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Preface

This manual describes the Oracle Data Mining Application Programming Interfaces 
(APIs) and the SQL functions for Data Mining. APIs are available for PL/SQL and for 
Java. 

This manual is intended to be used along with the related reference documentation 
and sample applications. This information will enable you to develop Data Mining 
applications for business and bioinformatics applications.

The preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
This manual is intended for application developers who intend to create data mining 
applications in PL/SQL or Java.

To use the PL/SQL API and SQL scoring functions for data mining, you need a 
working knowledge of PL/SQL and Oracle SQL. To use the Java API, you need a 
working knowledge of Java. To use both interfaces, you need a working knowledge of 
application programming in an Oracle database environment and a general 
understanding of data mining concepts.

Users of the Oracle Data Mining BLAST table functions should be familiar with NCBI 
BLAST and related concepts.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at

http://www.oracle.com/accessibility/

http://www.oracle.com/accessibility/
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Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace. 

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites. 

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services 
within the United States of America 24 hours a day, seven days a week. For TTY 
support, call 800.446.2398.

Related Documentation
The documentation set for Oracle Data Mining is part of the Oracle Database 10g 
Release 2 (10.2) Online Documentation Library. The Oracle Data Mining 
documentation set consists of the following documents:

■ Oracle Data Mining Administrator's Guide

■ Oracle Data Mining Concepts 

■ Oracle Data Mining Java API Reference (javadoc)

■ Oracle Data Mining Application Developer's Guide (this document)

For detailed information about the Oracle Data Mining PL/SQL interface, see Oracle 
Database PL/SQL Packages and Types Reference.

For detailed information about the SQL functions for Oracle Data Mining, see Oracle 
Database SQL Reference.

For information about developing applications to interact with Oracle Database, see  
Oracle Database Application Developer's Guide - Fundamentals.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.
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1
Introducing the Oracle Data Mining APIs

This chapter introduces the Oracle Data Mining (ODM) Application Programming 
Interfaces (APIs). ODM supports comprehensive PL/SQL and Java APIs, SQL 
functions, and table functions that implement the Basic Local Alignment Search Tool 
(BLAST) for life sciences applications.

This chapter contains the following topics:

■ New Features

■ Predictive and Descriptive Data Mining

■ Steps in a Data Mining Application

■ Data Preparation

■ Model Settings

■ Model Details

■ Predictive Analytics

■ SQL Scoring Functions

New Features
Oracle 10g Release 2 (10.2) introduces several significant new features in the ODM 
APIs. Among these are the Decision Tree algorithm for classification and the One-Class 
SVM algorithm for anomaly detection. New predictive analytics, which automate the 
process of predictive data mining, and new built-in scoring functions, which return 

See Also:

■ Oracle Database PL/SQL Packages and Types Reference (DBMS_DATA_
MINING, DBMS_DATA_MINING_TRANSFORM, and DBMS_
PREDICTIVE_ANALYTICS) for PL/SQL API syntax.

■ Oracle Data Mining Java API Reference (javadoc) for Java API 
syntax.

■ Oracle Database SQL Reference for syntax of the built-in functions 
for data mining.

■ Oracle Data Mining Concepts for detailed information about Oracle 
Data Mining concepts and features.

■ Oracle Data Mining Administrator's Guide for information about 
installation, database administration, and the sample data mining 
programs.
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mining results within the context of a standard SQL statement, are also new in Oracle 
10.2.

Oracle 10.2 introduces a completely new Java API for data mining. The Java API is an 
Oracle implementation of the Java Data Mining (JDM) 1.0 standard. It replaces the 
proprietary Java API that was available in Oracle 10g. 

The Java API is layered on the PL/SQL API, and the two APIs are fully interoperable. 
For example, you can run a SQL script to create a model and then test and apply the 
model from a Java application.

Predictive and Descriptive Data Mining
ODM supports both predictive and descriptive mining functions. Predictive functions, 
known as supervised learning, use training data to predict a target value. Descriptive 
functions, known as unsupervised learning, identify relationships intrinsic to the data. 
Each mining function identifies a class of problems to be solved, and each can be 
implemented with one or more algorithms. 

The predictive data mining functions are described in Table 1–1. The algorithm 
abbreviations introduced in the table are used throughout this manual.

Note: Model interoperability is new in Oracle 10.2. In Oracle 10g, the 
Java API was incompatible with the PL/SQL API.

See Chapter 8 for information on migrating ODM 10g Java 
applications to the new API.

See Also: Oracle Data Mining Concepts and Oracle Database New 
Features for a complete list of new features in Oracle 10g Release 2 
(10.2) Data Mining.

Table 1–1 Predictive Data Mining Functions

Function Description Sample Problem Algorithms

Classification A classification model 
uses historical data to 
predict new discrete or 
categorical data

Given demographic data 
about a set of customers, 
predict customer response to 
an affinity card program.

Naive Bayes (NB)
Adaptive Bayes Network ABN)
Support Vector Machine (SVM)
Decision Tree (DT)

Anomaly 
Detection

An anomaly detection 
model predicts whether a 
data point is typical for a 
given distribution.

The PL/SQL and Java 
APIs currently support 
anomaly detection 
through the Classification 
function.

Given demographic data 
about a set of customers, 
identify customer 
purchasing behavior that is 
significantly different from 
the norm.

One-Class Support Vector 
Machine (SVM)

The PL/SQL and Java APIs 
currently support One-Class SVM 
using the classification mining 
function and the SVM algorithm 
with no target.

Regression A regression model uses 
historical data to predict 
new continuous, 
numerical data

Given demographic and 
purchasing data about a set 
of customers, predict 
customer’s age.

Support Vector Machine (SVM)

Attribute 
Importance

An attribute importance 
model identifies the 
relative importance of an 
attribute in predicting a 
given outcome.

Given customer response to 
an affinity card program, 
find the importance of 
independent attributes.

Minimal Descriptor Length (MDL)
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The descriptive data mining functions are described in Table 1–2.

Steps in a Data Mining Application
The first step in designing a data mining application is to analyze the business 
problem and determine the mining function and algorithm that best addresses it. The 
second step is to examine the data and determine how it should be prepared for 
mining.

Once you have identified the mining function and algorithm, and implemented the 
data transformations, you can develop a sample data mining application. A degree of 
intuition is involved in making these application choices. You might develop, test, and 
deploy your sample application and then determine that the results aren’t quite what 
you are looking for. In this case, you might try different or additional data 
transformations, or you might try a different or additional algorithm. 

In any case, the process of developing a data mining application is iterative. It involves 
testing the model, evaluating test metrics, making adjustments in the model, and 
re-evaluating.

Although it is common to try different approaches to solving a data mining problem, 
each application must accomplish several basic tasks.

1. Prepare the data. One data set is needed for building the model; additional data 
sets may be necessary for testing and scoring the model, depending on the 
algorithm. In most cases, the data must be prepared with transformations that 
enhance or facilitate the effectiveness of the model. Each data set must be prepared 
in the same way.

2. Create a model using the build data.

3. Evaluate the model. 

■ For classification and regression models, this is the application of the model to 
a set of test data, and the computation of various test metrics.

■ For clustering models, this is the examination of the clusters identified during 
model creation. 

Table 1–2 Descriptive Data Mining Functions

Function Description Sample Problem Algorithms

Clustering A clustering model 
identifies natural groupings 
within a data set.

Segment demographic data 
into 10 clusters and study the 
individual clusters. Rank the 
clusters on probability.

Enhanced k-means (KM)
Orthogonal Clustering (O-Cluster or 
OC)

Association 
Rules

An association model 
identifies relationships and 
the probability of their 
occurrence within a data 
set.

Find the association between 
items bought by customers.

Apriori (AP)

Feature 
Extraction

A feature extraction model 
creates an optimized data 
set on which to base a 
model.

Given demographic data about 
a set of customers, extract 
significant features from the 
given data set.

Non-Negative Matrix Factorization 
(NMF)

See Also: Oracle Data Mining Concepts for information to help you 
approach a given data mining problem.



Steps in a Data Mining Application

1-4 Oracle Data Mining Application Developer’s Guide

■ For feature extraction models, this is the examination of the features identified 
during model creation.

■ For attribute importance and association models, evaluation is the final step in 
the mining process. These models cannot be scored against new data.

4. Apply (score) the model. This is the process of deploying the model to the data of 
interest.

■ For classification and regression models, scoring is the application of the 
"trained" model to the actual population. The result is the best prediction for a 
target value in each record. 

■ For clustering models, scoring is the application of clusters identified by the 
model to the actual population. The result is the probability of cluster 
membership for each record.

■ For feature extraction models, scoring is the mapping of features defined by 
the model to the actual population. The result is a reduced set of predictors in 
each record.

The basic mining steps for each algorithm are summarized in Table 1–3. Some steps, 
such as priors and costs and specific test metrics, are optional. The individual steps are 
described in later sections of this manual.

Table 1–3 Major Steps in a Data Mining Application

Function/Algorithm Build Evaluate Apply

Classification with 
NB or ABN

■ Prepare build data

■ Specify priors

■ Specify target

■ Create model based on 
build data

■ Prepare test data

■ Apply model to test data

■ Specify costs

■ Compute test metrics 
(confusion matrix, lift, 
accuracy, ROC)

■ Prepare scoring data

■ Apply model to 
scoring data

■ Specify costs

Classification with DT ■ Prepare build data

■ Specify costs

■ Specify target

■ Create model based on 
build data

■ Prepare test data

■ Apply model to test data

■ Specify costs

■ Compute test metrics 
(confusion matrix, lift, 
accuracy, ROC)

■ Prepare scoring data

■ Apply model to 
scoring data

■ Specify costs

Classification with 
SVM

■ Prepare build data

■ Specify weights

■ Specify target

■ Create model based on 
build data

■ Prepare test data

■ Apply model to test data

■ Specify costs

■ Compute test metrics 
(confusion matrix, lift, 
accuracy, ROC)

■ Prepare scoring data

■ Apply model to 
scoring data

■ Specify costs

Classification 
(anomaly detection) 
with One-Class SVM

■ Prepare build data

■ Specify NULL target

■ Create model based on 
build data

■ Prepare scoring data

■ Apply model to build 
data or to scoring data
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Data Preparation
Data sets used by Oracle Data Mining are stored in tables, which can be accessed 
through relational views. The rows are referred to as cases or records. A case ID 
column specifies a unique identifier for each case, for example the customer ID in a 
table of customer data. 

Columns referred to as attributes or fields specify a set of predictors. Supervised 
models (with the exception of One-Class SVM) also use a target column. For example, 
a regression model might predict customer income level (the target), given customer 
date of birth and gender (the predictors). Unsupervised models use a set of predictors 
but no target. 

ODM distinguishes between two types of attributes: categorical or numerical. 
Categorical attributes are a set of values that belong to a given category or class, for 
example marital status or job title. Numerical attributes are values in a continuum, for 
example income or age. 

Column attributes can have a scalar data type or they can contain nested tables 
(collection types) of type DM_NESTED_NUMERICALS or DM_NESTED_CATEGORICALS. 
Some ODM algorithms support text columns. Text must be indexed and converted to 
one of the collection types prior to data mining (See Chapter 5).

Regression with SVM ■ Prepare build data

■ Specify target

■ Create model based on 
build data

■ Prepare test data

■ Apply model to test data

■ Compute test metrics 
(Root Mean Square 
Error, , Mean Absolute 
Error, Residuals)

■ Prepare scoring data

■ Apply model to 
scoring data

Attribute Importance 
with MDL

■ Prepare build data

■ Specify target

■ Create model based on 
build data

Retrieve model details, 
consisting of a list of 
attributes with their 
importance ranking.

Clustering with KM ■ Prepare build data

■ Create model based on 
build data

Retrieve model details to 
obtain information about 
clusters in the data.

■ Prepare scoring data

■ Apply model to 
scoring data

Clustering with OC ■ Prepare build data

■ Specify the number of 
clusters

■ Create model based on 
build data

Retrieve model details, 
consisting of information 
about clusters in the data.

■ Prepare scoring data

■ Apply model to 
scoring data

Association Rules 
with AP

■ Prepare build data

■ Create model based on 
build data

Retrieve frequent item sets, 
and rules that define the item 
sets.

Feature Extraction 
with NMF

■ Prepare build data

■ Create model based on 
build data

Retrieve model details, 
consisting of a list of features 
with their importance 
ranking.

■ Prepare scoring data

■ Apply model to 
scoring data

See Also: Chapter 2, "Managing Data" for more information.

Table 1–3 (Cont.) Major Steps in a Data Mining Application

Function/Algorithm Build Evaluate Apply
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In most cases, data sets must be specifically prepared before building, testing, or 
applying a model. Preparation includes transformations that improve model accuracy 
and performance. Common data transformations are:

■ Binning — grouping related values together to reduce the number of distinct 
values for an attribute. 

■ Normalization — converting individual attribute values so that they fall within a 
range, typically 0.0 – 1.0 or -1 – +1. 

■ Clipping — setting extreme attribute values to a single value (winsorizing) or 
causing extreme values to be ignored by the model (trimming).

■ Text transformation — converting text attributes to nested tables.

In addition to these data transformation techniques, you can improve the efficiency of 
a model by reducing the number of attributes in large data sets. You can create an 
Attribute Importance model to identify critical attributes or a Non-Negative Matrix 
Factorization model to combine similar attributes into a single feature. You can then 
build a model that uses only these attributes or features. 

If you are using SQL to prepare your data, you can use DBMS_DATA_MINING_
TRANSFORM, an open-source package that provides a set of typical data transformation 
routines. You can use these routines or adapt them, or you can use some other 
SQL-based mechanism for preparing your data.

See "Preparing the Data" on page 7-17 for information on data transformations in the 
Java API.

Model Settings
When you create a new model, you specify its function. Each function has a default 
algorithm, and each algorithm has certain default behaviors. To specify any  
characteristics, you must create a settings table for the model. 

Create the settings table in the schema of the model owner. The settings table must 
have these columns.

If you are using the PL/SQL API, specify the name of the settings table as a parameter 
to the DBMS_DATA_MINING.CREATE_MODEL procedure. See "Build Settings" on 
page 7-9 for information on model settings in the Java API.

Note: Any transformations performed on the build data must also be 
performed on the test and scoring data. At each stage of the mining 
process, the data sets must be identical in structure.

See Also: Oracle Data Mining Concepts for an overview of data 
transformations

Column Name Data Type

setting_name VARCHAR2(30)

setting_value VARCHAR2(128)

See Also: "Model Settings" on page 3-3 for descriptions of the 
settings and their values.
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Model Details
Model details refer to tabular information that can be generated dynamically after a 
model has been created in the database. Model details provide a complete description 
of the model. The kind of information provided by model details depends on the 
algorithm used by the model. 

Details of classification and regression models provide extensive statistics that you can 
capture and examine before testing and scoring the model. 

Details of a Decision Tree model are the XML representation of the model in standard 
PMML format, enabling any application that supports this standard to import the 
model.

Details of clustering models describe groups of cases that share certain characteristics.

Details of Attribute Importance models and Association models essentially provide 
the results of the model. For example, the details of an Attribute Importance model are 
a set of attributes with their importance value and rank. Details of an Association 
model consist of associated items (item sets) and the rules that define each association.

Model details can be retrieved using the PL/SQL table functions GET_MODEL_
DETAILS_x, where x refers to the algorithm used by the model. See "Exploring Model 
Details" on page 7-11 for information about model details in the Java API.

Predictive Analytics
The DBMS_PREDICTIVE_ANALYTICS PL/SQL package provides a high-level 
interface to data mining. It provides much of the power of predictive data mining, 
while masking its underlying complexity. 

DBMS_PREDICTIVE_ANALYTICS automates the process of predictive data mining, 
from data preparation to model building to scoring new data. In addition to 
generating predictions, Predictive Analytics can explain the relative influence of 
specific attributes on the prediction. 

DBMS_PREDICTIVE_ANALYTICS provides a PREDICT routine and an EXPLAIN 
routine.

When using Predictive Analytics, you do not need to prepare the data. Both the 
PREDICT and EXPLAIN routines analyze the data and automatically perform 
transformations to optimize the model.

See "Using Automated Prediction and Explain Tasks" on page 7-16 for information on 
Predictive Analytics in the Java API.

Predictive Analytics are also available in the Oracle Spreadsheet Add-In for Predictive 
Analytics.

Predictive Analytics 
Routine Description

PREDICT Predicts the values in a target column, based on the cases where 
the target is not null. PREDICT uses known data values to 
automatically create a model and populate the unknown values in 
the target.

EXPLAIN Identifies attribute columns that are important for explaining the 
variation of values in a given column. EXPLAIN analyzes the data 
and builds a model that identifies the important attributes and 
ranks their importance
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SQL Scoring Functions
The built-in SQL functions for Data Mining implement scoring operations for models 
that have already been created in the database. They provide the following benefits:

■ Models can be easily deployed within the context of existing SQL applications.

■ Scoring performance is greatly improved, especially in single row scoring cases, 
since these functions take advantage of existing query execution functionality.

■ Scoring results are pipelined, enabling some of the results to be returned quickly 
to the user.

When applied to a given row of scoring data, classification and regression models 
provide the best predicted value for the target and the associated probability of that 
value occurring. The predictive functions for Data Mining are described in Table 1–4.

Applying a cluster model to a given row of scoring data returns the cluster ID and the 
probability of that row’s membership in the cluster. The clustering functions for data 
mining are described in Table 1–5.

Applying a feature extraction model involves the mapping of features (sets of 
attributes) to columns in the scoring dataset. The feature extraction functions for data 
mining are described in Table 1–6.

Note: SQL functions are built into the Oracle Database and are 
available for use within SQL statements. SQL functions should not be 
confused with functions defined in PL/SQL packages.

Table 1–4 SQL Scoring Functions for Classification and Regression Models

Function Description

PREDICTION Returns the best prediction for the target.

PREDICTION_COST Returns a measure of the cost of false negatives and false 
positives on the predicted target.

PREDICTION_DETAILS Returns an XML string containing details that help explain 
the scored row.

PREDICTION_PROBABILITY Returns the probability of a given prediction

PREDICTION_SET Returns a list of objects containing all classes in a binary or 
multi-class classification model along with the associated 
probability (and cost, if applicable).

Table 1–5 SQL Scoring Functions for Clustering Models

Function Description

CLUSTER_ID Returns the ID of the predicted cluster.

CLUSTER_PROBABILITY Returns the probability of a case belonging to a given cluster.

CLUSTER_SET Returns a list of all possible clusters to which a given case 
belongs along with the associated probability of inclusion.

Table 1–6 SQL Scoring Functions for Feature Extraction Models

Function Description

FEATURE_ID Returns the ID of the feature with the highest coefficient value.
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FEATURE_SET Returns a list of objects containing all possible features along 
with the associated coefficients.

FEATURE_VALUE Returns the value of a given feature.

See Also: Oracle Database SQL Reference for information on the data 
mining scoring functions.

Table 1–6 (Cont.) SQL Scoring Functions for Feature Extraction Models

Function Description
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2
Managing Data

This chapter describes data requirements and options for Oracle Data Mining. This 
information applies to data sets used to build, test, and score models. 

You should ensure that a data set is properly defined before applying transformations 
to optimize it for a particular model. Data transformation techniques are not addressed 
in this chapter.

This chapter contains the following topics:

■ Data Types

■ Columns and Attributes

■ Nested Tables

■ Data Storage Optimization

Data Types
The input to ODM is a table or a view. The columns can have numeric or character 
data types: NUMBER, FLOAT, VARCHAR2, or CHAR. 

Collection Types
Additionally, ODM supports columns of type DM_NESTED_CATEGORICALS and DM_
NESTED_NUMERICALS. These are collection types that define nested tables.

The ODM collection types define tables of attribute name/value pairs. ODM data sets 
can include any number of these nested table columns in addition to scalar columns 
with built-in numeric or character data types. See "Nested Tables" on page 2-4 for more 
information.

See Also:

■ Oracle Data Mining Concepts for information about data 
transformations.

■ DBMS_DATA_MINING_TRANSFORM in Oracle Database PL/SQL 
Packages and Types Reference for information about data 
transformations in PL/SQL.

■ "Preparing the Data" on page 7-17 for information about data 
transformations in Java.

■ Oracle Database SQL Reference for information about Oracle schema 
objects and data types.
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Text
ODM uses features of Oracle Text to transform unstructured text columns to 
structured columns of type DM_NESTED_NUMERICALS for mining. The ODM Java API 
provides the OraTextTransform interface to manage the text transformation process 
for you. However, if you are using the PL/SQL API, you must use Oracle Text routines 
directly (See Chapter 5). 

Structured text columns are supported by several ODM algorithms (Support Vector 
Machine for classification and regression, Non-Negative Matrix Factorization, 
Association, and k-Means clustering).

Date and Time Data
ODM Predictive Analytics supports columns with DATE and TIMESTAMP data types. 
These types are not supported by the ODM PL/SQL and Java APIs. 

Columns and Attributes
ODM interprets the columns of the input table as attributes for data mining. 
Attributes are the predictors or descriptors on which the model is based. 

A model may additionally identify a case ID column, a target column, or both.

■ Case ID

A case ID column holds a unique identifier for each record (row) of data. The case 
ID must be specified at model build time for all algorithms except Decision Tree. If 
a case ID is present in a Decision Tree model, it is not considered a possible 
predictor. 

In the PL/SQL API and Java APIs, the case ID must be specified at apply time for 
all algorithms. The SQL scoring functions do not use a case ID. 

The case ID column can be of type VARCHAR2, CHAR, or NUMBER, and its 
maximum length is 128 bytes.

■ Target

Predictive algorithms (Classification, Regression, and Attribute Importance) 
require that one column be designated as a target. The name of the target column 
is supplied as an argument when the model is created. The target column holds 
the predictions generated by the model. The target column must be of type 
VARCHAR2, CHAR, NUMBER, or FLOAT. SVM Regression supports only numeric 
targets. One-Class SVM does not use a target.

Attribute Data Types
ODM interprets attributes as either categorical or numerical.

See Also:

■ "Using Text Transformation" on page 7-21 for information on text 
transformation in the Java API

■ Oracle Data Mining Administrator's Guide for information on 
sample programs that illustrate text transformation and text 
mining 
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Categorical attributes are values, such as gender or job title, that belong to a category 
or domain. Values of a categorical attribute do not have a meaningful order. 
Categorical attributes have character data types.

Numerical attributes are values, such as age or income, that fall within a continuum. 
Numerical attributes represent interval data that has a measurable order. Numerical 
attributes have numeric data types.

Converting Column Data Types
If the column data type is incompatible with the attribute type, you must convert the 
data type. For example, an application might use postal codes as a categorical 
attribute, but the data is actually stored in a numeric column. In this case, you would 
use the TO_CHAR function to convert the column to a character data type.

