
Oracle® Data Mining
Application Developer’s Guide,

10g Release 2 (10.2)

B14340-01

June 2005

Oracle Data Mining Application Developer’s Guide, 10g Release 2 (10.2)

B14340-01

Copyright © 2004, 2005, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documentation.. viii
Conventions ... viii

1 Introducing the Oracle Data Mining APIs

New Features ... 1-1
Predictive and Descriptive Data Mining ... 1-2
Steps in a Data Mining Application ... 1-3
Data Preparation ... 1-5
Model Settings .. 1-6
Model Details.. 1-7
Predictive Analytics ... 1-7
SQL Scoring Functions.. 1-8

2 Managing Data

Data Types ... 2-1
Collection Types ... 2-1
Text ... 2-2
Date and Time Data ... 2-2

Columns and Attributes.. 2-2
Attribute Data Types ... 2-2
Attribute Names... 2-3

Nested Tables .. 2-4
Object Views and Multi-Record Collections .. 2-5
Example: Multi-Record Collections With an Object View ... 2-6

Data Storage Optimization ... 2-7

3 Managing Models

Models in the Database... 3-1
Model Names.. 3-2
Model Access .. 3-2

Import/Export .. 3-3
Model Settings .. 3-3

iv

Costs ... 3-9
Priors ... 3-10

4 Using the PL/SQL API and SQL Scoring Functions

The PL/SQL Sample Applications .. 4-1
The DBMS_DATA_MINING Package ... 4-2

Build Results ... 4-3
Apply Results.. 4-3
Test Results for Classification Models .. 4-3
Test Results for Regression Models... 4-3

Example: Building a Decision Tree Model .. 4-4
Mining Data .. 4-4
Build Settings .. 4-5
Model Creation... 4-5

Example: Using SQL Functions to Test a Decision Tree Model .. 4-6
Example: Using SQL Functions to Apply a Decision Tree Model .. 4-7

5 Using PL/SQL to Prepare Text Data for Mining

Oracle Text for Oracle Data Mining.. 5-1
Term Extraction in the Sample Programs .. 5-2

Text Mining Programs... 5-2
From Unstructured Data to Structured Data ... 5-3
Steps in the Term Extraction Process .. 5-4

Transform a Text Column in the Build Table .. 5-4
Transform a Text Column in the Test and Apply Tables... 5-5
Creating the Index and Index Preference ... 5-5
Creating the Intermediate Terms Table .. 5-5
Creating the Final Terms Table .. 5-7
Populating a Nested Table Column .. 5-8

Example: Transforming a Text Column.. 5-8

6 Java API Overview

The JDM 1.0 Standard ... 6-1
Oracle Extensions to JDM 1.0... 6-2
Principal Objects in the ODM Java API .. 6-3

PhysicalDataSet Object .. 6-3
BuildSettings Object... 6-4
Task Object .. 6-4
Model Object ... 6-5
TestMetrics Object.. 6-5
ApplySettings Object ... 6-5

7 Using the Java API

The Java Sample Applications... 7-1
Setting up Your Development Environment .. 7-2
Connecting to the Data Mining Server .. 7-3

v

Connection Factory .. 7-3
Managing the DMS Connection... 7-4
Features of a DMS Connection... 7-4

API Design Overview.. 7-7
Describing the Mining Data .. 7-8
Build Settings.. 7-9
Executing Mining Tasks ... 7-10
Building a Mining Model .. 7-11
Exploring Model Details.. 7-11
Testing a Model.. 7-12
Applying a Model for Scoring Data .. 7-14
Using a Cost Matrix... 7-15
Using Prior Probabilities ... 7-16
Using Automated Prediction and Explain Tasks... 7-16
Preparing the Data .. 7-17

Using Binning/Discretization Transformation .. 7-17
Using Normalization Transformation.. 7-19
Using Clipping Transformation.. 7-20
Using Text Transformation.. 7-21

8 Converting to the ODM 10.2 Java API

Comparing the 10.1 and 10.2 Java APIs .. 8-1
Converting Your Applications ... 8-3

9 Sequence Matching and Annotation (BLAST)

NCBI BLAST ... 9-1
Using ODM BLAST ... 9-2

Using BLASTN_MATCH to Search DNA Sequences... 9-2
Using BLASTP_MATCH to Search Protein Sequences .. 9-3
Using BLASTN_ALIGN to Search and Align DNA Sequences .. 9-4
Output of BLAST Queries... 9-5
Using BLASTN_COMPRESS to Improve Search Performance... 9-6
Sample Data for BLAST... 9-7

Summary of BLAST Table Functions .. 9-11
BLASTN_COMPRESS Table Function... 9-12
BLASTN_MATCH Table Function... 9-13
BLASTP_MATCH Table Function.. 9-15
TBLAST_MATCH Table Function.. 9-17
BLASTN_ALIGN Table Function ... 9-19
BLASTP_ALIGN Table Function .. 9-22
TBLAST_ALIGN Table Function.. 9-25

Index

vi

vii

Preface

This manual describes the Oracle Data Mining Application Programming Interfaces
(APIs) and the SQL functions for Data Mining. APIs are available for PL/SQL and for
Java.

This manual is intended to be used along with the related reference documentation
and sample applications. This information will enable you to develop Data Mining
applications for business and bioinformatics applications.

The preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
This manual is intended for application developers who intend to create data mining
applications in PL/SQL or Java.

To use the PL/SQL API and SQL scoring functions for data mining, you need a
working knowledge of PL/SQL and Oracle SQL. To use the Java API, you need a
working knowledge of Java. To use both interfaces, you need a working knowledge of
application programming in an Oracle database environment and a general
understanding of data mining concepts.

Users of the Oracle Data Mining BLAST table functions should be familiar with NCBI
BLAST and related concepts.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

http://www.oracle.com/accessibility/

viii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
The documentation set for Oracle Data Mining is part of the Oracle Database 10g
Release 2 (10.2) Online Documentation Library. The Oracle Data Mining
documentation set consists of the following documents:

■ Oracle Data Mining Administrator's Guide

■ Oracle Data Mining Concepts

■ Oracle Data Mining Java API Reference (javadoc)

■ Oracle Data Mining Application Developer's Guide (this document)

For detailed information about the Oracle Data Mining PL/SQL interface, see Oracle
Database PL/SQL Packages and Types Reference.

For detailed information about the SQL functions for Oracle Data Mining, see Oracle
Database SQL Reference.

For information about developing applications to interact with Oracle Database, see
Oracle Database Application Developer's Guide - Fundamentals.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introducing the Oracle Data Mining APIs 1-1

1
Introducing the Oracle Data Mining APIs

This chapter introduces the Oracle Data Mining (ODM) Application Programming
Interfaces (APIs). ODM supports comprehensive PL/SQL and Java APIs, SQL
functions, and table functions that implement the Basic Local Alignment Search Tool
(BLAST) for life sciences applications.

This chapter contains the following topics:

■ New Features

■ Predictive and Descriptive Data Mining

■ Steps in a Data Mining Application

■ Data Preparation

■ Model Settings

■ Model Details

■ Predictive Analytics

■ SQL Scoring Functions

New Features
Oracle 10g Release 2 (10.2) introduces several significant new features in the ODM
APIs. Among these are the Decision Tree algorithm for classification and the One-Class
SVM algorithm for anomaly detection. New predictive analytics, which automate the
process of predictive data mining, and new built-in scoring functions, which return

See Also:

■ Oracle Database PL/SQL Packages and Types Reference (DBMS_DATA_
MINING, DBMS_DATA_MINING_TRANSFORM, and DBMS_
PREDICTIVE_ANALYTICS) for PL/SQL API syntax.

■ Oracle Data Mining Java API Reference (javadoc) for Java API
syntax.

■ Oracle Database SQL Reference for syntax of the built-in functions
for data mining.

■ Oracle Data Mining Concepts for detailed information about Oracle
Data Mining concepts and features.

■ Oracle Data Mining Administrator's Guide for information about
installation, database administration, and the sample data mining
programs.

Predictive and Descriptive Data Mining

1-2 Oracle Data Mining Application Developer’s Guide

mining results within the context of a standard SQL statement, are also new in Oracle
10.2.

Oracle 10.2 introduces a completely new Java API for data mining. The Java API is an
Oracle implementation of the Java Data Mining (JDM) 1.0 standard. It replaces the
proprietary Java API that was available in Oracle 10g.

The Java API is layered on the PL/SQL API, and the two APIs are fully interoperable.
For example, you can run a SQL script to create a model and then test and apply the
model from a Java application.

Predictive and Descriptive Data Mining
ODM supports both predictive and descriptive mining functions. Predictive functions,
known as supervised learning, use training data to predict a target value. Descriptive
functions, known as unsupervised learning, identify relationships intrinsic to the data.
Each mining function identifies a class of problems to be solved, and each can be
implemented with one or more algorithms.

The predictive data mining functions are described in Table 1–1. The algorithm
abbreviations introduced in the table are used throughout this manual.

Note: Model interoperability is new in Oracle 10.2. In Oracle 10g, the
Java API was incompatible with the PL/SQL API.

See Chapter 8 for information on migrating ODM 10g Java
applications to the new API.

See Also: Oracle Data Mining Concepts and Oracle Database New
Features for a complete list of new features in Oracle 10g Release 2
(10.2) Data Mining.

Table 1–1 Predictive Data Mining Functions

Function Description Sample Problem Algorithms

Classification A classification model
uses historical data to
predict new discrete or
categorical data

Given demographic data
about a set of customers,
predict customer response to
an affinity card program.

Naive Bayes (NB)
Adaptive Bayes Network ABN)
Support Vector Machine (SVM)
Decision Tree (DT)

Anomaly
Detection

An anomaly detection
model predicts whether a
data point is typical for a
given distribution.

The PL/SQL and Java
APIs currently support
anomaly detection
through the Classification
function.

Given demographic data
about a set of customers,
identify customer
purchasing behavior that is
significantly different from
the norm.

One-Class Support Vector
Machine (SVM)

The PL/SQL and Java APIs
currently support One-Class SVM
using the classification mining
function and the SVM algorithm
with no target.

Regression A regression model uses
historical data to predict
new continuous,
numerical data

Given demographic and
purchasing data about a set
of customers, predict
customer’s age.

Support Vector Machine (SVM)

Attribute
Importance

An attribute importance
model identifies the
relative importance of an
attribute in predicting a
given outcome.

Given customer response to
an affinity card program,
find the importance of
independent attributes.

Minimal Descriptor Length (MDL)

Steps in a Data Mining Application

Introducing the Oracle Data Mining APIs 1-3

The descriptive data mining functions are described in Table 1–2.

Steps in a Data Mining Application
The first step in designing a data mining application is to analyze the business
problem and determine the mining function and algorithm that best addresses it. The
second step is to examine the data and determine how it should be prepared for
mining.

Once you have identified the mining function and algorithm, and implemented the
data transformations, you can develop a sample data mining application. A degree of
intuition is involved in making these application choices. You might develop, test, and
deploy your sample application and then determine that the results aren’t quite what
you are looking for. In this case, you might try different or additional data
transformations, or you might try a different or additional algorithm.

In any case, the process of developing a data mining application is iterative. It involves
testing the model, evaluating test metrics, making adjustments in the model, and
re-evaluating.

Although it is common to try different approaches to solving a data mining problem,
each application must accomplish several basic tasks.

1. Prepare the data. One data set is needed for building the model; additional data
sets may be necessary for testing and scoring the model, depending on the
algorithm. In most cases, the data must be prepared with transformations that
enhance or facilitate the effectiveness of the model. Each data set must be prepared
in the same way.

2. Create a model using the build data.

3. Evaluate the model.

■ For classification and regression models, this is the application of the model to
a set of test data, and the computation of various test metrics.

■ For clustering models, this is the examination of the clusters identified during
model creation.

Table 1–2 Descriptive Data Mining Functions

Function Description Sample Problem Algorithms

Clustering A clustering model
identifies natural groupings
within a data set.

Segment demographic data
into 10 clusters and study the
individual clusters. Rank the
clusters on probability.

Enhanced k-means (KM)
Orthogonal Clustering (O-Cluster or
OC)

Association
Rules

An association model
identifies relationships and
the probability of their
occurrence within a data
set.

Find the association between
items bought by customers.

Apriori (AP)

Feature
Extraction

A feature extraction model
creates an optimized data
set on which to base a
model.

Given demographic data about
a set of customers, extract
significant features from the
given data set.

Non-Negative Matrix Factorization
(NMF)

See Also: Oracle Data Mining Concepts for information to help you
approach a given data mining problem.

Steps in a Data Mining Application

1-4 Oracle Data Mining Application Developer’s Guide

■ For feature extraction models, this is the examination of the features identified
during model creation.

■ For attribute importance and association models, evaluation is the final step in
the mining process. These models cannot be scored against new data.

4. Apply (score) the model. This is the process of deploying the model to the data of
interest.

■ For classification and regression models, scoring is the application of the
"trained" model to the actual population. The result is the best prediction for a
target value in each record.

■ For clustering models, scoring is the application of clusters identified by the
model to the actual population. The result is the probability of cluster
membership for each record.

■ For feature extraction models, scoring is the mapping of features defined by
the model to the actual population. The result is a reduced set of predictors in
each record.

The basic mining steps for each algorithm are summarized in Table 1–3. Some steps,
such as priors and costs and specific test metrics, are optional. The individual steps are
described in later sections of this manual.

Table 1–3 Major Steps in a Data Mining Application

Function/Algorithm Build Evaluate Apply

Classification with
NB or ABN

■ Prepare build data

■ Specify priors

■ Specify target

■ Create model based on
build data

■ Prepare test data

■ Apply model to test data

■ Specify costs

■ Compute test metrics
(confusion matrix, lift,
accuracy, ROC)

■ Prepare scoring data

■ Apply model to
scoring data

■ Specify costs

Classification with DT ■ Prepare build data

■ Specify costs

■ Specify target

■ Create model based on
build data

■ Prepare test data

■ Apply model to test data

■ Specify costs

■ Compute test metrics
(confusion matrix, lift,
accuracy, ROC)

■ Prepare scoring data

■ Apply model to
scoring data

■ Specify costs

Classification with
SVM

■ Prepare build data

■ Specify weights

■ Specify target

■ Create model based on
build data

■ Prepare test data

■ Apply model to test data

■ Specify costs

■ Compute test metrics
(confusion matrix, lift,
accuracy, ROC)

■ Prepare scoring data

■ Apply model to
scoring data

■ Specify costs

Classification
(anomaly detection)
with One-Class SVM

■ Prepare build data

■ Specify NULL target

■ Create model based on
build data

■ Prepare scoring data

■ Apply model to build
data or to scoring data

Data Preparation

Introducing the Oracle Data Mining APIs 1-5

Data Preparation
Data sets used by Oracle Data Mining are stored in tables, which can be accessed
through relational views. The rows are referred to as cases or records. A case ID
column specifies a unique identifier for each case, for example the customer ID in a
table of customer data.

Columns referred to as attributes or fields specify a set of predictors. Supervised
models (with the exception of One-Class SVM) also use a target column. For example,
a regression model might predict customer income level (the target), given customer
date of birth and gender (the predictors). Unsupervised models use a set of predictors
but no target.

ODM distinguishes between two types of attributes: categorical or numerical.
Categorical attributes are a set of values that belong to a given category or class, for
example marital status or job title. Numerical attributes are values in a continuum, for
example income or age.

Column attributes can have a scalar data type or they can contain nested tables
(collection types) of type DM_NESTED_NUMERICALS or DM_NESTED_CATEGORICALS.
Some ODM algorithms support text columns. Text must be indexed and converted to
one of the collection types prior to data mining (See Chapter 5).

Regression with SVM ■ Prepare build data

■ Specify target

■ Create model based on
build data

■ Prepare test data

■ Apply model to test data

■ Compute test metrics
(Root Mean Square
Error, , Mean Absolute
Error, Residuals)

■ Prepare scoring data

■ Apply model to
scoring data

Attribute Importance
with MDL

■ Prepare build data

■ Specify target

■ Create model based on
build data

Retrieve model details,
consisting of a list of
attributes with their
importance ranking.

Clustering with KM ■ Prepare build data

■ Create model based on
build data

Retrieve model details to
obtain information about
clusters in the data.

■ Prepare scoring data

■ Apply model to
scoring data

Clustering with OC ■ Prepare build data

■ Specify the number of
clusters

■ Create model based on
build data

Retrieve model details,
consisting of information
about clusters in the data.

■ Prepare scoring data

■ Apply model to
scoring data

Association Rules
with AP

■ Prepare build data

■ Create model based on
build data

Retrieve frequent item sets,
and rules that define the item
sets.

Feature Extraction
with NMF

■ Prepare build data

■ Create model based on
build data

Retrieve model details,
consisting of a list of features
with their importance
ranking.

■ Prepare scoring data

■ Apply model to
scoring data

See Also: Chapter 2, "Managing Data" for more information.

Table 1–3 (Cont.) Major Steps in a Data Mining Application

Function/Algorithm Build Evaluate Apply

Model Settings

1-6 Oracle Data Mining Application Developer’s Guide

In most cases, data sets must be specifically prepared before building, testing, or
applying a model. Preparation includes transformations that improve model accuracy
and performance. Common data transformations are:

■ Binning — grouping related values together to reduce the number of distinct
values for an attribute.

■ Normalization — converting individual attribute values so that they fall within a
range, typically 0.0 – 1.0 or -1 – +1.

■ Clipping — setting extreme attribute values to a single value (winsorizing) or
causing extreme values to be ignored by the model (trimming).

■ Text transformation — converting text attributes to nested tables.

In addition to these data transformation techniques, you can improve the efficiency of
a model by reducing the number of attributes in large data sets. You can create an
Attribute Importance model to identify critical attributes or a Non-Negative Matrix
Factorization model to combine similar attributes into a single feature. You can then
build a model that uses only these attributes or features.

If you are using SQL to prepare your data, you can use DBMS_DATA_MINING_
TRANSFORM, an open-source package that provides a set of typical data transformation
routines. You can use these routines or adapt them, or you can use some other
SQL-based mechanism for preparing your data.

See "Preparing the Data" on page 7-17 for information on data transformations in the
Java API.

Model Settings
When you create a new model, you specify its function. Each function has a default
algorithm, and each algorithm has certain default behaviors. To specify any
characteristics, you must create a settings table for the model.

Create the settings table in the schema of the model owner. The settings table must
have these columns.

If you are using the PL/SQL API, specify the name of the settings table as a parameter
to the DBMS_DATA_MINING.CREATE_MODEL procedure. See "Build Settings" on
page 7-9 for information on model settings in the Java API.

Note: Any transformations performed on the build data must also be
performed on the test and scoring data. At each stage of the mining
process, the data sets must be identical in structure.

See Also: Oracle Data Mining Concepts for an overview of data
transformations

Column Name Data Type

setting_name VARCHAR2(30)

setting_value VARCHAR2(128)

See Also: "Model Settings" on page 3-3 for descriptions of the
settings and their values.

Predictive Analytics

Introducing the Oracle Data Mining APIs 1-7

Model Details
Model details refer to tabular information that can be generated dynamically after a
model has been created in the database. Model details provide a complete description
of the model. The kind of information provided by model details depends on the
algorithm used by the model.

Details of classification and regression models provide extensive statistics that you can
capture and examine before testing and scoring the model.

Details of a Decision Tree model are the XML representation of the model in standard
PMML format, enabling any application that supports this standard to import the
model.

Details of clustering models describe groups of cases that share certain characteristics.

Details of Attribute Importance models and Association models essentially provide
the results of the model. For example, the details of an Attribute Importance model are
a set of attributes with their importance value and rank. Details of an Association
model consist of associated items (item sets) and the rules that define each association.

Model details can be retrieved using the PL/SQL table functions GET_MODEL_
DETAILS_x, where x refers to the algorithm used by the model. See "Exploring Model
Details" on page 7-11 for information about model details in the Java API.

Predictive Analytics
The DBMS_PREDICTIVE_ANALYTICS PL/SQL package provides a high-level
interface to data mining. It provides much of the power of predictive data mining,
while masking its underlying complexity.

DBMS_PREDICTIVE_ANALYTICS automates the process of predictive data mining,
from data preparation to model building to scoring new data. In addition to
generating predictions, Predictive Analytics can explain the relative influence of
specific attributes on the prediction.

DBMS_PREDICTIVE_ANALYTICS provides a PREDICT routine and an EXPLAIN
routine.

When using Predictive Analytics, you do not need to prepare the data. Both the
PREDICT and EXPLAIN routines analyze the data and automatically perform
transformations to optimize the model.

See "Using Automated Prediction and Explain Tasks" on page 7-16 for information on
Predictive Analytics in the Java API.

Predictive Analytics are also available in the Oracle Spreadsheet Add-In for Predictive
Analytics.

Predictive Analytics
Routine Description

PREDICT Predicts the values in a target column, based on the cases where
the target is not null. PREDICT uses known data values to
automatically create a model and populate the unknown values in
the target.

EXPLAIN Identifies attribute columns that are important for explaining the
variation of values in a given column. EXPLAIN analyzes the data
and builds a model that identifies the important attributes and
ranks their importance

SQL Scoring Functions

1-8 Oracle Data Mining Application Developer’s Guide

SQL Scoring Functions
The built-in SQL functions for Data Mining implement scoring operations for models
that have already been created in the database. They provide the following benefits:

■ Models can be easily deployed within the context of existing SQL applications.

■ Scoring performance is greatly improved, especially in single row scoring cases,
since these functions take advantage of existing query execution functionality.

■ Scoring results are pipelined, enabling some of the results to be returned quickly
to the user.

When applied to a given row of scoring data, classification and regression models
provide the best predicted value for the target and the associated probability of that
value occurring. The predictive functions for Data Mining are described in Table 1–4.

Applying a cluster model to a given row of scoring data returns the cluster ID and the
probability of that row’s membership in the cluster. The clustering functions for data
mining are described in Table 1–5.

Applying a feature extraction model involves the mapping of features (sets of
attributes) to columns in the scoring dataset. The feature extraction functions for data
mining are described in Table 1–6.

Note: SQL functions are built into the Oracle Database and are
available for use within SQL statements. SQL functions should not be
confused with functions defined in PL/SQL packages.

Table 1–4 SQL Scoring Functions for Classification and Regression Models

Function Description

PREDICTION Returns the best prediction for the target.

PREDICTION_COST Returns a measure of the cost of false negatives and false
positives on the predicted target.

PREDICTION_DETAILS Returns an XML string containing details that help explain
the scored row.

PREDICTION_PROBABILITY Returns the probability of a given prediction

PREDICTION_SET Returns a list of objects containing all classes in a binary or
multi-class classification model along with the associated
probability (and cost, if applicable).

Table 1–5 SQL Scoring Functions for Clustering Models

Function Description

CLUSTER_ID Returns the ID of the predicted cluster.

CLUSTER_PROBABILITY Returns the probability of a case belonging to a given cluster.

CLUSTER_SET Returns a list of all possible clusters to which a given case
belongs along with the associated probability of inclusion.

Table 1–6 SQL Scoring Functions for Feature Extraction Models

Function Description

FEATURE_ID Returns the ID of the feature with the highest coefficient value.

SQL Scoring Functions

Introducing the Oracle Data Mining APIs 1-9

FEATURE_SET Returns a list of objects containing all possible features along
with the associated coefficients.

FEATURE_VALUE Returns the value of a given feature.

See Also: Oracle Database SQL Reference for information on the data
mining scoring functions.

Table 1–6 (Cont.) SQL Scoring Functions for Feature Extraction Models

Function Description

SQL Scoring Functions

1-10 Oracle Data Mining Application Developer’s Guide

Managing Data 2-1

2
Managing Data

This chapter describes data requirements and options for Oracle Data Mining. This
information applies to data sets used to build, test, and score models.

You should ensure that a data set is properly defined before applying transformations
to optimize it for a particular model. Data transformation techniques are not addressed
in this chapter.

This chapter contains the following topics:

■ Data Types

■ Columns and Attributes

■ Nested Tables

■ Data Storage Optimization

Data Types
The input to ODM is a table or a view. The columns can have numeric or character
data types: NUMBER, FLOAT, VARCHAR2, or CHAR.

Collection Types
Additionally, ODM supports columns of type DM_NESTED_CATEGORICALS and DM_
NESTED_NUMERICALS. These are collection types that define nested tables.

The ODM collection types define tables of attribute name/value pairs. ODM data sets
can include any number of these nested table columns in addition to scalar columns
with built-in numeric or character data types. See "Nested Tables" on page 2-4 for more
information.

See Also:

■ Oracle Data Mining Concepts for information about data
transformations.

■ DBMS_DATA_MINING_TRANSFORM in Oracle Database PL/SQL
Packages and Types Reference for information about data
transformations in PL/SQL.

■ "Preparing the Data" on page 7-17 for information about data
transformations in Java.

■ Oracle Database SQL Reference for information about Oracle schema
objects and data types.

