
Oracle Procedural Gateway® for APPC
User’s Guide

10g Release 2 (10.2) for UNIX

B16210-01

June 2005

Oracle Procedural Gateway for APPC User’s Guide, 10g Release 2 (10.2) for UNIX

B16210-01

Copyright © 2005, Oracle. All rights reserved.

Primary Author: Maitreyee Chaliha

Contributing Author: Shahrokh Talmoud

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xi

Preface ... xiii

Intended Audience.. xiii
Documentation Accessibility ... xiii
Related Documents ... xiv
Typographic Conventions.. xiv
Command Syntax .. xv
Accessing Installed Documentation ... xv
Oracle Services and Support.. xvi

1 Introduction to Oracle Procedural Gateway for APPC

1.1 Overview of the Gateway .. 1-2
1.2 Features of the Gateway... 1-2
1.3 Terms .. 1-4
1.4 Examples and Sample Files for the Gateway.. 1-6
1.5 Architecture of the Gateway ... 1-7
1.6 Starting the Gateway .. 1-8
1.7 Communication With the Gateway.. 1-8
1.8 Remote Procedural Call Functions... 1-9
1.8.1 TIP Function ... 1-9
1.8.1.1 Remote Transaction Initiation .. 1-9
1.8.1.2 Data Exchange... 1-9
1.8.1.3 Remote Transaction Termination.. 1-10
1.9 Overview of a Gateway Using SNA ... 1-10
1.9.1 Transaction Types for a Gateway Using SNA.. 1-10
1.10 Simple Gateway Communication With the Oracle Server (SNA) 1-11
1.10.1 Steps to Communication Between Gateway and Mainframe, Using SNA 1-11
1.11 Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA 1-12
1.11.1 Steps to Writing a TIP on a Gateway Using SNA .. 1-12
1.12 Overview of a Gateway Using TCP/IP .. 1-14
1.12.1 Transaction Types for a Gateway Using TCP/IP .. 1-14
1.13 Simple Gateway Communication with the Oracle Server (TCP/IP) 1-14
1.13.1 Preparing the Gateway to Communicate Using TCP/IP ... 1-15
1.13.2 Steps to Communication Between the Gateway and IMS, Using TCP/IP............... 1-15

iv

1.14 Writing TIPs to Generate PL/SQL Programs on Gateway Using TCP/IP 1-17
1.14.1 Steps to Writing a TIP on a Gateway Using TCP/IP... 1-17

2 Procedural Gateway Administration Utility

2.1 Overview of PGAU .. 2-1
2.2 COMMIT/ROLLBACK Processing.. 2-2
2.2.1 COMMIT Processing... 2-2
2.2.2 ROLLBACK Processing .. 2-2
2.3 Invoking PGAU .. 2-3
2.4 Definitions and Generation in PGAU .. 2-3
2.5 Process to Define and Test a TIP... 2-4
2.5.1 Definition Names... 2-4
2.5.2 Definition Versioning.. 2-4
2.5.3 Keywords .. 2-5
2.6 PGAU Commands .. 2-5
2.6.1 CONNECT.. 2-6
2.6.2 DEFINE CALL.. 2-6
2.6.3 DEFINE DATA... 2-7
2.6.4 DEFINE TRANSACTION... 2-9
2.6.5 DESCRIBE.. 2-12
2.6.6 DISCONNECT .. 2-13
2.6.7 EXECUTE... 2-13
2.6.8 EXIT .. 2-14
2.6.9 GENERATE ... 2-14
2.6.10 GROUP... 2-19
2.6.11 HOST .. 2-20
2.6.12 PRINT ... 2-20
2.6.13 REDEFINE DATA... 2-21
2.6.14 REM .. 2-24
2.6.15 REPORT ... 2-24
2.6.16 SET ... 2-27
2.6.17 SHOW... 2-28
2.6.18 SPOOL .. 2-29
2.6.19 UNDEFINE CALL .. 2-29
2.6.20 UNDEFINE DATA ... 2-30
2.6.21 UNDEFINE TRANSACTION ... 2-31
2.6.22 VARIABLE... 2-32

3 Creating a TIP

3.1 Granting Privileges for TIP Creators.. 3-1
3.2 Evaluating the RHT .. 3-2
3.2.1 Identify the Remote Host Transaction.. 3-2
3.2.2 PGAU DEFINE CALL Command ... 3-2
3.2.3 PGAU DEFINE DATA Command .. 3-3
3.2.4 PGAU DEFINE TRANSACTION Command on a Gateway Using SNA.................... 3-3
3.2.5 PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP 3-4
3.2.6 Writing the PGAU Statements... 3-4

v

3.2.7 Writing a PGAU Script File .. 3-5
3.3 Defining and Generating the TIP.. 3-6
3.4 Compiling the TIP... 3-7
3.5 TIP Content Documentation (tipname.doc).. 3-7

4 Client Application Development (SNA Only)

4.1 Overview of Client Application ... 4-1
4.2 Preparing the Client Application.. 4-3
4.3 Understanding the Remote Host Transaction Requirements... 4-3
4.3.1 TIP Content and Purpose ... 4-3
4.3.2 Remote Host Transaction Types.. 4-4
4.3.2.1 One-Shot Transactions... 4-4
4.3.2.2 Persistent Transactions .. 4-5
4.3.2.3 Multi-Conversational Transactions ... 4-5
4.4 Customized TIPs for Each Remote Host Transaction.. 4-6
4.5 Client Application Requirements ... 4-6
4.6 Ensuring TIP and Remote Transaction Program Correspondence 4-10
4.6.1 DATA Correspondence ... 4-10
4.6.2 CALL Correspondence .. 4-11
4.6.2.1 Flexible Call Sequence .. 4-12
4.6.2.2 Call Correspondence Order Restrictions ... 4-13
4.6.3 TRANSACTION Correspondence ... 4-13
4.7 Calling the TIP from the Client Application.. 4-14
4.7.1 Declaring TIP Variables ... 4-14
4.7.2 Initializing the Conversation... 4-16
4.7.2.1 Transaction Instance Parameter .. 4-17
4.7.2.2 Overriding TIP Initializations.. 4-17
4.7.2.3 Security Considerations.. 4-19
4.8 Exchanging Data .. 4-19
4.8.1 Terminating the Conversation .. 4-19
4.8.2 Error Handling.. 4-20
4.8.3 Granting Execute Authority.. 4-20
4.9 Executing the Application .. 4-20
4.10 APPC Conversation Sharing .. 4-20
4.10.1 APPC Conversation Sharing Concepts.. 4-21
4.10.2 APPC Conversation Sharing Usage ... 4-22
4.10.3 APPC Conversation Sharing TIP Compatibility .. 4-22
4.10.4 APPC Conversation Sharing for TIPs That Are Too Large .. 4-23
4.10.5 APPC Conversation Sharing Example .. 4-23
4.10.6 APPC Conversation Sharing Overrides and Diagnostics... 4-25
4.11 Application Development with Multi-Byte Character Set Support 4-25
4.12 Modifying a Terminal-Oriented Transaction to Use APPC... 4-26
4.13 Privileges Needed to Use TIPs... 4-27

5 Implementing Commit-Confirm (SNA Only)

5.1 Overview of Commit-Confirm.. 5-1

vi

5.2 Supported OLTPs.. 5-2
5.3 Components Required to Support Commit-Confirm.. 5-2
5.4 Application Design Requirements ... 5-4
5.5 Commit-Confirm Architecture ... 5-4
5.5.1 Components.. 5-5
5.5.2 Interactions ... 5-5
5.6 Commit-Confirm Flow... 5-5
5.6.1 Commit-Confirm Logic Flow, Step by Step .. 5-5
5.6.2 Gateway Server Commit-Confirm Transaction Log... 5-7

6 PG4TCPMAP Commands (TCP/IP Only)

6.1 Preparation for Populating the PGA_TCP_IMSC Table ... 6-1
6.2 Overview.. 6-1
6.3 Populating the PGA_TCP_IMSC Table ... 6-2
6.4 Before You Run the pg4tcpmap Tool... 6-3
6.5 pg4tcpmap Tool Commands... 6-4
6.5.1 Inserting a Row into the PGA_TCP_IMSC Table.. 6-5
6.5.2 Deleting Rows from the PGA_TCP_IMSC Table .. 6-5
6.5.3 Querying the PGA_TCP_IMSC Table... 6-5

7 Client Application Development (TCP/IP Only)

7.1 Overview of Client Application ... 7-1
7.2 Preparing the Client Application.. 7-3
7.2.1 TIP Content and Purpose .. 7-3
7.2.2 Remote Host Transaction Types.. 7-4
7.3 Ensuring TIP and Remote Transaction Program Correspondence 7-4
7.3.1 DATA Correspondence .. 7-4
7.3.2 CALL Correspondence ... 7-5
7.3.2.1 Flexible Call Sequence ... 7-6
7.3.2.2 Call Correspondence Order Restrictions .. 7-7
7.3.3 TRANSACTION Correspondence .. 7-7
7.4 Calling the TIP from the Client Application... 7-8
7.4.1 Declaring TIP Variables .. 7-8
7.4.2 Initializing the Conversation... 7-10
7.4.2.1 Transaction Instance Parameter .. 7-11
7.4.2.2 Overriding TIP Initializations.. 7-11
7.4.2.3 Security Considerations.. 7-13
7.5 Exchanging Data .. 7-13
7.5.1 Terminating the Conversation .. 7-13
7.5.2 Error Handling.. 7-14
7.5.3 Granting Execute Authority.. 7-14
7.6 Calling PG4TCPMAP .. 7-14
7.7 Executing the Application .. 7-14
7.8 Application Development with Multi-Byte Character Set Support 7-15
7.9 Privileges Needed to Use TIPs... 7-16

vii

8 Problem Determination

8.1 TIP Definition Errors .. 8-1
8.2 Problem Analysis with PG DD Diagnostic References ... 8-2
8.3 Problem Analysis with PG DD Select Scripts ... 8-3
8.4 Data Conversion Errors.. 8-4
8.5 Problem Analysis of Data Conversion and Truncation Errors .. 8-5
8.6 Problem Analysis with TIP Runtime Traces ... 8-6
8.7 TIP Runtime Trace Controls .. 8-7
8.7.1 Generating Runtime Data Conversion Trace and Warning Support........................... 8-8
8.7.2 Controlling TIP Runtime Conversion Warnings .. 8-8
8.7.3 Controlling TIP Runtime Function Entry/Exit Tracing... 8-8
8.7.4 Controlling TIP Runtime Data Conversion Tracing... 8-8
8.7.5 Controlling TIP Runtime Gateway Exchange Tracing... 8-9
8.8 Suppressing TIP Warnings and Tracing.. 8-9
8.9 Gateway Server Tracing.. 8-10
8.9.1 Defining the Gateway Trace Destination .. 8-10
8.9.2 Enabling the Gateway Trace ... 8-11
8.9.2.1 Enabling the Gateway Trace Using Initialization Parameters 8-11
8.9.2.2 Enabling the Gateway Trace Dynamically from PL/SQL................................... 8-11
8.10 Sample Gateway Server Initialization and Trace Output Files ... 8-12
8.10.1 Sample Trace Output File for Gateway Using SNA .. 8-12
8.10.2 Sample Trace Output File for Gateway Using TCP/IP... 8-16
8.10.3 Sample Output Log for pg4tcpmap Tool .. 8-21

A Procedural Gateway for APPC Data Dictionary

A.1 PG DD Environment Dictionary.. A-1
A.1.1 Environment Dictionary Sequence Numbers... A-1
A.1.2 Environment Dictionary Tables.. A-2
A.1.2.1 pga_maint ... A-2
A.1.2.2 pga_environments ... A-2
A.1.2.3 pga_env_attr... A-3
A.1.2.4 pga_env_values ... A-3
A.1.2.5 pga_compilers .. A-3
A.1.2.6 pga_datatypes .. A-4
A.1.2.7 pga_datatype_attr.. A-4
A.1.2.8 pga_datatype_values .. A-4
A.1.2.9 pga_usage ... A-5
A.1.2.10 pga_modes.. A-5
A.2 PG DD Active Dictionary ... A-5
A.2.1 Active Dictionary Versioning ... A-5
A.2.2 Active Dictionary Sequence Numbers... A-6
A.2.3 Active Dictionary Tables ... A-6
A.2.3.1 pga_trans... A-6
A.2.3.2 pga_trans_attr .. A-7
A.2.3.3 pga_trans_values ... A-8
A.2.3.4 pga_trans_calls... A-8

viii

A.2.3.5 pga_call ... A-9
A.2.3.6 pga_call_parm.. A-10
A.2.3.7 pga_data.. A-10
A.2.3.8 pga_fields.. A-11
A.2.3.9 pga_data_attr.. A-12
A.2.3.10 pga_data_values .. A-13

B Gateway RPC Interface

B.1 Calling Gateway Functions to Execute Transaction Programs ... B-1
B.1.1 PGAINIT and PGAINIT_SEC ... B-1
B.1.2 PGAXFER... B-3
B.1.3 PGATERM .. B-5
B.1.4 PGATCTL... B-5
B.1.5 PGATRAC.. B-6

C The UTL_PG and UTL_RAW Interface

C.1 UTL_RAW Functions .. C-1
C.1.1 BIT_AND ... C-1
C.1.2 BIT_COMPLEMENT.. C-2
C.1.3 BIT_OR ... C-2
C.1.4 BIT_XOR... C-3
C.1.5 CAST_TO_RAW ... C-4
C.1.6 CAST_TO_VARCHAR2... C-4
C.1.7 COMPARE... C-5
C.1.8 CONCAT.. C-5
C.1.9 CONVERT.. C-6
C.1.10 COPIES ... C-7
C.1.11 LENGTH .. C-7
C.1.12 OVERLAY.. C-8
C.1.13 REVERSE.. C-9
C.1.14 SUBSTR .. C-9
C.1.15 TRANSLATE .. C-10
C.1.16 TRANSLITERATE .. C-10
C.1.17 XRANGE .. C-12
C.2 UTL_PG Functions... C-12
C.2.1 Common Parameters.. C-13
C.2.1.1 Common Input Parameters.. C-13
C.2.1.2 Common Output Parameter .. C-14
C.2.2 RAW_TO_NUMBER .. C-14
C.2.3 NUMBER_TO_RAW .. C-15
C.2.4 MAKE_RAW_TO_NUMBER_FORMAT .. C-16
C.2.5 MAKE_NUMBER_TO_RAW_FORMAT .. C-17
C.2.6 RAW_TO_NUMBER_FORMAT... C-19
C.2.7 NUMBER_TO_RAW_FORMAT... C-19
C.2.8 WMSGCNT.. C-20
C.2.9 WMSG .. C-20
C.3 NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values................................. C-22

ix

D Datatype Conversions

D.1 Length Checking ... D-1
D.1.1 Parameters Over 32K in Length ... D-2
D.2 Conversion .. D-2
D.2.1 USAGE(PASS) ... D-2
D.2.2 USAGE(ASIS) .. D-8
D.2.3 USAGE(SKIP) .. D-8
D.2.4 PL/SQL Naming Algorithms ... D-8

E National Language Support

E.1 Overview .. E-1
E.2 Languages Supported for Messages ... E-1
E.3 Languages Supported for Data Conversion... E-2

F Tip Internals

F.1 Background Reading ... F-1
F.2 PL/SQL Package and TIP File Separation.. F-2
F.2.1 Independent TIP Body Changes... F-2
F.2.1.1 Determine if a Specification Has Remained Valid.. F-2
F.2.2 Dependent TIP Body or Specification Changes ... F-3
F.2.2.1 Recompile the TIP Body ... F-4
F.2.3 Inadvertent Alteration of TIP Specification .. F-4

G Administration Utility Samples

G.1 Sample PGAU DEFINE DATA Statements.. G-1
G.2 Sample PGAU DEFINE CALL Statements... G-2
G.3 Sample PGAU DEFINE TRANSACTION Statement ... G-2
G.4 Sample PGAU GENERATE Statement ... G-2
G.5 Sample Implicit Versioning Definitions ... G-3
G.6 Sample PGAU REDEFINE DATA Statements .. G-6
G.7 Sample PGAU UNDEFINE Statements .. G-7
G.8 Sample PGAU REPORT Output.. G-7
G.9 Sample TIP Content Documentation .. G-11
G.10 Sample TIP Trace Output ... G-13
G.11 Sample TIP Output .. G-15

Index

x

xi

Send Us Your Comments

Oracle Procedural Gateway for APPC User’s Guide, 10g Release 2 (10.2) for UNIX

B16210-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us at the following e-mail address:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xii

xiii

Preface

The Oracle Procedural Gateway for APPC provides Oracle applications seamless
access to virtually any APPC-enabled system, including IBM mainframe data and
services through Remote Procedure Call (RPC) processing.

The UNIX platforms supported by this gateway release are:

■ Linux 32-bit: Intel Pentium-based processors

■ Solaris Operating System (SPARC 64-bit)

■ AIX pSeries (64-bit), and

■ HP-UX PA-RISC (64-bit)

Intended Audience
Read this guide if you are responsible for tasks such as:

■ determining hardware and software requirements

■ installing, configuring, or administering an Oracle Procedural Gateway for APPC

■ developing applications that access remote host databases through the Oracle
Procedural Gateway for APPC using the SNA Communication Protocol or the
TCP/IP communication protocol

■ determining security requirements

■ determining and resolving problems

Before using this guide to administer the gateway, you should understand the
fundamentals of the operating system for your platform and Procedural Gateways.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

xiv

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
The Oracle Procedural Gateway for APPC User’s Guide for UNIX is included as part of
your product shipment. Also included is:

■ Oracle Procedural Gateway for APPC Messages Guide for UNIX and Microsoft Windows

■ Oracle Procedural Gateway for APPC Installation and Configuration Guide for
UNIX

You might also need Oracle Database Server and Oracle Net documentation. The
following is a useful list of the Oracle publications that may be referenced in this book:

■ Oracle Database Installation Guide 10g Release 2 (10.2) for UNIX Systems

■ Oracle Database Administrator’s Guide 10g Release 2 (10.2) for UNIX Systems

■ Oracle Database Application Developer’s Guide

■ Oracle Database Server Concepts

■ Oracle Database Server Distributed Systems

■ Oracle Database Error Messages

■ Oracle Net Services Administrator’s Guide

Refer to the Oracle Technical Publications Catalog and Price Guide for a complete list of
documentation provided for Oracle products.

Typographic Conventions
The following typographic conventions are used in this guide:

Convention Description

monospace Monospace type indicates UNIX commands, directory names, user names,
path names, and file names.

italics Italic type indicates variables, including variable portions of file names. It is
also used for emphasis and for book titles.

UPPERCASE Uppercase letters indicate Structured Query Language (SQL) reserved words,
initialization parameters, and environment variables.

xv

Command Syntax
UNIX command syntax appears in monospace font. The dollar character ($), number
sign (#), or percent character (%) are UNIX command prompts. Do not enter them as
part of the command. The following command syntax conventions are used in this
guide:

Accessing Installed Documentation

Documentation for Oracle Procedural Gateway for APPC for UNIX Platforms
Documentation for this product includes this guide and the Oracle Procedural Gateway
for APPC Installation and Configuration Guide 10g Release 2 (10.2) for UNIX and the Oracle
Procedural Gateway for APPC Messages Guide, 10g Release 2 (10.2) for UNIX and Windows.

To access the documentation in HTML and PDF formats, use a browser to open the
top level of the Gateway Documentation CD-ROM. This level contains links to product
and UNIX-specific documentation.

Oracle Product Documentation
Oracle Database product documentation is on the Oracle Database Platform-Specific
Documentation CD-ROM. Instructions for accessing and installing the documents on
the CD-ROM are found in the README file on the top level directory of the CD-ROM.

Bold Bold type indicates screen names and fields.

SQL*Plus
prompts

The SQL*Plus prompt, SQL>, appears in SQL statement and SQL*Plus
command examples. Enter your response at the prompt. Do not enter the text
of the prompt, "SQL>", in your response.

Convention Description

backslash \ A backslash is the UNIX command continuation character. It is used in
command examples that are too long to fit on a single line. Enter the
command as displayed (with a backslash) or enter it on a single line
without a backslash:

dd if=/dev/rdsk/c0t1d0s6 of=/dev/rst0 bs=10b \
count=10000

braces { } Braces indicate required items:

.DEFINE {macro1}

brackets [] Brackets indicate optional items:

cvtcrt termname [outfile]

ellipses ... Ellipses indicate an arbitrary number of similar items:

CHKVAL fieldname value1 value2 ... valueN

italics Italic type indicates a variable. Substitute a value for the variable:

library_name

vertical line | A vertical line indicates a choice within braces or brackets:

FILE filesize [K|M]

Convention Description

xvi

Oracle Services and Support
Oracle’s corporate web page is at the following address:

http://www.oracle.com

Oracle offers a wide range of services to help facilitate corporate system solutions,
including Oracle Education courses, Oracle Consulting services, and Oracle Support
Services from the Web site. In addition, Oracle provides free trial software, updates on
Oracle products and service, and technical brochures and data sheets.

Oracle Support Services
Technical Support registration and contact information worldwide is available at the
following address:

http://www.oracle.com/support

At the Oracle support site, you will find templates to help you prepare information
about your problem before you call so that you might be helped more quickly. You
also need your CSI number (if applicable) or complete contact details, including any
special project information.

Oracle Technology Network
Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

OracleMetaLink
OracleMetaLink is the Oracle web service for technical information. Members of
OracleMetaLink can search for updates, alerts, patches, and other information about
products, releases, and operating systems, or set preferences to be notified
automatically of new information. OracleMetaLink offers a variety of services to assist
in setting up and administrating Oracle products, including procedures, scripts,
commentary, and tuning and configuration best-practices bulletins. Log on to
OracleMetaLink before installing or administrating your product to search for up to
date information about Oracle Database 10g Release 2 (10.2) for UNIX.

In addition, OracleMetaLink offers forums for information sharing among Oracle
customers, and direct communication with Oracle Support Services. OracleMetaLink is
available to Product Support Customers at no extra cost. Sign up for free membership
for this service at the following site:

http://www.oracle.com/support/metalink

Use your Support Access Code (SAC) number to register.

xvii

Oracle Products and Other Documentation
For U.S.A. customers, the Oracle Store is at:

http://store.oracle.com

Links to Stores in other countries are provided from this site.

Customer Service
Oracle Support Services contacts are listed at:

http://www.oracle.com/support

Support for Hearing and Speech Impaired Customers
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week.

■ For technical questions, call:

1.800.446.2398

■ For non-technical questions, call:

1.800.464.2330

Education and Training
Training information and worldwide schedules are available from:

http://education.oracle.com

xviii

Introduction to Oracle Procedural Gateway for APPC 1-1

1
Introduction to Oracle Procedural Gateway

for APPC

This guide is intended for users of the following UNIX-based platforms:

■ Linux 32-bit: Intel Pentium-based processors

■ HP-UX PA-RISC (64-bit)

■ Solaris Operating System (SPARC 64-bit), and

■ AIX pSeries (64-bit)

Refer to the Oracle Database Installation Guide 10g Release 2 (10.2) for UNIX Systems and
to the certification matrix on the OracleMetaLink Web site for the most up-to-date list
of certified hardware platforms and operating system versions. The OracleMetaLink
Web site can be found at:

http://metalink.oracle.com

The Oracle Procedural Gateway for APPC (the "gateway") enables users to initiate
transaction program execution on remote online transaction processors (OLTPs). The
Oracle Procedural Gateway for APPC can establish connection with OLTP using the
SNA communication protocol. The gateway can also use TCP/IP for IMS Connect to
establish communication with IMS/TM through TCP/IP. The gateway provides
Oracle applications with seamless access to IBM mainframe data and services through
Remote Procedural Call (RPC) processing.

Read this chapter to learn more about the architecture, uses, and features of the Oracle
Procedural Gateway for APPC.

This chapter contains the following sections:

■ "Overview of the Gateway" on page 1-2

■ "Features of the Gateway" on page 1-2

■ "Terms" on page 1-4

■ "Examples and Sample Files for the Gateway" on page 1-6

■ "Architecture of the Gateway" on page 1-7

■ "Starting the Gateway" on page 1-8

■ "Communication With the Gateway" on page 1-8

■ "Remote Procedural Call Functions" on page 1-9

■ "Overview of a Gateway Using SNA" on page 1-10

■ "Simple Gateway Communication With the Oracle Server (SNA)" on page 1-11

Overview of the Gateway

1-2 Oracle Procedural Gateway for APPC User’s Guide

■ "Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA" on
page 1-12

■ "Overview of a Gateway Using TCP/IP" on page 1-14

■ "Simple Gateway Communication with the Oracle Server (TCP/IP)" on page 1-14

■ "Preparing the Gateway to Communicate Using TCP/IP" on page 1-15

■ "Steps to Communication Between the Gateway and IMS, Using TCP/IP" on
page 1-15

■ "Steps to Writing a TIP on a Gateway Using TCP/IP" on page 1-17

1.1 Overview of the Gateway
The Oracle Procedural Gateway for APPC extends the Remote Procedural Call (RPC)
facilities available with the Oracle server. The gateway enables any client application
to use PL/SQL to request execution of a remote transaction program (RTP) residing on
a host. The gateway provides RPC processing to systems using the SNA APPC
(Advanced Program-to-Program Communication) protocol and to IMS/TM systems
using TCP/IP support for IMS Connect. This architecture allows efficient access to
data and transactions available on the IBM mainframe and IMS, respectively.

The gateway requires no Oracle software on the remote host system. Thus, the
gateway uses existing transactions with little or no programming effort on the remote
host.

❏ For gateways using SNA only: The use of a generic and standard protocol, APPC,
enables the gateway to access a multitude of systems. The gateway can
communicate with virtually any APPC-enabled system, including IBM
Corporation’s CICS on any platform, IBM Corporation’s IMS and APPC/MVS,
and Computer Associates’ IDMS. These transaction monitors provide access to a
broad range of systems, allowing the gateway to access many datastores,
including VSAM, DB2 (static SQL), IMS, IDMS, ADABAS and others.

The gateway can access any application capable of using the CPI-C API, either
directly or through a TP monitor such as CICS.

1.2 Features of the Gateway
The Oracle Procedural Gateway for APPC provides the following benefits:

■ Fast interface

The gateway is optimized so that remote execution of a program is achieved with
minimum network traffic. The interface to the gateway is an optimized PL/SQL
stored procedure specification (called the "TIP" or "transaction interface package")
precompiled in the Oracle Integrating Server. Because there are no additional
software layers on the remote host, overhead occurs only when your program
executes.

■ Location transparency

Client applications need not be operating system-specific. For example, your
application can call a program in a CICS Transaction Server for z/OS. If you move
the program to a CICS region on AIX, then you need not change the application.

■ Application transparency

Users calling applications that execute a remote transaction program are unaware
that a request is sent to a host.

Features of the Gateway

Introduction to Oracle Procedural Gateway for APPC 1-3

■ Flexible interface

You can use the gateway to interface with existing procedural logic or to integrate
new procedural logic into an Oracle Integrating Server environment.

■ Oracle server integration

The integration of the Oracle server with the gateway enables the gateway to
benefit from existing and future Oracle features. For example, the gateway can be
called from an Oracle stored procedure or database trigger.

■ Transactional support

The gateway and the Oracle Integrating Server allow remote transfer updates and
Oracle server updates to be performed in a coordinated fashion.

■ Wide selection of tools

The gateway supports any tool or application that supports PL/SQL.

■ PL/SQL code generator

The Oracle Procedural Gateway for APPC provides a powerful development
environment, including:

– a data dictionary to store information relevant to the remote transaction

– a tool to generate the PL/SQL Transaction Interface Package, or TIP

– a report utility to view the information stored in the gateway dictionary

– a complete set of tracing and debugging facilities

– a wide set of samples to demonstrate the use of the product against datastores
such as DB2, IMS, IDMS, CICS, and ADABAS

■ Site autonomy and security

The gateway provides site autonomy, allowing you to do such things as
authenticate users. It also provides role-based security compatible with any
security package running on your mainframe system.

■ Automatic conversion

Through the TIP, the following conversions are performed:

– ASCII to and from EBCDIC

– remote transaction program datatypes to and from PL/SQL datatypes

– national language support for many languages

■ TCP/IP support for IMS Connect

 This release of the gateway includes TCP/IP support for IMS Connect, giving
users a choice of whether to use an SNA or TCP/IP communication protocol. IMS
Connect is an IBM product which enables TCP/IP clients to trigger execution of
IMS transactions. The gateway can use a TCP/IP communication protocol to
access IMS Connect, which triggers execution of IMS transactions. There is no
SNA involvement with this configuration.

 Related to this new feature of the gateway is:

■ The gateway mapping tool. This release of the gateway includes a new tool
(pg4tcpmap) whose purpose is to map the information from your SNA Side
Profile Name to the TCP/IP host name and Port Number. You might turn on a
trace for this tool as well. For more information about the pg4tcpmap tool,
refer to Chapter 6 of this guide and to Chapter 12 of the Oracle Procedural

Terms

1-4 Oracle Procedural Gateway for APPC User’s Guide

Gateway for APPC Installation and Configuration Guide regarding configuration
of the gateway using TCP/IP.

1.3 Terms
The following terms and definitions are used throughout this guide:

Gateway Initialization File
This file is known as initsid.ora and it contains parameters that govern the operation
of the gateway. If you are using the SNA protocol, refer to Appendix A, "Gateway
Initialization Parameters for SNA Protocol" in the Oracle Procedural Gateway for APPC
Installation and Configuration Guide for more information. If your protocol is TCP/IP,
refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication
Protocol" in the Oracle Procedural Gateway for APPC Installation and Configuration Guide.

Gateway Remote Procedure
The Oracle Procedural Gateway for APPC provides prebuilt remote procedures. In
general, the following three remote procedures are used:

■ PGAINIT, which initializes transactions

■ PGAXFER, which transfers data

■ PGATERM, which terminates transactions

Refer to Appendix B, "Gateway RPC Interface" in this guide and to "Remote
Procedural Call Functions" in Chapter 1 of the Oracle Procedural Gateway for APPC
Installation and Configuration Guide for more information about gateway remote
procedures.

tg4pwd
The tg4pwd utility is a utility which encrypts passwords that are normally stored in
the gateway initialization file. Passwords are stored in an encrypted form in the
password file, making the information more secure. Refer to "Passwords in the
Gateway Initialization File" in the security requirements chapter of the Oracle
Procedural Gateway for APPC Installation and Configuration Guide for detailed
information about how the tg4pwd utility works.

pg4tcpmap Tool
This tool is applicable only when the gateway is using TCP/IP support for IMS
Connect. Its function is to map the Side Profile Name to TCP/IP parameters (such as
OLTP host name, IMS Connect port number and IMS destination ID).

PGA (Procedural Gateway Administration)
PGA is a general reference within this guide to all or most components comprising the
Oracle Procedural Gateway for APPC. This term is used when references to a specific
product or component are too narrow.

PGDL (Procedural Gateway Definition Language)
PGDL is the collection of statements used to define transactions and data to the PGAU.

Note: When your communications protocol is TCP/IP, only IMS
is supported as the Online Transaction Processor (OLTP).

Terms

Introduction to Oracle Procedural Gateway for APPC 1-5

PL/SQL Stored Procedure Specification (PL/SQL Package)
This is a precompiled PL/SQL procedure that is stored in Oracle Integrating Server.

UTL_RAW PL/SQL Package (the UTL_RAW Functions)
This component of the gateway represents a series of data conversion functions for
PL/SQL RAW variables and remote host data. The types of conversions performed
depend on the language of the remote host data. Refer to Appendix D, "Datatype
Conversions" in this guide for more information.

UTL_PG PL/SQL Package (the UTL_PG Functions)
This component of the gateway represents a series of COBOL numeric data conversion
functions. Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values"
in Appendix C of this guide for supported numeric datatype conversions.

Oracle Integrating Server
This is any Oracle server instance that communicates with the gateway for purposes of
performing remote procedural calls to execute remote transaction programs (RTP).
The Oracle Integrating Server can be on the same system as the gateway or on a
different system. If it is on a different system, then Oracle Net is required on both
systems. Refer to Figure 1–2, "Gateway Architecture Featuring SNA or TCP/IP
Protocol" for a view of the gateway architecture.

OLTP (Online Transaction Processor)
OLTP is any of a number of online transaction processors available from other
vendors, including CICS Transaction Server for z/OS, IMS/TM, and IDMS-DC.

PGAU (Procedural Gateway Administration Utility)
PGAU is the tool that is used to define and generate PL/SQL transaction interface
packages (TIPs). Refer to Chapter 2, "Procedural Gateway Administration Utility" in
this guide for more information about PGAU.

PG DD (Data Dictionary)
This component of the gateway is a repository of remote host transaction definitions
and data definitions. PGAU accesses definitions in the PG DD when generating TIPs.
The PG DD has datatype dependencies because it supports the PGAU and is not
intended to be directly accessed by the customer. Refer to Appendix A, "Procedural
Gateway for APPC Data Dictionary" in this guide for a list of PG DD tables.

RPC (Remote Procedural Call)
RPC is a programming call that executes program logic on one system in response to a
request from another system. Refer to "Gateway Remote Procedure" in Appendix C of
the Oracle Procedural Gateway for APPC Installation and Configuration Guide, and to
Appendix B, "Gateway RPC Interface" in this guide for more information.

RTP (Remote Transaction Program)
A remote transaction program is a customer-written transaction, running under the
control of an OLTP, which the user invokes remotely using a PL/SQL procedure. To

Note: When your communications protocol is TCP/IP, only IMS
is supported as the Online Transaction Processor (OLTP).

Examples and Sample Files for the Gateway

1-6 Oracle Procedural Gateway for APPC User’s Guide

execute a remote transaction program through the gateway, you must use RPC to
execute a PL/SQL program to call the gateway functions.

TIP (Transaction Interface Package)
A TIP is an Oracle PL/SQL package that exists between your application and the
remote transaction program. The transaction interface package, or TIP, is a set of
PL/SQL stored procedures that invoke the remote transaction program through the
gateway. TIPs perform the conversion and reformatting of remote host data using
PL/SQL and UTL_RAW/UTL_PG functions.

Figure 1–1 illustrates where the terminology discussed in the preceding sections
applies to the gateway architecture.

Figure 1–1 Relationship of Gateway and Oracle Integrating Server on UNIX Host

1.4 Examples and Sample Files for the Gateway
The following sample files and examples are referred to for illustration purposes
throughout this guide. There are different example and sample files for a gateway
using the SNA protocol than for a gateway using TCP/IP for IMS Connect.

Examples and Sample Files for Gateway Using SNA
For gateways using the SNA communication protocol, this guide uses a CICS-DB2
inquiry as an example. Transaction Interface Packages (TIPs) pgadb2i.pkb and
pgadb2i.pkh send an employee number, empno, to a DB2 application and receive an
employee record, emprec.

The CICS-DB2 inquiry sample and its associated PGAU commands are also available
in the $ORACLE_HOME/pg4appc/demo/CICS directory. The sample CICS-DB2
inquiry used as an example in this chapter is in files pgadb2i.pkh and
pgadb2i.pkb. Refer to the README.doc file in the same directory for information

Remote
Transaction
Program

OLTP

Mainframe

Client

S
N
A
 o
r T

C
P
/IP

Oracle
Net

Transaction
Interface Package

Integrating
Server

PGDD
Data Dictionary

Gateway
Remote
Procedure Calls

PGAU

UNIX

Architecture of the Gateway

Introduction to Oracle Procedural Gateway for APPC 1-7

about installing and using the samples. It can be found in the
$ORACLE_HOME/pg4appc/demo/CICS directory.

Examples and Sample Files for Gateway Using TCP/IP
If your gateway is using the TCP/IP communication protocol, this guide uses an IMS
inquiry as an example. Transaction Interface Packages (TIPs) pgtflip.pkh and
pgtflip.pkb send input to IMS, through IMS Connect, and receive the flipped input
as the output.

The IMS inquiry sample (FLIP) and its associated PGAU commands are located in the
$ORACLE_HOME/pg4appc/demo/IMS directory. The sample IMS inquiry used as an
example for a gateway using TCP/IP is located in files pgtflip.pkh and
pgtflip.pkb.

Refer to the README.doc file for more information about installing and using other
IMS samples. It can be found in the $ORACLE_HOME/pg4appc/demo/IMS directory.

1.5 Architecture of the Gateway
The architecture of Oracle Procedural Gateway for APPC consists of several
components:

1. Oracle Integrating Server

Refer to the configuration chapter appropriate to your communications protocol in
the Oracle Procedural Gateway for APPC Installation and Configuration Guide for a
description of the various methods for establishing the gateway-Oracle Integrating
Server relationship.

The Oracle Integrating Server can also be used for non-gateway applications.

2. The gateway

Oracle Procedural Gateway for APPC must be installed on a server that can run
the required version of the operating system.

3. An OLTP (online transaction processor)

The OLTP must be accessible from the gateway using your SNA or TCP/IP
communication protocol. Multiple Oracle Integrating Servers can access the same
gateway. A single system gateway installation can be configured to access more
than one OLTP.

– For gateway using TCP/IP for IMS Connect: The only OLTP that is supported
through TCP/IP is IMS through IMS Connect.

– The OLTP must be accessible to the system using the TCP/IP protocol.
Multiple Oracle Integrating Servers can access the same gateway. A single
system gateway installation can be configured to access more than one OLTP.
Multiple IMS can be accessed from an IMS Connect. If you have a number of
IMS Connect systems available, any of these might be connected to one or
more IMS systems.

Figure 1–2 illustrates the architecture of the Oracle Procedural Gateway for APPC
using SNA or TCP/IP, as described in the previous section.

Starting the Gateway

1-8 Oracle Procedural Gateway for APPC User’s Guide

Figure 1–2 Gateway Architecture Featuring SNA or TCP/IP Protocol

1.6 Starting the Gateway
Because the gateway does not have background processes and doesn’t need a
management utility such as Oracle Enterprise Manager, you needn’t "start" the
gateway. Each Oracle Integrating Server user session that accesses a particular
gateway creates an independent process on UNIX that runs the gateway server and
executes either the SNA or TCP/IP functions to communicate with an OLTP,
depending upon your protocol.

1.7 Communication With the Gateway
All of the communication between the user or client program and the gateway is
handled through a transaction interface package (TIP) which executes on an Oracle
Integrating Server. The TIP is a standard PL/SQL package that provides the following
functions:

■ declares the PL/SQL variables that can be exchanged with a remote transaction
program;

■ calls the gateway packages that handle the communications for starting the
conversation, exchanging data and terminating the conversation;

■ handles all datatype conversions between PL/SQL datatypes and the target
program datatypes.

The Procedural Gateway Administration Utility (PGAU), provided with the gateway,
automatically generates the TIP specification.

ClientClient

Oracle Server

Oracle Net

Other
Databases

VSAM

DB2

IMS/DB

ADABAS

IDMS

SUPRA

DATACOM

V
TA

M
 - A

P
P

C

C
IC

S
IM

S
/T

M
ID

M
S

A
P

P
LIC

AT
IO

N
IM

S
/T

M

IM
S

 C
O

N
N

E
C

T

T
C

P
/IP

APPC

-

P
ro

ce
du

ra
l

S
N

A
S

erverO
ra

c
le

N
e

t

A
P

P
CG
atew

ay

T
C

P
/IP

T
C

P
/IP

Other Options:
CICS/400
CICS/VSE

APPC

TCP/IP

Remote Procedural Call Functions

Introduction to Oracle Procedural Gateway for APPC 1-9

The gateway is identified to the Oracle Integrating Server using a database link. The
database link is the same construct used to identify other Oracle server databases. The
functions in the gateway are referenced in PL/SQL as:

function_name@dblink_name

1.8 Remote Procedural Call Functions
The Oracle Procedural Gateway for APPC provides a set of functions that are invoked
by the client through remote procedural call (RPC). These functions direct the gateway
to initiate, transfer data with, and terminate remote transaction programs running
under an OLTP on another system.

Table 1–1 lists the remote procedural call functions and the correlating commands that
are invoked in the gateway and remote host.

1.8.1 TIP Function
The following sections describe how a TIP works by first establishing a connection to
the remote host, then exchanging data from the target transaction program and finally,
terminating a conversation.

1.8.1.1 Remote Transaction Initiation
The TIP initiates a connection to the remote host using one of the gateway functions,
PGAINIT.

When the communication protocol is SNA: PGAINIT provides, as input, the required
SNA parameters to start a conversation with the target transaction program. These
parameters are sent across the SNA network, which returns a conversation identifier
to PGAINIT. Any future calls to the target program use the conversation identifier as
an INPUT parameter.

When the communication protocol is TCP/IP: PGAINIT provides, as input, the
required TCP/IP parameters. These parameters are sent across the TCP/IP network to
start the conversation with the target transaction program; the TCP/IP network
returns a socket file descriptor to PGAINIT. Any future calls, such as PGAXFER and
PGATERM, use this same socket file descriptor as an input parameter.

1.8.1.2 Data Exchange
After the conversation is established, a procedural gateway function called PGAXFER
can exchange data in the form of input and output variables. PGAXFER sends and
receives buffers to and from the target transaction program. The gateway sees a buffer
as only a RAW stream of bytes. The TIP that is residing in the Oracle Integrating
Server is responsible for converting the application’s PL/SQL datatypes to RAW

Table 1–1 RPC Functions and Commands in the Gateway and Remote Host

Applications Oracle TIP Gateway Remote Host

call tip_init tip_init

call pgainit@gateway

PGAINIT Initiate program

call tip_main tip_main

call pgaxfer@gateway

PGAXFER Exchange data

call tip_term tip_term

call pgaterm@gateway

PGATERM Terminate program

Overview of a Gateway Using SNA

1-10 Oracle Procedural Gateway for APPC User’s Guide

before sending the buffer to the gateway. It is also responsible for converting RAW to
the PL/SQL datatypes before returning the results to the application.

1.8.1.3 Remote Transaction Termination
When communication with the remote program is complete, the gateway function
PGATERM terminates the conversation between the gateway and the remote host.

When the communication protocol is SNA: PGATERM uses the conversation
identifier as an INPUT parameter to request conversation termination.

When the communication protocol is TCP/IP: PGATERM uses the socket file
descriptor for TCP/IP as an INPUT parameter to request conversation termination.

❏ At this point, if your communication protocol is SNA, then proceed to the
following section, Section 1.9, "Overview of a Gateway Using SNA" on page 1-10.

❏ If your gateway communication protocol is TCP/IP, then proceed to Section 1.12,
"Overview of a Gateway Using TCP/IP" on page 1-14.

1.9 Overview of a Gateway Using SNA
If you are using the SNA communication protocol, read the following sections to
develop an understanding of how the gateway communicates with the Oracle
Integrating Server and with the mainframe, as well as transaction types unique to your
gateway and writing TIPs.

1.9.1 Transaction Types for a Gateway Using SNA
The Oracle Procedural Gateway for APPC supports three types of transactions that
read data from and write data to remote host systems:

■ one-shot

In a one-shot transaction, the application initializes the connection, exchanges data
and terminates the connection, all in a single call.

■ persistent

In a persistent transaction, multiple calls to exchange data with the remote
transaction can be executed before terminating the conversation.

■ multi-conversational

In a multi-conversation transaction, the procedural gateway server can be used to
exchange multiple records in one call to the remote transaction program.

Refer to "Remote Host Transaction Types" in Chapter 4, "Client Application
Development (SNA Only)" of this guide for more information about transaction types.