If your mining data includes DATE and TIMESTAMP columns, and you are not using 
Predictive Analytics, you must convert those columns to numeric or character data 
types. In most cases, these data types should be converted to NUMBER, but you should 
evaluate each case individually. If, for example, the date serves as a timestamp 
indicating when a transaction occurred, converting the date to VARCHAR2 makes it 
categorical with unique values, one in each record. This kind of column is known as an 
identifier and is not useful in model building. However, if the date values are coarse 
and significantly fewer than the number of records (for example, they might indicate 
the week or month when an item was purchased), it may be useful to use character 
values. 

You can convert dates to numbers by selecting a starting date and subtracting it from 
each date value. This process results in a NUMBER column. Another approach would be 
to parse the date and distribute its components over several columns. This is the 
conversion method used by Predictive Analytics.

DATE and TIMESTAMP Columns with Predictive Analytics
Predictive Analytics interprets DATE data and all forms of TIMESTAMP data, including 
TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH LOCAL TIMEZONE, as a set of 
numerical attributes. For example, a column named TIMECOL would be transformed 
into attributes for year, month, week, day of year, day of month, day of week, hour, 
and minute. Each attribute would be named TIMECOL_x, where x is the suffix used 
to convert the date into a number. For example, the name of the year attribute would 
be TIMECOL_YYYY.

The attributes resulting from DATE and TIMESTAMP data are visible in the results of an 
EXPLAIN operation. They are not visible in the results of a PREDICT operation.

Attribute Names
The names of ODM attributes must be valid column names. Naming requirements for 
columns are the same as the naming requirements for Oracle schema objects. 

Schema object names can be quoted or nonquoted identifiers from one to thirty bytes 
long. Nonquoted identifiers are not case sensitive; Oracle converts them to uppercase. 
Nonquoted identifiers can consist of alphanumeric characters and the underscore (_), 
dollar sign ($), and pound sign (#). The initial character must be alphabetic. Quoted 
identifiers are case sensitive and can contain most characters.

See Also: Oracle Database SQL Reference for information on schema 
object naming requirements.
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Nested Tables
ODM accepts data in single-record case format, where all the information (attributes) 
concerning an individual is contained in one row. Single-record case, also known as 
non-transactional format, is illustrated in the table in Example 2–1. This table contains 
descriptive information about customers. CUSTOMER_ID is the case ID column.

Example 2–1 Non-Transactional Format

CUSTOMER_ID      GENDER      AGE     MARITAL_STATUS
------------     ------      ---     --------------
1                Male        30       Married
2                Female      35       Single
3                Male        21       Single
4                Female      20       Single
5                Female      35       Married

Sometimes data is organized in multi-record case, also known as transactional, format. 
A typical example is market basket data. In transactional format, the data pertaining to 
an individual is distributed across multiple records. The table in Example 2–2 
illustrates transactional format. This table contains information about products 
purchased by a group of customers on a given day. CUSTOMER_ID is the case ID 
column. 

Example 2–2 Transactional Format

CUST_ID    PROD_ID  PROD_NAME 
--------   -------  --------- 
1          524      brand x icecream
1          530      brand y frozen dinners
1          109      brand z dog food     
2          578      brand a orange juice 
2          191      brand x frozen dinners

ODM does not support multi-record case format. However, there could be 
circumstances in which you want to construct a model using transactional data. For 
example, you might want to use transactional data like that in Example 2–2 to predict 
the products that each customer is likely to buy on his next visit to the store. Discount 
coupons for these or similar products could then be generated with the checkout 
receipt. 

If you want to construct a model using transactional data, you must first convert the 
data to single-record case. You must do this by defining columns of nested tables using 
the ODM fixed collection types, DM_NESTED_NUMERICALS and DM_NESTED_
CATEGORICALS. These types define collections of numerical attributes and categorical 
attributes respectively. The data type descriptions are shown as follows.

SQL> describe dm_nested_numerical
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ATTRIBUTE_NAME                                     VARCHAR2(30)
 VALUE                                              NUMBER
 
SQL> describe dm_nested_numericals
 DM_NESTED_NUMERICALS TABLE OF DMSYS.DM_NESTED_NUMERICAL
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ATTRIBUTE_NAME                                     VARCHAR2(30)
 VALUE                                              NUMBER
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SQL> describe dm_nested_categorical
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ATTRIBUTE_NAME                                     VARCHAR2(30)
 VALUE                                              VARCHAR2(4000)
 
SQL> describe dm_nested_categoricals
 DM_NESTED_CATEGORICALS TABLE OF DMSYS.DM_NESTED_CATEGORICAL
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ATTRIBUTE_NAME                                     VARCHAR2(30)
 VALUE                                              VARCHAR2(4000)

For a given case identifier, attribute names must be unique across all the collections 
and individual columns. The fixed collection types enforce this requirement. However, 
the attribute naming requirements, described in "Attribute Names" on page 2-3, do not 
apply to the attribute_name column of a nested table.

The attributes in Example 2–2 could be stored in nested table columns, as illustrated in 
Example 2–3. The column PRODUCT_IDENTIFIERS is of type DM_NESTED_
NUMERICALS, and the column PRODUCT_NAMES is of type DM_NESTED_
CATEGORICALS.

Example 2–3 Nested Tables

Object Views and Multi-Record Collections
You can create an object view that presents several sources of transactional data 
(implemented with nested table columns) as a single data set for data mining. See 
"Example: Multi-Record Collections With an Object View" on page 2-6.

Apart from the benefit of providing all your mining attributes through a single 
row-source without impacting their physical data storage, the view acts as a join 
specification on the underlying tables that can be used by the server for efficiently 
accessing your data.

CUST_ID PRODUCT_IDENTIFIERS PRODUCT_NAMES

attribute_name   value attribute_name   value

1 PROD_ID              524

PROD_ID              530

PROD_ID              109

PROD_NAME         brand x ice cream

PROD_NAME         brand y frozen dinners

PROD_NAME         brand z dog food

2 PROD_ID              578

PROD_ID              191

PROD_NAME         brand a orange juice

PROD_NAME         brand x frozen dinners
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Example: Multi-Record Collections With an Object View
A real-world example of an analytical pipeline for brain tumor research illustrates 
multi-case collections with an object view. The underlying tables store gene expression 
data and clinical data about the patient. 

The fact table, GENE_EXPRESSION_DATA, stores gene expression data. It has the 
following columns.

case_ID      NUMBER
gene         VARCHAR2(30)
expr         NUMBER

The dimension table, CLINICAL_DATA_TABLE, stores clinical patient data. It has the 
following columns. 

case_ID      NUMBER
name         VARCHAR2(30)
type         VARCHAR2(30)
subtype      VARCHAR2(30)
gender       CHAR(1)
age          NUMBER
status       VARCHAR2(30)

In this example, we want to create a model that predicts status based on gender, age, 
and gene expression. The build data for the model is an object view that uses columns 
of clinical patient data and a nested column of gene expression data. The view will 
have the following columns.

case_id  NUMBER
gender CHAR(1)
age NUMBER
gene_expr DM_NESTED_NUMERICALS
status VARCHAR2(30)

The following statement constructs the object view gene_expr_build, which can be 
used as build data for the model.

CREATE OR REPLACE VIEW gene_expr_build AS
SELECT C.case_id,

C.gender,
C.age,
CAST(MULTISET(
SELECT gene, expr
  FROM gene_expression_data
 WHERE case_id = C.case_id) AS DM_NESTED_NUMERICALS
) gene_expr,

Note: Oracle recommends that you perform any necessary data 
transformations on the base tables before building object views. In this 
way, all attributes are transformed in a similar way. In most cases, 
attributes in transactional format are of the same scale, and thus this 
approach works. Otherwise, you can split the data into sets of similar 
items and then transform them separately.

See DBMS_DATA_MINING_TRANSFORM in Oracle Database PL/SQL 
Packages and Types Reference for information about data 
transformations using PL/SQL. See "Preparing the Data" on page 7-17 
for information about data transformations using Java.
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C.status
 FROM clinical_data_table C

Data Storage Optimization
If there are a few hundred mining attributes and your application requires the 
attributes to be represented as columns in the same row of the table, data storage must 
be carefully designed. 

For a table with several columns, the key question to consider is the (average) row 
length, not the number of columns. Having more than 255 columns in a table built 
with a smaller block size typically results in intrablock chaining. 

Oracle stores multiple row pieces in the same block, but the overhead to maintain the 
column information is minimal as long as all row pieces fit in a single data block. If the 
rows don't fit in a single data block, you may consider using a larger database block 
size (or use multiple block sizes in the same database). 

See Also: Oracle Database Performance Tuning Guide for more details.
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Managing Models

Models created by ODM APIs or by Oracle Data Miner are stored in the Database. This 
chapter provides information about viewing, accessing, configuring, exporting and 
importing models. 

This chapter contains the following topics:

■ Models in the Database

■ Import/Export

■ Model Settings

Models in the Database
A model is identified by its name. Like tables in the database, a model has storage 
associated with it. But unlike a table, the form, shape, and content of this storage is 
opaque to the user. A model is not a database schema object.

You can view the contents of a model — that is, the patterns and rules that constitute a 
mining model — using algorithm-specific GET_MODEL_DETAILS functions in the 
DBMS_DATA_MINING PL/SQL package. These functions are documented in Oracle 
Database PL/SQL Packages and Types Reference. See "Exploring Model Details" on 
page 7-11 for information on model details in the Java API.

You can view a list of the models in your schema by querying the DM_USER_MODELS 
view. The columns of the DM_USER_MODELS view are described in Table 3–1. 

Table 3–1 DM_USER_MODELS View

Column Data Type Description

name VARCHAR2(25) Name of the model.

function_name VARCHAR2(30) The model function. See Chapter 1 for an overview of mining 
functions.

algorithm_name VARCHAR2(30) The algorithm used by the model. See Chapter 1 for algorithms 
used by the mining functions.

ctime_creation_date DATE The date on which the model was created.

build_duration NUMBER The duration of the model build process.

target_attribute VARCHAR2(30) The attribute designated as the target of a classification model.

model_size NUMBER The size of the model in megabytes.
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The following query lists the demo programs in the DM_USER schema.

SQL> select ’NAME’, ’FUNCTION_NAME’, ’ALGORITHM_NAME’ from DM_USER_MODELS;

NAME                  FUNCTION_NAME         ALGORITHM_NAME          
--------------------------------------------------------------------
ABN_SH_CLAS_SAMPLE    CLASSIFICATION        ADAPTIVE_BAYES_NETWORK  
AI_SH_SAMPLE          ATTRIBUTE_IMPORTANCE  MINIMUM_DESCRIPTION_LENGTH
AR_SH_SAMPLE          ASSOCIATION_RULES     APRIORI_ASSOCIATION_RULES 
DT_SH_CLAS_SAMPLE     CLASSIFICATION        DECISION_TREE             
KM_SH_CLUS_SAMPLE     CLUSTERING            KMEANS                    
NB_SH_CLAS_SAMPLE     CLASSIFICATION        NAIVE_BAYES               
NMF_SH_SAMPLE         FEATURE_EXTRACTION    NONNEGATIVE_MATRIX_FACTOR  
OC_SH_CLUS_SAMPLE     CLUSTERING            O_CLUSTER    
SVMC_SH_CLAS_SAMPLE   CLASSIFICATION        SUPPORT_VECTOR_MACHINES    
SVMO_SH_CLAS_SAMPLE   CLASSIFICATION        SUPPORT_VECTOR_MACHINES  
SVMR_SH_REGR_SAMPLE   REGRESSION            SUPPORT_VECTOR_MACHINES    
T_SVM_CLAS_SAMPLE     CLASSIFICATION        SUPPORT_VECTOR_MACHINES    

Model Names
Although ODM models are not stored as Oracle schema objects, their names must 
conform to Database requirements for nonquoted identifiers. Additionally, model 
names must be less than 25 bytes long.

Oracle requires that nonquoted identifiers contain only alphanumeric characters, the 
underscore (_), dollar sign ($), and pound sign (#); the initial character must be 
alphabetic. Oracle strongly discourages the use of the dollar sign and pound sign in 
nonquoted literals.

Model Access
Oracle Data Mining does not support a general privilege model that spans multiple 
users. GRANT and REVOKE of read and update privileges on a mining model across 
user schemas are not yet supported. 

You can only read and update models in your own schema. If you want to modify the 
settings of a model or view its details, you must be logged in with the identity of the 
schema that owns the model. Results of all mining operations are generated in the 
schema that owns the model.

Models in one schema can be exported to other schemas. You can import a model into 
your own schema once it has been exported to an accessible location.

Note: Metadata about models is stored in system tables whose 
names have the prefix DM$ or DM. You should not attempt to query or 
modify these system tables, and you should not use DM$ or DM_ 
prefixes in the names of any tables used by ODM applications.

See Also: Oracle Data Mining Administrator's Guide for information 
about installing, running, and viewing the demo programs.

See Also: Oracle Database SQL Reference for information on schema 
object naming requirements.
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Import/Export
Mining models are included when a database or schema is exported or imported with 
the Oracle Data Pump utility. You can export and import individual models or groups 
of models using the ODM SQL and Java APIs. 

You can use the EXPORT_MODEL procedure in the DBMS_DATA_MINING package to 
export a model or a group of models to a dump file. Models can be imported from the 
dump file using IMPORT_MODEL.

The Java API uses the ExportTask and ImportTask standard JDM interfaces to 
provide the same export/import functionality.

Model Settings
A settings table is a relational table that provides configuration information for a 
specific model. You must create a settings table if you want a model to have any 
nondefault characteristics. You will supply the name of the settings table when you 
create the model.

You must create the settings table in the schema of the model. You can choose the 
name of the settings table, but the column names and their types must be defined as 
shown.

The values inserted into the setting_name column are one or more of several 
constants defined in the DBMS_DATA_MINING package. Depending on what the 
setting name denotes, the value for the setting_value column can be a predefined 
constant or the actual numerical value corresponding to the setting itself. The 
setting_value column is defined to be VARCHAR2. You can explicitly cast 
numerical inputs to string using the TO_CHAR() function, or you can rely on the 
implicit type conversion provided by the Database.

The settings described in Table 3–2 apply to a mining function. Use these settings to 
specify the algorithm that the model will use, the location of cost matrix and prior 
probabilities tables, and other function-specific characteristics. See Table 1–1, 
" Predictive Data Mining Functions" and Table 1–2, " Descriptive Data Mining 
Functions" for information about mining functions.

See Also:

■ Oracle Data Mining Administrator's Guide for more information on 
model export/import.

■ Oracle Database Utilities for information on Oracle Data Pump.

Column Name Data Type

setting_name VARCHAR2(30)

setting_value VARCHAR2(128)
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Table 3–2 Data Mining Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)

algo_name Classification: One of:

■ algo_naive_bayes (Default)

■ algo_support_vector_machines

(Use this setting for both SVM and One-Class SVM

■ algo_adaptive_bayes_network

■ algo_decision_tree

Regression:

■ algo_support_vector_machines

Association Rules:

■ algo_apriori_association_rules

Clustering:

■ algo_kmeans (Default)

■ algo_o_cluster

Feature Extraction:

■ algo_nonnegative_matrix_factor

Attribute Importance:

■ algo_ai_mdl

clas_cost_table_name The name of a relational table that specifies a cost matrix. The 
column requirements for this table are described in "Costs" on 
page 3-9.

This input is applicable only for Decision Tree algorithms, since 
this is the only algorithm that supports a cost matrix at build 
time. The cost matrix table must be present in the current user's 
schema.

clas_priors_table_name The name of a relational table that specifies prior probabilities. 
The column requirements for this table are described in "Priors" 
on page 3-10.

This input is applicable only for classification algorithms. 
Decision Tree is the only classification algorithm that does not 
use priors. The prior probabilities table must be present in the 
current user's schema.

For SVM classification, this setting identifies a table of weights.

clus_num_clusters TO_CHAR(numeric_expr >= 1)

Number of clusters generated by a clustering algorithm.

Default is 10.

feat_num_features TO_CHAR(numeric_expr  > = 1)

Number of features to be extracted.

Default value estimated from the data by the algorithm.

asso_max_rule_length TO_CHAR(2 <= numeric_expr <= 20)

Maximum rule length for AR algorithm.

Default is 4. 

asso_min_confidence TO_CHAR(0 <= numeric_expr <= 1)

Minimum confidence value for AR algorithm

Default is 0.1.
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Table 3–3 through Table 3–9 provide algorithm-specific settings. You can use these 
settings to tune the behavior of the algorithm.

asso_min_support TO_CHAR(0 <= numeric_expr <= 1)

Minimum support value for AR algorithm

Default is 0.1.

Table 3–3 Algorithm Settings for Adaptive Bayes Network

Setting Name Setting Value (with Permissible Value Ranges)

abns_model_type Model type for Adaptive Bayes Network:

■ abns_single_feature

■ abns_multi_feature (Default)

■ abns_naive_bayes)

abns_max_build_
minutes

TO_CHAR(numeric_expr >= 0)

The maximum time threshold for completion of model build.

Default is 0, which implies no time limit.

abns_max_nb_
predictors

TO_CHAR(numeric_expr > 0)

Maximum number of predictors, measured by their MDL ranking, 
to be considered for building an ABN model of type abns_
naive_bayes. 

Default is 10.

abns_max_predictors TO_CHAR(numeric_expr > 0)

Maximum number of predictors, measured by their MDL ranking, 
to be considered for building an ABN model of type abns_
single_feature or abns_multi_feature.

Default is 25.

Table 3–4 Algorithm Settings for Naive Bayes

Setting Name Setting Value (with Permissible Value Ranges)

nabs_singleton_threshold TO_CHAR(0 <= numeric_expr <=1)

Value of singleton threshold for NB algorithm

Default value is 0.01

nabs_pairwise_threshold TO_CHAR(0 <= numeric_expr <=1)

Value of pairwise threshold for NB algorithm

Default is 0.01.

Table 3–2 (Cont.) Data Mining Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)
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Table 3–5 Algorithm Settings for Decision Tree

Setting Name Setting Value (with Permissible Value Ranges)

tree_impurity_metric Tree impurity metric for Decision Tree. Tree algorithms seek 
the best test question for splitting data at each node. The 
best splitter and split value are those that result in the 
largest increase in target value homogeneity for the entities 
in the node. Homogeneity is measured in accordance with 
a metric. For classification (Binary or multi-class targets), 
the supported metrics are gini and entropy.

■ tree_impurity_entropy

■ tree_impurity_gini (Default)

tree_term_max_depth TO_CHAR(2 <= numeric_expr <= 20)

Criteria for splits: maximum tree depth (the maximum 
number of nodes between the root and any leaf node, 
including the leaf node).

Default is 7.

tree_term_minpct_node TO_CHAR(0 <= numeric_expr <= 10)

No child shall have fewer records than this number, which 
is expressed as a percentage of the training rows.

Default is 0.05, indicating 0.05%.

tree_term_minpct_split TO_CHAR(0 <= numeric_expr <= 20)

Criteria for splits: minimum number of records in a parent 
node expressed as a percent of the total number of records 
used to train the model. No split is attempted if number of 
records is below this value.

Default is 0.1, indicating 0.1%.

tree_term_minrec_node TO_CHAR(numeric_expr >= 0)

No child shall have fewer records than this number. 

Default is 10.

tree_term_minrec_split TO_CHAR(numeric_expr >= 0)

Criteria for splits: minimum number of records in a parent 
node expressed as a value. No split is attempted if number 
of records is below this value.

Default is 20.

Table 3–6 Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)

svms_active_learning Whether active learning is enabled or disabled:

■ svms_al_disable 

■ svms_al_enable (Default)

When active learning is enabled, the SVM algorithm uses 
active learning to build a reduced size model. When active 
learning is disabled, the SVM algorithm builds a standard 
model.

svms_kernel_function Kernel for Support Vector Machine:

■ svms_linear (Default

■ svms_gaussian
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svms_kernel_cache_size TO_CHAR(numeric_expr > 0)

Value of kernel cache size for SVM algorithm. Applies to 
Gaussian kernel only.

Default is 50000000 bytes. 

svms_conv_tolerance TO_CHAR(numeric_expr > 0)

Convergence tolerance for SVM algorithm

Default is 0.001.

svms_std_dev TO_CHAR(numeric_expr > 0)

Value of standard deviation for SVM algorithm

This is applicable only for Gaussian kernel

Default value estimated from the data by the algorithm

svms_complexity_factor TO_CHAR(numeric_expr > 0)

Value of complexity factor for SVM algorithm (both 
classification and regression)

Default value estimated from the data by the algorithm

svms_epsilon TO_CHAR(numeric_expr > 0)

Value of epsilon factor for SVM Regression

Default value estimated from the data by the algorithm

svms_outlier_rate TO_CHAR(0 <numeric_expr < 1)

The desired rate of outliers in the training data. Valid for 
One-Class SVM models only. Cannot be used with svms_
complexity_factor.

Default is 0.1.

Table 3–7 Algorithm Settings for Non-Negative Matrix Factorization

Setting Name Setting Value (with Permissible Value Ranges)

nmfs_random_seed TO_CHAR(numeric_expr)

Random seed for NMF algorithm.

Default is –1.

nmfs_num_iterations TO_CHAR(1 <= numeric_expr <= 500)

Number of iterations for NMF algorithm

Default is 50

nmfs_conv_tolerance TO_CHAR(0 < numeric_expr <= 0.5)

Convergence tolerance for NMF algorithm

Default is 0.05

Table 3–8 Algorithm Settings for O-Cluster

Setting Name Setting Value (with Permissible Value Ranges)

oclt_max_buffer TO_CHAR(numeric_expr  > 0)

Buffer size for O-Cluster.

Default is 50,000.

Table 3–6 (Cont.) Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)
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This example creates a settings table for an SVM classification model and edits the 
individual values using SQL DML.

CREATE TABLE drugstore_settings (
  setting_name VARCHAR2(30),

oclt_sensitivity TO_CHAR(0 <=numeric_expr <= 1)

A fraction that specifies the peak density required for separating a 
new cluster. The fraction is related to the global uniform density. 

Default is 0.5.

Table 3–9 Algorithm Settings for k-Means

Setting Name Setting Value (with Permissible Value Ranges)

kmns_distance Distance Function for k-Means Clustering:

■ kmns_euclidean (Default)

■ kmns_cosine

■ kmns_fast_cosine

kmns_iterations TO_CHAR(0 < numeric_expr <= 20)

Number of iterations for k-Means algorithm

Default is 3

kmns_conv_tolerance TO_CHAR(0< numeric_expr <= 0.5)

Convergence tolerance for k-Means algorithm

Default is 0.01

kmns_split_criterion Split criterion for k-Means Clustering:

■ kmns_variance (Default)

■ kmns_size

kmns_num_bins TO_CHAR(numeric_expr > 0)

Number of histogram bins. Specifies the number of bins 
in the attribute histogram produced by k-Means. The bin 
boundaries for each attribute are computed globally on 
the entire training data set. The binning method is 
equi-width. All attributes have the same number of bins 
with the exception of attributes with a single value that 
have only one bin.

