
Pro*PL/1®
Supplement to the Oracle Precompilers Guide

10g Release 2 (10.2)

B14353-01

May 2006

Pro*PL/1 Supplement to the Oracle Precompilers Guide, 10g Release 2 (10.2)

B14353-01

Copyright © 1994, 2006, Oracle. All rights reserved.

Primary Author:

Contributing Author:

Contributor:

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Intended Audience.. ix
Documentation Accessibility ... x
Structure ... x
Related Documents ... xi
Conventions ... xi
ANSI Compliance... xii

1 Writing a Pro*PL/1 Program

Programming Guidelines ... 1-1
Comments ... 1-1
Continuation Lines... 1-1
Embedded SQL Syntax.. 1-2
Host Variable Names... 1-2
MAXLITERAL Default Value... 1-2
Nulls ... 1-2
Operators, Logical .. 1-2
Operators, Relational ... 1-2
PL/1 Versions ... 1-3
Preprocessor.. 1-3
Quotation Marks and Apostrophes... 1-3
Scope of Variables .. 1-3
SQL Statement Terminator ... 1-3
Statement Labels... 1-4

Required Declarations and SQL Statements .. 1-4
The Declare Section.. 1-4
Using the INCLUDE Statement ... 1-4
Event and Error Handling .. 1-5

Host Variables ... 1-5
Declaring Host Variables .. 1-6

Structures ... 1-6
An Example.. 1-6
Special Requirements ... 1-7

Referencing Host Variables .. 1-7
Restrictions... 1-8

iv

Indicator Variables ... 1-8
Declaring Indicator Variables... 1-8
Referencing Indicator Variables... 1-9

Host Arrays .. 1-9
Declaring Host Arrays.. 1-10
Referencing Host Arrays.. 1-10

Pointers as Host Variables ... 1-11
CHARACTER VARYING .. 1-12

VARYINGReturning Nulls to a CHARACTER (N) .. 1-12
Handling Character Data ... 1-12

Effects of the MODE Option.. 1-12
The Oracle Datatypes ... 1-13

Internal Datatypes... 1-14
SQL Pseudocolumns and Functions ... 1-14

External Datatypes .. 1-14
Datatype Conversion .. 1-15
Datatype Equivalencing... 1-16

Host Variable Equivalencing... 1-16
Embedding PL/SQL .. 1-17

Using Host Variables with PL/SQL... 1-17
Using Indicator Variables with PL/SQL ... 1-17

Handling Nulls... 1-17
Handling Truncated Values ... 1-17

SQLCHECK.. 1-17
Connecting to Oracle .. 1-18

Automatic Logins.. 1-18
Concurrent Logins .. 1-18

2 Error Handling and Diagnostics

SQLSTATE, the SQLCA, and SQLCODE .. 2-1
Declaring SQLSTATE ... 2-1
SQLSTATE Values ... 2-1
Using SQLSTATE .. 2-8
Declaring SQLCODE ... 2-8

Using the SQLCA ... 2-9
Declaring the SQLCA .. 2-9
What's in the SQLCA? .. 2-10
Key Components of Error Reporting ... 2-10

Status Codes.. 2-10
Warning Flags... 2-10
Rows-processed Count.. 2-10
Parse Error Offset... 2-10
Error Message Text .. 2-11

Getting the Full Text of Error Messages.. 2-11
Using the WHENEVER Statement... 2-12

Scope of WHENEVER .. 2-13
Helpful Hint.. 2-13

v

Caution .. 2-13
Using the ORACA ... 2-14

Declaring the ORACA .. 2-14
Enabling the ORACA ... 2-14
What's in the ORACA?... 2-15

3 Running the Pro*PL/1 Precompiler

Precompiler Command.. 3-1
Precompiler Options.. 3-1

Default Values .. 3-2
Determining Current Values... 3-3

Case Sensitivity... 3-3
Configuration Files .. 3-3
Scope of Options... 3-3
DBMS .. 3-4
MODE ... 3-5
Entering Options .. 3-6
Special PL/1 Options... 3-6

Doing Conditional Precompilations... 3-6
Doing Separate Precompilations... 3-7

Restrictions ... 3-7
Compiling and Linking... 3-7

4 Sample Programs

Sample Programs.. 4-1
Sample Program 1: Login and Query ... 4-1
Sample Program 2: Using a Cursor .. 4-3
Sample Program 3: Fetching in Batches .. 4-4
Sample Program 4: Datatype Equivalencing ... 4-5
Sample Program 5: A SQL*Forms User Exit.. 4-8
Sample Program 6: Dynamic SQL Method 1 ... 4-10
Sample Program 7: Dynamic SQL Method 2 ... 4-12
Sample Program 8: Dynamic SQL Method 3 ... 4-14
Sample Program 9: Calling a Stored procedure... 4-17

5 Implementing Dynamic SQL Method 4

Meeting the Special Requirements of Method 4 ... 5-1
What Makes Method 4 Special? ... 5-1
What Information Does Oracle Need?.. 5-2
Where Is the Information Stored?.. 5-2
How is the Information Obtained?.. 5-2

The SQLDA ... 5-3
Introducing the PL/1 SQLDA.. 5-3
Declaring a SQLDA.. 5-4
Multiple SQLDAs... 5-5
The SQLDA Variables ... 5-5

vi

{SELDSC | BNDDSC} .. 5-5
SQLDNUM .. 5-5
SQLDFND .. 5-5
SQLDSC(N).. 5-5
SQLDV.. 5-5
SQLDFMT .. 5-6
SQLDVLN .. 5-6
SQLDVTYP .. 5-6
SQLDI ... 5-7
SQLDH_VNAME.. 5-7
SQLDH_MAX_VNAMEL.. 5-7
SQLDH_CUR_VNAMEL... 5-8
SQLDI_VNAME.. 5-8
SQLDI_MAX_VNAMEL.. 5-8
SQLDI_CUR_VNAMEL... 5-8
SQLDFCLP... 5-8
SQLDFCRCP.. 5-8

Datatypes in the SQLDA... 5-8
Internal and External Datatypes ... 5-8
Coercing Datatypes After DESCRIBE.. 5-9
Extracting Precision and Scale .. 5-9
Datatype Codes .. 5-10

Handling NULL/NOT NULL Datatypes.. 5-11
The Basic Steps .. 5-12
A Closer Look at Each Step ... 5-13

Declare a Host String .. 5-13
Set the Size of the Descriptors ... 5-14
Declare the SQLDAs ... 5-14
Declare the Data Buffers... 5-14
Initialize the Descriptors .. 5-14
Get the Query Text into the Host String .. 5-17
PREPARE the Query from the Host String ... 5-17
DECLARE a Cursor .. 5-17
DESCRIBE the Bind Variables... 5-18
VariablesReset Maximum Number of Bind ... 5-19
Get Values for Bind Variables ... 5-19
OPEN the Cursor... 5-20
DESCRIBE the SelectList .. 5-21
Adjust the Select Descriptor Values ... 5-21
FETCH A Row from the Active Set .. 5-23
Process the Select-List Items .. 5-24
CLOSE the Cursor... 5-24

Using Host Arrays ... 5-24
Sample 10: Dynamic SQL Method 4 Program ... 5-26

A Differences from Previous Release

Topics ... A-1

vii

B Operating System Dependencies

Topics ... B-1

Index

viii

ix

Preface

Devoted exclusively to the Pro*PL/1 Precompiler, this manual supplements the
language-independent Programmer's Guide to the Oracle Precompilers An understanding
of the material in the Programmer's Guide is assumed.

This companion book shows you how to write PL/1 programs that use the powerful
database language SQL to access and manipulate Oracle data. It provides
easy-to-follow examples, instructions, and programming tips, as well as several
full-length programs to better your understanding and demonstrate the usefulness of
embedded SQL.

This Preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

■ ANSI Compliance

Intended Audience
Pro*PL/1 Supplement to the Oracle Precompilers Guide is intended for developers who are
writing new PL/1 applications or converting existing PL/1 applications to run in the
Oracle environment will benefit from reading this manual. Though written especially
for programmers, it will also be of value to systems analysts, project managers, and
others interested in embedded SQL applications.

To use this document, you need (insert knowledge assumed of users).

■ applications programming in PL/1

■ the SQL database language

■ Oracle database concepts and terminology

■ the concepts, terminology, methods, requirements, and options detailed in the
Programmer's Guide to the Oracle Precompilers

x

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Structure
This document contains:

Chapter 1, "Writing a Pro*PL/1 Program"
This chapter provides the basic information you need to write a Pro*PL/1 program.
You learn programming guidelines, coding conventions, language-specific features
and restrictions, how to equivalence datatypes, and how to connect to Oracle.

Chapter 2, "Error Handling and Diagnostics"
This chapter discusses error reporting and recovery. It shows you how to use the
SQLCA and the WHENEVER statement to detect errors and status changes. It also
shows you how to use the ORACA to diagnose problems.

Chapter 3, "Running the Pro*PL/1 Precompiler"
This chapter details the requirements for running the Pro*PL/1 Precompiler. You learn
how to issue the precompiler command, how to specify useful precompiler options,
and when to do separate and conditional precompilations.

Chapter 4, "Sample Programs"
This chapter provides several embedded SQL programs to guide you in writing your
own. These well-commented programs illustrate the key concepts and features of
Pro*PL/1 programming.

xi

Chapter 5, "Implementing Dynamic SQL Method 4"
This chapter shows you how to implement dynamic SQL Method 4, an advanced
programming technique that lets you write highly flexible applications. Numerous
examples, including a full-length sample program, are used to illustrate the method.

Appendix A, "Differences from Previous Release"
This appendix lists differences between Pro*PL/1 precompiler release 1.5 and 1.6.

Appendix B, "Operating System Dependencies"
Some details of Pro*PL/1 programming vary from system to system. So, occasionally,
you are referred to other manuals. For convenience, this appendix collects all external
references to system-specific information.

Related Documents
For more information, see these Oracle resources:

■ Programmer's Guide to the Oracle Precompilers

Occasionally, this manual refers you to other Oracle manuals for system-specific
information. Typically, these manuals are called installation or user's guides, but their
exact names vary by operating system and platform. For convenience, Appendix B
collects all external references to system-specific information.

Many of the examples in the documentation library use the sample schemas of the
seed database, which is installed by default when you install Oracle. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and how
you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
Important terms being defined for the first time are italicized. In discussions,
uppercase is used for database objects and SQL keywords, and boldface uppercase is
used for the names of PL/1 functions and procedures. All PL/1 code is in uppercase.

The following notational conventions are used in code examples:

Convention Meaning

 < > Angle brackets enclose the name of a syntactic element.

 [] Brackets indicate that the enclosed items are optional.

 { } Braces indicate that one, and only one, of the enclosed items is
required.

xii

ANSI Compliance
The Version 1.6 Pro*PL/1 Precompiler complies completely with the following
standards:

■ American National Standard Database Language SQL, with Integrity
Enhancement Option (ANSI X3.135-1989)

■ International Standards Organization Database Language SQL (ISO 9075-1989)

■ American National Standard Database Language Embedded SQL (ANSI
X3.168-1989)

Compliance with these standards has been tested and validated using the appropriate
National Institute of Standards and Technology (NIST) test suites.

ANSI compliance is governed by the MODE option. For more information about ANSI
compliance and the MODE option, see the Programmer's Guide to the Oracle Precompilers

 | A vertical bar is used to separate options within brackets or braces.

 ... An ellipsis indicates that the preceding argument or parameter can be
repeated, or that statements or clauses irrelevant to the discussion were
left out.

Convention Meaning

Writing a Pro*PL/1 Program 1-1

1
Writing a Pro*PL/1 Program

This chapter provides the basic information you need to develop a Pro*PL/1
application. You learn the following:

■ programming guidelines

■ coding conventions

■ language-specific features and restrictions

■ how to declare and reference host variables, indicator variables, host arrays, and
variable-length strings

■ how to equivalence datatypes

■ how to connect to Oracle

Programming Guidelines
The following sections (arranged alphabetically for quick reference) deal with coding
conventions, embedded SQL syntax, and other features that are specific to host PL/1
programs.

Comments
You can place PL/1 comments (/* ... */) in a SQL statement wherever blanks can be
placed (except between the keywords EXEC SQL and within quoted literals). You can
also place ANSI SQL-style comments (-- ...) in SQL statements at the end of a line if the
statement continues over multiple lines. However, you cannot place an ANSI
SQL-style comment at the end of the last line, following the semicolon that terminates
the SQL statement. The following example shows both comment styles:

EXEC SQL SELECT ENAME, SAL /* name and salary */
 INTO :EMP_NAME, :SALARY -- output host variables
 FROM EMP
 WHERE DEPTNO = :DEPT_NUMBER;

You cannot nest comments.

Continuation Lines
You can continue SQL statements from one line to the next, even in the middle of a
quoted string literal. For example, the following statement inserts the string value
'PURCHASING' into the DNAME column:

EXEC SQL INSERT INTO dept (deptno, dname) VALUES (50, 'PURCHASING');

Programming Guidelines

1-2 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Embedded SQL Syntax
When using SQL commands in your host program, you precede the SQL command
with the EXEC SQL clause. Embedded SQL syntax is described in the Oracle database
version 7 Server SQL Language Reference Manual. The precompiler translates all EXEC
SQL statements into calls to the runtime library SQLLIB.

Host Variable Names
Host variable names must consist only of letters and digits, and must begin with a
letter. They can be any length, but only the first 31 characters are significant. The PL/1
compiler normally converts variable names to upper case. Check your compiler
documentation for the rules for forming PL/1 identifiers on your system.

MAXLITERAL Default Value
The MAXLITERAL precompiler option lets you specify the maximum length of string
literals generated by the precompiler, so that compiler limits are not exceeded. The
MAXLITERAL default value is 256 for Pro*PL/1. But, you might have to specify a
lower value if your PL/1 compiler cannot handle string literals of that length.

Nulls
In SQL, a NULL column "value" is simply one that is missing, unknown, or
inapplicable; it equates neither to zero nor to a blank. Therefore, use either the NVL
function, the IS [NOT] NULL operator, or indicator variables when selecting or testing
for nulls, and use indicator variables to insert nulls.

In PL/1, the built-in function NULL() simply returns a null pointer value; it is not
related to the SQL NULL value in any way.

Operators, Logical
The logical operators are different in SQL and PL/1, as the following table.

PL/1 logical operators are not allowed in SQL statements.

Operators, Relational
The relational operators are similar in SQL and PL/1, as the following table shows:

SQL Operator PL/1 Operator

NOT ^ (prefix)

AND &

OR |
&:
|:
^ (infix)

SQL Operator PL/1 Operator

= =

<>, !=, ^= ^=

> >

Programming Guidelines

Writing a Pro*PL/1 Program 1-3

PL/1 Versions
The Pro*PL/1 Precompiler supports the standard implementation of PL/1 for your
operating system. See your Oracle installation or user's guide for more information.

Preprocessor
The Pro*PL/1 Precompiler does not support PL/1 preprocessor directives. Do not use
preprocessor directives, even %INCLUDE, within EXEC SQL blocks. You can, of
course, use whatever PL/1 preprocessor facilities your compiler makes available in
pure PL/1 code. Code included by a PL/1 preprocessor is not precompiled.

Quotation Marks and Apostrophes
In SQL, quotation marks are used to delimit identifiers containing special or lowercase
characters, as in

EXEC SQL DELETE FROM "Emp2" WHERE DEPTNO = 30;

Both SQL and PL/1 use apostrophes to delimit strings, as in the PL/1 statements

DCL NAME CHAR(20) VARYING;
...
NAME = 'Pro*PL/1';
PUT SKIP LIST (NAME);

or the SQL statement

EXEC SQL SELECT ENAME, SAL FROM EMP WHERE JOB = 'MANAGER';

Scope of Variables
Host variables used in embedded SQL statements follow the normal scoping rules of
PL/1. Any host variable that you want to use in an embedded SQL statement must
also be accessible to PL/1 statements in the same block.

SQL Statement Terminator
End all embedded SQL statements with a semicolon, as shown in the following
examples:

EXEC SQL DELETE FROM EMP WHERE DEPTNO = 20;

EXEC SQL SELECT ENAME, EMPNO, SAL, COMM
 INTO :EMP_NAME, :EMP_NUMBER, :SALARY, :COMMISSION
 FROM EMP
 WHERE JOB LIKE 'SALES%'
 AND COMM IS NOT NULL;

< <

>= >=

<= <=
^<
^>

SQL Operator PL/1 Operator

Required Declarations and SQL Statements

1-4 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Statement Labels
You can associate standard PL/1 statement labels (for example, LABEL_NAME:) with
SQL statements. The Pro*PL/1 Precompiler can handle labels up to 31 characters long.

Required Declarations and SQL Statements
This section describes the variable declarations and SQL statements that must be
present in every Pro*PL/1 source file.

The Declare Section
You must declare all variables that will be used in embedded SQL statements inside a
SQL Declare Section, and the Declare Section must physically precede the embedded
SQL statements that use the declared host variables. This section can be placed outside
a procedure block or within a procedure block or a begin block. Each block that
contains a SQL statement must have a Declare Section in scope, even if the statement
does not contain host variables. In this case, the Declare Section is empty. A common
solution is to place a Declare Section near the start of the main procedure block. The
following example shows a SQL Declare Section in which two host variables are
declared.

EXEC SQL BEGIN DECLARE SECTION;
 DCL EMP_NAME CHAR(20) VARYING,
 SALARY FLOAT(6);
EXEC SQL END DECLARE SECTION;

The only statements that are allowed in a Declare Section are

■ host and indicator variable declarations

■ EXEC SQL INCLUDE statements

■ EXEC SQL VAR statements

■ comments

A Pro*PL/1 source file can have multiple Declare Sections.

You must declare PL/1 variables that are to be used as host variables inside a SQL
Declare Section. You should not declare PL/1 variables that are not to be used as host
variables in a SQL Declare Section. Always use the standard PL/1 declaration syntax
to declare variables.

Using the INCLUDE Statement
The INCLUDE statement lets you copy files into your host program, as the following
example shows:

/* copy in the SQL Communications Area (SQLCA) */
EXEC SQL INCLUDE SQLCA;
...
/* copy in the Oracle Communications Area (ORACA) */
EXEC SQL INCLUDE ORACA;

You can INCLUDE any file. When you precompile your Pro*PL/1 program, each
EXEC SQL INCLUDE statement is replaced by a copy
of the file named in the statement.

If your system uses file extensions but you do not specify one, the Pro*PL/1
Precompiler assumes the default extension for source files (usually PLI). The default

Host Variables

Writing a Pro*PL/1 Program 1-5

extension is system dependent. Check the Oracle installation or user's guide for your
system.

You can set a directory path for INCLUDEd files by specifying the precompiler option

INCLUDE=PATH

where path defaults to the current directory. The precompiler searches first in the
current directory, then in the directory specified by INCLUDE, and finally in a
directory for standard INCLUDE files. So, you need not specify a directory path for
standard files such as the SQLCA and ORACA. However, you must use INCLUDE to
specify a directory path for nonstandard files unless they are stored in the current
directory.

You can specify more than one path on the command line, as follows:

INCLUDE=PATH1 INCLUDE=PATH2 ...

The precompiler searches first in the current directory, then in the directory named by
PATH1, then in the directory named by PATH2, and finally in the directory for
standard INCLUDE files.

The syntax for specifying a directory path is system specific. Check the Oracle
installation or user's guide for your system.

Event and Error Handling
Release 1.6 provides forward and backward compatibility with regard to checking the
outcome of executing SQL statements. The SQLCA data structure and SQLCODE
status variable can be used in the same manner as in previous releases. The SQLSTATE
status variable is introduced in release 1.6. There are restrictions on using SQLCA,
SQLCODE, and SQLSTATE depending on how you set the MODE and DBMS options.
For more information, see Chapter 2, "Error Handling and Diagnostics".

Host Variables
Host variables are the key to communication between your host program and Oracle.
Typically, a host program inputs data to Oracle, and Oracle outputs data to the
program. Oracle stores input data in database columns, and stores output data in
program host variables.

Caution: Remember, the precompiler searches for a file in the
current directory first—even if you specify a directory path. So, if
the file you want to INCLUDE resides in another directory, make
sure no file with the same name resides in the current directory.

Note: Don't confuse the SQL command INCLUDE with the PL/1
directive %INCLUDE. You can use %INCLUDE to copy in the
SQLCA, ORACA, or SQLDA because they contain no embedded
SQL. But, for a file that contains embedded SQL, you must use the
EXEC SQL INCLUDE statement to ensure that the file's contents
are examined and processed by the precompiler. For improved
readability, it is recommended that you use the SQL INCLUDE
command to include all files that pertain to embedded SQL, even
those that contain only PL/1 statements.

Host Variables

1-6 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Declaring Host Variables
You declare a host variable in the SQL Declare Section according to the rules of PL/1,
specifying a PL/1 datatype supported by Oracle. The PL/1 datatype must be
compatible with that of the host variable's source or target database column.

The following table describes the PL/1 datatypes you can specify in the Declare
Section:

You can also declare one-dimensional arrays of each of these types.

Structures
You can declare structures in the SQL Declare Section, and can use individual structure
elements as host variables. The elements of the structure must be of datatypes allowed
in a Declare Section. You cannot reference the whole structure as a host variable. This
means, for example, that if you have a structure containing three elements, you cannot
SELECT three columns into the elements by referencing the top level of the structure.
You must reference each element by name as a host variable.

You cannot use the LIKE attribute with structure declarations in the SQL Declare
Section.

An Example
In the following example, you declare five host variables for use later in the Pro*PL/1
program:

EXEC SQL BEGIN DECLARE SECTION;
 DCL USERNAME CHAR(10) VARYING INIT('SCOTT'),
 PASSWORD CHAR(10) VARYING INIT('TIGER'),
 EMP_NUMBER FIXED BINARY(31),
 SALARY FIXED DECIMAL(7,2),
 DEPTNO FIXED DECIMAL(2) INIT(10);
EXEC SQL END DECLARE SECTION;

You can use attribute factoring within a SQL Declare Section, as in

EXEC SQL BEGIN DECLARE SECTION;
 DCL (VAR1, VAR2, VAR3) FIXED DECIMAL;
EXEC SQL END DECLARE SECTION;

PL/1 Datatype Description

CHARACTER (N) string of length N

CHARACTER (N)
VARYING

string of maximum length N

FIXED BINARY (15) short signed integer

FIXED BINARY (31) signed integer

FIXED DECIMAL (N) decimal number of N digits

FIXED DECIMAL (P,S) decimal with precision and scale

FLOAT BINARY (N) floating point number

FLOAT DECIMAL (N) float of maximum length N

Note: Oracle supports only the PL/1 datatypes in the preceeding
table.

Host Variables

Writing a Pro*PL/1 Program 1-7

which is equivalent to

EXEC SQL BEGIN DECLARE SECTION;
 DCL VAR1 FIXED DECIMAL,
 VAR2 FIXED DECIMAL,
 VAR3 FIXED DECIMAL;
EXEC SQL END DECLARE SECTION;

Special Requirements
You must explicitly declare host variables in the Declare Section of the procedure block
that uses them in SQL statements. Thus, variables passed to a subroutine or function
and used in SQL statements within the routine must be declared in the Declare
Section. An example follows:

PROCEDURE TEST: OPTIONS(MAIN)

 DCL EMPNO FIXED BIN(31),
 EMP_NAME CHAR(10) VARYING,
 SALARY FLOAT(6);
..
. EMPNO = 7499;
 CALL GET_SALARY(EMPNO, EMP_NAME, SALARY);
..
.
GET_SALARY: PROCEDURE(EMPNO, NAME, SALARY);
EXEC SQL BEGIN DECLARE SECTION;
 DCL EMPNO FIXED BIN(31),
 NAME CHAR(10) VARYING,
 SALARY FLOAT(6);
EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT ENAME, SAL
 INTO :EMP_NAME, :SALARY
 FROM EMP
 WHERE EMPNO = :EMPNO;
END GET_SALARY;

Referencing Host Variables
A host variable must be prefixed with a colon (:) in SQL statements, but must not be
prefixed with a colon in PL/1 statements, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 DCL (EMP_NUMBER, SAL) FIXED DECIMAL(7,2);
EXEC SQL END DECLARE SECTION;

PUT SKIP LIST ('Enter employee number: ');
GET EDIT (EMP_NUMBER) (F(4));

EXEC SQL SELECT SAL
 INTO :SAL
 FROM EMP
 WHERE EMPNO = :EMP_NUMBER;

Though it might be confusing, you can give a host variable the same name as an
Oracle table or column, as the previous example showed (SAL).

Indicator Variables

1-8 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Restrictions
A host variable cannot substitute for a column, table, or other Oracle object in a SQL
statement, and must not be an Oracle reserved word.

Indicator Variables
You use indicator variables to provide information to Oracle about the status of a host
variable, or to monitor the status of data that is returned from Oracle. An indicator
variable is always associated with a host variable.

Declaring Indicator Variables
An indicator variable must be explicitly declared in the SQL Declare Section as a
2-byte signed integer (FIXED BINARY(15)) and must not be an Oracle reserved word.
In the following example, you declare
two indicator variables (the names SAL_IND and COMM_IND are arbitrary):

EXEC SQL BEGIN DECLARE SECTION;
 DCL EMP_NAME CHAR(10) VARYING,
 (SALARY, COMMISSION) FIXED DECIMAL(7,2),
 /* indicator variables */
 (SAL_IND, COMM_IND) FIXED BINARY(15);
EXEC SQL END DECLARE SECTION;

Table 1–1 Compatible Internal Datatypes

CHAR(X)1
VARCHAR2(Y)1

1 X ranges from 1 to 255. Y ranges from 1 to 2000. 1 is the default value.

CHARACTER (N)
CHARACTER (N) VARYING
FIXED BINARY (15)
FIXED BINARY (31)
FIXED DECIMAL (p,s)
FIXED DECIMAL (N)
FLOAT
FLOAT DECIMAL (N)

string
variable-length string
small signed integer
signed integer
fixed-point number
fixed-point number
floating-point number
floating-point number

NUMBER
NUMBER (P,S)2

2 P ranges from 2 to 38. S ranges from -84 to 127.

FIXED BINARY (15)
FIXED BINARY (31)
FIXED DECIMAL (p,s)
FIXED DECIMAL (N)
FLOAT
FLOAT DECIMAL (N)
CHARACTER (N)
CHARACTER (N) VARYING

small signed integer
signed integer
fixed-point number
fixed-point number
floating-point number
floating-point number
string3
variable-length string

3 Strings can be converted to NUMBERs only if they contain convertible characters ('0' to '9', '.', '+', '-', 'E',
'e'). Note that the Globalization Support settings in effect on your system might change the decimal
point from '.' to ','.