The following list demonstrates examples of the power of the Oracle Procedural
Gateway for APPC:

■ You can initiate a CICS transaction on the mainframe to retrieve data from a
VSAM file for a PC application.

■ You can modify and monitor the operation of a remote process control computer.

■ You can initiate an IMS/TM transaction that executes static SQL in DB2.

■ You can initiate a CICS transaction that returns a large number of records in a
single call.

Simple Gateway Communication With the Oracle Server (SNA)

Introduction to Oracle Procedural Gateway for APPC 1-11

1.10 Simple Gateway Communication With the Oracle Server (SNA)
This section describes simple communication between the mainframe and the Oracle
Integrating Server on a gateway using the SNA communication protocol. The Oracle
Procedural Gateway for APPC lets you write your own procedures to begin
transferring information between the Oracle Integrating Server and a variety of
programs on an IBM mainframe, including IBM CICS, IMS, and APPC/MVS.

For an illustration of the communications function of the Oracle Procedural Gateway
for APPC, refer to
$ORACLE_HOME/pg4appc/demo/CICS/pgacics.sql, which is a simple sample
communication between the Oracle server and CICS Transaction Server for z/OS.
Executing the simple PL/SQL procedure pgacics.sql causes the Oracle Integrating
Server to invoke the procedural gateway, which uses SNA to converse with the FLIP
transaction in CICS. These steps are described in detail in Section 1.10.1, "Steps to
Communication Between Gateway and Mainframe, Using SNA". Note that you will
already have compiled and linked the stored procedure when you configured the
gateway.

1.10.1 Steps to Communication Between Gateway and Mainframe, Using SNA
The following steps describe the UNIX-to-mainframe communications process
illustrated in Figure 1–3, "Communication Between the Oracle Server and the
Mainframe, Using SNA" when your communication protocol is SNA to communicate
between the gateway and the mainframe:

1. From SQL*Plus, execute pgacics; this invokes the PL/SQL stored procedure in
the Oracle Integrating Server.

$ sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgacics(’==< .SCIC htiw gnitacinummoc si yawetag ruoy
,snoitalutargnoC >==’);

2. The pgacics PL/SQL stored procedure will start up the gateway. The gateway
will start up communication with CICS Transaction Server for z/OS through SNA
and will call FLIP.

3. FLIP processes the input, generates the output and sends the output back to the
procedural gateway.

4. Finally, the procedural gateway will send the output back to the PL/SQL stored
procedure in the Oracle Integrating Server. The result is displayed in SQL*Plus:

==> Congratulations, your gateway is communicating with CICS. <==
PL/SQL procedure successfully completed.

Figure 1–3, "Communication Between the Oracle Server and the Mainframe, Using
SNA" illustrates the communications process described in steps 1 through 4 in the
previous section.

Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA

1-12 Oracle Procedural Gateway for APPC User’s Guide

Figure 1–3 Communication Between the Oracle Server and the Mainframe, Using SNA

1.11 Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA
Most transactions using SNA communication are much larger and more complex than
the simple sample pgacics.sql file referred to in Figure 1–3, "Communication
Between the Oracle Server and the Mainframe, Using SNA". Additionally,
communication with a normal-sized RTP (remote transaction program) would require
you to create an extremely long PL/SQL file. Oracle Procedural Gateway for APPC’s
PGAU function generates the PL/SQL procedure for you.

The following is a brief description of the four steps necessary for you to generate a
TIP. Refer to Chapter 3, "Creating a TIP" for detailed information about this procedure,
and refer to Chapter 2, "Procedural Gateway Administration Utility" for more
information about PGAU.

All parameter names in this section are taken from a file called pgadb2i.ctl in the
$ORACLE_HOME/pga4appc/demo/CICS directory.

1.11.1 Steps to Writing a TIP on a Gateway Using SNA
Follow these steps to write a TIP.

Step 1 Create a Control File:
The user writes the control files. The control file has four main types of PGAU
commands:

1. DEFINE DATA. This is used to define input and output fields, using COBOL data
definitions.

■ Sample define data:

define data empno plsdname(empno) usage(pass) language(ibmvscobolii)

Client

CICS

Mainframe

UNIX

Oracle Integrating Server

SQL>execute ‘(snoitalutargnoC)’
Congratulations
PL/SQL procedure successfully completed

pgacics

PGAINIT @PGA (...);

PGAXFER @ PGA (...);

PGATERM @ PGA (...);

…

Procedural Gateway

FLIP

…
…
…
…

APPC

1

3

4

2

Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA

Introduction to Oracle Procedural Gateway for APPC 1-13

 infile("empno.cob");

2. DEFINE CALL. This is used to define PL/SQL functions calls to be generated as
part of the package.

■ Sample define call:

define call db2imain pkgcall(pgadb2i_main)
 parms((empno in),(emprec out));

3. DEFINE TRANSACTION. This is used to group the preceding functions and
specify other parameters on which the TIP depends.

■ Sample define transaction:

define transaction db2i call(db2imain,db2idiag)
 sideprofile(CICSPGA)
 tpname(DB2I)
 logmode(oraplu62)
 synclevel(0)
 nls_language("american_america.we8ebcdic37c");

4. GENERATE. This is used to generate the TIP specification files from the
previously stored transaction, call and data definitions.

■ Sample generate transaction:

generate db2i pkgname(pgadb2i) pganode(pga) outfile("pgadb2i");

Step 2 Execute the control file within PGAU
Running the control file within PGAU will create PG DD entries for the data, call, and
transaction definitions, and will generate the specification files (For example,
pgadb2i.pkh and pgadb2i.pkb):

$ pgau
PGAU> CONNECT<userid>/<password>@<database>_specification_string>
PGAU> @pgadb2i.ctl

Step 3 Execute the specification files
Running the specification files will create the PL/SQL stored procedures. Note that the
header specification file (for example, pgadb2i.pkh) must be run first:

$ sqlplus<userid>/<password>@<database_specification_string>
SQL> @pgadb2i.pkh;
SQL> @pgadb2i.pkb;

Step 4 Create a driver procedure to run the TIP
The TIP is now ready for use. For convenience, it will usually be called using a driver
procedure (for example, db2idriv). This driver will then call the individual stored
procedures in the correct order. Create the driver procedure and run it:

$ sqlplus <userid>/<password>@<database_specification string>
SQL> @pgadb2id.sql
SQL> execute db2idriv(’000320’);

Overview of a Gateway Using TCP/IP

1-14 Oracle Procedural Gateway for APPC User’s Guide

1.12 Overview of a Gateway Using TCP/IP
If you are using the TCP/IP communication protocol, read the following sections to
develop an understanding of how the gateway communicates with the Oracle
Integrating Server and with the mainframe, as well as transaction types unique to your
gateway and writing TIPs.

1.12.1 Transaction Types for a Gateway Using TCP/IP
The Oracle Procedural Gateway for APPC using TCP/IP support for IMS Connect
supports three types of transaction socket connections:

■ transaction socket

The socket connection lasts across a single transaction.

■ persistent socket

The socket connection lasts across multiple transactions.

■ non-persistent socket

The socket connection lasts across a single exchange consisting of one input and
one output.

Refer to the section about pg4tcpmap commands in Chapter 6, "PG4TCPMAP
Commands (TCP/IP Only)" of this guide for more information about the function
and use of these parameters.

You can initiate an IMS/TM transaction that executes static SQL in DB2; this
illustrates the power of the Oracle Procedural Gateway for APPC’s feature
supporting TCP/IP for IMS Connect.

1.13 Simple Gateway Communication with the Oracle Server (TCP/IP)
This section describes simple communication between IMS and the Oracle Integrating
Server whenTCP/IP for IMS Connect is being used as the communication protocol
between the gateway and the remote host (IMS). The Oracle Procedural Gateway for
APPC lets you write your own procedures to begin transferring information between
the Oracle Integrating Server and I/O PCB programs on IMS.

For an illustration of the communications function of the gateway using TCP/IP for
IMS Connect, refer to $ORACLE_HOME/pg4appc/demo/IMS/pgaims.sql file.

Executing the simple PL/SQL procedure pgaims.sql causes the Oracle Integrating
Server to invoke the gateway, which uses TCP/IP to converse with the sample
transaction FLIP in IMS. The communication steps that take place when you execute
the PL/SQL procedure are described in detail in Section 1.13.2, "Steps to
Communication Between the Gateway and IMS, Using TCP/IP". Note that you will
already have compiled and linked the stored procedure when you configured the
gateway.

Note: Do not use the non-persistent socket type if you plan on
implementing conversational transactions because multiple
connects and disconnects occur.

Simple Gateway Communication with the Oracle Server (TCP/IP)

Introduction to Oracle Procedural Gateway for APPC 1-15

1.13.1 Preparing the Gateway to Communicate Using TCP/IP
If your gateway is using TCP/IP support for IMS Connect, then you must use the
pg4tcpmap tool to prompt PGAINIT to provide the required TCP/IP parameters as
input. The pg4tcpmap tool resides on the gateway and maps SNA parameters such as
Side Profile name and LU name to TCP/IP parameters such as port number and
hostname (IP address). The TCP/IP parameters are sent across the TCP/IP network to
start a conversation with the target transaction program.

The pg4tcpmap tool must be run before executing any PL/SQL gateway statements.

You must populate the PGA_TCP_IMSC table using the pg4tcpmap tool before
executing PL/SQL gateway statements.

In a PGAINIT procedure call, the user must specify a Side Profile Name and TP Name.
Since the TCP/IP protocol uses only the TP Name and Sync Level parameters, the
pg4tcpmap tool maps only the relevant SNA parameters from the original PGAINIT
procedure call to TCP/IP parameters. The values of these parameters are inserted into
a table called PGA_TCP_IMSC.

■ Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" in this guide for
complete instructions for setting up and executing pg4tcpmap commands to
populate the PGA_TCP_IMSC table. Chapter 6 also explains the content of the
PGA_TCP_IMSC table and an example of how to use the table.

■ For more information about the role of the pg4tcpmap tool in configuring the
gateway, refer to Chapter 12 in the Oracle Procedural Gateway for APPC Installation
and Configuration Guide regarding gateway configuration using the TCP/IP
protocol.

■ A trace file from a sample pg4tcpmap execution is located in Chapter 8, "Problem
Determination" in this guide.

■ A screen output file is located in Appendix B, "Gateway Initialization Parameters
for TCP/IP" in the Oracle Procedural Gateway for APPC Installation and Configuration
Guide.

1.13.2 Steps to Communication Between the Gateway and IMS, Using TCP/IP
The following steps describe the UNIX-to-IMS on a mainframe communications
process, as illustrated in Figure 1–4 when your communication protocol is TCP/IP:

1. From SQL*Plus, execute pgaims.sql; this invokes the PL/SQL stored procedure
in the Oracle Integrating Server.

$ sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgaims ’snoitalutargnoC’;

The pgaims.sql stored procedure will start up the gateway.

2. The gateway which has the APPC information will call the mapping table
(PGA_TCP_IMSC). The mapping table maps the information so that it will have
the host name (TCP/IP address) and the port number.

Note: Rather than insert, delete or update the PGA_TCP_IMSC
mapping table manually, you should use the pg4tcpmap tool to do
so. You can use the select statement to query the rows.

Simple Gateway Communication with the Oracle Server (TCP/IP)

1-16 Oracle Procedural Gateway for APPC User’s Guide

3. When the gateway has the port number and host name, it will initiate
communication with IMS through TCP/IP, and will call FLIP through IMS
Connect.

4. FLIP processes the input, generates the output and sends the output back to the
gateway.

5. Finally, the gateway will send the output back to the PL/SQL stored procedure in
the Oracle Integrating Server. The result is displayed in SQL*Plus:

Congratulations
PL/SQL procedure successfully completed.

Figure 1–4, "Communication Between Oracle Server and Mainframe, Using TCP/IP"
illustrates the communications process described in Steps 1 through 5.

Figure 1–4 Communication Between Oracle Server and Mainframe, Using TCP/IP

Mainframe

IMS

FLIP
…
…
…
…

IMS Connect

4

TCP/IP

Client

Gateway

PGAINIT @PGA (...);
PGAXFER @ PGA (...);
PGATERM @ PGA (...);
…

3
2

3

7

UNIX

Oracle Integrating Server

SQL>execute (’snoitalutargnoC’)
‘Congratulations’
PL/SQL procedure successfully completed

pgaims

PGA_TCP_IMSC1
5

Writing TIPs to Generate PL/SQL Programs on Gateway Using TCP/IP

Introduction to Oracle Procedural Gateway for APPC 1-17

1.14 Writing TIPs to Generate PL/SQL Programs on Gateway Using
TCP/IP

Most transactions are much larger and more complex than the simple sample
pgaims.sql file referred to in Figure 1–4, "Communication Between Oracle Server
and Mainframe, Using TCP/IP". Additionally, communication with a normal-sized
RTP (remote transaction program) would require you to create an extremely long
PL/SQL file. Oracle Procedural Gateway for APPC’s TIP function generates the
PL/SQL procedure for you.

The following is a brief description of the four steps necessary for you to generate a
TIP. Refer to Chapter 3, "Creating a TIP" for detailed information about this procedure,
and refer to Chapter 2, "Procedural Gateway Administration Utility" for more
information about PGAU.

All parameter names in this section are taken from a file called pgtflip.ctl in the
$ORACLE_HOME/pga4appc/demo/IMS directory.

1.14.1 Steps to Writing a TIP on a Gateway Using TCP/IP
Follow these steps to write a TIP.

Step 1 Create a Control File:
The user writes the control files. The control file has four main types of PGAU
commands:

1. DEFINE DATA. This is used to define input and output fields, using COBOL data
definitions.

■ Sample define data:

define data flipin plsdname(flipin) usage(pass) language(ibmvscobolii)
(
 01 msgin pic x(20).
)

define data flipout plsdname(flipout) usage(pass) language(ibmvscobolii)
(
 01 msgout pic x(20).
)

2. DEFINE CALL. This is used to define PL/SQL functions calls to be generated as
part of the package.

■ Sample define call:

define call flipmain pkgcall(pgtflip_main)
 parms((flipin in),(flipout out));

3. DEFINE TRANSACTION. This is used to group the preceding functions and
specify other parameters on which the TIP depends.

■ Sample define transaction:

define transaction imsflip call(flipmain)
 sideprofile(pgatcp)
 tpname(flip)
 nls_language("american_america.us7ascii");

Writing TIPs to Generate PL/SQL Programs on Gateway Using TCP/IP

1-18 Oracle Procedural Gateway for APPC User’s Guide

4. GENERATE. This is used to generate the TIP specification files from the
previously stored transaction, call and data definitions.

■ Sample generate transaction:

generate imsflip pkgname(pgtflip) pganode(pga10ia) outfile("pgtflip")
diagnose(pkgex(dc,dr));

Step 2 Execute the Control File Within PGAU
Running the control file within PGAU will create PG DD entries for the data, call, and
transaction definitions, and will generate the specification files (For example,
pgtflip.pkh and pgtflip.pkb):

$ pgau
PGAU> CONNECT userid/password@database_specification_string
PGAU> $ORACLE_HOME/pg4appc/demo/IMS/pgtflip.ctl

Step 3 Execute the Specification Files
Running the specification files will create the PL/SQL stored procedures. Note that the
header specification file (for example, pgtflip.pkh) must be run first:

$ sqlplus userid/password@database_specification_string
SQL> @pgtflip.pkh;
SQL> @pgtflip.pkb;

Step 4 Create a Driver Procedure to Run the TIP
The TIP is now ready for use. For convenience, it will usually be called using a driver
procedure (for example, pgtflipd). This driver will then call the individual stored
procedures in the correct order. Create the driver procedure and run it:

$ sqlplus <userid>/<password>@<database_specification string>
SQL> @pgtflip.sql
SQL> execute pgtflipd(’hello’);

Note: On a gateway using TCP/IP, the side profile name value is
actually the TCP/IP unique name that was defined when the user
specified the value, hostname, port number and many other IMS
Connect values during configuration of the network.

Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" in
this guide and to Chapter 12 of the Oracle Procedural Gateway for
APPC Installation and Configuration Guide for detailed information
about the pg4tcpmap tool.

Procedural Gateway Administration Utility 2-1

2
Procedural Gateway Administration Utility

The Procedural Gateway Administration Utility (PGAU) is a utility that assists the
PGA administrator or user to define the data which is to be exchanged with remote
transaction programs. It generates the PL/SQL Transaction Interface Packages (TIPs)
discussed in Chapter 3, "Creating a TIP", Appendix F, "Tip Internals" and, depending
on your communication protocol, either Chapter 4, "Client Application Development
(SNA Only)" or Chapter 7, "Client Application Development (TCP/IP Only)".

This chapter contains the following sections:

■ "Overview of PGAU" on page 2-1

■ "COMMIT/ROLLBACK Processing" on page 2-2

■ "Invoking PGAU" on page 2-3

■ "Definitions and Generation in PGAU" on page 2-3

■ "Process to Define and Test a TIP" on page 2-4

■ "PGAU Commands" on page 2-5

2.1 Overview of PGAU

PGAU maintains a data dictionary, PG DD, which is a collection of tables in an Oracle
database. These tables hold the definitions of the remote transaction data and how that
data is to be exchanged with the remote transaction program. Refer to "Ensuring TIP
and Remote Transaction Program Correspondence" on page 4-10 for a discussion of
the correlation between TIPs and their respective remote transaction programs. The
PG DD contents define this correlation.

The PGA administrator or user defines the correlation between TIPs and the remote
transaction program using the following PGAU commands (also called "statements"):

Note: If you have existing TIPs that were generated previously on
a gateway using the SNA protocol and you want to utilize the new
TCP/IP feature, then the TIPs will have to be regenerated by PGAU
with mandatory NLS_LANGUAGE and Side Profile Settings.
Specify the appropriate ASCII character set in the DEFINE
TRANSACTION command.

This is because the gateway assumes that the appropriate "user
exit" in IMS Connect is being used, which would translate between
the appropriate ASCII and EBCDIC character sets.

COMMIT/ROLLBACK Processing

2-2 Oracle Procedural Gateway for APPC User’s Guide

■ PGAU DEFINE DATA statements, which describe the data to be exchanged.

■ PGAU DEFINE CALL statements, which describe the exchange sequences.

■ PGAU DEFINE TRANSACTION statements, which group the preceding CALL
and DATA commands together and describe certain aspects unique to the remote
transaction program, such as its network name or location.

■ PGAU GENERATE statement, which the PGA administrator or user uses to
specify and create the TIP specifications, after the TIP/transaction correlation has
been defined in the PG DD. Additional PGAU commands needed to alter and
delete definitions in the PG DD are described in "PGAU Commands" later in this
chapter.

The PGAU commands are known collectively as Procedural Gateway Definition
Language (PGDL). Any references to PGDL are to the collection of PGAU commands
defined in this chapter.

PGAU provides editing and spooling facilities and the ability to issue SQL commands.

Alternatively, PGAU commands can be supplied in a control file. The control file
contains one or more PGAU commands for manipulating the PG DD or generating TIP
specifications.

PGAU issues status messages on each operation. The message text is provided
through Oracle NLS message support. PGAU processes each command in sequence.
An error on a single command causes PGAU to skip that command.

To run PGAU, the PG Data Dictionary tables must already have been created. Refer to
the gateway configuration chapters pertinent to your communications protocol in the
Oracle Procedural Gateway for APPC Installation and Configuration Guide.

2.2 COMMIT/ROLLBACK Processing
The following sections provide information on COMMIT/ROLLBACK processing.

2.2.1 COMMIT Processing
PGAU never issues COMMIT commands. As the user, it is your responsibility to
COMMIT PG DD changes when all the changes are implemented. Otherwise Oracle
issues a COMMIT command by default when you exit the PGAU session. If PG DD
changes are not to be committed, you must run a ROLLBACK command before
exiting.

2.2.2 ROLLBACK Processing
PGAU sets a savepoint at the beginning of each PGAU command that alters the
PG DD and at the beginning of a PGAU GROUP. PGAU rolls back to the savepoint
upon any PGAU command or group failure.

You can code COMMIT or ROLLBACK commands within PGAU scripts, or
interactively in PGAU, but not within a GROUP.

Neither COMMIT nor ROLLBACK is issued for PGAU GENERATE or REPORT
commands.

Caution: Do not use PGAU instead of SQL*Plus for general
database administration.

Definitions and Generation in PGAU

Procedural Gateway Administration Utility 2-3

For information about grouping PGAU commands together to roll back changes in
case of failure, refer to the discussion of the PGAU "GROUP" command on page 2-19
later in this chapter.

2.3 Invoking PGAU
Before you can invoke PGAU, your Oracle Integrating Server should already be set up.
If it is not, refer to the chapter on configuring your Procedural Gateway for APPC, in
the Oracle Procedural Gateway for APPC Installation and Configuration Guide.

Before executing PGAU, you must set the ORACLE_HOME environment variable to
the directory into which the gateway server was installed.

If you want to receive PGAU messages in a language other than English, set the
LANGUAGE environment variable to the appropriate value. For a list of supported
languages and the syntax for the LANGUAGE setting, refer to Appendix E, "National
Language Support".

PGAU is invoked by entering the pgau command. You can run prepared scripts of
PGAU commands directly from the operating system prompt by specifying a
command string on the command line using the following syntax:

$ pgau @command_file
$ pgau command=@command_file
$ pgau command="@command_file"

The default extension is .sql. Use the last form if the command file name contains
non-alphanumeric characters.

To perform PG DD maintenance and PL/SQL package generation, you must connect
to the Oracle Integrating Server from PGAU as user PGAADMIN, using the
CONNECT command. The "PGAU Commands" section on page 2-5 discusses how to
use the "CONNECT" command.

2.4 Definitions and Generation in PGAU
This version of PGAU supports the definition of remote transaction data in COBOL,
entered interactively or in a file. File input is supported for the DEFINE and
REDEFINE DATA commands, and standard COBOL data division macros or
"copybooks" can be supplied.

PGAU and the PG DD support different versions of user data and remote transaction
definitions. This facilitates alteration and testing of data formats and transactions
without affecting production usage.

Multiple versions of any data or transaction definitions might exist. You must ensure
that versions stored and used in the PG DD are synchronized with the remote
transactions. Neither the gateway, PGAU, nor generated TIPs provide this
synchronization, but they will issue messages as error conditions are detected.

Data definitions must exist before being referenced by call definitions. Call definitions
must exist before being referenced by transaction definitions.

Note: It is your responsibility to ensure that the data transaction
definition versions that are stored and used in the PG DD are
synchronized with the remote transactions. The gateway, PGAU
and generated TIPs do not provide this synchronization, but issue
messages as error conditions are detected.

Process to Define and Test a TIP

2-4 Oracle Procedural Gateway for APPC User’s Guide

2.5 Process to Define and Test a TIP
The general process for defining and testing a TIP for a given transaction is as follows:

1. Define input and output using COBOL data definitions.

2. Redefine the default datanames and PL/SQL variable names created by the above
process (optional).

3. Define PL/SQL FUNCTION calls to be generated as part of the PL/SQL package.

4. Define a transaction that groups the above functions.

5. Generate the TIP specifications from the previously stored transaction, call, and
data definitions.

6. Generate the TIP PL/SQL stored procedures.

7. Test the TIP by calling it from a high-level application.

Refer to Chapter 3, "Creating a TIP" for more information about TIPs.

2.5.1 Definition Names
Definition names are unique identifiers that you designate through PGAU. The name
is a string of 1 to 30 bytes. If punctuation or white space is included, the name must be
specified within double quotes.

Names are assumed to be unique within the PG DD, except when duplicate names are
intentionally distinguished by a unique version number. It is your responsibility to
ensure name uniqueness.

Valid characters for PG DD definition names are:

■ A through Z

■ a through z

■ 0 through 9

■ #

■ $

■ _ (underscore)

Note that unless defaults are overridden, transaction definition names might be
PL/SQL package names, and transaction call names might be PL/SQL procedure
names. Therefore, choose names that are syntactically correct for PL/SQL, making
certain that they are also unique names within that system. As the user, it is your
responsibility to ensure PL/SQL name compatibility.

2.5.2 Definition Versioning
The PG Data Dictionary tables contain the descriptions of transactions and data
structures. There might be more than one version of a definition. Old versions are
retained indefinitely.

In all PG DD operations, a definition or package is referred to by its name. That name
can be qualified by a specific version number.

All version numbers:

■ are supplied by Oracle Sequence Objects

■ are purely numeric

PGAU Commands

Procedural Gateway Administration Utility 2-5

■ must be free from user alteration, suffixing, or prefixing

Refer to Appendix A, "Procedural Gateway for APPC Data Dictionary" and the
pgddcr8.sql file in the $ORACLE_HOME/pg4appc/admin directory for the specific
names of the Oracle Sequence Objects used for version number generation.

If an explicit version number is specified, it is presumed to be the version number of
an existing definition, not a new definition. Such explicit references are used when:

■ generating a TIP from a specific remote transaction version

■ defining a remote transaction based on a specific data version

If no explicit version is specified:

■ The latest (highest number) is assumed when a definition is being referenced. This
is the MAX value selected from the VERSION column for all rows with the same
definition name, not the CURRVAL number.

■ The next (NEXTVAL number) is assumed when a definition is being added.

Version numbers might not be contiguous. Although version numbers are always
increasing, multiple versions of a given definition might skip numbers. This is because
the sequence object is shared for all definitions of the same type (Transaction, Call, or
Data), and sequence object NEXTVAL is not restored in event of an Oracle database
transaction ROLLBACK. Thus, NEXTVAL might be assigned to a different definition
before the next version of the same definition.

Examples of valid definition names:

DEFINE TRANSACTION|CALL|DATA
 payroll (new or latest definition)
 payroll_xaction (new or latest definition)
 payroll_xaction VERSION(3)...(an existing definition)

No attempt is made by PGAU to synchronize versions. Although the existence of
dependent items is assured at definition time, deletion is done without reference to
dependencies. For example, generating a TIP requires prior definition of the
transaction, which requires prior definition of the calls, which require prior definition
of the data. But nothing prevents PGAU from deleting an active data definition while
a call definition still references it.

2.5.3 Keywords
All PGAU keywords can be specified in upper or lower case and are not reserved
words. Reservation is not necessary because all keywords have known spelling and
appear in predictable places, and because all data is delimited by parentheses,
apostrophes, quotes, or blanks.

Note that all unquoted values specified by keywords are stored in the PG Data
Dictionary in uppercase unless otherwise specified in the keyword description.

2.6 PGAU Commands
PGAU enables you to enter Procedural Gateway Administration commands
(commands), such as DEFINE, UNDEFINE, REDEFINE, and GENERATE, in addition
to normal SQL commands. The SET and SHOW commands are also implemented. In
addition, the PGAU commands listed in the following section are available to you.

PGAU Commands

2-6 Oracle Procedural Gateway for APPC User’s Guide

2.6.1 CONNECT

Purpose
This command enables you to make a connection to PGAU. Use the CONNECT
command to log on to an Oracle database, optionally specifying the user ID and
password in addition to the Oracle instance. The CONNECT command has the
following syntax:

Syntax
CONNECT [username|username/password|username@connect-string|username/password@connect-string

Parameters
username/password is the username and password used to connect to PGAU,

 and

connect-string specifies the service name of the remote database.

Refer to the Oracle Net Services Administrator’s Guide for more information about
specifying remote databases.

Examples
CONNECT
CONNECT SCOTT/TIGER
CONNECT SCOTT@OTHERSYS

CONNECT Usage Notes
■ Before connecting, you must set ORACLE_SID to the database SIDname.

■ If you want to connect to a remote database, you must set TNS_ADMIN to the full
pathname of the directory in which the file tnsname is stored.

■ You do not need to place a semi colon (;) at the end of the command.

2.6.2 DEFINE CALL

Purpose
This command creates a new version of the PL/SQL call definition in the PG Data
Dictionary.

Syntax
DEFINE CALL cname
 [PKGCALL(pcname)]
 [PARMS((dname
 {IN | OUT | IN OUT}
 [VERSion(datavers)]), ...)];

Where Table 2–1 describes the parameters in this syntax:

Table 2–1 DEFINE CALL Parameter Descriptions

Parameter Definition

CALL cname is a mandatory parameter. It is the name of the
call definition to be created.

PGAU Commands

Procedural Gateway Administration Utility 2-7

Examples
Refer to "Sample PGAU DEFINE CALL Statements" on page G-2 in Appendix G for
examples of DEFINE CALL commands.

DEFINE CALL Usage Notes
■ Version of the CALL definition is not specified and defaults to NEXTVAL of the

Oracle Sequence Object for CALL.

■ PKGCALL and PARMS can be specified in either order.

■ You need to place a semi colon (;) at the end of the command.

2.6.3 DEFINE DATA

Purpose
This command creates a new version of the data definition in the PG Data Dictionary.

Syntax
DEFINE DATA dname
 [PLSDNAME(plsdvar)]
 [USAGE({PASS|ASIS|SKIP})]
 [COMPOPTS (’options’)]
 LANGUAGE(language)
 {(definition)|INFILE("filespec")};

PKGCALL (pcname) is an optional parameter. It specifies the name of
the PL/SQL package procedure or function by
which the application might invoke the call. The
default value, cname, is assumed if this operand
is omitted, in which case cname must also be
valid in PL/SQL syntax and unique within the
transactions and TIPs referencing this call.

PARMS((dname

 {IN|OUT|IN OUT} [

 VERSION(datavers)]), . . .)

is an optional parameter. It specifies a list of
previously defined data input to and output
from this PL/SQL function call, and the type of
each parameter (input to the call, output from,
or both). The order in which the parameters are
specified determines the order in which they
must appear in subsequent calls to the TIP from
an application.

Each dname specifies a previously defined data
item, and is mandatory. {IN | OUT | IN OUT}
specifies the PL/SQL call mode of the
parameter and indicates whether the dname
data is sent, received, or both in the exchange
with the remote transaction program. One must
be chosen. VERS(datavers) is an optional
specific version number of the dname data
definition, if not the latest. If this operand is
omitted, it is assumed that the call takes no
parameters.

Table 2–1 (Cont.) DEFINE CALL Parameter Descriptions

Parameter Definition

PGAU Commands

2-8 Oracle Procedural Gateway for APPC User’s Guide

Parameters
Table 2–2 describes the DEFINE DATA parameters:

Table 2–2 DEFINE DATA Parameter Descriptions

Parameter Description

DATA dname is a mandatory parameter. It is the name of the data definition to
be created.

PLSDNAME (plsdvar) is an optional parameter. It is the name of the PL/SQL variable
associated with dname. It becomes the name of a PL/SQL variable
if the dname item is atomic data, or a PL/SQL record variable if
the dname item is aggregate data (such as a record or structure),
when the TIP is generated.

USAGE({PASS|ASIS|

SKIP})

is an optional parameter. It specifies the way the TIP handles the
data items when exchanged in calls with the remote transaction.

PASS indicates that the item should be translated and exchanged
with the transaction.

ASIS indicates the item is binary and, though exchanged, should
not be translated.

SKIP indicates the item should be deleted from all exchanges.

The default value, PASS, is assumed if this parameter is omitted.

The USAGE(NULL) keyword on DEFINE or REDEFINE DATA
PGAU statements is not supported.

COMPOPTS

(’options’)

is an optional parameter. It specifies the compiler options used
when compiling the data definition on the remote host. The only
option currently supported is ’TRUNC(BIN)’. Note that the
options must be enclosed in apostrophes (’) or quotes (").
TRUNC(BIN) is a COBOL option that affects the way halfword
and fullword binary values are handled.

Refer to "DEFINE DATA Usage Notes" on page 2-9 for further
information on this option.

LANGUAGE

(language)

is a mandatory parameter. It specifies the name of the
programming language in the supplied definition. PGAU
presently supports only COBOL.

(definition) is mutually exclusive with the INFILE parameter. It is an inline
description of the data. The description must be provided in
COBOL syntax, as indicated above. This inline description must
begin with an opening parenthesis and end with a closing
parenthesis. The opening parenthesis must be the last non-blank
character on the line and the COBOL data definition must start on
a new line, following the standard COBOL rules for column usage
and continuations. The closing parenthesis and terminating
semicolon must be on a separate line following the last line of the
COBOL data definition. In COBOL, the specification is a COBOL
data item or structure, defined in accordance with COBOL.
Margins are assumed to be standard, and explicit or implicit
continuation is supported. Datanames containing invalid
characters (for example, "-") for PL/SQL use are translated to their
closest equivalent and truncated as required.

INFILE ("filespec") is mutually exclusive with the (definition) parameter. It
indicates that the definition is to be read from the user disk file
described by filespec, instead of an inline definition described
by (definition).

Note that filespec must be enclosed in double quotes.

PGAU Commands

Procedural Gateway Administration Utility 2-9

Examples
Refer to "Sample PGAU DEFINE DATA Statements" in Appendix G for examples of
DEFINE DATA commands.

DEFINE DATA Usage Notes
■ Version of the DATA definition is not specified and defaults to NEXTVAL of the

Oracle Sequence Object for DATA.

■ PLSDNAME, USAGE, and LANGUAGE can be specified in any order.

■ INFILE ("filespec") is a platform-specific designation of a disk file.

■ COMPOPTS (’TRUNC(BIN)’) should be used only when the remote host
transaction was compiled using COBOL with the TRUNC(BIN) compiler option
specified. When this option is used, binary data items defined as PIC 9(4) or PIC
S9(4) can actually contain values with 5 digits, and binary data items defined as
PIC 9(9) or PIC S9(9) can actually contain values with 10 digits. Without
COMPOPTS (’TRUNC(BIN)’), PGAU generates NUMBER(4,0) or NUMBER(9,0)
fields for these data items, resulting in possible truncation of the values.

When COMPOPTS (’TRUNC(BIN)’) is specified, PGAU generates NUMBER(5,0)
or NUMBER(10, 0) fields for these data items, avoiding any truncation of the
values. Care must be taken when writing the client application to ensure that
invalid values are not sent to the remote host transaction.

For a PIC 9(4) the value must be within the range 0 to 32767, for a PIC S9(4) the
value must be within the range -32767 to +32767, for a PIC 9(9) the value must be
within the range 0 to 2,147,483,647, and for a PIC S9(9) the value must be within
the range -2,147,483,647 to +2,147,483,647. COBOL always reserves the high-order
bit of binary fields for a sign, so the value ranges for unsigned fields are limited to
the absolute values of the value ranges for signed fields. For further information,
refer to the appropriate IBM COBOL programming manuals.

■ Refer to "USAGE(PASS)" in Appendix D, "Datatype Conversions" for information
about how PGAU converts COBOL statements.

■ You need to place a semi colon (;) at the end of the command.

2.6.4 DEFINE TRANSACTION

Purpose
This command creates a new version of the transaction definition in the PG Data
Dictionary.

Syntax
DEFINE TRANSACTION tname
CALL(cname [VERS(callvers)], ...
 [ENVIRONMENT(name)]
 {SIDEPROFILE(name) [LUNAME(name)] [TPNAME(name)]
 [LOGMODE(name)] |
 LUNAME(name) TPNAME(name) LOGMODE(name)}
 [SYNCLEVEL(0|1|2)]
 [NLS_LANGUAGE("nlsname")];
 [REMOTE_MBCS("nlsname")]
 [LOCAL_MBCS("nlsname")];

PGAU Commands

2-10 Oracle Procedural Gateway for APPC User’s Guide

Parameters
Table 2–3 describes the DEFINE TRANSACTION parameters:

Table 2–3 DEFINE TRANSACTION Parameter Descriptions

Parameter Description

TRANSACTION tname A mandatory parameter. It is the name of the transaction
definition to be created. If you do not specify a package name (TIP
name) in the GENERATE statement, the transaction name
specified here will become the package name, by default. In that
case, the tname must be unique and must be in valid PL/SQL
syntax within the database containing the PL/SQL packages.

CALL(cname
[VERS(callvers)], ...)

A mandatory parameter. It specifies a list of previously defined
calls (created with DEFINE CALL) which, taken together,
comprise this transaction. The order in which the calls are
specified here determines the order in which they are created by
GENERATE, but not necessarily the order in which they might be
called by an application. VERS(callvers) is an optional specific
version number of the call definition, if not the latest.

The relative position of each cname in its left-to-right sequence is
the seq# column in pga_trans_calls. For example:

CALL (cname1, cname2,cname3)

pga_trans_calls(seq#) = 1

2 3

ENVIRONMENT (name) Specifies the name of the host environment for this transaction, for
example, "IBM370". If this parameter is omitted, IBM370 is
assumed. IBM370 is the only environment supported by this
version of PGAU.

SIDEPROFILE (name) This parameter is optional for a gateway using SNA, but if
omitted, the user must specify the parameters for LUNAME,
TPNAME, and LOGMODE. It specifies the name of an SNA Side
Information Profile which directs the APPC connection to the
transaction manager. This name can be 1 to 8 characters in length.
Name values can be alphanumeric with’@’, ’#’, and ’$’ characters
only if unquoted. Quoted values can contain any character, and
delimited by quotes ("), or apostrophes (’). Case is preserved for
all values.

This parameter is mandatory for a gateway using the TCP/IP
connection. It has no comparable SNA meaning.

You need to run the pg4tcpmap tool to map this name to the
hostname, port number, subsystem ID and any other desired
attribute of IMS Connect.

This name represents a group of IMS transactions with similar
IMS Connect attributes. You can reuse the same name as long as
they share the same IMS Connect attributes, such as subsystem
ID, TIME delay or socket type. Refer to Chapter 6, "PG4TCPMAP
Commands (TCP/IP Only)" for details.

PGAU Commands

Procedural Gateway Administration Utility 2-11

LUNAME(name) This parameter is optional on a gateway using SNA: Overrides the
LUNAME within the Side Information Profile, if the Side
Information Profile was specified. It specifies the SNA Logical
Unit name of the transaction manager (OLTP).

This is either the fully-qualified LU name, 3 to 17 characters in
length, or an LU alias 1 to 8 characters in length (when the SNA
software on your gateway system supports LU aliases).

Name values can be alphanumeric with’@’, ’#’, and’$’ characters
and a single period ’.’, to delimit the network from the LU, as in
netname.luname, if fully qualified. Quoted values can contain any
character, and delimited by quotes ("), or apostrophes (’). Case is
preserved for all values.

This parameter is not applicable when using the TCP/IP
communication protocol.

TPNAME (name) This parameter is optional on a gateway using SNA: Overrides the
TPNAME within the Side Profile, if the Side profile was specified.
It specifies the partner Transaction Program name to be invoked.

■ For CICS, this must be the CICS Transaction ID and is 1 to 4
characters in length.

■ For IDMS, this must be the IDMS Task Code and is 1 to 8
characters in length.

■ For IMS, this must be the IMS Transaction Name and is 1 to 8
characters in length.

■ For AS/400, this must be specified as "library/program" and
cannot exceed 21 bytes.

Name values can be alphanumeric with’@’, ’#’, and’$’ characters
only if unquoted. Quoted values can contain any character, and
delimited by quotes ("), or apostrophes (’). Case is preserved for
all values.

This parameter is required for a gateway using TCP/IP support
for IMS Connect. It must be the IMS Transaction Name.

■ The IMS Transaction Name must be 1 to 8 characters in
length.

LOGMODE(name) This parameter is optional on a gateway using SNA: Overrides the
LOGMODE within the Side Information Profile, if the Side
Information Profile was specified. It specifies the name of a
VTAM logmode table entry to be used to communicate with this
transaction, and is 1-8 characters in length.

Name values can be alphanumeric with ’@’, ’#’, and ’$’ characters
only. Values cannot be quoted. Case is not preserved and always
translated to upper case.

This parameter is not applicable when using the TCP/IP
communication protocol.

SYNCLEVEL (0|1) This parameter is optional on a gateway using SNA: It specifies
the APPC sync level of this transaction (’0’ or ’1’). The default
value of 0 is assumed if this operand is omitted, indicating the
remote transaction program does not support synchronization. A
value of ’1’ indicates that CONFIRM is supported.

On a gateway using TCP/IP: The default of this parameter is ’0’,
which is the only accepted value.

Table 2–3 (Cont.) DEFINE TRANSACTION Parameter Descriptions

Parameter Description

PGAU Commands

2-12 Oracle Procedural Gateway for APPC User’s Guide

Examples
Refer to "Sample PGAU DEFINE TRANSACTION Statement" in Appendix G for
examples of DEFINE TRANSACTIONS commands.

DEFINE TRANSACTION Usage Notes:
■ NLS_LANGUAGE and the Oracle Integrating Server’s LANGUAGE specify

default character sets to be used for conversion of all single-byte character fields
for the entire transaction. These defaults can be overridden for each SBCS field by
the REDEFINE DATA REMOTE_LANGUAGE or LOCAL_LANGUAGE
parameters.

■ The version of the TRANSACTION definition is not specified and defaults to
NEXTVAL of the Oracle Sequence Object for TRANS.

■ REMOTE_MBCS and LOCAL_MBCS specify the default multi-byte character sets
to be used for conversion of all DBCS or MBCS fields for the entire transaction.
This default can be overridden for each DBCS or MBCS field by the REDEFINE
DATA REMOTE_LANGUAGE or LOCAL_LANGUAGE parameters.

■ You must place ";" at the end of the command.

2.6.5 DESCRIBE

Purpose
Use this command to describe a table, view, stored procedure, or function. If neither
TABLE, VIEW, nor PROCEDURE are explicitly specified, the table or view with the
specified name is described.

NLS_LANGUAGE
("nlsname")

This is an optional parameter. The default value is
"american_america.we8ebcdic37c". It is an Oracle NLS name in
the language_territory.charset format. It specifies the Oracle NLS
name in which the remote host data for all single-byte character
set fields in the transaction are encoded. Refer to Appendix E,
"National Language Support" for more information.

Note that if you are using TCP/IP, make sure that you set this
parameter to "american_america.us7ascii".

REMOTE_MBCS
("nlsname")

This is an optional parameter. The default value is
"japanese_japan.jal6dbcs". It is an Oracle NLS name in the
language_territory.charset format. It specifies the Oracle NLS
name in which the remote host data for all multi-byte character set
fields in the transaction are encoded.

Refer to Appendix E, "National Language Support" for more
information.

LOCAL_MBCS

("nlsname")

This is an optional parameter. The default value is
"japanese_japan.jal6dbcs". It is an Oracle NLS name in the
language_territory.charset format. It specifies the Oracle NLS
name in which the local host data for all multi-byte character set
fields in the transaction are encoded.

Refer to Appendix E, "National Language Support" for more
information.

Table 2–3 (Cont.) DEFINE TRANSACTION Parameter Descriptions

Parameter Description

PGAU Commands

Procedural Gateway Administration Utility 2-13

Syntax
The DESCRIBE command has the following syntax:

DESCRIBE [TABLE table|VIEW view|PROCEDURE proc|some_name]

Parameters
Table 2–4 describes the DESCRIBE parameter:

Examples
DESCRIBE PROCEDURE SCOTT.ADDEMP
DESCRIBE SYS.DUAL
DESCRIBE TABLE SCOTT.PERSONNEL
DESCRIBE VIEW SCOTT.PVIEW

DESCRIBE Usage Notes
■ You do not need to place ";" at the end of the command.

2.6.6 DISCONNECT

Purpose
Use this command to disconnect from an Oracle database.

Syntax
The DISCONNECT command has the following syntax:

DISCONNECT

Parameters
None

Examples
None

DISCONNECT Usage Notes
■ You do not need to place ";" at the end of the command.