Columns and Attributes

2-2 Oracle Data Mining Application Developer’s Guide

Text
ODM uses features of Oracle Text to transform unstructured text columns to
structured columns of type DM_NESTED_NUMERICALS for mining. The ODM Java API
provides the OraTextTransform interface to manage the text transformation process
for you. However, if you are using the PL/SQL API, you must use Oracle Text routines
directly (See Chapter 5).

Structured text columns are supported by several ODM algorithms (Support Vector
Machine for classification and regression, Non-Negative Matrix Factorization,
Association, and k-Means clustering).

Date and Time Data
ODM Predictive Analytics supports columns with DATE and TIMESTAMP data types.
These types are not supported by the ODM PL/SQL and Java APIs.

Columns and Attributes
ODM interprets the columns of the input table as attributes for data mining.
Attributes are the predictors or descriptors on which the model is based.

A model may additionally identify a case ID column, a target column, or both.

■ Case ID

A case ID column holds a unique identifier for each record (row) of data. The case
ID must be specified at model build time for all algorithms except Decision Tree. If
a case ID is present in a Decision Tree model, it is not considered a possible
predictor.

In the PL/SQL API and Java APIs, the case ID must be specified at apply time for
all algorithms. The SQL scoring functions do not use a case ID.

The case ID column can be of type VARCHAR2, CHAR, or NUMBER, and its
maximum length is 128 bytes.

■ Target

Predictive algorithms (Classification, Regression, and Attribute Importance)
require that one column be designated as a target. The name of the target column
is supplied as an argument when the model is created. The target column holds
the predictions generated by the model. The target column must be of type
VARCHAR2, CHAR, NUMBER, or FLOAT. SVM Regression supports only numeric
targets. One-Class SVM does not use a target.

Attribute Data Types
ODM interprets attributes as either categorical or numerical.

See Also:

■ "Using Text Transformation" on page 7-21 for information on text
transformation in the Java API

■ Oracle Data Mining Administrator's Guide for information on
sample programs that illustrate text transformation and text
mining

Columns and Attributes

Managing Data 2-3

Categorical attributes are values, such as gender or job title, that belong to a category
or domain. Values of a categorical attribute do not have a meaningful order.
Categorical attributes have character data types.

Numerical attributes are values, such as age or income, that fall within a continuum.
Numerical attributes represent interval data that has a measurable order. Numerical
attributes have numeric data types.

Converting Column Data Types
If the column data type is incompatible with the attribute type, you must convert the
data type. For example, an application might use postal codes as a categorical
attribute, but the data is actually stored in a numeric column. In this case, you would
use the TO_CHAR function to convert the column to a character data type.

If your mining data includes DATE and TIMESTAMP columns, and you are not using
Predictive Analytics, you must convert those columns to numeric or character data
types. In most cases, these data types should be converted to NUMBER, but you should
evaluate each case individually. If, for example, the date serves as a timestamp
indicating when a transaction occurred, converting the date to VARCHAR2 makes it
categorical with unique values, one in each record. This kind of column is known as an
identifier and is not useful in model building. However, if the date values are coarse
and significantly fewer than the number of records (for example, they might indicate
the week or month when an item was purchased), it may be useful to use character
values.

You can convert dates to numbers by selecting a starting date and subtracting it from
each date value. This process results in a NUMBER column. Another approach would be
to parse the date and distribute its components over several columns. This is the
conversion method used by Predictive Analytics.

DATE and TIMESTAMP Columns with Predictive Analytics
Predictive Analytics interprets DATE data and all forms of TIMESTAMP data, including
TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH LOCAL TIMEZONE, as a set of
numerical attributes. For example, a column named TIMECOL would be transformed
into attributes for year, month, week, day of year, day of month, day of week, hour,
and minute. Each attribute would be named TIMECOL_x, where x is the suffix used
to convert the date into a number. For example, the name of the year attribute would
be TIMECOL_YYYY.

The attributes resulting from DATE and TIMESTAMP data are visible in the results of an
EXPLAIN operation. They are not visible in the results of a PREDICT operation.

Attribute Names
The names of ODM attributes must be valid column names. Naming requirements for
columns are the same as the naming requirements for Oracle schema objects.

Schema object names can be quoted or nonquoted identifiers from one to thirty bytes
long. Nonquoted identifiers are not case sensitive; Oracle converts them to uppercase.
Nonquoted identifiers can consist of alphanumeric characters and the underscore (_),
dollar sign ($), and pound sign (#). The initial character must be alphabetic. Quoted
identifiers are case sensitive and can contain most characters.

See Also: Oracle Database SQL Reference for information on schema
object naming requirements.

Nested Tables

2-4 Oracle Data Mining Application Developer’s Guide

Nested Tables
ODM accepts data in single-record case format, where all the information (attributes)
concerning an individual is contained in one row. Single-record case, also known as
non-transactional format, is illustrated in the table in Example 2–1. This table contains
descriptive information about customers. CUSTOMER_ID is the case ID column.

Example 2–1 Non-Transactional Format

CUSTOMER_ID GENDER AGE MARITAL_STATUS
------------ ------ --- --------------
1 Male 30 Married
2 Female 35 Single
3 Male 21 Single
4 Female 20 Single
5 Female 35 Married

Sometimes data is organized in multi-record case, also known as transactional, format.
A typical example is market basket data. In transactional format, the data pertaining to
an individual is distributed across multiple records. The table in Example 2–2
illustrates transactional format. This table contains information about products
purchased by a group of customers on a given day. CUSTOMER_ID is the case ID
column.

Example 2–2 Transactional Format

CUST_ID PROD_ID PROD_NAME
-------- ------- ---------
1 524 brand x icecream
1 530 brand y frozen dinners
1 109 brand z dog food
2 578 brand a orange juice
2 191 brand x frozen dinners

ODM does not support multi-record case format. However, there could be
circumstances in which you want to construct a model using transactional data. For
example, you might want to use transactional data like that in Example 2–2 to predict
the products that each customer is likely to buy on his next visit to the store. Discount
coupons for these or similar products could then be generated with the checkout
receipt.

If you want to construct a model using transactional data, you must first convert the
data to single-record case. You must do this by defining columns of nested tables using
the ODM fixed collection types, DM_NESTED_NUMERICALS and DM_NESTED_
CATEGORICALS. These types define collections of numerical attributes and categorical
attributes respectively. The data type descriptions are shown as follows.

SQL> describe dm_nested_numerical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(30)
 VALUE NUMBER

SQL> describe dm_nested_numericals
 DM_NESTED_NUMERICALS TABLE OF DMSYS.DM_NESTED_NUMERICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(30)
 VALUE NUMBER

Nested Tables

Managing Data 2-5

SQL> describe dm_nested_categorical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(30)
 VALUE VARCHAR2(4000)

SQL> describe dm_nested_categoricals
 DM_NESTED_CATEGORICALS TABLE OF DMSYS.DM_NESTED_CATEGORICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(30)
 VALUE VARCHAR2(4000)

For a given case identifier, attribute names must be unique across all the collections
and individual columns. The fixed collection types enforce this requirement. However,
the attribute naming requirements, described in "Attribute Names" on page 2-3, do not
apply to the attribute_name column of a nested table.

The attributes in Example 2–2 could be stored in nested table columns, as illustrated in
Example 2–3. The column PRODUCT_IDENTIFIERS is of type DM_NESTED_
NUMERICALS, and the column PRODUCT_NAMES is of type DM_NESTED_
CATEGORICALS.

Example 2–3 Nested Tables

Object Views and Multi-Record Collections
You can create an object view that presents several sources of transactional data
(implemented with nested table columns) as a single data set for data mining. See
"Example: Multi-Record Collections With an Object View" on page 2-6.

Apart from the benefit of providing all your mining attributes through a single
row-source without impacting their physical data storage, the view acts as a join
specification on the underlying tables that can be used by the server for efficiently
accessing your data.

CUST_ID PRODUCT_IDENTIFIERS PRODUCT_NAMES

attribute_name value attribute_name value

1 PROD_ID 524

PROD_ID 530

PROD_ID 109

PROD_NAME brand x ice cream

PROD_NAME brand y frozen dinners

PROD_NAME brand z dog food

2 PROD_ID 578

PROD_ID 191

PROD_NAME brand a orange juice

PROD_NAME brand x frozen dinners

Nested Tables

2-6 Oracle Data Mining Application Developer’s Guide

Example: Multi-Record Collections With an Object View
A real-world example of an analytical pipeline for brain tumor research illustrates
multi-case collections with an object view. The underlying tables store gene expression
data and clinical data about the patient.

The fact table, GENE_EXPRESSION_DATA, stores gene expression data. It has the
following columns.

case_ID NUMBER
gene VARCHAR2(30)
expr NUMBER

The dimension table, CLINICAL_DATA_TABLE, stores clinical patient data. It has the
following columns.

case_ID NUMBER
name VARCHAR2(30)
type VARCHAR2(30)
subtype VARCHAR2(30)
gender CHAR(1)
age NUMBER
status VARCHAR2(30)

In this example, we want to create a model that predicts status based on gender, age,
and gene expression. The build data for the model is an object view that uses columns
of clinical patient data and a nested column of gene expression data. The view will
have the following columns.

case_id NUMBER
gender CHAR(1)
age NUMBER
gene_expr DM_NESTED_NUMERICALS
status VARCHAR2(30)

The following statement constructs the object view gene_expr_build, which can be
used as build data for the model.

CREATE OR REPLACE VIEW gene_expr_build AS
SELECT C.case_id,

C.gender,
C.age,
CAST(MULTISET(
SELECT gene, expr
 FROM gene_expression_data
 WHERE case_id = C.case_id) AS DM_NESTED_NUMERICALS
) gene_expr,

Note: Oracle recommends that you perform any necessary data
transformations on the base tables before building object views. In this
way, all attributes are transformed in a similar way. In most cases,
attributes in transactional format are of the same scale, and thus this
approach works. Otherwise, you can split the data into sets of similar
items and then transform them separately.

See DBMS_DATA_MINING_TRANSFORM in Oracle Database PL/SQL
Packages and Types Reference for information about data
transformations using PL/SQL. See "Preparing the Data" on page 7-17
for information about data transformations using Java.

Data Storage Optimization

Managing Data 2-7

C.status
 FROM clinical_data_table C

Data Storage Optimization
If there are a few hundred mining attributes and your application requires the
attributes to be represented as columns in the same row of the table, data storage must
be carefully designed.

For a table with several columns, the key question to consider is the (average) row
length, not the number of columns. Having more than 255 columns in a table built
with a smaller block size typically results in intrablock chaining.

Oracle stores multiple row pieces in the same block, but the overhead to maintain the
column information is minimal as long as all row pieces fit in a single data block. If the
rows don't fit in a single data block, you may consider using a larger database block
size (or use multiple block sizes in the same database).

See Also: Oracle Database Performance Tuning Guide for more details.

Data Storage Optimization

2-8 Oracle Data Mining Application Developer’s Guide

Managing Models 3-1

3
Managing Models

Models created by ODM APIs or by Oracle Data Miner are stored in the Database. This
chapter provides information about viewing, accessing, configuring, exporting and
importing models.

This chapter contains the following topics:

■ Models in the Database

■ Import/Export

■ Model Settings

Models in the Database
A model is identified by its name. Like tables in the database, a model has storage
associated with it. But unlike a table, the form, shape, and content of this storage is
opaque to the user. A model is not a database schema object.

You can view the contents of a model — that is, the patterns and rules that constitute a
mining model — using algorithm-specific GET_MODEL_DETAILS functions in the
DBMS_DATA_MINING PL/SQL package. These functions are documented in Oracle
Database PL/SQL Packages and Types Reference. See "Exploring Model Details" on
page 7-11 for information on model details in the Java API.

You can view a list of the models in your schema by querying the DM_USER_MODELS
view. The columns of the DM_USER_MODELS view are described in Table 3–1.

Table 3–1 DM_USER_MODELS View

Column Data Type Description

name VARCHAR2(25) Name of the model.

function_name VARCHAR2(30) The model function. See Chapter 1 for an overview of mining
functions.

algorithm_name VARCHAR2(30) The algorithm used by the model. See Chapter 1 for algorithms
used by the mining functions.

ctime_creation_date DATE The date on which the model was created.

build_duration NUMBER The duration of the model build process.

target_attribute VARCHAR2(30) The attribute designated as the target of a classification model.

model_size NUMBER The size of the model in megabytes.

Models in the Database

3-2 Oracle Data Mining Application Developer’s Guide

The following query lists the demo programs in the DM_USER schema.

SQL> select ’NAME’, ’FUNCTION_NAME’, ’ALGORITHM_NAME’ from DM_USER_MODELS;

NAME FUNCTION_NAME ALGORITHM_NAME
--
ABN_SH_CLAS_SAMPLE CLASSIFICATION ADAPTIVE_BAYES_NETWORK
AI_SH_SAMPLE ATTRIBUTE_IMPORTANCE MINIMUM_DESCRIPTION_LENGTH
AR_SH_SAMPLE ASSOCIATION_RULES APRIORI_ASSOCIATION_RULES
DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE
KM_SH_CLUS_SAMPLE CLUSTERING KMEANS
NB_SH_CLAS_SAMPLE CLASSIFICATION NAIVE_BAYES
NMF_SH_SAMPLE FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR
OC_SH_CLUS_SAMPLE CLUSTERING O_CLUSTER
SVMC_SH_CLAS_SAMPLE CLASSIFICATION SUPPORT_VECTOR_MACHINES
SVMO_SH_CLAS_SAMPLE CLASSIFICATION SUPPORT_VECTOR_MACHINES
SVMR_SH_REGR_SAMPLE REGRESSION SUPPORT_VECTOR_MACHINES
T_SVM_CLAS_SAMPLE CLASSIFICATION SUPPORT_VECTOR_MACHINES

Model Names
Although ODM models are not stored as Oracle schema objects, their names must
conform to Database requirements for nonquoted identifiers. Additionally, model
names must be less than 25 bytes long.

Oracle requires that nonquoted identifiers contain only alphanumeric characters, the
underscore (_), dollar sign ($), and pound sign (#); the initial character must be
alphabetic. Oracle strongly discourages the use of the dollar sign and pound sign in
nonquoted literals.

Model Access
Oracle Data Mining does not support a general privilege model that spans multiple
users. GRANT and REVOKE of read and update privileges on a mining model across
user schemas are not yet supported.

You can only read and update models in your own schema. If you want to modify the
settings of a model or view its details, you must be logged in with the identity of the
schema that owns the model. Results of all mining operations are generated in the
schema that owns the model.

Models in one schema can be exported to other schemas. You can import a model into
your own schema once it has been exported to an accessible location.

Note: Metadata about models is stored in system tables whose
names have the prefix DM$ or DM. You should not attempt to query or
modify these system tables, and you should not use DM$ or DM_
prefixes in the names of any tables used by ODM applications.

See Also: Oracle Data Mining Administrator's Guide for information
about installing, running, and viewing the demo programs.

See Also: Oracle Database SQL Reference for information on schema
object naming requirements.

Model Settings

Managing Models 3-3

Import/Export
Mining models are included when a database or schema is exported or imported with
the Oracle Data Pump utility. You can export and import individual models or groups
of models using the ODM SQL and Java APIs.

You can use the EXPORT_MODEL procedure in the DBMS_DATA_MINING package to
export a model or a group of models to a dump file. Models can be imported from the
dump file using IMPORT_MODEL.

The Java API uses the ExportTask and ImportTask standard JDM interfaces to
provide the same export/import functionality.

Model Settings
A settings table is a relational table that provides configuration information for a
specific model. You must create a settings table if you want a model to have any
nondefault characteristics. You will supply the name of the settings table when you
create the model.

You must create the settings table in the schema of the model. You can choose the
name of the settings table, but the column names and their types must be defined as
shown.

The values inserted into the setting_name column are one or more of several
constants defined in the DBMS_DATA_MINING package. Depending on what the
setting name denotes, the value for the setting_value column can be a predefined
constant or the actual numerical value corresponding to the setting itself. The
setting_value column is defined to be VARCHAR2. You can explicitly cast
numerical inputs to string using the TO_CHAR() function, or you can rely on the
implicit type conversion provided by the Database.

The settings described in Table 3–2 apply to a mining function. Use these settings to
specify the algorithm that the model will use, the location of cost matrix and prior
probabilities tables, and other function-specific characteristics. See Table 1–1,
" Predictive Data Mining Functions" and Table 1–2, " Descriptive Data Mining
Functions" for information about mining functions.

See Also:

■ Oracle Data Mining Administrator's Guide for more information on
model export/import.

■ Oracle Database Utilities for information on Oracle Data Pump.

Column Name Data Type

setting_name VARCHAR2(30)

setting_value VARCHAR2(128)

Model Settings

3-4 Oracle Data Mining Application Developer’s Guide

Table 3–2 Data Mining Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)

algo_name Classification: One of:

■ algo_naive_bayes (Default)

■ algo_support_vector_machines

(Use this setting for both SVM and One-Class SVM

■ algo_adaptive_bayes_network

■ algo_decision_tree

Regression:

■ algo_support_vector_machines

Association Rules:

■ algo_apriori_association_rules

Clustering:

■ algo_kmeans (Default)

■ algo_o_cluster

Feature Extraction:

■ algo_nonnegative_matrix_factor

Attribute Importance:

■ algo_ai_mdl

clas_cost_table_name The name of a relational table that specifies a cost matrix. The
column requirements for this table are described in "Costs" on
page 3-9.

This input is applicable only for Decision Tree algorithms, since
this is the only algorithm that supports a cost matrix at build
time. The cost matrix table must be present in the current user's
schema.

clas_priors_table_name The name of a relational table that specifies prior probabilities.
The column requirements for this table are described in "Priors"
on page 3-10.

This input is applicable only for classification algorithms.
Decision Tree is the only classification algorithm that does not
use priors. The prior probabilities table must be present in the
current user's schema.

For SVM classification, this setting identifies a table of weights.

clus_num_clusters TO_CHAR(numeric_expr >= 1)

Number of clusters generated by a clustering algorithm.

Default is 10.

feat_num_features TO_CHAR(numeric_expr > = 1)

Number of features to be extracted.

Default value estimated from the data by the algorithm.

asso_max_rule_length TO_CHAR(2 <= numeric_expr <= 20)

Maximum rule length for AR algorithm.

Default is 4.

asso_min_confidence TO_CHAR(0 <= numeric_expr <= 1)

Minimum confidence value for AR algorithm

Default is 0.1.

Model Settings

Managing Models 3-5

Table 3–3 through Table 3–9 provide algorithm-specific settings. You can use these
settings to tune the behavior of the algorithm.

asso_min_support TO_CHAR(0 <= numeric_expr <= 1)

Minimum support value for AR algorithm

Default is 0.1.

Table 3–3 Algorithm Settings for Adaptive Bayes Network

Setting Name Setting Value (with Permissible Value Ranges)

abns_model_type Model type for Adaptive Bayes Network:

■ abns_single_feature

■ abns_multi_feature (Default)

■ abns_naive_bayes)

abns_max_build_
minutes

TO_CHAR(numeric_expr >= 0)

The maximum time threshold for completion of model build.

Default is 0, which implies no time limit.

abns_max_nb_
predictors

TO_CHAR(numeric_expr > 0)

Maximum number of predictors, measured by their MDL ranking,
to be considered for building an ABN model of type abns_
naive_bayes.

Default is 10.

abns_max_predictors TO_CHAR(numeric_expr > 0)

Maximum number of predictors, measured by their MDL ranking,
to be considered for building an ABN model of type abns_
single_feature or abns_multi_feature.

Default is 25.

Table 3–4 Algorithm Settings for Naive Bayes

Setting Name Setting Value (with Permissible Value Ranges)

nabs_singleton_threshold TO_CHAR(0 <= numeric_expr <=1)

Value of singleton threshold for NB algorithm

Default value is 0.01

nabs_pairwise_threshold TO_CHAR(0 <= numeric_expr <=1)

Value of pairwise threshold for NB algorithm

Default is 0.01.

Table 3–2 (Cont.) Data Mining Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)

Model Settings

3-6 Oracle Data Mining Application Developer’s Guide

Table 3–5 Algorithm Settings for Decision Tree

Setting Name Setting Value (with Permissible Value Ranges)

tree_impurity_metric Tree impurity metric for Decision Tree. Tree algorithms seek
the best test question for splitting data at each node. The
best splitter and split value are those that result in the
largest increase in target value homogeneity for the entities
in the node. Homogeneity is measured in accordance with
a metric. For classification (Binary or multi-class targets),
the supported metrics are gini and entropy.

■ tree_impurity_entropy

■ tree_impurity_gini (Default)

tree_term_max_depth TO_CHAR(2 <= numeric_expr <= 20)

Criteria for splits: maximum tree depth (the maximum
number of nodes between the root and any leaf node,
including the leaf node).

Default is 7.

tree_term_minpct_node TO_CHAR(0 <= numeric_expr <= 10)

No child shall have fewer records than this number, which
is expressed as a percentage of the training rows.

Default is 0.05, indicating 0.05%.

tree_term_minpct_split TO_CHAR(0 <= numeric_expr <= 20)

Criteria for splits: minimum number of records in a parent
node expressed as a percent of the total number of records
used to train the model. No split is attempted if number of
records is below this value.

Default is 0.1, indicating 0.1%.

tree_term_minrec_node TO_CHAR(numeric_expr >= 0)

No child shall have fewer records than this number.

Default is 10.

tree_term_minrec_split TO_CHAR(numeric_expr >= 0)

Criteria for splits: minimum number of records in a parent
node expressed as a value. No split is attempted if number
of records is below this value.

Default is 20.

Table 3–6 Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)

svms_active_learning Whether active learning is enabled or disabled:

■ svms_al_disable

■ svms_al_enable (Default)

When active learning is enabled, the SVM algorithm uses
active learning to build a reduced size model. When active
learning is disabled, the SVM algorithm builds a standard
model.

svms_kernel_function Kernel for Support Vector Machine:

■ svms_linear (Default

■ svms_gaussian

Model Settings

Managing Models 3-7

svms_kernel_cache_size TO_CHAR(numeric_expr > 0)

Value of kernel cache size for SVM algorithm. Applies to
Gaussian kernel only.

Default is 50000000 bytes.

svms_conv_tolerance TO_CHAR(numeric_expr > 0)

Convergence tolerance for SVM algorithm

Default is 0.001.

svms_std_dev TO_CHAR(numeric_expr > 0)

Value of standard deviation for SVM algorithm

This is applicable only for Gaussian kernel

Default value estimated from the data by the algorithm

svms_complexity_factor TO_CHAR(numeric_expr > 0)

Value of complexity factor for SVM algorithm (both
classification and regression)

Default value estimated from the data by the algorithm

svms_epsilon TO_CHAR(numeric_expr > 0)

Value of epsilon factor for SVM Regression

Default value estimated from the data by the algorithm

svms_outlier_rate TO_CHAR(0 <numeric_expr < 1)

The desired rate of outliers in the training data. Valid for
One-Class SVM models only. Cannot be used with svms_
complexity_factor.

Default is 0.1.

Table 3–7 Algorithm Settings for Non-Negative Matrix Factorization

Setting Name Setting Value (with Permissible Value Ranges)

nmfs_random_seed TO_CHAR(numeric_expr)

Random seed for NMF algorithm.

Default is –1.

nmfs_num_iterations TO_CHAR(1 <= numeric_expr <= 500)

Number of iterations for NMF algorithm

Default is 50

nmfs_conv_tolerance TO_CHAR(0 < numeric_expr <= 0.5)

Convergence tolerance for NMF algorithm

Default is 0.05

Table 3–8 Algorithm Settings for O-Cluster

Setting Name Setting Value (with Permissible Value Ranges)

oclt_max_buffer TO_CHAR(numeric_expr > 0)

Buffer size for O-Cluster.

Default is 50,000.

Table 3–6 (Cont.) Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)

Model Settings

3-8 Oracle Data Mining Application Developer’s Guide

This example creates a settings table for an SVM classification model and edits the
individual values using SQL DML.

CREATE TABLE drugstore_settings (
 setting_name VARCHAR2(30),

oclt_sensitivity TO_CHAR(0 <=numeric_expr <= 1)

A fraction that specifies the peak density required for separating a
new cluster. The fraction is related to the global uniform density.

Default is 0.5.

Table 3–9 Algorithm Settings for k-Means

Setting Name Setting Value (with Permissible Value Ranges)

kmns_distance Distance Function for k-Means Clustering:

■ kmns_euclidean (Default)

■ kmns_cosine

■ kmns_fast_cosine

kmns_iterations TO_CHAR(0 < numeric_expr <= 20)

Number of iterations for k-Means algorithm

Default is 3

kmns_conv_tolerance TO_CHAR(0< numeric_expr <= 0.5)

Convergence tolerance for k-Means algorithm

Default is 0.01

kmns_split_criterion Split criterion for k-Means Clustering:

■ kmns_variance (Default)

■ kmns_size

kmns_num_bins TO_CHAR(numeric_expr > 0)

Number of histogram bins. Specifies the number of bins
in the attribute histogram produced by k-Means. The bin
boundaries for each attribute are computed globally on
the entire training data set. The binning method is
equi-width. All attributes have the same number of bins
with the exception of attributes with a single value that
have only one bin.