DATE4
LONG
RAW(X)1LONG RAW
ROWID5
MLSLABEL6

4 When converted as a string type, the default size of a DATE depends on the Globalization Support
settings in effect on your system. When converted as a binary type, the size is 7 bytes.

5 When converted as a string type, a ROWID requires between 18 and 256 bytes. When converted as a
binary value, the length is system dependent.

6 Trusted Oracle database version 7 only.

CHARACTER (N)
CHARACTER (N) VARYING

string
variable-length string

Host Arrays

Writing a Pro*PL/1 Program 1-9

Referencing Indicator Variables
You can use indicator variables in the VALUES, INTO, and SET clauses. In SQL
statements, an indicator variable must be prefixed with a colon and appended to its
associated host variable. In PL/1 statements, an indicator variable must neither be
prefixed with a colon nor appended to its associated host variable. An example
follows:

EXEC SQL SELECT sal INTO :SALARY :SAL_IND FROM emp
 WHERE empno = :EMP_NUMBER;

IF SAL_IND = -1 THEN
 PUT SKIP LIST('Salary is null.');

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is

:HOST_VARIABLE INDICATOR :INDICATOR_VARIABLE

which is equivalent to

:HOST_VARIABLE :INDICATOR_VARIABLE

You can use both forms of expression in your host program.

Restriction
Indicator variables cannot be used in the WHERE clause to search for nulls. For
example, the following DELETE statement triggers an Oracle error at run time:

/* Set indicator variable. */
COMM_IND = -1;
EXEC SQL DELETE FROM emp WHERE comm = :COMMISSION :COMM_IND;

The correct syntax follows:

EXEC SQL DELETE FROM emp WHERE comm IS NULL;

Oracle Restrictions
When DBMS=V6, Oracle does not issue an error if you SELECT or FETCH a null into a
host variable that is not associated with an indicator variable. However, when
DBMS=V7, if you SELECT or FETCH a null into a host variable that has no indicator,
Oracle issues the following error message:

ORA-01405: fetched column value is NULL

ANSI Requirements
When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a
host variable that is not associated with an indicator variable, Oracle issues the
following error message:

ORA-01406: fetched column value was truncated

However, when MODE={ANSI | ANSI14 | ANSI13}, no error is generated.

Host Arrays
Host arrays can boost performance by letting you manipulate an entire collection of
data items with a single SQL statement. With few exceptions, you can use host arrays

Host Arrays

1-10 Pro*PL/1 Supplement to the Oracle Precompilers Guide

wherever scalar host variables are allowed. And, you can associate an indicator array
with any host array.

Declaring Host Arrays
You declare and dimension host arrays in the Declare Section. In the following
example, you declare three host arrays and dimension them with 50 elements:

EXEC SQL BEGIN DECLARE SECTION;
 DCL EMP_NAME(50) CHAR(10),
 (EMP_NUMBER(50), SALARY(50)) FIXED DECIMAL(7,2);
EXEC SQL END DECLARE SECTION;

Restrictions
You cannot specify a lower dimension bound for host arrays. For example, the
following declarations are invalid:

EXEC SQL BEGIN DECLARE SECTION;
 DCL EMP_NAME(26:50) CHAR(10),
 (EMP_NUMBER(26:50), SALARY(26:50)) FIXED DECIMAL(7,2);
EXEC SQL END DECLARE SECTION;

Multidimensional host arrays are not allowed. Thus, the two-dimensional host array
declared in the following example is invalid:

EXEC SQL BEGIN DECLARE SECTION;
 DCL HI_LO_SCORES(25,25) FIXED BIN(31); /* invalid */
EXEC SQL END DECLARE SECTION;

Referencing Host Arrays
If you use multiple host arrays in a single SQL statement, their sizes should be the
same. This is not a requirement, however, because the Pro*PL/1 Precompiler always
uses the smallest array size for the SQL operation.

DO J = 1 TO 10;
 EXEC SQL INSERT INTO EMP (EMPNO, SAL)
 VALUES (:EMP_NUMBER(J), :SALARY(J)); /* invalid */
END;

You do not need to process host arrays in a loop. Simply use the unsubscripted array
names in your SQL statement. Oracle treats a SQL statement containing host arrays of
dimension n like the same statement executed n times with n different scalar variables.
For more information about using host arrays, see Chapter 8 of the Programmer's Guide
to the Oracle Precompilers.

Using Indicator Arrays
You can use indicator arrays to assign nulls to input host arrays, and to detect nulls or
truncated values in output host arrays. The following example shows how to INSERT
using indicator arrays:

EXEC SQL BEGIN DECLARE SECTION;
 DCL EMP_NUMBER(50) FIXED BIN(31),
 DEPT_NUMBER(50) FIXED BIN(31),
 COMMISSION(50) REAL,
 COMM_IND(50) FIXED BIN(15);
EXEC SQL END DECLARE SECTION;

/* Populate the host and indicator arrays. To insert a

Pointers as Host Variables

Writing a Pro*PL/1 Program 1-11

 null, assign a -1 to the appropriate element in the
 indicator array. */

EXEC SQL INSERT INTO emp (empno, deptno, comm)
 VALUES (:EMP_NUMBER, :DEPT_NUMBER, :COMMISSION :COMM_IND);

Oracle Restrictions
Mixing scalar host variables with host arrays in the VALUES, SET, INTO, or WHERE
clause is not allowed. If any of the host variables is an array, all must be arrays.

Also, you cannot use host arrays with the CURRENT OF clause in an UPDATE or
DELETE statement.

When DBMS=V6, no error is generated if you SELECT or FETCH nulls into a host
array that is not associated with an indicator array. So, when doing array SELECTs and
FETCHes, always use indicator arrays. That way, you can test for nulls in the
associated output host array.

When DBMS=V7, if you SELECT or FETCH a null into a host variable that is not
associated with an indicator variable, Oracle stops processing, sets sqlerrd[3] to the
number of rows processed, and issues the following error message:

ORA-01405: fetched column values is NULL

ANSI Restrictionsd and Requirements
When MODE={ANSI | ANSI13 | ORACLE}, array SELECTs and FETCHes are
allowed. You can flag the use of arrays by specifying the FIPS precompiler option.

When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a
host array that is not associated with an indicator array, Oracle stops processing, sets
sqlerrd[3] to the number of rows processed, and issues the following error message:

ORA-01406: fetched column value was truncated

When MODE=ANSI13, Oracle stops processing and sets sqlerrd[3] to the number of
rows processed but no error is generated.

When MODE=ANSI, Oracle does not consider truncation an error.

Pointers as Host Variables
You cannot use PL/1 BASED variables in SQL statements. Also, PL/1 pointers cannot
be directly referenced in SQL statements. This restriction includes reference to
structure elements using pointers. That is, you cannot declare a BASED structure in a
Declare Section, allocate the structure, and then refer to the elements with respect to
the pointer in a SQL statement.

The following code is accepted by the precompiler, but does not execute correctly (an
Oracle error message is issued at runtime):

EXEC SQL BEGIN DECLARE SECTION;
DCL 1 EMP_STRUCT BASED,
 2 EMP_NAME CHAR(20),
 2 EMP_SAL FIXED DECIMAL(7,2);
DCL EMP_PTR POINTER;
EXEC SQL END DECLARE SECTION;
...
ALLOCATE EMP_STRUCT SET(EMP_PTR);
PUT SKIP LIST ('Enter employee name: ');
GET LIST (EMP_PTR->EMP_NAME);

CHARACTER VARYING

1-12 Pro*PL/1 Supplement to the Oracle Precompilers Guide

EXEC SQL INSERT INTO EMP (ENAME, EMPNO, DEPTNO)
 VALUES (:EMP_PTR->EMP_NAME, 8000, 20):

You can, of course, use pointers in pure PL/1 code.

CHARACTER VARYING
The Oracle character datatypes can be directly converted to the PL/1 CHARACTER
VARYING datatype. You declare CHARACTER VARYING as a host variable in the
normal PL/1 style, as follows:

EXEC SQL BEGIN DECLARE SECTION;
 ..
. DCL EMP_NAME CHARACTER (20) VARYING,
 ...
EXEC SQL END DECLARE SECTION;

VARYINGReturning Nulls to a CHARACTER (N)
Oracle automatically sets the length of a CHARACTER (N) VARYING output host
variable. If you SELECT or FETCH a null into a CHARACTER (N) VARYING variable,
Oracle sets the length to zero. The variable itself remains unchanged.

Handling Character Data
This section explains how the Pro*PL/1 Precompiler handles character host variables.
There are two host variable character types:

■ CHARACTER (N) variables

■ CHARACTER (N) VARYING variables

Effects of the MODE Option
The MODE option, which you can specify on the command line, determines how the
Pro*PL/1 Precompiler treats data in character arrays and strings. The MODE option
allows your program to take advantage of ANSI fixed-length strings, or to maintain
compatibility with previous versions of Oracle and Pro*PL/1.

■ MODE=Oracle

■ MODE=ANSI

These choices are referred to in this section as Oracle mode and ANSI mode,
respectively. Oracle is the default mode, and is in effect when the MODE option is not
specified on the command line. When discussing character handling, MODE={ANSI13
| ANSI14} is effectively equivalent to Oracle mode.

The MODE option affects the way character data is treated on input from your host
variables to the Oracle table.

On Input
When the mode is Oracle, the program interface strips trailing blanks up to the first
non-blank character. After stripping the blanks, the value is sent to the database. If you

Note: The MODE option does not affect the way Pro*PL/1
handles CHARACTER (N) VARYING host variables.

The Oracle Datatypes

Writing a Pro*PL/1 Program 1-13

are inserting into a fixed-length CHAR column, trailing blanks are then re-appended
to the data by Oracle, up to the length of the database column. If you are inserting into
a variable-length VARCHAR2 column, Oracle never appends blanks.

When the mode is ANSI, trailing blanks in the CHARACTER host variable are never
stripped.

Be sure that the input host variable does not contain characters other than blanks after
the data. For example, null characters are not stripped, and are inserted into the
database. The easiest way to insure this in PL/1 is to always use CHARACTER(N)
host variables for character data. When values are read into these variables, or
assigned to them, PL/1 appends blanks to the data, up to the length of the variable.
The following example illustrates this:

/* Declare host variables */
EXEC SQL BEGIN DECLARE SECTION;
 DCL EMP_NAME CHAR(10),
 JOB_NAME CHAR(8) /* Note size */
EXEC SQL END DECLARE SECTION;

PUT SKIP LIST('Enter employee name: ');
/* Assume the user enters 'MILLER' */
GET EDIT(EMP_NAME) (A(10));
JOB_NAME = 'SALES';

EXEC SQL INSERT INTO emp (empno, ename, deptno, job)
 VALUES (1234, :EMP_NAME, 20, :JOB_NAME)

If you precompile this example in Oracle mode, the values 'MILLER' and 'SALES' are
sent to the database, since the program interface strips the trailing blanks that PL/1
appends to the CHARACTER host variables. If you precompile this example in ANSI
mode, the trailing blanks that PL/1 appends are not stripped, and the values 'MILLER
' (four trailing blanks) and 'SALES ' (three trailing blanks) are sent to the database.

In ANSI mode, if the JOB column in the EMP table is defined as CHAR(10), the
resulting value in the JOB column is 'SALES ' (five trailing blanks). If the JOB column
is defined as VARCHAR2(10), the resulting value in the column is 'SALES ' (three
trailing blanks, since the host variable is a CHARACTER (8). This might not be what
you want, so be careful when inserting data into VARCHAR2 columns using programs
that were precompiled in ANSI mode.

On Output
The MODE option does not affect the way that character data are treated on output.
When you use a CHARACTER (N) variable as an output host variable, the program
interface always blank-pads it. In our example, when your program fetches the string
'MILLER' from the database, EMP_NAME contains the value 'MILLER ' (with 4
blanks). This character string can be used without change as input to another SQL
statement.

The Oracle Datatypes
Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify the formats used by Oracle to store column values in database tables, as well as
the formats used to represent pseudocolumn values. External datatypes specify the
formats used to store values in input and output host variables. For descriptions of the
Oracle datatypes, see Chapter 3 of the Programmer's Guide to the Oracle Precompilers.

The Oracle Datatypes

1-14 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Internal Datatypes
For values stored in database columns, Oracle uses the following internal datatypes,
which were chosen for their efficiency:

These internal datatypes can be quite different from PL/1 datatypes. For example,
PL/1 has no equivalent to the NUMBER datatype, which was specially designed for
portability.

SQL Pseudocolumns and Functions
SQL recognizes the following pseudocolumns and parameterless functions, which
return specific data items:

Pseudocolumns are not actual columns in a table, but, like columns, their values must
be SELECTed from a table.

You can reference SQL pseudocolumns and functions in SELECT, INSERT, UPDATE
and DELETE statements.

External Datatypes
As the following table shows, the external datatypes include all the internal datatypes
plus several datatypes found in popular host languages. For example, the INTEGER
external datatype refers to a PL/1 FIXED BINARY(31).

Name Code Description

VARCHAR2 1 2000-byte, variable-length character string

NUMBER 2 fixed or floating point number

LONG 8 231-1 byte, variable-length character string

ROWID 11 operating-system dependent

DATE 12 7-byte, fixed-length date/time value

RAW 23 255-byte, variable-length binary data

LONG RAW 24 231-1 byte, variable-length binary data

CHAR 96 255-byte, fixed-length character string

MLSLABEL 106 variable-length binary data, 2-5 bytes

Pseudocolumn Corresponding Internal Datatype Code

NEXTVAL NUMBER 2

CURRVAL NUMBER 2

LEVEL NUMBER 2

ROWNUM NUMBER 2

ROWID ROWID 11

ROWLABEL MLSLABEL 106

USER VARCHAR2 1

UID NUMBER 2

SYSDATE DATE 12

Datatype Conversion

Writing a Pro*PL/1 Program 1-15

Datatype Conversion
At precompile time, an external datatype is assigned to each host variable in the
Declare Section. For example, the precompiler assigns the Oracle FLOAT external
datatype to host variables of type FLOAT DECIMAL.

At run time, the datatype code of every host variable used in a SQL statement is
passed to Oracle. Oracle uses the codes to convert between internal and external
datatypes.

Before assigning a SELECTed column (or pseudocolumn) value to an output host
variable, Oracle must convert the internal datatype of the source column to the
datatype of the host variable. Likewise, before assigning or comparing the value of an
input host variable to a column, Oracle must convert the external datatype of the host
variable to the internal datatype of the target column.

Conversions between internal and external datatypes follow the usual data conversion
rules. For example, you can convert a CHAR value of '1234' to a FIXED BINARY(15)
value. But, you cannot convert a CHAR value of '65543' (number too large) or '10F'
(number not decimal) to a FIXED BINARY(15) value. Likewise, you cannot convert a

Name Code Description

VARCHAR2 1 variable-length character string

NUMBER 2 number

INTEGER 3 signed integer

FLOAT 4 floating point number

STRING 5 variable-length null-terminated character string

VARNUM 6 variable-length number

DECIMAL 7 COBOL or PL/1 packed decimal

LONG 8 fixed-length character string

VARCHAR 9 variable-length character string

ROWID 11 binary value

DATE 12 fixed-length date/time value

VARRAW 15 variable-length binary data

RAW 23 fixed-length binary data

LONG RAW 24 fixed-length binary data

UNSIGNED 68 unsigned integer

DISPLAY 91 COBOL numeric character string

LONG VARCHAR 94 variable-length character string

LONG VARRAW 95 variable-length binary data

CHAR 1

96

variable-length character string,
if DBMS=V6
fixed-length character string,
if DBMS=V7

CHARZ 97 fixed-length null-terminated
character string

MLSLABEL 106 variable-length binary data

Datatype Equivalencing

1-16 Pro*PL/1 Supplement to the Oracle Precompilers Guide

CHARACTER(N) VARYING value that contains alphabetic characters to a NUMBER
value.

For more information about datatype conversion, see Chapter 3 of the Programmer's
Guide to the Oracle Precompilers.

Datatype Equivalencing
Datatype equivalencing lets you control the way Oracle interprets input data, and the
way Oracle formats output data. On a variable-by-variable basis, you can equivalence
supported PL/1 datatypes to Oracle external datatypes.

Host Variable Equivalencing
By default, the Pro*PL/1 Precompiler assigns a specific external datatype to every host
variable. The following table shows the default assignments:

Using the VAR statement, you can override the default assignments by equivalencing
host variables to Oracle external datatypes in the Declare Section. The syntax you use
is

EXEC SQL VAR host_variable
 IS type_name [({length | precision,scale})];

where:

■ host_variable is an input or output host variable (or host array) declared
earlier in the Declare Section.

■ type_name is the name of a valid external datatype.

■ length is an integer literal specifying a valid length in bytes.

■ precision and scale are specified where required by the type.

Host variable equivalencing is useful in several ways. For example, you can use it
when you want Oracle to store but not interpret data. Suppose you want to store a
host array of 4-byte integers in a RAW database column. Simply equivalence the host
array to the RAW external datatype, as follows:

EXEC SQL BEGIN DECLARE SECTION;
 DCL INT_ARRAY(50) FIXED BINARY(31);
...
/* Reset default external datatype to RAW */

Host Datatype External Datatype Code

CHARACTER (N) VARCHAR2 1
when MODE!=ANSI

FIXED BINARY (15) INTEGER 3
when MODE=ANSI

FIXED BINARY (31) INTEGER 3

FLOAT BINARY (N) FLOAT 4

FLOAT DECIMAL (P,S) FLOAT 4

FIXED DECIMAL (N) DECIMAL 7

FIXED DECIMAL (P,S) DECIMAL 7

CHARACTER (N) VARYING VARCHAR 9

Embedding PL/SQL

Writing a Pro*PL/1 Program 1-17

 EXEC SQL VAR INT_ARRAY IS RAW(200);
EXEC SQL END DECLARE SECTION;

With host arrays, the length you specify must match exactly the buffer size required to
hold the array. So, you specify a length of 200, which is the buffer size required to hold
50 4-byte integers.

The following external datatypes cannot be used in the VAR command in Pro*PL/1:

■ NUMBER (use VARNUM instead)

■ UNSIGNED (not supported in Pro*PL/1)

■ DISPLAY (COBOL only)

■ CHARZ (C only)

Embedding PL/SQL
The Pro*PL/1 Precompiler treats a PL/SQL block like a single embedded SQL
statement. So, you can place a PL/SQL block anywhere in a host program that you can
place a SQL statement.

To embed a PL/SQL block in your host program, you simply declare the variables to
be shared with PL/SQL, and bracket the PL/SQL block with the keywords EXEC SQL
EXECUTE and END-EXEC.

Using Host Variables with PL/SQL
Inside a PL/SQL block, host variables are treated as global to the entire block, and can
be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL
statement, host variables in a PL/SQL block must be prefixed with a colon. The colon
sets host variables apart from PL/SQL variables and database objects.

Using Indicator Variables with PL/SQL
In a PL/SQL block, you cannot refer to an indicator variable by itself; it must be
appended to its associated host variable. And, if you refer to a host variable with its
indicator variable, you must always refer to it that way in the same block.

Handling Nulls
When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a NULL value to the host variable. When exiting the block, if a
host variable has a NULL value, PL/SQL automatically assigns a value of -1 to the
indicator variable.

Handling Truncated Values
PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string.

SQLCHECK
You must use the SQLCHECK=SEMANTICS option when precompiling a program
with an embedded PL/SQL block. You may also want to use the USERID option. See
the Programmer's Guide to the Oracle Precompilers for more information.

Connecting to Oracle

1-18 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Connecting to Oracle
Your host program must log in to Oracle before it can manipulate data. To log in, use
the SQL connect statement

EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;

where "USERNAME" and "PASSWORD" are PL/1 character strings containing the
user ID and the Oracle password. Or, you can use the SQL statement

EXEC SQL CONNECT :USER_PASSWORD;

where "USER_PASSWORD" is a PL/1 character variable containing the user ID, a slash
(/), and the password. For more information about connecting to Oracle see Oracle
Database Administrator's Guide.

The following examples show both ways of connecting to Oracle:

EXEC SQL BEGIN DECLARE SECTION;
 DCL USER_NAME CHAR(6) INIT('SCOTT'),
 PASSWORD CHAR(6) INIT('TIGER');
EXEC SQL END DECLARE SECTION;
...
EXEC SQL CONNECT :USER_NAME IDENTIFIED BY :PASSWORD;
DCL USER_PWD CHAR(14);
...
USER_PWD = 'SYSTEM/MANAGER';
EXEC SQL CONNECT :USER_PWD;

Automatic Logins
You can automatically log in to Oracle with the user ID

prefixusername

where username is the current operating system user or task name, prefixusername is a
valid Oracle username, and prefix is a value determined by the Oracle initialization
parameter OS_AUTHENT_PREFIX. For backward compatibility, prefix defaults to
OPS$. For more information about operating system authentication, see the Oracle
database version 7 Server Administrator's Guide.

EXEC SQL BEGIN DECLARE SECTION;
 ..
. DCL OracleID CHAR(1) INIT('/');
EXEC SQL END DECLARE SECTION;
...
EXEC SQL CONNECT :OracleID;

This automatically connects you as user prefixusername. For example, if your operating
system username is RHILL, and OPS$RHILL is a valid Oracle username, connecting
with '/' automatically logs you on to Oracle as user OPS$RHILL.

Concurrent Logins
Your application can use SQL*Net to concurrently access any combination of remote
and local databases, or make multiple connections to the same database. In the
following example, you connect to two non default databases concurrently:

EXEC SQL BEGIN DECLARE SECTION;
 DCL USR CHAR(5),
 PWD CHAR(5),

Connecting to Oracle

Writing a Pro*PL/1 Program 1-19

 DBSTR1 CHAR(11),
 DBSTR2 CHAR(11);
EXEC SQL END DECLARE SECTION;

USR = 'SCOTT';
PWD = 'TIGER';
DBSTR1 = 'D:NODE1-Database1';
DBSTR2 = 'D:NODE1-Database2';

/* Give each database connection a unique name. */
EXEC SQL DECLARE DBNAM1 DATABASE;
EXEC SQL DECLARE DBNAM2 DATABASE;

/* Connect to the two nondefault databases. */
EXEC SQL CONNECT :USR IDENTIFIED BY :PWD
 AT DBNAM1 USING :DBSTR1;
EXEC SQL CONNECT :USR IDENTIFIED BY :PWD
 AT DBNAM2 USING :DBSTR2;

DBNAM1 and DBNAM2 name the non default connections; they are identifiers used
by the precompiler, not host variables.

Connecting to Oracle

1-20 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Error Handling and Diagnostics 2-1

2
Error Handling and Diagnostics

This chapter discusses error reporting and recovery. You learn how to handle errors
and status changes using SQLSTATE, the SQLCA, SQLCODE and the WHENEVER
statement. You also learn how to diagnose problems using the ORACA.

SQLSTATE, the SQLCA, and SQLCODE
Release 1.6 provides forward and backward compatibility with regard to checking the
outcome of executing SQL statements. The SQLCA data structure containing status
information and SQLCODE status variable can be used in the same manner as in
previous releases. The SQLSTATE status variable is introduced in release 1.6.

Declaring SQLSTATE
When MODE=ANSI, you must declare SQLSTATE or SQLCODE. Declaring the
SQLCA is optional. When MODE=ORACLE, not declaring the SQLCA causes compile
time warnings and runtime errors.

Unlike SQLCODE, which stores signed integers and can be declared outside the
Declare Section, SQLSTATE stores 5-character strings and must be declared inside the
Declare Section. You declare SQLSTATE as:

DCL SQLSTATE CHAR(5);

SQLSTATE Values
SQLSTATE status codes consist of a 2-character class code followed by a 3-character
subclass code. Aside from class code 00 ("successful completion"), the class code denotes
a category of exceptions. And, aside from subclass code 000 ("not applicable"), the
subclass code denotes a specific exception within that category. For example, the
SQLSTATE value '22012' consists of class code 22 ("data exception") and subclass code
012 ("division by zero").

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin
letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range
A..H are reserved for predefined conditions (those defined in SQL92). All other class
codes are reserved for implementation-defined conditions. Within predefined classes,
subclass codes that begin with a digit in the range 0..4 or a letter in the range A..H are
reserved for predefined subconditions. All other subclass codes are reserved for
implementation-defined subconditions. Figure 2–1 shows the coding scheme.

Note: SQLSTATE must be declared with exactly 5 characters.

SQLSTATE, the SQLCA, and SQLCODE

2-2 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Figure 2–1 SQLSTATE Coding Scheme

Table 2–1 shows the classes predefined by SQL92.

Table 2–1 Predefined Classes

Class Condition

00 success completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 cardinality violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification

2A direct SQL syntax error or access rule violation

2B dependent privilege descriptors still exist

2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule violation

3C ambiguous cursor name

3D invalid catalog name

3F invalid schema name

SQLSTATE, the SQLCA, and SQLCODE

Error Handling and Diagnostics 2-3

Table 2–2 shows how SQLSTATE status codes and conditions are mapped to Oracle
errors. Status codes in the range 60000 .. 99999 are implementation-defined.

40 transaction rollback

42 syntax error or access rule violation

44 with check option violation

HZ remote database access

Note: The class code HZ is reserved for conditions defined in
International Standard ISO/IEC DIS 9579-2, Remote Database Access.

