
Oracle® Spatial
Resource Description Framework (RDF)

10g Release 2 (10.2)

B19307-03

October 2005

Provides usage and reference information about the support
for the Resource Description Framework (RDF) in the Oracle
Spatial network data model.

Oracle Spatial Resource Description Framework (RDF), 10g Release 2 (10.2)

B19307-03

Copyright © 2005 Oracle. All rights reserved.

Primary Author: Chuck Murray

Contributors: Nicole Alexander, Souri Das, George Eadon, Siva Ravada

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

1 RDF Overview

1.1 RDF and the Network Data Model .. 1-1
1.2 RDF Data Model in the Database ... 1-2
1.2.1 Metadata for RDF Models .. 1-2
1.2.2 Namespaces .. 1-3
1.2.3 Statements... 1-4
1.2.3.1 Triple Uniqueness and Data Types for Literals ... 1-5
1.2.4 Subjects and Objects .. 1-5
1.2.5 Blank Nodes.. 1-6
1.2.6 Properties .. 1-6
1.2.7 Reification and Reification Quads... 1-6
1.2.8 Containers ... 1-7
1.2.9 Collections... 1-7
1.2.10 Rules and Rulebases .. 1-7
1.2.11 Rules Indexes.. 1-9
1.2.12 RDF Security Considerations .. 1-11
1.3 RDF Metadata Tables and Views... 1-11
1.4 RDF Data Types, Constructors, and Methods ... 1-12
1.4.1 Constructor for Inserting Triples.. 1-13
1.4.2 Constructor for Reusing Blank Nodes... 1-13
1.5 Using the SDO_RDF_MATCH Table Function to Query RDF Data 1-14
1.5.1 Performing Queries with Incomplete or Invalid Rules Indexes 1-16
1.6 Loading and Exporting RDF Data... 1-16
1.6.1 Loading RDF Data .. 1-16
1.6.2 Loading RDF Data Using INSERT Statements... 1-17
1.6.3 Exporting RDF Data ... 1-18
1.7 Quick Start for Using RDF.. 1-18
1.8 RDF Examples .. 1-19
1.8.1 Example: Journal Article Information ... 1-19

iv

1.8.2 Example: Family Information ... 1-21
1.9 README File for Spatial and Related Features .. 1-28

2 SDO_RDF Package Subprograms

SDO_RDF.ADD_NAMESPACES ... 2-2

SDO_RDF.CREATE_RDF_MODEL ... 2-3

SDO_RDF.CREATE_RDF_NETWORK ... 2-4

SDO_RDF.DROP_RDF_MODEL.. 2-5

SDO_RDF.DROP_RDF_NETWORK.. 2-6

SDO_RDF.GET_MODEL_ID... 2-7

SDO_RDF.GET_TRIPLE_ID.. 2-8

SDO_RDF.IS_REIFIED_QUAD.. 2-10

SDO_RDF.IS_TRIPLE.. 2-12

3 SDO_RDF_INFERENCE Package Subprograms

SDO_RDF_INFERENCE.CLEANUP_FAILED... 3-2

SDO_RDF_INFERENCE.CREATE_RULEBASE .. 3-3

SDO_RDF_INFERENCE.CREATE_RULES_INDEX ... 3-4

SDO_RDF_INFERENCE.DROP_RULEBASE... 3-5

SDO_RDF_INFERENCE.DROP_RULES_INDEX .. 3-6

SDO_RDF_INFERENCE.DROP_USER_INFERENCE_OBJS ... 3-7

SDO_RDF_INFERENCE.LOOKUP_RULES_INDEX .. 3-8

Index

v

List of Examples

1–1 Inserting a Rule into a Rulebase ... 1-9
1–2 Using Rulebases for Inferencing... 1-9
1–3 Creating a Rules Index .. 1-10
1–4 SDO_RDF_TRIPLE_S Methods.. 1-12
1–5 SDO_RDF_TRIPLE_S Constructor to Insert a Triple.. 1-13
1–6 SDO_RDF_TRIPLE_S Constructor to Reusing a Blank Node ... 1-14
1–7 SDO_RDF_MATCH Table Function ... 1-16
1–8 Using an RDF Model for Journal Article Information.. 1-19
1–9 Using an RDF Model for Family Information ... 1-22

vi

List of Tables

1–1 MDSYS.RDF_MODEL$ Table Columns... 1-2
1–2 MDSYS.RDFM_model-name View Columns .. 1-3
1–3 MDSYS.RDF_NAMESPACE$ Table Columns .. 1-4
1–4 MDSYS.RDF_VALUE$ Table Columns.. 1-4
1–5 MDSYS.RDFR_rulebase-name View Columns.. 1-8
1–6 MDSYS.RDF_RULEBASE_INFO View Columns ... 1-9
1–7 MDSYS.RDF_RULES_INDEX_INFO View Columns.. 1-10
1–8 MDSYS.RDF_RULES_INDEX_DATASETS View Columns... 1-10
1–9 RDF Metadata Tables and Views.. 1-11

vii

List of Figures

1–1 Family Tree for RDF Example.. 1-22

viii

ix

Preface

Oracle Spatial Resource Description Framework (RDF) provides usage and reference
information about the support for the Resource Description Framework (RDF) in the
Oracle Spatial network data model.

Audience
This guide is intended for those who need to use the Oracle RDF object type to
manage RDF data in the database.

It is helpful if you are familiar with Spatial network data model, as documented in
Oracle Spatial Topology and Network Data Models.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

x

Related Documents
For information about the network data model, see Oracle Spatial Topology and Network
Data Models.

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by range.
Once you find the specific range, use your browser's "find in page" feature to locate the
specific message. When connected to the Internet, you can search for a specific error
message using the error message search feature of the Oracle online documentation.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, go to the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

RDF Overview 1-1

1
RDF Overview

This chapter describes the support for the Resource Description Framework (RDF) in
the Oracle Spatial network data model. It assumes that you are familiar with the major
concepts associated with RDF, such as reification, containers, and collections. This
chapter does not explain these concepts in detail, but focuses instead on how the
concepts are implemented in the network data model. For an excellent explanation of
RDF concepts, see the World Wide Web Consortium (W3C) RDF Primer at
http://www.w3.org/TR/rdf-primer/.

It is also helpful is you are familiar with the concepts and techniques of the network
data model, as described in Oracle Spatial Topology and Network Data Models.

The PL/SQL subprograms for working with RDF are in the SDO_RDF package, which
is documented in Chapter 2, and in the SDO_RDF_INFERENCE package, which is
documented in Chapter 3.

This chapter contains the following major sections:

■ Section 1.1, "RDF and the Network Data Model"

■ Section 1.2, "RDF Data Model in the Database"

■ Section 1.3, "RDF Metadata Tables and Views"

■ Section 1.4, "RDF Data Types, Constructors, and Methods"

■ Section 1.5, "Using the SDO_RDF_MATCH Table Function to Query RDF Data"

■ Section 1.6, "Loading and Exporting RDF Data"

■ Section 1.7, "Quick Start for Using RDF"

■ Section 1.8, "RDF Examples"

■ Section 1.9, "README File for Spatial and Related Features"

1.1 RDF and the Network Data Model
RDF is a language used to describe metadata, particularly for information found on
the Web. In addition to its formal semantics, RDF has a simple data structure that is
effectively modeled using a directed graph. To describe metadata in the network data
model implementation of RDF, the metadata statements are represented as triples:
nodes are used to represent two parts of the triple, and the third part is represented by
a directed link that describes the relationship between the nodes. The triples are stored
in a logical network. In addition, Spatial maintains information about different RDF
models.

RDF statements are expressed in triples: {subject or resource, predicate or property,
object or value}. In this chapter {subject, property, object} is used to describe a triple,

RDF Data Model in the Database

1-2 Oracle Spatial Resource Description Framework (RDF)

and the terms statement and triple may sometimes be used interchangeably. Each triple
is a complete and unique fact about a specific domain, and can be represented by a
link in a directed graph.

In additional to logical network information, spatial information such as node
locations and link geometries can be associated with the network.

1.2 RDF Data Model in the Database
There is one universe for all RDF data stored in the database. All RDF triples are
parsed and stored in the system as entries in tables under the MDSYS schema. An RDF
triple {subject, property, object} is treated as one database object. As a result, a single
RDF document containing multiple triples results in multiple database objects.

All the subjects and objects of triples are mapped to nodes in a network, and
properties are mapped to network links that have their start node and end node as
subject and object, respectively. The possible node types in an RDF network are blank
nodes, URIs, plain literals, and typed literals. Oracle Database has a type named
URIType to hold instances of any URI (HttpUri, DBUri, and XDBUri). This type is
used to store the names of the nodes and links in the RDF network.

The following RDF requirements apply to the specifications of URIs and the storage of
RDF data in the database:

■ A subject must be a URI or a blank node.

■ A property must be a URI.

■ An object can be any type, such as a URI, a blank node, or a literal. (However, null
values and null strings are not supported.)

1.2.1 Metadata for RDF Models
The MDSYS.RDF_MODEL$ system table contains information about all RDF models
defined in the database. When you create a model using the SDO_RDF.CREATE_RDF_
MODEL procedure, you specify a name for the model, as well as a table and column to
hold references to the RDF data, and the system automatically generates a model ID.

Oracle maintains the MDSYS.RDF_MODEL$ table automatically when you create and
drop RDF models. Users should never modify this table directly. For example, do not
use SQL INSERT, UPDATE, or DELETE statements with this table.

The MDSYS.RDF_MODEL$ table contains the columns shown in Table 1–1.

When you create an RDF model, a view for the RDF triples associated with the model
is also created under the MDSYS schema. This view has a name in the format RDFM_

Table 1–1 MDSYS.RDF_MODEL$ Table Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the RDF model.

MODEL_ID NUMBER Unique model ID number, automatically generated by
Spatial.

MODEL_NAME VARCHAR2(25) Name of the model.

TABLE_NAME VARCHAR2(32) Name of the table to hold references to RDF data for
the model.

COLUMN_
NAME

VARCHAR2(32) Name of the column of type SDO_RDF_TRIPLE_S in
the table to hold references to RDF data for the model.

RDF Data Model in the Database

RDF Overview 1-3

model-name, and it is visible only to the owner of the model and to users with suitable
privileges. Each MDSYS.RDFM_model-name view contains a row for each triple (stored
as a link in a network), and it has the columns shown in Table 1–2.

1.2.2 Namespaces
The MDSYS.RDF_NAMESPACE$ system table contains information about
namespaces. Namespaces are used in RDF XML documents to make the documents
more readable. In the Oracle RDF data model, namespaces are stored directly with
their subjects, properties, and objects. However, Oracle does not use the MDSYS.RDF_
NAMESPACE$ table in any of its internal operations; the table is provided as a
convenience to users who may want to store namespaces that are used in their models.

Table 1–2 MDSYS.RDFM_model-name View Columns

Column Name Data Type Description

LINK_ID NUMBER The unique triple identifier and part of the
primary key

START_NODE_ID NUMBER The VALUE_ID for the text value of the subject of
the triple. Also part of the primary key.

END_NODE_ID NUMBER The VALUE_ID for the text value of the object of
the triple

CANON_END_
NODE_ID

NUMBER The VALUE_ID for the text value of the canonical
form of the object of the triple. Also part of the
primary key.

LINK_TYPE VARCHAR2(200) The type of predicate represented by the URI of
the P_VALUE_ID. STANDARD, RDF_MEMBER, and
RDF_TYPE are some of the supported types.