Default is 10.

kmns_block_growth TO_CHAR(1 < numeric_expr <= 5)

Growth factor for memory allocated to hold cluster data

Default value is 2

kmns_min_pct_attr_support TO_CHAR(0<= numeric_expr<=1)

The fraction of attribute values that must be non-null in
order for the attribute to be included in the rule
description for the cluster.

Setting the parameter value too high in data with
missing values can result in very short or even empty
rules.

Default is 0.1.

Table 3–8 (Cont.) Algorithm Settings for O-Cluster

Setting Name Setting Value (with Permissible Value Ranges)

Model Settings

Managing Models 3-9

 setting_value VARCHAR2(128))

BEGIN
-- override the default for convergence tolerance for SVM Classification
INSERT INTO drugstore_model_settings (setting_name, setting_value)
VALUES (dbms_data_mining.svms_conv_tolerance, TO_CHAR(0.081));
COMMIT;
END;

The table function GET_DEFAULT_SETTINGS provides you all the default settings for
mining functions and algorithms. If you intend to override all the default settings, you
can create a seed settings table and edit them using SQL DML.

BEGIN
CREATE TABLE drug_store_settings AS
SELECT setting_name, setting_value
 FROM TABLE (DBMS_DATA_MINING.GET_DEFAULT_SETTINGS
 WHERE setting_name LIKE 'SVMS_%';
-- update the values using appropriate DML
END;

You can also create a settings table based on another model's settings using GET_
MODEL_SETTINGS.

BEGIN
CREATE TABLE my_new_model_settings AS
SELECT setting_name, setting_value
FROM TABLE (DBMS_DATA_MINING.GET_MODEL_SETTINGS('my_other_model'));

END;

Costs
In classification models, you can specify a cost matrix to represent the costs associated
with false positive and false negative predictions. A cost matrix can be used in testing
and scoring most classification models.

The Decision Tree algorithm can use a cost matrix at build time.To specify the cost
matrix, you must create a cost matrix table and provide its name in the clas_cost_
table_name setting for the Decision Tree model. See "Build Settings" on page 4-5 for
an example.

If you are using the Java API, instantiate a CostMatrix object and specify the name
of the table as a parameter to the dmeConn.saveObject method for the object.

The cost matrix table must have these columns.

ODM enables you to evaluate the cost of predictions from classification models in an
iterative manner during the experimental phase of mining, and to eventually apply the
optimal cost matrix to predictions on the actual scoring data in a production
environment.

Column Name Data Type

actual_target_value VARCHAR2(4000) for categorical targets

NUMBER for numeric targets

predicted_target_value VARCHAR2(4000)

NUMBER for numeric targets

cost NUMBER

Model Settings

3-10 Oracle Data Mining Application Developer’s Guide

The data input to each test computation (a COMPUTE procedure in PL/SQL, or a
TestMetrics object in Java) is the result generated from applying the model on test
data. In addition, if you also provide a cost matrix as an input, the computation
generates test results taking the cost matrix into account. This enables you to
experiment with various costs for a given prediction against the same APPLY results,
without rebuilding the model and applying it against the same test data for every
iteration.

Once you arrive at an optimal cost matrix, you can then input this cost matrix to the
RANK_APPLY operation along with the results of APPLY on your scoring data. RANK_
APPLY will provide your new data ranked by cost.

Priors
In most classification models, you can specify prior probabilities to offset differences in
distribution between the build data and the real population (scoring data). Priors can
be used in building any classification model that uses a Bayesian algorithm. Priors are
not used by the Decision Tree algorithm.

To specify prior probabilities, you must create a priors table and provide its name in
the clas_priors_table_name setting for the model. If you are using the Java API,
use a setPriorProbabilitiesMap object in the classification function settings for
the model.

SVM Classification uses weights to correct for differences in target distribution. Use
the priors table to specify weights for SVM Classification models.

The priors table must have these columns.

See Also: Oracle Data Mining Concepts for more information on cost
matrix.

Column Name Data Type

target_value VARCHAR2 for categorical targets

NUMBER for numeric targets

prior_probability NUMBER

See Also: Oracle Data Mining Concepts for more information on prior
probabilities.

Using the PL/SQL API and SQL Scoring Functions 4-1

4
Using the PL/SQL API and SQL Scoring

Functions

This chapter provides information to help you build data mining applications in
PL/SQL. It includes sample code for building, testing, and scoring a classification
model, and it illustrates the use of SQL functions for model scoring.

This chapter contains the following sections:

■ The PL/SQL Sample Applications

■ The DBMS_DATA_MINING Package

■ Example: Building a Decision Tree Model

■ Example: Using SQL Functions to Test a Decision Tree Model

■ Example: Using SQL Functions to Apply a Decision Tree Model

The PL/SQL Sample Applications
The examples included in this chapter are taken from the Data Mining sample
applications available on the Database companion CD. When you install the
companion CD, the Data Mining sample applications are copied to /rdbms/demo/ in
the Oracle home directory.

The following directory listing command lists the sample data mining programs on a
Linux system. Use an equivalent command to list the sample programs on other
operating systems.

>ls $ORACLE_HOME/rdbms/demo/dm*

Table 4–1 lists the sample PL/SQL programs.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for
information on the PL/SQL packages for Data Mining.

■ Oracle Database SQL Reference for information on the SQL scoring
functions for Data Mining.

■ Oracle Data Mining Administrator's Guide for information on
installing and using the sample PL/SQL programs for data
mining

The DBMS_DATA_MINING Package

4-2 Oracle Data Mining Application Developer’s Guide

The DBMS_DATA_MINING Package
The following types of mining activities are supported by the DBMS_DATA_MINING
package:

■ Creating, dropping, and renaming a model: CREATE_MODEL, DROP_MODEL,
RENAME_MODEL.

■ Scoring a model: APPLY.

■ Ranking APPLY results: RANK_APPLY.

■ Describing a model: GET_MODEL_DETAILS, GET_MODEL_SETTINGS, GET_
DEFAULT_SETTINGS,GET_MODEL_SIGNATURE.

■ Computing test metrics for a model: COMPUTE_CONFUSION_MATRIX, COMPUTE_
LIFT, and COMPUTE_ROC.

■ Exporting and importing models: EXPORT_MODEL, IMPORT_MODEL.

Of these, the first set represents DDL-like operations. The last set represents utilities.
The rest are query-like operations in that they do not modify the model.

You can view the models defined in your schema by querying the DM_USER_MODELS
view. The following query on a Linux system lists the models in the schema of
DMUSER. These models were created by the sample PL/SQL programs.

>sqlplus dmuser/dmuser_password

Table 4–1 Sample PL/SQL Programs

Application Description

dmabdemo.sql Creates an Adaptive Bayes Network model (classification).

dmaidemo.sql Creates an Attribute Importance model.

dmardemo.sql Creates an Association Rules model.

dmdtdemo.sql Creates a Decision Tree model (classification).

dmkmdemo.sql Creates a k_means model (clustering).

dmnbdemo.sql Creates a Naive Bayes model (classification).

dmnmdemo.sql Creates a Non_Negative Matrix Factorization model (feature extraction).

dmocdemo.sql Creates an O-Cluster model (clustering).

dmsvcdem.sql Creates a Support Vector Machine model (classification).

dmsvodem.sql Creates a Support Vector Machine model (one-class classification).

dmsvrdem.sql Creates a Support Vector Machine model (regression).

dmtxtfe.sql Text mining. (term extraction using CTX procedures).

dmtxtnmf.sql Text mining using NMF feature extraction.

dmtxtsvm.sql Text mining using SVM classification.

See Also: Oracle Data Mining Administrator's Guide for information
about installing, running, and viewing the sample programs.

Note: Detailed information about the DBMS_DATA_MINING package
is available in Oracle Database PL/SQL Packages and Types Reference.

The DBMS_DATA_MINING Package

Using the PL/SQL API and SQL Scoring Functions 4-3

SQL> set linesize 200
SQL> set pagesize 100
SQL> select NAME, FUNCTION_NAME, ALGORITHM_NAME, TARGET_ATTRIBUTE from DM_USER_MODELS;

NAME FUNCTION_NAME ALGORITHM_NAME TARGET_ATTRIBUTE
--------------------- ---------------------- ------------------------------ -----------------
T_NMF_SAMPLE FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR
T_SVM_CLAS_SAMPLE CLASSIFICATION SUPPORT_VECTOR_MACHINES AFFINITY_CARD
AR_SH_SAMPLE ASSOCIATION_RULES APRIORI_ASSOCIATION_RULES
AI_SH_SAMPLE ATTRIBUTE_IMPORTANCE MINIMUM_DESCRIPTION_LENGTH AFFINITY_CARD
ABN_SH_CLAS_SAMPLE CLASSIFICATION ADAPTIVE_BAYES_NETWORK AFFINITY_CARD
DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE AFFINITY_CARD
NB_SH_CLAS_SAMPLE CLASSIFICATION NAIVE_BAYES AFFINITY_CARD
SVMC_SH_CLAS_SAMPLE CLASSIFICATION SUPPORT_VECTOR_MACHINES AFFINITY_CARD
OC_SH_CLUS_SAMPLE CLUSTERING O_CLUSTER
KM_SH_CLUS_SAMPLE CLUSTERING KMEANS
NMF_SH_SAMPLE FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR
SVMR_SH_REGR_SAMPLE REGRESSION SUPPORT_VECTOR_MACHINES AGE

Build Results
The CREATE_MODEL procedure creates a mining model. The viewable contents of a
mining model are provided to you through the GET_MODEL_DETAILS functions for
each supported algorithm. In addition, GET_MODEL_SIGNATURE and GET_MODEL_
SETTINGS provide descriptive information about the model.

Apply Results
The APPLY procedure creates and populates a pre-defined table. The columns of this
table vary based on the particular mining function, algorithm, and target attribute type
— numerical or categorical.

The RANK_APPLY procedure takes this results table as input and generates another
table with results ranked based on a top-N input. Classification models can also be
ranked based on cost. The column structure of this table varies based on the particular
mining function, algorithm, and the target attribute type — numerical or categorical.

Test Results for Classification Models
The COMPUTE routines provided in DBMS_DATA_MINING are the most popularly used
metrics for classification. They are not tied to a particular model — they can compute
the metrics from any meaningful data input as long as the column structure of the
input tables fits the specification of the apply results table and the targets tables.

Test Results for Regression Models
The most commonly used metrics for regression models are root mean square error
and mean absolute error. You can use the SQL queries, shown in the following
sections, to compute these metrics. Simply replace the italicized tokens with table and
column names appropriate for your application.

Root Mean Square Error
SELECT sqrt(avg((A.prediction - B.target_column_name) *
 (A.prediction - B.target_column_name))) rmse
 FROM apply_results_table A, targets_table B
 WHERE A.case_id_column_name = B.case_id_column_name;

Example: Building a Decision Tree Model

4-4 Oracle Data Mining Application Developer’s Guide

Mean Absolute Error
Given the targets_table generated from the test data with the following columns,

(case_id_column_name VARCHAR2,
target_column_name NUMBER)

and apply results table for regression with the following columns,

(case_id_column_name VARCHAR2,
prediction NUMBER)

and a normalization table (optional) with the following columns,

(attribute_name VARCHAR2(30),
scale NUMBER,
shift NUMBER)

the query for mean absolute error is:

SELECT /*+PARALLEL(T) PARALLEL(A)*/
 AVG(ABS(T.actual_value - T.target_value)) mean_absolute_error
 FROM (SELECT B.case_id_column_name
 (B.target_column_name * N.scale + N.shift) actual_value
 FROM targets_table B,
 normalization_table N
 WHERE N.attribute_name = B.target_column_name AND
 B.target_column_name = 1) T,
 apply_results_table_name A
 WHERE A.case_id_column_name = T.case_id_column_name;

You can fill in the italicized values with the actual column and table names chosen by
you. If the data has not undergone normalization transformation, you can eliminate
those references from the subquery. See the SVM regression sample program
(dmsvrdem.sql for an example.

Example: Building a Decision Tree Model
Given demographic data about a set of customers, this example predicts the customer
response to an affinity card program using a classifier based on the Decision Tree
algorithm.

Mining Data
The Decision Tree algorithm is capable of handling data that has not been specially
prepared. This example uses data created from the base tables in the SH schema and
presented through the following views.

MINING_DATA_BUILD_V (build data)
MINING_DATA_TEST_V (test data)
MINING_DATA_APPLY_V (scoring data)

Note: This example is taken from the sample program
dmdtdemo.sql. See Oracle Data Mining Administrator's Guide for
information about the sample programs.

Example: Building a Decision Tree Model

Using the PL/SQL API and SQL Scoring Functions 4-5

Build Settings
The following example creates a settings table and a cost matrix table for the model.
The settings override the default classification algorithm (Naive Bayes) and specify the
location of the cost matrix table.

set echo off
CREATE TABLE dt_sh_sample_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));
set echo on

-- CREATE AND POPULATE A COST MATRIX TABLE
--
-- A cost matrix is used to influence the weighting of misclassification
-- during model creation (and scoring).
--
CREATE TABLE dt_sh_sample_cost (
 actual_target_value NUMBER,
 predicted_target_value NUMBER,
 cost NUMBER);
INSERT INTO dt_sh_sample_cost VALUES (0,0,0);
INSERT INTO dt_sh_sample_cost VALUES (0,1,1);
INSERT INTO dt_sh_sample_cost VALUES (1,0,8);
INSERT INTO dt_sh_sample_cost VALUES (1,1,0);
COMMIT;

BEGIN
 -- Populate settings table
 INSERT INTO dt_sh_sample_settings VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_decision_tree);
 INSERT INTO dt_sh_sample_settings VALUES
 (dbms_data_mining.clas_cost_table_name, 'dt_sh_sample_cost');
 COMMIT;
END;

Model Creation
The following example creates the model using the predefined settings table.

BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'DT_SH_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'dt_sh_sample_settings');
END;

-- DISPLAY MODEL SETTINGS
-- This section illustrates the GET_MODEL_SETTINGS procedure.
-- It is not needed for Decision Tree models, because model
-- settings are present in the model details XML.

column setting_name format a30

Note: Data preparation techniques (using the DBMS_DATA_MINING_
TRANSFORM package) are illustrated in many of the sample programs.

Example: Using SQL Functions to Test a Decision Tree Model

4-6 Oracle Data Mining Application Developer’s Guide

column setting_value format a30
SELECT setting_name, setting_value
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SETTINGS('DT_SH_Clas_sample'))
ORDER BY setting_name;

-- DISPLAY MODEL SIGNATURE
-- This section illustrates the GET_MODEL_SIGNATURE procedure.
-- It is not needed for Decision Tree models, because the model
-- signature is present in the model details XML.
--
column attribute_name format a40
column attribute_type format a20
SELECT attribute_name, attribute_type
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SIGNATURE('DT_SH_Clas_sample'))
ORDER BY attribute_name;

-- DISPLAY MODEL DETAILS
-- NOTE: The """ characters in this XML output are owing to
-- SQL*Plus behavior. Cut and paste this XML into a file,
-- and open the file in a browser to see correctly formatted XML.
--
SET long 2000000000
column dt_details format a320
SELECT
 dbms_data_mining.get_model_details_xml('DT_SH_Clas_sample').extract('/')
 AS DT_DETAILS
FROM dual;

Example: Using SQL Functions to Test a Decision Tree Model
The following example computes a confusion matrix and accuracy using the
PREDICTION function for Data Mining. It performs the computations both with and
without the cost matrix. In this example, the cost matrix reduces the problematic
misclassifications, but also negatively impacts the overall model accuracy.

-- DISPLAY CONFUSION MATRIX WITHOUT APPLYING COST MATRIX
--
SELECT affinity_card AS actual_target_value,
 PREDICTION(DT_SH_Clas_sample USING *) AS predicted_target_value,
 COUNT(*) AS value
 FROM mining_data_test_v
GROUP BY affinity_card, PREDICTION(DT_SH_Clas_sample USING *)
ORDER BY 1,2;

-- DISPLAY CONFUSION MATRIX APPLYING THE COST MATRIX
--
SELECT affinity_card AS actual_target_value,
 PREDICTION(DT_SH_Clas_sample COST MODEL USING *)
 AS predicted_target_value,
 COUNT(*) AS value
 FROM mining_data_test_v
GROUP BY affinity_card, PREDICTION(DT_SH_Clas_sample COST MODEL USING *)
ORDER BY 1,2;

-- DISPLAY ACCURACY WITHOUT APPLYING COST MATRIX
--
SELECT ROUND(SUM(correct)/COUNT(*),4) AS accuracy
 FROM (SELECT DECODE(affinity_card,
 PREDICTION(DT_SH_Clas_sample USING *), 1, 0) AS correct
 FROM mining_data_test_v);

Example: Using SQL Functions to Apply a Decision Tree Model

Using the PL/SQL API and SQL Scoring Functions 4-7

-- DISPLAY ACCURACY APPLYING THE COST MATRIX
--
SELECT ROUND(SUM(correct)/COUNT(*),4) AS accuracy
 FROM (SELECT DECODE(affinity_card,
 PREDICTION(DT_SH_Clas_sample COST MODEL USING *),
 1, 0) AS correct
 FROM mining_data_test_v);

Example: Using SQL Functions to Apply a Decision Tree Model
The following example illustrates several ways of scoring the Decision Tree Model. It
uses the PREDICTION, PREDICTION_COST, PREDICTION_SET, and PREDICTION_
DETAILS functions to predict information for four different business cases:

1. Find the ten customers who live in Italy and could be convinced, with the least
expense, to use an affinity card.

2. Find the average age of customers who are likely to use an affinity card, based on
marital status, education, and household size.

3. List ten customers with the likelihood and cost that they will use or reject an
affinity card.

4. Find the segmentation for customers who work in Customer Support and are
under 25.

-- BUSINESS CASE 1
-- Find the 10 customers who live in Italy that are least expensive
-- to be convinced to use an affinity card.
--
WITH
cust_italy AS (
SELECT cust_id
 FROM mining_data_apply_v
 WHERE country_name = 'Italy'
ORDER BY PREDICTION_COST(DT_SH_Clas_sample, 1 COST MODEL USING *) ASC, 1
)
SELECT cust_id
 FROM cust_italy
 WHERE rownum < 11;

-- BUSINESS CASE 2
-- Find the average age of customers who are likely to use an
-- affinity card.
-- Include the build-time cost matrix in the prediction.
-- Only take into account CUST_MARITAL_STATUS, EDUCATION, and
-- HOUSEHOLD_SIZE as predictors.
-- Break out the results by gender.
--
column cust_gender format a12
SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, household_size) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

Example: Using SQL Functions to Apply a Decision Tree Model

4-8 Oracle Data Mining Application Developer’s Guide

-- BUSINESS CASE 3
-- List ten customers (ordered by their id) along with likelihood and cost
-- to use or reject the affinity card (Note: while this example has a
-- binary target, such a query is useful in multi-class classification -
-- Low, Med, High for example).
--
column prediction format 9;
SELECT T.cust_id, S.prediction, S.probability, S.cost
 FROM (SELECT cust_id,
 PREDICTION_SET(dt_sh_clas_sample COST MODEL USING *) pset
 FROM mining_data_apply_v
 WHERE cust_id < 100011) T,
 TABLE(T.pset) S
ORDER BY cust_id, S.prediction;

-- BUSINESS CASE 4
-- Find the segmentation (resulting tree node) for customers who
-- work in Tech support and are under 25.
--
column education format a30;
column treenode format a40;
SELECT cust_id, education,
 PREDICTION_DETAILS(dt_sh_clas_sample USING *) treenode
 FROM mining_data_apply_v
 WHERE occupation = 'TechSup' AND age < 25
ORDER BY 1;

Using PL/SQL to Prepare Text Data for Mining 5-1

5
Using PL/SQL to Prepare Text Data for

Mining

Oracle Data Mining supports the mining of data sets that have one or more text
columns. These columns must undergo a special preprocessing step whereby text
tokens known as terms are extracted and stored in a nested table column. The
transformed text can then be used as any other attribute in the building, testing, and
scoring of models.

This chapter explains how to use Oracle Text packages in a PL/SQL program to
prepare a column of text for Oracle Data Mining.

You can also use the Java API to perform text transformation. Refer to "Using Text
Transformation" in Chapter 7 for more information.

This chapter contains the following sections.

■ Oracle Text for Oracle Data Mining

■ Term Extraction in the Sample Programs

■ From Unstructured Data to Structured Data

■ Steps in the Term Extraction Process

■ Example: Transforming a Text Column

Oracle Text for Oracle Data Mining
Oracle Data Mining uses specialized Oracle Text routines to preprocess text data.
Oracle Text is a technology within the Database for building text querying and
classification applications. Oracle Text provides the following facilities that are specific
to the Oracle Data Mining term extraction process:

■ SVM_CLASSIFIER, defined in the CTX_DLL Oracle Text PL/SQL package,
specifies an index preference for Oracle Data Mining term extraction. It is used in

Note: Oracle Data Mining includes sample programs that illustrate
text transformation and text mining in both PL/SQL and Java. Refer
to Oracle Data Mining Administrator's Guide for information on the
Oracle Data Mining sample programs.

See Also: Oracle Data Mining Concepts for more information on text
mining.

Term Extraction in the Sample Programs

5-2 Oracle Data Mining Application Developer’s Guide

the text transformation process for all algorithms supported by Oracle Data
Mining.

■ The CTXSYS.DRVODM Oracle Text PL/SQL package defines the table functions,
FEATURE_PREP and FEATURE_EXPLAIN, which generate intermediate and final
tables of text terms for Oracle Data Mining.

The data preparation process in a PL/SQL text mining application requires the use of
these Oracle Text facilities. Java developers can use the OraTextTransform interface,
which presents the Oracle Text term extraction capability within the context of a Java
environment. See "Using Text Transformation" on page 7-21 for more information.

Term Extraction in the Sample Programs
A good place to start in learning the text term extraction process is with the sample
programs. You can find these programs in the /rdbms/demo directory under
$ORACLE_HOME. Refer to the Oracle Data Mining Administrator's Guidefor more
information.

The following sample programs contain term extraction code for text mining:

■ dmsh.sql — Prepares the build, test, and scoring data for the sample programs,
including the text mining programs. dmsh.sql creates views for data mining and
tables and indexes for text mining.

■ dmtxtfe.sql — Uses a table with an indexed text column, created by
dmsh.sql, to create a table of build data with a nested table column.

The dmtxtfe.sql program is a sample term extractor. It contains extensive
comments that explain the code in a step-by-step fashion. You can expand this
program into a complete term extraction solution by adding index creation and the
preparation of test and scoring data (as in dmsh.sql).

Text Mining Programs
Once you have properly prepared the text data, you can build a text mining program
using any algorithm that supports sparse data: association rules, k-Means, SVM
(classification, regression, and one-class classification), and non-negative matrix
factorization.

Two text mining sample PL/SQL programs use the data prepared by dmsh.sql.

Note: Text terms are also known as features. In text mining, a feature
is a word or group of words extracted from a text attribute. Both NMF
models and text mining transformation perform a kind of feature
extraction. NMF creates a single feature from multiple attributes. Text
transformation creates multiple features from a single attribute.

See Also: Oracle Text Application Developer's Guide and Oracle Text
Reference for information on Oracle Text.

Note: The Oracle Text facilities for Oracle Data Mining are
documented in this chapter. They are not documented in the Oracle
Text manuals.

From Unstructured Data to Structured Data

Using PL/SQL to Prepare Text Data for Mining 5-3

■ dmtxtnmf.sql creates a text mining model that uses non-negative matrix
factorization.

■ dmtxtsvm.sql creates a text mining model that uses SVM classification.

Both these programs mine a table of customer data, which includes a nested table
column called COMMENTS. The COMMENTS column has been pre-processed by
dmsh.sql. The models created by these programs are shown in the following
example from a Linux system.

-- Run the programs
SQL> @ $ORACLE_HOME%rdbms/demo/dmtxtnmf.sql
SQL> @ $ORACLE_HOME/rdbms/demo/dmtxtsvm.sql
-- List the models created by the programs
SQL> select NAME, FUNCTION_NAME, ALGORITHM_NAME, TARGET_ATTRIBUTE
 from dm_user_models;

NAME FUNCTION_NAME ALGORITHM_NAME TARGET_ATTRIBUTE
---------------- ------------------ ------------------------ ----------------
T_NMF_SAMPLE FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR
T_SVM_CLAS_SAMPLE CLASSIFICATION SUPPORT_VECTOR_MACHINES AFFINITY_CARD

From Unstructured Data to Structured Data
The pre-processing steps for text mining create nested table columns of type DM_
NESTED_NUMERICALS from columns of type VARCHAR2 or CLOB. Each row of the
nested table specifies an attribute name and a value. The DM_NESTED_NUMERICALS
type defines the following columns.

attribute_name VARCHAR2(30)
value NUMBER)

The term extraction process treats the text in each row of the original table as a
separate document. Each document is transformed to a set of terms that have a
numeric value and a text label. Within the nested table column, the attribute_name
column holds the text and the value column holds the numeric value of the term,
which is derived using the term frequency in the document and in the document
collection (other rows).

