent LOB.

OCILobTrim2() Truncates a LOB.

OCILobWrite2() Writes data from a buffer into a LOB, overwriting existing data.

OCILobWriteAppend2() Writes data from a buffer to the end of the LOB.

Table 6–10 OCI Functions to Read or Examine persistent LOB and external LOB (BFILE) Values

Function/Procedure Description

OCILobArrayRead() Reads data using multiple locators in one round trip.

OCILobGetChunkSize() Gets the Chunk size used when reading and writing. This works on persistent
LOBs and does not apply to external LOBs (BFILEs).

OCILobGetLength2() Returns the length of a LOB or a BFILE.

OCILobRead2() Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Table 6–11 OCI Functions for Temporary LOBs

Function/Procedure Description

OCILobCreateTemporary() Creates a temporary LOB

OCILobIsTemporary() Sees if a temporary LOB exists

OCILobFreeTemporary() Frees a temporary LOB

Table 6–12 OCI Read-Only Functions for BFILES

Function/Procedure Description

OCILobFileClose() Closes an open BFILE.

OCILobFileCloseAll() Closes all open BFILEs.

OCILobFileExists() Checks whether a BFILE exists.

Using OCI to Work with LOBs

6-12 Oracle Database Application Developer's Guide - Large Objects

OCI LOB Locator Functions

OCI LOB-Buffering Functions

OCI Functions to Open and Close Internal and External LOBs

OCI LOB Examples
Further OCI examples are provided in:

■ Chapter 14, "LOB APIs for Basic Operations"

■ Chapter 15, "LOB APIs for BFILE Operations"

See also Appendix B, "OCI Demonstration Programs" in Oracle Call Interface
Programmer's Guide, for further OCI demonstration script listings.

OCILobFileGetName() Returns the name of a BFILE.

OCILobFileIsOpen() Checks whether a BFILE is open.

OCILobFileOpen() Opens a BFILE.

Table 6–13 OCI LOB-Locator Functions

Function/Procedure Description

OCILobAssign() Assigns one LOB locator to another.

OCILobCharSetForm() Returns the character set form of a LOB.

OCILobCharSetId() Returns the character set ID of a LOB.

OCILobFileSetName() Sets the name of a BFILE in a locator.

OCILobIsEqual() Checks whether two LOB locators refer to the same LOB.

OCILobLocatorIsInit() Checks whether a LOB locator is initialized.

Table 6–14 OCI LOB-Buffering Functions

Function/Procedure Description

OCILobDisableBuffering() Disables the buffering subsystem use.

OCILobEnableBuffering() Uses the LOB buffering subsystem for subsequent reads and writes of LOB
data.

OCILobFlushBuffer() Flushes changes made to the LOB buffering subsystem to the database
(server)

Table 6–15 OCI Functions to Open and Close Internal and External LOBs

Function/Procedure Description

OCILobOpen() Opens a LOB

OCILobIsOpen() Sees if a LOB is open

OCILobClose() Closes a LOB

Table 6–12 (Cont.) OCI Read-Only Functions for BFILES

Function/Procedure Description

Using C++ (OCCI) to Work with LOBs

Overview of Supplied LOB APIs 6-13

Further Information About OCI
For further information and features of OCI, refer to the OTN Web site,
http://www.oracle.com/technology/ for OCI features and FAQs.

Using C++ (OCCI) to Work with LOBs
Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle
database. OCCI is organized as an easy-to-use set of C++ classes that enable a C++
program to connect to a database, run SQL statements, insert/update values in
database tables, retrieve results of a query, run stored procedures in the database, and
access metadata of database schema objects. OCCI also provides a seamless interface
to manipulate objects of user-defined types as C++ class instances.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCI and OCCI
together to build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

■ OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the
functionality of OCI that JDBC does not provide.

■ OCCI provides compiled performance. With compiled programs, the source code is
already written as close to the computer as possible. Because JDBC is an interpreted
API, it cannot provide the performance of a compiled API. With an interpreted
program, performance degrades as each line of code must be interpreted
individually into code that is close to the computer.

■ OCCI provides memory management with smart pointers. You do not have to be
concerned about managing memory for OCCI objects. This results in robust higher
performance application code.

■ Navigational access of OCCI enables you to intuitively access objects and call
methods. Changes to objects persist without need to write corresponding SQL
statements. If you use the client side cache, then the navigational interface
performs better than the object interface.

■ With respect to ODBC, the OCCI API is simpler to use. Because ODBC is built on
the C language, OCCI has all the advantages C++ provides over C. Moreover,
ODBC has a reputation as being difficult to learn. The OCCI, by contrast, is
designed for ease of use.

You can use OCCI to make changes to an entire persistent LOB, or to pieces of the
beginning, middle, or end of it, as follows:

■ For reading from internal and external LOBs (BFILEs)

■ For writing to persistent LOBs

OCCI Classes for LOBs
OCCI provides the following classes that allow you to use different types of LOB
instances as objects in your C++ application:

■ Clob class to access and modify data stored in internal CLOBs and NCLOBs

■ Blob class to access and modify data stored in internal BLOBs

■ Bfile class to access and read data stored in external LOBs (BFILEs)

Using C++ (OCCI) to Work with LOBs

6-14 Oracle Database Application Developer's Guide - Large Objects

Clob Class
The Clob driver implements a CLOB object using an SQL LOB locator. This means that
a CLOB object contains a logical pointer to the SQL CLOB data rather than the data
itself.

The CLOB interface provides methods for getting the length of an SQL CLOB value, for
materializing a CLOB value on the client, and getting a substring. Methods in the
ResultSet and Statement interfaces such as getClob() and setClob() allow
you to access SQL CLOB values.

Blob Class
Methods in the ResultSet and Statement interfaces, such as getBlob() and
setBlob(), allow you to access SQL BLOB values. The Blob interface provides
methods for getting the length of a SQL BLOB value, for materializing a BLOB value on
the client, and for extracting a part of the BLOB.

Bfile Class
The Bfile class enables you to instantiate a Bfile object in your C++ application.
You must then use methods of the Bfile class, such as the setName() method, to
initialize the Bfile object which associates the object properties with an object of type
BFILE in a BFILE column of the database.

Fixed-Width Character Set Rules
In OCCI, for fixed-width client-side character sets, the following rules apply:

■ Clob: offset and amount parameters are always in characters

■ Blob: offset and amount parameters are always in bytes

■ Bfile: offset and amount parameters are always in bytes

Varying-Width Character Set Rules
The following rules apply only to varying-width client-side character sets:

See Also: Syntax information on these classes and details on
OCCI in general is available in the Oracle C++ Call Interface
Programmer's Guide.

See Also: Oracle C++ Call Interface Programmer's Guide for detailed
information on the Clob class.

See Also:

■ Oracle C++ Call Interface Programmer's Guide for detailed
information on the Blob class methods and details on
instantiating and initializing a Blob object in your C++
application.

■ Oracle Database Globalization Support Guide for detailed
information about implementing applications in different
languages.

See Also: Oracle C++ Call Interface Programmer's Guide for detailed
information on the Blob class methods and details on instantiating
and initializing an Blob object in your C++ application.

Using C++ (OCCI) to Work with LOBs

Overview of Supplied LOB APIs 6-15

■ Offset parameter: Regardless of whether the client-side character set is
varying-width, the offset parameter is always as follows:

■ Clob(): in characters

■ Blob(): in bytes

■ Bfile(): in bytes

■ Amount parameter: The amount parameter is always as follows:

■ Clob: in characters, when referring to a server-side LOB

■ Blob: in bytes, when referring to a client-side buffer

■ Bfile: in bytes, when referring to a client-side buffer

■ length(): Regardless of whether the client-side character set is varying-width, the
output length is as follows:

■ Clob.length(): in characters

■ Blob.length(): in bytes

■ Bfile.length(): in bytes

■ Clob.read() and Blob.read(): With client-side character set of varying-width, CLOBs
and NCLOBs:

■ Input amount is in characters. Input amount refers to the number of characters
to read from the server-side CLOB or NCLOB.

■ Output amount is in bytes. Output amount indicates how many bytes were
read into the OCCI buffer parameter, buffer.

■ Clob.write() and Blob.write(): With client-side character set of varying-width,
CLOBs and NCLOBs:

■ Input amount is in bytes. Input amount refers to the number of bytes of data
in the OCCI input buffer, buffer.

■ Output amount is in characters. Output amount refers to the number of
characters written into the server-side CLOB or NCLOB.

Offset and Amount Parameters for Other OCCI Operations
For all other OCCI LOB operations, irrespective of the client-side character set, the
amount parameter is in characters for CLOBs and NCLOBs. These include the following:

■ Clob.copy()

■ Clob.erase()

■ Clob.trim()

■ For LoadFromFile functionality, overloaded Clob.copy()

All these operations refer to the amount of LOB data on the server.

NCLOBs in OCCI
■ NCLOB instances are allowed as parameters in methods

■ NCLOB instances are allowed as attributes in object types.

See also: Oracle Database Globalization Support Guide

Using C++ (OCCI) to Work with LOBs

6-16 Oracle Database Application Developer's Guide - Large Objects

Amount Parameter for OCCI LOB copy() Methods
The copy() method on Clob and Blob enables you to load data from a BFILE. You
can pass one of the following values for the amount parameter to this method:

■ An amount smaller than the size of the BFILE to load a portion of the data

■ An amount equal to the size of the BFILE to load all of the data

■ The UB4MAXVAL constant to load all of the BFILE data

You cannot specify an amount larger than the length of the BFILE.

Amount Parameter for OCCI read() Operations
The read() method on an Clob, Blob, or Bfile object, reads data from a BFILE.
You can pass one of the following values for the amount parameter to specify the
amount of data to read:

■ An amount smaller than the size of the BFILE to load a portion of the data

■ An amount equal to the size of the BFILE to load all of the data

■ 0 (zero) to read until the end of the BFILE in streaming mode

You cannot specify an amount larger than the length of the BFILE.

Further Information About OCCI

OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
OCCI methods that operate on BLOBs, CLOBs, NCLOBs, and BFILEs are as follows:

■ To modify persistent LOBs, see Table 6–16

■ To read or examine LOB values, see Table 6–17

■ For read only methods on external LOBs (BFILEs), see Table 6–18

■ Other LOB OCCI methods are described in Table 6–19

■ To open and close LOBs, see Table 6–20

OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values

See Also:

■ Oracle C++ Call Interface Programmer's Guide

■ http://www.oracle.com/ search for articles and product
information featuring OCCI.

Table 6–16 OCCI Clob and Blob Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values

Function/Procedure Description

Blob/Clob.append() Appends CLOB or BLOB value to another LOB.

Blob/Clob.copy() Copies all or part of a CLOB or BLOB to another LOB.

Blob/Clob.copy() Loads BFILE data into a persistent LOB.

Blob/Clob.trim() Truncates a CLOB or BLOB.

Blob/Clob.write() Writes data from a buffer into a LOB, overwriting existing data.

Using C/C++ (Pro*C) to Work with LOBs

Overview of Supplied LOB APIs 6-17

OCCI Methods to Read or Examine Persistent LOB and BFILE Values

OCCI Read-Only Methods for BFILEs

Other OCCI LOB Methods

OCCI Methods to Open and Close Internal and External LOBs

Using C/C++ (Pro*C) to Work with LOBs
You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle or end of a LOB by using embedded SQL. You can access both internal and
external LOBs for read purposes, and you can write to persistent LOBs.

Table 6–17 OCCI Blob/Clob/Bfile Methods to Read or Examine persistent LOB and BFILE Values

Function/Procedure Description

Blob/Clob.getChunkSize() Gets the Chunk size used when reading and writing. This works on
persistent LOBs and does not apply to external LOBs (BFILEs).

Blob/Clob.length() Returns the length of a LOB or a BFILE.

Blob/Clob.read() Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Table 6–18 OCCI Read-Only Methods for BFILES

Function/Procedure Description

Bfile.close() Closes an open BFILE.

Bfile.fileExists() Checks whether a BFILE exists.

Bfile.getFileName() Returns the name of a BFILE.

Bfile.getDirAlias() Gets the directory object name.

Bfile.isOpen() Checks whether a BFILE is open.

Bfile.open() Opens a BFILE.

Table 6–19 Other OCCI LOB Methods

Methods Description

Clob/Blob/Bfile.operator=() Assigns one LOB locator to another. Use = or the copy constructor.

Clob.getCharSetForm() Returns the character set form of a LOB.

Clob.getCharSetId() Returns the character set ID of a LOB.

Bfile.setName() Sets the name of a BFILE.

Clob/Blob/Bfile.operator==() Checks whether two LOB refer to the same LOB.

Clob/Blob/Bfile.isInitialized() Checks whether a LOB is initialized.

Table 6–20 OCCI Methods to Open and Close Internal and External LOBs

Function/Procedure Description

Clob/Blob/Bfile.Open() Opens a LOB

Clob/Blob/Bfile.isOpen() Sees if a LOB is open

Clob/Blob/Bfile.Close() Closes a LOB

Using C/C++ (Pro*C) to Work with LOBs

6-18 Oracle Database Application Developer's Guide - Large Objects

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs, NCLOBs,
and BFILEs. These statements are listed in the following tables, and are discussed in
greater detail later in the chapter.

First Provide an Allocated Input Locator Pointer That Represents LOB
Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers
which are then used to refer to the LOB or BFILE value.

To successfully complete an embedded SQL LOB statement you must do the
following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable

3. Use this variable in the embedded SQL LOB statement to access and manipulate
the LOB value

Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
Pro*C statements that operate on BLOBs, CLOBs, and NCLOBs are listed in the
following tables:

■ To modify persistent LOBs, see Table 6–21

■ To read or examine LOB values, see Table 6–22

■ To create or free temporary LOB, or check if Temporary LOB exists, see Table 6–23

■ To operate close and 'see if file exists' functions on BFILEs, see Table 6–24

■ To operate on LOB locators, see Table 6–25

■ For LOB buffering, see Table 6–26

■ To open or close LOBs or BFILEs, see Table 6–27

Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values

See Also: Pro*C/C++ Programmer's Guide for detailed
documentation, including syntax, host variables, host variable
types and example code.

See Also: APIs for supported LOB operations are described in
detail in:

■ Chapter 12, "Operations Specific to Persistent and Temporary
LOBs"

■ Chapter 14, "LOB APIs for Basic Operations"

■ Chapter 15, "LOB APIs for BFILE Operations"

Table 6–21 Pro*C/C++: Embedded SQL Statements to Modify Persistent LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

COPY Copies all or a part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

Using C/C++ (Pro*C) to Work with LOBs

Overview of Supplied LOB APIs 6-19

Pro*C/C++ Embedded SQL Statements for Introspection of LOBs

Pro*C/C++ Embedded SQL Statements for Temporary LOBs

Pro*C/C++ Embedded SQL Statements for BFILEs

Pro*C/C++ Embedded SQL Statements for LOB Locators

LOAD FROM FILE Loads BFILE data into a persistent LOB at a specified offset.

TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset.

WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

Table 6–22 Pro*C/C++: Embedded SQL Statements for Introspection of LOBs

Statement Description

DESCRIBE [CHUNKSIZE] Gets the Chunk size used when writing. This works for persistent LOBs only. It
does not apply to external LOBs (BFILEs).

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE.

READ reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Table 6–23 Pro*C/C++: Embedded SQL Statements for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE [ISTEMPORARY] Sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY Frees a temporary LOB.

Table 6–24 Pro*C/C++: Embedded SQL Statements for BFILES

Statement Description

FILE CLOSE ALL Closes all open BFILEs.

DESCRIBE [FILEEXISTS] Checks whether a BFILE exists.

DESCRIBE
[DIRECTORY,FILENAME]

Returns the directory object name and filename of a BFILE.

Table 6–25 Pro*C/C++ Embedded SQL Statements for LOB Locators

Statement Description

ASSIGN Assigns one LOB locator to another.

FILE SET Sets the directory object name and filename of a BFILE in a locator.

Table 6–21 (Cont.) Pro*C/C++: Embedded SQL Statements to Modify Persistent LOB Values

Statement Description

Using COBOL (Pro*COBOL) to Work with LOBs

6-20 Oracle Database Application Developer's Guide - Large Objects

Pro*C/C++ Embedded SQL Statements for LOB Buffering

Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

Using COBOL (Pro*COBOL) to Work with LOBs
You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle or end of it by using embedded SQL. You can access both internal and external
LOBs for read purposes, and you can also write to persistent LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs, NCLOBs,
and BFILEs. These statements are listed in the following tables, and are discussed in
greater detail later in the manual.

First Provide an Allocated Input Locator Pointer That Represents LOB
Unlike locators in PL/SQL, locators in Pro*COBOL are mapped to locator pointers
which are then used to refer to the LOB or BFILE value. For the successful completion
of an embedded SQL LOB statement you must perform the following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable

3. Use this variable in an embedded SQL LOB statement to access and manipulate
the LOB value.

Table 6–26 Pro*C/C++ Embedded SQL Statements for LOB Buffering

Statement Description

DISABLE BUFFERING Disables the use of the buffering subsystem.

ENABLE BUFFERING Uses the LOB buffering subsystem for subsequent reads and writes of LOB
data.

FLUSH BUFFER Flushes changes made to the LOB buffering subsystem to the database (server)

Table 6–27 Pro*C/C++ Embedded SQL Statements to Open and Close Persistent LOBs and External LOBs
(BFILEs)

Statement Description

OPEN Opens a LOB or BFILE.

DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.

CLOSE Closes a LOB or BFILE.

See Also: APIs for supported LOB operations are described in
detail in:

■ Chapter 12, "Operations Specific to Persistent and Temporary
LOBs"

■ Chapter 14, "LOB APIs for Basic Operations"

■ Chapter 15, "LOB APIs for BFILE Operations"

Using COBOL (Pro*COBOL) to Work with LOBs

Overview of Supplied LOB APIs 6-21

Where the Pro*COBOL interface does not supply the required functionality, you can
call OCI using C. Such an example is not provided here because such programs are
operating system dependent.

Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
The following Pro*COBOL statements operate on BLOBs, CLOBs, NCLOBs, and
BFILEs:

■ To modify persistent LOBs, see Table 6–28

■ To read or examine internal and external LOB values, see Table 6–29

■ To create or free temporary LOB, or check LOB locator, see Table 6–30

■ To operate close and 'see if file exists' functions on BFILEs, see Table 6–31

■ To operate on LOB locators, see Table 6–32

■ For LOB buffering, see Table 6–33

■ To open or close persistent LOBs or BFILEs, see Table 6–34

Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values

Pro*COBOL Embedded SQL Statements for Introspection of LOBs

See Also: Pro*COBOL Programmer's Guide for detailed
documentation, including syntax, host variables, host variable
types, and example code.

Table 6–28 Pro*COBOL Embedded SQL Statements to Modify LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

COPY Copies all or part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROM FILE Loads BFILE data into a persistent LOB at a specified offset.

TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset

WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

Table 6–29 Pro*COBOL Embedded SQL Statements for Introspection of LOBs

Statement Description

DESCRIBE [CHUNKSIZE] Gets the Chunk size used when writing.

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE.

READ Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Using COBOL (Pro*COBOL) to Work with LOBs

6-22 Oracle Database Application Developer's Guide - Large Objects

Pro*COBOL Embedded SQL Statements for Temporary LOBs

Pro*COBOL Embedded SQL Statements for BFILEs

Pro*COBOL Embedded SQL Statements for LOB Locators

Pro*COBOL Embedded SQL Statements for LOB Buffering

Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and BFILEs

Table 6–30 Pro*COBOL Embedded SQL Statements for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE [ISTEMPORARY] Sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY Frees a temporary LOB.

Table 6–31 Pro*COBOL Embedded SQL Statements for BFILES

Statement Description

FILE CLOSE ALL Closes all open BFILEs.

DESCRIBE [FILEEXISTS] Checks whether a BFILE exists.

DESCRIBE [DIRECTORY,
FILENAME]

Returns the directory object name and filename of a BFILE.

Table 6–32 Pro*COBOL Embedded SQL Statements for LOB Locator Statements

Statement Description

ASSIGN Assigns one LOB locator to another.

FILE SET Sets the directory object name and filename of a BFILE in a locator.

Table 6–33 Pro*COBOL Embedded SQL Statements for LOB Buffering

Statement Description

DISABLE BUFFERING Disables the use of the buffering subsystem.

ENABLE BUFFERING Uses the LOB buffering subsystem for subsequent reads and writes of LOB data.

FLUSH BUFFER Flushes changes made to the LOB buffering subsystem to the database (server)

Table 6–34 Pro*COBOL Embedded SQL Statements for Opening and CLosing Persistent LOBs and
BFILEs

Statement Description

OPEN Opens a LOB or BFILE.

DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.

CLOSE Closes a LOB or BFILE.

Using Visual Basic (Oracle Objects for OLE) to Work with LOBs

Overview of Supplied LOB APIs 6-23

Using Visual Basic (Oracle Objects for OLE) to Work with LOBs
Oracle Objects for OLE (OO4O) is a set of programmable COM objects that simplifies
the development of applications designed to communicate with an Oracle Database.
OO4O offers high performance database access. It also provides easy access to features
unique to Oracle, yet otherwise cumbersome or inefficient to use from other ODBC or
OLE DB-based components, such as ADO.

You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle or end of it, with the Oracle Objects for OLE (OO4O) API, by using one of the
following objects interfaces:

■ OraBlob: To provide methods for performing operations on BLOB datatypes in
the database

■ OraClob: To provide methods for performing operations on CLOB datatypes in
the database

■ OraBFile: To provide methods for performing operations on BFILE data stored
in operating system files.

OO4O Syntax Reference
The OO4O syntax reference and further information is viewed from the OO4O online
help. Oracle Objects for OLE (OO4O), a Windows-based product included with the
database, has no manuals, only online help.

Its online help is available through the Application Development submenu of the
database installation. To view specific methods and properties from the Help Topics
menu, select the Contents tab > OO4O Automation Server > Methods or Properties.

For further information about OO4O, refer to the following Web site:

■ http://www.oracle.com/technology/index.html

Select Products > Internet Tools > Programmer. Scroll down to "Oracle Objects for
OLE". At the bottom of the page is a list of useful articles for using the interfaces.

■ http://www.oracle.com/ Search for articles on OO4O or Oracle Objects for
OLE.

OraBlob, OraClob, and OraBfile Object Interfaces Encapsulate Locators
These interfaces encapsulate LOB locators, so you do not deal directly with locators,
but instead, can use methods and properties provided to perform operations and get
state information.

OraBlob and OraClob Objects Are Retrieved as Part of Dynaset
When OraBlob and OraClob objects are retrieved as a part of a dynaset, these
objects represent LOB locators of the dynaset current row. If the dynaset current row
changes due to a move operation, then the OraBlob and OraClob objects represent
the LOB locator for the new current row.

Note: OracleBlob and OracleClob have been deprecated and no
longer work

Using Visual Basic (Oracle Objects for OLE) to Work with LOBs

6-24 Oracle Database Application Developer's Guide - Large Objects

Use the Clone Method to Retain Locator Independent of the Dynaset Move
To retain the LOB locator of the OraBlob and OraClob object independent of the
dynaset move operation, use the Clone method. This method returns the OraBlob
and OraClob object. You can also use these objects as PL/SQL bind parameters.

Example of OraBlob and OraBfile
The following example shows usage of OraBlob and OraBfile.

Dim OraDyn as OraDynaset, OraSound1 as OraBLOB, OraSoundClone as OraBlob,
OraMyBfile as OraBFile

OraConnection.BeginTrans
set OraDyn = OraDb.CreateDynaset("select * from print_media order by product_id",
ORADYN_DEFAULT)
set OraSound1 = OraDyn.Fields("Sound").value
set OraSoundClone = OraSound1

OraParameters.Add "id", 1,ORAPARAM_INPUT
OraParameters.Add "mybfile", Empty,ORAPARAM_OUTPUT
OraParameters("mybfile").ServerType = ORATYPE_BFILE

OraDatabase.ExecuteSQL ("begin GetBFile(:id, :mybfile ") end")

Set OraMyBFile = OraParameters("mybfile").value
'Go to Next row
OraDyn.MoveNext

OraDyn.Edit
'Lets update OraSound1 data with that from the BFILE
OraSound1.CopyFromBFile OraMyBFile
OraDyn.Update

OraDyn.MoveNext
'Go to Next row
OraDyn.Edit
'Lets update OraSound1 by appending with LOB data from 1st row represenetd by
'OraSoundClone
OraSound1.Append OraSoundClone
OraDyn.Update

OraConnection.CommitTrans

In the preceding example:

OraSound1 — represents the locator for the current row in the dynaset
OraSoundClone — represents the locator for the 1st row.

A change in the current row (say a OraDyn.MoveNext) means the following:

OraSound1 — will represent the locator for the 2nd row.

OraSoundClone — will represent the locator in the 1st row. OraSoundClone only
refers the locator for the 1st row irrespective of any OraDyn row navigation).

OraMyBFile — refers to the locator obtained from an PL/SQL "OUT" parameter as a
result of executing a PL/SQL procedure, either by doing an
OraDatabase.ExecuteSQL.

Using Visual Basic (Oracle Objects for OLE) to Work with LOBs

Overview of Supplied LOB APIs 6-25

OO4O Methods and Properties to Access Data Stored in LOBs
Oracle Objects for OLE (OO4O) includes methods and properties that you can use to
access data stored in BLOBs, CLOBs, NCLOBs, and BFILEs.

The following OO4O methods and properties operate on BLOBs, CLOBs, NCLOBs, and
BFILEs:

■ To modify persistent LOBs, see Table 6–35

■ To read or examine internal and external LOB values, see Table 6–36

■ To open and close BFILEs, see Table 6–37

■ For LOB buffering, see Table 6–38

■ Properties such as to see if LOB is NULL, or to get or set polling amount, see
Table 6–39

■ For read-only BFILE methods, see Table 6–40

■ For BFILE properties, see Table 6–41

OO4O Methods to Modify BLOB, CLOB, and NCLOB Values

Note: A LOB obtained by executing SQL is only valid for the
duration of the transaction. For this reason, "BEGINTRANS" and
"COMMITTRANS" are used to specify the duration of the
transaction.

See Also: APIs for supported LOB operations are described in
detail in:

■ Chapter 12, "Operations Specific to Persistent and Temporary
LOBs"

■ Chapter 14, "LOB APIs for Basic Operations"

■ Chapter 15, "LOB APIs for BFILE Operations"

See Also: The OO4O online help for detailed information
including parameters, parameter types, return values, and example
code. Oracle Objects for OLE (OO4O), a Windows-based product
included with the database, has no manuals, only online help. The
OO4O online help is available through the Application
Development submenu of the database installation.

Table 6–35 OO4O Methods to Modify BLOB, CLOB, and NCLOB Values

Methods Description

OraBlob.Append

OraClob.Append

Appends BLOB value to another LOB.

Appends CLOB or NCLOB value to another LOB.

OraBlob.Copy

OraClob.Copy

Copies a portion of a BLOB into another LOB

Copies a portion of a CLOB or NCLOB into another LOB

OraBlob.Erase

OraClob.Erase

Erases part of a BLOB, starting at a specified offset

Erases part of a CLOB or NCLOB, starting at a specified offset

Using Visual Basic (Oracle Objects for OLE) to Work with LOBs

6-26 Oracle Database Application Developer's Guide - Large Objects

OO4O Methods to Read or Examine Internal and External LOB Values

OO4O Methods to Open and Close External LOBs (BFILEs)

OO4O Methods for Persistent LOBBuffering

OraBlob.CopyFromBFile

OraClob.CopyFromBFile

Loads BFILE data into an internal BLOB

Loads BFILE data into an internal CLOB or NCLOB

OraBlob.Trim

OraClob.Trim

Truncates a BLOB

Truncates a CLOB or NCLOB

OraBlob.CopyFromFile

OraClob.CopyFromFile

Writes data from a file to a BLOB

Writes data from a file to a CLOB or NCLOB

OraBlob.Write

OraClob.Write

Writes data to the BLOB

Writes data to the CLOB or NCLOB

Table 6–36 OO4O Methods to Read or Examine Internal and External LOB Values

Function/Procedure Description

OraBlob.Read

OraClob.Read

OraBFile.Read

Reads a specified portion of a non-NULL BLOB into a buffer

Reads a specified portion of a non-NULL CLOB into a buffer

Reads a specified portion of a non-NULL BFILE into a buffer

OraBlob.CopyToFile

OraClob.CopyToFile

Reads a specified portion of a non-NULL BLOB to a file

Reads a specified portion of a non-NULL CLOB to a file

Table 6–37 OO4O Methods to Open and Close External LOBs (BFILEs)

Method Description

OraBFile.Open Opens BFILE.

OraBFile.Close Closes BFILE.

Table 6–38 OO4O Methods for Persistent LOB Buffering

Method Description

OraBlob.FlushBuffer

OraClob.FlushBuffer

Flushes changes made to the BLOB buffering subsystem to the database

Flushes changes made to the CLOB buffering subsystem to the database

OraBlob.EnableBuffering

OraClob.EnableBuffering

Enables buffering of BLOB operations

Enables buffering of CLOB operations

OraBlob.DisableBuffering

OraClob.DisableBuffering

Disables buffering of BLOB operations

Disables buffering of CLOB operations

Table 6–35 (Cont.) OO4O Methods to Modify BLOB, CLOB, and NCLOB Values

Methods Description

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-27

OO4O Properties for Operating on LOBs

OO4O Read-Only Methods for External Lobs (BFILEs)

OO4O Properties for Operating on External LOBs (BFILEs)

Using Java (JDBC) to Work with LOBs
You can perform the following tasks on LOBs with Java (JDBC):

■ Modifying Internal Persistent LOBs Using Java

■ Reading Internal Persistent LOBs and External LOBs (BFILEs) with Java

■ Calling DBMS_LOB Package from Java (JDBC)

■ Referencing LOBs Using Java (JDBC)

■ Create and Manipulate Temporary LOBs and Store Them in Tables as Permanent
LOBs. See JDBC Temporary LOB APIs

Modifying Internal Persistent LOBs Using Java
You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle, or end of a persistent LOB in Java by means of the JDBC API using the classes:

Table 6–39 OO4O Properties for Operating on LOBs

Property Description

IsNull (Read) Indicates when a LOB is NULL

PollingAmount(Read/Write) Gets/Sets total amount for Read/Write polling operation

Offset(Read/Write) Gets/Sets offset for Read/Write operation. By default, it is set to 1.

Status(Read) Returns the polling status.Possible values are

■ ORALOB_NEED_DATA There is more data to be read or written

■ ORALOB_NO_DATA There is no more data to be read or written

■ ORALOB_SUCCESS_LOB data read/written successfully

Size(Read) Returns the length of the LOB data

Table 6–40 OO4O Read-Only Methods for External LOBs (BFILEs)

Methods Description

OraBFile.Close Closes an open BFILE

OraBFile.CloseAll Closes all open BFILEs

OraBFile.Open Opens a BFILE

OraBFile.IsOpen Determines if a BFILE is open

Table 6–41 OO4O Properties for Operating on External LOBs (BFILEs)

Property Description

OraBFile.DirectoryName Gets/Sets the server side directory object name.

OraBFile.FileName(Read/Write) Gets/Sets the server side filename.

OraBFile.Exists Checks whether a BFILE exists.

Using Java (JDBC) to Work with LOBs

6-28 Oracle Database Application Developer's Guide - Large Objects

■ oracle.sql.BLOB

■ oracle.sql.CLOB

These classes implement java.sql.Blob and java.sql.Clob interfaces according
to the JDBC 3.0 specification, which has methods for LOB modification. They also
include legacy Oracle proprietary methods for LOB modification. These legacy
methods are marked as deprecated and may be removed in a future release.

If you use JDK 1.4 or higher, then you can use variables typed java.sql.Blob and
java.sql.Clob.

The JDBC 3.0 methods are included in classes12.jar, so that they can be used in
JDK 1.2 or 1.3, but since they are not part of the java.sql.Blob and
java.sql.Clob interfaces in those JDK versions, you must use variables typed or
cast to oracle.sql.BLOB or oracle.sql.CLOB.

Table 6–42 and Table 6–43 show the conversions between Oracle proprietary methods
that have been deprecated and JDBC 3.0 standard methods.

Reading Internal Persistent LOBs and External LOBs (BFILEs) with Java
With JDBC you can use Java to read both internal persistent LOBs and external LOBs
(BFILEs).

BLOB, CLOB, and BFILE Classes
■ BLOB and CLOB Classes. In JDBC theses classes provide methods for performing

operations on large objects in the database including BLOB and CLOB data types.

■ BFILE Class. In JDBC this class provides methods for performing operations on
BFILE data in the database.

The BLOB, CLOB, and BFILE classes encapsulate LOB locators, so you do not deal with
locators but instead use methods and properties provided to perform operations and
get state information.

Table 6–42 BLOB Method Equivalents

Oracle Proprietary Method (Deprecated) JDBC 3.0 Standard Method Replacement

putBytes(long pos, byte [] bytes) setBytes(long pos, byte[] bytes)

putBytes(long pos, byte [] bytes, int length) setBytes(long pos, byte[] bytes, int offset, int len)

getBinaryOutputStream(long pos) setBinaryStream(long pos)

trim (long len) truncate(long len)

Table 6–43 CLOB Method Equivalents

Oracle Proprietary Method (Deprecated) JDBC 3.0 Standard Method Replacement

putString(long pos, String str) setString(long pos, String str)

N/A setString(long pos, String str, int offset, int len)

getAsciiOutputStream(long pos) setAsciiStream(long pos)

getCharacterOutputStream(long pos) setCharacterStream(long pos)

trim (long len) truncate(long len)

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-29

Calling DBMS_LOB Package from Java (JDBC)
Any LOB functionality not provided by these classes can be accessed by a call to the
PL/SQL DBMS_LOB package. This technique is used repeatedly in the examples
throughout this manual.

Referencing LOBs Using Java (JDBC)
You can get a reference to any of the preceding LOBs in the following two ways:

■ As a column of an OracleResultSet

■ As an OUT type PL/SQL parameter from an OraclePreparedStatement

Using OracleResultSet: BLOB and CLOB Objects Retrieved
When BLOB and CLOB objects are retrieved as a part of an OracleResultSet, these
objects represent LOB locators of the currently selected row.

If the current row changes due to a move operation, for example, rset.next(), then
the retrieved locator still refers to the original LOB row.

To retrieve the locator for the most current row, you must call getBLOB(),
getCLOB(), or getBFILE() on the OracleResultSet each time a move operation
is made depending on whether the instance is a BLOB, CLOB or BFILE.

JDBC Syntax References and Further Information
For further JDBC syntax and information about using JDBC with LOBs:

JDBC Methods for Operating on LOBs
The following JDBC methods operate on BLOBs, CLOBs, and BFILEs:

■ BLOBs:

■ To modify BLOB values, see Table 6–44

■ To read or examine BLOB values, see Table 6–45

■ For BLOB buffering, see Table 6–46

■ Temporary BLOBs: Creating, checking if LOB is open, and freeing. See
Table 6–54

■ Opening, closing, and checking if BLOB is open, see Table 6–54

■ Truncating BLOBs, see Table 6–57

■ BLOB streaming API, see Table 6–59

■ CLOBs:

■ To read or examine CLOB values, see Table 6–48

■ For CLOB buffering, see Table 6–49

See Also:

■ Oracle Database JDBC Developer's Guide and Reference, "Working
with LOBs and BFILEs" chapter, for detailed documentation,
including parameters, parameter types, return values, and
example code.

■ http://www.oracle.com/technology/index.html

Using Java (JDBC) to Work with LOBs

6-30 Oracle Database Application Developer's Guide - Large Objects

■ To modify CLOBs, see Table 6–59

■ Temporary CLOBs:

■ Opening, closing, and checking if CLOB is open, see Table 6–55

■ Truncating CLOBs, see Table 6–58

■ CLOB streaming API, see Table 6–60

■ BFILEs:

■ To read or examine BFILEs, see Table 6–50

■ For BFILE buffering, see Table 6–51

■ Opening, closing, and checking if BFILE is open, see Table 6–56

■ BFILE streaming API, see Table 6–61

JDBC oracle.sql.BLOB Methods to Modify BLOB Values

JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

JDBC oracle.sql.BLOB Methods and Properties for BLOB Buffering

Table 6–44 JDBC oracle.sql.BLOB Methods To Modify BLOB Values

Method Description

int setBytes(long, byte[]) Inserts the byte array into the BLOB, starting at the
given offset

Table 6–45 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

Method Description

byte[] getBytes(long, int) Gets the contents of the LOB as an array of bytes,
given an offset

long position(byte[],long) Finds the given byte array within the LOB, given an
offset

long position(Blob,long) Finds the given BLOB within the LOB

public boolean equals(java.lang.Object) Compares this LOB with another. Compares the LOB
locators.

public long length() Returns the length of the LOB

public int getChunkSize() Returns the ChunkSize of the LOB

Table 6–46 JDBC oracle.sql.BLOB Methods and Properties for BLOB Buffering

Method Description

public java.io.InputStream getBinaryStream()) Streams the LOB as a binary stream

public java.io.OutputStream setBinaryStream() Retrieves a stream that can be used to
write to the BLOB value that this Blob
object represents

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-31

JDBC oracle.sql.CLOB Methods to Modify CLOB Values

JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value

JDBC oracle.sql.CLOB Methods and Properties for CLOB Buffering

JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values

Table 6–47 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

Method Description

int setString(long, java.lang.String) JDBC 3.0: Writes the given Java String to the CLOB
value that this Clob object designates at the position
pos.

int putChars(long, char[]) Inserts the character array into the LOB, starting at the
given offset

Table 6–48 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Values

Method Description

java.lang.String getSubString(long, int) Returns a substring of the LOB as a string

int getChars(long, int, char[]) Reads a subset of the LOB into a character array

long position(java.lang.String, long) Finds the given String within the LOB, given an offset

long position(oracle.jdbc2.Clob, long) Finds the given CLOB within the LOB, given an offset

long length() Returns the length of the LOB

int getChunkSize() Returns the ChunkSize of the LOB

Table 6–49 JDBC oracle.sql.CLOB Methods and Properties for CLOB Buffering

Method Description

java.io.InputStream getAsciiStream() Implements the Clob interface method. Gets the
CLOB value designated by this Clob object as a
stream of ASCII bytes

java.io.OutputStream setAsciiStream(long pos) JDBC 3.0: Retrieves a stream to be used to write
ASCII characters to the CLOB value that this Clob
object represents, starting at position pos

java.io.Reader getCharacterStream() Reads the CLOB as a character stream

java.io.Writer setCharacterStream(long pos) JDBC 3.0: Retrieves a stream to be used to write
Unicode characters to the CLOB value that this
Clob object represents, starting at position pos

Table 6–50 JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values

Method Description

byte[] getBytes(long, int) Gets the contents of the BFILE as an array of bytes,
given an offset

int getBytes(long, int, byte[]) Reads a subset of the BFILE into a byte array

long position(oracle.sql.BFILE, long) Finds the first appearance of the given BFILE
contents within the LOB, from the given offset

Using Java (JDBC) to Work with LOBs

6-32 Oracle Database Application Developer's Guide - Large Objects

JDBC oracle.sql.BFILE Methods and Properties for BFILE Buffering

JDBC Temporary LOB APIs
Oracle Database JDBC drivers contain APIs to create and close temporary LOBs. These
APIs can replace workarounds that use the following procedures from the DBMS_LOB
PL/SQL package in prior releases:

■ DBMS_LOB.createTemporary()

■ DBMS_LOB.isTemporary()

■ DBMS_LOB.freeTemporary()

long position(byte[], long) Finds the first appearance of the given byte array
within the BFILE, from the given offset

long length() Returns the length of the BFILE

boolean fileExists() Checks if the operating system file referenced by
this BFILE exists

public void openFile() Opens the operating system file referenced by this
BFILE

public void closeFile() Closes the operating system file
referenced by this BFILE

public boolean isFileOpen() Checks if this BFILE is already open

public java.lang.String getDirAlias() Gets the directory object name for
this BFILE

public java.lang.String getName() Gets the file name referenced by this
BFILE

Table 6–51 JDBC oracle.sql.BFILE Methods and Properties for BFILE Buffering

Method Description

public java.io.InputStream getBinaryStream() Reads the BFILE as a binary stream

Table 6–52 JDBC: Temporary BLOB APIs

Methods Description

public static BLOB createTemporary(Connection conn,

boolean cache, int duration) throws SQLException

Creates a temporary BLOB

public static boolean isTemporary(BLOB blob)

throws SQLException

Checks if the specified BLOB locator refers
to a temporary BLOB

public boolean isTemporary() throws SQLException Checks if the current BLOB locator refers
to a temporary BLOB

public static void freeTemporary(BLOB temp_blob)

throws SQLException

Frees the specified temporary BLOB

public void freeTemporary() throws SQLException Frees the temporary BLOB

Table 6–50 (Cont.) JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values

Method Description

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-33

JDBC: Opening and Closing LOBs
oracle.sql.CLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Clob interface. Table 6–53 lists the Oracle extension APIs in
oracle.sql.CLOB for accessing temporary CLOBs.

Oracle Database JDBC drivers contain APIs to explicitly open and close LOBs. These
APIs replace previous techniques that use DBMS_LOB.open() and
DBMS_LOB.close().

JDBC: Opening and Closing BLOBs
oracle.sql.BLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Blob interface. Table 6–54 lists the Oracle extension APIs in
oracle.sql.BLOB that open and close BLOBs.

Opening the BLOB Using JDBC
To open a BLOB, your JDBC application can use the open method as defined in
oracle.sql.BLOB class as follows:

/**
 * Open a BLOB in the indicated mode. Valid modes include MODE_READONLY,
 * and MODE_READWRITE. It is an error to open the same LOB twice.
 */
public void open (int mode) throws SQLException

Possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWRITE

Each call to open opens the BLOB. For example:

BLOB blob = ...
blob.open (BLOB.MODE_READWRITE);

Table 6–53 JDBC: Temporary CLOB APIs

Methods Description

public static CLOB createTemporary(Connection conn,

boolean cache, int duration) throws SQLException

Creates a temporary CLOB

public static boolean isTemporary(CLOB clob)

throws SQLException

Checks if the specified CLOB locator
refers to a temporary CLOB

public boolean isTemporary() throws SQLException Checks if the current CLOB locator
refers to a temporary CLOB

public static void freeTemporary(CLOB temp_clob)

throws SQLException

Frees the specified temporary CLOB

public void freeTemporary() throws SQLException Frees the temporary CLOB

Table 6–54 JDBC: Opening and Closing BLOBs

Methods Description

public void open(int mode) throws SQLException Opens the BLOB

public boolean isOpen() throws SQLException Sees if the BLOB is open

public void close() throws SQLException Closes the BLOB

Using Java (JDBC) to Work with LOBs

6-34 Oracle Database Application Developer's Guide - Large Objects

Checking If the BLOB Is Open Using JDBC
To see if a BLOB is opened, your JDBC application can use the isOpen method defined
in oracle.sql.BLOB. The return Boolean value indicates whether the BLOB has been
previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the BLOB is opened.
 * @return true if the LOB is opened.
 */
 public boolean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
// See if the BLOB is opened
boolean isOpen = blob.isOpen ();

Closing the BLOB Using JDBC
To close a BLOB, your JDBC application can use the close method defined in
oracle.sql.BLOB. The close API is defined as follows:

/**
 * Close a previously opened BLOB.
 */
public void close () throws SQLException

The usage example is:

BLOB blob = ...
// close the BLOB
blob.close ();

JDBC: Opening and Closing CLOBs
Class oracle.sql.CLOB is the Oracle JDBC driver implementation of the standard
JDBC java.sql.Clob interface. Table 6–55 lists the Oracle extension APIs in
oracle.sql.CLOB to open and close CLOBs.