2.6.7 EXECUTE

Purpose
Use this command to execute a one-line PL/SQL statement.

Table 2–4 DESCRIBE Parameter Descriptions

Parameter Description

table is the tablename

view is the viewname

proc is the procedurename

PGAU Commands

2-14 Oracle Procedural Gateway for APPC User’s Guide

Syntax
The EXECUTE command has the following syntax:

EXECUTE pl/sql block

Parameters
pl/sql block is any valid pl/sql block. Refer to the PL/SQL User’s Guide and
Reference for more information.

Examples
EXECUTE :balance := get_balance(333)

EXECUTE Usage Notes
■ You do not need to place ";" at the end of the command

2.6.8 EXIT

Purpose
Use this command to terminate PGAU.

Syntax
The EXIT command has the syntax:

EXIT

Parameters
None

Examples
None

EXIT Usage Notes
■ You do not need to place ";" at the end of the command.

■ The "quit" command is not a valid statement in PGAU.

2.6.9 GENERATE

Purpose
A PL/SQL package is built and written to the indicated output files. The PG Data
Dictionary is not updated by this command.

Syntax
GENERATE tname
 [VERSion(tranvers)]
 [PKGNAME(pname)]
 [PGANODE(dblink_name)]
 [OUTFILE("[specpath]{specname}[.{spectype}]")]
 [,"[bodypath]{bodyname}[.{bodytype}]]")
 [DIAGNOSE ({[TRACE({[SE] [,IT] [,QM] [,IO] [,OC] [,DD] [,TG] })]
 [PKGEX({[DC][,DR]})])};

PGAU Commands

Procedural Gateway Administration Utility 2-15

Parameters
Table 2–5 describes the GENERATE parameters:

Table 2–5 GENERATE Parameter Descriptions

Parameter Description

tname is a mandatory parameter. It is the transaction name defined in
a DEFINE TRANSACTION statement.

VERSion(transvers) is an optional parameter. It specifies which transaction
definition is to be used. The VERsion parameter defaults to
highest numbered transaction if not specified.

PKGNAME(pname) is an optional parameter. It specifies the name of the PL/SQL
package to be created. If this operand is omitted, the package
name is assumed to be the same as the transaction name.

PGANODE (dblink_name) is an optional parameter. It specifies the Oracle database link
name to the gateway server. If this operand is omitted, "PGA" is
assumed to be the dblink_name.

OUTFILE is an optional parameter. If this parameter is specified,
specname must also be specified.

specpath is the optional directory path of the TIP specification and the
TIP content documentation. It defaults to the current directory.
The value must end with a forward slash (/).

specname is the filename of the TIP specification and the TIP content
documentation. It defaults to pname, if specified, or else pgau.

spectype is the optional file extension of the TIP specification and
defaults to pkh.

bodypath is the optional directory path of the TIP body. It defaults to
specpath, if specified, or else the current directory. The value
must end with a forward slash (/).

bodyname is the optional file name of the TIP body. It defaults to
specname, if specified, or else pname, if specified, or else
pgau. If bodyname defaults to specname, the leftmost period
of specname is used to extract bodyname when specname
contains multiple qualifiers.

 bodytype is the optional file extension of the TIP body and defaults to
pkb.

The TIP Content output path defaults to specpath or else the
current directory. The file id defaults to specname, if specified,
or else pname, if specified, or else pgau, and always has an
extension of doc.

Refer to the "GENERATE Usage Notes:" on page 2-18 for more
examples, and Appendix F, "Tip Internals" for more
information.

DIAGNOSE is an optional parameter with two options, TRACE and PKGEX.

PGAU Commands

2-16 Oracle Procedural Gateway for APPC User’s Guide

TRACE specifies that an internal trace of the execution of PGAU is
written to output file pgau.trc in the user’s current directory.

TRACE suboptions are delimited by commas.

Trace messages are provided as a diagnostic tool to Oracle
Support Services and other Oracle representatives to assist
them in diagnosing customer problems when generating TIPs.
They are part of an Oracle reserved function for which the
usage, interface, and documentation might change without
notice at Oracle’s sole discretion. This information is provided
so customers might document problem symptoms.

■ SE - Subroutine Entry/Exit

Messages are written tracing subroutine name and arguments
upon entry, and subroutine name and conditions at exit.

■ IT - Initialization/Termination

Messages are written tracing PGAU initialization and
termination functions.

■ QM - Queue Management

Messages are written tracing control block allocation, queuing,
searching, dequeuing, and deletion.

■ IO - Input/Output

Messages are written tracing input, output, and control
operations for .dat input files and .wrk and package output
files.

■ DD - PG DD Definitions

Messages are written tracing the loading of transaction, call,
data parameter, field, attribute, environment and compiler
information from the PG DD.

■ OC - Oracle Calls

Messages are written tracing the Oracle UPI call results for SQL
statement processing and SELECTs from the PG DD.

■ TG - TIP Generation

Messages are written tracing steps completed in TIP
Generation, typically a record for each call, parameter, and data
field for which a PL/SQL code segment has been generated.

Table 2–5 (Cont.) GENERATE Parameter Descriptions

Parameter Description

PGAU Commands

Procedural Gateway Administration Utility 2-17

Examples
Refer to "Sample PGAU GENERATE Statement" in Appendix G for examples of
GENERATE commands.

The following list describes the TIP output file ids resulting from various
combinations of GENERATE parameters:

GENERATE tran
 GENERATE tran OUTFILE("dirpath/")
 dirpath/pgau.pkh - TIP specification
 dirpath/pgau.doc - TIP Content
 dirpath/pgau.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE("dirpath/")
 dirpath/tipname.pkh - TIP specification
 dirpath/tipname.doc - TIP Content

PKGEX causes additional TIP execution time diagnostic logic to be
included within the generated PL/SQL package.

PKGEX suboptions are delimited by commas.

■ DC - Data Conversion

Enables runtime checking of repeating group limits and the
raising of exceptions when such limits are exceeded.

Enables warning messages to be passed from the UTL_PG data
conversion functions:

■ NUMBER_TO_RAW

■ RAW_TO_NUMBER

■ MAKE_NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

The additional logic checks for the existence of warnings and, if
present, causes them to be displayed using DBMS_OUTPUT
calls.

The TIP generation default is to suppress such warnings on the
presumption that a TIP has been tested with production data
and that data conversion anomalies either do not exist, or are
known and to be ignored.

If errors occur which might be due to data conversion
problems, regeneration of the TIP with PKGEX(DC) enabled
might provide additional information.

Note: A runtime switch is also required to execute the warning
logic. PKGEX(DC) only causes the warning logic to be included
in the TIP. Refer to "Controlling TIP Runtime Conversion
Warnings" on page 8-8 in Chapter 8, "Problem Determination".

Additional messages are written to a named pipe for tracing the
data conversion steps performed by the TIP as it executes.

This option causes only the trace logic to be generated in the
TIP. It must be enabled when the TIP is initialized.

Refer to"Controlling TIP Runtime Conversion Warnings" in
Chapter 8, "Problem Determination" for more information.

■ DR - Dictionary Reference

PL/SQL single line Comments are included in TIPs which
reference the PG DD id numbers for the definitions causing the
TIP function calls and conversions.

Table 2–5 (Cont.) GENERATE Parameter Descriptions

Parameter Description

PGAU Commands

2-18 Oracle Procedural Gateway for APPC User’s Guide

 dirpath/tipname.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE("sdirpath/",
 "bdir/path/")
 sdirpath/pgau.pkh - TIP specification
 sdirpath/pgau.doc - TIP Content
 bdir/path/pgau.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE("spath/sname","bpath/bname")
 spath/sname.pkh - TIP specification
 spath/sname.doc - TIP Content
 bpath/bname.pkb - TIP body
GENERATE tran PKGNAME tipname
 tipname.pkh - TIP specification
 tipname.doc - TIP Content
 tipname.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE("fileid")
 fileid.pkh - TIP specification
 fileid.doc - TIP Content
 fileid.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE("specname","bodyname")
 specname.pkh - TIP specification
 specname.doc - TIP Content
 bodyname.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE("specname.spectype")
 specname.spectype - TIP specification
 specname.doc - TIP Content
 specname.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE("sname.stype","bname")
 sname.stype - TIP specification
 sname.doc - TIP Content
 bname.pkb - TIP body
GENERATE tran PKGNAME tipname
 OUTFILE("sname.stype","bname.btype")
 sname.stype - TIP specification
 sname.doc - TIP Content
 bname.btype - TIP body
GENERATE tran PKGNAME tipname
 OUTFILE("spath/sname.sext","bpath/bname.bext")
 spath/sname.sext - TIP specification
 spath/sname.doc - TIP Content
 bpath/bname.bext - TIP body

GENERATE Usage Notes:
■ All PGAU GENERATE trace messages are designated PGU-39nnn. Refer to the

$ORACLE_HOME/pg4appc/mesg/pguus.msg file for more information about
any given trace message.

■ The pgau.trc trace message output file is overwritten by the next invocation of
GENERATE, regardless of the TRACE specification. A trace header record is
always written to the pgau.trc file. If a particular trace file is to be saved, it must
be copied to another file before the next invocation of GENERATE.

■ TRACE options can be specified in any order or combination, and can also be
specified with PKGEX operand on the same GENERATE statement.

■ You must place ";" at the end of the command.

PGAU Commands

Procedural Gateway Administration Utility 2-19

2.6.10 GROUP

Purpose
Multiple PGAU commands can be grouped together for purposes of updating the PG
DD, and for rolling back all changes resulting from the commands in the group, if any
one statement fails.

No COMMIT processing is performed, even if all commands within the group
succeed. You perform the COMMIT either by coding COMMIT commands in the
PGAU script, outside of GROUPs, or by issuing COMMIT interactively to PGAU.

PGAU issues a savepoint ROLLBACK to conditions before processing the group if any
statement within the group fails.

Syntax
GROUP (pgaustmt1; pgaustmt2; ... pgaustmtN);

Parameters
pgaustmtN: is a PGAU DEFINE, REDEFINE, or UNDEFINE statement

Examples
GROUP (
 DEFINE DATA EMPNO
 PLSDNAME (EMPNO)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 EMP-NO PIC X(6).
);

 DEFINE CALL DB2IMAIN
 PKGCALL (PGADB2I_MAIN)
 PARMS ((EMPNO IN),
 (EMPREC OUT));

 DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN,
 DB2IDIAG)
 SIDEPROFILE(CICSPROD)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

GENERATE DB2I
 PKGNAME(PGADB2I)
 OUTFILE("pgadb2i"););

 GROUP Usage Notes:
■ No non-PGAU commands, such as ORACLE or SQL, can be placed inside the

parentheses delimiting the group.

■ A PGAU script can contain multiple GROUPs. Each GROUP can be interspersed
with SQL commands, such as COMMIT or SELECT or with PGAU commands,
such as GENERATE or REPORT.

PGAU Commands

2-20 Oracle Procedural Gateway for APPC User’s Guide

■ The first failing PGAU statement within the group causes a savepoint ROLLBACK
to conditions at the beginning of the group. All subsequent commands within the
group are flushed and not examined. PGAU execution resumes with the statement
following the group. If that statement is a COMMIT, all PG DD changes made
before the failing group are committed.

■ You must place ";" at the end of the command.

2.6.11 HOST

Purpose
Use this command to execute an operating system command without exiting PGAU.

Syntax
The HOST command has the syntax:

HOST host_command

 Parameters
host_command is any valid UNIX command.

Examples
HOST vi log.out
HOST ls -la
HOST pwd

HOST Usage Notes
■ Using the HOST command starts a new command shell under which to execute

the specified operating system command. This means that any environment
changes caused by the executed command affect only the new command shell
started by PGAU, and not the command shell under which PGAU itself is
executing. For example, a "cd" command executed by the HOST command does
not change the current directory in the PGAU execution environment.

■ You do not need to place ";" at the end of the command.

2.6.12 PRINT

Purpose
Use this command to print the value of a variable defined with the VARIABLE
command.

Syntax
The PRINT command has the syntax:

PRINT varname

Parameters
varname is a variable name which is defined by a variable command.

Examples
PRINT ename
PRINT balance

PGAU Commands

Procedural Gateway Administration Utility 2-21

PRINT Usage Notes
■ You do not need to place ";" at the end of the command.

2.6.13 REDEFINE DATA

Purpose
The existing data definition in the PG Data Dictionary is modified. PG DD column
values for DATA#, FLD#, and POS remain the same for redefined data items. This
permits existing CALL and DATA definitions to utilize the redefined data. REDEFINE
does not create a different version of a data definition and the version number is not
updated.

Syntax
REDEFINE DATA dname
 [VERSion(datavers)]
 [PLSDNAME(plsdvar)]
 [FIELD(fname) [PLSFNAME(plsfvar)]]
 [USAGE({PASS|ASIS|SKIP})]
 [COMPOPTS (’options’)]
 [REMOTE_LANGUAGE("nlsname")]
 [LOCAL_LANGUAGE("nlsname")]
 LANGUAGE(language)
 <(definition) | INFILE("filespec")>;

Parameters
Table 2–6 describes the REDEFINE DATA parameters:

Table 2–6 REDEFINE DATA Parameter Descriptions

Parameter Description

DATA dname is a mandatory parameter. It is the name of the data definition to
be modified.

VERSion(datavers) is an optional parameter. It specifies which version of dname is to
be modified, and if specified, the updated dname information
retains the same version number; a new version is not created. It
defaults to the highest version if omitted.

PLSDNAME(plsdvar) is an optional parameter. It is the name of the PL/SQL variable
associated with the dname above. It becomes the name of a
PL/SQL variable if the dname item is atomic data, or a PL/SQL
record variable if the dname item is aggregate data (such as a
record or structure), when the TIP is generated. This name
replaces any plsdvar name previously specified by DEFINE
DATA into pga_data(plsdvar) of the PG DD.

FIELD(fname) is an optional parameter. It is the name of a field or group within
the dname item, if aggregate data is being redefined (such as
changing a field within a record).

PLSFNAME(plsfvar) is an optional parameter if FIELD is specified. It is the name of the
PL/SQL variable associated with the fname above. It becomes the
name of a PL/SQL field variable within a PL/SQL record variable
when the TIP is generated. This name replaces any plsfvar
name previously specified by REDEFINE DATA into pga_
data(plsfvar) of the PG DD.

PGAU Commands

2-22 Oracle Procedural Gateway for APPC User’s Guide

USAGE({PASS|ASIS

|SKIP})

is optional. If omitted, the last usage specified is retained. It
specifies the way the TIP handles the data items when exchanged
in calls with the remote transaction:

■ PASS indicates that the item should be translated and
exchanged with the transaction.

■ ASIS indicates the item is binary and, though exchanged,
should not be translated.

■ SKIP indicates the item should be deleted from all
exchanges.

If specified, all affected fields are updated with the same USAGE
value. (Refer to the notes pertaining to single or multiple field
redefinition, under FIELD).

The USAGE(NULL) keyword on DEFINE or REDEFINE DATA
PGAU statements is not supported.

COMPOPTS (’options’) is optional. If omitted, the last options specified are retained. If
specified as a null string (’’) then the last options specified are
removed. If a non-null value is specified, then the last options
specified are all replaced with the new options. The only option
currently supported is ’TRUNC(BIN)’. Note that the options must
be enclosed in apostrophes (’) or quotes ("). TRUNC(BIN) is a
COBOL option that affects the way halfword and fullword binary
values are handled. Refer to "REDEFINE DATA Usage Notes:" on
page 2-23 for further information on this option.

REMOTE_LANGUAGE
("nlsname")

is an optional parameter. The default value is
"american_america.we8ebcdic37c" or as overridden by the NLS_
LANGUAGE parameter of DEFINE TRANSACTION. It is an
Oracle NLS name in the language_territory.charset format. It
specifies the Oracle NLS name in which the remote host data for
the specific character field being redefined is encoded. The field
can be single byte or multi-byte character data. Refer to
Appendix E, "National Language Support" for more information.

LOCAL_LANGUAGE
("nlsname")

is an optional parameter. The default value is initialized from the
LANGUAGE variable of the local Oracle server when the TIP
executes. It is an Oracle NLS name in the language_
territory.charset format. It specifies the Oracle NLS name in which
the local Oracle data for the specific character field being
redefined is encoded. The field can be single byte or multi-byte
character data. Refer to Appendix E, "National Language Support"
for more information.

LANGUAGE
("language")

is a mandatory parameter if definition input is specified. It
specifies the name of the programming language in the supplied
definition. PGAU presently supports only IBMVSCOBOL II.

(definition) is mutually exclusive with the INFILE parameter. It is an inline
description of the data. The description must be provided in
COBOL syntax. This inline description must begin with an
opening parenthesis and end with a closing parenthesis. The
opening parenthesis must be the last non-blank character on the
line and the COBOL data definition must start on a new line,
following the standard COBOL rules for column usage and
continuations. The closing parenthesis and terminating semicolon
must be on a separate line following the last line of the COBOL
data definition. If in COBOL, the specification is a COBOL data
item or structure, defined according to the rules for COBOL.
Margins are assumed to be standard, explicit or implicit
continuation is supported. Datanames containing invalid
characters (for example, "-") for PL/SQL use are translated to their
closest equivalent and truncated as required.

Table 2–6 (Cont.) REDEFINE DATA Parameter Descriptions

Parameter Description

PGAU Commands

Procedural Gateway Administration Utility 2-23

Examples
Refer to "Sample PGAU REDEFINE DATA Statements" in Appendix G for examples of
REDEFINE commands.

REDEFINE DATA Usage Notes:
■ Specification of either PLSDNAME, FIELD, or PLSFNAME allows redefinition of a

single data item’s names while the (definition) parameter redefines the
named data item’s content.

■ The presence of FIELD denotes only a single data field (single PG DD row
uniquely identified by dname, fname, and version) is updated. The absence of
FIELD denotes that multiple data fields (multiple PG DD rows identified by
dname and version) are updated or replaced by the definition input.

■ REMOTE_LANGUAGE and LOCAL_LANGUAGE override the character sets
used for conversion of any individual SBCS, DBCS, or MBCS character data field.

■ LANGUAGE (language) and (definition)|INFILE("filespec") are
mandatory as a group. If data definitions are to be supplied, then a LANGUAGE
parameter must be specified and then either the inline definition or INFILE must
also be specified.

■ The presence of (definition) | INFILE("filespec") denotes that multiple
data fields (those PG DD rows identified by dname and version) are updated or
replaced by the definition input. Fewer, equal, or greater numbers of fields might
result from the replacement.

■ INFILE("filespec") is a platform-specific designation of a disk file.

■ COMPOPTS (’TRUNC(BIN)’) should be used only when the remote host
transaction was compiled using COBOL with the TRUNC(BIN) compiler option
specified. When this option is used, binary data items defined as PIC 9(4) or PIC
S9(4) can actually contain values with 5 digits, and binary data items defined as
PIC 9(9) or PIC S9(9) can actually contain values with 10 digits. Without
COMPOPTS (’TRUNC(BIN)’), PGAU generates NUMBER(4,0) or NUMBER(9,0)
fields for these data items, resulting in possible truncation of the values. When
COMPOPTS (’TRUNC(BIN)’) is specified, PGAU generates NUMBER(5,0) or
NUMBER(10, 0) fields for these data items, avoiding any truncation of the values.
Care must be taken when writing the client application to ensure that invalid
values are not sent to the remote host transaction. For a PIC 9(4) the value must be
within the range 0 to 32767, for a PIC S9(4) the value must be within the range
-32767 to +32767, for a PIC 9(9) the value must be within the range 0 to
2,147,483,647, and for a PIC S9(9) the value must be within the range -2,147,483,647
to +2,147,483,647. COBOL always reserves the high-order bit of binary fields for a
sign, so the value ranges for unsigned fields are limited to the absolute values of
the value ranges for signed fields. For further information, refer to the appropriate
IBM COBOL programming manuals.

INFILE ("filespec") is mutually exclusive with the (definition) parameter. It
indicates that the definition is to be read from the operating
system file described by filespec, instead of an inline
definition described by (definition).

Note that "filespec" must be enclosed in double quotes.

Table 2–6 (Cont.) REDEFINE DATA Parameter Descriptions

Parameter Description

PGAU Commands

2-24 Oracle Procedural Gateway for APPC User’s Guide

■ Refer to "USAGE(PASS)" in Appendix D, "Datatype Conversions" for information
about how PGAU converts COBOL statements.

■ You must place ";" at the end of the command.

2.6.14 REM

Purpose
Comments can either be introduced by the REM command or started with the
two-character sequence /* and terminated with the two-character sequence */.

 Use the REM command to start a Comment line.

Syntax
The REM command has the syntax:

REM Comment

Parameters
Comment is any strings.

Examples
REM This is a Comment....

REM Usage Notes
You do not need to place ";" at the end of the command.

2.6.15 REPORT

Purpose
This command produces a report of selected data from the PG Data Dictionary.
Selection criteria might determine that:

■ a single TRANSACTION, CALL, or DATA entity (with or without an explicit
version) is reported, or

■ that all TRANSACTION, CALL, or DATA entities with a given name be reported
or that all entities in the PG DD be reported, or

■ that all invalid TRANSACTIONs or CALLs and all unreferenced CALLs, or DATA
entities be reported.

Syntax
REPORT { { TRANSACTION tname | CALL cname | DATA dname } [VERSION(ver1...)]
 | ALL { TRANSACTIONS [tname] | CALLS [cname] | DATA [dname] } }
 [WITH { CALLS | DATA | DEBUG } ...]
 | ISOLATED;

Parameters
Table 2–7 describes the REPORT parameter:

PGAU Commands

Procedural Gateway Administration Utility 2-25

Examples
Refer to "Sample PGAU REPORT Output" in Appendix G for sample REPORT
commands.

REPORT Usage Notes:
■ Report output is to the terminal and can be spooled, saved, and printed.

■ Data reports are formatted according to their original compiler language, and
preceded by a PGAU DEFINE DATA command which defines the data to the PG
DD.

■ Call and Transaction reports are formatted as PGAU DEFINE CALL or
TRANSACTION commands (also called "statements"), which effectively define the
entry to the PG DD.

■ The following command reports the single most recent data definition specified by
data name dname, or optionally, for those specific versions given.

REPORT DATA dname;
REPORT DATA dname VERSION(version#1,version#2);

Table 2–7 REPORT Parameters Descriptions

Parameter Description

TRANSACTION tname Reports the PG DD contents for the latest or selected versions of
the transaction tname.

CALL cname Reports the PG DD contents for the latest or selected versions of
the call cname.

DATA dname Reports the PG DD contents for the latest or selected versions of
the data dname.

VERSION(ver1, [ver2
...])

Reports selected versions of the indicated entry and is mutually
exclusive with ALL.

ALL TRANSACTIONS
[tname]

Reports the PG DD contents for all existing versions of every
transaction entry or optionally a specific transaction tname, and is
mutually exclusive with TRANSACTION.

ALL CALLS [cname] Reports the PG DD contents for all existing versions of every call
entry or optionally a specific call cname, and is mutually
exclusive with CALL.

ALL DATA [dname] Reports the PG DD contents for all existing versions of every data
entry or optionally a specific data dname, and is mutually
exclusive with DATA.

WITH CALLS Reports call entries associated with the specified transactions.

WITH DATA Reports data entries associated with the specified calls, and when
specified for transactions, implies WITH CALLS.

WITH DEBUG Reports PG DD column values for tran#, call#, parm#, data#, and
attr# as appropriate, depending on the type of items being
reported.

This report is useful with TIPs generated with PG DD Diagnostic
references. Refer to the GENERATE DIAGNOSE PGEX(OR)
option for more information.

ISOLATED Mutually exclusive with all other parameters. All unreferenced
CALL and DATA entries are reported along with
TRANSACTIONs that reference missing CALLs and DATA and
CALLs that reference missing DATA.

PGAU Commands

2-26 Oracle Procedural Gateway for APPC User’s Guide

This command reports all data definitions specified by data name dname:

REPORT ALL DATA dname;

■ The following command reports the single most recent call definitions specified by
call name cname, or optionally for those specific versions given.

REPORT CALL cname;
REPORT CALL cname VERSION(version#1,version#2) WITH DATA;

This command reports all call definitions specified by call name cname:

REPORT ALL CALLS cname WITH DATA;

This command reports all call definitions in the PG DD:

REPORT ALL CALLS WITH DATA;

When WITH DATA is specified, all the data definitions associated with each
selected call are also reported. The data definitions precede each corresponding
selected call in the report output.

■ The following command reports the single most recent transaction definitions
specified by transaction name tname, or optionally for those specific versions
given.

REPORT TRANSACTION tname
REPORT TRANSACTION tname VERSION(version#1,version#2)
WITH DATA WITH CALLS;

This command reports all transaction definitions specified by transaction name
tname:

REPORT ALL TRANSACTIONS tname WITH DATA WITH CALLS;

This command reports all transaction definitions in the PG DD:

REPORT ALL TRANSACTIONS WITH DATA WITH CALLS;

When WITH CALLS option is specified, all call definitions associated with each
selected transaction are also reported (the call definitions precede each
corresponding selected transaction in the report output).

When WITH DATA is specified, all the data definitions associated with each
selected call are also reported (the data definitions precede each corresponding
selected call in the report output).

For transaction reports, specification of WITH DATA implies specification of
WITH CALL.

■ The following command reports any unreferenced CALL or DATA definitions. It
also reports any TRANSACTION or CALL definitions that reference missing
CALL or DATA definitions respectively.

REPORT ISOLATED;

■ The following command reports all definitions in the PG DD.

REPORT ALL;

Data definitions are reported, followed by their associated call definitions,
followed by the associated transaction definition.

PGAU Commands

Procedural Gateway Administration Utility 2-27

This sequence is repeated for every defined call and transaction in the PG DD.

■ You must place ";" at the end of the command.

2.6.16 SET

Parameters
Table 2–8 describes the SET parameters:

Examples
PGAU> set arraysize 30

Table 2–8 SET Parameter Descriptions

Parameter Description

ARRAYSIZE [n] Sets the number of rows fetched at a time from the database. The
default is 20.

CHARWIDTH [n] Sets the column display width for CHAR data. If entered with no
argument, it returns the setting to 9, which is the default.

DATEWIDTH Sets the column display width for DATE data. If entered with no
argument, it returns the setting to 9, which is the default.

ECHO {ON|OFF} Sets echoing of commands entered from command files to ON or
OFF. The default is OFF.

FETCHROWS [n] Sets the number of rows returned by a query. This is useful with
ordered queries for finding a certain number of items in a
category, the top ten items for example. It is also useful with
unordered queries for finding the first n records that satisfy a
certain criteria.

LONGWIDTH [n] Sets the column display width for LONG data. If entered with no
argument, it returns the setting to 80, which is the default.

MAXDATA [n] Sets the maximum data size. It indicates the maximum data that
can be received in a single fetch during a SELECT command. The
default is 20480 bytes (20K).

NUMWIDTH [n] Sets the column display width for NUMBER data. If entered with
no argument, it returns the setting to 10, which is the default.

SERVEROUTPUT
{OFF|ON [SIZE n|n]}

Sets debugging output from stored procedures that use DBMS_
OUTPUT PUT and PUT_LINE commands to ON or OFF. You can
specify the size in bytes of the message buffer using SIZE n. The
size specified is the total number of bytes of all messages sent that
can be accumulated at one time. The minimum is 2000 bytes. If the
buffer fills before calls to the get-message routines make room for
additional message bytes, an error is returned to the program
sending the message. SERVEROUTPUT with no parameters is the
same as SERVEROUTPUT ON.

STOPONERROR
{ON|OFF}

Indicates whether execution of a command file should stop if an
error occurs. Specifying OFF disables STOPONERROR.

TERMOUT {ON|OFF} Enables or disables terminal output for SQL commands. It is
useful for preventing output to the terminal when spooling
output to files. The default is OFF, which disables terminal
output.

TIMING {ON|OFF} Enables or disables display of parse, execute, and fetch times
(both CPU and elapsed) for each executed SQL statement. The
default is OFF, which disables the TIMING display.

PGAU Commands

2-28 Oracle Procedural Gateway for APPC User’s Guide

PGAU> set CHARWIDTH

SET Usage Notes
■ You do not need to place ";" at the end of the command.

2.6.17 SHOW

Parameters
Table 2–9 describes the SHOW parameters:

Examples
Note that when you issue a SET command, there will be no output if it is successful. If
you want to check whether your statement was executed successfully, issue a SHOW
command like the following:

PGAU> show arraysize
Arraysize 30

PGAU> show CHARWIDTH
Charwidth 80

PGAU> show all
Instance local
Spool OFF
Timing OFF

Table 2–9 SHOW Parameter Descriptions

Parameters Description

ALL Shows all valid SET parameters

ARRAYSIZE Shows the number of rows fetched at a time from the database.

CHARWIDTH Shows the column display width for CHAR data.

DATEWIDTH Shows the column display width for DATE data.

ECHO Shows echoing of commands entered from command files to ON
or OFF.

FETCHROWS Shows the number of rows returned by a query.

LONGWIDTH Shows the column display width for LONG data.

MAXDATA Shows the maximum data size.

NUMWIDTH Shows the column display width for NUMBER data.

SERVEROUTPUT Shows debugging output from stored procedures that use DBMS_
OUTPUT PUT and PUT_LINE commands.

STOPONERROR Indicates whether execution of a command file should stop if an
error occurs.

TERMOUT Shows whether the terminal output for SQL commands is enabled
or disabled.

TIMING Shows whether display of parse, execute, and fetch times (both
CPU and elapsed) for each executed SQL statement is enabled or
disabled.

VAR Is the same as the PRINT command; in addition, it shows all
variables and their datatypes.

PGAU Commands

Procedural Gateway Administration Utility 2-29

Termout ON
Echo OFF
Stoponerror OFF
Maxdata 20480
Arraysize 20
Fetchrows 100

Numwidth 10
Charwidth 80
Longwidth 80
Datewidth 9
ServerOutput OFF

SHOW Usage Notes
■ You do not need to place ";" at the end of the command.

2.6.18 SPOOL

Purpose
Use this command to specify a filename that captures PGAU output. All output is
directed to the terminal unless TERMOUT is off.

Syntax
The SPOOL command has the syntax:

SPOOL [filename|OFF]

Parameters
If a simple file name is specified, with no periods, then .log is appended to the
filename.

filename is where the output of your executed commands is placed.

Examples
SPOOL log.outfile
SPOOL out
SPOOL OFF

SPOOL Usage Notes
■ You do not need to place ";" at the end of the command.

2.6.19 UNDEFINE CALL

Purpose
Use this command to remove an occurrence of the CALL definition from PG DD.

Syntax
UNDEFINE CALL cname [VERSion(callvers|ALL)];

Parameters
Table 2–10 describes the UNDEFINE CALL parameters:

PGAU Commands

2-30 Oracle Procedural Gateway for APPC User’s Guide

Examples
Refer to "Sample PGAU UNDEFINE Statements" in Appendix G for examples of
UNDEFINE CALL commands.

UNDEFINE CALL Usage Notes:
■ Removing definitions only prevents PL/SQL packages from being subsequently

generated. TIPs can still be re-created if the .pkh and .pkb specification files exist
and those previous TIPS can be invoked if they remain in the database of the
Oracle Integrating Server. Whether such TIPs execute successfully depends on
whether the corresponding remote transaction programs are still active.

■ Remove a CALL definition only after all TRANSACTIONs which reference it are
removed. No integrity checking is done.

■ You must place ";" at the end of the command.

2.6.20 UNDEFINE DATA

Purpose
Use this command to remove an occurrence of the DATA definition in the PG Data
Dictionary.

Syntax
UNDEFINE DATA dname [VERSion(datavers|ALL)];

Parameters
Table 2–11 describes the UNDEFINE DATA parameters:

Table 2–10 UNDEFINE CALL Parameter Descriptions

Parameter Description

CALL cname| A mandatory parameter. It specifies the name associated with
the item to be dropped; if no version is specified only the latest
(highest numbered) version is removed.

VERSion({datavers|

 callvers|

 transvers|ALL})

An optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed
if VERSION is omitted.

Table 2–11 UNDEFINE DATA Parameter Descriptions

Parameter Description

DATA dname| A mandatory parameter. It specifies the name associated with the
item to be dropped. If no version is specified, only the latest
(highest numbered) version is removed.

VERSion({datavers|

 callvers|

 transvers|ALL})

An optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed if
VERSION is omitted.

PGAU Commands

Procedural Gateway Administration Utility 2-31

Examples
Refer to "Sample PGAU UNDEFINE Statements" in Appendix G for examples of
UNDEFINE DATA commands.

UNDEFINE DATA Usage Notes
■ Removing definitions only prevents PL/SQL packages (TIPs) from being

subsequently generated. Previously generated TIPs can still be re-created if the
.pkh and .pkb specification files remain in existence. Previously created TIPs can
still be invoked if they remain in the database of the Oracle Integrating Server.
Whether such TIPs execute successfully depends on whether the corresponding
remote transaction programs are still active.

■ Remove a DATA definition only after all CALLs and all TRANSACTIONs which
reference it are removed. No integrity checking is done.

■ You must place ";" at the end of the command.

2.6.21 UNDEFINE TRANSACTION

Purpose
This command removes an occurrence of the TRANSACTION definition in the PG
Data Dictionary.

Syntax
UNDEFINE TRANSACTION tname [VERSion(tranvers|ALL)];

Parameters
Table 2–12 describes the UNDEFINE TRANSACTION parameters:

Examples
Refer to "Sample PGAU UNDEFINE Statements" in Appendix G for examples of
UNDEFINE TRANSACTION commands.

UNDEFINE TRANSACTION Usage Notes
■ Removing definitions only prevents PL/SQL packages from being subsequently

generated. TIPs can still be re-created if the .pkh and .pkb specification files
remain in existence. Previously created TIPs can be invoked if they remain in the
database of the Oracle Integrating Server. Whether such TIPs execute successfully
depends on whether the corresponding remote transaction programs are still
active.

■ A TRANSACTION definition can be removed at any time.

Table 2–12 UNDEFINE TRANSACTION Parameter Descriptions

Parameter Description

 TRANSACTION tname} Mandatory parameter. It specifies the name associated with the
item to be dropped. If no version is specified, only the latest
(highest numbered) version is removed.

VERSion({datavers|

 callvers|

 transvers|ALL})

Optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed if
VERSION is omitted.

PGAU Commands

2-32 Oracle Procedural Gateway for APPC User’s Guide

■ You must place ";" at the end of the command.

2.6.22 VARIABLE

Purpose
Use this command to declare a bind variable for use in the current session with the
EXECUTE or PRINT command, or for use with a PL/SQL block.

Syntax
The VARIABLE command has the syntax:

VARIABLE name type

Parameters
Table 2–13 describes the VARIABLE parameters.

Examples
VARIABLE balance NUMBER
VARIABLE emp_name VARCHAR2

VARIABLE Usage Notes
■ You do not need to place ";" at the end of the command.

Table 2–13 VARIABLE Parameter Descriptions

Parameter Description

name Is a variable name.

type Is the variable datatype

Creating a TIP 3-1

3
Creating a TIP

This chapter shows in detail how you can define, generate and compile a Transaction
Interface Package (TIP). It assumes that a remote host transaction program (RTP)
already exists. This transaction program has operational characteristics that dictate
how the TIP is defined and how the TIP is used by the client application.

This chapter contains the following sections:

■ "Granting Privileges for TIP Creators" on page 3-1

■ "Evaluating the RHT" on page 3-2

■ "Defining and Generating the TIP" on page 3-6

■ "Compiling the TIP" on page 3-7

■ "TIP Content Documentation (tipname.doc)" on page 3-7

The following steps create a TIP for use with a remote host transaction (RHT):

■ evaluating the RHT

■ preparing the PGAU statements

■ defining and generating the TIP

■ compiling the TIP

This chapter also discusses the generated TIP content file.

3.1 Granting Privileges for TIP Creators
Every TIP developer requires access to the following PL/SQL packages, which are
shipped with the Oracle server:

■ DBMS_PIPE in $ORACLE_HOME/rdbms/admin

■ UTL_RAW in $ORACLE_HOME/rdbms/admin

■ UTL_PG in $ORACLE_HOME/rdbms/admin

If anyone other than user PGAADMIN will be developing TIPs, they will need explicit
grants to perform these operations. Refer to the "Optional Configuration Steps" section
in the configuration chapter appropriate to your communication protocol in the Oracle
Procedural Gateway for APPC Installation and Configuration Guide for more information
about private and public grants.

Evaluating the RHT

3-2 Oracle Procedural Gateway for APPC User’s Guide

3.2 Evaluating the RHT
Perform the following steps to identify and become familiar with your remote host
transaction data exchanges.

3.2.1 Identify the Remote Host Transaction
You must first identify the RHT data exchange steps. These are the send and receive
calls embedded within the RHT program.

If your Gateway is using the SNA Communication Protocol:
The RHT data exchange steps are identified under the following languages:

■ You may use COBOL for:

– CICS

– IMS

■ You may use IBM 370 Assembler for:

– CICS

– IDMS

– IMS

■ You may use IBM REXX for:

– CICS

– IDMS

– IMS

– z/OS

If your Gateway is using the TCP/IP Communication Protocol:
IMS is the only OLTP that is supported when the gateway is using TCP/IP support for
IMS Connect. The RHT programs must use embedded I/O PCB function calls. The
function is identified only under the COBOL and Assembler languages.

3.2.2 PGAU DEFINE CALL Command
Make a call list of every data exchange. This list dictates a series of PGAU DEFINE
CALL statements. Refer to "DEFINE CALL" in Chapter 2, "Procedural Gateway
Administration Utility" for more information about this PGAU command.

The three important parameters that you will use for each call are:

■ cname: the name of the call definition to be created;

■ dname: the name of the data structure to be exchanged; and

■ whether it is send (OUT) or receive (IN)

RHT send corresponds to a TIP OUT and RHT receive corresponds to a TIP IN.

If your communication protocol is SNA: Refer to Section 4.6.2.1, "Flexible Call
Sequence" on page 4-12 for more information about PGAU DEFINE CALL commands.

If your communication protocol is TCP/IP: Refer to Section 7.3.2.1, "Flexible Call
Sequence" on page 7-6 for more information about PGAU DEFINE CALL commands.

PGAU call entries are defined only once, so eliminate any duplicates.

Evaluating the RHT

Creating a TIP 3-3

This call list defines the TIP function calls, not the order in which they are used. Note
that the order in which each call is made is a behavior of the transaction and dictates
the order of calls made by the high-level application to the TIP, which then calls the
RHT through the Procedural Gateway server. While this calling sequence is critical to
maintaining the synchronization between the application and the RHT, the TIP is only
an access method for the application and has no knowledge of higher level sequencing
of calls.

3.2.3 PGAU DEFINE DATA Command
For each call in the RHT call list, identify the RHT data structures being sent or
received in the call buffers.

Make a data list of every such structure. This list dictates a series of PGAU DEFINE
DATA statements.

The two important parameters that you will use for DEFINE DATA are:

■ dname: the name of the data definition to be created; and

■ dname.ext: the file in which the data definition is stored.

PGAU data entries are only defined once, so eliminate any duplicates.

3.2.4 PGAU DEFINE TRANSACTION Command on a Gateway Using SNA
Determine the network address information for the RHT program. Your network or
OLTP system programmer can provide you with this information.

The five important parameters that you will use for PGAU DEFINE TRANSACTION
are:

■ Side Profile name

■ TP name

■ LU name

■ LOGMODE

■ SYNCLEVEL

You must also identify the Oracle NLS character set (charset) for the language in
which the OLTP expects the data.

❏ At this point, if your gateway is using SNA, then proceed to Section 3.2.6, "Writing
the PGAU Statements".

Note: Move COBOL record layouts (copybooks) to the gateway
system.

PGAU can use copybooks as input when defining the data items.
Once you have identified the data items to be exchanged, use a file
transfer program to download the copybooks to the gateway
system. The copybooks are later used to define the data items. The
sample copybook used in the example is documented in
Appendix G, "Administration Utility Samples".

Evaluating the RHT

3-4 Oracle Procedural Gateway for APPC User’s Guide

3.2.5 PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP
Before you use this command, you will need to know the IMS Connect hostname (or
TCP/IP address), port number and the other IMS Connect parameters that are defined
as columns within the PGA_TCP_IMSC table. Refer to Chapter 6, "PG4TCPMAP
Commands (TCP/IP Only)" for complete information about preparation for mapping
parameters to TCP/IP using the pg4tcpmap tool.

When you run the pg4tcpmap tool you need to specify a unique name (Side Profile
Name). That name must be the same name that you are using here to create your TIP.

If you are converting your gateway from the SNA to a TCP/IP communications
protocol to invoke IMS transactions: You need to regenerate the TIPs. Refer to
Chapter 2, "Procedural Gateway Administration Utility" for details.

3.2.6 Writing the PGAU Statements
After evaluating the RHT, define the TIP to PGAU for placement in the PG DD.

1. Write a DEFINE DATA statement for each entry in your data list. If, for example,
your RHT had three different data structures, your data definitions might be:

DEFINE DATA dname1 LANGUAGE(IBMVSCOBOLII) INFILE(dnamel.ext);
DEFINE DATA dname2 LANGUAGE(IBMVSCOBOLII) INFILE(dname2.ext);
DEFINE DATA dname3 LANGUAGE(IBMVSCOBOLII) INFILE(dname3.ext);

Then you must copy or transfer the source file containing these data definitions to
the directory where PGAU can read them as input.

2. Write a DEFINE CALL statement for each entry in your call list. If, for example,
your RHT had a receive send receive send sequence, your call definitions would
be:

DEFINE CALL cname1 PARMS((dnamel IN));
DEFINE CALL cname2 PARMS((dname2 OUT));
DEFINE CALL cname3 PARMS((dname3 IN));
DEFINE CALL cname4 PARMS((dname2 OUT));

Evaluating the RHT

Creating a TIP 3-5

3. Write a DEFINE TRANSACTION statement that contains every call, specifying
the network address and NLS information:

DEFINE TRANSACTION tname CALLS(cname1
 cname2,
 cnameN)
 ENVIRONMENT(IBM370)
 SIDEPROF(profname) |
 TPNAME(tpid) LUNAME(luname) LOGMODE(mode)
 SYNCLEVEL(n)
 NLS_LANGUAGE(charset);

4. You can add a GENERATE statement to create the TIP specification:

GENERATE tname

3.2.7 Writing a PGAU Script File
The previous section describes the steps you need to follow in order to execute PGAU
statements through your PGAU command line processor. As a time saving measure,
you can choose to write all of the statements (DEFINE DATA, DEFINE CALL and
DEFINE TRANSACTION) into a single PGAU script file named tname.ctl, in the
following order:

■ define data

Note: Optionally, you can rewrite your call definitions to
consolidate the data transmission into fewer exchanges, as long as
you do not alter the data transmission sequence. For example:

DEFINE CALL cname1 PARMS((dname1 IN),

 (dname2 OUT));

DEFINE CALL cname3 PARMS((dname3 IN),

 (dname2 OUT));

This reduces the calls between the application and the TIP from
four calls to two calls passing an IN and OUT parameter on each
call. Because TIPs always process IN parameters before OUT
parameters, the data transmission sequence is unchanged.
However, this consolidation is not always possible.