For example, the following query returns various attributes of customer 102998,
including a text column of comments. The text column has not been transformed.

SQL> select cust_id, cust_gender, cust_income_level, affinity_card, comments
 from mining_build_text
 where cust_id = 102998;

CUST_ID C CUST_INCOME_LEVEL AFFINITY_CARD COMMENTS
------- -- -------------------- ------------- --------------------------------
102998 M J: 190,000 - 249,999 1 I wanted to write you to let you
 know that I've purchased several
 items at your store recently and
 have been very satisfied with my
 purchases. Keep up the good work.

See Also: Oracle Data Mining Administrator's Guide. This manual
provides complete instructions for accessing and running the sample
programs. It includes information about the build, training, and
scoring data used by these programs.

Steps in the Term Extraction Process

5-4 Oracle Data Mining Application Developer’s Guide

The following query returns the same attributes of customer 102998, but the text in the
comments column has been transformed. The query extracts the ATTRIBUTE_NAME
and VALUE columns from the nested table that holds the transformed text.

SQL> select b.cust_id, b.cust_gender, b.cust_income_level, b.affinity_card, n.*
 from mining_build_nested_text b,
 table(b.comments) n
 where b.cust_id = 102998
 order by n.attribute_name;

CUST_ID C CUST_INCOME_LEVEL AFFINITY_CARD ATTRIBUTE_NAME VALUE
------- -- ------------------- ------------- -------------- --------
102998 M J: 190,000 - 249,999 1 GOOD .26894
102998 M J: 190,000 - 249,999 1 ITEMS 158062
102998 M J: 190,000 - 249,999 1 KEEP 238765
102998 M J: 190,000 - 249,999 1 KNOW .2006
102998 M J: 190,000 - 249,999 1 LET 299856
102998 M J: 190,000 - 249,999 1 PURCHASED 142743
102998 M J: 190,000 - 249,999 1 PURCHASES 173146
102998 M J: 190,000 - 249,999 1 RECENTLY .195223
102998 M J: 190,000 - 249,999 1 SATISFIED .355851
102998 M J: 190,000 - 249,999 1 SEVERAL .355851
102998 M J: 190,000 - 249,999 1 STORE .0712537
102998 M J: 190,000 - 249,999 1 UP .159838
102998 M J: 190,000 - 249,999 1 WANTED .355851
102998 M J: 190,000 - 249,999 1 WORK .299856
102998 M J: 190,000 - 249,999 1 WRITE .355851

The ATTRIBUTE_NAME column holds an item of text from the original comments
column. The VALUE column holds the term value. Note that not all words from the
original comments column are extracted as terms. For example, the articles the and
to are not included.

Steps in the Term Extraction Process
The steps in the term extraction process are summarized in this section. Further details
and specific syntax requirements are explained later in this chapter.

Transform a Text Column in the Build Table
First transform the text in the build data. During this process you will generate the text
term definitions, which you will reuse for the test and apply data. Perform the
following steps:

1. Create an index on the text column in the build table.

2. Create an SVM_CLASSIFIER preference for the index.

3. Define a table to hold the categories specified by the SVM_CLASSIFIER index.

4. Use the FEATURE_PREP table function to create the term definitions and populate
an intermediate terms table.

5. Use the FEATURE_EXPLAIN table function to populate the final terms table.

6. Replicate the columns of the original build table (using a view or another table),
replacing the text column with a nested table column. Load the terms from the
final terms table into the nested table column.

Steps in the Term Extraction Process

Using PL/SQL to Prepare Text Data for Mining 5-5

Transform a Text Column in the Test and Apply Tables
The test and apply data must undergo the same pre-processing as the build data. To
transform the test and apply data, you will reuse the term definitions generated for the
build data. Perform the following steps:

1. Create an index on the text column in the test or apply table.

2. Use the FEATURE_PREP table function to populate an intermediate terms table.
Use the term definitions previously generated for the build data.

3. Use the FEATURE_EXPLAIN table function to populate the final terms table.

4. Replicate the columns of the original test or apply table, replacing the text column
with a nested table column. Load the terms from the final terms table into the
nested table column.

Creating the Index and Index Preference
Oracle Text processing requires a text index. Oracle Text supports several types of
indexes for querying, cataloging, and classifying text documents. The Oracle Data
Mining term extraction process requires a CONTEXT index for text querying.

You must create an index for each text column to be transformed. Use the following
syntax to create the index.

SQL>CREATE INDEX index_name ON table_name(column_name)
 INDEXTYPE IS ctxsys.context PARAMETERS (’nopopulate’);

Oracle Text supports index preferences for overriding the default characteristics of an
index. The CREATE_PREFERENCE procedure in the Oracle Text package CTX_DDL
creates a preference with the name and type that you specify. The SVM_CLASSIFIER
preference type defines the characteristics of an index for Oracle Data Mining.

You must create an index preference when you prepare the build data. It will be reused
when you prepare the test and apply data. Use the following syntax to create the index
preference.

SQL>EXECUTE ctx_ddl.create_preference(’preference_name’, ’SVM_CLASSIFIER’);

The SVM_CLASSIFIER index preference uses a predefined table with two numeric
columns: an ID column for the case ID, and a CAT column for the category. The
category table is used for internal processing. You must create the category table using
the following syntax.

SQL>CREATE TABLE category_table_name(id NUMBER, cat NUMBER);

Creating the Intermediate Terms Table
The FEATURE_PREP table function in the CTXSYS.DRVODM Oracle Text package
extracts terms from a text column using an index preference of type SVM_
CLASSIFIER. FEATURE_PREP creates a table of term definitions from the build data
and reuses these definitions for the test and apply data.

Note: This statement creates a basic CONTEXT index. You can further
define the characteristics of the index by specifying additional
arguments to the CREATE INDEX statement. Refer to Oracle Text
Reference for details.

Steps in the Term Extraction Process

5-6 Oracle Data Mining Application Developer’s Guide

FEATURE_PREP returns an intermediate terms table.

FEATURE_PREP Calling Syntax
FEATURE_PREP is an over-loaded function that accepts two different sets of
arguments. You will specify one set of arguments for the build data and another set for
the test and apply data.

--- syntax for build data ---
 CTXSYS.DRVODM.FEATURE_PREP (
 text_index IN VARCHAR2,
 case_id IN VARCHAR2,
 category_tbl IN VARCHAR2,
 category_tbl_id_col IN VARCHAR2,
 category_tbl_cat_col IN VARCHAR2,
 feature_definition_tbl IN VARCHAR2,
 index_preference IN VARCHAR2)
 RETURN DRVODM;

--- syntax for test/apply data ---
 CTXSYS.DRVODM.FEATURE_PREP (
 text_index IN VARCHAR2,
 case_id IN VARCHAR2,
 feature_definition_tbl IN VARCHAR2,
 RETURN DRVODM;

FEATURE_PREP Return Value
FEATURE_PREP returns the following columns. The SEQUENCE_ID column holds the
case ID; the ATTRIBUTE_ID column holds the term ID.

Name NULL? Type
---------------------- ------- ------
SEQUENCE_ID NUMBER
ATTRIBUTE_ID NUMBER
VALUE NUMBER

FEATURE_PREP Arguments
FEATURE_PREP accepts the arguments described in Table 5–1.

Table 5–1 FEATURE_PREP Table Function Arguments

Argument Name Data Type

text_index VARCHAR2 Name of the index on the text column in the build,
test, or apply table.

case_ID VARCHAR2 Name of the case ID column in the build, test, or
apply table.

category_tbl VARCHAR2 Name of the table used by the SVM_CLASSIFIER
index preference.

Specify this argument only for build data.

category_tbl_id_col VARCHAR2 Specify ’id’. This is the name of the ID column in
the table used by the SVM_CLASSIFIER index
preference.

Specify this argument only for build data.

Steps in the Term Extraction Process

Using PL/SQL to Prepare Text Data for Mining 5-7

FEATURE_PREP Example
The following example creates an intermediate terms table called txt_term_out. The
FEATURE_PREP table function extracts terms from a text column with an index called
build_text_idx. The text column is in a build table with a case ID column called
cust_id. The index preference txt_pref is applied to the index using the id and
cat columns in the table cat_tbl. FEATURE_PREP creates a table of term definitions
called txt_pref_terms.

CREATE TABLE txt_term_out AS
SELECT *
 FROM TABLE(ctxsys.drvodm.feature_prep (
 'build_text_idx',
 'cust_id',
 'cat_tbl',
 'id',
 'cat',
 'txt_pref_terms',
 'txt_pref'));

Creating the Final Terms Table
The FEATURE_EXPLAIN table function in the CTXSYS.DRVODM Oracle Text package
extracts the term values from the definitions created by FEATURE_PREP and appends
the associated word to each value.

FEATURE_EXPLAIN returns the final terms table.

FEATURE_EXPLAIN Calling Syntax
The calling syntax of FEATURE_EXPLAIN is described as follows.

 CTXSYS.DRVODM.FEATURE_EXPLAIN (
 feature_definition_tbl IN VARCHAR2,
 RETURN DRVODM;

FEATURE_EXPLAIN Return Value
FEATURE_EXPLAIN returns the following columns.

Name Type

category_tbl_cat_col VARCHAR2 Specify ’cat’. This is the name of the CAT column
in the table used by the SVM_CLASSIFIER index
preference.

Specify this argument only for build data.

feature_definition_tbl VARCHAR2 Name of the term definition table created by
FEATURE_PREP. The columns of the term
definition table are:

Name Null? Type

CAT_ID NUMBER
TYPE NUMBER
RULE BLOB

index_preference VARCHAR2 Name of the SVM_CLASSIFIER index preference.

Specify this argument only for build data.

Table 5–1 (Cont.) FEATURE_PREP Table Function Arguments

Argument Name Data Type

Example: Transforming a Text Column

5-8 Oracle Data Mining Application Developer’s Guide

--------------- ---------------
text VARCHAR2(160)
type NUMBER(3)
ID NUMBER
score NUMBER

FEATURE_EXPLAIN Arguments
FEATURE_EXPLAIN accepts a single argument: the terms definition table created by
FEATURE_PREP.

FEATURE_EXPLAIN Example
The following example creates a final terms table called txt_final_terms using the
intermediate terms table txt_term_out. The FEATURE_EXPLAIN table function
returns the terms specified in the terms definition table txt_pref_terms.

SQL> create table txt_final_terms as
 select A.sequence_id, B.text, A.value
 FROM txt_term_out A,
 TABLE(ctxsys.drvodm.feature_explain(
 'txt_pref_terms')) B
 WHERE A.attribute_id = B.id;

Populating a Nested Table Column
Use the final terms table to populate a nested table column of type DM_NESTED_
NUMERICALS.

The following example creates the table mining_build_nested_text.
(Alternatively, you could create a view.) The table has a case ID column of customer
IDs and three customer attribute columns: age, education, and occupation. It also
includes a comments column of type DM_NESTED_NUMERICALS created from the
terms table txt_final_terms.

SQL> CREATE TABLE mining_build_nested_text
 NESTED TABLE comments store AS build_comments
 AS
 SELECT non_text.cust_id,
 non_text.age,
 non_text.education,
 non_text.occupation,
 txt.comments
 FROM
 mining_build_text non_text,
 (SELECT features.sequence_id,
 cast(COLLECT(dm_nested_numerical(features.text,features.value))
 as dm_nested_numericals) comments
 FROM txt_final_terms features
 group by features.sequence_id) txt
 WHERE non_text.cust_id = txt.sequence_id(+);

Example: Transforming a Text Column
In the following example, a text column in MINING_BUILD_TEXT is transformed to a
nested table column in MINING_BUILD_NESTED_TEXT. The same text column in
MINING_APPLY_TEXT is transformed to a nested table column in MINING_APPLY_
NESTED_TEXT.

Example: Transforming a Text Column

Using PL/SQL to Prepare Text Data for Mining 5-9

Both MINING_BUILD_TEXT and MINING_APPLY_TEXT have the following columns.

 Name Null? Type
 --------------------------------- -------- ---------------------------
 CUST_ID NOT NULL NUMBER
 AGE NUMBER
 EDUCATION VARCHAR2(21)
 OCCUPATION VARCHAR2(21)
 COMMENTS VARCHAR2(4000)

The following statements create the indexes.

SQL> create index build_text_idx on mining_build_text (comments)
 indextype is ctxsys.context parameters ('nopopulate');
SQL> create index apply_text_idx ON mining_apply_text (comments)
 indextype is ctxsys.context parameters ('nopopulate');

The following statements create the index preference and its table.

SQL> execute ctx_ddl.create_preference('idx_pref', 'SVM_CLASSIFIER');
SQL> create table idx_pref_cat (id number, cat number);

The following statement returns the intermediate terms in the table BUILD_TERMS_
OUT. It also creates the table FEATURE_DEFS and populates it with the term
definitions.

SQL> create table build_terms_out as
 select * from
 table (ctxsys.drvodm.feature_prep
 ('build_text_idx',
 'cust_id',
 'idx_pref_cat',
 'id',
 'cat',
 'feature_defs',
 'idx_pref'));

The following statement returns the final terms in the table BUILD_EXPLAIN_OUT.

SQL> create table build_explain_out as
 select a.sequence_id,
 b.text,
 a.value
 from build_terms_out a,
 table (ctxsys.drvodm.feature_explain('feature_defs')) b
 where a.attribute_id = b.id;

The following statement creates the table MINING_BUILD_NESTED_TEXT. This table
contains the non-text attributes from the original build table and a nested table of
comments. This table can be used to build a model.

SQL> create table mining_build_nested_text
 nested table comments store as build_comments
 as select non_text.cust_id,
 non_text.age,
 non_text.education,
 non_text.occupation,
 txt.comments
 from mining_build_text non_text,
 (select features.sequence_id,
 cast(collect(dm_nested_numerical(features.text,features.value))
 as dm_nested_numericals) comments

Example: Transforming a Text Column

5-10 Oracle Data Mining Application Developer’s Guide

 from build_explain_out features
 group by features.sequence_id) txt
 where non_text.cust_id = txt.sequence_id(+);

The following statement creates the intermediate terms table for the comments column
in the apply table, MINING_APPLY_TEXT. It uses the term definitions in the
FEATURE_DEFS table, which was created during the pre-processing of the comments
column in MINING_BUILD_TEXT.

SQL> create table apply_terms_out as
 select * from
 table (ctxsys.drvodm.feature_prep
 ('build_text_idx',
 'cust_id',
 'feature_defs'));

The following statement creates the final terms table for apply.

SQL> create table apply_explain_out as
 select a.sequence_id,
 b.text,
 a.value
 from apply_terms_out a,
 table (ctxsys.drvodm.feature_explain('feature_defs')) b
 where a.attribute_id = b.id;

The following statement creates the table MINING_APPLY_NESTED_TEXT. This table
contains the non-text attributes from the original apply table and a nested table of
comments. This table can be used to apply the model.

SQL> create table mining_apply_nested_text
 nested table comments store as apply_comments
 as select non_text.cust_id,
 non_text.age,
 non_text.education,
 non_text.occupation,
 txt.comments
 from mining_apply_text non_text,
 (select features.sequence_id,
 cast(collect(dm_nested_numerical(features.text,features.value))
 as dm_nested_numericals) comments
 from apply_explain_out features
 group by features.sequence_id) txt
 where non_text.cust_id = txt.sequence_id(+);

Java API Overview 6-1

6
Java API Overview

This chapter introduces the new Oracle Data Mining Java API. You can use the Java
API to create thin client applications that access the rich data mining functionality
within the Oracle Database.

The ODM Java API is an Oracle implementation of the Java Data Mining (JDM) 1.0
standard API for data mining. The ODM Java API implements Oracle-specific
extensions to JDM 1.0, in compliance with the JSR-73 standards extension framework.
The full range of data mining functions and algorithms available in the Database,
including the new predictive analytics features in the DBMS_PREDICTIVE_
ANALYTICS PL/SQL package, are exposed through the ODM Java API.

The ODM Java API replaces the proprietary Java API for data mining that was
available with Oracle 10.1. It is fully compatible with the Oracle 10g Release 2
(10.2)PL/SQL API for data mining.

This chapter includes the following topics:

■ The JDM 1.0 Standard

■ Oracle Extensions to JDM 1.0

■ Principal Objects in the ODM Java API

The JDM 1.0 Standard
JDM 1.0 is an industry standard Java API for data mining, developed under the Java
Community Process (JCP). It defines Java interfaces that vendors can implement for
their Data Mining Engines.

JDM interfaces support mining functions including classification, regression,
clustering, attribute importance, and association; and specific mining algorithms
including naïve bayes, support vector machines, decision trees, and k-means.

For a complete description of the JDM 1.0 standard, visit the JSR-000073 Data Mining
API page of the Java Community Process Web Site.

http://jcp.org/aboutJava/communityprocess/final/jsr073

You can download the JDM 1.0 javadoc from the Oracle Data Mining page of the
Oracle Technology Network.

http://www.oracle.com/technology/products/bi/odm/index.html

The Java packages defined by the JDM standard are summarized in Table 6–1.

http://jcp.org/aboutJava/communityprocess/final/jsr073
http://www.oracle.com/technology/products/bi/odm/index.html

Oracle Extensions to JDM 1.0

6-2 Oracle Data Mining Application Developer’s Guide

Oracle Extensions to JDM 1.0
The ODM Java API adds functionality that is not part of the JDM standards. The
Oracle extensions to the JDM API provide the following major additional features:

■ Feature Extraction with the Non-Negative Matrix Factorization (NMF) algorithm

■ Orthogonal Partitioning Clustering (O-Cluster), an Oracle-proprietary clustering
algorithm

■ Adaptive Bayes Network (ABN), an Oracle-proprietary classification algorithm

■ Transformations, including discretization (binning), normalization, clipping, and
text transformations.

■ Predictive analytic s (OraPredictTask and OraExplainTask interfaces)

Table 6–1 JDM 1.0 Standard High-Level Packages

Package Description

javax.datamining Defines the classes and interfaces used in JDM subpackages.

javax.datamining.base Defines the interfaces for top-level objects and interfaces. This
package was introduced to avoid cyclic package dependencies.

javax.datamining.resource Defines objects that support connecting to the Data Mining
Server and executing tasks.

javax.datamining.data Defines objects that support logical and physical data, model
signature, taxonomy, category set, and the generic super class
category matrix.

javax.datamining.statistics Defines objects that support attribute statistics.

javax.datamining.rule Defines objects that support rules and their predicate
components.

javax.datamining.task Defines objects that support tasks for building, computing
statistics, importing, and exporting models. The task package
has an optional apply subpackage, which is mainly used for
supervised and clustering functions.

javax.datamining.association Defines objects that support the build settings and model for
association rules.

javax.datamining.clustering Defines objects that support the build settings, models and
apply output for clustering.

javax.datamining.attributeimportance Defines objects that support the build settings and model for
attribute importance.

javax.datamining.supervised Defines objects that support the build settings and model for
supervised learning functions. This package includes optional
subpackages for classification and regression and a test task
that is common to both.

javax.datamining.algorithm Defines objects that support algorithm-specific settings. This
package has optional subpackages for different algorithms.

javax.datamining.modeldetail Defines objects that support the details of various model
representations. This package includes optional subpackages
for different types of models.

See Also: Oracle Data Mining Java API Reference (javadoc) for
detailed information about the ODM Java API.

Principal Objects in the ODM Java API

Java API Overview 6-3

The Java packages defined by the Oracle extensions to the JDM standards are
summarized in Table 6–2.

Principal Objects in the ODM Java API
In the JDM standard API, named objects are objects that can be saved using the
saveObject method of a Connection instance. All named objects are inherited from
the javax.datamining.MiningObject interface.

The JDM standard supports both permanent and temporary named objects.
Permanent objects (persistentObject) are saved permanently in the database.
Temporary objects (transientObject) exist only for the duration of the session.

The persistent and transient named objects supported by the Oracle extensions to the
JDM API are listed in Table 6–3.

The named objects in the ODM Java API are described in the following sections.

PhysicalDataSet Object
A PhysicalDataSet object refers to the data to be used as input to a data mining
operation. In JDM, PhysicalDatSet objects reference specific data through a

Table 6–2 Oracle High-Level Packages that Extend the JDM 1.0 Standards

Package Description

oracle.dmt.jdm.featureextraction Defines objects related to feature extraction, which supports the
scoring operation.

oracle.dmt.jdm.algorithm.nmf Defines objects related to the Non-Negative Matrix Factorization
(NMF) algorithm.

oracle.dmt.jdm.algorithm.ocluster Defines objects related to the Orthogonal Partitioning Clustering
algorithm (O-cluster)

oracle.dmt.jdm.algorithm.abn Defines objects related to the Adaptive Bayes Network (ABN)
classification algorithm.

oracle.dmt.jdm.transform Defines objects related to data transformations.

Table 6–3 Named Objects in ODM Java API

Persistent Objects Transient Objects

Model ApplySettings

BuildSettings PhysicalDataset

Task

CostMatrix

TestMetrics

Note: The LogicalData and Taxonomy objects in the standard
JDM API are not supported by Oracle.

See Also: "Features of a DMS Connection" on page 7-4 and "API
Design Overview" on page 7-7.

Principal Objects in the ODM Java API

6-4 Oracle Data Mining Application Developer’s Guide

Uniform Resource Identifier (URI), which could specify a table, a file, or some other
data source.

In the ODM Java API, a PhysicalDataSet must reference a table or a view within
the database instance referenced in the Connection. The syntax of a physical data set
URI in the ODM Java AI is the Oracle syntax for specifying a table or a view.

[SchemaName.]TableName
or

[SchemaName.]ViewName

In JDM, PhysicalDataSet objects can support multiple data representations. Oracle
Data Mining supports two types of data representation: single-record case, and wide
data. The Oracle implementation requires users to specify the case-id column in the
physical dataset. Refer to Oracle Data Mining Concepts for more details.

In the ODM Java API, a PhysicalDataSet object is transient. It is stored in the
Connection as an in-memory object.

BuildSettings Object
A BuildSettings object captures the high-level specifications used to build a model.
The ODM Java API specifies a variety of mining functions: classification, regression,
attribute importance, association, clustering, and feature extraction.

A BuildSettings object can specify a type of desired result without identifying a
particular algorithm. If an algorithm is not specified in the BuildSettings object,
the DMS selects an algorithm based on the build settings and the characteristics of the
data.

BuildSettings has a verify method, which validates the input specifications for a
model. Input must satisfy the requirements of the ODM Java API.

In the ODM Java API, a BuildSettings object is persistent. It is stored as a table
with a user-specified name in the user schema. This settings table is interoperable with
the PL/SQL API for data mining. Normally, you should not modify the build settings
table manually.

Task Object
A Task object represents all the information needed to perform a mining operation.
The execute method of the Connection object is used to start the execution of a
mining task.

Mining operations, which often process input tables with millions of records, can be
time consuming. For this reason, the JDM API supports the asynchronous execution of
mining tasks.

Mining tasks are stored as DBMS_SCHEDULER job objects in the user schema. The
saved job object is in a DISABLED state until the execute method causes it to start
execution.

The execute method returns a javax.datamining.ExecutionHandle object,
which provides methods for monitoring an asynchronous task. ExecutionHandle
methods include waitForCompletion and getStatus.

See Also: "Describing the Mining Data" on page 7-8.

See Also: "Build Settings" on page 7-9 and "Model Settings" on
page 3-3.

Principal Objects in the ODM Java API

Java API Overview 6-5

Model Object
A Model object results from the application of an algorithm to data, as specified in a
BuildSettings object.

Models can be used in several operations. They can be:

■ inspected, for example to examine the rules produced from a decision tree or
association

■ tested for accuracy

■ applied to data for scoring

■ exported to an external representation such as native format or PMML

■ imported for use in the DMS

When a model is applied to data, it is submitted to the DMS for interpretation. A
Model references its BuildSettings object as well as the Task that created it.

TestMetrics Object
A TestMetrics object results from the testing of a supervised model with test data.
Different test metrics are computed, depending on the type of mining function. For
classification models, the accuracy, confusion-matrix, lift, and receiver-operating
characteristics can be computed to access the model. Similarly for regression models,
R-squared and RMS errors can be computed.

ApplySettings Object
An ApplySettings object allows users to tailor the results of an apply task. It
contains a set of ordered items. Output can consist of:

■ Data to be passed through to the output from the input dataset, for example key
attributes

■ Values computed from the apply itself, for example score, probability, and in the
case of decision trees, rule identifiers

■ Multi-class categories for its associated probabilities. For example, in a
classification model with target favoriteColor, users could select the specific
colors to receive the probability that a given color is favorite

Each mining function class defines a method to construct a default ApplySettings
object. This simplifies the programmer’s effort if only standard output is desired. For
example, typical output for a classification apply would include the top prediction and
its probability.

See Also:

■ "Executing Mining Tasks" on page 7-10.

■ Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_SCHEDULER.

See Also: "Exploring Model Details" on page 7-11.

See Also: "Testing a Model" on page 7-12.

See Also: "Applying a Model for Scoring Data" on page 7-14.