Opening the CLOB Using JDBC
To open a CLOB, your JDBC application can use the open method defined in
oracle.sql.CLOB class as follows:

/**
 * Open a CLOB in the indicated mode. Valid modes include MODE_READONLY,
 * and MODE_READWRITE. It is an error to open the same LOB twice.
 */
public void open (int mode) throws SQLException

The possible values of the mode parameter are:

public static final int MODE_READONLY

Table 6–55 JDBC: Opening and Closing CLOBs

 Methods Description

public void open(int mode) throws SQLException Open the CLOB

public boolean isOpen() throws SQLExceptio See if the CLOB is opened

public void close() throws SQLException Close the CLOB

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-35

public static final int MODE_READWRITE

Each call to open opens the CLOB. For example,

CLOB clob = ...
clob.open (CLOB.MODE_READWRITE);

Checking If the CLOB Is Open Using JDBC
To see if a CLOB is opened, your JDBC application can use the isOpen method defined
in oracle.sql.CLOB. The return Boolean value indicates whether the CLOB has been
previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the CLOB is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

CLOB clob = ...
 // See if the CLOB is opened
 boolean isOpen = clob.isOpen ();

Closing the CLOB Using JDBC
To close a CLOB, the JDBC application can use the close method defined in
oracle.sql.CLOB. The close API is defined as follows:

/**
* Close a previously opened CLOB.
*/
public void close () throws SQLException

The usage example is:

CLOB clob = ...
// close the CLOB
clob.close ();

JDBC: Opening and Closing BFILEs
oracle.sql.BFILE class wraps the database BFILE object. Table 6–56 lists the
Oracle extension APIs in oracle.sql.BFILE for opening and closing BFILEs.

Opening BFILEs
To open a BFILE, your JDBC application can use the OPEN method defined in
oracle.sql.BFILE class as follows:

/**

Table 6–56 JDBC API Extensions for Opening and Closing BFILEs

Methods Description

public void open() throws SQLException Opens the BFILE

public void open(int mode) throws SQLException Opens the BFILE

public boolean isOpen() throws SQLException Checks if the BFILE is open

public void close() throws SQLException Closes the BFILE

Using Java (JDBC) to Work with LOBs

6-36 Oracle Database Application Developer's Guide - Large Objects

 * Open a external LOB in the readonly mode. It is an error
 * to open the same LOB twice.
 */
public void open () throws SQLException

/**
 * Open a external LOB in the indicated mode. Valid modes include
 * MODE_READONLY only. It is an error to open the same
 * LOB twice.
 */
public void open (int mode) throws SQLException

The only possible value of the mode parameter is:

public static final int MODE_READONLY

Each call to open opens the BFILE. For example,

BFILE bfile = ...
bfile.open ();

Checking If the BFILE Is Open
To see if a BFILE is opened, your JDBC application can use the isOpen method
defined in oracle.sql.BFILE. The return Boolean value indicates whether the
BFILE has been previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the BFILE is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

BFILE bfile = ...
// See if the BFILE is opened
boolean isOpen = bfile.isOpen ();

Closing the BFILE
To close a BFILE, your JDBC application can use the close method defined in
oracle.sql.BFILE. The close API is defined as follows:

/**
 * Close a previously opened BFILE.
*/
public void close () throws SQLException

The usage example is --

BFILE bfile = ...
// close the BFILE
bfile.close ();

Usage Example (OpenCloseLob.java)

/*
 * This sample shows how to open/close BLOB and CLOB.
 */

// You need to import the java.sql package to use JDBC

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-37

import java.sql.*;

// You need to import the oracle.sql package to use oracle.sql.BLOB
import oracle.sql.*;

class OpenCloseLob
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 String url = "jdbc:oracle:oci8:@";
 try {
 String url1 = System.getProperty("JDBC_URL");
 if (url1 != null)
 url = url1;
 } catch (Exception e) {
 // If there is any security exception, ignore it
 // and use the default
 }

 // Connect to the database
 Connection conn =
 DriverManager.getConnection (url, "scott", "tiger");
 // It is faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist already.
 }

// Create a table containing a BLOB and a CLOB
stmt.execute ("create table basic_lob_table (x varchar2 (30), b blob, c clob)");

// Populate the table
stmt.execute (
 "insert into basic_lob_table values"
 + " ('one', '010101010101010101010101010101', 'onetwothreefour')");

 // Select the lobs
 ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

 // Open the lobs
 System.out.println ("Open the lobs");
 blob.open (BLOB.MODE_READWRITE);

Using Java (JDBC) to Work with LOBs

6-38 Oracle Database Application Developer's Guide - Large Objects

 clob.open (CLOB.MODE_READWRITE);

 // Check if the lobs are opened
 System.out.println ("blob.isOpen()="+blob.isOpen());
 System.out.println ("clob.isOpen()="+clob.isOpen());

 // Close the lobs
 System.out.println ("Close the lobs");
 blob.close ();
 clob.close ();

 // Check if the lobs are opened
 System.out.println ("blob.isOpen()="+blob.isOpen());
 System.out.println ("clob.isOpen()="+clob.isOpen());
 }

 // Close the ResultSet
 rset.close ();

 // Close the Statement
 stmt.close ();

 // Close the connection
 conn.close ();
 }
}

Truncating LOBs Using JDBC
Oracle Database JDBC drivers contain APIs to truncate persistent LOBs. These APIs
replace previous techniques that used DBMS_LOB.trim().

JDBC: Truncating BLOBs
oracle.sql.BLOB class is Oracle JDBC driver implementation of the standard JDBC
java.sql.Blob interface. Table 6–57 lists the Oracle extension API in
oracle.sql.BLOB that truncates BLOBs.

The truncate API is defined as follows:

/**
*Truncate the value of the BLOB to the length you specify in the newlen parameter.
 * @param newlen the new length of the BLOB.
 */
public void truncate (long newlen) throws SQLException

The newlen parameter specifies the new length of the BLOB.

JDBC: Truncating CLOBs
oracle.sql.CLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Clob interface. Table 6–58 lists the Oracle extension API in
oracle.sql.CLOB that truncates CLOBs.

Table 6–57 JDBC: Truncating BLOBs

Methods Description

public void truncate(long newlen) throws SQLException Truncates the BLOB

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-39

The truncate API is defined as follows:

/**
*Truncate the value of the CLOB to the length you specify in the newlen parameter.
 * @param newlen the new length of the CLOB.
 */
public void truncate (long newlen) throws SQLException

The newlen parameter specifies the new length of the CLOB.

JDBC BLOB Streaming APIs
The JDBC interface provided with the database includes LOB streaming APIs that
enable you to read from or write to a LOB at the requested position from a Java stream.

The oracle.sql.BLOB class implements the standard JDBC java.sql.Blob
interface. Table 6–59 lists BLOB Streaming APIs.

These APIs are defined as follows:

/**
 * Write to the BLOB from a stream at the requested position.
 *
 * @param pos is the position data to be put.
 * @return a output stream to write data to the BLOB
 */
public java.io.OutputStream setBinaryStream(long pos) throws SQLException

/**
 * Read from the BLOB as a stream at the requested position.
 *
 * @param pos is the position data to be read.
 * @return a output stream to write data to the BLOB
 */
public java.io.InputStream getBinaryStream(long pos) throws SQLException

Table 6–58 JDBC: Truncating CLOBs

Methods Description

public void truncate(long newlen) throws SQLException Truncates the CLOB

See: "Trimming LOB Data" on page 14-35, for an example.

Table 6–59 JDBC: BLOB Streaming APIs

Methods Description

public java.io.OutputStream

 setBinaryStream (long pos) throws SQLException

JDBC 3.0: Retrieves a stream that can
be used to write to the BLOB value that
this Blob object represents, starting at
position pos

public java.io.InputStream

 getBinaryStream() throws SQLException

JDBC 3.0: Retrieves a stream that can
be used to read the BLOB value that
this Blob object represents, starting at
the beginning

public java.io.InputStream

 getBinaryStream(long pos) throws SQLException

Oracle extension: Retrieves a stream
that can be used to read the BLOB
value that this Blob object represents,
starting at position pos

Using Java (JDBC) to Work with LOBs

6-40 Oracle Database Application Developer's Guide - Large Objects

JDBC CLOB Streaming APIs
The oracle.sql.CLOB class is the Oracle JDBC driver implementation of standard
JDBC java.sql.Clob interface. Table 6–60 lists the CLOB streaming APIs.

These APIs are defined as follows:

/**
 * Write to the CLOB from a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
public java.io.OutputStream setAsciiStream(long pos) throws SQLException

/**
 * Write to the CLOB from a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
 public java.io.Writer setCharacterStream(long pos) throws SQLException

 /**
 * Read from the CLOB as a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
 public java.io.InputStream getAsciiStream(long pos) throws SQLException

 /**
 * Read from the CLOB as a stream at the requested position.
 * @param pos is the position data to be put.

Table 6–60 JDBC: CLOB Streaming APIs

Methods Description

public java.io.OutputStream

 setAsciiStream (long pos) throws SQLException

JDBC 3.0: Retrieves a stream to be used to
write ASCII characters to the CLOB value
that this Clob object represents, starting
at position pos

public java.io.Writer

 setCharacterStream (long pos) throws SQLException

JDBC 3.0: Retrieves a stream to be used to
write Unicode characters to the CLOB
value that this Clob object represents,
starting, at position pos

public java.io.InputStream

 getAsciiStream() throws SQLException

JDBC 3.0: Retrieves a stream that can be
used to read ASCII characters from the
CLOB value that this Clob object
represents, starting at the beginning

public java.io.InputStream

getAsciiStream(long pos) throws SQLException

Oracle extension: Retrieves a stream that
can be used to read ASCII characters from
the CLOB value that this Clob object
represents, starting at position pos

public java.io.Reader

 getCharacterStream() throws SQLException

JDBC 3.0: Retrieves a stream that can be
used to read Unicode characters from the
CLOB value that this Clob object
represents, starting at the beginning

public java.io.Reader

 getCharacterStream(long pos) throws SQLException

Oracle extension: Retrieves a stream that
can be used to read Unicode characters
from the CLOB value that this Clob object
represents, starting at position pos

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-41

 * @return a output stream to write data to the CLOB
 */
 public java.io.Reader getCharacterStream(long pos) throws SQLException

BFILE Streaming APIs
oracle.sql.BFILE class wraps the database BFILEs. Table 6–61 lists the Oracle
extension APIs in oracle.sql.BFILE that reads BFILE content from the requested
position.

These APIs are defined as follows:

/**
 * Read from the BLOB as a stream at the requested position.
 *
 * @param pos is the position data to be read.
 * @return a output stream to write data to the BLOB
 */
public java.io.InputStream getBinaryStream(long pos) throws SQLException

JDBC BFILE Streaming Example (NewStreamLob.java)

/*
 * This sample shows how to read/write BLOB and CLOB as streams.
 */

import java.io.*;

// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import the oracle.sql package to use oracle.sql.BLOB
import oracle.sql.*;

class NewStreamLob
{
 public static void main (String args []) throws Exception
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 String url = "jdbc:oracle:oci8:@";
 try {
 String url1 = System.getProperty("JDBC_URL");
 if (url1 != null)
 url = url1;
 } catch (Exception e) {
 // If there is any security exception, ignore it
 // and use the default
 }

 // Connect to the database

Table 6–61 JDBC: BFILE Streaming APIs

Methods Description

public java.io.InputStream

getBinaryStream(long pos) throws SQLException

Reads from the BFILE as a stream

Using Java (JDBC) to Work with LOBs

6-42 Oracle Database Application Developer's Guide - Large Objects

 Connection conn =
 DriverManager.getConnection (url, "scott", "tiger");
 // It is faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist already.
 }

 // Create a table containing a BLOB and a CLOB
 stmt.execute (
 "create table basic_lob_table"
 + "(x varchar2 (30), b blob, c clob)");

 // Populate the table
 stmt.execute (
 "insert into basic_lob_table values"
 + "('one', '010101010101010101010101010101', 'onetwothreefour')");

 System.out.println ("Dumping lobs");

 // Select the lobs
 ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

 // Print the lob contents
 dumpBlob (conn, blob, 1);
 dumpClob (conn, clob, 1);

 // Change the lob contents
 fillClob (conn, clob, 11, 50);
 fillBlob (conn, blob, 11, 50);
 }
 rset.close ();

 System.out.println ("Dumping lobs again");

 rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

 // Print the lobs contents
 dumpBlob (conn, blob, 11);
 dumpClob (conn, clob, 11);
 }

Using Java (JDBC) to Work with LOBs

Overview of Supplied LOB APIs 6-43

 // Close all resources
 rset.close();
 stmt.close();
 conn.close();
 }

 // Utility function to dump Clob contents
 static void dumpClob (Connection conn, CLOB clob, long offset)
 throws Exception
 {
 // get character stream to retrieve clob data
 Reader instream = clob.getCharacterStream(offset);

 // create temporary buffer for read
 char[] buffer = new char[10];

 // length of characters read
 int length = 0;

 // fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " chars: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]);
 System.out.println();
 }

 // Close input stream
 instream.close();
 }

 // Utility function to dump Blob contents
 static void dumpBlob (Connection conn, BLOB blob, long offset)
 throws Exception
 {
 // Get binary output stream to retrieve blob data
 InputStream instream = blob.getBinaryStream(offset);
 // Create temporary buffer for read
 byte[] buffer = new byte[10];
 // length of bytes read
 int length = 0;
 // Fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " bytes: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]+" ");
 System.out.println();
 }

 // Close input stream
 instream.close();
 }

 // Utility function to put data in a Clob
 static void fillClob (Connection conn, CLOB clob, long offset, long length)
 throws Exception

Using Java (JDBC) to Work with LOBs

6-44 Oracle Database Application Developer's Guide - Large Objects

 {
 Writer outstream = clob.setCharacterStream(offset);

 int i = 0;
 int chunk = 10;

 while (i < length)
 {
 outstream.write("aaaaaaaaaa", 0, chunk);

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
 outstream.close();
 }

 // Utility function to put data in a Blob
 static void fillBlob (Connection conn, BLOB blob, long offset, long length)
 throws Exception
 {
 OutputStream outstream = blob.setBinaryStream(offset);

 int i = 0;
 int chunk = 10;

 byte [] data = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

 while (i < length)
 {
 outstream.write(data, 0, chunk);

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
 outstream.close();
 }
}

JDBC and Empty LOBs
An empty BLOB can be created from the following API from oracle.sql.BLOB:

public static BLOB empty_lob () throws SQLException

Similarly, the following API from oracle.sql.CLOB creates an empty CLOB:

public static CLOB empty_lob () throws SQLException

Empty LOB instances are created by JDBC drivers without making database round
trips. Empty LOBs can be used in the following cases:

■ "set" APIs of PreparedStatement

■ "update" APIs of updatable result set

■ attribute value of STRUCTs

■ element value of ARRAYs

Overview of Oracle Data Provider for .NET (ODP.NET)

Overview of Supplied LOB APIs 6-45

JDBC applications cannot read or write to empty LOBs created from the preceding
APIs. An ORA-17098 "Invalid empty lob operation" results if your application
attempts to read/write to an empty LOB.

Oracle Provider for OLE DB (OraOLEDB)
Oracle Provider for OLE DB (OraOLEDB) offers high performance and efficient access
to Oracle data for OLE DB and ADO developers. Developers programming with
Visual Basic, C++, or any COM client can use OraOLEDB to access Oracle databases.

OraOLEDB is an OLE DB provider for Oracle. It offers high performance and efficient
access to Oracle data including LOBs, and also allows updates to certain LOB types.

The following LOB types are supported by OraOLEDB:

■ For Persistent LOBs. READ/WRITE through the rowset.

■ For BFILEs. READ-ONLY through the rowset.

■ Temporary LOBs are not supported through the rowset.

Overview of Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for
the Oracle database. ODP.NET uses Oracle native APIs to offer fast and reliable access
to Oracle data and features from any .NET application. ODP.NET also uses and
inherits classes and interfaces available in the Microsoft .NET Framework Class
Library. The ODP.NET supports the following LOBs as native datatypes with .NET:
BLOB, CLOB, NCLOB, and BFILE.

Note: Empty LOBs are special marker LOBs but not real LOB
values.

See Also: Oracle Provider for OLE DB Developer's Guide

See Also: Oracle Data Provider for .NET Developer's Guide

Overview of Oracle Data Provider for .NET (ODP.NET)

6-46 Oracle Database Application Developer's Guide - Large Objects

Performance Guidelines 7-1

7
Performance Guidelines

This chapter contains these topics:

■ LOB Performance Guidelines

■ Moving Data to LOBs in a Threaded Environment

■ LOB Access Statistics

LOB Performance Guidelines
This section describes performance guidelines for applications that use LOB datatypes.

Chunk Size
A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the data size used
by Oracle Database when accessing or modifying the LOB value. Part of the chunk is
used to store system-related information and the rest stores the LOB value. The API
you are using has a function that returns the amount of space used in the LOB chunk
to store the LOB value. In PL/SQL use DBMS_LOB.GETCHUNKSIZE. In OCI, use
OCILobGetChunkSize().

Performance Guidelines for Small LOBs
If most LOBs in your database tables are small in size—8K bytes or less—and only a
few rows have LOBs larger than 8K bytes, then use the following guidelines to
maximize database performance:

■ Use ENABLE STORAGE IN ROW

■ Set the DB_BLOCK_SIZE initialization parameter to 8K bytes and use a chunk size
of 8K bytes

■ See "LOB Storage" on page 4-5 information on tuning other parameters such as
CACHE, PCTVERSION, and CHUNK for the LOB segment.

General Performance Guidelines
Use the following guidelines to achieve maximum performance with LOBs:

■ When Possible, Read/Write Large Data Chunks at a Time: Because LOBs are big,
you can obtain the best performance by reading and writing large pieces of a LOB
value at a time. This helps in several respects:

LOB Performance Guidelines

7-2 Oracle Database Application Developer's Guide - Large Objects

a. If accessing the LOB from the client side and the client is at a different node
than the server, then large reads/writes reduce network overhead.

b. If using the NOCACHE option, then each small read/write incurs an I/O.
Reading/writing large quantities of data reduces the I/O.

c. Writing to the LOB creates a new version of the LOB chunk. Therefore, writing
small amounts at a time will incur the cost of a new version for each small
write. If logging is on, then the chunk is also stored in the redo log.

■ Use LOB Buffering to Read/Write Small Chunks of Data: If you need to
read/write small pieces of LOB data on the client, then use LOB buffering — see
OCILobEnableBuffering(), OCILobDisableBuffering(),
OCILobFlushBuffer(), OCILobWrite2(), OCILobRead2(). Basically, turn on
LOB buffering before reading/writing small pieces of LOB data.

■ Use OCILobRead2() and OCILobWrite2() with Callback: So that data is streamed
to and from the LOB. Ensure the length of the entire write is set in the amount
parameter on input. Whenever possible, read and write in multiples of the LOB
chunk size.

■ Use a Checkout/Check-in Model for LOBs: LOBs are optimized for the following
operations:

■ SQL UPDATE which replaces the entire LOB value

■ Copy the entire LOB data to the client, modify the LOB data on the client side,
copy the entire LOB data back to the database. This can be done using
OCILobRead2() and OCILobWrite2() with streaming.

■ Commit changes frequently.

Temporary LOB Performance Guidelines
In addition to the guidelines described earlier under "LOB Performance Guidelines" on
LOB performance in general, here are some guidelines for using temporary LOBs:

■ Use a separate temporary tablespace for temporary LOB storage instead of the
default system tablespace. This avoids device contention when copying data from
persistent LOBs to temporary LOBs.

If you use the newly provided enhanced SQL semantics functionality in your
applications, then there will be many more temporary LOBs created silently in
SQL and PL/SQL than before. Ensure that temporary tablespace for storing these
temporary LOBs is large enough for your applications. In particular, these
temporary LOBs are silently created when you use the following:

■ SQL functions on LOBs

■ PL/SQL built-in character functions on LOBs

■ Variable assignments from VARCHAR2/RAW to CLOBs/BLOBs, respectively.

■ Perform a LONG-to-LOB migration

■ In PL/SQL, use NOCOPY to pass temporary LOB parameters by reference
whenever possible. Refer to the Oracle Database PL/SQL User's Guide and Reference,
for more information on passing parameters by reference and parameter aliasing.

See Also: "LOB Buffering Subsystem" on page 5-1 for more
information on LOB buffering.

LOB Performance Guidelines

Performance Guidelines 7-3

■ Take advantage of buffer cache on temporary LOBs. Temporary LOBs created with
the CACHE parameter set to true move through the buffer cache. Otherwise
temporary LOBs are read directly from, and written directly to, disk.

■ For optimal performance, temporary LOBs use reference on read, copy on write
semantics. When a temporary LOB locator is assigned to another locator, the
physical LOB data is not copied. Subsequent READ operations using either of the
LOB locators refer to the same physical LOB data. On the first WRITE operation
after the assignment, the physical LOB data is copied in order to preserve LOB
value semantics, that is, to ensure that each locator points to a unique LOB value.
This performance consideration mainly applies to the PL/SQL and OCI
environments.

In PL/SQL, reference on read, copy on write semantics are illustrated as follows:

LOCATOR1 BLOB;
LOCATOR2 BLOB;
DBMS_LOB.CREATETEMPORARY (LOCATOR1,TRUE,DBMS_LOB.SESSION);

-- LOB data is not copied in this assignment operation:
LOCATOR2 := LOCATOR;
-- These read operations refer to the same physical LOB copy:
DBMS_LOB.READ(LOCATOR1, ...);
DBMS_LOB.GETLENGTH(LOCATOR2, ...);

-- A physical copy of the LOB data is made on WRITE:
DBMS_LOB.WRITE(LOCATOR2, ...);

In OCI, to ensure value semantics of LOB locators and data,
OCILobLocatorAssign() is used to copy temporary LOB locators as well as the
LOB Data. OCILobLocatorAssign() does not make a round trip to the server.
The physical temporary LOB copy is made when LOB updates happen in the same
round trip as the LOB update API as illustrated in the following:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOC1, ... TRUE,OCI_DURATION_SESSION);

/* No round-trip is incurred in the following call. */
OCILobLocatorAssign(... LOC1, LOC2);

/* Read operations refer to the same physical LOB copy. */
OCILobRead2(... LOC1 ...)

/* One round-trip is incurred to make a new copy of the
 * LOB data and to write to the new LOB copy.
 */
OCILobWrite2(... LOC1 ...)

/* LOC2 does not see the same LOB data as LOC1. */
OCILobRead2(... LOC2 ...)

If LOB value semantics are not intended, then you can use C pointers to achieve
reference semantics as illustrated in the following:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOC1, ... TRUE,OCI_DURATION_SESSION);

Moving Data to LOBs in a Threaded Environment

7-4 Oracle Database Application Developer's Guide - Large Objects

/* Pointer is copied. LOC1 and LOC2 refer to the same LOB data. */
LOC2 = LOC1;

/* Write to LOC2. */
OCILobWrite2(...LOC2...)

/* LOC1 will see the change made to LOC2. */
OCILobRead2(...LOC1...)

■ Use OCI_OBJECT mode for temporary LOBs

To improve the performance of temporary LOBs on LOB assignment, use
OCI_OBJECT mode for OCILobLocatorAssign(). In OCI_OBJECT mode, the
database tries to minimize the number of deep copies to be done. Hence, after
OCILobLocatorAssign() is done on a source temporary LOB in OCI_OBJECT
mode, the source and the destination locators will point to the same LOB until any
modification is made through either LOB locator.

■ Free up temporary LOBs returned from SQL queries and PL/SQL programs.

In PL/SQL, C (OCI), Java and other programmatic interfaces, SQL query results or
PL/SQL program executions return temporary LOBs for operation/function calls
on LOBs. For example:

SELECT substr(CLOB_Column, 4001, 32000) FROM ...

If the query is executed in PL/SQL, then the returned temporary LOBs
automatically get freed at the end of a PL/SQL program block. You can also
explicitly free the temporary LOBs any time. In OCI and Java, the returned
temporary LOB must be freed by the user explicitly.

Without proper deallocation of the temporary LOBs returned from SQL queries,
temporary tablespace gets filled up steadily and you could observe performance
degradation.

Performance Considerations for SQL Semantics and LOBs
Be aware of the following performance issues when using SQL semantics with LOBs:

■ Ensure that your temporary tablespace is large enough to accommodate LOBs
stored out-of-line. Persistent LOBs that are greater than 3964 bytes in size are
stored outside of the LOB column.

■ When possible, free unneeded temporary LOB instances. Unless you explicitly free
a temporary LOB instance, the LOB remains in existence while your application is
executing. More specifically, the instance exists while the scope in which the LOB
was declared is executing.

Moving Data to LOBs in a Threaded Environment
There two procedures that you can use to move data to LOBs in a threaded
environment, one of which should be avoided.

See Also: Chapter 9, "SQL Semantics and LOBs" for details on
SQL semantics support for LOBs.

LOB Access Statistics

Performance Guidelines 7-5

Procedure to Avoid
The following sequence requires a new connection when using a threaded
environment, adversely affects performance, and is not recommended:

1. Create an empty (non-NULL) LOB

2. Perform INSERT using the empty LOB

3. SELECT-FOR-UPDATE of the row just entered

4. Move data into the LOB

5. Do a COMMIT. This releases the SELECT-FOR-UPDATE locks and makes the LOB
data persistent.

Recommended Procedure

The recommended procedure is as follows:

1. INSERT an empty LOB, RETURNING the LOB locator.

2. Move data into the LOB using this locator.

3. COMMIT. This releases the SELECT-FOR-UPDATE locks, and makes the LOB data
persistent.

Alternatively, you can insert more than 4000 byte of data directly for the LOB columns
or LOB attributes.

LOB Access Statistics
Since Oracle Database 10g Release 2, three session-level statistics specific to LOBs are
available to users: LOB reads, LOB writes, and LOB writes unaligned. Session statistics
are accessible through the V$MYSTAT, V$SESSTAT, and V$SYSSTAT dynamic
performance views. To query these views, the user needs to be granted the privileges
SELECT_CATALOG_ROLE, SELECT ON SYS.V_$MYSTAT view, and SELECT ON
SYS.V_$STATNAME view.

LOB reads is defined as the number of LOB API read operations performed in the
session/system. A single LOB API read may correspond to multiple physical/logical
disk block reads.

LOB writes is defined as the number of LOB API write operations performed in the
session/system. A single LOB API write may correspond to multiple physical/logical
disk block writes.

LOB writes unaligned is defined as the number of LOB API write operations whose
start offset or buffer size is not aligned to the internal chunk size of the LOB. Writes
aligned to chunk boundaries are the most efficient write operations. The internal
chunk size of a LOB is available through the LOB API (for example, using PL/SQL, by
DBMS_LOB.GETCHUNKSIZE()).

Note:

■ There is no need to create an empty LOB in this procedure.

■ You can use the RETURNING clause as part of the
INSERT/UPDATE statement to return a locked LOB locator.
This eliminates the need for doing a SELECT-FOR-UPDATE, as
mentioned in step 3.

LOB Access Statistics

7-6 Oracle Database Application Developer's Guide - Large Objects

The following simple example demonstrates how LOB session statistics are updated as
the user performs read/write operations on LOBs.

It is important to note that session statistics are aggregated across operations to all
LOBs accessed in a session; the statistics are not separated or categorized by objects
(that is, table, column, segment, object numbers, and so on).

In these examples, you reconnect to the database for each demonstration to clear the
V$MYSTAT. This allows you to see how the lob statistics change for the specific
operation you are testing, without the potentially obscuring effect of past LOB
operations within the same session.

Example of Retrieving LOB Access Statistics
This example was created for retrieving LOB access statistics.

rem
rem Set up the user
rem

CONNECT / AS SYSDBA;
SET ECHO ON;
GRANT SELECT_CATALOG_ROLE TO pm;
GRANT SELECT ON sys.v_$mystat TO pm;
GRANT SELECT ON sys.v_$statname TO pm;

rem
rem Create a simplified view for statistics queries
rem

CONNECT pm/pm;
SET ECHO ON;

DROP VIEW mylobstats;
CREATE VIEW mylobstats
AS
SELECT SUBSTR(n.name,1,20) name,
 m.value value
FROM v$mystat m,
 v$statname n
WHERE m.statistic# = n.statistic#
 AND n.name LIKE 'lob%';

rem
rem Create a test table
rem

DROP TABLE t;
CREATE TABLE t (i NUMBER, c CLOB)
 lob(c) STORE AS (DISABLE STORAGE IN ROW);

rem
rem Populate some data
rem
rem This should result in unaligned writes, one for
rem each row/lob populated.
rem

See also: Oracle Database Reference, appendix E, "Statistics
Descriptions"

LOB Access Statistics

Performance Guidelines 7-7

CONNECT pm/pm;
SELECT * FROM mylobstats;
INSERT INTO t VALUES (1, 'a');
INSERT INTO t VALUES (2, rpad('a',4000,'a'));
COMMIT;
SELECT * FROM mylobstats;

rem
rem Get the lob length
rem
rem Computing lob length does not read lob data, no change
rem in read/write stats.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
SELECT LENGTH(c) FROM t;
SELECT * FROM mylobstats;

rem
rem Read the lobs
rem
rem Lob reads are performed, one for each lob in the table.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
SELECT * FROM t;
SELECT * FROM mylobstats;

rem
rem Read and manipulate the lobs (via temporary lobs)
rem
rem The use of complex operators like "substr()" results in
rem the implicit creation and use of temporary lobs. operations
rem on temporary lobs also update lob statistics.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
SELECT substr(c, length(c), 1) FROM t;
SELECT substr(c, 1, 1) FROM t;
SELECT * FROM mylobstats;

rem
rem Perform some aligned overwrites
rem
rem Only lob write statistics are updated since both the
rem byte offset of the write, and the size of the buffer
rem being written are aligned on the lob chunksize.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
DECLARE
 loc CLOB;
 buf LONG;
 chunk NUMBER;
BEGIN
 SELECT c INTO loc FROM t WHERE i = 1

LOB Access Statistics

7-8 Oracle Database Application Developer's Guide - Large Objects

 FOR UPDATE;

 chunk := DBMS_LOB.GETCHUNKSIZE(loc);
 buf := rpad('b', chunk, 'b');

 -- aligned buffer length and offset
 DBMS_LOB.WRITE(loc, chunk, 1, buf);
 DBMS_LOB.WRITE(loc, chunk, 1+chunk, buf);
 COMMIT;
END;
/
SELECT * FROM mylobstats;

rem
rem Perform some unaligned overwrites
rem
rem Both lob write and lob unaligned write statistics are
rem updated since either one or both of the write byte offset
rem and buffer size are unaligned with the lob's chunksize.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
DECLARE
 loc CLOB;
 buf LONG;
BEGIN
 SELECT c INTO loc FROM t WHERE i = 1
 FOR UPDATE;

 buf := rpad('b', DBMS_LOB.GETCHUNKSIZE(loc), 'b');

 -- unaligned buffer length
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc)-1, 1, buf);

 -- unaligned start offset
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc), 2, buf);

 -- unaligned buffer length and start offset
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc)-1, 2, buf);

 COMMIT;
END;
/
SELECT * FROM mylobstats;
DROP TABLE t;
DROP VIEW mylobstats;

CONNECT / AS SYSDBA
REVOKE SELECT_CATALOG_ROLE FROM pm;
REVOKE SELECT ON sys.v_$mystat FROM pm;
REVOKE SELECT ON sys.v_$statname FROM pm;

QUIT;

Part III
SQL Access to LOBs

This part describes SQL semantics for LOBs supported in the SQL and PL/SQL
environments.

This part contains these chapters:

■ Chapter 8, "DDL and DML Statements with LOBs"

■ Chapter 9, "SQL Semantics and LOBs"

■ Chapter 10, "PL/SQL Semantics for LOBs"

■ Chapter 11, "Migrating Columns from LONGs to LOBs"

DDL and DML Statements with LOBs 8-1

8
DDL and DML Statements with LOBs

This chapter contains these topics:

■ Creating a Table Containing One or More LOB Columns

■ Creating a Nested Table Containing a LOB

■ Inserting a Row by Selecting a LOB From Another Table

■ Inserting a LOB Value Into a Table

■ Inserting a Row by Initializing a LOB Locator Bind Variable

■ Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

■ Updating a Row by Selecting a LOB From Another Table

Creating a Table Containing One or More LOB Columns
This section describes how to create a table containing one or more LOB columns.

When you use functions, EMPTY_BLOB() and EMPTY_CLOB(), the resulting LOB is
initialized, but not populated with data. Also note that LOBs that are empty are not
NULL.

Scenario
These examples use the following Sample Schemas:

■ Human Resources (HR)

■ Order Entry (OE)

■ Product Media (PM)

See Also: For guidelines on how to INSERT into a LOB when
binds of more than 4000 bytes are involved, see the following
sections in "Binds of All Sizes in INSERT and UPDATE Operations"
on page 13-6.

See Also:

Oracle Database SQL Reference for a complete specification of syntax
for using LOBs in CREATE TABLE and ALTER TABLE with:

■ BLOB, CLOB, NCLOB and BFILE columns

■ EMPTY_BLOB and EMPTY_CLOB functions

■ LOB storage clause for persistent LOB columns, and LOB
attributes of embedded objects

Creating a Table Containing One or More LOB Columns

8-2 Oracle Database Application Developer's Guide - Large Objects

Note that the HR and OE schemas must exist before the PM schema is created. For
details on these schemas, refer to Oracle Database Sample Schemas.

/* Setup script for creating Print_media,
 Online_media and associated structures
*/

DROP USER pm CASCADE;
DROP DIRECTORY ADPHOTO_DIR;
DROP DIRECTORY ADCOMPOSITE_DIR;
DROP DIRECTORY ADGRAPHIC_DIR;
DROP INDEX onlinemedia CASCADE CONSTRAINTS;
DROP INDEX printmedia CASCADE CONSTRAINTS;
DROP TABLE online_media CASCADE CONSTRAINTS;
DROP TABLE print_media CASCADE CONSTRAINTS;
DROP TYPE textdoc_typ;
DROP TYPE textdoc_tab;
DROP TYPE adheader_typ;
DROP TABLE adheader_typ;
CREATE USER pm;
GRANT CONNECT, RESOURCE to pm;

CREATE DIRECTORY ADPHOTO_DIR AS '/tmp/';
CREATE DIRECTORY ADCOMPOSITE_DIR AS '/tmp/';
CREATE DIRECTORY ADGRAPHIC_DIR AS '/tmp/';
CREATE DIRECTORY media_dir AS '/tmp/';
GRANT READ ON DIRECTORY ADPHOTO_DIR to pm;
GRANT READ ON DIRECTORY ADCOMPOSITE_DIR to pm;
GRANT READ ON DIRECTORY ADGRAPHIC_DIR to pm;
GRANT READ ON DIRECTORY media_dir to pm;

CONNECT pm/pm (or &pass);
COMMIT;

CREATE TABLE a_table (blob_col BLOB);

CREATE TYPE adheader_typ AS OBJECT (
 header_name VARCHAR2(256),
 creation_date DATE,
 header_text VARCHAR(1024),
 logo BLOB);

CREATE TYPE textdoc_typ AS OBJECT (
 document_typ VARCHAR2(32),
 formatted_doc BLOB);

CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

CREATE TABLE adheader_tab of adheader_typ (
Ad_finaltext DEFAULT EMPTY_CLOB(), CONSTRAINT
Take CHECK (Take IS NOT NULL), DEFAULT NULL);

CREATE TABLE online_media
(product_id NUMBER(6),

Note: Because you can use SQL DDL directly to create a table
containing one or more LOB columns, it is not necessary to use the
DBMS_LOB package.

Creating a Nested Table Containing a LOB

DDL and DML Statements with LOBs 8-3

product_photo ORDSYS.ORDImage,
product_photo_signature ORDSYS.ORDImageSignature,
product_thumbnail ORDSYS.ORDImage,
product_video ORDSYS.ORDVideo,
product_audio ORDSYS.ORDAudio,
product_text CLOB,
product_testimonials ORDSYS.ORDDoc);

CREATE UNIQUE INDEX onlinemedia_pk
 ON online_media (product_id);

ALTER TABLE online_media
ADD (CONSTRAINT onlinemedia_pk
PRIMARY KEY (product_id), CONSTRAINT loc_c_id_fk
FOREIGN KEY (product_id) REFERENCES oe.product_information(product_id)
);

CREATE TABLE print_media
(product_id NUMBER(6),
ad_id NUMBER(6),
ad_composite BLOB,
ad_sourcetext CLOB,
ad_finaltext CLOB,
ad_fktextn NCLOB,
ad_testdocs_ntab textdoc_tab,
ad_photo BLOB,
ad_graphic BFILE,
ad_header adheader_typ,
press_release LONG) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

CREATE UNIQUE INDEX printmedia_pk
 ON print_media (product_id, ad_id);

ALTER TABLE print_media
ADD (CONSTRAINT printmedia_pk
PRIMARY KEY (product_id, ad_id),
CONSTRAINT printmedia_fk FOREIGN KEY (product_id)
REFERENCES oe.product_information(product_id)
);

Creating a Nested Table Containing a LOB
This section describes how to create a nested table containing a LOB.

You must create the object type that contains the LOB attributes before you create a
nested table based on that object type. In the example that follows, table
Print_media contains nested table ad_textdoc_ntab that has type textdoc_tab.
This type uses two LOB datatypes:

■ BFILE - an advertisement graphic

■ CLOB - an advertisement transcript

The actual embedding of the nested table is accomplished when the structure of the
containing table is defined. In our example, this is effected by the NESTED TABLE
statement when the Print_media table is created as shown in the following example:

/* Create type textdoc_typ as the base type
 for the nested table textdoc_ntab,
 where textdoc_ntab contains a LOB:
*/

Inserting a Row by Selecting a LOB From Another Table

8-4 Oracle Database Application Developer's Guide - Large Objects

CREATE TYPE textdoc_typ AS OBJECT
(
 document_typ VARCHAR2(32),
 formatted_doc BLOB
);
/

/* The type has been created. Now you need a */
/* nested table of that type to embed in */
/* table Print_media, so: */
CREATE TYPE textdoc_ntab AS TABLE of textdoc_typ;
/

CREATE TABLE textdoc_ntable (
 id NUMBER,
 ntab_col textdoc_ntab)
NESTED TABLE ntab_col STORE AS textdoc_nestedtab;

DROP TYPE textdoc_typ force;
DROP TYPE textdoc_ntab;
DROP TABLE textdoc_ntable;

Inserting a Row by Selecting a LOB From Another Table
This section describes how to insert a row containing a LOB as SELECT.

For LOBs, one of the advantages of using an object-relational approach is that you can
define a type as a common template for related tables. For instance, it makes sense that
both the tables that store archival material and working tables that use those libraries,
share a common structure.

For example, assuming Print_media and Online_media have identical schemas.
The statement creates a new LOB locator in table Print_media. It also copies
the LOB data from Online_media to the location pointed to by the new LOB locator
inserted in table Print_media.

The following code fragment is based on the fact that the table Online_media is of
the same type as Print_media referenced by the ad_textdocs_ntab column of
table Print_media. It inserts values into the library table, and then inserts this same
data into Print_media by means of a SELECT.

/* Store records in the archive table Online_media: */
INSERT INTO Online_media
 VALUES (3060, NULL, NULL, NULL, NULL,

See Also:

■ "Creating a Table Containing One or More LOB Columns" on
page 8-1

■ Oracle Database SQL Reference, "Chapter 7, SQL Statements" —
CREATE TABLE.

Note: Persistent LOB types BLOB, CLOB, and NCLOB, use copy
semantics, as opposed to reference semantics that apply to BFILEs.
When a BLOB, CLOB, or NCLOB is copied from one row to another in
the same table or a different table, the actual LOB value is copied,
not just the LOB locator.

Inserting a LOB Value Into a Table

DDL and DML Statements with LOBs 8-5

 'some text about this CRT Monitor', NULL);

/* Insert values into Print_media by selecting from Online_media: */
INSERT INTO Print_media (product_id, ad_id, ad_sourcetext)
 (SELECT product_id, 11001, product_text
 FROM Online_media WHERE product_id = 3060);

Inserting a LOB Value Into a Table
This section describes how to insert a LOB value using EMPTY_CLOB() or
EMPTY_BLOB().

Usage Notes
Here are guidelines for inserting LOBs:

Before inserting, Make the LOB Column Non-Null
Before you write data to a persistent LOB, make the LOB column non-NULL; that is,
the LOB column must contain a locator that points to an empty or populated LOB
value. You can initialize a BLOB column value by using the function EMPTY_BLOB()
as a default predicate. Similarly, a CLOB or NCLOB column value can be initialized by
using the function EMPTY_CLOB().

You can also initialize a LOB column with a character or raw string less than 4000
bytes in size. For example:

INSERT INTO Print_media (product_id, ad_id, ad_sourcetext)
 VALUES (1, 1, 'This is a One Line Advertisement');

Note that you can also perform this initialization during the CREATE TABLE operation.
See "Creating a Table Containing One or More LOB Columns" on page 8-1 for more
information.

These functions are special functions in Oracle SQL, and are not part of the DBMS_LOB
package.

/* In the new row of table Print_media,
 the columns ad_sourcetext and ad_fltextn are initialized using EMPTY_CLOB(),
 the columns ad_composite and ad_photo are initialized using EMPTY_BLOB(),
 the column formatted-doc in the nested table is initialized using
 EMPTY_BLOB(),
 the column logo in the column object is initialized using EMPTY_BLOB(): */
INSERT INTO Print_media
 VALUES (3060,11001, EMPTY_BLOB(), EMPTY_CLOB(),EMPTY_CLOB(),EMPTY_CLOB(),
 textdoc_tab(textdoc_typ ('HTML', EMPTY_BLOB())), EMPTY_BLOB(), NULL,
 adheader_typ('any header name', <any date>, 'ad header text goes here',
 EMPTY_BLOB()),
 'Press release goes here');

See Also:

■ Oracle Database SQL Reference, "Chapter 7, SQL Statements" —
INSERT.

■ Oracle Database Sample Schemas for a description of the PM
Schema and the Print_media table used in this example.

Inserting a Row by Initializing a LOB Locator Bind Variable

8-6 Oracle Database Application Developer's Guide - Large Objects

Inserting a Row by Initializing a LOB Locator Bind Variable
This section gives examples of how to insert a row by initializing a LOB locator bind
variable.

Preconditions
Before you can insert a row using this technique, the following conditions must be
met:

■ The table containing the source row must exist.

■ The destination table must exist.

For details on creating tables containing LOB columns, see Chapter 4, "LOBs in
Tables".

Usage Notes
For guidelines on how to INSERT and UPDATE a row containing a LOB when binds
of more than 4000 bytes are involved, see "Binds of All Sizes in INSERT and UPDATE
Operations" on page 13-6.

Syntax
See the following syntax references for details on using this operation in each
programmatic environment:

■ SQL: Oracle Database SQL Reference, "Chapter 7, SQL Statements" — INSERT

■ C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions" — LOB
Functions.

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
INSERT.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — INSERT

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > Objects > Oradynaset

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples for this use case are provided in the following programmatic environments:

■ PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable on page 8-7

■ C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable on page 8-7

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind
Variable on page 8-8

■ C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
on page 8-9

■ Visual Basic (OO4O): Inserting a Row by Initializing a LOB Locator Bind Variable
on page 8-9

Inserting a Row by Initializing a LOB Locator Bind Variable

DDL and DML Statements with LOBs 8-7

■ Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable on
page 8-10

PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/plsql/linsert.sql */

/* inserting a row through an insert statement */

CREATE OR REPLACE PROCEDURE insertLOB_proc (Lob_loc IN BLOB) IS
BEGIN
 /* Insert the BLOB into the row */
 DBMS_OUTPUT.PUT_LINE('------------ LOB INSERT EXAMPLE ------------');
 INSERT INTO print_media (product_id, ad_id, ad_photo)
 values (3106, 60315, Lob_loc);
END;
/

C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/oci/linsert.c */

/* Insert the Locator into table using Bind Variables. */
#include <oratypes.h>
#include <lobdemo.h>
void insertLOB_proc(OCILobLocator *Lob_loc, OCIEnv *envhp,
 OCIError *errhp, OCISvcCtx *svchp, OCIStmt *stmthp)
{
 int product_id;
 OCIBind *bndhp3;
 OCIBind *bndhp2;
 OCIBind *bndhp1;
 text *insstmt =
 (text *) "INSERT INTO Print_media (product_id, ad_id, ad_sourcetext) \
 VALUES (:1, :2, :3)";

 printf ("----------- OCI Lob Insert Demo --------------\n");
 /* Insert the locator into the Print_media table with product_id=3060 */
 product_id = (int)3060;

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Binds the bind positions */
 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1,
 (void *) &product_id, (sb4) sizeof(product_id),
 SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 2,
 (void *) &product_id, (sb4) sizeof(product_id),
 SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp2, errhp, (ub4) 3,

Inserting a Row by Initializing a LOB Locator Bind Variable

8-8 Oracle Database Application Developer's Guide - Large Objects

 (void *) &Lob_loc, (sb4) 0, SQLT_CLOB,
 (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
 * This file is installed in the following path when you install
 * the database: $ORACLE_HOME/rdbms/demo/lobs/procob/linsert.pco

 IDENTIFICATION DIVISION.
 PROGRAM-ID. INSERT-LOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 USERID PIC X(11) VALUES "PM/PM".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 INSERT-LOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
 * Initialize the BLOB locator
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 * Populate the LOB
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_PHOTO INTO :BLOB1 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 2268 AND AD_ID = 21001 END-EXEC.