If your communication protocol is SNA: Refer to Section 4.6.2.1,
"Flexible Call Sequence" on page 4-12 for more information about
PGAU DEFINE CALL commands.

If your communication protocol is TCP/IP: Refer to Section 7.3.2.1,
"Flexible Call Sequence" on page 7-6 for more information about
PGAU DEFINE CALL commands.

Note: You can also add a REPORT statement to list the PG DD
entries for tname:

REPORT TRANSACTION tname with CALLS with DATA;

Also annotate the script with Comments:

REM this is a Comment

Defining and Generating the TIP

3-6 Oracle Procedural Gateway for APPC User’s Guide

■ define call

■ define transaction

■ generate

This is an example of a tname.ctl PGAU script file:

UNDEFINE TRANSACTION tname Version(all);
UNDEFINE CALL cname1 Version(all);
UNDEFINE CALL cname2 Version(all);
UNDEFINE DATA dname1 Version(all);
UNDEFINE DATA dname2 Version(all);
UNDEFINE DATA dname3 Version(all);
DEFINE DATA dname1 LANGUAGE(IBMVSCOBOLII) INFILE(dnamel.ext);
DEFINE DATA dname2 LANGUAGE(IBMVSCOBOLII) INFILE(dname2.ext);
DEFINE DATA dname3 LANGUAGE(IBMVSCOBOLII) INFILE(dname3.ext);
DEFINE CALL cname1 PARMS(dname1 IN),
 (dname2 OUT));
DEFINE CALL cname2 PARMS(dname3 IN),
 (dname2 OUT));
DEFINE TRANSACTION tname CALLS(cname1,
 cname2,
 cnameN)
 ENVIRONMENT(IBM370)
 SIDEPROF(profname) |
 TPNAME(tpid) LUNAME(luname) LOGMODE(mode)
 SYNCLEVEL(n)
 NLS_LANGUAGE(charset);
Generate tname

3.3 Defining and Generating the TIP
After you have created your control file, use PGAU to create the PG DD entries and
the TIP specification files.

Invoke PGAU against your PG DD stored in the Oracle Procedural Gateway for APPC
Administrator’s user ID:

$ pgau
PGAU> connect pgaadmin/pw@database_specification_string

Issue the following commands:

Caution: Because you will probably run this script more than
once, you should include UNDEFINE statements first to remove
any previous entries in the PG DD.

Note: The user ID under which you run PGAU must have:

■ write access to output the specification files (pgau.pkh,
pgau.pkb, and pgau.doc), where pgau is the default name;
and

■ read access to the data definition source files (dname.ext),
where dname.ext will be specified in PGAU DEFINE DATA
statement(s).

TIP Content Documentation (tipname.doc)

Creating a TIP 3-7

PGAU> set echo on
PGAU> spool tname.def
PGAU> @tname.ctl
PGAU> spool off

The TIP is now ready to be compiled. By default, the GENERATE statement writes
your TIP specifications to the following output files in your current directory:

pgau.pkh (TIP Header)
pgau.pkb (TIP Body)
pgau.doc (TIP content documentation)

3.4 Compiling the TIP
Exit PGAU. Remain in your current directory and invoke SQL*Plus.

$ sqlplus userid/pw@database_specification_string
SQL> set echo on
SQL> @pgau.pkh
SQL> @pgau.pkb

The last two commands compile the TIP specification and body, respectively.

You have now compiled a TIP which can be called by your client application. If your
client application is already written you can begin testing.

For more information about designing your client application and compiling a TIP,
refer to Chapter 1, "Introduction to Oracle Procedural Gateway for APPC" and
Appendix F, "Tip Internals".

If your gateway is using SNA: Refer to Chapter 4, "Client Application Development
(SNA Only)" for information about PGAU statement syntax and usage.

If your gateway is using TCP/IP support for IMS Connect: Refer to Chapter 7, "Client
Application Development (TCP/IP Only)" for information about PGAU statement
syntax and usage.

3.5 TIP Content Documentation (tipname.doc)
This section discusses the TIP documentation file that is produced when the user
issues a PGAU GENERATE command. This TIP content file describes the function
calls and PL/SQL variables and datatypes available in the TIP.

PGAU GENERATE always produces a TIP content file named tipname.doc. The
filename is the name of the transaction that was specified in the PGAU GENERATE
command, and the filetype is always .doc. This TIP content file contains the following
sections:

Note: You can optionally add spool and echo to your script
(tname.ctl) or make other enhancements, such as using PG DD
roles and the PGAU GROUP statement for shared PG DDs.

■ If your gateway is using SNA: Refer to Chapter 4, "Client
Application Development (SNA Only)" for more information.

■ If your gateway is using TCP/IP support for IMS Connect:
Refer to Chapter 7, "Client Application Development (TCP/IP
Only)" for more information.

TIP Content Documentation (tipname.doc)

3-8 Oracle Procedural Gateway for APPC User’s Guide

■ GENERATION Status

This section contains the status under which the TIP is generated.

■ TIP Transaction

This section identifies the defined transaction attributes. These result from the
PGAU DEFINE TRANSACTION definition.

■ TIP Default Calls

This section identifies the syntax of the calls made by the user’s application to
initialize and terminate the transaction. PGAU generates these calls into every TIP
regardless of how the TIP or transaction is defined.

■ TIP User Calls

This section identifies the syntax of the calls which the user defines for the
application to interact with the transaction.

■ TIP User Declarations

This section identifies the TIP package public datatype declarations, implied by
the user’s data definition specified in each call parameter.

■ TIP User Variables

This section contains TIP variables that can be referred to by applications or
referenced by applications.

Client Application Development (SNA Only) 4-1

4
Client Application Development (SNA Only)

This chapter discusses how you will call a TIP and control a remote host transaction. It
also provides you with the steps for preparing and executing a gateway transaction.
This chapter assumes:

■ a remote host transaction (RHT) has already been written;

■ a TIP corresponding to the RHT has already been defined using the steps
described in Chapter 3, "Creating a TIP".

This chapter contains the following sections:

■ "Overview of Client Application" on page 4-1

■ "Preparing the Client Application" on page 4-3

■ "Understanding the Remote Host Transaction Requirements" on page 4-3

■ "Customized TIPs for Each Remote Host Transaction" on page 4-6

■ "Client Application Requirements" on page 4-6

■ "Ensuring TIP and Remote Transaction Program Correspondence" on page 4-10

■ "Calling the TIP from the Client Application" on page 4-14

■ "Exchanging Data" on page 4-19

■ "Executing the Application" on page 4-20

■ "APPC Conversation Sharing" on page 4-20

■ "Application Development with Multi-Byte Character Set Support" on page 4-25

■ "Modifying a Terminal-Oriented Transaction to Use APPC" on page 4-26

■ "Privileges Needed to Use TIPs" on page 4-27

4.1 Overview of Client Application
The Procedural Gateway Administration Utility (PGAU) generates a complete TIP
using definitions you provide. The client application can then call the TIP to access the
remote host transaction. Chapter 2, "Procedural Gateway Administration Utility",
discusses the use of PGAU in detail.

Note: If your gateway uses the TCP/IP support for IMS Connect,
refer to Chapter 7, "Client Application Development (TCP/IP
Only)" for information about calling a TIP and controlling a remote
host transaction.

Overview of Client Application

4-2 Oracle Procedural Gateway for APPC User’s Guide

This overview explains what you must do in order to call a TIP and control a remote
host transaction.

The gateway receives PL/SQL calls from the Oracle Integrating Server and issues
APPC calls to communicate with a remote transaction program. The following three
application programs make this possible:

1. an APPC-enabled remote host transaction program

2. a Transaction Interface Package, or TIP. A TIP is a PL/SQL package that handles
communication between the client and the gateway and performs datatype
conversions between COBOL and PL/SQL.

PGAU generates the TIP specification for you. In the shipped samples, the
PGAU-generated package is called pgadb2i.pkb. This generated TIP includes at
least three function calls that map to the remote transaction program:

– pgadb2i_init initializes the conversation with the remote transaction
program

– pgadb2i_main exchanges application data with the remote transaction
program

– pgadb2i_term terminates the conversation with the remote transaction
program

Refer to Appendix F, "Tip Internals" for more information about TIPs, if you are
writing your own TIP or debugging.

3. a client application that calls the TIP.

The client application calls the three TIP functions with input and output
arguments. In the example, the client application passes empno, an employee
number to the remote transaction and the remote transaction sends back emprec
an employee record.

Table 4–1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the
gateway using the example CICS-DB2 transaction.

A client application which utilizes the gateway to exchange data with a remote host
transaction performs some tasks for itself and instructs the TIP to perform other tasks
on its behalf. The client application designer must consequently know the behavior of
the remote transaction and how the TIP facilitates the exchange.

The following sections provide an overview of remote host transaction behavior, how
this behavior is controlled by the client application and how TIP function calls and

Table 4–1 Logic Flow of CICS-DB2 Example

Client
Application Oracle TIP

Procedures Established Between the
Gateway and the Remote Transaction
(mainframe)

calls tip_init Calls PGAINIT Gateway sets up control blocks and issues
APPC ALLOCATE. Mainframe program
initiates.

calls tip_main Calls PGAXFER to send
empno and receive
emprec

Gateway issues APPC SEND to the mainframe.
Mainframe RECEIVE completes. Mainframe
performs application logic and issues APPC
SEND back to gateway. The gateway- issues
APPC RECEIVE; receive completes. Mainframe
issues APPC TERM.

calls tip_term Call PGATERM Gateway cleans up control blocks.

Understanding the Remote Host Transaction Requirements

Client Application Development (SNA Only) 4-3

data declarations support the client application to control the remote host transaction.
These sections also provide background information about what the TIP does for the
client application and how the TIP calls exchange data with the remote host
transaction.

4.2 Preparing the Client Application
To prepare the client application for execution you must understand the remote host
transaction requirements and then perform these steps:

1. Move relevant COBOL records layout (copybooks) to the gateway system for
input to PGAU.

2. Describe the remote host transaction data and calls to the PG Data Dictionary
(PG DD) with DEFINE DATA, DEFINE CALL, and DEFINE TRANSACTION
statements.

3. Generate the TIP in the Oracle Integrating Server, using GENERATE.

4. Create the client application that calls the TIP public functions.

5. Grant privileges on the newly created package.

4.3 Understanding the Remote Host Transaction Requirements
Browse through the remote host transaction program (RTP) to determine:

■ the PL/SQL parameters required on the various client application to TIP calls

■ the order in which the calls are made

Identify the remote host transaction program (RTP) facilities to be called and the data
to be exchanged on each call. You will then define the following, and store them in the
PG DD:

■ DEFINE DATA

■ DEFINE CALL

■ DEFINE TRANSACTION

Refer to Chapter 3, "Creating a TIP" for specific definition steps and for the actual
creation and generation of a TIP.

4.3.1 TIP Content and Purpose
The content of a PGAU-generated TIP reflects the calls available to the remote host
transaction and the data that has been exchanged. Understanding this content helps
when designing and debugging client applications that call the TIP.

A TIP is a PL/SQL package, and accordingly has two sections:

1. A Package Specification containing:

■ Public function prototypes and parameters, and

2. A Package Body containing:

■ Private functions and internal control variables

■ Public functions

■ Package initialization following the last public function.

Understanding the Remote Host Transaction Requirements

4-4 Oracle Procedural Gateway for APPC User’s Guide

The purpose of the TIP is to provide a PL/SQL callable public function for every
allowed remote transaction program interaction. A remote transaction program
interaction is a logically related group of data exchanges through one or more
PGAXFER RPC calls. This is conceptually similar to a screen or menu interaction in
which several fields are filled in, the enter key is pressed, and several fields are
returned to the user. Carrying the analogy further:

■ the user might be likened to the TIP or client application

■ fields to be filled in are IN parameters on the TIP function call

■ fields returned are OUT parameters on the TIP function call

■ screen or menu is the group of IN and OUT parameters combined

■ a pressed enter key is likened to the PGAXFER remote procedural call (RPC)

The actual grouping of parameters that constitute a transaction call is defined by the
user. The gateway places no restrictions on how a remote transaction program might
correspond to a collection of TIP function calls, each call having many IN and OUT
parameters.

PGA users typically have one TIP per remote transaction program. How the TIP
function calls are grouped and what data parameters are exchanged on each call
depends on the size, complexity and behavior of the remote transaction program.

Refer to Oracle’s PL/SQL User’s Guide and Reference for a discussion of how PL/SQL
packages work. The following discussion covers the logic that must be performed
within a TIP. Refer to the sample TIP and driver supplied in the
$ORACLE_HOME/pg4appc/demo/CICS directory in files pgadb2i.pkh,
pgadb2i.pkb, and pgadb2id.sql.

4.3.2 Remote Host Transaction Types
From a procedural gateway application perspective, there are three main types of
remote host transactions:

■ one-shot

■ persistent

■ multi-conversational

4.3.2.1 One-Shot Transactions
A simple remote transaction program which receives one employee number and
returns the employee record could have a TIP which provides one call, passing the
employee number as an IN parameter and returning the employee record as an OUT
parameter. An additional two function calls must be provided by this and every TIP:

■ a remote transaction program init function call

■ a remote transaction program terminate function call

The most simple TIP has three public functions, such as tip_init, tip_main, and
tip_term.

The client application calls tip_init, tip_main, and tip_term in succession. The
corresponding activity at the remote site is remote transaction program start, data
exchange, and remote transaction program end.

The remote transaction program might even terminate itself before receiving a
terminate signal from the gateway. This sequence is usual and is handled normally by
gateway logic. This kind of remote transaction program is termed one-shot.

Understanding the Remote Host Transaction Requirements

Client Application Development (SNA Only) 4-5

4.3.2.2 Persistent Transactions
A more complex remote transaction program has two modes of behavior: an
INQUIRY or reporting mode, and an UPDATE mode. These modes can have two TIP
data transfer function calls: one for INQUIRY and one for UPDATE. Such a TIP might
have five public functions. For example:

■ tip_init

This initializes communications with the remote transaction program.

■ tip_mode

This accepts a mode selection parameter and puts the transaction program into
either inquiry or update mode.

■ tip_inqr

This returns an employee record for a given employee number.

■ tip_updt

This accepts an employee record for a given employee number.

■ tip_term

This terminates communications with the remote transaction program.

The client application calls tip_init and then tip_mode to place the remote transaction
program in inquiry mode which then scans employee records, searching for some
combination of attributes (known to the client application and end-user). Some
parameter on an inquiry call is then set to signal a change to update mode and the
client application calls tip_updt to update some record. The client application finally
calls tip_term to terminate the remote transaction program.

The corresponding activity at the remote site is:

■ remote transaction program start

■ mode selection exchange

■ loop reading records

■ switch to update mode

■ update one record

■ remote transaction program end

Such a remote transaction program is called persistent because it interacts until it is
signalled to terminate.

The remote transaction program can be written to permit a return to inquiry mode and
repeat the entire process indefinitely.

4.3.2.3 Multi-Conversational Transactions
A client application might need to get information from one transaction, tran_A, and
subsequently write or lookup information from another, tran_B. This is possible with a
properly written client application and TIPs for tran_A and tran_B. In fact, any
number of transactions might be concurrently controlled by a single client application.
All transactions could be read-only, with the client application retrieving data from
each and consolidating it into a local Oracle database or displaying it in an Oracle
Form.

Alternatively, a transaction could be capable of operating in different modes or
performing different services depending on what input selections were supplied by

Customized TIPs for Each Remote Host Transaction

4-6 Oracle Procedural Gateway for APPC User’s Guide

the client application. For example, one instance of tran_C can perform one service
while a second instance of tran_C performs a second service. Each instance of
tran_C would have its own unique conversation with the client application and each
instance could have its own behavior (one-shot or persistent) depending on the nature
of the service being performed.

4.4 Customized TIPs for Each Remote Host Transaction
Each remote host system might have hundreds of remote transaction programs (RTPs)
which a user might want to call. Each remote transaction program is different, passes
different data, and performs different functions. The interface between the user and
each remote transaction program must consequently be specialized and customized to
the user’s requirements for each remote transaction program. The Transaction
Interface Package provides this customized interface.

Example
Assume that the remote site has a transaction program which manages employee
information in an employee database or other file system. The remote transaction
program’s name, in the remote host, is EMPT for EMPloyee Tracking. EMPT provides
both inquiry and update facilities, and different Oracle users are required to access
and use these EMPT facilities.

Some users might be restricted to inquiry-only use of EMPT, while others might have
update requirements. In support of the Oracle users’ client applications, at least three
possible TIPs could exist:

1. EMP_MGMT to provide access to all facilities of the EMPT remote transaction
program.

2. EMP_UPDT to access only the update functions of the EMPT remote transaction
program.

3. EMP_INQR to access only the lookup functions of the EMPT remote transaction
program.

End-user access to these TIPs is controlled by Oracle privileges. Additional security
might be imposed on the end-user by the remote host.

Each TIP also has encoded within it the name of the remote transaction program
(EMPT) and network information sufficient to establish an APPC conversation with
EMPT.

4.5 Client Application Requirements
Using the TIP, the client application must correspond with and control the remote host
transaction. This involves:

1. client application initialization

2. user input and output

3. remote host transaction initialization using the TIP initialization functions (with
and without overrides)

4. remote host transaction control and data exchange using the TIP user functions

5. remote host transaction termination using the TIP termination function

6. exception handling

7. client application termination

Client Application Requirements

Client Application Development (SNA Only) 4-7

Steps 3, 4 and 5 vary, based on the requirements of the remote host transaction.

One-shot remote host transaction client applications must:
■ Declare RHT/TIP datatypes to be exchanged. All client applications must declare

variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT and the
client application need only reference the TIP datatype in its declaration. Refer
also to "Declaring TIP Variables" on page 4-14 for more information. Also refer to
the TIP content documentation file for the specific TIP/RHT for more information
about the exact usage of these variables.

■ Initialize the RHT using the TIP initialization function. The TIP directs the
gateway server to initialize a conversation with the desired RHT, specifying either
default RHT identifying parameters (supplied when the RHT was defined in the
PG DD and encoded within the TIP when it was generated) or override RHT
identifying parameters supplied by the user or client application when the TIP
initialization function is called. Refer to "Initializing the Conversation" on
page 4-16 and "Overriding TIP Initializations" on page 4-17 for more details.

■ Exchange data with the RHT using the TIP user function (one call). As previously
discussed, a one-shot remote host transaction only accommodates a single data
exchange and upon completion of that exchange, the RHT terminates on its own.
The client application consequently needs only to execute a single call to the
user-defined TIP function to cause the data exchange.

Refer to the TIP content documentation file in
$ORACLE_HOME/pg4appc/demo/CICS/ for the specific TIP/RHT for the exact
syntax of this call.

The client application should initialize values into IN or IN OUT parameter values
before calling the TIP function call. These are the same variables that were
declared above, when you declared the RHT/TIP datatypes to be exchanged.

All TIP function calls return a 0 return code value and all returned user gateway
data values are exchanged in the function parameters. Any exception conditions
are raised as required and can be intercepted in an exception handler.

Upon return from the TIP function call, the client application can analyze and
operate on the IN OUT or OUT parameter values. These are the same variables
that were declared above, when you declared the RHT/TIP datatypes to be
exchanged.

Refer to Appendix D, "Datatype Conversions" for details about how TIPs convert
the various types and formats of remote host data.

■ Terminate the RHT using the TIP termination function. Regardless of the type of
RHT being accessed, the TIP terminate function should be called to clean up and
terminate the conversation with the RHT. Conversations with one-shot RHTs can
be terminated from the gateway server before the RHT terminates. The TIP must
perform its cleanup as well. Cleanup is performed only at the termination request
of the client application.

The client application can request a normal or an aborted termination.

Refer to "Terminating the Conversation" on page 4-19 for more information.

Persistent Remote Host Transaction Client Applications Must:
■ Declare RHT/TIP datatypes to be exchanged. All client applications must declare

variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such

Client Application Requirements

4-8 Oracle Procedural Gateway for APPC User’s Guide

variables have already been defined in the TIP corresponding to each RHT; the
client application need only reference the TIP datatype in its declaration. Refer to
"Declaring TIP Variables" on page 4-14 for more information. Refer also to the TIP
content documentation file for the specific TIP/RHT for more information about
the exact usage of these variables.

■ Initialize the RHT using the TIP initialization function. The TIP directs the
gateway server to initialize a conversation with the desired RHT, specifying either
default RHT identifying parameters (supplied when the RHT was defined in the
PG DD and encoded within the TIP when it was generated) or override RHT
identifying parameters supplied by the user or client application when the TIP
initialization function is called. Refer to "Initializing the Conversation" on
page 4-16 and "Overriding TIP Initializations" on page 4-17 for more details.

■ Repetitively exchange data with RHT using the TIP user function(s). Remote host
transactions that provide or require ongoing or repetitive control sequences
should be controlled by the client application in the same manner that the RHT
would be operated by an interactive user or other control program. The
intercession of the TIP and gateway server does not alter the RHT behavior;
instead, it extends control of that behavior to the client application using the
various function calls defined in the TIP.

A persistent RHT can be controlled with one or more TIP function calls. The RHT
might be designed, for example, to loop and return output for every input until
the conversation is explicitly terminated. Or it could have been designed to accept
as input a count or list of operations to perform and return the results in multiple
exchanges for which the TIP function has only OUT parameters.

A persistent RHT can also be interactive, each output being specified by a
previous input selection and ending only when the conversation has been
explicitly terminated by the client application.

The TIP function calls available to the client applications and their specific syntax
is documented in the TIP Content documentation file for the specific TIP/RHT.

The manner in which the RHT interprets the TIP IN parameters and returns TIP
OUT parameters must be determined from the RHT or explained by the RHT
programmer. The TIP provides the function calls and the exchanged parameter
datatypes to facilitate the client application’s control of the RHT and imposes no
limitations or preconditions on the sequence of operations the RHT is directed to
perform. The TIP provides the client application with the calls and data
parameters the RHT was defined to accept in the PG DD.

■ Terminate the RHT using the TIP termination function. Regardless of the type of
RHT being accessed, the TIP terminate function should be called to clean up and
terminate the conversation with the RHT. Conversations with persistent RHTs can
be terminated from the gateway server before the RHT terminates, or the RHT
might have already terminated. The TIP must perform its cleanup as well and this
cleanup is only performed at the termination request of the client application.

The client application can request a normal or an aborted termination.

Refer to "Terminating the Conversation" on page 4-19 for more information.

Multi-Conversational Remote Host Transaction Client Applications Must:
■ Declare RHT/TIP datatypes to be exchanged. All client applications must declare

variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT, and
the client application need only reference the TIP datatype in its declaration. Refer

Client Application Requirements

Client Application Development (SNA Only) 4-9

to "Declaring TIP Variables" on page 4-14 for more information. Also refer to the
TIP content documentation file for the specific TIP/RHT for more information
about the exact usage of these variables.

■ Initialize each RHT involved, using the TIP initializing function. A specific
customized TIP exists for each RHT as defined in the PG DD. Client applications
that control multiple RHTs are multi-conversational and must start each RHT and
its associated conversation. This is done by calling each TIP initialization function
as before; but multiple TIPs are initialized.

If a single RHT is designed to perform multiple services for one or more callers
and if the client application is designed to use this RHT, the TIP corresponding to
that RHT can be initialized multiple times by the client application.

The client application subsequently distinguishes from active RHTs under its
control using:

– TIP schema tipname.callname when multiple TIP/RHTs are being
controlled. By encoding the same TIP schema name on TIP user calls, the
client application specifies to which RHT the call is being made.

– tranuse IN OUT parameter value when multiple instances of the same
TIP/RHT are being controlled. This is the value returned on the TIP
initialization function call and subsequently passed as an IN parameter on the
user-defined TIP function calls. The returned tranuse value corresponds to
that conversation connected to a given instance of an RHT. By supplying the
same tranuse value on TIP user calls, the client application specifies to
which RHT instance the given RHT call is being made.

Client application logic must keep track of which RHTs have been started and
which TIPs and tranuse values correspond to started RHTs.

■ Exchange data with each RHT, using the TIP user function(s), either once or
repetitively if the RHT is one-shot or persistent. Client application logic must
sequence the RHTs though their allowed steps in accordance with proper RHT
operation, as does a user operating the RHTs interactively.

Client application logic must also perform any cross-RHT result analysis or data
transfer that might be required. All TIPs execute in isolation from each other.

Output from one RHT intended as input to another RHT must be received in the
client application as an IN or IN OUT parameter from the first RHT and sent as an
IN or IN OUT parameter from the client application to the second RHT. All
TIP-to-RHT function calls must be performed by the client application and data
parameters exchanged must have been declared as variables by the client
application. The TIPs provide both the required datatype definitions and the RHT
function calls for the client application.

Refer to the TIP content documentation file for each specific TIP/RHT for the exact
syntax of the TIP function calls and definitions of the parameter datatypes
exchanged.

■ Terminate each initialized RHT, using the TIP termination function. To terminate
an RHT, its corresponding TIP termination function must be called to terminate
the RHT and its conversation and to initiate TIP cleanup. The RHT to be
terminated is specified by its TIP schema name (the same schema as for its data
exchange function calls) and the tranuse value when multiple instances of the
same RHT are being terminated.

Ensuring TIP and Remote Transaction Program Correspondence

4-10 Oracle Procedural Gateway for APPC User’s Guide

RHTs and their corresponding TIPs can be terminated in any sequence desired by
the client application and do not have to be terminated in the same order in which
they are initialized.

4.6 Ensuring TIP and Remote Transaction Program Correspondence
A remote host transaction program and its related TIP with client application must
correspond on two key requirements:

■ Parameter datatype conversion, which results from the way in which transaction
DATA is defined. Refer to Appendix D, "Datatype Conversions" for a discussion
of how PGAU-generated TIPs convert data based on the data definitions.

■ APPC send/receive synchronization, which results from the way in which
transaction CALLs are defined

These DATA and CALL definitions are then included by reference in a
TRANSACTION definition.

4.6.1 DATA Correspondence
Using data definitions programmed in the language of the remote host transaction, the
PGAU DEFINE DATA command stores in the PG DD the information needed for
PGAU GENERATE to create the TIP function logic to perform:

■ all data conversion from PL/SQL IN parameters supplied by the receiving remote
host transaction

■ all buffering into the format expected by the receiving remote host transaction

■ all data unbuffering from the format supplied by the sending remote host
transaction

■ all data conversion to PL/SQL OUT parameters supplied by the sending remote
host transaction

PGAU determines the information needed to generate the conversion and buffering
logic from the data definitions included in the remote host transaction program.
PGAU DEFINE DATA reads this information from files, such as COBOL copy books,
or in-stream from scripts and saves it in the PG DD for repeated use. The Gateway
Administrator needs to transfer these definition files from the remote host to the
Oracle host where PGAU runs.

From the data definitions stored in the PG DD, PGAU GENERATE determines the
remote host datatype and matches it to an appropriate PL/SQL datatype. It also
determines data lengths and offsets within records and buffers and generates the

Note: The specific syntax of the various TIP data exchange
variables function calls is the same as was previously defined in the
PG DD for the particular RHT and can be researched by examining
the TIP content documentation file (tipname.doc) or the TIP
specification file produced when the TIP was generated. If a TIP
has not yet been generated for the RHT being accessed, refer to
Chapter 3, "Creating a TIP", and "DATA Correspondence" on
page 4-10, "CALL Correspondence" on page 4-11, and
"TRANSACTION Correspondence" on page 4-13 for more
information. It is preferable to define and generate the TIP first,
however, so that the client application reference documentation is
available to you when needed.

Ensuring TIP and Remote Transaction Program Correspondence

Client Application Development (SNA Only) 4-11

needed PL/SQL logic into the TIP. Refer to the PGAU "DEFINE DATA" statement on
page 2-2 in Chapter 2, "Procedural Gateway Administration Utility" and "Sample
PGAU DEFINE DATA Statements" in Appendix G, "Administration Utility Samples"
for more information.

All data that are referenced as parameters by subsequent calls must first be defined
using PGAU DEFINE DATA. Simple data items, such as single numbers or character
strings, and complex multi-field data aggregates, such as records or structures, can be
defined. PGAU automatically generates equivalent PL/SQL variables and records of
fields or tables for the client application to reference in its calls to the generated TIP.

As discussed, a parameter might be a simple data item, such as an employee number,
or a complex item, such as an employee record. PGAU DEFINE DATA automatically
extracts the datatype information it needs from the input program data definition files.

In this example, empno and emprec are the arguments to be exchanged.

pgadb2i_main(trannum,empno,emprec)

A PGAU DEFINE DATA statement must therefore be issued for each of these
parameters:

DEFINE DATA EMPNO
 PLSDNAME (EMPNO)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 EMP-NO PIC X(6).
);

DEFINE DATA EMPREC
 PLSDNAME (DCLEMP)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 INFILE("emp.cob");

Note that a definition is not required for the trannum argument. This is the APPC
conversation identifier and does not require a definition in PGAU.

4.6.2 CALL Correspondence
The requirement to synchronize APPC SENDs and RECEIVEs means that when the
remote transaction program expects data parameters to be input, it issues APPC
RECEIVEs to read the data parameters. Accordingly, the TIP must cause the gateway
to issue APPC SENDs to write the data parameters to the remote transaction program.
The TIP must also cause the gateway to issue APPC RECEIVEs when the remote
transaction program issues APPC SENDs.

The PGAU DEFINE CALL statement specifies how the generated TIP is to be called by
the client application and which data parameters are to be exchanged with the remote
host transaction for that call. Each PGAU DEFINE CALL statement might specify the
name of the TIP function, one or more data parameters, and the IN/OUT mode of
each data parameter. Data parameters must have been previously defined with PGAU
DEFINE DATA statements. Refer to "DEFINE CALL" on page 2-2 in Chapter 2,
"Procedural Gateway Administration Utility" and "Sample PGAU DEFINE CALL
Statements" in Appendix G, "Administration Utility Samples" for more information.

PGAU DEFINE CALL processing stores the specified information in the PG DD for
later use by PGAU GENERATE. PGAU GENERATE then creates the following in the
TIP package specification:

Ensuring TIP and Remote Transaction Program Correspondence

4-12 Oracle Procedural Gateway for APPC User’s Guide

■ declarations of public PL/SQL functions for each CALL defined with PL/SQL
parameters for each DATA definition specified on the CALL

■ declarations of the public PL/SQL data parameters

The client application calls the TIP public function as a PL/SQL function call, using
the function name and parameter list specified in the PGAU DEFINE CALL statement.
The client application might also declare, by reference, private variables of the same
datatype as the TIP public data parameters to facilitate data passing and handling
within the client application, thus sharing the declarations created by PGAU
GENERATE.

In this example, the following PGAU DEFINE CALL statement must be issued to
define the TIP public function:

DEFINE CALL DB2IMAIN
 PKGCALL (pgadb2i_main)
 PARMS ((empno IN),(emprec OUT));

4.6.2.1 Flexible Call Sequence
The number of data parameters exchanged between the TIP and the gateway on each
call can vary at the user’s discretion, as long as the remote transaction program’s
SEND/RECEIVE requests are satisfied. For example, the remote transaction program
data exchange sequence might be:

APPC SEND 5 fields (field1-field5)
APPC RECEIVE 1 fields (field6)
APPC SEND 1 field (field7)
APPC RECEIVE 3 fields (field8 - field10)

The resulting TIP/application call sequence could be:

tip_call1(parm1 OUT, <-- APPC SEND field1 from remote TP
 parm2 OUT, <-- APPC SEND field2 from remote TP
 parm3 OUT); <-- APPC SEND field3 from remote TP

tip_call2(parm4 OUT, <-- APPC SEND field4 from remote TP
 parm5 OUT); <-- APPC SEND field5 from remote TP
tip_call3(parm6 IN OUT); --> APPC RECEIVE field6 in remote TP
 <-- APPC SEND field7 from remote TP

tip_call4(parm8 IN, --> APPC RECEIVE field8 into remote TP
 parm9 IN, --> APPC RECEIVE field9 into remote TP
 parm10 IN); --> APPC RECEIVE field10 into remote TP

To define these four public functions to the TIP, four PGAU DEFINE CALL statements
must be issued, each specifying its unique public function name (tip_callx) and the
data parameter list to be exchanged. Once a data item is defined using DEFINE DATA,
it can be referenced in multiple calls in any mode (IN, OUT, or IN OUT). For example,
parm5 could be used a second time in place of parm6. This implies the same data is
being exchanged in both instances, received into the TIP and application on
tip_call2 and returned, possibly updated, to the remote host in tip_call4.

Notice also that the remote transaction program’s first five written fields are read by
two separate TIP function calls, tip_call1 and tip_call2. This could also have
been equivalently accomplished with five TIP function calls of one OUT parameter
each or a single TIP function call with five OUT parameters. Then the remote
transaction program’s first read field (field6) and subsequent written field (field7)
correspond to a single TIP function call (tip_call3) with a single IN OUT parameter
(parm6).

Ensuring TIP and Remote Transaction Program Correspondence

Client Application Development (SNA Only) 4-13

This use of a single IN OUT parameter implies that the remote transaction program’s
datatype for field6 and field7 are both the same and correspond to the conversion
performed for the datatype of parm6. If field6 and field7 were of different
datatypes, then they have to correspond to different PL/SQL parameters (for example,
parm6 IN and parm7 OUT). They could still be exchanged as two parameters on a
single TIP call or one parameter each on two TIP calls, however.

Lastly, the remote transaction program’s remaining three RECEIVE fields are supplied
by tip_call4 parameters 8-10. They also could have been done with three TIP calls
passing one parameter each or two TIP calls passing one parameter on one call and
two parameters on the other, in either order. This flexibility permits the user to define
the correspondence between the remote transaction program’s operation and the TIP
function calls in whatever manner best suits the user.

4.6.2.2 Call Correspondence Order Restrictions
Each TIP public function first sends all IN parameters, before it receives any OUT
parameters. Thus, a remote transaction program expecting to send one field and then
receive one field must correspond to separate TIP calls.

For example:

tip_callO(parmO OUT); <-- APPC SEND outfield from remote TP

PGAXFER RPC checks first for parameters to send, but finds none and proceeds to
receive parameters:

tip_callI(parmI IN); --> APPC RECEIVE infield to remote TP

PGAXFER RPC processes parameters to send and then checks for parameters to
receive, but finds none and completes; therefore, a single TIP public function with an
OUT parameter followed by an IN parameter does not work, because the IN
parameter is processed first--regardless of its position in the parameter list.

4.6.3 TRANSACTION Correspondence
The remote host transaction is defined with the PGAU DEFINE TRANSACTION
statement with additional references to prior definitions of CALLs that the transaction
supports.

You specify the remote host transaction attributes, such as:

■ transaction ID or name

■ network address or location

■ system type (such as IBM370)

■ Oracle National Language of the remote host

Calling the TIP from the Client Application

4-14 Oracle Procedural Gateway for APPC User’s Guide

In this example, the following DEFINE TRANSACTION statements are used to define
a remote CICS transaction called DB2I:

DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN,
 DB2IDIAG)
 SIDEPROFILE(CICSPROD)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

4.7 Calling the TIP from the Client Application
Once a TIP is created, a client application must be written to interface with the TIP. A
client application that calls the TIP functions must include five logical sections:

■ declaring TIP variables

■ initializing the conversation

■ exchanging data

■ terminating the conversation

■ error handling

4.7.1 Declaring TIP Variables
The user declarations section of the tipname.doc file documents the required
declarations.

When passing PL/SQL parameters on calls to TIP functions, the client application
must use the exact same PL/SQL datatypes for TIP function arguments as are defined
by the TIP in its specification section. Assume, for example, the following is in the TIP
specification, or tipname.doc:

FUNCTION tip_call1 tranuse, IN BINARY_INTEGER,
 tip_var1 io_mode pls_type1,
 tip_record io_mode tran_rectype)
RETURN INTEGER;

Note: The PL/SQL package name is specified when the
transaction is defined; this is the name by which the TIP is
referenced and which the public function calls to be included
within the TIP. Each public function must have been previously
defined with a PGAU DEFINE CALL statement, which has been
stored in the PG DD. If you do not specify a package name (TIP
name) in the GENERATE statement, the transaction name you
specified will become the package name by default. In that case, the
transaction name (tname) must be unique and must be in valid
PL/SQL syntax within the database containing the PL/SQL
packages.

For more information, refer to "DEFINE TRANSACTION" in
Chapter 2, "Procedural Gateway Administration Utility" and
"Sample PGAU DEFINE TRANSACTION Statement" in
Appendix G, "Administration Utility Samples".

Calling the TIP from the Client Application

Client Application Development (SNA Only) 4-15

TYPE tran_rectype is RECORD
 (rec_field1 pls_type1,
 ...
 rec_fieldN pls_typeN);

Table 4–2 provides a description of the function declarations:

In the client application PL/SQL atomic datatypes should be defined as the exact same
datatype of their corresponding arguments in the TIP function definition. The
following should be coded in the client application before the BEGIN command:

appl_var pls_type1; /* declare appl variable for */

TIP datatypes need not be redefined. They must be declared locally within the client
application, appearing in the client application before the BEGIN:

appl_record tipname.tran_rectype; /* declare appl record */

Table 4–3 describes the command line arguments:

Refer to the tipname.doc content file for a complete description of the user
declarations you can reference.

The client application calls the TIP public function as if it were any local PL/SQL
function:

rc = tip_call1(tranuse,
 appl_var,
 appl_record);

Table 4–2 Function Declarations

Item Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the TIP
init function identifying the conversation on which this TIP call is
to exchange data.

tran_rectype The PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the
TYPE tran_rectype is RECORD statement.

pls_typeN Is a PL/SQL atomic datatype.

rec_fieldN Is a PL/SQL record field corresponding to a remote transaction
program record field.

Table 4–3 Command Line Arguments

Item Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the TIP
init function identifying the conversation on which this TIP call is
to exchange data.

tran_rectype The PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the TYPE
tran_rectype is RECORD statement.

Calling the TIP from the Client Application

4-16 Oracle Procedural Gateway for APPC User’s Guide

In the CICS-DB2 inquiry example, the PL/SQL driver pgadb2id.sql, which is
located in $ORACLE_HOME/pg4appc/demo/CICS directory, is the client application
and includes the following declaration:

...

...
CREATE or REPLACE PROCEDURE db2idriv(empno IN CHAR) IS
tranuse INTEGER :=0 /* transaction usage number */
DCLEMP PGADB2I.DCLEMP_typ; /* DB2 EMP row definition */
DB2 PGADB2I.DB2_typ; /* DB2 diagnostic information */
rc INTEGER :=0 /* PGA RPC return codes */
line VARCHAR2(132); /* work buffer for output */
term INTEGER :=0; /* 1 if pgadb2i_term called */
...
...

4.7.2 Initializing the Conversation
The call to initialize the conversation serves several purposes:

■ To cause the PL/SQL package, the TIP, to be loaded and to perform the
initialization logic programmed in the TIP initialization section.

■ To cause the TIP init function to call the PGAINIT remote procedural call (RPC),
which in turn establishes communication with the remote transaction program
(RTP), and returns a transaction instance number to the application.

Optionally, calls to initialize the conversation can be used to:

■ Override default RHT/OLTP identification, network address attributes, and
conversation security user ID and password.

■ Specify what diagnostic traces the TIP is to produce. Refer to Chapter 8, "Problem
Determination" for more information about diagnostic traces.

PGAU-generated TIPs provide four different initialization functions that client
applications can call. These are overloaded functions which all have the same name,
but vary in the types of parameters passed.

Three initialization parameters are passed:

■ The transaction instance number for RHT conversation identification. The
tranuse parameter is required on all TIP initializations.

■ TIP diagnostic flags for TIP runtime diagnostic controls. The tipdiag parameter
is optional. Refer to Chapter 8, "Problem Determination" for a discussion of TIP
diagnostics.

■ TIP default overrides for overriding OLTP and network attributes. The override
parameter is optional.

The following four functions are shown as they might appear in the TIP Content
documentation file. Examples of client application use are provided later.

TYPE override_Typ IS RECORD (
 tranname VARCHAR2(255), /* Transaction Program */
 transync BINARY_INTEGER, /* RESERVED */
 trannls VARCHAR2(50), /* RESERVED */
 oltpname VARCHAR2(255), /* Logical Unit */
 oltpmode VARCHAR2(255), /* LOG Mode Entry */
 netaddr VARCHAR2(255), /* Side Profile */
 oltpuser VARCHAR2(8), /* userid for OLTP access */
 oltppass VARCHAR2(8)); /* password for OLTP access*/

Calling the TIP from the Client Application

Client Application Development (SNA Only) 4-17

FUNCTION pgadb2i_init(/* init standard */
 tranuse IN OUT BINARY_INTEGER)
 RETURN INTEGER;

FUNCTION pgadb2i_init(/* init override */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ)
 RETURN INTEGER;

FUNCTION pgadb2i_init(/* init diagnostic */
 tranuse IN OUT BNARY_INTEGER,
 tipdiag IN CHAR)
 RETURN INTEGER;

FUNCTION pgadb2i_init(/* init over-diag */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ,
 tipdiag IN CHAR)
 RETURN INTEGER;

4.7.2.1 Transaction Instance Parameter
This transaction instance number (shown in examples as tranuse) must be passed to
subsequent TIP exchange and terminate functions. It identifies to the gateway on
which APPC conversation--and therefore which iteration of a remote transaction
program--the data is to be transmitted or communication terminated.

A single client application might control multiple instances of the same remote
transaction program or multiple different remote transaction programs, all
concurrently. The transaction instance number is the TIP‘s mechanism for routing the
client application call through the gateway to the intended remote transaction
program.

It is the responsibility of the client application to save the transaction instance number
of each active transaction and pass the correct one to each TIP function called for that
transaction.

The client application calls the TIP initialization function as if it were any local
PL/SQL function. For example:

...

...
tranuse INTEGER := 0;/* transaction usage number*/
...
...
BEGIN
 rc := pgadb2i.pgadb2i_init(tranuse);
...
...

4.7.2.2 Overriding TIP Initializations
Note that in the preceding example the client application did not specify any remote
transaction program name, network connection, or security information. The TIP has
such information internally coded as defaults and the client application simply calls
the appropriate TIP for the chosen remote transaction program. The client application
can, however, optionally override some TIP defaults and supply security information.

You do not need to change any client applications that do not require overrides.

Calling the TIP from the Client Application

4-18 Oracle Procedural Gateway for APPC User’s Guide

When the remote host transaction was defined in the PG DD, the DEFINE
TRANSACTION statement specified certain default OLTP and network identification
attributes which can be overridden:

■ TPname

■ LUname

■ LOGMODE

■ Side Profile

Refer to "DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway
Administration Utility" for more information about the DEFINE TRANSACTION
statement.

These PG DD-defined transaction attributes are generated into TIPs as defaults and
can be overridden at TIP initialization time. This facilitates the use of one TIP, which
can be used with a test transaction or system, and can later be used with a production
transaction or system, without having to regenerate the TIP.

The override_Typ record datatype describes the various transaction attributes that
can be overridden by the client application. The following overrides are currently
supported:

■ tranname can be set to override the value that was specified by the TPNAME
parameter of the DEFINE TRANSACTION statement

■ oltpname can be set to override the value that was specified by the LUNAME
parameter of the DEFINE TRANSACTION statement

■ oltpmode can be set to override the value that was specified by the LOGMODE
parameter of the DEFINE TRANSACTION statement

■ netaddr can be set to override the value that was specified by the SIDEPROFILE
parameter of the DEFINE TRANSACTION statement

In addition to the transaction attributes defined in the PG DD, there are two
security-related parameters, conversation security user ID and conversation security
password, that can be overridden at TIP initialization time. The values for these
parameters normally come from either the database link used to access the gateway or
the Oracle database session. There are cases when the Oracle database user ID is not
sufficient for accessing the OLTP system. The user ID and password overrides provide
a way to specify those parameters to the OLTP system.