Principal Objects in the ODM Java API

6-6 Oracle Data Mining Application Developer’s Guide

Using the Java API 7-1

7
Using the Java API

This chapter provides information to help you get started using the Oracle Data
Mining Java API. It describes the general design of the API, and it explains how to use
the API to perform major mining operations in your application.

This chapter includes the following topics:

■ The Java Sample Applications

■ Setting up Your Development Environment

■ Connecting to the Data Mining Server

■ API Design Overview

■ Describing the Mining Data

■ Build Settings

■ Executing Mining Tasks

■ Building a Mining Model

■ Exploring Model Details

■ Testing a Model

■ Applying a Model for Scoring Data

■ Using a Cost Matrix

■ Using Prior Probabilities

■ Using Automated Prediction and Explain Tasks

■ Preparing the Data

The Java Sample Applications
The samples included in this chapter are taken from the Data Mining sample
applications available on the Database companion CD. When you install the
companion CD, the Data Mining sample applications are copied to the following
directory.

See Also:

■ Oracle Data Mining Java API Reference (javadoc).

■ JDM 1.0 javadoc at
http://www.oracle.com/technology/products/bi/odm

http://www.oracle.com/technology/products/bi/odm

Setting up Your Development Environment

7-2 Oracle Data Mining Application Developer’s Guide

$ORACLE_HOME/rdbms/demo (on Unix)
or
(%ORACLE_HOME%\rdbms\demo (on NT)

To obtain a listing of the sample applications , simply type the following on Unix:

ls $ORACLE_HOME/rdbms/demo/dm*

Use an equivalent command on other operating systems.

Table 7–1 lists the Java sample applications.

Setting up Your Development Environment
The ODM Java API requires Oracle Database 10g Release 2 (10.2)and J2SE 1.4.2.

To use the ODM Java API, include the following libraries in your CLASSPATH:

$ORACLE_HOME/rdbms/jlib/jdm.jar
$ORACLE_HOME/rdbms/jlib/ojdm_api.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/jdbc/lib/ojdbc14.jar
$ORACLE_HOME/oc4j/j2ee/home/lib/connector.jar
$ORACLE_HOME/jlib/orai18n.jar
$ORACLE_HOME/jlib/orai18n-mapping.jar

Table 7–1 The Java Sample Applications for Data Mining

Application Description

dmabdemo.java Creates an Adaptive Bayes Network model (classification).

dmaidemo.java Creates an Attribute Importance model.

dmardemo.java Creates an Association Rules model.

dmtreedemo.java Creates a Decision Tree model (classification).

dmkmdemo.java Creates a k_means model (clustering).

dmnbdemo.java Creates a Naive Bayes model (classification).

dmnmdemo.java Creates a Non_Negative Matrix Factorization model (feature
extraction).

dmocdemo.java Creates an O-Cluster model (clustering).

dmsvcdemo.java Creates a Support Vector Machine model (classification).

dmsvodemo.java Creates a Support Vector Machine model (one-class
classification).

dmsvrdemo.java Creates a Support Vector Machine model (regression).

dmtxtnmfdemo.java Text mining using NMF feature extraction.

dmtxtsvmdemo.java Text mining using SVM classification.

dmxfdemo.java Transformations using the Java API.

dmpademo.java Predictive Analytics using the Java API.

dmapplydemo.java Apply classification model in different ways.

dmexpimpdemo.java Native import/export of models.

See Also: Oracle Data Mining Administrator's Guide for information
about installing, running, and viewing the sample programs.

Connecting to the Data Mining Server

Using the Java API 7-3

$ORACLE_HOME/lib/xmlparserv2.jar

Connecting to the Data Mining Server
The first job of a data mining application is to connect to the Data Mining Server
(DMS), which is the data mining engine and metadata repository within the Oracle
Database.

The DMS connection is encapsulated in a Connection object, which provides the
framework for a data mining application. The Connection object serves the
following purposes:

■ Authenticates users

■ Supports retrieval and storage of named objects

■ Supports the execution of mining tasks

■ Provides version information for the JDM implementation and provider

The DMS Connection object is described in detail in "Features of a DMS Connection"
on page 7-4.

Connection Factory
A Connection is created from a ConnectionFactory, an interface provided by the
JDM standard API. You can lookup a ConnectionFactory from the JNDI server, or
you can create a ConnectionFactory using an OraConnectionFactory object.

Create a ConnectionFactory Using OraConnectionFactory
//Create OraConnectionFactory
javax.datamining.resource.ConnectionFactory connFactory =
 oracle.dmt.jdm.resource.OraConnectionFactory();

Create a ConnectionFactory From the JNDI Server
//Setup the initial context to connect to the JNDI server
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"oracle.dmt.jdm.resource.OraConnectionFactory");
env.put(Context.PROVIDER_URL, "http://myHost:myPort/myService");
env.put(Context.SECURITY_PRINCIPAL, "user");
env.put(Context.SECURITY_CREDENTIALS, "password");
InitialContext jndiContext = new javax.naming.InitialContext(env);
// Perform JNDI lookup to obtain the connection factory
javax.datamining.resource.ConnectionFactory dmeConnFactory =
(ConnectionFactory) jndiContext.lookup("java:comp/env/jdm/MyServer");
//Lookup ConnectionFactory
javax.datamining.resource.ConnectionFactory connFactory =
 (ConnectionFactory) jndiContext.lookup("java:comp/env/jdm/MyServer");

Note: The JDM API uses the general term DME (Data Mining
Engine). In the ODM Java API, the term DME refers to the Oracle
DMS.

http://myHost:myPort/myService

Connecting to the Data Mining Server

7-4 Oracle Data Mining Application Developer’s Guide

Managing the DMS Connection
You can choose to pre-create the JDBC connection to the DMS, or you can manage it
through the ODM Java API. If you pre-create the JDBC connection, your data mining
application can access the connection caching features of JDBC. When the ODM Java
API manages the JDBC connection, caching is not available to your application.

Pre-Create the JDBC Connection
To pre-create the JDBC connection, create an OracleDataSource for an
OraConnectionFactory.

//Create an OracleDataSource
OracleDataSource ods = new OracleDataSource();
ods.setURL(URL);
ods.setUser(user);
ods.setPassword(password);

//Create a connection factory using the OracleDataSource
javax.datamining.resource.ConnectionFactory connFactory =
 oracle.dmt.jdm.resource.OraConnectionFactory(ods);
//Create DME Connection
javax.datamining.resource.Connection dmeConn =
 connFactory.getConnection();

Use a ConnectionSpec for the DMS Connection
To manage the JDBC connection within the ODM Java API, create an empty
ConnectionSpec instance using the getConnectionSpec() method of
OraConnectionFactory.

//Create ConnectionSpec
ConnectionSpec connSpec = m_dmeConnFactory.getConnectionSpec();
connSpec.setURI("jdbc:oracle:thin:@host:port:sid");
connSpec.setName("user");
connSpec.setPassword("password");

//Create DME Connection
javax.datamining.resource.Connection m_dmeConn =
m_dmeConnFactory.getConnection(connSpec);

Features of a DMS Connection
In the ODM Java API, the DMS Connection is the primary factory object. The
Connection instantiates the object factories using the getFactory method. The
Connection object provides named object lookup, persistence, and task execution
features.

Create Object Factories
The Connection.getFactory method creates a factory object. For example, to
create a factory for the PhysicalDataSet object, pass the absolute name of the object
to this method. The getFactory method creates an instance of
PhysicalDataSetFactory.

javax.datamining.data.PhysicalDataSetFactory pdsFactory =
 dmeConn.getFactory("javax.datamining.data.PhysicalDataSet");

See Also: Oracle Database JDBC Developer's Guide and Reference for
information about connection caching.

Connecting to the Data Mining Server

Using the Java API 7-5

Provide Access to Mining Object Metadata
The Connection object provides methods for retrieving metadata about mining
objects.

You can obtain additional information about persistent mining objects by querying the
Oracle data dictionary tables.

Save and Retrieve Mining Objects
The Connection object provides methods for retrieving mining objects and saving
them in the DMS. Persistent objects are stored as database objects. Transient objects are
stored in memory.

Execute Mining Tasks
The Connection object provides an execute method, which can execute mining
tasks either asynchronously or synchronously. The DMS uses the database Scheduler
to execute mining tasks, which are stored in the user’s schema as Scheduler jobs.

Method Description

getCreationDate Returns the creation date of the specified named object.

getCreationDate(java.lang.String objectName,
 NamedObject objectType)
 returns java.util.Date

getDescription Returns the description of the specified mining object.

getDescription(java.lang.String objectName,
 NamedObject objectType)
 returns java.lang.String

getObjectNames Returns a collection of the names of the objects of the specified type.

getObjectNames(NamedObject objectType)
 returns java.util.Collection

Method Description

saveObject Saves the named object in the metadata repository associated with the
connection.

saveObject(java.lang.String name, MiningObject object,
 boolean replace)

retrieveObject Retrieves a copy of the specified named object from the metadata
repository associated with the connection.

retrieveObject(java.lang.String objectIdentifier)
 returns MiningObject

retrieveObject Retrieves a copy of the object with the specified name and type from
the metadata repository associated with the connection.

retrieveObject(java.lang.String name,
 NamedObject objectType)
 returns MiningObject

See Also:

■ "Principal Objects in the ODM Java API" on page 6-3.

■ "API Design Overview" on page 7-7.

Connecting to the Data Mining Server

7-6 Oracle Data Mining Application Developer’s Guide

Synchronous execution is typically used with single record scoring, but it may be used
in other contexts as well.

Retrieve DMS Capabilities and Metadata
The Connection object provides methods for obtaining information about the DMS
at runtime.

Retrieve Version Information
The Connection object provides methods for retrieving JDM standard version
information and Oracle version information.

Task Execution execute method syntax

asynchronous execute(java.lang.String taskName)
 returns ExecutionHandle

synchronous execute(Task task,java.lang.Long timeout))
 returns ExecutionHandle

See Also:

■ "Task Object" on page 6-4

■ "Executing Mining Tasks" on page 7-10

■ Oracle Database Administrator's Guide for information about the
database Scheduler.

Method Description

getMetaData Returns information about the underlying DMS instance
represented through an active connection.
ConnectionMetaData provides version information for the
JDM implementation and Oracle Database.

getMetaData()
 returns ConnectionMetaData

getSupportedFunctions Returns an array of mining functions that are supported by
the implementation.

getSupportedFunctions()
 returns MiningFunction[]

getSupportedAlgorithms Returns an array of mining algorithms that are supported by
the specified mining function.

getSupportedAlgorithms(MiningFunction function)
 returns MiningAlgorithm[]

supportsCapability Returns true if the specified combination of mining
capabilities is supported. If an algorithm is not specified,
returns true if the specified function is supported.

supportsCapability(MiningFunction function,
 MiningAlgorithm algorithm,
 MiningTask taskType)
 returns boolean

API Design Overview

Using the Java API 7-7

API Design Overview
Object factories are central to the design of JDM. The ODM Java API uses object
factories for instantiating mining objects.

javax.datamining is the base package for the JDM standard defined classes.

oracle.dmt.jdm is the base package for the Oracle extensions to the JDM standard.

The packages in the JDM standard API are organized by mining functions and
algorithms. For example, the javax.datamining.supervised package contains all
the classes that support supervised functions. It has subpackages for classification and
regression classes.

javax.datamining.supervised.classification
javax.datamining.supervised.regression

Similarly, javax.datamining.algorithm is the base package for all algorithms.
Each algorithm has its own subpackage. The JDM standard supports algorithms such
as naive bayes and support vector machines.

javax.datamining.algorithm.naivebayes
javax.datamining.algorithm.svm

The ODM Java API follows a similar package structure for the extensions. For
example, the ODM Java API supports Feature Extraction, a non-JDM standard
function, and the Non-Negative Matrix Factorization algorithm that is used for feature
extraction.

oracle.dmt.jdm.featureextraction
oracle.dmt.jdm.algorithm.nmf

The JDM standard has core packages that define common classes and packages for
tasks, model details, rules and statistics. Figure 7–1 illustrates the inheritance hierarchy
of the named objects.

Method Description

getVersion Returns the version of the JDM Standard API. It must be "JDM 1.0"
for the first release of JDM.

getVersion()
 returns String

getMajorVersion Returns the major version number. For the first release of JDM, this
is "1".

getMajorVersion()
 returns int

getMinorVersion Returns the minor version number. For the first release of JDM, this
is "0".

getMinorVersion()
 returns int

getProviderName Returns the provider name as "Oracle Corporation".

getProviderName()
 returns String

getProviderVersion Returns the version of the Oracle Database that shipped the Oracle
Data Mining Java API jar file.

getProviderVersion()
 returns String

Describing the Mining Data

7-8 Oracle Data Mining Application Developer’s Guide

Figure 7–1 JDM Named Objects Class Diagram

Describing the Mining Data
The JDM standard defines physical and logical data objects to describe the mining
attribute characteristics of the data as well as statistical computations for describing
the data.

In the ODM Java API, only physical data objects are supported. Data can be logically
represented with database views. The DBMS_STATS package can be used for statistical
computations.

The javax.datamining.data package contains all the data-related classes. The
class diagram in Figure 7–2 illustrates the class relationships of the data objects
supported by the ODM Java API.

Figure 7–2 Data Objects in Oracle Data Mining Java API

The following code illustrates the creation of a PhysicalDataSet object. It refers to
the view DMUSER.MINING_DATA_BUILD_V and specifies the column cust_id as
case-id using the PhysicalAttributeRole.

//Create PhysicalDataSetFactory
PhysicalDataSetFactory pdsFactory =
 (PhysicalDataSetFactory)m_dmeConn.getFactory
 ("javax.datamining.data.PhysicalDataSet");
//Create a PhysicalDataSet object
PhysicalDataSet buildData =
 pdsFactory.create("DMUSER.MINING_DATA_BUILD_V", false);
//Create PhysicalAttributeFactory
PhysicalAttributeFactory paFactory =
 (PhysicalAttributeFactory)m_dmeConn.getFactory
 ("javax.datamining.data.PhysicalAttribute");
//Create PhysicalAttribute object
PhysicalAttribute pAttr = paFactory.create

Build Settings

Using the Java API 7-9

 ("cust_id", AttributeDataType.integerType, PhysicalAttributeRole.caseId);
//Add the attribute to the PhysicalDataSet object
buildData.addAtribute(pAttr);
//Save the physical data set object
dmeConn.saveObject("JDM_BUILD_PDS", buildData, true);

Build Settings
In the ODM Java API, the BuildSettings object is saved as a table in the database.
The settings table is compatible with the DBMS_DATA_MINING.CREATE_MODEL
procedure. The name of the settings table must be unique in the user’s schema.
Figure 7–3 illustrates the build settings class hierarchy.

Figure 7–3 Build Settings Class Diagram.

The following code illustrates the creation and storing of a classification settings object
with a tree algorithm.

//Create a classification settings factory
ClassificationSettingsFactory clasFactory =
(ClassificationSettingsFactory)dmeConn.getFactory
 ("javax.datamining.supervised.classification.ClassificationSettings");
//Create a ClassificationSettings object
ClassificationSettings clas = clasFactory.create();
//Set target attribute name
clas.setTargetAttributeName("AFFINITY_CARD");
//Create a TreeSettingsFactory
TreeSettingsFactory treeFactory =
(TreeSettingsFactory)dmeConn.getFactory
 ("javax.datamining.algorithm.tree.TreeSettings");
//Create TreeSettings instance
TreeSettings treeAlgo = treeFactory.create();
treeAlgo.setBuildHomogeneityMetric(TreeHomogeneityMetric.entropy);
treeAlgo.setMaxDepth(10);
treeAlgo.setMinNodeSize(10, SizeUnit.count);
//Set algorithm settings in the classification settings
clas.setAlgorithmSettings(treeAlgo);
//Save the build settings object in the database
dmeConn.saveObject("JDM_TREE_CLAS", clas, true);

Executing Mining Tasks

7-10 Oracle Data Mining Application Developer’s Guide

Executing Mining Tasks
The ODM Java API uses the DBMS_SCHEDULER infrastructure for executing mining
tasks either synchronously or asynchronously in the database. A mining task is saved
as a DBMS_SCHEDULER job in the user’s schema. Its initial state is DISABLED. When
the user calls the execute method in the DMS Connection, the job state is changed
to ENABLED.

The class diagram in Figure 7–4 illustrates the different types of tasks that are available
in the ODM Java API.

Figure 7–4 Task Class Diagram

DBMS_SCHEDULER provides additional scheduling and resource management features.
You can extend the capabilities of ODM tasks by using the Scheduler infrastructure.

Building a Mining Model
The javax.datamining.task.BuildTask class is used to build a mining model.
Prior to building a model, a PhysicalDataSet object and a BuildSettings object
must be saved.

The following code illustrates the building of a tree model using the
PhysicalDataSet described in "Describing the Mining Data" on page 7-8 and the
BuildSettings described in "Build Settings" on page 7-9.

//Create BuildTaskFactory
BuildTaskFactory buildTaskFactory =
 dmeConn.getFactory("javax.datamining.task.BuildTask");
//Create BuildTask object
BuildTask buildTask = buildTaskFactory.create
 ("JDM_BUILD_PDS","JDM_TREE_CLAS","JDM_TREE_MODEL");

See Also: Oracle Database Administrator's Guide for information
about the database scheduler.

Exploring Model Details

Using the Java API 7-11

//Save BuildTask object
dmeConn.saveObject("JDM_BUILD_TASK", buildTask, true);
//Execute build task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_BUILD_TASK");
//Wait for completion of the task

Exploring Model Details
After building a model using the BuildTask, a model object is persisted in the
database. It can be retrieved to explore the model details.

The class diagram in Figure 7–5 illustrates the different types of model objects and
model details objects supported by the ODM Java API.

Figure 7–5 Model and Model Detail Class Diagram

The following code illustrates the retrieval of the classification tree model built in
"Building a Mining Model" on page 7-11 and its TreeModelDetail.

//Retrieve classification model from the DME
ClassificationModel treeModel = (ClassificationModel)dmeConn.retrieveObject
 ("JDM_TREE_MODEL", NamedObject.model);
//Retrieve tree model detail from the model
TreeModelDetail treeDetail = (TreeModelDetail)treeModel.getModelDetail();
//Get the root node
TreeNode rootNode = treeDetail.getRootNode();
//Get child nodes
TreeNode[] childNodes = rootNode.getChildren();
//Get details of the first child node
int nodeId = childNodes[0].getIdentifier();
long caseCount = childNodes[0].getCaseCount();
Object prediction = childNodes[0].getPrediction();

Testing a Model

7-12 Oracle Data Mining Application Developer’s Guide

Testing a Model
Once a supervised model has been built, it can be evaluated using a test operation. The
JDM standard defines two types of test operations: one that takes the mining model as
input, and the other that takes the apply output table with the actual and predicted
value columns.

javax.datamining.supervised.TestTask is the base class for the model- based
test tasks, and javax.datamining.supervised.TestMetricsTask is the base
class for the apply output table-based test tasks.

The test operation creates and persists a test metrics object in the DMS. For
classification model testing, either of the following can be used:

javax.datamining.supervised.classification.ClassificationTestTask
javax.datamining.supervised.classification.ClassificationTestMetricsTask

Both of these tasks create a named object:

javax.datamining.supervised.classification.ClassificationTestMetrics

The ClassificationTestMetrics named object is stored as a table in the user’s
schema. The name of the table is the name of the object. The confusion matrix, lift
results, and ROC associated with the ClassificationTestMetrics object are
stored in separate tables whose names are the ClassificationTestMetrics object
name followed by the suffix _CFM, _LFT, or _ROC. Tools such as Oracle Discoverer can
display the test results by querying these tables.

Similarly for regression model testing, either of the following can be used:

javax.datamining.supervised.regression.RegressionTestTask
javax.datamining.supervised.regression.RegressionTestMtericsTask

Both these tasks create a named object

javax.datamining.supervised.regression.RegressionTestMetrics

and store it as a table in the user schema.

The class diagram in Figure 7–6 illustrates the test metrics class hierarchy. It refers to
"Build Settings" on page 7-9 for the class hierarchy of test tasks.

Figure 7–6 Test Metrics Class Hierarchy

The following code illustrates the test of a tree model JDM_TREE_MODEL using the
ClassificationTestTask on the dataset MINING_DATA_TEST_V.

//Create & save PhysicalDataSpecification
PhysicalDataSet testData = m_pdsFactory.create(
 "MINING_DATA_TEST_V", false);
PhysicalAttribute pa = m_paFactory.create("cust_id",
 AttributeDataType.integerType, PhysicalAttributeRole.caseId);
testData.addAttribute(pa);
m_dmeConn.saveObject("JDM_TEST_PDS", testData, true);
//Create ClassificationTestTaskFactory

Applying a Model for Scoring Data

Using the Java API 7-13

ClassificationTestTaskFactory testTaskFactory =
 (ClassificationTestTaskFactory)dmeConn.getFactory(
 "javax.datamining.supervised.classification.ClassificationTestTask");
//Create, store & execute Test Task
ClassificationTestTask testTask = testTaskFactory.create(
 "JDM_TEST_PDS", "JDM_TREE_MODEL", "JDM_TREE_TESTMETRICS");
testTask.setNumberOfLiftQuantiles(10);
testTask.setPositiveTargetValue(new Integer(1));
//Save TestTask object
dmeConn.saveObject("JDM_TEST_TASK", testTask, true);
//Execute test task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_TEST_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);
//Explore the test metrics after successful completion of the task
if(ExecutionState.success.equals(execStatus.getState())) {
 //Retrieve the test metrics object
 ClassificationTestMetrics testMetrics =
 (ClassificationTestMetrics)dmeConn.getObject("JDM_TREE_TESTMETRICS");
 //Retrieve confusion matrix and accuracy
 Double accuracy = testMetrics.getAccuracy();
 ConfusionMatrix cfm = testMetrics.getConfusionMatrix();
 //Retrieve lift
 Lift lift = testMetrics.getLift();
 //Retrieve ROC
 ReceiverOperatingCharacterics roc = testMetrics.getROC();
}

In the preceding example, a test metrics object is stored as a table called JDM_TREE_
TESTMETRICS. The confusion matrix is stored in the JDM_TREE_TESTMETRICS_CFM
table, lift is stored in the JDB_TREE_TESTMETRICS_LFT table, and ROC is stored in
the JDM_TREE_TESTMETRICS_ROC table. You can use BI tools like Oracle Discoverer
to query these tables and create reports.

Applying a Model for Scoring Data
All supervised models can be applied to data to find the prediction. Some of the
unsupervised models, such as clustering and feature extraction, support the apply
operation to find the cluster id or feature id for new records.

The JDM standard API provides an ApplySettings object to specify the type of
output for the scored results. javax.datamining.task.apply.ApplySettings
is the base class for all apply settings. In the ODM Java API, the ApplySettings
object is transient; it is stored in the Connection context, not in the database.

The class diagram in Figure 7–7 illustrates the class hierarchy of the apply settings
available in the ODM Java API.

Applying a Model for Scoring Data

7-14 Oracle Data Mining Application Developer’s Guide

Figure 7–7 Apply Settings

In the ODM Java API, default apply settings produce the apply output table in fixed
format. The list in Table 7–2 illustrates the default output formats for different
functions.

All types of apply settings support source and destination attribute mappings. For
example, if the original apply table has customer name and age columns that need to
be carried forward to the apply output table, it can be done by specifying the source
destination mappings in the apply settings.

In the ODM Java API, classification apply settings support map by rank, top
prediction, map by category, and map all predictions. Regression apply settings
support map prediction value. Clustering apply settings support map by rank, map by
cluster id, map top cluster, and map all clusters. Feature extraction apply settings
support map by rank, map by feature id, map top feature, and map all features.

The following code illustrates the applying of a tree model JDM_TREE_MODEL using
ClassificationApplyTask on the dataset MINING_DATA_APPLY_V.

//Create & save PhysicalDataSpecification
PhysicalDataSet applyData = m_pdsFactory.create("MINING_DATA_APPLY_V", false);
PhysicalAttribute pa = m_paFactory.create("cust_id",
 AttributeDataType.integerType, PhysicalAttributeRole.caseId);
applyData.addAttribute(pa);
m_dmeConn.saveObject("JDM_APPLY_PDS", applyData, true);
//Create ClassificationApplySettingsFactory
ClassificationApplySettingsFactory applySettingsFactory =
 (ClassificationApplySettingsFactory)dmeConn.getFactory(
 "javax.datamining.supervised.classification. ClassificationApplySettings");
//Create & save ClassificationApplySettings
ClassificationApplySettings clasAS = applySettingsFactory.create();
m_dmeConn.saveObject("JDM_APPLY_SETTINGS", clasAS, true);
//Create DataSetApplyTaskFactory
DataSetApplyTaskFactory applyTaskFactory =
 (DataSetApplyTaskFactory)dmeConn.getFactory(
 "javax.datamining.task.apply.DataSetApplyTask");

Table 7–2 Default Output Formats for Different Functions

Mining Function

Classification without Cost Case ID Prediction Probability

Classification with Cost Case ID Prediction Probability Cost

Regression Case ID Prediction

Clustering Case ID Cluster ID Probability

Feature extraction Case ID Feature ID Value

Using Prior Probabilities

Using the Java API 7-15

//Create, store & execute apply Task
DataSetApplyTask applyTask = m_dsApplyFactory.create(
 " JDM_APPLY_PDS ", "JDM_TREE_MODEL", " JDM_APPLY_SETTINGS ",
 "JDM_APPLY_OUTPUT_TABLE");
//Save ApplyTask object
dmeConn.saveObject("JDM_APPLY_TASK", applyTask, true);
//Execute test task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_APPLY_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using a Cost Matrix
The class javax.datamining.supervised.classification.CostMatrix is
used to represent the costs of the false positive and false negative predictions. It is
used for classification problems to specify the costs associated with the false
predictions.