 * Insert the value with PRODUCT_ID of 3060
 EXEC SQL
 INSERT INTO PRINT_MEDIA (PRODUCT_ID, AD_PHOTO)
 VALUES (3060, 11001, :BLOB1)END-EXEC.

 * Free resources held by locator
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Inserting a Row by Initializing a LOB Locator Bind Variable

DDL and DML Statements with LOBs 8-9

C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/proc/linsert.pc */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertUseBindVariable_proc(Rownum, Lob_loc)
 int Rownum, Rownum2;
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL INSERT INTO Print_media (product_id, ad_id, ad_photo)
 VALUES (:Rownum, :Rownum2, :Lob_loc);
}
void insertBLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Lob_loc;

 /* Select the LOB from the row where product_id = 2268 and ad_id=21001: */
 EXEC SQL SELECT ad_photo INTO :Lob_loc
 FROM Print_media WHERE product_id = 2268 AND ad_id = 21001;

 /* Insert into the row where product_id = 3106 and ad_id = 13001: */
 insertUseBindVariable_proc(3106, 13001, Lob_loc);

 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "pm/pm";
 EXEC SQL CONNECT :pm;
 insertBLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Inserting a Row by Initializing a LOB Locator Bind Variable

' This file is installed in the following path when you install
' the database: $ORACLE_HOME/rdbms/demo/lobs/vb/linsert.bas

Dim OraDyn as OraDynaset, OraPhoto1 as OraBLOB, OraPhotoClone as OraBLOB
Set OraDyn = OraDb.CreateDynaset(

Inserting a Row by Initializing a LOB Locator Bind Variable

8-10 Oracle Database Application Developer's Guide - Large Objects

 "SELECT * FROM Print_media ORDER BY product_id", ORADYN_DEFAULT)
Set OraPhoto1 = OraDyn.Fields("ad_photo").Value
'Clone it for future reference
Set OraPhotoClone = OraPhoto1

'Go to Next row
OraDyn.MoveNext
'Lets update the current row and set the LOB to OraPhotoClone
OraDyn.Edit
Set OraPhoto1 = OraPhotoClone
OraDyn.Update

Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable
/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/java/linsert.java */

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class linsert
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 // retrieve the LOB locator from the ResultSet
 BLOB adphoto_blob = ((OracleResultSet)rset).getBLOB (1);
 OraclePreparedStatement ops =
 (OraclePreparedStatement) conn.prepareStatement(
"INSERT INTO Print_media (product_id, ad_id, ad_photo) VALUES (2268, "
+ "21001, ?)");
 ops.setBlob(1, adphoto_blob);
 ops.execute();
 conn.commit();

Updating a Row by Selecting a LOB From Another Table

DDL and DML Statements with LOBs 8-11

 conn.close();
 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
This section describes how to UPDATE a LOB with EMPTY_CLOB() or
EMPTY_BLOB().

Preconditions
Before you write data to a persistent LOB, make the LOB column non-NULL; that is,
the LOB column must contain a locator that points to an empty or populated LOB
value. You can initialize a BLOB column value by using the function EMPTY_BLOB()
as a default predicate. Similarly, a CLOB or NCLOB column value can be initialized by
using the function EMPTY_CLOB().

You can also initialize a LOB column with a character or raw string less than 4000
bytes in size. For example:

UPDATE Print_media
 SET ad_sourcetext = 'This is a One Line Story'
 WHERE product_id = 2268;

You can perform this initialization during CREATE TABLE (see "Creating a Table
Containing One or More LOB Columns" on page 8-1) or, as in this case, by means of an
INSERT.

The following example shows a series of updates using the EMPTY_CLOB operation to
different data types.

UPDATE Print_media SET ad_sourcetext = EMPTY_CLOB()
 WHERE product_id = 3060 AND ad_id = 11001;

UPDATE Print_media SET ad_fltextn = EMPTY_CLOB()
 WHERE product_id = 3060 AND ad_id = 11001;

UPDATE Print_media SET ad_photo = EMPTY_BLOB()
 WHERE product_id = 3060 AND ad_id = 11001;

Updating a Row by Selecting a LOB From Another Table
This section describes how to use the SQL UPDATE AS SELECT statement to update a
row containing a LOB column by selecting a LOB from another table.

Note: Performance improves when you update the LOB with the
actual value, instead of using EMPTY_CLOB() or EMPTY_BLOB().

See Also: SQL: Oracle Database SQL Reference Chapter 7, "SQL
Statements" — UPDATE

Updating a Row by Selecting a LOB From Another Table

8-12 Oracle Database Application Developer's Guide - Large Objects

To use this technique, you must update by means of a reference. For example, the
following code updates data from online_media:

Rem Updating a row by selecting a LOB from another table (persistent LOBs)

UPDATE Print_media SET ad_sourcetext =
 (SELECT * product_text FROM online_media WHERE product_id = 3060);
 WHERE product_id = 3060 AND ad_id = 11001;

SQL Semantics and LOBs 9-1

9
SQL Semantics and LOBs

This chapter describes SQL semantics that are supported for LOBs. These techniques
allow you to use LOBs directly in SQL code and provide an alternative to using
LOB-specific APIs for some operations.

This chapter contains these topics:

■ Using LOBs in SQL

■ SQL Functions and Operators Supported for Use with LOBs

■ Implicit Conversion of LOB Datatypes in SQL

■ Unsupported Use of LOBs in SQL

■ VARCHAR2 and RAW Semantics for LOBs

Using LOBs in SQL
You can access CLOB and NCLOB datatypes using SQL VARCHAR2 semantics, such as
SQL string operators and functions. (LENGTH functions can be used with BLOB
datatypes as well as CLOB and NCLOBs.) These techniques are beneficial in the
following situations:

■ When performing operations on LOBs that are relatively small in size (up to about
100K bytes).

■ After migrating your database from LONG columns to LOB datatypes, any SQL
string functions, contained in your existing PL/SQL application, will continue to
work after the migration.

SQL semantics are not recommended in the following situations:

■ When you need to use advanced features such as random access and piecewise
fetch, you should use LOB APIs.

■ When performing operations on LOBs that are relatively large in size (greater than
1MB) using SQL semantics can impact performance. Using the LOB APIs is
recommended in this situation.

See Also: "Performance Considerations for SQL Semantics and
LOBs" on page 7-4.

Note: SQL semantics are used with persistent and temporary
LOBs. (SQL semantics do not apply to BFILE columns as BFILE is
a read-only datatype.)

SQL Functions and Operators Supported for Use with LOBs

9-2 Oracle Database Application Developer's Guide - Large Objects

SQL Functions and Operators Supported for Use with LOBs
Many SQL operators and functions that take VARCHAR2 columns as arguments also
accept LOB columns. The following list summarizes which categories of SQL functions
and operators are supported for use with LOBs. Details on individual functions and
operators are given in Table 9–1.

The following categories of SQL functions and operators are supported for use with
LOBs:

■ Concatenation

■ Comparison

(Some comparison functions are not supported for use with LOBs.)

■ Character functions

■ Conversion

(Some conversion functions are not supported for use with LOBs.)

The following categories of functions are not supported for use with LOBs:

■ Aggregate functions

Note that although pre-defined aggregate functions are not supported for use with
LOBs, you can create user-defined aggregate functions to use with LOBs. See the
Oracle Database Data Cartridge Developer's Guide for more information on
user-defined aggregate functions.

■ Unicode functions

Details on individual functions and operators are given in Table 9–1. This table lists
SQL operators and functions that take VARCHAR2 types as operands or arguments, or
return a VARCHAR2 value, and indicates in the "SQL" column which functions and
operators are supported for CLOB and NCLOB datatypes. (The LENGTH function is also
supported for the BLOB datatype.)

The DBMS_LOB PL/SQL package supplied with Oracle Database supports using LOBs
with most of the functions listed in Table 9–1 as indicated in the "PL/SQL" column.

Implicit Conversion of CLOB to CHAR Types
Functions designated as "CNV" in the SQL or PL/SQL column of Table 9–1 are
performed by converting the CLOB to a character datatype, such as VARCHAR2. In the
SQL environment, only the first 4K bytes of the CLOB are converted and used in the
operation; in the PL/SQL environment, only the first 32K bytes of the CLOB are
converted and used in the operation.

Note: Operators and functions with "No" indicated in the SQL
column of Table 9–1 do not work in SQL queries used in PL/SQL
blocks - even though some of these operators and functions are
supported for use directly in PL/SQL code.

SQL Functions and Operators Supported for Use with LOBs

SQL Semantics and LOBs 9-3

Table 9–1 SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

Concatenation ||, CONCAT() Select clobCol || clobCol2 from tab; Yes Yes

Comparison = , !=, >, >=, <, <=, <>, ^= if clobCol=clobCol2 then... No Yes

Comparison IN, NOT IN if clobCol NOT IN (clob1, clob2, clob3) then... No Yes

Comparison SOME, ANY, ALL if clobCol < SOME (select clobCol2 from...) then... No N/A

Comparison BETWEEN if clobCol BETWEEN clobCol2 and clobCol3 then... No Yes

Comparison LIKE [ESCAPE] if clobCol LIKE '%pattern%' then... Yes Yes

Comparison IS [NOT] NULL where clobCol IS NOT NULL Yes Yes

Character
Functions

INITCAP, NLS_INITCAP select INITCAP(clobCol) from... CNV CNV

Character
Functions

LOWER, NLS_LOWER,
UPPER, NLS_UPPER

...where LOWER(clobCol1) = LOWER(clobCol2) Yes Yes

Character
Functions

LPAD, RPAD select RPAD(clobCol, 20, ' La') from... Yes Yes

Character
Functions

TRIM, LTRIM, RTRIM ...where RTRIM(LTRIM(clobCol,'ab'), 'xy') = 'cd' Yes Yes

Character
Functions

REPLACE select REPLACE(clobCol, 'orig','new') from... Yes Yes

Character
Functions

SOUNDEX ...where SOUNDEX(clobCOl) = SOUNDEX('SMYTHE') CNV CNV

Character
Functions

SUBSTR ...where substr(clobCol, 1,4) = 'THIS' Yes Yes

Character
Functions

TRANSLATE select TRANSLATE(clobCol, '123abc','NC') from... CNV CNV

Character
Functions

ASCII select ASCII(clobCol) from... CNV CNV

Character
Functions

INSTR ...where instr(clobCol, 'book') = 11 Yes Yes

Character
Functions

LENGTH ...where length(clobCol) != 7; Yes Yes

Character
Functions

NLSSORT ...where NLSSORT (clobCol,'NLS_SORT = German') >
NLSSORT ('S','NLS_SORT = German')

CNV CNV

Character
Functions

INSTRB, SUBSTRB,
LENGTHB

These functions are supported only for CLOBs that
use single-byte character sets. (LENGTHB is
supported for BLOBs as well as CLOBs.)

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_LIKE This function searches a character column for a
pattern. Use this function in the WHERE clause of a
query to return rows matching the regular
expression you specify.

See the Oracle Database SQL Reference for syntax
details on SQL functions for regular expressions.
See the Oracle Database Application Developer's
Guide - Fundamentals for information on using
regular expressions with the database.

Yes Yes

SQL Functions and Operators Supported for Use with LOBs

9-4 Oracle Database Application Developer's Guide - Large Objects

Character
Functions -
Regular
Expressions

REGEXP_REPLACE This function searches for a pattern in a character
column and replaces each occurrence of that
pattern with the pattern you specify.

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_INSTR This function searches a string for a given
occurrence of a regular expression pattern. You
specify which occurrence you want to find and the
start position to search from. This function returns
an integer indicating the position in the string
where the match is found.

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_SUBSTR This function returns the actual substring matching
the regular expression pattern you specify.

Yes Yes

Conversion CHARTOROWID CHARTOROWID(clobCol) CNV CNV

Conversion COMPOSE COMPOSE('string')

Returns a Unicode string given a string in the
datatype CHAR, VARCHAR2,CLOB, NCHAR,
NVARCHAR2, NCLOB. An o code point qualified
by an umlaut code point will be returned as the
o-umlaut code point.

CNV CNV

Conversion DECOMPOSE DECOMPOSE('str' [CANONICAL | COMPATIBILITY])

Valid for Unicode character arguments. Returns a
Unicode string after decomposition in the same
character set as the input. o-umlaut code point will
be returned as the o code point followed by the
umlaut code point.

CNV CNV

Conversion HEXTORAW HEXTORAW(CLOB) No CNV

Conversion CONVERT select CONVERT(clobCol,'WE8DEC','WE8HP') from... Yes CNV

Conversion TO_DATE TO_DATE(clobCol) CNV CNV

Conversion TO_NUMBER TO_NUMBER(clobCol) CNV CNV

Conversion TO_TIMESTAMP TO_TIMESTAMP(clobCol) No CNV

Conversion TO_MULTI_BYTE

TO_SINGLE_BYTE

TO_MULTI_BYTE(clobCol)

TO_SINGLE_BYTE(clobCol)

CNV CNV

Conversion TO_CHAR TO_CHAR(clobCol) Yes Yes

Conversion TO_NCHAR TO_NCHAR(clobCol) Yes Yes

Conversion TO_LOB INSERT INTO... SELECT TO_LOB(longCol)...

Note that TO_LOB can only be used to create or
insert into a table with LOB columns as SELECT
FROM a table with a LONG column.

N/A N/A

Conversion TO_CLOB TO_CLOB(varchar2Col) Yes Yes

Conversion TO_NCLOB TO_NCLOB(varchar2Clob) Yes Yes

Table 9–1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

SQL Functions and Operators Supported for Use with LOBs

SQL Semantics and LOBs 9-5

UNICODE Support
Variations on the INSTR, SUBSTR, LENGTH, and LIKE functions are provided for
Unicode support. (These variations are indicated as "Unicode" in the "Category"
column of Table 9–1.)

Codepoint Semantics
Codepoint semantics of the INSTR, SUBSTR, LENGTH, and LIKE functions, described
in Table 9–1, differ depending on the datatype of the argument passed to the function.
These functions use different codepoint semantics depending on whether the
argument is a VARCHAR2 or a CLOB type as follows:

■ When the argument is a CLOB, UCS2 codepoint semantics are used for all
character sets.

■ When the argument is a character type, such as VARCHAR2, the default codepoint
semantics are used for the given character set:

Aggregate
Functions

COUNT select count(clobCol) from... No N/A

Aggregate
Functions

MAX, MIN select MAX(clobCol) from... No N/A

Aggregate
Functions

GROUPING select grouping(clobCol) from... group by cube
(clobCol);

No N/A

Other
Functions

GREATEST, LEAST select GREATEST (clobCol1, clobCol2) from... No CNV

Other
Functions

DECODE select DECODE(clobCol, condition1, value1,
defaultValue) from...

CNV CNV

Other
Functions

NVL select NVL(clobCol,'NULL') from... Yes Yes

Other
Functions

DUMP select DUMP(clobCol) from... No N/A

Other
Functions

VSIZE select VSIZE(clobCol) from... No N/A

Unicode INSTR2, SUBSTR2,
LENGTH2, LIKE2

These functions use UCS2 code point semantics. No CNV

Unicode INSTR4, SUBSTR4,
LENGTH4, LIKE4

These functions use UCS4 code point semantics. No CNV

Unicode INSTRC, SUBSTRC,
LENGTHC, LIKEC

These functions use complete character semantics. No CNV

See Also:

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database SQL Reference

■ Oracle Database Globalization Support Guide

for a detailed description on the usage of UNICODE functions.

Table 9–1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

Implicit Conversion of LOB Datatypes in SQL

9-6 Oracle Database Application Developer's Guide - Large Objects

■ UCS2 codepoint semantics are used for AL16UTF16 and UTF8 character sets.

■ UCS4 codepoint semantics are used for all other character sets, such as
AL32UTF8.

■ If you are storing character data in a CLOB or NCLOB, then note that the amount
and offset parameters for any APIs that read or write data to the CLOB or NCLOB
are specified in UCS2 codepoints. In some character sets, a full character consists
one or more UCS2 codepoints called a surrogate pair. In this scenario, you must
ensure that the amount or offset you specify does not cut into a full character. This
avoids reading or writing a partial character.

■ Starting from 10g, Oracle Database helps to detect half surrogate pair on
read/write boundaries in such scenarios. In the case of read, the offset and
amount will be adjusted accordingly to avoid returning a half character, in which
case the amount returned could be less than what is asked for. In the case of
write, an error is raised to prevent from corrupting the existing data caused by
overwriting a partial character in the destination CLOB or NCLOB.

Return Values for SQL Semantics on LOBs
The return type of a function or operator that takes a LOB or VARCHAR2 is the same as
the datatype of the argument passed to the function or operator.

Functions that take more than one argument, such as CONCAT, return a LOB datatype
if one or more arguments is a LOB. For example, CONCAT(CLOB, VARCHAR2) returns
a CLOB.

A LOB instance is always accessed and manipulated through a LOB locator. This is
also true for return values: SQL functions and operators return a LOB locator when the
return value is a LOB instance.

Any LOB instance returned by a SQL function is a temporary LOB instance. LOB
instances in tables (persistent LOBs) are not modified by SQL functions, even when the
function is used in the SELECT list of a query.

LENGTH Return Value for LOBs
The return value of the LENGTH function differs depending on whether the argument
passed is a LOB or a character string:

■ If the input is a character string of length zero, then LENGTH returns NULL.

■ For a CLOB of length zero, or an empty locator such as that returned by
EMPTY_CLOB(), the LENGTH and DBMS_LOB.GETLENGTH functions return
FALSE.

Implicit Conversion of LOB Datatypes in SQL
Some LOB datatypes support implicit conversion and can be used in operations such
as cross-type assignment and parameter passing. These conversions are processed at
the SQL layer and can be performed in all client interfaces that use LOB types.

See Also: Oracle Database SQL Reference for details on the
CONCAT function and the concatenation operator (||).

Implicit Conversion of LOB Datatypes in SQL

SQL Semantics and LOBs 9-7

Implicit Conversion Between CLOB and NCLOB Datatypes in SQL
The database enables you to perform operations such as cross-type assignment and
cross-type parameter passing between CLOB and NCLOB datatypes. The database
performs implicit conversions between these types when necessary to preserve
properties such as character set formatting.

Note that, when implicit conversions occur, each character in the source LOB is
changed to the character set of the destination LOB, if needed. In this situation, some
degradation of performance may occur if the data size is large. When the character set
of the destination and the source are the same, there is no degradation of performance.

After an implicit conversion between CLOB and NCLOB types, the destination LOB is
implicitly created as a temporary LOB. This new temporary LOB is independent from
the source LOB. If the implicit conversion occurs as part of a define operation in a
SELECT statement, then any modifications to the destination LOB do not affect the
persistent LOB in the table that the LOB was selected from as shown in the following
example:

SQL> -- check lob length before update
SQL> select dbms_lob.getlength(ad_sourcetext) from Print_media
 2 where product_id=3106 and ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 205

SQL>
SQL> declare
 2 clob1 clob;
 3 amt number:=10;
 4 BEGIN
 5 -- select a clob column into a clob, no implicit convesion
 6 SELECT ad_sourcetext INTO clob1 FROM Print_media
 7 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;
 8
 9 dbms_lob.trim(clob1, amt); -- Trim the selected lob to 10 bytes
 10 END;
 11 /

PL/SQL procedure successfully completed.

SQL> -- Modification is performed on clob1 which points to the
SQL> -- clob column in the table
SQL> select dbms_lob.getlength(ad_sourcetext) from Print_media
 2 where product_id=3106 and ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 10

SQL>
SQL> rollback;

Rollback complete.

SQL> -- check lob length before update
SQL> select dbms_lob.getlength(ad_sourcetext) from Print_media
 2 where product_id=3106 and ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

Unsupported Use of LOBs in SQL

9-8 Oracle Database Application Developer's Guide - Large Objects

 205

SQL>
SQL> declare
 2 nclob1 nclob;
 3 amt number:=10;
 4 BEGIN
 5
 6 -- select a clob column into a nclob, implicit convesion occurs
 7 SELECT ad_sourcetext INTO nclob1 FROM Print_media
 8 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;
 9
 10 dbms_lob.trim(nclob1, amt); -- Trim the selected lob to 10 bytes
 11 END;
 12 /

PL/SQL procedure successfully completed.

SQL> -- Modification to nclob1 does not affect the clob in the table,
SQL> -- because nclob1 is a independent temporary LOB

SQL> select dbms_lob.getlength(ad_sourcetext) from Print_media
 2 where product_id=3106 and ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 205

Unsupported Use of LOBs in SQL
Table 9–2 lists SQL operations that are not supported on LOB columns.

See Also:

■ "Implicit Conversions Between CLOB and VARCHAR2" on
page 10-1 for information on PL/SQL semantics support for
implicit conversions between CLOB and VARCHAR2 types.

■ "Implicit Character Set Conversions with LOBs" on page 4-4 for
more information on implicit character set conversions when
loading LOBs from BILEs.

■ Oracle Database SQL Reference for details on implicit conversions
supported for all datatypes.

Table 9–2 Unsupported usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage

SELECT DISTINCT SELECT DISTINCT clobCol from...

SELECT clause

 ORDER BY

SELECT... ORDER BY clobCol

SELECT clause

 GROUP BY

SELECT avg(num) FROM...

GROUP BY clobCol

VARCHAR2 and RAW Semantics for LOBs

SQL Semantics and LOBs 9-9

VARCHAR2 and RAW Semantics for LOBs
The following semantics, used with VARCHAR2 and RAW datatypes, also apply to
LOBs:

■ Defining a CHAR buffer on a CLOB

You can define a VARCHAR2 for a CLOB and RAW for a BLOB column. You can also
define CLOB and BLOB types for VARCHAR2 and RAW columns.

■ Selecting a CLOB column into a CHAR buffer or VARCHAR2

If a CLOB column is selected into a VARCHAR2 variable, then data stored in the
CLOB column is retrieved and put into the CHAR buffer. If the buffer is not large
enough to contain all the CLOB data, then a truncation error is thrown and no data
is written to the buffer. After successful completion of the SELECT operation, the
VARCHAR2 variable holds as a regular character buffer.

In contrast, when a CLOB column is selected into a local CLOB variable, the CLOB
locator is fetched.

■ Selecting a BLOB column into a RAW

When a BLOB column is selected into a RAW variable, the BLOB data is copied into
the RAW buffer. If the size of the BLOB exceeds the size of the buffer, then a
truncation error is thrown and no data is written to the buffer.

LOBs Returned from SQL Functions
When a LOB is returned from a SQL function, the result returned is a temporary LOB.
Your application should view the temporary LOB as local storage for the data returned
from the SELECT operation as follows:

■ In PL/SQL, the temporary LOB has the same lifetime (duration) as other local
PL/SQL program variables. It can be passed to subsequent SQL or PL/SQL
VARCHAR2 functions or queries as a PL/SQL local variable. The temporary LOB
will go out of scope at the end of the program block at which time, the LOB is
freed. These are the same semantics as those for PL/SQL VARCHAR2 variables. At
any time, nonetheless, you can use a DBMS_LOB.FREETEMPORARY call to release
the resources taken by the local temporary LOBs.

■ In OCI, the temporary LOBs returned from SQL queries are always in 'session'
duration, unless a user-defined duration is present, in which case, the temporary
LOBs will be in the user-defined duration.

UNION, INTERSECT, MINUS

(Note that UNION ALL works for LOBs.)

SELECT clobCol1 from tab1 UNION SELECT clobCol2 from tab2;

Join queries SELECT... FROM... WHERE tab1.clobCol = tab2.clobCol

Index columns CREATE INDEX clobIndx ON tab(clobCol)...

Caution: Ensure that your temporary tablespace is large enough
to store all temporary LOB results returned from queries in your
program(s).

Table 9–2 (Cont.) Unsupported usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage

VARCHAR2 and RAW Semantics for LOBs

9-10 Oracle Database Application Developer's Guide - Large Objects

The following example illustrates selecting out a CLOB column into a VARCHAR2 and
returning the result as a CHAR buffer of declared size:

DECLARE
 vc1 VARCHAR2(32000);
 lb1 CLOB;
 lb2 CLOB;
BEGIN
 SELECT clobCol1 INTO vc1 FROM tab WHERE colID=1;
 -- lb1 is a temporary LOB
 SELECT clobCol2 || clobCol3 INTO lb1 FROM tab WHERE colID=2;

 lb2 := vc1|| lb1;
 -- lb2 is a still temporary LOB, so the persistent data in the database
 -- is not modified. An update is necessary to modify the table data.
 UPDATE tab SET clobCol1 = lb2 WHERE colID = 1;

DBMS_LOB.FREETEMPORARY(lb2); -- Free up the space taken by lb2

<... some more queries ...>

END; -- at the end of the block, lb1 is automatically freed

IS NULL and IS [NOT] NULL Usage with VARCHAR2s and CLOBs
You can use the IS NULL and IS [NOT] NULL operators with LOB columns. When
used with LOBs, these operators determine whether a LOB locator is stored in the row.

WHERE Clause Usage with LOBs
SQL functions with LOBs as arguments, except functions that compare LOB values,
are allowed in predicates of the WHERE clause. For example, the LENGTH function can
be included in the predicate of the WHERE clause:

create table t (n number, c clob);
insert into t values (1, 'abc');

select * from t where c is not null;
select * from t where length(c) > 0;
select * from t where c like '%a%';
select * from t where substr(c, 1, 2) like '%b%';
select * from t where instr(c, 'b') = 2;

Note: In the SQL 92 standard, a character string of length zero is
distinct from a NULL string. The return value of IS NULL differs
when you pass a LOB compared to a VARCHAR2:

■ When you pass an initialized LOB of length zero to the IS
NULL function, zero (FALSE) is returned. These semantics are
compliant with the SQL standard.

■ When you pass a VARCHAR2 of length zero to the IS NULL
function, TRUE is returned.

PL/SQL Semantics for LOBs 10-1

10
PL/SQL Semantics for LOBs

This chapter contains these topics:

■ PL/SQL Statements and Variables

■ Implicit Conversions Between CLOB and VARCHAR2

■ Explicit Conversion Functions

■ PL/SQL CLOB Comparison Rules

PL/SQL Statements and Variables
In PL/SQL, a number of semantic changes have been made as described in the
previous paragraphs.

PL/SQL semantics support is described in the following sections:

■ Implicit Conversions Between CLOB and VARCHAR2

■ Explicit Conversion Functions

■ VARCHAR2 and CLOB in PL/SQL Built-In Functions

■ PL/SQL CLOB Comparison Rules

Implicit Conversions Between CLOB and VARCHAR2
Implicit conversions from CLOB to VARCHAR2 and from VARCHAR2 to CLOB datatypes
are allowed in PL/SQL. These conversions enable you to perform the following
operations in your application:

■ CLOB columns can be selected into VARCHAR2 PL/SQL variables

■ VARCHAR2 columns can be selected into CLOB variables

■ Assignment and parameter passing between CLOBs and VARCHAR2s

Accessing a CLOB as a VARCHAR2 in PL/SQL
The following example illustrates the way CLOB data is accessed when the CLOBs are
treated as VARCHAR2s:

Note: The following discussions, concerning CLOBs and
VARCHAR2s, also apply to BLOBs and RAWs, unless otherwise
noted. In the text, BLOB and RAW are not explicitly mentioned.

Explicit Conversion Functions

10-2 Oracle Database Application Developer's Guide - Large Objects

declare
 myStoryBuf VARCHAR2(4001);
BEGIN
 SELECT ad_sourcetext INTO myStoryBuf FROM print_media WHERE ad_id = 12001;
 -- Display Story by printing myStoryBuf directly
END;
/

Assigning a CLOB to a VARCHAR2 in PL/SQL
declare
myLOB CLOB;
BEGIN
SELECT 'ABCDE' INTO myLOB FROM print_media WHERE ad_id = 11001;
-- myLOB is a temporary LOB.
-- Use myLOB as a lob locator
 DBMS_OUTPUT.PUT_LINE('Is temp? '||DBMS_LOB.ISTEMPORARY(myLOB));
END;
/

Explicit Conversion Functions
In SQL and PL/SQL, the following explicit conversion functions convert other data
types to and from CLOB, NCLOB, and BLOB as part of the LONG-to-LOB migration:

■ TO_CLOB(): Converting from VARCHAR2, NVARCHAR2, or NCLOB to a CLOB

■ TO_NCLOB(): Converting from VARCHAR2, NVARCHAR2, or CLOB to an NCLOB

■ TO_BLOB(): Converting from RAW to a BLOB

■ TO_CHAR() converts a CLOB to a CHAR type. When you use this function to
convert a character LOB into the database character set, if the LOB value to be
converted is larger than the target type, then the database returns an error. Implicit
conversions also raise an error if the LOB data does not fit.

■ TO_NCHAR() converts an NCLOB to an NCHAR type. When you use this function
to convert a character LOB into the national character set, if the LOB value to be
converted is larger than the target type, then the database returns an error. Implicit
conversions also raise an error if the LOB data does not fit.

■ CAST does not directly support any of the LOB datatypes. When you use CAST to
convert a CLOB value into a character datatype, an NCLOB value into a national
character datatype, or a BLOB value into a RAW datatype, the database implicitly
converts the LOB value to character or raw data and then explicitly casts the
resulting value into the target datatype. If the resulting value is larger than the
target type, then the database returns an error.

Other explicit conversion functions are not supported, such as, TO_NUMBER(), see
Table 9–1, " SQL VARCHAR2 Functions and Operators on LOBs". Conversion function
details are explained in Chapter 11, "Migrating Columns from LONGs to LOBs".

VARCHAR2 and CLOB in PL/SQL Built-In Functions
CLOB and VARCHAR2 are still two distinct types. But depending on the usage, a CLOB
can be passed to SQL and PL/SQL VARCHAR2 built-in functions, used exactly like a
VARCHAR2. Or the variable can be passed into DBMS_LOB APIs, acting like a LOB
locator. Please see the following combined example,"CLOB Variables in PL/SQL".

Explicit Conversion Functions

PL/SQL Semantics for LOBs 10-3

PL/SQL VARCHAR2 functions and operators can take CLOBs as arguments or
operands.

When the size of a VARCHAR2 variable is not large enough to contain the result from a
function that returns a CLOB, or a SELECT on a CLOB column, an error should be
raised and no operation will be performed. This is consistent with VARCHAR2
semantics.

CLOB Variables in PL/SQL
1 declare
2 myStory CLOB;
3 revisedStory CLOB;
4 myGist VARCHAR2(100);
5 revisedGist VARCHAR2(100);
6 BEGIN
7 -- select a CLOB column into a CLOB variable
8 SELECT Story INTO myStory FROM print_media WHERE product_id=10;
9 -- perform VARCHAR2 operations on a CLOB variable
10 revisedStory := UPPER(SUBSTR(myStory, 100, 1));
11 -- revisedStory is a temporary LOB
12 -- Concat a VARCHAR2 at the end of a CLOB
13 revisedStory := revisedStory || myGist;
14 -- The following statement will raise an error because myStory is
15 -- longer than 100 bytes
16 myGist := myStory;
17 END;

Please note that in line 10 of "CLOB Variables in PL/SQL", a temporary CLOB is
implicitly created and is pointed to by the revisedStory CLOB locator. In the current
interface the line can be expanded as:

buffer VARCHAR2(32000)
DBMS_LOB.CREATETEMPORARY(revisedStory);
buffer := UPPER(DBMS_LOB.SUBSTR(myStory,100,1));
DBMS_LOB.WRITE(revisedStory,length(buffer),1, buffer);

In line 13, myGist is appended to the end of the temporary LOB, which has the same
effect of:

DBMS_LOB.WRITEAPPEND(revisedStory, myGist, length(myGist));

In some occasions, implicitly created temporary LOBs in PL/SQL statements can
change the representation of LOB locators previously defined. Consider the next
example.

Change in Locator-Data Linkage
1 declare
2 myStory CLOB;
3 amt number:=100;
4 buffer VARCHAR2(100):='some data';
5 BEGIN
6 -- select a CLOB column into a CLOB variable
7 SELECT Story INTO myStory FROM print_media WHERE product_id=10;
8 DBMS_LOB.WRITE(myStory, amt, 1, buf);
9 -- write to the persistent LOB in the table
10
11 myStory:= UPPER(SUBSTR(myStory, 100, 1));
12 -- perform VARCHAR2 operations on a CLOB variable, temporary LOB created.
13 -- Changes will not be reflected in the database table from this point on.

PL/SQL CLOB Comparison Rules

10-4 Oracle Database Application Developer's Guide - Large Objects

14
15 update print_media set Story = myStory WHERE product_id = 10;
16 -- an update is necessary to synchronize the data in the table.
17 END;

After line 7, myStory represents a persistent LOB in print_media.

The DBMS_LOB.WRITE call in line 8 directly writes the data to the table.

No UPDATE statement is necessary. Subsequently in line 11, a temporary LOB is
created and assigned to myStory because myStory is now used like a local
VARCHAR2 variable. The LOB locator myStory now points to the newly-created
temporary LOB.

Therefore, modifications to myStory will no longer be reflected in the database. To
propagate the changes to the database table, an UPDATE statement becomes necessary
now. Note again that for the previous persistent LOB, the UPDATE is not required.

Temporary LOBs created in a program block as a result of a SELECT or an assignment
are freed automatically at the end of the PL/SQL block/function/procedure. You can
choose to free the temporary LOBs to reclaim system resources and temporary
tablespace by calling DBMS_LOB.FREETEMPORARY on the CLOB variable.

Freeing Temporary LOBs Automatically and Manually
declare
 Story1 CLOB;
 Story2 CLOB;
 StoryCombined CLOB;
 StoryLower CLOB;
BEGIN
 SELECT Story INTO Story1 FROM print_media WHERE product_ID = 1;
 SELECT Story INTO Story2 FROM print_media WHERE product_ID = 2;
 StoryCombined := Story1 || Story2; -- StoryCombined is a temporary LOB
 -- Free the StoryCombined manually to free up space taken
 DBMS_LOB.FREETEMPORARY(StoryCombined);
 StoryLower := LOWER(Story1) || LOWER(Story2);
END; -- At the end of block, StoryLower is freed.

PL/SQL CLOB Comparison Rules
Like VARCHAR2s, when a CLOB is compared with another CLOB or compared with a
VARCHAR2, a set of rules determines the comparison. The rules are usually called a
"collating sequence". In Oracle, CHARs and VARCHAR2s have slightly different
sequences due to the blank padding of CHARs.

CLOBs Follow the VARCHAR2 Collating Sequence
As a rule, CLOBs follow the same collating sequence as VARCHAR2s. That is, when a
CLOB is compared, the result is consistent with if the CLOB data content is retrieved
into a VARCHAR2 buffer and the VARCHAR2 is compared. The rule applies to all cases
including comparisons between CLOB and CLOB, CLOB and VARCHAR2, and CLOB and
CHAR.

PL/SQL CLOB Comparison Rules

PL/SQL Semantics for LOBs 10-5

It makes no sense to compare CLOBs with non-character data, or with BLOBs. An error
is returned in these cases.

Note: When a CLOB is compared with a CHAR string, it is always
the character data of the CLOB being compared with the string.
Likewise, when two CLOBs are compared, the data content of the
two CLOBs are compared, not their LOB locators.

PL/SQL CLOB Comparison Rules

10-6 Oracle Database Application Developer's Guide - Large Objects

Migrating Columns from LONGs to LOBs 11-1

11
Migrating Columns from LONGs to LOBs

This chapter describes techniques for migrating tables that use LONG datatypes to LOB
datatypes. This chapter contains these topics:

■ Benefits of Migrating LONG Columns to LOB Columns

■ Preconditions for Migrating LONG Columns to LOB Columns

■ Using utldtree.sql to Determine Where Your Application Needs Change

■ Converting Tables from LONG to LOB Datatypes

■ Migrating Applications from LONGs to LOBs

Benefits of Migrating LONG Columns to LOB Columns
There are many benefits to migrating table columns from LONG datatypes to LOB
datatypes.

The following list compares the semantics of LONG and LOB datatypes in various
application development scenarios:

■ The number of LONG type columns is limited. Any given table can have a
maximum of only one LONG type column. The number of LOB type columns in a
table is not limited.

See Also: The following chapters in this book describe support
for LOB datatypes in various programming environments:

■ Chapter 9, "SQL Semantics and LOBs"

■ Chapter 10, "PL/SQL Semantics for LOBs"

■ Chapter 13, "Data Interface for Persistent LOBs"

Note: You can use the techniques described in this chapter to do
either of the following:

■ Convert columns of type LONG to either CLOB or NCLOB
columns

■ Convert columns of type LONG RAW to BLOB type columns

Unless otherwise noted, discussions in this chapter regarding
"LONG to LOB" conversions apply to both of these datatype
conversions.

Preconditions for Migrating LONG Columns to LOB Columns

11-2 Oracle Database Application Developer's Guide - Large Objects

■ You can use the data interface for LOBs to enable replication of tables that contain
LONG or LONG RAW columns. Replication is allowed on LOB columns, but is not
supported for LONG and LONG RAW columns. The database omits columns
containing LONG and LONG RAW datatypes from replicated tables.

If a table is replicated or has materialized views, and its LONG column is changed
to LOB, then you may have to manually fix the replicas.

Preconditions for Migrating LONG Columns to LOB Columns
This section describes preconditions that must be met before converting a LONG
column to a LOB column.

Dropping a Domain Index on a LONG Column Before Converting to a LOB
Any domain index on a LONG column must be dropped before converting the LONG
column to LOB column. See "Indexes on Columns Converted from LONG to LOB
Datatypes" on page 11-8 for more information.

Preventing Generation of Redo Space on Tables Converted to LOB Datatypes
Generation of redo space can cause performance problems during the process of
converting LONG columns. Redo changes for the table are logged during the
conversion process only if the table has LOGGING on.

Redo changes for the column being converted from LONG to LOB are logged only if the
storage characteristics of the LOB column indicate LOGGING. The logging setting
(LOGGING or NOLOGGING) for the LOB column is inherited from the tablespace in
which the LOB is created.

To prevent generation of redo space during migration, do the following before
migrating your table (syntax is in BNF):

1. ALTER TABLE Long_tab NOLOGGING;

2. ALTER TABLE Long_tab MODIFY (long_col CLOB [DEFAULT
<default_val>]) LOB (long_col) STORE AS (NOCACHE NOLOGGING);

Note that you must also specify NOCACHE when you specify NOLOGGING in the
STORE AS clause.

3. ALTER TABLE Long_tab MODIFY LOB (long_col) (CACHE);

4. ALTER TABLE Long_tab LOGGING;

5. Make a backup of the tablespaces containing the table and the LOB column.

Caution: Converting LOB datatypes back to LONG datatypes is
not supported. Ensure that you do not need to maintain any
column as a LONG datatype before converting the column to a
LOB type.

See Also: "Migrating Applications from LONGs to LOBs" on
page 11-7 before converting your table to determine whether any
limitations on LOB columns will prevent you from converting to
LOBs.

Converting Tables from LONG to LOB Datatypes

Migrating Columns from LONGs to LOBs 11-3

Using utldtree.sql to Determine Where Your Application Needs Change
You can use the utility, rdbms/admin/utldtree.sql, to determine which parts of
your application require rewriting when you migrate your table from LONG to LOB
column types. This utility enables you to recursively see all objects that are dependent
on a given object. For example, you can see all objects which depend on a table with a
LONG column. You will only see objects for which you have permission.

Instructions on how to use utldtree.sql are documented in the file itself. Also,
utldtree.sql is only needed for PL/SQL. For SQL and OCI you do not need to
change your applications.

Converting Tables from LONG to LOB Datatypes
This section describes the following techniques for migrating existing tables from
LONG to LOB datatypes:

■ Using ALTER TABLE to Convert LONG Columns to LOB Columns on page 11-3

■ Copying a LONG to a LOB Column Using the TO_LOB Operator on page 11-4

■ Online Redefinition of Tables with LONG Columns on page 11-5 where high
availability is critical

Using ALTER TABLE to Convert LONG Columns to LOB Columns
You can use the ALTER TABLE statement in SQL to convert a LONG column to a LOB
column. To do so, use the following syntax:

ALTER TABLE [<schema>.]<table_name>
 MODIFY (<long_column_name> { CLOB | BLOB | NCLOB }
 [DEFAULT <default_value>]
) [LOB_storage_clause];

For example, if you had a table that was created as follows:

CREATE TABLE Long_tab (id NUMBER, long_col LONG);

then you can change the column long_col in table Long_tab to datatype CLOB
using following ALTER TABLE statement:

ALTER TABLE Long_tab MODIFY (long_col CLOB);

Note that when using the ALTER TABLE statement to convert a LONG column to a LOB
column, only the following options are allowed:

■ DEFAULT which enables you to specify a default value for the LOB column.

■ The LOB_storage_clause, which enables you to specify the LOB storage
characteristics for the converted column, can be specified in the MODIFY clause.

Other ALTER TABLE options are not allowed when converting a LONG column to a
LOB type column.

Note: The ALTER TABLE statement copies the contents of the table
into a new space, and frees the old space at the end of the
operation. This temporarily doubles the space requirements.

Converting Tables from LONG to LOB Datatypes

11-4 Oracle Database Application Developer's Guide - Large Objects

Migration Issues
General issues concerning migration include the following:

■ All constraints of your previous LONG columns are maintained for the new LOB
columns. The only constraint allowed on LONG columns are NULL and NOT NULL.
To alter the constraints for these columns, or alter any other columns or properties
of this table, you have to do so in a subsequent ALTER TABLE statement.

■ If you do not specify a default value, then the default value for the LONG column
becomes the default value of the LOB column.

■ Most of the existing triggers on your table are still usable, however UPDATE OF
triggers can cause issues. See "Migrating Applications from LONGs to LOBs" on
page 11-7 for more details.

Copying a LONG to a LOB Column Using the TO_LOB Operator
If you do not want to use ALTER TABLE, as described earlier in this section, then you
can use the TO_LOB operator on a LONG column to copy it to a LOB column. You can
use the CREATE TABLE AS SELECT statement or the INSERT AS SELECT statement
with the TO_LOB operator to copy data from a LONG column to a CLOB or NCLOB
column, or from a LONG RAW column to a BLOB column. For example, if you have a
table with a LONG column that was created as follows:

CREATE TABLE Long_tab (id NUMBER, long_col LONG);

then you can do the following to copy the column to a LOB column:

CREATE TABLE Lob_tab (id NUMBER, clob_col CLOB);
INSERT INTO Lob_tab SELECT id, TO_LOB(long_col) FROM long_tab;
COMMIT;

If the INSERT returns an error (because of lack of undo space), then you can
incrementally migrate LONG data to the LOB column using the WHERE clause. After
you ensure that the data is accurately copied, you can drop the original table and
create a view or synonym for the new table using one of the following sequences:

DROP TABLE Long_tab;
CREATE VIEW Long_tab (id, long_col) AS SELECT * from Lob_tab;

or

DROP TABLE Long_tab;
CREATE SYNONYM Long_tab FOR Lob_tab;

This series of operations is equivalent to changing the datatype of the column
Long_col of table Long_tab from LONG to CLOB. With this technique, you have to
re-create any constraints, triggers, grants and indexes on the new table.

Use of the TO_LOB operator is subject to the following limitations:

■ You can use TO_LOB to copy data to a LOB column, but not to a LOB attribute of
an object type.

■ You cannot use TO_LOB with a remote table. For example, the following
statements will not work:

INSERT INTO tb1@dblink (lob_col) SELECT TO_LOB(long_col) FROM tb2;
INSERT INTO tb1 (lob_col) SELECT TO_LOB(long_col) FROM tb2@dblink;
CREATE TABLE tb1 AS SELECT TO_LOB(long_col) FROM tb2@dblink;

Converting Tables from LONG to LOB Datatypes

Migrating Columns from LONGs to LOBs 11-5

■ The TO_LOB operator cannot be used in the CREATE TABLE AS SELECT statement
to convert a LONG or LONG RAW column to a LOB column when creating an index
organized table.