ACTIVE VARCHAR2(1) The status of the link in the network: contains Y if
the link is active; contains N if the link is not
active.

LINK_LEVEL NUMBER Priority level for the link; used for hierarchical
modeling, so that links with higher priority levels
can be considered first in computing a path.

COST NUMBER The number of times the triple is stored in an
application table. The triple is only stored once in
an RDF system table, but may exist in several
rows in a user’s application table.

PARENT_LINK_ID NUMBER Link ID of the parent link of this link

BIDIRECTED VARCHAR2(1) Contains Y if the link is bidirected (that is, can be
traversed either from the start node to the end
node or from the end node to the start node), or N
if the link is unidirected (in one direction only,
from the start node to the end node).

P_VALUE_ID NUMBER The VALUE_ID for the text value of the predicate
of the triple

CONTEXT VARCHAR2(1) Reserved for future use; currently D.

REIF_LINK VARCHAR2(1) Reserved for future use; currently N.

MODEL_ID NUMBER The ID for the RDF graph to which the triple
belongs. It logically partitions the table by RDF
graphs.

RDF Data Model in the Database

1-4 Oracle Spatial Resource Description Framework (RDF)

Oracle adds to the MDSYS.RDF_NAMESPACE$ table automatically when you add
namespaces using the SDO_RDF.ADD_NAMESPACES procedure. Do not use SQL
INSERT statements to add namespaces this table.

The MDSYS.RDF_NAMESPACE$ table contains the columns shown in Table 1–3.

1.2.3 Statements
The MDSYS.RDF_VALUE$ system table contains information about the subjects,
properties, and objects used to represent RDF statements. It uniquely stores the text
values (URIs or literals) for these three pieces of information, using a separate row for
each part of each triple.

Oracle maintains the MDSYS.RDF_VALUE$ table automatically. Users should never
modify this table directly. For example, do not use SQL INSERT, UPDATE, or DELETE
statements with this table.

The RDF_VALUE$ table contains the columns shown in Table 1–4.

Table 1–3 MDSYS.RDF_NAMESPACE$ Table Columns

Column Name Data Type Description

NAMESPACE_ID NUMBER Unique namespace ID number, automatically generated
by Spatial.

NAMESPACE_
NAME

SYS.URITYPE Name of the namespace. Currently, namespaces are used
by the Spatial network data model only for cataloging.

Table 1–4 MDSYS.RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_ID NUMBER Unique value ID number, automatically generated by
Spatial.

VALUE_NAME SYS.URITYPE Text value for one part of the triple, if the length is
4000 characters or less. (Otherwise, the text is stored in
the LONG_VALUE column.)

VALUE_TYPE VARCHAR2(10) The type of text information stored in the VALUE_
NAME column. Possible values: UR for URI, BN for
blank node, PL for plain literal, PL@ for plain literal
with a language tag, PLL for plain long literal, PLL@
for plain long literal with a language tag, TL for typed
literal, or TLL for typed long literal. A long literal is a
literal with more than 4000 characters.

LITERAL_TYPE VARCHAR2(4000) For typed literals, the type information; otherwise,
null. For example, for a row representing a creation
date of 1999-08-16, the VALUE_TYPE column can
contain TL, and the LITERAL_TYPE column can
contain
http://www.w3.org/2001/XMLSchema#date.

LANGUAGE_
TYPE

VARCHAR2(80) Language tag (for example, fr for French) for a literal
with a language tag (that is, if VALUE_TYPE is PL@ or
PLL@). Otherwise, this column has a null value.

LONG_VALUE CLOB The character string if the length of the part of the
triple is greater than 4000 characters. Otherwise, this
column has a null value.

RDF Data Model in the Database

RDF Overview 1-5

1.2.3.1 Triple Uniqueness and Data Types for Literals
Duplicate triples are not stored in the database. To check if a triple is a duplicate of an
existing triple, the subject, property, and object of the incoming triple are checked
against triple values in the specified model. If the incoming subject, property, and
object are all URIs, an exact match of their values determines a duplicate. However, if
the object of incoming triple is a literal, an exact match of the subject and property, and
a value (canonical) match of the object, determine a duplicate. For example, the
following two triples are duplicates:

<eg:a> <eg:b> "123"^^http://www.w3.org/2001/XMLSchema#int
<eg:a> <eg:b> "123"^^http://www.w3.org/2001/XMLSchema#unsignedByte

The second triple is treated as a duplicate of the first, because
"123"^^http://www.w3.org/2001/XMLSchema#int has an equivalent value (is
canonically equivalent) to
"123"^^http://www.w3.org/2001/XMLSchema#unsignedByte. Two entities
are canonically equivalent if they can be reduced to the same value.

To use a non-RDF example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all convert
into the same canonical form.

Value-based matching of lexical forms is supported for the following data types:

■ STRING: plain literal, xsd:string and some of its XML Schema subtypes

■ NUMERIC: xsd:decimal and its XML Schema subtypes, xsd:float, and xsd:double.
(Support is not provided for float/double INF, -INF, and NaN values.)

■ DATETIME: xsd:datetime, but no support for timezone. (Even without timezone
there are still multiple representations for a single value, for example,
"2004-02-18 T15:12:54" and "2004-02-18 T15:12:54.0000".)

■ DATE: xsd:date, but no support for timezone. (In this case, because timezone is not
supported, all valid lexical representations are already canonical, so these can be
treated like the OTHER case in the next item.)

■ OTHER: Everything else. (No attempt is made to match different representations).

The following namespace definition is used:
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

The first occurrence of a literal in the RDF_VALUE$ table is taken as the canonical
form and given the VALUE_TYPE value of CPL, CPL@, CTL, CPLL, CPLL@, or CTLL as
appropriate; that is, a C for canonical is prefixed to the actual value type. If a literal
with the same canonical form (but a different lexical representation) as a previously
inserted literal is inserted into the RDF_VALUE$ table, the VALUE_TYPE value
assigned to the new insert is PL, PL@, TL, PLL, PLL@, or TLL as appropriate.

Canonically equivalent text values having different lexical representations are thus
stored in the RDF_VALUE$ table; however, canonically equivalent triples are not
stored in the database.

1.2.4 Subjects and Objects
RDF subjects and objects are mapped to nodes in the network data model. Subject
nodes are the start nodes of links, and object nodes are the end nodes of links.
Non-literal nodes (that is, URIs and blank nodes) can be used as both subject and
object nodes. Literals can be used only as object nodes.

RDF Data Model in the Database

1-6 Oracle Spatial Resource Description Framework (RDF)

1.2.5 Blank Nodes
RDF triples may have unknown subject nodes and unknown object nodes. Blank
nodes are used to represent these unknown nodes. Blank nodes are also used when the
relationship between a subject node and an object node is n-ary (as is the case with
containers). A new entry is made for each blank node encountered in a triple.

By default, no two blank nodes corresponding to two different objects will be mapped
to the same network node; however, you can optionally reuse a specific blank node. To
reuse a blank node, you must use the blank node constructor (described in
Section 1.4.2) to input the RDF triple. The blank node constructor is required for
inserting containers (see Section 1.2.8) and collections (see Section 1.2.9).

1.2.6 Properties
RDF properties are mapped to links that have their start node and end node as RDF
subjects and objects, respectively. Therefore, a link represents a complete RDF triple.

When a triple is inserted into an RDF model, the subject, property, and object text
values are checked to see if they already exist in the database. If they already exist (due
to previous statements in other models), no new entries are made; if they do not exist,
three new rows are inserted into the RDF_VALUE$ table (described in Section 1.2.3).

1.2.7 Reification and Reification Quads
Reification of an RDF statement is a means of providing metadata for that statement; it
is the action that enables the statement to be used as the subject or object in another
RDF statement.

Consider a plain English example in which the statement PersonA is a good job candidate
is reified. Assume that the following statements are then made, using the reified
statement as the object:

■ PersonB says that PersonA is a good job candidate.

■ PersonC denies that PersonA is a good job candidate.

For PersonB and PersonC to be able to make such statements, a reification quad for
the statement PersonA is a good job candidate must exist in the database, in a form such
as the following:

<a:Stmt1, rdf:type, rdf:Statement>
<a:Stmt1, rdf:subject, a:PersonA>
<a:Stmt1, rdf:predicate, a:CandidateQuality>
<a:Stmt1, rdf:object, "Good">

(In the preceding statements, a: represents a namespace.)

PersonB and PersonC can then make their statements about PersonA, in forms like the
following:

<a:PersonB, a:Says, a:Stmt1>
<a:PersonC, a:Denies, a:Stmt1>

You can use the SDO_RDF.IS_REIFIED_QUAD function to see if a reified quad for a
statement exists in the database. Using the preceding example, the following query:

SELECT SDO_RDF.IS_REIFIED_QUAD('candidates', 'a:PersonA', 'a:CandidateQuality',
'Good') FROM DUAL;

returns the following result:

RDF Data Model in the Database

RDF Overview 1-7

<a:Stmt1> <rdf:type> <rdf:Statement>

In the current release, you cannot reify statements. However, if your data includes
reified statements, the RDF model stores the reification quads.

1.2.8 Containers
A container is a resource that contains things. The contained things are called
members. The members of a container may be resources (including blank nodes) or
literals. RDF defines three types of containers, which are explained in the World Wide
Web Consortium RDF Primer as follows:

■ A Bag (a resource having type rdf:Bag) represents a group of resources or literals,
possibly including duplicate members, where there is no significance in the order
of the members.

■ A Sequence or Seq (a resource having type rdf:Seq) represents a group of
resources or literals, possibly including duplicate members, where the order of the
members is significant.

■ An Alternative or Alt (a resource having type rdf:Alt) represents a group of
resources or literals that are alternatives (typically for a single value of a property).
For example, an Alt might be used to describe alternative language translations for
the title of a book, or to describe a list of alternative Internet sites at which a
resource might be found. An application using a property whose value is an Alt
container should be aware that it can choose any one of the members of the group
as appropriate.

In the Oracle RDF data model, containers follow the general rules for triple insertion.
A blank node is first created with a VALUE_NAME in the following format:

‘_:ORABNNode_id’. Triple {_:ORABNNode_id, rdf:type, containerType}

Triples {_:ORABNNode_id, rdf:_member#, containerValue} are then
inserted for each container. As with other triples, the containerValue object will be
reused if this node already exists in the database. The links for container members
have their LINK_TYPE set to RDF_MEMBER.

1.2.9 Collections
In the Oracle RDF data model, collections are handled similarly to containers, except
an additional constraint is enforced. A blank node is first created with a VALUE_
NAME in the following format:

‘_:ORABNNode_id’. Triple {_:ORABNNode_id, rdf:type, rdf:List}

Triples {_:ORABNNode_id, rdf:_member#, listValue} are then inserted for
each collection. As with other triples, the listValue object will be reused if this node
already exists in the database. Because collections are closed, a constraint is enforced
such that no new members can be added to the list. The links for collection members
have their LINK_TYPE set to RDF_MEMBER.