In the ODM Java API, cost matrix is supported in apply and test operations for all
classification models. For the decision tree algorithm, a cost matrix can be specified at
build time. For more information about cost matrix, see Oracle Data Mining Concepts.

The following code illustrates how to create a cost matrix object where the target has
two classes: YES (1) and NO (0). Suppose a positive (YES) response to the promotion
generates $2 and the cost of the promotion is $1. Then the cost of misclassifying a
positive responder is $2. The cost of misclassifying a non-responder is $1.

//Create category set factory & cost matrix factory
CategorySetFactory catSetFactory = (CategorySetFactory)m_dmeConn.getFactory(
 "javax.datamining.data.CategorySet");
CostMatrixFactory costMatrixFactory = (CostMatrixFactory)m_dmeConn.getFactory(
 "javax.datamining.supervised.classification.CostMatrix");
//Create categorySet
CategorySet catSet = m_catSetFactory.create(AttributeDataType.integerType);
//Add category values
catSet.addCategory(new Integer(0), CategoryProperty.valid);
catSet.addCategory(new Integer(1), CategoryProperty.valid);
//create cost matrix
CostMatrix costMatrix = m_costMatrixFactory.create(catSet);
costMatrix.setValue(new Integer(0), new Integer(0), 0);
costMatrix.setValue(new Integer(1), new Integer(1), 0);
costMatrix.setValue(new Integer(0), new Integer(1), 2);
costMatrix.setValue(new Integer(1), new Integer(0), 1);
//Save cost matrix in the DME
dmeConn.saveObject("JDM_COST_MATRIX", costMatrix);

Using Prior Probabilities
Prior probabilities are used for classification problems if the actual data has a different
distribution for target values than the data provided for the model build. A user can
specify the prior probabilities in the classification function settings, using
setPriorProbabilitiesMap. For more information about prior probabilities, see
Oracle Data Mining Concepts.

Note: Priors are not supported with decision trees.

Using Automated Prediction and Explain Tasks

7-16 Oracle Data Mining Application Developer’s Guide

The following code illustrates how to create a PriorProbabilities object, when
the target has two classes: YES (1) and NO (0), and probability of YES is 0.05,
probability of NO is 0.95.

//Set target prior probabilities
Map priorMap = new HashMap();
priorMap.put(new Double(0), new Double(0.7));
priorMap.put(new Double(1), new Double(0.3));
buildSettings.setPriorProbabilitiesMap("affinity_card", priorMap);

Using Automated Prediction and Explain Tasks
The ODM Java API provides oracle.dmt.jdm.task.OraPredictTask and
oracle.dmt.jdm.task.OraExplainTask for generating predictions and
explaining attribute importance. These tasks automate the predict and explain
operations for data mining novice users.

OraPredictTask predicts the value of a target column based on cases where the
target is not null. OraPredictTask uses known data values to automatically create a
model and populate the unknown values in the target.

OraExplainTask identifies attribute columns that are important for explaining the
variation of values in a given column. OraExplainTask analyzes the data and builds
a model that identifies the important attributes and ranks their importance.

Both of these tasks do the automated data preparation where needed.

The following code illustrates OraPredictTask and OraExplainTask.

//Predict task
 //Create predict task factory and task object
 OraPredictTaskFactory predictFactory =
 (OraPredictTaskFactory)m_dmeConn.getFactory(
 "oracle.dmt.jdm.task.OraPredictTask");
 OraPredictTask predictTask = m_predictFactory.create(
 "MINING_DATA_BUILD_V", //Input table
 "cust_id", //Case id column
 "affinity_card", //target column
 "JDM_PREDICTION_TABLE"); //prediction output table
 //Save predict task object
 dmeConn.saveObject("JDM_PREDICT_TASK", predictTask, true);
 //Execute test task asynchronously in the database
 ExecutionHandle execHandle = dmeConn.execute("JDM_PREDICT_TASK");
 //Wait for completion of the task
 ExecutionStatus execStatus =
 execHandle.waitForCompletion(Integer.MAX_VALUE);
//Explain task
 //Create explain task factory and task object
 OraExplainTaskFactory explainFactory =
 (OraExplainTaskFactory)m_dmeConn.getFactory(
 "oracle.dmt.jdm.task.OraExplainTask");
 OraExplainTask explainTask = m_explainFactory.create(
 "MINING_DATA_BUILD_V", //Input table
 "affinity_card", //explain column
 "JDM_EXPLAIN_TABLE"); //explain output table
 //Save predict task object
 dmeConn.saveObject("JDM_EXPLAIN_TASK", explainTask, true);
 //Execute test task asynchronously in the database
 ExecutionHandle execHandle = dmeConn.execute("JDM_ EXPLAIN_TASK");
 //Wait for completion of the task
 ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Preparing the Data

Using the Java API 7-17

Preparing the Data
In the ODM Java API, data must be prepared before building, applying, or testing a
model. The oracle.dmt.jdm.task.OraTransformationTask class supports
common transformations used in data mining: binning, normalization, clipping, and
text transformations. For more information about transformations, see Oracle Data
Mining Concepts.

The class diagram in Figure 7–8 illustrates the OraTransformationTask and its
relationship with other objects.

Figure 7–8 OraTransformationTask and its Relationship With Other Objects

Using Binning/Discretization Transformation
Binning is the process of grouping related values together, thus reducing the number
of distinct values for an attribute. Having fewer distinct values typically leads to a
more compact model and one that builds faster, but it can also lead to some loss in
accuracy.

The class diagram in Figure 7–9 illustrates the binning transformation classes.

Figure 7–9 OraBinningTransformation Class Diagram

Here, OraBinningTransformation contains all the settings required for binning.
The ODM Java API supports top-n, custom binning for categorical attributes, and
equi-width, quantile and custom binning for numerical attributes. After running the
binning transformations, it creates a transformed table and bin boundary tables in the
user’s schema. The user can specify the bin boundary table names, or the system will

Preparing the Data

7-18 Oracle Data Mining Application Developer’s Guide

generate the names for the bin boundary tables. This facilitates the reusing of the bin
boundary tables that are created for binning build data for apply and test data.

The following code illustrates the binning operation on the view MINING_BUILD_
DATA_V

//Create binning transformation instance
OraBinningTransformFactory binXformFactory =
 (OraBinningTransformFactory)dmeConn.getFactory(
 "oracle.dmt.jdm.transform.binning.OraBinningTransform");
OraBinningTransform binTransform = m_binXformFactory.create(
 "MINING_DATA_BUILD_V", // name of the input data set
 "BINNED_DATA_BUILD_V", // name of the transformation result
 true); // result of the transformation is a view
// Specify the number of numeric bins
binTransform.setNumberOfBinsForNumerical(10);
// Specify the number of categoric bins
binTransform.setNumberOfBinsForCategorical(8);
// Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
binTransform.setExcludeColumnList(excludedList);
// Specify the type of numeric binning: equal-width or quantile
 (default is quantile)
binTransform.setNumericalBinningType(binningType);
// Specify the type of categorical binning as Top-N: by default it is none
binTransform.setCategoricalBinningType(OraCategoricalBinningType.top_n);
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(binTransform);
//Save transformation task object
dmeConn.saveObject("JDM_BINNING_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_ BINNING _TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using Normalization Transformation
Normalizing converts individual attribute values in such a way that all attribute
values lie in the same range. Normally, values are converted to be in the range 0.0 to
1.0 or the range -1 to +1. Normalization ensures that attributes do not receive artificial
weighting caused by differences in the ranges that they span.

The class diagram in Figure 7–10 illustrates the normalization transformation classes.

Figure 7–10 OraNormalizeTransformation Class Diagram

Here, OraNormalizeTransformation contains all the settings required for
normalization. The ODM Java API supports z-Score, min-max, and linear scale
normalizations. Normalization is required for SVM, NMF, and k-Means algorithms.

The following code illustrates normalization on the view MINING_BUILD_DATA_V.

Preparing the Data

Using the Java API 7-19

//Create OraNormalizationFactory
OraNormalizeTransformFactory normalizeXformFactory =
 (OraNormalizeTransformFactory)m_dmeConn.getFactory(
 "oracle.dmt.jdm.transform.normalize.OraNormalizeTransform");
//Create OraNormalization
OraNormalizeTransform normalizeTransform = m_normalizeXformFactory.create(
 "MINING_DATA_BUILD_V", // name of the input data set
 "NORMALIZED_DATA_BUILD_V", // name of the transformation result
 true, // result of the transformation is a view
 OraNormalizeType.z_Score, //Normalize type
 new Integer(6)); //Rounding number
// Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
normalizeTransform.setExcludeColumnList(excludedList);
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(normalizeTransform);
//Save transformation task object
dmeConn.saveObject("JDM_NORMALIZE_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_NORMALIZE_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using Clipping Transformation
Some computations on attribute values can be significantly affected by extreme values.
One approach to achieving a more robust computation is to either winsorize or trim
the data using clipping transformations.

Winsorizing involves setting the tail values of a particular attribute to some specified
value. For example, for a 90% winsorization, the bottom 5% are set equal to the
minimum value in the 6th percentile, while the upper 5% are set equal to the value
corresponding to the maximum value in the 95th percentile.

Trimming "removes" the tails in the sense that trimmed values are ignored in further
values. This is achieved by setting the tails to NULL.

The class diagram in Figure 7–11 illustrates the clipping transformation classes.

Figure 7–11 OraClippingTransformation Class Diagram

Here, OraClippingTransformation contains all the settings required for clipping.
The ODM Java API supports winsorize and trim types of clipping.

The following code illustrates clipping on the view MINING_BUILD_DATA_V.

//Create OraClippingTransformFactory
OraClippingTransformFactory clipXformFactory =
 (OraClippingTransformFactory)dmeConn.getFactory(
 "oracle.dmt.jdm.transform.clipping.OraClippingTransform");
//Create OraClippingTransform
OraClippingTransform clipTransform = clipXformFactory.create(
 "MINING_DATA_BUILD_V", // name of the input data set

Preparing the Data

7-20 Oracle Data Mining Application Developer’s Guide

 "WINSORISED_DATA_BUILD_V", // name of the transformation result
 true);// result of the transformation is a view
//Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
clipTransform.setExcludeColumnList(excludedList);
//Specify the type of clipping
clipTransform.setClippingType(OraClippingType.winsorize);
// Specify the tail fraction as 3% of values on both ends
clipTransform.setTailFraction(0.03);
//Create and save transformation task
OraTransformationTask xformTask = xformTaskFactory.create(clipTransform);
//Save transformation task object
dmeConn.saveObject("JDM_CLIPPING_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_CLIPPING_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using Text Transformation
Text columns need to be transformed to nested table structure to do the mining on text
columns. This transformation converts the text columns to nested table columns. A
features table is created by text transformation. A model build text data column
features table must be used for apply and test tasks to get the correct results.

The class diagram in Figure 7–12 illustrates the text transformation classes.

Figure 7–12 Text Transformation Class Diagram

Here, OraTextTransformation is used to specify the text columns and the feature
tables associated with the text columns.

The following code illustrates clipping on the table MINING_BUILD_TEXT.

//Create OraTextTransformFactory
OraTextTransformFactory textXformFactory = dmeConn.getFactory(
 "oracle.dmt.jdm.transform.text.OraTextTransform");
//Create OraTextTransform
OraTextTransform txtXform = (OraTextTransformImpl)textXformFactory.create(
 "MINING_BUILD_TEXT", // name of the input data set
 "NESTED_TABLE_BUILD_TEXT ", // name of the transformation result
 "CUST_ID", //Case id column
 new String[] { "COMMENTS" }); //Text column names
);
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(txtXform);
//Save transformation task object
dmeConn.saveObject("JDM_TEXTXFORM_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_TEXTXFORM_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion
 (Integer.MAX_VALUE);

Converting to the ODM 10.2 Java API 8-1

8
Converting to the ODM 10.2 Java API

This chapter will assist you in converting your data mining applications from the 10.1
proprietary Java API to the standard-compliant Java API available with Oracle 10g
Release 2 (10.2).

This chapter includes the following topics:

■ Comparing the 10.1 and 10.2 Java APIs

■ Converting Your Applications

Comparing the 10.1 and 10.2 Java APIs
The new ODM Java API available with Oracle 10g Release 2 (10.2)is standardized
under the Java Community Process and is fully compliant with the JDM 1.0 standard.
Oracle supports open standards for Java and is one of the primary vendors that
implements JDM.

The ODM 10.2 JDM-based API replaces the proprietary Java API for data mining that
was available with Oracle 10.1.

Table 8–1 lists the major differences between the ODM 10.1 and ODM 10.2 Java APIs.

See Also:

■ JSR-000073 Data Mining API page of the Java Community Process Web
Site at
http://jcp.org/aboutJava/communityprocess/final/jsr073

■ JDM 1.0 javadoc at
http://www.oracle.com/technology/products/bi/odm

■ Oracle Data Mining Java API Reference (ODM 10.2 javadoc)

Note: The proprietary Java API is no longer supported in ODM 10.2.

If you have created applications in 10.1 and you want to use them in
your Oracle 10.2 installation, you must convert them to use the 10.2
API.

http://jcp.org/aboutJava/communityprocess/final/jsr073
http://www.oracle.com/technology/products/bi/odm

Comparing the 10.1 and 10.2 Java APIs

8-2 Oracle Data Mining Application Developer’s Guide

Table 8–1 Differences Between Oracle 10.1 and 10.2 Java APIs for Data Mining

Feature ODM 10.1 Java API ODM 10.2 Java API

Standards Oracle proprietary Java API designed for
accessing data mining functionality in the
Database. Not supported in Oracle 10.2.

Java industry standard API defined under Java
Community Process (JCP). ODM 10.2 implements
conformant subsets of the standard along with
Oracle proprietary extensions.

Interoperability with
DBMS_DATA_MINING
PL/SQL API

Not interoperable with models created by the
PL/SQL API.

Interoperable with PL/SQL API. All objects created
using the ODM 10.2 Java API can be used with the
PL/SQL API. Results and values are consistent with
the PL/SQL API.

Functions and
algorithms

Classification function

■ NB, ABN, SVM

Clustering function

■ k-Means, O-Cluster

Regression function

■ SVM

Association function

■ Apriori

Attribute Importance function

■ MDL

Feature Extraction function

■ NMF

Classification function

■ NB, ABN, SVM, Tree

Clustering function

■ k-Means (PL/SQL API version), OCluster

Regression function

■ SVM

Association function

■ Apriori

Attribute Importance function

■ MDL

Feature Extraction function

■ NMF

Object creation Primarily designed as Java classes. Objects are
instantiated using constructors or static create
methods.

Uses the factory method pattern to instantiate
objects. javax.dataminig.Connection is the
primary factory for all other object factories. Oracle
extensions follow the same pattern for object
creation.

Task execution Tasks executed by
oracle.dmt.odm.task.MiningTask.

ExecutionHandle and MiningTaskStatus
used for task execution tracking.

Asynchronous task execution implemented by
DBMS_JOB.

Tasks executed by
javax.datamining.Connection.

ExecutionHandle and
ExecutionStatus used for task execution
tracking.

Asynchronous task execution implemented by
DBMS_SCHEDULER.

Data Supports both physical and logical data
representations.

Supports transactional and non-transactional
format. Transactional format enables sparse data
representation and wide data (>1000 columns)

Supports only physical data representation. Logical
data can be represented with database views.

Supports nested tables in place of transactional
format.

Settings for model
building

Settings for model building created by
oracle.dmt.odm.settings.function.
MiningFunctionSettings

Settings for model building created by
javax.datamining.base.BuildSettings.

Settings are saved as a table in the user’s schema.
The name of the BuildSettings object must be
unique in the namespace of the table object.

Model Models represented by
oracle.dmt.odm.model.MiningModel.

The MiningModel object stores the automated
transformation details.

Models represented by
javax.datamining.base.Model.

The Model object does not store transformation
details. Applications must manage the
transformation details.

Cost matrix Cost matrix represented by
oracle.dmt.odm.CostMatrix.

Cost matrix for all classification algorithms is
specified at build time, even though the cost
matrix is used as a post-processing step to the
apply operation.

Cost matrix represented by
javax.datamining.supervised.
classification.CostMatrix.

Cost matrix for the decision tree algorithm is
specified at build time. All other classification
algorithms are specified with apply and test
operations.

Converting Your Applications

Converting to the ODM 10.2 Java API 8-3

Converting Your Applications
Most objects in the ODM 10.2 API are similar to the objects in the ODM 10.1 API.
However, there are some major differences in class names, package structures, and
object usage. Some of the primary differences are:

■ In 10.1, all primary objects are created using constructors or create methods. In
10.2, objects are created using object factories, as described in "Connection Factory"
on page 7-3 and "Features of a DMS Connection" on page 7-4.

■ In 10.1, DMS metadata-related operations are distributed in each class. In 10.2,
most DMS metadata-related operations are centralized in a Connection object.
For example, a mining task is restored in 10.1 with the MiningTask.restore
method and in 10.2 with the Connection.retrieveObject method.

■ In 10.1, all named objects are persisted in the database. In 10.2,
PhysicalDataSet and ApplySettings are transient objects.

Table 8–2 provides sample code for performing various mining operations in both 10.1
and 10.2. Refer to Chapter 6 for additional 10.2 code samples.

Model detail Model details not represented as an object.
Model details are stored with the associated
model object.

Model details represented by
javax.dataminig.base.ModelDetail.

Apply settings Apply settings represented by
oracle.dmt.odm.result.
MiningApplyOutput.

Apply settings represented by
javax.datamining.task.apply.
ApplySettings.

Results object Mining results represented by
oracle.dmt.odm.result.MiningResult.

Mining results are not explicit objects. Each task
creates either a Java object or a database object such
as a table.

Transformations Supports automated data preparation. Provides
utility methods for external and embedded data
preparation.

Does not support automated transformations. The
transformation task oracle.dmt.jdm.task.
OraTransformationTask can be used to emulate
automated transformations.

Text transformation Supports text data types, such as CLOB and
BLOB, for SVM and NMF. No explicit text
transformations are provided.

Supports explicit text transformations. These can be
used with any algorithm to emulate text data type
support.

Note: Although the ODM 10.1 Java API is incompatible with Oracle
10.2, future releases will follow the backward compatibility scheme
proposed by the JDM standard.

Table 8–2 Sample Code from 10.1 and 10.2 ODM Java APIs

ODM 10.1 Java API ODM 10.2 Java API

Connect to the DMS Connect to the DMS

//Create a DMS object
DataMiningServer m_dms = new DataMiningServer
 ("put DB URL here", //JDBC URL
 "user name", //User Name
 "password" //Password
);
//Login to the DMS and create a DMS Connection
m_dmsConn = m_dms.login();

//Create ConnectionFactory & connection
OraConnectionFactory m_dmeConnFactory =
 new OraConnectionFactory();
ConnectionSpec connSpec =
 m_dmeConnFactory.getConnectionSpec();
connSpec.setURI("put DB URL here");
connSpec.setName("user name");
connSpec.setPassword("password");
m_dmeConn =
 m_dmeConnFactory.getConnection(connSpec);

Table 8–1 (Cont.) Differences Between Oracle 10.1 and 10.2 Java APIs for Data Mining

Feature ODM 10.1 Java API ODM 10.2 Java API

Converting Your Applications

8-4 Oracle Data Mining Application Developer’s Guide

Create a PhysicalDataSpecification Create and Save PhysicalDataSet

LocationAccessData lad = new LocationAccessData
 ("MINING_DATA_BUILD_V", //Table/view Name
 "DMUSER" //Schema Name
);
PhysicalDataSpecification pds =
 newNonTransactionalDataSpecification (lad);

PhysicalDataSetFactory pdsFactory =
 (PhysicalDataSetFactory)m_dmeConn.getFactory
 ("javax.datamining.data.PhysicalDataSet");
m_paFactory = (PhysicalAttributeFactory)
 m_dmeConn.getFactory
 ("javax.datamining.data.PhysicalAttribute");
PhysicalDataSet buildData = m_pdsFactory.create
 ("MINING_DATA_BUILD_V",false);
PhysicalAttribute pa =m_paFactory.create
 ("cust_id", AttributeDataType.integerType,
 PhysicalAttributeRole.caseId);
buildData.addAttribute(pa);
m_dmeConn.saveObject("nbBuildData", buildData, true);

Create and Save MiningFunctionSettings Create BuildSettings

NaiveBayesSettings nbAlgo =
 new NaiveBayesSettings (0.01f, 0.01f);
ClassificationFunctionSettings mfs =
 ClassificationFunctionSettings.create
 (m_dmsConn, //DMS Connection
 nbAlgo, //NB algorithm settings
 pds, //Build data specification
 "AFFINITY_CARD", //Target column
 AttributeType.categorical, //Attribute type
 DataPreparationStatus.unprepared
);
//Set Cust_ID attribute as inactive
mfs.adjustAttributeUsage(new String[]{"CUST_ID"},
 AttributeUsage.inactive);
mfs.store(m_dmsConn,"NBDemo_MFS");

m_clasFactory = (ClassificationSettingsFactory)
 m_dmeConn.getFactory
 ("javax.datamining.supervised.classification.
 ClassificationSettings");
m_nbFactory = (NaiveBayesSettingsFactory)
 m_dmeConn.getFactory
 ("javax.datamining.algorithm.naivebayes.
 NaiveBayesSettings");
//Create NB algorithm settings
NaiveBayesSettings nbAlgo = m_nbFactory.create();
nbAlgo.setPairwiseThreshold(0.01f);
nbAlgo.setSingletonThreshold(0.01f);
//Create ClassificationSettings
ClassificationSettings buildSettings =
 m_clasFactory.create();
buildSettings.setAlgorithmSettings(nbAlgo);
buildSettings.setTargetAttributeName
 ("affinity_card");
m_dmeConn.saveObject
 ("nbBuildSettings",buildSettings,true);

Create and Execute MiningBuildTask Create and Execute BuildTask

MiningBuildTask buildTask =
 new MiningBuildTask
 (pds, //Build data specification
 "NBDemo_MFS", //Mining function settings
 "NBDemo_Model" //Mining model name
);
//Store the taskbuild
buildTask.store(m_dmsConn,"NBDemoBuildTask");
Task.execute(m_dmsConn);
//Wait for completion of the task
MiningTaskStatus taskStatus =
 buildTask.waitForCompletion(m_dmsConn);

m_buildFactory = (BuildTaskFactory)
 m_dmeConn.getFactory
 ("javax.datamining.task.BuildTask");
BuildTask buildTask = m_buildFactory.create
 ("nbBuildData", //Build data specification
 "nbBuildSettings", //build settings name
 "nbModel" //Mining model namem_dme
);
Conn.saveObject("nbBuildTask", taskObj, true);
ExecutionHandle execHandle =
 m_dmeConn.execute(taskName);
ExecutionStatus status =
 execHandle.waitForCompletion(
Integer.MAX_VALUE);

Retrieve MiningModel Retrieve Model

NaivebayesModel model = (NaiveBayesModel)
 SupervisedModel.restore
 (m_dmeConn, "NBDemo_Model");

ClassificationModel model = (ClassificationModel)
 m_dmeConn.retrieveObject
 ("nbModel", NamedObject.model);

Table 8–2 (Cont.) Sample Code from 10.1 and 10.2 ODM Java APIs

ODM 10.1 Java API ODM 10.2 Java API

Converting Your Applications

Converting to the ODM 10.2 Java API 8-5

Evaluate the Model Evaluate the Model

//Compute accuracy & confusionmatrix
LocationAccessData lad = new LocationAccessData
 ("MINING_DATA_TEST_V", "DMUSER"); //Schema Name
PhysicalDataSpecification pds =
 new NonTransactionalDataSpecification(lad);
ClassificationTestTask testTask =
 new ClassificationTestTask (pds,"NBDemo_Model",
 "NBDemo_TestResults");
testTask.store(m_dmsConn, "NBDemoTestTask");
testTask.execute(m_dmsConn);
MiningTaskStatus taskStatus =
 testTask.waitForCompletion(m_dmsConn);
ClassificationTestResult testResult =
 ClassificationTestResult.restore
 (m_dmsConn, "NBDemo_TestResults");
float accuracy = testResult.getAccuracy();
CategoryMatrix confusionMatrix =
 TestResult.getConfusionMatrix();
//Compute lift
Category positiveCategory = new Category
 ("Positive value", "1",DataType.intType);
MiningLiftTask liftTask =
 new MiningLiftTask
 (pds,
 10, //Number of quantiles to be used
 positiveCategory, /positive target value
 "NBDemo_Model", // model to be tested
 "NBDemo_LiftResults" //Lift results name
);
liftTask.store(m_dmsConn, "NBDemoLiftTask");
liftTask.execute(m_dmsConn);
MiningTaskStatus taskStatus =
 liftTask.waitForCompletion(m_dmsConn);
MiningLiftResult liftResult =
 MiningLiftResult.restore
 (m_dmsConn,"NBDemo_LiftResults");