To work around this limitation, create the index organized table, and then do an
INSERT AS SELECT of the LONG or LONG RAW column using the TO_LOB operator.

■ You cannot use TO_LOB inside any PL/SQL block.

Online Redefinition of Tables with LONG Columns
Tables with LONG and LONG RAW columns can be migrated using online table
redefinition. This technique is suitable for migrating LONG columns in database tables
where high availability is critical.

To use this technique, you must convert LONG columns to LOB types during the
redefinition process as follows:

■ Any LONG column must be converted to a CLOB or NCLOB column.

■ Any LONG RAW column must be converted to a BLOB column.

This conversion is performed using the TO_LOB() operator in the column mapping
of the DBMS_REDEFINITION.START_REDEF_TABLE() procedure.

General tasks involved in the online redefinition process are given in the following list.
Issues specific to converting LONG and LONG RAW columns are called out. See the
related documentation referenced at the end of this section for additional details on the
online redefinition process that are not described here.

■ Create an empty interim table. This table will hold the migrated data when the
redefinition process is done. In the interim table:

■ Define a CLOB or NCLOB column for each LONG column in the original table
that you are migrating.

■ Define a BLOB column for each LONG RAW column in the original table that you
are migrating.

■ Start the redefinition process. To do so, call
DBMS_REDEFINITION.START_REDEF_TABLE and pass the column mapping
using the TO_LOB operator as follows:

DBMS_REDEFINITION.START_REDEF_TABLE(
 'schema_name',
 'original_table',
 'interim_table',
 'TO_LOB(long_col_name) lob_col_name',
 'options_flag',
 'orderby_cols');

where long_col_name is the name of the LONG or LONG RAW column that you are
converting in the original table and lob_col_name is the name of the LOB
column in the interim table. This LOB column will hold the converted data.

■ Call the DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS procedure as
described in the related documentation.

Note: You cannot perform online redefinition of tables with LONG
or LONG RAW columns unless you convert the columns to LOB types
as described in this section.

Converting Tables from LONG to LOB Datatypes

11-6 Oracle Database Application Developer's Guide - Large Objects

■ Call the DBMS_REDEFINITION.FINISH_REDEF_TABLE procedure as described
in the related documentation.

Parallel Online Redefinition
On a system with sufficient resources for parallel execution, redefinition of a LONG
column to a LOB column can be executed in parallel under the following conditions:

In the case where the destination table is non-partitioned:

■ The segment used to store the LOB column in the destination table belongs to a
locally managed tablespace with Automatic Segment Space Management (ASSM)
enabled, which is now the default.

■ There is a simple mapping from one LONG column to one LOB column, and the
destination table has only one LOB column.

In the case where the destination table is partitioned, the normal methods for parallel
execution for partitioning apply. When the destination table is partitioned, then online
redefinition is executed in parallel.

Example of Online Redefinition
The following example demonstrates online redefinition with LOB columns.

REM Grant privleges required for online redefinition.
GRANT execute ON DBMS_REDEFINITION TO pm;
GRANT ALTER ANY TABLE TO pm;
GRANT DROP ANY TABLE TO pm;
GRANT LOCK ANY TABLE TO pm;
GRANT CREATE ANY TABLE TO pm;
GRANT SELECT ANY TABLE TO pm;

REM Privileges required to perform cloning of dependent objects.
GRANT CREATE ANY TRIGGER TO pm;
GRANT CREATE ANY INDEX TO pm;

connect pm/pm

drop table cust;
create table cust(c_id number primary key,
 c_zip number,
 c_name varchar(30) default null,
 c_long long
);
insert into cust values(1, 94065, 'hhh', 'ttt');

-- Creating Interim Table
-- There is no need to specify constraints because they are
-- copied over from the original table.
create table cust_int(c_id number not null,
 c_zip number,
 c_name varchar(30) default null,
 c_long clob
);

declare
 col_mapping varchar2(1000);
BEGIN
-- map all the columns in the interim table to the original table
 col_mapping :=
 'c_id c_id , '||

Migrating Applications from LONGs to LOBs

Migrating Columns from LONGs to LOBs 11-7

 'c_zip c_zip , '||
 'c_name c_name, '||
 'to_lob(c_long) c_long';

dbms_redefinition.start_redef_table('pm', 'cust', 'cust_int', col_mapping);
END;
/

declare
 error_count pls_integer := 0;
BEGIN
 dbms_redefinition.copy_table_dependents('pm', 'cust', 'cust_int',
 1, true,true,true,false,
 error_count);

 dbms_output.put_line('errors := ' || to_char(error_count));
END;
/

exec dbms_redefinition.finish_redef_table('pm', 'cust', 'cust_int');

-- Drop the interim table
drop table cust_int;

desc cust;

-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id column is
-- preserved after migration.

insert into cust values(1, 94065, 'hhh', 'ttt');

select * from cust;

Migrating Applications from LONGs to LOBs
This section discusses differences between LONG and LOB datatypes that may impact
your application migration plans or require you to modify your application.

Most APIs that work with LONG datatypes in the PL/SQL and OCI environments are
enhanced to also work with LOB datatypes. These APIs are collectively referred to as
the data interface for persistent LOBs, or simply the data interface. Among other things,
the data interface provides the following benefits:

■ Changes needed are minimal in PL/SQL and OCI applications that use tables with
columns converted from LONG to LOB datatypes.

See Also: The following related documentation provides
additional details on the redefinition process described earlier in
this section:

■ Oracle Database Administrator's Guide gives detailed procedures
and examples of redefining tables online.

■ Oracle Database PL/SQL Packages and Types Reference includes
information on syntax and other details on usage of procedures
in the DBMS_REDEFINITION package.

Migrating Applications from LONGs to LOBs

11-8 Oracle Database Application Developer's Guide - Large Objects

■ You can work with LOB datatypes in your application without having to deal with
LOB locators.

LOB Columns Are Not Allowed in Clustered Tables
LOB columns are not allowed in clustered tables, whereas LONGs are allowed. If a table
is a part of a cluster, then any LONG or LONG RAW column cannot be changed to a LOB
column.

LOB Columns Are Not Allowed in UPDATE OF Triggers
You cannot have LOB columns in the UPDATE OF list of an UPDATE OF trigger. LONG
columns are allowed in such triggers. For example, the following create trigger
statement is not valid:

create table t(lobcol CLOB);
create trigger trig before/after update of lobcol on t ...;

All other triggers work on LOB columns.

Indexes on Columns Converted from LONG to LOB Datatypes
Indexes on any column of the table being migrated must be manually rebuilt after
converting any LONG column to a LOB column. This includes function-based indexes.

Any function-based index on a LONG column will be unusable during the conversion
process and must be rebuilt after converting. Application code that uses
function-based indexing should work without modification after converting.

Note that, any domain indexes on a LONG column must be dropped before converting
the LONG column to LOB column. You can rebuild the domain index after converting.

To rebuild an index after converting, use the following steps:

1. Select the index from your original table as follows:

SELECT index_name FROM user_indexes WHERE table_name='LONG_TAB';

2. For the selected index, use the command:

ALTER INDEX <index> REBUILD

See Also:

■ Chapter 13, "Data Interface for Persistent LOBs" for details on
PL/SQL and OCI APIs included in the data interface.

■ Chapter 9, "SQL Semantics and LOBs" for details on SQL
syntax supported for LOB datatypes.

■ Chapter 10, "PL/SQL Semantics for LOBs" for details on
PL/SQL syntax supported for LOB datatypes.

Note: The table name must be capitalized in this query.

Migrating Applications from LONGs to LOBs

Migrating Columns from LONGs to LOBs 11-9

Empty LOBs Compared to NULL and Zero Length LONGs
A LOB column can hold an empty LOB. An empty LOB is a LOB locator that is fully
initialized, but not populated with data. Because LONG datatypes do not use locators,
the "empty" concept does not apply to LONG datatypes.

Both LOB column values and LONG column values, inserted with an initial value of
NULL or an empty string literal, have a NULL value. Therefore, application code that
uses NULL or zero-length values in a LONG column will function exactly the same after
you convert the column to a LOB type column.

In contrast, a LOB initialized to empty has a non-NULL value as illustrated in the
following example:

CREATE TABLE long_tab(id NUMBER, long_col LONG);
CREATE TABLE lob_tab(id NUMBER, lob_col CLOB);

INSERT INTO long_tab values(1, NULL);

REM A zero length string inserts a NULL into the LONG column:
INSERT INTO long_tab values(1, '');

INSERT INTO lob_tab values(1, NULL);

REM A zero length string inserts a NULL into the LOB column:
INSERT INTO lob_tab values(1, '');

REM Inserting an empty LOB inserts a non-NULL value:
INSERT INTO lob_tab values(1, empty_clob());

DROP TABLE long_tab;
DROP TABLE lob_tab;

Overloading with Anchored Types
For applications using anchored types, some overloaded variables resolve to different
targets during the conversion to LOBs. For example, given the procedure p overloaded
with specifications 1 and 2:

procedure p(l long) is ...; -- (specification 1)
procedure p(c clob) is ...; -- (specification 2)

and the procedure call:

declare
 var longtab.longcol%type;
 BEGIN
 ...
 p(var);
 ...
END;

Prior to migrating from LONG to LOB columns, this call would resolve to specification
1. Once longtab is migrated to LOB columns this call will resolve to specification 2.
Note that this would also be true if the parameter type in specification 1 were a CHAR,
VARCHAR2, RAW, LONG RAW.

If you have migrated you tables from LONG columns to LOB columns, then you must
manually examine your applications and determine whether overloaded procedures
must be changed.

Migrating Applications from LONGs to LOBs

11-10 Oracle Database Application Developer's Guide - Large Objects

Some applications that included overloaded procedures with LOB arguments before
migrating may still break. This includes applications that do not use LONG anchored
types. For example, given the following specifications (1 and 2) and procedure call for
procedure p:

procedure p(n number) is ...; -- (1)
procedure p(c clob) is ...; -- (2)

p('123'); -- procedure call

Before migrating, the only conversion allowed was CHAR to NUMBER, so specification 1
would be chosen. After migrating, both conversions are allowed, so the call is
ambiguous and raises an overloading error.

Some Implicit Conversions Are Not Supported for LOB Datatypes
PL/SQL permits implicit conversion from NUMBER, DATE, ROW_ID,
BINARY_INTEGER, and PLS_INTEGER datatypes to a LONG; however, implicit
conversion from these datatypes to a LOB is not allowed.

If your application uses these implicit conversions, then you will have to explicitly
convert these types using the TO_CHAR operator for character data or the TO_RAW
operator for binary data. For example, if your application has an assignment operation
such as:

number_var := long_var; -- The RHS is a LOB variable after converting.

then you must modify your code as follows:

number_var := TO_CHAR(long_var);
-- Assuming that long_var is of type CLOB after conversion

The following conversions are not supported for LOB types:

■ BLOB to VARCHAR2, CHAR, or LONG

■ CLOB to RAW or LONG RAW

This applies to all operations where implicit conversion takes place. For example if
you have a SELECT statement in your application as follows:

SELECT long_raw_column INTO my_varchar2 VARIABLE FROM my_table

and long_raw_column is a BLOB after converting your table, then the SELECT
statement will produce an error. To make this conversion work, you must use the
TO_RAW operator to explicitly convert the BLOB to a RAW as follows:

SELECT TO_RAW(long_raw_column) INTO my_varchar2 VARIABLE FROM my_table

The same holds for selecting a CLOB into a RAW variable, or for assignments of CLOB to
RAW and BLOB to VARCHAR2.

Part IV
Using LOB APIs

This part provides details on using LOB APIs in supported environments. Examples of
LOB API usage are given.

This part contains these chapters:

■ Chapter 12, "Operations Specific to Persistent and Temporary LOBs"

■ Chapter 13, "Data Interface for Persistent LOBs"

■ Chapter 14, "LOB APIs for Basic Operations"

■ Chapter 15, "LOB APIs for BFILE Operations"

Operations Specific to Persistent and Temporary LOBs 12-1

12
Operations Specific to Persistent and

Temporary LOBs

This chapter discusses LOB operations that differ between persistent and temporary
LOB instances. This chapter contains these topics:

■ Persistent LOB Operations

■ Temporary LOB Operations

■ Creating Persistent and Temporary LOBs in PL/SQL

Persistent LOB Operations
This section describes operations that apply only to persistent LOBs.

Inserting a LOB into a Table
You can insert LOB instances into persistent LOB columns using any of the methods
described in Chapter 8, "DDL and DML Statements with LOBs".

Selecting a LOB from a Table
You can select a persistent LOB from a table just as you would any other datatype. In
the following example, persistent LOB instances of different types are selected into
PL/SQL variables.

declare
 blob1 BLOB;
 blob2 BLOB;
 clob1 CLOB;
 nclob1 NCLOB;
BEGIN
 SELECT ad_photo INTO blob1 FROM print_media WHERE Product_id = 2268
 FOR UPDATE;
 SELECT ad_photo INTO blob2 FROM print_media WHERE Product_id = 3106;

See Also:

■ Chapter 14, "LOB APIs for Basic Operations" gives details and
examples of API usage for LOB APIs that can be used with
either temporary or persistent LOBs.

■ Chapter 15, "LOB APIs for BFILE Operations" gives details and
examples for usage of LOB APIs that operate on BFILEs.

Temporary LOB Operations

12-2 Oracle Database Application Developer's Guide - Large Objects

 SELECT ad_sourcetext INTO clob1 FROM Print_media
 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;

 SELECT ad_fltextn INTO nclob1 FROM Print_media
 WHERE product_id=3060 and ad_id=11001 FOR UPDATE;

END;
/
show errors;

Temporary LOB Operations
This section describes operations that apply only to temporary LOB instances.

Creating and Freeing a Temporary LOB
To create a temporary LOB instance, you must declare a variable of the given LOB
datatype and pass the variable to the CREATETEMPORARY API. The temporary LOB
instance will exist in your application until it goes out of scope, your session
terminates, or you explicitly free the instance. Freeing a temporary LOB instance is
recommended to free system resources.

The following example demonstrates how to create and free a temporary LOB in the
PL/SQL environment using the DBMS_LOB package.

declare
 blob1 BLOB;
 blob2 BLOB;
 clob1 CLOB;
 nclob1 NCLOB;
BEGIN
 -- create temp LOBs
 DBMS_LOB.CREATETEMPORARY(blob1,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(blob2,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(clob1,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(nclob1,TRUE, DBMS_LOB.SESSION);

 -- fill with data
 writeDataToLOB_proc(blob1);
 writeDataToLOB_proc(blob2);

 -- CHAR->LOB conversion
 clob1 := 'abcde';
 nclob1 := TO_NCLOB(clob1);

 -- Other APIs
 call_lob_apis(blob1, blob2, clob1, nclob1);

 -- free temp LOBs
 DBMS_LOB.FREETEMPORARY(blob1);
 DBMS_LOB.FREETEMPORARY(blob2);
 DBMS_LOB.FREETEMPORARY(clob1);
 DBMS_LOB.FREETEMPORARY(nclob1);

END;
/
show errors;

Creating Persistent and Temporary LOBs in PL/SQL

Operations Specific to Persistent and Temporary LOBs 12-3

Creating Persistent and Temporary LOBs in PL/SQL
The code example that follows illustrates how to create persistent and temporary
LOBs in PL/SQL. This code is in the demonstration file:

$ORACLE_HOME/rdbms/demo/lobs/plsql/lobdemo.sql */

This demonstration file also calls procedures in separate PL/SQL files that illustrate
usage of other LOB APIs. For a list of these files and links to more information about
related LOB APIs, see "PL/SQL LOB Demonstration Files" on page A-1.

------------------------- Persistent LOB operations ------------------------

declare
 blob1 BLOB;
 blob2 BLOB;
 clob1 CLOB;
 nclob1 NCLOB;
BEGIN
 SELECT ad_photo INTO blob1 FROM print_media WHERE Product_id = 2268
 FOR UPDATE;
 SELECT ad_photo INTO blob2 FROM print_media WHERE Product_id = 3106;

 SELECT ad_sourcetext INTO clob1 FROM Print_media
 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;

 SELECT ad_fltextn INTO nclob1 FROM Print_media
 WHERE product_id=3060 and ad_id=11001 FOR UPDATE;

 call_lob_apis(blob1, blob2, clob1, nclob1);
 rollback;
END;
/
show errors;

------------------------- Temporary LOB operations ------------------------

declare
 blob1 BLOB;
 blob2 BLOB;
 clob1 CLOB;
 nclob1 NCLOB;
BEGIN
 -- create temp LOBs
 DBMS_LOB.CREATETEMPORARY(blob1,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(blob2,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(clob1,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(nclob1,TRUE, DBMS_LOB.SESSION);

 -- fill with data
 writeDataToLOB_proc(blob1);
 writeDataToLOB_proc(blob2);

 -- CHAR->LOB conversion
 clob1 := 'abcde';
 nclob1 := TO_NCLOB(clob1);

Creating Persistent and Temporary LOBs in PL/SQL

12-4 Oracle Database Application Developer's Guide - Large Objects

 -- Other APIs
 call_lob_apis(blob1, blob2, clob1, nclob1);

 -- free temp LOBs
 DBMS_LOB.FREETEMPORARY(blob1);
 DBMS_LOB.FREETEMPORARY(blob2);
 DBMS_LOB.FREETEMPORARY(clob1);
 DBMS_LOB.FREETEMPORARY(nclob1);

END;
/
show errors;

Data Interface for Persistent LOBs 13-1

13
Data Interface for Persistent LOBs

This chapter contains these topics:

■ Overview of the Data Interface for Persistent LOBs

■ Benefits of Using the Data Interface for Persistent LOBs

■ Using the Data Interface for Persistent LOBs in PL/SQL

■ Using the Data Interface for Persistent LOBs in OCI

■ Using the Data Interface for Persistent LOBs in Java

■ Using the Data Interface with Remote LOBs

Overview of the Data Interface for Persistent LOBs
The data interface for persistent LOBs includes a set of Java, PL/SQL, and OCI APIs
that are extended to work with LOB datatypes. These APIs, originally designed for use
with legacy datatypes such as LONG, LONG RAW, and VARCHAR2, can also be used with
the corresponding LOB datatypes shown in Table 13–1 and Table 13–2. These tables
show the legacy datatypes in the "bind or define type" column and the corresponding
supported LOB datatype in the "LOB column type" column. You can use the data
interface for LOBs to store and manipulate character data and binary data in a LOB
column just as if it were stored in the corresponding legacy datatype.

For simplicity, this chapter focuses on character datatypes; however, the same concepts
apply to the full set of character and binary datatypes listed in Table 13–1 and
Table 13–2. CLOB also means NCLOB in these tables.

Note: The data interface works for LOB columns as well as LOBs
which are attributes of objects. In this chapter "LOB columns"
means LOB columns and LOB attributes.

You can use array bind and define interfaces to insert and select
multiple rows in one round trip.

Table 13–1 Corresponding LONG and LOB Datatypes in SQL and PL/SQL

Bind or Define Type LOB Column Type Used For Storing

CHAR CLOB Character data

LONG CLOB Character data

VARCHAR2 CLOB Character data

Benefits of Using the Data Interface for Persistent LOBs

13-2 Oracle Database Application Developer's Guide - Large Objects

Benefits of Using the Data Interface for Persistent LOBs
Using the data interface for persistent LOBs has the following benefits:

■ If your application already uses LONG datatypes, then you can use the same
application with LOB datatypes with little or no modification of your existing
application required. To do so, just convert LONG datatype columns in your tables
to LOB datatype columns as discussed in Chapter 11, "Migrating Columns from
LONGs to LOBs".

■ Performance is better for OCI applications that use sequential access techniques. A
piecewise INSERT or fetch using the data interface has comparable performance to
using OCI functions like OCILobRead2() and OCILobWrite2(). Because the
data interface allows more than 4K bytes of data to be inserted into a LOB in a
single OCI call, a round-trip to the server is saved.

■ You can read LOB data in one OCIStmtFetch() call, instead of fetching the LOB
locator first and then calling OCILobRead2(). This improves performance when
you want to read LOB data starting at the beginning.

■ You can use array bind and define interfaces to insert and select multiple rows
with LOBs in one round trip.

Using the Data Interface for Persistent LOBs in PL/SQL
The data interface enables you to use LONG and LOB datatypes listed in Table 13–1 to
perform the following operations in PL/SQL:

■ INSERT or UPDATE character data stored in datatypes such as VARCHAR2, CHAR,
or LONG into a CLOB column.

■ INSERT or UPDATE binary data stored in datatypes such as RAW or LONG RAW into
a BLOB column.

■ Use the SELECT statement on CLOB columns to select data into a character buffer
variable such as CHAR, LONG, or VARCHAR2.

LONG RAW BLOB Binary data

RAW BLOB Binary data

Table 13–2 Corresponding LONG and LOB Datatypes in OCI

Bind or Define Type LOB Column Type Used For Storing

SQLT_AFC(n) CLOB Character data

SQLT_CHR CLOB Character data

SQLT_LNG CLOB Character data

SQLT_VCS CLOB Character data

SQLT_BIN BLOB Binary data

SQLT_LBI BLOB Binary data

SQLT_LVB BLOB Binary data

Table 13–1 (Cont.) Corresponding LONG and LOB Datatypes in SQL and PL/SQL

Bind or Define Type LOB Column Type Used For Storing

Using the Data Interface for Persistent LOBs in PL/SQL

Data Interface for Persistent LOBs 13-3

■ Use the SELECT statement on BLOB columns to select data into a binary buffer
variable such as RAW and LONG RAW.

■ Make cross-type assignments (implicit type conversions) between CLOB and
VARCHAR2, CHAR, or LONG variables.

■ Make cross-type assignments (implicit type conversions) between BLOB and RAW
or LONG RAW variables.

■ Pass LOB datatypes to functions defined to accept LONG datatypes or pass LONG
datatypes to functions defined to accept LOB datatypes. For example, you can
pass a CLOB instance to a function defined to accept another character type, such
as VARCHAR2, CHAR, or LONG.

■ Use CLOBs with other PL/SQL functions and operators that accept VARCHAR2
arguments such as INSTR and SUBSTR. See "Passing CLOBs to SQL and PL/SQL
Built-In Functions" on page 13-5 for a complete list.

Guidelines for Accessing LOB Columns Using the Data Interface in SQL and PL/SQL
This section describes techniques you use to access LOB columns or attributes using
the data interface for persistent LOBs.

Data from CLOB and BLOB columns or attributes can be referenced by regular SQL
statements, such as INSERT, UPDATE, and SELECT.

There is no piecewise INSERT, UPDATE, or fetch routine in PL/SQL. Therefore, the
amount of data that can be accessed from a LOB column or attribute is limited by the
maximum character buffer size. PL/SQL supports character buffer sizes up to 32KB - 1
(32767 bytes). For this reason, LOB only less than 32K bytes in size can be accessed by
PL/SQL applications using the data interface for persistent LOBs.

If you need to access more than 32KB -1 using the data interface, then you must make
OCI calls from the PL/SQL code to use the APIs for piecewise insert and fetch.

Use he following are guidelines for using the data interface to access LOB columns or
attributes:

■ INSERT operations

You can INSERT into tables containing LOB columns or attributes using regular
INSERT statements in the VALUES clause. The field of the LOB column can be a
literal, a character datatype, a binary datatype, or a LOB locator.

■ UPDATE operations

Note: When using the data interface for LOBs with the SELECT
statement in PL/SQL, you cannot specify the amount you want to
read. You can only specify the buffer length of your buffer. If your
buffer length is smaller than the LOB data length, then the database
throws an exception.

See Also:

■ Chapter 9, "SQL Semantics and LOBs" for details on LOB
support in SQL statements

■ "Some Implicit Conversions Are Not Supported for LOB
Datatypes" on page 11-10

Using the Data Interface for Persistent LOBs in PL/SQL

13-4 Oracle Database Application Developer's Guide - Large Objects

LOB columns or attributes can be updated as a whole by UPDATE... SET
statements. In the SET clause, the new value can be a literal, a character datatype,
a binary datatype, or a LOB locator.

■ 4000 byte limit on hexadecimal to raw and raw to hexadecimal conversions

The database does not do implicit hexadecimal to RAW or RAW to hexadecimal
conversions on data that is more than 4000 bytes in size. You cannot bind a buffer
of character data to a binary datatype column, and you cannot bind a buffer of
binary data to a character datatype column if the buffer is over 4000 bytes in size.
Attempting to do so will result in your column data being truncated at 4000 bytes.

For example, you cannot bind a VARCHAR2 buffer to a LONG RAW or a BLOB
column if the buffer is more than 4000 bytes in size. Similarly, you cannot bind a
RAW buffer to a LONG or a CLOB column if the buffer is more than 4000 bytes in
size.

■ SELECT operations

LOB columns or attributes can be selected into character or binary buffers in
PL/SQL. If the LOB column or attribute is longer than the buffer size, then an
exception is raised without filling the buffer with any data. LOB columns or
attributes can also be selected into LOB locators.

Implicit Assignment and Parameter Passing
Implicit assignment and parameter passing are supported for LOB columns. For the
datatypes listed in Table 13–1 and Table 13–2, you can pass or assign: any character
type to any other character type, or any binary type to any other binary type using the
data interface for persistent LOBs.

Implicit assignment works for variables declared explicitly and for variables declared
by referencing an existing column type using the %TYPE attribute as show in the
following example. This example assumes that column long_col in table t has been
migrated from a LONG to a CLOB column.

CREATE TABLE t (long_col LONG); -- Alter this table to change LONG column to LOB
DECLARE
 a VARCHAR2(100);
 b t.long_col%type; -- This variable changes from LONG to CLOB
BEGIN
 SELECT * INTO b FROM t;
 a := b; -- This changes from "VARCHAR2 := LONG to VARCHAR2 := CLOB
 b := a; -- This changes from "LONG := VARCHAR2 to CLOB := VARCHAR2
END;

Implicit parameter passing is allowed between functions and procedures. For example,
you can pass a CLOB to a function or procedure where the formal parameter is defined
as a VARCHAR2.

Note: The assigning a VARCHAR2 buffer to a LOB variable is
somewhat less efficient than assigning a VARCHAR2 to a LONG
variable because the former involves creating a temporary LOB.
Therefore, PL/SQL users will see a slight deterioration in the
performance of their applications.

Using the Data Interface for Persistent LOBs in PL/SQL

Data Interface for Persistent LOBs 13-5

Passing CLOBs to SQL and PL/SQL Built-In Functions
Implicit parameter passing is also supported for built-in PL/SQL functions that accept
character data. For example, INSTR can accept a CLOB as well as other character data.

Any SQL or PL/SQL built-in function that accepts a VARCHAR2 can accept a CLOB as
an argument. Similarly, a VARCHAR2 variable can be passed to any DBMS_LOB API for
any parameter that takes a LOB locator.

Explicit Conversion Functions
In PL/SQL, the following explicit conversion functions convert other data types to
CLOB and BLOB datatypes as follows:

■ TO_CLOB() converts LONG, VARCHAR2, and CHAR to CLOB

■ TO_BLOB() converts LONG RAW and RAW to BLOB

Also note that the conversion function TO_CHAR() can convert a CLOB to a CHAR type.

Calling PL/SQL and C Procedures from SQL
When a PL/SQL or C procedure is called from SQL, buffers with more than 4000 bytes
of data are not allowed.

Calling PL/SQL and C Procedures from PL/SQL
You can call a PL/SQL or C procedure from PL/SQL. You can pass a CLOB as an actual
parameter where CHR is the formal parameter, or vice versa. The same holds for BLOBs
and RAWs.

One example of when these cases can arise is when either the formal or the actual
parameter is an anchored type, that is, the variable is declared using the
table_name.column_name%type syntax.

PL/SQL procedures or functions can accept a CLOB or a VARCHAR2 as a formal
parameter. For example the PL/SQL procedure could be one of the following:

■ When the formal parameter is a CLOB:

CREATE OR REPLACE PROCEDURE get_lob(table_name IN VARCHAR2, lob INOUT
CLOB) AS
 ...
BEGIN
 ...
END;
/

■ When the formal parameter is a VARCHAR2:

CREATE OR REPLACE PROCEDURE get_lob(table_name IN VARCHAR2, lob INOUT
VARCHAR2) AS
 ...
BEGIN
 ...
END;
/

The calling function could be of any of the following types:

■ When the actual parameter is a CHR:

See Also: Chapter 9, "SQL Semantics and LOBs"

Using the Data Interface for Persistent LOBs in PL/SQL

13-6 Oracle Database Application Developer's Guide - Large Objects

create procedure ...
declare
c VARCHAR2[200];
BEGIN
 get_lob('table_name', c);
END;

■ When the actual parameter is a CLOB:

create procedure ...
declare
c CLOB;
BEGIN
 get_lob('table_name', c);
END;

Binds of All Sizes in INSERT and UPDATE Operations
Binds of all sizes are supported for INSERT and UPDATE operations on LOB columns.
Multiple binds of any size are allowed in a single INSERT or UPDATE statement.

4000 Byte Limit on Results of a SQL Operator
If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data consists of
a SQL operator, then Oracle Database limits the size of the result to at most 4000 bytes.

The following statement inserts only 4000 bytes because the result of LPAD is limited to
4000 bytes:

INSERT INTO print_media (ad_sourcetext) VALUES (lpad('a', 5000, 'a'));

The following statement inserts only 2000 bytes because the result of LPAD is limited to
4000 bytes, and the implicit hexadecimal to raw conversion converts it to 2000 bytes of
RAW data:

INSERT INTO print_media (ad_photo) VALUES (lpad('a', 5000, 'a'));

Example of 4000 Byte Result Limit of a SQL Operator
The following example illustrates how the result for SQL operators is limited to 4000
bytes.

/* The following command inserts only 4000 bytes because the result of
 * LPAD is limited to 4000 bytes */
INSERT INTO print_media(product_id, ad_id, ad_sourcetext)
 VALUES (2004, 5, lpad('a', 5000, 'a'));
SELECT LENGTH(ad_sourcetext) FROM print_media
 WHERE product_id=2004 AND ad_id=5;
ROLLBACK;

/* The following command inserts only 2000 bytes because the result of
 * LPAD is limited to 4000 bytes, and the implicit hex to raw conversion
 * converts it to 2000 bytes of RAW data. */
INSERT INTO print_media(product_id, ad_id, ad_composite)
 VALUES (2004, 5, lpad('a', 5000, 'a'));
SELECT LENGTH(ad_composite) from print_media

Note: When you create a table, the length of the default value you
specify for any LOB column is restricted to 4000 bytes.

Using the Data Interface for Persistent LOBs in PL/SQL

Data Interface for Persistent LOBs 13-7

 WHERE product_id=2004 AND ad_id=5;
ROLLBAACK;

Restrictions on Binds of More Than 4000 Bytes
The following lists the restrictions for binds of more than 4000 bytes:

■ If a table has both LONG and LOB columns, then you can bind more than 4000
bytes of data to either the LONG or LOB columns, but not both in the same
statement.

■ In an INSERT AS SELECT operation, binding of any length data to LOB columns
is not allowed.

Parallel DML Support for LOBs
Parallel execution of the following DML operations on tables with LOB columns is
supported. These operations run in parallel execution mode only when performed on
a partitioned table. DML statements on non-partitioned tables with LOB columns
continue to execute in serial execution mode.

■ INSERT AS SELECT

■ CREATE TABLE AS SELECT

■ DELETE

■ UPDATE

■ MERGE (conditional UPDATE and INSERT)

■ Multitable INSERT

Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and UPDATE
DECLARE
 bigtext VARCHAR2(32767);
 smalltext VARCHAR2(2000);
 bigraw RAW (32767);
BEGIN
 bigtext := LPAD('a', 32767, 'a');
 smalltext := LPAD('a', 2000, 'a');
 bigraw := utl_raw.cast_to_raw (bigtext);

 /* Multiple long binds for LOB columns are allowed for INSERT: */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext, ad_composite)
 VALUES (2004, 1, bigtext, bigraw);

 /* Single long bind for LOB columns is allowed for INSERT: */
 INSERT INTO print_media (product_id, ad_id, ad_sourcetext)
 VALUES (2005, 2, smalltext);

 bigtext := LPAD('b', 32767, 'b');
 smalltext := LPAD('b', 20, 'a');
 bigraw := utl_raw.cast_to_raw (bigtext);

 /* Multiple long binds for LOB columns are allowed for UPDATE: */
 UPDATE print_media SET ad_sourcetext = bigtext, ad_composite = bigraw,

See Also: Oracle Database Administrator's Guide section "Managing
Processes for Parallel SQL Execution"

Using the Data Interface for Persistent LOBs in PL/SQL

13-8 Oracle Database Application Developer's Guide - Large Objects

 ad_finaltext = smalltext;

 /* Single long bind for LOB columns is allowed for UPDATE: */
 UPDATE print_media SET ad_sourcetext = smalltext, ad_finaltext = bigtext;

 /* The following is NOT allowed because we are trying to insert more than
 4000 bytes of data in a LONG and a LOB column: */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext, press_release)
 VALUES (2030, 3, bigtext, bigtext);

 /* Insert of data into LOB attribute is allowed */
 INSERT INTO print_media(product_id, ad_id, ad_header)
 VALUES (2049, 4, adheader_typ(null, null, null, bigraw));

 /* The following is not allowed because we try to perform INSERT AS
 SELECT data INTO LOB */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext)
 SELECT 2056, 5, bigtext FROM dual;

END;
/

Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT Operations
INSERT and UPDATE statements on LOBs are used in the same way as on LONGs. For
example:

DECLARE
 ad_buffer VARCHAR2(100);
BEGIN
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext)
 VALUES(2004, 5, 'Source for advertisement 1');
 UPDATE print_media SET ad_sourcetext= 'Source for advertisement 2'
 WHERE product_id=2004 AND ad_id=5;
 /* This will get the LOB column if it is up to 100 bytes, otherwise it will
 * raise an exception */
 SELECT ad_sourcetext INTO ad_buffer FROM print_media
 WHERE product_id=2004 AND ad_id=5;
END;
/

Using the Data Interface for LOBs in Assignments and Parameter Passing
The data interface for LOBs enables implicit assignment and parameter passing as
shown in the following example:

CREATE TABLE t (clob_col CLOB, blob_col BLOB);
INSERT INTO t VALUES('abcdefg', 'aaaaaa');

DECLARE
 var_buf VARCHAR2(100);
 clob_buf CLOB;
 raw_buf RAW(100);
 blob_buf BLOB;
BEGIN
 SELECT * INTO clob_buf, blob_buf FROM t;
 var_buf := clob_buf;
 clob_buf:= var_buf;

Using the Data Interface for Persistent LOBs in PL/SQL

Data Interface for Persistent LOBs 13-9

 raw_buf := blob_buf;
 blob_buf := raw_buf;
END;
/

CREATE OR REPLACE PROCEDURE FOO (a IN OUT CLOB) IS
BEGIN
 -- Any procedure body
 a := 'abc';
END;
/

CREATE OR REPLACE PROCEDURE BAR (b IN OUT VARCHAR2) IS
BEGIN
 -- Any procedure body
 b := 'xyz';
END;
/

DECLARE
 a VARCHAR2(100) := '1234567';
 b CLOB;
BEGIN
 FOO(a);
 SELECT clob_col INTO b FROM t;
 BAR(b);
END;
/

Using the Data Interface for LOBs with PL/SQL Built-In Functions
This example illustrates the use of CLOBs in PL/SQL built-in functions, using the data
interface for LOBs:

DECLARE
 my_ad CLOB;
 revised_ad CLOB;
 myGist VARCHAR2(100):= 'This is my gist.';
 revisedGist VARCHAR2(100);
BEGIN
 INSERT INTO print_media (product_id, ad_id, ad_sourcetext)
 VALUES (2004, 5, 'Source for advertisement 1');

 -- select a CLOB column into a CLOB variable
 SELECT ad_sourcetext INTO my_ad FROM print_media
 WHERE product_id=2004 AND ad_id=5;

 -- perform VARCHAR2 operations on a CLOB variable
 revised_ad := UPPER(SUBSTR(my_ad, 1, 20));

 -- revised_ad is a temporary LOB
 -- Concat a VARCHAR2 at the end of a CLOB
 revised_ad := revised_ad || myGist;

 -- The following statement will raise an error if my_ad is
 -- longer than 100 bytes
 myGist := my_ad;
END;
/

Using the Data Interface for Persistent LOBs in OCI

13-10 Oracle Database Application Developer's Guide - Large Objects

Using the Data Interface for Persistent LOBs in OCI
This section discusses OCI functions included in the data interface for persistent LOBs.
These OCI functions work for LOB datatypes exactly the same way as they do for
LONG datatypes. Using these functions, you can perform INSERT, UPDATE, fetch, bind,
and define operations in OCI on LOBs using the same techniques you would use on
other datatypes that store character or binary data.

Binding LOB Datatypes in OCI
You can bind LOB datatypes in the following operations:

■ Regular, piecewise, and callback binds for INSERT and UPDATE operations

■ Array binds for INSERT and UPDATE operations

■ Parameter passing across PL/SQL and OCI boundaries

Piecewise operations can be performed by polling or by providing a callback. To
support these operations, the following OCI functions accept the LONG and LOB
datatypes listed in Table 13–2.

■ OCIBindByName() and OCIBindByPos()

These functions create an association between a program variable and a
placeholder in the SQL statement or a PL/SQL block for INSERT and UPDATE
operations.

■ OCIBindDynamic()

You use this call to register callbacks for dynamic data allocation for INSERT and
UPDATE operations

■ OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo()

These calls are used to get or set piece information for piecewise operations.

Defining LOB Datatypes in OCI
The data interface for persistent LOBs allows the following OCI functions to accept the
LONG and LOB datatypes listed in Table 13–2.

■ OCIDefineByPos()

This call associates an item in a SELECT list with the type and output data buffer.

■ OCIDefineDynamic()

This call registers user callbacks for SELECT operations if the
OCI_DYNAMIC_FETCH mode was selected in OCIDefineByPos() function call.

When you use these functions with LOB types, the LOB data, and not the locator, is
selected into your buffer. Note that in OCI, you cannot specify the amount you want to
read using the data interface for LOBs. You can only specify the buffer length of your
buffer. The database only reads whatever amount fits into your buffer and the data is
truncated.

Note: You can use array bind and define interfaces to insert and
select multiple rows with LOBs in one round trip.

See Also: Oracle Call Interface Programmer's Guide, chapter 5,
section "Runtime Data Allocation and Piecewise Operations in OCI"

Using the Data Interface for Persistent LOBs in OCI

Data Interface for Persistent LOBs 13-11

Using Multibyte Character Sets in OCI with the Data Interface for LOBs
When the client character set is in a multibyte format, functions included in the data
interface operate the same way with LOB datatypes as they do for LONG datatypes as
follows:

■ For a piecewise fetch in a multibyte character set, a multibyte character could be cut
in the middle, with some bytes at the end of one buffer and remaining bytes in the
next buffer.

■ For a regular fetch, if the buffer cannot hold all bytes of the last character, then
Oracle returns as many bytes as fit into the buffer, hence returning partial
characters.

Using OCI Functions to Perform INSERT or UPDATE on LOB Columns
This section discusses the various techniques you can use to perform INSERT or
UPDATE operations on LOB columns or attributes using the data interface. The
operations described in this section assume that you have initialized the OCI
environment and allocated all necessary handles.

Simple INSERTs or UPDATEs in One Piece
To perform simple INSERT or UPDATE operations in one piece using the data interface
for persistent LOBs, perform the following steps:

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DEFAULT mode to bind a
placeholder for LOB as character data or binary data.

3. Call OCIStmtExecute() to do the actual INSERT or UPDATE operation.

Using Piecewise INSERTs and UPDATEs with Polling
To perform piecewise INSERT or UPDATE operations with polling using the data
interface for persistent LOBs, do the following steps:

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DATA_AT_EXEC mode to
bind a LOB as character data or binary data.

3. Call OCIStmtExecute() in default mode. Do each of the following in a loop
while the value returned from OCIStmtExecute() is OCI_NEED_DATA.
Terminate your loop when the value returned from OCIStmtExecute() is
OCI_SUCCESS.

■ Call OCIStmtGetPieceInfo() to retrieve information about the piece to be
inserted.

■ Call OCIStmtSetPieceInfo() to set information about piece to be inserted.

Piecewise INSERTs and UPDATEs with Callback
To perform piecewise INSERT or UPDATE operations with callback using the data
interface for persistent LOBs, do the following steps:

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DATA_AT_EXEC mode to
bind a placeholder for the LOB column as character data or binary data.

3. Call OCIBindDynamic() to specify the callback.

Using the Data Interface for Persistent LOBs in OCI

13-12 Oracle Database Application Developer's Guide - Large Objects

4. Call OCIStmtExecute() in default mode.

Array INSERT and UPDATE Operations
To perform array INSERT or UPDATE operations using the data interface for persistent
LOBs, use any of the techniques discussed in this section in conjunction with
OCIBindArrayOfStruct(), or by specifying the number of iterations (iter), with
iter value greater than 1, in the OCIStmtExecute() call.

Using the Data Interface to Fetch LOB Data in OCI
This section discusses techniques you can use to fetch data from LOB columns or
attributes in OCI using the data interface for persistent LOBs.

Simple Fetch in One Piece
To perform a simple fetch operation on LOBs in one piece using the data interface for
persistent LOBs, do the following:

1. Call OCIStmtPrepare() to prepare the SELECT statement in OCI_DEFAULT
mode.

2. Call OCIDefineByPos() to define a select list position in OCI_DEFAULT mode to
define a LOB as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIStmtFetch() to do the actual fetch.

Piecewise Fetch with Polling
To perform a piecewise fetch operation on a LOB column with polling using the data
interface for LOBs, do the following steps:

1. Call OCIStmtPrepare() to prepare the SELECT statement in OCI_DEFAULT
mode.

2. Call OCIDefinebyPos() to define a select list position in OCI_DYNAMIC_FETCH
mode to define the LOB column as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIStmtFetch() in default mode. Do each of the following in a loop while
the value returned from OCIStmtFetch() is OCI_NEED_DATA. Terminate your
loop when the value returned from OCIStmtFetch() is OCI_SUCCESS.

■ Call OCIStmtGetPieceInfo() to retrieve information about the piece to be
fetched.

■ Call OCIStmtSetPieceInfo() to set information about piece to be fetched.

Piecewise with Callback
To perform a piecewise fetch operation on a LOB column with callback using the data
interface for persistent LOBs, do the following:

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIDefinebyPos() to define a select list position in OCI_DYNAMIC_FETCH
mode to define the LOB column as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIDefineDynamic() to specify the callback.

Using the Data Interface for Persistent LOBs in OCI

Data Interface for Persistent LOBs 13-13

5. Call OCIStmtFetch() in default mode.

Array Fetch
To perform an array fetch in OCI using the data interface for persistent LOBs, use any
of the techniques discussed in this section in conjunction with
OCIDefineArrayOfStruct(), or by specifying the number of iterations (iter),
with the value of iter greater than 1, in the OCIStmtExecute() call.

PL/SQL and C Binds from OCI
When you call a PL/SQL procedure from OCI, and have an in or out or in/out bind,
you should be able to:

■ Bind a variable as SQLT_CHR or SQLT_LNG where the formal parameter of the
PL/SQL procedure is SQLT_CLOB, or

■ Bind a variable as SQLT_BIN or SQLT_LBI where the formal parameter is
SQLT_BLOB

The following two cases work:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner
Here is an example of calling PL/SQL out-binds in the "begin foo(:1); end;" Manner:

text *sqlstmt = (text *)"BEGIN get_lob(:c); END; " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner
Here is an example of calling PL/SQL out-binds in the "call foo(:1);" manner:

text *sqlstmt = (text *)"CALL get_lob(:c);" ;

In both these cases, the rest of the program has these statements:

OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 curlen = 0;
OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":c", (sb4) strlen((char *) ":c"),
 (dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 1, (ub4 *) &curlen, (ub4) OCI_DATA_AT_EXEC);

The PL/SQL procedure, get_lob(), is as follows:

procedure get_lob(c INOUT CLOB) is -- This might have been column%type
 BEGIN
 ... /* The procedure body could be in PL/SQL or C*/
 END;

Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE
void insert3()
{
/* Insert of data into LOB attributes is allowed. */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO Print_media (ad_header) \
 VALUES (adheader_typ(NULL, NULL, NULL,:1))";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),

Using the Data Interface for Persistent LOBs in OCI

13-14 Oracle Database Application Developer's Guide - Large Objects

 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (const OCISnapshot*) 0,
 (OCISnapshot*)0, OCI_DEFAULT);
}

Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs
The data interface for LOBs allows LOB PL/SQL binds from OCI to work as follows.
When you call a PL/SQL procedure from OCI, and have an IN or OUT or IN OUT
bind, you should be able to bind a variable as SQLT_CHR, where the formal parameter
of the PL/SQL procedure is SQLT_CLOB.