Table 2–2 SQLSTATE Status Codes

Code Condition OracleError(s)

00000 successful completion ORA-00000

01000 warning

01001 cursor operation conflict

01002 disconnect error

01003 null value eliminated in
set function

01004 string data-right
truncation

01005 insufficient item descriptor
areas

01006 privilege not revoked

01007 privilege not granted

01008 implicit zero-bit padding

01009 search condition too long
for info schema

0100A query expression too long
for info schema

02000 no data ORA-01095
ORA-01403

07000 dynamic SQL error

07001 using clause does not
match parameter specs

07002 using clause does not
match target specs

07003 cursor specification cannot
be executed

07004 using clause required for
dynamic parameters

Table 2–1 (Cont.) Predefined Classes

Class Condition

SQLSTATE, the SQLCA, and SQLCODE

2-4 Pro*PL/1 Supplement to the Oracle Precompilers Guide

07005 prepared statement not a
cursor specification

07006 restricted datatype
attribute violation

07007 using clause required for
result components invalid
descriptor count

07008 invalid descriptor count SQL-02126

07009 invalid descriptor index

08000 connection exception

08001 SQL-client unable to
establish SQL-connection

08002 connection name is use

08003 connection does not exist SQL-02121

08004 SQL-server rejected
SQL-connection

08006 connection failure

08007 transaction resolution
unknown

0A000 feature not supported ORA-03000..03099

0A001 multiple server
transactions

21000 cardinality violation ORA-01427
SQL-02112

22000 data exception

22001 string data - right
truncation

ORA-01406

22002 null value-no indicator
parameter

SQL-02124

22003 numeric value out of range ORA-01426

22005 error in assignment

22007 invalid datetime format

22008 datetime field overflow ORA-01800..01899

22009 invalid time zone
displacement value

22011 substring error

22012 division by zero ORA-01476

22015 interval field overflow

22018 invalid character value for
cast

22019 invalid escape character ORA-00911

22021 character not in repertoire

Table 2–2 (Cont.) SQLSTATE Status Codes

Code Condition OracleError(s)

SQLSTATE, the SQLCA, and SQLCODE

Error Handling and Diagnostics 2-5

22022 indicator overflow ORA-01411

22023 invalid parameter value ORA-01025
ORA-04000..04019

22024 unterminated C string ORA-01479
ORA-01480

22025 invalid escape sequence ORA-01424
ORA-01425

22026 string data-length
mismatch

ORA-01401

22027 trim error

23000 integrity constraint
violation

ORA-02290..02299

24000 invalid cursor state ORA-001002
ORA-001003
SQL-02114
SQL-02117

25000 invalid transaction state SQL-02118

26000 invalid SQL statement
name

27000 triggered data change
violation

28000 invalid authorization
specification

2A000 direct SQL syntax error or
access rule violation

2B000 dependent privilege
descriptors still exist

2C000 invalid character set name

2D000 invalid transaction
termination

2E000 invalid connection name

33000 invalid SQL descriptor
name

34000 invalid cursor name

35000 invalid condition number

37000 dynamic SQL syntax error
or access rule violation

3C000 ambiguous cursor name

3D000 invalid catalog name

3F000 invalid schema name

40000 transaction rollback ORA-02091
ORA-02092

40001 serialization failure

Table 2–2 (Cont.) SQLSTATE Status Codes

Code Condition OracleError(s)

SQLSTATE, the SQLCA, and SQLCODE

2-6 Pro*PL/1 Supplement to the Oracle Precompilers Guide

40002 integrity constraint
violation

40003 statement completion
unknown

42000 syntax error or access rule
violation

ORA-00022
ORA-00251
ORA-00900..00999
ORA-01031
ORA-01490..01493
ORA-01700..01799
ORA-01900..02099
ORA-02140..02289
ORA-02420..02424
ORA-02450..02499
ORA-03276..03299
ORA-04040..04059
ORA-04070..04099

44000 with check option
violation

ORA-01402

60000 system error ORA-00370..00429
ORA-00600..00899
ORA-06430..06449
ORA-07200..07999
ORA-09700..09999

61000 multi-threaded server and
detached process errors

ORA-00018..00035
ORA-00050..00068
ORA-02376..02399
ORA-04020..04039

62000 multi-threaded server and
detached process errors

ORA-00100..00120
ORA-00440..00569

63000 Oracle*XA and two-task
interface errors

ORA-00150..00159
ORA-02700..02899
ORA-03100..03199
ORA-06200..06249

64000 control file, database file,
and redo file errors;
archival and media
recovery errors

ORA-00200..00369
ORA-01100..01250

65000 PL/SQL errors ORA-06500..06599

66000 SQL*Net driver errors ORA-06000..06149
ORA-06250..06429
ORA-06600..06999
ORA-12100..12299
ORA-12500..12599

67000 licensing errors ORA-00430..00439

69000 SQL*Connect errors ORA-00570..00599
ORA-07000..07199

Table 2–2 (Cont.) SQLSTATE Status Codes

Code Condition OracleError(s)

SQLSTATE, the SQLCA, and SQLCODE

Error Handling and Diagnostics 2-7

72000 SQL execute phase errors ORA-00001
ORA-01000..01099
ORA-01400..01489
ORA-01495..01499
ORA-01500..01699
ORA-02400..02419
ORA-02425..02449
ORA-04060..04069
ORA-08000..08190
ORA-12000..12019
ORA-12300..12499
ORA-12700..21999

82100 out of memory (could not
allocate)

SQL-02100

82101 inconsistent cursor cache
(UCE/CUC mismatch)

SQL-02101

82102 inconsistent cursor cache
(no CUC entry for UCE)

SQL-02102

82103 inconsistent cursor cache
(out-or-range CUC ref)

SQL-02103

82104 inconsistent cursor cache
(no CUC available)

SQL-02104

82105 inconsistent cursor cache
(no CUC entry in cache)

SQL-02105

82106 inconsistent cursor cache
(invalid cursor number)

SQL-02106

82107 program too old for
runtime library;
re-precompile

SQL-02107

82108 invalid descriptor passed
to runtime library

SQL-02108

82109 inconsistent host cache
(out-or-range SIT ref)

SQL-02109

82110 inconsistent host cache
(invalid SQL type)

SQL-02110

82111 heap consistency error SQL-02111

82113 code generation internal
consistency failed

SQL-02115

82114 reentrant code generator
gave invalid context

SQL-02116

82117 invalid OPEN or
PREPARE for this
connection

SQL-02122

82118 application context not
found

SQL-02123

HZ000 remote database access

Table 2–2 (Cont.) SQLSTATE Status Codes

Code Condition OracleError(s)

SQLSTATE, the SQLCA, and SQLCODE

2-8 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Using SQLSTATE
The following rules apply to using SQLSTATE with SQLCODE or the SQLCA when
you precompile with the option setting MODE=ANSI. SQLSTATE must be declared
inside a Declare Section; otherwise, it is ignored.

If you declare SQLSTATE

■ Declaring SQLCODE is optional. If you declare SQLCODE inside the Declare
Section, the Oracle Server returns status codes to SQLSTATE and SQLCODE after
every SQL operation. However, if you declare SQLCODE outside the Declare
Section, Oracle returns a status code only to SQLSTATE.

■ Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status
codes to SQLSTATE and the SQLCA. In this case, to avoid compilation errors, do
not declare SQLCODE.

If you do not declare SQLSTATE

■ You must declare SQLCODE inside or outside the Declare Section. The Oracle
Server returns a status code to SQLCODE after every SQL operation.

■ Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status
codes to SQLCODE and the SQLCA.

You can learn the outcome of the most recent executable SQL statement by checking
SQLSTATE explicitly with your own code or implicitly with the WHENEVER
SQLERROR statement. Check SQLSTATE only after executable SQL statements and
PL/SQL statements.

Declaring SQLCODE
When MODE={ANSI | ANSI14} and you have not declared SQLSTATE, you must
declare a long integer variable named SQLCODE inside or outside the Declare Section.
Upper case is required. An example follows:

/* Declare host and indicator variables */
EXEC SQL BEGIN DECLARE SECTION;
 ...
EXEC SQL END DECLARE SECTION;

/* Declare status variable */
 DCL SQLCODE FIXED BIN(31);

After every SQL operation, Oracle returns a status code to the SQLCODE variable
currently in scope. The status code, which indicates the outcome of the SQL operation,
can be any of the following numbers:

Status Code Meaning

0 Means that Oracle executed the statement without detecting an
error or exception.

> 0 Means that Oracle executed the statement but detected an
exception. This occurs when Oracle cannot find a row that meets
your WHERE-clause search condition or when a SELECT INTO
or FETCH returns no rows.

When MODE={ANSI | ANSI14 | ANSI13}, +100 is returned to
SQLCODE after an INSERT of no rows. This can happen when a
subquery returns no rows to process.

Using the SQLCA

Error Handling and Diagnostics 2-9

You can learn the outcome of the most recent SQL operation by checking SQLCODE
explicitly with your own code or implicitly with the WHENEVER statement.

When you declare SQLCODE instead of the SQLCA in a particular precompilation
unit, the precompiler allocates an internal SQLCA for that unit. Your host program
cannot access the internal SQLCA. If you declare the SQLCA and SQLCODE, Oracle
returns the same status code to both after every SQL operation.

When MODE={ANSI13 | Oracle}, if you declare SQLCODE, it is not used.

Using the SQLCA
Oracle uses the SQLCA to store status information passed to your program at run
time. The SQLCA always reflects the outcome of the most recent SQL operation. To
determine that outcome, you can check variables in the SQLCA explicitly with your
own PL/1 code, or implicitly with the WHENEVER statement.

When MODE=ORACLE (the default) or MODE=ANSI13, you must declare the
SQLCA by hardcoding it or by copying it into your program with the INCLUDE
statement.

When MODE={ANSI | ANSI14}, declaring the SQLCA is optional. However, you must
declare a status variable named SQLCODE. SQL92 specifies a similar status variable
named SQLSTATE, which you can use with or without SQLCODE.

After executing a SQL statement, the Oracle Server returns a status code to the
SQLSTATE variable currently in scope. The status code indicates whether the SQL
statement executed successfully or raised an exception (error or warning condition). To
promote interoperability (the ability of systems to exchange information easily), SQL92
predefines all the common SQL exceptions.

Unlike SQLCODE, which stores only error codes, SQLSTATE stores error and warning
codes. Furthermore, the SQLSTATE reporting mechanism uses a standardized coding
scheme. Thus, SQLSTATE is the preferred status variable. Under SQL92, SQLCODE is
a "deprecated feature" retained only for compatibility with SQL89 and likely to be
removed from future versions of the standard.

Declaring the SQLCA
To declare the SQLCA, copy it into your program with the
INCLUDE statement

EXEC SQL INCLUDE SQLCA;
or hardcode it as shown:

DCL 1 SQLCA,
 2 SQLCAID CHAR(8) INIT('SQLCA'),
 2 SQLCABC FIXED BIN (31) INIT(136),
 2 SQLCODE FIXED BIN (31),
 2 SQLERRM CHAR (70) VAR,
 2 SQLERRP CHAR (8) INIT('SQLERRP'),

< 0 Means that Oracle did not execute the statement because of a
database, system, network, or application error. Such errors can
be fatal. When they occur, the current transaction should, in
most cases, be rolled back.

Negative return codes correspond to error codes listed in the
Oracle database version 7 Server Messages and Codes Manual.

Status Code Meaning

Using the SQLCA

2-10 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 2 SQLERRD (6) FIXED BIN (31),
 2 SQLWARN,
 3 SQLWARN0 CHAR (1),
 3 SQLWARN1 CHAR (1),
 3 SQLWARN2 CHAR (1),
 3 SQLWARN3 CHAR (1),
 3 SQLWARN4 CHAR (1),
 3 SQLWARN5 CHAR (1),
 3 SQLWARN6 CHAR (1),
 3 SQLWARN7 CHAR (1),
 2 SQLEXT, CHAR (8) INIT('SQLEXT');

Not declaring the SQLCA when MODE=Oracle results in compile time warnings, and
causes runtime errors.

Your Pro*PL/1 program can have more than one SQLCA. The SQLCA should not be
INCLUDEd outside of a procedure block, since the elements in it are not declared with
the STATIC storage class. Oracle returns information to the SQLCA that is in the scope
of the SQL statement that caused the error or warning condition. The name of this
structure must be SQLCA, since it is referred to by precompiler-generated code.

What's in the SQLCA?
The SQLCA contains runtime information about the execution of SQL statements, such
as Oracle error codes, warning flags, event information, rows-processed count, and
diagnostics.

Key Components of Error Reporting
The key components of Pro*PL/1 error reporting depend on several fields in the
SQLCA.

Status Codes
Every executable SQL statement returns a status code in the SQLCA variable
SQLCODE, which you can check implicitly with WHENEVER SQLERROR, or
explicitly with your own PL/1 code.

Warning Flags
Warning flags are returned in the SQLCA variables SQLWARN0 through SQLWARN7,
which you can check implicitly with WHENEVER SQLWARNING, or explicitly with
your own PL/1 code. These warning flags are useful for detecting runtime conditions
not considered errors by Oracle.

Rows-processed Count
The number of rows processed by the most recently executed SQL statement is
recorded in the SQLCA variable SQLERRD(3). For repeated FETCHes on an OPEN
cursor, SQLERRD(3) keeps a running total of the number of rows fetched.

Parse Error Offset
Before executing a SQL statement, Oracle must parse it, that is, examine it to make
sure it follows syntax rules and refers to valid database objects. If Oracle finds an error,
an offset is stored in the SQLCA variable SQLERRD(5), which you can check explicitly.
The offset specifies the character position in the SQL statement at which the parse
error begins. The first character occupies position zero. For example, if the offset is 9,
the parse error begins at the 10th character.

Getting the Full Text of Error Messages

Error Handling and Diagnostics 2-11

If your SQL statement does not cause a parse error, Oracle sets SQLERRD(5) to zero.
Oracle also sets SQLERRD(5) to zero if a parse error begins at the first character, which
occupies position zero. So, check SQLERRD(5) only if SQLCODE is negative, which
means that an error has occurred.

Error Message Text
The error code and message for Oracle errors are available in the SQLCA variable
SQLERRM. For example, you might place the following statements in an
error-handling routine:

/* Handle SQL execution errors. */
PUT EDIT(SQLCA.SQLERRM)(A(70));

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE
...
At most, the first 70 characters of message text are stored. For messages longer than 70
characters, you must call the SQLGLM function.

Getting the Full Text of Error Messages
The SQLCA can accommodate error messages of up to 70 characters in length. To get
the full text of longer (or nested) error messages, you need the SQLGLM procedure. If
connected to Oracle, you can call SQLGLM using the syntax

CALL SQLGLM (MSG_BUF, BUF_SIZE, MSG_LENGTH);
where:

MSG_BUF

Is the buffer in which you want Oracle to store the error message. Oracle blank-pads to
the end of this buffer.

BUF_SIZE

Is an integer variable that specifies the maximum length of MSG_BUF in bytes.

MSG_LENGTH

Is an integer variable in which Oracle stores the actual length of the error message.

The maximum length of an Oracle error message is 196 characters including the error
code, nested messages, and message inserts such as table and column names. The
maximum length of an error message returned by SQLGLM depends on the value you
specify for BUF_SIZE. In the following example, you use SQLGLM to get an error
message of up to 200 characters in length:

TEST: PROC OPTIONS(MAIN);

/* Declare variables for the function call. */
DCL MSG_BUF CHAR(200), /* buffer for message text */
BUF_SIZE FIXED BIN(31) INIT(200), /* size in bytes */
MSG_LEN FIXED BIN(31); /* length of message text */

WHENEVER SQLERROR GOTO ERROR_PRINT;

...

ERROR_PRINT:
/* Get full text of error message. */
CALL SQLGLM(MSG_BUF, BUF_SIZE, MSG_LEN);

Using the WHENEVER Statement

2-12 Pro*PL/1 Supplement to the Oracle Precompilers Guide

/* Print the text. */
PUT SKIP EDIT (MSG_BUF) (A(MSG_LEN));
...
Notice that SQLGLM is called only when a SQL error has occurred. Always make sure
SQLCA.SQLCODE is negative before calling SQLGLM. If you call SQLGLM when
SQLCODE is zero, you get the message text associated with a prior SQL statement.

Using the WHENEVER Statement
By default, the Pro*PL/1 Precompiler ignores Oracle error and warning conditions
and continues processing if possible. To do automatic condition checking and error
handling, you need the WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken when Oracle
detects an error, warning condition, or "not found" condition. These actions include
continuing with the next statement, calling a procedure, branching to a labeled
statement, or stopping.

You code the WHENEVER statement using the following syntax:

EXEC SQL WHENEVER <condition> <action>
You can have Oracle automatically check the SQLCA for any of the following
conditions:

■ SQLWARNING

■ SQLERROR

■ NOT FOUND

When Oracle detects one of the preceding conditions, you can have your program take
any of the following actions:

■ CONTINUE

■ DO procedure_call

■ GOTO statement_label

■ STOP

When using the WHENEVER ... DO statement, the usual rules for entering and exiting
a procedure apply. However, passing parameters to the subroutine is not allowed.
Furthermore, the subroutine must not return a value.

In the following example, you use WHENEVER SQLERROR DO statements to handle
specific errors:

...
EXEC SQL WHENEVER SQLERROR DO CALL INSERT_ERROR;
...
EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES(:MY_EMPNO, :MY_ENAME, :MY_DEPTNO);
...
INSERT_ERROR: PROCEDURE;
/* test for "duplicate key value" Oracle error */
IF (SQLCA.SQLCODE = -1) THEN DO;
...
/* test for "value too large" Oracle error */
ELSE IF (SQLCA.SQLCODE = -1401) DO;
...
/* and so on. */
END;
END INSERT_ERROR

Using the WHENEVER Statement

Error Handling and Diagnostics 2-13

Notice how the procedure checks variables in the SQLCA to determine a course of
action.

For more information about the WHENEVER conditions and actions, see Chapter 7 of
the Programmer's Guide to the Oracle Precompilers.

Scope of WHENEVER
Because WHENEVER is a declarative statement, its scope is positional, not logical.
That is, it tests all executable SQL statements that physically (not logically) follow it in
your program. So, code the WHENEVER statement before the first executable SQL
statement you want to test.

A WHENEVER statement stays in effect until superseded by another WHENEVER
statement checking for the same condition.

Helpful Hint
You might want to place WHENEVER statements at the beginning of each block that
contains SQL statements. That way, SQL statements in one block will not reference
WHENEVER actions in another block, causing errors at compile or run time.

Caution
Careless use of WHENEVER can cause problems. For example, the following code
enters an infinite loop if the DELETE statement sets NOT FOUND because no rows
meet the search condition:

/* Improper use of WHENEVER */
EXEC SQL WHENEVER NOT FOUND GOTO DO_DELETE;
DO J = 1 TO N_FETCH;
EXEC SQL FETCH EMP_CURSOR INTO :MY_ENAME, :MY_SAL;
...
END;
DO_DELETE:
EXEC SQL DELETE FROM EMP WHERE EMPNO = :MY_EMPNO;

In the next example, you handle the NOT FOUND condition properly by resetting the
GOTO target:

/* Proper use of WHENEVER */
EXEC SQL WHENEVER NOT FOUND GOTO DO_DELETE;
DO J = 1 TO N_FETCH;
EXEC SQL FETCH EMP_CURSOR INTO :MY_ENAME, :MY_SAL;
...
END;
DO_DELETE:
EXEC SQL WHENEVER NOT FOUND GOTO WHAT_NEXT;
EXEC SQL DELETE FROM EMP WHERE EMPNO = :MY_EMPNO;
...
WHAT_NEXT:
...
Also, make sure all SQL statements governed by a WHENEVER ... GOTO statement
can branch to the GOTO label. The following code results in a compile time error
because the UPDATE statement in PROC2 is not within the scope of LABEL_A in
PROC1:

PROC1: PROC();
...
EXEC SQL WHENEVER SQLERROR GOTO LABEL_A;

Using the ORACA

2-14 Pro*PL/1 Supplement to the Oracle Precompilers Guide

EXEC SQL DELETE FROM EMP WHERE DEPTNO = :DEPT_NUMBER;
...
LABEL_A:
PUT SKIP LIST ('Error occurred');
END PROC1;
PROC2: PROC();
...
EXEC SQL UPDATE EMP SET SAL = SAL * 1.20
WHERE JOB = 'PROGRAMMER';
...
END PROC2;

Using the ORACA
The SQLCA handles standard SQL communications. The ORACA is a similar data
structure copied or hardcoded into your program to handle Oracle-specific
communications. When you need more runtime information than the SQLCA
provides, use the ORACA.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program's use of Oracle resources, such as the SQL Statement Executor and the cursor
cache, an area of memory reserved for cursor management.

Declaring the ORACA
To declare the ORACA, you can copy it into your main program with the INCLUDE
statement, as follows:

/* Copy in the Oracle Communications Area (ORACA). */
EXEC SQL INCLUDE ORACA;

Alternatively, you can hardcode it as follows:

DCL 1 ORACA
 2 ORACAID CHAR (8) INIT ('ORACA')
 2 ORACABC FIXED BIN (31) INIT (176)
 2 ORACCHF FIXED BIN (31) INIT (0)
 2 ORADBGF FIXED BIN (31) INIT (0)
 2 ORAHCHF FIXED BIN (31) INIT (0)
 2 ORASTXTF FIXED BIN (31) INIT (0)
 2 ORASTXT CHAR (70) VAR INIT ('')
 2 ORASFNM CHAR (70) VAR INIT ('')
 2 ORASLNR FIXED BIN (31) INIT (0)
 2 ORAHOC FIXED BIN (31) INIT (0)
 2 ORAMOC FIXED BIN (31) INIT (0)
 2 ORACOC FIXED BIN (31) INIT (0)
 2 ORANOR FIXED BIN (31) INIT (0)
 2 ORANPR FIXED BIN (31) INIT (0)
 2 ORANEX FIXED BIN (31) INIT (0)

Enabling the ORACA
To enable the ORACA, you must set the ORACA precompiler option to YES, either on
the command line with

ORACA=YES

or inline with

/* Enable the ORACA. */

Using the ORACA

Error Handling and Diagnostics 2-15

EXEC Oracle OPTION (ORACA=YES);

Then, you must choose appropriate runtime options by setting flags in the ORACA.

Enabling the ORACA is optional because it adds to runtime overhead. The default
setting is ORACA=NO.

What's in the ORACA?
The ORACA contains option settings, system statistics, and extended diagnostics. The
preceeding listing shows all the variables in the ORACA.

For a full description of the ORACA, its fields, and the values the fields can store, see
Chapter 7 of the Programmer's Guide to the Oracle Precompilers.

Using the ORACA

2-16 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Running the Pro*PL/1 Precompiler 3-1

3
Running the Pro*PL/1 Precompiler

This chapter provides the basic information you need to invoke the Pro*PL/1
Precompiler.

Precompiler Command
To run the Pro*PL/1 Precompiler, you issue the following command:

propli

The location of the precompiler differs from system to system. The system or database
administrator defines environment variables, logicals, or aliases, or uses other
operating-system-specific means to make the Pro*PL/1 executable accessible.

The INAME= option specifies the source file to be precompiled. For example, the
command

propli INAME=test_propli

precompiles the file test_propli.ppl in the current directory, since the precompiler
assumes that the filename extension is .ppl. You need not use the use a file extension
when specifying INAME unless the extension is nonstandard. The INAME options
does not have to be the first option on the command line, but if it is, you can omit the
option specification. So, the command

propli myfile

is equivalent to

propli INAME=myfile

Precompiler Options
Many useful options are available at precompile time. They let you control how
resources are used, how errors are reported, how input and output are formatted, and

Note: Option names, and option values that do not name specific
operating-system objects, such as filenames, are not case-sensitive.
In the examples in this guide, option names are written in upper
case, and option values are usually in lower case. Filenames,
including the name of the Pro*PL/1 Precompiler executable itself
always follow the case conventions used by your operating system.

Precompiler Options

3-2 Pro*PL/1 Supplement to the Oracle Precompilers Guide

how cursors are managed. To specify a precompiler option, you use the following
syntax:

option_name=value
See Chapter 11 of the Programmer's Guide to the Oracle Precompilers for a list of
precompiler options. The list gives the purpose, syntax, default value, and usage notes
for each option.

A handy reference to the precompiler options is available online. To see the online
display, enter the precompiler command with no arguments at your operating system
prompt. The display gives the name, syntax, default value, and purpose of each
option. Options marked with an asterisk (*) can be specified inline as well as on the
command line.

The value of an option is a string literal, which can represent text or numeric values.
For example, for the option

... INAME=my_test

the value is a string literal that specifies a filename. But for the option

... MAXOPENCURSORS=20

the value is numeric.

Some options take Boolean values, and you can represent these with the strings yes or
no. For example, the option

... SELECT_ERROR=YES

The option value is always separated from the option name by an equals sign, with no
whitespace around the equals sign.

Default Values
Many of the options have default values. The default value of an option is determined
by:

■ a value built in to the precompiler

■ a value set in the Pro*PL/1 system configuration file

■ a value set in a Pro*PL/1 user configuration file

■ a value set in an inline specification

For example the option MAXOPENCURSORS specifies the maximum number of
cached open cursors. The built-in precompiler default value for this option is 10.
However, if MAXOPENCURSORS=32 is specified in the system configuration file, the
default now becomes 32. The user configuration file could set it to yet another value,
which then overrides the system configuration value. Then, if this option is set on the
command line, the new command-line value takes precedence over the precompiler
default, the system configuration file specification, and the user configuration file
specification. Finally, an inline specification takes precedence over all preceding
defaults. For more information see the section "Configuration Files" on page
"Configuration Files" on page 3-3.

Some options, such as USERID, do not have a precompiler default. For more
information, see the Programmer's Guide to the Oracle Precompilers.

Precompiler Options

Running the Pro*PL/1 Precompiler 3-3

Determining Current Values
You can interactively determine the current value for one or more options by using a
question mark on the command line. For example, if you issue the command

propli ?

the complete set of options, along with their current values, is printed to your
terminal. (On a UNIX system running the C shell, escape the '?' with a backslash.) In
this case, the values are those built into the precompiler, overridden by any values in
the system configuration file. But if you issue the command

propli CONFIG=my_config_file.cfg ?

and there is a file named my_config_file.cfg in the current director, the options are listed.
Values in the user configuration file supply missing values, and supersede values
built-in to the Pro*PL/1 precompiler, or values specified in the system configuration
file.

You can also determine the current value of a single option, by simply specifying that
option name, followed by =?. For example

propli MAXOPENCURSORS=?

prints the current default value for the MAXOPENCURSORS option.

Case Sensitivity
In general, you can use either uppercase or lowercase for command-line option names
and values However, if your operating system is case sensitive, like UNIX, you must
specify filename values, including the name of the Pro*PL/1 executable, using the
correct combination of upper and lowercase letters.

Configuration Files
A configuration file is a text file that contains precompiler options. Each record (line)
in the file contains one option, with its associated value or values. For example, a
configuration file might contain the lines

FIPS=YES
MODE=ANSI
CODE-ANSI_C

to set defaults for the FIPS, MODE, and CODE options.