1.2.10 Rules and Rulebases
A rule is an object that can be applied to draw inferences from RDF data. A rule is
identified by a name and consists of:

■ An IF side pattern for the antecedents

RDF Data Model in the Database

1-8 Oracle Spatial Resource Description Framework (RDF)

■ An optional filter condition that further restricts the subgraphs matched by the IF
side pattern

■ A THEN side pattern for the consequents

For example, the rule that a chairperson of a conference is also a reviewer of the conference
could be represented as follows:

('chairpersonRule', -- rule name
 ‘(?r :ChairPersonOf ?c)’, -- IF side pattern
 NULL, -- filter condition
 ‘(?r :ReviewerOf ?c)’, -- THEN side pattern
 SDO_RDF_Aliases (MDSYS.RDF_Alias('', 'http://some.org/test/'))
)

In this case, the rule does not have a filter condition, so that component of the
representation is NULL. Note that a THEN side pattern with more than one triple can
be used to infer multiple triples for each IF side match.

A rulebase is an object that contains rules. Two Oracle-supplied rulebases are
provided:

■ RDFS

■ RDF (a subset of RDFS)

The RDFS and RDF rulebases are created when you call the SDO_RDF.CREATE_RDF_
NETWORK procedure to add RDF support to the database. The RDFS rulebase
implements the RDFS entailment rules, as described in the World Wide Web
Consortium (W3C) RDF Semantics document at http://www.w3.org/TR/rdf-mt/.
The RDF rulebase represents the RDF entailment rules, which are a subset of the RDFS
entailment rules. You can see the contents of these rulebases by examining the
MDSYS.RDFR_RDFS and MDSYS.RDFR_RDF views.

You can also create user-defined rulebases using the SDO_RDF_
INFERENCE.CREATE_RULEBASE procedure. User-defined rulebases enable you to
provide additional specialized inferencing capabilities.

For each rulebase, a system table is created to hold rules in the rulebase, along with a
system view with a name in the format MDSYS.RDFR_rulebase-name (for example,
MDSYS.RDFR_FAMILY_RB for a rulebase named FAMILY_RB). You must use this
view to insert, delete, and modify rules in the rulebase. Each MDSYS.RDFR_
rulebase-name view has the columns shown in Table 1–5.

Information about all rulebases is maintained in the MDSYS.RDF_RULEBASE_INFO
view, which has the columns shown in Table 1–6 and one row for each rulebase.

Table 1–5 MDSYS.RDFR_rulebase-name View Columns

Column Name Data Type Description

RULE_NAME VARCHAR2(30) Name of the rule

ANTECEDENTS VARCHAR2(4000) IF side pattern for the antecedents

FILTER VARCHAR2(4000) Filter condition that further restricts the subgraphs
matched by the IF side pattern. Null indicates no filter
condition is to be applied

CONSEQUENTS VARCHAR2(4000) THEN side pattern for the consequents

ALIASES SDO_RDF_
ALIASES

One or more namespaces to be used. (The SDO_RDF_
ALIASES data type is described in Section 1.5.)

RDF Data Model in the Database

RDF Overview 1-9

Example 1–1 creates a rulebase named family_rb, and then inserts a rule named
grandparent_rule into the family_rb rulebase. This rule says that if a person is
the parent of a child who is the parent of a child, that person is a grandparent of (that
is, has the grandParentOf relationship with respect to) his or her child’s child. It also
specifies a namespace to be used. (This example is an excerpt from Example 1–9 in
Section 1.8.2.)

Example 1–1 Inserting a Rule into a Rulebase

EXECUTE SDO_RDF_INFERENCE.CREATE_RULEBASE('family_rb');

INSERT INTO mdsys.rdfr_family_rb VALUES(
 'grandparent_rule',
 '(?x :parentOf ?y) (?y :parentOf ?z)',
 NULL,
 '(?x :grandParentOf ?z)',
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')));

You can specify one or more rulebases when calling the SDO_RDF_MATCH table
function (described in Section 1.5), to control the behavior of queries against RDF data.
Example 1–2 refers to the family_rb rulebase and to the grandParentOf
relationship created in Example 1–1, to find all grandfathers (grandparents who are
male) and their grandchildren. (This example is an excerpt from Example 1–9 in
Section 1.8.2.)

Example 1–2 Using Rulebases for Inferencing

-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x, y
 FROM TABLE(SDO_RDF_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS','family_rb'),
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')),
 null));

1.2.11 Rules Indexes
A rules index is an object containing precomputed triples that can be inferred from
applying a specified set of rulebases to a specified set of models. If an SDO_RDF_
MATCH query refers to any rulebases, a rules index must exist for each
rulebase-model combination in the query.

Table 1–6 MDSYS.RDF_RULEBASE_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the rulebase

RULEBASE_
NAME

VARCHAR2(25) Name of the rulebase

RULEBASE_
VIEW_NAME

VARCHAR2(30) Name of the view that you must use for any SQL
statements that insert, delete, or modify rules in the
rulebase

STATUS VARCHAR2(30) Contains VALID if the rulebase is valid, INPROGRESS
if the rulebase is being created, or FAILED if a system
failure occurred during the creation of the rulebase.

RDF Data Model in the Database

1-10 Oracle Spatial Resource Description Framework (RDF)

To create a rules index, use the SDO_RDF_INFERENCE.CREATE_RULES_INDEX
procedure. To drop (delete) a rules index, use the SDO_RDF_INFERENCE.DROP_
RULES_INDEX procedure.

When you create a rules index, a view for the RDF triples associated with the rules
index is also created under the MDSYS schema. This view has a name in the format
RDFI_rules-index-name, and it is visible only to the owner of the rules index and to
users with suitable privileges. Each MDSYS.RDFI_rules-index-name view contains a
row for each triple (stored as a link in a network), and it has the same columns as the
RDFM_model-name view, which is described in Table 1–2 in Section 1.2.1.

Information about all rules indexes is maintained in the MDSYS.RDF_RULES_INDEX_
INFO view, which has the columns shown in Table 1–7 and one row for each rules
index.

Information about all database objects, such as models and rulebases, related to rules
indexes is maintained in the MDSYS.RDF_RULES_INDEX_DATASETS view. This
view has the columns shown in Table 1–8 and one row for each unique combination of
values of all the columns.

Example 1–3 creates a a rules index named family_rb_rix_family, using the
family model and the RDFS and family_rb rulebases. (This example is an excerpt
from Example 1–9 in Section 1.8.2.)

Example 1–3 Creating a Rules Index

BEGIN
 SDO_RDF_INFERENCE.CREATE_RULES_INDEX(

Table 1–7 MDSYS.RDF_RULES_INDEX_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the rules index

INDEX_NAME VARCHAR2(25) Name of the rules index

INDEX_VIEW_
NAME

VARCHAR2(30) Name of the view that you must use for any SQL
statements that insert, delete, or modify rules in the
rules index

STATUS VARCHAR2(30) Contains VALID if the rules index is valid, INVALID if
the rules index is not valid, INCOMPLETE if the rules
index is incomplete (similar to INVALID but requiring
less time to re-create), INPROGRESS if the rules index
is being created, or FAILED if a system failure
occurred during the creation of the rules index.

MODEL_COUNT NUMBER Number of RDF models included in the rules index

RULEBASE_
COUNT

NUMBER Number of rulebases included in the rules index

Table 1–8 MDSYS.RDF_RULES_INDEX_DATASETS View Columns

Column Name Data Type Description

INDEX_NAME VARCHAR2(25) Name of the rules index

DATA_TYPE VARCHAR2(8) Type of data included in the rules index. Examples:
MODEL and RULEBASE

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE
column

RDF Metadata Tables and Views

RDF Overview 1-11

 'rdfs_rix_family',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS','family_rb'));
END;
/

1.2.12 RDF Security Considerations
The following database security considerations apply to the use of RDF:

■ When a model or rules index is created, the owner gets the SELECT privilege with
the GRANT option on the associated view. Users that have the SELECT privilege
on these views can perform SDO_RDF_MATCH queries against the associated
model or rules index.

■ When a rulebase is created, the owner gets the SELECT, INSERT, UPDATE, and
DELETE privileges on the rulebase, with the GRANT option. Users that have the
SELECT privilege on a rulebase can create a rules index that includes the rulebase.
The INSERT, UPDATE, and DELETE privileges control which users can modify
the rulebase and how they can modify it.

■ To perform data manipulation language (DML) operations on a model, a user
must have DML privileges for the corresponding base table.

■ The creator of the base table corresponding to a model can grant privileges to
other users.

■ To perform data manipulation language (DML) operations on a rulebase, a user
must have the appropriate privileges on the corresponding database view.

■ The creator of a model can grant SELECT privileges on the corresponding
database view to other users.

■ A user can query only those models for which that user has SELECT privileges to
the corresponding database views.

■ Only the creator of a model or a rulebase can drop it.

1.3 RDF Metadata Tables and Views
The Spatial network data model maintains several tables and views in the MDSYS
schema to hold RDF-related metadata. (Some of these tables and views are created by
the SDO_RDF.CREATE_RDF_NETWORK procedure, as explained in Section 1.7, and
some are created only as needed.) Table 1–9 lists the tables and views in alphabetical
order. (In addition, several tables and views are created for Oracle internal use, and
these are accessible only by users with DBA privileges.)

Table 1–9 RDF Metadata Tables and Views

Name Contains Information About Described In

RDF_MODEL$ All RDF models defined in the database Section 1.2.1

RDFM_model-name Triples in the specified model Section 1.2.1

RDF_NAMESPACE$ Namespaces that can be used in RDF XML
documents

Section 1.2.2

RDF_RULEBASE_
INFO

Rulebases Section 1.2.10

RDF_RULES_INDEX_
DATASETS

Database objects used in rules indexes Section 1.2.11

RDF Data Types, Constructors, and Methods

1-12 Oracle Spatial Resource Description Framework (RDF)

1.4 RDF Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE object type represents RDF data in triple format, and the SDO_
RDF_TRIPLE_S object type (the _S for storage) stores persistent RDF data in the
database. The SDO_RDF_TRIPLE_S type has references to the data, because the actual
RDF data is stored only in the central RDF schema. This type has methods to retrieve
the entire triple or part of the triple.

The SDO_RDF_TRIPLE type is used to display RDF triples, whereas the SDO_RDF_
TRIPLE_S type is used to store the RDF triples in database tables.

The SDO_RDF_TRIPLE object type has the following attributes:

SDO_RDF_TRIPLE (
 subject VARCHAR2(4000),
 property VARCHAR2(4000),
 object VARCHAR2(10000))

The SDO_RDF_TRIPLE_S object type has the following attributes:

SDO_RDF_TRIPLE_S (
 RDF_T_ID NUMBER, -- RDF triple ID (link ID)
 RDF_M_ID NUMBER, -- RDF model ID
 RDF_S_ID NUMBER, -- Subject value ID
 RDF_P_ID NUMBER, -- Property value ID
 RDF_O_ID NUMBER) -- Object value ID

Two of the ID values stored in the SDO_RDF_TRIPLE_S type (RDF_T_ID and RDF_M_
ID) together uniquely identify an RDF statement in the database.

The SDO_RDF_TRIPLE_S type has the following methods that retrieve a triple or a
part (subject, property, or object) of a triple:

GET_TRIPLE() RETURNS SDO_RDF_TRIPLE
GET_SUBJECT() RETURNS VARCHAR2
GET_PROPERTY() RETURNS VARCHAR2
GET_OBJECT() RETURNS CLOB

Example 1–4 shows the SDO_RDF_TRIPLE_S methods.