For the OCI calling program, the following are likely cases:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner
For example:

text *sqlstmt = (text *)"BEGIN PKG1.P5 (:c); END; " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner
For example:

text *sqlstmt = (text *)"CALL PKG1.P5(:c);" ;

In both these cases, the rest of the program is as follows:

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 curlen = 0;

 OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":c4", (sb4) strlen((char *) ":c"),
 (dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 1, (ub4 *) &curlen, (ub4) OCI_DATA_AT_EXEC);

 OCIStmtExecute(svchp, stmthp, errhp,(ub4) 0,(ub4) 0, (const OCISnapshot*) 0,
 (OCISnapshot*) 0,(ub4) OCI_DEFAULT);

The PL/SQL procedure PKG1.P5 is as follows:

 CREATE OR REPLACE PACKAGE BODY pkg1 AS
 ...
 procedure p5 (c OUT CLOB) is
 -- This might have been table%rowtype (so it is CLOB now)
 BEGIN
 ...
 END p5;

END pkg1;

Note: C procedures are wrapped inside a PL/SQL stub, so the
OCI application always calls the PL/SQL stub.

Using the Data Interface for Persistent LOBs in OCI

Data Interface for Persistent LOBs 13-15

Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes
The following example illustrates binding character data for a LOB column:

void simple_insert()
{
 word buflen;
 text buf[5000];
 text *insstmt = (text *) "INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (2004, 1, :SRCTXT)";

 OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)strlen((char *)insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[0], errhp,
 (text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
 (dvoid *) buf, (sb4) sizeof(buf), SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 memset((void *)buf, (int)'A', (size_t)5000);
 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT);
}

Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling
The following example illustrates using piecewise INSERT with polling using the data
interface for LOBs.

void piecewise_insert()
{
 text *sqlstmt = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:1, :2, :3)";
 ub2 rcode;
 ub1 piece, i;
 word product_id = 2004;
 word ad_id = 2;
 ub4 buflen;
 char buf[5000];

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) &product_id, (sb4) sizeof(product_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
 (dvoid *) &ad_id, (sb4) sizeof(ad_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) 0, (sb4) 15000, SQLT_LNG,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC);

 i = 0;
 while (1)
 {
 i++;
 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,

Using the Data Interface for Persistent LOBs in OCI

13-16 Oracle Database Application Developer's Guide - Large Objects

 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
 switch(retval)
 {
 case OCI_NEED_DATA:
 memset((void *)buf, (int)'A'+i, (size_t)5000);
 buflen = 5000;
 if (i == 1) piece = OCI_FIRST_PIECE;
 else if (i == 3) piece = OCI_LAST_PIECE;
 else piece = OCI_NEXT_PIECE;

 if (OCIStmtSetPieceInfo((dvoid *)bndhp[2],
 (ub4)OCI_HTYPE_BIND, errhp, (dvoid *)buf,
 &buflen, piece, (dvoid *) 0, &rcode))
 {
 DISCARD printf("ERROR: OCIStmtSetPieceInfo: %d \n", retval);
 break;
 }

 break;
 case OCI_SUCCESS:
 break;
 default:
 printf("oci exec returned %d \n", retval);
 report_error(errhp);
 retval = OCI_SUCCESS;
 } /* end switch */
 if (retval == OCI_SUCCESS)
 break;
 } /* end while(1) */
}

Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback
The following example illustrates binding LONG data to LOB columns using a
piecewise INSERT with callback:

void callback_insert()
{
 word buflen = 15000;
 word product_id = 2004;
 word ad_id = 3;
 text *sqlstmt = (text *) "INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:1, :2, :3)";
 word pos = 3;

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)

 OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) &product_id, (sb4) sizeof(product_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
 (dvoid *) &ad_id, (sb4) sizeof(ad_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) 0, (sb4) buflen, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,

Using the Data Interface for Persistent LOBs in OCI

Data Interface for Persistent LOBs 13-17

 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC);

 OCIBindDynamic(bndhp[2], errhp, (dvoid *) (dvoid *) &pos,
 insert_cbk, (dvoid *) 0, (OCICallbackOutBind) 0);

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
} /* end insert_data() */

/* Inbind callback to specify input data. */
static sb4 insert_cbk(dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,
 dvoid **bufpp, ub4 *alenpp, ub1 *piecep, dvoid **indpp)
{
 static int a = 0;
 word j;
 ub4 inpos = *((ub4 *)ctxp);
 char buf[5000];

 switch(inpos)
 {
 case 3:
 memset((void *)buf, (int) 'A'+a, (size_t) 5000);
 *bufpp = (dvoid *) buf;
 *alenpp = 5000 ;
 a++;
 break;
 default: printf("ERROR: invalid position number: %d\n", inpos);
 }

 *indpp = (dvoid *) 0;
 *piecep = OCI_ONE_PIECE;
 if (inpos == 3)
 {
 if (a<=1)
 {
 *piecep = OCI_FIRST_PIECE;
 printf("Insert callback: 1st piece\n");
 }
 else if (a<3)
 {
 *piecep = OCI_NEXT_PIECE;
 printf("Insert callback: %d'th piece\n", a);
 }
 else {
 *piecep = OCI_LAST_PIECE;
 printf("Insert callback: %d'th piece\n", a);
 a = 0;
 }
 }
 return OCI_CONTINUE;
}

Binding LONG Data to LOB Columns Using an Array INSERT
The following example illustrates binding character data for LOB columns using an
array INSERT operation:

void array_insert()
{

Using the Data Interface for Persistent LOBs in OCI

13-18 Oracle Database Application Developer's Guide - Large Objects

 ub4 i;
 word buflen;
 word arrbuf1[5];
 word arrbuf2[5];
 text arrbuf3[5][5000];
 text *insstmt = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:PID, :AID, :SRCTXT)";

 OCIStmtPrepare(stmthp, errhp, insstmt,
 (ub4)strlen((char *)insstmt), (ub4) OCI_NTV_SYNTAX,
 (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[0], errhp,
 (text *) ":PID", (sb4) strlen((char *) ":PID"),
 (dvoid *) &arrbuf1[0], (sb4) sizeof(arrbuf1[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[1], errhp,
 (text *) ":AID", (sb4) strlen((char *) ":AID"),
 (dvoid *) &arrbuf2[0], (sb4) sizeof(arrbuf2[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[2], errhp,
 (text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
 (dvoid *) arrbuf3[0], (sb4) sizeof(arrbuf3[0]), SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindArrayOfStruct(bndhp[0], errhp sizeof(arrbuf1[0]),
 indsk, rlsk, rcsk);
 OCIBindArrayOfStruct(bndhp[1], errhp, sizeof(arrbuf2[0]),
 indsk, rlsk, rcsk);
 OCIBindArrayOfStruct(bndhp[2], errhp, sizeof(arrbuf3[0]),
 indsk, rlsk, rcsk);

 for (i=0; i<5; i++)
 {
 arrbuf1[i] = 2004;
 arrbuf2[i] = i+4;
 memset((void *)arrbuf3[i], (int)'A'+i, (size_t)5000);
 }
 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 5, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

}

Selecting a LOB Column into a LONG Buffer Using a Simple Fetch
The following example illustrates selecting a LOB column using a simple fetch:

void simple_fetch()
{
 word retval;
 text buf[15000];
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE\
 Product_id = 2004";

Using the Data Interface for Persistent LOBs in OCI

Data Interface for Persistent LOBs 13-19

 OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
 while (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 {
 OCIDefineByPos(stmthp, &defhp, errhp, (ub4) 1, (dvoid *) buf,
 (sb4) sizeof(buf), (ub2) SQLT_CHR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);
 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 if (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 DISCARD printf("buf = %.*s\n", 15000, buf);
 }
}

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling
The following example illustrates selecting a LOB column into a LONG buffer using a
piecewise fetch with polling:

void piecewise_fetch()
{
 text buf[15000];
 ub4 buflen=5000;
 word retval;
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media\
 WHERE Product_id = 2004 AND Ad_id = 2";

 OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIDefineByPos(stmthp, &dfnhp, errhp, (ub4) 1,
 (dvoid *) NULL, (sb4) 100000, SQLT_LNG,
 (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, (ub4) OCI_DYNAMIC_FETCH);

 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
 (ub2) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);

 while (retval != OCI_NO_DATA && retval != OCI_SUCCESS)
 {
 ub1 piece;
 ub4 iter;
 ub4 idx;

 genclr((void *)buf, 5000);
 switch(retval)
 {
 case OCI_NEED_DATA:
 OCIStmtGetPieceInfo(stmthp, errhp, &hdlptr, &hdltype,
 &in_out, &iter, &idx, &piece);
 buflen = 5000;

Using the Data Interface for Persistent LOBs in OCI

13-20 Oracle Database Application Developer's Guide - Large Objects

 OCIStmtSetPieceInfo(hdlptr, hdltype, errhp,
 (dvoid *) buf, &buflen, piece,
 (CONST dvoid *) &indp1, (ub2 *) 0);
 retval = OCI_NEED_DATA;
 break;
 default:
 printf("ERROR: piece-wise fetching, %d\n", retval);
 return;
 } /* end switch */
 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
 (ub2) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 printf("Data : %.5000s\n", buf);
 } /* end while */
}

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback
The following example illustrates selecting a LONG column into a LOB buffer when
using a piecewise fetch with callback:

char buf[5000];
void callback_fetch()
{
 word outpos = 1;
 text *sqlstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE\
 Product_id = 2004 AND Ad_id = 3";

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &dfnhp[0], errhp, (ub4) 1,
 (dvoid *) 0, (sb4)3 * sizeof(buf), SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) OCI_DYNAMIC_FETCH);

 OCIDefineDynamic(dfnhp[0], errhp, (dvoid *) &outpos,
 (OCICallbackDefine) fetch_cbk);

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
 buf[4999] = '\0';
 printf("Select callback: Last piece: %s\n", buf);
}

/* -- */
/* Fetch callback to specify buffers. */
/* -- */
static sb4 fetch_cbk(dvoid *ctxp, OCIDefine *dfnhp, ub4 iter, dvoid **bufpp,
 ub4 **alenpp, ub1 *piecep, dvoid **indpp, ub2 **rcpp)
{
 static int a = 0;
 ub4 outpos = *((ub4 *)ctxp);
 ub4 len = 5000;
 switch(outpos)
 {
 case 1:
 a ++;
 *bufpp = (dvoid *) buf;
 *alenpp = &len;
 break;

Using the Data Interface for Persistent LOBs in OCI

Data Interface for Persistent LOBs 13-21

 default:
 *bufpp = (dvoid *) 0;
 *alenpp = (ub4 *) 0;
 printf("ERROR: invalid position number: %d\n", outpos);
 }
 *indpp = (dvoid *) 0;
 *rcpp = (ub2 *) 0;

 buf[len] = '\0';
 if (a<=1)
 {
 *piecep = OCI_FIRST_PIECE;
 printf("Select callback: 0th piece\n");
 }
 else if (a<3)
 {
 *piecep = OCI_NEXT_PIECE;
 printf("Select callback: %d'th piece: %s\n", a-1, buf);
 }
 else {
 *piecep = OCI_LAST_PIECE;
 printf("Select callback: %d'th piece: %s\n", a-1, buf);
 a = 0;
 }
 return OCI_CONTINUE;
}

Selecting a LOB Column into a LONG Buffer Using an Array Fetch
The following example illustrates selecting a LOB column into a LONG buffer using an
array fetch:

void array_fetch()
{
 word i;
 text arrbuf[5][5000];
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE\
 Product_id = 2004 AND Ad_id >=4";

 OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT);

 OCIDefineByPos(stmthp, &defhp1, errhp, (ub4) 1,
 (dvoid *) arrbuf[0], (sb4) sizeof(arrbuf[0]),
 (ub2) SQLT_CHR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);

 OCIDefineArrayOfStruct(dfnhp1, errhp, sizeof(arrbuf[0]), indsk,
 rlsk, rcsk);

 retval = OCIStmtFetch(stmthp, errhp, (ub4) 5,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 if (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 {
 printf("%.5000s\n", arrbuf[0]);
 printf("%.5000s\n", arrbuf[1]);
 printf("%.5000s\n", arrbuf[2]);

Using the Data Interface for Persistent LOBs in Java

13-22 Oracle Database Application Developer's Guide - Large Objects

 printf("%.5000s\n", arrbuf[3]);
 printf("%.5000s\n", arrbuf[4]);
 }
}

Using the Data Interface for Persistent LOBs in Java
You can also read and write CLOB and BLOB data using the same streaming
mechanism as for LONG and LONG RAW data. To read, use defineColumnType(nn,
Types.LONGVARCHAR) or defineColumnType(nn, Types.LONGVARBINARY)
on the column. This produces a direct stream on the data as if it is a LONG or LONG RAW
column. For input in a PreparedStatement, you may use setBinaryStream(),
setCharacterStream(), or setAsciiStream() for a parameter which is a BLOB
or CLOB. These methods use the stream interface to create a LOB in the database from
the data in the stream. Both of these techniques reduce database round trips and may
result in improved performance in some cases. See the Javadoc on stream data for the
significant restrictions which apply, at
http://www.oracle.com/technology/index.html.

Refer to the following in the JDBC Developer's Guide and Reference:

Using the Data Interface with Remote LOBs
The data interface for insert, update, and select of remote LOBs (access over a dblink)
is supported since Oracle Database 10g Release 2. The examples in the following
sections are for the print_media table created in two schemas: dbs1 and dbs2. The
CLOB column of that table used in the examples shown is ad_finaltext. The
examples to be given for PL/SQL, OCI, and Java use binds and defines for this one
column, but multiple columns can also be accessed. Here is the functionality
supported and its limitations:

■ You can define a CLOB as CHAR or NCHAR and an NCLOB as CHAR or NCHAR.
CLOB and NCLOB can be defined as a LONG. A BLOB can be defined as a RAW or a
LONG RAW.

■ Queries involving more than one database are not supported:

SELECT t1.lobcol, a2.lobcol FROM t1, t2.lobcol@dbs2 a2 WHERE
LENGTH(t1.lobcol) = LENGTH(a2.lobcol);

Neither is this query:

SELECT t1.lobcol FROM t1@dbs1
UNION ALL
SELECT t2.lobcol FROM t2@dbs2;

■ DDL commands are not supported, so the following returns an error:

CREATE VIEW v AS SELECT lob_col FROM tab@dbs;

See Also:

■ Oracle Database JDBC Developer's Guide and Reference, chapter 14,
"Working with LOBs and BFILEs", section "Shortcuts for
Inserting and Retrieving CLOB Data"

■ Oracle Database JDBC Developer's Guide and Reference, chapter 5,
"JDBC Standards Support"

Using the Data Interface with Remote LOBs

Data Interface for Persistent LOBs 13-23

■ Only binds and defines for data going into remote persistent LOBs are supported,
so that parameter passing in PL/SQL where CHAR data is bound or defined for
remote LOBs is not allowed. These statements all produce errors:

SELECT foo() FROM table1@dbs2;

SELECT foo()@dbs INTO char_val FROM DUAL;

SELECT XMLType().getclobval FROM table1@dbs2;

■ If the remote object is a view such as

CREATE VIEW v AS SELECT foo() FROM ...
/* The local database then tries to get the CLOB data and has an error */
SELECT * FROM v@dbs2;

■ RETURNING INTO does not support implicit conversions between CHAR and CLOB.

■ PL/SQL parameter passing is not allowed where the actual argument is a LOB
type and the remote argument is a VARCHAR2, NVARCHAR2, CHAR, NCHAR, or RAW.

■ Array binds and defines are supported.

Remote Data Interface Example in PL/SQL
The data interface only supports data of size less than 32KB in PL/SQL. The following
snippet shows a PL/SQL example:

CONNECT pm/pm
declare
 my_ad varchar(6000) := lpad('b', 6000, 'b');
BEGIN
 INSERT INTO print_media@dbs2(product_id, ad_id, ad_finaltext)
 VALUES (10000, 10, my_ad);
 -- Reset the buffer value
 my_ad := 'a';
 SELECT ad_finaltext INTO my_ad FROM print_media@dbs2
 WHERE product_id = 10000;
END;
/

If ad_finaltext were a BLOB column instead of a CLOB, my_ad has to be of type
RAW. If the LOB is greater than 32KB - 1 in size, then PL/SQL will raise a truncation
error and the contents of the buffer are undefined.

Remote Data Interface Example in OCI
The data interface only supports data of size less than 2 GB (the maximum value
possible of a variable declared as sb4) for OCI. The following pseudocode can be
enhanced to be a part of an OCI program:

...
text *sql = (text *)"insert into print_media@dbs2
 (product_id, ad_id, ad_finaltext)
 values (:1, :2, :3)";
OCIStmtPrepare(...);
OCIBindByPos(...); /* Bind data for positions 1 and 2
 * which are independent of LOB */
OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) charbuf1, (sb4) len_charbuf1, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, 0, 0, OCI_DEFAULT);

Using the Data Interface with Remote LOBs

13-24 Oracle Database Application Developer's Guide - Large Objects

OCIStmtExecute(...);

...

text *sql = (text *)"select ad_finaltext from print_media@dbs2
 where product_id = 10000";
OCIStmtPrepare(...);
OCIDefineByPos(stmthp, &dfnhp[2], errhp, (ub4) 1,
 (dvoid *) charbuf2, (sb4) len_charbuf2, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT);
OCIStmtExecute(...);
...

If ad_finaltext were a BLOB instead of a CLOB, then you bind and define using
type SQLT_BIN. If the LOB is greater than 2GB - 1 in size, then OCI will raise a
truncation error and the contents of the buffer are undefined.

Remote Data Interface Examples in JDBC
The following code snippets works with all three JDBC drivers (OCI, Thin, and kprb
in the database):

Bind:

This is for the non-streaming mode:

...
String sql = "insert into print_media@dbs2 (product_id, ad_id, ad_final_text)" +
 " values (:1, :2, :3)";
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, 2);
 pstmt.setInt(2, 20);
 pstmt.setString(3, "Java string");
 int rows = pstmt.executeUpdate();
...

For the streaming mode, the same code as the preceding works, except that the
setString() statement is replaced by one of the following:

pstmt.setCharacterStream(3, new LabeledReader(), 1000000);
pstmt.setAsciiStream(3, new LabeledAsciiInputStream(), 1000000);

Here, LabeledReader() and LabeledAsciiInputStream() produce character
and ASCII streams respectively. If ad_finaltext were a BLOB column instead of a
CLOB, then the preceding example works if the bind is of type RAW:

pstmt.setBytes(3, <some byte[] array>);

pstmt.setBinaryStream(3, new LabeledInputStream(), 1000000);

Here, LabeledInputStream() produces a binary stream.

Define:

For non-streaming mode:

OracleStatement stmt = (OracleStatement)(conn.createStatement());
 stmt.defineColumnType(1, Types.VARCHAR);
 ResultSet rst = stmt.executeQuery("select ad_finaltext from print_media@dbs2");
 while(rst.next())
 {
 String s = rst.getString(1);

Using the Data Interface with Remote LOBs

Data Interface for Persistent LOBs 13-25

 System.out.println(s);
 }

For streaming mode:

OracleStatement stmt = (OracleStatement)(conn.createStatement());
 stmt.defineColumnType(1, Types.LONGVARCHAR);
 ResultSet rst = stmt.executeQuery("select ad_finaltext from print_media@dbs2");
 while(rst.next())
 {
 Reader reader = rst.getCharacterStream(1);
 while(reader.ready())
 {
 System.out.print((char)(reader.next()));
 }
 System.out.println();
 }

If ad_finaltext were a BLOB column instead of a CLOB, then the preceding
examples work if the define is of type RAW:

stmt.defineColumnType(1, Types.RAW) // or LONGRAW
...
String s = rst.getBytes(1);
Reader reader = rst.getBinaryStream(1);

See Also: Oracle Database JDBC Developer's Guide and Reference,
chapter 14, "Working with LOBs and BFILEs", section "Shortcuts for
Inserting and Retrieving CLOB Data"

Using the Data Interface with Remote LOBs

13-26 Oracle Database Application Developer's Guide - Large Objects

LOB APIs for Basic Operations 14-1

14
LOB APIs for Basic Operations

This chapter describes APIs that perform basic operations on BLOB, CLOB, and NCLOB
datatypes. The operations given in this chapter can be used with either persistent or
temporary LOB instances. Note that operations in this chapter do not apply to BFILEs.
APIs covered in this chapter are listed in Table 14–1.

The following information is given for each operation described in this chapter:

■ Preconditions describe dependencies that must be met and conditions that must
exist before calling each operation.

■ Usage Notes provide implementation guidelines such as information specific to a
given programmatic environment or datatype.

■ Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

■ Examples describe any setup tasks necessary to run the examples given.
Demonstration files listed are available in subdirectories under
$ORACLE_HOME/rdbms/demo/lobs/ named plsql, oci, vb, and java. The
driver program lobdemo.sql is in /plsql and the driver program lobdemo.c
is in /oci.

This chapter contains these topics:

■ Supported Environments

■ Appending One LOB to Another

■ Determining Character Set Form

■ Determining Character Set ID

■ Loading a LOB with Data from a BFILE

■ Loading a BLOB with Data from a BFILE

■ Loading a CLOB or NCLOB with Data from a BFILE

■ Determining Whether a LOB is Open

See Also:

■ Chapter 12, "Operations Specific to Persistent and Temporary
LOBs" for information on how to create temporary and
persistent LOB instances and other operations specific to
temporary or persistent LOBs.

■ Chapter 15, "LOB APIs for BFILE Operations" for information
on operations specific to BFILE instances.

Supported Environments

14-2 Oracle Database Application Developer's Guide - Large Objects

■ Displaying LOB Data

■ Reading Data from a LOB

■ LOB Array Read

■ Reading a Portion of a LOB (SUBSTR)

■ Comparing All or Part of Two LOBs

■ Patterns: Checking for Patterns in a LOB Using INSTR

■ Length: Determining the Length of a LOB

■ Copying All or Part of One LOB to Another LOB

■ Copying a LOB Locator

■ Equality: Checking If One LOB Locator Is Equal to Another

■ Determining Whether LOB Locator Is Initialized

■ Appending to a LOB

■ Writing Data to a LOB

■ LOB Array Write

■ Trimming LOB Data

■ Erasing Part of a LOB

■ Enabling LOB Buffering

■ Flushing the Buffer

■ Disabling LOB Buffering

■ Determining Whether a LOB instance Is Temporary

■ Converting a BLOB to a CLOB

■ Converting a CLOB to a BLOB

Supported Environments
Table 14–1, " Environments Supported for Basic LOB APIs" indicates which
programmatic environments are supported for the APIs discussed in this chapter. The
first column describes the operation that the API performs. The remaining columns
indicate with "Yes" or "No" whether the API is supported in PL/SQL, OCI, OCCI,
COBOL, Pro*C/C++, Visual Basic (VB), and JDBC.

Table 14–1 Environments Supported for Basic LOB APIs

Operation PL/SQL OCI OCCI COBOL Pro*C/C++ VB JDBC

Appending One LOB to Another on
page 14-4

Yes Yes No Yes Yes Yes Yes

Determining Character Set Form on
page 14-5

No Yes No No No No No

Determining Character Set ID on
page 14-5

No Yes No No No No No

Determining Chunk Size, See: Writing
Data to a LOB on page 14-28

Yes Yes Yes Yes Yes Yes Yes

Comparing All or Part of Two LOBs on
page 14-21

Yes No No Yes Yes Yes Yes

Supported Environments

LOB APIs for Basic Operations 14-3

Converting a BLOB to a CLOB on
page 14-41

Yes No No No No No No

Converting a CLOB to a BLOB on
page 14-41

Yes No No No No No No

Copying a LOB Locator on page 14-24 Yes Yes No Yes Yes Yes Yes

Copying All or Part of One LOB to
Another LOB on page 14-23

Yes Yes No Yes Yes Yes Yes

Disabling LOB Buffering on page 14-39 No Yes No Yes Yes Yes No

Displaying LOB Data on page 14-11 Yes Yes No Yes Yes Yes Yes

Enabling LOB Buffering on page 14-37 No No No Yes Yes Yes No

Equality: Checking If One LOB Locator
Is Equal to Another on page 14-25

No Yes No No Yes No Yes

Erasing Part of a LOB on page 14-36 Yes Yes No Yes Yes Yes Yes

Flushing the Buffer on page 14-38 No Yes No Yes Yes No No

Determining Whether LOB Locator Is
Initialized on page 14-26

No Yes No No Yes No No

Length: Determining the Length of a
LOB on page 14-22

Yes Yes No Yes Yes Yes Yes

Loading a LOB with Data from a BFILE
on page 14-6

Yes Yes No Yes Yes Yes Yes

Loading a BLOB with Data from a
BFILE on page 14-7

Yes No No No No No No

Loading a CLOB or NCLOB with Data
from a BFILE on page 14-9

Yes No No No No No No

LOB Array Read on page 14-14 No Yes No No No No No

LOB Array Write on page 14-30 No Yes No No No No No

Opening Persistent LOBs with the
OPEN and CLOSE Interfaces on
page 5-9

Yes Yes Yes Yes Yes Yes Yes

Open: Determining Whether a LOB is
Open on page 14-10

Yes Yes Yes Yes Yes Yes Yes

Patterns: Checking for Patterns in a
LOB Using INSTR on page 14-22

Yes No No Yes Yes No Yes

Reading a Portion of a LOB (SUBSTR)
on page 14-20

Yes No No Yes Yes Yes Yes

Reading Data from a LOB on
page 14-13

Yes Yes No Yes Yes Yes Yes

Storage Limit, Determining: Maximum
Storage Limit for Terabyte-Size LOBs on
page 5-22

Yes No No No No No No

Trimming LOB Data on page 14-35 Yes Yes No Yes Yes Yes Yes

WriteNoAppend, see Appending to a
LOB on page 14-26.

No No No No No No No

Writing Data to a LOB on page 14-28 Yes Yes Yes Yes Yes Yes Yes

Table 14–1 (Cont.) Environments Supported for Basic LOB APIs

Operation PL/SQL OCI OCCI COBOL Pro*C/C++ VB JDBC

Appending One LOB to Another

14-4 Oracle Database Application Developer's Guide - Large Objects

Appending One LOB to Another
This operation appends one LOB instance to another.

Preconditions
Before you can append one LOB to another, the following conditions must be met:

■ Two LOB instances must exist.

■ Both instances must be of the same type, for example both BLOB or both CLOB
types.

■ You can pass any combination of persistent or temporary LOB instances to this
operation.

Usage Notes
Persistent LOBs: You must lock the row you are selecting the LOB from prior to
updating a LOB value if you are using the PL/SQL DBMS_LOB Package or OCI.
While the SQL INSERT and UPDATE statements implicitly lock the row, locking the
row can be done explicitly using the SQL SELECT FOR UPDATE statement in SQL and
PL/SQL programs, or by using an OCI pin or lock function in OCI programs. For
more details on the state of the locator after an update, refer to "Example of Updating
LOBs Through Updated Locators" on page 5-12.

Syntax
See the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — APPEND

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobAppend()

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB APPEND.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide for information on embedded
SQL statements and directives — LOB APPEND

■ Visual Basic (OO4O): (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > append

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference for information
on creating and populating LOB columns in Java.

Examples
To run the following examples, you must create two LOB instances and pass them
when you call the given append operation. Creating a LOB instance is described in
Chapter 12, "Operations Specific to Persistent and Temporary LOBs".

Examples for this use case are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lappend.sql

■ OCI: lappend.c

■ Visual Basic (OO4O): lappend.bas

Determining Character Set ID

LOB APIs for Basic Operations 14-5

■ Java (JDBC): lappend.java

Determining Character Set Form
This section describes how to get the character set form of a LOB instance.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
operation.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobCharSetForm()

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this operation

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation.

■ Visual Basic (OO4O): There is no applicable syntax reference for this operation.

■ Java (JDBC): There is no applicable syntax reference for this operation.

Example
The example demonstrates how to determine the character set form of the foreign
language text (ad_fltextn).

This functionality is currently available only in OCI:

■ OCI: lgetchfm.c

Determining Character Set ID
This section describes how to determine the character set ID.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
operation.

■ C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions" — LOB
Functions, OCILobCharSetId()

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this operation.

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation

■ Visual Basic (OO4O): There is no applicable syntax reference for this operation.

■ Java (JDBC): There is no applicable syntax reference for this operation.

Example
This functionality is currently available only in OCI:

■ OCI: lgetchar.c

Loading a LOB with Data from a BFILE

14-6 Oracle Database Application Developer's Guide - Large Objects

Loading a LOB with Data from a BFILE
This operation loads a LOB with data from a BFILE. This procedure can be used to
load data into any persistent or temporary LOB instance of any LOB datatype.

Preconditions
Before you can load a LOB with data from a BFILE, the following conditions must be
met:

■ The BFILE must exist.

■ The target LOB instance must exist.

Usage Notes
Note the following issues regarding this operation.

Use LOADCLOBFROMFILE When Loading Character Data
When you use the DBMS_LOB.LOADFROMFILE procedure to load a CLOB or NCLOB
instance, you are loading the LOB with binary data from the BFILE and no implicit
character set conversion is performed. For this reason, using the
DBMS_LOB.LOADCLOBFROMFILE procedure is recommended when loading character
data, see Loading a CLOB or NCLOB with Data from a BFILE on on page 14-9 for
more information.

Specifying Amount of BFILE Data to Load
The value you pass for the amount parameter to functions listed in Table 14–2 must be
one of the following:

■ An amount less than or equal to the actual size (in bytes) of the BFILE you are
loading.

■ The maximum allowable LOB size (in bytes). Passing this value, loads the entire
BFILE. You can use this technique to load the entire BFILE without determining
the size of the BFILE before loading. To get the maximum allowable LOB size, use
the technique described in Table 14–2.

See Also:

■ The LOADBLOBFROMFILE and LOADCLOBFROMFILE
procedures implement the functionality of this procedure and
provide improved features for loading binary data and
character data. (These improved procedures are available in the
PL/SQL environment only.) When possible, using one of the
improved procedures is recommended. See "Loading a BLOB
with Data from a BFILE" on page 14-7 and "Loading a CLOB or
NCLOB with Data from a BFILE" on page 14-9 for more
information.

■ As an alternative to this operation, you can use SQL*Loader to
load persistent LOBs with data directly from a file in the file
system. See "Using SQL*Loader to Load LOBs" on page 3-1 for
more information.

Loading a BLOB with Data from a BFILE

LOB APIs for Basic Operations 14-7

Syntax
See the following syntax references for details on using this operation in each
programmatic environment:

■ PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — LOADFROMFILE.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobLoadFromFile().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB LOAD, LOB OPEN, LOB CLOSE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB LOAD

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBfile >
METHODS > CopyFromBFILE and select OO4O Automation Server > OBJECTS >
OraDynaset, OraDatabase, OraConnection

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lloaddat.sql

■ OCI: lloaddat.c

■ Visual Basic (OO4O): lloaddat.bas

■ Java (JDBC): lloaddat.java

Loading a BLOB with Data from a BFILE
This procedure loads a BLOB with data from a BFILE. This procedure can be used to
load data into any persistent or temporary BLOB instance.

Table 14–2 Maximum LOB Size for Load from File Operations

Environment Function
To pass maximum LOB size,
get value of:

DBMS_LOB DBMS_LOB.LOADBLOBFROMFILE DBMS_LOB.LOBMAXSIZE

DBMS_LOB DBMS_LOB.LOADCLOBFROMFILE DBMS_LOB.LOBMAXSIZE

OCI OCILobLoadFromFile2()

(For LOBs of any size.)

UB8MAXVAL

OCI OCILobLoadFromFile()

(For LOBs less than 4 gigabytes in size.)

UB4MAXVAL

Loading a BLOB with Data from a BFILE

14-8 Oracle Database Application Developer's Guide - Large Objects

Preconditions
The following conditions must be met before calling this procedure:

■ The target BLOB instance must exist.

■ The source BFILE must exist.

■ You must open the BFILE. (After calling this procedure, you must close the BFILE
at some point.)

Usage Notes
Note the following with respect to this operation:

New Offsets Returned
Using DBMS_LOB.LOADBLOBFROMFILE to load binary data into a BLOB achieves the
same result as using DBMS_LOB.LOADFROMFILE, but also returns the new offsets of
BLOB.

Specifying Amount of BFILE Data to Load
The value you pass for the amount parameter to the DBMS_LOB.LOADBLOBFROMFILE
function must be one of the following:

■ An amount less than or equal to the actual size (in bytes) of the BFILE you are
loading.

■ The maximum allowable LOB size: DBMS_LOB.LOBMAXSIZE. Passing this value
causes the function to load the entire BFILE. This is a useful technique for loading
the entire BFILE without introspecting the size of the BFILE.

Syntax
See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADBLOBFROMFILE procedure for syntax details on this procedure.

Examples
This example is available in PL/SQL only. This API is not provided in other
programmatic environments. The online file is lldblobf.sql. This example
illustrates:

■ How to use LOADBLOBFROMFILE to load the entire BFILE without getting its
length first.

■ How to use the return value of the offsets to calculate the actual amount loaded.

See Also:

■ "Loading a LOB with Data from a BFILE" on page 14-6

■ To load character data, use DBMS_LOB.LOADCLOBFROMFILE.
See "Loading a CLOB or NCLOB with Data from a BFILE" on
page 14-9 for more information.

■ As an alternative to this operation, you can use SQL*Loader to
load persistent LOBs with data directly from a file in the file
system. See "Using SQL*Loader to Load LOBs" on page 3-1 for
more information.

See Also: Table 14–2, " Maximum LOB Size for Load from File
Operations"

Loading a CLOB or NCLOB with Data from a BFILE

LOB APIs for Basic Operations 14-9

Loading a CLOB or NCLOB with Data from a BFILE
This procedure loads a CLOB or NCLOB with character data from a BFILE. This
procedure can be used to load data into a persistent or temporary CLOB or NCLOB
instance.

Preconditions
The following conditions must be met before calling this procedure:

■ The target CLOB or NCLOB instance must exist.

■ The source BFILE must exist.

■ You must open the BFILE. (After calling this procedure, you must close the BFILE
at some point.)

Usage Notes
You can specify the character set id of the BFILE when calling this procedure. Doing
so, ensures that the character set is properly converted from the BFILE data character
set to the destination CLOB or NCLOB character set.

Specifying Amount of BFILE Data to Load
The value you pass for the amount parameter to the DBMS_LOB.LOADCLOBFROMFILE
function must be one of the following:

■ An amount less than or equal to the actual size (in characters) of the BFILE data
you are loading.

■ The maximum allowable LOB size: DBMS_LOB.LOBMAXSIZE

Passing this value causes the function to load the entire BFILE. This is a useful
technique for loading the entire BFILE without introspecting the size of the
BFILE.

Syntax
See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADCLOBFROMFILE procedure for syntax details on this procedure.

Examples
The following examples illustrate different techniques for using this API:

■ "PL/SQL: Loading Character Data from a BFILE into a LOB"

■ "PL/SQL: Loading Segments of Character Data into Different LOBs"

See Also:

■ "Loading a LOB with Data from a BFILE" on page 14-6

■ To load binary data, use DBMS_LOB.LOADBLOBFROMFILE. See
"Loading a BLOB with Data from a BFILE" on page 14-7 for
more information.

■ As an alternative to this operation, you can use SQL*Loader to
load persistent LOBs with data directly from a file in the file
system. See "Using SQL*Loader to Load LOBs" on page 3-1 for
more information.

Determining Whether a LOB is Open

14-10 Oracle Database Application Developer's Guide - Large Objects

PL/SQL: Loading Character Data from a BFILE into a LOB
The following example illustrates:

■ How to use default csid (0).

■ How to load the entire file without calling getlength for the BFILE.

■ How to find out the actual amount loaded using return offsets.

This example assumes that ad_source is a BFILE in UTF8 character set format and
the database character set is UTF8. The online file is lldclobf.sql.

PL/SQL: Loading Segments of Character Data into Different LOBs
The following example illustrates:

■ How to get the character set ID from the character set name using the
NLS_CHARSET_ID function.

■ How to load a stream of data from a single BFILE into different LOBs using the
returned offset value and the language context lang_ctx.

■ How to read a warning message.

This example assumes that ad_file_ext_01 is a BFILE in JA16TSTSET format and
the database national character set is AL16UTF16. The online file is lldclobs.sql.

Determining Whether a LOB is Open
This operation determines whether a LOB is open.

Preconditions
The LOB instance must exist before executing this procedure.

Usage Notes
When a LOB is open, it must be closed at some point later in the session.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, ISOPEN.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobIsOpen().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB DESCRIBE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB DESCRIBE ... ISOPEN ...

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Displaying LOB Data

LOB APIs for Basic Operations 14-11

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lisopen.sql

■ OCI: lisopen.c

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): lisopen.java

Java (JDBC): Checking If a LOB Is Open
Here is how to check a BLOB or a CLOB.

Checking If a CLOB Is Open
To see if a CLOB is open, your JDBC application can use the isOpen method defined in
oracle.sql.CLOB. The return Boolean value indicates whether the CLOB has been
previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the CLOB is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

CLOB clob = ...
 // See if the CLOB is opened
 boolean isOpen = clob.isOpen ();
...

Checking If a BLOB Is Open
To see if a BLOB is open, your JDBC application can use the isOpen method defined in
oracle.sql.BLOB. The return Boolean value indicates whether the BLOB has been
previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the BLOB is opened.
 * @return true if the LOB is opened.
 */
 public boolean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
// See if the BLOB is opened
boolean isOpen = blob.isOpen ();
...

Displaying LOB Data
This section describes APIs that allow you to read LOB data. You can use this
operation to read LOB data into a buffer. This is useful if your application requires
displaying large amounts of LOB data or streaming data operations.

Displaying LOB Data

14-12 Oracle Database Application Developer's Guide - Large Objects

Usage Notes
Note the following when using these APIs.

Streaming Mechanism
The most efficient way to read large amounts of LOB data is to use OCILobRead2()
with the streaming mechanism enabled.

Amount Parameter
The value you pass for the amount parameter is restricted for the APIs described in
Table 14–3.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — OPEN, READ, CLOSE.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —,
OCILobOpen(), OCILobRead2(), OCILobClose().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB READ.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Oraclob >
METHODS > read, and > OBJECTS > Oraclob > PROPERTIES > offset

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): ldisplay.sql

■ OCI: ldisplay.c

■ C++ (OCCI): No example is provided in this release.

Table 14–3 Maximum LOB Size for Amount Parameter

Environment Function
Value of amount parameter is
limited to:

DBMS_LOB DBMS_LOB.READ The size of the buffer, 32Kbytes.

OCI OCILobRead()

(For LOBs less than 4 gigabytes in size.)

UB4MAXVAL

Specifying this amount reads the entire
file.

OCI OCILobRead2()

(For LOBs of any size.)

UB8MAXVAL

Specifying this amount reads the entire
file.

Reading Data from a LOB

LOB APIs for Basic Operations 14-13

■ Visual Basic (OO4O): ldisplay.bas

■ Java (JDBC): ldisplay.java

Reading Data from a LOB
This section describes how to read data from LOBs using OCILobRead2().

Usage Notes
Note the following when using this operation.

Streaming Read in OCI
The most efficient way to read large amounts of LOB data is to use OCILobRead2()
with the streaming mechanism enabled using polling or callback. To do so, specify the
starting point of the read using the offset parameter as follows:

ub8 char_amt = 0;
ub8 byte_amt = 0;
ub4 offset = 1000;

OCILobRead2(svchp, errhp, locp, &byte_amt, &char_amt, offset, bufp, bufl,
 OCI_ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byte_amt parameter after
each OCILobRead2() call to see how many bytes were read into the buffer because
the buffer may not be entirely full.

When using callbacks, the lenp parameter, which is input to the callback, will indicate
how many bytes are filled in the buffer. Be sure to check the lenp parameter during
your callback processing because the entire buffer may not be filled with data (see the
Oracle Call Interface Programmer's Guide.)

Chunk Size
A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the data size used
by Oracle Database when accessing or modifying the LOB value. Part of the chunk is
used to store system-related information and the rest stores the LOB value. The API
you are using has a function that returns the amount of space used in the LOB chunk
to store the LOB value. In PL/SQL use DBMS_LOB.GETCHUNKSIZE. In OCI, use
OCILobGetChunkSize().

You will improve performance if you run write requests using a multiple of the value
returned by one of these functions. The reason for this is that you are using the same
unit that the Oracle database uses when reading data from disk. If it is appropriate for
your application, then you should batch reads until you have enough for an entire
chunk instead of issuing several LOB read calls that operate on the same LOB chunk.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — OPEN, GETCHUNKSIZE, READ, CLOSE.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobOpen(), OCILobRead2(), OCILobClose().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

LOB Array Read

14-14 Oracle Database Application Developer's Guide - Large Objects

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB READ.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Oraclob >
METHODS > read

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lread.sql

■ OCI: lread.c

■ Visual Basic (OO4O): lread.bas

■ Java (JDBC): lread.java

LOB Array Read
This section describes how to read LOB data for multiple locators in one round trip,
using OCILobArrayRead().

Usage Notes
This function improves performance in reading LOBs in the size range less than about
512 Kbytes. For an OCI application example, assume that the program has a prepared
SQL statement such as:

SELECT lob1 FROM lob_table for UPDATE;

where lob1 is the LOB column and lob_array is an array of define variables
corresponding to a LOB column:

OCILobLocator * lob_array[10];

...
 for (i=0; i<10, i++) /* initialize array of locators */
 lob_array[i] = OCIDescriptorAlloc(..., OCI_DTYPE_LOB, ...);

...

OCIDefineByPos(..., 1, (dvoid *) lob_array, ... SQLT_CLOB, ...);

/* Execute the statement with iters = 10 to do an array fetch of 10 locators. */
OCIStmtExecute (<service context>, <statement handle>, <error handle>,
 10, /* iters */
 0, /* row offset */
 NULL, /* snapshot IN */
 NULL, /* snapshot out */
 OCI_DEFAULT /* mode */);
...

 ub4 array_iter = 10;

LOB Array Read

LOB APIs for Basic Operations 14-15

 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 1000; /* Single byte fixed width char set. */
 }

/* Read the 1st 1000 characters for all 10 locators in one
 * round trip. Note that offset and amount need not be
 * same for all the locators. */

OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_ONE_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);/* character set form */

 ...

for (i=0; i<10; i++)
 {
 /* Fill bufp[i] buffers with data to be written */
 strncpy (bufp[i], "Test Data------", 15);
 bufl[i] = 1000;
 offset[i] = 50;
 char_amtp[i] = 15; /* Single byte fixed width char set. */
 }

/* Write the 15 characters from offset 50 to all 10
 * locators in one round trip. Note that offset and
 * amount need not be same for all the locators. */
 */

OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_ONE_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);/* character set form */

LOB Array Read

14-16 Oracle Database Application Developer's Guide - Large Objects

...

Streaming Support
LOB array APIs can be used to read/write LOB data in multiple pieces. This can be
done by using polling method or a callback function.

Here data is read/written in multiple pieces sequentially for the array of locators. For
polling, the API would return to the application after reading/writing each piece with
the array_iter parameter (OUT) indicating the index of the locator for which data
is read/written. With a callback, the function is called after reading/writing each piece
with array_iter as IN parameter.

Note that:

■ It is possible to read/write data for a few of the locators in one piece and
read/write data for other locators in multiple pieces. Data is read/written in one
piece for locators which have sufficient buffer lengths to accommodate the whole
data to be read/written.

■ Your application can use different amount value and buffer lengths for each
locator.

■ Your application can pass zero as the amount value for one or more locators
indicating pure streaming for those locators. In the case of reading, LOB data is
read to the end for those locators. For writing, data is written until
OCI_LAST_PIECE is specified for those locators.