Default is 10.

kmns_block_growth TO_CHAR(1 < numeric_expr <= 5)

Growth factor for memory allocated to hold cluster data

Default value is 2

kmns_min_pct_attr_support TO_CHAR(0<= numeric_expr<=1)

The fraction of attribute values that must be non-null in 
order for the attribute to be included in the rule 
description for the cluster. 

Setting the parameter value too high in data with 
missing values can result in very short or even empty 
rules.

Default is 0.1.

Table 3–8 (Cont.) Algorithm Settings for O-Cluster

Setting Name Setting Value (with Permissible Value Ranges)
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  setting_value VARCHAR2(128))

BEGIN
-- override the default for convergence tolerance for SVM Classification
INSERT INTO drugstore_model_settings (setting_name, setting_value)
VALUES (dbms_data_mining.svms_conv_tolerance, TO_CHAR(0.081));
COMMIT;
END;

The table function GET_DEFAULT_SETTINGS provides you all the default settings for 
mining functions and algorithms. If you intend to override all the default settings, you 
can create a seed settings table and edit them using SQL DML.

BEGIN
CREATE TABLE drug_store_settings AS
SELECT setting_name, setting_value
  FROM TABLE (DBMS_DATA_MINING.GET_DEFAULT_SETTINGS
 WHERE setting_name LIKE 'SVMS_%';
-- update the values using appropriate DML
END;

You can also create a settings table based on another model's settings using GET_
MODEL_SETTINGS.

BEGIN
CREATE TABLE my_new_model_settings AS
SELECT setting_name, setting_value 
FROM TABLE (DBMS_DATA_MINING.GET_MODEL_SETTINGS('my_other_model'));

END;

Costs
In classification models, you can specify a cost matrix to represent the costs associated 
with false positive and false negative predictions. A cost matrix can be used in testing 
and scoring most classification models. 

The Decision Tree algorithm can use a cost matrix at build time.To specify the cost 
matrix, you must create a cost matrix table and provide its name in the clas_cost_
table_name setting for the Decision Tree model. See "Build Settings" on page 4-5 for 
an example.

If you are using the Java API, instantiate a CostMatrix object and specify the name 
of the table as a parameter to the dmeConn.saveObject method for the object. 

The cost matrix table must have these columns.

ODM enables you to evaluate the cost of predictions from classification models in an 
iterative manner during the experimental phase of mining, and to eventually apply the 
optimal cost matrix to predictions on the actual scoring data in a production 
environment.

Column Name Data Type

actual_target_value VARCHAR2(4000) for categorical targets

NUMBER for numeric targets

predicted_target_value VARCHAR2(4000)

NUMBER for numeric targets

cost NUMBER
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The data input to each test computation (a COMPUTE procedure in PL/SQL, or a 
TestMetrics object in Java) is the result generated from applying the model on test 
data. In addition, if you also provide a cost matrix as an input, the computation 
generates test results taking the cost matrix into account. This enables you to 
experiment with various costs for a given prediction against the same APPLY results, 
without rebuilding the model and applying it against the same test data for every 
iteration.

Once you arrive at an optimal cost matrix, you can then input this cost matrix to the 
RANK_APPLY operation along with the results of APPLY on your scoring data. RANK_
APPLY will provide your new data ranked by cost.

Priors
In most classification models, you can specify prior probabilities to offset differences in 
distribution between the build data and the real population (scoring data). Priors can 
be used in building any classification model that uses a Bayesian algorithm. Priors are 
not used by the Decision Tree algorithm. 

To specify prior probabilities, you must create a priors table and provide its name in 
the clas_priors_table_name setting for the model. If you are using the Java API, 
use a setPriorProbabilitiesMap object in the classification function settings for 
the model. 

SVM Classification uses weights to correct for differences in target distribution. Use 
the priors table to specify weights for SVM Classification models.

The priors table must have these columns.

See Also: Oracle Data Mining Concepts for more information on cost 
matrix.

Column Name Data Type

target_value VARCHAR2 for categorical targets

NUMBER for numeric targets

prior_probability NUMBER

See Also: Oracle Data Mining Concepts for more information on prior 
probabilities.
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4
Using the PL/SQL API and SQL Scoring

Functions

This chapter provides information to help you build data mining applications in 
PL/SQL. It includes sample code for building, testing, and scoring a classification 
model, and it illustrates the use of SQL functions for model scoring. 

This chapter contains the following sections:

■ The PL/SQL Sample Applications

■ The DBMS_DATA_MINING Package

■ Example: Building a Decision Tree Model

■ Example: Using SQL Functions to Test a Decision Tree Model

■ Example: Using SQL Functions to Apply a Decision Tree Model

The PL/SQL Sample Applications
The examples included in this chapter are taken from the Data Mining sample 
applications available on the Database companion CD. When you install the 
companion CD, the Data Mining sample applications are copied to /rdbms/demo/ in 
the Oracle home directory.

The following directory listing command lists the sample data mining programs on a 
Linux system. Use an equivalent command to list the sample programs on other 
operating systems.

>ls $ORACLE_HOME/rdbms/demo/dm*

Table 4–1 lists the sample PL/SQL programs.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for 
information on the PL/SQL packages for Data Mining.

■ Oracle Database SQL Reference for information on the SQL scoring 
functions for Data Mining.

■ Oracle Data Mining Administrator's Guide for information on 
installing and using the sample PL/SQL programs for data 
mining
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The DBMS_DATA_MINING Package
The following types of mining activities are supported by the DBMS_DATA_MINING 
package:

■ Creating, dropping, and renaming a model: CREATE_MODEL, DROP_MODEL, 
RENAME_MODEL.

■ Scoring a model: APPLY.

■ Ranking APPLY results: RANK_APPLY.

■ Describing a model: GET_MODEL_DETAILS, GET_MODEL_SETTINGS, GET_
DEFAULT_SETTINGS,GET_MODEL_SIGNATURE.

■ Computing test metrics for a model: COMPUTE_CONFUSION_MATRIX, COMPUTE_
LIFT, and COMPUTE_ROC.

■ Exporting and importing models: EXPORT_MODEL, IMPORT_MODEL.

Of these, the first set represents DDL-like operations. The last set represents utilities. 
The rest are query-like operations in that they do not modify the model. 

You can view the models defined in your schema by querying the DM_USER_MODELS 
view. The following query on a Linux system lists the models in the schema of 
DMUSER. These models were created by the sample PL/SQL programs.

>sqlplus dmuser/dmuser_password

Table 4–1 Sample PL/SQL Programs

Application Description

dmabdemo.sql Creates an Adaptive Bayes Network model (classification).

dmaidemo.sql Creates an Attribute Importance model.

dmardemo.sql Creates an Association Rules model.

dmdtdemo.sql Creates a Decision Tree model (classification).

dmkmdemo.sql Creates a k_means model (clustering).

dmnbdemo.sql Creates a Naive Bayes model (classification).

dmnmdemo.sql Creates a Non_Negative Matrix Factorization model (feature extraction).

dmocdemo.sql Creates an O-Cluster model (clustering).

dmsvcdem.sql Creates a Support Vector Machine model (classification).

dmsvodem.sql Creates a Support Vector Machine model (one-class classification).

dmsvrdem.sql Creates a Support Vector Machine model (regression).

dmtxtfe.sql Text mining. (term extraction using CTX procedures).

dmtxtnmf.sql Text mining using NMF feature extraction.

dmtxtsvm.sql Text mining using SVM classification.

See Also: Oracle Data Mining Administrator's Guide for information 
about installing, running, and viewing the sample programs. 

Note: Detailed information about the DBMS_DATA_MINING package 
is available in Oracle Database PL/SQL Packages and Types Reference. 
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SQL> set linesize 200
SQL> set pagesize 100 
SQL> select NAME, FUNCTION_NAME, ALGORITHM_NAME, TARGET_ATTRIBUTE from DM_USER_MODELS; 
 
NAME                   FUNCTION_NAME           ALGORITHM_NAME                  TARGET_ATTRIBUTE
---------------------  ----------------------  ------------------------------  -----------------
T_NMF_SAMPLE           FEATURE_EXTRACTION      NONNEGATIVE_MATRIX_FACTOR                    
T_SVM_CLAS_SAMPLE      CLASSIFICATION          SUPPORT_VECTOR_MACHINES         AFFINITY_CARD
AR_SH_SAMPLE           ASSOCIATION_RULES       APRIORI_ASSOCIATION_RULES                    
AI_SH_SAMPLE           ATTRIBUTE_IMPORTANCE    MINIMUM_DESCRIPTION_LENGTH      AFFINITY_CARD
ABN_SH_CLAS_SAMPLE     CLASSIFICATION          ADAPTIVE_BAYES_NETWORK          AFFINITY_CARD
DT_SH_CLAS_SAMPLE      CLASSIFICATION          DECISION_TREE                   AFFINITY_CARD
NB_SH_CLAS_SAMPLE      CLASSIFICATION          NAIVE_BAYES                     AFFINITY_CARD
SVMC_SH_CLAS_SAMPLE    CLASSIFICATION          SUPPORT_VECTOR_MACHINES         AFFINITY_CARD
OC_SH_CLUS_SAMPLE      CLUSTERING              O_CLUSTER                                    
KM_SH_CLUS_SAMPLE      CLUSTERING              KMEANS                                       
NMF_SH_SAMPLE          FEATURE_EXTRACTION      NONNEGATIVE_MATRIX_FACTOR                    
SVMR_SH_REGR_SAMPLE    REGRESSION              SUPPORT_VECTOR_MACHINES         AGE          

Build Results
The CREATE_MODEL procedure creates a mining model. The viewable contents of a 
mining model are provided to you through the GET_MODEL_DETAILS functions for 
each supported algorithm. In addition, GET_MODEL_SIGNATURE and GET_MODEL_
SETTINGS provide descriptive information about the model.

Apply Results
The APPLY procedure creates and populates a pre-defined table. The columns of this 
table vary based on the particular mining function, algorithm, and target attribute type 
— numerical or categorical.

The RANK_APPLY procedure takes this results table as input and generates another 
table with results ranked based on a top-N input. Classification models can also be 
ranked based on cost. The column structure of this table varies based on the particular 
mining function, algorithm, and the target attribute type — numerical or categorical.

Test Results for Classification Models
The COMPUTE routines provided in DBMS_DATA_MINING are the most popularly used 
metrics for classification. They are not tied to a particular model — they can compute 
the metrics from any meaningful data input as long as the column structure of the 
input tables fits the specification of the apply results table and the targets tables. 

Test Results for Regression Models
The most commonly used metrics for regression models are root mean square error 
and mean absolute error. You can use the SQL queries, shown in the following 
sections, to compute these metrics. Simply replace the italicized tokens with table and 
column names appropriate for your application.

Root Mean Square Error
SELECT sqrt(avg((A.prediction - B.target_column_name) * 
                (A.prediction - B.target_column_name))) rmse 
  FROM apply_results_table A, targets_table B 
 WHERE A.case_id_column_name = B.case_id_column_name;
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Mean Absolute Error
Given the targets_table generated from the test data with the following columns,

(case_id_column_name VARCHAR2,
target_column_name NUMBER)

and apply results table for regression with the following columns,

(case_id_column_name VARCHAR2, 
prediction NUMBER)

and a normalization table (optional) with the following columns,

(attribute_name VARCHAR2(30),
scale NUMBER,
shift NUMBER)

the query for mean absolute error is:

SELECT /*+PARALLEL(T) PARALLEL(A)*/
    AVG(ABS(T.actual_value - T.target_value)) mean_absolute_error
  FROM (SELECT B.case_id_column_name
          (B.target_column_name * N.scale + N.shift) actual_value
      FROM targets_table B,
           normalization_table N
     WHERE N.attribute_name = B.target_column_name AND
              B.target_column_name = 1) T,
       apply_results_table_name A
 WHERE A.case_id_column_name = T.case_id_column_name;

You can fill in the italicized values with the actual column and table names chosen by 
you. If the data has not undergone normalization transformation, you can eliminate 
those references from the subquery. See the SVM regression sample program 
(dmsvrdem.sql for an example.

Example: Building a Decision Tree Model
Given demographic data about a set of customers, this example predicts the customer 
response to an affinity card program using a classifier based on the Decision Tree 
algorithm.

Mining Data
The Decision Tree algorithm is capable of handling data that has not been specially 
prepared. This example uses data created from the base tables in the SH schema and 
presented through the following views.

MINING_DATA_BUILD_V       (build data)
MINING_DATA_TEST_V        (test data)
MINING_DATA_APPLY_V       (scoring data)

Note: This example is taken from the sample program 
dmdtdemo.sql. See Oracle Data Mining Administrator's Guide for 
information about the sample programs.
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Build Settings
The following example creates a settings table and a cost matrix table for the model. 
The settings override the default classification algorithm (Naive Bayes) and specify the 
location of the cost matrix table.

set echo off
CREATE TABLE dt_sh_sample_settings (
  setting_name  VARCHAR2(30),
  setting_value VARCHAR2(30));
set echo on

-- CREATE AND POPULATE A COST MATRIX TABLE
--
-- A cost matrix is used to influence the weighting of misclassification
-- during model creation (and scoring).
--
CREATE TABLE dt_sh_sample_cost (
  actual_target_value           NUMBER,
  predicted_target_value        NUMBER,
  cost                          NUMBER);
INSERT INTO dt_sh_sample_cost VALUES (0,0,0);
INSERT INTO dt_sh_sample_cost VALUES (0,1,1);
INSERT INTO dt_sh_sample_cost VALUES (1,0,8);
INSERT INTO dt_sh_sample_cost VALUES (1,1,0);
COMMIT;

BEGIN       
  -- Populate settings table
  INSERT INTO dt_sh_sample_settings VALUES
    (dbms_data_mining.algo_name, dbms_data_mining.algo_decision_tree);
  INSERT INTO dt_sh_sample_settings VALUES
    (dbms_data_mining.clas_cost_table_name, 'dt_sh_sample_cost');
  COMMIT;
END;

Model Creation
The following example creates the model using the predefined settings table. 

BEGIN
  DBMS_DATA_MINING.CREATE_MODEL(
    model_name          => 'DT_SH_Clas_sample',
    mining_function     => dbms_data_mining.classification,
    data_table_name     => 'mining_data_build_v',
    case_id_column_name => 'cust_id',
    target_column_name  => 'affinity_card',
    settings_table_name => 'dt_sh_sample_settings');
END;

-- DISPLAY MODEL SETTINGS
-- This section illustrates the GET_MODEL_SETTINGS procedure.
-- It is not needed for Decision Tree models, because model
-- settings are present in the model details XML.

column setting_name format a30

Note: Data preparation techniques (using the DBMS_DATA_MINING_
TRANSFORM package) are illustrated in many of the sample programs.
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column setting_value format a30
SELECT setting_name, setting_value
  FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SETTINGS('DT_SH_Clas_sample'))
ORDER BY setting_name;

-- DISPLAY MODEL SIGNATURE
-- This section illustrates the GET_MODEL_SIGNATURE procedure.
-- It is not needed for Decision Tree models, because the model
-- signature is present in the model details XML.
--
column attribute_name format a40
column attribute_type format a20
SELECT attribute_name, attribute_type
  FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SIGNATURE('DT_SH_Clas_sample'))
ORDER BY attribute_name;

-- DISPLAY MODEL DETAILS
-- NOTE: The "&quot" characters in this XML output are owing to
--       SQL*Plus behavior. Cut and paste this XML into a file,
--       and open the file in a browser to see correctly formatted XML.
--
SET long 2000000000
column dt_details format a320
SELECT 
 dbms_data_mining.get_model_details_xml('DT_SH_Clas_sample').extract('/')
 AS DT_DETAILS
FROM dual;

Example: Using SQL Functions to Test a Decision Tree Model
The following example computes a confusion matrix and accuracy using the 
PREDICTION function for Data Mining. It performs the computations both with and 
without the cost matrix. In this example, the cost matrix reduces the problematic 
misclassifications, but also negatively impacts the overall model accuracy.

-- DISPLAY CONFUSION MATRIX WITHOUT APPLYING COST MATRIX
--
SELECT affinity_card AS actual_target_value, 
       PREDICTION(DT_SH_Clas_sample USING *) AS predicted_target_value,
       COUNT(*) AS value
  FROM mining_data_test_v
GROUP BY affinity_card, PREDICTION(DT_SH_Clas_sample USING *)
ORDER BY 1,2;
 
-- DISPLAY CONFUSION MATRIX APPLYING THE COST MATRIX
--
SELECT affinity_card AS actual_target_value, 
       PREDICTION(DT_SH_Clas_sample COST MODEL USING *) 
         AS predicted_target_value,
       COUNT(*) AS value
  FROM mining_data_test_v
GROUP BY affinity_card, PREDICTION(DT_SH_Clas_sample COST MODEL USING *)
ORDER BY 1,2;
 
-- DISPLAY ACCURACY WITHOUT APPLYING COST MATRIX
--
SELECT ROUND(SUM(correct)/COUNT(*),4) AS accuracy
  FROM (SELECT DECODE(affinity_card,
               PREDICTION(DT_SH_Clas_sample USING *), 1, 0) AS correct
          FROM mining_data_test_v);
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-- DISPLAY ACCURACY APPLYING THE COST MATRIX
--
SELECT ROUND(SUM(correct)/COUNT(*),4) AS accuracy
  FROM (SELECT DECODE(affinity_card,
                 PREDICTION(DT_SH_Clas_sample COST MODEL USING *),
                 1, 0) AS correct
          FROM mining_data_test_v);

Example: Using SQL Functions to Apply a Decision Tree Model
The following example illustrates several ways of scoring the Decision Tree Model. It 
uses the PREDICTION, PREDICTION_COST, PREDICTION_SET, and PREDICTION_
DETAILS functions to predict information for four different business cases:

1. Find the ten customers who live in Italy and could be convinced, with the least 
expense, to use an affinity card.

2. Find the average age of customers who are likely to use an affinity card, based on 
marital status, education, and household size.

3. List ten customers with the likelihood and cost that they will use or reject an 
affinity card.

4. Find the segmentation for customers who work in Customer Support and are 
under 25.

------------------
-- BUSINESS CASE 1
-- Find the 10 customers who live in Italy that are least expensive
-- to be convinced to use an affinity card.
--
WITH
cust_italy AS (
SELECT cust_id
  FROM mining_data_apply_v
 WHERE country_name = 'Italy'
ORDER BY PREDICTION_COST(DT_SH_Clas_sample, 1 COST MODEL USING *) ASC, 1
)
SELECT cust_id
  FROM cust_italy
 WHERE rownum < 11;

------------------
-- BUSINESS CASE 2
-- Find the average age of customers who are likely to use an
-- affinity card.
-- Include the build-time cost matrix in the prediction.
-- Only take into account CUST_MARITAL_STATUS, EDUCATION, and
-- HOUSEHOLD_SIZE as predictors.
-- Break out the results by gender.
--
column cust_gender format a12
SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
  FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample COST MODEL
                 USING cust_marital_status, education, household_size) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

------------------
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-- BUSINESS CASE 3
-- List ten customers (ordered by their id) along with likelihood and cost
-- to use or reject the affinity card (Note: while this example has a
-- binary target, such a query is useful in multi-class classification -
-- Low, Med, High for example).
--
column prediction format 9;
SELECT T.cust_id, S.prediction, S.probability, S.cost
  FROM (SELECT cust_id,
               PREDICTION_SET(dt_sh_clas_sample COST MODEL USING *) pset
          FROM mining_data_apply_v
         WHERE cust_id < 100011) T,
       TABLE(T.pset) S
ORDER BY cust_id, S.prediction;

------------------
-- BUSINESS CASE 4
-- Find the segmentation (resulting tree node) for customers who
-- work in Tech support and are under 25.
--
column education format a30;
column treenode  format a40;
SELECT cust_id, education,
       PREDICTION_DETAILS(dt_sh_clas_sample USING *) treenode
  FROM mining_data_apply_v
 WHERE occupation = 'TechSup' AND age < 25
ORDER BY 1;
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5
Using PL/SQL to Prepare Text Data for

Mining

Oracle Data Mining supports the mining of data sets that have one or more text 
columns. These columns must undergo a special preprocessing step whereby text 
tokens known as terms are extracted and stored in a nested table column. The 
transformed text can then be used as any other attribute in the building, testing, and 
scoring of models.

This chapter explains how to use Oracle Text packages in a PL/SQL program to 
prepare a column of text for Oracle Data Mining. 

You can also use the Java API to perform text transformation. Refer to "Using Text 
Transformation" in Chapter 7 for more information.

This chapter contains the following sections.

■ Oracle Text for Oracle Data Mining

■ Term Extraction in the Sample Programs

■ From Unstructured Data to Structured Data

■ Steps in the Term Extraction Process

■ Example: Transforming a Text Column

Oracle Text for Oracle Data Mining
Oracle Data Mining uses specialized Oracle Text routines to preprocess text data. 
Oracle Text is a technology within the Database for building text querying and 
classification applications. Oracle Text provides the following facilities that are specific 
to the Oracle Data Mining term extraction process:

■ SVM_CLASSIFIER, defined in the CTX_DLL Oracle Text PL/SQL package, 
specifies an index preference for Oracle Data Mining term extraction. It is used in 

Note: Oracle Data Mining includes sample programs that illustrate 
text transformation and text mining in both PL/SQL and Java. Refer 
to Oracle Data Mining Administrator's Guide for information on the 
Oracle Data Mining sample programs.

See Also: Oracle Data Mining Concepts for more information on text 
mining.
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the text transformation process for all algorithms supported by Oracle Data 
Mining.

■ The CTXSYS.DRVODM Oracle Text PL/SQL package defines the table functions, 
FEATURE_PREP and FEATURE_EXPLAIN, which generate intermediate and final 
tables of text terms for Oracle Data Mining.

The data preparation process in a PL/SQL text mining application requires the use of 
these Oracle Text facilities. Java developers can use the OraTextTransform interface, 
which presents the Oracle Text term extraction capability within the context of a Java 
environment. See "Using Text Transformation" on page 7-21 for more information.

Term Extraction in the Sample Programs
A good place to start in learning the text term extraction process is with the sample 
programs. You can find these programs in the /rdbms/demo directory under 
$ORACLE_HOME. Refer to the Oracle Data Mining Administrator's Guidefor more 
information.

The following sample programs contain term extraction code for text mining:

■ dmsh.sql — Prepares the build, test, and scoring data for the sample programs, 
including the text mining programs. dmsh.sql creates views for data mining and 
tables and indexes for text mining.

■ dmtxtfe.sql — Uses a table with an indexed text column, created by 
dmsh.sql, to create a table of build data with a nested table column.

The dmtxtfe.sql program is a sample term extractor. It contains extensive 
comments that explain the code in a step-by-step fashion. You can expand this 
program into a complete term extraction solution by adding index creation and the 
preparation of test and scoring data (as in dmsh.sql).