Example 1–4 SDO_RDF_TRIPLE_S Methods

SELECT a.triple.GET_TRIPLE() AS triple
 FROM articles_rdf_data a WHERE a.id = 1;

TRIPLE(SUBJECT, PROPERTY, OBJECT)
--
SDO_RDF_TRIPLE('http://www.nature.com/nature/Article1', 'http://purl.org/dc/elem
ents/1.1/title', 'All about XYZ')

RDF_RULES_INDEX_
INFO

Rules indexes Section 1.2.11

RDF_VALUE$ Subjects, properties, and objects used to
represent RDF statements

Section 1.2.3

RDFR_rulebase-name Rules in the specified rulebase Section 1.2.10

RDFI_rules-index-name Triples in the specified rules index Section 1.2.11

Table 1–9 (Cont.) RDF Metadata Tables and Views

Name Contains Information About Described In

RDF Data Types, Constructors, and Methods

RDF Overview 1-13

SELECT a.triple.GET_SUBJECT() AS subject
 FROM articles_rdf_data a WHERE a.id = 1;

SUBJECT
--
http://www.nature.com/nature/Article1

SELECT a.triple.GET_PROPERTY() AS property
 FROM articles_rdf_data a WHERE a.id = 1;

PROPERTY
--
http://purl.org/dc/elements/1.1/title

SELECT a.triple.GET_OBJECT() AS object
 FROM articles_rdf_data a WHERE a.id = 1;

OBJECT
--
All about XYZ

1.4.1 Constructor for Inserting Triples
The following constructor formats are available for inserting triples into an RDF model
table. The only difference is that in the second format the data type for the object is
CLOB, to accommodate very long literals.

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 subject VARCHAR2, -- Subject
 property VARCHAR2, -- Property
 object VARCHAR2) -- Object
 RETURN SELF;

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 subject VARCHAR2, -- Subject
 property VARCHAR2, -- Property
 object CLOB) -- Object
 RETURN SELF;

Example 1–5 uses the first constructor format to insert a triple.

Example 1–5 SDO_RDF_TRIPLE_S Constructor to Insert a Triple

INSERT INTO articles_rdf_data VALUES (2,
 sdo_rdf_triple_s ('articles','<http://www.nature.com/nature/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"Jane Smith"'));

1.4.2 Constructor for Reusing Blank Nodes
The following constructor formats are available for inserting triples referring to blank
nodes into an RDF model table. The only difference is that in the second format the
data type for the fourth attribute is CLOB, to accommodate very long literals.

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 sub_or_bn VARCHAR2, -- Subject or blank node

Using the SDO_RDF_MATCH Table Function to Query RDF Data

1-14 Oracle Spatial Resource Description Framework (RDF)

 property VARCHAR2, -- Property
 obj_or_bn VARCHAR2, -- Object or blank node
 bn_m_id NUMBER) -- ID of the model from which to reuse the blank node
 RETURN SELF;

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 sub_or_bn VARCHAR2, -- Subject or blank node
 property VARCHAR2, -- Property
 object CLOB, -- Object
 bn_m_id NUMBER) -- ID of the model from which to reuse the blank node
 RETURN SELF;

Example 1–6 uses the first constructor format to insert a triple that reuses a blank node
for the subject.

Example 1–6 SDO_RDF_TRIPLE_S Constructor to Reusing a Blank Node

INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S(
 ‘nsu’,
 '_:BNSEQN1001A',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq>',
 4));

1.5 Using the SDO_RDF_MATCH Table Function to Query RDF Data
To query RDF data, use the SDO_RDF_MATCH table function. This function has the
following attributes:

SDO_RDF_MATCH(
 query VARCHAR2,
 models SDO_RDF_MODELS,
 rulebases SDO_RDF_RULEBASES,
 aliases SDO_RDF_ALIASES,
 filter VARCHAR2,
 index_status VARCHAR2
) RETURN ANYDATASET;

The query attribute is required. The other attributes are optional (that is, each can be a
null value).

The query attribute is a string literal (or concatenation of string literals) with one or
more triple patterns, usually containing variables. (The query attribute cannot be a
bind variable or an expression involving a bind variable.) A triple pattern is a triple of
atoms enclosed in parentheses. Each atom can be a variable (for example, ?x), a
qualified name (for example, rdf:type) that is expanded based on the default
namespaces and the value of the aliases attribute, or a full URI (for example,
<http://www.example.org/family/Male>). In addition, the third atom can be a
numeric literal (for example, 3.14), a plain literal (for example, "Herman"), a
language-tagged plain literal (for example, "Herman"@en), or a typed literal (for
example, "123"^^xsd:int).

For example, the following query attribute specifies three triple patterns to find
grandfathers (that is, grandparents who are also male) and the height of each of their
grandchildren:

'(?x :grandParentOf ?y) (?x rdf:type :Male) (?y :height ?h)'

Using the SDO_RDF_MATCH Table Function to Query RDF Data

RDF Overview 1-15

The models attribute identifies the RDF model or models to use. Its data type is SDO_
RDF_MODELS, which has the following definition: TABLE OF VARCHAR2(25)

The rulebases attribute identifies one or more rulebases whose rules are to be
applied to the query. Its data type is SDO_RDF_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25)

The aliases attribute identifies one or more namespaces, in addition to the default
namespaces, to be used for expansion of qualified names in the query pattern. Its data
type is SDO_RDF_ALIASES, which has the following definition: TABLE OF RDF_
ALIAS, where each RDF_ALIAS element identifies a namespace ID and namespace
value. The RDF_ALIAS data type has the following definition: (namespace_id
VARCHAR2(30), namespace_val VARCHAR2(4000))

The following default namespaces (namespace_id and namespace_val attributes)
are used by the SDO_RDF_MATCH table function:

('rdf', 'http://www.w3.org/1999/02/22-rdf-syntax-ns#')
('rdfs', 'http://www.w3.org/2000/01/rdf-schema#')
('xsd', 'http://www.w3.org/2001/XMLSchema#')

You can override any of these defaults by specifying the namespace_id value and a
different namespace_val value in the aliases attribute.

The filter attribute identifies any additional selection criteria. If this attribute is not
null, it should be a string in the form of a WHERE clause without the WHERE keyword.
For example: ’(h >= 6)’ to limit the result to cases where the height of the
grandfather’s grandchild is 6 or greater (using the example of triple patterns earlier in
this section).

The index_status attribute lets you query RDF data even when the relevant rules
index does not have a valid status. If this attribute is null, the query returns an error if
the rules index does not have a valid status. If this attribute is not null, it must be the
string INCOMPLETE or INVALID. For an explanation of query behavior with different
index_status values, see Section 1.5.1.

The SDO_RDF_MATCH table function returns an object of type ANYDATASET, with
elements that depend on the input variables. In the following explanations, var
represents the name of a variable used in the query:

■ For each variable var that may be a literal (that is, for each variable that appears
only in the object position in the query pattern), the result elements have five
attributes: var, var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, and var$RDFLANG.

■ For each variable var that cannot take a literal value, the result elements have two
attributes: var and var$RDFVTYP.

In both cases, var has the lexical value bound to the variable, var$RDFVTYP indicates
the type of value bound to the variable (URI, LIT [literal], or BLN [blank node]),
var$RDFCLOB has the lexical value bound to the variable if the value is a long literal,
var$RDFLTYP indicates the type of literal bound if a literal is bound, and
var$RDFLANG has the language tag of the bound literal if a literal with language tag
is bound. var$RDFCLOB is of type CLOB, while all other attributes are of type
VARCHAR2.

Example 1–7 selects all grandfathers (grandparents who are male) and their
grandchildren from the family RDF model, using inferencing from both the RDFS
and family_rb rulebases. (This example is an excerpt from Example 1–9 in
Section 1.8.2.)

Loading and Exporting RDF Data

1-16 Oracle Spatial Resource Description Framework (RDF)

Example 1–7 SDO_RDF_MATCH Table Function

SELECT x, y
 FROM TABLE(SDO_RDF_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS','family_rb'),
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')),
 null));

1.5.1 Performing Queries with Incomplete or Invalid Rules Indexes
You can query RDF data even when the relevant rules index does not have a valid
status if you specify the string value INCOMPLETE or INVALID for the index_
status attribute of the SDO_RDF_MATCH table function. (The rules index status is
stored in the STATUS column of the MDSYS.RDF_RULES_INDEX_INFO view, which
is described in Section 1.2.11. The SDO_RDF_MATCH table function is described
inSection 1.5.)

The index_status attribute value affects the query behavior as follows:

■ If the rules index has a valid status, the query behavior is not affected by the value
of the index_status attribute.

■ If you provide no value or specify a null value for index_status, the query
returns an error if the rules index does not have a valid status.

■ If you specify the string INCOMPLETE for the index_status attribute, the query
is performed if the status of the rules index is incomplete or valid.

■ If you specify the string INVALID for the index_status attribute, the query is
performed regardless of the actual status of the rules index (invalid, incomplete, or
valid).

However, the following considerations apply if the status of the rules index is
incomplete or invalid:

■ If the status is incomplete, the content of a rules index may be approximate,
because some triples that are inferable (due to the recent insertions into the
underlying RDF models) may not actually be present in the rules index, and
therefore results returned by the query may be inaccurate.

■ If the status is invalid, the content of the rules index may be approximate, because
some triples that are no longer inferable (due to recent modifications to the
underlying models or rulebases, or both) may still be present in the rules index,
and this may affect the accuracy of the result returned by the query. In addition to
possible presence of triples that are no longer inferable, some inferable rows may
not actually be present in the rules index.

1.6 Loading and Exporting RDF Data
To load data RDF data into the Spatial network data model, you can use either the Java
application programming interface (API), as described in Section 1.6.1, or transactional
INSERT statements in SQL or PL/SQL, as described in Section 1.6.2.

To export RDF data, use the Java API, as described in Section 1.6.3.

1.6.1 Loading RDF Data
To load RDF data, the data must be in NTriple format. Two methods from the
NTripleConverter Java class are available for loading the data:

Loading and Exporting RDF Data

RDF Overview 1-17

■ nTriple2NDM(String, String, String) loads complete statements found
in the NTriple file.

■ nTriple2NDM(String, String, String, int) loads complete statements,
reusing blank nodes when the same blank node name appears in more than one
incoming statement. Use this method to load data with RDF containers or
collections, or to load data of unknown content.

If you use the Java API to load RDF data, the table to store references to the RDF data
must have a column named ID of type NUMBER and a column named TRIPLE of type
SDO_RDF_TRIPLE_S. The table can contain other columns, and the columns can be in
any order, but the table must contain at least these two columns.

To convert RDF/XML data to NTriple format, you have several options, including the
following:

■ You can use the Jena2 rdfparse() class. To use this class, download Jena2
(http://jena.sourceforge.net/downloads.html) and follow the
installation instructions. To covert an RDF/XML file to NTriple format using the
rdfparse() class, use a command in the following format:

java jena.rdfparse input.rdf > output.nt

■ You can edit the sample rss2insert.xsl or rssn2triple.xsl file to convert all the
features in the RDF/XML file. After editing the XSLT, download an XSLT
processor and follow the installation and usage instructions.

For information about using the NTripleConverter class, including how to compile
and run an example, see the README.txt file in the sdordf_converter.zip file,
which you can download from the Oracle Technology Network.

1.6.2 Loading RDF Data Using INSERT Statements
To load RDF data using INSERT statements, the data should be encoded using < >
(angle brackets) for URIs, _: (underscore colon) for blank nodes, and " " (quotation
marks) for literals. Spaces are not allowed in URIs or blank nodes. Use the SDO_RDF_
TRIPLE_S constructor to insert the data, as described in Section 1.4.1.