LOB Array Read in Polling Mode
The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte
buffer size. Each locator needs 10 pieces to read the complete data.
OCILobArrayRead() needs to be called 100 (10*10) times to fetch all the data.

First we call OCILobArrayRead() with OCI_FIRST_PIECE as piece parameter.
This call returns the first 1K piece for the first locator.

Next OCILobArrayRead() is called in a loop until the application finishes reading all
the pieces for the locators and returns OCI_SUCCESS. In this example it loops 99 times
returning the pieces for the locators sequentially.

/* Fetch the locators */
...

 /* array_iter parameter indicates the number of locators in the array read.
 * It is an IN parameter for the 1st call in polling and is ignored as IN
 * parameter for subsequent calls. As OUT parameter it indicates the locator
 * index for which the piece is read.
 */

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;

LOB Array Read

LOB APIs for Basic Operations 14-17

 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 /* First piece for the first locator is read here.
 * bufp[0] => Buffer pointer into which data is read.
 * char_amtp[0] => Number of characters read in current buffer
 *
 */

 While (st == OCI_NEED_DATA)
 {
 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is read. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on.
 *
 * lob_array[array_iter - 1]=> Lob locator for which data is read.
 * bufp[array_iter - 1] => Buffer pointer into which data is read.
 * char_amtp[array_iter - 1] => Number of characters read in current buffer
 */

...
 /* Consume the data here */
...
 }

LOB Array Read with Callback
The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte
buffer size. Each locator needs 10 pieces to read all the data. The callback function is
called 100 (10*10) times to return the pieces sequentially.

/* Fetch the locators */
...

LOB Array Read

14-18 Oracle Database Application Developer's Guide - Large Objects

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 ctx, /* callback context */
 cbk_read_lob, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);
...
/* Callback function for LOB array read. */
sb4 cbk_read_lob(dvoid *ctxp, ub4 array_iter, CONST dvoid *bufxp, oraub8 len,
 ub1 piece, dvoid **changed_bufpp, oraub8 *changed_lenp)
{
 static ub4 piece_count = 0;
 piece_count++;
 switch (piece)
 {
 case OCI_LAST_PIECE:
 /*--- buffer processing code goes here ---*/
(void) printf("callback read the %d th piece(last piece) for %dth locator \n\n",
 piece_count, array_iter);
 piece_count = 0;
 break;
 case OCI_FIRST_PIECE:
 /*--- buffer processing code goes here ---*/
 (void) printf("callback read the 1st piece for %dth locator\n",
 array_iter);
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer needs
 to be changed dynamically --*/
 break;
 case OCI_NEXT_PIECE:
 /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece for %dth locator\n",
 piece_count, array_iter);
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer
 needs to be changed dynamically --*/
 break;
 default:
 (void) printf("callback read error: unkown piece = %d.\n", piece);
 return OCI_ERROR;

LOB Array Read

LOB APIs for Basic Operations 14-19

 }
 return OCI_CONTINUE;
}
...

Polling LOB Array Read
The next example is polling LOB data in OCILobArrayRead() with variable amtp,
bufl, and offset.

/* Fetch the locators */
...

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 /* For 3rd locator read data in 500 bytes piece from offset 101. Amount
 * is 2000, that is, total number of pieces will be 2000/500 = 4.
 */
 offset[2] = 101; bufl[2] = 500; char_amtp[2] = 2000;

 /* For 6th locator read data in 100 bytes piece from offset 51. Amount
 * is 0 indicating pure polling, that is, data will be read till the end of
 * the LOB is reached.
 */
 offset[5] = 51; bufl[5] = 100; char_amtp[5] = 0;

 /* For 8th locator read 100 bytes of data in one piece. Note amount
 * is less than buffer length indicating single piece read.
 */
 offset[7] = 61; bufl[7] = 200; char_amtp[7] = 100;

 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 /* First piece for the first locator is read here.
 * bufp[0] => Buffer pointer into which data is read.
 * char_amtp[0] => Number of characters read in current buffer

Reading a Portion of a LOB (SUBSTR)

14-20 Oracle Database Application Developer's Guide - Large Objects

 *
 */

 while (st == OCI_NEED_DATA)
 {
 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is read. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on.
 *
 * lob_array[array_iter - 1]=> Lob locator for which data is read.
 * bufp[array_iter - 1] => Buffer pointer into which data is read.
 * char_amtp[array_iter - 1]=>Number of characters read in current buffer
 */

...
 /* Consume the data here */
...
 }

Syntax
Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobArrayRead().

Example
An example is provided in the following programmatic environment:

OCI: lreadarr.c

Reading a Portion of a LOB (SUBSTR)
This section describes how to read a portion of a LOB using SUBSTR.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — SUBSTR, OPEN, CLOSE

■ C (OCI): There is no applicable syntax reference for this use case.

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

Comparing All or Part of Two LOBs

LOB APIs for Basic Operations 14-21

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
ALLOCATE, LOB OPEN, LOB READ, LOB CLOSE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB READ. See PL/SQL DBMS_LOB.SUBSTR.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
PROPERTIES > offset, chunksize, and >OBJECTS > Oraclob > METHODS > read

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lsubstr.sql

■ OCI: No example is provided with this release.

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): lsubstr.bas

■ Java (JDBC): lsubstr.java

Comparing All or Part of Two LOBs
This section describes how to compare all or part of two LOBs.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — COMPARE.

■ C (OCI): There is no applicable syntax reference for this use case.

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide or information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
EXECUTE. Also reference PL/SQL DBMS_LOB.COMPARE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — EXECUTE. Also reference PL/SQL
DBMS_LOB.COMPARE.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Oradynaset >
METHODS > movenext

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lcompare.sql

■ C (OCI): No example is provided with this release.

Patterns: Checking for Patterns in a LOB Using INSTR

14-22 Oracle Database Application Developer's Guide - Large Objects

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): lcompare.bas

■ Java (JDBC): lcompare.java

Patterns: Checking for Patterns in a LOB Using INSTR
This section describes how to see if a pattern exists in a LOB using INSTR.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — INSTR.

■ C (OCI): There is no applicable syntax reference for this use case.

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
EXECUTE. Also reference PL/SQL DBMS_LOB.INSTR.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — EXECUTE. Also reference PL/SQL
DBMS_LOB.INSTR.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): linstr.sql

■ C (OCI): No example is provided with this release.

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): linstr.java

Length: Determining the Length of a LOB
This section describes how to determine the length of a LOB.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — GETLENGTH

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobGetLength2().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

Copying All or Part of One LOB to Another LOB

LOB APIs for Basic Operations 14-23

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB DESCRIBE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB DESCRIBE ...GET LENGTH...

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Oradynaset >
PROPERTIES > fields

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package) llength.sql

■ OCI: llength.c

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): llength.bas

■ Java (JDBC): llength.java

Copying All or Part of One LOB to Another LOB
This section describes how to copy all or part of a LOB to another LOB. These APIs
copy an amount of data you specify from a source LOB to a destination LOB.

Usage Notes
Note the following issues when using this API.

Specifying Amount of Data to Copy
The value you pass for the amount parameter to the DBMS_LOB.COPY function must
be one of the following:

■ An amount less than or equal to the actual size of the data you are loading.

■ The maximum allowable LOB size: DBMS_LOB.LOBMAXSIZE.Passing this value
causes the function to read the entire LOB. This is a useful technique for reading
the entire LOB without introspecting the size of the LOB.

Note that for character data, the amount is specified in characters, while for binary
data, the amount is specified in bytes.

Locking the Row Prior to Updating
If you plan to update a LOB value, then you must lock the row containing the LOB
prior to updating. While the SQL INSERT and UPDATE statements implicitly lock the
row, locking is done explicitly by means of a SQL SELECT FOR UPDATE statement in
SQL and PL/SQL programs, or by using an OCI pin or lock function in OCI
programs.

For more details on the state of the locator after an update, refer to "Example of
Updating LOBs Through Updated Locators" on page 5-12.

Copying a LOB Locator

14-24 Oracle Database Application Developer's Guide - Large Objects

Syntax
See the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — COPY

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobCopy2

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB COPY. Also reference PL/SQL DBMS_LOB.COPY.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide for information on embedded
SQL statements and directives — LOB COPY

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > copy, and > OBJECTS > Oradynaset > METHODS > movenext, edit

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lcopy.sql

■ OCI: lcopy.c

■ Visual Basic (OO4O): lcopy.bas

■ Java (JDBC): lcopy.java

Copying a LOB Locator
This section describes how to copy a LOB locator. Note that different locators may
point to the same or different data, or to current or outdated data.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Refer to "Read Consistent Locators" on page 5-10
for information on assigning one lob locator to another.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobAssign(), OCILobIsEqual().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
ALLOCATE, LOB ASSIGN.

Note: Assigning one LOB to another using PL/SQL entails using
the ":=" sign. This is an advanced topic that is discussed in more
detail in "Read Consistent Locators" on page 5-10.

Equality: Checking If One LOB Locator Is Equal to Another

LOB APIs for Basic Operations 14-25

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — SELECT, LOB ASSIGN

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > copy

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lcopyloc.sql

■ OCI: lcopyloc.c

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): lcopyloc.bas

■ Java (JDBC): lcopyloc.java

Equality: Checking If One LOB Locator Is Equal to Another
This section describes how to determine whether one LOB locator is equal to another.
If two locators are equal, then this means that they refer to the same version of the
LOB data.

Syntax
Use the following syntax references for each programmatic environment:

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobAssign(), OCILobIsEqual().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB ASSIGN

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL: No example is provided with this release.

■ OCI: lequal.c

■ C++ (OCCI): No example is provided with this release.

See Also:

■ Table 14–1, " Environments Supported for Basic LOB APIs" on
page 14-2

■ "Read Consistent Locators" on page 5-10

Determining Whether LOB Locator Is Initialized

14-26 Oracle Database Application Developer's Guide - Large Objects

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): lequal.java

Determining Whether LOB Locator Is Initialized
This section describes how to determine whether a LOB locator is initialized.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
use case.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobLocatorIsInit().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives". See C(OCI), OCILobLocatorIsInit().

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): There is no applicable syntax reference for this use case.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ OCI: linit.c

■ C (OCCI)): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

Appending to a LOB
This section describes how to write-append the contents of a buffer to a LOB.

Usage Notes
Note the following issues regarding usage of this API.

Writing Singly or Piecewise
The writeappend operation writes a buffer to the end of a LOB.

For OCI, the buffer can be written to the LOB in a single piece with this call;
alternatively, it can be rendered piecewise using callbacks or a standard polling
method.

See Also: Table 14–1, " Environments Supported for Basic LOB
APIs" on page 14-2

See Also: Table 14–1, " Environments Supported for Basic LOB
APIs" on page 14-2

Appending to a LOB

LOB APIs for Basic Operations 14-27

Writing Piecewise: When to Use Callbacks or Polling
If the value of the piece parameter is OCI_FIRST_PIECE, then data must be provided
through callbacks or polling.

■ If a callback function is defined in the cbfp parameter, then this callback function
will be called to get the next piece after a piece is written to the pipe. Each piece
will be written from bufp.

■ If no callback function is defined, then OCILobWriteAppend2() returns the
OCI_NEED_DATA error code. The application must call OCILobWriteAppend2()
again to write more pieces of the LOB. In this mode, the buffer pointer and the
length can be different in each call if the pieces are of different sizes and from
different locations. A piece value of OCI_LAST_PIECE terminates the piecewise
write.

Locking the Row Prior to Updating Prior to updating a LOB value using the PL/SQL
DBMS_LOB package or the OCI, you must lock the row containing the LOB. While the
SQL INSERT and UPDATE statements implicitly lock the row, locking is done explicitly
by means of an SQL SELECT FOR UPDATE statement in SQL and PL/SQL programs, or
by using an OCI pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Example of
Updating LOBs Through Updated Locators" on page 5-12.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — WRITEAPPEND

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobWriteAppend2()

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB WRITE APPEND.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB WRITE APPEND

■ Visual Basic (OO4O): No syntax reference is provided with this release.

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lwriteap.sql

■ OCI: lwriteap.c

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): lwriteap.java

Writing Data to a LOB

14-28 Oracle Database Application Developer's Guide - Large Objects

Writing Data to a LOB
This section describes how to write the contents of a buffer to a LOB.

Usage Notes
Note the following issues regarding usage of this API.

Stream Write
The most efficient way to write large amounts of LOB data is to use OCILobWrite2()
with the streaming mechanism enabled, and using polling or a callback. If you know
how much data will be written to the LOB, then specify that amount when calling
OCILobWrite2(). This ensures that LOB data on the disk is contiguous. Apart from
being spatially efficient, the contiguous structure of the LOB data will make for faster
reads and writes in subsequent operations.

Chunk Size
A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the data size used
by Oracle Database when accessing or modifying the LOB value. Part of the chunk is
used to store system-related information and the rest stores the LOB value. The API
you are using has a function that returns the amount of space used in the LOB chunk
to store the LOB value. In PL/SQL use DBMS_LOB.GETCHUNKSIZE. In OCI, use
OCILobGetChunkSize().

Use a Multiple of the Returned Value to Improve Write Performance
You will improve performance if you run write requests using a multiple of the value
returned by one of these functions. The reason for this is that the LOB chunk is
versioned for every write operation. If all writes are done on a chunk basis, then no
extra or excess versioning is incurred or duplicated. If it is appropriate for your
application, then you should batch writes until you have enough for an entire chunk
instead of issuing several LOB write calls that operate on the same LOB chunk.

Locking the Row Prior to Updating
Prior to updating a LOB value using the PL/SQL DBMS_LOB Package or OCI, you
must lock the row containing the LOB. While the SQL INSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of a SQL SELECT FOR
UPDATE statement in SQL and PL/SQL programs, or by using an OCI pin or lock
function in OCI programs.

For more details on the state of the locator after an update, refer to "Example of
Updating LOBs Through Updated Locators" on page 5-12.

Using DBMS_LOB.WRITE to Write Data to a BLOB
When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to a
BLOB, use the following guidelines:

■ The amount parameter should be <= the buffer length parameter

See Also:

■ Table 14–1, " Environments Supported for Basic LOB APIs" on
page 14-2

■ Reading Data from a LOB on page 14-13

Writing Data to a LOB

LOB APIs for Basic Operations 14-29

■ The length of the buffer should be ((amount*2) - 1). This guideline exists because
the two characters of the string are seen as one hexadecimal character (and an
implicit hexadecimal-to-raw conversion takes place), that is, every two bytes of the
string are converted to one raw byte.

The following example is correct:

declare
 blob_loc BLOB;
 rawbuf RAW(10);
 an_offset INTEGER := 1;
 an_amount BINARY_INTEGER := 10;
BEGIN
 select blob_col into blob_loc from a_table
where id = 1;
 rawbuf := '1234567890123456789';
 dbms_lob.write(blob_loc, an_amount, an_offset,
rawbuf);
 commit;
END;

Replacing the value for an_amount in the previous example with the following
values, yields error message, ora_21560:

 an_amount BINARY_INTEGER := 11;

or

 an_amount BINARY_INTEGER := 19;

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — WRITE

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobWrite2().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB WRITE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB WRITE

■ Visual Basic (OO4O): (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > write, copyfromfile

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lwrite.sql

■ OCI: lwrite.c

■ Visual Basic (OO4O): lwrite.bas

LOB Array Write

14-30 Oracle Database Application Developer's Guide - Large Objects

■ Java (JDBC): lwrite.java

LOB Array Write
This section describes how to write LOB data for multiple locators in one round trip,
using OCILobArrayWrite().

Usage Notes

LOB Array Write in Polling Mode
The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. OCILobArrayWrite() has to be called 100 (10*10) times to write all the data.
The function is used in a similar manner to OCILobWrite2().

/* Fetch the locators */
...

/* array_iter parameter indicates the number of locators in the array read.
 * It is an IN parameter for the 1st call in polling and is ignored as IN
 * parameter for subsequent calls. As an OUT parameter it indicates the locator
 * index for which the piece is written.
 */

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char_amtp[10];
oraub8 offset[10];
sword st;
int i, j;

for (i=0; i<10; i++)
{
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 /* Fill bufp here. */
...
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
}

for (i = 1; i <= 10; i++)
{
 /* Fill up bufp[i-1] here. The first piece for ith locator would be written from
 bufp[i-1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */

See Also: "LOB Array Read" on page 14-14 for examples of Array
read/write.

LOB Array Write

LOB APIs for Basic Operations 14-31

 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 for (j = 2; j < 10; j++)
 {
 /* Fill up bufp[i-1] here. The jth piece for ith locator would be written from
 bufp[i-1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is being written. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on. Here i = array_iter.
 *
 * lob_array[array_iter - 1] => Lob locator for which data is written.
 * bufp[array_iter - 1] => Buffer pointer from which data is written.
 * char_amtp[array_iter - 1] => Number of characters written in
 * the piece just written
 */
}

/* Fill up bufp[i-1] here. The last piece for ith locator would be written from
 bufp[i -1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_LAST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);
}

...

LOB Array Write with Callback
The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. A total of 100 pieces need to be written (10 pieces for each locator). The first piece

LOB Array Write

14-32 Oracle Database Application Developer's Guide - Large Objects

is provided by the OCILobArrayWrite() call. The callback function is called 99
times to get the data for subsequent pieces to be written.

/* Fetch the locators */
...

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 ctx, /* callback context */
 cbk_write_lob /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

...

/* Callback function for LOB array write. */
sb4 cbk_write_lob(dvoid *ctxp, ub4 array_iter, dvoid *bufxp, oraub8 *lenp,
 ub1 *piecep, ub1 *changed_bufpp, oraub8 *changed_lenp)
{
 static ub4 piece_count = 0;
 piece_count++;

 printf (" %dth piece written for %dth locator \n\n", piece_count, array_iter);

 /*-- code to fill bufxp with data goes here. *lenp should reflect the size and
 * should be less than or equal to MAXBUFLEN -- */
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer needs to
 * be changed dynamically --*/

 if (this is the last data buffer for current locator)
 *piecep = OCI_LAST_PIECE;
 else if (this is the first data buffer for the next locator)
 *piecep = OCI_FIRST_PIECE;
 piece_count = 0;
 else
 *piecep = OCI_NEXT_PIECE;

 return OCI_CONTINUE;
 }

LOB Array Write

LOB APIs for Basic Operations 14-33

...

Polling LOB Data in Array Write
The next example is polling LOB data in OCILobArrayWrite() with variable amtp,
bufl, and offset.

/* Fetch the locators */
...

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char_amtp[10];
oraub8 offset[10];
sword st;
int i, j;
int piece_count;

for (i=0; i<10; i++)
{
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 /* Fill bufp here. */
...
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
}

 /* For 3rd locator write data in 500 bytes piece from offset 101. Amount
 * is 2000, that is, total number of pieces will be 2000/500 = 4.
 */
 offset[2] = 101; bufl[2] = 500; char_amtp[2] = 2000;

 /* For 6th locator write data in 100 bytes piece from offset 51. Amount
 * is 0 indicating pure polling, that is, data will be written
 * till OCI_LAST_PIECE
 */
 offset[5] = 51; bufl[5] = 100; char_amtp[5] = 0;

 /* For 8th locator write 100 bytes of data in one piece. Note amount
 * is less than buffer length indicating single piece write.
 */
 offset[7] = 61; bufl[7] = 200; char_amtp[7] = 100;

for (i = 1; i <= 10; i++)
{
 /* Fill up bufp[i-1] here. The first piece for ith locator would be written from
 bufp[i-1] */
...
 /* Calculate number of pieces need to be written */
 piece_count = char_amtp[i-1]/bufl[i-1];

 /* Single piece case */
 if (char_amtp[i-1] <= bufl[i-1])
 piece_count = 1;

 /* Zero amount indicates pure polling. So we can write as many
 * pieces as needed. Let us write 50 pieces.
 */
 if (char_amtp[i-1] == 0)

LOB Array Write

14-34 Oracle Database Application Developer's Guide - Large Objects

 piece_count = 50;

 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 for (j = 2; j < piece_count; j++)
 {
 /* Fill up bufp[i-1] here. The jth piece for ith locator would be written
 * from bufp[i-1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is being written. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on. Here i = array_iter.
 *
 * lob_array[array_iter - 1] => Lob locator for which data is written.
 * bufp[array_iter - 1] => Buffer pointer from which data is written.
 * char_amtp[array_iter - 1] => Number of characters written in
 * the piece just written
 */
}

/* Fill up bufp[i-1] here. The last piece for ith locator would be written from
 * bufp[i -1] */
...

/* If piece_count is 1 it is a single piece write. */
if (piece_count[i] != 1)
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */

Trimming LOB Data

LOB APIs for Basic Operations 14-35

 OCI_LAST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);
}

...

Syntax
Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobArrayWrite().

Example
An example is provided in the following programmatic environment:

OCI: lwritearr.c

Trimming LOB Data
This section describes how to trim a LOB to the size you specify.

Usage Notes
Note the following issues regarding usage of this API.

Locking the Row Prior to Updating
Prior to updating a LOB value using the PL/SQL DBMS_LOB Package, or OCI, you
must lock the row containing the LOB. While the SQL INSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of:

■ A SELECT FOR UPDATE statement in SQL and PL/SQL programs.

■ An OCI pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Example of
Updating LOBs Through Updated Locators" on page 5-12.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — TRIM

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobTrim2().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB TRIM.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
and Precompiler Directives" — LOB TRIM

See Also: Table 14–1, " Environments Supported for Basic LOB
APIs" on page 14-2

Erasing Part of a LOB

14-36 Oracle Database Application Developer's Guide - Large Objects

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > trim

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): ltrim.sql

■ OCI: ltrim.c

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): ltrim.bas

■ Java (JDBC): ltrim.java

Erasing Part of a LOB
This section describes how to erase part of a LOB.

Usage Notes
Note the following issues regarding usage of this API.

Locking the Row Prior to Updating
Prior to updating a LOB value using the PL/SQL DBMS_LOB Package or OCI, you
must lock the row containing the LOB. While INSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of a SELECT FOR UPDATE
statement in SQL and PL/SQL programs, or by using the OCI pin or lock function in
OCI programs.

For more details on the state of the locator after an update, refer to"Example of
Updating LOBs Through Updated Locators" on page 5-12.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — ERASE

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobErase2().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB ERASE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
and Precompiler Directives" — LOB ERASE

See Also: Table 14–1, " Environments Supported for Basic LOB
APIs" on page 14-2

Enabling LOB Buffering

LOB APIs for Basic Operations 14-37

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > erase

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): lerase.sql

■ OCI: lerase.c

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): lerase.bas

■ Java (JDBC): lerase.java

Enabling LOB Buffering
This section describes how to enable LOB buffering.

Usage Notes
Enable LOB buffering when you are performing a small read or write of data. Once
you have completed these tasks, you must disable buffering before you can continue
with any other LOB operations.

For more information, refer to "LOB Buffering Subsystem" on page 5-1.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL: This API is not available in any supplied PL/SQL packages.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCIEnableLobBuffering(), OCIDisableLobBuffering(), OCIFlushBuffer().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB ENABLE BUFFERING.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
and Precompiler Directives" — LOB ENABLE BUFFERING

See Also: Table 14–1, " Environments Supported for Basic LOB
APIs" on page 14-2

Note:

■ You must flush the buffer in order to make your modifications
persistent.

■ Do not enable buffering for the stream read and write involved
in checkin and checkout.

Flushing the Buffer

14-38 Oracle Database Application Developer's Guide - Large Objects

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > EnableBuffering

■ Java (JDBC): There is no applicable syntax reference for this use case.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL: No example is provided.

■ C (OCI): No example is provided with this release. Using this API is similar to that
described in the example, "Disabling LOB Buffering" on page 14-39.

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): lenbuf.bas

■ Java (JDBC): No example provided.

Flushing the Buffer
This section describes how to flush the LOB buffer.

Usage Notes
Enable buffering when performing a small read or write of data. Once you have
completed these tasks, you must disable buffering before you can continue with any
other LOB operations.

For more information, refer to "LOB Buffering Subsystem" on page 5-1.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
use case.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCIEnableLobBuffering(), OCIDisableLobBuffering(), OCIFlushBuffer().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB FLUSH BUFFER.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB FLUSH BUFFER.

See Also: Table 14–1, " Environments Supported for Basic LOB
APIs" on page 14-2

Notes:

■ You must flush the buffer in order to make your modifications
persistent.

■ Do not enable buffering for the stream read and write involved
in checkin and checkout.

Disabling LOB Buffering

LOB APIs for Basic Operations 14-39

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > FlushBuffer.

■ Java (JDBC): There is no applicable syntax reference for this use case.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ C (OCI): No example is provided with this release. Using this API is similar to that
described in the example, "Disabling LOB Buffering" on page 14-39.

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

Disabling LOB Buffering
This section describes how to disable LOB buffering.

Usage Notes
Enable buffering when performing a small read or write of data. Once you have
completed these tasks, you must disable buffering before you can continue with any
other LOB operations.

For more information, refer to"LOB Buffering Subsystem" on page 5-1

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
use case.

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCIEnableLobBuffering(), OCIDisableLobBuffering(),
OCIFlushBuffer().

■ C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB DISABLE BUFFER.

See Also: Table 14–1, " Environments Supported for Basic LOB
APIs" on page 14-2

Note:

■ You must flush the buffer in order to make your modifications
persistent.

■ Do not enable buffering for the stream read and write involved
in checkin and checkout.

Determining Whether a LOB instance Is Temporary

14-40 Oracle Database Application Developer's Guide - Large Objects

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB DISABLE BUFFER

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >
METHODS > DisableBuffering

■ Java (JDBC): There is no applicable syntax reference for this use case.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ OCI: ldisbuf.c

■ C++ (OCCI): No example is provided with this release.

■ Visual Basic (OO4O): ldisbuf.bas

■ Java (JDBC): No example is provided with this release.

Determining Whether a LOB instance Is Temporary
This section describes how to determine whether a LOB instance is temporary.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — ISTEMPORARY, FREETEMPORARY

■ C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobIsTemporary().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB DESCRIBE, ISTEMPORARY.

■ C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide Appendix F, "Embedded SQL
Statements and Directives" — LOB DESCRIBE...ISTEMPORARY

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle Database JDBC Developer's Guide and Reference, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): listemp.sql

■ OCI: listemp.c

■ Visual Basic (OO4O): No example is provided.

See Also: Table 14–1, " Environments Supported for Basic LOB
APIs" on page 14-2

Converting a CLOB to a BLOB

LOB APIs for Basic Operations 14-41

Java (JDBC): Determining Whether a BLOB Is Temporary
To see if a BLOB is temporary, the JDBC application can either use the isTemporary
instance method to determine whether the current BLOB object is temporary, or pass
the BLOB object to the static isTemporary method to determine whether the
specified BLOB object is temporary. These two methods are defined
inlistempb.java.

This JDBC API replaces previous workarounds that use
DBMS_LOB.isTemporary().

To determine whether a CLOB is temporary, the JDBC application can either use the
isTemporary instance method to determine whether the current CLOB object is
temporary, or pass the CLOB object to the static isTemporary method. These two
methods are defined in listempc.java.

Converting a BLOB to a CLOB
You can convert a BLOB instance to a CLOB using the PL/SQL procedure
DBMS_LOB.CONVERTTOCLOB. This technique is convenient if you have character data
stored in binary format that you want to store in a CLOB. You specify the character set
of the binary data when calling this procedure. See Oracle Database PL/SQL Packages
and Types Reference for details on syntax and usage of this procedure.

Converting a CLOB to a BLOB
You can convert a CLOB instance to a BLOB instance using the PL/SQL procedure
DBMS_LOB.CONVERTTOBLOB. This technique is a convenient way to convert character
data to binary data using LOB APIs. See Oracle Database PL/SQL Packages and Types
Reference for details on syntax and usage of this procedure.

Converting a CLOB to a BLOB

14-42 Oracle Database Application Developer's Guide - Large Objects

LOB APIs for BFILE Operations 15-1

15
LOB APIs for BFILE Operations

This chapter describes APIs for operations that use BFILEs. APIs covered in this
chapter are listed in Table 15–1.

The following information is given for each operation described in this chapter:

■ Usage Notes provide implementation guidelines such as information specific to a
given programmatic environment or datatype.

■ Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

■ Examples describe any setup tasks necessary to run the examples given.
Demonstration files listed are available in subdirectories under
$ORACLE_HOME/rdbms/demo/lobs/ named plsql, oci, vb, and java. The
driver program lobdemo.sql is in /plsql and the driver program lobdemo.c
is in /oci.

This chapter contains these topics:

■ Supported Environments for BFILE APIs

■ Accessing BFILEs

■ Directory Objects

■ BFILENAME and Initialization

■ Characteristics of the BFILE Datatype

■ BFILE Security

■ Loading a LOB with BFILE Data

■ Opening a BFILE with OPEN

■ Opening a BFILE with FILEOPEN

■ Determining Whether a BFILE Is Open Using ISOPEN

■ Determining Whether a BFILE Is Open with FILEISOPEN

■ Displaying BFILE Data

■ Reading Data from a BFILE

Note: LOB APIs do not support loading data into BFILEs. See
"Using SQL*Loader to Load LOBs" on page 3-1 for details on
techniques for loading data into BFILEs.

Supported Environments for BFILE APIs

15-2 Oracle Database Application Developer's Guide - Large Objects

■ Reading a Portion of BFILE Data Using SUBSTR

■ Comparing All or Parts of Two BFILES

■ Checking If a Pattern Exists in a BFILE Using INSTR

■ Determining Whether a BFILE Exists

■ Getting the Length of a BFILE

■ Assigning a BFILE Locator

■ Getting Directory Object Name and File Name of a BFILE

■ Updating a BFILE by Initializing a BFILE Locator

■ Closing a BFILE with FILECLOSE

■ Closing a BFILE with CLOSE

■ Closing All Open BFILEs with FILECLOSEALL

■ Inserting a Row Containing a BFILE

Supported Environments for BFILE APIs
Table 15–1, " Environments Supported for BFILE APIs" indicates which programmatic
environments are supported for the APIs discussed in this chapter. The first column
describes the operation that the API performs. The remaining columns indicate with
"Yes" or "No" whether the API is supported in PL/SQL, OCI, COBOL, Pro*C/C++,
Visual Basic (VB), and JDBC.

Table 15–1 Environments Supported for BFILE APIs

Operation PL/SQL OCI COBOL Pro*C/C++ VB JDBC

Inserting a Row Containing a BFILE
on page 15-25

Yes Yes Yes Yes Yes Yes

Loading a LOB with BFILE Data on
page 15-10

Yes Yes Yes Yes Yes Yes

Opening a BFILE with FILEOPEN on
page 15-12

Yes Yes No No No Yes

Opening a BFILE with OPEN on
page 15-11

Yes Yes Yes Yes Yes Yes

Determining Whether a BFILE Is Open
Using ISOPEN on page 15-13

Yes Yes Yes Yes Yes Yes

Determining Whether a BFILE Is Open
with FILEISOPEN on page 15-14

Yes Yes No No No Yes

Displaying BFILE Data on page 15-15 Yes Yes Yes Yes Yes Yes

Reading Data from a BFILE on
page 15-16

Yes Yes Yes Yes Yes Yes

Reading a Portion of BFILE Data Using
SUBSTR on page 15-17

Yes No Yes Yes Yes Yes

Comparing All or Parts of Two BFILES
on page 15-18

Yes No Yes Yes Yes Yes

Checking If a Pattern Exists in a BFILE
Using INSTR on page 15-18

Yes No Yes Yes No Yes

Determining Whether a BFILE Exists
on page 15-19

Yes Yes Yes Yes Yes Yes

Directory Objects

LOB APIs for BFILE Operations 15-3

Accessing BFILEs
To access BFILEs use one of the following interfaces:

■ OCI (Oracle Call Interface)

■ PL/SQL (DBMS_LOB package)

■ Precompilers, such as Pro*C/C++ and Pro*COBOL

■ Oracle Objects for OLE (OO4O)

■ Java (JDBC)

Directory Objects
The DIRECTORY object facilitates administering access and usage of BFILE datatypes.
A DIRECTORY object specifies a logical alias name for a physical directory on the
database server file system under which the file to be accessed is located. You can
access a file in the server file system only if granted the required access privilege on
DIRECTORY object. You can also use Enterprise Manager Web console to manage
DIRECTORY objects.

Initializing a BFILE Locator
The DIRECTORY object also provides the flexibility to manage the locations of the files,
instead of forcing you to hard-code the absolute path names of physical files in your
applications. A directory object name is used in conjunction with the BFILENAME
function, in SQL and PL/SQL, or the OCILobFileSetName() in OCI, for initializing
a BFILE locator.

Getting the Length of a BFILE on
page 15-20

Yes Yes Yes Yes Yes Yes

Assigning a BFILE Locator on
page 15-20

Yes Yes Yes Yes No Yes

Getting Directory Object Name and
File Name of a BFILE on page 15-21

Yes Yes Yes Yes Yes Yes

Updating a BFILE by Initializing a
BFILE Locator on page 15-22

Yes Yes Yes Yes Yes Yes

Closing a BFILE with FILECLOSE on
page 15-23

Yes Yes No No Yes Yes

Closing a BFILE with CLOSE on
page 15-23

Yes Yes Yes Yes Yes Yes

Closing All Open BFILEs with
FILECLOSEALL on page 15-24

Yes Yes Yes Yes Yes Yes

See Also: Chapter 6, "Overview of Supplied LOB APIs" for
information about supported environments for accessing BFILEs.

See Also:

■ CREATE DIRECTORY in Oracle Database SQL Reference

■ support for directory objects in Oracle Enterprise Manager
Extending Oracle Enterprise

Table 15–1 (Cont.) Environments Supported for BFILE APIs

Operation PL/SQL OCI COBOL Pro*C/C++ VB JDBC

Directory Objects

15-4 Oracle Database Application Developer's Guide - Large Objects

How to Associate Operating System Files with a BFILE
To associate an operating system file to a BFILE, first create a DIRECTORY object
which is an alias for the full path name to the operating system file.

To associate existing operating system files with relevant database records of a
particular table use Oracle SQL DML (Data Manipulation Language). For example:

■ Use INSERT to initialize a BFILE column to point to an existing file in the server
file system

■ Use UPDATE to change the reference target of the BFILE

■ Initialize a BFILE to NULL and then update it later to refer to an operating system
file using the BFILENAME function.

■ OCI users can also use OCILobFileSetName() to initialize a BFILE locator
variable that is then used in the VALUES clause of an INSERT statement.

Directory Example
The following statements associate the files Image1.gif and image2.gif with
records having key_value of 21 and 22 respectively. 'IMG' is a DIRECTORY object that
represents the physical directory under which Image1.gif and image2.gif are
stored.

You may need to set up data structures similar to the following for certain examples to
work:

CREATE TABLE Lob_table (
 Key_value NUMBER NOT NULL,
 F_lob BFILE)
 INSERT INTO Lob_table VALUES
 (21, BFILENAME('IMG', 'Image1.gif'));
 INSERT INTO Lob_table VALUES
 (22, BFILENAME('IMG', 'image2.gif'));

The following UPDATE statement changes the target file to image3.gif for the row
with key_value of 22.

 UPDATE Lob_table SET f_lob = BFILENAME('IMG', 'image3.gif')
 WHERE Key_value = 22;

Note: The database does not verify that the directory and path
name you specify actually exist. You should take care to specify a
valid directory in your operating system. If your operating system
uses case-sensitive path names, then be sure you specify the
directory in the correct format. There is no need to specify a
terminating slash (for example, /tmp/ is not necessary, simply use
/tmp).

Directory specifications cannot contain ".." anywhere in the path
(for example, /abc/def/hij..).

Characteristics of the BFILE Datatype

LOB APIs for BFILE Operations 15-5

BFILENAME and Initialization
BFILENAME is a built-in function that you use to initialize a BFILE column to point to
an external file.

Once physical files are associated with records using SQL DML, subsequent read
operations on the BFILE can be performed using PL/SQL DBMS_LOB package and
OCI. However, these files are read-only when accessed through BFILEs, and so they
cannot be updated or deleted through BFILEs.

As a consequence of the reference-based semantics for BFILEs, it is possible to have
multiple BFILE columns in the same record or different records referring to the same
file. For example, the following UPDATE statements set the BFILE column of the row
with key_value =1 in lob_table to point to the same file as the row with
key_value =22.

UPDATE lob_table
 SET f_lob = (SELECT f_lob FROM lob_table WHERE key_value = 22)
 WHERE key_value = 21;

Think of BFILENAME in terms of initialization — it can initialize the value for the
following:

■ BFILE column

■ BFILE (automatic) variable declared inside a PL/SQL module

Characteristics of the BFILE Datatype
Using the BFILE datatype has the following advantages:

■ If your need for a particular BFILE is temporary and limited within the module
on which you are working, then you can use the BFILE related APIs on the
variable without ever having to associate this with a column in the database.

■ Because you are not forced to create a BFILE column in a server side table,
initialize this column value, and then retrieve this column value using a SELECT,
you save a round-trip to the server.

For more information, refer to the example given for DBMS_LOB.LOADFROMFILE (see
"Loading a LOB with BFILE Data" on page 15-10).

The OCI counterpart for BFILENAME is OCILobFileSetName(), which can be used
in a similar fashion.

DIRECTORY Name Specification
You must have CREATE ANY DIRECTORY system privilege to create directories. Path
names cannot contain two dots (".."). The naming convention for DIRECTORY objects is
the same as that for tables and indexes. That is, normal identifiers are interpreted in

Note: The database does not expand environment variables
specified in the DIRECTORY object or file name of a BFILE locator.
For example, specifying:

BFILENAME('WORK_DIR', '$MY_FILE')

where MY_FILE, an environment variable defined in the operating
system, is not valid.

BFILE Security

15-6 Oracle Database Application Developer's Guide - Large Objects

uppercase, but delimited identifiers are interpreted as is. For example, the following
statement:

CREATE OR REPLACE DIRECTORY scott_dir AS '/usr/home/scott';

creates or redefines a directory object whose name is 'SCOTT_DIR' (in uppercase). But
if a delimited identifier is used for the DIRECTORY name, as shown in the following
statement

CREATE DIRECTORY "Mary_Dir" AS '/usr/home/mary';

then the directory object name is 'Mary_Dir'. Use 'SCOTT_DIR' and 'Mary_Dir' when
calling BFILENAME. For example:

BFILENAME('SCOTT_DIR', 'afile')
BFILENAME('Mary_Dir', 'afile')

On Windows Platforms
On Windows platforms the directory names are case-insensitive. Therefore the
following two statements refer to the same directory:

CREATE DIRECTORY "big_cap_dir" AS "g:\data\source";

CREATE DIRECTORY "small_cap_dir" AS "G:\DATA\SOURCE";

BFILE Security
This section introduces the BFILE security model and associated SQL statements. The
main SQL statements associated with BFILE security are:

■ SQL DDL: CREATE and REPLACE or ALTER a DIRECTORY object

■ SQL DML: GRANT and REVOKE the READ system and object privileges on
DIRECTORY objects

Ownership and Privileges
The DIRECTORY object is a system owned object. For more information on system
owned objects, see Oracle Database SQL Reference. Oracle Database supports two new
system privileges, which are granted only to DBA:

■ CREATE ANY DIRECTORY — for creating or altering the directory object creation

■ DROP ANY DIRECTORY — for deleting the directory object

Read Permission on a DIRECTORY Object
READ permission on the DIRECTORY object enables you to read files located under that
directory. The creator of the DIRECTORY object automatically earns the READ privilege.

If you have been granted the READ permission with GRANT option, then you may in
turn grant this privilege to other users/roles and add them to your privilege domains.

Note: The READ permission is defined only on the DIRECTORY
object, not on individual files. Hence there is no way to assign
different privileges to files in the same directory.

BFILE Security

LOB APIs for BFILE Operations 15-7

The physical directory that it represents may or may not have the corresponding
operating system privileges (read in this case) for the Oracle Server process.

It is the responsibility of the DBA to ensure the following:

■ That the physical directory exists

■ Read permission for the Oracle Server process is enabled on the file, the directory,
and the path leading to it

■ The directory remains available, and read permission remains enabled, for the
entire duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may read
from files in the directory. These privileges are checked and enforced by the PL/SQL
DBMS_LOB package and OCI APIs at the time of the actual file operations.

SQL DDL for BFILE Security
Refer to the Oracle Database SQL Reference for information about the following SQL
DDL statements that create, replace, and drop directory objects:

■ CREATE DIRECTORY

■ DROP DIRECTORY

SQL DML for BFILE Security
Refer to the Oracle Database SQL Reference for information about the following SQL
DML statements that provide security for BFILEs:

■ GRANT (system privilege)

■ GRANT (object privilege)

■ REVOKE (system privilege)

■ REVOKE (object privilege)

■ AUDIT (new statements)

■ AUDIT (schema objects)

Catalog Views on Directories
Catalog views are provided for DIRECTORY objects to enable users to view object
names and corresponding paths and privileges. Supported views are:

■ ALL_DIRECTORIES (OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all directories accessible to the user.

■ DBA_DIRECTORIES(OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all directories specified for the entire database.

Caution: Because CREATE ANY DIRECTORY and DROP ANY
DIRECTORY privileges potentially expose the server file system to
all database users, the DBA should be prudent in granting these
privileges to normal database users to prevent security breach.

BFILE Security

15-8 Oracle Database Application Developer's Guide - Large Objects

Guidelines for DIRECTORY Usage
The main goal of the DIRECTORY feature is to enable a simple, flexible, non-intrusive,
yet secure mechanism for the DBA to manage access to large files in the server file
system. But to realize this goal, it is very important that the DBA follow these
guidelines when using DIRECTORY objects:

■ Do not map a DIRECTORY object to a data file directory. A DIRECTORY object
should not be mapped to physical directories that contain Oracle data files, control
files, log files, and other system files. Tampering with these files (accidental or
otherwise) could corrupt the database or the server operating system.

■ Only the DBA should have system privileges. The system privileges such as
CREATE ANY DIRECTORY (granted to the DBA initially) should be used carefully
and not granted to other users indiscriminately. In most cases, only the database
administrator should have these privileges.

■ Use caution when granting the DIRECTORY privilege. Privileges on DIRECTORY
objects should be granted to different users carefully. The same holds for the use of
the WITH GRANT OPTION clause when granting privileges to users.

■ Do not drop or replace DIRECTORY objects when database is in operation.
DIRECTORY objects should not be arbitrarily dropped or replaced when the
database is in operation. If this were to happen, then operations from all sessions on
all files associated with this directory object will fail. Further, if a DROP or
REPLACE command is executed before these files could be successfully closed,
then the references to these files will be lost in the programs, and system resources
associated with these files will not be released until the session(s) is shut down.

The only recourse left to PL/SQL users, for example, will be to either run a
program block that calls DBMS_LOB.FILECLOSEALL and restart their file
operations, or exit their sessions altogether. Hence, it is imperative that you use
these commands with prudence, and preferably during maintenance downtimes.

■ Use caution when revoking a user's privilege on DIRECTORY objects. Revoking a
user's privilege on a DIRECTORY object using the REVOKE statement causes all
subsequent operations on dependent files from the user's session to fail. Either you
must re-acquire the privileges to close the file, or run a FILECLOSEALL in the
session and restart the file operations.

In general, using DIRECTORY objects for managing file access is an extension of system
administration work at the operating system level. With some planning, files can be
logically organized into suitable directories that have READ privileges for the Oracle
process.

DIRECTORY objects can be created with READ privileges that map to these physical
directories, and specific database users granted access to these directories.

BFILEs in Shared Server (Multithreaded Server) Mode
The database does not support session migration for BFILE datatypes in shared server
(multithreaded server) mode. This implies that operations on open BFILE instances
can persist beyond the end of a call to a shared server.

In shared server sessions, BFILE operations will be bound to one shared server, they
cannot migrate from one server to another. This restriction will be removed in a
forthcoming release.

BFILE Security

LOB APIs for BFILE Operations 15-9

External LOB (BFILE) Locators
For BFILEs, the value is stored in a server-side operating system file; in other words,
external to the database. The BFILE locator that refers to that file is stored in the row.

When Two Rows in a BFILE Table Refer to the Same File
If a BFILE locator variable that is used in a DBMS_LOB.FILEOPEN (for example L1) is
assigned to another locator variable, (for example L2), then both L1 and L2 point to the
same file. This means that two rows in a table with a BFILE column can refer to the
same file or to two distinct files — a fact that the canny developer might turn to
advantage, but which could well be a pitfall for the unwary.