There is a single system configuration file for each system. The name of the system
configuration file is pccpli.cfg.. The location of the file is operating-system-specific. On
most UNIX systems, the file specification is usually located in $ORACLE_
HOME/propli/pccpli.cfg.

Each Pro*PL/1 user can have one or more user configuration files. The name of the
configuration file must be specified using the CONFIG= command-line option.

Scope of Options
The options specified when you precompile a given Pro*PL/1 source file affect only
the code generated from that file; they have no effect on other modules that may be

Note: You cannot nest configuration files. This means that
CONFIG= is not a valid option inside a configuration file.

Precompiler Options

3-4 Pro*PL/1 Supplement to the Oracle Precompilers Guide

linked in to form the final program. For example, if you specify MAXLITERAL for file
A but not for file B, SQL statements in file A run with the specified MAXLITERAL
value, but SQL statements in file B run with the default value.

There is one exception to this rule: the MAXOPENCURSORS value that is in effect
when a connection to a database is made stays in effect for the life of that connection.

An option setting stays in effect until the end-of-file unless you respecify the option.
For more information on other options, see the Programmer's Guide to the Oracle
Precompilers.

DBMS
Specifies whether Oracle follows the semantic and syntactic rules of Oracle version 6,
Oracle version 7, or the native version of Oracle (that is, the version to which the
application is connected).

Syntax
DBMS=NATIVE | V6 | V7

Default
NATIVE

Usage Notes
Can be entered only on the command line.

The DBMS option lets you control the version-specific behavior of Oracle. When
DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the
database version to which the application is connected.

When DBMS=V6, or DBMS=V7, Oracle follows the rules of Oracle Version 6 or Oracle
database version 7, respectively. A summary of the differences between DBMS=V6 and
DBMS=V7 follows:

■ When DBMS=V6, Oracle treats string literals like variable-length character values.
However, when DBMS=V7, Oracle treats string literals like fixed-length character
values, and CHAR semantics change slightly to comply with the current SQL
standard.

■ When DBMS=V6, Oracle treats local CHAR variables in a PL/SQL block like
variable-length character values. When DBMS=V7, however, Oracle treats the
CHAR variables like SQL standard, fixed-length character values.

■ When DBMS=V6, Oracle treats the return value of the function USER like a
variable-length character value. However, when DBMS=V7, Oracle treats the
return value of USER like a SQL standard, fixed-length character value.

■ When DBMS=V6, if you process a multirow query that calls a SQL group function
such as AVG or COUNT, the function is called at OPEN time. When DBMS=V7,
however, the function is called at FETCH time. At OPEN time or FETCH time, if
the function call fails, Oracle issues an error message immediately. Thus, the
DBMS value affects error reporting slightly.

■ When DBMS=V6, no error is returned if a SELECT or FETCH statement selects a
null, and there is no indicator variable associated with the output host variable.
When DBMS=V7, SELECTing or FETCHing a null column or expression into a
host variable that has no associated indicator variable causes an error (SQLSTATE
is "22002"; SQLCODE is -01405).

Precompiler Options

Running the Pro*PL/1 Precompiler 3-5

■ When DBMS=V6, a DESCRIBE operation of a fixed-length string (in Dynamic SQL
Method 4) returns datatype code 1. When DBMS=V7, the DESCRIBE operation
returns datatype code 96.

■ When DBMS=V6, PCTINCREASE is allowed for rollback segments. When
DBMS=V7, PCTINCREASE is not allowed for rollback segments.

■ When DBMS=V6, illegal MAXEXTENTS storage parameters are allowed. They are
not allowed when DBMS=V7.

■ When DBMS=V6, constraints (except NOT NULL) are not enabled. When
DBMS=V7, all Oracle database version 7 constraints are enabled.

If you precompile using the DBMS=V6 option, and connect to an Oracle database
version 7 database, then a data definition language statement such as

CREATE TABLE T1 (COL1 CHAR(10))

creates the table using the VARCHAR2 (variable-length) datatype, as if the CREATE
TABLE statement had been

CREATE TABLE T1 (COL1 VARCHAR2(10))

MODE
Specifies whether your program observes Oracle practices or complies with the
current ANSI/ISO SQL standards.

Syntax
MODE=ANSI | ANSI13 | ANSI14 |ISO | ORACLE

Default
ORACLE

Usage Notes
Can be entered only on the command line.

ISO is a synonym for ANSI.

When MODE=ORACLE (the default), your embedded SQL program observes Oracle
practices. When MODE=ANSI, your program complies fully with the ANSI standard,
and the following changes go into effect:

■ CHAR column values, USER pseudocolumn values, character host values, and
quoted literals are treated like ANSI fixed-length character strings. And,
ANSI-compliant blank-padding semantics are used when you assign, compare,
INSERT, UPDATE, SELECT, or FETCH such values.

■ Issuing a COMMIT or ROLLBACK closes all explicit cursors.

■ You cannot OPEN an already open cursor or CLOSE an already closed cursor.
(When MODE=ORACLE, you can reOPEN an open cursor to avoid reparsing.)

■ You cannot SELECT or FETCH nulls into a host variable not associated with an
indicator variable.

■ If you declare SQLSTATE, then you must declare SQLSTATE as DCL SQLSTATE
CHAR(5);.

■ Declaring the SQLCA is optional. You need not include the SQLCA.

Doing Conditional Precompilations

3-6 Pro*PL/1 Supplement to the Oracle Precompilers Guide

■ No error message is issued if Oracle assigns a truncated column value to an output
host variable.

■ The "no data found" Oracle error code returned to SQLCODE becomes +100
instead of +1403. The error message text does not change.

Entering Options
All the precompiler options can be entered on the command line; some can also be
entered inline (within the source file).

... [option_name=value] [option_name=value] ...

Separate each option with one or more spaces.

For example, you might enter

... ERRORS=yes LTYPE=long MODE=ANSI13

You enter options inline by coding EXEC Oracle statements, using the following
syntax:

EXEC Oracle OPTION (option_name=value);

For example, you might code

EXEC Oracle OPTION (AREASIZE=4);

An option entered inline overrides the same option entered on the command line. The
scope of an inline option is positional, not logical. ("Positional" means that it takes
effect for all statements that follow it in the source file, regardless of the flow of control
of the program logic.)

An inline option setting stays in effect until overridden by another EXEC Oracle
OPTION directive that sets the same option name.

Special PL/1 Options
The Pro*PL/1 Precompiler supports LMARGIN and RMARGIN controls that allow
you to specify the left and right margins of the input source file. Using these controls
makes it possible to support the card image format required by some compilers.

By default, the left and right margins on all IBM systems are set to 2 and 72
respectively. On all non-IBM systems, the default setting for the left margin is 1, and
the default setting for the right margin is the record length of the input file. To change
these defaults (to 5 and 75, for example), specify LMARGIN and RMARGIN on the
command line as follows:

LMARGIN=5 RMARGIN=75

Doing Conditional Precompilations
Conditional precompilation includes (or excludes) sections of code in your Pro*PL/1
program based on certain conditions. For example, you may want to include one
section of code when precompiling under the VM operating system and another
section when precompiling under VMS. Conditional precompilation lets you write
programs that can run in different environments. For more information, see Chapter 11
of the Programmer's Guide to the Oracle Precompilers.

Compiling and Linking

Running the Pro*PL/1 Precompiler 3-7

Doing Separate Precompilations
With the Pro*PL/1 Precompiler you can precompile several program files separately,
then link them into one executable program. This allows modular
programming—required when the functional components of a program are written
and debugged by different programmers.

Restrictions
All references to an explicit cursor must be in the same program file. You cannot
perform operations on a cursor that was DECLAREd in a different module. See the
Programmer's Guide to the Oracle Precompilers, Chapter 4, for more information about
cursors.

Also, any program file that contains SQL statements must have a SQLCA that is in the
scope of the local SQL statements.

Compiling and Linking
To produce an executable program, you must compile the PL/1 output files produced
by the precompiler, then link the resulting object modules with the Oracle runtime
library, SQLLIB.

Compiling and linking are system dependent. For instructions, see the Oracle
installation or user's guide for your system.

Compiling and Linking

3-8 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Sample Programs 4-1

4
Sample Programs

This chapter provides several embedded SQL programs to guide you in writing your
own. These programs illustrate the key concepts and features of Pro*PL/1
programming and demonstrate techniques that let you take full advantage of SQL's
power and flexibility.

Sample Programs
Each sample program in this chapter is available online. The following table shows the
usual filenames of the sample programs. However, the exact filename and storage
location of the online files can be system dependent. Check the Oracle installation or
user's guide for your system.

Sample Program 1: Login and Query
/***
This program connects to Oracle, prompts the user for an employee
number, queries the database for the employee's name, salary,
and commission, then displays the result. It continues until
the user enters a 0 for the employee number.
***/

QUERYEX: PROCEDURE OPTIONS(MAIN);

EXEC SQL BEGIN DECLARE SECTION;
 DCL USERNAME CHAR(10) VARYING,
 PASSWORD CHAR(10) VARYING,
 EMP_NUMBER BIN FIXED(31),

File Name Demonstrates

SAMPLE1.PPL a simple query

SAMPLE2.PPL cursor operations

SAMPLE3.PPL array fetches

SAMPLE4.PPL datatype equivalencing

SAMPLE5.PPL a SQL*Forms user exit

SAMPLE6.PPL dynamic SQL Method 1

SAMPLE7.PPL dynamic SQL Method 2

SAMPLE8.PPL dynamic SQL Method 3

SAMPLE9.PPL calling a stored procedure

Sample Program 1: Login and Query

4-2 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 EMP_NAME CHAR(10) VARYING,
 SALARY DECIMAL FLOAT(6),
 COMMISSION DECIMAL FLOAT(6);
EXEC SQL END DECLARE SECTION;

 DCL TOTAL BIN FIXED(31);

EXEC SQL INCLUDE SQLCA;

/* log in to Oracle */

USERNAME = 'SCOTT';
PASSWORD = 'TIGER';

EXEC SQL WHENEVER SQLERROR DO CALL SQLERR;

EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;
PUT SKIP EDIT('Connected to Oracle as user: ',USERNAME)(A, A);

TOTAL = 0;

LOOP: DO WHILE (1=1);

 PUT SKIP(2) LIST('Enter employee number (0 to exit): ');
 GET LIST(EMP_NUMBER);
 IF (EMP_NUMBER = 0)
 THEN LEAVE LOOP;

 EXEC SQL WHENEVER NOT FOUND GOTO NOTFND;

 EXEC SQL SELECT ENAME, SAL, NVL(COMM,0)
 INTO :EMP_NAME, :SALARY, :COMMISSION
 FROM EMP
 WHERE EMPNO = :EMP_NUMBER;

 PUT SKIP(2) LIST('Employee Name Salary Commission');
 PUT SKIP LIST('------------- ------ ----------');
 PUT SKIP EDIT(EMP_NAME, SALARY, COMMISSION)
 (A(13), X(2), F(7,2), X, F(9,2));

 TOTAL = TOTAL + 1;
 GOTO LOOP;

 NOTFND:
 PUT SKIP LIST('Not a valid employee number - try again.');

 END;

 PUT SKIP(2) LIST('Total number queried was ', TOTAL, '.');
 PUT SKIP(2) LIST('Have a good day.');

 EXEC SQL COMMIT WORK RELEASE; /* log off Oracle */
 STOP;

SQLERR: PROCEDURE;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 PUT SKIP(2) LIST('Oracle error detected:');
 PUT SKIP(2) LIST(SQLCA.SQLERRM);

Sample Program 2: Using a Cursor

Sample Programs 4-3

 EXEC SQL ROLLBACK WORK RELEASE;
 STOP;

END SQLERR;

END QUERYEX;

Sample Program 2: Using a Cursor
/***
This program logs on to Oracle, declares and opens a cursor,
fetches the names, salaries, and commissions of all salespeople,
displays the results, then closes the cursor.
***/

CURSDEM: PROCEDURE OPTIONS(MAIN);

EXEC SQL BEGIN DECLARE SECTION;
 DCL USERNAME CHAR(10) VARYING,
 PASSWORD CHAR(10) VARYING,
 EMP_NAME CHAR(10) VARYING,
 SALARY DECIMAL FLOAT(6),
 COMMISSION DECIMAL FLOAT(6);
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

/* log in to Oracle */

USERNAME = 'SCOTT';
PASSWORD = 'TIGER';

EXEC SQL WHENEVER SQLERROR DO CALL SQLERR;

EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;
PUT SKIP EDIT('Connected to Oracle as user: ', USERNAME)(A, A);

/* Establish the cursor. */

EXEC SQL DECLARE salespeople CURSOR FOR
 SELECT ENAME, SAL, COMM
 FROM EMP
 WHERE JOB LIKE 'SALES%';

EXEC SQL OPEN salespeople;

PUT SKIP(2) LIST('Employee Name Salary Commission');
PUT SKIP LIST('------------- ------ ----------');

LOOP: DO WHILE (1 = 1);

 EXEC SQL WHENEVER NOT FOUND GOTO NOTFND;

 EXEC SQL FETCH salespeople
 INTO :EMP_NAME, :SALARY, :COMMISSION;

 PUT SKIP EDIT(EMP_NAME, SALARY, COMMISSION)
 (A(13), X(2), F(7,2), X(1), F(9,2));
 GOTO LOOP;

Sample Program 3: Fetching in Batches

4-4 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 NOTFND: LEAVE LOOP;

 END;

 EXEC SQL CLOSE salespeople;
 PUT SKIP(2) LIST('Have a good day.');

 EXEC SQL COMMIT WORK RELEASE; /* log off Oracle */
 STOP;

SQLERR: PROCEDURE;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 PUT SKIP(2) LIST('Oracle error detected:');
 PUT SKIP(2) LIST(SQLCA.SQLERRM);

 EXEC SQL ROLLBACK WORK RELEASE;
 STOP;

END SQLERR;

END CURSDEM;

Sample Program 3: Fetching in Batches
/**
This program logs on to Oracle, declares and opens a cursor,
fetches in batches using arrays, and prints the results using
the function print_rows().
**/

ARRDEM: PROCEDURE OPTIONS(MAIN);

EXEC SQL BEGIN DECLARE SECTION;
 DCL USERNAME CHAR(10) VARYING,
 PASSWORD CHAR(10) VARYING,
 EMP_NAME(5) CHAR(10) VARYING,
 EMP_NUMBER(5) BIN FIXED(31),
 SALARY(5) DECIMAL FLOAT(6);
EXEC SQL END DECLARE SECTION;

DCL NUM_RET BIN FIXED(31);

EXEC SQL INCLUDE SQLCA;

/* log in to Oracle */

USERNAME = 'SCOTT';
PASSWORD = 'TIGER';

EXEC SQL WHENEVER SQLERROR DO CALL SQLERR;

EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;
PUT SKIP EDIT('Connected to Oracle as user: ', USERNAME)(A, A);

/* Establish the cursor. */

EXEC SQL DECLARE c1 CURSOR FOR

Sample Program 4: Datatype Equivalencing

Sample Programs 4-5

 SELECT EMPNO, ENAME, SAL FROM EMP;

EXEC SQL OPEN c1;

NUM_RET = 0; /* initialize number of rows returned */

LOOP: DO WHILE(1 = 1); /* terminate when NOT FOUND is raised */

 EXEC SQL WHENEVER NOT FOUND GOTO NOTFND;
 EXEC SQL FETCH c1 INTO :EMP_NUMBER, :EMP_NAME, :SALARY;

 CALL PRINT_ROWS(SQLCA.SQLERRD(3) - NUM_RET);
 NUM_RET = SQLCA.SQLERRD(3);

 END;

NOTFND:

 /* Print remaining rows from last fetch, if any. */
 IF ((SQLCA.SQLERRD(3) - NUM_RET) >> 0) THEN
 CALL PRINT_ROWS(SQLCA.SQLERRD(3) - NUM_RET);

 EXEC SQL CLOSE c1;
 PUT SKIP(2) LIST('Have a good day.');

 EXEC SQL COMMIT WORK RELEASE; /* log off Oracle */
 STOP;

PRINT_ROWS: PROCEDURE(N);

 DCL (N,I) BIN FIXED (31);

 PUT SKIP;
 PUT SKIP(2) LIST('Employee Number Employee Name Salary');
 PUT SKIP LIST('--------------- ------------- ------');

 DO I = 1 TO N BY 1;
 PUT SKIP EDIT(EMP_NUMBER(I), EMP_NAME(I), SALARY(I))
 (F(4), X(13), A(13), X(2), F(7,2));
 END;

END PRINT_ROWS;

SQLERR: PROCEDURE;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 PUT SKIP LIST('Oracle error detected:');
 PUT SKIP(2) LIST(SQLCA.SQLERRM);

 EXEC SQL ROLLBACK RELEASE;
 STOP;

END SQLERR;

END ARRDEM;

Sample Program 4: Datatype Equivalencing
/**

Sample Program 4: Datatype Equivalencing

4-6 Pro*PL/1 Supplement to the Oracle Precompilers Guide

This program features an in-depth example of the use of
Datatype Equivalencing. After logging in, it creates a new
table in the SCOTT account, IMAGE, and simulates placement of
bitmap images of employees in it. Later, when an employee
number is entered, his/her bitmap is selected back out of the
IMAGE table, and pseudo-displayed on the terminal screen.
**/

DTYEQV: PROCEDURE OPTIONS(MAIN);

EXEC SQL BEGIN DECLARE SECTION;

 DCL USERNAME CHAR(10) VARYING,
 PASSWORD CHAR(10) VARYING,

 EMP_NUMBER BIN FIXED(31),
 EMP_NAME CHAR(10) VARYING,
 SALARY DECIMAL FLOAT(6),
 COMMISSION DECIMAL FLOAT(6);

 DCL BUFFER CHAR(8192);
 EXEC SQL VAR BUFFER IS LONG RAW;
 DCL SELECTION BIN FIXED(31);

EXEC SQL END DECLARE SECTION;

 DCL REPLY CHAR(10) VARYING;
EXEC SQL INCLUDE SQLCA;

/* log in to Oracle */

USERNAME = 'SCOTT';
PASSWORD = 'TIGER';

EXEC SQL WHENEVER SQLERROR DO CALL SQLERR;

EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;
PUT SKIP EDIT('Connected to Oracle as user: ', USERNAME)(A, A);

PUT SKIP(2)
 LIST('Program is about to drop the IMAGE table - OK [y/N]? ');
GET EDIT(REPLY)(A(1));
IF ((REPLY ^= 'Y') & (REPLY ^= 'y')) THEN CALL SIGNOFF;

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL DROP TABLE IMAGE;

IF (SQLCA.SQLCODE = 0) THEN
 PUT SKIP(2)
 LIST('Table IMAGE has been dropped - creating new table.');
ELSE IF (SQLCA.SQLCODE = -942) THEN
 PUT SKIP(2)
 LIST('Table IMAGE does not exist - creating new table.');
ELSE CALL SQLERR;

EXEC SQL WHENEVER SQLERROR DO CALL SQLERR;

EXEC SQL CREATE TABLE IMAGE
 (empno NUMBER(4) NOT NULL, bitmap LONG RAW);

Sample Program 4: Datatype Equivalencing

Sample Programs 4-7

EXEC SQL DECLARE EMPCUR CURSOR FOR
 SELECT EMPNO, ENAME FROM EMP;

EXEC SQL OPEN EMPCUR;

PUT SKIP(2)
 LIST('INSERTing bitmaps into IMAGE for all employees ...');
PUT SKIP;

GLOOP: DO WHILE (1 = 1);

 EXEC SQL WHENEVER NOT FOUND GOTO GNOTFND;

 EXEC SQL FETCH EMPCUR INTO :EMP_NUMBER, :EMP_NAME;

 PUT SKIP EDIT('Employee ', EMP_NAME)(A, A(10));
 CALL GETIMG(EMP_NUMBER, BUFFER);
 EXEC SQL INSERT INTO IMAGE VALUES (:EMP_NUMBER, :BUFFER);
 PUT EDIT(' is done!')(A);

 GOTO GLOOP;

 GNOTFND: LEAVE GLOOP;

 END;

EXEC SQL CLOSE EMPCUR;
EXEC SQL COMMIT WORK;

PUT SKIP(2)
 LIST('Done INSERTing bitmaps. Next, lets display some.');

SLOOP: DO WHILE (1 = 1);

 PUT SKIP(2) LIST('Enter employee number (0 to exit): ');
 GET LIST(SELECTION);
 IF (SELECTION = 0) THEN CALL SIGNOFF;

 EXEC SQL WHENEVER NOT FOUND GOTO SNOTFND;

 EXEC SQL SELECT EMP.EMPNO, ENAME, SAL, NVL(COMM,0), BITMAP
 INTO :EMP_NUMBER, :EMP_NAME, :SALARY, :COMMISSION, :BUFFER
 FROM EMP, IMAGE
 WHERE EMP.EMPNO = :SELECTION AND EMP.EMPNO = IMAGE.EMPNO;

 CALL SHWIMG(BUFFER);

 PUT SKIP(2) EDIT('Employee ', EMP_NAME)(A, A(10));
 PUT EDIT(' has salary ', SALARY)(A, F(7,2));
 PUT EDIT(' and commission ', COMMISSION)(A, F(7,2));

 GOTO SLOOP;

 SNOTFND:
 PUT SKIP LIST('Not a valid employee number - try again.');

 END;

STOP;

Sample Program 5: A SQL*Forms User Exit

4-8 Pro*PL/1 Supplement to the Oracle Precompilers Guide

GETIMG: PROCEDURE(ENUM, BUF);

 DCL ENUM BIN FIXED(31),
 BUF CHAR(8192);
 DCL I BIN FIXED(31);

DO I=1 TO 8192 BY 1;
 SUBSTR(BUF,I,1) = '*';
 IF (MOD(I,256) = 0) THEN PUT EDIT('.')(A);
END;

END GETIMG;

SHWIMG: PROCEDURE(BUF);

 DCL BUF CHAR(8192);
 DCL I BIN FIXED(31);

PUT SKIP;
DO I=1 TO 10 BY 1;
 PUT SKIP LIST(' *************************');
END;

END SHWIMG;

SIGNOFF: PROCEDURE;

 PUT SKIP(2) LIST('Have a good day.');

 EXEC SQL COMMIT WORK RELEASE;
 STOP;

END SIGNOFF;

SQLERR: PROCEDURE;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 PUT SKIP(2) LIST('Oracle error detected:');
 PUT SKIP(2) LIST(SQLCA.SQLERRM);

 EXEC SQL ROLLBACK WORK RELEASE;
 STOP;

END SQLERR;

END DTYEQV;

Sample Program 5: A SQL*Forms User Exit
This user exit concatenates form fields. To call the user exit from a SQL*Forms trigger,
use the syntax

user_exit('CONCAT field1, field2, ..., result_field');

where user_exit is a packaged procedure supplied with SQL*Forms and CONCAT is
the name of the user exit. A sample form named CONCAT invokes the user exit. For
more information about SQL*Forms user exits, see Chapter 10 in the Programmer's
Guide to the Oracle Precompilers.

Sample Program 5: A SQL*Forms User Exit

Sample Programs 4-9

CONCAT:

PROCEDURE(CMD,CMDLEN,MSG,MSGLEN,QUERY) RETURNS(FIXED BINARY(31));

EXEC SQL BEGIN DECLARE SECTION;
 DCL FIELD CHARACTER(81) VARYING,
 VALUE CHARACTER(81) VARYING,
 OUTVALUE CHARACTER(241) VARYING;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO ER_EXIT;

/* parameter declarations */
DCL CMD CHAR(80),
 MSG CHAR(80),
 CMDLEN FIXED BIN(31),
 MSGLEN FIXED BIN(31),
 QUERY FIXED BIN(31),

/* local declarations */
 CMDCNT FIXED BIN(31),
 I FIXED BIN(31),

/* local copy of cmd */
 LOCCMD CHAR(80),

/* dynamically built error message to be
 returned to SQL*Forms */
 ERRMSG CHAR(80),
 ERRLEN FIXED BIN(31);

/* strip off "concat" keyword in the command string */
LOCCMD = SUBSTR(CMD, 8, CMDLEN-7);
OUTVALUE = '';

I = INDEX(LOCCMD,',');
DO WHILE(I >> 0); /* found field delimited by (,) */
 FIELD = SUBSTR(LOCCMD, 1, I-1); /* field name minus (,) */
 EXEC IAF GET :FIELD INTO :VALUE;
 OUTVALUE = OUTVALUE || VALUE;
/* skip over (,) and following blank space */
 CMDCNT = I + 2;
/* take previous field off command line */
 LOCCMD = SUBSTR(LOCCMD, CMDCNT, CMDLEN-I);
 I = INDEX(LOCCMD, ',');
END;
I = INDEX(LOCCMD, ' ');
/* get last field concat */
FIELD = SUBSTR(LOCCMD, 1, I-1);
EXEC IAF PUT :FIELD VALUES (:OUTVALUE);

RETURN(SQL_IAPXIT_SUCCESS);

Note: The sample code listed is for a SQL*Forms user exit and is
not intended to be compiled in the same manner as the other
sample programs listed in this chapter.

Sample Program 6: Dynamic SQL Method 1

4-10 Pro*PL/1 Supplement to the Oracle Precompilers Guide

ER_EXIT:
ERRMSG = 'CONCAT: ' || SQLCA.SQLERRM;
ERRLEN = 80;
CALL SQLIEM(ADDR(ERRMSG), ADDR(ERRLEN));
RETURN(SQL_IAPXIT_FAILURE);

END CONCAT;

Sample Program 6: Dynamic SQL Method 1
Dynamic SQL Method 1 executes a SQL statement contained in a host character string
that is constructed at runtime. The statement must not be a SELECT and must not
contain input or output host variables. Method 1 has only one step:

EXEC SQL EXECUTE IMMEDIATE {:string_var | 'string_literal'};

This program demonstrates the use of dynamic SQL Method 1 to create a table, insert a
row, commit the insert, and drop the table. It accesses Oracle through the
SCOTT/TIGER account. It does not require user input or existing database tables. The
program displays the SQL statements before their execution.

The program is available online in the file Sample6.