The following example includes statements with URIs, a blank node (the model_id for
nsu is 4), a literal, a literal with a language tag, and a typed literal:

INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://www.nature.com/nsu/rss.rdf>',
 '<http://purl.org/rss/1.0/title>', '"Nature''s Science Update"'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '_:BNSEQN1001A',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq>', 4));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu',
 '<http://www.nature.com/cgi-taf/dynapage.taf?file=/nature/journal/v428/n6978/index.html>',
 '<http://purl.org/dc/elements/1.1/language>', '"English”@en-GB'));
INSERT INTO nature VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://dx.doi.org/10.1038/428004b>',
 '<http://purl.org/dc/elements/1.1/date>', '"2004-03-04"^^xsd:date'));

To convert RDF/XML data to INSERT statements, you can edit the sample
rss2insert.xsl XSLT file to convert all the features in the RDF/XML file. The

Note: If URIs are not encoded with < > and literals with " ",
statements will still be processed. However, the statements will take
longer to load, since they will have to be further processed to
determine their VALUE_TYPE values.

Quick Start for Using RDF

1-18 Oracle Spatial Resource Description Framework (RDF)

blank node constructor is used to insert statements with blank nodes. After editing the
XSLT, download the Xalan XSLT processor (http://xml.apache.org/xalan) and
follow the installation instructions. To convert an RDF/XML file to INSERT statements
using your edited version of the rss2insert.xsl file, use a command in the
following format:

java org.apache.xalan.xslt.Process –in input.rdf -xsl rss2insert.xsl –out
output.nt

1.6.3 Exporting RDF Data
To output RDF data stored in the network data model to a file in NTriple format, use
the NTripleConverter Java class. The NDM2NTriple(String, int) method
exports all the triples stored for the specified model.

For information about using the NTriple converter class, see the README.txt file
in the sdordf_converter.zip file, which you can download from the Oracle
Technology Network.

1.7 Quick Start for Using RDF
To work with RDF objects in an Oracle database, follow these general steps:

1. Create a tablespace for the RDF system tables. You must be connected as a user
with appropriate privileges to create the tablespace. The following example creates
a tablespace named RDF_TBLSPACE:

CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

2. Create an RDF network.

Creating an RDF network adds RDF support to an Oracle database. You must
create an RDF network as a user with DBA privileges, specifying a valid
tablespace with adequate space. Create the network only once for an Oracle
database.

The following example creates an RDF network using a tablespace named RDF_
TBLSPACE (which must already exist):

EXECUTE SDO_RDF.CREATE_RDF_NETWORK('rdf_tblspace');

3. Connect as the database user under whose schema you will store your RDF data;
do not perform the following steps while connected as SYS, SYSTEM, or MDSYS.

4. Create a table to store references to the RDF data. (You do not need to be
connected as a user with DBA privileges for this step and the remaining steps.)

This table must contain a column of type SDO_RDF_TRIPLE_S, which will contain
references to all data associated with a single RDF model. It is recommended that
the table include a column named ID of type NUMBER and a column named
TRIPLE of type SDO_RDF_TRIPLE_S, because the default loaders provided by
Oracle assume that these columns exist.

The following example creates a table named ARTICLES_RDF_DATA:

CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);

5. Create an RDF model.

RDF Examples

RDF Overview 1-19

When you create an RDF model, you specify the model name, the table to hold
references to RDF data for the model, and the column of type SDO_RDF_TRIPLE_
S in that table.

The following command creates a model named ARTICLES, which will use the
table created in the preceding step.

EXECUTE SDO_RDF.CREATE_RDF_MODEL('articles', 'articles_rdf_data', 'triple');

6. Where possible, create Oracle database indexes on conditions that will be specified
in the WHERE clause of SELECT statements, to provide better performance for
such queries. The following example creates such indexes:

-- Create indexes on the subjects, properties, objects, and
-- triple IDs in the FAMILY_RDF_DATA table.
CREATE INDEX family_sub_idx ON family_rdf_data (triple.GET_SUBJECT());
CREATE INDEX family_prop_idx ON family_rdf_data (triple.GET_PROPERTY());
CREATE INDEX family_obj_idx ON family_rdf_data (TO_CHAR(triple.GET_OBJECT()));
CREATE INDEX family_tri_idx ON family_rdf_data (triple.rdf_t_id);

After you create the model, you can insert triples into the table, as shown in the
examples in Section 1.8.

1.8 RDF Examples
This section contains the following PL/SQL examples for the Resource Description
Framework:

■ Section 1.8.1, "Example: Journal Article Information"

■ Section 1.8.2, "Example: Family Information"

 These examples are adapted from RDF demos that are supplied with Oracle Spatial. If
you installed the demo files from the Companion CD, RDF demo files are under the
directory for Spatial network demo files.

1.8.1 Example: Journal Article Information
This section presents a simplified PL/SQL example of an RDF model for statements
about journal articles. Example 1–8 contains descriptive comments, refer to concepts
that are explained in this chapter, and uses functions and procedures documented in
Chapter 2.

Example 1–8 Using an RDF Model for Journal Article Information

-- Basic steps:
-- After you have connected as a privileged user and called
-- SDO_RDF.CREATE_RDF_NETWORK to add RDF support,
-- connect as a regular database user and do the following.
-- 1. For each desired RDF model, create a table to hold its data.
-- 2. For each RDF model, create an RDF model (SDO_RDF.CREATE_RDF_MODEL).
-- 3. For each table to hold RDF data, insert data into the table.
-- 4. Use various subprograms and consructors.

-- Create the table to hold data for the RDF model.
CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);

-- Create the RDF model.
EXECUTE SDO_RDF.CREATE_RDF_MODEL('articles', 'articles_rdf_data', 'triple');

RDF Examples

1-20 Oracle Spatial Resource Description Framework (RDF)

-- Information to be stored about some fictitious articles:
-- Article1, titled "All about XYZ" and written by Jane Smith, refers
-- to Article2 and Article3.
-- Article2, titled "A review of ABC" and written by Joe Bloggs,
-- refers to Article3.
-- Seven SQL statements to store the information. In each statement:
-- Each article is referred to by its complete URI The URIs in
-- this example are fictitious, although they are in the general
-- domain of the journal Nature (http://www.nature.com/nature/).
-- Each property is referred to by the URL for its definition, as
-- created by the Dublin Core Metadata Initiative.

-- Insert rows into the table.

-- Article1 has the title "All about XYZ".
INSERT INTO articles_rdf_data VALUES (1,
 sdo_rdf_triple_s ('articles','http://www.nature.com/nature/Article1',
 'http://purl.org/dc/elements/1.1/title','All about XYZ'));

-- Article1 was created (written) by Jane Smith.
INSERT INTO articles_rdf_data VALUES (2,
 sdo_rdf_triple_s ('articles','http://www.nature.com/nature/Article1',
 'http://purl.org/dc/elements/1.1/creator',
 'Jane Smith'));

-- Article1 references (refers to) Article2.
INSERT INTO articles_rdf_data VALUES (3,
 sdo_rdf_triple_s ('articles',
 'http://www.nature.com/nature/Article1',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article2'));

-- Article1 references (refers to) Article3.
INSERT INTO articles_rdf_data VALUES (4,
 sdo_rdf_triple_s ('articles',
 'http://www.nature.com/nature/Article1',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3'));

-- Article2 has the title "A review of ABC".
INSERT INTO articles_rdf_data VALUES (5,
 sdo_rdf_triple_s ('articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/elements/1.1/title',
 'A review of ABC'));

-- Article2 was created (written) by Joe Bloggs.
INSERT INTO articles_rdf_data VALUES (6,
 sdo_rdf_triple_s ('articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/elements/1.1/creator',
 'Joe Bloggs'));

-- Article2 references (refers to) Article3.
INSERT INTO articles_rdf_data VALUES (7,
 sdo_rdf_triple_s ('articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3'));

RDF Examples

RDF Overview 1-21

COMMIT;

 -- Add namespaces for cataloging.

EXECUTE SDO_RDF.ADD_NAMESPACES('http://www.w3.org-/2001/XMLSchema#', -
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#', -
 'http://purl.org/dc/terms#');

-- Query RDF data.

SELECT SDO_RDF.GET_MODEL_ID('articles') AS model_id FROM DUAL;

SELECT SDO_RDF.GET_TRIPLE_ID(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3') AS RDF_triple_id FROM DUAL;

SELECT SDO_RDF.IS_REIFIED_QUAD(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3') AS is_reified_quad
FROM DUAL;

SELECT SDO_RDF.IS_TRIPLE(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3') AS is_triple FROM DUAL;

-- Use SDO_RDF_TRIPLE_S member functions in queries.

SELECT a.triple.GET_TRIPLE() AS triple
 FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_SUBJECT() AS subject
 FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_PROPERTY() AS property
 FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_OBJECT() AS object
 FROM articles_rdf_data a WHERE a.id = 1;

1.8.2 Example: Family Information
This section presents a simplified PL/SQL example of an RDF model for statements
about family tree (genealogy) information. Example 1–8 contains descriptive
comments, refer to concepts that are explained in this chapter, and uses functions and
procedures documented in Chapter 2 and Chapter 3.

The family relationships in this example reflect the family tree shown in Figure 1–1.
This figure also shows some of the information directly stated in the example: Cathy is
the sister of Jack, Jack and Tom are male, and Cindy is female.

RDF Examples

1-22 Oracle Spatial Resource Description Framework (RDF)

Figure 1–1 Family Tree for RDF Example

Example 1–9 Using an RDF Model for Family Information

-- Basic steps:
-- After you have connected as a privileged user and called
-- SDO_RDF.CREATE_RDF_NETWORK to enable RDF support,
-- connect as a regular database user and do the following.
-- 1. For each desired RDF model, create a table to hold its data.
-- 2. For each RDF model, create an RDF model (SDO_RDF.CREATE_RDF_MODEL).
-- 3. For each table to hold RDF data, insert data into the table.
-- 4. Use various subprograms and constructors.

-- Create the table to hold data for the RDF model.
CREATE TABLE family_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);

-- Create the RDF model.
execute sdo_rdf.create_rdf_model('family', 'family_rdf_data', 'triple');

-- Insert rows into the table. These express the following information:

-- John and Janice have two children, Suzie and Matt.
-- Matt married Martha, and they have two children:
-- Tom (male, height 5.75) and Cindy (female, height 06.00).
-- Suzie married Sammy, and they have two children:
-- Cathy (height 5.8) and Jack (male, height 6).

-- Person is a class that has two subslasses: Male and Female.
-- parentOf is a property that has two subproperties: fatherOf and motherOf.
-- siblingOf is a property that has two subproperties: brotherOf and sisterOf.
-- The domain of the fatherOf and brotherOf properties is Male.
-- The domain of the motherOf and sisterOf properties is Female.

-- John is the father of Suzie.
INSERT INTO family_rdf_data VALUES (1,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/John',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Suzie'));

-- John is the father of Matt.
INSERT INTO family_rdf_data VALUES (2,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/John',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Matt'));

-- Janice is the mother of Suzie.