BFILE Locator Variable
A BFILE locator variable operates like any other automatic variable. With respect to
file operations, it operates like a file descriptor available as part of the standard
input/output library of most conventional programming languages. This implies that
once you define and initialize a BFILE locator, and open the file pointed to by this
locator, all subsequent operations until the closure of this file must be done from
within the same program block using this locator or local copies of this locator.

Guidelines for BFILEs
Note the following guidelines when working with BFILEs:

■ Open and close a file from the same program block at same nesting level. The
BFILE locator variable can be used, just as any scalar, as a parameter to other
procedures, member methods, or external function callouts. However, it is
recommended that you open and close a file from the same program block at the
same nesting level.

■ Set the BFILE value before flushing the object to the database. If an object contains
a BFILE, then you must set the BFILE value before flushing the object to the
database, thereby inserting a new row. In other words, you must call
OCILobFileSetName() after OCIObjectNew() and before
OCIObjectFlush().

■ Indicate the DIRECTORY object name and file name before inserting or updating of
a BFILE. It is an error to insert or update a BFILE without indicating a directory
object name and file name.

This rule also applies to users using an OCI bind variable for a BFILE in an insert
or update statement. The OCI bind variable must be initialized with a directory
object name and file name before issuing the insert or update statement.

■ Initialize BFILE Before insert or update

■ Before using SQL to insert or update a row with a BFILE, you must initialize the
BFILE to one of the following:

■ NULL (not possible if using an OCI bind variable)

■ A directory object name and file name

■ A path name cannot contain two dots ("..") anywhere in its specification. A file
name cannot start with two dots.

Note: OCISetAttr() does not allow the user to set a BFILE
locator to NULL.

Loading a LOB with BFILE Data

15-10 Oracle Database Application Developer's Guide - Large Objects

Loading a LOB with BFILE Data
This section describes how to load a LOB with data from a BFILE.

Preconditions
The following preconditions must exist before calling this procedure:

■ The source BFILE instance must exist.

■ The destination LOB instance must exist.

Usage Notes

Character Set Conversion
In using OCI, or any of the programmatic environments that access OCI functionality,
character set conversions are implicitly performed when translating from one character
set to another.

BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set
When you use the DBMS_LOB.LOADFROMFILE procedure to populate a CLOB or
NCLOB, you are populating the LOB with binary data from the BFILE. No implicit
translation is performed from binary data to a character set. For this reason, you should
use the LOADCLOBFROMFILE procedure when loading text (see Loading a CLOB or
NCLOB with Data from a BFILE on page 14-9).

Amount Parameter
Note the following with respect to the amount parameter:

■ DBMS_LOB.LOADFROMFILE

If you want to load the entire BFILE, then pass the constant
DBMS_LOB.LOBMAXSIZE. If you pass any other value, then it must be less than or
equal to the size of the BFILE.

■ OCILobLoadFromFile()

If you want to load the entire BFILE, then you can pass the constant UB4MAXVAL.
If you pass any other value, then it must be less than or equal to the size of the
BFILE.

■ OCILobLoadFromFile2()

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Note: The LOADBLOBFROMFILE and LOADCLOBFROMFILE
procedures implement the functionality of this procedure and
provide improved features for loading binary data and character
data. The improved procedures are available in the PL/SQL
environment only. When possible, using one of the improved
procedures is recommended. See "Loading a BLOB with Data from
a BFILE" on page 14-7 and "Loading a CLOB or NCLOB with Data
from a BFILE" on page 14-9 for more information.

See Also: Oracle Database Globalization Support Guide for character
set conversion issues.

Opening a BFILE with OPEN

LOB APIs for BFILE Operations 15-11

If you want to load the entire BFILE, then you can pass the constant UB8MAXVAL.
If you pass any other value, then it must be less than or equal to the size of the
BFILE.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — LOADFROMFILE

■ C (OCI): Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes and examples. Chapter 16, "LOB Functions" —
OCILobLoadFromFile2().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, embedded SQL, and LOB LOAD precompiler
directives.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements" "Embedded SQL Statements and Directives"— LOB LOAD.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS >
OraBLOB.OraCLOB > METHODS > CopyFromBfile

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference): "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB): floaddat.sql

■ OCI: floaddat.c

■ Visual Basic (OO4O): floaddat.bas

■ Java (JDBC): No example.

Opening a BFILE with OPEN
This section describes how to open a BFILE using the OPEN function.

See Also: Table 14–2, " Maximum LOB Size for Load from File
Operations" on page 14-7 for details on the maximum value of the
amount parameter.

Note: You can also open a BFILE using the FILEOPEN function;
however, using the OPEN function is recommended for new
development. Using the FILEOPEN function is described in
Opening a BFILE with FILEOPEN on page 15-12.

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Opening a BFILE with FILEOPEN

15-12 Oracle Database Application Developer's Guide - Large Objects

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — OPEN

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes. Chapter 16, section "LOB Functions" —
OCILobOpen(), OCILobClose().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB statements, and embedded SQL and precompiler directives —
LOB OPEN.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBfile >
METHODS > Open, and > OBJECTS > OraDynaset > METHODS > MoveFirst
MoveLast MovePrevious MoveNext

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Scenario
 These examples open an image in operating system file ADPHOTO_DIR.

Examples
Examples are provided in the following six programmatic environments:

■ PL/SQL(DBMS_LOB): fopen.sql

■ OCI: fopen.c

■ Visual Basic (OO4O): fopen.bas

■ Java (JDBC): fopen.java

Opening a BFILE with FILEOPEN
This section describes how to open a BFILE using the FILEOPEN function.

Usage Notes for Opening a BFILE
While you can continue to use the older FILEOPEN form, Oracle strongly recommends
that you switch to using OPEN, because this facilitates future extensibility.

Note: The FILEOPEN function is not recommended for new
application development. The OPEN function is recommended for
new development. See "Opening a BFILE with OPEN" on
page 15-11

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Determining Whether a BFILE Is Open Using ISOPEN

LOB APIs for BFILE Operations 15-13

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEOPEN, FILECLOSE

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations, for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileOpen(), OCILobFileClose(), OCILobFileSetName().

■ COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Scenario for Opening a BFILE
These examples open keyboard_logo.jpg in directory object MEDIA_DIR.

Examples
Examples are provided in the following four programmatic environments:

■ PL/SQL (DBMS_LOB): ffilopen.sql

■ OCI: ffilopen.c

■ Java (JDBC): ffilopen.java

Determining Whether a BFILE Is Open Using ISOPEN
This section describes how to determine whether a BFILE is open using ISOPEN.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — ISOPEN

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileIsOpen().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB DESCRIBE ... ISOPEN.

Note: This function (ISOPEN) is recommended for new
application development. The older FILEISOPEN function,
described in "Determining Whether a BFILE Is Open with
FILEISOPEN" on page 15-14, is not recommended for new
development.

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Determining Whether a BFILE Is Open with FILEISOPEN

15-14 Oracle Database Application Developer's Guide - Large Objects

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Large Objects (LOBs)", "LOB Statements", "Embedded SQL
Statements and Directives" — LOB DESCRIBE ... ISOPEN

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBfile >
METHODS > IsOpen and > OBJECTS > OraDynaset

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following six programmatic environments:

■ PL/SQL (DBMS_LOB): fisopen.sql

■ OCI: fisopen.c

■ Visual Basic (OO4O): fisopen.bas

■ Java (JDBC): fisopen.java

Determining Whether a BFILE Is Open with FILEISOPEN
This section describes how to determine whether a BFILE is OPEN using the
FILEISOPEN function.

Usage Notes
While you can continue to use the older FILEISOPEN form, Oracle strongly
recommends that you switch to using ISOPEN, because this facilitates future
extensibility.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEISOPEN

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileIsOpen().

■ COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

Note: The FILEISOPEN function is not recommended for new
application development. The ISOPEN function is recommended
for new development. See Determining Whether a BFILE Is Open
Using ISOPEN on page 15-13

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Displaying BFILE Data

LOB APIs for BFILE Operations 15-15

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Scenario
These examples query whether a BFILE associated with ad_graphic is open.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL(DBMS_LOB): ffisopen.sql

■ OCI: ffisopen.c

■ Java (JDBC): ffisopen.java

Displaying BFILE Data
This section describes how to display BFILE data.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — READ. Chapter 29, "DBMS_OUTPUT" - PUT_LINE

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileOpen(), OCILobRead2().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB READ, DISPLAY.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements" — READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >
METHODS > Read, and OO4O Automation Server > OBJECTS > OraBFILE >
PROPERTIES > PollingAmount, Offset, Status. See also OO4O Automation Server
> OBJECTS > OraBFILE > Examples

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in six programmatic environments:

■ PL/SQL (DBMS_LOB): fdisplay.sql

■ OCI: fdisplay.c

■ Java (JDBC): fdisplay.java

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Reading Data from a BFILE

15-16 Oracle Database Application Developer's Guide - Large Objects

Reading Data from a BFILE
This section describes how to read data from a BFILE.

Usage Notes
Note the following when using this operation.

Streaming Read in OCI
The most efficient way to read large amounts of BFILE data is by OCILobRead2()
with the streaming mechanism enabled, and using polling or callback. To do so,
specify the starting point of the read using the offset parameter as follows:

ub8 char_amt = 0;
ub8 byte_amt = 0;
ub4 offset = 1000;

OCILobRead2(svchp, errhp, locp, &byte_amt, &char_amt, offset, bufp, bufl,
 OCI_ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byte_amt parameter after
each OCILobRead2() call to see how many bytes were read into the buffer, because
the buffer may not be entirely full.

When using callbacks, the lenp parameter, which is input to the callback, will indicate
how many bytes are filled in the buffer. Be sure to check the lenp parameter during
your callback processing because the entire buffer may not be filled with data (see the
Oracle Call Interface Programmer's Guide.)

Amount Parameter
■ When calling DBMS_LOB.READ, the amount parameter can be larger than the size

of the data; however, the amount parameter should be less than or equal to the
size of the buffer. In PL/SQL, the buffer size is limited to 32K.

■ When calling OCILobRead2(), you can pass a value of 0 (zero) for the byte_amt
parameter to read to the end of the BFILE.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — READ

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobRead2().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB READ.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Reading a Portion of BFILE Data Using SUBSTR

LOB APIs for BFILE Operations 15-17

METHODS > Read, and OO4O Automation Server > OBJECTS > OraBFILE >
PROPERTIES > PollingAmount, Offset, Status. See also OO4O Automation Server
> OBJECTS > OraBFILE > Examples

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB): fread.sql

■ OCI: fread.c

■ Visual Basic (OO4O): fread.bas

■ Java (JDBC): fread.java

Reading a Portion of BFILE Data Using SUBSTR
This section describes how to read portion of BFILE data using SUBSTR.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — SUBSTR

■ OCI: A syntax reference is not applicable in this release.

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB OPEN, LOB CLOSE. See PL/SQL DBMS_LOB.SUBSTR.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN. See
also PL/SQL DBMS_LOB.SUBSTR

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >
METHODS > Open, and OO4O Automation Server > OBJECTS > OraBFILE >
PROPERTIES > PollingAmount, Offset, Status. See also OO4O Automation Server
> OBJECTS > OraBFILE > Examples

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in these five programmatic environments:

■ PL/SQL (DBMS_LOB): freadprt.sql

■ C (OCI): No example is provided with this release.

■ Visual Basic (OO4O): freadprt.bas

■ Java (JDBC): freadprt.java

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Comparing All or Parts of Two BFILES

15-18 Oracle Database Application Developer's Guide - Large Objects

Comparing All or Parts of Two BFILES
This section describes how to compare all or parts of two BFILEs.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — COMPARE

■ C (OCI): A syntax reference is not applicable in this release.

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB OPEN. See PL/SQL DBMS_LOB.COMPARE.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN. See
PL/SQL DBMS_LOB.COMPARE.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >
METHODS > Open, Compare, and OO4O Automation Server > OBJECTS >
OraDatabase > PROPERTIES > Parameters. See also OO4O Automation Server >
OBJECTS > OraBFILE > Examples

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in these five programmatic environments:

■ PL/SQL(DBMS_LOB): fcompare.sql

■ OCI: No example is provided with this release.

■ Visual Basic (OO4O): fcompare.bas

■ Java (JDBC): fcompare.java

Checking If a Pattern Exists in a BFILE Using INSTR
This section describes how to determine whether a pattern exists in a BFILE using
INSTR.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — INSTR

■ C (OCI): A syntax reference is not applicable in this release.

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Determining Whether a BFILE Exists

LOB APIs for BFILE Operations 15-19

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB OPEN. See PL/SQL DBMS_LOB.INSTR.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN. See
PL/SQL DBMS_LOB.INSTR.

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) (Oracle Database JDBC Developer's Guide and Reference): Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
These examples are provided in the following four programmatic environments:

■ PL/SQL (DBMS_LOB): fpattern.sql

■ OCI: No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): fpattern.java

Determining Whether a BFILE Exists
This procedure determines whether a BFILE locator points to a valid BFILE instance.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEEXISTS

■ C (OCI) Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileExists().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB DESCRIBE ... FILEEXISTS.

■ C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB DESCRIBE
...GET FILEEXISTS

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >
PROPERTIES > Exists, and OO4O Automation Server > OBJECTS > OraDatabase
> PROPERTIES > Parameters. See also OO4O Automation Server > OBJECTS >
OraBFILE > Examples

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Getting the Length of a BFILE

15-20 Oracle Database Application Developer's Guide - Large Objects

Examples
The examples are provided in the following six programmatic environments:

■ PL/SQL (DBMS_LOB): fexists.sql

■ OCI: fexists.c

■ Visual Basic (OO4O): fexists.bas

■ Java (JDBC): fexists.java

Getting the Length of a BFILE
This section describes how to get the length of a BFILE.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — GETLENGTH

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations". Chapter 16, section "LOB Functions" — OCILobGetLength2().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB DESCRIBE ... GET LENGTH INTO ...

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB DESCRIBE
... GET LENGTH INTO ...

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >
PROPERTIES > Size. See also OO4O Automation Server > OBJECTS > OraBfile >
Examples

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
The examples are provided in six programmatic environments:

■ PL/SQL (DBMS_LOB): flength.sql

■ OCI: flength.c

■ Visual Basic (OO4O): flength.bas

■ Java (JDBC): flength.java

Assigning a BFILE Locator
This section describes how to assign one BFILE locator to another.

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Getting Directory Object Name and File Name of a BFILE

LOB APIs for BFILE Operations 15-21

Syntax
Use the following syntax references for each programmatic environment:

■ SQL (Oracle Database SQL Reference): Chapter 7, "SQL Statements" — CREATE
PROCEDURE

■ PL/SQL (DBMS_LOB): Refer to Chapter 5, "Advanced Design Considerations" of
this manual for information on assigning one lob locator to another.

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobLocatorAssign().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB ASSIGN

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB ASSIGN

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
The examples are provided in the following five programmatic environments:

■ PL/SQL (DBMS_LOB): fcopyloc.sql

■ OCI: fcopyloc.c

■ Visual Basic: An example is not provided with this release.

■ Java (JDBC): fcopyloc.java

Getting Directory Object Name and File Name of a BFILE
This section describes how to get the directory object name and file name of a BFILE.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEGETNAME

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileGetName().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB DESCRIBE ...GET DIRECTORY ...

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Updating a BFILE by Initializing a BFILE Locator

15-22 Oracle Database Application Developer's Guide - Large Objects

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB DESCRIBE
...GET DIRECTORY ...

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples of this procedure are provided in the following programmatic
environments:

■ PL/SQL (DBMS_LOB): fgetdir.sql

■ OCI: fgetdir.c

■ Visual Basic (OO4O): fgetdir.bas

■ Java (JDBC): fgetdir.java

Updating a BFILE by Initializing a BFILE Locator
This section describes how to update a BFILE by initializing a BFILE locator.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB): See the (Oracle Database SQL Reference), Chapter 7, "SQL
Statements" — UPDATE

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileSetName().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
ALLOCATE. See also (Oracle Database SQL Reference), Chapter 7, "SQL Statements"
— UPDATE

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives". See also (Oracle
Database SQL Reference), Chapter 7, "SQL Statements" — UPDATE

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

■ Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >
PROPERTIES > DirectoryName, FileName, and OO4O Automation Server >
OBJECTS > OraDatabase > METHODS > ExecuteSQL. See also OO4O Automation
Server > OBJECTS > OraBfile > Examples

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
The examples are provided in six programmatic environments:

■ PL/SQL (DBMS_LOB): fupdate.sql

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Closing a BFILE with CLOSE

LOB APIs for BFILE Operations 15-23

■ OCI: fupdate.c

■ Visual Basic (OO4O): fupdate.bas

■ Java (JDBC): fupdate.java

Closing a BFILE with FILECLOSE
This section describes how to close a BFILE with FILECLOSE.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB)(Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEOPEN, FILECLOSE

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileClose().

■ COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
■ PL/SQL (DBMS_LOB): fclose_f.sql

■ OCI: fclose_f.c

■ Visual Basic (OO4O): This operation is not supported in Visual Basic. Instead use
"Closing a BFILE with CLOSE" as described on page 15-23.

■ Java (JDBC): fclose_f.java

Closing a BFILE with CLOSE
This section describes how to close a BFILE with the CLOSE function.

Note: This function (FILECLOSE) is not recommended for new
development. For new development, use the CLOSE function
instead. See "Closing a BFILE with CLOSE" on page 15-23 for more
information.

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Note: This function (CLOSE) is recommended for new application
development. The older FILECLOSE function, is not recommended
for new development.

Closing All Open BFILEs with FILECLOSEALL

15-24 Oracle Database Application Developer's Guide - Large Objects

Usage Notes
Opening and closing a BFILE is mandatory. You must close the instance later in the
session.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — CLOSE

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobClose().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB CLOSE

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB CLOSE

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

■ Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >
PROPERTIES > IsOpen. See also OO4O Automation Server > OBJECTS >
OraBFILE > Examples.

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
■ PL/SQL (DBMS_LOB): fclose_c.sql

■ OCI: fclose_c.c

■ Visual Basic (OO4O): fclose_c.bas

■ Java (JDBC): fclose_c.java

Closing All Open BFILEs with FILECLOSEALL
This section describes how to close all open BFILEs.

You are responsible for closing any BFILE instances before your program terminates.
For example, you must close any open BFILE instance before the termination of a
PL/SQL block or OCI program.

You must close open BFILE instances even in cases where an exception or unexpected
termination of your application occurs. In these cases, if a BFILE instance is not

See Also: Table 15–1, " Environments Supported for BFILE APIs"
on page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

See Also:

■ Opening a BFILE with OPEN on page 15-11

■ Determining Whether a BFILE Is Open Using ISOPEN on
page 15-13

Inserting a Row Containing a BFILE

LOB APIs for BFILE Operations 15-25

closed, then it is still considered open by the database. Ensure that your exception
handling strategy does not allow BFILE instances to remain open in these situations.

Syntax
Use the following syntax references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILECLOSEALL

■ C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileCloseAll().

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives —
LOB FILE CLOSE ALL

■ C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB FILE
CLOSE ALL

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >
METHODS > CloseAll. See also OO4O Automation Server > OBJECTS >
OraBFILE > Examples

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: Chapter 7,
"Working With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
■ PL/SQL (DBMS_LOB): fclosea.sql

■ OCI: fclosea.c

■ Visual Basic (OO4O): fclosea.bas

■ Java (JDBC): fclosea.java

Inserting a Row Containing a BFILE
This section describes how to insert a row containing a BFILE by initializing a BFILE
locator.

Usage Notes
You must initialize the BFILE locator bind variable to NULL or a directory object and
file name before issuing the INSERT statement.

See Also:

■ Table 15–1, " Environments Supported for BFILE APIs" on
page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

■ "Setting Maximum Number of Open BFILEs" on page 3-5

See Also:

■ Table 15–1, " Environments Supported for BFILE APIs" on
page 15-2, for a list of operations on BFILEs and APIs provided
for each programmatic environment.

Inserting a Row Containing a BFILE

15-26 Oracle Database Application Developer's Guide - Large Objects

Syntax
See the following syntax references for each programmatic environment:

■ SQL(Oracle Database SQL Reference, Chapter 7 "SQL Statements" — INSERT

■ C (OCI) Oracle Call Interface Programmer's Guide: Chapter 7, "LOB and File
Operations".

■ COBOL (Pro*COBOL) Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, embedded SQL, and precompiler directives. See
also Oracle Database SQL Reference, for related information on the SQL INSERT
statement.

■ C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide: "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB FILE SET. See
also (Oracle Database SQL Reference), Chapter 7 "SQL Statements" — INSERT

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBfile >
METHODS > DirectoryName, FileName; and > OBJECTS > OraDynaset >

■ METHODS > Update

■ Java (JDBC) Oracle Database JDBC Developer's Guide and Reference: "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples in the following programmatic environments are provided:

■ PL/SQL (DBMS_LOB): finsert.sql

■ OCI: finsert.c

■ Visual Basic (OO4O): finsert.bas

■ Java (JDBC): finsert.java

LOB Demonstration Files A-1

A
LOB Demonstration Files

This appendix describes files distributed with the database that demonstrate how
LOBs are used in supported programmatic environments. This appendix contains
these topics:

■ PL/SQL LOB Demonstration Files

■ OCI LOB Demonstration Files

■ Visual Basic OO4O LOB Demonstration Files

■ Java LOB Demonstration Files

PL/SQL LOB Demonstration Files
The following table lists PL/SQL demonstration files. These files are installed in
$ORACLE_HOME/rdbms/demo/lobs/plsql/. A driver program, lobdemo.sql,
that calls these files is found in the same directory.

Table A–1 PL/SQL Demonstration Examples

File Name Description Usage Information

fclose_c.sql Closing a BFILE with CLOSE Closing a BFILE with CLOSE on
page 15-23

fclose_f.sql Closing a BFILE with FILECLOSE Closing a BFILE with FILECLOSE on
page 15-23

fclosea.sql Closing all open BFILEs Closing All Open BFILEs with
FILECLOSEALL on page 15-24

fcompare.sql Comparing all or parts of two BFILEs Comparing All or Parts of Two BFILES
on page 15-18

fcopyloc.sql Copying a LOB locator for a BFILE Assigning a BFILE Locator on
page 15-20

fdisplay.sql Displaying BFILE data Displaying BFILE Data on page 15-15

fexists.sql Checking if a BFILE exists Determining Whether a BFILE Exists on
page 15-19

ffilopen.sql Opening a BFILE with FILEOPEN Opening a BFILE with FILEOPEN on
page 15-12

ffisopen.sql Checking if the BFILE is OPEN with
FILEISOPEN

Determining Whether a BFILE Is Open
with FILEISOPEN on page 15-14

fgetdir.sql Getting the directory object name and filename
of a BFILE

Getting Directory Object Name and File
Name of a BFILE on page 15-21

PL/SQL LOB Demonstration Files

A-2 Oracle Database Application Developer's Guide - Large Objects

finsert.sql Inserting row containing a BFILE by initializing
a BFILE locator

Inserting a Row Containing a BFILE on
page 15-25

fisopen.sql Checking if the BFILE is open with ISOPEN Determining Whether a BFILE Is Open
Using ISOPEN on page 15-13

flength.sql Getting the length of a BFILE Getting the Length of a BFILE on
page 15-20

floadlob.sql Loading a LOB with BFILE data Loading a LOB with BFILE Data on
page 15-10

fopen.sql Opening a BFILE with OPEN Opening a BFILE with OPEN on
page 15-11

fpattern.sql Checking if a pattern exists in a BFILE using
instr

Checking If a Pattern Exists in a BFILE
Using INSTR on page 15-18

fread.sql Reading data from a BFILE Reading Data from a BFILE on
page 15-16

freadprt.sql Reading portion of a BFILE data using substr Reading a Portion of BFILE Data Using
SUBSTR on page 15-17

fupdate.sql Updating a BFILE by initializing a BFILE locator Updating a BFILE by Initializing a
BFILE Locator on page 15-22

lappend.sql Appending one LOB to another Appending One LOB to Another on
page 14-4

lcompare.sql Comparing all or part of LOB Comparing All or Part of Two LOBs on
page 14-21

lcopy.sql Copying all or part of a LOB to another LOB Copying All or Part of One LOB to
Another LOB on page 14-23

lcopyloc.sql Copying a LOB locator Copying All or Part of One LOB to
Another LOB on page 14-23

ldisplay.sql Displaying LOB data Displaying LOB Data on page 14-11

lerase.sql Erasing part of a LOB Erasing Part of a LOB on page 14-36

linsert.sql Inserting a row by initializing LOB locator bind
variable

Inserting a Row by Initializing a LOB
Locator Bind Variable on page 8-6

linstr.sql Seeing if pattern exists in LOB (instr) Patterns: Checking for Patterns in a LOB
Using INSTR on page 14-22

lisopen.sql Seeing if LOB is open Determining Whether a LOB is Open on
page 14-10

listemp.sql Seeing if LOB is temporary Determining Whether a LOB instance Is
Temporary on page 14-40

lldblobf.sql Using DBMS_LOB.LOADBLOBFROMFILE to load
a BLOB with data from a BFILE

Loading a BLOB with Data from a
BFILE on page 14-7

lldclobf.sql Using DBMS_LOB.LOADCLOBFROMFILE to load
a CLOB or NCLOB with data from a BFILE

Loading a CLOB or NCLOB with Data
from a BFILE on page 14-9

lldclobs.sql Using DBMS_LOB.LOADCLOBFROMFILE to load
segments of a stream of data from a BFILE into
different CLOBs

Loading a CLOB or NCLOB with Data
from a BFILE on page 14-9

llength.sql Getting the length of a LOB Length: Determining the Length of a
LOB on page 14-22

Table A–1 (Cont.) PL/SQL Demonstration Examples

File Name Description Usage Information

OCI LOB Demonstration Files

LOB Demonstration Files A-3

OCI LOB Demonstration Files
The following table lists OCI demonstration files. These files are installed in
$ORACLE_HOME/rdbms/demo/lobs/oci/. A driver program, lobdemo.c, that
calls these files is found in the same directory, as is the header file lobdemo.h.

lloaddat.sql Loading a LOB with BFILE data Loading a LOB with Data from a BFILE
on page 14-6

lobuse.sql Examples of LOB API usage. Creating Persistent and Temporary
LOBs in PL/SQL on page 12-3

lread.sql Reading data from LOB Reading Data from a LOB on page 14-13

lsubstr.sql Reading portion of LOB (substr) Reading a Portion of a LOB (SUBSTR)
on page 14-20

ltrim.sql Trimming LOB data Trimming LOB Data on page 14-35

lwrite.sql Writing data to a LOB Writing Data to a LOB on page 14-28

lwriteap.sql Writing to the end of LOB (write append) Appending to a LOB on page 14-26

Table A–2 OCI Demonstration Examples

File Name Description Usage Information

fclose_c.c Closing a BFILE with CLOSE Closing a BFILE with CLOSE on
page 15-23

fclose_f.c Closing a BFILE with FILECLOSE Closing a BFILE with FILECLOSE on
page 15-23

fclosea.c Closing all open BFILEs Closing All Open BFILEs with
FILECLOSEALL on page 15-24

fcopyloc.c Copying a LOB locator for a BFILE Assigning a BFILE Locator on page 15-20

fdisplay.c Displaying BFILE data Displaying BFILE Data on page 15-15

fexists.c Checking if a BFILE exists Determining Whether a BFILE Exists on
page 15-19

ffilopen.c Opening a BFILE with FILEOPEN Opening a BFILE with FILEOPEN on
page 15-12

ffisopen.c Checking if the BFILE is OPEN with
FILEISOPEN

Determining Whether a BFILE Is Open
with FILEISOPEN on page 15-14

fgetdir.c Getting the directory object name
and filename of a BFILE

Getting Directory Object Name and File
Name of a BFILE on page 15-21

finsert.c Inserting row containing a BFILE by
initializing a BFILE locator

Inserting a Row Containing a BFILE on
page 15-25

fisopen.c Checking if the BFILE is open with
ISOPEN

Determining Whether a BFILE Is Open
Using ISOPEN on page 15-13

flength.c Getting the length of a BFILE Getting the Length of a BFILE on
page 15-20

floadlob.c Loading a LOB with BFILE data Loading a LOB with BFILE Data on
page 15-10

fopen.c Opening a BFILE with OPEN Opening a BFILE with OPEN on
page 15-11

Table A–1 (Cont.) PL/SQL Demonstration Examples

File Name Description Usage Information

Visual Basic OO4O LOB Demonstration Files

A-4 Oracle Database Application Developer's Guide - Large Objects

Visual Basic OO4O LOB Demonstration Files
The following table lists Visual Basic OO4O demonstration files. These files are
installed in $ORACLE_HOME/rdbms/demo/lobs/vb/.

fread.c Reading data from a BFILE Reading Data from a BFILE on page 15-16

fupdate.c Updating a BFILE by initializing a
BFILE locator

Updating a BFILE by Initializing a BFILE
Locator on page 15-22

lappend.c Appending one LOB to another Appending One LOB to Another on
page 14-4

lcopy.c Copying all or part of a LOB to
another LOB

Copying All or Part of One LOB to
Another LOB on page 14-23

lcopyloc.c Copying a LOB locator Copying All or Part of One LOB to
Another LOB on page 14-23

ldisbuf.c Disabling LOB buffering (persistent
LOBs)

Disabling LOB Buffering on page 14-39

ldisplay.c Displaying LOB data Displaying LOB Data on page 14-11

lequal.c Seeing if one LOB locator is equal to
another

Equality: Checking If One LOB Locator Is
Equal to Another on page 14-25

lerase.c Erasing part of a LOB Erasing Part of a LOB on page 14-36

lgetchar.c Getting character set id Determining Character Set ID on
page 14-5

lgetchfm.c Getting character set form of the
foreign language ad text,
ad_fltextn

Determining Character Set Form on
page 14-5

linit.c Seeing if a LOB locator is initialized Determining Whether LOB Locator Is
Initialized on page 14-26

linsert.c Inserting a row by initializing LOB
locator bind variable

Inserting a Row by Initializing a LOB
Locator Bind Variable on page 8-6

lisopen.c Seeing if LOB is open Determining Whether a LOB is Open on
page 14-10

listemp.c Seeing if LOB is temporary Determining Whether a LOB instance Is
Temporary on page 14-40

llength.c Getting the length of a LOB Length: Determining the Length of a LOB
on page 14-22

lloaddat.c Loading a LOB with BFILE data Loading a LOB with Data from a BFILE
on page 14-6

lread.c Reading data from LOB Reading Data from a LOB on page 14-13

lreadarr.c Reading data from an array of LOB
locators

LOB Array Read on page 14-14

ltrim.c Trimming LOB data Trimming LOB Data on page 14-35

lwrite.c Writing data to a LOB Writing Data to a LOB on page 14-28

lwritearr.c Writing data into an array of LOB
locators

LOB Array Write on page 14-30

lwriteap.c Writing to the end of LOB (write
append)

Appending to a LOB on page 14-26

Table A–2 (Cont.) OCI Demonstration Examples

File Name Description Usage Information

Visual Basic OO4O LOB Demonstration Files

LOB Demonstration Files A-5

Table A–3 Visual Basic OO4O Demonstration Examples

File Name Description Usage Information

fclose_c.bas Closing a BFILE with CLOSE Closing a BFILE with CLOSE on
page 15-23

fclosea.bas Closing all open BFILEs Closing All Open BFILEs with
FILECLOSEALL on page 15-24

fcompare.bas Comparing all or parts of two BFILEs Comparing All or Parts of Two BFILES
on page 15-18

fdisplay.bas Displaying BFILE data Displaying BFILE Data on page 15-15

fexists.bas Checking if a BFILE exists Determining Whether a BFILE Exists
on page 15-19

fgetdir.bas Getting the directory object name and
filename of a BFILE

Getting Directory Object Name and
File Name of a BFILE on page 15-21

finsert.bas Inserting row containing a BFILE by
initializing a BFILE locator

Inserting a Row Containing a BFILE on
page 15-25

fisopen.bas Checking if the BFILE is open with
ISOPEN

Determining Whether a BFILE Is Open
Using ISOPEN on page 15-13

flength.bas Getting the length of a BFILE Getting the Length of a BFILE on
page 15-20

floadlob.bas Loading a LOB with BFILE data Loading a LOB with BFILE Data on
page 15-10

fopen.bas Opening a BFILE with OPEN Opening a BFILE with OPEN on
page 15-11

fread.bas Reading data from a BFILE Reading Data from a BFILE on
page 15-16

freadprt.bas Reading portion of a BFILE data using
substr

Reading a Portion of BFILE Data Using
SUBSTR on page 15-17

fupdate.bas Updating a BFILE by initializing a
BFILE locator

Updating a BFILE by Initializing a
BFILE Locator on page 15-22

lappend.bas Appending one LOB to another Appending One LOB to Another on
page 14-4

lcompare.bas Comparing all or part of LOB Comparing All or Part of Two LOBs on
page 14-21

lcopy.bas Copying all or part of a LOB to
another LOB

Copying All or Part of One LOB to
Another LOB on page 14-23

lcopyloc.bas Copying a LOB locator Copying All or Part of One LOB to
Another LOB on page 14-23

ldisbuf.bas Disabling LOB buffering (persistent
LOBs)

Disabling LOB Buffering on page 14-39

ldisplay.bas Displaying LOB data Displaying LOB Data on page 14-11

lenbuf.bas Enabling LOB buffering Enabling LOB Buffering on page 14-37

lerase.bas Erasing part of a LOB Erasing Part of a LOB on page 14-36

linsert.bas Inserting a row by initializing LOB
locator bind variable

Inserting a Row by Initializing a LOB
Locator Bind Variable on page 8-6

llength.bas Getting the length of a LOB Length: Determining the Length of a
LOB on page 14-22

Java LOB Demonstration Files

A-6 Oracle Database Application Developer's Guide - Large Objects

Java LOB Demonstration Files
The following table lists Java demonstration files. These files are installed in
$ORACLE_HOME/rdbms/demo/lobs/java/.

lloaddat.bas Loading a LOB with BFILE data Loading a LOB with Data from a
BFILE on page 14-6

lread.bas Reading data from LOB Reading Data from a LOB on
page 14-13

lsubstr.bas Reading portion of LOB (substr) Reading a Portion of a LOB (SUBSTR)
on page 14-20

ltrim.bas Trimming LOB data Trimming LOB Data on page 14-35

lwrite.bas Writing data to a LOB Writing Data to a LOB on page 14-28

Table A–4 Java Demonstration Examples

File Name Description Usage Information

fclose_c.java Closing a BFILE with
CLOSE

Closing a BFILE with CLOSE on page 15-23

fclose_f.java Closing a BFILE with
FILECLOSE

Closing a BFILE with FILECLOSE on page 15-23

fclosea.java Closing all open BFILEs Closing All Open BFILEs with FILECLOSEALL
on page 15-24

fcompare.java Comparing all or parts
of two BFILEs

Comparing All or Parts of Two BFILES on
page 15-18

fcopyloc.java Copying a LOB locator
for a BFILE

Assigning a BFILE Locator on page 15-20

fdisplay.java Displaying BFILE data Displaying BFILE Data on page 15-15

fexists.java Checking if a BFILE
exists

Determining Whether a BFILE Exists on
page 15-19

ffilopen.java Opening a BFILE with
FILEOPEN

Opening a BFILE with FILEOPEN on page 15-12

ffisopen.java Checking if the BFILE is
OPEN with
FILEISOPEN

Determining Whether a BFILE Is Open with
FILEISOPEN on page 15-14

fgetdir.java Getting the directory
object name and
filename of a BFILE

Getting Directory Object Name and File Name
of a BFILE on page 15-21

finsert.java Inserting row containing
a BFILE by initializing a
BFILE locator

Inserting a Row Containing a BFILE on
page 15-25

fisopen.java Checking if the BFILE is
open with ISOPEN

Determining Whether a BFILE Is Open Using
ISOPEN on page 15-13

flength.java Getting the length of a
BFILE

Getting the Length of a BFILE on page 15-20

fopen.java Opening a BFILE with
OPEN

Opening a BFILE with OPEN on page 15-11

Table A–3 (Cont.) Visual Basic OO4O Demonstration Examples

File Name Description Usage Information

Java LOB Demonstration Files

LOB Demonstration Files A-7

fpattern.java Checking if a pattern
exists in a BFILE using
instr

Checking If a Pattern Exists in a BFILE Using
INSTR on page 15-18

fread.java Reading data from a
BFILE

Reading Data from a BFILE on page 15-16

freadprt.java Reading portion of a
BFILE data using substr

Reading a Portion of BFILE Data Using SUBSTR
on page 15-17

fupdate.java Updating a BFILE by
initializing a BFILE
locator

Updating a BFILE by Initializing a BFILE
Locator on page 15-22

lappend.java Appending one LOB to
another

Appending One LOB to Another on page 14-4

lcompare.java Comparing all or part of
LOB

Comparing All or Part of Two LOBs on
page 14-21

lcopy.java Copying all or part of a
LOB to another LOB

Copying All or Part of One LOB to Another LOB
on page 14-23

lcopyloc.java Copying a LOB locator Copying All or Part of One LOB to Another LOB
on page 14-23

ldisplay.java Displaying LOB data Displaying LOB Data on page 14-11

lequal.java Seeing if one LOB
locator is equal to
another

Equality: Checking If One LOB Locator Is Equal
to Another on page 14-25

lerase.java Erasing part of a LOB Erasing Part of a LOB on page 14-36

linsert.java Inserting a row by
initializing LOB locator
bind variable

Inserting a Row by Initializing a LOB Locator
Bind Variable on page 8-6

linstr.java Seeing if pattern exists in
LOB (instr)

Patterns: Checking for Patterns in a LOB Using
INSTR on page 14-22

lisopen.java Seeing if LOB is open Determining Whether a LOB is Open on
page 14-10

listempb.java Seeing if LOB is
temporary

Determining Whether a LOB instance Is
Temporary on page 14-40

listempc.java Seeing if LOB is
temporary

Determining Whether a LOB instance Is
Temporary on page 14-40

llength.java Getting the length of a
LOB

Length: Determining the Length of a LOB on
page 14-22

lloaddat.java Loading a LOB with
BFILE data

Loading a LOB with Data from a BFILE on
page 14-6

lread.java Reading data from LOB Reading Data from a LOB on page 14-13

lsubstr.java Reading portion of LOB
(substr)

Reading a Portion of a LOB (SUBSTR) on
page 14-20

ltrim.java Trimming LOB data Trimming LOB Data on page 14-35

lwrite.java Writing data to a LOB Writing Data to a LOB on page 14-28

lwriteap.java Writing to the end of
LOB (write append)

Appending to a LOB on page 14-26

Table A–4 (Cont.) Java Demonstration Examples

File Name Description Usage Information

Java LOB Demonstration Files

A-8 Oracle Database Application Developer's Guide - Large Objects

Glossary-1

Glossary

BFILE

A Large Object datatype that is a binary file residing in the file system, outside of the
database data files and tablespace. Note that the BFILE datatype is also referred to as
an external LOB in some documentation.

Binary Large Object (BLOB)

A Large Object datatype that has content consisting of binary data and is typically
used to hold unstructured data. The BLOB datatype is included in the category
Persistent LOBs because it resides in the database.

BLOB

Pronounced "bee-lob." See Binary Large Object.

Character Large Object (CLOB)

The LOB datatype that has content consisting of character data in the database
character set. A CLOB can be indexed and searched by the interMedia Text search
engine.

CLOB

Pronounced "see-lob." See Character Large Object.

external LOB

A Large Object datatype that is stored outside of the database tablespace. The BFILE
datatype is the only external LOB datatype. See also BFILE.

internal persistent LOB

A large object (LOB) that is stored in the database in a BLOB/CLOB/NCLOB column.

introspect

To examine attributes or value of an object.

Large Objects (LOBs)

Large Objects include the following SQL datatypes: BLOB, CLOB, NCLOB, and BFILE.
These datatypes are designed for storing data that is large in size. See also BFILE,
Binary Large Object, Character Large Object, and National Character Large Object.

LOB

See Large Objects.

Glossary-2

LOB attribute

A large object datatype that is a field of an object datatype. For example a CLOB field of
an object type.

LOB value

The actual data stored by the Large Object. For example, if a BLOB stores a picture,
then the value of the BLOB is the data that makes up the image.

National Character Large Object

The LOB datatype that has content consisting of Unicode character data in the
database national character set. An NCLOB can be indexed and searched by the
interMedia Text search engine.

NCLOB

Pronounced "en-see-lob." See National Character Large Object.

persistent LOB

A BLOB, CLOB, or NCLOB that is stored in the database. A persistent LOB instance can
be selected out of a table and used within the scope of your application. The ACID
(atomic, consistent, isolated, durable) properties of the instance are maintained just as
for any other column type. Persistent LOBs are sometimes also referred to as internal
persistent LOBs or just, internal LOBs.

A persistent LOB can exist as a field of an object datatype as well as an instance in a
LOB-type column. For example a CLOB attribute of an instance of type object.

 See also temporary LOB and external LOB.

tablespace

A database storage unit that groups related logical structures together.

temporary LOB

A BLOB, CLOB, or NCLOB that is accessible and persists only within, the application
scope in which it is declared. A temporary LOB does not exist in database tables.