DYN1DEM: PROCEDURE OPTIONS(MAIN);

/* Include the SQL Communications Area, a structure
 through which Oracle makes runtime status information
 such as error codes, warning flags, and diagnostic text
 available to the host program. */

EXEC SQL INCLUDE SQLCA;

/* Include the Oracle Communications Area, a structure
 through which Oracle makes additional runtime status
 information available to the program. */

EXEC SQL INCLUDE ORACA;

/* The ORACA=YES option must be specified to enable use
 of the ORACA. */

EXEC Oracle OPTION (ORACA=YES);

/* Specifying the RELEASE_CURSOR=YES option instructs
 Pro*PL/1 to release resources associated with embedded
 SQL statements after they are executed.
 This ensures that Oracle does not keep parse locks
 on tables after DML operations, so that subsequent DDL
 operations on those tables do not result in a
 "resource locked" Oracle run-time error. */

EXEC Oracle OPTION (RELEASE_CURSOR=YES);

/* All host variables used in embedded SQL must appear
 in the DECLARE SECTION. */

EXEC SQL BEGIN DECLARE SECTION;
DCL USERNAME CHAR(10) VARYING,

Sample Program 6: Dynamic SQL Method 1

Sample Programs 4-11

 PASSWORD CHAR(10) VARYING,
 SQLSTMT CHAR(80) VARYING;
EXEC SQL END DECLARE SECTION;

/* Branch to label 'SQL_ERR' if an Oracle error occurs. */

EXEC SQL WHENEVER SQLERROR GOTO SQL_ERR;

/* Save text of current SQL statement in the ORACA if
 an error occurs. */

ORACA.ORASTXTF = 1;

/* Connect to Oracle. */
USERNAME = 'SCOTT';
PASSWORD = 'TIGER';
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;
PUT SKIP LIST('CONNECTED TO Oracle.');

/* Execute a string literal to create the table. */
PUT SKIP LIST('CREATE TABLE DYN1 (COL1 CHAR(4))');
EXEC SQL EXECUTE IMMEDIATE 'CREATE TABLE DYN1 (COL1 CHAR(4))';

/* Assign a SQL statement to the character string
 SQLSTMT. */
SQLSTMT = 'INSERT INTO DYN1 VALUES (''TEST'')';
PUT SKIP LIST(SQLSTMT);

/* Execute sqlstmt to insert a row. This usage is
 "dynamic" because the SQL statement is a string
 variable whose contents the program may determine
 at runtime. */

EXEC SQL EXECUTE IMMEDIATE :SQLSTMT;

/* Commit the insert. */
EXEC SQL COMMIT WORK;

/* Change sqlstmt and execute it to drop the table. */
SQLSTMT = 'DROP TABLE DYN1';
PUT SKIP LIST(SQLSTMT);
EXEC SQL EXECUTE IMMEDIATE :SQLSTMT;

/* Commit any outstanding changes and disconnect from
 Oracle. */

EXEC SQL COMMIT RELEASE;
PUT SKIP LIST('DISCONNECTED FROM Oracle.');
STOP;

SQL_ERR:

/* Oracle error handler. Print diagnostic text
 containing error message, current SQL statement,
 line number and file name of error. */

PUT SKIP(2) LIST(SQLCA.SQLERRM);
PUT SKIP EDIT('IN "', ORACA.ORASTXT, '..."')
 (A, A(LENGTH(ORACA.ORASTXT)), A);
PUT SKIP EDIT('ON LINE ', ORACA.ORASLNR, ' OF ', ORACA.ORASFNM)

Sample Program 7: Dynamic SQL Method 2

4-12 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 (A, F(3), A, A(LENGTH(ORACA.ORASFNM)));

/* Disable Oracle error checking to avoid an infinite
 loop should another error occur within this routine. */

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Roll back any outstanding changes and disconnect
 from Oracle. */

EXEC SQL ROLLBACK RELEASE;

END DYN1DEM;

Sample Program 7: Dynamic SQL Method 2
Dynamic SQL Method 2 processes a SQL statement contained in a host character string
constructed at runtime. The statement must not be a SELECT but may contain input
host variables. Method 2 has two steps:

EXEC SQL PREPARE statement_name FROM
 { :string_var | 'string_literal' };

EXEC SQL EXECUTE statement_name
 [USING :invar1[, :invar2...]];

This program demonstrates the use of dynamic SQL Method 2 to insert two rows into
the EMP table and then delete them. It accesses Oracle through the SCOTT/TIGER
account and requires the EMP table. It does not require user input. The program
displays the SQL statements before their execution.

This program is available online in the file Sample7.

DYN2DEM: PROCEDURE OPTIONS(MAIN);

/* Include the SQL Communications Area, a structure
 through which Oracle makes runtime status information
 such as error codes, warning flags, and
 diagnostic text available to the program. */

EXEC SQL INCLUDE SQLCA;

/* All host variables used in embedded SQL must
 appear in the DECLARE SECTION. */

EXEC SQL BEGIN DECLARE SECTION;
 DCL USERNAME CHAR(10) VARYING,
 PASSWORD CHAR(10) VARYING,
 SQLSTMT CHAR(80) VARYING,
 EMPNO FIXED DECIMAL(4) INIT(1234),
 DEPTNO1 FIXED DECIMAL(2) INIT(97),
 DEPTNO2 FIXED DECIMAL(2) INIT(99);
EXEC SQL END DECLARE SECTION;

/* Branch to label 'sqlerror' if an Oracle error
 occurs. */

EXEC SQL WHENEVER SQLERROR GOTO SQL_ERR;

/* Connect to Oracle. */

Sample Program 7: Dynamic SQL Method 2

Sample Programs 4-13

USERNAME = 'SCOTT';
PASSWORD = 'TIGER';
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;
PUT SKIP LIST('CONNECTED TO Oracle.');

/* Assign a SQL statement to the character string
 SQLSTMT. Note that the statement contains two
 host variable placeholders, V1 and V2, for which
 actual input host variables must be supplied at the
 EXECUTE (following code). */

SQLSTMT = 'INSERT INTO EMP (EMPNO, DEPTNO) VALUES(:V1, :V2)';

/* Display the SQL statement and the values to be used for
 its input host variables. */

PUT SKIP LIST(SQLSTMT);
PUT SKIP LIST(' V1 = ', EMPNO, ', V2 = ', DEPTNO1);

/* The PREPARE statement associates a statement name
 with a string containing a SQL statement.
 The statement name is a SQL identifier, not a host
 variable, and therefore does not appear in the
 DECLARE SECTION.
 A single statement name may be PREPAREd more than
 once, optionally FROM a different string variable. */

EXEC SQL PREPARE S FROM :SQLSTMT;

/* The EXECUTE statement performs a PREPAREd SQL
 statement USING the specified input host variables,
 which are substituted positionally for placeholders
 in the PREPAREd statement. For each occurrence of
 a placeholder in the statement there must be a
 variable in the USING clause, that is if a placeholder
 occurs multiple times in the statement then the
 corresponding variable must appear multiple times
 in the USING clause. The USING clause may be
 omitted only if the statement contains no placeholders.
 A single PREPAREd statement may be EXECUTEd more
 than once, optionally USING different
 input host variables. */

EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO1;

/* Increment empno and display new input host
 variables. */

EMPNO = EMPNO + 1;
PUT SKIP LIST(' V1 = ', EMPNO, ', V2 = ', DEPTNO2);

/* ReEXECUTE S to insert the new value of EMPNO and a
 different input host variable, DEPTNO2. A rePREPARE
 is not necessary. */

EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO2;

/* Assign a new value to sqlstmt. */

SQLSTMT = 'DELETE FROM EMP WHERE DEPTNO = :V1 OR DEPTNO = :V2';

Sample Program 8: Dynamic SQL Method 3

4-14 Pro*PL/1 Supplement to the Oracle Precompilers Guide

/* Display the new SQL statement and the values to
 be used for its current input host variables. */

PUT SKIP LIST(SQLSTMT);
PUT SKIP LIST(' V1 = ', DEPTNO1, ', V2 = ', DEPTNO2);

/* RePREPARE S FROM the new sqlstmt. */

EXEC SQL PREPARE S FROM :SQLSTMT;

/* EXECUTE the new S to delete the two rows previously
 inserted. */

EXEC SQL EXECUTE S USING :DEPTNO1, :DEPTNO2;

/* Commit any outstanding changes and disconnect from
 Oracle. */

EXEC SQL COMMIT RELEASE;
PUT SKIP LIST('Disconnected from Oracle.');
STOP;

SQL_ERR:

/* Oracle error handler. */

PUT SKIP(2) LIST(SQLCA.SQLERRM);

/* Disable Oracle error checking to avoid an
 infinite loop should another error occur
 within this routine. */

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Roll back any outstanding changes and disconnect
 from Oracle. */

EXEC SQL ROLLBACK RELEASE;

END DYN2DEM;

Sample Program 8: Dynamic SQL Method 3
Dynamic SQL Method 3 processes a SQL statement contained in a host character string
constructed at runtime. The statement may be a SELECT, and may contain input host
variables but not output host variables (the INTO clause is on the FETCH instead).
This Dynamic SQL Method 3 example processes a query, and uses the following five
steps:

EXEC SQL PREPARE statement_name
 FROM { :string_var | 'string_literal' };

EXEC SQL DECLARE cursor_name CURSOR FOR statement_name;

EXEC SQL OPEN cursor_name [USING :invar1[,:invar2...]];

EXEC SQL FETCH cursor_name INTO :outvar1[,:outvar2...];

EXEC SQL CLOSE cursor_name;

Sample Program 8: Dynamic SQL Method 3

Sample Programs 4-15

This program demonstrates the use of dynamic SQL Method 3 to retrieve all the names
from the EMP table. It accesses Oracle through the SCOTT/TIGER account and
requires the EMP table. It does not require user input. The program displays the query
and its results

The program is available online in the file Sample8.

DYN3DEM: PROCEDURE OPTIONS(MAIN);

/* Include the SQL Communications Area, a structure
 through which Oracle makes runtime status
 information such as error codes, warning flags, and
 diagnostic text available to the program. */

EXEC SQL INCLUDE SQLCA;

/* All host variables used in embedded SQL must appear
 in the DECLARE SECTION. */

EXEC SQL BEGIN DECLARE SECTION;
 DCL USERNAME CHAR(10) VARYING,
 PASSWORD CHAR(10) VARYING,
 SQLSTMT CHAR(80) VARYING,
 ENAME CHAR(10) VARYING,
 DEPTNO FIXED DECIMAL(2) INIT(10);
EXEC SQL END DECLARE SECTION;

/* Branch to label SQL_ERR: if an Oracle error
 occurs. */

EXEC SQL WHENEVER SQLERROR GOTO SQL_ERR;

/* Connect to Oracle. */

USERNAME = 'SCOTT';
PASSWORD = 'TIGER';
EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;
PUT SKIP LIST('CONNECTED TO Oracle.');

/* Assign a SQL query to the character string SQLSTMT.
 Note that the statement contains one host variable
 placeholder, V1, for which an actual input
 host variable must be supplied at the OPEN
 (see following). */

SQLSTMT = 'SELECT ENAME FROM EMP WHERE DEPTNO = :V1';

/* Display the SQL statement and the value to be used
 for its current input host variable. */

PUT SKIP LIST(SQLSTMT);
PUT SKIP LIST(' V1 = ', DEPTNO);

/* The PREPARE statement associates a statement
 name with a string containing an SQL statement.
 The statement name is a SQL identifier, not a host
 variable, and therefore does not appear in the
 DECLARE SECTION. A single statement name may be
 PREPAREd more than once, optionally FROM a

Sample Program 8: Dynamic SQL Method 3

4-16 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 different string variable. */

EXEC SQL PREPARE S FROM :SQLSTMT;

/* The DECLARE statement associates a cursor with a
 PREPAREd statement. The cursor name, like the
 statement name, does not appear in the DECLARE
 SECTION. A single cursor name may not be DECLAREd
 more than once. */

EXEC SQL DECLARE C CURSOR FOR S;

/* The OPEN statement evaluates the active set of the
 PREPAREd query USING the specified input host
 variables, which are substituted positionally for
 placeholders in the PREPAREd query. For each
 occurrence of a placeholder in the statement there
 must be a variable in the USING clause. That is, if
 a placeholder occurs multiple times in the statement
 then the corresponding variable must appear multiple
 times in the USING clause. The USING clause may be
 omitted only if the statement contains no placeholders.
 OPEN places the cursor at the first row of the active
 set in preparation for a FETCH.

 A single DECLAREd cursor may be OPENed more than
 once, optionally USING different input host variables.
*/

EXEC SQL OPEN C USING :DEPTNO;

/* Branch to label 'notfound' when all rows have been
 retrieved. */

EXEC SQL WHENEVER NOT FOUND GOTO N_FND;

/* Loop until NOT FOUND condition is raised. */

DO WHILE (1 = 1);

/* The FETCH statement places the SELECT list of the
 current row into the variables specified by the INTO
 clause then advances the cursor to the next row.
 If there are more SELECT list fields than output
 host variables, the extra fields will not be returned.
 More output host variables than SELECT list fields
 will result in an Oracle error. */

 EXEC SQL FETCH C INTO :ENAME;
 PUT SKIP LIST(ENAME);
END;

N_FND:

/* Print the cumulative number of rows processed by the
 current SQL statement. */

PUT SKIP LIST('QUERY RETURNED ', SQLCA.SQLERRD(3), ' ROW(S).');

Sample Program 9: Calling a Stored procedure

Sample Programs 4-17

/* The CLOSE statement releases resources associated
 with the cursor. */

EXEC SQL CLOSE C;

/* Commit any outstanding changes and disconnect from
 Oracle. */

EXEC SQL COMMIT RELEASE;
PUT SKIP LIST('DISCONNECTED FROM Oracle.');
STOP;

SQL_ERR:

/* Oracle error handler. Print diagnostic text
 containing error message. */

PUT SKIP(2) LIST(SQLCA.SQLERRM);

/* Disable Oracle error checking to avoid an infinite
 loop should another error occur within this routine. */

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Release resources associated with the cursor. */

EXEC SQL CLOSE C;

/* Roll back any outstanding changes and disconnect
 from Oracle. */

EXEC SQL ROLLBACK RELEASE;

END DYN3DEM;

Sample Program 9: Calling a Stored procedure
Before trying the sample program, you must create a PL/SQL package named
calldemo. You do that by running a script named CALLDEMO.SQL, which is supplied
with Pro*C and shown in the following. The script can be found in the Pro*C demo
library.

CREATE OR REPLACE PACKAGE calldemo AS

 TYPE char_array IS TABLE OF VARCHAR2(20)
 INDEX BY BINARY_INTEGER;
 TYPE num_array IS TABLE OF FLOAT
 INDEX BY BINARY_INTEGER;

 PROCEDURE get_employees(
 dept_number IN number, -- department to query
 batch_size IN INTEGER, -- rows at a time
 found IN OUT INTEGER, -- rows actually returned
 done_fetch OUT INTEGER, -- all done flag
 emp_name OUT char_array,
 job OUT char_array,
 sal OUT num_array);

END calldemo;
/

Sample Program 9: Calling a Stored procedure

4-18 Pro*PL/1 Supplement to the Oracle Precompilers Guide

CREATE OR REPLACE PACKAGE BODY calldemo AS

 CURSOR get_emp (dept_number IN number) IS
 SELECT ename, job, sal FROM emp
 WHERE deptno = dept_number;

 -- Procedure "get_employees" fetches a batch of employee
 -- rows (batch size is determined by the client/caller
 -- of the procedure). It can be called from other
 -- stored procedures or client application programs.
 -- The procedure opens the cursor if it is not
 -- already open, fetches a batch of rows, and
 -- returns the number of rows actually retrieved. At
 -- end of fetch, the procedure closes the cursor.

 PROCEDURE get_employees(
 dept_number IN number,
 batch_size IN INTEGER,
 found IN OUT INTEGER,
 done_fetch OUT INTEGER,
 emp_name OUT char_array,
 job OUT char_array,
 sal OUT num_array) IS

 BEGIN
 IF NOT get_emp%ISOPEN THEN -- open the cursor if
 OPEN get_emp(dept_number); -- not already open
 END IF;

 -- Fetch up to "batch_size" rows into PL/SQL table,
 -- tallying rows found as they are retrieved. When all
 -- rows have been fetched, close the cursor and exit
 -- the loop, returning only the last set of rows found.

 done_fetch := 0; -- set the done flag FALSE
 found := 0;

 FOR i IN 1..batch_size LOOP
 FETCH get_emp INTO emp_name(i), job(i), sal(i);
 IF get_emp%NOTFOUND THEN -- if no row was found
 CLOSE get_emp;
 done_fetch := 1; -- indicate all done
 EXIT;
 ELSE
 found := found + 1; -- count row
 END IF;
 END LOOP;
 END;
END;
/
/*
 * This program connects to Oracle, prompts the user for a
 * department number, uses a stored procedure to fetch Oracle
 * data into PL/SQL tables, returns the data in host arrays, then
 * displays the name, job title, and salary of each employee in
 * the department.
 * For this example to work, the package CALLDEMO must be in
 * the SCOTT schema, or SCOTT must have execute privileges on the
 * package.

Sample Program 9: Calling a Stored procedure

Sample Programs 4-19

 */

EXEC SQL BEGIN DECLARE SECTION;
 DCL USERNAME STATIC CHAR(10) VARYING,
 PASSWORD STATIC CHAR(10) VARYING,

 TABLE_SIZE STATIC BIN FIXED(31),
 DEPT_NUMBER STATIC BIN FIXED(31),
 DONE_FLAG STATIC BIN FIXED(31),
 NUM_RET STATIC BIN FIXED(31),
 EMP_NAME(10) STATIC CHAR(20) VARYING,
 JOB(10) STATIC CHAR(20) VARYING,
 SALARY(10) STATIC DECIMAL FLOAT(6);
EXEC SQL END DECLARE SECTION;

SAMP9: PROCEDURE OPTIONS(MAIN);

 /* connect to Oracle */

 EXEC SQL INCLUDE SQLCA;

 USERNAME = 'SCOTT';
 PASSWORD = 'TIGER';

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR;

 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD;
 PUT SKIP EDIT
 ('Connected to Oracle as user: ', USERNAME)(A, A);

 PUT SKIP(2) LIST('Enter the department number: ');
 GET LIST (DEPT_NUMBER);
 PUT SKIP;
 TABLE_SIZE = 2;
 DONE_FLAG = 0;

CLOOP: DO WHILE (1 = 1);
 EXEC SQL EXECUTE
 BEGIN
 CALLDEMO.GET_EMPLOYEES (
 :DEPT_NUMBER, :TABLE_SIZE, :NUM_RET,
 :DONE_FLAG, :EMP_NAME, :JOB, :SALARY);
 END;
 END-EXEC;
 CALL PRINT_ROWS(NUM_RET);
 IF (DONE_FLAG ^= 0) THEN
 CALL SIGNOFF;
 ELSE
 GOTO CLOOP;
 END;
STOP;

PRINT_ROWS: PROCEDURE(N);
 DCL N BIN FIXED(31),
 I BIN FIXED(31);

 IF N = 0 THEN DO;
 PUT SKIP(2) LIST('No rows retrieved.');
 END;

Sample Program 9: Calling a Stored procedure

4-20 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 ELSE DO;
 PUT SKIP(2) EDIT('Got', N, ' rows.') (A, F(3));
 PUT SKIP(2) LIST
 ('Employee name Job Salary');
 PUT SKIP LIST
 ('---');
 DO I = 1 TO N;
PUT SKIP EDIT(EMP_NAME(I)) (A(20));
 PUT EDIT (JOB(I)) (A(20));
 PUT EDIT (SALARY(I)) (F(7,2));
 END;
 END;
END PRINT_ROWS;

SIGNOFF: PROCEDURE;
 PUT SKIP(2) LIST('Have a good day.');
 EXEC SQL COMMIT WORK RELEASE;
 STOP;
END SIGNOFF;

SQLERR: PROCEDURE;
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 PUT SKIP(2) LIST('Oracle error detected:');
 PUT SKIP(2) LIST(SQLCA.SQLERRM);
 EXEC SQL ROLLBACK WORK RELEASE;
 STOP;
END SQLERR;

END SAMP9;

Implementing Dynamic SQL Method 4 5-1

5
Implementing Dynamic SQL Method 4

This chapter provides the information you need to implement Dynamic SQL Method 4
in your Pro*PL/1 application. You learn the following things:

■ what the SQL descriptor area is used for

■ how to declare descriptors

■ elements of the PL/1 select and bind descriptors

■ how to initialize and use each element of a descriptor

■ how to write code for Dynamic Method 4

Meeting the Special Requirements of Method 4
Before looking into the requirements of Method 4, you should feel comfortable with
the terms select-list item and placeholder. Select-list items are the columns or expressions
following the keyword SELECT in a query. For example, the following dynamic query
contains three select-list items:

'SELECT ename, job, sal + comm FROM emp WHERE deptno = 20'

Placeholders are dummy bind variables that hold places in a SQL statement for actual
bind variables. You do not declare placeholders, and can name them anything you
like.

Placeholders for bind variables are most often used in the SET, VALUES, and WHERE
clauses. For example, the following dynamic SQL statements each contain two
placeholders:

'INSERT INTO emp (empno, deptno) VALUES (:E, :D)'
'DELETE FROM dept WHERE deptno = :NUM AND loc = :LOC'

Placeholders, such as bind variables, cannot reference table or column names.

What Makes Method 4 Special?
Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program

■ accept or build dynamic SQL statements that contain an unknown number of
select-list items or placeholders, and

Note: For a discussion of dynamic SQL Methods 1, 2, and 3, and
an overview of Method 4, see Chapter 9 of the Programmer's Guide
to the Oracle Precompilers.

Meeting the Special Requirements of Method 4

5-2 Pro*PL/1 Supplement to the Oracle Precompilers Guide

■ take explicit control over datatype conversion

To add this flexibility to your program, you must provide additional information to
the Oracle runtime library.

What Information Does Oracle Need?
The Pro*PL/1 Precompiler generates calls to Oracle for all executable dynamic SQL
statements. If a dynamic SQL statement contains no select-list items or placeholders,
Oracle needs no additional information to execute the statement. The following
DELETE statement falls into this category:

/* Dynamic SQL statement. */
STMT = 'DELETE FROM emp WHERE deptno = 30';

However, most dynamic SQL statements contain select-list items or placeholders, as
does the following UPDATE statement:

/* Dynamic SQL statement with placeholders. */
STMT = 'UPDATE emp SET comm = :C WHERE empno = :E';

To execute a dynamic SQL statement that contains placeholders for bind variables or
select-list items, Oracle needs information about the program variables that hold the
input (bind) values, and that will hold the FETCHed values when a query is executed.
The information needed by Oracle is

■ the number of bind variables and select-list items

■ the length of each bind variable and item

■ the datatype of each bind variable and item

■ the address of the each bind variable and program variable that will hold a
received select-list item

Where Is the Information Stored?
All the information Oracle needs about select-list items or placeholders for bind
variables, except their actual values, is stored in a program data structure called the
SQL Descriptor Area (SQLDA).

Descriptions of select-list items are stored in a select descriptor, and descriptions of
bind variables are stored in a bind descriptor.

The values of select-list items are stored in output variables; the values of bind
variables are stored in input variables. You store the addresses of these variables in a
select or bind SQLDA so that Oracle knows where to write output values and read
input values.

How do values get stored in these variables? Output values are FETCHed using a
cursor, and input values are typically filled in by the program, often from information
entered interactively by the user.

How is the Information Obtained?
DESCRIBE helps you provide the information Oracle needs by storing descriptions of
select-list items or placeholders in a SQLDA.

You use the DESCRIBE statement to help obtain the information Oracle needs.

The DESCRIBE SELECT LIST statement examines each select-list item and determines
its name, datatype, constraints, length, scale, and precision. It then stores this

The SQLDA

Implementing Dynamic SQL Method 4 5-3

information in the select SQLDA, and in program variables pointed to by fields in the
SQLDA. The total number of select-list items is also stored in the SQLDA by the
DESCRIBE statement.

The DESCRIBE BIND VARIABLES statement obtains the number of placeholders in
the SQL statement, and the names and lengths of each placeholder. The program must
then fill in the datatype and length of the associated bind variables in the SQLDA, and
obtain the bind variable values, which are stored in the program variables pointed to
by fields in the SQLDA.

See the section "The Basic Steps" later in this chapter for a complete description of the
steps that you perform to declare, allocate, and use the SQLDA.

The SQLDA
This section describes the SQL Descriptor Area in detail. You learn what elements the
descriptor structure contains, how they should be initialized, and how they are used in
your program.

Introducing the PL/1 SQLDA
The SQLDA is a PL/1 structure that contains two top-level elements and an array of
substructures. Each substructure contains information about a single input or output
variable. You declare a separate SQLDA major structure for the select-list items, and
for the bind (or input) variables. These are called the select descriptor and the bind
descriptor.

All SQLDA elements that hold an address are declared as FIXED BINARY (31). This
datatype, rather than the more natural PL/1 POINTER type, is used to achieve
compatibility among different implementations of PL/1. You initialize these elements
using the SQLADR procedure. The syntax of this procedure call is

CALL SQLADR(YOUR_BUFFER_ADDRESS, SQLDA_ELEMENT_ADDRESS);
as shown in the following example:

DCL SELECT_DATA_VALUE CHARACTER (10);
DCL SQLADR EXTERNAL ENTRY(PTR VALUE, PTR VALUE);
...
CALL SQLADR(ADDR(SELECT_DATA_VALUE),
ADDR(SELDSC.SQLDSC(1).SQLDV));

In this example, the address of the buffer SELECT_DATA_VALUE is stored in the
SQLDV element in the first substructure of the array SQLDSC.

The SQLDVLN and SQLDVTYP elements contain the length and the datatype code for
the select-list item or the bind variable. For a select descriptor, these elements are set
when the SQL DESCRIBE statement is executed. You may reset them before actually
fetching the values. For more information, see the later section "The SQLDA
Variables." For a bind descriptor, you must set the length and datatype.

Note: Under IBM operating systems (MVS and VM/CMS), there
is an alternate form of SQLADR called SQ3ADR. With SQ3ADR,
the arguments are passed without using the PL/1 ADDR built-in
function. See "Sample 10: Dynamic SQL Method 4 Program" on
page 5-26 to see how to use SQ3ADR.