The following overrides are currently supported:

■ oltpuser can be set to override the user ID used to initialize the conversation
with the OLTP

■ oltppass can be set to override the password used to initialize the conversation
with the OLTP

The security overrides have an effect only if PGA_SECURITY_TYPE=PROGRAM is
specified in the gateway initialization file, and the OLTP system is configured to
accept a user ID and password on incoming conversation requests.

The transync (APPC synclevel) and trannls (NLS character set) are defined in the
override record datatype, but are reserved for future use. The RHT synclevel and NLS
name cannot be overridden.

The client application might override the default attributes at TIP initialization for the
following reasons:

■ to start a different version of the RHT (such as production instead of test)

Exchanging Data

Client Application Development (SNA Only) 4-19

■ to change the location of the OLTP containing the RHT (if the OLTP was moved
due to migration or a switch to backup configuration)

Client applications requiring overrides can use any combination of override and
initialization parameters and might alter the combination at any time without
regenerating the TIP or affecting applications that do not override parameters.

To override the TIP defaults, an additional client application record variable must be
declared as override_Typ datatype, values must be assigned to the override
subfields, and the override record variable must be passed on the TIP initialization call
from the client application.

For example:

 ...
 ...
 my_overrides pgadb2i.override_Typ; -- declaration
 ...
 ...
 my_overrides.oltpname := ’CICSPROD’; -- swap to production CICS
 my_overrides.tranname := ’TNEW’; -- new transaction name

BEGIN
 rc := pgadb2i.pgadb2i_init(tranuse,my_overrides); -- init
 ...
 ...

Within the TIP, override attributes are checked for syntax problems and passed to the
gateway server.

4.7.2.3 Security Considerations
The security requirements of the default and overridden OLTPs must be the same
because the same gateway server is used in either conversation, as dictated by the
database link names in the PGA RPC calls. The gateway server startup security mode
is set at gateway server initialization time and passed unchanged to the OLTP at TIP
or conversation initialization time.

4.8 Exchanging Data
The client application should pass the transaction instance number, returned from a
previous tip_init call, to identify which remote transaction program is affected and to
identify any client application data parameters to be exchanged with the remote
transaction program.

In this CICS-DB2 inquiry example, we pass an employee number and receive an
employee record back:

rc = pgadb2i.pgadb2i_main(tranuse, /* transfer data */
 empno, /* employee number */
 DCLEMP); /* return employee record*/

4.8.1 Terminating the Conversation
The client application calls the TIP termination function as if it were any local PL/SQL
function. For example:

...

...
term := 1; /* indicate term called* */
 rc := pgadb2i.pgadb2i_term(tranuse,0); /* terminate normally */

Executing the Application

4-20 Oracle Procedural Gateway for APPC User’s Guide

...

...

After a transaction instance number has been passed on a TIP terminate call to
terminate the transaction, or after the remote transaction program has abended, that
particular transaction instance number might be forgotten.

4.8.2 Error Handling
The client application should include an exception handler that can clean up any
active APPC conversations before the client application terminates. The sample client
application provided in pgadb2id.sql contains an example of exception handling.

Gateway exceptions are reported in the range PGA-20900 to PGA-20999. When an
exception occurs, the TIP termination function should be called for any active
conversations that have been started by prior calls to the TIP initialization function.

For example:

EXCEPTION
 WHEN OTHERS THEN
 IF term = 0 THEN /* terminate function not called yet */
 rc := pgadb2i.pgadb2i_term(tranuse,1); /*terminate abnormally*/
 END IF;
 RAISE;
...
...

The remote transaction should also include provisions for error handling and
debugging, such as writing debugging information to the CICS temporary storage
queue area. Refer to the PL/SQL User’s Guide and Reference for a discussion of how to
intercept and handle Oracle exceptions.

4.8.3 Granting Execute Authority
The TIP is a standard PL/SQL package and execute authority must be granted to users
who call the TIP from their client application. In this example, we grant execute on the
PGADB2I package to user SCOTT:

GRANT EXECUTE ON PGADB2I TO SCOTT

Refer to the Oracle Database Administrator’s Guide for more information.

4.9 Executing the Application
Before executing the client application, ensure that a connection to the host is
established and that the receiving partner is available. In this example we use PL/SQL
driver DB2IDRIV to execute the CICS-DB2 inquiry. To execute this client application,
enter from SQL*Plus:

set serveroutput on
execute DB2IDRIV(’nnnnnn’);

4.10 APPC Conversation Sharing
Multiple TIPs can share the same APPC conversation with one or more Remote Host
Transactions (RHTs) which are also sharing that same conversation. Two benefits
derive from this feature:

APPC Conversation Sharing

Client Application Development (SNA Only) 4-21

■ Existing RHTs which rely on passing control of a conversation are supported by
Oracle Procedural Gateway for APPC.

■ TIPs otherwise too large for PL/SQL compilation can be separated into multiple
smaller TIPs, each with fewer user-defined functions, providing the client
application with the same set of function calls and data definitions without any
change to the RHT.

4.10.1 APPC Conversation Sharing Concepts
Mainframe OLTPs, such as IMS, allow transactions to share a single APPC
conversation by passing it when the transaction calls another transaction. RHTs are
defined to PGAU as single transactions with calls, inputs and outputs for which
PGAU generates a single TIP with initialization, transfer and termination functions
corresponding to that specific RHT.

Logic generated into every TIP allows that TIP either:

■ to initiate a new conversation when its init function is called, or

■ to transfer data on an existing conversation when its user-defined functions are
called, or

■ to terminate an existing conversation when its "term" function is called.

An APPC conversation is treated as a resource shared and managed by multiple TIPs.
There is no requirement for any TIP to be the sole user of an APPC conversation.

Any TIP generated at 3.4.0 or later can perform any of the following combinations of
service:

■ initiate

■ initiate and transfer

■ initiate, transfer, and terminate (standard operation)

■ transfer

■ transfer and terminate

■ terminate

■ initiate and terminate (assumes other TIPs perform transfer)

A single APPC conversation can be shared in the following ways:

■ from one TIP to multiple RHTs

■ from multiple TIPs to one RHT

■ from multiple TIPs to multiple RHTs

Without APPC conversation sharing, a single TIP must be defined which contains all
functions and data for all RHTs which a client application might need to call. Creating
TIPs with a superset of RHTs often causes such TIPs to be too large for PL/SQL to
compile.

Conversely, with APPC conversation sharing, each RHT (or even each RHT data
exchange for those RHTs which perform multiple, different data exchange operations)
can be defined in a single TIP which is smaller and less likely to exceed PL/SQL
compilation limits.

APPC Conversation Sharing

4-22 Oracle Procedural Gateway for APPC User’s Guide

4.10.2 APPC Conversation Sharing Usage
APPC conversation sharing is automatically available in every TIP generated at 3.4.0
or later. No TIPs generated before 3.4.0 can participate in APPC conversation sharing.
TIPs generated before 3.4.0 must be regenerated using PGAU 3.4.0. or later to
participate in APPC conversation sharing. PGAU is upward compatible and
regeneration should be transparent, provided only the regenerated TIP body
(tipname.pkb) is recompiled. If the TIP specification is also recompiled, the client
application needs recompilation as well. Refer to Appendix F, "Tip Internals" for more
detailed information.

Definition and generation of TIPs is accomplished as previously discussed in Chapters
1, 2, and 3. No additional options or parameters need be specified.

Run-time use of APPC conversation sharing is under the control of the client
application. It is accomplished simply by calling the init function of one of the TIPs
that share a conversation and passing the tranuse value returned to the other TIP
functions as each is called in its desired order. Any TIP init function can be used,
provided that all TIPs were defined with the same DEFINE TRANSACTION
TPNAME or SIDEPROFILE value. The TPNAME or SIDEPROFILE value specifies
which RHT to initialize.

When the init function of an APPC conversation sharing-capable TIP is called to
initialize a conversation, the tranuse value returned indicates conversation sharing is
enabled. By passing that same tranuse value when calling functions in other TIPs,
those other TIPs perform their transfers on the same conversation already initialized,
provided that all TIPs involved were generated at Version 3.4.0 or later.

4.10.3 APPC Conversation Sharing TIP Compatibility
TIPs generated at 3.4.0 or later of the procedural gateway use and expect different
values for tranuse than do pre-3.4.0 TIPs. If a pre-3.4.0 TIP is used to initialize a
conversation and its tranuse value is passed to a 3.4.0 or later generated TIP, the
following exception is raised:

ORA-20704 PGA_TIP: tranuse value cannot be shared

Pre-3.4.0 generated TIPs do not detect the different tranuse value for shared
conversations, however, and this can result in unpredictable errors.

The tranuse values are incompatible between pre-3.4.0 and 3.4.0 or later releases.
This should not pose a problem for you for the following reason: before 3.4.0, all RHT
functions defined in a TIP had to be called through that TIPs functions, and the init
function of that same TIP had to be called first to initialize the conversation. The
tranuse value was only valid for the TIP which initialized it. Thus, unless you make
programming changes, it is not possible for an existing application to accidentally mix
tranuse values.

Pre-3.4.0 TIPs and client applications can continue to be used without change and old
client applications can call new 3.4.0 or later TIPs without change. This is made
possible when an old TIP body is regenerated and compiled; the TIP now becomes

Caution: All TIPs called in a shared conversation must have been
generated at 3.4.0 or later.

No TIPs generated before 3.4.0 can participate in APPC
conversation sharing.

APPC Conversation Sharing

Client Application Development (SNA Only) 4-23

capable of APPC conversation sharing, even though the old client application has not
changed.

None of the functions of a pre-3.4.0 TIP can share an APPC conversation. However,
once a TIP is regenerated at 3.4.0 or later, any of its functions can share APPC
conversations.

4.10.4 APPC Conversation Sharing for TIPs That Are Too Large
You can use conversation sharing to circumvent a TIP that is too large to compile. This
is identified by 'PLS-00123 - package too large to compile', or some other problem
symptom such as PL/SQL compilation hanging. In this case you must choose which
function calls to remove from the former TIP and define into new TIPs.

Specifically, you must decide which PGAU DEFINE CALL statements and their
related DEFINE DATA statements should be moved from the old PGAU control file
(.ctl) into one or more new PGAU control files. In addition, you must decide which
PGAU DEFINE TRANSACTION statements should be included in each new PGAU
control file defining each new TIP.You must consider several PGAU statements; refer
to Table 4–4 for a list of the PGAU statements and their descriptions:

4.10.5 APPC Conversation Sharing Example
Assume the existence of RHTs A, B and C, and that RHT A performs a menu selection
and calls RHT B for a query function or RHT C for an update followed by a select
function.

You could define the following DATA and CALLs:

■ DEFINE DATA choice ...

■ DEFINE DATA input ...

■ DEFINE DATA answer ...

■ DEFINE DATA record ...

■ DEFINE CALL menu_A callname(pick) parms(choice in);

■ DEFINE CALL query_B callname(query) parms((input in),

Table 4–4 PGAU Statements

Statement Description

DEFINE DATA statements Must be unique. They can be shared by all affected PGAU control
files, provided they are defined to the Procedural Gateway Data
Dictionary (PG DD) before being referenced by DEFINE CALL
statements. No changes are needed to these statements.

DEFINE CALL statements Must be unique. They need only be referenced by the new
DEFINE TRANSACTION statement of the TIP in which they are
included, provided they are defined to the PG DD before being
referenced by a DEFINE TRANSACTION statement. The DEFINE
CALL statements can optionally be moved to the new PGAU
control file of the TIP in which they are included.

DEFINE TRANSACTION
statements

Specified for each new TIP desired and will reference those call
definitions moved from the former large TIP to the new small
TIPs. No transaction attributes will change. This allows any new
TIP to perform the same initialization or termination with the
same RHT as the former large TIP. The old DEFINE
TRANSACTION statement (of the former large TIP) should now
exclude any call definitions which are being moved to new small
TIPs.

APPC Conversation Sharing

4-24 Oracle Procedural Gateway for APPC User’s Guide

 (answer out));

■ DEFINE CALL update_C callname(update) parms(record in);

■ DEFINE CALL select_C callname(select) parms(record out);

The following example TIPs could be defined:

Example 1
This example does not use APPC conversation sharing, but is a valid TIP definition
created before release 3.4.0, combining the functions of RHTs A, B and C.

DEFINE TRANSACTION rhtABC calls(menu_A,
 query_B,
 update_C,
 select_C)
 tpname(RHTA);
This TIP includes all data definitions and calls, and might be too large to compile. This
TIP does not use APPC conversation sharing as there is only the one TIP, rhtABC. The
RHTs do, however, perform their normal sharing of the conversation at the remote
host. If the TIP was small enough to compile, the client application calls TIP functions
as follows:

rc := rhtABC.rhtABC_init(tranuse);
rc := rhtABC.pick(tranuse, choice);
rc := rhtABC.query(tranuse, input, answer);
rc := rhtABC.update(tranuse, record);
rc := rhtABC.select(tranuse, record);
rc := rhtABC.rhtABC_term(tranuse);

Example 2
This example demonstrates defining a set of TIPs with APPC conversation sharing,
separating the functions of RHTs A, B and C into three TIPs:

DEFINE TRANSACTION rhtA calls(menu_A) tpname(RHTA);
DEFINE TRANSACTION rhtB calls(query_B) tpname(RHTA);
DEFINE TRANSACTION rhtC calls(update_C,
 select_C) tpname(RHTA);

Each TIP includes only the call and data it requires, and each TIP automatically
performs APPC conversation sharing. The client application calls these functions as
follows:

rc := rhtA.rhtA_init(tranuse);
rc := rhtA.pick(tranuse, choice);
rc := rhtB.query(tranuse, input, answer);
rc := rhtC.update(tranuse, record);
rc := rhtC.select(tranuse, record);
rc := rhtB.rhtB_term(tranuse);

The only client application difference between the two examples is in the schema
qualifier on each of the TIP calls. This is because the function being called is in a
different TIP which has a different package name in the database.

Only new DEFINE TRANSACTION statements were needed to make use of APPC
conversation sharing. The CALL and DATA definitions were used as-is. This means
the old TIP rhtABC is still defined as it was and might still be too large to compile.

Application Development with Multi-Byte Character Set Support

Client Application Development (SNA Only) 4-25

Example 3
If you performed Sample 2 but you still believe that the TIP may be too large to
compile, try this:

DEFINE TRANSACTION rhtABC calls(menu_A) tpname(RHTA);
DEFINE TRANSACTION rhtB calls(query_B) tpname(RHTA);
DEFINE TRANSACTION rhtCU calls(update_C) tpname(RHTA);
DEFINE TRANSACTION rhtCS calls(select_C) tpname(RHTA);

TIP rhtABC has had three functions removed so it is now smaller and more likely to
compile. TIP rhtB has one function and TIP rhtC has been separated into two TIPs
even though the corresponding host functions remain in a single RHT.

The client application calls these functions as follows:

rc := rhtB.rhtB_init(tranuse);
rc := rhtABC.pick(tranuse, choice);
rc := rhtB.query(tranuse, input);
rc := rhtCU.update(tranuse, record);
rc := rhtCS.select(tranuse, record);
rc := rhtABC.rhtABC_term(tranuse);

A different TIP is used for initialization, illustrating that all TIPs contain the init and
term functions, and because the DEFINE TRANSACTION statements all specified the
same tpname (RHTA), the same remote host transaction is always called for
initialization.

4.10.6 APPC Conversation Sharing Overrides and Diagnostics
TIP default override parameters are processed in the TIP init function which was
called to perform initialization. Once the APPC conversation is established, no further
sharing of overriding parameters is necessary. You need do nothing more than pass
the overrides to the TIP init function.

TIP diagnostic parameters are shared among all TIPs sharing a given conversation. In
effect, requesting diagnostics of the TIP performing initialization causes the same
diagnostics to be requested of all TIPs sharing the conversation. Requesting
diagnostics from only one TIP of several sharing a conversation is not possible. The
application designer or user need only pass the TIP runtime trace controls to the TIP
init function.

4.11 Application Development with Multi-Byte Character Set Support
COBOL presently only supports double byte character sets (DBCS) for PIC G
datatypes.

PGAU processes COBOLII PIC G datatypes as PL/SQL VARCHAR2 variables and
generates TIPs which automatically convert the data according to the
Oracle NLS_LANGUAGEs specified for the remote host data and the local Oracle
data.

These Oracle NLS_LANGUAGEs can be specified as defaults for all PIC G data
exchanged by the TIP with the remote transaction (see DEFINE TRANSACTION ...
REMOTE_MBCS or LOCAL_MBCS). The Oracle NLS_LANGUAGEs for any
individual PIC G data item can be further overridden (see REDEFINE DATA ...
REMOTE or LOCAL_LANGUAGE).

Modifying a Terminal-Oriented Transaction to Use APPC

4-26 Oracle Procedural Gateway for APPC User’s Guide

DBCS data can be encoded in any combination of supported DBCS character sets. For
example, a remote host application which allows different codepages for each field of
data in a record is supported by the Oracle Procedural Gateway MBCS support.

Use of REDEFINE DATA ... REMOTE_LANGUAGE or LOCAL_LANGUAGE on PIC
X items is also supported. Thus a TIP can perform DBCS or MBCS conversions for
specified PIC X data fields, in addition to SBCS conversions by default for the
remaining PIC X data fields. Default SBCS conversion is according to the DEFINE
TRANSACTION... NLS_LANGUAGE and local Oracle default LANGUAGE
environment values.

When PGAU is generating a TIP, the PIC G datatypes are converted to PL/SQL
VARCHAR2 datatypes. After conversion by the TIP, received ’PIC G’ VARCHAR2
datatypes can have a length less then the maximum due to deletion of shift-out and
shift-in meta characters, and sent ’PIC G’ RAWs will have the shift-out and shift-in
characters inserted as required by the remote host character set specified.

This is different from the conversions performed for PIC X data which is always a
known fixed-length and hence CHAR datatypes are used in TIPs for PIC X data fields.
However, even when the PIC X field contains DBCS or MBCS data, a CHAR variable
is still used and padded with blanks if needed.

Some remote host applications bracket a PIC G field with PIC X bytes used for
shift-out, shift-in meta-character insertion. Such a COBOL definition might look like:

01 MY_RECORD.
 05 SO PIC X.
 05 MY_MBCS_DATA PIC G(50).
 05 SI PIC X.

This is not processed correctly by PGAU, because all three fields are defined, and
consequently treated, as separate data items when conversion is performed.

To be properly processed, the definition input to PGAU should be:

01 MY_RECORD.
 05 MY_MBCS_DATA PIC G(51).

The PGAU REDEFINE DATA statement can redefine the 3-field definition to the
1-field definition by specifying USAGE(SKIP) on fields SO and SI, and
’05 MY_MBCS_DATA PIC G(51).’ to redefine MY_MBCS_DATA. The three
REDEFINE statements can be placed in the PGAU input control file, and thus the
remote host definition need not be altered.

4.12 Modifying a Terminal-Oriented Transaction to Use APPC
The remote transaction program must include mapped APPC verbs to initiate,
communicate, and terminate the APPC conversation. However, when the remote
transaction program is terminal-oriented, the following options are available:

■ You can separate the terminal logic from the application and I/O logic. Once this
separation is achieved, a small front end remote transaction program can be
written to interface between the gateway calls and the transaction application
logic. For example, in CICS the CICS LINK is used to implement this technique.

■ You can modify your existing program so that APPC calls are embedded. In the
example, PGADB2I, we use CICS and its associated mapped APPC verbs as
follows:

– EXEC CICS ASSIGN accepts the conversation initiated by the gateway.

Privileges Needed to Use TIPs

Client Application Development (SNA Only) 4-27

– EXEC CICS RECEIVE receives the arguments.

– EXEC CICS SEND ends the results.

– EXEC CICS RETURN terminates the conversation.

■ If you do not want to modify your terminal-oriented transaction, you can insert an
APPC-capable interface, such as IBM Corporation’s FEPI for CICS Transaction
Server for z/OS, between the terminal-oriented program and the gateway.

■ With IMS/TM, existing unmodified IMS transactions can be accessed with the
gateway using the implicit APPC facility. With implicit APPC, the standard DLI
GU, GN, and ISRT calls using the I/O PCB are automatically converted to
appropriate APPC send or receive calls when the IMS transaction is invoked
through APPC.

4.13 Privileges Needed to Use TIPs
Execute privileges must be explicitly granted to callers of TIPs or procedures. This
privilege cannot be granted through a role.

Any TIP user wanting to trace a TIP must be granted execute privileges on the rtrace
and ptrace procedures. Refer to the "Configuring PGAU" section in the chapter
appropriate for your communications protocol in the Oracle Procedural Gateway for
APPC Installation and Configuration Guide, and the Oracle Database Application
Developer’s Guide for more information.

For example:

$ sqlplus pgaadmin/pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

After a TIP has been developed, the TIP user must be granted execute privileges on the
TIP by the TIP owner. The TIP owner is usually PGAADMIN, but can be another user
who has been granted either the PGDDDEF or PGDDGEN roles.

For example:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

wheredatabase_specification_string is the Oracle Net identifier for the
Oracle Integrating Server where the gateway UTL_RAW and UTL_PG components
were installed. This is the same Oracle Integrating Server where the TIPs are executed
and where grants on the TIPs are performed from the TIP owner user ID.

A SQL script for performing these grants is provided in the
$ORACLE_HOME/pg4appc/admin directory. The pgddausr.sql script performs the
grants for private access to the packages by a single TIP user. If private grants are to be
used, the pgddausr.sql script must be run once for each TIP user’s user ID.

To run these scripts, use SQL*Plus to connect to the Oracle Integrating Server as user
PGAADMIN. From SQL*Plus, run the pgddausr.sql script from the
$ORACLE_HOME/pg4appc/admin directory. The script performs the necessary grants
as previously described. You are prompted for the required user IDs, passwords, and
database specification strings. If you are using private grants, repeat this step for each
user ID requiring access to the packages.

No script has been provided to perform public grants. To do this, issue the following
commands:

Privileges Needed to Use TIPs

4-28 Oracle Procedural Gateway for APPC User’s Guide

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

Implementing Commit-Confirm (SNA Only) 5-1

5
Implementing Commit-Confirm (SNA Only)

Commit-confirm allows the updating of local Oracle resources to occur in the same
Oracle transaction as the updating of non-Oracle resources accessed through the
Oracle Procedural Gateway for APPC.

Read this chapter to familiarize yourself with the elements and functions of
commit-confirm.

❏ You will find instructions for configuring gateway components for
commit-confirm on an SNA environment in the Oracle Procedural Gateway for APPC
Installation and Configuration Guide. Refer to Chapter 11, "Gateway Configuration
Using the SNA Communications Protocol" of the installation and configuration
guide for specific information.

This chapter includes the following sections:

■ "Overview of Commit-Confirm" on page 5-1

■ "Supported OLTPs" on page 5-2

■ "Components Required to Support Commit-Confirm" on page 5-2

■ "Application Design Requirements" on page 5-4

■ "Commit-Confirm Architecture" on page 5-4

■ "Commit-Confirm Flow" on page 5-5

5.1 Overview of Commit-Confirm

Commit-confirm is a special implementation of two-phase commit that allows a
database or gateway that does not support full two-phase commit to participate in
distributed update transactions with other databases or gateways that do support full
two-phase commit. In this implementation, the commit-confirm site is always the first
to be committed, after all other sites have been prepared.This allows all sites to be kept
in sync, because if the commit-confirm site fails to commit successfully, all other sites
can be rolled back.

Important: If you are planning to implement commit-confirm,
then you should already have configured the components. Refer to
Chapter 11, "Gateway Configuration Using SNA Communication
Protocol" in the Oracle Procedural Gateway for APPC Installation and
Configuration Guide for instructions on its configuration.

Supported OLTPs

5-2 Oracle Procedural Gateway for APPC User’s Guide

Within an Oracle distributed transaction, all work associated with that transaction is
assigned a common identifier, known as the Oracle Global Transaction ID. This
identifier is guaranteed to be unique, so that it can be used to exclusively identify a
particular distributed transaction. The key requirement for commit-confirm support is
the ability for the commit-confirm site (in this case, the Oracle Procedural Gateway for
APPC) to be able to log the Oracle Global Transaction ID as part of its unit of work, so
that if a failure occurs, the gateway's recovery processing can determine the status of a
particular Oracle Global Transaction ID by the presence or absence of a log entry for
that transaction. A new Oracle Global Transaction ID is generated after every commit
or rollback operation.

The Oracle Procedural Gateway for APPC implements commit-confirm using LU6.2
synclevel 1. This is similar to the implementation of single-site update, with the added
advantage that resources on both the Oracle site and the OLTP being accessed by the
gateway can be updated and kept in sync. The main difference is that the
commit-confirm implementation requires some additional programming in the OLTP
transaction to perform the transaction logging necessary for recovery support.

5.2 Supported OLTPs
Since commit-confirm uses LU6.2 synclevel 1, it can be supported by any OLTP that
supports APPC, including CICS Transaction Server for z/OS and IMS/TM. The Oracle
Procedural Gateway for APPC provides sample commit-confirm applications for both
CICS Transaction Server for z/OS and IMS/TM.

With CICS Transaction Server for z/OS, the standard command-level EXEC CICS
interface can be used for all APPC communications. In addition, the CPI-C interface
can be used if it is preferred. A sample DB2 update transaction written in COBOL
using the EXEC CICS interface is provided with the gateway. Any language supported
by CICS Transaction Server for z/OS can be used for writing commit-confirm
transactions.

With IMS/TM, the CPI-C interface must be used, making the IMS transaction an
"explicit APPC transaction," as referred to in the IBM IMSCICS Transaction Server for
z/OS manuals. This is necessary because it is the only way that the LU6.2 synclevel 1
control flows are accessible to the IMS transaction. When using "implied APPC" where
"GU" from the IOPCB and "ISRT" to the IOPCB are used for receiving and sending
data, there is no way for the IMS transaction to access the LU6.2 synclevel 1 control
flow, making it impossible to use this method for commit-confirm. A sample DLI
database update transaction written in COBOL using the CPI-C APPC interface is
provided with the gateway. Any language supported by IMS and CPI-C can be used
for writing commit-confirm transactions.

5.3 Components Required to Support Commit-Confirm
The following components are required to support commit-confirm:

■ Oracle Procedural Gateway for APPC Server

The gateway server supports commit-confirm when
PGA_CAPABILITY=COMMIT_CONFIRM is specified in the gateway
initialization file. When the gateway server is running with commit-confirm
enabled, it will connect to a local Oracle Integrating Server where it maintains a
commit-confirm transaction log, similar to the Oracle two-phase commit log
stored in the DBA_2PC_PENDING table. The gateway's transaction log is stored
in the PGA_CC_PENDING table. A row is stored in this table for each in-flight
transaction and remains there until the transaction has completed. The life span of

Components Required to Support Commit-Confirm

Implementing Commit-Confirm (SNA Only) 5-3

rows in PGA_CC_PENDING is normally quite short, lasting only from the time
the commit is received by the gateway until the time the integrating server
completes all commit processing and tells the gateway to forget the transaction.

The commit-confirm gateway SID should be reserved for use only to invoke
update transactions that implement commit-confirm. There is some extra
overhead involved in the setup for logging when PGA_CAPABILITY is set to
COMMIT_CONFIRM. Read-only transactions should be invoked through a
separate gateway SID with PGA_CAPABILITY set to READ_ONLY so that they
will not incur the extra overhead.

■ Oracle Logging Server

An Oracle server must be available for use by the gateway server for storing the
PGA_CC_PENDING table. For maximum performance and reliability, Oracle
recommends that this Oracle server reside on the same system as the gateway
server.

■ OLTP Commit-Confirm Transaction Log

A commit-confirm transaction log database must be defined to the OLTP system
being accessed. This database must be recoverable and must be accessible by the
OLTP as part of the same unit of work as the OLTP application's databases, so that
updates to the transaction log database will be kept in sync with updates to the
application's databases in a single unit of work.

The commit-confirm transaction log database need contain only the Oracle Global
Transaction ID and a date/time stamp. The Oracle Global Transaction ID is 169
bytes long and must be the key field. The date/time stamp is used for purging old
entries that can be left in the log after certain failure scenarios.

For simplicity, all commit-confirm applications under a particular OLTP should
share the same commit-confirm transaction log.

■ OLTP Transaction Logging Code

Code must be added to each OLTP transaction invoked by a commit-confirm
gateway to perform the transaction logging required by the gateway's
commit-confirm implementation. This code must receive the Oracle Global
Transaction ID from the gateway and write that information into the OLTP
commit-confirm transaction log database. For maximum flexibility and ease of use,
this code can be written as a subroutine callable from any commit-confirm
transaction on your OLTP system.

This code must be executed at the beginning of each commit-confirm transaction
prior to the first APPC receive and then immediately after each COMMIT or
ROLLBACK in the transaction. This ensures that the logging is done at the
beginning of each unit of work.

■ OLTP Forget/Recovery Transaction

A separate APPC transaction must be created on the OLTP system that can be
started by the gateway to forget a transaction once it has been successfully
committed and to query a transaction's state during recovery processing. This
transaction deletes the entry for a particular Oracle Global Transaction ID from the
OLTP commit-confirm transaction log database during forget processing and
queries the entry for a particular Oracle Global Transaction ID from the OLTP
commit-confirm transaction log database during recovery processing.

Application Design Requirements

5-4 Oracle Procedural Gateway for APPC User’s Guide

5.4 Application Design Requirements
When designing commit-confirm applications for use with the Oracle Procedural
Gateway for APPC, there are some requirements you must meet to provide the ability
for the gateway to determine the state of a transaction in the event of a failure. If these
requirements are not met, attempting to use an application with a commit-confirm
gateway will produce unpredictable results.

The first thing that must be done by an OLTP transaction invoked by a
commit-confirm gateway is to receive the Oracle Global Transaction ID from the
gateway and log it into the OLTP commit-confirm transaction log database. This must
be done before the normal data flow between the OLTP transaction and the Oracle
application begins. The gateway always sends the Oracle Global Transaction ID as the
very first data item.

If the OLTP transaction is a one-shot transaction, this is the only change needed. If the
transaction is a persistent transaction that performs more than one unit of work (issues
more than one commit or rollback), then a new Oracle Global Transaction ID must be
received and logged after every commit or rollback.

The Oracle Global Transaction ID is sent by the gateway in a variable-length record
with a maximum length of 202 bytes. The first 32 bytes contain a special binary string
used to verify that the data came from the gateway and not from some other
application. The next 1 byte is a reserved field. The Oracle Global Transaction ID is
next, with a maximum length of 169 bytes. You must log the reserved field and the
Oracle Global Transaction ID, as well as a date/time stamp and any other information
you wish to log. Note that the Oracle Global Transaction ID must be the key field for
the log database so that the forget/recovery transaction can use the Oracle Global
Transaction ID to directly access a log entry.

5.5 Commit-Confirm Architecture
The architecture of the commit-confirm implementation in the Oracle Procedural
Gateway for APPC consists of three main components:

■ Oracle Integrating Server

■ Oracle Procedural Gateway for APPC server (gateway server)

■ Oracle logging server

This section describes the role each component plays in the operation of
commit-confirm and how these components interact.

Note: Make sure that the gateway initialization parameters and
the OLTP parameters are properly configured, as described in
Chapter 10 of the Oracle Procedural Gateway for APPC Installation and
Configuration Guide, "Configuring the OLTP."

Note: If your OLTP is IMS/TM, you must add a PCB for the
commit-confirm transaction log database to the PSB for each
transaction that you will use with a commit-confirm gateway. This
PCB must be the first PCB in the PSB.

Commit-Confirm Flow

Implementing Commit-Confirm (SNA Only) 5-5

5.5.1 Components
The Oracle Integrating Server is the controlling component in the commit-confirm
architecture. It tells the gateway server when to commit a transaction and when to
rollback a transaction. It does the same with all other servers participating in a
distributed transaction. When a failure has occurred, it is the integrating server which
drives the recovery process in each participating server, including the gateway server.

The gateway server performs the task of converting instructions from the Oracle
Integrating Server into LU6.2 operations and then logs the transaction into the Oracle
logging server. The gateway server stores the log information in a table called
PGA_CC_PENDING on the logging server. If a failure occurs during transaction
processing, the gateway server determines which error should be returned to the
integrating server.

The Oracle logging server is an Oracle server available to the gateway server for
storing and accessing its commit-confirm log information. The logging server need not
be the same Oracle server as the integrating server, but can be. Because the logging
server is an integral component of gateway commit-confirm operations, the best place
for it to reside is on the same system as the gateway server. This allows the
communication between the gateway server and the logging server to use interprocess
communications, providing a high-speed, low overhead, local connection between the
components.

5.5.2 Interactions
There is a specific set of interactions that occur between the components. They are:

■ Oracle Integrating Server <--> Gateway Server

The Oracle Integrating Server drives all actions by the gateway server. At the
request of the Oracle application, the integrating server can instruct the gateway
server to begin a new Oracle transaction, start a commit sequence, start a rollback
sequence, or start a forget sequence. It can also call gateway remote procedural
call (RPC) functions (PGAINIT, PGAXFER, PGATERM) on behalf of the Oracle
application.

■ Gateway Server <--> Oracle Logging Server

The gateway server calls the Oracle logging server to insert and delete rows from
its PGA_CC_PENDING table. This is actually done by calling a PL/SQL stored
procedure, PGA_CC_LOG, in the logging server to reduce the number of open
cursors required by the gateway server for performing its logging. Only a single
cursor is needed by the gateway server for logging.

5.6 Commit-Confirm Flow
The flow of control for a successful commit between an Oracle application and an
OLTP transaction is described in the following section and illustrated in Figure 5–1,
"Commit-Confirm Flow with Synclevel 1". The figure assumes that both Oracle and
OLTP resources have been updated. The following steps in section 5.6.1 outline the
commit-confirm logic flow.

5.6.1 Commit-Confirm Logic Flow, Step by Step
1. The application issues a COMMIT to the Oracle Integrating Server.

2. The Oracle Integrating Server sends PREPARE to each participant in the
distributed transaction other than the gateway.

Commit-Confirm Flow

5-6 Oracle Procedural Gateway for APPC User’s Guide

3. Each participant prepares its database updates and responds PREPARE OK to the
Oracle Integrating Server.

4. The Oracle Integrating Server sends COMMIT to the gateway. The gateway
receives the COMMIT from the Oracle Integrating Server and inserts a new
pending transaction row into the PGA_CC_PENDING table.

5. The gateway sends an APPC CONFIRM to the OLTP application. The OLTP
application receives the CONFIRM request in the form of a status from the last
APPC RECEIVE.

6. The OLTP application issues a COMMIT using an appropriate OLTP function. The
OLTP commits all database updates made by the application since the last
COMMIT, including the commit-confirm transaction log update.

7. Once the database updates have been committed, the OLTP returns control to the
application with a return code indicating the status of the COMMIT.

8. The OLTP application sends an APPC CONFIRMED to the gateway.

9. The gateway receives the CONFIRMED and returns COMMIT OK to the Oracle
Integrating Server.

10. The Oracle Integrating Server sends COMMIT to each participant in the
distributed transaction other than the gateway.

11. Each participant commits its database updates and responds COMMIT OK to the
Oracle Integrating Server.

12. The Oracle Integrating Server sends a FORGET to the gateway.

13. The gateway receives the FORGET and starts a new APPC conversation with the
FORGET/RECOVERY transaction at the OLTP, sends it a FORGET request and an
APPC CONFIRM. The FORGET/RECOVERY transaction receives the FORGET
request and deletes the entry from the commit-confirm transaction log for the
current Oracle transaction, and commits the delete.

14. The FORGET/RECOVERY transaction sends an APPC CONFIRMED to the
gateway to indicate that the FORGET was processed, and then terminates. The
gateway receives the CONFIRMED and deletes the pending transaction row from
the PGA_CC_PENDING table.

15. The gateway returns FORGET OK to the Oracle Integrating Server.

16. The Oracle Integrating Server returns control to the Oracle application.

Figure 5–1, "Commit-Confirm Flow with Synclevel 1" illustrates the Commit-Confirm
logic flow described in the previous section.

Commit-Confirm Flow

Implementing Commit-Confirm (SNA Only) 5-7

Figure 5–1 Commit-Confirm Flow with Synclevel 1

5.6.2 Gateway Server Commit-Confirm Transaction Log
The commit-confirm transaction log consists of a single table, PGA_CC_PENDING.
This table contains a row for each in-flight Oracle transaction that includes the
commit-confirm gateway. The table is maintained by the gateway server and is similar
in function to the Oracle server's DBA_2PC_PENDING table. Note that a row is not
inserted into this table until a COMMIT is received by the gateway and the row is
deleted when a FORGET is received by the gateway. There is no involvement by the
gateway during the PREPARE phase.

The PGA_CC_PENDING table contains the following columns:

■ GLOBAL_TRAN_ID

This is the Oracle Global Transaction ID for the transaction. It is identical to the
corresponding column in the DBA_2PC_PENDING table.

■ SIDE_NAME

This is the Side Information Profile name that was used by the gateway to
allocate the APPC conversation with the target LU. It corresponds to the
SIDENAME parameter passed to the PGAINIT gateway function.

■ LU_NAME

This is the fully-qualified partner LU name of the target LU. This value is either
the LU name from the Side Information Profile or the LUNAME parameter passed
to the PGAINIT gateway function. This name fully identifies the OLTP system on
which the transaction was executed.

■ MODE_NAME

Commit-Confirm Flow

5-8 Oracle Procedural Gateway for APPC User’s Guide

This is the Mode name that was used by the gateway to allocate the APPC
conversation with the target LU. The value is either the Mode name from the Side
Information Profile or the MODENAME parameter passed to the PGAINIT
gateway function.

■ TP_NAME

This is the transaction program name executed at the target LU. The value is either
the TP name from the Side Information Profile or the TPNAME parameter passed
to the PGAINIT gateway function. This name fully identifies the OLTP transaction
program that was executed.

PG4TCPMAP Commands (TCP/IP Only) 6-1

6
PG4TCPMAP Commands (TCP/IP Only)

This chapter contains the commands and instructions to operate the pg4tcpmap tool.
This tool enables relevant parameters to map to a gateway using TCP/IP support for
IMS Connect. You can use the tool to populate the PGA_TCP_IMSC table.

This chapter contains the following sections:

■ "Preparation for Populating the PGA_TCP_IMSC Table" on page 6-1

■ "Overview" on page 6-1

■ "Populating the PGA_TCP_IMSC Table" on page 6-2

■ "Before You Run the pg4tcpmap Tool" on page 6-3

■ "pg4tcpmap Tool Commands" on page 6-4

6.1 Preparation for Populating the PGA_TCP_IMSC Table
If your gateway is using TCP/IP support for IMS Connect, then you must use the
pg4tcpmap tool to prompt PGAINIT to provide the required TCP/IP parameters as
input. The pg4tcpmap tool maps the Side Profile name defined in the .ctl file to
TCP/IP and IMS Connect attributes, such as port number, IP address (hostname) and
IMS subsystem ID. The TCP/IP parameters are sent across the TCP/IP network to
start a conversation with the target transaction program.

The pg4tcpmap tool must be run before executing any PL/SQL gateway statements in
order to populate the PGA_TCP_IMSC table, which uses the corresponding TIPs.

Note that you do not need to rerun the pg4tcpmap tool for additional IMS transactions
if they share the same IMS Connect attributes.

The PGA_TCP_IMSC table was created when you executed the
$ORACLE_HOME/pg4appc/admin/pgaimsc.sql script during your gateway
configuration. If you need further information about creating the PGA_TCP_IMSC
table, then refer to Chapter 12 of the Oracle Procedural Gateway for APPC Installation and
Configuration Guide.

6.2 Overview
In a PGAINIT procedure call, the user must specify a Side Profile Name and TP Name.
The values of these parameters will be inserted into a table named PGA_TCP_IMSC.

Configure userid and Password Before Running gateway Mapping Tool
Before executing the pg4tcpmap tool, you must configure a valid userid and password
and TNSNAMES alias for the Oracle Integrating Server where the PGA_TCP_IMSC

Populating the PGA_TCP_IMSC Table

6-2 Oracle Procedural Gateway for APPC User’s Guide

table resides. You must specify the userid, password, and database in the
PGA_TCP_USER, PGA_TCP_PASS, and PGA_TCP_DB parameters, respectively,
located in the gateway initialization file
$ORACLE_HOME/pg4appc/admin/initsid.ora.

6.3 Populating the PGA_TCP_IMSC Table
Table 6–1 describes the parameter information contained in the column names, types
and contents column found in the PGA_TCP_IMSC table.

Table 6–1 PGA_TCP_IMSC Table Columns

Column Name Type Content

SideProfileName varchar2(8) This parameter has no SNA implication. It
is simply a name that is defined in the .ctl
file for the PGAU utility. It represents a
group of IMS transactions with similar IMS
Connect attributes, such as time delay,
socket type and IMS subsystem ID.

Unique index.

HostName varchar2(169) NOT
NULL

The OLTP TCP/IP address or the
hostname.

PortNumber varchar2(17) NOT
NULL

 The OLTP port number.

ANDRS char(1) NOT NULL ANDRS specifies whether the client is
sending:

A = ACK: Positive Acknowledgement;

N = NAK: Negative Acknowledgement;

D = DEALLOCATE: Deallocate
Connection;

R = RESUME: Resume TPIPE;

S = SENDONLY: Send only
Acknowledgment or Deallocate.

blank: no request for Acknowledgement or
Deallocate.

The default is "blank".

TIMER char(1) NOT NULL Time delay for the receive to the datastore
after an ACK or RESUME TPIPE:

D = default value X’00’ .25 second;

S = short wait X’01’ through X’19’: 01 to .25
second

N = No Wait occurs

I = Receive waits indefinitely.

The default is "D".

SOCK char(1) NOT NULL Socket Connection Type

T = Transaction Socket:

P = Persistent Socket

N = Non-persistent Socket

The default is "T".

Before You Run the pg4tcpmap Tool

PG4TCPMAP Commands (TCP/IP Only) 6-3

6.4 Before You Run the pg4tcpmap Tool
Follow these steps to prepare for running the pg4tcpmap tool before you run the
gateway.

1. Set the ORACLE_HOME and ORACLE_SID for the Oracle Integrating Server.

2. Make certain that the user, PGAADMIN, has been created in the Oracle
Integrating Server and you can talk to the database. Issue

$ORACLE_HOME/pg4appc/admin/pgacr8au.sql

3. The initsid.ora file must contain appropriate parameters. Set the following
parameters:

– PGA_TCP_USER

– PGA_TCP_PASS

– PGA_TCP_DB

– If you intend to enable the tracing, you also need to set the following
parameters:

– TRACE_LEVEL=255

– LOG_DESTINATION=<valid directory>

CLIENTID char(8) NOT NULL Specifies the name of the client ID that is
used by IMS Connect. The default is ’null’.

COMMITMODE char(1) NOT NULL It specifies the commit mode:

0 = the commit mode is 0;

1 = the commit mode is 1

The default is "1".