Text Mining Programs
Once you have properly prepared the text data, you can build a text mining program 
using any algorithm that supports sparse data: association rules, k-Means, SVM 
(classification, regression, and one-class classification), and non-negative matrix 
factorization.

Two text mining sample PL/SQL programs use the data prepared by dmsh.sql.

Note: Text terms are also known as features. In text mining, a feature 
is a word or group of words extracted from a text attribute. Both NMF 
models and text mining transformation perform a kind of feature 
extraction. NMF creates a single feature from multiple attributes. Text 
transformation creates multiple features from a single attribute.

See Also: Oracle Text Application Developer's Guide and Oracle Text 
Reference for information on Oracle Text.

Note: The Oracle Text facilities for Oracle Data Mining are 
documented in this chapter. They are not documented in the Oracle 
Text manuals.
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■ dmtxtnmf.sql creates a text mining model that uses non-negative matrix 
factorization.

■ dmtxtsvm.sql creates a text mining model that uses SVM classification.

Both these programs mine a table of customer data, which includes a nested table 
column called COMMENTS. The COMMENTS column has been pre-processed by 
dmsh.sql. The models created by these programs are shown in the following 
example from a Linux system.

-- Run the programs
SQL> @ $ORACLE_HOME%rdbms/demo/dmtxtnmf.sql
SQL> @ $ORACLE_HOME/rdbms/demo/dmtxtsvm.sql
-- List the models created by the programs
SQL> select NAME, FUNCTION_NAME, ALGORITHM_NAME, TARGET_ATTRIBUTE  
           from dm_user_models;

NAME               FUNCTION_NAME      ALGORITHM_NAME            TARGET_ATTRIBUTE 
----------------   ------------------ ------------------------  ----------------
T_NMF_SAMPLE       FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR 
T_SVM_CLAS_SAMPLE  CLASSIFICATION     SUPPORT_VECTOR_MACHINES   AFFINITY_CARD

From Unstructured Data to Structured Data
The pre-processing steps for text mining create nested table columns of type DM_
NESTED_NUMERICALS from columns of type VARCHAR2 or CLOB. Each row of the 
nested table specifies an attribute name and a value. The DM_NESTED_NUMERICALS 
type defines the following columns.

attribute_name     VARCHAR2(30)
value               NUMBER)

The term extraction process treats the text in each row of the original table as a 
separate document. Each document is transformed to a set of terms that have a 
numeric value and a text label. Within the nested table column, the attribute_name 
column holds the text and the value column holds the numeric value of the term, 
which is derived using the term frequency in the document and in the document 
collection (other rows).

For example, the following query returns various attributes of customer 102998, 
including a text column of comments. The text column has not been transformed.

SQL> select cust_id, cust_gender, cust_income_level, affinity_card, comments
             from mining_build_text
             where cust_id = 102998;
 
CUST_ID C  CUST_INCOME_LEVEL     AFFINITY_CARD COMMENTS
------- -- --------------------  ------------- --------------------------------
102998  M  J: 190,000 - 249,999  1             I wanted to write you to let you
                                               know that I've purchased several
                                               items at your store recently and
                                               have been very satisfied with my
                                               purchases. Keep up the good work.
  

See Also: Oracle Data Mining Administrator's Guide. This manual 
provides complete instructions for accessing and running the sample 
programs. It includes information about the build, training, and 
scoring data used by these programs.
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The following query returns the same attributes of customer 102998, but the text in the 
comments column has been transformed. The query extracts the ATTRIBUTE_NAME 
and VALUE columns from the nested table that holds the transformed text.

SQL> select b.cust_id, b.cust_gender, b.cust_income_level, b.affinity_card, n.*
             from mining_build_nested_text b,
                  table(b.comments) n
             where b.cust_id = 102998
             order by n.attribute_name;
 
CUST_ID  C  CUST_INCOME_LEVEL    AFFINITY_CARD  ATTRIBUTE_NAME  VALUE
-------  -- -------------------  -------------  --------------  --------
102998   M  J: 190,000 - 249,999  1              GOOD            .26894
102998   M  J: 190,000 - 249,999  1              ITEMS            158062
102998   M  J: 190,000 - 249,999  1              KEEP             238765
102998   M  J: 190,000 - 249,999  1              KNOW              .2006
102998   M  J: 190,000 - 249,999  1              LET              299856
102998   M  J: 190,000 - 249,999  1              PURCHASED        142743
102998   M  J: 190,000 - 249,999  1              PURCHASES        173146
102998   M  J: 190,000 - 249,999  1              RECENTLY        .195223
102998   M  J: 190,000 - 249,999  1              SATISFIED       .355851
102998   M  J: 190,000 - 249,999  1              SEVERAL         .355851
102998   M  J: 190,000 - 249,999  1              STORE          .0712537
102998   M  J: 190,000 - 249,999  1              UP              .159838
102998   M  J: 190,000 - 249,999  1              WANTED          .355851
102998   M  J: 190,000 - 249,999  1              WORK            .299856
102998   M  J: 190,000 - 249,999  1              WRITE           .355851

The ATTRIBUTE_NAME column holds an item of text from the original comments 
column. The VALUE column holds the term value. Note that not all words from the 
original comments column are extracted as terms. For example, the articles the and 
to are not included.

Steps in the Term Extraction Process
The steps in the term extraction process are summarized in this section. Further details 
and specific syntax requirements are explained later in this chapter.

Transform a Text Column in the Build Table
First transform the text in the build data. During this process you will generate the text 
term definitions, which you will reuse for the test and apply data. Perform the 
following steps:

1. Create an index on the text column in the build table.

2. Create an SVM_CLASSIFIER preference for the index.

3. Define a table to hold the categories specified by the SVM_CLASSIFIER index.

4. Use the FEATURE_PREP table function to create the term definitions and populate 
an intermediate terms table.

5. Use the FEATURE_EXPLAIN table function to populate the final terms table.

6. Replicate the columns of the original build table (using a view or another table), 
replacing the text column with a nested table column. Load the terms from the 
final terms table into the nested table column.
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Transform a Text Column in the Test and Apply Tables
The test and apply data must undergo the same pre-processing as the build data. To 
transform the test and apply data, you will reuse the term definitions generated for the 
build data. Perform the following steps:

1. Create an index on the text column in the test or apply table.

2. Use the FEATURE_PREP table function to populate an intermediate terms table. 
Use the term definitions previously generated for the build data.

3. Use the FEATURE_EXPLAIN table function to populate the final terms table.

4. Replicate the columns of the original test or apply table, replacing the text column 
with a nested table column. Load the terms from the final terms table into the 
nested table column.

Creating the Index and Index Preference
Oracle Text processing requires a text index. Oracle Text supports several types of 
indexes for querying, cataloging, and classifying text documents. The Oracle Data 
Mining term extraction process requires a CONTEXT index for text querying. 

You must create an index for each text column to be transformed. Use the following 
syntax to create the index.

SQL>CREATE INDEX index_name ON table_name(column_name)
                   INDEXTYPE IS ctxsys.context PARAMETERS (’nopopulate’);

Oracle Text supports index preferences for overriding the default characteristics of an 
index. The CREATE_PREFERENCE procedure in the Oracle Text package CTX_DDL 
creates a preference with the name and type that you specify. The SVM_CLASSIFIER 
preference type defines the characteristics of an index for Oracle Data Mining. 

You must create an index preference when you prepare the build data. It will be reused 
when you prepare the test and apply data. Use the following syntax to create the index 
preference.

SQL>EXECUTE ctx_ddl.create_preference(’preference_name’, ’SVM_CLASSIFIER’);

The SVM_CLASSIFIER index preference uses a predefined table with two numeric 
columns: an ID column for the case ID, and a CAT column for the category. The 
category table is used for internal processing. You must create the category table using 
the following syntax.

SQL>CREATE TABLE category_table_name(id NUMBER, cat NUMBER);

Creating the Intermediate Terms Table
The FEATURE_PREP table function in the CTXSYS.DRVODM Oracle Text package 
extracts terms from a text column using an index preference of type SVM_
CLASSIFIER. FEATURE_PREP creates a table of term definitions from the build data 
and reuses these definitions for the test and apply data.

Note: This statement creates a basic CONTEXT index. You can further 
define the characteristics of the index by specifying additional 
arguments to the CREATE INDEX statement. Refer to Oracle Text 
Reference for details. 
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FEATURE_PREP returns an intermediate terms table.

FEATURE_PREP Calling Syntax
FEATURE_PREP is an over-loaded function that accepts two different sets of 
arguments. You will specify one set of arguments for the build data and another set for 
the test and apply data. 

--- syntax for build data ---
            CTXSYS.DRVODM.FEATURE_PREP (
                   text_index                IN   VARCHAR2,
                   case_id                   IN   VARCHAR2,
                   category_tbl              IN   VARCHAR2,
                   category_tbl_id_col       IN   VARCHAR2,
                   category_tbl_cat_col      IN   VARCHAR2,
                   feature_definition_tbl    IN   VARCHAR2,
                   index_preference          IN   VARCHAR2)
                RETURN DRVODM;

--- syntax for test/apply data ---
           CTXSYS.DRVODM.FEATURE_PREP (
                   text_index                IN   VARCHAR2,
                   case_id                   IN   VARCHAR2,
                   feature_definition_tbl    IN   VARCHAR2,
                RETURN DRVODM;

FEATURE_PREP Return Value
FEATURE_PREP returns the following columns. The SEQUENCE_ID column holds the 
case ID; the ATTRIBUTE_ID column holds the term ID.

Name                   NULL?   Type
---------------------- ------- ------
SEQUENCE_ID                    NUMBER
ATTRIBUTE_ID                   NUMBER
VALUE                          NUMBER

FEATURE_PREP Arguments
FEATURE_PREP accepts the arguments described in Table 5–1.

Table 5–1 FEATURE_PREP Table Function Arguments

Argument Name Data Type

text_index VARCHAR2 Name of the index on the text column in the build, 
test, or apply table.

case_ID VARCHAR2 Name of the case ID column in the build, test, or 
apply table.

category_tbl VARCHAR2 Name of the table used by the SVM_CLASSIFIER 
index preference. 

Specify this argument only for build data.

category_tbl_id_col VARCHAR2 Specify ’id’. This is the name of the ID column in 
the table used by the SVM_CLASSIFIER index 
preference.

Specify this argument only for build data.
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FEATURE_PREP Example
The following example creates an intermediate terms table called txt_term_out. The 
FEATURE_PREP table function extracts terms from a text column with an index called 
build_text_idx. The text column is in a build table with a case ID column called 
cust_id. The index preference txt_pref is applied to the index using the id and 
cat columns in the table cat_tbl. FEATURE_PREP creates a table of term definitions 
called txt_pref_terms.

CREATE TABLE txt_term_out AS
SELECT *
  FROM TABLE(ctxsys.drvodm.feature_prep (
               'build_text_idx',
               'cust_id',
               'cat_tbl',
               'id',
               'cat',
               'txt_pref_terms',
               'txt_pref'));

Creating the Final Terms Table
The FEATURE_EXPLAIN table function in the CTXSYS.DRVODM Oracle Text package 
extracts the term values from the definitions created by FEATURE_PREP and appends 
the associated word to each value.

FEATURE_EXPLAIN returns the final terms table. 

FEATURE_EXPLAIN Calling Syntax
The calling syntax of FEATURE_EXPLAIN is described as follows. 

            CTXSYS.DRVODM.FEATURE_EXPLAIN (
                   feature_definition_tbl     IN   VARCHAR2,
                RETURN DRVODM;

FEATURE_EXPLAIN Return Value
FEATURE_EXPLAIN returns the following columns.

Name              Type

category_tbl_cat_col VARCHAR2 Specify ’cat’. This is the name of the CAT column 
in the table used by the SVM_CLASSIFIER index 
preference.

Specify this argument only for build data.

feature_definition_tbl VARCHAR2 Name of the term definition table created by 
FEATURE_PREP. The columns of the term 
definition table are:

Name         Null?     Type
---------------------------------
CAT_ID                   NUMBER
TYPE                     NUMBER
RULE                     BLOB

index_preference VARCHAR2 Name of the SVM_CLASSIFIER index preference.

Specify this argument only for build data.

Table 5–1 (Cont.) FEATURE_PREP Table Function Arguments

Argument Name Data Type
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---------------    ---------------
text               VARCHAR2(160)
type               NUMBER(3)
ID                 NUMBER
score              NUMBER

FEATURE_EXPLAIN Arguments
FEATURE_EXPLAIN accepts a single argument: the terms definition table created by 
FEATURE_PREP.

FEATURE_EXPLAIN Example
The following example creates a final terms table called txt_final_terms using the 
intermediate terms table txt_term_out. The FEATURE_EXPLAIN table function 
returns the terms specified in the terms definition table txt_pref_terms. 

SQL> create table txt_final_terms as
                   select A.sequence_id, B.text, A.value
                         FROM txt_term_out A,
                              TABLE(ctxsys.drvodm.feature_explain(
                                    'txt_pref_terms')) B
                         WHERE A.attribute_id = B.id;

Populating a Nested Table Column
Use the final terms table to populate a nested table column of type DM_NESTED_
NUMERICALS. 

The following example creates the table mining_build_nested_text. 
(Alternatively, you could create a view.) The table has a case ID column of customer 
IDs and three customer attribute columns: age, education, and occupation. It also 
includes a comments column of type DM_NESTED_NUMERICALS created from the 
terms table txt_final_terms.

SQL> CREATE TABLE mining_build_nested_text
       NESTED TABLE comments store AS build_comments
      AS
    SELECT non_text.cust_id,
      non_text.age,
      non_text.education,
      non_text.occupation,
     txt.comments
     FROM
     mining_build_text non_text,
     ( SELECT features.sequence_id,
              cast(COLLECT(dm_nested_numerical(features.text,features.value))
                           as dm_nested_numericals)  comments
       FROM txt_final_terms features
       group by features.sequence_id) txt
     WHERE non_text.cust_id = txt.sequence_id(+);

Example: Transforming a Text Column
In the following example, a text column in MINING_BUILD_TEXT is transformed to a 
nested table column in MINING_BUILD_NESTED_TEXT. The same text column in 
MINING_APPLY_TEXT is transformed to a nested table column in MINING_APPLY_
NESTED_TEXT.
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Both MINING_BUILD_TEXT and MINING_APPLY_TEXT have the following columns.

 Name                              Null?    Type
 --------------------------------- -------- ---------------------------
 CUST_ID                           NOT NULL NUMBER
 AGE                                        NUMBER
 EDUCATION                                  VARCHAR2(21)
 OCCUPATION                                 VARCHAR2(21)
 COMMENTS                                   VARCHAR2(4000)

The following statements create the indexes.

SQL> create index build_text_idx on mining_build_text (comments)
             indextype is ctxsys.context parameters ('nopopulate');
SQL> create index apply_text_idx ON mining_apply_text (comments)
             indextype is ctxsys.context parameters ('nopopulate');

The following statements create the index preference and its table.

SQL> execute ctx_ddl.create_preference('idx_pref', 'SVM_CLASSIFIER');
SQL> create table idx_pref_cat (id number, cat number);

The following statement returns the intermediate terms in the table BUILD_TERMS_
OUT. It also creates the table FEATURE_DEFS and populates it with the term 
definitions.

SQL>  create table build_terms_out as
              select * from
                     table (ctxsys.drvodm.feature_prep
                                  ('build_text_idx',
                                   'cust_id',
                                   'idx_pref_cat',
                                   'id',
                                   'cat',
                                   'feature_defs',
                                   'idx_pref'));

The following statement returns the final terms in the table BUILD_EXPLAIN_OUT. 

SQL> create table build_explain_out as
             select a.sequence_id,
                    b.text,
                    a.value
             from build_terms_out a,
             table (ctxsys.drvodm.feature_explain('feature_defs')) b
             where a.attribute_id = b.id;

The following statement creates the table MINING_BUILD_NESTED_TEXT. This table 
contains the non-text attributes from the original build table and a nested table of 
comments. This table can be used to build a model.

SQL> create table mining_build_nested_text
        nested table comments store as build_comments
          as select non_text.cust_id,
                    non_text.age,
                    non_text.education,
                    non_text.occupation,
                    txt.comments
              from mining_build_text non_text,
             (select features.sequence_id,
                cast(collect(dm_nested_numerical(features.text,features.value))
                as dm_nested_numericals)  comments
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              from build_explain_out features
              group by features.sequence_id) txt
              where non_text.cust_id = txt.sequence_id(+);

The following statement creates the intermediate terms table for the comments column 
in the apply table, MINING_APPLY_TEXT. It uses the term definitions in the 
FEATURE_DEFS table, which was created during the pre-processing of the comments 
column in MINING_BUILD_TEXT.

SQL>  create table apply_terms_out as
              select * from
                     table (ctxsys.drvodm.feature_prep
                                  ('build_text_idx',
                                   'cust_id',
                                   'feature_defs'));

The following statement creates the final terms table for apply. 

SQL> create table apply_explain_out as
             select a.sequence_id,
                    b.text,
                    a.value
             from apply_terms_out a,
             table (ctxsys.drvodm.feature_explain('feature_defs')) b
             where a.attribute_id = b.id;

The following statement creates the table MINING_APPLY_NESTED_TEXT. This table 
contains the non-text attributes from the original apply table and a nested table of 
comments. This table can be used to apply the model.

SQL> create table mining_apply_nested_text
        nested table comments store as apply_comments
          as select non_text.cust_id,
                    non_text.age,
                    non_text.education,
                    non_text.occupation,
                    txt.comments
              from mining_apply_text non_text,
             (select features.sequence_id,
                cast(collect(dm_nested_numerical(features.text,features.value))
                as dm_nested_numericals)  comments
              from apply_explain_out features
              group by features.sequence_id) txt
              where non_text.cust_id = txt.sequence_id(+);
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6
Java API Overview

This chapter introduces the new Oracle Data Mining Java API. You can use the Java 
API to create thin client applications that access the rich data mining functionality 
within the Oracle Database. 

The ODM Java API is an Oracle implementation of the Java Data Mining (JDM) 1.0 
standard API for data mining. The ODM Java API implements Oracle-specific 
extensions to JDM 1.0, in compliance with the JSR-73 standards extension framework. 
The full range of data mining functions and algorithms available in the Database, 
including the new predictive analytics features in the DBMS_PREDICTIVE_
ANALYTICS PL/SQL package, are exposed through the ODM Java API.

The ODM Java API replaces the proprietary Java API for data mining that was 
available with Oracle 10.1. It is fully compatible with the Oracle 10g Release 2 
(10.2)PL/SQL API for data mining. 

This chapter includes the following topics:

■ The JDM 1.0 Standard

■ Oracle Extensions to JDM 1.0

■ Principal Objects in the ODM Java API

The JDM 1.0 Standard
JDM 1.0 is an industry standard Java API for data mining, developed under the Java 
Community Process (JCP). It defines Java interfaces that vendors can implement for 
their Data Mining Engines. 

JDM interfaces support mining functions including classification, regression, 
clustering, attribute importance, and association; and specific mining algorithms 
including naïve bayes, support vector machines, decision trees, and k-means. 

For a complete description of the JDM 1.0 standard, visit the JSR-000073 Data Mining 
API page of the Java Community Process Web Site.

http://jcp.org/aboutJava/communityprocess/final/jsr073

You can download the JDM 1.0 javadoc from the Oracle Data Mining page of the 
Oracle Technology Network.

http://www.oracle.com/technology/products/bi/odm/index.html

The Java packages defined by the JDM standard are summarized in Table 6–1.

http://jcp.org/aboutJava/communityprocess/final/jsr073
http://www.oracle.com/technology/products/bi/odm/index.html
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Oracle Extensions to JDM 1.0
The ODM Java API adds functionality that is not part of the JDM standards. The 
Oracle extensions to the JDM API provide the following major additional features:

■ Feature Extraction with the Non-Negative Matrix Factorization (NMF) algorithm

■ Orthogonal Partitioning Clustering (O-Cluster), an Oracle-proprietary clustering 
algorithm 

■ Adaptive Bayes Network (ABN), an Oracle-proprietary classification algorithm

■ Transformations, including discretization (binning), normalization, clipping, and 
text transformations.

■ Predictive analytic s (OraPredictTask and OraExplainTask interfaces)

Table 6–1 JDM 1.0 Standard High-Level Packages

Package Description

javax.datamining Defines the classes and interfaces used in JDM subpackages.

javax.datamining.base Defines the interfaces for top-level objects and interfaces. This 
package was introduced to avoid cyclic package dependencies.

javax.datamining.resource Defines objects that support connecting to the Data Mining 
Server and executing tasks.

javax.datamining.data Defines objects that support logical and physical data, model 
signature, taxonomy, category set, and the generic super class 
category matrix.

javax.datamining.statistics Defines objects that support attribute statistics.

javax.datamining.rule Defines objects that support rules and their predicate 
components.

javax.datamining.task Defines objects that support tasks for building, computing 
statistics, importing, and exporting models. The task package 
has an optional apply subpackage, which is mainly used for 
supervised and clustering functions.

javax.datamining.association Defines objects that support the build settings and model for 
association rules.

javax.datamining.clustering Defines objects that support the build settings, models and 
apply output for clustering.

javax.datamining.attributeimportance Defines objects that support the build settings and model for 
attribute importance.

javax.datamining.supervised Defines objects that support the build settings and model for 
supervised learning functions. This package includes optional 
subpackages for classification and regression and a test task 
that is common to both.

javax.datamining.algorithm Defines objects that support algorithm-specific settings. This 
package has optional subpackages for different algorithms.

javax.datamining.modeldetail Defines objects that support the details of various model 
representations. This package includes optional subpackages 
for different types of models.

See Also: Oracle Data Mining Java API Reference (javadoc) for 
detailed information about the ODM Java API. 
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The Java packages defined by the Oracle extensions to the JDM standards are 
summarized in Table 6–2.

Principal Objects in the ODM Java API
In the JDM standard API, named objects are objects that can be saved using the 
saveObject method of a Connection instance. All named objects are inherited from 
the javax.datamining.MiningObject interface. 

The JDM standard supports both permanent and temporary named objects. 
Permanent objects (persistentObject) are saved permanently in the database. 
Temporary objects (transientObject) exist only for the duration of the session.

The persistent and transient named objects supported by the Oracle extensions to the 
JDM API are listed in Table 6–3.

The named objects in the ODM Java API are described in the following sections.