The SQLDA

5-4 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Declaring a SQLDA
To declare a SQLDA, copy it into your program with the statement

EXEC SQL INCLUDE DESCRIPTOR_NAME;

where, DESCRIPTOR_NAME is the name of the file containing the text of the
descriptor declaration. Or hardcode it as shown.

Figure 5–1 shows a SQLDA named SELDSC. It is a select descriptor. A bind descriptor
is identical.

Figure 5–1 The SQL Descriptor Area

In the examples used in this section, the structures are named SELDSC for the select
SQLDA, and BNDDSC for the bind SQLDA. These structures are identical, except for
their names.

Figure 5–2 shows whether variables are set by calls to SQLADR, DESCRIBE
commands, FETCH commands, or program assignments.

Figure 5–2 How Variables Are Set

The SQLDA

Implementing Dynamic SQL Method 4 5-5

Multiple SQLDAs
If your program has more than one active dynamic SQL statement, each statement
must have its own SQLDA(s). You can declare any number of SQLDAs with different
names. For example, you might declare three select SQLDAs named SEL1, SEL2, and
SEL3, so that you can FETCH from three concurrently OPEN cursors. (However,
non-concurrent cursors can reuse SQLDAs.)

The SQLDA Variables
This section explains the purpose and use of each element in the SQLDA structure.

{SELDSC | BNDDSC}
The name of the structure. The name is arbitrary; however, the examples in this
manual use BNDDSC for a bind descriptor and SELDSC for a select descriptor. The
names of the structure elements are not arbitrary; they should not be changed.

SQLDNUM
Contains the number of bind variables or select-list items that can be DESCRIBEd.
Before issuing a DESCRIBE statement, your program must set this variable to the
maximum size of the SQLDSC substructure array. After the DESCRIBE, SQLDNUM
must be reset to the actual number of variables described, which is contained in
SQLDFND.

SQLDFND
Set when Oracle performs a DESCRIBE statement. It contains the number of bind
variables or select-list items DESCRIBEd. If after a DESCRIBE, SQLDFND is less than
0, there were more bind variables or select-list items than specified in SQLDNUM. In
this case, SQLDFND is set to the negative of the number of variables DESCRIBEd. For
example, if SQLDNUM is 10, and SQLDFND contains the value -11 after a DESCRIBE,
11 select-list items or bind variables were found. If this happens, you cannot process
the statement.

SQLDSC(N)
Defines an array of N substructures. In a select descriptor, each substructure holds
information about a select-list item, and the addresses of the buffers that will hold the
data retrieved from the item. In a bind descriptor, each substructure holds information
about a bind variable, and the address of the data buffer that contains the value of the
bind variable.

You must set N before compiling your program. It should be large enough to handle
the maximum number of expected bind variables (for the bind descriptor) or the
maximum number of expected select-list items (for the select descriptor).

SQLDV
Holds the address of the buffer that contains the value for this bind variable, or that
will hold the data retrieved from the select-list item.

Your program must place the address in this element using the SQLADR procedure.
Set this element in a select descriptor before doing a FETCH. In a bind descriptor, set it
before doing the OPEN.

The SQLDA

5-6 Pro*PL/1 Supplement to the Oracle Precompilers Guide

SQLDFMT
Holds the address of a format conversion string, used only with decimal datatypes
(FIXED DECIMAL(P,S) or FIXED DECIMAL(P)). They have the Oracle external
datatype code 7. The format conversion string is of the form 'PP.+SS' or 'PP.-SS', where
PP is the precision of the decimal number, and SS is the scale. The '+' and '-' signs are
mandatory. For example, a FIXED DECIMAL(6,2) format string would be '06.+02'.
Refer to the "Coercing Datatypes after DESCRIBE" section later in this chapter for more
information on the use of precision and scale for Oracle NUMBER data.

Set this element using SQLADR. Set it before a FETCH in a select descriptor, and
before an OPEN in a bind descriptor. You must also set the length of the format
conversion string in the SQLDFMTL element .

SQLDVLN

Select Descriptor Oracle sets this element when it executes the DESCRIBE statement.
It contains the length of the select-list value. The format of the length differs among
Oracle datatypes. For character datatypes (VARCHAR2 and CHAR), SQLDVLN is set
to the number of bytes in the select-list item. For NUMBER datatypes, the scale is
returned in the low-order byte of the variable, and the precision in the next
highest-order byte.

If, for a NUMBER datatype, SQLDVLN is set to zero, this means that the column in the
table was established with no explicit precision and scale, or the precision and scale for
the select-list expression was not determined. In this case, you must decide on an
appropriate value (between 0 and 38) and put it in SQLDVLN before the FETCH.

For maximum portability, use the SQLPRC or SQLPR2 library procedures (described
in the "Datatypes in the SQLDA" section later in this chapter) to retrieve the precision
and scale values from SQLDVLN.

You must reset SQLDVLN to the required length of the data buffer before executing
the FETCH statement. For example, if you coerce a described NUMBER to a PL/1
CHARACTER string, set SQLDVLN to the precision of the number, and add two to
account for the sign and decimal point.

If you coerce a NUMBER to a PL/1 FLOAT, set SQLDVLN to the length in bytes of the
appropriate FLOAT type in your implementation of PL/1 (usually 4 for a FLOAT(7) or
less, and 8 for a FLOAT(8) or greater). See the "Datatypes in the SQLDA" section later
in this chapter for more information about the lengths of coerced datatypes.

Bind Descriptor Your program must set the correct SQLDVLN value, which is the
length in bytes of the bind variable data buffer that SQLDV points to. Set the length
before executing the OPEN statement.

SQLDVTYP

Select Descriptor Oracle sets this element when it performs the DESCRIBE
statement. It contains the datatype code for the select-list value. This datatype code
determines how the Oracle data will be converted into the PL/1 data buffer or variable
that SQLDV points to. This topic is covered in detail in the "Datatypes in the SQLDA"
section later in this chapter.

The SQLDA

Implementing Dynamic SQL Method 4 5-7

Bind Descriptor The DESCRIBE statement sets this element to zero. You must set the
datatype code in this element before executing the OPEN statement. The code
indicates the external PL/1 type of the buffer or variable that SQLDV points to. Refer
to the section "Datatypes in the SQLDA" later in this chapter for more information on
the datatype codes.

SQLDI
Holds the address of an indicator variable, declared in your program. The indicator
variable must be a FIXED BIN(15).

You put the address in this element using the SQLADR procedure.

Select Descriptor You must initialize this element before doing a FETCH. Oracle sets
the indicator values after fetching select-list items.

For select descriptors, when Oracle executes the statement

EXEC SQL FETCH ... USING DESCRIPTOR SELDSC;

if the Jth returned select-list item is NULL, the indicator-variable value to which
SELDSC.SQLDSC(J).SQLDI points is set to -1. If not NULL, it is set to zero or a positive
integer.

Bind Descriptor You must initialize this element and set the variable values before
doing an OPEN.

For bind descriptors, when Oracle executes the statement

EXEC SQL OPEN ... USING DESCRIPTOR BNDDSC;

the indicator-variable value to which BNDDSC.SQLDSC(J).SQLDI points determines
whether the Jth bind variable is NULL. If the value of an indicator variable is -1, the
value of its associated variable is NULL.

SQLDH_VNAME
Holds the address of a buffer used to store the name of a select-list item (for select
descriptors) or the name of a bind variable (for bind descriptors). After a DESCRIBE,
the appropriate names will be placed in the strings pointed to by the SQLDH_VNAME
elements.

Your host program code must initialize the SQLDH_VNAME elements with the
addresses of the strings you have declared before executing the DESCRIBE statement.
Use the SQLADR procedure to do this initialization.

SQLDH_MAX_VNAMEL
Contains the maximum length of the buffer pointed to by SQLDH_VNAME. Your
program must set this value before issuing a DESCRIBE statement. A value placed in
the string pointed to by SQLDH_VNAME will be truncated to this length if necessary.

Note: In a select descriptor, the high-order bit of this element is set
to indicate the NULL/NOT NULL status of the field. You should
retrieve the datatype code using the SQLNUL procedure. See the
"Handling NULL/NOT NULL Datatypes" section later in this
chapter for a description of this procedure.

The SQLDA

5-8 Pro*PL/1 Supplement to the Oracle Precompilers Guide

SQLDH_CUR_VNAMEL
Contains the actual number of characters in the string pointed to by SQLDH_VNAME
after a DESCRIBE.

SQLDI_VNAME
Holds the address of a string that stores the name of a bind indicator variable. It is set
using SQLADR. It must be set before the DESCRIBE statement is executed. This
element is not used in a select descriptor.

SQLDI_MAX_VNAMEL
Contains the maximum number of characters in the SQLDI_VNAME string. Your
program must initialize this value before performing a DESCRIBE statement. A value
placed in the string pointed to by SQLDI_VNAME will be truncated to this length if
necessary. This element is not used in a select descriptor.

SQLDI_CUR_VNAMEL
Contains the number of characters contained in the string pointed to by SQLDI_
VNAME after the DESCRIBE statement. This element is not used in a select descriptor.

SQLDFCLP
Unused element; reserved by Oracle. It must be set to zero when your program starts.

SQLDFCRCP
Unused element; reserved by Oracle. It must be set to zero when your program starts.

Datatypes in the SQLDA
This section provides more information about using the SQLDVTYP datatype element
in the SQLDA. In host programs that do not use datatype equivalencing or Dynamic
SQL Method 4, the precompiler predefines how to convert between Oracle data and
your program host variables. When you SELECT data in a table into a PL/1 variable,
the type of the PL/1 variable determines the conversion. For example, if you SELECT
data from an Oracle column having the type NUMBER into a PL/1 CHARACTER
array, the numeric data is converted to a character (ASCII or EBCDIC) representation.
If you select the same numeric data into an integer (FIXED BINARY) variable, the data
is converted to a binary integer representation. When you INSERT or UPDATE data,
the data in the host variable is converted to the correct type for the column in the table.

But, when you write a Dynamic Method 4 program, you must specify the conversion
by doing the following:

■ set the datatype code for each bind variable in the bind descriptor

■ change some of the datatype codes that Oracle returns when you DESCRIBE a
select list into a select descriptor

Internal and External Datatypes
Oracle defines a number of datatypes, and for each datatype, there is a datatype code.
There is a distinction between internal datatypes and external datatypes. Internal
datatypes are the types that you can assign to an Oracle column in a table, and that
Oracle can return from a table. The internal datatypes are CHAR, VARCHAR2,
NUMBER, DATE, LONG, RAW, and LONG RAW. There are additional entities that
you can SELECT from a table, such as LEVEL, CURRVAL, NEXTVAL, ROWNUM,

The SQLDA

Implementing Dynamic SQL Method 4 5-9

UID, USER, and SYSDATE, but these entities are always returned as one of the basic
internal types. LEVEL, CURRVAL, NEXTVAL, UID, and ROWNUM are NUMBERs;
SYSDATE is a DATE type; and USER is a CHAR.

External datatypes include the internal datatypes, and in addition provide extended
conversion capabilities. For example, when you DESCRIBE a select list that contains a
LONG RAW item, the length of the value is not returned in the SQLDVLN element.
You can coerce the LONG RAW internal type to a VARRAW external type, by placing
an external datatype code for VARRAW in the SQLDVTYP element after doing the
DESCRIBE, but before doing the FETCH. The data returned on the FETCH will then
include the length of the LONG RAW item in the first two bytes of the output buffer.

Coercing Datatypes After DESCRIBE
In some cases, the internal datatype codes that a DESCRIBE operation returns in
SQLDVTYP might not be the ones you want for your program's purposes. Two
examples of this are DATE and NUMBER. When you DESCRIBE a select list
containing a DATE item, the datatype code 12 for DATE is returned in the SQLDVTYP
element. If you do not change this before the FETCH, the date value is returned as 7
binary bytes that represent the date in the Oracle internal format. To receive the date in
a character format (DD-MON-YY), you must change the 12 datatype code to 1
(VARCHAR2), and increase the SQLDVLN (length) value, which was returned as 7, to
9.

Similarly, when you DESCRIBE a select list that contains a NUMBER item, the
datatype code 2 is returned in SQLDVTYP. If you do not change this before the
FETCH, the numeric value is returned as an array representing the number in its
Oracle internal format, which is probably not what you want. So, change the 2 code to
1 (VARCHAR2), 3 (INTEGER), 4 (FLOAT), or some other appropriate type.

Extracting Precision and Scale
When coercing NUMBER (2) values to VARCHAR2 (1) for display purposes, you also
have to extract the precision and scale bytes from the value that the DESCRIBE
statement places in the SQLDVLN variable. You then use the precision and scale to
compute a maximum length for the conversion into a PL/1 CHARACTER string,
placing the value back into the SQLDVLN element before the FETCH.

The library procedure SQLPRC extracts precision and scale. You call SQLPRC using
the syntax

CALL SQLPRC(LENGTH, PRECISION, SCALE);

where:

Parameter Description

LENGTH Is a FIXED BIN(31) variable that holds the length of the
NUMBER value. The scale and precision of the value are stored
respectively in low and next-higher bytes.

PRECISION Is an output parameter that returns the precision of the
NUMBER value. Precision is the total number of significant
digits in the number.

If precision is returned as zero, the size of the number is not
specified. In this case, you should set the precision to a value
(between 0 and 38) that is appropriate for the size of your data
buffer.

The SQLDA

5-10 Pro*PL/1 Supplement to the Oracle Precompilers Guide

/* include a select descriptor SQLDA */
EXEC SQL INCLUDE SELDSC;
/* Declare variables for the function call. */
DCL (J, PRECISION, SCALE) FIXED BIN(31),
/* Declare some data buffers. */
 SEL_DV(3) CHARACTER (10) VARYING,
/* Declare library function. */
 SQLPRC EXTERNAL ENTRY(ANY, ANY, ANY);
...
/* Extract precision and scale. */
CALL SQLPRC(SELDSC.SQLDSC(J).SQLDVLN, PRECISION, SCALE);

/* Set the desired precision if 0 is returned
. Note that size of the buffer is 10. */
IF PRECISION = 0 THEN
 PRECISION = 6;

/* Allow for possible decimal point and sign. */
SELDSC.SQLDSC(J).SQLDVLN = PRECISION + 2;

/* Increase SQLDVLN if scale is negative. */
IF SCALE < 0 THEN
 SELDSC.SQLDSC(J).SQLDVLN = SELDSC.SQLDSC(J).SQLDVLN
 + (-SCALE);

Notice that the first parameter in the SQLPRC procedure call points to the SQLDVLN
element in the Jth minor structure of the SQLDSC array, and that the precision and
scale parameters must be 4 bytes in size.

The SQLPRC procedure returns zero as the precision and scale values for certain SQL
datatypes. The SQLPR2 procedure is similar to SQLPRC, having the same syntax, and
returning the same binary values, except for these datatypes:

Datatype Codes
The following table lists the datatypes and datatype codes, as well as the type of host
variable normally used for that external type. See the Programmer's Guide to the Oracle
Precompilers for detailed information about the format of the external datatypes.

SCALE Is an output parameter that returns the scale of the NUMBER
value. If positive, scale specifies the number of digits to the right
of the decimal point. If negative, scale indicates the position of
the first significant digit to the left of the decimal point. For
example, a scale of -2 indicates that the number is rounded to the
nearest hundreds.

When the scale is negative, increase the length by the absolute
value of the scale. For example, precision and scale values of 4
and -2 can accommodate a number as large as 999900. The
following example shows how to use SQLPRC:

SQL Datatype Binary Precision Scale

FLOAT 126 -127

FLOAT (N) N (range is 1 to 126) -127

REAL 63 -127

DOUBLE PRECISION 126 -127

Parameter Description

The SQLDA

Implementing Dynamic SQL Method 4 5-11

The datatype codes listed in the preceeding table are the ones that you should set in
the SQLDVTYP element of the SQLDA for data conversion.

Handling NULL/NOT NULL Datatypes
DESCRIBE returns a NULL/NOT NULL indication in the SQLDVTYP element of the
select descriptor, defined as a FIXED BINARY (15). If a column is declared to be NOT
NULL, the high-order bit of the variable is clear; otherwise, it is set.

Before using the datatype in an OPEN or FETCH statement, if the NULL/NOT NULL
bit is set, you must clear it. (Never set the bit.) You can use the library procedure
SQLNUL to find out whether a column allows NULLs, and to clear the datatype's
NULL/NOT NULL bit. You call SQLNUL using the syntax

CALL SQLNUL(TYPE_VALUE, TYPE_CODE, NULL_STATUS);

where:

External Datatype Code PL/1 Host Variable

VARCHAR2 1 CHARACTER(N)

NUMBER 2 CHARACTER(N)

INTEGER 3 FIXED BINARY (31)

FLOAT 4 FLOAT DECIMAL(P,S)

STRING 5 CHARACTER(N)

VARNUM 6 CHARACTER(N)

DECIMAL 7 FIXED DECIMAL(P,S)

LONG 8 CHARACTER(N)

VARCHAR 9 CHARACTER(N)
VARYING

ROWID 11 CHARACTER(N)

DATE 12 CHARACTER(N)

VARRAW 15 CHARACTER(N)

RAW 23 CHARACTER(N)

LONG RAW 24 CHARACTER(N)

UNSIGNED 68 (not used in PL/1)

DISPLAY 91 FIXED DECIMAL(P,S)

LONG VARCHAR 94 CHARACTER(N)

LONG VARRAW 95 CHARACTER(N)

CHAR 96 CHARACTER(N)

CHARZ 97 (not used in PL/1)

MLSLABEL 106 CHARACTER(N)

Parameter Description

TYPE_VALUE Is the FIXED BIN(15) variable that holds the datatype code of a
select-list value, as returned by the DESCRIBE.

The Basic Steps

5-12 Pro*PL/1 Supplement to the Oracle Precompilers Guide

The following example shows how to use SQLNUL:

/* Declare variables for the function call. */
DCL (NULL_OK, TYPE_CODE) FIXED BIN (15),
 SQLNUL EXTERNAL ENTRY(ANY, ANY, ANY);

/* Find out whether column is NOT NULL. */
CALL SQLNUL(SELDSC.SQLDSC(J).SQLDVTYP,
 TYPE_CODE, NULL_OK);

IF NULL_OK ^= 0 THEN
 PUT LIST ('Nulls OK for this column.');

The Basic Steps
Method 4 can be used to process any dynamic SQL statement. In this example, a query
is processed so you can see how both input and output variables are handled. Steps
that are common to all embedded SQL programs, such as connecting to Oracle and
including the SQLCA, are not described here.

To process a dynamic query using Method 4, our example program takes the following
steps:

1. Declare a host string to hold the query text in the SQL Declare Section.

2. Set the maximum number of select-list items and bind variables that can be
described in the INCLUDEd SQLDAs.

3. INCLUDE the select and bind SQLDAs.

4. Declare the data buffers to hold the input and output values.

5. Initialize the select and bind descriptors.

6. Get the query text into the host string.

7. PREPARE the query from the host string.

8. DECLARE a cursor FOR the query.

9. DESCRIBE the bind variables INTO the bind descriptor.

10. Reset the maximum number of bind variables to the number actually found by
DESCRIBE.

TYPE_CODE Is a variable that returns the datatype code of the select-list item,
with the NULL bit cleared.

NULL_STATUS Is a variable that returns set to zero if the column was declared
to be NOT NULL, or set to 1 if the column allows NULL values.

Note: After SQLNUL returns, the second parameter contains the
type code with the NULL bit cleared. This is the value you must
use when checking for an Oracle internal datatype code. You
should also make sure to reset the SQLDVTYP element in the
SQLDA (before the FETCH) with a datatype code that has the
high-order bit cleared. For example

SELDSC.SQLDSC(J).SQLDVTYP = TYPE_CODE;

Parameter Description

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 5-13

11. Get values for the input bind variables found by DESCRIBE.

12. OPEN the cursor USING the bind descriptor.

13. DESCRIBE the select list INTO the select descriptor.

14. Adjust the N, length, and datatype values in the select descriptor after the
DESCRIBE (SQLDNUM, SQLDVTYP, and SQLDVLN).

15. FETCH a row from the database INTO the buffers pointed to by the select
descriptor.

16. Process the select-list items returned by FETCH.

17. CLOSE the cursor when there are no more rows to fetch.

A Closer Look at Each Step
With Method 4, you use the following sequence of embedded SQL statements:

EXEC SQL PREPARE statement_name
 FROM { :host_string | string_literal };

EXEC SQL DECLARE cursor_name CURSORFOR statement_name;

EXEC SQL DESCRIBE BIND VARIABLES FOR statement_name
 INTO bind_descriptor_name;

EXEC SQL OPEN cursor_name
 [USING DESCRIPTOR descriptor_name];

EXEC SQL DESCRIBE [SELECT LIST FOR] statement_name
 INTO select_descriptor_name;

EXEC SQL FETCH cursor_name
 USING DESCRIPTOR select_descriptor_name;

EXEC SQL CLOSE cursor_name;
Note that if the number of select-list items is known, you can omit DESCRIBE SELECT
LIST and use the following Method 3

FETCH statement:

EXEC SQL FETCH emp_cursor INTO host_variable_list;
If the number of bind variables is known, you can omit DESCRIBE BIND VARIABLES
and use the following Method 3 OPEN statement:

EXEC SQL OPEN cursor_name [USING host_variable_list];
The following sections show how these statements allow your host program to accept
and process a dynamic query using descriptors.

Declare a Host String
Your program needs a variable to store the text of the dynamic query. The variable
(SELECT_STMT in our example) must be declared as a character string.

EXEC SQL BEGIN DECLARE SECTION;

Note: If the dynamic SQL statement is not a query or contains a
known number of select-list items or placeholders, then some of the
preceeding steps are unnecessary.

A Closer Look at Each Step

5-14 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 ..
. DCL SELECT_STMT CHARACTER (120);
EXEC SQL END DECLARE SECTION;

Set the Size of the Descriptors
Before you include the files that contain the select and bind descriptor declarations,
you should set the size of the descriptor in each file. This is set by changing the N
variable for the SQLDSC array of substructures.

You normally set this to a value high enough to accommodate the maximum number
of select-list items and bind variables that you expect to have to process. The program
will not be able to process the SQL statement if there are more select-list items or bind
variables than the number of substructures. In our example, a low number of three is
used so that the structures can be easily illustrated.

Declare the SQLDAs
Use INCLUDE to copy the files containing the SQLDA declarations into your
program, as follows:

EXEC SQL INCLUDE SELDSC; /* select descriptor */
EXEC SQL INCLUDE BNDDSC; /* bind descriptor */

Declare the Data Buffers
You must declare data buffers to hold the bind variables and the returned select-list
items. In our examples, arbitrary names are used for the buffers used to hold the
following:

■ names of select-list items (SEL_DH_VNAME) or bind variables (BND_DH_
VNAME)

■ data retrieved from the query (SEL_DV)

■ values of bind variables (BND_DV)

■ values of indicator variables (SEL_DI and BND_DI)

■ names of indicator variables used with bind variables (BND_DI_VNAME)

DCL SEL_DH_VNAME (3) CHARACTER (5),
 BND_DH_VNAME (3) CHARACTER (5),
 SEL_DV (3) CHARACTER (10),
 BND_DV (3) CHARACTER (10)
 SEL_DI (3) FIXED BIN (15),
 BND_DI (3) FIXED BIN (15),
 BND_DI_VNAME (3) CHARACTER (5);

Note that an array of data buffers is declared, and the dimension of the array (3) is the
same as the number N of substructures (SQLDSC(N)) in each descriptor area.

Initialize the Descriptors
You must initialize several elements in each descriptor. Some are simply set to numeric
values; some require the library procedure SQLADR to place an address in the
element.

In our example, you first initialize the select descriptor. Set SQLDNUM to the number
of substructures (3). Then, in each substructure, set the SQLDH_MAX_VNAMEL
element to the length (5) of the name data buffer (SEL_DH_VNAME). Set the

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 5-15

SQLDVLN element to the length (10) of the value data buffer (SEL_DV). Put the
addresses of the data buffers in the SQLDH_VNAME, SQLDV, and SQLDI elements
using SQLADR. Finally, set the reserved and unused elements to zero.

SELDSC.SQLDNUM = 3;
DO J = 1 TO SELDSC.SQLDNUM;
 SELDSC.SQLDSC(J).SQLDH_MAX_VNAMEL = 5;
 SELDSC.SQLDSC(J).SQLDVLN = 10;

 /* setup the pointers */
 CALL SQLADR(ADDR(SEL_DH_VNAME(J)),
 ADDR(SELDSC.SQLDSC(J).SQLDH_VNAME));
 CALL SQLADR(ADDR(SEL_DV(J)),
 ADDR(SELDSC.SQLDSC(J).SQLDV));
 CALL SQLADR(ADDR(SEL_DI(J)),
 ADDR(SELDSC.SQLDSC(J).SQLDI));

 /* initialize unused elements to 0 */
 SEL_DI(J) = 0;
 SELDSC.SQLDSC(J).SQLDFMT = 0;
 SELDSC.SQLDSC(J).SQLDFCLP = 0;
 SELDSC.SQLDSC(J).SQLDFCRCP = 0;
END;

The bind descriptor is initialized in almost the same way. The difference is that
SQLDI_MAX_VNAMEL must also be initialized.

BNDDSC.SQLDNUM = 3;
DO J = 1 TO BNDDSC.SQLDNUM;
 BNDDSC.SQLDSC(J).SQLDH_MAX_VNAMEL = 5;
 BNDDSC.SQLDSC(J).SQLDVLN = 10;

 /* length of indicator variable name */
 BNDDSC.SQLDSC(J).SQLDI_MAX_VNAMEL = 5;

 /* setup the pointers */
 CALL SQLADR(ADDR(BND_DH_VNAME(J)),
 ADDR(BNDDSC.SQLDSC(J).SQLDH_VNAME));

 /* address of indicator variable name */
 CALL SQLADR(ADDR(BND_DI_VNAME(J)),
 ADDR(BNDDSC.SQLDSC(J).SQLDI_VNAME));
 CALL SQLADR(ADDR(BND_DV(J)),
 ADDR(BNDDSC.SQLDSC(J).SQLDV));
 CALL SQLADR(ADDR(BND_DI(J)),
 ADDR(BNDDSC.SQLDSC(J).SQLDI));

 /* set unused elements to 0 */
 BND_DI(J) = 0;
 BNDDSC.SQLDSC(J).SQLDFMT = 0;
 BNDDSC.SQLDSC(J).SQLDFCLP = 0;
 BNDDSC.SQLDSC(J).SQLDFCRCP = 0;
END;

The descriptors that result after the initialization are shown in Figure 5–3 and
Figure 5–4. In these pictures, the left-hand box represents the descriptor structure, and
the boxes on the right represent the data buffers (such as SEL_DV) that you declared in
your program. The arrows represent pointers, showing which data buffers the SQLDA
elements point to.