IMSDESTID char(8) NOT NULL Specifies the datastore names (IMS
subsystem ID) 8 bytes.

This parameter must be specified.

LTERM char(8) NOT NULL Specifies the IMS LTERM override. The
default is "blank".

RACFGRPNAM char(8) NOT NULL Specifies the RACF group name.

The default is "blank".

You need to specify the RACF group name
if you have set PGA_SECURITY_TYPE to
PROGRAM.

Refer to "PGA_SECURITY_TYPE" in
Table B-1 "PGA Parameters on Gateway
Using TCP/IP for IMS Connect" in the
Oracle Procedural Gateway for APPC
Installation and Configuration Guide.

Refer to "TCP/IP Security Option
SECURITY=PROGRAM" in Chapter 13 of
the Oracle Procedural Gateway for APPC
Installation and Configuration Guide to learn
more about how to set the RACF userid
and RACF password.

Table 6–1 (Cont.) PGA_TCP_IMSC Table Columns

Column Name Type Content

pg4tcpmap Tool Commands

6-4 Oracle Procedural Gateway for APPC User’s Guide

Refer to Chapter 8, "Problem Determination" for information about tracing.

4. Make certain that the PGA_TCP_IMSC table has been created. Issue:

$ORACLE_HOME/pg4appc/admin/pgaimsc.sql

Refer to Chapter 12, "Gateway Configuration Using the TCP/IP Communication
Protocol" in the Oracle Procedural Gateway for APPC Installation and Configuration
Guide for more information on the PGA_TCP_IMSC table and on creating the user
PGAADMIN.

Figure 6–1 illustrates the relationship between the gateway, the database and the
pg4tcpmap tool in mapping the Side Profile Name to TCP/IP and IMS Connect
attributes in the PGA_TCP_IMSC table.

Figure 6–1 Mapping SNA Parameters to TCP/IP Using the pg4tcpmap Tool

A copy of the screen output file for the pg4tcpmap tool is located in Appendix B of the
Oracle Procedural Gateway for APPC Installation and Configuration Guide.

An example of a trace file from a sample pg4tcpmap execution can be found in
Chapter 8, "Problem Determination".

6.5 pg4tcpmap Tool Commands
There are two commands for the pg4tcpmap tool:

■ one command inserts a row into the PGA_TCP_IMSC table;

Oracle Net

Gateway

$pg4tcpmap
…
I
…
‘Side Profile name’ is ‘PGAIMST’
‘remote host name’ is ‘MVS08’
‘IMS Connect port number ’ is ‘9900’
‘conversational protocol’ is “
‘Timer’ is ‘D’
‘socket connection type’ is ‘T’
…

UNIX

UNIX

7
database

PGA_TCP_IMSC
table

pg4tcpmap Tool Commands

PG4TCPMAP Commands (TCP/IP Only) 6-5

■ the other command deletes a row from the table, and the user must specify the
predicate as "Side Profile Name".

6.5.1 Inserting a Row into the PGA_TCP_IMSC Table
Issue the following command from the gateway Oracle home
$ORACLE_HOME/bin directory:

$ pg4tcpmap

The following text appears:

PG4TCPMAP: Release 10.2.0.1.0 - Production on Wed Feb 19 17:43:15 2005
Copyright (c) 1982, 2005, Oracle. All rights reserved.

This tool takes the IMS Connect TCP/IP information, such as host name and port
number, and maps them to your TIPs.

You may use this tool to insert or delete IMS Connect TCP/IP information.
If you want to insert a row, Type "I"
If you want to delete a row, type "D"

Enter <i>, and after that, you need only enter the required parameters.

6.5.2 Deleting Rows from the PGA_TCP_IMSC Table
Issue the following command from the gateway Oracle home $ORACLE_HOME/bin
directory:

$ pg4tcpmap

The following text appears:

PG4TCPMAP: Release 10.2.0.1.0 - Production on Wed Feb 19 17:43:15 2005
Copyright (c) 1982, 2005, Oracle. All rights reserved.

This tool takes the IMS Connect TCP/IP information, such as host name and port
number, and maps them to your TIPs.

You may use this tool to insert or delete IMS Connect TCP/IP information.
If you want to insert a row, Type "I"
If you want to delete a row, type "D"

Enter <d>, and the pg4tcpmap tool will ask you what Side Profile Name you want to
delete.

If the row does not exist, you will receive an ORA-1403 error message.

6.5.3 Querying the PGA_TCP_IMSC Table
Use the regular SQL*Plus select statement to query the table. For example:

$ sqlplus userid/password@databasename
SQL> column hostname format A22
SQL> column portnumber format A6

Note: Do not use SQL*Plus to update the PGA_TCP_IMSC table.
If you have problems or incorrect data in the table, use
$ORACLE_HOME/pg4appc/admin/pgaimsc.sql to re-create the
table and its index.

pg4tcpmap Tool Commands

6-6 Oracle Procedural Gateway for APPC User’s Guide

SQL> select sideprofilename, hostname,portnumber,imsdestid,commitmode from
 pga_tcp_imsc;

SIDEPROF HOSTNAME PORTNU IMSDESTI C
--------------- ---------------------- ------ -------- -
IMSPGA MVS08.US.ORACLE.COM 9900 IMSE 1

Client Application Development (TCP/IP Only) 7-1

7
Client Application Development (TCP/IP

Only)

This chapter discusses how you will call a TIP and control a remote host transaction if
your gateway uses TCP/IP support for IMS Connect. It also provides you with the
steps for preparing and executing a gateway transaction.

This chapter assumes:

■ a remote host transaction (RHT) has already been written

■ a TIP corresponding to the RHT has already been defined using the steps
described in Chapter 3, "Creating a TIP".

■ the PGA_TCP_IMSC mapping table has been populated, using the pg4tcpmap
tool, with the SIDE PROFILE name, TCP/IP hostname, port number and other
IMS Connect parameters.

This chapter contains the following sections:

■ "Overview of Client Application" on page 7-1

■ "Preparing the Client Application" on page 7-3

■ "Ensuring TIP and Remote Transaction Program Correspondence" on page 7-4

■ "Calling the TIP from the Client Application" on page 7-8

■ "Exchanging Data" on page 7-13

■ "Calling PG4TCPMAP" on page 7-14

■ "Executing the Application" on page 7-14

■ "Application Development with Multi-Byte Character Set Support" on page 7-15

■ "Privileges Needed to Use TIPs" on page 7-16

7.1 Overview of Client Application
The Procedural Gateway Administration Utility (PGAU) generates a complete TIP
using definitions you provide. The client application can then call the TIP to access the
remote host transaction. Chapter 2, "Procedural Gateway Administration Utility",
discusses the use of PGAU in detail.

This overview explains what you must do in order to call a TIP and control a remote
host transaction.

The gateway receives PL/SQL calls from the Oracle Integrating Server and issues
TCP/IP calls to communicate with a remote transaction program.

Overview of Client Application

7-2 Oracle Procedural Gateway for APPC User’s Guide

The following application programs make this possible:

1. an I/O PCB-enabled remote host transaction program

2. the PGA_TCP_IMSC mapping table that has been populated, using the
pg4tcpmap tool, with the SIDE PROFILE name as well as the TCP/IP hostname,
port number and other IMS Connect parameters.

3. a Transaction Interface Package (TIP). A TIP is a PL/SQL package that handles
communication between the client and the gateway and performs datatype
conversions between COBOL and PL/SQL.

4. PGAU generates the TIP specification for you. In the shipped samples, the
PGAU-generated package is called pgtflip.pkb. This generated TIP includes at
least three function calls that map to the remote transaction program:

– pgtflip_init initializes the conversation with the remote transaction
program

– pgtflip_main exchanges application data with the remote transaction
program

– pgtflip_term terminates the conversation with the remote transaction
program

Refer to Appendix F, "Tip Internals" for more information about TIPs, if you are
writing your own TIP or debugging.

5. a client application that calls the TIP

The client application calls the three TIP functions with input and output
arguments. In the example, the client application passes an input and the remote
transaction and the remote transaction sends back the flipped input as an output.

Table 7–1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the
gateway using the example IMS Connect-IMS transaction.

A client application which uses the gateway to exchange data with a remote host
transaction performs some tasks for itself and instructs the TIP to perform other tasks
on its behalf. The client application designer must consequently know the behavior of
the remote transaction and how the TIP facilitates the exchange.

The following sections provide an overview of remote host transaction behavior, how
this behavior is controlled by the client application and how TIP function calls and
data declarations support the client application to control the remote host transaction.
These sections also provide background information about what the TIP does for the

Table 7–1 Logic Flow of IMS Connect-IMS Example

Client
Application Oracle TIP

Procedures Established Between the
Gateway and the Remote Transaction
(mainframe IMS)

calls tip_init Calls PGAINIT Gateway issues TCP/IP socket and connect to
initiate the conversation with IMS Connect.

calls tip_main Calls PGAXFER to send
the input and receive the
output

Gateway issues TCP/IP send() to IMS Connect.
IMS Connect, through OTMA and XCF, talks to
the IMS instance. IMS RECEIVE completes. IMS
performs application logic and issues SEND
back to gateway. The gateway issues TCP/IP
receive(); receive completes.

calls tip_term Call PGATERM Gateway issues TCP/IP close().

Preparing the Client Application

Client Application Development (TCP/IP Only) 7-3

client application and how the TIP calls exchange data with the remote host
transaction.

7.2 Preparing the Client Application
To prepare the client application for execution you must understand the remote host
transaction requirements and then perform these steps:

1. Make sure that the pg4tcpmap tool has been used to map the SIDEPROFILE name,
defined in the .ctl file for the PGAU utility, to TCP/IP and IMS Connect
attributes.

Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" in this guide, and
to Chapter 12 of the Oracle Procedural Gateway for APPC Installation and
Configuration Guide for detailed information about mapping parameters.

2. Make certain that you have identified the remote host transaction program
facilities to be called.

3. Move relevant COBOL records layout (copybooks) to the gateway system for
input to PGAU.

4. Describe the remote host transaction data and calls to the PG Data Dictionary (PG
DD) with DEFINE DATA, DEFINE CALL, and DEFINE TRANSACTION
statements.

5. Generate the TIP in the Oracle Integrating Server, using GENERATE.

6. Create the client application that calls the TIP public functions.

7. Grant privileges on the newly created package.

7.2.1 TIP Content and Purpose
The content of a PGAU-generated TIP reflects the calls available to the remote host
transaction and the data that has been exchanged. Understanding this content helps
when designing and debugging client applications that call the TIP.

A TIP is a PL/SQL package, and accordingly has two sections:

1. A Package Specification containing:

■ Public function prototypes and parameters, and

2. A Package Body containing:

■ Private functions and internal control variables

■ Public functions

■ Package initialization following the last public function.

The purpose of the TIP is to provide a PL/SQL callable public function for every
allowed remote transaction program interaction. A remote transaction program
interaction is a logically related group of data exchanges through one or more
PGAXFER RPC calls. This is conceptually similar to a screen or menu interaction in
which several fields are filled in, the enter key is pressed, and several fields are
returned to the user. Carrying the analogy further:

■ the user might be likened to the TIP or client application

■ fields to be filled in are IN parameters on the TIP function call

■ fields returned are OUT parameters on the TIP function call

Ensuring TIP and Remote Transaction Program Correspondence

7-4 Oracle Procedural Gateway for APPC User’s Guide

■ screen or menu is the group of IN and OUT parameters combined

■ a pressed enter key is likened to the PGAXFER remote procedural call (RPC)

The actual grouping of parameters that constitute a transaction call is defined by the
user. The gateway places no restrictions on how a remote transaction program might
correspond to a collection of TIP function calls, each call having many IN and OUT
parameters.

PGA users typically have one TIP per remote transaction program. How the TIP
function calls are grouped and what data parameters are exchanged on each call
depends on the size, complexity and behavior of the remote transaction program.

Refer to Oracle’s PL/SQL User’s Guide and Reference for a discussion of how PL/SQL
packages work. The following discussion covers the logic that must be performed
within a TIP. Refer to the sample TIP and driver supplied in the
$ORACLE_HOME/pg4appc/demo/IMS directory in files pgtflip.pkh,
pgtflip.pkb, and pgtflipd.sql.

7.2.2 Remote Host Transaction Types
From a procedural gateway application perspective, there are three main types of
remote host transactions:

■ transaction socket

■ persistent socket

■ non-persistent socket

You should be familiar with the remote host transaction types. Refer to the IBM IMS
Connect Guide and Reference for a full description of these transaction types.

7.3 Ensuring TIP and Remote Transaction Program Correspondence
A remote host transaction program and its related TIP with client application must
correspond on two key requirements:

■ Parameter datatype conversion, which results from the way in which transaction
DATA is defined. Refer to Appendix D, "Datatype Conversions" for a discussion
of how PGAU-generated TIPs convert data based on the data definitions.

■ TCP/IP send/receive synchronization, which results from the way in which
transaction CALLs are defined

These DATA and CALL definitions are then included by reference in a
TRANSACTION definition.

Make certain that the SIDEPROFILE name has been mapped to TCP/IP and IMS
Connect attributes, using the pg4tcpmap tool.

7.3.1 DATA Correspondence
Using data definitions programmed in the language of the remote host transaction, the
PGAU DEFINE DATA command stores in the PG DD the information needed for
PGAU GENERATE to create the TIP function logic to perform:

■ all data conversion from PL/SQL IN parameters supplied by the receiving remote
host transaction

■ all buffering into the format expected by the receiving remote host transaction

Ensuring TIP and Remote Transaction Program Correspondence

Client Application Development (TCP/IP Only) 7-5

■ all data unbuffering from the format supplied by the sending remote host
transaction

■ all data conversion to PL/SQL OUT parameters supplied by the sending remote
host transaction

PGAU determines the information needed to generate the conversion and buffering
logic from the data definitions included in the remote host transaction program.
PGAU DEFINE DATA reads this information from files, such as COBOL copy books,
or in-stream from scripts and saves it in the PG DD for repeated use. The Gateway
Administrator needs to transfer these definition files from the remote host to the
Oracle host where PGAU runs.

From the data definitions stored in the PG DD, PGAU GENERATE determines the
remote host datatype and matches it to an appropriate PL/SQL datatype. It also
determines data lengths and offsets within records and buffers and generates the
needed PL/SQL logic into the TIP. Refer to the PGAU "DEFINE DATA" statement on
page 2-7 in Chapter 2, "Procedural Gateway Administration Utility" and "Sample
PGAU DEFINE DATA Statements" in Appendix G, "Administration Utility Samples"
for more information.

All data that are referenced as parameters by subsequent calls must first be defined
using PGAU DEFINE DATA. Simple data items, such as single numbers or character
strings, and complex multi-field data aggregates, such as records or structures, can be
defined. PGAU automatically generates equivalent PL/SQL variables and records of
fields or tables for the client application to reference in its calls to the generated TIP.

As discussed, a parameter might be a simple data item, such as an employee number,
or a complex item, such as an employee record. PGAU DEFINE DATA automatically
extracts the datatype information it needs from the input program data definition files.

In this example, FLIPIN and FLIPOUT are the arguments to be exchanged.

PGTFLIP_MAIN(trannum,FLIPIN,FLIPOUT)
A PGAU DEFINE DATA statement must therefore be issued for each of these
parameters:

DEFINE DATA FLIPIN
 PLSDNAME (FLIPIN)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 MSGIN PIC X(20).
);

DEFINE DATA FLIPOUT
 PLSDNAME (flipout)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 MSGOUT PIC X(20).
);

Note that a definition is not required for the trannum argument. This is the APPC
conversation identifier and does not require a definition in PGAU.

7.3.2 CALL Correspondence
The requirement to synchronize TCP/IP send() and receive() means that when the
remote transaction program expects data parameters to be input, it issues TCP/IP
receive() to read the data parameters. Accordingly, the TIP must cause the gateway to

Ensuring TIP and Remote Transaction Program Correspondence

7-6 Oracle Procedural Gateway for APPC User’s Guide

issue TCP/IP send() to write the data parameters to the remote transaction program.
The TIP must also cause the gateway to issue TCP/IP receive() when the remote
transaction program issues TCP/IP send().

The PGAU DEFINE CALL statement specifies how the generated TIP is to be called by
the client application and which data parameters are to be exchanged with the remote
host transaction for that call. Each PGAU DEFINE CALL statement might specify the
name of the TIP function, one or more data parameters, and the IN/OUT mode of
each data parameter. Data parameters must have been previously defined with PGAU
DEFINE DATA statements. Refer to "DEFINE CALL" on page 2-6 in Chapter 2,
"Procedural Gateway Administration Utility" and "Sample PGAU DEFINE CALL
Statements" in Appendix G for more information.

PGAU DEFINE CALL processing stores the specified information in the PG DD for
later use by PGAU GENERATE. PGAU GENERATE then creates the following in the
TIP package specification:

■ declarations of public PL/SQL functions for each CALL defined with PL/SQL
parameters for each DATA definition specified on the CALL

■ declarations of the public PL/SQL data parameters

The client application calls the TIP public function as a PL/SQL function call, using
the function name and parameter list specified in the PGAU DEFINE CALL statement.
The client application might also declare, by reference, private variables of the same
datatype as the TIP public data parameters to facilitate data passing and handling
within the client application, thus sharing the declarations created by PGAU
GENERATE.

In this example, the following PGAU DEFINE CALL statement must be issued to
define the TIP public function:

DEFINE CALL FLIPMAIN
 PKGCALL (pgtflip_main)
 PARMS ((FLIPIN IN),(FLIPOUT OUT));

7.3.2.1 Flexible Call Sequence
The number of data parameters exchanged between the TIP and the gateway on each
call can vary at the user’s discretion, as long as the remote transaction program’s
SEND/RECEIVE requests are satisfied. For example, the remote transaction program
data exchange sequence might be:

TCP/IP SEND 5 fields (field1-field5)
TCP/IP RECEIVE 1 fields (field6)
TCP/IP SEND 1 field (field7)
TCP/IP RECEIVE 3 fields (field8 - field10)

The resulting TIP/application call sequence could be:

tip_call1(parm1 OUT, <-- TCP/IP SEND field1 from remote TP
 parm2 OUT, <-- TCP/IP SEND field2 from remote TP
 parm3 OUT); <-- TCP/IP SEND field3 from remote TP

tip_call2(parm4 OUT, <-- TCP/IP SEND field4 from remote TP
 parm5 OUT); <-- TCP/IP SEND field5 from remote TP
tip_call3(parm6 IN OUT); --> TCP/IP RECEIVE field6 in remote TP
 <-- TCP/IP SEND field7 from remote TP

tip_call4(parm8 IN, --> TCP/IP RECEIVE field8 into remote TP
 parm9 IN, --> TCP/IP RECEIVE field9 into remote TP
 parm10 IN); --> TCP/IP RECEIVE field10 into remote TP

Ensuring TIP and Remote Transaction Program Correspondence

Client Application Development (TCP/IP Only) 7-7

To define these four public functions to the TIP, four PGAU DEFINE CALL statements
must be issued, each specifying its unique public function name (tip_callx) and the
data parameter list to be exchanged. When a data item is defined using DEFINE
DATA, it can be referenced in multiple calls in any mode (IN, OUT, or IN OUT). For
example, parm5 could be used a second time in place of parm6 This implies the same
data is being exchanged in both instances, received into the TIP and application on
tip_call2 and returned, possibly updated, to the remote host in tip_call4.

Notice also that the remote transaction program’s first five written fields are read by
two separate TIP function calls, tip_call1 and tip_call2. This could also have been
equivalently accomplished with five TIP function calls of one OUT parameter each or
a single TIP function call with five OUT parameters. Then the remote transaction
program’s first read field (field6) and subsequent written field (field7) correspond to a
single TIP function call (tip_call3) with a single IN OUT parameter (parm6).

This use of a single IN OUT parameter implies that the remote transaction program’s
datatype for field6 and field7 are both the same and correspond to the conversion
performed for the datatype of parm6. If field6 and field7 were of different datatypes,
then they have to correspond to different PL/SQL parameters (for example, parm6 IN
and parm7 OUT). They could still be exchanged as two parameters on a single TIP call
or one parameter each on two TIP calls, however.

Lastly, the remote transaction program’s remaining three RECEIVE fields are supplied
by tip_call4 parameters 8-10. They also could have been done with three TIP calls
passing one parameter each or two TIP calls passing one parameter on one call and
two parameters on the other, in either order. This flexibility permits the user to define
the correspondence between the remote transaction program’s operation and the TIP
function calls in whatever manner best suits the user.

7.3.2.2 Call Correspondence Order Restrictions
Each TIP public function first sends all IN parameters, before it receives any OUT
parameters. Thus, a remote transaction program expecting to send one field and then
receive one field must correspond to separate TIP calls.

For example:

tip_callO(parmO OUT); <-- TCP/IP SEND outfield from remote TP

PGAXFER RPC checks first for parameters to send, but finds none and proceeds to
receive parameters:

tip_callI(parmI IN); --> TCP/IP RECEIVE infield to remote TP

PGAXFER RPC processes parameters to send and then checks for parameters to
receive, but finds none and completes; therefore, a single TIP public function with an
OUT parameter followed by an IN parameter does not work, because the IN
parameter is processed first--regardless of its position in the parameter list.

7.3.3 TRANSACTION Correspondence
The remote host transaction is defined with the PGAU DEFINE TRANSACTION
statement with additional references to prior definitions of CALLs that the transaction
supports.

You specify the remote host transaction attributes, such as:

■ transaction ID or name

■ network address or location

Calling the TIP from the Client Application

7-8 Oracle Procedural Gateway for APPC User’s Guide

■ system type (such as IBM370)

■ Oracle National Language of the remote host

In this example, the following DEFINE TRANSACTION statement is used to match
this information with the inserted row in the PGA_TCP_IMSC table.

DEFINE TRANSACTION IMSFLIP
 CALL (FLIPMAIN)
 SIDEPROFILE(PGATCP)
 TPNAME(FLIP)
 NLS_LANGUAGE("american_america.us7ascii");

7.4 Calling the TIP from the Client Application
Once a TIP is created, a client application must be written to interface with the TIP. A
client application that calls the TIP functions must include five logical sections:

■ declaring TIP variables

■ initializing the conversation

■ exchanging data

■ terminating the conversation

■ error handling

7.4.1 Declaring TIP Variables
The user declarations section of the tipname.doc file documents the required
declarations.

When passing PL/SQL parameters on calls to TIP functions, the client application
must use the exact same PL/SQL datatypes for TIP function arguments as are defined
by the TIP in its specification section. Assume, for example, the following is in the TIP
specification, or tipname.doc:

FUNCTION tip_call1 tranuse, IN BINARY_INTEGER,
 tip_var1 io_mode pls_type1,
 tip_record io_mode tran_rectype)
RETURN INTEGER;

Note: The PL/SQL package name is specified when the
transaction is defined; this is the name by which the TIP is
referenced and which the public function calls to be included
within the TIP. Each public function must have been previously
defined with a PGAU DEFINE CALL statement, which has been
stored in the PG DD. If you do not specify a package name (TIP
name) in the GENERATE statement, the transaction name you
specified will become the package name by default. In that case, the
transaction name (tname) must be unique and must be in valid
PL/SQL syntax within the database containing the PL/SQL
packages.

For more information, refer to "DEFINE TRANSACTION" on
page 2-9 in Chapter 2, "Procedural Gateway Administration Utility"
and "Sample PGAU DEFINE TRANSACTION Statement" on
page G-2 in Appendix G, "Administration Utility Samples".

Calling the TIP from the Client Application

Client Application Development (TCP/IP Only) 7-9

TYPE tran_rectype is RECORD
 (rec_field1 pls_type1,
 ...
 rec_fieldN pls_typeN);

Where Table 7–2 provides a description of each of the parameters:

In the client application PL/SQL atomic datatypes should be defined as the exact same
datatype of their corresponding arguments in the TIP function definition. The
following should be coded in the client application before the BEGIN command:

appl_var pls_type1; /* declare appl variable for */

TIP datatypes need not be redefined. They must be declared locally within the client
application, appearing in the client application before the BEGIN:

appl_record tipname.tran_rectype; /* declare appl record */

Table 7–3 describes the meaning of each procedure declaration:

Refer to the tipname.doc content file for a complete description of the user
declarations you can reference.

The client application calls the TIP public function as if it were any local PL/SQL
function:

rc = tip_call1(tranuse,
 appl_var,
 appl_record);

Table 7–2 Function Declarations

Parameter Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the TIP
init function identifying the conversation on which this TIP call is
to exchange data.

tran_rectype The PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the TYPE
tran_rectype is RECORD statement.

pls_typeN Is a PL/SQL atomic datatype.

rec_fieldN Is a PL/SQL record field corresponding to a remote transaction
program record field.

Table 7–3 Procedure Declarations

Item Description

appl_record Is a PL/SQL record exchanged with the TIP and used within the
client application.

tipname Is the PL/SQL package (TIP) name as stored in Oracle database.
This is the same value as in the statement CREATE or REPLACE
PACKAGE tipname in the TIP specification.

tran_rectype Is the PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the
TYPE tran_rectype is RECORD statement.

Calling the TIP from the Client Application

7-10 Oracle Procedural Gateway for APPC User’s Guide

In the TCP/IP IMS Connect example, the PL/SQL driver pgtflipd.sql, which is
located in $ORACLE_HOME/pg4appc/demo/IMS directory, is the client application
and includes the following declaration:

...

...
CREATE or REPLACE PROCEDURE pgtflipd(mesgin IN CHAR) IS
trannum INTEGER :=0 /* transaction usage number */
mesgout VARCHAR2(254); /* the output parameter */
rc INTEGER :=0 /* PGA RPC return codes */
term INTEGER :=0; /* 1 if pgtflip_term called */
...
...

7.4.2 Initializing the Conversation
The call to initialize the conversation serves several purposes:

■ To cause the PL/SQL package, the TIP, to be loaded and to perform the
initialization logic programmed in the TIP initialization section.

■ To cause the TIP init function to call the PGAINIT remote procedural call (RPC),
which in turn establishes communication with the remote transaction program
(RTP), and returns a transaction instance number to the application.

Optionally, calls to initialize the conversation can be used to:

■ Override default RHT/OLTP identification, network address attributes, and
conversation security user ID and password.

■ Specify what diagnostic traces the TIP is to produce. Refer to Chapter 8, "Problem
Determination" for more information about diagnostic traces.

PGAU-generated TIPs provide four different initialization functions that client
applications can call. These are overloaded functions which all have the same name,
but vary in the types of parameters passed.

Three initialization parameters are passed:

■ The transaction instance number for RHT socket file descriptor. The tranuse
parameter is required on all TIP initializations.

■ TIP diagnostic flags for TIP runtime diagnostic controls. The tipdiag parameter
is optional. Refer to Chapter 8, "Problem Determination" for a discussion of TIP
diagnostics.

■ TIP default overrides for overriding OLTP and network attributes. The override
parameter is optional.

The following four functions are shown as they might appear in the TIP Content
documentation file. Examples of client application use are provided later.

TYPE override_Typ IS RECORD (
 tranname VARCHAR2(2000), /* Transaction Program */
 transync BINARY_INTEGER, /* RESERVED */
 trannls VARCHAR2(50), /* RESERVED */
 oltpname VARCHAR2(2000), /* Logical Unit */
 oltpmode VARCHAR2(2000), /* LOG Mode Entry */
 netaddr VARCHAR2(2000), /* Side Profile */
 tracetag VARCHAR2(2000), /* gateway trace idtag */

FUNCTION pgtflip_init(/* init standard */
 tranuse IN OUT BINARY_INTEGER)

Calling the TIP from the Client Application

Client Application Development (TCP/IP Only) 7-11

 RETURN INTEGER;

FUNCTION pgtflip_init(/* init override */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ)
 RETURN INTEGER;

FUNCTION pgtflip_init(/* init diagnostic */
 tranuse IN OUT BNARY_INTEGER,
 tipdiag IN CHAR)
 RETURN INTEGER;

FUNCTION pgtflip_init(/* init over-diag */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ,
 tipdiag IN CHAR)
 RETURN INTEGER;

7.4.2.1 Transaction Instance Parameter
This transaction instance number (shown in examples as tranuse) must be passed to
subsequent TIP exchange and terminate functions. It identifies to the gateway on
which TCP/IP conversation--and therefore which iteration of a remote transaction
program--the data is to be transmitted or communication terminated.

A single client application might control multiple instances of the same remote
transaction program or multiple different remote transaction programs, all
concurrently. The transaction instance number is the TIP‘s mechanism for routing the
client application call through the gateway to the intended remote transaction
program.

It is the responsibility of the client application to save the transaction instance number
of each active transaction and pass the correct one to each TIP function called for that
transaction.

The client application calls the TIP initialization function as if it were any local
PL/SQL function. For example:

...

...
trannum INTEGER := 0;/* transaction usage number*/
...
...
BEGIN
 rc := pgtflip.pgtflip_init(trannum);
...
...

7.4.2.2 Overriding TIP Initializations
Note that in the preceding example the client application did not specify any remote
transaction program name, network connection, or security information. The TIP has
such information internally coded as defaults and the client application simply calls
the appropriate TIP for the chosen remote transaction program. The client application
can, however, optionally override some TIP defaults and supply security information.

You do not need to change any client applications that do not require overrides.

Calling the TIP from the Client Application

7-12 Oracle Procedural Gateway for APPC User’s Guide

When the remote host transaction was defined in the PG DD, the DEFINE
TRANSACTION statement specified certain default OLTP and network identification
attributes which can be overridden:

■ TPname

■ Side Profile

Refer to "DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway
Administration Utility" for more information about the DEFINE TRANSACTION
statement.

These PG DD-defined transaction attributes are generated into TIPs as defaults and
can be overridden at TIP initialization time. This facilitates the use of one TIP, which
can be used with a test transaction or system, and can later be used with a production
transaction or system, without having to regenerate the TIP.

The override_Typ record datatype describes the various transaction attributes that
can be overridden by the client application. The following overrides are currently
supported:

■ tranname can be set to override the value that was specified by the TPNAME
parameter of the DEFINE TRANSACTION statement

■ netaddr can be set to override the value that was specified by the SIDEPROFILE
parameter of the DEFINE TRANSACTION statement

In addition to the transaction attributes defined in the PG DD, there are two
security-related parameters, conversation security user ID and conversation security
password, that can be overridden at TIP initialization time. The values for these
parameters normally come from either the database link used to access the gateway or
the Oracle database session. There are cases when the Oracle database user ID is not
sufficient for accessing the OLTP system. The user ID and password overrides provide
a way to specify those parameters to the OLTP system.

The following overrides are currently supported:

■ oltpuser can be set to override the user ID used to initialize the conversation
with the OLTP

■ oltppass can be set to override the password used to initialize the conversation
with the OLTP

The security overrides have an effect only if PGA_SECURITY_TYPE=PROGRAM is
specified in the gateway initialization file, and the OLTP system is configured to
accept a user ID and password on incoming conversation requests.

The transync (IMS Connect synclevel) and trannls (NLS character set) are defined
in the override record datatype, but are reserved for future use. The RHT synclevel
and NLS name cannot be overridden.

The client application might override the default attributes at TIP initialization for the
following reasons:

■ to start a different version of the RHT (such as production instead of test)

■ to change the location of the OLTP containing the RHT (if the OLTP was moved
due to migration or a switch to backup configuration)

Client applications requiring overrides can use any combination of override and
initialization parameters and might alter the combination at any time without
regenerating the TIP or affecting applications that do not override parameters.

Exchanging Data

Client Application Development (TCP/IP Only) 7-13

To override the TIP defaults, an additional client application record variable must be
declared as override_Typ datatype, values must be assigned to the override
subfields, and the override record variable must be passed on the TIP initialization call
from the client application. For example:

 ...
 ...
 my_overrides pgtflip.override_Typ; -- declaration
 ...
 ...
 my_overrides.oltpname := ’IVTNO’; -- swap to production IMS
 my_overrides.tranname := ’IVTNV’; -- new transaction name

BEGIN
 rc := pgtflip.pgtflip_init(trannum,my_overrides); -- init
 ...
 ...

Within the TIP, override attributes are checked for syntax problems and passed to the
gateway server.

7.4.2.3 Security Considerations
The security requirements of the default and overridden OLTPs must be the same
because the same gateway server is used in either conversation, as dictated by the
database link names in the PGA RPC calls. The gateway server startup security mode
is set at gateway server initialization time and passed unchanged to the OLTP at TIP
or conversation initialization time.

7.5 Exchanging Data
The client application should pass the transaction instance number, returned from a
previous tip_init call, to identify which remote transaction program is affected and to
identify any client application data parameters to be exchanged with the remote
transaction program.

In this IMS Connect inquiry example, we pass an employee number and receive an
employee record back:

rc = pgtflip.pgtflip_main(trannum, /* transfer data */
 mesgin, /* input parameter */
 mesgout); /* output parameter*/

7.5.1 Terminating the Conversation
The client application calls the TIP termination function as if it were any local PL/SQL
function. For example:

...

...
term := 1; /* indicate term called */
 rc := pgtflip.pgtflip_term(trannum,0); /* terminate normally */
...
...

After a transaction instance number has been passed on a TIP terminate call to
terminate the transaction, or after the remote transaction program has abended, that
particular transaction instance number might be forgotten.

Calling PG4TCPMAP

7-14 Oracle Procedural Gateway for APPC User’s Guide

7.5.2 Error Handling
The client application should include an exception handler that can clean up any
active TCP/IP conversations before the client application terminates. The sample
client application provided in pgtflipd.sql contains an example of exception
handling.

Gateway exceptions are reported in the range PGA-20900 to PGA-20999 and
PGA-22000 to PGA 22099. When an exception occurs, the TIP termination function
should be called for any active conversations that have been started by prior calls to
the TIP initialization function.

For example:

EXCEPTION
 WHEN OTHERS THEN
 IF term = 0 THEN /* terminate function not called yet */
 rc := pgtflip.pgtflip_term(trannum,1); /*terminate abnormally*/
 END IF;
 RAISE;

The remote transaction should also include provisions for error handling and
debugging, such as writing debugging information to the IMS temporary storage
queue area. Refer to the PL/SQL User’s Guide and Reference for a discussion of how to
intercept and handle Oracle exceptions.

7.5.3 Granting Execute Authority
The TIP is a standard PL/SQL package and execute authority must be granted to users
who call the TIP from their client application. In this example, we grant execute on the
pgtflip package to user SCOTT:

GRANT EXECUTE ON PGTFLIP TO SCOTT

Refer to the Oracle Database Administrator’s Guide for further information.

7.6 Calling PG4TCPMAP
PGAU need not be modified in order to have a conversation on a gateway using
TCP/IP. You use the APPC format of PGAU, but you will map parameters to TCP/IP
using the pg4tcpmap tool.

To map the DEFINE TRANSACTION parameters using TCP/IP, you must have a
valid input within the PGA_TCP_IMSC table before executing the application. Refer to
Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" for information about setting
up and using the mapping tool.

7.7 Executing the Application
Before executing the client application, ensure that a connection to the host is
established and that the receiving partner is available. In this example we use PL/SQL
driver PGTFLIP to execute the IMS/IMS Connect inquiry. To execute this client
application, enter from SQL*Plus:

set serveroutput on
execute pgtflipd(’hello’);

Application Development with Multi-Byte Character Set Support

Client Application Development (TCP/IP Only) 7-15

7.8 Application Development with Multi-Byte Character Set Support
COBOL presently only supports double byte character sets (DBCS) for PIC G
datatypes.

PGAU processes IBM VS COBOLII PIC G datatypes as PL/SQL VARCHAR2 variables
and generates TIPs which automatically convert the data according to the
Oracle NLS_LANGUAGEs specified for the remote host data and the local Oracle
data.

These Oracle NLS_LANGUAGEs can be specified as defaults for all PIC G data
exchanged by the TIP with the remote transaction
(see DEFINE TRANSACTION ... REMOTE_MBCS or LOCAL_MBCS). The Oracle
NLS_LANGUAGEs for any individual PIC G data item can be further overridden
(see REDEFINE DATA ... REMOTE or LOCAL_LANGUAGE).

DBCS data can be encoded in any combination of supported DBCS character sets. For
example, a remote host application which allows different codepages for each field of
data in a record is supported by the Oracle Procedural Gateway MBCS support.

Use of REDEFINE DATA ... REMOTE_LANGUAGE or LOCAL_LANGUAGE on PIC
X items is also supported. Thus a TIP can perform DBCS or MBCS conversions for
specified PIC X data fields, in addition to SBCS conversions by default for the
remaining PIC X data fields. Default SBCS conversion is according to the DEFINE
TRANSACTION... NLS_LANGUAGE and local Oracle default LANGUAGE
environment values.

When PGAU is generating a TIP, the PIC G datatypes are converted to PL/SQL
VARCHAR2 datatypes. After conversion by the TIP, received ’PIC G’ VARCHAR2s
can have a length less then the maximum due to deletion of shift-out and shift-in meta
characters, and sent ’PIC G’ RAW datatypes will have the shift-out and shift-in
characters inserted as required by the remote host character set specified.

This is different from the conversions performed for PIC X data which is always a
known fixed-length and hence CHAR datatypes are used in TIPs for PIC X data fields.
However, even when the PIC X field contains DBCS or MBCS data, a CHAR variable
is still used and padded with blanks if needed.

Some remote host applications bracket a PIC G field with PIC X bytes used for
shift-out, shift-in meta-character insertion. Such a COBOL definition might look like:

01 MY_RECORD.
 05 SO PIC X.
 05 MY_MBCS_DATA PIC G(50).
 05 SI PIC X.

This is not processed correctly by PGAU, because all three fields are defined, and
consequently treated, as separate data items when conversion is performed.

To be properly processed, the definition input to PGAU should be:

01 MY_RECORD.
 05 MY_MBCS_DATA PIC G(51).

The PGAU REDEFINE DATA statement can redefine the 3-field definition to the
1-field definition by specifying USAGE(SKIP) on fields SO and SI, and
’05 MY_MBCS_DATA PIC G(51).’ to redefine MY_MBCS_DATA. The three
REDEFINE statements can be placed in the PGAU input control file, and thus the
remote host definition need not be altered.

Privileges Needed to Use TIPs

7-16 Oracle Procedural Gateway for APPC User’s Guide

7.9 Privileges Needed to Use TIPs
Execute privileges must be explicitly granted to callers of TIPs or procedures. This
privilege cannot be granted through a role.

Any TIP user wanting to trace a TIP must be granted execute privileges on the rtrace
and ptrace procedures. Refer to the "Configuring PGAU" chapters appropriate for
your communications protocol in the Oracle Procedural Gateway for APPC Installation
and Configuration Guide, and the Oracle Database Application Developer’s Guide for more
information. For example:

$ sqlplus pgaadmin/pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

After a TIP has been developed, the TIP user must be granted execute privileges on the
TIP by the TIP owner. The TIP owner is usually PGAADMIN, but can be another user
who has been granted either the PGDDDEF or PGDDGEN roles. For example:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

where database_specification_string is the Oracle Net identifier for the
Oracle Integrating Server where the gateway UTL_RAW and UTL_PG components
were installed. This is the same Oracle Integrating Server where the TIPs are executed
and where grants on the TIPs are performed from the TIP owner user ID.

A SQL script for performing these grants is provided in the
$ORACLE_HOME/pg4appc/admin directory. The pgddausr.sql script performs the
grants for private access to the packages by a single TIP user. If private grants are to be
used, the pgddausr.sql script must be run once for each TIP user’s user ID.

To run these scripts, use SQL*Plus to connect to the Oracle Integrating Server as user
PGAADMIN. From SQL*Plus, run the pgddausr.sql script from the
$ORACLE_HOME/pg4appc/admin directory. The script performs the necessary grants
as previously described. You are prompted for the required user IDs, passwords, and
database specification strings. If you are using private grants, repeat this step for each
user ID requiring access to the packages.

No script has been provided to perform public grants. To do this, issue the following
commands:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

Problem Determination 8-1

8
Problem Determination

This chapter discusses diagnostic techniques and aids for determining and resolving
problems with data conversion, truncation, and conversation startup. It also describes
how to collect the data when the debugging (trace) option is on.

You will want to trace the PL/SQL stored procedures only when you suspect
problems. Do not run with tracing enabled during normal operations, because it will
affect performance.

This chapter contains the following sections:

■ "TIP Definition Errors" on page 8-1

■ "Problem Analysis with PG DD Diagnostic References" on page 8-2

■ "Problem Analysis with PG DD Select Scripts" on page 8-3

■ "Data Conversion Errors" on page 8-4

■ "Problem Analysis of Data Conversion and Truncation Errors" on page 8-5

■ "Problem Analysis with TIP Runtime Traces" on page 8-6

■ "TIP Runtime Trace Controls" on page 8-7

■ "Suppressing TIP Warnings and Tracing" on page 8-9

■ "Gateway Server Tracing" on page 8-10

■ "Sample Gateway Server Initialization and Trace Output Files" on page 8-12

8.1 TIP Definition Errors
TIP definition errors occur when a TRANSACTION, CALL, or DATA entry in the
PG DD is not properly defined.

Use the REPORT with DEBUG statement to list the PG DD contents and GENERATE
DIAGNOSE(PKGEX(DR)) option to include corresponding ID numbers in the TIP.

Table 8–1 shows the mnemonic used to represent ID numbers and their
correspondence with the following:

■ PGAU REPORT with debug listings, GENERATE traces and TIPs

■ PG DD tables and columns from which ID numbers are selected

■ Oracle sequence objects from which ID numbers originate

Problem Analysis with PG DD Diagnostic References

8-2 Oracle Procedural Gateway for APPC User’s Guide

These ID numbers can be used to associate the conversions performed in the TIP with
the definitions stored in the PG DD.

The PG DD diagnostic references appear in TIPs generated with the PKGEX(DR)
option as single line Comments:

-- PG DD type idno=nnn ...

The PG DD diagnostic references appear in REPORT with DEBUG listings before or to
the right of their related definition entry as end-delimited Comments:

/* idno=nnn */

Refer to Appendix A, "Procedural Gateway for APPC Data Dictionary" for more
information about PG DD, including a complete list of dictionary tables.

8.2 Problem Analysis with PG DD Diagnostic References
TIPs should be generated by the PGAU GENERATE command with the PKGEX(DR)
diagnostic option, to include PG DD reference Comments in the TIP. These diagnostic
references are Comments only and do not affect the runtime overhead of the TIP. Refer
to Section 2.6.9, "GENERATE" on page 2-14 in Chapter 2, "Procedural Gateway
Administration Utility" for a description of the PKGEX (DR) parameter.

1. Before defining the PL/SQL package, identify the transaction name, ID number
(t#), and version (v#) from the TIP specification within the TIP.

2. Invoke PGAU REPORT WITH DEBUG specifying the same transaction name and
version.

Table 8–1 PGDD ID Numbers in Correspondence

PGAU REPORT/TIP PDGG table(col) Sequence Object

v# transaction version pga_trans(version) pga.transvers

v# call version pga_call(version) pga.callvers

v# data version pga_data(version) pga.datavers

t# transaction id# pga_trans(trans#) pga.transeq

c# call id# pga_call(call#)

pga_call_parm(call#)

pga.callseq

d# data id# pga_call_parm(data#)

pga_data(data#)

pga_fields(data#)

pga.dataseq

f# field id# pga_fields(fld#) pga.fieldseq

q# qualifier id# pga_data_values(qual#) pga.fieldseq

a# trans attribute id# pga_trans_values(attr#)

pga_trans_attr(attr#)

pga.tattrseq

a# field attribute id# pga_data_values(attr#)

pga_data_attr(attr#)

pga.dtattseq

e# environment pga_environments(env#) pga.envrseq

l# compiler/language pga_compilers(comp#) pga.compseq

Problem Analysis with PG DD Select Scripts

Problem Determination 8-3

REPORT selects definitions from the PG DD and produces a listing showing the
DATA, CALL, and TRANSACTION definitions and the ID number of each
user-supplied definition.