John Janice

Suzie MattSammy Martha

Cathy Jack Tom Cindy
(sisterOf Jack) (Male) (Male) (Female)

RDF Examples

RDF Overview 1-23

INSERT INTO family_rdf_data VALUES (3,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Janice',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Suzie'));

-- Janice is the mother of Matt.
INSERT INTO family_rdf_data VALUES (4,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Janice',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Matt'));

-- Sammy is the father of Cathy.
INSERT INTO family_rdf_data VALUES (5,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Sammy',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Cathy'));

-- Sammy is the father of Jack.
INSERT INTO family_rdf_data VALUES (6,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Sammy',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Jack'));

-- Suzie is the mother of Cathy.
INSERT INTO family_rdf_data VALUES (7,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Suzie',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Cathy'));

-- Suzie is the mother of Jack.
INSERT INTO family_rdf_data VALUES (8,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Suzie',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Jack'));

-- Matt is the father of Tom.
INSERT INTO family_rdf_data VALUES (9,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Matt',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Tom'));

-- Matt is the father of Cindy
INSERT INTO family_rdf_data VALUES (10,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Matt',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Cindy'));

-- Martha is the mother of Tom.
INSERT INTO family_rdf_data VALUES (11,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Martha',
'http://www.example.org/family/motherOf',

RDF Examples

1-24 Oracle Spatial Resource Description Framework (RDF)

'http://www.example.org/family/Tom'));

-- Martha is the mother of Cindy.
INSERT INTO family_rdf_data VALUES (12,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Martha',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Cindy'));

-- Cathy is the sister of Jack.
INSERT INTO family_rdf_data VALUES (13,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Cathy',
'http://www.example.org/family/sisterOf',
'http://www.example.org/family/Jack'));

-- Jack is male.
INSERT INTO family_rdf_data VALUES (14,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Jack',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.example.org/family/Male'));

-- Tom is male.
INSERT INTO family_rdf_data VALUES (15,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Tom',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.example.org/family/Male'));

-- Cindy is female.
INSERT INTO family_rdf_data VALUES (16,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Cindy',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.example.org/family/Female'));

-- Person is a class.
INSERT INTO family_rdf_data VALUES (17,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Person',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/2000/01/rdf-schema#Class'));

-- Male is a subclass of Person.
INSERT INTO family_rdf_data VALUES (18,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Male',
'http://www.w3.org/2000/01/rdf-schema#subClassOf',
'http://www.example.org/family/Person'));

-- Female is a subclass of Person.
INSERT INTO family_rdf_data VALUES (19,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Female',
'http://www.w3.org/2000/01/rdf-schema#subClassOf',
'http://www.example.org/family/Person'));

-- siblingOf is a property.
INSERT INTO family_rdf_data VALUES (20,

RDF Examples

RDF Overview 1-25

SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/siblingOf',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'));

-- parentOf is a property.
INSERT INTO family_rdf_data VALUES (21,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/parentOf',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'));

-- brotherOf is a subproperty of siblingOf.
INSERT INTO family_rdf_data VALUES (22,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/brotherOf',
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/siblingOf'));

-- sisterOf is a subproperty of siblingOf.
INSERT INTO family_rdf_data VALUES (23,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/sisterOf',
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/siblingOf'));

-- A brother is male.
INSERT INTO family_rdf_data VALUES (24,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/brotherOf',
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Male'));

-- A sister is female.
INSERT INTO family_rdf_data VALUES (25,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/sisterOf',
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Female'));

-- fatherOf is a subproperty of parentOf.
INSERT INTO family_rdf_data VALUES (26,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/fatherOf',
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/parentOf'));

-- motherOf is a subproperty of parentOf.
INSERT INTO family_rdf_data VALUES (27,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/motherOf',
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/parentOf'));

-- A father is male.
INSERT INTO family_rdf_data VALUES (28,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/fatherOf',
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Male'));

RDF Examples

1-26 Oracle Spatial Resource Description Framework (RDF)

-- A mother is female.
INSERT INTO family_rdf_data VALUES (29,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/motherOf',
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Female'));

-- Use SET ESCAPE OFF to prevent the caret (^) from being
-- interpreted as an escape character. Two carets (^^) are
-- used to represent typed literals.
SET ESCAPE OFF;

-- Cathy's height is 5.8 (decimal).
INSERT INTO family_rdf_data VALUES (30,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Cathy',
'http://www.example.org/family/height',
'"5.8"^^xsd:decimal'));

-- Jack's height is 6 (integer).
INSERT INTO family_rdf_data VALUES (31,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Jack',
'http://www.example.org/family/height',
'"6"^^xsd:integer'));

-- Tom's height is 05.75 (decimal).
INSERT INTO family_rdf_data VALUES (32,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Tom',
'http://www.example.org/family/height',
'"05.75"^^xsd:decimal'));

-- Cindy's height is 06.00 (decimal).
INSERT INTO family_rdf_data VALUES (33,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Cindy',
'http://www.example.org/family/height',
'"06.00"^^xsd:decimal'));

COMMIT;

-- RDFS inferencing in the family model
BEGIN
 SDO_RDF_INFERENCE.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS'));
END;
/

-- Select all males from the family model, without inferencing.
SELECT m
 FROM TABLE(SDO_RDF_MATCH(
 '(?m rdf:type :Male)',
 SDO_RDF_Models('family'),
 null,
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')),
 null));

RDF Examples

RDF Overview 1-27

-- Select all males from the family model, with RDFS inferencing.
SELECT m
 FROM TABLE(SDO_RDF_MATCH(
 '(?m rdf:type :Male)',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS'),
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')),
 null));

-- General inferencing in the family model

EXECUTE SDO_RDF_INFERENCE.CREATE_RULEBASE('family_rb');

INSERT INTO mdsys.rdfr_family_rb VALUES(
 'grandparent_rule',
 '(?x :parentOf ?y) (?y :parentOf ?z)',
 NULL,
 '(?x :grandParentOf ?z)',
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')));

COMMIT;

-- Because a new rulebase has been created, and it will be used in the
-- rules index, drop the preceding rules index and then re-create it.
EXECUTE SDO_RDF_INFERENCE.DROP_RULES_INDEX ('rdfs_rix_family');

-- Re-create the rules index.
BEGIN
 SDO_RDF_INFERENCE.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS','family_rb'));
END;
/

-- Select all grandfathers and their grandchildren from the family model,
-- without inferencing. (With no inferencing, no results are returned.)
SELECT x grandfather, y grandchild
 FROM TABLE(SDO_RDF_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SDO_RDF_Models('family'),
 null,
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')),
 null));

-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x grandfather, y grandchild
 FROM TABLE(SDO_RDF_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS','family_rb'),
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')),
 null));

-- Set up to find grandfathers of tall (>= 6) grandchildren
-- from the family model, with RDFS inferencing and
-- inferencing using the "family_rb" rulebase.

README File for Spatial and Related Features

1-28 Oracle Spatial Resource Description Framework (RDF)

UPDATE mdsys.rdfr_family_rb SET
 antecedents = '(?x :parentOf ?y) (?y :parentOf ?z) (?z :height ?h)',
 filter = '(h >= 6)',
 aliases = SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/'))
WHERE rule_name = 'GRANDPARENT_RULE';

-- Because the rulebase has been updated, drop the preceding rules index,
-- and then re-create it.
EXECUTE SDO_RDF_INFERENCE.DROP_RULES_INDEX ('rdfs_rix_family');

-- Re-create the rules index.
BEGIN
 SDO_RDF_INFERENCE.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS','family_rb'));
END;
/

-- Find the rules index that was just created (that is, the
-- one based on the specified model and rulebases).
SELECT SDO_RDF_INFERENCE.LOOKUP_RULES_INDEX(SDO_RDF_MODELS('family'),
 SDO_RDF_RULEBASES('RDFS','family_rb')) AS lookup_rules_index FROM DUAL;

-- Select grandfathers of tall (>= 6) grandchildren, and their
-- tall grandchildren.
SELECT x grandfather, y grandchild
 FROM TABLE(SDO_RDF_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SDO_RDF_Models('family'),
 SDO_RDF_RuleBases('RDFS','family_rb'),
 SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.example.org/family/')),
 null));

1.9 README File for Spatial and Related Features
A README.txt file supplements the information in this document and the following
manuals: Oracle Spatial User's Guide and Reference, Oracle Spatial GeoRaster, and Oracle
Spatial Topology and Network Data Models (this manual). This file is located at:

$ORACLE_HOME/md/doc/README.txt

SDO_RDF Package Subprograms 2-1

2
SDO_RDF Package Subprograms

The MDSYS.SDO_RDF package contains subprograms (functions and procedures) for
working with the Resource Description Framework (RDF) in an Oracle database. To
use the subprograms in this chapter, you must understand the conceptual and usage
information in Chapter 1.

This chapter provides reference information about the subprograms, listed in
alphabetical order.

SDO_RDF.ADD_NAMESPACES

2-2 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF.ADD_NAMESPACES

Format
SDO_RDF.ADD_NAMESPACES(

namespace_1 IN VARCHAR2,

namespace_2 IN VARCHAR2 DEFAULT NULL,

namespace_3 IN VARCHAR2 DEFAULT NULL);

Description
Adds up to three namespaces.

Parameters

namespace_1
Namespace name (required). Must be in a valid format for a namespace.

namespace_2
Namespace name (optional). Must be in a valid format for a namespace.

namespace_3
Namespace name (optional). Must be in a valid format for a namespace.

Usage Notes
This procedure adds one, two, or three namespaces to the MDSYS.RDF_
NAMESPACE$ table. (Oracle does not use the MDSYS.RDF_NAMESPACE$ table in
any of its internal operations; the table is provided as a convenience to users who may
want to store namespaces that are used in their models.)

There is no significance to the order in which namespaces are specified.

For information about RDF namespaces in the database, see Section 1.2.2.

Examples
The following example adds three namespaces.

EXECUTE SDO_RDF.ADD_NAMESPACES('http://www.w3.org-/2001/XMLSchema#', -
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#', -
 'http://www.w3.org/2000/01/rdf-schema#');

SDO_RDF.CREATE_RDF_MODEL

SDO_RDF Package Subprograms 2-3

SDO_RDF.CREATE_RDF_MODEL

Format
SDO_RDF.CREATE_RDF_MODEL(

model_name IN VARCHAR2,

table_name IN VARCHAR2,

column_name IN VARCHAR2);

Description
Creates an RDF model.

Parameters

model_name
Name of the model.

table_name
Name of the table to hold references to RDF data for this model.

column_name
Name of the column of type SDO_RDF_TRIPLE_S in table_name.

Usage Notes
You must create the table to hold references to RDF data before calling this procedure
to create the RDF model. For more information, see Section 1.7.

This procedure adds the model to the MDSYS.RDF_MODEL$ table, which is described
in Section 1.2.1.

This procedure is the only supported way to create a model. Do not use SQL INSERT
statements with the MDSYS.RDF_MODEL$ table.

To delete a model, use the SDO_RDF.DROP_RDF_MODEL procedure.

Examples
The following example creates an RDF model named articles. References to the
RDF triple data for the model will be stored in the TRIPLE column of the ARTICLES_
RDF_DATA table. (This example is an excerpt from Example 1–8 in Section 1.8.2.)

EXECUTE SDO_RDF.CREATE_RDF_MODEL('articles', 'articles_rdf_data', 'triple');

The definition of the ARTICLES_RDF_DATA table is as follows:

CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);

SDO_RDF.CREATE_RDF_NETWORK

2-4 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF.CREATE_RDF_NETWORK

Format
SDO_RDF.CREATE_RDF_NETWORK(

tablespace_name IN VARCHAR2

Description
Adds RDF support to the database.

Parameters

tablespace_name
Name of the tablespace to be used for tables created by this procedure.

Usage Notes
This procedure creates system tables and other database objects used for RDF support.