A Closer Look at Each Step

5-16 Pro*PL/1 Supplement to the Oracle Precompilers Guide

The data buffers are empty after initialization (except SEL_DI and BND_DI, which
were set to zero in the preceeding example code). As our example progresses, and the
DESCRIBE or FETCH statements begin to fill in the data buffers, the values will be
shown in later figures. Whenever these boxes are empty, it indicates that the variable is
either uninitialized or was not filled in by a DESCRIBE or FETCH statement. Unused
or reserved fields in the descriptors (SQLDFMT, SQLDFMTL, SQLDFCLP, and
SQLDFCRCP) are not shown in these figures.

Figure 5–3 Initialized Select Descriptor

Note: To save space, the SQLDA element names in the left hand
columns of Figure 5–3 through 5-9 are abbreviated. Each structure
element name must be preceded by the structure and substructure
names. For example, S2.SQLDV must be written as
SELDSC.SQLDSC(2).SQLDV in the PL/1 code. B3.SQLDVTYP
stands for BNDDSC.SQLDSC(3).SQLDVTYP.

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 5-17

Figure 5–4 Initialized Bind Descriptor

Get the Query Text into the Host String
Continuing our example, you prompt the user for a SQL statement, and then store the
input in SELECT_STMT.

PUT LIST ('Enter SQL statement: ');
GET EDIT (SELECT_STMT) (A(120));

In this example, it is assumed that the user typed the string

'SELECT ENAME, EMPNO, COMM FROM EMP WHERE COMM < :BONUS'

PREPARE the Query from the Host String
PREPARE parses the query and gives it a name. In our example, PREPARE parses the
host string SELECT_STMT and gives it the name SQL_STMT, as follows:

EXEC SQL PREPARE SQL_STMT FROM :SELECT_STMT;

DECLARE a Cursor
DECLARE CURSOR defines a cursor by giving it a name and associating it with a
specific query. When declaring a cursor for static queries, you use the following
syntax:

EXEC SQL DECLARE CURSOR_NAME CURSOR FOR SELECT ...

A Closer Look at Each Step

5-18 Pro*PL/1 Supplement to the Oracle Precompilers Guide

When declaring a cursor for dynamic queries, the statement name given to the
dynamic query by PREPARE is substituted for the static query. In our example,
DECLARE CURSOR defines a cursor named EMP_CURSOR and associates it with
SQL_STMT, as follows:

EXEC SQL DECLARE EMP_CURSOR CURSOR FOR SQL_STMT;

DESCRIBE the Bind Variables
DESCRIBE BIND VARIABLES fills in fields in a bind descriptor that describe the bind
variables in the SQL statement. In our example, DESCRIBE fills in a bind descriptor
named BNDDSC. The DESCRIBE statement is

EXEC SQL DESCRIBE BIND VARIABLES FOR SQL_STMT INTO BNDDSC;

Note that BNDDSC must not be prefixed with a colon.

The DESCRIBE BIND VARIABLES statement must follow the PREPARE statement but
precede the OPEN statement.

Figure 5–5 shows the bind descriptor in our example after the DESCRIBE. Notice that
DESCRIBE has set SQLDFND to the actual number of input bind variables found in
the query's WHERE clause.

Note: You must declare a cursor for all Dynamic SQL statements,
not just queries. For non-query statements, opening the cursor
executes the statement.

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 5-19

Figure 5–5 Bind Descriptor After the DESCRIBE

VariablesReset Maximum Number of Bind
Next, you must test the actual number of bind variables found by DESCRIBE, as
follows:

IF BNDDSC.SQLDFND <0 THEN DO;
 PUT LIST ('Too many input variables were described.');
 GOTO NEXT_SQL_STMT; /* try again */
END;
/* Set number of bind variables DESCRIBEd. */
BNDDSC.SQLDNUM = BNDDSC.SQLDFND;

Get Values for Bind Variables
Your program must get values for any bind variables found in the SQL statement. In
our example, a value must be assigned to the placeholder BONUS in the query's
WHERE clause. So, you prompt the user for the value, and then process it as follows:

DCL (BN, BV) POINTER,
 BNAME CHARACTER (10) BASED(BN),
 BVAL CHARACTER (10) BASED(BV);
...
PUT SKIP LIST ('Enter values of bind variables');
DO J = 1 TO BNDDSC.SQLDNUM;
 /* Display the name. Use UNSPEC to get an integer
 (really a pointer) into the buffer pointer. */
 UNSPEC(BN) = UNSPEC(BNDDSC.SQLDSC(J).SQLDH_VNAME);

A Closer Look at Each Step

5-20 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 PUT SKIP EDIT (BN->BNAME, ': ')
 (A(BNDDSC.SQLDSC(J).SQLDH_CUR_VNAMEL),A(2));
 /* Get bind variable value from user. */
 UNSPEC(BV) = UNSPEC(BNDDSC.SQLDSC(J).SQLDV);
 GET LIST (BV->BVAL);
 /* Set the length. */
 BNDDSC.SQLDSC(J).SQLDVLN = LENGTH(BV->BVAL);
 /* Make the datatype VARCHAR2. */
 BNDDSC.SQLDSC(J).SQLDVTYP = 1;
END;

Assuming that the user supplied a value of 625 for BONUS, Figure 5–6 shows the
resulting bind descriptor.

Figure 5–6 Bind Descriptor After Assigning Values

OPEN the Cursor
The OPEN statement used for dynamic queries is similar to that used for static queries
except that the cursor is associated with a bind descriptor. Values determined at
runtime and stored in the bind descriptor are used to evaluate the query and identify
its active set.

In our example, OPEN associates EMP_CURSOR with BNDDSC, as follows:

EXEC SQL OPEN EMP_CURSOR USING DESCRIPTOR BNDDSC;

Remember, BNDDSC must not be prefixed with a colon.

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 5-21

The OPEN executes the query, identifies its active set, and positions the cursor at the
first row.

DESCRIBE the SelectList
The DESCRIBE SELECT LIST statement must follow the OPEN statement but precede
the FETCH statement.

DESCRIBE SELECT LIST fills in a select descriptor to hold descriptions of items in the
query's select list. In our example, DESCRIBE fills in a select descriptor named
SELDSC, as follows:

EXEC SQL DESCRIBE SELECT LIST FOR SQL_STMT INTO SELDSC;

SELDSC must not be prefixed with a colon.

Accessing the data dictionary, DESCRIBE sets the length and datatype of each
select-list item.

Figure 5–7 shows the select descriptor in our example after the DESCRIBE. Notice that
DESCRIBE has set SQLDFND to the actual number of items found in the query's select
list.

Also notice that the NUMBER lengths in the second and third SQLDVLN elements are
not usable yet. For select-list items defined as NUMBER, you should use the library
procedure SQLPRC to extract precision and scale, as explained in the next section.

Figure 5–7 Select Descriptor After the DESCRIBE

Adjust the Select Descriptor Values
First you must check the SELDSC.SQLDFND variable that was set by the DESCRIBE
statement. If it is negative, too many select-list items were described. If it is not, set
SQLDNUM to the number of select-list items described, as follows:

IF SQLDFND <0 THEN DO;
 PUT LIST ('Too many select-list items. Try again.');

A Closer Look at Each Step

5-22 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 GOTO NEXT_STMT;
END;
ELSE
 SELDSC.SQLDNUM = SELDSC.SQLDFND;

In our example, before FETCHing the select-list values, you reset some length
elements for display purposes. You also reset the datatype value to avoid dealing with
Oracle datatypes.

...
DCL J FIXED BIN(15),
 (SCALE, PRECISION) FIXED BIN(31);
DCL SQLPRC EXTERNAL ENTRY(ANY, ANY, ANY);
...
/* Process each field value */

DO J = 1 TO SELDSC.SQLDNUM;
 /* If the datatype is NUMBER (datatype code 2)
 extra processing is required. */
 IF SELDSC.SQLDSC(J).SQLDVTYP = 2 THEN DO;
 /* get precision and scale */
 CALL SQLPRC(SELDSC.SQLDSC(J).SQLDVLN,
 PRECISION, SCALE);
 /* Allow for the size of a number with
 no precision in the table. */
 IF PRECISION = 0 THEN
 PRECISION = 6;
 SELDSC.SQLDSC(J).SQLDVLN = PRECISION + 2;
 IF SCALE <0 THEN
 SELDSC.SQLDSC(J).SQLDVLN =
 SELDSC.SQLDSC(J).SQLDVLN + (-SCALE);
 END;
 /* If datatype is a DATE (datatype code 12)
 set length to 9. */
 IF SELDSC.SQLDSC(J).SQLDVTYP = 12 THEN
 SELDSC.SQLDSC(J).SQLDVLN = 9;
 /* Coerce all datatypes to VARCHAR2. */
 SELDSC.SQLDSC(J).SQLDVTYP = 1;
END;

Figure 5–8 shows the resulting select descriptor. Notice that the lengths for the buffers
that will hold the EMPNO and COMM fields are set to 6 and 9. These values were set
in the preceeding DO-loop from the EMP table column lengths of 4 and 7 by the
statement that adds 2 to PRECISION (for possible minus sign and decimal point).
Notice also that the datatypes are set to 1 (VARCHAR2).

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 5-23

Figure 5–8 Select Descriptor Before the FETCH

FETCH A Row from the Active Set
FETCH returns a row from the active set, stores select-list values in the select
descriptor, and advances the cursor to the next row in the active set. If there are no
more rows, FETCH sets SQLCA.SQLCODE, the SQLCODE variable, or the SQLSTATE
variable to the "no data found" Oracle error code. In our example, FETCH returns the
values of columns ENAME, EMPNO, and COMM to the data buffers pointed to by the
SQLDV elements:

...
EXEC SQL WHENEVER NOT FOUND GOTO N_FND;

NXT_ROW:
EXEC SQL FETCH EMP_CURSOR USING DESCRIPTOR SELDSC;
CALL PRINT_ROW(SELDSC); /* proc. to print values */
GOTO NXT_ROW;
N_FND:
...

Figure 5–9 shows the select descriptor in our example after the FETCH. Notice that
Oracle has stored the column and indicator-variable values in the data buffers pointed
to by the descriptor.

Note: When the datatype code returned on a DESCRIBE is 2
(Oracle internal number) it must be coerced to a PL/1 type that a
NUMBER can be converted to; this does not have to be
CHARACTER. You could also coerce a NUMBER to a PL/1 FLOAT,
in which case you would put the datatype code number 4 in the
SQLDVTYP element, and put the length (size of a PL/1 float in
bytes) in the SQLDVLN element.

Using Host Arrays

5-24 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Figure 5–9 Select Descriptor After the FETCH

Process the Select-List Items
After the FETCH, your program can scan the select descriptor for the select-list values
returned by FETCH and process them. In our example, values for columns ENAME,
EMPNO, and COMM can be processed.

Note how Oracle converts these values into the SEL_DV data buffers. The select-list
value 'MARTIN' is from an Oracle VARCHAR2 column. It is left justified in the 10-byte
field of SEL_DV(1).

The EMPNO value is a NUMBER(4) in the Oracle table. The program adds 2 to this
(for decimal point and possible sign), resulting in a length of 6. Since EMPNO is a
NUMBER, the value '7654' is right justified in a 6-byte field in the output buffer.

The COMM column has a length of 7. The program adds 2 (for decimal point and sign)
for a total length of 9. The value '482.50' is right justified on conversion into the 9-byte
field of SEL_DV(3).

CLOSE the Cursor
CLOSE disables the cursor. In our example, CLOSE disables EMP_CURSORas follows:

EXEC SQL CLOSE EMP_CURSOR;

Using Host Arrays
To use input or output host arrays with Method 4, you must use the optional FOR
clause of the EXECUTE statement to tell Oracle the size of the host array. (For more
information about the FOR clause, see Chapter 8 of the Programmer's Guide to the Oracle
Precompilers.)

First, you set up a descriptor for the host arrays. Set each SQLDV element to point to
the start of the array, the SQLDVLN element to contain the length of each member of
the array, and the SQLDVTYP element to contain the type of the members.

Using Host Arrays

Implementing Dynamic SQL Method 4 5-25

Then, you use a FOR clause in the EXECUTE or FETCH statement (whichever is
appropriate) to tell Oracle the number of array elements you want to process. This is
necessary because Oracle has no other way of knowing the size of your host array.
Note that EXECUTE can be used for non-queries with Method 4. In the following
program, three input host arrays are used to add data to the emp table:

HSTARRS: PROCEDURE OPTIONS(MAIN);
/* Using the FOR clause with Method 4 */
EXEC SQL BEGIN DECLARE SECTION;
 DCL USR CHARACTER (21) VARYING INIT('SCOTT'),
 PWD CHARACTER (21) VARYING INIT('TIGER'),
 ARRAY_SIZE FIXED BIN(31) INIT(5),
 SQL_STMT CHARACTER (120) VARYING
 INIT('INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:E, :N, :D)');
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA; /* SQLCAPLI on IBM systems */
/* Declare a bind descriptor. */
EXEC SQL INCLUDE BNDDSC;

DCL NAMES(5) CHARACTER (15),
 NUMBERS(5) FIXED BIN(31),
 DEPTS(5) FIXED BIN(31);

EXEC SQL WHENEVER SQLERROR GOTO ERROR;

EXEC SQL CONNECT :USR IDENTIFIED BY :PWD;
PUT SKIP LIST ('Connected to Oracle.');

/* Set up the descriptors. */
BNDDSC.SQLDNUM = 3;

EXEC SQL PREPARE S FROM :SQL_STMT;
EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO BNDDSC;
/* Initialize the descriptors
. Use SQ3ADR on IBM systems. */
CALL SQLADR(ADDR(NUMBERS(1)),
 ADDR(BNDDSC.SQLDSC(1).SQLDV));
BNDDSC.SQLDSC(1).SQLDVLN = 4; /* 4-byte... */
BNDDSC.SQLDSC(1).SQLDVTYP = 3; /* ...integers */

CALL SQLADR(ADDR(NAMES(1)),
 ADDR(BNDDSC.SQLDSC(2).SQLDV));
BNDDSC.SQLDSC(2).SQLDVLN = 15; /* 15... */
BNDDSC.SQLDSC(2).SQLDVTYP = 1; /* char arrays */
CALL SQLADR(ADDR(DEPTS(1)),
 ADDR(BNDDSC.SQLDSC(3).SQLDV));
BNDDSC.SQLDSC(3).SQLDVLN = 4; /* 4-byte... */
BNDDSC.SQLDSC(3).SQLDVTYP = 3; /* ...integers */

/* Now initialize the data buffers. */
NAMES(1) = 'TRUSDALE';
NUMBERS(1) = 1010;
DEPTS(1) = 30;
NAMES(2) = 'WILKES';
NUMBERS(2) = 1020;
DEPTS(2) = 30;
NAMES(3) = 'BERNSTEIN';
NUMBERS(3) = 1030;

Sample 10: Dynamic SQL Method 4 Program

5-26 Pro*PL/1 Supplement to the Oracle Precompilers Guide

DEPTS(3) = 30;
NAMES(4) = 'FRAZIER';
NUMBERS(4) = 1040;
DEPTS(4) = 30;
NAMES(5) = 'MCCOMB';
NUMBERS(5) = 1050;
DEPTS(5) = 30;

PUT SKIP LIST ('Adding to the Sales force...');
EXEC SQL FOR :ARRAY_SIZE EXECUTE S USING DESCRIPTOR BNDDSC;
EXEC SQL COMMIT RELEASE;
PUT SKIP EDIT (SQLCA.SQLERRD(3), ' new salespeople added.')
 (F(4), A);
RETURN;

ERROR:
PUT SKIP EDIT (SQLERRM)(A(70));
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK RELEASE;
RETURN;

END HSTARRS;

Sample 10: Dynamic SQL Method 4 Program
This section presents a complete program that illustrates the steps required to use
Dynamic SQL Method 4. These steps were outlined in the "Basic Steps" section earlier
in this chapter, and were discussed in greater detail in the sections following.

In this demo program, each step as outlined in "The Basic Steps" section earlier in this
chapter is noted in comments in the source code. (Note that because of the block
structure of PL/1, the steps do not follow in order.)

This program is available online as SAMPLE10.PPL.

DYN4DEM: PROCEDURE OPTIONS(MAIN);

/* On IBM systems you must call SQ3ADR
 rather than SQLADR. This is set up here. */
EXEC Oracle IFDEF CMS;
EXEC Oracle DEFINE SQ3LIB;
EXEC Oracle ENDIF;

EXEC Oracle IFDEF MVS;
EXEC Oracle DEFINE SQ3LIB;
EXEC Oracle ENDIF;

/*
 *
 * STEP 1 -- Declare a host string
 * (Host variables for the logon process
 * must also be declared in the SQL Declare Section)
 */
EXEC SQL BEGIN DECLARE SECTION;
 /* host string */
 DCL STMT CHARACTER (1000) VAR,
 /* strings for logon */
 (USR, PWD) CHARACTER (40)<N>VAR;
EXEC SQL END DECLARE SECTION;
EXEC Oracle IFDEF SQ3LIB;

Sample 10: Dynamic SQL Method 4 Program

Implementing Dynamic SQL Method 4 5-27

 EXEC SQL INCLUDE SQLCAPLI;
EXEC Oracle ELSE;
 EXEC SQL INCLUDE SQLCA;
EXEC Oracle ENDIF;

/*
 * STEP 3 -- INCLUDE the bind and select descriptors
 * (Remember STEP 2, and set N in SQLDSC
 * in the INCLUDEd files before the INCLUDE.)
 */
EXEC SQL INCLUDE BNDDSC;
EXEC SQL INCLUDE SELDSC;

/*
 * STEP 4 -- Declare the data buffers for input and output
 * variables, and the buffers for names.
 * (NOTE: these are *not* host variables!)
 */
DCL BND_DI(20) FIXED BINARY (15),
 BND_DI_VNAME(20) CHARACTER(80),
 BND_DV(20) CHARACTER(80),
 BND_DH_VNAME(20) CHARACTER(80),
 SEL_DI(20) FIXED BINARY (15),
 SEL_DV(20) CHARACTER(80),
 SEL_DH_VNAME(20) CHARACTER(80),
 /* index variable and flags */
 (I, TRY, DONE) FIXED BIN(15);

/* Local procedures */

/*
 * STEP 6 -- Get a SQL Statement from the user.
 */
GET_SQL: PROCEDURE (S);
DCL S CHARACTER (*) VAR,
 L FIXED BINARY (15),
 LINE CHARACTER (80) VAR,
 DONE FIXED BINARY (15);

S = '';
L = 1;

PUT SKIP LIST ('DSQL>> ');

/* A statement can occur over multiple lines.
 Keep getting input until the terminating ';' */
DONE = 0;
DO UNTIL (DONE ^= 0);
 GET EDIT (LINE) (A (80));
 DO WHILE (SUBSTR(LINE,LENGTH(LINE),1) = ' ');
 LINE = SUBSTR(LINE,1,LENGTH(LINE)-1);
 END;
 S = S || LINE || ' ';
 IF SUBSTR(LINE,LENGTH(LINE),1) = ';' THEN DO;
/* Set "all done" flag; Throw away terminating '; '. */
 DONE = 1;
 S = SUBSTR(S,1,LENGTH(S)-2);
 END;
 ELSE
 DO;

Sample 10: Dynamic SQL Method 4 Program

5-28 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 L = L + 1;
 PUT EDIT (L, ' ') (F(5), A(2));
 END;
END;
END GET_SQL;

/*
 * STEP 11 -- Get values for the bind variables
 */
GET_BIND_VARS: PROCEDURE (BNDDSC);

EXEC SQL INCLUDE BNDDSC;

DCL BN POINTER,
 BNAME CHARACTER(80) BASED (BN),
 BV POINTER,
 BVAL CHARACTER(80) BASED (BV),
 I FIXED BINARY (15);

PUT SKIP LIST ('Please enter values for Bind Vars.');
PUT SKIP;

DO I = 1 TO BNDDSC.SQLDNUM;
/* Display bind variable name. Use UNSPEC to get an
 integer into a pointer. */
 UNSPEC(BN) = UNSPEC(BNDDSC.SQLDSC(I).SQLDH_VNAME);
 PUT EDIT (BN ->> BNAME, ': ')
 (A(BNDDSC.SQLDSC(I).SQLDH_CUR_VNAMEL), A(2));

/* Get value for this bind variable. */
 UNSPEC(BV) = UNSPEC(BNDDSC.SQLDSC(I).SQLDV);
 GET LIST (BV ->> BVAL);

/* Declare the bind variable to be type VARCHAR2. */
 BNDDSC.SQLDSC(I).SQLDVTYP = 1;
END;
END GET_BIND_VARS;

/*
 * This procedure prints column headings for
 select-list items.
 */
PRINT_COL_HEADINGS: PROCEDURE (SELDSC);
EXEC SQL INCLUDE SELDSC;
DCL (I,J) FIXED BINARY (15),
 LINE CHARACTER (132) BASED (P),
 BLANKS FIXED BINARY (15),
 P POINTER;

/*
 * STEP 14 -- Readjust TYPE and LENGTH elements in the SQLDA
 * Output column names as column headings.
 */
PUT SKIP(2);
DO I = 1 TO SELDSC.SQLDNUM;
 UNSPEC(P) = UNSPEC(SELDSC.SQLDSC(I).SQLDH_VNAME);
 IF SELDSC.SQLDSC(I).SQLDVTYP = 1 THEN DO;
/* Have Oracle VARCHAR2 type. Left justify.
 Compute number of blanks required for padding. */

Sample 10: Dynamic SQL Method 4 Program

Implementing Dynamic SQL Method 4 5-29

 BLANKS = MAX(SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL,
 SELDSC.SQLDSC(I).SQLDVLN) -
 SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL;
 PUT EDIT (P ->> LINE, ' ')
 (A (SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL),
 X(BLANKS), A(1));
 END;
 ELSE DO;
/* Assume we have Oracle NUMBER type. Right-justify.
 Also, force column width to be the maximum
 of column heading and 9. */
 SELDSC.SQLDSC(I).SQLDVLN =
 MAX(SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL, 9);
 BLANKS = SELDSC.SQLDSC(I).SQLDVLN
 - SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL;
 PUT EDIT (P ->> LINE, ' ') (X (BLANKS),
 A(SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL), A(1));
/* Coerce select-list names to
 type VARCHAR2 to simplify printing. */
 SELDSC.SQLDSC(I).SQLDVTYP = 1;
 END;
END;

/* Underline the column headings. */
PUT SKIP;

DO I = 1 TO SELDSC.SQLDNUM;
 IF I >> 1 THEN
 PUT EDIT (' ') (A(1));
 IF SELDSC.SQLDSC(I).SQLDVTYP = 1 THEN
 DO J = 1 TO MAX(SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL,
 SELDSC.SQLDSC(I).SQLDVLN);
 PUT EDIT ('-') (A (1));
 END;
 ELSE
 DO J = 1 TO MAX(SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL, 9);
 PUT EDIT ('-') (A(1));
 END;
END;

PUT SKIP;
END PRINT_COL_HEADINGS;

/*
 * Print out some help for the user at
 * program start-up.
 */
PRINT_HELP: PROCEDURE;

PUT SKIP;
PUT SKIP LIST ('Terminate all SQL stmts w/'';''(semi-colon).');
PUT SKIP LIST ('Type ''/EXIT''; to exit DSQL');
PUT SKIP;
END PRINT_HELP;

/*
 * STEP 16 -- Process the select-list items.
 */
PRINT_ROW: PROCEDURE (SELDSC);
EXEC SQL INCLUDE SELDSC;

Sample 10: Dynamic SQL Method 4 Program

5-30 Pro*PL/1 Supplement to the Oracle Precompilers Guide

DCL BLANKS FIXED BINARY (15),
 DI POINTER,
 I FIXED BINARY (15),
 LINE CHARACTER(132) BASED(P),
 P POINTER,
 SELDI FIXED BINARY (15) BASED(DI);

DO I = 1 TO SELDSC.SQLDNUM;

/* Check if the select-list item is NULL. */
 UNSPEC(DI) = UNSPEC(SELDSC.SQLDSC(I).SQLDI);
 IF DI ->> SELDI << 0 THEN

/* This item is NULL. Set the length of
 buf to zero so output spacing (blank pad)
 comes out correctly. */
 SELDSC.SQLDSC(I).SQLDVLN = 0;

/* Compute number of required blanks
 for appropriate spacing. */
 BLANKS = MAX(MAX(SELDSC.SQLDSC(I).SQLDH_CUR_VNAMEL,
 SELDSC.SQLDSC(I).SQLDVLN), 9) -
 SELDSC.SQLDSC(I).SQLDVLN;

/* Print column value, with blank padding. */
 UNSPEC(P) = UNSPEC(SELDSC.SQLDSC(I).SQLDV);
 PUT EDIT (P ->> LINE, ' ')
 (A(SELDSC.SQLDSC(I).SQLDVLN), X(BLANKS), A(1));
END;

PUT SKIP;
END PRINT_ROW;

/*
 * Begin the MAIN program here.
 *
 */
EXEC SQL WHENEVER SQLERROR GOTO LOGERR;
TRY = 0;

DO UNTIL (TRY = 3);
 TRY = TRY + 1;
 PUT SKIP LIST ('Username: ');
 GET EDIT (USR) (A(8));
 PUT SKIP LIST ('Password: ');
 GET EDIT (PWD) (A(8));
 EXEC SQL CONNECT :USR IDENTIFIED BY :PWD;
 GOTO CONNECTED_OK;

LOGERR:
 PUT SKIP;
 PUT SKIP LIST (SQLCA.SQLERRM);
 PUT SKIP;
END; /* DO UNTIL */

PUT SKIP LIST ('Aborting login after 3 attempts.');
RETURN;

CONNECTED_OK:

Sample 10: Dynamic SQL Method 4 Program

Implementing Dynamic SQL Method 4 5-31

/* Initialization. */
CALL PRINT_HELP;