3. Compare the reported definitions with those used in the remote transaction
program and identify all corresponding exchanges and the data formats
transmitted.

4. Look for and investigate any mismatches, such as:

■ different numbers of send/receive calls

■ different sequence of send/receive calls

■ different parameter lists on send/receive calls

■ different data fields within each exchanged parameter

■ different lengths for each exchanged parameter

■ unsupported datatypes for each exchanged parameter

■ improperly initialized control fields for:

– repeating group counts

IBMVSCOBOLII affected clauses include

OCCURS n TIMES DEPENDING ON field

– remapped group criteria

IBMVSCOBOLII affected clauses include

REDEFINES field1 WHEN field2 = criteria

8.3 Problem Analysis with PG DD Select Scripts
PGAU GENERATE error messages and TRACE(OC) entries reference SQL SELECT
statements. Refer to Table 8–2 for the meaning of the name designations for each entry.

The SQL*Plus test scripts in Table 8–3 are provided to perform the identical SELECTS
as GENERATE performs to determine which PG DD rows are being used when the
TIP is generated. These files are loaded into the $ORACLE_HOME/pg4appc/admin
directory during installation.

Table 8–2 Meaning of TRACE(OC) Output

Name Entry

SED Select Environment Data

STL Select Transaction (latest version)

STV Select Transaction (specific version)

STC Select Transaction Calls

SPD Select Parameter Data

SF Select Fields

SFA Select Field Attributes

SXF Select conversion Formats

SXA Select Attribute conversions

Data Conversion Errors

8-4 Oracle Procedural Gateway for APPC User’s Guide

The scripts are shown in the same order used by GENERATE and each script prompts
the SQL*Plus user for the required input. The information retrieved from a previous
select is often used as input to a subsequent select. If a you suspect that a PG DD field
entry has produced inaccurate data, browse the .sql files listed above to determine
the source of the problem. These files are loaded into the
$ORACLE_HOME/pg4appc/admin directory during installation.

8.4 Data Conversion Errors
Data conversion errors are usually the result of:

■ incorrect determination of datatype

or

■ incorrect specification of data position.

PGAU determination of the datatype is based on the values found in the PG DD,
pga_fields(mask), and pga_fields(maskopts) columns. PGAU generates PL/SQL code
to perform conversions based on the mask value:

■ PIC X converted to CHAR with the same character length

■ PIC G converted to CHAR with the same character length

■ PIC 9 converted to NUMBER

Character datatype is presumed for all PIC X and PIC G mask values and conversion
errors are more likely the result of position, length, and justification errors.

Determination of numeric datatype depends on several factors, including the
combination of mask and maskopts values and how they apply to the actual remote
host data in its internal format. Values for mask, maskopts, and data might conflict in
unexpected ways. For example, an option such as USAGE IS COMP might be
overridden if the data is in display format. While compilers occasionally perform such
overrides correctly, they can cause unexpected results when exchanging data with
systems coded in other languages.

To notify the user of such overrides, a warning function has been included in the
following UTL_PG functions:

■ MAKE _NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

Table 8–3 SQL*Plus Test Scripts and Their Corresponding Entries

Script Entry

pgddsed.sql Select Environment Data

pgddstl.sql Select Transaction (latest version)

pgddstv.sql Select Transaction (specific version)

pgddstc.sql Select Transaction Calls

pgddspd.sql Select Parameter Data

pgddsf.sql Select Fields

pgddsfa.sql Select Field Attributes

pgddsxf.sql Select Conversion Formats

pgddsxa.sql Select Attribute conversions

Problem Analysis of Data Conversion and Truncation Errors

Problem Determination 8-5

■ NUMBER_TO_RAW

■ RAW_TO_NUMBER

8.5 Problem Analysis of Data Conversion and Truncation Errors
Procedural Gateway for APPC data lengths are limited by PL/SQL to 32,763 bytes per
APPC exchange and PL/SQL variable.

The following steps can be used to diagnose data conversion or truncation errors.

Refer to Chapter 3, "Creating a TIP" to review the proper values and definitions
referenced in the following items 1 through 4:

1. Ensure that the COBOL definitions used in the RHT match the input to PGAU;

2. Ensure the RHT transmission buffers are of sufficient length;

3. If your gateway uses SNA: Ensure the RHT APPC call addresses the correct
transmission buffer and uses the correct data length;

If your gateway uses TCP/IP: Ensure the RHT I/O PCB call addresses the correct
transmission buffer and uses the correct data length

4. Ensure the client application has declared the correct TIP datatypes used as
arguments in the TIP calls.

5. Ensure that the client application is calling the TIP functions in the proper
sequence (init, user-defined..., term), and that any input data to the RHT is correct.
Also ensure that if multiple user-defined functions exist, they are being called in
the proper sequence and passed the correct input values, if any.

DBMS_OUTPUT calls can be inserted in the client application to trace its behavior.

For more information about calling TIP functions in proper sequence, refer to the
chapter on configuring the Oracle Integrating Server for first time installations, in
the Oracle Procedural Gateway for APPC Installation and Configuration Guide.

6. Optionally, regenerate the TIP with diagnostic traces included and enable them.
The following traces are particularly useful:

■ data conversion trace

■ function entry/exit trace

■ gateway exchange trace

Refer to "Problem Analysis with TIP Runtime Traces" on page 8-6 for more
information about traces; refer also to GENERATE on page 2-14 in Chapter 2,
"Procedural Gateway Administration Utility".

Note that the output of the trace is different for a gateway using SNA than for a
gateway using TCP/IP. However, the method of invoking the trace is the same
regardless of which communication protocol you are using.

The gateway server tracing must also be enabled in
$ORACLE_HOME/pg4appc/admin/initsid.ora. Set the parameters
SET TRACE_LEVEL=255 and
 SET LOG_DESTINATION=/oracle/pga/10.2/pg4appc/log

Refer to "Gateway Server Tracing" on page 8-10 in this guide for more information
about tracing.

■ If your gateway is using SNA: Refer to Appendix A, "Gateway Initialization
Parameters for SNA Protocol" in your Oracle Procedural Gateway for APPC

Problem Analysis with TIP Runtime Traces

8-6 Oracle Procedural Gateway for APPC User’s Guide

Installation and Configuration Guide for more information about these
parameters;

■ If your gateway is using TCP/IP: Refer to Appendix B, "Gateway
Initialization Parameters for TCP/IP Communications Protocol" in your Oracle
Procedural Gateway for APPC Installation and Configuration Guide for more
information about these parameters.

Rerun the client application and examine the trace (see the next step for details).

To disable the trace, reset

SET TRACE_LEVEL=0

7. Examine the trace output.

The TIP trace output can be saved in a spool file, such as:

spool tipname.trc

TIP trace output is written to a named DBMS_PIPE and can be retrieved under
SQL*Plus by issuing the following command:

exec rtrace(’tipname’);
or it can be purged by issuing the following command:

exec ptrace(’tipname’);

Gateway server trace output is written to a log file in a default directory path
specified by the SET LOG_DESTINATION gateway parameter in
$ORACLE_HOME/pg4appc/admin/initsid.ora. For example:

SET LOG_DESTINATION=$ORACLE_HOME/pg4appc/log/

Refer to "Gateway Server Tracing" on page 8-10 for more information.

The gateway server log file can be viewed be editing the file or by issuing other
system commands that display file contents. The log file can also be copied and
saved to document problem symptoms.

8.6 Problem Analysis with TIP Runtime Traces
TIPs should be generated by the PGAU GENERATE command with the PKGEX(DC)
diagnostic option to include TIP data conversion trace logic in the TIP. TIP function
call trace logic is always included in every TIP. This is runtime trace instrumentation
and has some overhead when tracing is enabled, but negligible overhead when tracing
is disabled. Refer to Section 2.6.9, "GENERATE" on page 2-14 in Chapter 2,
"Procedural Gateway Administration Utility" for more information.

1. Regenerate TIPs with the PKGEX(DC, DR) options and recompile the TIP body
file, tipname.pkb. Avoid recompiling the TIP specification.

2. Revise the application that calls the TIP initialization function (tipname_init) to
pass the trace flags parameter with data conversion and function call tracing
enabled. Refer to "Controlling TIP Runtime Data Conversion Tracing" on page 8-8.

Note: tipname is case-sensitive and must be specified exactly as
it is in the TIP.

TIP Runtime Trace Controls

Problem Determination 8-7

If the problem causes an exception to be raised in the TIP and the application
contains an exception handler, the application exception handler should be
Commented out to prevent it from handling the exception and preventing the
exception point of origin from being reported. When the TIP exception is next
raised, its source line number in the TIP is reported. Record this information.

3. Execute the application with diagnostic TIP initialization.

If the TIP trace pipe inlet overflows due to the application calls causing the TIP to
write trace messages in the TIP trace pipe inlet, you have one minute from the
start of the overflow condition to begin Step 4 and empty the TIP trace pipe.

 Otherwise, exception "ORA-20703 PGA-TIP: pipe send error" is issued, ending the
diagnostic session, possibly before any relevant trace information is generated.

4. Retrieve and record the TIP trace message stream.

Use SQL*Plus to connect to the same Oracle user ID executing the application or
the user ID under which the TIP is executed. This establishes a second session
from which the trace pipe outlet can be read, preventing the TIP trace pipe from
overflowing at the TIP trace pipe inlet.

a. Issue the command:

set serveroutput on size nnnnn

b. Issue the command to record the trace output:

spool tipname.trc

c. Issue the command to retrieve the trace stream:

exec rtrace(’tipname’);

If the application is long-running, repeat this command as often as needed
until all trace messages have been retrieved.

5. If any exceptions are raised, note their prefix, number, and full message text.

6. Analyze the TIP trace message stream. A normal trace is shown for the pgadb2i
TIP in Appendix G, "Administration Utility Samples".

8.7 TIP Runtime Trace Controls
Runtime trace control is the second parameter specified on a TIP initialization call. It is
a CHAR(8) datatype of the following form:

rc := yourtip_init(trannum,’wxyz0000’);

Table 8–4 describes the value of positions one to four:

Table 8–4 Values of Positions 1 through 4 on Second Parameter of TIP Call

Item Description

position 1 (w) controls UTL_RAW warning. A value of 0 suppresses warnings; a
value of 1 issues warnings.

position 2 (x) controls the function entry/exit tracing. A value of 0 suppresses
the function entry/exit tracing; a value of 1 enables the function
entry/exit tracing.

position 3 (y) controls data conversion tracing. A value of 0 suppresses data
conversion tracing; a value of 1 enables data conversion tracing.

TIP Runtime Trace Controls

8-8 Oracle Procedural Gateway for APPC User’s Guide

Positions 5 through 8 are reserved and ignored.

8.7.1 Generating Runtime Data Conversion Trace and Warning Support
Use PGAU to regenerate the TIP and specify the GENERATE parameter
DIAGNOSE(PKGEX(DC)). This includes runtime PL/SQL code in the TIP which tests
for and displays warnings of correct, but possibly unexpected NUMBER_TO_RAW
and RAW_TO_NUMBER conversions.

Refer to Section 2.6.9, "GENERATE" on page 2-14 in Chapter 2, "Procedural Gateway
Administration Utility" for more information about this parameter.

Recompile the TIP body under SQL*Plus. Avoid recompiling the TIP specification.

8.7.2 Controlling TIP Runtime Conversion Warnings
After the TIP has been regenerated, the issuance of runtime warnings is under control
of the application. By default, warnings are suppressed and are only issued when they
are enabled.

Errors and exceptions are always issued if they occur.

To enable the issuance of warnings, an additional parameter must be supplied when
calling the TIP initialization function. This parameter is a CHAR(8) datatype and each
character position controls a particular TIP runtime diagnostic function.

To enable warnings in yourtip, the client application should call the TIP
initialization function with the statement:

rc := yourtip_init(trannum,’10000000’);

The following is input to the TIP trace pipe inlet at initialization time:

"UTL_PG warnings enabled"

8.7.3 Controlling TIP Runtime Function Entry/Exit Tracing
To enable function entry/exit tracing in yourtip, the client application should call
the TIP initialization function with the statement:

rc := yourtip_init(trannum,’01000000’);

The following is input to the TIP trace pipe inlet at initialization time:

’function entry/exit trace enabled’
’tipname_init entered’
’time date/time stamp’

8.7.4 Controlling TIP Runtime Data Conversion Tracing
To enable data conversion tracing in yourtip, the client application should call the
TIP initialization function with the following statement:

position 4 (z) controls gateway exchange tracing. A value of 0 suppresses
gateway exchange tracing; a value of 1 enables gateway exchange
tracing.

Table 8–4 (Cont.) Values of Positions 1 through 4 on Second Parameter of TIP Call

Item Description

Suppressing TIP Warnings and Tracing

Problem Determination 8-9

rc := yourtip_init(trannum,’00100000’);

The following is input to the TIP trace pipe inlet at initialization time:

’data conversion trace enabled’

8.7.5 Controlling TIP Runtime Gateway Exchange Tracing
To enable runtime gateway exchange tracing in yourtip, the client application
should call the TIP initialization function with the following statement:

rc := yourtip_init(trannum,’00010000’);

The following is input to the TIP trace pipe inlet at initialization time:

’gateway exchange trace enabled’

8.8 Suppressing TIP Warnings and Tracing
After debugging is finished, there are two ways to suppress the following:

■ data conversion tracing

■ conversion warnings

■ function entry/exit tracing

■ gateway exchange tracing

You can:

1. Call the TIP initialization function without passing any diagnostic control
parameters:

rc := yourtip_init(trannum);

2. Call the TIP initialization function passing a revised diagnostic control parameter
which disables all tracing and warnings:

rc := yourtip_init(trannum,’00000000’);

A third method, described in Method C, removes the logic for:

■ data conversion tracing

■ conversion warnings

3. Generate the TIP again without:

PKGEX(DC)

Or you can recompile the previous version of the TIP body if it was saved.

Methods A and B allow you to use the same TIP without alteration, but without
tracing or warnings. These methods are reversible without alteration or replacement of
the TIP. Tracing and warnings can be redisplayed should a problem recur.

Method C also suppresses data conversion tracing and warnings and incurs reduced
overhead by avoiding tests, but is not reversible without regenerating the TIP or
recompiling an alternate version with data conversion tracing and warning
diagnostics imbedded.

The logic for function entry/exit and gateway exchange tracing is included in every
TIP and cannot be removed. It can be disabled by method A or B.

Gateway Server Tracing

8-10 Oracle Procedural Gateway for APPC User’s Guide

8.9 Gateway Server Tracing
The gateway contains extensive tracing logic in the gateway remote procedural calls
(RPCs), and the APPC-specific code. Tracing is enabled through gateway initialization
parameters or dynamic RPC calls to the gateway. The trace provides information
about the execution of the gateway RPC functions and about the execution of the
APPC interface. The trace file contains a text stream written in chronological sequence
of events. The trace is designed to assist application programmers with the debugging
of their OLTP transaction programs and Oracle applications that communicate with
those transaction programs through the gateway.

A single trace file is created for an entire gateway session from the time the database
link is opened until it is closed. The trace can be directed to a specific path/filename or
to a path (directory) only. In the first case, the file is overwritten each time a new
session begins for the gateway being traced. When the trace target is a directory, a
separate file with a generated name (containing the operating system process ID) is
written for each gateway session. The latter approach must be used whenever the
gateway to be traced might be the target of new sessions after the desired trace is
written but before it can be copied and saved. Conversely, in some situations you
might choose to create a distinct gateway system identifier used solely for tracing, and
direct its trace to a single specific filename. This avoids the problem of an
ever-increasing set of trace files when, for example, repeated attempts are necessary to
reproduce or debug a problem. A fixed filename should never be used if there is any
chance that an unexpected gateway session could overlay a useful trace.

8.9.1 Defining the Gateway Trace Destination
This section describes how to define the destination of trace files to the gateway, and
how to cause the gateway to create the trace files during initialization. Note that this
does not enable any gateway tracing, it merely defines the destination of any trace
output produced when the gateway tracing is enabled.

1. Choose a gateway system identifier to trace. Decide whether you will be tracing an
existing gateway system identifier or a new one created specifically for tracing. If a
new system identifier will be used, configure the new system identifier exactly the
same as the old one by creating a new initsid.ora (a copy of the old), entries in
listener.ora as necessary, and a new Oracle database link.

Test the new system identifier to ensure it works before proceeding.

2. In $ORACLE_HOME/pg4appc/admin, edit the initsid.ora file so it contains
the following:

SET TRACE_LEVEL=255
SET LOG_DESTINATION=logdest

where logdest is the directory path for the trace output. The logfile is usually in
$ORACLE_HOME/pg4appc/log. Refer to the earlier discussion about "Problem
Analysis of Data Conversion and Truncation Errors" on page 8-5 for more
information.

Note: Misspelled parameter names in initsid.ora are not
detected. The parameter is ignored.

Gateway Server Tracing

Problem Determination 8-11

Once these two steps are completed, the gateway opens the specified trace file during
initialization. Each session on this system identifier writes a trace file as specified by
the SET LOG_DESTINATION parameter described in Step 2 above.

If a directory path was specified, each trace file has a name of the form:

sid_pid.log

where sid is the gateway sid and pid is the operating system process ID of the
gateway server expressed in decimal.

8.9.2 Enabling the Gateway Trace
There are two ways to enable the gateway server tracing. The first is to set the tracing
options in the gateway initialization file, initsid.ora. The second is to use the
additional PGA remote procedural call (RPC) function, PGATCTL, to dynamically
control the tracing from within the Oracle application. The first method causes tracing
to be performed for all users of the gateway system identifier and is recommended
only when the use of the gateway system identifier can be limited to users actually
needing the trace. The second method is more flexible and allows the application
programmer to selectively trace events on a single gateway session without affecting
the operation of other users’ gateway sessions.

Before the gateway server trace is enabled, perform the tasks listed in "Defining the
Gateway Trace Destination" on page 8-10.

8.9.2.1 Enabling the Gateway Trace Using Initialization Parameters
Edit the initsid.ora file, and add the following line at the end of the file (or, if a
SET TRACE_LEVEL parameter is already specified, modify it):

SET TRACE_LEVEL=trace

where trace is a numeric value from 1 to 255 indicating which traces are to be
enabled. For further information on the use of this parameter, refer to "PGA
Parameters" in Appendix A of the Oracle Procedural Gateway for APPC Installation and
Configuration Guide.

Once this step is completed, tracing is enabled for the desired gateway system
identifier.

8.9.2.2 Enabling the Gateway Trace Dynamically from PL/SQL
The following is only needed for user-written TIPs. PGAU-generated TIPs
automatically include the following facilities. Refer to "Controlling TIP Runtime
Gateway Exchange Tracing" on page 8-9 for more information.

Make the following changes to the PL/SQL application that calls the Transaction
Interface Package(s) to execute remote transaction(s).

1. Add a call to PGATCTL before any calls to TIP initialization functions are made:

PGATCTL@dblink(convid,
 traceF,
 traceS);

Where Table 8–5 describes the parameters in PGATCTL:

Sample Gateway Server Initialization and Trace Output Files

8-12 Oracle Procedural Gateway for APPC User’s Guide

This call sets the trace flags for all new conversations started after the call to the
value specified by traceS.

2. Recompile the PL/SQL application to pick up the new trace call.

8.10 Sample Gateway Server Initialization and Trace Output Files
The following sections provide sample output files for a gateway using either the SNA
communications protocol or TCP/IP support for IMS Connect.

8.10.1 Sample Trace Output File for Gateway Using SNA
The following is an example of the trace output produced by a gateway server using
the SNA communications protocol, where:

■ the TRACE_LEVEL parameter is set to 255

■ the gateway sid is PGA10IAPPC

■ the Oracle home directory is /oracle/pga/10.2

■ the PGA_CAPABILITY parameter is set to SINGLE_SITE

■ the gateway server was invoked by an Oracle Net database link from another
system.

HGAINIT: entered.
 : LOG_DESTINATION => /oracle/pga/10.2/log/PGA10IAPPC_12845.log
 : TRACE_LEVEL => 255
 ORACLE_HOME: /oracle/pga/10.2, LEN <43>, MAX_LEN <256>.
 ORACLE_SID: PGA10IAPPC, LEN <10>, MAX_LEN <256>.
 FDS_CLASS: PG4APPC_1001, LEN <12>, MAX_LEN <30>.
 FDS_INSTANCE: PGA, LEN <3>, MAX_LEN <256>.
 FDS_CLASS_VERSION: 3, LEN <1>, MAX_LEN <30>.
 : PGA_CAPABILITY = SINGLE_SITE
HGAINIT: exiting, rc = 0
HGALGON: entered.
 : reco = 0
 : namel = 8
 : name = PGAADMIN
 : passwdl = 8
 : passwd = pgaadmin
 : gpau is at 153188
 : PGA_CAPABILITY = SINGLE_SITE
 : up->gpaucap = 1
 : up->gpauflg = 00
 : PGA_SECURITY_TYPE = NONE
SGTAINI: entered.

Table 8–5 PGATCTL Parameters

Parameter Description

dblink is the name of the database link to the gateway

convid For a gateway using SNA: Conversation identifier returned by
the PGAINIT function to be used to identify the conversation.

For a gateway using TCP/IP: Socket file descriptor returned by
the PGAINIT function to be used to identify the conversation

traceF is the trace control function to be performed.

traceS specifies which traces are to be enabled, as described previously
in the discussion of the SET TRACE_LEVEL initialization
parameter.

Sample Gateway Server Initialization and Trace Output Files

Problem Determination 8-13

SGTAINI: exiting, rc = 0
HGALGON: exiting, rc = 0
HGAUPLC: entered.
HGAUPLC: exiting, rc = 0
HGAUPLD: entered.
HGAUPLD: exiting, rc = 0
HGABEGN: entered, hgagt = ffbec0ec
HGABEGN: exiting, rc = <0>
HGAPDSC: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGAXFER' was found
HGAPDSC: exiting, rc = <0>
HGAPDSC: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGAINIT' was found
HGAPDSC: exiting, rc = <0>
HGAPDSC: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGATCTL' was found
HGAPDSC: exiting, rc = <0>
HGAPDSC: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGATERM' was found
HGAPDSC: exiting, rc = <0>
HGACOMM: entered, keepinfo = 0
HGACOMM: exiting, rc = 0
HGABEGN: entered, hgagt = ffbec0ec
HGABEGN: exiting, rc = <0>
HGAPEXE: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGAINIT' was found
GPACINI: entered.
GPACLOC: executed
GPACLOC: exit, rc = 0
PGAINIT: TP name = 'IVTNO'
PGAINIT: LU name = ''
PGAINIT: Mode name = 'ORAPLU62'
PGAINIT: Profile name = 'IMSPGA'
PGAINIT: Sync level = 0
PGAINIT: Userid = PGAADMIN
PGAINIT: passwd = pgaadmin
GPACAEC: entered
GPACAEC: exiting, rc = 0
 GPAC allocated at 188294
SGPAALL: entered.
 SGPA allocated at 188b30
 CMINIT issued: profile = IMSPGA
 CMINIT complete: rc = 0, errno = 11
 CMEPLN issued
 CMEPLN complete: rc = 0, errno = 11, luname = IMSPGA
 CMSTPN issued: tpname = IVTNO
 CMSTPN complete: rc = 0, errno = 11
 CMSMN issued: modename = ORAPLU62
 CMSMN complete: rc = 0, errno = 11
 XCSCST issued: security type = 0
 XCSCST complete: rc = 0, errno = 11
 CMSSL issued: synclevel = 0
 CMSSL complete: rc = 0, errno = 11
 CMSPTR issued: type = 1
 CMSPTR complete: rc = 0, errno = 11
 CMALLC issued
 CMALLC complete: rc = 0, errno = 11
SGPAALL: exiting, rc = 0
GPACAEC: entered
GPACAEC: exiting, rc = 0
PGAINIT: Conversation id - @ 18839c

Sample Gateway Server Initialization and Trace Output Files

8-14 Oracle Procedural Gateway for APPC User’s Guide

 0000: 00000001 01000000 00000000 *............*............*
GPACINI: exiting rc = <0>
HGAPEXE: exiting, rc = <0>
HGAPEXE: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGAXFER' was found
GPACXFR: entered
GPACLOC: executed
GPACLOC: exit, rc = 0
 GPAU found at 153188
 GPAC found at 188294
 sbufsz = 49
 rbufsz = 32763
 slensz = 8
 rlensz = 8
PGAXFER: Conversation id - @ 187ddc
 0000: 00000001 01000000 00000000 *............*............*
PGAXFER: Send buffer length = 49
PGAXFER: Receive buffer length = 89
PGAXFER: Send lengths array - @ 187d6c
 0000: 00000001 00000031 *.......1*........*
PGAXFER: Receive lengths array - @ 1ac528
 0000: 00000001 00000059 *.......Y*........*
PGAXFER: Send buffer - @ 187d9c
 0000: 40404040 C4C9E2D7 D3C1E840 9381A2A3 *@@@@.......@....* DISPLAY last*
 0010: F1404040 40404040 40404040 40404040 *.@@@@@@@@@@@@@@@*1 *
 0020: 40404040 40404040 40404040 40404040 *@@@@@@@@@@@@@@@@* *
 0030: 40 *@* *
GPACAEC: entered
GPACAEC: exiting, rc = 0
 sends = 1
 receives = 1
 slens[1] = 49
SGPASND: entered, type = 2
SGPARTS: entered, deal = 0
SGPARTS: exiting, rc = 0, deal = 0.
 CMSST issued: send type = 3
 CMSST complete: rc = 0, errno = 11
Sending data: - @ 187d9c
 0000: 40404040 C4C9E2D7 D3C1E840 9381A2A3 *@@@@.......@....* DISPLAY last*
 0010: F1404040 40404040 40404040 40404040 *.@@@@@@@@@@@@@@@*1 *
 0020: 40404040 40404040 40404040 40404040 *@@@@@@@@@@@@@@@@* *
 0030: 40 *@* *
 CMSEND issued: length = 49
 CMSEND complete: rc = 0, errno = 11, rts = 0
SGPASND: exiting, rc = 0
 rlens[1] = 89
SGPARCV: entered.
 CMECS issued
 CMECS complete: rc = 0, errno = 11, state = 4
 CMRCV issued: length = -4276988
 CMRCV complete: rc = 0, errno = 11, rts = 0, dr = 2, sr = 0, length = 89
Received data: - @ 1a38e8
 0000: C5D5E3D9 E840E6C1 E240C4C9 E2D7D3C1 *.....@...@......*ENTRY WAS DISPLA*
 0010: E8C5C440 40404040 40404040 40404040 *...@@@@@@@@@@@@@*YED *
 0020: 40404040 40404040 C4C9E2D7 D3C1E840 *@@@@@@@@.......@* DISPLAY *
 0030: D3C1E2E3 F1404040 4040C6C9 D9E2E3F1 *.....@@@@@......*LAST1 FIRST1*
 0040: 40404040 F860F1F1 F160F1F1 F1F1C4F0 *@@@@.`...`......* 8-111-1111D0*
 0050: F161D9F0 F1F0F0F0 F1 *.a.......*1/R010001*
 conversation state is now RECEIVE
SGPARCV: exiting, rc = 0
PGAXFER: Receive buffer length = 89
PGAXFER: Receive lengths array - @ 1ac528
 0000: 00000001 00000059 *.......Y*........*
PGAXFER: Receive buffer - @ 1a38e8
 0000: C5D5E3D9 E840E6C1 E240C4C9 E2D7D3C1 *.....@...@......*ENTRY WAS DISPLA*

Sample Gateway Server Initialization and Trace Output Files

Problem Determination 8-15

 0010: E8C5C440 40404040 40404040 40404040 *...@@@@@@@@@@@@@*YED *
 0020: 40404040 40404040 C4C9E2D7 D3C1E840 *@@@@@@@@.......@* DISPLAY *
 0030: D3C1E2E3 F1404040 4040C6C9 D9E2E3F1 *.....@@@@@......*LAST1 FIRST1*
 0040: 40404040 F860F1F1 F160F1F1 F1F1C4F0 *@@@@.`...`......* 8-111-1111D0*
 0050: F161D9F0 F1F0F0F0 F1 *.a.......*1/R010001*
GPACAEC: entered
GPACAEC: exiting, rc = 0
GPACXFR: exiting rc = <0>
HGAPEXE: exiting, rc = <0>
HGAPEXE: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGATERM' was found
GPACTRM: entered
GPACLOC: executed
GPACLOC: exit, rc = 0
 GPAU found at 153188
 GPAC found at 188294
PGATERM: Conversation id - @ ffbebf04
 0000: 00000001 01000000 00000000 *............*............*
PGATERM: Termination type = 0
GPACAEC: entered
GPACAEC: exiting, rc = 0
SGPADEA: entered, type = 0
SGPARTS: entered, deal = 1
 CMRTS issued
 CMRTS complete: rc = 0, errno = 11
 CMRCV issued: length = 0
 CMRCV complete: rc = 18, errno = 11, rts = 0, dr = 0, sr = 0, length = 0
 conversation state is now RECEIVE
SGPARTS: exiting, rc = 0, deal = 1.
SGPADEA: exiting, rc = 0
 cp = 188294
 cpp = 0
 cpn = 0
 up->gpaucpt = 0
 freed gpac at 188294
GPACTRM: exiting.
HGAPEXE: exiting, rc = <0>
HGACOMM: entered, keepinfo = 0
HGACOMM: exiting, rc = 0
HGABEGN: entered, hgagt = ffbec0ec
HGABEGN: exiting, rc = <0>
HGAPDSC: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGAXFER' was found
HGAPDSC: exiting, rc = <0>
HGADAFR: entered.
HGADAFR: exit <0>
HGAPDSC: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGAINIT' was found
HGAPDSC: exiting, rc = <0>
HGADAFR: entered.
HGADAFR: exit <0>
HGAPDSC: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGATCTL' was found
HGAPDSC: exiting, rc = <0>
HGADAFR: entered.
HGADAFR: exit <0>
HGAPDSC: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGATERM' was found
HGAPDSC: exiting, rc = <0>
HGADAFR: entered.
HGADAFR: exit <0>

Sample Gateway Server Initialization and Trace Output Files

8-16 Oracle Procedural Gateway for APPC User’s Guide

HGACOMM: entered, keepinfo = 0
HGACOMM: exiting, rc = 0
HGABEGN: entered, hgagt = ffbec0ec
HGABEGN: exiting, rc = <0>
HGAPEXE: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGAINIT' was found
GPACINI: entered.
GPACLOC: executed
GPACLOC: exit, rc = 0
GPACAEC: entered
GPACAEC: exiting, rc = 0
GPACXFR: exiting rc = <0>
HGAPEXE: exiting, rc = <0>
HGAPEXE: entered.
HGAPFND: entered.
HGAPFND: exit - procedure 'PGATERM' was found
GPACTRM: entered
GPACLOC: executed
GPACLOC: exit, rc = 0
 GPAU found at 153188
 GPAC found at 190a0c
PGATERM: Conversation id - @ ffbebf04
 0000: 00000002 01000001 00000000 *............*............*
PGATERM: Termination type = 0
GPACAEC: entered
GPACAEC: exiting, rc = 0
SGPADEA: entered, type = 0
SGPARTS: entered, deal = 1
 CMRTS issued
 CMRTS complete: rc = 0, errno = 11
 CMRCV issued: length = 0
 CMRCV complete: rc = 18, errno = 11, rts = 0, dr = 0, sr = 0, length = 0
 conversation state is now RECEIVE
SGPARTS: exiting, rc = 0, deal = 1.
SGPADEA: exiting, rc = 0
 cp = 190a0c
 cpp = 0
 cpn = 0
 up->gpaucpt = 0
 freed gpac at 190a0c
GPACTRM: exiting.
HGAPEXE: exiting, rc = <0>
HGACOMM: entered, keepinfo = 0
HGACOMM: exiting, rc = 0
HGADAFR: entered.
HGADAFR: exit <0>
HGADAFR: entered.
HGADAFR: exit <0>
HGADAFR: entered.
HGADAFR: exit <0>
HGADAFR: entered.
HGADAFR: exit <0>
HGALGOF: entered.
HGALGOF: exiting, rc = 0
HGAEXIT: entered.
HGAEXIT: exiting, rc = 0

8.10.2 Sample Trace Output File for Gateway Using TCP/IP
The following is an example of the trace output produced by a gateway server using
the TCP/IP communication protocol, where:

■ the TRACE_LEVEL parameter is set to 255

■ the gateway sid is PGA10IA

Sample Gateway Server Initialization and Trace Output Files

Problem Determination 8-17

■ the Oracle home directory is /oracle/pga/10.2.

■ the PGA_CAPABILITY parameter is set to SINGLE_SITE

■ the gateway server was invoked by an Oracle Net database link from another
system.

HGTINIT: entered.
pg4appc Version 10.2.0
 : LOG_DESTINATION => /oracle/pga/10.2/pg4appc/log/PGA10IA_12703.log
 : TRACE_LEVEL => 255
 ORACLE_HOME: /oracle/pga/10.2, LEN <43>, MAX_LEN <256>.
 ORACLE_SID: PGA10IA, LEN <7>, MAX_LEN <256>.
 FDS_CLASS: PG4APPC_1001, LEN <12>, MAX_LEN <30>.
 FDS_INSTANCE: PGA, LEN <3>, MAX_LEN <256>.
 FDS_CLASS_VERSION: 3, LEN <1>, MAX_LEN <30>.
 : HGT_CAPABILITY = SINGLE_SITE
HGTINIT: exiting, rc = 0
HGTLGON: entered.
 : reco = 0
 : namel = 8
 : name = PGAADMIN
 : passwdl = 8
 : passwd = pgaadmin
 : hgtlHgtUserP is at 153990
 : HGT_CAPABILITY = SINGLE_SITE
 : hgtlHgtUserP->hgtUCap = 1
 : hgtlHgtUserP->hgtTCap = SINGLE_SITE
 : HGT_SECURITY_TYPE = PROGRAM
 : hgtlHgtUserP->hgtUSec = 2
 : PGA_TCP_USER = pgaadmin
 : PGA_TCP_PASS = pgaadmin
 : PGA_TCP_DB = R901
HGTLGON: exiting, rc = 0
HGTUPLC: entered.
HGTUPLC: exiting, rc = 0
HGTUPLD: entered.
HGTUPLD: exiting, rc = 0.
HGTBEGN: entered, hgtgt = ffbec0ec
HGTBEGN: exiting, rc = <0>
HGTPDSC: entered.
HGTPFND: entered.
HGTPFND: exit - procedure 'PGAINIT' was found.
HGTPDSC: exiting, rc = <0>
HGTPDSC: entered.
HGTPFND: entered.
HGTPFND: exit - procedure 'PGAXFER' was found.
HGTPDSC: exiting, rc = <0>
HGTPDSC: entered.
HGTPFND: entered.
HGTPFND: exit - procedure 'PGATERM' was found.
HGTPDSC: exiting, rc = <0>
HGTCOMM: entered, keepinfo = 0
HGTCOMM: exiting, rc = 0
HGTBEGN: entered, hgtgt = ffbec0ec
HGTBEGN: exiting, rc = <0>
HGTPEXE: entered.
HGTPFND: entered.
HGTPFND: exit - procedure 'PGAINIT' was found.
GPTINI: entered.
 TPName is FLIP

Sample Gateway Server Initialization and Trace Output Files

8-18 Oracle Procedural Gateway for APPC User’s Guide

 LUName is
 LogModeName is
 SidePorfileName is IMSPGA
 Uid PGAADMIN.
 Pass PGAADMIN.
gptOciLgon: entered
 OCIEnvCreate, rc = 0
 OCIHandleAlloc -- ERROR, rc = 0
 Allocation a server context handle, rc = 0
 Allocation a service context handle, rc = 0
 Allocation a user handle, rc = 0
 OCIHandleAlloc -- STMT rc = 0
 Create a server context, rc = 0
 Set svr. attr. in the svc. sess. handle, rc = 0
 Set usr. attr. in the usr. sess. handle, rc = 0
 Set pswd. attr. in the usr. sess. handle, rc = 0
 OCISessionBegin, rc = 0
 set usr. sess. in the svc. context handle, rc 0
gptOciLgon Exit -- RC = 0.
gptOciSelStmt: entered.
 OCIStmtPrepare
 The select statment is:
 SELECT HOSTNAME,PORTNUMBER,ANDRS,TIMER,SOCK,CLIENTID,
 COMMITMODE,IMSDESTID,LTERM,RACFGRPNAM
 FROM PGA_TCP_IMSC
 WHERE SIDEPROFILENAME ='IMSPGA'
 OCIStmtPrepare, rc = 0
 Defining output variable HostName.
 OCIDefineByPos for HostName, rc = 0
 Defining output variable Port Number.
 OCIDefineByPos for Port Number, rc = 0
 Defining output variable ANDRS.
 OCIDefineByPos for ANDRS, rc = 0
 Defining output variable Timer.
 OCIDefineByPos for Timer, rc = 0
 Defining output variable Socket
 OCIDefineByPos for Socket, rc = 0
 Defining output variable Client ID.
 OCIDefineByPos for Client ID, rc = 0
 Defining output variable Commit Mode.
 OCIDefineByPos for Commit Mode, rc = 0
 Defining output variable IMS Destination ID.
 OCIDefineByPos for IMS Destination ID, rc = 0
 Defining output variable LTERM
 OCIDefineByPos for LTERM, rc = 0
 Defining output RACF Group Name.
 OCIDefineByPos for RACF Group Name, rc = 0
 OCIStmtExecute complete, rc = 0
 Host Name = 'MVS08.US.ORACLE.COM', LEN = 19
 Port Number = '9900', LEN = 4
 conversation protocol = ' ', LEN = 1
 IRM Timer = 'D', LEN = 1
 socket connection type = 'T', LEN = 1
 client ID = ' ', LEN = 8
 commit mode = '1', LEN = 1
 IMS destination ID = 'IMSE ', LEN = 8
 LTERM = ' ', LEN = 8
 RACF group name = '$DEV ', LEN = 8
gptOciSelStmt Exit -- RC = 0.
gptOciLgof: entered.

Sample Gateway Server Initialization and Trace Output Files

Problem Determination 8-19

 OCISessionEnd, rc = 0
 OCIServerDetach, rc = 0
 OCIHandleFree -- Error, rc = 0
 OCIHandleFree -- SERVER, rc = 0
 OCIHandleFree -- SVCCTX, rc = 0
 OCIHandleFree -- SESSION, rc = 0
 OCIHandleFree -- STMT, rc = 0
gptOciLgof Exit -- RC = 0.
 Host is MVS08.US.ORACLE.COM
 Port is 9900
 CID->num = 10.
GPTIINI Exit -- RC = 0.
HGTPEXE: exiting, rc = <0>.
HGTPEXE: entered.
HGTPFND: entered.
HGTPFND: exit - procedure 'PGAXFER' was found.
GPTXFR: entered.
 CID->num = 10.
 Beginning of Send Series.
 The length for 'send total msg len' is 102.
 The RC for 'send total msg len' is 4.
 The RC for 'send (IRM_LEN) LL' is 2.
 The RC for 'send (IRM_RSV) ZZ' is 2.
 The RC for length for 'send identifier' is 8.
 The RC for 'Reserved full word 0' is 4.
 The RC for '(IRM_F5)' is 1.
 The RC for '(IRM_TIMER)' is 1.
 The RC for '(IRM_SOCK)' is 1.
 The RC for '(IRM_ES)' is 1.
 The RC for 'Client ID' is 8.
 The RC for 'FLG 1' is 1.
 The RC for 'commit mode' is 1.
 The RC for 'sync level' is 1.
 The RC for 'Conversational Protocol' is 1.
 The RC for 'transaction code' is 8.
 The RC for 'datastore ID' is 8.
 The RC for 'LTERM' is 8.
 The RC for 'RACF User ID' is 8.
 The RC for 'RACF group name' is 8.
 The RC for 'RACF password' is 8.
 The RC for 'send LL' is 2.
 The RC for 'send ZZ' is 2.
 The RC for 'transaction code' is 5.
 The RC for 'send segment(buffer)' is 5.
 The len of buffer is 5.
 The Actual Sent Buffer - @ 184d8c
 0000: 68656C6C 6F *hello*..%%?*
 Send final LL ZZ.
 Signal no more data to IMS Connect.
 The length for 'send LL' is 2.
 The RC for 'send ZZ' is 2.
 End of send.
 The RC for 'read total len' is 2.
 The RC for 'Read ZZ' is 2.
 The RC for 'Read received buffer' is 9.
The Received Buffer - @ ffbdbd04
 0000: 4F4C4C45 48 *OLLEH*|<<..*
GPTXFR Exit -- RC = 0.
HGTPEXE: entered.
HGTPFND: entered.

Sample Gateway Server Initialization and Trace Output Files

8-20 Oracle Procedural Gateway for APPC User’s Guide

HGTPFND: exit - procedure 'PGAXFER' was found.
GPTXFR: entered.
 CID->num = 10.
 Beginning of Send Series.
 The length for 'send total msg len' is 147.
 The RC for 'send total msg len' is 4.
 The RC for 'send (IRM_LEN) LL' is 2.
 The RC for 'send (IRM_RSV) ZZ' is 2.
 The RC for length for 'send identifier' is 8.
 The RC for 'Reserved full word 0' is 4.
 The RC for '(IRM_F5)' is 1.
 The RC for '(IRM_TIMER)' is 1.
 The RC for '(IRM_SOCK)' is 1.
 The RC for '(IRM_ES)' is 1.
 The RC for 'Client ID' is 8.
 The RC for 'FLG 1' is 1.
 The RC for 'commit mode' is 1.
 The RC for 'sync level' is 1.
 The RC for 'Conversational Protocol' is 1.
 The RC for 'transaction code' is 8.
 The RC for 'datastore ID' is 8.
 The RC for 'LTERM' is 8.
 The RC for 'RACF User ID' is 8.
 The RC for 'RACF group name' is 8.
 The RC for 'RACF password' is 8.
 The RC for 'send LL' is 2.
 The RC for 'send ZZ' is 2.
 The RC for 'transaction code' is 6.
 The RC for 'send segment(buffer)' is 49.
 The len of buffer is 49.
 The Actual Sent Buffer - @ 1846e8
 0000: 20202020 44495350 4C415920 6C617374 * DISPLAY last*.......&<...%/..*
 0010: 31202020 20202020 20202020 20202020 *1 *................*
 0020: 20202020 20202020 20202020 20202020 * *................*
 0030: 20 * *.*
 Send final LL ZZ.
 Signal no more data to IMS Connect.
 The length for 'send LL' is 2.
 The RC for 'send ZZ' is 2.
 End of send.
 The RC for 'read total len' is 2.
 The RC for 'Read ZZ' is 2.
 The RC for 'Read received buffer' is 93.
The Received Buffer - @ ffbdbd04
 0000: 454E5452 59205741 53204449 53504C41 *ENTRY WAS DISPLA*.+...........&<.*
 0010: 59454420 20202020 20202020 20202020 *YED *................*
 0020: 20202020 20202020 44495350 4C415920 * DISPLAY *...........&<...*
 0030: 4C415354 31202020 20204649 52535431 *LAST1 FIRST1*<...............*
 0040: 20202020 382D3131 312D3131 31314430 * 8-111-1111D0*................*
 0050: 312F5230 31303030 31 *1/R010001*.........*
GPTXFR Exit -- RC = 0.
HGTPEXE: exiting, rc = <0>.
HGTPEXE: entered.
HGTPFND: entered.
HGTPFND: exit - procedure 'PGATERM' was found.
GPTTRM: entered.
 CID->num = 10.
 close socket returns: 0.
GPTTRM Exit -- RC = 0.
HGTPEXE: exiting, rc = <0>.