You should create a tablespace for the RDF system tables and specify the tablespace
name in the call to this procedure. (You should not specify the SYSTEM tablespace.) The
size needed for the tablespace that you create will depend on the amount of RDF data
you plan to store.

You must connect to the database as a user with DBA privileges in order to call this
procedure, and you should call the procedure only once for the database.

To remove RDF support from the database, you must connect as a user with DBA
privileges and call the SDO_RDF.DROP_RDF_NETWORK procedure.

Examples
The following example creates a tablespace for RDF system tables and adds RDF
support to the database.

CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;
. . .
EXECUTE SDO_RDF.CREATE_RDF_NETWORK('rdf_tblspace');

SDO_RDF.DROP_RDF_MODEL

SDO_RDF Package Subprograms 2-5

SDO_RDF.DROP_RDF_MODEL

Format
SDO_RDF.DROP_RDF_MODEL(

model_name IN VARCHAR2);

Description
Drops (deletes) an RDF model.

Parameters

model_name
Name of the model.

Usage Notes
This procedure deletes the model from the MDSYS.RDF_MODEL$ table, which is
described in Section 1.2.1.

This procedure is the only supported way to delete a model. Do not use SQL DELETE
statements with the MDSYS.RDF_MODEL$ table.

Only the creator of a model can delete the model.

Examples
The following example drops the RDF model named articles.

EXECUTE SDO_RDF.DROP_RDF_MODEL('articles');

SDO_RDF.DROP_RDF_NETWORK

2-6 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF.DROP_RDF_NETWORK

Format
SDO_RDF.DROP_RDF_NETWORK();

Description
Removes RDF support from the database.

Parameters
None.

Usage Notes
To remove RDF support from the database, you must connect as a user with DBA
privileges and call this procedure.

Before you call this procedure, be sure to delete all RDF models and rulebases.

Examples
The following example removes RDF support from the database.

EXECUTE SDO_RDF.DROP_RDF_NETWORK;

SDO_RDF.GET_MODEL_ID

SDO_RDF Package Subprograms 2-7

SDO_RDF.GET_MODEL_ID

Format
SDO_RDF.GET_MODEL_ID(

model_name IN VARCHAR2

) RETURN NUMBER;

Description
Returns the model ID number of an RDF model.

Parameters

model_name
Name of the RDF model.

Usage Notes
The model_name value must match a value in the MDSYS.RDF_MODEL$ table,
which is described in Section 1.2.1.

Examples
The following example returns the model ID number for the model named articles.
(This example is an excerpt from Example 1–8 in Section 1.8.2.)

SELECT SDO_RDF.GET_MODEL_ID('articles') AS model_id FROM DUAL;

 MODEL_ID

 1

SDO_RDF.GET_TRIPLE_ID

2-8 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF.GET_TRIPLE_ID

Format
SDO_RDF.GET_TRIPLE_ID(

model_id IN NUMBER,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2

) RETURN NUMBER;

or

SDO_RDF.GET_TRIPLE_ID(

model_name IN VARCHAR2,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2

) RETURN NUMBER;

Description
Returns the ID number of a triple in the specified RDF model, or a null value if the
triple does not exist.

Parameters

model_id
ID number of the RDF model. Must match a value in the MODEL_ID column of the
MDSYS.RDF_MODEL$ table, which is described in Section 1.2.1.

model_name
Name of the RDF model. Must match a value in the MODEL_NAME column of the
MDSYS.RDF_MODEL$ table, which is described in Section 1.2.1.

subject
RDF subject. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

property
RDF property. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

object
RDF object. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

Usage Notes
This function has two formats, enabling you to specify the RDF model by its model
number or its name.

SDO_RDF.GET_TRIPLE_ID

SDO_RDF Package Subprograms 2-9

Examples
The following example returns the ID number of a triple . (This example is an excerpt
from Example 1–8 in Section 1.8.2.)

SELECT SDO_RDF.GET_TRIPLE_ID(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3') AS RDF_triple_id FROM DUAL;

RDF_TRIPLE_ID

 7

SDO_RDF.IS_REIFIED_QUAD

2-10 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF.IS_REIFIED_QUAD

Format
SDO_RDF.IS_REIFIED_QUAD(

model_id IN NUMBER,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2

) RETURN VARCHAR2;

or

SDO_RDF.IS_REIFIED_QUAD(

model_name IN VARCHAR2,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2

) RETURN VARCHAR2;

Description
Checks if all four statements that make up the reification quad for a triple in a
specified model are in the database.

Parameters

model_id
ID number of the RDF model. Must match a value in the MODEL_ID column of the
MDSYS.RDF_MODEL$ table, which is described in Section 1.2.1.

model_name
Name of the RDF model. Must match a value in the MODEL_NAME column of the
MDSYS.RDF_MODEL$ table, which is described in Section 1.2.1.

subject
RDF subject. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

property
RDF property. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

object
RDF object. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

SDO_RDF.IS_REIFIED_QUAD

SDO_RDF Package Subprograms 2-11

Usage Notes
This function returns the RDF statement if all four statements that make up the
reification quad for a triple in a specified model are in the database; otherwise, it
returns the string FALSE.

For information about reification quads, see Section 1.2.7.

Examples
The following checks if a reification quad exists for a specified statement in an RDF
model named candidates. (This example refers to RDF statements in Section 1.2.7.)

SELECT SDO_RDF.IS_REIFIED_QUAD('candidates', 'a:PersonA', 'a:CandidateQuality',
'Good') FROM DUAL;

SDO_RDF.IS_TRIPLE

2-12 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF.IS_TRIPLE

Format
SDO_RDF.IS_TRIPLE(

model_id IN NUMBER,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2) RETURN VARCHAR2;

or

SDO_RDF.IS_TRIPLE(

model_name IN VARCHAR2,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2) RETURN VARCHAR2;

Description
Checks if an RDF statement is an existing triple in the specified model in the database.

Parameters

model_id
ID number of the RDF model. Must match a value in the MODEL_ID column of the
MDSYS.RDF_MODEL$ table, which is described in Section 1.2.1.

model_name
Name of the RDF model. Must match a value in the MODEL_NAME column of the
MDSYS.RDF_MODEL$ table, which is described in Section 1.2.1.

subject
RDF subject. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

property
RDF property. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

object
RDF object. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.2.3.

Usage Notes
This function returns the string value FALSE, TRUE, or TRUE (EXACT):

■ FALSE means that the statement is not a triple in the specified model the database.

■ TRUE means that the statement matches the value of a triple or is the canonical
representation of the value of a triple in the specified model the database.

SDO_RDF.IS_TRIPLE

SDO_RDF Package Subprograms 2-13

■ TRUE (EXACT) means that the specified subject, property, and object
values have exact matches in a triple in the specified model in the database.

Examples
The following checks if a statement is a triple in the database. In this case, there is an
exact match. (This example is an excerpt from Example 1–8 in Section 1.8.2.)

SELECT SDO_RDF.IS_TRIPLE(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3') AS is_triple FROM DUAL;

IS_TRIPLE
--
TRUE (EXACT)

SDO_RDF.IS_TRIPLE

2-14 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF_INFERENCE Package Subprograms 3-1

3
SDO_RDF_INFERENCE Package

Subprograms

The MDSYS.SDO_RDF_INFERENCE package contains subprograms (functions and
procedures) for using the inferencing capabilities of the Resource Description
Framework (RDF) in an Oracle database. To use the subprograms in this chapter, you
must understand the conceptual and usage information in Chapter 1.

This chapter provides reference information about the subprograms, listed in
alphabetical order.

SDO_RDF_INFERENCE.CLEANUP_FAILED

3-2 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF_INFERENCE.CLEANUP_FAILED

Format
SDO_RDF_INFERENCE.CLEANUP_FAILED(

rdf_object_type IN VARCHAR2,

rdf_object_name IN VARCHAR2);

Description
Drops (deletes) a specified rulebase or rules index if it is in a failed state.

Parameters

rdf_object_type
Type of the RDF object: RULEBASE for a rulebase or RULES_INDEX for a rules index.

rdf_object_name
Name of the RDF object of type rdf_object_type.

Usage Notes
This procedure checks to see if the specified RDF object is in a failed state; and if the
object is in a failed state, the procedure deletes the object.

A rulebase or rules index is in a failed state if a system failure occurred during the
creation of that object. You can check if a rulebase or rules index is in a failed state by
checking to see if the value of the STATUS column is FAILED in the SDO_RULEBASE_
INFO view (described in Section 1.2.10) or the SDO_RULES_INDEX_INFO view
(described in Section 1.2.11), respectively.

If the rulebase or rules index is not in a failed state, this procedure performs no action
and returns a successful status.

An exception is generated if the RDF object is currently being used.

Examples
The following example deletes the rulebase named family_rb if (and only if) that
rulebase is in a failed state.

EXECUTE SDO_RDF_INFERENCE.CLEANUP_FAILED('RULEBASE', 'family_rb');

SDO_RDF_INFERENCE.CREATE_RULEBASE

SDO_RDF_INFERENCE Package Subprograms 3-3

SDO_RDF_INFERENCE.CREATE_RULEBASE

Format
SDO_RDF_INFERENCE.CREATE_RULEBASE(

rulebase_name IN VARCHAR2);

Description
Creates a rulebase.

Parameters

rulebase_name
Name of the rulebase.

Usage Notes
This procedure creates a user-defined rulebase. After creating the rulebase, you can
add rules to it. To cause the rules in the rulebase to be applied in a query of RDF data,
you can specify the rulebase in the call to the SDO_RDF_MATCH table function.

Rules and rulebases are explained in Section 1.2.10. The SDO_RDF_MATCH table
function is described in Section 1.5,

Examples
The following example creates a rulebase named family_rb. (It is an excerpt from
Example 1–9 in Section 1.8.2.)

EXECUTE SDO_RDF_INFERENCE.CREATE_RULEBASE('family_rb');

SDO_RDF_INFERENCE.CREATE_RULES_INDEX

3-4 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF_INFERENCE.CREATE_RULES_INDEX

Format
SDO_RDF_INFERENCE.CREATE_RULES_INDEX(

index_name_in IN VARCHAR2,

models_in IN SDO_RDF_MODELS,

rulebases_in IN SDO_RDF_RULEBASES);

Description
Creates a rules index based on data in one or more RDF models and one or more
rulebases.

Parameters

index_name_in
Name of the rules index.

models_in
One or more RDF model names. Its data type is SDO_RDF_MODELS, which has the
following definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SDO_RDF_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained
in Section 1.2.10.

Usage Notes
This procedure creates a rules index. For information about rules indexes, see
Section 1.2.11.

Examples
The following example creates a a rules index named family_rb_rix_family,
using the family model and the RDFS and family_rb rulebases. (This example is an
excerpt from Example 1–9 in Section 1.8.2.)

BEGIN
 SDO_RDF_INFERENCE.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SDO_RDF_Models('family'),
 SDO_RDF_Rulebases('RDFS','family_rb'));
END;
/

SDO_RDF_INFERENCE.DROP_RULEBASE

SDO_RDF_INFERENCE Package Subprograms 3-5

SDO_RDF_INFERENCE.DROP_RULEBASE

Format
SDO_RDF_INFERENCE.DROP_RULEBASE(

rulebase_name IN VARCHAR2);

Description
Deletes a rulebase.

Parameters

rulebase_name
Name of the rulebase.

Usage Notes
This procedure deletes the specified rulebase, making it no longer available for use in
calls to the SDO_RDF_MATCH table function. For information about rulebases, see
Section 1.2.10.