PhysicalDataSet Object
A PhysicalDataSet object refers to the data to be used as input to a data mining 
operation. In JDM, PhysicalDatSet objects reference specific data through a 

Table 6–2 Oracle High-Level Packages that Extend the JDM 1.0 Standards

Package Description

oracle.dmt.jdm.featureextraction Defines objects related to feature extraction, which supports the 
scoring operation.

oracle.dmt.jdm.algorithm.nmf Defines objects related to the Non-Negative Matrix Factorization 
(NMF) algorithm.

oracle.dmt.jdm.algorithm.ocluster Defines objects related to the Orthogonal Partitioning Clustering 
algorithm (O-cluster)

oracle.dmt.jdm.algorithm.abn Defines objects related to the Adaptive Bayes Network (ABN) 
classification algorithm.

oracle.dmt.jdm.transform Defines objects related to data transformations.

Table 6–3 Named Objects in ODM Java API

Persistent Objects Transient Objects

Model ApplySettings

BuildSettings PhysicalDataset

Task

CostMatrix

TestMetrics

Note: The LogicalData and Taxonomy objects in the standard 
JDM API are not supported by Oracle.

See Also: "Features of a DMS Connection" on page 7-4 and "API 
Design Overview" on page 7-7.
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Uniform Resource Identifier (URI), which could specify a table, a file, or some other 
data source. 

In the ODM Java API, a PhysicalDataSet must reference a table or a view within 
the database instance referenced in the Connection. The syntax of a physical data set 
URI in the ODM Java AI is the Oracle syntax for specifying a table or a view.

[SchemaName.]TableName
or

[SchemaName.]ViewName

In JDM, PhysicalDataSet objects can support multiple data representations. Oracle 
Data Mining supports two types of data representation: single-record case, and wide 
data. The Oracle implementation requires users to specify the case-id column in the 
physical dataset. Refer to Oracle Data Mining Concepts for more details. 

In the ODM Java API, a PhysicalDataSet object is transient. It is stored in the 
Connection as an in-memory object.

BuildSettings Object
A BuildSettings object captures the high-level specifications used to build a model. 
The ODM Java API specifies a variety of mining functions: classification, regression, 
attribute importance, association, clustering, and feature extraction.

A BuildSettings object can specify a type of desired result without identifying a 
particular algorithm. If an algorithm is not specified in the BuildSettings object, 
the DMS selects an algorithm based on the build settings and the characteristics of the 
data.

BuildSettings has a verify method, which validates the input specifications for a 
model. Input must satisfy the requirements of the ODM Java API.

In the ODM Java API, a BuildSettings object is persistent. It is stored as a table 
with a user-specified name in the user schema. This settings table is interoperable with 
the PL/SQL API for data mining. Normally, you should not modify the build settings 
table manually.

Task Object
A Task object represents all the information needed to perform a mining operation. 
The execute method of the Connection object is used to start the execution of a 
mining task. 

Mining operations, which often process input tables with millions of records, can be 
time consuming. For this reason, the JDM API supports the asynchronous execution of 
mining tasks.

Mining tasks are stored as DBMS_SCHEDULER job objects in the user schema. The 
saved job object is in a DISABLED state until the execute method causes it to start 
execution.

The execute method returns a javax.datamining.ExecutionHandle object, 
which provides methods for monitoring an asynchronous task. ExecutionHandle 
methods include waitForCompletion and getStatus.

See Also: "Describing the Mining Data" on page 7-8.

See Also: "Build Settings" on page 7-9 and "Model Settings" on 
page 3-3.
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Model Object
A Model object results from the application of an algorithm to data, as specified in a 
BuildSettings object. 

Models can be used in several operations. They can be:

■ inspected, for example to examine the rules produced from a decision tree or 
association 

■ tested for accuracy 

■ applied to data for scoring 

■ exported to an external representation such as native format or PMML 

■ imported for use in the DMS

When a model is applied to data, it is submitted to the DMS for interpretation. A 
Model references its BuildSettings object as well as the Task that created it. 

TestMetrics Object
A TestMetrics object results from the testing of a supervised model with test data. 
Different test metrics are computed, depending on the type of mining function. For 
classification models, the accuracy, confusion-matrix, lift, and receiver-operating 
characteristics can be computed to access the model. Similarly for regression models, 
R-squared and RMS errors can be computed.

ApplySettings Object
An ApplySettings object allows users to tailor the results of an apply task. It 
contains a set of ordered items. Output can consist of:

■ Data to be passed through to the output from the input dataset, for example key 
attributes

■ Values computed from the apply itself, for example score, probability, and in the 
case of decision trees, rule identifiers

■ Multi-class categories for its associated probabilities. For example, in a 
classification model with target favoriteColor, users could select the specific 
colors to receive the probability that a given color is favorite

Each mining function class defines a method to construct a default ApplySettings 
object. This simplifies the programmer’s effort if only standard output is desired. For 
example, typical output for a classification apply would include the top prediction and 
its probability.

See Also:

■ "Executing Mining Tasks" on page 7-10.

■ Oracle Database PL/SQL Packages and Types Reference for more 
information about DBMS_SCHEDULER.

See Also: "Exploring Model Details" on page 7-11.

See Also: "Testing a Model" on page 7-12.

See Also: "Applying a Model for Scoring Data" on page 7-14.
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7
Using the Java API

This chapter provides information to help you get started using the Oracle Data 
Mining Java API. It describes the general design of the API, and it explains how to use 
the API to perform major mining operations in your application.

This chapter includes the following topics:

■ The Java Sample Applications

■ Setting up Your Development Environment

■ Connecting to the Data Mining Server

■ API Design Overview

■ Describing the Mining Data

■ Build Settings

■ Executing Mining Tasks

■ Building a Mining Model

■ Exploring Model Details

■ Testing a Model

■ Applying a Model for Scoring Data

■ Using a Cost Matrix

■ Using Prior Probabilities

■ Using Automated Prediction and Explain Tasks

■ Preparing the Data

The Java Sample Applications
The samples included in this chapter are taken from the Data Mining sample 
applications available on the Database companion CD. When you install the 
companion CD, the Data Mining sample applications are copied to the following 
directory.

See Also:

■ Oracle Data Mining Java API Reference (javadoc).

■ JDM 1.0 javadoc at 
http://www.oracle.com/technology/products/bi/odm

http://www.oracle.com/technology/products/bi/odm
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$ORACLE_HOME/rdbms/demo     (on Unix)
or
(%ORACLE_HOME%\rdbms\demo     (on NT)

To obtain a listing of the sample applications , simply type the following on Unix:

ls $ORACLE_HOME/rdbms/demo/dm*

Use an equivalent command on other operating systems.

Table 7–1 lists the Java sample applications.

Setting up Your Development Environment
The ODM Java API requires Oracle Database 10g Release 2 (10.2)and J2SE 1.4.2. 

To use the ODM Java API, include the following libraries in your CLASSPATH:

$ORACLE_HOME/rdbms/jlib/jdm.jar
$ORACLE_HOME/rdbms/jlib/ojdm_api.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/jdbc/lib/ojdbc14.jar
$ORACLE_HOME/oc4j/j2ee/home/lib/connector.jar
$ORACLE_HOME/jlib/orai18n.jar 
$ORACLE_HOME/jlib/orai18n-mapping.jar 

Table 7–1 The Java Sample Applications for Data Mining

Application Description

dmabdemo.java Creates an Adaptive Bayes Network model (classification).

dmaidemo.java Creates an Attribute Importance model.

dmardemo.java Creates an Association Rules model.

dmtreedemo.java Creates a Decision Tree model (classification).

dmkmdemo.java Creates a k_means model (clustering).

dmnbdemo.java Creates a Naive Bayes model (classification).

dmnmdemo.java Creates a Non_Negative Matrix Factorization model (feature 
extraction).

dmocdemo.java Creates an O-Cluster model (clustering).

dmsvcdemo.java Creates a Support Vector Machine model (classification).

dmsvodemo.java Creates a Support Vector Machine model (one-class 
classification).

dmsvrdemo.java Creates a Support Vector Machine model (regression).

dmtxtnmfdemo.java Text mining using NMF feature extraction.

dmtxtsvmdemo.java Text mining using SVM classification.

dmxfdemo.java Transformations using the Java API.

dmpademo.java Predictive Analytics using the Java API.

dmapplydemo.java Apply classification model in different ways.

dmexpimpdemo.java Native import/export of models.

See Also: Oracle Data Mining Administrator's Guide for information 
about installing, running, and viewing the sample programs. 
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$ORACLE_HOME/lib/xmlparserv2.jar

Connecting to the Data Mining Server
The first job of a data mining application is to connect to the Data Mining Server 
(DMS), which is the data mining engine and metadata repository within the Oracle 
Database. 

The DMS connection is encapsulated in a Connection object, which provides the 
framework for a data mining application. The Connection object serves the 
following purposes:

■ Authenticates users

■ Supports retrieval and storage of named objects

■ Supports the execution of mining tasks

■ Provides version information for the JDM implementation and provider

The DMS Connection object is described in detail in "Features of a DMS Connection" 
on page 7-4.

Connection Factory
A Connection is created from a ConnectionFactory, an interface provided by the 
JDM standard API. You can lookup a ConnectionFactory from the JNDI server, or 
you can create a ConnectionFactory using an OraConnectionFactory object. 

Create a ConnectionFactory Using OraConnectionFactory
//Create OraConnectionFactory
javax.datamining.resource.ConnectionFactory connFactory = 
                 oracle.dmt.jdm.resource.OraConnectionFactory();

Create a ConnectionFactory From the JNDI Server
//Setup the initial context to connect to the JNDI server
Hashtable env = new Hashtable();
env.put( Context.INITIAL_CONTEXT_FACTORY,
"oracle.dmt.jdm.resource.OraConnectionFactory" );
env.put( Context.PROVIDER_URL, "http://myHost:myPort/myService" );
env.put( Context.SECURITY_PRINCIPAL, "user" );
env.put( Context.SECURITY_CREDENTIALS, "password" );
InitialContext jndiContext = new javax.naming.InitialContext( env );
// Perform JNDI lookup to obtain the connection factory
javax.datamining.resource.ConnectionFactory dmeConnFactory =
(ConnectionFactory) jndiContext.lookup("java:comp/env/jdm/MyServer");
//Lookup ConnectionFactory
javax.datamining.resource.ConnectionFactory connFactory = 
  (ConnectionFactory) jndiContext.lookup("java:comp/env/jdm/MyServer");

Note: The JDM API uses the general term DME (Data Mining 
Engine). In the ODM Java API, the term DME refers to the Oracle 
DMS.

http://myHost:myPort/myService
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Managing the DMS Connection
You can choose to pre-create the JDBC connection to the DMS, or you can manage it 
through the ODM Java API. If you pre-create the JDBC connection, your data mining 
application can access the connection caching features of JDBC. When the ODM Java 
API manages the JDBC connection, caching is not available to your application.

Pre-Create the JDBC Connection
To pre-create the JDBC connection, create an OracleDataSource for an 
OraConnectionFactory. 

//Create an OracleDataSource
OracleDataSource ods = new OracleDataSource();
ods.setURL(URL);
ods.setUser(user);
ods.setPassword(password);
 
//Create a connection factory using the OracleDataSource
javax.datamining.resource.ConnectionFactory connFactory = 
  oracle.dmt.jdm.resource.OraConnectionFactory(ods);
//Create DME Connection
javax.datamining.resource.Connection dmeConn = 
    connFactory.getConnection();

Use a ConnectionSpec for the DMS Connection
To manage the JDBC connection within the ODM Java API, create an empty 
ConnectionSpec instance using the getConnectionSpec() method of 
OraConnectionFactory. 

//Create ConnectionSpec
ConnectionSpec connSpec = m_dmeConnFactory.getConnectionSpec();
connSpec.setURI("jdbc:oracle:thin:@host:port:sid");
connSpec.setName("user");
connSpec.setPassword("password");          
 
//Create DME Connection
javax.datamining.resource.Connection m_dmeConn = 
m_dmeConnFactory.getConnection(connSpec);

Features of a DMS Connection
In the ODM Java API, the DMS Connection is the primary factory object. The 
Connection instantiates the object factories using the getFactory method. The 
Connection object provides named object lookup, persistence, and task execution 
features.

Create Object Factories
The Connection.getFactory method creates a factory object. For example, to 
create a factory for the PhysicalDataSet object, pass the absolute name of the object 
to this method. The getFactory method creates an instance of 
PhysicalDataSetFactory. 

javax.datamining.data.PhysicalDataSetFactory pdsFactory =
                dmeConn.getFactory("javax.datamining.data.PhysicalDataSet");

See Also: Oracle Database JDBC Developer's Guide and Reference for 
information about connection caching.
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Provide Access to Mining Object Metadata
The Connection object provides methods for retrieving metadata about mining 
objects. 

You can obtain additional information about persistent mining objects by querying the 
Oracle data dictionary tables. 

Save and Retrieve Mining Objects
The Connection object provides methods for retrieving mining objects and saving 
them in the DMS. Persistent objects are stored as database objects. Transient objects are 
stored in memory.

Execute Mining Tasks
The Connection object provides an execute method, which can execute mining 
tasks either asynchronously or synchronously. The DMS uses the database Scheduler 
to execute mining tasks, which are stored in the user’s schema as Scheduler jobs. 

Method Description

getCreationDate Returns the creation date of the specified named object.

getCreationDate(java.lang.String objectName,
                 NamedObject objectType)
     returns java.util.Date

getDescription Returns the description of the specified mining object.

getDescription(java.lang.String objectName,
                NamedObject objectType)
     returns java.lang.String 

getObjectNames Returns a collection of the names of the objects of the specified type.

getObjectNames(NamedObject objectType)
     returns java.util.Collection

Method Description

saveObject Saves the named object in the metadata repository associated with the 
connection.

saveObject(java.lang.String name, MiningObject object,
            boolean replace)

retrieveObject Retrieves a copy of the specified named object from the metadata 
repository associated with the connection.

retrieveObject(java.lang.String objectIdentifier)
    returns MiningObject 

retrieveObject Retrieves a copy of the object with the specified name and type from 
the metadata repository associated with the connection.

retrieveObject(java.lang.String name, 
                NamedObject objectType)
     returns MiningObject 

See Also:

■ "Principal Objects in the ODM Java API" on page 6-3.

■ "API Design Overview" on page 7-7.
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Synchronous execution is typically used with single record scoring, but it may be used 
in other contexts as well.

Retrieve DMS Capabilities and Metadata
The Connection object provides methods for obtaining information about the DMS 
at runtime. 

Retrieve Version Information
The Connection object provides methods for retrieving JDM standard version 
information and Oracle version information. 

Task Execution execute method syntax

asynchronous execute(java.lang.String taskName)
     returns ExecutionHandle                 

synchronous execute(Task task,java.lang.Long timeout))
     returns ExecutionHandle                 

See Also:

■ "Task Object" on page 6-4 

■ "Executing Mining Tasks" on page 7-10

■ Oracle Database Administrator's Guide for information about the 
database Scheduler.

Method Description

getMetaData Returns information about the underlying DMS instance 
represented through an active connection. 
ConnectionMetaData provides version information for the 
JDM implementation and Oracle Database.

getMetaData()
      returns ConnectionMetaData

getSupportedFunctions Returns an array of mining functions that are supported by 
the implementation.

getSupportedFunctions()
     returns MiningFunction[]

getSupportedAlgorithms Returns an array of mining algorithms that are supported by 
the specified mining function.

getSupportedAlgorithms(MiningFunction function)
     returns MiningAlgorithm[]

supportsCapability Returns true if the specified combination of mining 
capabilities is supported. If an algorithm is not specified, 
returns true if the specified function is supported.

supportsCapability(MiningFunction function,
                    MiningAlgorithm algorithm, 
                    MiningTask taskType)
     returns boolean
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API Design Overview
Object factories are central to the design of JDM. The ODM Java API uses object 
factories for instantiating mining objects. 

javax.datamining is the base package for the JDM standard defined classes.

oracle.dmt.jdm is the base package for the Oracle extensions to the JDM standard.

The packages in the JDM standard API are organized by mining functions and 
algorithms. For example, the javax.datamining.supervised package contains all 
the classes that support supervised functions. It has subpackages for classification and 
regression classes.

javax.datamining.supervised.classification
javax.datamining.supervised.regression

Similarly, javax.datamining.algorithm is the base package for all algorithms. 
Each algorithm has its own subpackage. The JDM standard supports algorithms such 
as naive bayes and support vector machines.

javax.datamining.algorithm.naivebayes
javax.datamining.algorithm.svm

The ODM Java API follows a similar package structure for the extensions. For 
example, the ODM Java API supports Feature Extraction, a non-JDM standard 
function, and the Non-Negative Matrix Factorization algorithm that is used for feature 
extraction.

oracle.dmt.jdm.featureextraction
oracle.dmt.jdm.algorithm.nmf

The JDM standard has core packages that define common classes and packages for 
tasks, model details, rules and statistics. Figure 7–1 illustrates the inheritance hierarchy 
of the named objects. 

Method Description

getVersion Returns the version of the JDM Standard API. It must be "JDM 1.0" 
for the first release of JDM.

getVersion()
     returns String

getMajorVersion Returns the major version number. For the first release of JDM, this 
is "1".

getMajorVersion()
     returns int

getMinorVersion Returns the minor version number. For the first release of JDM, this 
is "0".

getMinorVersion()
     returns int

getProviderName Returns the provider name as "Oracle Corporation".

getProviderName()
     returns String

getProviderVersion Returns the version of the Oracle Database that shipped the Oracle 
Data Mining Java API jar file.

getProviderVersion()
     returns String       
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Figure 7–1 JDM Named Objects Class Diagram

Describing the Mining Data
The JDM standard defines physical and logical data objects to describe the mining 
attribute characteristics of the data as well as statistical computations for describing 
the data. 

In the ODM Java API, only physical data objects are supported. Data can be logically 
represented with database views. The DBMS_STATS package can be used for statistical 
computations. 

The javax.datamining.data package contains all the data-related classes. The 
class diagram in Figure 7–2 illustrates the class relationships of the data objects 
supported by the ODM Java API. 

Figure 7–2 Data Objects in Oracle Data Mining Java API

The following code illustrates the creation of a PhysicalDataSet object. It refers to 
the view DMUSER.MINING_DATA_BUILD_V and specifies the column cust_id as 
case-id using the PhysicalAttributeRole.

//Create PhysicalDataSetFactory
PhysicalDataSetFactory pdsFactory = 
     (PhysicalDataSetFactory)m_dmeConn.getFactory
     ("javax.datamining.data.PhysicalDataSet");
//Create a PhysicalDataSet object
PhysicalDataSet buildData = 
     pdsFactory.create("DMUSER.MINING_DATA_BUILD_V", false);
//Create PhysicalAttributeFactory 
PhysicalAttributeFactory paFactory =
     (PhysicalAttributeFactory)m_dmeConn.getFactory
     ("javax.datamining.data.PhysicalAttribute");
//Create PhysicalAttribute object
PhysicalAttribute pAttr = paFactory.create
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     ("cust_id", AttributeDataType.integerType, PhysicalAttributeRole.caseId );
//Add the attribute to the PhysicalDataSet object
buildData.addAtribute(pAttr);
//Save the physical data set object
dmeConn.saveObject("JDM_BUILD_PDS", buildData, true);

Build Settings
In the ODM Java API, the BuildSettings object is saved as a table in the database. 
The settings table is compatible with the DBMS_DATA_MINING.CREATE_MODEL 
procedure. The name of the settings table must be unique in the user’s schema. 
Figure 7–3 illustrates the build settings class hierarchy.

Figure 7–3 Build Settings Class Diagram.

The following code illustrates the creation and storing of a classification settings object 
with a tree algorithm.

//Create a classification settings factory
ClassificationSettingsFactory clasFactory = 
(ClassificationSettingsFactory)dmeConn.getFactory
     ("javax.datamining.supervised.classification.ClassificationSettings");
//Create a ClassificationSettings object
ClassificationSettings clas = clasFactory.create();
//Set target attribute name
clas.setTargetAttributeName("AFFINITY_CARD");
//Create a TreeSettingsFactory
TreeSettingsFactory treeFactory =
(TreeSettingsFactory)dmeConn.getFactory
     ("javax.datamining.algorithm.tree.TreeSettings");
//Create TreeSettings instance
TreeSettings treeAlgo = treeFactory.create();
treeAlgo.setBuildHomogeneityMetric(TreeHomogeneityMetric.entropy);
treeAlgo.setMaxDepth(10);
treeAlgo.setMinNodeSize( 10, SizeUnit.count );
//Set algorithm settings in the classification settings
clas.setAlgorithmSettings(treeAlgo);
//Save the build settings object in the database
dmeConn.saveObject("JDM_TREE_CLAS", clas, true);
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Executing Mining Tasks
The ODM Java API uses the DBMS_SCHEDULER infrastructure for executing mining 
tasks either synchronously or asynchronously in the database. A mining task is saved 
as a DBMS_SCHEDULER job in the user’s schema. Its initial state is DISABLED. When 
the user calls the execute method in the DMS Connection, the job state is changed 
to ENABLED. 

The class diagram in Figure 7–4 illustrates the different types of tasks that are available 
in the ODM Java API.

Figure 7–4 Task Class Diagram

DBMS_SCHEDULER provides additional scheduling and resource management features. 
You can extend the capabilities of ODM tasks by using the Scheduler infrastructure. 

Building a Mining Model
The javax.datamining.task.BuildTask class is used to build a mining model. 
Prior to building a model, a PhysicalDataSet object and a BuildSettings object 
must be saved. 

The following code illustrates the building of a tree model using the 
PhysicalDataSet described in "Describing the Mining Data" on page 7-8 and the 
BuildSettings described in "Build Settings" on page 7-9.

//Create BuildTaskFactory
BuildTaskFactory buildTaskFactory =
     dmeConn.getFactory("javax.datamining.task.BuildTask");
//Create BuildTask object
BuildTask buildTask = buildTaskFactory.create
     ( "JDM_BUILD_PDS","JDM_TREE_CLAS","JDM_TREE_MODEL"); 

See Also: Oracle Database Administrator's Guide for information 
about the database scheduler.
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//Save BuildTask object
dmeConn.saveObject("JDM_BUILD_TASK", buildTask, true);
//Execute build task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_BUILD_TASK");
//Wait for completion of the task

Exploring Model Details
After building a model using the BuildTask, a model object is persisted in the 
database. It can be retrieved to explore the model details. 

The class diagram in Figure 7–5 illustrates the different types of model objects and 
model details objects supported by the ODM Java API.

Figure 7–5 Model and Model Detail Class Diagram

The following code illustrates the retrieval of the classification tree model built in 
"Building a Mining Model" on page 7-11 and its TreeModelDetail.