/*
 * STEP 5 -- Initialize the select and bind descriptors.
 */

DO I = 1 TO 20;
 SELDSC.SQLDSC(I).SQLDH_MAX_VNAMEL = 80;
 EXEC Oracle IFDEF SQ3LIB;
 CALL SQ3ADR
 (SEL_DH_VNAME(I),SELDSC.SQLDSC(I).SQLDH_VNAME);
 EXEC Oracle ELSE;
 CALL SQLADR
 (ADDR(SEL_DH_VNAME(I)),
 ADDR(SELDSC.SQLDSC(I).SQLDH_VNAME));
 EXEC Oracle ENDIF;

 SELDSC.SQLDSC(I).SQLDI_MAX_VNAMEL = 80;
 SELDSC.SQLDSC(I).SQLDVLN = 80;

 EXEC Oracle IFDEF SQ3LIB;
 CALL SQ3ADR(SEL_DV(I),SELDSC.SQLDSC(I).SQLDV);
 EXEC Oracle ELSE;
 CALL SQLADR
 (ADDR(SEL_DV(I)), ADDR(SELDSC.SQLDSC(I).SQLDV));
 EXEC Oracle ENDIF;

 SEL_DI(I) = 0;

 EXEC Oracle IFDEF SQ3LIB;
 CALL SQ3ADR(SEL_DI(I),SELDSC.SQLDSC(I).SQLDI);
 EXEC Oracle ELSE;
 CALL SQLADR
 (ADDR(SEL_DI(I)), ADDR(SELDSC.SQLDSC(I).SQLDI));
 EXEC Oracle ENDIF;

 SELDSC.SQLDSC(I).SQLDFMT = 0;
 SELDSC.SQLDSC(I).SQLDFCLP = 0;
 SELDSC.SQLDSC(I).SQLDFCRCP = 0;
END;

DO I = 1 TO 20;
 BNDDSC.SQLDSC(I).SQLDH_MAX_VNAMEL = 80;

 EXEC Oracle IFDEF SQ3LIB;
 CALL SQ3ADR
 (BND_DH_VNAME(I),BNDDSC.SQLDSC(I).SQLDH_VNAME);
 EXEC Oracle ELSE;
 CALL SQLADR
 (ADDR(BND_DH_VNAME(I)),
 ADDR(BNDDSC.SQLDSC(I).SQLDH_VNAME));
 EXEC Oracle ENDIF;

 BNDDSC.SQLDSC(I).SQLDI_MAX_VNAMEL = 80;

 EXEC Oracle IFDEF SQ3LIB;
 CALL SQ3ADR
 (BND_DI_VNAME(I),BNDDSC.SQLDSC(I).SQLDI_VNAME);
 EXEC Oracle ELSE;

Sample 10: Dynamic SQL Method 4 Program

5-32 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 CALL SQLADR
 (ADDR(BND_DI_VNAME(I)),
 ADDR(BNDDSC.SQLDSC(I).SQLDI_VNAME));
 EXEC Oracle ENDIF;

 BNDDSC.SQLDSC(I).SQLDVLN = 80;

 EXEC Oracle IFDEF SQ3LIB;
 CALL SQ3ADR(BND_DV(I),BNDDSC.SQLDSC(I).SQLDV);
 EXEC Oracle ELSE;
 CALL SQLADR
 (ADDR(BND_DV(I)), ADDR(BNDDSC.SQLDSC(I).SQLDV));
 EXEC Oracle ENDIF;

 BND_DI(I) = 0;

 EXEC Oracle IFDEF SQ3LIB;
 CALL SQ3ADR(BND_DI(I),BNDDSC.SQLDSC(I).SQLDI);
 EXEC Oracle ELSE;
 CALL SQLADR
 (ADDR(BND_DI(I)), ADDR(BNDDSC.SQLDSC(I).SQLDI));
 EXEC Oracle ENDIF;

 BNDDSC.SQLDSC(I).SQLDFMT = 0;
 BNDDSC.SQLDSC(I).SQLDFCLP = 0;
 BNDDSC.SQLDSC(I).SQLDFCRCP = 0;
END;

/* Main Executive Loop: Get and execute SQL statement. */

DONE = 0;

DO UNTIL (DONE ^= 0);
 EXEC SQL WHENEVER SQLERROR GOTO SQLERR;

/*
 * Call routine to do STEP 6.
 */
 CALL GET_SQL(STMT);
 IF STMT = '/EXIT' | STMT = '/exit' THEN
 DONE = 1;
 ELSE DO;

/*
 * STEPS 7 & 8 - Prepare the SQL statement and
 * declare a cursor for it.
 */
 EXEC SQL PREPARE S FROM :STMT;
 EXEC SQL DECLARE C CURSOR FOR S;

/*
 * STEP 9 -- Describe the bind variables
 * in this SQL statement.
 */
 BNDDSC.SQLDNUM = 20;
 EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO BNDDSC;

 IF BNDDSC.SQLDFND << 0 THEN DO;
 PUT SKIP LIST ('Too many Bind Vars in this SQL stmt.');
 PUT LIST (' Try again...');

Sample 10: Dynamic SQL Method 4 Program

Implementing Dynamic SQL Method 4 5-33

 GOTO NXT_STM;
 END;
/*
 * STEP 10 -- Reset N of bind variables.
 */
 BNDDSC.SQLDNUM = BNDDSC.SQLDFND;

 IF BNDDSC.SQLDNUM ^= 0 THEN
 CALL GET_BIND_VARS (BNDDSC); /* do STEP 11 */

/*
 * STEP 12 -- Open the cursor using the bind descriptor.
 */
 EXEC SQL OPEN C USING DESCRIPTOR BNDDSC;
 SELDSC.SQLDNUM = 20;

/*
 * STEP 13 -- Describe the select list.
 */

 EXEC SQL DESCRIBE SELECT LIST FOR S INTO SELDSC;
 IF SELDSC.SQLDFND << 0 THEN DO;
 PUT SKIP LIST
 ('Too many Select Vars in this SQL stmt.');
 PUT LIST (' Try again...');
 GOTO NXT_STM;
 END;
 SELDSC.SQLDNUM = SELDSC.SQLDFND;

 /* If this is a SELECT statement, then
 display rows. Else, all done... */
 IF SELDSC.SQLDNUM ^= 0 THEN DO;
 CALL PRINT_COL_HEADINGS (SELDSC);
 /* Fetch each row, and print it. */
 EXEC SQL WHENEVER NOT FOUND GOTO N_FND;
NXT_ROW:

/*
 * STEP 15 -- Fetch the data into the buffers
 * (buffers are pointed to by SELDSC).
 */
 EXEC SQL FETCH C USING DESCRIPTOR SELDSC;
 CALL PRINT_ROW (SELDSC); /* do STEP 16 */
 GOTO NXT_ROW;
N_FND:
 END;
 IF SQLCA.SQLERRD(3) ^= 0 THEN DO;
 PUT EDIT (SQLCA.SQLERRD(3), ' Row(s) processed.')
 (SKIP(1), F(4), A);
 PUT SKIP;
 END;
/*
 * STEP 17 -- Close the cursor.
 */
 EXEC SQL CLOSE C;
 END;

 GOTO NXT_STM;

SQLERR:

Sample 10: Dynamic SQL Method 4 Program

5-34 Pro*PL/1 Supplement to the Oracle Precompilers Guide

 PUT SKIP LIST (SQLCA.SQLERRM);
 PUT SKIP;

NXT_STM:
END; /* DO UNTIL */

EXEC SQL COMMIT WORK RELEASE;
RETURN; /* exit program */

END DYN4DEM;

Differences from Previous Release A-1

A
Differences from Previous Release

This appendix lists differences between Pro*PL/1 precompiler release 1.5 and 1.6. Each
feature modification is followed by one or more references to the relevant section(s) in
this manual. The last entry for each feature refers to the section with the main
description of that feature.

Topics

Configuration files
"Default Values" on page 3-2

"Configuration Files" on page 3-3

DBMS Option
"Oracle Restrictions" on page 1-9

"DBMS" on page 3-4

INLINE option
"Precompiler Command" on page 3-1

MODE Option
"ANSI Requirements" on page 1-9

"MODE" on page 3-5

sqlglm()
"Getting the Full Text of Error Messages" on page 2-11

SQLSTATE variable
"Event and Error Handling" on page 1-5

"SQLSTATE, the SQLCA, and SQLCODE" on page 2-1

Topics

A-2 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Operating System Dependencies B-1

B
Operating System Dependencies

Some details of Pro*PL/1 programming vary from system to system. So, occasionally
you are referred to the Oracle Installation and User's Guide for your system. For
convenience, this appendix collects all these external references to system-specific
information.

Topics
Continuation Lines on page 1-1

PL/1 Versions on page 1-3

Preprocessor on page 1-3

Statement Labels on page 1-4

Using the INCLUDE Statement on page 1-4

Precompiler Command on page 3-1

Special PL/1 Options on page 3-6

Compiling and Linking on page 3-7

Sample Programs on page 4-1

Introducing the PL/1 SQLDA on page 5-3

Datatypes in the SQLDA on page 5-8

Topics

B-2 Pro*PL/1 Supplement to the Oracle Precompilers Guide

Index-1

Index

A
ADDR built-in function

use in SQLADR procedure, 5-3
automatic logins, 1-18

B
bind descriptor, 5-3

descriptor areas, 5-3
bind descriptor area, 5-3
bind SQLDA

purpose of, 5-2

C
CHAR

Oracle external datatype, 5-11
CLOSE statement

use in Dynamic SQL Method 4, 5-24
colon

use of with host variables, 1-7
comments

ANSI-style, 1-1
PL/I-style, 1-1

compiling, 3-7
conditional precompilation

benefits of, 3-6
purpose of, 3-6

connecting to Oracle
automatically, 1-18

CONTINUE action
in the WHENEVER statement, 2-12

Conventions
description of, Index-xi

cursor
closing, 5-24
declaration of, 5-17
opening, 5-20
restricted scope of, 3-7

cursor cache
purpose of, 2-14

D
Data Definition Language

creating CHAR objects with DBMS=V6, 3-5

datatype codes, 5-8
defined, 5-8
list of, 5-10

datatype conversions, 1-15
datatype equivalencing, 1-16

example of, 1-16
datatypes, 5-8

coercing, 5-9
coercing NUMBER to VARCHAR2, 5-9
external, 5-8
internal, 5-8

DATE
Oracle external datatype, 5-11

DECIMAL
Oracle external datatype, 5-11

declaration
of host arrays, 1-10
of host variables, 1-6
of indicator variables, 1-8
of ORACA, 2-14
of SQLCA, 2-9
of SQLDA, 5-4

DECLARE CURSOR statement
use in Dynamic SQL Method 4, 5-17

declare section
PL/I datatypes allowed in, 1-6
purpose of, 1-4
rules for defining, 1-4
statements allowed in, 1-4

default
error handling, 2-12
setting of ORACA option, 2-15

DESCRIBE BIND VARIABLES statement
use in Dynamic SQL Method 4, 5-18

DESCRIBE SELECT LIST statement
use in Dynamic SQL Method 4, 5-21

descriptor areas, 5-3
select descriptor, 5-3

descriptors
reserved elements in, 5-8

directory
current, 1-5

directory path
for INCLUDE files, 1-5

DISPLAY
Oracle external datatype, 5-11

Index-2

DO action
in the WHENEVER statement, 2-12

Dynamic SQL Method 1
program example, 4-10

Dynamic SQL Method 2
program example, 4-12

Dynamic SQL Method 3
program example, 4-14

Dynamic SQL Method 4
requirements of, 5-2
sequence of statements used with, 5-13
steps for, 5-12
use of CLOSE statement in, 5-24
use of DECLARE CURSOR statement in, 5-17
use of DESCRIBE statement in, 5-18, 5-21
use of FETCH statement in, 5-23
use of OPEN statement in, 5-20
use of PREPARE statement in, 5-17

E
embedded PL/SQL

requirements for, 1-17
using host variables with, 1-17
using indicator variables with, 1-17
where allowed, 1-17

embedded SQL
requirements for, 1-2
syntax for, 1-2

embedded SQL statements
comments in, 1-1
labels for, 1-4
referencing host variables in, 1-7
referencing indicator variables in, 1-9
terminator for, 1-3
use of, 1-3
use of apostrophes in, 1-3

equivalencing of datatypes, 1-16
error message text

use in error reporting, 2-11
using the SQLGLM function to get, 2-11

error messages
maximum length of, 2-11

error reporting
key components of, 2-10
use of error message text in, 2-11
use of parse error offset in, 2-10
use of rows-processed count in, 2-10
use of status codes in, 2-10
use of warning flags in, 2-10

EXEC ORACLE statement
syntax for, 3-6
using to enter options inline, 3-6

EXEC SQL clause
using to embed SQL statements, 1-2

EXECUTE statement
use in Dynamic SQL Method 4, 5-24
use with host arrays, 5-24

external datatype
defined, 5-8

external datatypes, 5-8
list of, 1-14

F
FETCH statement

use in Dynamic SQL Method 4, 5-23
file extension

for INCLUDE files, 1-5
flags

warning flags, 2-10
FLOAT

Oracle external datatype, 5-11
functions

precompiling, 3-7

G
GOTO action

in the WHENEVER statement, 2-12

H
host arrays

declaring, 1-10
multidimensional, 1-10
restrictions on, 1-10, 1-11

host variables
attribute factoring in declaration of, 1-6
compatibility with database objects, 1-6
declaring, 1-6
definition of, 1-2
naming, 1-7
passed to a subroutine, 1-7
referencing, 1-7
restrictions on, 1-11
rules for naming, 1-2
scope of, 1-3
using with PL/SQL, 1-17
where to declare, 1-4, 1-7

I
INAME option

when a file extension is required, 3-1
INCLUDE statement

effect of, 1-4
not like PL/I %INCLUDE directive, 1-5
using to declare the ORACA, 2-14
using to declare the SQLCA, 2-9
using to declare the SQLDA, 5-4

indicator variables, 1-8
association with host variables, 1-8
declaring, 1-8
function of, 1-8
referencing, 1-9
required size of, 1-8
using with PL/SQL, 1-17

insert of no rows
cause of, 2-8

internal datatype, 5-8

Index-3

defined, 5-8
internal datatypes

list of, 1-14
IS NULL operator

for testing nulls, 1-2

L
LIKE attribute

cannot be used for host variables, 1-6
linking, 3-7
LMARGIN, 3-6
logical operators, 1-2
LONG

Oracle external datatype, 5-11
LONG RAW

Oracle external datatype, 5-11
LONG VARRAW

Oracle external datatype, 5-11

M
MAXLITERAL

default value, 1-2
message text

error message text, 2-11
MLSLABEL

Oracle external datatype, 5-11
MODE option

default value for, 3-5
effects of, 1-12
purpose of, 3-5
syntax for, 3-5
usage notes for, 3-5

multidimensional arrays
cannot be declared as host variables, 1-10
invalid use of, 1-10

N
naming

of host variables, 1-2
NOT FOUND condition

in the WHENEVER statement, 2-12
Notation

rules for, Index-xi
NULL

meaning of in SQL, 1-2
PL/I built-in function, 1-2

null values
handling in Dynamic SQL Method 4, 5-11
using the SQLNUL procedure to test for, 5-11

NUMBER datatype
using the SQLPRC procedure with, 5-9

NVL function
for retrieving nulls, 1-2

O
OPEN statement

use in Dynamic SQL Method 4, 5-20

operators
relational, 1-2

options
precompiler, 3-2

ORACA
declaring, 2-14
enabling, 2-14
fields in, 2-15
purpose of, 2-14

ORACLE Communications Area
ORACA, 2-14

Oracle Precompilers
use of PL/SQL with, 1-17

P
parse error offset

how to interpret, 2-10
use in error reporting, 2-10

PL/I
BASED variables, 1-11
labels, 1-4
preprocessor not supported, 1-3
use of apostrophes in, 1-3
use of pointers in embedded SQL, 1-11

PL/I datatypes
allowed in SQL declare section, 1-6
CHARACTER VARYING, 1-12
FIXED DECIMAL, 5-6
supported by Oracle Precompilers, 1-6

PL/SQL
embedded PL/SQL, 1-17

pointers
use of in PL/I, 1-11

precision
extracting, 5-9
in the FIXED DECIMAL PL/I datatype, 5-6

precision and scale
using the SQLPRC procedure to extract, 5-9

precompiler command
issuing, 3-1
optional arguments of, 3-2
required arguments, 3-1

Precompiler options
MODE, 3-5

precompiler options
default settings, 3-2
displaying, 3-2
entering inline, 3-6
inline versus on the command line, 3-6
respecifying, 3-4
scope of, 3-4
scope of inline options, 3-6
specifying, 3-2

PREPARE statement
use in Dynamic SQL Method 4, 5-17

preprocessor
not supported in SQL blocks, 1-3

procedures
declare section in, 1-7

Index-4

pseudocolumns
list of, 1-14

Q
quotation marks

use of in embedded SQL, 1-3

R
RAW

Oracle external datatype, 5-11
referencing

of host variables, 1-7
of indicator variables, 1-9

relational operators, 1-2
restrictions

on host arrays, 1-11
on PL/I variables, 1-11

RMARGIN, 3-6
ROWID

Oracle external datatype, 5-11
rows-processed count

use in error reporting, 2-10

S
scale

extracting, 5-9
in the FIXED DECIMAL PL/I datatype, 5-6
when negative, 5-10

scope
of host variables, 1-3
of precompiler options, 3-4
of WHENEVER statement, 2-13

select descriptor, 5-3
select descriptor area, 5-3
select SQLDA

purpose of, 5-2
Separate compilation

restrictions on, 3-7
separate precompilation

definition of, 3-7
need for, 3-7

SQL statement
terminator for, 1-3

SQL*Forms user exit
sample program, 4-8

SQLADR procedure
syntax of, 5-3
use of, 5-3

SQLCA
declaring, 2-9
purpose of, 2-9

SQLCODE variable, 2-10
declaring, 2-8
interpreting values of, 2-8

SQLDA
datatypes in, 5-8
declaring, 5-4
SQLDFMT element in, 5-6

SQLDFND element in, 5-5
SQLDH_CUR_VNAMEL element in, 5-8
SQLDH_MAX_VNAME element in, 5-7
SQLDH_VNAME element in, 5-7
SQLDI element in, 5-7
SQLDI_CUR_VNAMEL element in, 5-8
SQLDI_MAX_VNAMEL element in, 5-8
SQLDI_VNAME element in, 5-8
SQLDNUM element in, 5-5
SQLDSC element in, 5-5
SQLDV element in, 5-6
SQLDVLN element in, 5-6
SQLDVTYP element in, 5-6
structure, 5-5
variables, 5-5

SQLDFMT
element in SQLDA, 5-6

SQLDFMT element in SQLDA
how value is set, 5-6

SQLDFND element in SQLDA
how value is set, 5-5

SQLDH_CUR_VNAME element in SQLDA
how value is set, 5-8

SQLDH_MAX_VNAME element in SQLDA
how value is set, 5-7

SQLDH_VNAME element in SQLDA
how value is set, 5-7

SQLDI element in SQLDA
how value is set, 5-7

SQLDI_CUR_VNAMEL element in SQLDA
how value is set, 5-8

SQLDI_MAX_VNAMEL element in SQLDA
how value is set, 5-8

SQLDI_VNAME element in SQLDA
how value is set, 5-8

SQLDNUM element in SQLDA
how value is set, 5-5

SQLDSC element in SQLDA
how N is set, 5-5

SQLDV element in SQLDA
how value is set, 5-6

SQLDVLN
must be set by program, 5-6

SQLDVLN element in SQLDA
how value is set, 5-6

SQLDVTYP element in SQLDA
how it is used, 5-8
how value is set, 5-6

SQLERRD(3) variable, 2-10
SQLERRM variable, 2-11
SQLERROR condition

in the WHENEVER statement, 2-12
SQLGLM function

example of using, 2-11
need for, 2-11
parameters of, 2-11
syntax for, 2-11

SQLNUL procedure
example of using, 5-12
parameters of, 5-11

Index-5

purpose of, 5-11
syntax for, 5-11
use of with SQLDVTYP, 5-7

SQLPR2 procedure
purpose of, 5-10

SQLPRC procedure
example of using, 5-10
parameters of, 5-9
purpose of, 5-9
syntax for, 5-9

SQLSTATE
class codes, 2-1
declaring, 2-1
mapping to Oracle errors, 2-3
predefined classes, 2-2
status codes, 2-3
using, 2-8
values, 2-1

SQLWARNING condition
in the WHENEVER statement, 2-12

statement labels, 1-4
status codes

use in error reporting, 2-10
STOP action

in the WHENEVER statement, 2-12
STRING

Oracle external datatype, 5-11
structure

elements in allowed as host variable, 1-6
use of as host variable not allowed, 1-6

subroutines
declare section in, 1-7
precompiling, 3-7

syntax
embedded SQL, 1-2

U
UNSIGNED

Oracle external datatype, 5-11

V
VAR statement

syntax for, 1-16
VARCHAR2

Oracle external datatype, 5-11
VARRAW

Oracle external datatype, 5-11

W
warning flags

use in error reporting, 2-10
WHENEVER statement

automatic checking of SQLCA with, 2-12
CONTINUE action in, 2-12
DO action in, 2-12
GOTO action in, 2-12
maintaining addressability for, 2-13
NOT FOUND condition in, 2-12

scope of, 2-13
SQLERROR condition in, 2-12
SQLWARNING condition in, 2-12
STOP action in, 2-12
syntax for, 2-12
uses for, 2-12

Z
Conventions

Notation, Index-xi
Notation

Conventions, Index-xi

Index-6

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions
	ANSI Compliance
	1 Writing a Pro*PL/1 Program
	Programming Guidelines
	Comments
	Continuation Lines
	Embedded SQL Syntax
	Host Variable Names
	MAXLITERAL Default Value
	Nulls
	Operators, Logical
	Operators, Relational
	PL/1 Versions
	Preprocessor
	Quotation Marks and Apostrophes
	Scope of Variables
	SQL Statement Terminator
	Statement Labels

	Required Declarations and SQL Statements
	The Declare Section
	Using the INCLUDE Statement
	Event and Error Handling

	Host Variables
	Declaring Host Variables
	Structures
	An Example
	Special Requirements

	Referencing Host Variables
	Restrictions

	Indicator Variables
	Declaring Indicator Variables
	Referencing Indicator Variables

	Host Arrays
	Declaring Host Arrays
	Referencing Host Arrays

	Pointers as Host Variables
	CHARACTER VARYING
	VARYINGReturning Nulls to a CHARACTER (N)

	Handling Character Data
	Effects of the MODE Option

	The Oracle Datatypes
	Internal Datatypes
	SQL Pseudocolumns and Functions

	External Datatypes

	Datatype Conversion
	Datatype Equivalencing
	Host Variable Equivalencing

	Embedding PL/SQL
	Using Host Variables with PL/SQL
	Using Indicator Variables with PL/SQL
	Handling Nulls
	Handling Truncated Values

	SQLCHECK

	Connecting to Oracle
	Automatic Logins
	Concurrent Logins

	2 Error Handling and Diagnostics
	SQLSTATE, the SQLCA, and SQLCODE
	Declaring SQLSTATE
	SQLSTATE Values
	Using SQLSTATE
	Declaring SQLCODE

	Using the SQLCA
	Declaring the SQLCA
	What's in the SQLCA?
	Key Components of Error Reporting
	Status Codes
	Warning Flags
	Rows-processed Count
	Parse Error Offset
	Error Message Text

	Getting the Full Text of Error Messages
	Using the WHENEVER Statement
	Scope of WHENEVER
	Helpful Hint
	Caution

	Using the ORACA
	Declaring the ORACA
	Enabling the ORACA
	What's in the ORACA?

	3 Running the Pro*PL/1 Precompiler
	Precompiler Command
	Precompiler Options
	Default Values
	Determining Current Values

	Case Sensitivity
	Configuration Files
	Scope of Options
	DBMS
	MODE
	Entering Options
	Special PL/1 Options

	Doing Conditional Precompilations
	Doing Separate Precompilations
	Restrictions

	Compiling and Linking

	4 Sample Programs
	Sample Programs
	Sample Program 1: Login and Query
	Sample Program 2: Using a Cursor
	Sample Program 3: Fetching in Batches
	Sample Program 4: Datatype Equivalencing
	Sample Program 5: A SQL*Forms User Exit
	Sample Program 6: Dynamic SQL Method 1
	Sample Program 7: Dynamic SQL Method 2
	Sample Program 8: Dynamic SQL Method 3
	Sample Program 9: Calling a Stored procedure

	5 Implementing Dynamic SQL Method 4
	Meeting the Special Requirements of Method 4
	What Makes Method 4 Special?
	What Information Does Oracle Need?
	Where Is the Information Stored?
	How is the Information Obtained?

	The SQLDA
	Introducing the PL/1 SQLDA
	Declaring a SQLDA
	Multiple SQLDAs
	The SQLDA Variables
	{SELDSC | BNDDSC}
	SQLDNUM
	SQLDFND
	SQLDSC(N)
	SQLDV
	SQLDFMT
	SQLDVLN
	SQLDVTYP
	SQLDI
	SQLDH_VNAME
	SQLDH_MAX_VNAMEL
	SQLDH_CUR_VNAMEL
	SQLDI_VNAME
	SQLDI_MAX_VNAMEL
	SQLDI_CUR_VNAMEL
	SQLDFCLP
	SQLDFCRCP

	Datatypes in the SQLDA
	Internal and External Datatypes
	Coercing Datatypes After DESCRIBE
	Extracting Precision and Scale
	Datatype Codes

	Handling NULL/NOT NULL Datatypes

	The Basic Steps
	A Closer Look at Each Step
	Declare a Host String
	Set the Size of the Descriptors
	Declare the SQLDAs
	Declare the Data Buffers
	Initialize the Descriptors
	Get the Query Text into the Host String
	PREPARE the Query from the Host String
	DECLARE a Cursor
	DESCRIBE the Bind Variables
	VariablesReset Maximum Number of Bind
	Get Values for Bind Variables
	OPEN the Cursor
	DESCRIBE the SelectList
	Adjust the Select Descriptor Values
	FETCH A Row from the Active Set
	Process the Select-List Items
	CLOSE the Cursor

	Using Host Arrays
	Sample 10: Dynamic SQL Method 4 Program

	A Differences from Previous Release
	Topics

	B Operating System Dependencies
	Topics

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	V
	W
	Z