Only the creator of a rulebase can delete the rulebase.

Examples
The following example drops the rulebase named family_rb.

EXECUTE SDO_RDF_INFERENCE.DROP_RULEBASE('family_rb');

SDO_RDF_INFERENCE.DROP_RULES_INDEX

3-6 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF_INFERENCE.DROP_RULES_INDEX

Format
SDO_RDF_INFERENCE.DROP_RULES_INDEX(

index_name IN VARCHAR2);

Description
Deletes a rules index.

Parameters

index_name
Name of the rules index.

Usage Notes
This procedure deletes the specified rules index, making it no longer available for use
with queries against RDF data. For information about rules indexes, see Section 1.2.11.

Only the owner of a rulebase can call this procedure to drop the rules index. However,
a rules index can be dropped implicitly if an authorized user drops any model or
rulebase on which the rules index is based; in such a case, the rules index is dropped
automatically.

Examples
The following example drops the rules index named rdfs_rix_family.

EXECUTE SDO_RDF_INFERENCE.DROP_RULES_INDEX ('rdfs_rix_family');

SDO_RDF_INFERENCE.DROP_USER_INFERENCE_OBJS

SDO_RDF_INFERENCE Package Subprograms 3-7

SDO_RDF_INFERENCE.DROP_USER_INFERENCE_OBJS

Format
SDO_RDF_INFERENCE.DROP_USER_INFERENCE_OBJS(

uname IN VARCHAR2);

Description
Drops (deletes) all rulebases and rules index owned by a specified database user.

Parameters

uname
Name of a database user. (This value is case sensitive; for example, HERMAN and
herman are considered different users.)

Usage Notes
You must have sufficient privileges to delete rules and rulebases for the specified user.

This procedure does not delete the database user. It deletes only RDF rulebases and
rules indexes owned by that user.

Examples
The following example deletes all rulebases and rules indexes owned by user SCOTT.

EXECUTE SDO_RDF_INFERENCE.DROP_USER_INFERENCE_OBJS('SCOTT');

PL/SQL procedure successfully completed.

SDO_RDF_INFERENCE.LOOKUP_RULES_INDEX

3-8 Oracle Spatial Resource Description Framework (RDF)

SDO_RDF_INFERENCE.LOOKUP_RULES_INDEX

Format
SDO_RDF_INFERENCE.LOOKUP_RULES_INDEX (

models IN SDO_RDF_MODELS,

rulebases IN SDO_RDF_RULEBASES

) RETURN VARCHAR2;

Description
Returns the name of the rules index based on the specified models and rulebases.

Parameters

models
One or more RDF model names. Its data type is SDO_RDF_MODELS, which has the
following definition: TABLE OF VARCHAR2(25)

rulebases
One or more rulebase names. Its data type is SDO_RDF_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25)Rules and rulebases are explained in
Section 1.2.10.

Usage Notes
For a rulebase index to be returned, it must be based on all specified models and
rulebases.

Examples
The following example find the rules index that is based on the family model and the
RDFS and family_rb rulebases. (It is an excerpt from Example 1–9 in Section 1.8.2.)

SELECT SDO_RDF_INFERENCE.LOOKUP_RULES_INDEX(SDO_RDF_MODELS('family'),
 SDO_RDF_RULEBASES('RDFS','family_rb')) AS lookup_rules_index FROM DUAL;

LOOKUP_RULES_INDEX
--
RDFS_RIX_FAMILY

Index-1

Index

A
ADD_NAMESPACES procedure, 2-2
aliases

SDO_RDF_ALIASES and SDO_RDF_ALIAS data
types, 1-15

Alt (Alternative) container, 1-7

B
Bag container, 1-7
blank nodes

constructor for reusing, 1-13
RDF, 1-6

C
canonical forms, 1-5
CLEANUP_FAILED procedure, 3-2
constructors for RDF, 1-12
containers, 1-7
CREATE_RDF_MODEL procedure, 2-3
CREATE_RDF_NETWORK procedure, 2-4
CREATE_RULEBASE procedure, 3-3
CREATE_RULES_INDEX procedure, 3-4

D
data types

for literals, 1-5
data types for RDF, 1-12
demo files

RDF, 1-19
DROP_RDF_MODEL procedure, 2-5
DROP_RDF_NETWORK procedure, 2-6
DROP_RULEBASE procedure, 3-5
DROP_RULES_INDEX procedure, 3-6
DROP_USER_INFERENCE_OBJS procedure, 3-7
duplicate triples

checking for, 1-5

E
entailment rules

RDFS, 1-8
examples

RDF (PL/SQL), 1-19

F
failed state

rulebase or rules index, 3-2
filter

attribute of SDO_RDF_MATCH, 1-15

G
GET_MODEL_ID function, 2-7
GET_TRIPLE_ID function, 2-8

I
index_status

attribute of SDO_RDF_MATCH, 1-15
IS_REIFIED_QUAD function, 2-10
IS_TRIPLE function, 2-12

L
literals

data types for, 1-5
LOOKUP_RULES_INDEX procedure, 3-8

M
metadata

RDF, 1-2
metadata tables and views for RDF, 1-11
methods for RDF, 1-12
model ID

getting, 2-7
models

RDFI_rules-index-name view, 1-10
RDFM_model-name view, 1-2
SDO_RDF_MODELS data type, 1-15

N
namespaces

adding, 2-2
use with RDF, 1-3

network data model
RDF support, 1-1

Index-2

O
objects

RDF, 1-5

P
properties

RDF, 1-6

Q
queries

using the SDO_RDF_MATCH table
function, 1-14

R
RDF

blank nodes, 1-6
constructors, 1-12
data model, 1-2
data types, 1-12
demo files, 1-19
examples (PL/SQL), 1-19
metadata, 1-2
metadata tables and views, 1-11
methods, 1-12
namespaces for, 1-3
network data model support for, 1-1
objects, 1-5
overview, 1-1
properties, 1-6
queries using the SDO_RDF_MATCH table

function, 1-14
SDO_RDF reference information, 2-1
SDO_RDF_INFERENCE reference

information, 3-1
security considerations, 1-11
statements, 1-4
steps for using, 1-18
subjects, 1-5

RDF model
creating, 2-3
deleting (dropping), 2-5
disabling support in the database, 2-6
enabling support in the database, 2-4

RDF rulebase
subset of RDFS rulebase, 1-8

RDF_BLANK_NODES$ table, 1-6
RDF_MODEL$ table, 1-2
RDF_NAMESPACE$ table, 1-3
RDF_NODE$ table, 1-5
RDF_RULEBASE_INFO view, 1-8
RDF_RULES_INDEX_DATASETS view, 1-10
RDF_RULES_INDEX_INFO view, 1-10
RDF_VALUE$ table, 1-4, 1-6
RDFI_rules-index-name view, 1-10
RDFM_model-name view, 1-2
RDFR_rulebase-name view, 1-8
RDFS entailment rules, 1-8

RDFS rulebase
implements RDFS entailment rules, 1-8

README file
for Spatial, GeoRaster, and topology and network

data models, 1-28
reification, 1-6
reification quads, 1-6

IS_REIFIED_QUAD function, 2-10
Resource Description Framework

See RDF
rulebases, 1-7

deleting if in failed state, 3-2
RDF_RULEBASE_INFO view, 1-8
RDFR_rulebase-name view, 1-8
SDO_RDF_RULEBASES data type, 1-15

rules, 1-7
rules indexes, 1-9

deleting if in failed state, 3-2
incomplete status, 1-15
invalid status, 1-15
RDF_RULES_INDEX_DATASETS view, 1-10
RDF_RULES_INDEX_INFO view, 1-10

S
SDO_RDF package

ADD_NAMESPACES, 2-2
CREATE_RDF_MODEL, 2-3
CREATE_RDF_NETWORK, 2-4
DROP_RDF_MODEL, 2-5
DROP_RDF_NETWORK, 2-6
GET_MODEL_ID, 2-7
GET_TRIPLE_ID, 2-8
IS_REIFIED_QUAD, 2-10
reference information, 2-1
TRIPLE, 2-12

SDO_RDF_ALIAS data type, 1-15
SDO_RDF_ALIASES data type, 1-15
SDO_RDF_INFERENCE package

CLEANUP_FAILED, 3-2
CREATE_RULEBASE, 3-3
CREATE_RULES_INDEX, 3-4
DROP_RULEBASE, 3-5
DROP_RULES_INDEX, 3-6
DROP_USER_INFERENCE_OBJS, 3-7
LOOKUP_RULES_INDEX, 3-8
reference information, 3-1

SDO_RDF_MATCH table function, 1-14
SDO_RDF_MODELS data type, 1-15
SDO_RDF_RULEBASES data type, 1-15
security considerations, 1-11
Seq (Sequence) container, 1-7
statements

RDF, 1-4
subjects

RDF, 1-5

T
triples

Index-3

constructor for inserting, 1-13
duplication checking, 1-5
IS_TRIPLE function, 2-12

Index-4

	Contents
	List of Examples
	List of Tables
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 RDF Overview
	1.1 RDF and the Network Data Model
	1.2 RDF Data Model in the Database
	1.2.1 Metadata for RDF Models
	1.2.2 Namespaces
	1.2.3 Statements
	1.2.3.1 Triple Uniqueness and Data Types for Literals

	1.2.4 Subjects and Objects
	1.2.5 Blank Nodes
	1.2.6 Properties
	1.2.7 Reification and Reification Quads
	1.2.8 Containers
	1.2.9 Collections
	1.2.10 Rules and Rulebases
	1.2.11 Rules Indexes
	1.2.12 RDF Security Considerations

	1.3 RDF Metadata Tables and Views
	1.4 RDF Data Types, Constructors, and Methods
	1.4.1 Constructor for Inserting Triples
	1.4.2 Constructor for Reusing Blank Nodes

	1.5 Using the SDO_RDF_MATCH Table Function to Query RDF Data
	1.5.1 Performing Queries with Incomplete or Invalid Rules Indexes

	1.6 Loading and Exporting RDF Data
	1.6.1 Loading RDF Data
	1.6.2 Loading RDF Data Using INSERT Statements
	1.6.3 Exporting RDF Data

	1.7 Quick Start for Using RDF
	1.8 RDF Examples
	1.8.1 Example: Journal Article Information
	1.8.2 Example: Family Information

	1.9 README File for Spatial and Related Features

	2 SDO_RDF Package Subprograms
	SDO_RDF.ADD_NAMESPACES
	SDO_RDF.CREATE_RDF_MODEL
	SDO_RDF.CREATE_RDF_NETWORK
	SDO_RDF.DROP_RDF_MODEL
	SDO_RDF.DROP_RDF_NETWORK
	SDO_RDF.GET_MODEL_ID
	SDO_RDF.GET_TRIPLE_ID
	SDO_RDF.IS_REIFIED_QUAD
	SDO_RDF.IS_TRIPLE

	3 SDO_RDF_INFERENCE Package Subprograms
	SDO_RDF_INFERENCE.CLEANUP_FAILED
	SDO_RDF_INFERENCE.CREATE_RULEBASE
	SDO_RDF_INFERENCE.CREATE_RULES_INDEX
	SDO_RDF_INFERENCE.DROP_RULEBASE
	SDO_RDF_INFERENCE.DROP_RULES_INDEX
	SDO_RDF_INFERENCE.DROP_USER_INFERENCE_OBJS
	SDO_RDF_INFERENCE.LOOKUP_RULES_INDEX

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T