//Retrieve classification model from the DME
ClassificationModel treeModel = (ClassificationModel)dmeConn.retrieveObject
     ( "JDM_TREE_MODEL", NamedObject.model);
//Retrieve tree model detail from the model
TreeModelDetail treeDetail = (TreeModelDetail)treeModel.getModelDetail();
//Get the root node
TreeNode rootNode = treeDetail.getRootNode();
//Get child nodes
TreeNode[] childNodes = rootNode.getChildren();
//Get details of the first child node
int nodeId = childNodes[0].getIdentifier();
long caseCount = childNodes[0].getCaseCount();
Object prediction = childNodes[0].getPrediction();
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Testing a Model
Once a supervised model has been built, it can be evaluated using a test operation. The 
JDM standard defines two types of test operations: one that takes the mining model as 
input, and the other that takes the apply output table with the actual and predicted 
value columns.

javax.datamining.supervised.TestTask is the base class for the model- based 
test tasks, and javax.datamining.supervised.TestMetricsTask is the base 
class for the apply output table-based test tasks.

The test operation creates and persists a test metrics object in the DMS. For 
classification model testing, either of the following can be used:

javax.datamining.supervised.classification.ClassificationTestTask
javax.datamining.supervised.classification.ClassificationTestMetricsTask

Both of these tasks create a named object:

javax.datamining.supervised.classification.ClassificationTestMetrics

The ClassificationTestMetrics named object is stored as a table in the user’s 
schema. The name of the table is the name of the object. The confusion matrix, lift 
results, and ROC associated with the ClassificationTestMetrics object are 
stored in separate tables whose names are the ClassificationTestMetrics object 
name followed by the suffix _CFM, _LFT, or _ROC. Tools such as Oracle Discoverer can 
display the test results by querying these tables.

Similarly for regression model testing, either of the following can be used:

javax.datamining.supervised.regression.RegressionTestTask
javax.datamining.supervised.regression.RegressionTestMtericsTask

Both these tasks create a named object

javax.datamining.supervised.regression.RegressionTestMetrics

and store it as a table in the user schema.

The class diagram in Figure 7–6 illustrates the test metrics class hierarchy. It refers to 
"Build Settings" on page 7-9 for the class hierarchy of test tasks.

Figure 7–6 Test Metrics Class Hierarchy

The following code illustrates the test of a tree model JDM_TREE_MODEL using the 
ClassificationTestTask on the dataset MINING_DATA_TEST_V.

//Create & save PhysicalDataSpecification      
PhysicalDataSet testData = m_pdsFactory.create(
        "MINING_DATA_TEST_V", false );
PhysicalAttribute pa = m_paFactory.create("cust_id", 
        AttributeDataType.integerType, PhysicalAttributeRole.caseId );
testData.addAttribute( pa );
m_dmeConn.saveObject( "JDM_TEST_PDS", testData, true );
//Create ClassificationTestTaskFactory
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ClassificationTestTaskFactory testTaskFactory =  
  (ClassificationTestTaskFactory)dmeConn.getFactory(
     "javax.datamining.supervised.classification.ClassificationTestTask");
//Create, store & execute Test Task
ClassificationTestTask testTask = testTaskFactory.create( 
        "JDM_TEST_PDS", "JDM_TREE_MODEL", "JDM_TREE_TESTMETRICS" );
testTask.setNumberOfLiftQuantiles(10);
testTask.setPositiveTargetValue(new Integer(1));
//Save TestTask object
dmeConn.saveObject("JDM_TEST_TASK", testTask, true);
//Execute test task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_TEST_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);
//Explore the test metrics after successful completion of the task
if(ExecutionState.success.equals(execStatus.getState())) {
  //Retrieve the test metrics object
  ClassificationTestMetrics testMetrics =  
          (ClassificationTestMetrics)dmeConn.getObject("JDM_TREE_TESTMETRICS");
  //Retrieve confusion matrix and accuracy
  Double accuracy = testMetrics.getAccuracy();
  ConfusionMatrix cfm = testMetrics.getConfusionMatrix();
  //Retrieve lift 
  Lift lift = testMetrics.getLift();
  //Retrieve ROC
  ReceiverOperatingCharacterics roc = testMetrics.getROC();
}  

In the preceding example, a test metrics object is stored as a table called JDM_TREE_
TESTMETRICS. The confusion matrix is stored in the JDM_TREE_TESTMETRICS_CFM 
table, lift is stored in the JDB_TREE_TESTMETRICS_LFT table, and ROC is stored in 
the JDM_TREE_TESTMETRICS_ROC table. You can use BI tools like Oracle Discoverer 
to query these tables and create reports.

Applying a Model for Scoring Data
All supervised models can be applied to data to find the prediction. Some of the 
unsupervised models, such as clustering and feature extraction, support the apply 
operation to find the cluster id or feature id for new records. 

The JDM standard API provides an ApplySettings object to specify the type of 
output for the scored results. javax.datamining.task.apply.ApplySettings 
is the base class for all apply settings. In the ODM Java API, the ApplySettings 
object is transient; it is stored in the Connection context, not in the database. 

The class diagram in Figure 7–7 illustrates the class hierarchy of the apply settings 
available in the ODM Java API. 
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Figure 7–7 Apply Settings

In the ODM Java API, default apply settings produce the apply output table in fixed 
format. The list in Table 7–2 illustrates the default output formats for different 
functions.

All types of apply settings support source and destination attribute mappings. For 
example, if the original apply table has customer name and age columns that need to 
be carried forward to the apply output table, it can be done by specifying the source 
destination mappings in the apply settings.

In the ODM Java API, classification apply settings support map by rank, top 
prediction, map by category, and map all predictions. Regression apply settings 
support map prediction value. Clustering apply settings support map by rank, map by 
cluster id, map top cluster, and map all clusters. Feature extraction apply settings 
support map by rank, map by feature id, map top feature, and map all features. 

The following code illustrates the applying of a tree model JDM_TREE_MODEL using 
ClassificationApplyTask on the dataset MINING_DATA_APPLY_V.

//Create & save PhysicalDataSpecification      
PhysicalDataSet applyData = m_pdsFactory.create( "MINING_DATA_APPLY_V", false );
PhysicalAttribute pa = m_paFactory.create("cust_id", 
        AttributeDataType.integerType, PhysicalAttributeRole.caseId );
applyData.addAttribute( pa );
m_dmeConn.saveObject( "JDM_APPLY_PDS", applyData, true );
//Create ClassificationApplySettingsFactory
ClassificationApplySettingsFactory applySettingsFactory =  
  (ClassificationApplySettingsFactory)dmeConn.getFactory(
     "javax.datamining.supervised.classification. ClassificationApplySettings");
//Create & save ClassificationApplySettings
ClassificationApplySettings clasAS = applySettingsFactory.create();
m_dmeConn.saveObject( "JDM_APPLY_SETTINGS", clasAS, true);
//Create DataSetApplyTaskFactory
DataSetApplyTaskFactory applyTaskFactory =  
  (DataSetApplyTaskFactory)dmeConn.getFactory(
     "javax.datamining.task.apply.DataSetApplyTask");

Table 7–2 Default Output Formats for Different Functions

Mining Function

Classification without Cost Case ID Prediction Probability

Classification with Cost Case ID Prediction Probability Cost

Regression Case ID Prediction

Clustering Case ID Cluster ID Probability

Feature extraction Case ID Feature ID Value
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//Create, store & execute apply Task
DataSetApplyTask applyTask = m_dsApplyFactory.create(
        " JDM_APPLY_PDS ", "JDM_TREE_MODEL", " JDM_APPLY_SETTINGS ", 
        "JDM_APPLY_OUTPUT_TABLE");
//Save ApplyTask object
dmeConn.saveObject("JDM_APPLY_TASK", applyTask, true);
//Execute test task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_APPLY_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using a Cost Matrix
The class javax.datamining.supervised.classification.CostMatrix is 
used to represent the costs of the false positive and false negative predictions. It is 
used for classification problems to specify the costs associated with the false 
predictions.

In the ODM Java API, cost matrix is supported in apply and test operations for all 
classification models. For the decision tree algorithm, a cost matrix can be specified at 
build time. For more information about cost matrix, see Oracle Data Mining Concepts. 

The following code illustrates how to create a cost matrix object where the target has 
two classes: YES (1) and NO (0). Suppose a positive (YES) response to the promotion 
generates $2 and the cost of the promotion is $1. Then the cost of misclassifying a 
positive responder is $2. The cost of misclassifying a non-responder is $1. 

//Create category set factory & cost matrix factory
CategorySetFactory catSetFactory = (CategorySetFactory)m_dmeConn.getFactory(
      "javax.datamining.data.CategorySet" );
CostMatrixFactory costMatrixFactory = (CostMatrixFactory)m_dmeConn.getFactory(
      "javax.datamining.supervised.classification.CostMatrix");
//Create categorySet
CategorySet catSet = m_catSetFactory.create(AttributeDataType.integerType);
//Add category values
catSet.addCategory(new Integer(0), CategoryProperty.valid);
catSet.addCategory(new Integer(1), CategoryProperty.valid);
//create cost matrix
CostMatrix costMatrix = m_costMatrixFactory.create(catSet);
costMatrix.setValue(new Integer(0), new Integer(0), 0);
costMatrix.setValue(new Integer(1), new Integer(1), 0);
costMatrix.setValue(new Integer(0), new Integer(1), 2);
costMatrix.setValue(new Integer(1), new Integer(0), 1);
//Save cost matrix in the DME
dmeConn.saveObject("JDM_COST_MATRIX", costMatrix);        

Using Prior Probabilities
Prior probabilities are used for classification problems if the actual data has a different 
distribution for target values than the data provided for the model build. A user can 
specify the prior probabilities in the classification function settings, using 
setPriorProbabilitiesMap. For more information about prior probabilities, see 
Oracle Data Mining Concepts.

Note: Priors are not supported with decision trees. 
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The following code illustrates how to create a PriorProbabilities object, when 
the target has two classes: YES (1) and NO (0), and probability of YES is 0.05, 
probability of NO is 0.95. 

//Set target prior probabilities
Map priorMap = new HashMap();
priorMap.put(new Double(0), new Double(0.7));
priorMap.put(new Double(1), new Double(0.3));
buildSettings.setPriorProbabilitiesMap("affinity_card", priorMap);

Using Automated Prediction and Explain Tasks
The ODM Java API provides oracle.dmt.jdm.task.OraPredictTask and 
oracle.dmt.jdm.task.OraExplainTask for generating predictions and 
explaining attribute importance. These tasks automate the predict and explain 
operations for data mining novice users.

OraPredictTask predicts the value of a target column based on cases where the 
target is not null. OraPredictTask uses known data values to automatically create a 
model and populate the unknown values in the target.

OraExplainTask identifies attribute columns that are important for explaining the 
variation of values in a given column. OraExplainTask analyzes the data and builds 
a model that identifies the important attributes and ranks their importance. 

Both of these tasks do the automated data preparation where needed.

The following code illustrates OraPredictTask and OraExplainTask.

//Predict task
   //Create predict task factory and task object
   OraPredictTaskFactory predictFactory = 
    (OraPredictTaskFactory)m_dmeConn.getFactory(
      "oracle.dmt.jdm.task.OraPredictTask");
   OraPredictTask predictTask = m_predictFactory.create(
                     "MINING_DATA_BUILD_V", //Input table
                     "cust_id", //Case id column
                     "affinity_card", //target column
                     "JDM_PREDICTION_TABLE"); //prediction output table
   //Save predict task object
   dmeConn.saveObject("JDM_PREDICT_TASK", predictTask, true);
   //Execute test task asynchronously in the database
   ExecutionHandle execHandle = dmeConn.execute("JDM_PREDICT_TASK");
   //Wait for completion of the task
   ExecutionStatus execStatus = 
       execHandle.waitForCompletion(Integer.MAX_VALUE);                         
//Explain task
   //Create explain task factory and task object
   OraExplainTaskFactory explainFactory =
      (OraExplainTaskFactory)m_dmeConn.getFactory(
      "oracle.dmt.jdm.task.OraExplainTask");
   OraExplainTask explainTask = m_explainFactory.create(
                     "MINING_DATA_BUILD_V", //Input table
                     "affinity_card", //explain column
                     "JDM_EXPLAIN_TABLE"); //explain output table
   //Save predict task object
   dmeConn.saveObject("JDM_EXPLAIN_TASK", explainTask, true);
   //Execute test task asynchronously in the database
   ExecutionHandle execHandle = dmeConn.execute("JDM_ EXPLAIN_TASK");
   //Wait for completion of the task
   ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);
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Preparing the Data
In the ODM Java API, data must be prepared before building, applying, or testing a 
model. The oracle.dmt.jdm.task.OraTransformationTask class supports 
common transformations used in data mining: binning, normalization, clipping, and 
text transformations. For more information about transformations, see Oracle Data 
Mining Concepts.

The class diagram in Figure 7–8 illustrates the OraTransformationTask and its 
relationship with other objects.

Figure 7–8 OraTransformationTask and its Relationship With Other Objects

Using Binning/Discretization Transformation
Binning is the process of grouping related values together, thus reducing the number 
of distinct values for an attribute. Having fewer distinct values typically leads to a 
more compact model and one that builds faster, but it can also lead to some loss in 
accuracy.

The class diagram in Figure 7–9 illustrates the binning transformation classes.

Figure 7–9 OraBinningTransformation Class Diagram

Here, OraBinningTransformation contains all the settings required for binning. 
The ODM Java API supports top-n, custom binning for categorical attributes, and 
equi-width, quantile and custom binning for numerical attributes. After running the 
binning transformations, it creates a transformed table and bin boundary tables in the 
user’s schema. The user can specify the bin boundary table names, or the system will 
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generate the names for the bin boundary tables. This facilitates the reusing of the bin 
boundary tables that are created for binning build data for apply and test data.

The following code illustrates the binning operation on the view MINING_BUILD_
DATA_V

//Create binning transformation instance
OraBinningTransformFactory binXformFactory = 
   (OraBinningTransformFactory)dmeConn.getFactory(
      "oracle.dmt.jdm.transform.binning.OraBinningTransform");
OraBinningTransform binTransform = m_binXformFactory.create(
      "MINING_DATA_BUILD_V", // name of the input data set
      "BINNED_DATA_BUILD_V", // name of the transformation result 
      true); // result of the transformation is a view  
// Specify the number of numeric bins
binTransform.setNumberOfBinsForNumerical(10);
// Specify the number of categoric bins
binTransform.setNumberOfBinsForCategorical(8);
// Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
binTransform.setExcludeColumnList(excludedList);
// Specify the type of numeric binning: equal-width or quantile
       ( default is quantile )
binTransform.setNumericalBinningType(binningType);
// Specify the type of categorical binning as Top-N: by default it is none   
binTransform.setCategoricalBinningType(OraCategoricalBinningType.top_n);
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(binTransform);
//Save transformation task object
dmeConn.saveObject("JDM_BINNING_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_ BINNING _TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE); 

Using Normalization Transformation
Normalizing converts individual attribute values in such a way that all attribute 
values lie in the same range. Normally, values are converted to be in the range 0.0 to 
1.0 or the range -1 to +1. Normalization ensures that attributes do not receive artificial 
weighting caused by differences in the ranges that they span.

The class diagram in Figure 7–10 illustrates the normalization transformation classes.

Figure 7–10 OraNormalizeTransformation Class Diagram

Here, OraNormalizeTransformation contains all the settings required for 
normalization. The ODM Java API supports z-Score, min-max, and linear scale 
normalizations. Normalization is required for SVM, NMF, and k-Means algorithms.

The following code illustrates normalization on the view MINING_BUILD_DATA_V.
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//Create OraNormalizationFactory
OraNormalizeTransformFactory normalizeXformFactory = 
  (OraNormalizeTransformFactory)m_dmeConn.getFactory(
      "oracle.dmt.jdm.transform.normalize.OraNormalizeTransform");
//Create OraNormalization
OraNormalizeTransform normalizeTransform = m_normalizeXformFactory.create(
      "MINING_DATA_BUILD_V", // name of the input data set
      "NORMALIZED_DATA_BUILD_V", // name of the transformation result 
      true, // result of the transformation is a view
      OraNormalizeType.z_Score, //Normalize type
      new Integer(6) ); //Rounding number    
// Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
normalizeTransform.setExcludeColumnList(excludedList);
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(normalizeTransform);
//Save transformation task object
dmeConn.saveObject("JDM_NORMALIZE_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_NORMALIZE_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using Clipping Transformation
Some computations on attribute values can be significantly affected by extreme values. 
One approach to achieving a more robust computation is to either winsorize or trim 
the data using clipping transformations.

Winsorizing involves setting the tail values of a particular attribute to some specified 
value. For example, for a 90% winsorization, the bottom 5% are set equal to the 
minimum value in the 6th percentile, while the upper 5% are set equal to the value 
corresponding to the maximum value in the 95th percentile.

Trimming "removes" the tails in the sense that trimmed values are ignored in further 
values. This is achieved by setting the tails to NULL.

The class diagram in Figure 7–11 illustrates the clipping transformation classes.

Figure 7–11 OraClippingTransformation Class Diagram

Here, OraClippingTransformation contains all the settings required for clipping. 
The ODM Java API supports winsorize and trim types of clipping.

The following code illustrates clipping on the view MINING_BUILD_DATA_V.

//Create OraClippingTransformFactory
OraClippingTransformFactory clipXformFactory = 
  (OraClippingTransformFactory)dmeConn.getFactory(
      "oracle.dmt.jdm.transform.clipping.OraClippingTransform");
//Create OraClippingTransform
OraClippingTransform clipTransform = clipXformFactory.create(
      "MINING_DATA_BUILD_V", // name of the input data set
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      "WINSORISED_DATA_BUILD_V", // name of the transformation result 
      true );// result of the transformation is a view    
//Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
clipTransform.setExcludeColumnList(excludedList);
//Specify the type of clipping
clipTransform.setClippingType(OraClippingType.winsorize);
// Specify the tail fraction as 3% of values on both ends
clipTransform.setTailFraction(0.03);
//Create and save transformation task
OraTransformationTask xformTask = xformTaskFactory.create(clipTransform);
//Save transformation task object
dmeConn.saveObject("JDM_CLIPPING_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_CLIPPING_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using Text Transformation
Text columns need to be transformed to nested table structure to do the mining on text 
columns. This transformation converts the text columns to nested table columns. A 
features table is created by text transformation. A model build text data column 
features table must be used for apply and test tasks to get the correct results.

The class diagram in Figure 7–12 illustrates the text transformation classes.

Figure 7–12 Text Transformation Class Diagram

Here, OraTextTransformation is used to specify the text columns and the feature 
tables associated with the text columns.

The following code illustrates clipping on the table MINING_BUILD_TEXT.

//Create OraTextTransformFactory
OraTextTransformFactory textXformFactory = dmeConn.getFactory(
      "oracle.dmt.jdm.transform.text.OraTextTransform");
//Create OraTextTransform
OraTextTransform txtXform = (OraTextTransformImpl)textXformFactory.create(
      "MINING_BUILD_TEXT", // name of the input data set
      "NESTED_TABLE_BUILD_TEXT ", // name of the transformation result
      "CUST_ID", //Case id column
      new String[] { "COMMENTS" } ); //Text column names 
      );
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(txtXform);
//Save transformation task object
dmeConn.saveObject("JDM_TEXTXFORM_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_TEXTXFORM_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion
     (Integer.MAX_VALUE);
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8
Converting to the ODM 10.2 Java API

This chapter will assist you in converting your data mining applications from the 10.1 
proprietary Java API to the standard-compliant Java API available with Oracle 10g 
Release 2 (10.2). 

This chapter includes the following topics:

■ Comparing the 10.1 and 10.2 Java APIs

■ Converting Your Applications

Comparing the 10.1 and 10.2 Java APIs
The new ODM Java API available with Oracle 10g Release 2 (10.2)is standardized 
under the Java Community Process and is fully compliant with the JDM 1.0 standard. 
Oracle supports open standards for Java and is one of the primary vendors that 
implements JDM.

The ODM 10.2 JDM-based API replaces the proprietary Java API for data mining that 
was available with Oracle 10.1. 

Table 8–1 lists the major differences between the ODM 10.1 and ODM 10.2 Java APIs.

See Also:

■ JSR-000073 Data Mining API page of the Java Community Process Web 
Site at 
http://jcp.org/aboutJava/communityprocess/final/jsr073

■ JDM 1.0 javadoc at 
http://www.oracle.com/technology/products/bi/odm

■ Oracle Data Mining Java API Reference (ODM 10.2 javadoc)

Note: The proprietary Java API is no longer supported in ODM 10.2. 

If you have created applications in 10.1 and you want to use them in 
your Oracle 10.2 installation, you must convert them to use the 10.2 
API.

http://jcp.org/aboutJava/communityprocess/final/jsr073
http://www.oracle.com/technology/products/bi/odm
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Table 8–1 Differences Between Oracle 10.1 and 10.2 Java APIs for Data Mining

Feature ODM 10.1 Java API ODM 10.2 Java API

Standards Oracle proprietary Java API designed for 
accessing data mining functionality in the 
Database. Not supported in Oracle 10.2.

Java industry standard API defined under Java 
Community Process (JCP). ODM 10.2 implements 
conformant subsets of the standard along with 
Oracle proprietary extensions.

Interoperability with 
DBMS_DATA_MINING 
PL/SQL API

Not interoperable with models created by the 
PL/SQL API.

Interoperable with PL/SQL API. All objects created 
using the ODM 10.2 Java API can be used with the 
PL/SQL API. Results and values are consistent with 
the PL/SQL API.

Functions and 
algorithms

Classification function

■ NB, ABN, SVM

Clustering function

■ k-Means, O-Cluster

Regression function

■ SVM

Association function

■ Apriori

Attribute Importance function

■ MDL

Feature Extraction function

■ NMF

Classification function

■ NB, ABN, SVM, Tree

Clustering function

■ k-Means (PL/SQL API version), OCluster

Regression function

■ SVM

Association function

■ Apriori

Attribute Importance function

■ MDL

Feature Extraction function

■ NMF

Object creation Primarily designed as Java classes. Objects are 
instantiated using constructors or static create 
methods.

Uses the factory method pattern to instantiate 
objects. javax.dataminig.Connection is the 
primary factory for all other object factories. Oracle 
extensions follow the same pattern for object 
creation.

Task execution Tasks executed by  
oracle.dmt.odm.task.MiningTask.

ExecutionHandle and MiningTaskStatus 
used for task execution tracking. 

Asynchronous task execution implemented by 
DBMS_JOB.

Tasks executed by   
javax.datamining.Connection. 

ExecutionHandle and 
ExecutionStatus used for task execution 
tracking. 

Asynchronous task execution implemented by  
DBMS_SCHEDULER.

Data Supports both physical and logical data 
representations.

Supports transactional and non-transactional 
format. Transactional format enables sparse data 
representation and wide data (>1000 columns)

Supports only physical data representation. Logical 
data can be represented with database views.

Supports nested tables in place of transactional 
format.

Settings for model 
building

Settings for model building created by 
oracle.dmt.odm.settings.function.
MiningFunctionSettings

Settings for model building created by 
javax.datamining.base.BuildSettings. 

Settings are saved as a table in the user’s schema. 
The name of the BuildSettings object must be 
unique in the namespace of the table object. 

Model Models represented by 
oracle.dmt.odm.model.MiningModel. 