//Compute accuracy, confusion matrix, lift & roc
PhysicalDataSet testData = m_pdsFactory.create
 ("MINING_DATA_TEST_V", false);
PhysicalAttribute pa = m_paFactory.create
 ("cust_id", AttributeDataType.integerType,
 PhysicalAttributeRole.caseId);
testData.addAttribute(pa);
m_dmeConn.saveObject
 ("nbTestData", testData, true);
ClassificationTestTask testTask = m_testFactory.create
 ("nbTestData", "nbModel", "nbTestMetrics");
testTask.setNumberOfLiftQuantiles(10);
testTask.setPositiveTargetValue(new Integer(1));
m_dmeConn.saveObject("nbTestTask", testTask, true);
ExecutionHandle execHandle =
 m_dmeConn.execute("nbTestTask");
ExecutionStatus status = execHandle.waitForCompletion
 (Integer.MAX_VALUE);
ClassificationTestMetrics testMetrics =
 (ClassificationTestMetrics)
 m_dmeConn.retrieveObject
 ("nbTestMetrics", NamedObject.testMetrics);
Double accuracy = testMetrics.getAccuracy();
ConfusionMatrix confusionMatrix =
 testMetrics.getConfusionMatrix();
Lift lift = testMetrics.getLift();
ReceiverOperatingCharacterics roc =
 testMetrics.getROC();

Table 8–2 (Cont.) Sample Code from 10.1 and 10.2 ODM Java APIs

ODM 10.1 Java API ODM 10.2 Java API

Converting Your Applications

8-6 Oracle Data Mining Application Developer’s Guide

Apply the Model Apply the Model

LocationAccessData lad = new LocationAccessData
 ("MINING_DATA_APPLY_V", "DMUSER");
PhysicalDataSpecification pds =
 new NonTransactionalDataSpecification(lad);
MiningApplyOutput mao =
 MiningApplyOutput.createDefault();
MiningAttribute srcAttribute = new MiningAttribute
 ("CUST_ID", DataType.intType,
 AttributeType.notApplicable
);
Attribute destAttribute = new Attribute
 ("CUST_ID", DataType.intType);
ApplySourceAttributeItem m_srcAttrItem =
 new ApplySourceAttributeItem
 (srcAttribute,destAttribute);
mao.addItem(m_srcAttrItem);
LocationAccessData outputTable =
 new LocationAccessData
 ("NBDemo_Apply_Output", "DMUSER");
MiningApplyTask applyTask = new MiningApplyTask
 (pds, //test data specification
 "NBDemo_Model", //Input model name
 mao, //MiningApplyOutput object
 outputTable, //Apply output table
 "NBDemo_ApplyResults" //Apply results
);
applyTask.store(m_dmsConn, "NBDemoApplyTask");
applyTask.execute(m_dmsConn);
MiningTaskStatus taskStatus =
 applyTask.waitForCompletion(m_dmsConn);

PhysicalDataSet applyData = m_pdsFactory.create
 ("MINING_DATA_APPLY_V", false);
PhysicalAttribute pa = m_paFactory.create
 ("cust_id",
 AttributeDataType.integerType,
 PhysicalAttributeRole.caseId
);
applyData.addAttribute(pa);
m_dmeConn.saveObject("nbApplyData",applyData,true);
ClassificationApplySettings clasAS =
 m_applySettingsFactory.create();
m_dmeConn.saveObject("nbApplySettings",clasAS,true);
DataSetApplyTask applyTask = m_dsApplyFactory.create
 ("nbApplyData",
 "nbModel",
 "nbApplySettings",
 "nb_apply_output"
);
m_dmeConn.saveObject
 ("nbApplyTask",
 applyTask,
 true
);
ExecutionHandle execHandle =
 m_dmeConn.execute("nbApplyTask");
ExecutionStatus status =
 execHandle.waitForCompletion(Integer.MAX_VALUE);

Table 8–2 (Cont.) Sample Code from 10.1 and 10.2 ODM Java APIs

ODM 10.1 Java API ODM 10.2 Java API

Sequence Matching and Annotation (BLAST) 9-1

9
Sequence Matching and Annotation (BLAST)

This chapter describes table functions included with ODM that permit you to perform
similarity searches against nucleotide and amino acid sequence data stored in an
Oracle database. You can use the table functions described in this chapter for ad hoc
searches or you can embed them in applications. The inclusion of these table functions
in ODM positions Oracle as a platform for bioinformatics.

This chapter discusses the following topics:

■ NCBI BLAST

■ Using ODM BLAST

NCBI BLAST
The National Center for Biotechnology Information (NCBI) developed one of the
commonly used versions of the Basic Local Alignment Search Tool (BLAST).

Sequence alignments provide a way to compare new sequences with previously
characterized sequences. Both functional and evolutionary information can be inferred
from well-designed queries and alignments. BLAST provides a method for searching
of both nucleotide and protein databases. Since the BLAST algorithm detects local
alignments, regions of similarity embedded in otherwise unrelated sequences can be
detected.

The BLAST algorithm searches nucleotide and amino acid query sequences against
databases of nucleotide and amino acid sequences. Based on the nature of the query
and the database sequences, NCBI BLAST provides the following variants:

■ BLASTP compares an amino acid query sequence against an amino acid sequence
database.

■ BLASTN compares a nucleotide query sequence against a nucleotide sequence
database.

■ BLASTX compares a nucleotide query sequence translated along all six reading
frames (both strands) against a amino acid sequence database.

■ TBLASTN compares an amino acid query sequence against a nucleotide sequence
database translated along all six reading frames (both strands).

■ TBLASTX compares the six-frame translations of a nucleotide query sequence
against the six-frame translations of a nucleotide sequence database.

For more information about NCBI BLAST, see the NCBI BLAST Home Page at

http://www.ncbi.nlm.nih.gov/BLAST

http://www.ncbi.nlm.nih.gov/BLAST

Using ODM BLAST

9-2 Oracle Data Mining Application Developer’s Guide

The table functions described in this chapter implement some of the variants of NCBI
BLAST version 2.0.

Using ODM BLAST
This section contains several examples of using the ODM BLAST table functions to
perform searches on nucleotide or amino acid sequences.

Most table function parameters have defaults. The defaults were carefully chosen so
that users who have limited experience with BLAST should obtain good results.

Using BLASTN_MATCH to Search DNA Sequences
The BLAST table functions accept the CLOB (Character Large OBject) data type as the
query sequence. It is not possible to construct a CLOB in an ad hoc SQL query. One
way to construct a CLOB is to create a table and insert the query sequence into the
table. Another option is to construct a CLOB using the programmatic interface if the
BLAST query is part of a larger program. Suppose that the table query_db has the
schema (sequence_id VARCHAR2(32), sequence CLOB). The following SQL
query inserts the query sequence into query_db:

INSERT INTO query_db VALUES ('1', 'AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGT');

Suppose that the table GENE_DB stores DNA sequences. Suppose that GENE_DB has
attributes seq_id, publication date, modification date, organism, and
sequence, among other attributes. There is no required schema for the table that
stores the sequences. The only requirement is that the table contain an identifier and
the sequence and any number of other optional attributes.

The portion of the database to be used for the search can be specified using SQL. The
full power of SQL can be used to perform sophisticated selections.

Searching for Good Matches in DNA Sequences
The following query does a BLAST search of the given query sequence against the
human genome and returns the seq_id, score, and expect value of matches that
score > 25:

SELECT t.t_seq_id, t.score, t.expect
FROM TABLE (
 BLASTN_MATCH (
 (SELECT sequence FROM query_db WHERE sequence_id = '1'),
 CURSOR (SELECT seq_id, sequence FROM GENE_DB
 WHERE organism = 'human'),
 1,
 -1,
 0,
 0,
 10,
 0,
 0,
 0,
 0,
 11,
 0,
 0)
) t WHERE t.score > 25;

Using ODM BLAST

Sequence Matching and Annotation (BLAST) 9-3

Note: The parameter value of 0 invokes the default values in most cases. See the
syntax for details.

Searching DNA Sequences Published After a Certain Date
The following query does the BLAST search against all sequences published after Jan
01, 2000:

SELECT t.t_seq_id, t.score, t.expect
FROM TABLE (
 BLASTN_MATCH (
 (SELECT sequence FROM query_db WHERE sequence_id = '1'),
 CURSOR (SELECT seq_id, sequence FROM GENE_DB
 WHERE publication_date > '01-JAN-2000'),
 1,
 -1,
 0,
 0,
 10,
 0,
 0,
 0,
 0,
 11,
 0,
 0)
) t WHERE t.score > 25;

You can obtain other attributes of the matching sequence by joining the BLAST result
with the original sequence table as follows:

SELECT t.t_seq_id, t.score, t.expect, g.publication_date, g.organism
FROM GENE_DB g, TABLE (
 BLASTN_MATCH (
 (SELECT sequence FROM query_db WHERE sequence_id = '1'),
 CURSOR (SELECT seq_id, sequence FROM GENE_DB
 WHERE publication_date > '01-JAN-2000'),
 1,
 -1,
 0,
 0,
 10,
 0,
 0,
 0,
 0,
 11,
 0,
 0)
) t WHERE t.t_seq_id = g.seq_id AND t.score > 25;

Using BLASTP_MATCH to Search Protein Sequences
Suppose that the table PROT_DB stores protein sequences. Insert the protein query
sequence to be used for the search into query_db.

Using ODM BLAST

9-4 Oracle Data Mining Application Developer’s Guide

Searching for Good Matches in Protein Sequences
The following query does a BLASTP search of the given query sequence against
protein sequences in PROT_DB and returns the identifier, score, name, and
expect value of matches that score > 25:

SELECT t.t_seq_id, t.score, t.expect, p.name
FROM PROT_DB p, TABLE(
 BLASTP_MATCH (
 (SELECT sequence FROM query_db WHERE sequence_id = '2'),
 CURSOR(SELECT seq_id, sequence FROM PROT_DB),
 1,
 -1,
 0,
 0,
 'BLOSUM62',
 10,
 0,
 0,
 0,
 0,
 0)
)t WHERE t.t_seq_id = p.seq_id AND t.score > 25
 ORDER BY t.expect;

Using BLASTN_ALIGN to Search and Align DNA Sequences
Suppose that the table GENE_DB stores DNA sequences. Suppose that GENE_DB has
attributes seq_id, publication date, modification date, organism, and
sequence among other attributes.

Searching and Aligning for Good Matches in DNA Sequences
The following query does a BLAST search and alignment of the given query sequence
against the human genes and returns the publication_date, organism, and the
alignment attributes of the matching sequences that score > 25 and where more than
50% of the sequence is conserved in the match:

SELECT t.t_seq_id, t.alignment_length, t.pct_identity,
 t.q_seq_start, t.q_seq_end, t.t_seq_start, t.t_seq_end,
 t.score, t.expect, g.publication_date, g.organism
FROM GENE_DB g, TABLE (
 BLASTN_ALIGN (
 (SELECT sequence FROM query_db WHERE sequence_id = '1'),
 CURSOR (SELECT seq_id, sequence FROM GENE_DB
 WHERE publication_date > '01-JAN-2000'),
 1,
 -1,
 0,
 0,
 10,
 0,
 0,
 0,
 0,
 11,
 0,
 0)
) t WHERE t.t_seq_id = g.seq_id AND t.score > 25
 AND t.pct_identity > 50;

Using ODM BLAST

Sequence Matching and Annotation (BLAST) 9-5

You can use BLASTP_ALIGN and TBLAST_ALIGN in a similar way.

Output of BLAST Queries
The output of a BLAST query is a table; the output table is described as the output
table for the specific query.

Here are two examples of queries and the resulting output tables.

Query 1 is as follows:

select T_SEQ_ID AS seq_id, score, EXPECT as evalue
 from TABLE(
 BLASTP_MATCH (
 (select sequence from query_db),
 CURSOR(SELECT seq_id, seq_data
 FROM swissprot
 WHERE organism = 'Homo sapiens (Human)'),
 1,
 -1,
 0,
 0,
 'BLOSUM62',
 10,
 0,
 0,
 0,
 0,
 0)
);

The output for query 1 is as follows:

SEQ_ID SCORE EVALUE
-------- ---------- ----------
P31946 205 5.8977E-18
Q04917 198 3.8228E-17
P31947 169 8.8130E-14
P27348 198 3.8228E-17
P58107 49 7.24297332

Query 2 is as follows:

select T_SEQ_ID AS seq_id, ALIGNMENT_LENGTH as len,
 Q_SEQ_START as q_strt, Q_SEQ_END as q_end, Q_FRAME, T_SEQ_START as t_strt,
 T_SEQ_END as t_end, T_FRAME, score, EXPECT as evalue
 from TABLE(
 BLASTP_ALIGN (
 (select sequence from query_db),
 CURSOR(SELECT seq_id, seq_data
 FROM swissprot
 WHERE organism = 'Homo sapiens (Human)' AND
 creation_date > '01-Jan-90'),
 1,
 -1,
 0,
 0,
 'BLOSUM62',

Using ODM BLAST

9-6 Oracle Data Mining Application Developer’s Guide

 10,
 0,
 0,
 0,
 0,
 0)
);

The output for Query 2 is as follows:

SEQ_ID LEN Q_STRT Q_END Q_FRAME T_STRT T_END T_FRAME SCORE EVALUE
-------- ---- ------ ----- ------- ------ ----- ------- ------- ----------
P31946 50 0 50 0 13 63 0 205 5.1694E-18
Q04917 50 0 50 0 12 62 0 198 3.3507E-17
P31947 50 0 50 0 12 62 0 169 7.7247E-14
P27348 50 0 50 0 12 62 0 198 3.3507E-17
P58107 21 30 51 0 792 813 0 49 6.34857645

Using BLASTN_COMPRESS to Improve Search Performance
 If you perform frequent BLAST searches on nucleotide sequences, performance
improves significantly when the data set of sequences is transformed into a
compressed binary format, and the compressed data is used in the searches. The
BLASTN_COMPRESS() function transforms a nucleotide data set represented as
CLOBs into compressed binary format represented as BLOBs.

Compress Sequences
Suppose that the table GENE_DB contains DNA sequences upon which you will
perform frequent searches. Suppose that GENE_DB has attributes (seq_id,
publication date, modification date, organism, sequence) among
other attributes. The following query stores all human DNA sequences in compressed
binary format, in the table COMPRESSED_HUMAN_GENES.

create table COMPRESSED_HUMAN_GENES as
select seq_id, seq_data
from Table(BLASTN_COMPRESS (
 from GENE_DB
 where organism = 'human')))

The portion of the database to be compressed can be specified using SQL. The full
power of SQL can be used to perform more sophisticated selections involving joins.

Passing a Compressed Sequence to a BLAST Function
The compressed sequences can be directly passed to BLAST match and align functions
as shown in the following example.

select t.t_seq_id, t.alignment_length, t.pct_identity, t.q_start, t.q_end, t.s_
start, t.s_end, t.score, t.expect, g.publication_date, g.organism
from GENE_DB g, Table(BLASTN_ALIGN (
select sequence from QUERY_SEQ where id = '1'),
seqdb_cursor => cursor(select seq_id, seq_data
from Table(BLASTN_COMPRESS (
cursor(select seq_id, sequence
 from GENE_DB
 where organism = 'human')))),
expect_value => 5,
word_size => 12)) t

Using ODM BLAST

Sequence Matching and Annotation (BLAST) 9-7

where t.t_seq_id = g.identifier
AND t.score > 25
AND t.pct_identity > 50;

Sample Data for BLAST
We provide a few sample data sets and queries that can be used to verify that the
BLAST functions work correctly after ODM is installed.

The DM_USER schema contains the following sequence data tables:

■ SWISSPROT

■ PROT_DB

■ ECOLI10

SWISSPROT Table
The SWISSPROT table contains the sequences in Release 40 of the SwissProt database.
This table has the sequence identifier, creation_date, organism, and sequence_
data attributes. It has 101,602 protein sequences.

SQL> describe SWISSPROT;
Name Null? Type
--------------------------------------- ------- -------------
SEQ_ID VARCHAR2(32)
CREATION_DATE DATE
ORGANISM VARCHAR2(256)
SEQ_DATA CLOB

PROT_DB Table
The PROT_DB table consists of 19 protein sequences from Release 40 of the SwissProt
data set.

SQL> describe prot_db;
Name Null? Type
-- ------- -------------
SEQ_ID VARCHAR2(32)
SEQ_DATA CLOB

ECOLI10 Table
The ECOLI10 table contains 10 nucleotide sequences from the Escherichia coli data
set.

SQL> describe ECOLI10;
Name Null? Type
--- -------- ---------------
SEQ_ID VARCHAR2(32)
SEQ_DATA CLOB

Genetic Codes and Names
Table 9–1 lists genetic codes and associated names.

Using ODM BLAST

9-8 Oracle Data Mining Application Developer’s Guide

Sequence Databases
There are several public domain sequence databases available. One of them is the
SwissProt database, which is a highly curated collection of protein sequences.
SwissProt has recently been combined with other databases to create UniProt. The last
release of the SwissProt database can be downloaded from

ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release/sprot45.dat

In addition to the raw sequence data, the SwissProt database contains several other
attributes of the sequence including organism, date published, date modified,
published literature references, annotations, and so on. BLAST requires only the
sequence identifier and the sequence data to be stored to perform searches.

Depending on the needs of your specific application, different sets of these attributes
may be important. Therefore, the database schema required to store the data needs to
be appropriately designed. You can use a scripting language to parse the required
fields from the SwissProt data and format the fields so that they can be loaded into an
Oracle database.

The following Perl script outputs the sequence identifier, creation_date, organism, and
sequence data in the required format for SQL*Loader. (SQL*Loader is the utility that
loads data into an Oracle database; it is described in detail in Oracle Database Utilities.)

#!/bin/perl
#swissprot.pl < input > output
#Input: protein db as provided by SWISSPROT
#
my $string = "";
my $indicator = "";

Table 9–1 Table of Genetic Codes

Genetic Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold Mitochondrial, Protozoan Mitochondrial, Coelenterate
Mitochondrial, Mycoplasma, Spiroplasm

5 Invertebrate Mitochondrial

6 Ciliate Nuclear, Dasycladacean Nuclear, Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Macronuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial Code

ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release/sprot45.dat

Using ODM BLAST

Sequence Matching and Annotation (BLAST) 9-9

$sq = 0;
$ac = 0;

while(<>)
{
 #chop;
 if (/^\/\//) {
 print "\n";
 $sq = 0;
 $ac = 0;
 next;
 }
 if ($sq == 1) {
 @words = split;
 foreach $word (@words) {
 print "$word";
 }
 next;
 }
 if(/^AC(\s+)(\w+);/) {
 if ($ac == 0) {
 $indicator = $2;
 print "$indicator|";
 $sq = 0;
 $dt = 0;
 $ac = 1;
 next;
 }
 }
 if (/^OS(\s+)(.*)\./) {
 $organism = $2;
 print "$organism|";
 next;
 }
 if (/^DT(\s+)(\S+)/) {
 if ($dt == 0) {
 print "$2|";
 $dt = 1;
 }
 }
 if (/^SQ(\s+)/) {
 $sq = "1";
 next;
 }
}

Loading Sequences into an Oracle Database
Follow these steps to download, parse, and save the SwissProt data in an Oracle
database:

1. Download SwisProt data to the file sprot45.dat.

2. Save the perl script in a file named swissprot.pl, type the command

swissprot.pl sprot45.dat > sprot_formatted.txt

This command will read the SwissProt data stored in sprot45.dat, format it,
and write it out to sprot_formatted.txt.

Using ODM BLAST

9-10 Oracle Data Mining Application Developer’s Guide

3. In order to load the data using SQL*Loader, you must create a table to hold the
data and a control file. Create the table swissprot using the following SQL
statement:

create table swissprot (SEQ_ID VARCHAR2(32), CREATION_DATE DATE,
ORGANISM VARCHAR2(256), SEQ_DATA CLOB);

4. Create a control file named sprot.ctl with the following contents:

LOAD DATA
INFILE sprot40_formatted.txt
INTO TABLE swissprot
REPLACE
FIELDS TERMINATED BY '|'
TRAILING NULLCOLS
(
seq_id,
creation_date,
organism,
seq_data char(100000)
)

5. Finally, load the data:

sqlldr userid=<user_name>/<passwd> control=sprot.ctl log=sprot.log
direct=TRUE data=sprot40_formatted.txt

The SwisProt data is now stored in the Oracle table swissprot.

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-11

Summary of BLAST Table Functions

The BLAST functionality is available as table functions; these table functions can be
used in the FROM clause of a SQL query.

Table 9–2 BLAST Table Functions

Table Function Description

BLASTN_COMPRESS
Table Function

Compress nucleotide sequence data to improve performance of
sequence searches.

BLASTN_MATCH Table
Function

Perform a search of the given nucleotide sequence against the
selected portion of the nucleotide database

BLASTP_MATCH Table
Function on page 9-15

Perform a search of the given amino acid sequence against the
selected portion of the protein database

TBLAST_MATCH Table
Function on page 9-17

Perform a search involving translations of either the query
sequence or the database of sequences

 BLASTN_ALIGN Table
Function on page 9-19

Perform an alignment of the given nucleotide sequence against
the selected portion of the nucleotide database

BLASTP_ALIGN Table
Function on page 9-22

Perform an alignment of the given amino acid sequence
against the selected portion of the protein database

TBLAST_ALIGN Table
Function on page 9-25

Perform alignments involving translations of either the query
sequence or the database of sequences

BLASTN_COMPRESS Table Function

9-12 Oracle Data Mining Application Developer’s Guide

BLASTN_COMPRESS Table Function

This table function compresses nucleotide sequence data. It takes as input a cursor of
sequence identifier and sequence data represented as a CLOB and returns the
sequence identifier and a BLOB representing the sequence data in compressed binary
format. The result of BLASTN_COMPRESS can be either materialized in a table for
future use or passed into the BLAST search functions that accept nucleotide sequence
data

Syntax
function BLASTN_COMPRESS (
 sequence_cursor REF CURSOR)
 return table of row (seq_id VARCHAR2, seq_data BLOB);

Parameters
Table 9–3 describes the input parameters for BLASTN_COMPRESS; Table 9–4, the
output parameters.

Table 9–3 Input Parameters for BLASTN_COMPRESS Table Function

Parameter Description

sequence_cursor The cursor of the sequences to be compressed. The cursor has
two columns the sequence identifier and the sequence string.

Table 9–4 Output Parameters for BLASTN_MATCH Table Function

Attribute Description

seq_id The sequence identifier of the sequence. The value returned is
the same as the sequence identifier in the input cursor.

seq_data The compressed sequence represented as a BLOB.

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-13

BLASTN_MATCH Table Function

This table function performs a BLASTN search of the given nucleotide sequence
against the selected portion of the nucleotide database. The database can be selected
using a standard SQL select and passed into the function as a cursor. It accepts the
standard BLAST parameters that are listed in the following section. The match returns
the identifier of the matched (target) sequence (t_seq_id) (for example, the NCBI
accession number), the score of the match, and the expect value.

Syntax
function BLASTN_MATCH (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 5,
 extend_gap_cost NUMBER default 2,
 mismatch_cost NUMBER default -3,
 match_reward NUMBER default 1,
 word_size NUMBER default 11,
 xdropoff NUMBER default 30,
 final_x_dropoff NUMBER default 50)
 return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 9–5 describes the input parameters for BLASTN_MATCH; Table 9–6, the output
parameters.

Table 9–5 Input Parameters for BLASTN_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence. The default is FALSE.

BLASTN_MATCH Table Function

9-14 Oracle Data Mining Application Developer’s Guide

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default is FALSE.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 5. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 2. Specifying 0
invokes default behavior.

mismatch_cost The penalty for nucleotide mismatch. The default value is -3.
Specifying 0 invokes default behavior.

match_reward The reward for a nucleotide match. The default value is 1.
Specifying 0 invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 11.
Specifying 0 invokes default behavior.

xdropoff Dropoff for BLAST extensions in bits. The default value is 30.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 50. Specifying 0 invokes default behavior.

Table 9–6 Output Parameters for BLASTN_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

Table 9–5 (Cont.) Input Parameters for BLASTN_MATCH Table Function

Parameter Description

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-15

BLASTP_MATCH Table Function

This table function performs a BLASTP search of the given amino acid sequence
against the portion of the selected protein database. The database can be selected using
a standard SQL select and passed into the function as a cursor. We also accept the
standard BLAST parameters that are listed in the following section. The match returns
the identifier of the matched (target) sequence (t_seq_id) (for example, the NCBI
accession number), the score of the match, and the expect value.