Index-1

Index

A
abstract datatypes and LOBs, 1-5
access statistics for LOBs, 7-5
accessing a LOB

using the LOB APIs, 2-6
accessing external LOBs, 15-3
amount, 15-16
amount parameter

used with BFILEs, 15-10
appending

writing to the end of a LOB
internal persistent LOBs, 14-26

array read, 14-14
array write, 14-30
assigning OCILobLocator pointers, 6-10

B
BFILE class, See JDBC
BFILE-buffering, See JDBC
BFILENAME function, 2-5, 15-5, 15-6
BFILEs

accessing, 15-3
converting to CLOB or NCLOB, 15-10
creating an object in object cache, 5-21
datatype, 1-5
DBMS_LOB read-only procedures, 6-8
DBMS_LOB, offset and amount parameters in

bytes, 6-6
hard links and symbolic links not allowed, 3-5
locators, 2-3
maximum number of open, 3-5, 15-20
maximum size, 5-22
multithreaded server, 2-8
multithreaded server mode, 15-8
not affected by LOB storage properties, 4-6
OCI functions to read/examine values, 6-11, 6-17
OCI read-only functions, 6-11, 6-17
opening and closing using JDBC, 6-35
operating system files, and, 3-5
Oracle Objects for OLE (OO4O)

opening/closing methods, 6-26
properties, 6-27
read-only methods, 6-27

Pro*C/C++ precompiler statements, 6-19

Pro*COBOL precompiler embedded SQL
statements, 6-22

reading with DBMS_LOB, 6-7
rules for using, 3-5
security, 15-5, 15-6
storage devices, 1-4
storing any operating system file, 1-5
streaming APIs, 6-41
using JDBC to read/examine, 6-31
using Pro*C/C++ precompiler to open and

close, 6-20
bind variables, used with LOB locators in OCI, 6-10
binds

See also INSERT statements and UPDATE
statements

Blob class, 6-14
BLOB-buffering, See JDBC
BLOBs

class, See JDBC
datatype, 1-5
DBMS_LOB, offset and amount parameters in

bytes, 6-6
modify using DBMS_LOB, 6-7
using JDBC to modify, 6-30
using JDBC to read/examine BLOB values, 6-30
using oracle.sql.BLOB methods to modify, 6-30

buffering
disable

internal persistent LOBs, 14-39
enable

internal persistent LOBs, 14-37
flush

internal persistent LOBs, 14-38
LOB buffering subsystem, 5-3

C
C++, See Pro*C/C++ precompiler
C, See OCI
CACHE / NOCACHE, 4-9
caches

object cache, 5-21
callback, 14-13, 14-27, 15-16
CAST, 10-2
catalog views

v$temporary_lobs, 3-4

Index-2

character data
varying width, 4-4

character set ID, 6-6
getting the

internal persistent LOBs, 14-5
See CSID parameter

charactersets
multibyte, LONG and LOB datatypes, 13-11

CHUNK, 4-10, 5-22
chunk size, 14-28

and LOB storage properties, 4-6
multiple of, to improve performance, 14-13

CLOB class, See JDBC
CLOB-buffering, See JDBC
CLOBs

columns
varying- width character data, 4-4

datatype, 1-5
varying-width columns, 4-4

DBMS_LOB, offset and amount parameters in
characters, 6-6

modify using DBMS_LOB, 6-7
opening and closing using JDBC, 6-34
reading/examining with JDBC, 6-31
using JDBC to modify, 6-31

Clone method, See Oracle Objects for OLE (OO4O)
closing

all open BFILEs, 15-24
BFILEs with CLOSE, 15-23
BFILEs with FILECLOSE, 15-23

clustered tables, 11-8
COBOL, See Pro*COBOL precompiler
codepoint semantics, 9-5
comparing

all or part of two LOBs
internal persistent LOBs, 14-21

all or parts of two BFILEs, 15-18
conventional path load, 3-2
conversion

explicit functions for PL/SQL, 10-2
conversion, implicit from CLOB to character

type, 9-2
conversions

character set, 15-10
from binary data to character set, 15-10
implicit, between CLOB and VARCHAR2, 10-1

converting
to CLOB, 10-2

copy semantics, 1-5
internal LOBs, 8-4

copying
all or part of a LOB to another LOB

internal persistent LOBs, 14-23
LOB locator

internal persistent LOBs, 14-24
LOB locator for BFILE, 15-20

CSID parameter
setting OCILobRead and OCILobWrite to OCI_

UCS2ID, 6-9

D
data interface for persistent LOBs, 13-1

multibyte charactersets, 13-11
data interface for remote LOBs, 13-22
data interface in Java, 13-22
DBMS_LOB

updating LOB with bind variable, 5-16
WRITE()

passing hexadecimal string to, 14-28
DBMS_LOB functions on a NULL LOB

restriction, 4-2
DBMS_LOB package

available LOB procedures/functions, 6-2, 6-4
for temporary LOBs, 6-8
functions/procedures to modify BLOB, CLOB, and

NCLOB, 6-7
functions/procedures to read/examine internal

and external LOBs, 6-7
LOADBLOBFROMFILE, 15-10
LOADCLOBFROMFILE, 15-10
LOADFROMFILE(), 15-10
multithreaded server, 2-8
multithreaded server mode, 15-8
offset and amount parameter guidelines, 6-6
open and close, JDBC replacements for, 6-33
opening/closing internal and external LOBs, 6-8
provide LOB locator before invoking, 6-5
read-only functions/procedures for BFILEs, 6-8
to work with LOBs, using, 6-5
WRITE()

guidelines, 14-28
DBMS_LOB.GET_STORAGE_LIMIT, 5-23
DBMS_LOB.GETCHUNKSIZE, 5-22
DBMS_LOB.GETLENGTH return value, 9-6
DBMS_LOB.isTemporary, previous workaround for

JDBC, 14-41
DBMS_LOB.LOADBLOBFROMFILE, 6-6
DBMS_LOB.LOADCLOBFROMFILE, 6-6
DBMS_LOB.LOADFROMFILE, 6-6
DBMS_LOB.READ, 15-16
directories

catalog views, 15-7
guidelines for usage, 15-8
ownership and privileges, 15-6

DIRECTORY name specification, 15-5
DIRECTORY object

catalog views, 15-7
getting the alias and filename, 15-21
guidelines for usage, 15-8
names on Windows platforms, 15-6
naming convention, 15-5
READ permission on object not individual

files, 15-6
rules for using, 3-5
symbolic links, 3-5
symbolic links, and, 3-5

DIRECTORY objects, 15-3
direct-path load, 3-2
displaying

LOB data for internal persistent LOBs, 14-11

Index-3

domain indexing on LOB columns, 4-12

E
embedded SQL statements, See Pro*C/C++

precompiler and Pro*COBOL precompiler
empty LOBs

creating using JDBC, 6-44
JDBC, 6-44

EMPTY_BLOB() and EMPTY_CLOB, LOB storage
properties for, 4-6

EMPTY_CLOB()/BLOB()
to initialize internal LOB, 2-4

equal
one LOB locator to another

internal persistent LOBs, 14-25
erasing

part of LOB
internal persistent LOBs, 14-36

error message documentation, database, 0-xvii
example, LOB access statistics, 7-6
examples

repercussions of mixing SQL DML with DBMS_
LOB, 5-13

updated LOB locators, 5-14
updating a LOB with a PL/SQL variable, 5-16

existence
check for BFILE, 15-19

extensible indexes, 4-13
external callout, 5-5
external LOBs (BFILEs)

See BFILEs
external LOBs (BFILEs), See BFILEs

F
FILECLOSEALL(), 15-8
flushing

LOB buffer, 5-4
flushing buffer, 5-1
FOR UPDATE clause

LOB locator, 5-10
function-based indexes, 4-13
function-based indexes on LOB columns, 4-13

H
hard links, rules with BFILEs, 3-5
hexadecimal string

passing to DBMS_LOB.WRITE(), 14-28

I
implicit assignment and parameter passing for LOB

columns, 13-4
implicit conversion of CLOB to character type, 9-2
Improved LOB Usability, Accessing LOBs Using SQL

Character Functions, 9-1
indexes

function-based, 4-13
rebuilding after LONG-to-LOB migration, 11-8

indexes on LOB columns
bitmap index not supported, 4-12
B-tree index not supported, 4-12
domain indexing, 4-12

indexes, restrictions, 11-8
index-organized tables, restrictions for LOB

columns, 4-17
initializing

during CREATE TABLE or INSERT, 8-5
using EMPTY_CLOB(), EMPTY_BLOB(), 2-4

initializing a LOB column to a non-null value, 4-2
inline storage, 4-5
inline storage, maximum size, 4-5
INSERT statements

binds of greater than 4000 bytes, 13-6
inserting

a row by initializing a LOB locator
internal persistent LOBs, 8-6

a row by initializing BFILE locator, 15-25
interfaces for LOBs, see programmatic environments
IS NULL return value for LOBs, 9-10
IS NULL usage with LOBs, 9-10

J
Java, See JDBC
java.sql.Blob, 6-28
java.sql.Clob, 6-28
JDBC

available LOB methods/properties, 6-4
BFILE class
BFILE streaming APIs, 6-41
BFILE-buffering, 6-32
BLOB and CLOB classes
calling DBMS_LOB package, 6-29
checking if BLOB is temporary, 14-41
CLOB streaming APIs, 6-40
empty LOBs, 6-44
encapsulating locators
methods/properties for BLOB-buffering, 6-30
methods/properties for CLOB-buffering, 6-31
modifying BLOB values, 6-30
modifying CLOB values, 6-31
modifyng internal LOBs with Java using objects

oracle.sql.BLOB/CLOB, 6-27
newStreamLob.java, 6-41
opening and closing BFILEs, 6-35
opening and closing CLOBs, 6-34
opening and closing LOBs, 6-33
reading internal LOBs and external LOBs (BFILEs)

with Java, 6-28
reading/examining BLOB values, 6-30
reading/examining CLOB values, 6-31
reading/examining external LOB (BFILE)

values, 6-31
referencing LOBs, 6-29
streaming APIs for LOBs, 6-39
syntax references, 6-29
trimming LOBs, 6-38
using OracleResultSet to reference LOBs, 6-29

Index-4

using OUT parameter from
OraclePreparedStatement to reference
LOBs, 6-29

writing to empty LOBs, 6-45
JDBC 3.0, 6-28
JDBC and Empty LOBs, 6-44

L
LBS, See Lob Buffering Subsystem (LBS)
length

an internal persistent LOB, 14-22
getting BFILE, 15-20

LENGTH return value for LOBs, 9-6
loading

a LOB with BFILE data, 15-10
LOB with data from a BFILE, 14-6

LOB attributes
defined, 1-5

LOB buffering
BLOB-buffering with JDBC, 6-30
buffer-enabled locators, 5-6
example, 5-3
flushing the buffer, 5-4
flushing the updated LOB through LBS, 5-5
guidelines, 5-1
OCI example, 5-6
OCI functions, 6-12
OCILobFlushBuffer(), 5-5
Oracle Objects for OLE (OO4O)

methods for internal LOBs, 6-26
physical structure of buffer, 5-3
Pro*C/C++ precompiler statements, 6-20
Pro*COBOL precompiler statements, 6-22
usage notes, 5-3

LOB Buffering SubSystem (LBS)
LOB Buffering Subsystem (LBS)

advantages, 5-1
buffer-enabled locators, 5-5
buffering example using OCI, 5-6
example, 5-3
flushing

updated LOB, 5-5
flushing the buffer, 5-4
guidelines, 5-1
saving the state of locator to avoid reselect, 5-6
usage, 5-3

LOB columns
initializing internal LOB to a value, 4-2
initializing to contain locator, 2-4
initializing to NULL or Empty, 4-1

LOB locator
copy semantics, 1-5
external LOBs (BFILEs), 1-5
internal LOBs, 1-5
out-bind variables in OCI, 6-10
reference semantics, 1-5

LOB locators, always stored in row, 4-6
LOB reads, 7-5
LOB storage

format of varying width character data, 4-4
inline and out-of-line storage properties, 4-5

LOB writes, 7-5
LOB writes unaligned, 7-5
LOBs

abstract datatypes, members of, 1-5
attributes and abstract datatypes, 1-5
attributes and object cache, 5-21
buffering

caveats, 5-1
pages can be aged out, 5-5

buffering subsystem, 5-1
buffering usage notes, 5-3
datatypes versus LONG, 1-3
external (BFILEs), 1-4
flushing, 5-1
in partitioned tables, 4-14
in the object cache, 5-21
interfaces, See programmatic environments
interMEDIA, 1-6
internal

creating an object in object cache, 5-21
internal LOBs

CACHE / NOCACHE, 4-9
CHUNK, 4-10
ENABLE | DISABLE STORAGE IN

ROW, 4-12
initializing, 15-16
introduced, 1-3
locators, 2-3
locking before updating, 14-4, 14-23, 14-27,

14-28, 14-35, 14-36
LOGGING / NOLOGGING, 4-10
Oracle Objects for OLE (OO4O), modifying

methods, 6-25
PCTVERSION, 4-8
setting to empty, 4-2
tablespace and LOB index, 4-7
tablespace and storage characteristics, 4-6
transactions, 1-3

locators, 2-3, 5-10
maximum sizes allowed, 5-22
object cache, 5-21
piecewise operations, 5-13
read consistent locators, 5-10
reason for using, 1-1
setting to contain a locator, 2-4
setting to NULL, 4-2
tables

creating indexes, 4-15
moving partitions, 4-15
splitting partitions, 4-15

unstructured data, 1-2
updated LOB locators, 5-12
varying-width character data, 4-4

LOBs, data interface for remote, 13-22
LOBs, data interface in Java, 13-22
locators, 2-3

BFILEs, 15-9
guidelines, 15-9

Index-5

two rows can refer to the same file, 15-9
buffer-enabled, 5-6
external LOBs (BFILEs), 2-3
LOB, cannot span transactions, 5-20
multiple, 5-10
OCI functions, 6-12, 6-17
Pro*COBOL precompiler statements, 6-22
providing in Pro*COBOL precompiler, 6-20
read consistent, 5-5, 5-6, 5-10, 5-16, 5-20
read consistent locators, 5-10
read consistent, updating, 5-10
reading and writing to a LOB using, 5-18
saving the state to avoid reselect, 5-6
see if LOB locator is initialized

internal persistent LOBs, 14-26
selecting within a transaction, 5-19
selecting without current transaction, 5-18
setting column to contain, 2-4
transaction boundaries, 5-17
updated, 5-4, 5-12, 5-16
updating, 5-20

LOGGING
migrating LONG-to-LOBs, 11-2

LOGGING / NOLOGGING, 4-10
LONG versus LOB datatypes, 1-3
LONG-to-LOB Migration, 11-1
LONG-to-LOB migration

ALTER TABLE, 11-3
clustered tables, 11-8
LOGGING, 11-2
NULLs, 11-9
rebuilding indexes, 11-8
replication, 11-2
triggers, 11-8

lONG-to-LOB migration
PL/SQL, 13-3

M
migrating

LONG to LOBs, see LONG-to-LOB, 11-1
LONG-to-LOB using ALTER TABLE, 11-3
LONG-to-LOBs, constraints maintained, 11-4
LONG-to-LOBs, indexing, 11-8

migration of LONG to LOB in parallel, 11-6
multibyte character sets, using with the data interface

for LOBs, 13-11
multithreaded server

BFILEs, 2-8, 15-8

N
national language support

NCLOBs, 1-5
NCLOB parameters allowed as attributes, 0-xxv
NCLOBs

datatype, 1-5
DBMS_LOB, offset and amount parameters in

characters, 6-6
modify using DBMS_LOB, 6-7

NewStreamLob.java, 6-41
NLS_CHARSET_ID, 6-6
NOCOPY, using to pass temporary LOB parameters

by reference, 7-2
IS, 9-10
NULL LOB value, LOB storage for, 4-6
NULL LOB values, LOB storage properties for, 4-5
NULL LOB, restrictions calling OCI and DBMS_LOB

functions, 4-2
NULL usage with LOBs, 9-10

O
object cache, 5-21

creating an object in, 5-21
LOBs, 5-21

OCCI
compared to other interfaces, 6-2
LOB functionality, 6-13

OCCI Bfile class, 6-17
OCCI Blob class

read, 6-15
write, 6-15

OCCI Clob class, 6-13
read, 6-15
write, 6-15

OCI
available LOB functions, 6-2
character set rules, fixed-width and

varying-width, 6-9
functions for BFILEs, 6-11, 6-17
functions for temporary LOBs, 6-11, 6-17
functions to modify internal LOB values, 6-11,

6-16
functions to open/close internal and external

LOBs, 6-12, 6-17
functions to read or examine internal and external

LOB values, 6-11, 6-17
LOB buffering example, 5-6
LOB locator functions, 6-12, 6-17
Lob-buffering functions, 6-12
NCLOB parameters, 6-10, 6-15
OCILobFileGetLength

CLOB and NCLOB input and output
length, 6-9

OCILobRead2()
varying-width CLOB and NCLOB input and

amount amounts, 6-9
OCILobWrite2()

varying-width CLOB and NCLOB input and
amount amounts, 6-9, 6-15

offset and amount parameter rules
fixed-width character sets, 6-14

setting OCILobRead2(), OCILobWrite2() to OCI_
UCS2ID, 6-9

using to work LOBs, 6-8
OCI functions on a NULL LOB restriction, 4-2
OCILobArrayRead(), 14-14
OCILobArrayWrite(), 14-30
OCILobAssign(), 5-2

Index-6

OCILobFileSetName(), 15-5, 15-9
OCILobFlushBuffer(), 5-5
OCILobGetChunkSize(), 5-22, 5-23
OCILobGetStorageLimit(), 5-23
OCILobLoadFromFile(), 15-10
OCILobLocator in assignment "=" operations, 6-10
OCILobLocator, out-bind variables, 6-10
OCILobRead2(), 14-12, 14-13, 15-16

BFILEs, 15-16
OCILobWriteAppend2(), 14-27
OCIObjectFlush(), 15-9
OCIObjectNew(), 15-9
OCISetAttr(), 15-9
offset parameter, in DBMS_LOB operations, 6-6
OLEDB, 6-45
OO4O, See Oracle Objects for OLE (OO4O)
open

checking for open BFILEs with
FILEISOPEN(), 15-14

checking if BFILE is open with ISOPEN, 15-13
open, determining whether a LOB is open, 14-10
OpenCloseLob.java example, 6-36
opening

BFILEs using FILEOPEN, 15-12
BFILEs with OPEN, 15-11

opening and closing LOBs
using JDBC, 6-33

ORA-17098
empty LOBs and JDBC, 6-45

OraBfile, See Oracle Objects for OLE (OO4O)
OraBlob, See Oracle Objects for OLE (OO4O)
Oracle Call Interface, See OCI
Oracle Objects for OLE (OO4O)

available LOB methods/properties, 6-4
internal LOB buffering, 6-26
methods and properties to access data stored in

BLOBs, CLOBs, NCLOBs, and BFILEs, 6-25
modifying internal LOBs, 6-25
opening/closing external LOBs (BFILEs), 6-26
OraBfile example
OraBlob example
OraBlob, OraClob, and OraBfile encapsulate

locators, 6-23
properties for operating on external LOBs

(BFILEs), 6-27
properties for operating on LOBs, 6-27
reading/examining internal LOB and external LOB

(BFile) values, 6-26
read-only methods for external LOBs

(BFILEs), 6-27
syntax reference, 6-23
using Clone method to retain locator independent

of dynaset, 6-24
OraclePreparedStatement, See JDBC
OracleResultSet, See JDBC
oracle.sql.BFILE

BFILE-buffering, 6-32
JDBC methods to read/examine BFILEs, 6-31

oracle.sql.BLOB
for modifying BLOB values, 6-30

reading/examining BLOB values, 6-30
See JDBC

oracle.sql.BLOBs
BLOB-buffering

oracle.sql.CLOB
CLOB-buffering
JDBC methods to read/examine CLOB

values, 6-31
modifying CLOB values, 6-31

oracle.sql.CLOBs
See JDBC

OraOLEDB, 6-45
out-of-line storage, 4-5

P
parallel DML support, 13-7
parallel LONG-to-LOB migration, 11-6
partitioned index-organized tables

restrictions for LOB columns, 4-17
pattern

check if it exists in BFILE using instr, 15-18
see if it exists IN LOB using (instr)

internal persistent LOBs, 14-22
PCTINCREASE parameter, recommended value for

LOBs, 5-24
PCTVERSION, 4-8
performance

guidelines
reading/writing large data chunks, 7-1
reading/writing large data chunks, temporary

LOBs, 7-3
PL/SQL, 6-2

and LOBs, semantics changes, 10-1
changing locator-data linkage, 10-3
CLOB variables in, 10-3
CLOB variables in PL/SQL, 10-3
CLOB versus VARCHAR2 comparison, 10-4
CLOBs passed in like VARCHAR2s, 10-2
defining a CLOB Variable on a VARCHAR, 10-2
freeing temporary LOBs automatically and

manually, 10-4
using in LONG-to-LOB migration, 13-3

PM schema, 2-3
polling, 14-13, 14-27, 15-16
print_media creation, 8-1
print_media table definition, 2-3
Pro*C/C++ precompiler

available LOB functions, 6-2
LOB buffering, 6-20
locators, 6-19
modifying internal LOB values, 6-18
opening and closing internal LOBs and external

LOBs (BFILEs), 6-20
providing an allocated input locator pointer, 6-18
reading or examining internal and external LOB

values, 6-19
statements for BFILEs, 6-19
statements for temporary LOBs, 6-19

Pro*COBOL precompiler

Index-7

available LOB functions, 6-2
LOB buffering, 6-22
locators, 6-22
modifying internal LOB values, 6-21
providing an allocated input locator, 6-20
reading or examining internal and external

LOBs, 6-21
statements for BFILEs, 6-22
temporary LOBs, 6-22

programmatic environments
available functions, 6-2
compared, 6-2

programmatic environments for LOBs, 6-1

R
read consistency

LOBs, 5-10
read consistent locators, 5-5, 5-6, 5-10, 5-16, 5-20
reading

data from a LOB
internal persistent LOBs, 14-13

large data chunks, performance guidelines, 7-1
large data chunks, temporary LOBs, 7-3
portion of BFILE data using substr, 15-17
portion of LOB using substr

internal persistent LOBs, 14-20
small amounts of data, enable buffering, 14-37

reference semantics, 8-4
BFILEs enables multiple BFILE columns for each

record, 15-5
replication, 11-2
restrictions

binds of more than 4000 bytes, 13-7
cannot call OCI or DBMS_LOB functions on a

NULL LOB, 4-2
clustered tables, 11-8
indexes, 11-8
index-organized tables and LOBs, 4-17
on LOBs, 2-6
removed, 0-xxiv
replication, 11-2
triggers, 11-8

retrieving LOB access statistics, 7-6
RETURNING clause, using with INSERT to initialize

a LOB, 4-2
round-trips to the server, avoiding, 5-1, 5-6
rules for using directory objects and BFILEs, 3-5

S
sample schema for examples, 8-1
security

BFILEs, 15-5, 15-6
BFILEs using SQL DDL, 15-7
BFILEs using SQL DML, 15-7

SELECT statement
read consistency, 5-10

semantics
copy-based for internal LOBs, 8-4

reference based for BFILEs, 15-5
SESSION_MAX_OPEN_FILES parameter, 3-5
setting

internal LOBs to empty, 4-2
LOBs to NULL, 4-2
overrides for NLS_LANG variable

SQL
Character Functions, improved, 9-1
features where LOBs cannot be used, 9-8

SQL DDL
BFILE security, 15-7

SQL DML
BFILE security, 15-7

SQL functions on LOBs
return type, 9-6
return value, 9-6
temporary LOBs returned, 9-6

SQL semantics and LOBs, 9-8
SQL semantics supported for use with LOBs, 9-2
SQL*Loader

conventional path load, 3-2
direct-path load, 3-2

statistics, access, 7-5
streaming, 14-12

do not enable buffering, when using, 14-37
write, 14-28

streaming APIs
NewStreamLob.java, 6-41
using JDBC and BFILEs, 6-41
using JDBC and CLOBs, 6-40
using JDBC and LOBs, 6-39

symbolic links, rules with DIRECTORY objects and
BFILEs, 3-5

system owned object, See DIRECTORY object

T
temporary BLOB

checking if temporary using JDBC, 14-41
temporary LOBs

checking if LOB is temporary, 14-40
DBMS_LOB available functions/procedures, 6-8
OCI functions, 6-11, 6-17
Pro*C/C++ precompiler embedded SQL

statements, 6-19
Pro*COBOL precompiler statements, 6-22
returned from SQL functions, 9-6

TO_BLOB(),TO_CHAR(), TO_NCHAR(), 10-2
TO_CHAR(), 10-2
TO_CLOB()

converting VARCHAR2,NVARCHAR2,NCLOB to
CLOB, 10-2

TO_NCLOB(), 10-2
transaction boundaries

LOB locators, 5-17
transaction IDs, 5-18
transactions

external LOBs do not participate in, 1-4
IDs of locators, 5-17
internal LOBs participate in database

Index-8

transactions, 1-3
LOB locators cannot span, 5-20
locators with non-serializable, 5-18
locators with serializable, 5-18
migrating from, 5-5

triggers
LONG-to-LOB migration, 11-8

trimming
LOB data

internal persistent LOBs, 14-35
trimming LOBs using JDBC, 6-38

U
UB8MAXVAL is BFILE maximum size, 5-22
UCS2 Unicode character set

varying width character data, 4-4
UNICODE

VARCHAR2 and CLOBs support, 9-5
unstructured data, 1-2
UPDATE statements

binds of greater than 4000 bytes, 13-6
updated locators, 5-4, 5-12, 5-16
updating

avoid the LOB with different locators, 5-14
LOB values using one locator, 5-14
LOB values, read consistent locators, 5-10
LOB with PL/SQL bind variable, 5-16
LOBs using SQL and DBMS_LOB, 5-13
locators, 5-20
locking before, 14-23
locking prior to, 14-4, 14-35, 14-36

V
V$NLS_VALID_VALUES, 6-6
VARCHAR2

accessing CLOB data when treated as, 10-1
also RAW, applied to CLOBs and BLOBs, 9-9
defining CLOB variable on, 10-2

VARCHAR2, using SQL functions and operators with
LOBs, 9-2

VARRAY
LOB restriction, 2-7

varying-width character data, 4-4
views on DIRECTORY object, 15-7
Visual Basic, See Oracle Objects for OLE(OO4O)

W
WHERE Clause Usage with LOBs, 9-10
writing

data to a LOB
internal persistent LOBs, 14-28

large data chunks, performance guidelines, 7-1
large data chunks, temporary LOBs, 7-3
singly or piecewise, 14-26
small amounts of data, enable buffering, 14-37

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Large Objects?
	LOB Features Introduced in Oracle Database 10g Release 2
	Restrictions Removed in Oracle Database 10g Release 2
	LOB Features Introduced in Oracle Database 10g Release 1
	Restrictions Removed in Oracle Database 10g Release 1
	LOB Features Introduced in Oracle9i Release 2
	Restrictions Removed in Oracle9i Release 2
	LOB Features Introduced in Oracle9i Release 1
	Restrictions Removed in Oracle9i Release 1

	Part I Getting Started
	1 Introduction to Large Objects
	What Are Large Objects?
	Why Use Large Objects?
	Using LOBs for Semi-structured Data
	Using LOBs for Unstructured Data

	Why Not Use LONGs?
	Different Kinds of LOBs
	Internal LOBs
	External LOBs and the BFILE Datatype

	Introducing LOB Locators
	Database Semantics for Internal and External LOBs
	Large Object Datatypes
	Object Datatypes and LOBs
	Storing and Creating Other Datatypes with LOBs
	VARRAYs Stored as LOBs
	XMLType Columns Stored as CLOBs
	LOBs Used in Oracle interMedia

	2 Working with LOBs
	LOB Column States
	Locking a Row Containing a LOB
	Opening and Closing LOBs
	LOB Locator and LOB Value
	Using the Data Interface for LOBs
	Using the LOB Locator to Access and Modify LOB Values

	LOB Locators and BFILE Locators
	Table print_media
	Initializing a LOB Column to Contain a Locator
	Initializing a Persistent LOB Column
	Initializing BFILEs

	Accessing LOBs
	Accessing a LOB Using SQL
	Accessing a LOB Using the Data Interface
	Accessing a LOB Using the Locator Interface

	LOB Rules and Restrictions
	Rules for LOB Columns
	Restrictions for LOB Operations

	3 Managing LOBs: Database Administration
	Database Utilities for Loading Data into LOBs
	Using SQL*Loader to Load LOBs
	Using SQL*Loader to Populate a BFILE Column
	Using Oracle DataPump to Transfer LOB Data

	Managing Temporary LOBs
	Managing Temporary Tablespace for Temporary LOBs

	Managing BFILEs
	Rules for Using Directory Objects and BFILEs
	Setting Maximum Number of Open BFILEs

	Changing Tablespace Storage for a LOB

	Part II Application Design
	4 LOBs in Tables
	Creating Tables That Contain LOBs
	Initializing Persistent LOBs to NULL or Empty
	Setting a Persistent LOB to NULL
	Setting a Persistent LOB to Empty

	Initializing LOBs
	Initializing Persistent LOB Columns and Attributes to a Value
	Initializing BFILEs to NULL or a File Name
	Restriction on First Extent of a LOB Segment

	Choosing a LOB Column Datatype
	LOBs Compared to LONG and LONG RAW Types
	Storing Varying-Width Character Data in LOBs
	Implicit Character Set Conversions with LOBs

	Selecting a Table Architecture
	LOB Storage
	Inline and Out-of-Line LOB Storage
	Defining Tablespace and Storage Characteristics for Persistent LOBs
	Assigning a LOB Data Segment Name

	LOB Storage Characteristics for LOB Column or Attribute
	TABLESPACE and LOB Index
	Tablespace for LOB Index in Non-Partitioned Table

	PCTVERSION
	RETENTION
	CACHE / NOCACHE / CACHE READS
	CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache

	LOGGING / NOLOGGING
	LOBs Will Always Generate Undo for LOB Index Pages
	When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages
	NOLOGGING is Useful for Bulk Loads or Inserts.

	CHUNK
	Choosing the Value of CHUNK
	Space Considerations
	Performance Considerations

	Set INITIAL and NEXT to Larger than CHUNK

	ENABLE or DISABLE STORAGE IN ROW Clause
	Guidelines for ENABLE or DISABLE STORAGE IN ROW

	Indexing LOB Columns
	Using Domain Indexing on LOB Columns
	Indexing LOB Columns Using a Text Index
	Function-Based Indexes on LOBs
	Extensible Indexing on LOB Columns
	Extensible Optimizer

	Oracle Text Indexing Support for XML

	Manipulating LOBs in Partitioned Tables
	Partitioning a Table Containing LOB Columns
	Creating an Index on a Table Containing Partitioned LOB Columns
	Moving Partitions Containing LOBs
	Splitting Partitions Containing LOBs
	Merging Partitions Containing LOBs

	LOBs in Index Organized Tables
	Restrictions for LOBs in Partitioned Index-Organized Tables
	Updating LOBs in Nested Tables

	5 Advanced Design Considerations
	LOB Buffering Subsystem
	Advantages of LOB Buffering
	Guidelines for Using LOB Buffering
	LOB Buffering Subsystem Usage
	LOB Buffer Physical Structure
	LOB Buffering Subsystem Usage Scenario

	Flushing the LOB Buffer
	Flushing the Updated LOB
	Using Buffer-Enabled Locators
	Saving Locator State to Avoid a Reselect
	OCI Example of LOB Buffering

	Opening Persistent LOBs with the OPEN and CLOSE Interfaces
	Index Performance Benefits of Explicitly Opening a LOB
	Working with Explicitly Open LOB Instances

	Read Consistent Locators
	A Selected Locator Becomes a Read Consistent Locator
	Example of Updating LOBs and Read-Consistency
	Example of Updating LOBs Through Updated Locators
	Example of Updating a LOB Using SQL DML and DBMS_LOB
	Example of Using One Locator to Update the Same LOB Value
	Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

	LOB Locators and Transaction Boundaries
	Reading and Writing to a LOB Using Locators
	Selecting the Locator Outside of the Transaction Boundary
	Selecting the Locator Within a Transaction Boundary
	LOB Locators Cannot Span Transactions
	Example of Locator Not Spanning a Transaction

	LOBs in the Object Cache
	Terabyte-Size LOB Support
	Maximum Storage Limit for Terabyte-Size LOBs
	Using Terabyte-Size LOBs with JDBC
	Using Terabyte-Size LOBs with the DBMS_LOB Package
	Using Terabyte-Size LOBs with OCI

	Guidelines for Creating Gigabyte LOBs
	Creating a Tablespace and Table to Store Gigabyte LOBs

	6 Overview of Supplied LOB APIs
	Programmatic Environments That Support LOBs
	Comparing the LOB Interfaces
	Using PL/SQL (DBMS_LOB Package) to Work with LOBs
	Provide a LOB Locator Before Running the DBMS_LOB Routine
	Guidelines for Offset and Amount Parameters in DBMS_LOB Operations
	Determining Character Set ID
	PL/SQL Functions and Procedures for LOBs
	PL/SQL Functions and Procedures to Modify LOB Values
	PL/SQL Functions and Procedures for Introspection of LOBs
	PL/SQL Operations on Temporary LOBs
	PL/SQL Read-Only Functions and Procedures for BFILEs
	PL/SQL Functions and Procedures to Open and Close Internal and External LOBs

	Using OCI to Work with LOBs
	Setting the CSID Parameter for OCI LOB APIs
	Fixed-Width and Varying-Width Character Set Rules for OCI
	Other Operations
	NCLOBs in OCI

	OCILobLoadFromFile2() Amount Parameter
	OCILobRead2() Amount Parameter
	OCILobLocator Pointer Assignment
	LOB Locators in Defines and Out-Bind Variables in OCI
	OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
	OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE) Values
	OCI Functions for Temporary LOBs
	OCI Read-Only Functions for BFILEs
	OCI LOB Locator Functions
	OCI LOB-Buffering Functions
	OCI Functions to Open and Close Internal and External LOBs
	OCI LOB Examples
	Further Information About OCI

	Using C++ (OCCI) to Work with LOBs
	OCCI Classes for LOBs
	Clob Class
	Blob Class
	Bfile Class

	Fixed-Width Character Set Rules
	Varying-Width Character Set Rules
	Offset and Amount Parameters for Other OCCI Operations
	NCLOBs in OCCI

	Amount Parameter for OCCI LOB copy() Methods
	Amount Parameter for OCCI read() Operations
	Further Information About OCCI
	OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
	OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
	OCCI Methods to Read or Examine Persistent LOB and BFILE Values
	OCCI Read-Only Methods for BFILEs
	Other OCCI LOB Methods
	OCCI Methods to Open and Close Internal and External LOBs

	Using C/C++ (Pro*C) to Work with LOBs
	First Provide an Allocated Input Locator Pointer That Represents LOB
	Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values
	Pro*C/C++ Embedded SQL Statements for Introspection of LOBs
	Pro*C/C++ Embedded SQL Statements for Temporary LOBs
	Pro*C/C++ Embedded SQL Statements for BFILEs
	Pro*C/C++ Embedded SQL Statements for LOB Locators
	Pro*C/C++ Embedded SQL Statements for LOB Buffering
	Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

	Using COBOL (Pro*COBOL) to Work with LOBs
	First Provide an Allocated Input Locator Pointer That Represents LOB
	Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values
	Pro*COBOL Embedded SQL Statements for Introspection of LOBs
	Pro*COBOL Embedded SQL Statements for Temporary LOBs
	Pro*COBOL Embedded SQL Statements for BFILEs
	Pro*COBOL Embedded SQL Statements for LOB Locators
	Pro*COBOL Embedded SQL Statements for LOB Buffering
	Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and BFILEs

	Using Visual Basic (Oracle Objects for OLE) to Work with LOBs
	OO4O Syntax Reference
	OraBlob, OraClob, and OraBfile Object Interfaces Encapsulate Locators
	OraBlob and OraClob Objects Are Retrieved as Part of Dynaset
	Use the Clone Method to Retain Locator Independent of the Dynaset Move

	Example of OraBlob and OraBfile
	OO4O Methods and Properties to Access Data Stored in LOBs
	OO4O Methods to Modify BLOB, CLOB, and NCLOB Values
	OO4O Methods to Read or Examine Internal and External LOB Values
	OO4O Methods to Open and Close External LOBs (BFILEs)
	OO4O Methods for Persistent LOBBuffering
	OO4O Properties for Operating on LOBs
	OO4O Read-Only Methods for External Lobs (BFILEs)
	OO4O Properties for Operating on External LOBs (BFILEs)

	Using Java (JDBC) to Work with LOBs
	Modifying Internal Persistent LOBs Using Java
	Reading Internal Persistent LOBs and External LOBs (BFILEs) with Java
	BLOB, CLOB, and BFILE Classes

	Calling DBMS_LOB Package from Java (JDBC)
	Referencing LOBs Using Java (JDBC)
	Using OracleResultSet: BLOB and CLOB Objects Retrieved

	JDBC Syntax References and Further Information
	JDBC Methods for Operating on LOBs
	JDBC oracle.sql.BLOB Methods to Modify BLOB Values
	JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values
	JDBC oracle.sql.BLOB Methods and Properties for BLOB Buffering
	JDBC oracle.sql.CLOB Methods to Modify CLOB Values
	JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value
	JDBC oracle.sql.CLOB Methods and Properties for CLOB Buffering
	JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
	JDBC oracle.sql.BFILE Methods and Properties for BFILE Buffering
	JDBC Temporary LOB APIs
	JDBC: Opening and Closing LOBs
	JDBC: Opening and Closing BLOBs
	Opening the BLOB Using JDBC
	Checking If the BLOB Is Open Using JDBC
	Closing the BLOB Using JDBC

	JDBC: Opening and Closing CLOBs
	Opening the CLOB Using JDBC
	Checking If the CLOB Is Open Using JDBC
	Closing the CLOB Using JDBC

	JDBC: Opening and Closing BFILEs
	Opening BFILEs
	Checking If the BFILE Is Open
	Closing the BFILE
	Usage Example (OpenCloseLob.java)

	Truncating LOBs Using JDBC
	JDBC: Truncating BLOBs
	JDBC: Truncating CLOBs

	JDBC BLOB Streaming APIs
	JDBC CLOB Streaming APIs
	BFILE Streaming APIs
	JDBC BFILE Streaming Example (NewStreamLob.java)

	JDBC and Empty LOBs

	Oracle Provider for OLE DB (OraOLEDB)
	Overview of Oracle Data Provider for .NET (ODP.NET)

	7 Performance Guidelines
	LOB Performance Guidelines
	Chunk Size
	Performance Guidelines for Small LOBs
	General Performance Guidelines
	Temporary LOB Performance Guidelines
	Performance Considerations for SQL Semantics and LOBs

	Moving Data to LOBs in a Threaded Environment
	LOB Access Statistics
	Example of Retrieving LOB Access Statistics

	Part III SQL Access to LOBs
	8 DDL and DML Statements with LOBs
	Creating a Table Containing One or More LOB Columns
	Creating a Nested Table Containing a LOB
	Inserting a Row by Selecting a LOB From Another Table
	Inserting a LOB Value Into a Table
	Inserting a Row by Initializing a LOB Locator Bind Variable
	PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
	C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable
	COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
	C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
	Visual Basic (OO4O): Inserting a Row by Initializing a LOB Locator Bind Variable
	Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

	Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	Updating a Row by Selecting a LOB From Another Table

	9 SQL Semantics and LOBs
	Using LOBs in SQL
	SQL Functions and Operators Supported for Use with LOBs
	UNICODE Support
	Codepoint Semantics
	Return Values for SQL Semantics on LOBs
	LENGTH Return Value for LOBs

	Implicit Conversion of LOB Datatypes in SQL
	Implicit Conversion Between CLOB and NCLOB Datatypes in SQL

	Unsupported Use of LOBs in SQL
	VARCHAR2 and RAW Semantics for LOBs
	LOBs Returned from SQL Functions
	IS NULL and IS [NOT] NULL Usage with VARCHAR2s and CLOBs
	WHERE Clause Usage with LOBs

	10 PL/SQL Semantics for LOBs
	PL/SQL Statements and Variables
	Implicit Conversions Between CLOB and VARCHAR2
	Explicit Conversion Functions
	VARCHAR2 and CLOB in PL/SQL Built-In Functions

	PL/SQL CLOB Comparison Rules
	CLOBs Follow the VARCHAR2 Collating Sequence

	11 Migrating Columns from LONGs to LOBs
	Benefits of Migrating LONG Columns to LOB Columns
	Preconditions for Migrating LONG Columns to LOB Columns
	Dropping a Domain Index on a LONG Column Before Converting to a LOB
	Preventing Generation of Redo Space on Tables Converted to LOB Datatypes

	Using utldtree.sql to Determine Where Your Application Needs Change
	Converting Tables from LONG to LOB Datatypes
	Using ALTER TABLE to Convert LONG Columns to LOB Columns
	Migration Issues

	Copying a LONG to a LOB Column Using the TO_LOB Operator
	Online Redefinition of Tables with LONG Columns

	Migrating Applications from LONGs to LOBs
	LOB Columns Are Not Allowed in Clustered Tables
	LOB Columns Are Not Allowed in UPDATE OF Triggers
	Indexes on Columns Converted from LONG to LOB Datatypes
	Empty LOBs Compared to NULL and Zero Length LONGs
	Overloading with Anchored Types
	Some Implicit Conversions Are Not Supported for LOB Datatypes

	Part IV Using LOB APIs
	12 Operations Specific to Persistent and Temporary LOBs
	Persistent LOB Operations
	Inserting a LOB into a Table
	Selecting a LOB from a Table

	Temporary LOB Operations
	Creating and Freeing a Temporary LOB

	Creating Persistent and Temporary LOBs in PL/SQL

	13 Data Interface for Persistent LOBs
	Overview of the Data Interface for Persistent LOBs
	Benefits of Using the Data Interface for Persistent LOBs
	Using the Data Interface for Persistent LOBs in PL/SQL
	Guidelines for Accessing LOB Columns Using the Data Interface in SQL and PL/SQL
	Implicit Assignment and Parameter Passing
	Passing CLOBs to SQL and PL/SQL Built-In Functions
	Explicit Conversion Functions
	Calling PL/SQL and C Procedures from SQL
	Calling PL/SQL and C Procedures from PL/SQL
	Binds of All Sizes in INSERT and UPDATE Operations
	4000 Byte Limit on Results of a SQL Operator
	Example of 4000 Byte Result Limit of a SQL Operator
	Restrictions on Binds of More Than 4000 Bytes
	Parallel DML Support for LOBs
	Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and UPDATE
	Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT Operations
	Using the Data Interface for LOBs in Assignments and Parameter Passing
	Using the Data Interface for LOBs with PL/SQL Built-In Functions

	Using the Data Interface for Persistent LOBs in OCI
	Binding LOB Datatypes in OCI
	Defining LOB Datatypes in OCI
	Using Multibyte Character Sets in OCI with the Data Interface for LOBs
	Using OCI Functions to Perform INSERT or UPDATE on LOB Columns
	Simple INSERTs or UPDATEs in One Piece
	Using Piecewise INSERTs and UPDATEs with Polling
	Piecewise INSERTs and UPDATEs with Callback
	Array INSERT and UPDATE Operations

	Using the Data Interface to Fetch LOB Data in OCI
	Simple Fetch in One Piece
	Piecewise Fetch with Polling
	Piecewise with Callback
	Array Fetch

	PL/SQL and C Binds from OCI
	Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner
	Calling PL/SQL Out-binds in the "call foo(:1);" Manner

	Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE
	Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs
	Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner
	Calling PL/SQL Out-binds in the "call foo(:1);" Manner

	Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes
	Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling
	Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback
	Binding LONG Data to LOB Columns Using an Array INSERT
	Selecting a LOB Column into a LONG Buffer Using a Simple Fetch
	Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling
	Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback
	Selecting a LOB Column into a LONG Buffer Using an Array Fetch

	Using the Data Interface for Persistent LOBs in Java
	Using the Data Interface with Remote LOBs
	Remote Data Interface Example in PL/SQL
	Remote Data Interface Example in OCI
	Remote Data Interface Examples in JDBC

	14 LOB APIs for Basic Operations
	Supported Environments
	Appending One LOB to Another
	Determining Character Set Form
	Determining Character Set ID
	Loading a LOB with Data from a BFILE
	Loading a BLOB with Data from a BFILE
	Loading a CLOB or NCLOB with Data from a BFILE
	PL/SQL: Loading Character Data from a BFILE into a LOB
	PL/SQL: Loading Segments of Character Data into Different LOBs

	Determining Whether a LOB is Open
	Java (JDBC): Checking If a LOB Is Open
	Checking If a CLOB Is Open
	Checking If a BLOB Is Open

	Displaying LOB Data
	Reading Data from a LOB
	LOB Array Read
	Reading a Portion of a LOB (SUBSTR)
	Comparing All or Part of Two LOBs
	Patterns: Checking for Patterns in a LOB Using INSTR
	Length: Determining the Length of a LOB
	Copying All or Part of One LOB to Another LOB
	Copying a LOB Locator
	Equality: Checking If One LOB Locator Is Equal to Another
	Determining Whether LOB Locator Is Initialized
	Appending to a LOB
	Writing Data to a LOB
	LOB Array Write
	Trimming LOB Data
	Erasing Part of a LOB
	Enabling LOB Buffering
	Flushing the Buffer
	Disabling LOB Buffering
	Determining Whether a LOB instance Is Temporary
	Java (JDBC): Determining Whether a BLOB Is Temporary

	Converting a BLOB to a CLOB
	Converting a CLOB to a BLOB

	15 LOB APIs for BFILE Operations
	Supported Environments for BFILE APIs
	Accessing BFILEs
	Directory Objects
	Initializing a BFILE Locator
	How to Associate Operating System Files with a BFILE

	BFILENAME and Initialization
	Characteristics of the BFILE Datatype
	DIRECTORY Name Specification
	On Windows Platforms

	BFILE Security
	Ownership and Privileges
	Read Permission on a DIRECTORY Object
	SQL DDL for BFILE Security
	SQL DML for BFILE Security
	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	BFILEs in Shared Server (Multithreaded Server) Mode
	External LOB (BFILE) Locators
	When Two Rows in a BFILE Table Refer to the Same File
	BFILE Locator Variable
	Guidelines for BFILEs

	Loading a LOB with BFILE Data
	Opening a BFILE with OPEN
	Opening a BFILE with FILEOPEN
	Determining Whether a BFILE Is Open Using ISOPEN
	Determining Whether a BFILE Is Open with FILEISOPEN
	Displaying BFILE Data
	Reading Data from a BFILE
	Reading a Portion of BFILE Data Using SUBSTR
	Comparing All or Parts of Two BFILES
	Checking If a Pattern Exists in a BFILE Using INSTR
	Determining Whether a BFILE Exists
	Getting the Length of a BFILE
	Assigning a BFILE Locator
	Getting Directory Object Name and File Name of a BFILE
	Updating a BFILE by Initializing a BFILE Locator
	Closing a BFILE with FILECLOSE
	Closing a BFILE with CLOSE
	Closing All Open BFILEs with FILECLOSEALL
	Inserting a Row Containing a BFILE

	A LOB Demonstration Files
	PL/SQL LOB Demonstration Files
	OCI LOB Demonstration Files
	Visual Basic OO4O LOB Demonstration Files
	Java LOB Demonstration Files

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