The MiningModel object stores the automated 
transformation details.

Models represented by 
javax.datamining.base.Model. 

The Model object does not store transformation 
details. Applications must manage the 
transformation details.

Cost matrix Cost matrix represented by 
oracle.dmt.odm.CostMatrix. 

Cost matrix for all classification algorithms is 
specified at build time, even though the cost 
matrix is used as a post-processing step to the 
apply operation.

Cost matrix represented by 
javax.datamining.supervised.
classification.CostMatrix. 

Cost matrix for the decision tree algorithm is 
specified at build time. All other classification 
algorithms are specified with apply and test 
operations.
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Converting Your Applications
Most objects in the ODM 10.2 API are similar to the objects in the ODM 10.1 API. 
However, there are some major differences in class names, package structures, and 
object usage. Some of the primary differences are:

■ In 10.1, all primary objects are created using constructors or create methods. In 
10.2, objects are created using object factories, as described in "Connection Factory" 
on page 7-3 and "Features of a DMS Connection" on page 7-4.

■ In 10.1, DMS metadata-related operations are distributed in each class. In 10.2, 
most DMS metadata-related operations are centralized in a Connection object. 
For example, a mining task is restored in 10.1 with the MiningTask.restore 
method and in 10.2 with the Connection.retrieveObject method.

■ In 10.1, all named objects are persisted in the database. In 10.2, 
PhysicalDataSet and ApplySettings are transient objects.

Table 8–2 provides sample code for performing various mining operations in both 10.1 
and 10.2. Refer to Chapter 6 for additional 10.2 code samples.

Model detail Model details not represented as an object. 
Model details are stored with the associated 
model object.

Model details represented by  
javax.dataminig.base.ModelDetail.

Apply settings Apply settings represented by 
oracle.dmt.odm.result.
MiningApplyOutput.

Apply settings represented by 
javax.datamining.task.apply.
ApplySettings.

Results object Mining results represented by 
oracle.dmt.odm.result.MiningResult.

Mining results are not explicit objects. Each task 
creates either a Java object or a database object such 
as a table.

Transformations Supports automated data preparation. Provides 
utility methods for external and embedded data 
preparation.

Does not support automated transformations. The 
transformation task oracle.dmt.jdm.task.
OraTransformationTask can be used to emulate 
automated transformations.

Text transformation Supports text data types, such as CLOB and 
BLOB, for SVM and NMF. No explicit text 
transformations are provided.

Supports explicit text transformations. These can be 
used with any algorithm to emulate text data type 
support.

Note: Although the ODM 10.1 Java API is incompatible with Oracle 
10.2, future releases will follow the backward compatibility scheme 
proposed by the JDM standard.

Table 8–2 Sample Code from 10.1 and 10.2 ODM Java APIs

ODM 10.1 Java API ODM 10.2 Java API

Connect to the DMS Connect to the DMS

//Create a DMS object
DataMiningServer m_dms =  new DataMiningServer  
  ( "put DB URL here",  //JDBC URL
    "user name",        //User Name
    "password"          //Password
  );
//Login to the DMS and create a DMS Connection 
m_dmsConn = m_dms.login();

//Create ConnectionFactory & connection
OraConnectionFactory m_dmeConnFactory =  
  new OraConnectionFactory();
ConnectionSpec connSpec =  
  m_dmeConnFactory.getConnectionSpec();
connSpec.setURI( "put DB URL here" );
connSpec.setName( "user name" ); 
connSpec.setPassword( "password" );
m_dmeConn =   
  m_dmeConnFactory.getConnection( connSpec );

Table 8–1 (Cont.) Differences Between Oracle 10.1 and 10.2 Java APIs for Data Mining

Feature ODM 10.1 Java API ODM 10.2 Java API
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Create a PhysicalDataSpecification Create and Save PhysicalDataSet

LocationAccessData lad =  new LocationAccessData
  ( "MINING_DATA_BUILD_V",   //Table/view Name
    "DMUSER"                 //Schema Name
  );
PhysicalDataSpecification pds =
  newNonTransactionalDataSpecification  (lad);

PhysicalDataSetFactory pdsFactory =
  ( PhysicalDataSetFactory )m_dmeConn.getFactory
  ( "javax.datamining.data.PhysicalDataSet" );
m_paFactory = ( PhysicalAttributeFactory )
  m_dmeConn.getFactory
  ( "javax.datamining.data.PhysicalAttribute" );
PhysicalDataSet buildData = m_pdsFactory.create
  ( "MINING_DATA_BUILD_V",false );
PhysicalAttribute pa =m_paFactory.create
  ( "cust_id", AttributeDataType.integerType,
  PhysicalAttributeRole.caseId );
buildData.addAttribute( pa );
m_dmeConn.saveObject( "nbBuildData", buildData, true );

Create and Save MiningFunctionSettings Create BuildSettings

NaiveBayesSettings nbAlgo =
  new NaiveBayesSettings (0.01f, 0.01f);
ClassificationFunctionSettings mfs =
  ClassificationFunctionSettings.create
  ( m_dmsConn,          //DMS Connection
    nbAlgo,             //NB algorithm settings
    pds,                //Build data specification
   "AFFINITY_CARD",     //Target column
    AttributeType.categorical,   //Attribute type
    DataPreparationStatus.unprepared
  );
//Set Cust_ID attribute as inactive 
mfs.adjustAttributeUsage( new String[]{"CUST_ID"},
  AttributeUsage.inactive );
mfs.store( m_dmsConn,"NBDemo_MFS" );

m_clasFactory = ( ClassificationSettingsFactory )
  m_dmeConn.getFactory
  ( "javax.datamining.supervised.classification.
   ClassificationSettings" );
m_nbFactory = ( NaiveBayesSettingsFactory )
  m_dmeConn.getFactory
  ("javax.datamining.algorithm.naivebayes.
   NaiveBayesSettings");
//Create NB algorithm settings
NaiveBayesSettings nbAlgo = m_nbFactory.create();
nbAlgo.setPairwiseThreshold( 0.01f );
nbAlgo.setSingletonThreshold( 0.01f );
//Create ClassificationSettings
ClassificationSettings buildSettings = 
  m_clasFactory.create();
buildSettings.setAlgorithmSettings(nbAlgo);
buildSettings.setTargetAttributeName
  ( "affinity_card");
m_dmeConn.saveObject
  ("nbBuildSettings",buildSettings,true);

Create and Execute MiningBuildTask Create and Execute BuildTask

MiningBuildTask buildTask =  
  new MiningBuildTask
  ( pds,            //Build data specification
   "NBDemo_MFS",    //Mining function settings
   "NBDemo_Model"   //Mining model name 
  );
//Store the taskbuild
buildTask.store( m_dmsConn,"NBDemoBuildTask" );
Task.execute( m_dmsConn );
//Wait for completion of the task
MiningTaskStatus taskStatus =
  buildTask.waitForCompletion( m_dmsConn );

m_buildFactory = ( BuildTaskFactory )
  m_dmeConn.getFactory
  ( "javax.datamining.task.BuildTask" );
BuildTask buildTask = m_buildFactory.create
  ( "nbBuildData",     //Build data specification
    "nbBuildSettings", //build settings name
    "nbModel"          //Mining model namem_dme
  );
Conn.saveObject( "nbBuildTask", taskObj, true );
ExecutionHandle execHandle = 
  m_dmeConn.execute( taskName );
ExecutionStatus status =
  execHandle.waitForCompletion(
Integer.MAX_VALUE);

Retrieve MiningModel Retrieve Model

NaivebayesModel model =  ( NaiveBayesModel )
  SupervisedModel.restore
  ( m_dmeConn, "NBDemo_Model" );

ClassificationModel model =  ( ClassificationModel )
  m_dmeConn.retrieveObject
  ( "nbModel", NamedObject.model );

Table 8–2 (Cont.) Sample Code from 10.1 and 10.2 ODM Java APIs

ODM 10.1 Java API ODM 10.2 Java API
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Evaluate the Model Evaluate the Model

//Compute accuracy & confusionmatrix
LocationAccessData lad = new LocationAccessData
  ( "MINING_DATA_TEST_V", "DMUSER" ); //Schema Name
PhysicalDataSpecification pds =
  new NonTransactionalDataSpecification( lad );
ClassificationTestTask testTask =
  new ClassificationTestTask ( pds,"NBDemo_Model", 
  "NBDemo_TestResults" );
testTask.store( m_dmsConn, "NBDemoTestTask" );
testTask.execute( m_dmsConn );
MiningTaskStatus taskStatus =
  testTask.waitForCompletion( m_dmsConn );
ClassificationTestResult testResult =
  ClassificationTestResult.restore
  ( m_dmsConn, "NBDemo_TestResults" );
float accuracy = testResult.getAccuracy();
CategoryMatrix confusionMatrix =
  TestResult.getConfusionMatrix();
//Compute lift
Category positiveCategory = new Category
  ( "Positive value", "1",DataType.intType );
MiningLiftTask liftTask =
  new MiningLiftTask  
  ( pds, 
    10,           //Number of quantiles to be used
    positiveCategory,    /positive target value  
   "NBDemo_Model",       // model to be tested  
   "NBDemo_LiftResults"  //Lift results name
  );
liftTask.store( m_dmsConn, "NBDemoLiftTask" );
liftTask.execute( m_dmsConn );
MiningTaskStatus taskStatus =
  liftTask.waitForCompletion( m_dmsConn );
MiningLiftResult liftResult =
  MiningLiftResult.restore
 ( m_dmsConn,"NBDemo_LiftResults" );

//Compute accuracy, confusion matrix, lift & roc
PhysicalDataSet testData = m_pdsFactory.create
  ( "MINING_DATA_TEST_V", false );
PhysicalAttribute pa = m_paFactory.create
  ( "cust_id", AttributeDataType.integerType,
    PhysicalAttributeRole.caseId );
testData.addAttribute( pa );
m_dmeConn.saveObject
  ( "nbTestData", testData, true );
ClassificationTestTask testTask = m_testFactory.create
  ( "nbTestData", "nbModel", "nbTestMetrics" );
testTask.setNumberOfLiftQuantiles( 10 );
testTask.setPositiveTargetValue( new Integer(1) );
m_dmeConn.saveObject( "nbTestTask", testTask, true );
ExecutionHandle execHandle = 
  m_dmeConn.execute("nbTestTask");
ExecutionStatus status = execHandle.waitForCompletion
  ( Integer.MAX_VALUE );
ClassificationTestMetrics testMetrics = 
  ( ClassificationTestMetrics )
  m_dmeConn.retrieveObject
  ( "nbTestMetrics", NamedObject.testMetrics );
Double accuracy = testMetrics.getAccuracy();
ConfusionMatrix confusionMatrix =  
   testMetrics.getConfusionMatrix();
Lift lift = testMetrics.getLift();
ReceiverOperatingCharacterics roc =
  testMetrics.getROC();

Table 8–2 (Cont.) Sample Code from 10.1 and 10.2 ODM Java APIs

ODM 10.1 Java API ODM 10.2 Java API
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Apply the Model Apply the Model

LocationAccessData lad = new LocationAccessData
  ( "MINING_DATA_APPLY_V", "DMUSER");
PhysicalDataSpecification pds =
  new NonTransactionalDataSpecification( lad );
MiningApplyOutput mao =
  MiningApplyOutput.createDefault();
MiningAttribute srcAttribute =  new MiningAttribute
  ( "CUST_ID", DataType.intType,
    AttributeType.notApplicable
  );
Attribute destAttribute = new Attribute
  ("CUST_ID", DataType.intType);
ApplySourceAttributeItem m_srcAttrItem =  
  new ApplySourceAttributeItem
  ( srcAttribute,destAttribute);
mao.addItem(m_srcAttrItem);
LocationAccessData outputTable =  
  new LocationAccessData
  ( "NBDemo_Apply_Output", "DMUSER");
MiningApplyTask applyTask = new MiningApplyTask
  ( pds,                 //test data specification
   "NBDemo_Model",       //Input model name   
    mao,                 //MiningApplyOutput object
    outputTable,         //Apply output table
   "NBDemo_ApplyResults"  //Apply results
  );
applyTask.store( m_dmsConn, "NBDemoApplyTask" );
applyTask.execute( m_dmsConn );
MiningTaskStatus taskStatus =
  applyTask.waitForCompletion( m_dmsConn );

PhysicalDataSet applyData = m_pdsFactory.create
  ( "MINING_DATA_APPLY_V", false );
PhysicalAttribute pa = m_paFactory.create
  ( "cust_id", 
    AttributeDataType.integerType,
    PhysicalAttributeRole.caseId
  );
applyData.addAttribute( pa );
m_dmeConn.saveObject( "nbApplyData",applyData,true );
ClassificationApplySettings clasAS = 
  m_applySettingsFactory.create();
m_dmeConn.saveObject( "nbApplySettings",clasAS,true );
DataSetApplyTask applyTask = m_dsApplyFactory.create
  ( "nbApplyData", 
    "nbModel",
    "nbApplySettings", 
    "nb_apply_output"
  );
m_dmeConn.saveObject
  ( "nbApplyTask", 
     applyTask,
     true
  );
ExecutionHandle execHandle = 
  m_dmeConn.execute( "nbApplyTask" );
ExecutionStatus status =
   execHandle.waitForCompletion( Integer.MAX_VALUE );

Table 8–2 (Cont.) Sample Code from 10.1 and 10.2 ODM Java APIs

ODM 10.1 Java API ODM 10.2 Java API
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9
Sequence Matching and Annotation (BLAST)

This chapter describes table functions included with ODM that permit you to perform 
similarity searches against nucleotide and amino acid sequence data stored in an 
Oracle database. You can use the table functions described in this chapter for ad hoc 
searches or you can embed them in applications. The inclusion of these table functions 
in ODM positions Oracle as a platform for bioinformatics.

This chapter discusses the following topics:

■ NCBI BLAST

■ Using ODM BLAST

NCBI BLAST
The National Center for Biotechnology Information (NCBI) developed one of the 
commonly used versions of the Basic Local Alignment Search Tool (BLAST). 

Sequence alignments provide a way to compare new sequences with previously 
characterized sequences. Both functional and evolutionary information can be inferred 
from well-designed queries and alignments. BLAST provides a method for searching 
of both nucleotide and protein databases. Since the BLAST algorithm detects local 
alignments, regions of similarity embedded in otherwise unrelated sequences can be 
detected.

The BLAST algorithm searches nucleotide and amino acid query sequences against 
databases of nucleotide and amino acid sequences. Based on the nature of the query 
and the database sequences, NCBI BLAST provides the following variants:

■ BLASTP compares an amino acid query sequence against an amino acid sequence 
database. 

■ BLASTN compares a nucleotide query sequence against a nucleotide sequence 
database. 

■ BLASTX compares a nucleotide query sequence translated along all six reading 
frames (both strands) against a amino acid sequence database. 

■ TBLASTN compares an amino acid query sequence against a nucleotide sequence 
database translated along all six reading frames (both strands). 

■ TBLASTX compares the six-frame translations of a nucleotide query sequence 
against the six-frame translations of a nucleotide sequence database.

For more information about NCBI BLAST, see the NCBI BLAST Home Page at

http://www.ncbi.nlm.nih.gov/BLAST

http://www.ncbi.nlm.nih.gov/BLAST
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The table functions described in this chapter implement some of the variants of NCBI 
BLAST version 2.0.

Using ODM BLAST
This section contains several examples of using the ODM BLAST table functions to 
perform searches on nucleotide or amino acid sequences. 

Most table function parameters have defaults. The defaults were carefully chosen so 
that users who have limited experience with BLAST should obtain good results.

Using BLASTN_MATCH to Search DNA Sequences
The BLAST table functions accept the CLOB (Character Large OBject) data type as the 
query sequence. It is not possible to construct a CLOB in an ad hoc SQL query. One 
way to construct a CLOB is to create a table and insert the query sequence into the 
table. Another option is to construct a CLOB using the programmatic interface if the 
BLAST query is part of a larger program. Suppose that the table query_db has the 
schema (sequence_id VARCHAR2(32), sequence CLOB). The following SQL 
query inserts the query sequence into query_db:

INSERT INTO query_db VALUES ('1', 'AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGT');

Suppose that the table GENE_DB stores DNA sequences. Suppose that GENE_DB has 
attributes seq_id, publication date, modification date, organism, and 
sequence, among other attributes. There is no required schema for the table that 
stores the sequences. The only requirement is that the table contain an identifier and 
the sequence and any number of other optional attributes.

The portion of the database to be used for the search can be specified using SQL. The 
full power of SQL can be used to perform sophisticated selections.

Searching for Good Matches in DNA Sequences
The following query does a BLAST search of the given query sequence against the 
human genome and returns the seq_id, score, and expect value of matches that 
score > 25:

SELECT t.t_seq_id, t.score, t.expect
FROM TABLE (
    BLASTN_MATCH (
       (SELECT sequence FROM query_db WHERE sequence_id = '1'),
       CURSOR (SELECT seq_id, sequence FROM GENE_DB
        WHERE organism = 'human'),
       1,
       -1,
       0,
       0,
       10,
       0,
       0,
       0,
       0,
       11,
       0,
       0)
) t WHERE t.score > 25;
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Note: The parameter value of 0 invokes the default values in most cases. See the 
syntax for details.

Searching DNA Sequences Published After a Certain Date
The following query does the BLAST search against all sequences published after Jan 
01, 2000:

SELECT t.t_seq_id, t.score, t.expect
FROM TABLE (
    BLASTN_MATCH (
       (SELECT sequence FROM query_db WHERE sequence_id = '1'),
       CURSOR (SELECT seq_id, sequence FROM GENE_DB
        WHERE publication_date > '01-JAN-2000'),
       1,
       -1,
       0,
       0,
       10,
       0,
       0,
       0,
       0,
       11,
       0,
       0)
) t WHERE t.score > 25;

You can obtain other attributes of the matching sequence by joining the BLAST result 
with the original sequence table as follows:

SELECT t.t_seq_id, t.score, t.expect, g.publication_date, g.organism
FROM GENE_DB g, TABLE (
    BLASTN_MATCH (
       (SELECT sequence FROM query_db WHERE sequence_id = '1'),
       CURSOR (SELECT seq_id, sequence FROM GENE_DB
        WHERE publication_date > '01-JAN-2000'),
       1,
       -1,
       0,
       0,
       10,
       0,
       0,
       0,
       0,
       11,
       0,
       0)
) t WHERE t.t_seq_id = g.seq_id AND t.score > 25;

Using BLASTP_MATCH to Search Protein Sequences
Suppose that the table PROT_DB stores protein sequences. Insert the protein query 
sequence to be used for the search into query_db.
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Searching for Good Matches in Protein Sequences
The following query does a BLASTP search of the given query sequence against 
protein sequences in PROT_DB and returns the identifier, score, name, and 
expect value of matches that score > 25:

SELECT t.t_seq_id, t.score, t.expect, p.name
FROM PROT_DB p, TABLE(
       BLASTP_MATCH (
         (SELECT sequence FROM query_db WHERE sequence_id = '2'),
         CURSOR(SELECT seq_id, sequence FROM PROT_DB),
         1,
         -1,
         0,
         0,
         'BLOSUM62',
         10,
         0,
         0,
         0,
         0,
         0)
       )t WHERE t.t_seq_id = p.seq_id AND t.score > 25
          ORDER BY t.expect;

Using BLASTN_ALIGN to Search and Align DNA Sequences
Suppose that the table GENE_DB stores DNA sequences. Suppose that GENE_DB has 
attributes seq_id, publication date, modification date, organism, and 
sequence among other attributes. 

Searching and Aligning for Good Matches in DNA Sequences
The following query does a BLAST search and alignment of the given query sequence 
against the human genes and returns the publication_date, organism, and the 
alignment attributes of the matching sequences that score > 25 and where more than 
50% of the sequence is conserved in the match:

SELECT t.t_seq_id, t.alignment_length, t.pct_identity,
       t.q_seq_start, t.q_seq_end, t.t_seq_start, t.t_seq_end,
       t.score, t.expect, g.publication_date, g.organism
FROM GENE_DB g, TABLE (
    BLASTN_ALIGN (
       (SELECT sequence FROM query_db WHERE sequence_id = '1'),
       CURSOR (SELECT seq_id, sequence FROM GENE_DB
        WHERE publication_date > '01-JAN-2000'),
       1,
       -1,
       0,
       0,
       10,
       0,
       0,
       0,
       0,
       11,
       0,
       0)
) t WHERE t.t_seq_id = g.seq_id AND t.score > 25
    AND t.pct_identity > 50;
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You can use BLASTP_ALIGN and TBLAST_ALIGN in a similar way.

Output of BLAST Queries
The output of a BLAST query is a table; the output table is described as the output 
table for the specific query.

Here are two examples of queries and the resulting output tables.

Query 1 is as follows:

select T_SEQ_ID AS seq_id, score, EXPECT as evalue
  from TABLE(
       BLASTP_MATCH (
         (select sequence from query_db),
         CURSOR(SELECT seq_id, seq_data
                FROM swissprot
                WHERE organism = 'Homo sapiens (Human)'),
         1,
         -1,
         0,
         0,
         'BLOSUM62',
         10,
         0,
         0,
         0,
         0,
         0)
       ); 

The output for query 1 is as follows:

SEQ_ID        SCORE     EVALUE
-------- ----------     ----------
P31946          205     5.8977E-18
Q04917          198     3.8228E-17
P31947          169     8.8130E-14
P27348          198     3.8228E-17
P58107           49     7.24297332

Query 2 is as follows:

select T_SEQ_ID AS seq_id, ALIGNMENT_LENGTH as len,
       Q_SEQ_START as q_strt, Q_SEQ_END as q_end, Q_FRAME, T_SEQ_START as t_strt,
       T_SEQ_END as t_end, T_FRAME, score, EXPECT as evalue
  from TABLE(
       BLASTP_ALIGN (
         (select sequence from query_db),
         CURSOR(SELECT seq_id, seq_data
                FROM swissprot
                WHERE organism = 'Homo sapiens (Human)' AND
                      creation_date > '01-Jan-90'),
         1,
         -1,
         0,
         0,
         'BLOSUM62',
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         10,
         0,
         0,
         0,
         0,
         0)
       );  

The output for Query 2 is as follows:

SEQ_ID    LEN Q_STRT Q_END Q_FRAME T_STRT T_END T_FRAME   SCORE  EVALUE
-------- ---- ------ ----- ------- ------ ----- ------- ------- ----------
P31946     50      0    50       0     13    63       0     205  5.1694E-18
Q04917     50      0    50       0     12    62       0     198  3.3507E-17
P31947     50      0    50       0     12    62       0     169  7.7247E-14
P27348     50      0    50       0     12    62       0     198  3.3507E-17
P58107     21     30    51       0    792   813       0      49  6.34857645

Using BLASTN_COMPRESS to Improve Search Performance
 If you perform frequent BLAST searches on nucleotide sequences, performance 
improves significantly when the data set of sequences is transformed into a 
compressed binary format, and the compressed data is used in the searches. The 
BLASTN_COMPRESS() function transforms a nucleotide data set represented as 
CLOBs into compressed binary format represented as BLOBs.