Syntax
function BLASTP_MATCH (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 sub_matrix VARCHAR2 default 'BLOSUM62',
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 11,
 extend_gap_cost NUMBER default 1,
 word_size NUMBER default 3,
 x_dropoff NUMBER default 15,
 final_x_dropoff NUMBER default 25)
 return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 9–7 describes the input parameters for BLASTN_MATCH; Table 9–8, the output
parameters.

Table 9–7 Input Parameters for BLASTP_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence. The default value is FALSE.

BLASTP_MATCH Table Function

9-16 Oracle Data Mining Application Developer’s Guide

For each substitution matrix (sub_matrix), only certain combinations of (open_gap_
cost, extend_gap_cost) values are supported. Table 9–9 shows the supported
combinations of values for each substitution matrix.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default value is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for
aligning any possible pair of residues. The different options are
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The
default is BLOSUM62. See Table 9–9 for supported values of
(open_gap_cost, extend_gap_cost) for each matrix.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0
invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 3.
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 25. Specifying 0 invokes default behavior.

Table 9–8 Output Parameters for BLASTP_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

Table 9–9 Supported Combinations of (open_gap_cost, extend_gap cost)

Substitution Matrix Name Supported (open_gap_cost, extend_gap_cost) Values

BLOSUM45 (13,3), (12,3), (11,3), (10,3), (16,2), (15,2), (14,2), (13,2), (12,2),
(19,1), (18,1), (17,1), (16,1)

BLOSUM62 (11,2), (10,2), (9,2), (8,2), (7,2), (6,2), (13,1), (12,1), (11,1), (10,1),
(9,1)

BLOSUM80 (25,2), (13,2), (9,2), (8,2), (7,2), (6,2), (11,1),(10,1), (9,1)

PAM30 (7,2), (6,2), (5,2), (10,1), (9,1), (8,1)

PAM70 (8,2), (7,2), (6,2), (11,1), (10,1), (9,1)

Table 9–7 (Cont.) Input Parameters for BLASTP_MATCH Table Function

Parameter Description

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-17

TBLAST_MATCH Table Function

This table function performs BLAST searches involving translations of either the query
sequence or the database of sequences. The available options are:

■ BLASTX: The query nucleotide sequence is translated and compared against a
protein database.

■ TBLASTN: The query amino acid sequence is compared against a translated
nucleotide database.

■ TBLASTX: The query nucleotide sequence is translated and compared against a
translated nucleotide database.

The database can be selected using a standard SQL select and passed into the function
as a cursor. We also accept the standard BLAST parameters that are listed in the
following section. The match returns the identifier of the matched (target) sequence
(t_seq_id) (for example, the NCBI accession number), the score of the match, and the
expect value.

Syntax
function TBLAST_MATCH (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 translation_type VARCHAR2 default 'BLASTX',
 genetic_code NUMBER default 1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 sub_matrix VARCHAR2 default 'BLOSUM62',
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 11,
 extend_gap_cost NUMBER default 1,
 word_size NUMBER default 3,
 x_dropoff NUMBER default 15,
 final_x_dropoff NUMBER default 25)
 return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 9–10 describes the input parameters for TBLAST_MATCH; Table 9–11, the
output parameters.

Table 9–10 Input Parameters for TBLAST_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

TBLAST_MATCH Table Function

9-18 Oracle Data Mining Application Developer’s Guide

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

translation_type Type of the translation involved. The options are BLASTX,
TBLASTN, and TBLASTX. The default is BLASTX.

genetic_code Used for translating nucleotide sequences to amino acid
sequences. genetic_code is sort of like a mapping table.
NCBI supports 17 different genetic codes. The supported
genetic codes and their names are given in Table 9–1. The
default genetic code is 1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for
aligning any possible pair of residues. The different options are
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The
default is BLOSUM62. See Table 9–9 for supported values of
(open_gap_cost, extend_gap_cost) for each matrix.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0
invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 3.
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 25. Specifying 0 invokes default behavior.

Table 9–11 Output Parameters for TBLAST_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

Table 9–10 (Cont.) Input Parameters for TBLAST_MATCH Table Function

Parameter Description

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-19

BLASTN_ALIGN Table Function

This table function performs a BLASTN alignment of the given nucleotide sequence
against the selected portion of the nucleotide database. The database can be selected
using a standard SQL select and passed into the function as a cursor. It accepts the
standard BLAST parameters that are listed in the following section.

BLASTN_MATCH returns only the score and expect value of the match. It does not
return information about the alignment. BLASTN_MATCH is typically used when a
BLAST search will be followed up with h a more compute intensive alignment, such as
the Smith-Waterman alignment.

BLASTN_ALIGN does the BLAST alignment and returns the information about the
alignment.

Syntax
function BLASTN_ALIGN (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 5,
 extend_gap_cost NUMBER default 2,
 mismatch_cost NUMBER default -3,
 match_reward NUMBER default 1,
 word_size NUMBER default 11,
 xdropoff NUMBER default 30,
 final_x_dropoff NUMBER default 50)
 return table of row (
 t_seq_id VARCHAR2,
 pct_identity NUMBER,
 alignment_length NUMBER,
 mismatches NUMBER,
 positives NUMBER,
 gap_openings NUMBER,
 gap_list [Table of NUMBER],
 q_seq_start NUMBER,
 q_frame NUMBER,
 q_seq_end NUMBER,
 t_seq_start NUMBER,
 t_seq_end NUMBER,
 t_frame NUMBER,
 score NUMBER,
 expect NUMBER);

Parameters
Table 9–12 describes the input parameters for BLASTN_ALIGN; Table 9–13, the output
parameters.

BLASTN_ALIGN Table Function

9-20 Oracle Data Mining Application Developer’s Guide

Table 9–12 Input Parameters for BLASTN_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default is FALSE.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 5. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 2. Specifying 0
invokes default behavior.

mismatch_cost The penalty for nucleotide mismatch. The default value is -3.
Specifying 0 invokes default behavior.

match_reward The reward for a nucleotide match. The default value is 1.
Specifying 0 invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 11.
Specifying 0 invokes default behavior.

xdropoff Dropoff for BLAST extensions in bits. The default value is 30.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 50. Specifying 0 invokes default behavior.

Table 9–13 Output Parameters for BLASTN_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with
the database sequence.

alignment_length Length of the alignment.

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-21

mismatches Number of base-pair mismatches between the query and the
database sequence.

positives Number of base-pairs with a positive match score between the
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end

The indexes of the portion of the query sequence that is aligned

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indexes of the portion of the target sequence that is
aligned.

t_frame Translation frame number of the target sequence.

expect Expect value of the alignment.

score Score corresponding to the alignment.

Table 9–13 (Cont.) Output Parameters for BLASTN_ALIGN Table Function

Parameter Description

BLASTP_ALIGN Table Function

9-22 Oracle Data Mining Application Developer’s Guide

BLASTP_ALIGN Table Function

This table function performs a BLASTP alignment of the given amino acid sequences
against the selected portion of the protein database. The database can be selected using
a standard SQL select and passed into the function as a cursor. You can also use the
standard BLAST parameters that are listed in the following section.

BLASTP_MATCH function returns only the score and expect value of the match. It
does not return information about the alignment. The BLASTP_MATCH is typically
used when a BLAST search will be followed up with h a more compute intensive
alignment, such as the Smith-Waterman alignment or a full FASTA alignment.

The BLASTP_ALIGN function does the BLAST alignment and returns the information
about the alignment. The schema of the returned alignment is the same as that of
BLASTN_ALIGN.

Syntax
function SYS_BLASTP_ALIGN (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 sub_matrix VARCHAR2 default 'BLOSUM62',
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 11,
 extend_gap_cost NUMBER default 1,
 word_size NUMBER default 3,
 x_dropoff NUMBER default 15,
 final_x_dropoff NUMBER default 25)
 return table of row (
 t_seq_id VARCHAR2,
 pct_identity NUMBER,
 alignment_length NUMBER,
 mismatches NUMBER,
 positives NUMBER,
 gap_openings NUMBER,
 gap_list [Table of NUMBER],
 q_seq_start NUMBER,
 q_frame NUMBER,
 q_seq_end NUMBER,
 t_seq_start NUMBER,
 t_seq_end NUMBER,
 t_frame NUMBER,
 score NUMBER,
 expect NUMBER);

Parameters
Table 9–14 describes the input parameters for BLASTP_ALIGN; Table 9–15, the output
parameters.

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-23

Table 9–14 Input Parameters for BLASTP_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for
aligning any possible pair of residues. The different options are
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The
default is BLOSUM62. See Table 9–9 for supported values of
(open_gap_cost, extend_gap_cost) for each matrix.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0
invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 3.
Specifying 0 invokes default behavior.

x_dropoff X-dropoff for BLAST extensions in bits. The default value is 15.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 25 Specifying 0 invokes default behavior.

Table 9–15 Output Parameters for BLASTP_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with
the database sequence.

alignment_length Length of the alignment.

BLASTP_ALIGN Table Function

9-24 Oracle Data Mining Application Developer’s Guide

mismatches Number of base-pair mismatches between the query and the
database sequence.

positives Number of base-pairs with a positive match score between the
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end

The indexes of the portion of the query sequence that is
aligned.

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indexes of the portion of the target sequence that is
aligned.

t_frame Translation frame number of the target sequence.

score Score corresponding to the alignment.

Table 9–15 (Cont.) Output Parameters for BLASTP_ALIGN Table Function

Parameter Description

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-25

TBLAST_ALIGN Table Function

This table function performs BLAST alignments involving translations of either the
query sequence or the database of sequences or both the query sequence and the
database of sequences. The available translation options are BLASTX, TBLASTN, and
TBLASTX. The schema of the returned alignment is the same as that of BLASTN_
ALIGN and BLASTP_ALIGN.

Syntax
function TBLAST_ALIGN (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default 0,
 translation_type VARCHAR2 default 'BLASTX',
 genetic_code NUMBER default 1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 sub_matrix VARCHAR2 default 'BLOSUM62',
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 11,
 extend_gap_cost NUMBER default 1,
 word_size NUMBER default 3,
 x_dropoff NUMBER default 15,
 final_x_dropoff NUMBER default 25)
 return table of row (
 t_seq_id VARCHAR2,
 pct_identity NUMBER,
 alignment_length NUMBER,
 mismatches NUMBER,
 positives NUMBER,
 gap_openings NUMBER,
 gap_list [Table of NUMBER],
 q_seq_start NUMBER,
 q_frame NUMBER,
 q_seq_end NUMBER,
 t_seq_start NUMBER,
 t_seq_end NUMBER,
 t_frame NUMBER,
 score NUMBER,
 expect NUMBER);

Parameters
Table 9–16 describes the input parameters for TBLAST_ALIGN; Table 9–17, the output
parameters.

Table 9–16 Input Parameters for TBLAST_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

TBLAST_ALIGN Table Function

9-26 Oracle Data Mining Application Developer’s Guide

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

translation_type Type of the translation involved. The options are BLASTX,
TBLASTN, and TBLASTX. The default is BLASTX.

genetic_code Used for translating nucleotide sequences to amino acid
sequences. genetic_code is sort of like a mapping table.
NCBI supports 17 different genetic codes. The supported
genetic codes and their names are given in Table 9–1. The
default genetic code is 1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence.The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence.The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for
aligning any possible pair of residues. The different options are
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The
default is BLOSUM62. See Table 9–9 for supported values of
(open_gap_cost, extend_gap_cost) for each matrix.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0
invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 3.
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 25. Specifying 0 invokes default behavior.

Table 9–17 Output Parameters for TBLAST_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with
the database sequence.

alignment_length Length of the alignment.

Table 9–16 (Cont.) Input Parameters for TBLAST_ALIGN Table Function

Parameter Description

Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-27

mismatches Number of base-pair mismatches between the query and the
database sequence.

positives Number of base-pairs with a positive match score between the
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end

The indexes of the portion of the query sequence that is
aligned.

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indexes of the portion of the target sequence that is
aligned.

t_frame Translation frame number of the target sequence.

score Score corresponding to the alignment

.

expect Expect value of the alignment.

Table 9–17 (Cont.) Output Parameters for TBLAST_ALIGN Table Function

Parameter Description

TBLAST_ALIGN Table Function

9-28 Oracle Data Mining Application Developer’s Guide

Index-1

Index

A
ABN, 3-4, 3-5, 6-2

settings, 3-5
test metrics, 1-4

Adaptive Bayes Network, 1-2
see also ABN
steps in model development, 1-4

algo_name setting, 3-4
algorithm settings

Adaptive Bayes Network, 3-5
Decision Tree, 3-6
k-Means, 3-8
Naive Bayes, 3-5
Non-Negative Matrix Factorization, 3-7
O-Cluster, 3-7
One-Class SVM, 3-7
Support Vector Machine, 3-6

anomaly detection, 1-1, 1-2, 1-4
apply, 1-4, 1-8, 7-14
apply results, 4-3, 7-14
ApplySettings object, 6-5, 7-14
Apriori, 1-3, 1-5, 3-4

steps in model development, 1-5
asso_max_rule_length setting, 3-4
asso_min_confidence setting, 3-4
asso_min_support setting, 3-5
association rules, 1-3, 1-5, 2-2, 3-4

model details, 1-7
testing, 1-4

attribute importance, 1-2, 1-5, 3-4
model details, 1-7
testing, 1-4

attribute names, 2-3
attributes, 1-5, 2-2

B
binning, 1-6, 6-2, 7-17
BLAST

NCBI, 9-1
ODM, 9-2
output, 9-5
sample data, 9-7

BLAST table functions
summary of, 9-11

BLASTN_ALIGN table function, 9-4, 9-19
BLASTN_MATCH table function, 9-2, 9-13
BLASTP_ALIGN table function, 9-22
BLASTP_MATCH table function, 9-3, 9-15
build results, 4-3
BuildSettings object, 6-4, 7-9
BuildTask object, 7-11

C
case ID, 1-5, 2-4

Java API, 2-2
PL/SQL API, 2-2
SQL scoring functions, 2-2

categorical attributes, 1-5, 2-3
clas_cost_table_name setting, 3-4
clas_priors_table_name setting, 3-4
classification, 1-2, 1-4, 3-4

model details, 1-7
scoring, 1-4
test metrics, 6-5
testing, 1-3

ClassificationTestMetrics, 7-12
CLASSPATH, 7-2
clipping, 1-6, 6-2, 7-20
clus_num_clusters setting, 3-4
CLUSTER_ID, 1-8
CLUSTER_PROBABILITY, 1-8
CLUSTER_SET, 1-8
clustering, 1-3, 1-5, 3-4, 3-7, 3-8

model details, 1-7
scoring, 1-4
testing, 1-3

collection types, 1-5, 2-1, 5-3
Connection object, 6-3, 7-3
ConnectionFactory, 7-3
cost matrix table, 3-4, 3-9, 4-5, 7-15
CTXSYS.DRVODM, 5-2

D
data

Java API, 7-7, 7-8
non-transactional, 2-4
PhysicalDataSet, 6-3
preparation, 1-3, 1-5, 1-6, 2-1, 7-17

Index-2

storage optimization, 2-7
transactional, 2-4

data storage, 2-7
data types, 2-1, 2-3
DBMS_DATA_MINING, 4-2
DBMS_DATA_MINING_TRANSFORM, 1-6
DBMS_PREDICTIVE_ANALYTICS, 1-7
DBMS_SCHEDULER, 6-4, 7-10
DBMS_STATS, 7-8
Decision Tree, 1-1, 1-2, 2-2, 3-4, 3-9

applying a model, 4-7
building a model, 4-4
details, 1-7
settings, 3-6
steps in model development, 1-4
test metrics, 1-4
testing a model, 4-6

DM_NESTED_CATEGORICALS, 1-5, 2-1, 2-4
DM_NESTED_NUMERICALS, 1-5, 2-1, 2-4, 5-3, 5-8
DM_USER_MODELS view, 3-1, 4-2
DMS connection, 7-4
dmsh.sql, 5-2
dmtxtfe.sql, 5-2
DNA sequences, 9-2

E
EXPLAIN, 1-7
export, 3-3

F
feat_num_features setting, 3-4
feature extraction, 1-3, 1-5, 3-4, 5-2

scoring, 1-4
testing, 1-4

FEATURE_EXPLAIN table function, 5-2, 5-4, 5-7
FEATURE_ID, 1-8
FEATURE_PREP table function, 5-2, 5-4, 5-6
FEATURE_SET, 1-9
FEATURE_VALUE, 1-9
function settings

summary of, 3-4

G
genetic codes, 9-8

I
import, 3-3
index preference, 5-1

J
Java API, 6-1

converting to, 8-1
data, 7-8
data transformations, 7-17
design overview, 7-7
interoperable with PL/SQL API, 1-2, 8-2

mining tasks, 7-10
sample applications, 7-1
setting up the development environment, 7-2
text transformation, 7-21
using, 7-1

JDBC, 7-4
JDM standard, 6-1

named objects, 7-7
Oracle extensions, 6-2, 6-3

K
k-Means, 1-3, 1-5, 2-2, 3-4, 3-8, 7-19

settings, 3-8
steps in model development, 1-5

M
matching

sequences, 9-1
MDL, 3-4

steps in model development, 1-5
mean absolute error, 4-4
Minimum Descriptor Length, 1-2, 1-5

see also MDL
mining

apply, 1-4
descriptive, 1-2
functions, 1-2, 3-3
models, 3-1
new features, 1-1
operations, 4-2
predictive, 1-2
scoring, 1-4
steps, 1-3
supervised learning, 1-2
testing, 1-3
text, 5-2, 7-2
unsupervised learning, 1-2

model details, 1-7, 7-11
Model object, 6-5
models

accessing, 3-2
building, 1-4, 1-6, 7-11
function, 3-3
importing and exporting, 3-3
in Database, 3-1
metadata, 3-2
naming, 3-2
scoring, 1-4, 7-14
settings, 3-3, 3-9, 4-5, 7-9
settings table, 1-6
testing, 1-4, 7-12

multi-record case, 2-4

N
Naive Bayes, 1-2, 3-4

settings, 3-5
steps in model development, 1-4
test metrics, 1-4

Index-3

NCBI, 9-1
nested tables, 1-5, 2-1, 2-4, 5-3, 5-8, 7-21
NMF, 2-2, 3-4, 3-7, 5-2, 6-2, 7-19

settings, 3-7
steps in model development, 1-5

Non-Negative Matrix Factorization, 1-3, 1-5
see also NMF

normalization, 1-6, 6-2, 7-19
numerical attributes, 1-5, 2-3

O
O-Cluster, 1-3, 3-4, 3-7, 6-2

settings, 3-7
steps in model development, 1-5

ODM BLAST, 9-2
One-Class SVM, 1-1, 1-2, 1-5, 2-2, 3-4, 3-7, 7-2

steps in model development, 1-4
OraBinningTransformation, 7-18
Oracle Spreadsheet Add-In for Predictive

Analytics, 1-7
Oracle Text, 2-2, 5-1
OraClippingTransformation, 7-20
OraExplainTask, 6-2, 7-16
OraNormalizeTransformation, 7-19
OraPredictTask, 6-2, 7-16
OraTextTransform, 2-2
OraTextTransformation, 7-21
outliers, 3-7
output of BLAST query, 9-5

P
persistentObject, 6-3
PhysicalDataSet, 6-3
PL/SQL API, 4-1

sample applications, 4-1, 4-2
PMML, 1-7
PREDICT, 1-7
PREDICTION, 1-8, 4-6, 4-7
PREDICTION_COST, 1-8, 4-7
PREDICTION_DETAILS, 1-8, 4-7
PREDICTION_PROBABILITY, 1-8
PREDICTION_SET, 1-8, 4-7
predictive analytics, 1-1

DATE and TIMESTAMP, 2-3
Java API, 6-1, 7-16
Oracle Spreadsheet Add-In, 1-7
PL/SQL API, 1-7

prior probabilities, 7-16
prior probabilities table, 3-4, 3-10
protein sequences, 9-3

R
records, 1-5
regression, 1-2, 1-5, 3-4

model details, 1-7
scoring, 1-4
test metrics, 6-5
testing, 1-3

RegressionTestMetrics, 7-12
root mean square error, 4-3

S
sample applications

Java, 7-1
PL/SQL, 4-1, 4-2
term extraction for text mining, 5-2

scoring, 1-4
Java API, 7-14
PL/SQL API, 4-3
SQL functions, 1-8, 4-6

sequence matching, 9-1
sequences

DNA, 9-2
protein, 9-3

settings, 3-6
settings table, 1-6, 3-3, 4-5, 7-9
single-record case, 2-4
SQL scoring functions, 2-2
supervised learning, 1-2, 1-5
Support Vector Machine, 1-2

see also SVM
SVM, 1-5, 2-2, 3-4, 3-6, 7-19
SVM Classification, 3-10

steps in model development, 1-4
test metrics, 1-4

SVM Regression, 2-2
steps in model development, 1-5
test metrics, 1-5, 4-3

SVM_CLASSIFIER index preference, 5-1, 5-4, 5-5

T
target column, 1-5, 2-2
Task object, 6-4
TBLAST_ALIGN table function, 9-25
TBLAST_MATCH table function, 9-15, 9-17
term extraction, 5-2, 5-4
test results, 4-3
testing, 1-3, 7-12

classification models, 4-3, 7-12
regression models, 4-3, 7-12

TestMetrics object, 6-5
text mining, 1-5, 2-2, 5-1

sample Java applications, 7-2
sample PL/SQL applications, 5-3

text transformation, 1-6, 2-2, 5-1, 6-2
Java, 5-2, 7-21
Java example, 7-21
PL/SQL, 5-2
PL/SQL example, 5-8

transientObject, 6-3

U
unsupervised learning, 1-2, 1-5
user views, 3-1, 4-2

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Introducing the Oracle Data Mining APIs
	New Features
	Predictive and Descriptive Data Mining
	Steps in a Data Mining Application
	Data Preparation
	Model Settings
	Model Details
	Predictive Analytics
	SQL Scoring Functions

	2 Managing Data
	Data Types
	Collection Types
	Text
	Date and Time Data

	Columns and Attributes
	Attribute Data Types
	Attribute Names

	Nested Tables
	Object Views and Multi-Record Collections
	Example: Multi-Record Collections With an Object View

	Data Storage Optimization

	3 Managing Models
	Models in the Database
	Model Names
	Model Access

	Import/Export
	Model Settings
	Costs
	Priors

	4 Using the PL/SQL API and SQL Scoring Functions
	The PL/SQL Sample Applications
	The DBMS_DATA_MINING Package
	Build Results
	Apply Results
	Test Results for Classification Models
	Test Results for Regression Models

	Example: Building a Decision Tree Model
	Mining Data
	Build Settings
	Model Creation

	Example: Using SQL Functions to Test a Decision Tree Model
	Example: Using SQL Functions to Apply a Decision Tree Model

	5 Using PL/SQL to Prepare Text Data for Mining
	Oracle Text for Oracle Data Mining
	Term Extraction in the Sample Programs
	Text Mining Programs

	From Unstructured Data to Structured Data
	Steps in the Term Extraction Process
	Transform a Text Column in the Build Table
	Transform a Text Column in the Test and Apply Tables
	Creating the Index and Index Preference
	Creating the Intermediate Terms Table
	Creating the Final Terms Table
	Populating a Nested Table Column

	Example: Transforming a Text Column

	6 Java API Overview
	The JDM 1.0 Standard
	Oracle Extensions to JDM 1.0
	Principal Objects in the ODM Java API
	PhysicalDataSet Object
	BuildSettings Object
	Task Object
	Model Object
	TestMetrics Object
	ApplySettings Object

	7 Using the Java API
	The Java Sample Applications
	Setting up Your Development Environment
	Connecting to the Data Mining Server
	Connection Factory
	Managing the DMS Connection
	Features of a DMS Connection

	API Design Overview
	Describing the Mining Data
	Build Settings
	Executing Mining Tasks
	Building a Mining Model
	Exploring Model Details
	Testing a Model
	Applying a Model for Scoring Data
	Using a Cost Matrix
	Using Prior Probabilities
	Using Automated Prediction and Explain Tasks
	Preparing the Data
	Using Binning/Discretization Transformation
	Using Normalization Transformation
	Using Clipping Transformation
	Using Text Transformation

	8 Converting to the ODM 10.2 Java API
	Comparing the 10.1 and 10.2 Java APIs
	Converting Your Applications

	9 Sequence Matching and Annotation (BLAST)
	NCBI BLAST
	Using ODM BLAST
	Using BLASTN_MATCH to Search DNA Sequences
	Using BLASTP_MATCH to Search Protein Sequences
	Using BLASTN_ALIGN to Search and Align DNA Sequences
	Output of BLAST Queries
	Using BLASTN_COMPRESS to Improve Search Performance
	Sample Data for BLAST

	Summary of BLAST Table Functions
	BLASTN_COMPRESS Table Function
	BLASTN_MATCH Table Function
	BLASTP_MATCH Table Function
	TBLAST_MATCH Table Function
	BLASTN_ALIGN Table Function
	BLASTP_ALIGN Table Function
	TBLAST_ALIGN Table Function

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	M
	N
	O
	P
	R
	S
	T
	U

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