Compress Sequences
Suppose that the table GENE_DB contains DNA sequences upon which you will 
perform frequent searches. Suppose that GENE_DB has attributes (seq_id, 
publication date, modification date, organism, sequence) among 
other attributes. The following query stores all human DNA sequences in compressed 
binary format, in the table COMPRESSED_HUMAN_GENES.

create table COMPRESSED_HUMAN_GENES as
select seq_id, seq_data
from Table(BLASTN_COMPRESS (
 from GENE_DB
 where organism = 'human'))) 

The portion of the database to be compressed can be specified using SQL. The full 
power of SQL can be used to perform more sophisticated selections involving joins.

Passing a Compressed Sequence to a BLAST Function
The compressed sequences can be directly passed to BLAST match and align functions 
as shown in the following example.

select t.t_seq_id, t.alignment_length, t.pct_identity, t.q_start, t.q_end, t.s_
start, t.s_end, t.score, t.expect, g.publication_date, g.organism
from GENE_DB g, Table(BLASTN_ALIGN (
select sequence from QUERY_SEQ where id = '1'),
seqdb_cursor => cursor(select seq_id, seq_data
from Table(BLASTN_COMPRESS (
cursor(select seq_id, sequence 
           from GENE_DB
           where organism = 'human')))),
expect_value => 5,
word_size => 12)) t
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where t.t_seq_id = g.identifier 
AND t.score > 25 
AND t.pct_identity > 50;

Sample Data for BLAST
We provide a few sample data sets and queries that can be used to verify that the 
BLAST functions work correctly after ODM is installed. 

The DM_USER schema contains the following sequence data tables:

■ SWISSPROT

■ PROT_DB

■ ECOLI10

SWISSPROT Table
The SWISSPROT table contains the sequences in Release 40 of the SwissProt database. 
This table has the sequence identifier, creation_date, organism, and sequence_
data attributes. It has 101,602 protein sequences.

SQL> describe SWISSPROT;
Name                                    Null?    Type
--------------------------------------- -------  -------------
SEQ_ID                                          VARCHAR2(32)
CREATION_DATE                                   DATE
ORGANISM                                        VARCHAR2(256)
SEQ_DATA                                        CLOB

PROT_DB Table
The PROT_DB table consists of 19 protein sequences from Release 40 of the SwissProt 
data set.

SQL> describe prot_db;
Name                                     Null?    Type
---------------------------------------- -------  -------------
SEQ_ID                                            VARCHAR2(32)
SEQ_DATA                                          CLOB

ECOLI10 Table
The ECOLI10 table contains 10 nucleotide sequences from the Escherichia coli data 
set.

SQL> describe ECOLI10;
Name                                      Null?    Type
----------------------------------------- -------- ---------------
SEQ_ID                                             VARCHAR2(32)
SEQ_DATA                                           CLOB

Genetic Codes and Names
Table 9–1 lists genetic codes and associated names.
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Sequence Databases
There are several public domain sequence databases available. One of them is the 
SwissProt database, which is a highly curated collection of protein sequences. 
SwissProt has recently been combined with other databases to create UniProt. The last 
release of the SwissProt database can be downloaded from

ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release/sprot45.dat

In addition to the raw sequence data, the SwissProt database contains several other 
attributes of the sequence including organism, date published, date modified, 
published literature references, annotations, and so on. BLAST requires only the 
sequence identifier and the sequence data to be stored to perform searches. 

Depending on the needs of your specific application, different sets of these attributes 
may be important. Therefore, the database schema required to store the data needs to 
be appropriately designed. You can use a scripting language to parse the required 
fields from the SwissProt data and format the fields so that they can be loaded into an 
Oracle database. 

The following Perl script outputs the sequence identifier, creation_date, organism, and 
sequence data in the required format for SQL*Loader. (SQL*Loader is the utility that 
loads data into an Oracle database; it is described in detail in Oracle Database Utilities.)

#!/bin/perl
#swissprot.pl < input > output
#Input: protein db as provided by SWISSPROT
#
my $string = "";
my $indicator = "";

Table 9–1 Table of Genetic Codes

Genetic Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold Mitochondrial, Protozoan Mitochondrial, Coelenterate 
Mitochondrial, Mycoplasma, Spiroplasm

5 Invertebrate Mitochondrial

6 Ciliate Nuclear, Dasycladacean Nuclear, Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Macronuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial Code

ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release/sprot45.dat
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$sq = 0;
$ac = 0;

while(<>)
{
    #chop;
    if ( /^\/\// ) {
      print "\n";
      $sq = 0;
      $ac = 0;
      next;
    }
    if ($sq == 1) {
        @words = split;
        foreach $word (@words) {
          print "$word";
        }
        next;
    }
    if( /^AC(\s+)(\w+);/ ) {
      if ($ac == 0) {
        $indicator = $2;
        print "$indicator|";
        $sq = 0;
        $dt = 0;
        $ac = 1;
        next;
      }
    }
    if ( /^OS(\s+)(.*)\./ ) {
        $organism = $2;
        print "$organism|";
        next;
    }
    if ( /^DT(\s+)(\S+)/ ) {
        if ($dt == 0) {
           print "$2|";
           $dt = 1;
        }
    }
    if ( /^SQ(\s+)/ ) {
        $sq = "1";
        next;
    }
}

Loading Sequences into an Oracle Database
Follow these steps to download, parse, and save the SwissProt data in an Oracle 
database:

1. Download SwisProt data to the file sprot45.dat.

2. Save the perl script in a file named swissprot.pl, type the command

swissprot.pl sprot45.dat > sprot_formatted.txt

This command will read the SwissProt data stored in sprot45.dat, format it, 
and write it out to sprot_formatted.txt.
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3. In order to load the data using SQL*Loader, you must create a table to hold the 
data and a control file. Create the table swissprot using the following SQL 
statement:

create table swissprot (SEQ_ID VARCHAR2(32), CREATION_DATE DATE,
ORGANISM VARCHAR2(256), SEQ_DATA CLOB);

4. Create a control file named sprot.ctl with the following contents:

LOAD DATA
INFILE sprot40_formatted.txt
INTO TABLE swissprot
REPLACE
FIELDS TERMINATED BY '|'
TRAILING NULLCOLS
(
seq_id,
creation_date,
organism,
seq_data char(100000)
)

5. Finally, load the data:

sqlldr userid=<user_name>/<passwd> control=sprot.ctl log=sprot.log
direct=TRUE data=sprot40_formatted.txt

The SwisProt data is now stored in the Oracle table swissprot. 
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Summary of BLAST Table Functions

The BLAST functionality is available as table functions; these table functions can be 
used in the FROM clause of a SQL query. 

Table 9–2 BLAST Table Functions

Table Function Description

BLASTN_COMPRESS 
Table Function

Compress nucleotide sequence data to improve performance of 
sequence searches.

BLASTN_MATCH Table 
Function

Perform a search of the given nucleotide sequence against the 
selected portion of the nucleotide database

BLASTP_MATCH Table 
Function  on page 9-15

Perform a search of the given amino acid sequence against the 
selected portion of the protein database

TBLAST_MATCH Table 
Function  on page 9-17 

Perform a search involving translations of either the query 
sequence or the database of sequences

 BLASTN_ALIGN Table 
Function  on page 9-19

Perform an alignment of the given nucleotide sequence against 
the selected portion of the nucleotide database 

BLASTP_ALIGN Table 
Function  on page 9-22

Perform an alignment of the given amino acid sequence 
against the selected portion of the protein database

TBLAST_ALIGN Table 
Function  on page 9-25

Perform alignments involving translations of either the query 
sequence or the database of sequences 
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BLASTN_COMPRESS Table Function

This table function compresses nucleotide sequence data. It takes as input a cursor of 
sequence identifier and sequence data represented as a CLOB and returns the 
sequence identifier and a BLOB representing the sequence data in compressed binary 
format. The result of BLASTN_COMPRESS can be either materialized in a table for 
future use or passed into the BLAST search functions that accept nucleotide sequence 
data

Syntax
function BLASTN_COMPRESS (
  sequence_cursor REF CURSOR)
  return table of row (seq_id VARCHAR2, seq_data BLOB);

Parameters
Table 9–3 describes the input parameters for BLASTN_COMPRESS; Table 9–4, the 
output parameters.

Table 9–3 Input Parameters for BLASTN_COMPRESS Table Function

Parameter Description

sequence_cursor The cursor of the sequences to be compressed. The cursor has 
two columns the sequence identifier and the sequence string.

Table 9–4 Output Parameters for BLASTN_MATCH Table Function

Attribute Description

seq_id The sequence identifier of the sequence. The value returned is 
the same as the sequence identifier in the input cursor.

seq_data The compressed sequence represented as a BLOB.
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BLASTN_MATCH Table Function

This table function performs a BLASTN search of the given nucleotide sequence 
against the selected portion of the nucleotide database. The database can be selected 
using a standard SQL select and passed into the function as a cursor. It accepts the 
standard BLAST parameters that are listed in the following section. The match returns 
the identifier of the matched (target) sequence (t_seq_id) (for example, the NCBI 
accession number), the score of the match, and the expect value. 

Syntax
function BLASTN_MATCH (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 5,
  extend_gap_cost NUMBER default 2,
  mismatch_cost NUMBER default -3,
  match_reward NUMBER default 1,
  word_size NUMBER default 11,
  xdropoff NUMBER default 30,
  final_x_dropoff NUMBER default 50)
  return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 9–5 describes the input parameters for BLASTN_MATCH; Table 9–6, the output 
parameters.

Table 9–5 Input Parameters for BLASTN_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. The default is FALSE.
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mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default is FALSE.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 5. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 2. Specifying 0 
invokes default behavior.

mismatch_cost The penalty for nucleotide mismatch. The default value is -3. 
Specifying 0 invokes default behavior.

match_reward The reward for a nucleotide match. The default value is 1. 
Specifying 0 invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 11. 
Specifying 0 invokes default behavior.

xdropoff Dropoff for BLAST extensions in bits. The default value is 30. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 50. Specifying 0 invokes default behavior.

Table 9–6 Output Parameters for BLASTN_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

Table 9–5 (Cont.) Input Parameters for BLASTN_MATCH Table Function

Parameter Description



Summary of BLAST Table Functions

Sequence Matching and Annotation (BLAST) 9-15

BLASTP_MATCH Table Function

This table function performs a BLASTP search of the given amino acid sequence 
against the portion of the selected protein database. The database can be selected using 
a standard SQL select and passed into the function as a cursor. We also accept the 
standard BLAST parameters that are listed in the following section. The match returns 
the identifier of the matched (target) sequence (t_seq_id) (for example, the NCBI 
accession number), the score of the match, and the expect value.

Syntax
function BLASTP_MATCH (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  sub_matrix VARCHAR2 default 'BLOSUM62',
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 11,
  extend_gap_cost NUMBER default 1,
  word_size NUMBER default 3,
  x_dropoff NUMBER default 15,
  final_x_dropoff NUMBER default 25)
  return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 9–7 describes the input parameters for BLASTN_MATCH; Table 9–8, the output 
parameters.

Table 9–7 Input Parameters for BLASTP_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. The default value is FALSE.
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For each substitution matrix (sub_matrix), only certain combinations of (open_gap_
cost, extend_gap_cost) values are supported. Table 9–9 shows the supported 
combinations of values for each substitution matrix. 

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default value is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for 
aligning any possible pair of residues. The different options are 
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The 
default is BLOSUM62. See Table 9–9 for supported values of 
(open_gap_cost, extend_gap_cost) for each matrix. 

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0 
invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 3. 
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 25. Specifying 0 invokes default behavior.

Table 9–8 Output Parameters for BLASTP_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match. 

expect The expect value of the returned match.

Table 9–9 Supported Combinations of (open_gap_cost, extend_gap cost)

Substitution Matrix Name Supported (open_gap_cost, extend_gap_cost) Values 

BLOSUM45 (13,3), (12,3), (11,3), (10,3), (16,2), (15,2), (14,2), (13,2), (12,2), 
(19,1), (18,1), (17,1), (16,1)

BLOSUM62 (11,2), (10,2), (9,2), (8,2), (7,2), (6,2), (13,1), (12,1), (11,1), (10,1), 
(9,1)

BLOSUM80 (25,2), (13,2), (9,2), (8,2), (7,2), (6,2), (11,1),(10,1), (9,1)

PAM30 (7,2), (6,2), (5,2), (10,1), (9,1), (8,1)

PAM70 (8,2), (7,2), (6,2), (11,1), (10,1), (9,1)

Table 9–7 (Cont.) Input Parameters for BLASTP_MATCH Table Function

Parameter Description
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TBLAST_MATCH Table Function

This table function performs BLAST searches involving translations of either the query 
sequence or the database of sequences. The available options are:

■ BLASTX: The query nucleotide sequence is translated and compared against a 
protein database.

■ TBLASTN: The query amino acid sequence is compared against a translated 
nucleotide database.

■ TBLASTX: The query nucleotide sequence is translated and compared against a 
translated nucleotide database. 

The database can be selected using a standard SQL select and passed into the function 
as a cursor. We also accept the standard BLAST parameters that are listed in the 
following section. The match returns the identifier of the matched (target) sequence 
(t_seq_id) (for example, the NCBI accession number), the score of the match, and the 
expect value.

Syntax
function TBLAST_MATCH (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  translation_type VARCHAR2 default 'BLASTX',
  genetic_code NUMBER default 1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  sub_matrix VARCHAR2 default 'BLOSUM62',
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 11,
  extend_gap_cost NUMBER default 1,
  word_size NUMBER default 3,
  x_dropoff NUMBER default 15,
  final_x_dropoff NUMBER default 25)
  return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 9–10 describes the input parameters for TBLAST_MATCH; Table 9–11, the 
output parameters.

Table 9–10 Input Parameters for TBLAST_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1.
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subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

translation_type Type of the translation involved. The options are BLASTX, 
TBLASTN, and TBLASTX. The default is BLASTX.

genetic_code Used for translating nucleotide sequences to amino acid 
sequences. genetic_code is sort of like a mapping table. 
NCBI supports 17 different genetic codes. The supported 
genetic codes and their names are given in Table 9–1. The 
default genetic code is 1. 

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for 
aligning any possible pair of residues. The different options are 
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The 
default is BLOSUM62. See Table 9–9 for supported values of 
(open_gap_cost, extend_gap_cost) for each matrix.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0 
invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 3. 
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 25. Specifying 0 invokes default behavior.

Table 9–11 Output Parameters for TBLAST_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

Table 9–10 (Cont.) Input Parameters for TBLAST_MATCH Table Function

Parameter Description
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BLASTN_ALIGN Table Function

This table function performs a BLASTN alignment of the given nucleotide sequence 
against the selected portion of the nucleotide database. The database can be selected 
using a standard SQL select and passed into the function as a cursor. It accepts the 
standard BLAST parameters that are listed in the following section. 

BLASTN_MATCH returns only the score and expect value of the match. It does not 
return information about the alignment. BLASTN_MATCH is typically used when a 
BLAST search will be followed up with h a more compute intensive alignment, such as 
the Smith-Waterman alignment.

BLASTN_ALIGN does the BLAST alignment and returns the information about the 
alignment.

Syntax
function BLASTN_ALIGN (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 5,
  extend_gap_cost NUMBER default 2,
  mismatch_cost NUMBER default -3,
  match_reward NUMBER default 1,
  word_size NUMBER default 11,
  xdropoff NUMBER default 30,
  final_x_dropoff NUMBER default 50)
  return table of row ( 
    t_seq_id VARCHAR2,
    pct_identity NUMBER,
    alignment_length NUMBER,
    mismatches NUMBER,
    positives NUMBER,
    gap_openings NUMBER,
    gap_list [Table of NUMBER],
    q_seq_start NUMBER,
    q_frame NUMBER,
    q_seq_end NUMBER,
    t_seq_start NUMBER,
    t_seq_end NUMBER,
    t_frame NUMBER,   
    score NUMBER, 
    expect NUMBER);

Parameters
Table 9–12 describes the input parameters for BLASTN_ALIGN; Table 9–13, the output 
parameters.
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Table 9–12 Input Parameters for BLASTN_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1. 

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1. 

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. 

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default is FALSE.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior. 

open_gap_cost The cost of opening a gap. The default value is 5. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 2. Specifying 0 
invokes default behavior.

mismatch_cost The penalty for nucleotide mismatch. The default value is -3. 
Specifying 0 invokes default behavior.

match_reward The reward for a nucleotide match. The default value is 1. 
Specifying 0 invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 11. 
Specifying 0 invokes default behavior.

xdropoff Dropoff for BLAST extensions in bits. The default value is 30. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 50. Specifying 0 invokes default behavior.

Table 9–13 Output Parameters for BLASTN_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the 
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with 
the database sequence.

alignment_length Length of the alignment.
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mismatches Number of base-pair mismatches between the query and the 
database sequence.

positives Number of base-pairs with a positive match score between the 
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end 

The indexes of the portion of the query sequence that is aligned

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indexes of the portion of the target sequence that is 
aligned.

t_frame Translation frame number of the target sequence.

expect Expect value of the alignment.

score Score corresponding to the alignment.

Table 9–13 (Cont.) Output Parameters for BLASTN_ALIGN Table Function

Parameter Description
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BLASTP_ALIGN Table Function

This table function performs a BLASTP alignment of the given amino acid sequences 
against the selected portion of the protein database. The database can be selected using 
a standard SQL select and passed into the function as a cursor. You can also use the 
standard BLAST parameters that are listed in the following section. 

BLASTP_MATCH function returns only the score and expect value of the match. It 
does not return information about the alignment. The BLASTP_MATCH is typically 
used when a BLAST search will be followed up with h a more compute intensive 
alignment, such as the Smith-Waterman alignment or a full FASTA alignment.

The BLASTP_ALIGN function does the BLAST alignment and returns the information 
about the alignment. The schema of the returned alignment is the same as that of 
BLASTN_ALIGN.

Syntax
function SYS_BLASTP_ALIGN (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  sub_matrix VARCHAR2 default 'BLOSUM62',
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 11,
  extend_gap_cost NUMBER default 1,
  word_size NUMBER default 3,
  x_dropoff NUMBER default 15,
  final_x_dropoff NUMBER default 25)
 return table of row ( 
    t_seq_id VARCHAR2,
    pct_identity NUMBER,
    alignment_length NUMBER,
    mismatches NUMBER,
    positives NUMBER,
    gap_openings NUMBER,
    gap_list [Table of NUMBER],
    q_seq_start NUMBER,
    q_frame NUMBER,
    q_seq_end NUMBER,
    t_seq_start NUMBER,
    t_seq_end NUMBER,
    t_frame NUMBER,   
    score NUMBER, 
    expect NUMBER);

Parameters
Table 9–14 describes the input parameters for BLASTP_ALIGN; Table 9–15, the output 
parameters.
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Table 9–14 Input Parameters for BLASTP_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for 
aligning any possible pair of residues. The different options are 
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The 
default is BLOSUM62. See Table 9–9 for supported values of 
(open_gap_cost, extend_gap_cost) for each matrix.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior. 

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0 
invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 3. 
Specifying 0 invokes default behavior.

x_dropoff X-dropoff for BLAST extensions in bits. The default value is 15. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 25 Specifying 0 invokes default behavior.

Table 9–15 Output Parameters for BLASTP_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the 
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with 
the database sequence.

alignment_length Length of the alignment.
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mismatches Number of base-pair mismatches between the query and the 
database sequence.

positives Number of base-pairs with a positive match score between the 
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end 

The indexes of the portion of the query sequence that is 
aligned.

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indexes of the portion of the target sequence that is 
aligned.

t_frame Translation frame number of the target sequence.

score Score corresponding to the alignment.

Table 9–15 (Cont.) Output Parameters for BLASTP_ALIGN Table Function

Parameter Description
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TBLAST_ALIGN Table Function

This table function performs BLAST alignments involving translations of either the 
query sequence or the database of sequences or both the query sequence and the 
database of sequences. The available translation options are BLASTX, TBLASTN, and 
TBLASTX. The schema of the returned alignment is the same as that of BLASTN_
ALIGN and BLASTP_ALIGN.

Syntax
function TBLAST_ALIGN (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default 0,
  translation_type VARCHAR2 default 'BLASTX',
  genetic_code NUMBER default 1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  sub_matrix VARCHAR2 default 'BLOSUM62',
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 11,
  extend_gap_cost NUMBER default 1,
  word_size NUMBER default 3,
  x_dropoff NUMBER default 15,
  final_x_dropoff NUMBER default 25)
 return table of row ( 
    t_seq_id VARCHAR2,
    pct_identity NUMBER,
    alignment_length NUMBER,
    mismatches NUMBER,
    positives NUMBER,
    gap_openings NUMBER,
    gap_list [Table of NUMBER],
    q_seq_start NUMBER,
    q_frame NUMBER,
    q_seq_end NUMBER,
    t_seq_start NUMBER,
    t_seq_end NUMBER,
    t_frame NUMBER,   
    score NUMBER, 
    expect NUMBER);

Parameters
Table 9–16 describes the input parameters for TBLAST_ALIGN; Table 9–17, the output 
parameters.

Table 9–16 Input Parameters for TBLAST_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.
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subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1. 

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

translation_type Type of the translation involved. The options are BLASTX, 
TBLASTN, and TBLASTX. The default is BLASTX.

genetic_code Used for translating nucleotide sequences to amino acid 
sequences. genetic_code is sort of like a mapping table. 
NCBI supports 17 different genetic codes. The supported 
genetic codes and their names are given in Table 9–1. The 
default genetic code is 1. 

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence.The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence.The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for 
aligning any possible pair of residues. The different options are 
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The 
default is BLOSUM62. See Table 9–9 for supported values of 
(open_gap_cost, extend_gap_cost) for each matrix.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior. 

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0 
invokes default behavior. 

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0 
invokes default behavior. 

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 3. 
Specifying 0 invokes default behavior. 

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 25. Specifying 0 invokes default behavior.

Table 9–17 Output Parameters for TBLAST_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the 
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with 
the database sequence.

alignment_length Length of the alignment.

Table 9–16 (Cont.) Input Parameters for TBLAST_ALIGN Table Function

Parameter Description
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mismatches Number of base-pair mismatches between the query and the 
database sequence.

positives Number of base-pairs with a positive match score between the 
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end 

The indexes of the portion of the query sequence that is 
aligned.

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indexes of the portion of the target sequence that is 
aligned.

t_frame Translation frame number of the target sequence.

score Score corresponding to the alignment

.

expect Expect value of the alignment.

Table 9–17 (Cont.) Output Parameters for TBLAST_ALIGN Table Function

Parameter Description
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