Sample Gateway Server Initialization and Trace Output Files

Problem Determination 8-21

HGTCOMM: entered, keepinfo = 0
HGTCOMM: exiting, rc = 0
HGTDAFR: entered.
HGTDAFR: exit <0>.
HGTDAFR: entered.
HGTDAFR: exit <0>.
HGTDAFR: entered.
HGTDAFR: exit <0>.
HGTDAFR: entered.
HGTDAFR: exit <0>.
HGTLGOF: entered.
HGTLGOF: exiting, rc = 0.
HGTEXIT: entered.
HGTEXIT: exiting, rc = 0.

8.10.3 Sample Output Log for pg4tcpmap Tool
The following is an example of the trace output produced by the pg4tcpmap tool,
where:

■ the TRACE_LEVEL parameter is set to 255;

■ ORACLE_SID is set to PGA10IA;

■ the ORACLE_HOME log directory is /oracle/pga/10.2/pg4appc/log, and

■ the ORACLE_HOME directory is /oracle/pga/10.2

GPMGPRD Entered.
 LOG_DESTINATION => /oracle/pga/10.2/pg4appc/log
 TRACE_LEVEL => 255
 ORACLE_HOME => /oracle/pga/10.2
 ORACLE_SID => PGA10IA
 PGA_TCP_USER => pgaadmin
 PGA_TCP_USER Len => 8
 PGA_TCP_PASS => pgaadmin
 PGA_TCP_PASS Len => 8
 PGA_TCP_DB => R901
 PGA_TCP_DB Len => 4
GPMGPRD Exit.
GPMEQ Entered.
 The value => i
GPMEQ Exit -- RC = 0.
GPMEDETAILS Entered.
 Has chosen Side Profile.
gpmeTcpUniNameInput Entered.
 TCP_UNI_NAME => IMSPRF.
 TCP_UNI_NAME Len => 6.
gpmeTcpUniNameInput Exit -- RC = 0.
gpmeHostNameInput Entered.
 HOSTNAME => MVS08.US.MYCOMP.COM.
 HOSTNAME Len => 19.
gpmeHostNameInput Exit -- RC = 0.
gpmePortNumberInput Entered.
 PORT_NUMBER => 688.
 PORT_NUMBER Len => 3.
gpmePortNumberInput Exit -- RC = 0.
gpmeANDRS Entered.
 A/N/D/R/S => .
gpmeANDRSInput Exit -- RC = 0.
gpmeTimerInput Entered.

Sample Gateway Server Initialization and Trace Output Files

8-22 Oracle Procedural Gateway for APPC User’s Guide

 Timer => D.
gpmeTimerInput Exit -- RC = 0.
gpmeSockInput Entered.
 Socket => T.
gpmeSockInput Exit -- RC = 0.
gpmeClientIDInput Entered.
 CLIENT ID => .
 CLIENT ID Len => 8.
gpmeClientIDInput Exit -- RC = 0.
gpmeCommModeInput Entered.
 Commit Mode => 1.
gpmeSockInput Exit -- RC = 0.
gpmeDatastoreInput Entered.
 IMS Destination ID => IMSA .
 IMS Destination ID Len => 4.
gpmeDatastoreInput Exit -- RC = 0.
gpmeLTermInput Entered.
 IMS LTERM => .
 IMS LTERM Len => 8.
gpmeLTermInput Exit -- RC = 0.
gpmRACFGrpInput Entered.
 RACF Group Name => .
 RACF Group Name Len => 8.
gpmRACFGrpInput Exit -- RC = 0.
GPMEDETAILS Exit -- RC = 0.
gpmlOci Entered.
gpmlOciLgon Entered.
 OCIInitialize, rc = 0
 OCIEnvInit, rc = 0
 OCIHandleAlloc -- STMT rc = 0
 OCIHandleAlloc -- ERROR, rc = 0
 logon complete, rc = 0
gpmlOciLgon Exit -- RC = 0.
gpmlOciIns Entered.
 Host Name, or IP Address ==> 'MVS08.US.MYCOMP.COM', LEN = 19
 Port Number ==> '688', LEN = 3
 Conversational Protocol ==> ' ', LEN = 1
 IRM Timer ==> 'D', LEN = 1
 IRM Socket ==> 'T', LEN = 1
 Client ID ==> ' ', LEN = 8
 Commit Mode ==> '1', LEN = 1
 IMS Data Store ==> 'IMSA ', LEN = 8
 IMS LTERM ==> ' ', LEN = 8
 RACF Group Name ==> ' ', LEN = 8
SideProfile or TCP Unique Name ==> IMSPRF, LEN = 6
The insert statement is:
INSERT INTO PGA_TCP_IMSC(SideProfileName,
HostName, PortNumber,
ANDRS, TIMER,
SOCK, CLIENTID,
COMMITMODE, IMSDESTID,
LTERM, RACFGRPNAM) VALUES
('IMSPRF','MVS08.US.MYCOMP.COM','688',' ','D','T', '
','1','IMSA ',' ',' ')
 OCIStmtPrepare, rc = 0
 OCIStmtExecute, rc = 0
gpmlOciIns Exit -- RC = 0.
gpmlOciLgof Entered.
 logoff, rc = 0
 OCIHandleFree -- STMT, rc = 0

Sample Gateway Server Initialization and Trace Output Files

Problem Determination 8-23

 OCIHandleFree -- Error, rc = 0
gpmlOciLgof Exit -- RC = 0.
gpmlOci Exit -- RC = 0.
gpmePrintData Entered.
 Requested to INSERT a row.
 Side Profile name is IMSPRF.
 remote host name is MVS08.US.MYCOMP.COM.
 IMS Connect port number is 688.
 LU name is .
 LogMode name is .
 TP name is .
 conversational protocol is .
 Timer is D.
 socket connection type is T.
 client ID is .
 commit mode is 1.
 Datastore name (IMS destination ID) is IMSA .
 IMS LTERM override is .
 RACF group name is .
gpmePrintData Exit -- RC = 0.
Main Exit -- RC = 0.

Sample Gateway Server Initialization and Trace Output Files

8-24 Oracle Procedural Gateway for APPC User’s Guide

Procedural Gateway for APPC Data Dictionary A-1

A
Procedural Gateway for APPC Data

Dictionary

This appendix contains the following sections:

■ "PG DD Environment Dictionary" on page A-1

■ "PG DD Active Dictionary" on page A-5

The Procedural Gateway Data Dictionary (PG DD) is maintained in a conventional
Oracle database. It is installed by a SQL*Plus installation script (pgddcr8.sql in the
$ORACLE_HOME/pg4appc/admin directory on the gateway system) and
manipulated by PGAU statements and standard SQL statements.

The dictionary is divided into two sections:

■ the environment dictionary

■ the active dictionary

The environment dictionary is static and should not be changed. The contents of the
environment dictionary support proper translation from the remote transaction’s
environment to the integrating Oracle Integrating Server’s environment, and is
platform-specific. The active dictionary is updated at the user’s location by the PGAU
in response to definitions supplied by the user.

A.1 PG DD Environment Dictionary
The PGAU uses some dictionary tables strictly as input. These dictionary tables define
environmental parameters for PGAU. Both table and values are installed by a
SQL*Plus script at gateway installation time and are not to be modified by the
installation.

The environment dictionary does not reference the active dictionary, but the active
dictionary does reference environment dictionary entries.

A.1.1 Environment Dictionary Sequence Numbers
The environment dictionary requires unique identifying numbers in some columns to
join environment dictionary entries together. Oracle sequence objects are therefore
created by the Oracle Procedural Gateway for APPC to support this requirement.

Table A–1 presents the Oracle sequence objects and their descriptions.

PG DD Environment Dictionary

A-2 Oracle Procedural Gateway for APPC User’s Guide

A.1.2 Environment Dictionary Tables
The environment dictionary tables contain constants that describe the following
components of the operating environment:

■ pga_maint

■ pga_environments

■ pga_env_attr

■ pga_env_values

■ pga_compilers

■ pga_datatypes

■ pga_datatype_attr

■ pga_datatype_values

■ pga_usage

■ pga_modes

A.1.2.1 pga_maint
The pga_maint table stores the PG DD maintenance information, including version
number and change history, as presented in Table A–2:

A.1.2.2 pga_environments
The pga_environments table stores the defined environment keywords, as presented
in Table A–3:

Table A–1 Oracle Sequence Objects

Oracle Sequence Objects Descriptions

pga.envrseq Environment id tag

pga.compseq Compiler id tag

pga.eattrseq Environment Attribute id tag

pga.dtypeseq Datatype id tag

pga.dtattseq Datatype Attribute id tag

Table A–2 pga_maint

Column Type Contents

version number(10,4) PG DD version in format VVRRFF.rrff, where:

VV - base version;

RR - base release;

FF - base fix;

rr - port-specific release;

ff - port-specific fix.

mntdate date Oracle date and time at which the PG DD was
upgraded.

change varchar2(256) Description of the PG DD upgrade.

PG DD Environment Dictionary

Procedural Gateway for APPC Data Dictionary A-3

A.1.2.3 pga_env_attr
The pga_env_attr table stores the types of environmental attributes, as presented in
Table A–4:

A.1.2.4 pga_env_values
The pga_env_values table stores the values for environments, as presented in
Table A–5:

A.1.2.5 pga_compilers
The pga_compilers table stores the compiler environment names, as presented in
Table A–6:

Table A–3 pga_environments

Column Type Content

name varchar2(16) not null Environment.

Primary key.

env# number (9, 0) not null Env id.

Foreign key.

Table A–4 pga_env_attr

Column Type Content

name varchar2 (16) not null Attribute.

Primary key.

attr# number (9, 0) not null Attribute id.

Foreign key.

coltype varchar2 (4) not null Attr value type.

Foreign key.

Table A–5 pga_env_values

Column Type Content

env# number (9, 0) not null Env id.

Primary key.

attr# number (9, 0) not null Attribute id.

Primary key.

numval number (9, 0) Numeric attribute value.

charval varchar2 (64) Character attribute value.

dateval date Date attribute value.

Table A–6 pga_compilers

Column Type Content

name varchar2 (16) not null Compiler name.

Primary key.

plscomp varchar2 (30) PLS compiler name.

Secondary key.

PG DD Environment Dictionary

A-4 Oracle Procedural Gateway for APPC User’s Guide

A.1.2.6 pga_datatypes
The pga_datatypes table stores the datatype keywords, as presented in Table A–7:

A.1.2.7 pga_datatype_attr
The pga_datatype_attr table stores datatype attribute keywords, as presented in
Table A–8:

A.1.2.8 pga_datatype_values
The pga_datatype_values table stores the datatype attribute values, as presented in
Table A–9:

env# number (9, 0) not null Env id.

Foreign key.

comp# number (9, 0) not null Compiler env id.

Foreign key.

ddl_process number (9, 0) not null PGADDL processor number.

Table A–7 pga_datatypes

Column Type Content

comp# number (9, 0) not null Compiler env id.

Primary key.

name varchar2 (16) not null Datatype keyword.

Primary key.

dt# number (9, 0) not null Datatype_values.

Foreign key.

Table A–8 pga_datatype_attr

Column Type Content

name varchar2 (16) not null Attribute keyword.

Primary key.

attr# number (9, 0) not null Attribute id.

Foreign key.

coltype varchar2 (4) not null Type of attr.

Foreign key.

Table A–9 pga_datatype_values

Column Type Content

comp# number (9, 0) not null Compiler env id.

Primary key.

dt# number (9, 0) not null datatype_values.

Foreign key.

Table A–6 (Cont.) pga_compilers

Column Type Content

PG DD Active Dictionary

Procedural Gateway for APPC Data Dictionary A-5

A.1.2.9 pga_usage
The pga_usage table performs a referential integrity check of pga_data and pga_field
column "usage" as presented in Table A–10:

A.1.2.10 pga_modes
The pga_modes table performs a referential integrity check of pga_call_parm column
"mode", as presented in Table A–11:

A.2 PG DD Active Dictionary
The PG DD active data dictionary is created by pgddcr8.sql at installation, but
maintained using PGAU. The active dictionary can refer to items (by ID number) in
the environment dictionary.

A.2.1 Active Dictionary Versioning
The PG DD active dictionary tables contain the descriptions of transactions and data
structures. There might be more than one version of a definition. Old versions are
retained indefinitely.

attr# number (9, 0) not null Attribute id.

Foreign key.

dag# number (9, 0) Datatype attr group no.

numval number (9, 0) Numeric attribute value.

charval varchar2 (40) Character attribute value.

dateval date Date attribute value.

Table A–10 pga_usage

Column Type Content

name varchar2(6) Value for the "usage" field of data dictionary tables. For
example:

’PASS’

’SKIP

’NULL’

’ASIS’

Primary key.

Max length => 4-char string length.

Table A–11 pga_modes

Column Type Content

name varchar2(6) Name of valid parameter call modes. For example:

"IN"

"OUT"

"IN OUT"

Max length => ’IN OUT’ string length.

Table A–9 (Cont.) pga_datatype_values

Column Type Content

PG DD Active Dictionary

A-6 Oracle Procedural Gateway for APPC User’s Guide

In PGAU dictionary operations, a definition is referred to by its "name", which can be
qualified by a specific version number. If omitted, the most recent version is assumed.

A.2.2 Active Dictionary Sequence Numbers
Because the active dictionary is constantly changing, the identifying numbers needed
to join active dictionary entries together must also change. To support this
requirement, PG DD installation creates the following Oracle sequence objects.

Table A–12 lists the Oracle sequence objects and their descriptions:

A.2.3 Active Dictionary Tables
Following is a list of active dictionary tables:

■ pga_trans

■ pga_trans_attr

■ pga_trans_values

■ pga_trans_calls

■ pga_call

■ pga_data

■ pga_fields

■ pga_data_attr

■ pga_data_values

A.2.3.1 pga_trans
One row exists in the pga_trans table for each user transaction. The row is created by a
PGAU DEFINE TRANSACTION statement and used by a PGAU GENERATE
statement to create the PL/SQL package (TIP).

Table A–13 presents the column, type and content information for pga_trans:

Table A–12 Active Dictionary Oracle Sequence Object Descriptions

Oracle Sequence Objects Description

pga.transeq Transaction id tag

pga.tranvers Transaction Version id tag

pga.tattrseq Transaction Attribute id tag

pga.callseq APPC-Call id tag

pga.callvers Call Version id tag

pga.parmseq APPC-Call Parameter id tag

pga.dataseq Data id tag

pga.fieldseq Data subfield id tag

pga.datavers Data Version id tag

pga.dattrseq Data Attribute id tag

PG DD Active Dictionary

Procedural Gateway for APPC Data Dictionary A-7

A.2.3.2 pga_trans_attr
The pga_trans_attr table relates a character string defining the transaction attributes
supported by PGA to pga_trans_values entries through an attribute id number and
type.

The pga_trans_attr table is also used for integrity checks of transaction attributes when
new transactions are being defined.

There is an entry in the pga_trans_attr table for each transaction attribute name. All
possible transaction attribute names supported by PGA on any defined transaction are
specified. There is one row for each attribute, and no duplicates are allowed.

Table A–14 presents the column, type and content information for pga_trans_attr:

Table A–13 pga_trans

Column Type Content

tname varchar2(64) Transaction name as defined by the customer.

Primary key.

Max length => APPC TPname string length.

version number(9,0) Version identification of this entry; it exists in the table
because multiple archived or invalid entries might exist
and be kept for possible future reactivation.

Primary key.

Set from an Oracle sequence object for transaction version
inserted into the PG DD.

updtdate date Audit-trail date/time record last updated.

updtuser varchar2(30) Audit-trail user ID/program which last updated this
record.

trans# number(9,0) PGA Transaction number, used for the define call, define
data and define transaction statements.

Foreign key.

pga_trans_values(trans#), pga_trans_calls(trans#).

Set from an Oracle sequence object for transaction
inserted into the PG DD.

Table A–14 pga_trans_attr

Column Type Content

name varchar2(16) Character string name of attribute.

Primary key.

Contains:

"ENVIRONMENT",

"LUNAME",

"TPNAME",

"LOGMODE",

"SIDEPROFILE",

"SYNCLEVEL",

"NLS_LANGUAGE",

"REMOTE_MBCS"

"LOCAL_MBCS"

PG DD Active Dictionary

A-8 Oracle Procedural Gateway for APPC User’s Guide

A.2.3.3 pga_trans_values
The pga_trans_values table describes the values of transaction attributes.

A row exists to specify the value of each attribute of each transaction defined in the
data dictionary.

The column, type and content information for pga_trans_values is presented in
Table A–15:

A.2.3.4 pga_trans_calls
The pga_trans_calls table relates all calls available with any single transaction to each
specific call definition through a call ID number.

An entry exists in the pga_trans_calls table for each PL/SQL call referenced in a
transaction definition through the CALL(cname,...) operand. One row per transaction
call; no duplicates.

attr# number(9,0) Attribute id assigned.

Foreign key.

pga_data_values(attr#).

Set from an Oracle sequence object for each supported
transaction attribute inserted into the PG DD.

coltype varchar2(4) Type of Oracle column from which attribute value is
retrieved from pga_tran_values. For example:

’NUM ’ => pga_tran_values(numval)

’CHAR’ => pga_tran_values(charval)

’DATE’ => pga_tran_values(dateval)

required char(1) If not null, required keyword for DEFINE
TRANSACTION; if null, optional.

Table A–15 pga_trans_values

Column Type Content

trans# number(9,0) Transaction id from pga_trans(trans#).

Primary key.

Set from an Oracle sequence object for transaction inserted
into the PG DD.

attr# number(9,0) Attribute id from pga_trans_attr(attr#),

Primary key.

Set from an Oracle sequence object for each supported
transaction attribute inserted into the PG DD.

numval number(9,0) Attribute’s numeric value, for example for a given
transaction’s SYNCLEVEL attribute 0.

charval varchar2(64) Attribute’s character value; for example, a given
transaction’s TPNAME attribute.

dateval date Attribute’s date value. Probably always null; included for
completeness.

Table A–14 (Cont.) pga_trans_attr

Column Type Content

PG DD Active Dictionary

Procedural Gateway for APPC Data Dictionary A-9

The column, type and content information for pga_trans_calls is presented in
Table A–16:

A.2.3.5 pga_call
The pga_call table relates all calls that are available for all defined transactions, to a
unique call id number and PL/SQL remote procedural call (RPC) name. One entry
exists in this table for each PL/SQL call (defined in a DEFINE CALL statement).

One row per call, duplicates are possible when multiple transactions make identical
calls. The plsrpc specification must be unique within the Oracle server which makes
the calls, and rows are uniquely distinguished by call#.

The column, type and content information for pga_call are presented in Table A–17:

Table A–16 pga_trans_calls

Column Type Content

trans# number(9,0) Transaction id number from pga_trans(trans#).

Primary key.

Set from an Oracle sequence object for transaction
inserted into the PG DD.

seq# number(9,0) Sequence number of this call.

Primary key.

call# number(9,0) Call id number in pga_call(call#).

Foreign key.

Copied from pga_call.call# for the referenced call when
this transaction definition was inserted or updated.

Table A–17 pga_call

Column Type Content

cname varchar2(48) Call name for PGAU reference;

Primary key.

Max length => COBOL name string length

plsrpc varchar2(30) RPC call name for reference in PL/SQL (public procedure to
be generated).

Max length => PL/SQL RPC name length

updtdate date Audit trail date/time of record’s last update.

updtuser varchar2(30) Audit trail user id/program which last updated this record.

version number(9,0) Version identification of this entry, because multiple
archived or invalid entries might exist and be kept for
possible future reactivation.

Primary key.

Set from an Oracle sequence object for call version inserted
into PG DD.

call# number(9,0) Call id number.

Foreign key.

pga_trans_calls(call#), pga_call_parm(call#).

Set from an Oracle sequence object for each call inserted into
the PG DD.

PG DD Active Dictionary

A-10 Oracle Procedural Gateway for APPC User’s Guide

A.2.3.6 pga_call_parm
The pga_call_parm table relates all parameters of any single transaction call to the data
definitions describing each parameter.

One entry exists in the pga_call_parm table for each parameter on a call in the
PARMS() operand of the PGAU DEFINE CALL statement. One row per parameter,
duplicates allowed when multiple calls (in the pga_call table) refer to the same
parameters.

Table A–18 presents the column, type and content information for pga_call_parm:

A.2.3.7 pga_data
The pga_data table defines each data item used as a parameter in a call and relates the
remote host data name to its PL/SQL variables and any component subfields or
clauses within each data item (if the data item is an aggregate, such as a record). Each
data item might have attributes related to it through its corresponding field definition.
Even atomic data items have a single row in the pga_field table.

One row exists in the pga_data table for each data item defined by a PGAU DEFINE
DATA or REDEFINE DATA statement.

Table A–19 presents the column, type and content information for pga_data:

Table A–18 pga_call_parm

Column Type Content

call# number(9,0) Call number for the referencing call from pga_calls.

Primary key.

Set from an Oracle sequence object for each call inserted
into the PG DD.

parm# number(9,0) Position in the PARMS() argument of DEFINE CALL
operation (1,2,3...).

Primary key.

cmode varchar2(6) Call mode of this parameter; one of the values in pga_
data_modes. For example:

’IN’, ’OUT’, ’IN OUT’

Max length => ’IN OUT’ string length

data# number(9,0) Data definition # in pga_data(data#) of this item.

Foreign key.

pga_data(data#),pga_data_values(data#).

Copied from pga_data.data# for the data item when this
call/parm definition was inserted or updated.

Table A–19 pga_data

Column Type Content

comp# number(9,0) Compiler id number.;

Foreign key.

(pga_compiler(comp#).

Set from pga_compiler(comp#) based on the language
parameter specified on the DEFINE DATA statement
when the data definition is inserted.

PG DD Active Dictionary

Procedural Gateway for APPC Data Dictionary A-11

A.2.3.8 pga_fields
The pga_fields table defines each field within a data item and relates the remote host
data field to its PL/SQL variables or nested records. Each field item might have
attributes related to it (by field#) in the pga_data_attr and pga_data_values tables.

One row exists in the pga_fields table for each atomic item, field, clause, or nested
record defined by a PGAU DEFINE DATA statement. Several rows would exist
(related by a single data# and incrementing fld#) to define an aggregate data item, one
row per field or group.

Table A–20 presents the column, type and content information for pga_fields:

compopts varchar2(100) Compiler options from the COMPOPTS keyword on the
DEFINE DATA statement.

dname varchar2(255) Name from the DEFINE statement;

Primary key.

Max length => COBOL name length

plsdvar varchar(30) PL/SQL variable name of data item for reference in
PL/SQL.

Max length => PL/SQL variable length

version number(9,0) Version number of this entry. Set from an Oracle sequence
object for data version inserted into the PGADD.

updtdate date Audit-trail date/time this control record last updated.

updtuser varchar2(30) Audit-trail user id/program which last updated this
record.

usage varchar2(6) Default usage of this data item: PASS, SKIP, NULL, ASIS.

Used primarily by PGAU REPORT.

Max length => 4-char string length

data# number(9,0) Data definition number.

Foreign key.

(pga_call_parm(data#), (pga_field(data#)

Set from an Oracle sequence object.

Table A–20 pga_fields

Column Type Content

data# number(9,0) Data definition number.

Primary key.

(pga_data(data#), pga_call_parm(data#).

Set from an Oracle sequence object.

fname varchar2(255) Extracted or derived name of a field if dname defines
aggregate data.

Max length => COBOL name length

plsfvar varchar2(30) PL/SQL variable name of subfield in aggregate data
for reference in PL/SQL. Max length => PL/SQL
variable length

updtdate date Audit-trail date/time this control record last updated.

Table A–19 (Cont.) pga_data

Column Type Content

PG DD Active Dictionary

A-12 Oracle Procedural Gateway for APPC User’s Guide

A.2.3.9 pga_data_attr
The pga_data_attr table defines all possible data attribute names allowed by PGA and
relates each attribute name to a number and type, by which the value of this attribute
for a specific data item can be selected from pga_data_values.

The pga_data_attr table is also used for integrity checks of data attributes when new
data items are defined.

There is one entry in the pga_data_attr table for every possible attribute name to
which any PGA supported data item might relate.

Table A–21 presents the column, type and content information for pga_data_attr:

updtuser varchar2(30) Audit-trail user id/program which last updated this
record.

fld# number(9,0) Clause or field within data definition id no.

Foreign key.

pga_data_values(fld#).

Set from an Oracle sequence object.

pos# number(9,0) Relative position number of each field defined within
an aggregate data item (for example, 1, 2 3, and so on)
or NULL if data is atomic.

usage varchar2(6) Usage of this data field:

’PASS’, ’SKIP’, ’NULL’, ’ASIS’.

Max length => 4-char string length

mask varchar2(30) Datatype or Mask value. For example:

’S9(4)’

’X(24)’

’VARCHAR2(24)’

’BINARY_INTEGER(16)’

NULL

When NULL, item defined is assumed to be a COBOL
group or PL/SQL nested record.

Max length => arbitrarily chosen

maskopts varchar2(100) Datatype or Mask options value. For example:

’USAGE COMP-4’

’DISPLAY’

NULL

Max length => arbitrarily chosen

Table A–20 (Cont.) pga_fields

Column Type Content

PG DD Active Dictionary

Procedural Gateway for APPC Data Dictionary A-13

A.2.3.10 pga_data_values
A row exists in the pga_data_values table for each attribute of each data item defined
by each data definition.

Table A–22 presents the column, type and content information for pga_data_values:

Table A–21 pga_data_attr

Column Type Content

name varchar2(16) Character string name of attribute.

Primary key.

Contains:

"LEVEL"
"RENAMEMF" (renames member first)
"RENAMEML" (renames member last)
"REMAPSMF" (redefines member first)
"REMAPSML" (redefines member last)
"REMAPSWM" (redefines when member)
"REMAPSWC" (redefines when char value)
"REMAPSWN" (redefines when num value)
"REPGRPFF" (occurs n)
"REPGRPVF" (odo first n)
"REPGRPVL" (odo last n)
"REPGRPVM" (odo depending member)
"REPGRPKA" (either Key Asc name)
"REPGRPKD" (either Key Desc name)
"REPGRPIX" (either index name)
"PLSTYPE"
"JUST" (justified char data)
"SYNC" (aligned aggregate data)
"LOCAL_LANGUAGE"
"REMOTE_LANGUAGE"
"LENGTH" (LENGTH IS variable)

Max length => attr name string lengths

attr# number(9,0) Attribute id assigned.

Foreign key.

pga_data_values(attr#). Set from an Oracle sequence
object for each supported data attribute inserted into the
PG DD.

coltype varchar2(4) Type of Oracle column from which attribute value is
retrieved from pga_data_values. For example:

’NUM ’ => pga_data_values(numval)

’CHAR’=> pga_data_values(charval)

’DATE’ => pga_data_values(dateval)

required char(1) If not null, required keyword.

Table A–22 pga_data_values

Column Type Content

fld# number(9,0) Data Field Definition number from pga_data(fld#). Primary
key.

PG DD Active Dictionary

A-14 Oracle Procedural Gateway for APPC User’s Guide

attr# number(9,0) Attribute id from pga_data_attr(attr#).

Primary key.

numval number(9,0) Attribute’s numeric value. For example:

number for "LEVEL"
number for "REMAPSWN" (redefines)
number for "REPGRPFF" (occurs n)
number for "REPGRPVF" (odo first n)
number for "REPGRPVL" (odo last n)

If a non-numeric attribute, this item is NULL.

charval varchar2(40) Attribute’s character value.

fname for "RENAMEMF (renames first)
fname for "RENAMEML" (renames last)
fname for "REMAPSMF" (redefines first)
fname for "REMAPSML" (redefines last)
fname for "REMAPSWM" (redefines when)
fname for "REPGRPVM" (odo member)
string for "REMAPSWC" (redefines)
string for "REPGRPKA" (occurs key)
string for "REPGRPKD" (occurs key)
string for "REPGRPIX" (occurs index)
string for "PLSTYPE" (PL/SQL data type)
string for "JUST"
string for "SYNC"
string for "REMOTE_LANGUAGE"
fname for "LENGTH"

If a non-character attribute, this item is NULL.

Max length => NLS_charset string length

dateval date Attribute’s date value. Always null, included for completeness.

qual number (9,0) Qualified name number.

Foreign key.

Table A–22 (Cont.) pga_data_values

Column Type Content

Gateway RPC Interface B-1

B
Gateway RPC Interface

To execute a remote transaction program using the Oracle Procedural Gateway for
APPC you must execute a PL/SQL program to call the gateway functions, using a
remote procedural call (RPC). The gateway functions handle the initiation, data
exchange and termination for the gateway conversation with the remote transaction
program.

The Oracle Procedural Gateway for APPC includes a tool, PGAU, to generate the
PL/SQL packages (TIPs) automatically, based on definitions you provide in the form
of COBOL record layouts and PGDL (Procedural Gateway Definition Language).

This appendix contains the following section:

■ "Calling Gateway Functions to Execute Transaction Programs" on page B-1

B.1 Calling Gateway Functions to Execute Transaction Programs
The gateway functions are all executed through remote procedural calls (RPC). The
functions are called from PL/SQL code as follows:

function@dblink(parm1,parm2,...,parmn);

Where Table B–1 describes the parameters in this syntax:

Calling a function in PL/SQL code with the @dblink notation following the function
name is a remote procedural call.

B.1.1 PGAINIT and PGAINIT_SEC
PGAINIT and PGAINIT_SEC are remote procedural calls that initiate an APPC
conversation with a specified transaction program. The difference between the two is
that PGAINIT_SEC includes the added capability of being able to set the gateway
conversation security user ID and password to values other than the current Oracle

Table B–1 Gateway Functions

Item Description

function is the name of the function being called.

dblink is the name of a predefined database link to the gateway server
on the UNIX system.

parm1, parm2,parmn are the function-specific parameters described later in this
appendix.

Calling Gateway Functions to Execute Transaction Programs

B-2 Oracle Procedural Gateway for APPC User’s Guide

user ID and password. Upon successful completion of either function, the
conversation is ready to send data to the remote transaction program.

Table B–2 presents the PGAINIT and PGAINIT_SEC parameters that are common in
both procedures. It lists the type, datatype and description of each parameter:

Table B–2 Common PGAINIT and PGAINIT_SEC Parameters

Parameters Type Datatypes Descriptions

CONVID OUT RAW(12) For a gateway using SNA: Conversation identifier
returned by the PGAINIT function to be used to
identify the conversation to the PGAXFER and
PGATERM functions. After PGAINIT is called,
this variable must never be modified, or results
will be unpredictable.

For a gateway using TCP/IP: Socket file descriptor
returned by the PGAINIT function to be used to
identify the conversation to the PGAXFER and
PGATERM functions. After PGAINIT is called,
this variable must never be modified, or results
will be unpredictable.

TPNAME IN VARCHAR2(64) Transaction program name of the remote
transaction program with which a conversation is
to be established. For most OLTPs, the name must
be the transaction name as defined to the OLTP.
This name can be from 1 to 64 characters in length.

Note: For TCP/IP support, the maximum size is 8
characters. For more information, refer to
Chapter 12 of the Oracle Procedural Gateway for
APPC Installation and Configuration Guide.

LUNAME IN VARCHAR2(17) For a gateway using SNA: the LU name of the
OLTP under which the remote transaction
program executes. This parameter is the
fully-qualified LU name or alias and can be from 1
to 17 characters in length.

For a gateway using TCP/IP: this parameter is not
applicable.

MODENAME IN VARCHAR2(8) For a gateway using SNA: Logmode entry name
of the logmode table entry on the remote host,
which defines the session characteristics for the
APPC conversation. This name can be from 1 to 8
characters in length.

For a gateway using TCP/IP: this parameter is not
applicable.

PROFNAME IN VARCHAR2(8) Profile name of the SNA Side Information profile
which defines the conversation. This name can be
from 1 to 8 characters in length.

For a gateway using TCP/IP: this name represents
a group of IMS transactions similar of similar
TCP/IP and IMS Connect attributes.

Calling Gateway Functions to Execute Transaction Programs

Gateway RPC Interface B-3

Table B–3 lists the PGAINIT_SEC parameters which are specific to the procedure:

For Gateways Using the SNA Protocol:
There is an interrelationship between PROFNAME and
LUNAME/TPNAME/MODENAME. If PROFNAME is set to blanks or a null value,
the LUNAME, TPNAME, and MODENAME parameters are all required to be
non-blank values. If they are not all set to non-blank values, an exception is generated.
However, if PROFNAME is set to a valid Side Information Profile name, the
LUNAME, TPNAME, and MODENAME parameters can be null or blank, because the
Side Information profile specifies all the information necessary to establish the
conversation. In this case, any non-blank, non-null values specified for LUNAME,
TPNAME, or MODENAME override values set in the Side Information
profile.PROFNAME must be set and cannot be blank or null.

For Gateways Using the TCP/IP protocol:
PROFNAME and TPNAME must be set and cannot be blank or null.

B.1.2 PGAXFER
PGAXFER is called to transfer data to and from a remote transaction program on the
gateway conversation initialized by PGAINIT. The function sends and receives data
items based on the calling parameters.

Table B–4 lists the types, datatypes and descriptions of PGAXFER parameters:

SYNCLEVEL IN CHAR(1) Sync level for this conversation. This value must
be either ’0’ or ’1’.

Sync level 0 indicates that the remote transaction
program has no synchronization capabilities.

Sync level 1 indicates that the remote transaction
program is capable of responding to CONFIRM
requests and is used to ensure data integrity when
the remote transaction program is making updates
to a database on the remote host.

Table B–3 PGAINIT_SEC Parameters Specific to the Procedure

Parameter Type Datatype Description

USERID IN VARCHAR2(8) Conversation security user ID to be
passed to the target OLTP. The value
must be from 1 to 8 characters in
length.

PASSWORD IN VARCHAR2(8) Conversation security password to be
passed to the target OLTP. The value
must be from 1 to 8 characters in
length.

Table B–2 (Cont.) Common PGAINIT and PGAINIT_SEC Parameters

Parameters Type Datatypes Descriptions

Calling Gateway Functions to Execute Transaction Programs

B-4 Oracle Procedural Gateway for APPC User’s Guide

When PGAXFER is called, either or both of SENDBUFL and RECVBUFL must be
nonzero; in other words, at least one data item must be sent to or received from the

Table B–4 PGAXFER Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation
identifier returned by the PGAINIT function to
be used to identify the conversation.

For a gateway using TCP/IP: Socket file
descriptor returned by the PGAINIT function
to be used to identify the conversation.

SENDBUF IN RAW(32763) Buffer containing all the data items to be sent
to the remote transaction program. The data
items are sent as is, with no changes. Data
items must appear in the buffer in the exact
order in which the remote transaction program
expects to receive them. The total size of all the
data items cannot exceed the maximum size
for a single gateway send, which is 32,763
bytes for a mapped gateway conversation.

SENDBUFL IN BINARY_INTEGER Total length of the data items contained in
SENDBUF. The range is 0-32,763 bytes. A
value of ’0’ is used when there are no data
items to send.

SENDLNS IN RAW(1024) Buffer containing an array of up to 256 4-byte
integer values. The first integer value specifies
the number of data items contained in the send
buffer (SENDBUF). Following that data item
count is a series of integer values specifying
the lengths of the data items. There must be an
exact match between the data item count and
the number of data item length values. Up to
255 data items can be described by this array.
The sum of all the data item lengths cannot
exceed the total length in SENDBUFL.

RECVBUF OUT RAW(32763) Buffer to contain all the data items received
from the remote transaction program. The data
items are stored in this buffer in the exact
order in which the remote transaction program
sends them. The total size of all the data items
cannot exceed the maximum size of 32,763
bytes.

RECVBUFL IN BINARY_INTEGER Total length of the receive buffer. The range is
0-32,763 bytes. A value of ’0’ is used when
there are no data items to receive.

RECVLNS INOUT RAW(1024) Buffer containing an array of up to 256 4-byte
integer values. The first integer value specifies
the number of data items to be received into
the receive buffer (RECVBUF). Following the
data item count is a series of integer values
specifying the maximum lengths of the data
items to be received. On output, these values
are replaced with the actual lengths of the data
items received. There must be an exact match
between the data item count and the number
of data item length values. Up to 255 data
items can be described by this array. The sum
of all the data item lengths cannot exceed the
total length of the receive buffer (RECVBUFL).

Calling Gateway Functions to Execute Transaction Programs

Gateway RPC Interface B-5

remote transaction program. If PGAXFER is called with no data items to send or
receive, it generates an exception.

B.1.3 PGATERM
PGATERM is called to terminate an the gateway conversation that was initiated by a
previous call to PGAINIT. Upon successful completion of this function, the
conversation is deallocated and all storage associated with it is freed.

Table B–5 presents the types, datatypes and descriptions of PGATERM parameters:

B.1.4 PGATCTL
PGATCTL is called by the TRACE_LEVEL parameter at
$ORACLE_HOME/pg4appc/admin/initsid.ora file. Using PGATCTL, the trace
level can be changed dynamically from within a PL/SQL stored procedure. This
facility is useful when debugging a new PL/SQL application.

Table B–6 presents the types, datatypes and descriptions of parameters in PGATCTL:

Note: On each PGAXFER call, all send processing occurs first,
followed by all receive processing. If a transaction operates in a
manner that requires multiple sets of send and receives, then
PGAXFER can be called more than once to accommodate the
transaction. If more than 32,763 bytes of data are to be sent or
received, multiple calls to PGAXFER must be made.

Table B–5 PGATERM Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation identifier
returned by the PGAINIT function to be used to
identify the conversation.

For a gateway using TCP/IP: Socket file descriptor
returned by the PGAINIT function to be used to
identify the conversation.

TERMTYPE IN CHAR(1) Type of termination to be performed.’0’ indicates
normal completion and ’1’ indicates abnormal
termination, which is only requested if there is an
error.

Table B–6 PGATCTL Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation identifier
returned by the PGAINIT function to be used to identify
the conversation.

For a gateway using TCP/IP: Socket file descriptor
returned by the PGAINIT function to be used to identify
the conversation.

Calling Gateway Functions to Execute Transaction Programs

B-6 Oracle Procedural Gateway for APPC User’s Guide

B.1.5 PGATRAC
This function is called to write a line of user data into the PGA trace file. Using
PGATRAC, the flow within a PL/SQL procedure can be traced, along with the events
traced, based on the TRACE_LEVEL at
$ORACLE_HOME/pg4appc/admin/initsid.ora. This is a useful debugging tool
when developing a new PL/SQL application.

Table B–7 presents the type, datatype and description of the PGATRAC parameter:

TRFUNC IN CHAR(1) Trace control function to be performed. The valid values
are:

’S’ - set trace flags to the exact value specified by the
TRFLAGS parameter.

’E’ - enable the trace flags specified by the TRFLAGS
parameter, without changing any other flags.

’D’ - disable the trace flags specified by the TRFLAGS
parameter, without changing any other flags.

TRFLAGS IN BINARY_
INTEGER

Trace flags.

Turn on TRACE_LEVEL. Refer to Appendix A "Gateway
Initialization Parameters for SNA Protocol" in the Oracle
Procedural Gateway for APPC Installation and Configuration
Guide for more information if your protocol is SNA.

Refer to Appendix B of the Oracle Procedural Gateway for
APPC Installation and Configuration Guide if your protocol
is TCP/IP.

Table B–7 PGATRAC Parameter

Parameter Type Datatype Description

TRDATA IN VARCHAR2(120) Line of user data to be written into the gateway trace
file. The contents must be printable characters.

Table B–6 (Cont.) PGATCTL Parameters

Parameter Type Datatype Description

The UTL_PG and UTL_RAW Interface C-1

C
The UTL_PG and UTL_RAW Interface

The Oracle Procedural Gateway for APPC requires the use of the RAW datatype to
transfer data to and from PL/SQL without any alteration by Oracle Net. This is
necessary because only the PL/SQL applications have information about the format of
the data being sent to and received from the remote transaction programs. Oracle Net
only has information about the systems where the PL/SQL application and the
gateway server are running. If Oracle Net is allowed to perform translation on the data
flowing between PL/SQL and the gateway, the data can end up in the wrong format.

This appendix contains the following sections:

■ "UTL_RAW Functions" on page C-1

■ "UTL_PG Functions" on page C-12

■ "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values" on page C-22

C.1 UTL_RAW Functions
The UTL_RAW package is an extension to PL/SQL that provides a full complement of
RAW data manipulation functions. Using these functions, data sent to remote
transaction programs can be converted into the correct format by the PL/SQL
application, and data received from remote transaction programs can be converted
back into Oracle formats.

All of the functions listed in this section are called in the standard PL/SQL manner,
which is package_name.function_name(arguments). In the case of the
UTL_RAW routines, this is UTL_RAW.function_name(arguments).

For each function listed in the following sections, the function name, arguments and
their datatypes, and the return value datatype are provided. Unless otherwise
specified, the parameters are IN, not OUT, parameters.

C.1.1 BIT_AND
BIT_AND performs a bitwise logical AND operation of the values in r1 and r2 and
returns the resulting value.

If r1 and r2 have different lengths, then the AND operation is terminated after the
last byte of the shorter of the two RAW values. The unprocessed portion of the longer
RAW value is appended to the partial result to produce the final result returned. The
result length equals the longer of the two input RAW values.

UTL_RAW Functions

C-2 Oracle Procedural Gateway for APPC User’s Guide

Syntax
function BIT_AND (r1 IN RAW, r2 IN RAW) RETURN RAW;

Where Table C–1 describes the parameters in this function:

Defaults
None.

Return Value
A RAW value which is the bitwise logical AND of r1 and r2. Or a null value if either
r1 or r2 is null.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.2 BIT_COMPLEMENT
BIT_COMPLEMENT performs a bitwise logical COMPLEMENT operation of the
value r and returns the resulting RAW value. The length of the result equals the
length of the input RAW value r.

Syntax
function BIT_COMPLEMENT (r IN RAW) RETURN RAW;

where:

"r" is the RAW value on which to perform the COMPLEMENT operation.

Defaults
None

Return Value
A RAW value which is the bitwise logical COMPLEMENT of r. Or a null value if the
input value r is null.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.3 BIT_OR
BIT_OR performs a bitwise logical OR operation of the values in r1 and r2 and
returns the resulting value.

If r1 and r2 have different lengths, then the OR operation is terminated after the last
byte of the shorter of the two RAW values. The unprocessed portion of the longer

Table C–1 BIT_AND Function Parameters

Parameter Description

r1 is a RAW value to be combined with r2.

r2 is a RAW value to be combined with r1.

UTL_RAW Functions

The UTL_PG and UTL_RAW Interface C-3

RAW value is appended to the partial result to produce the final result returned. The
resulting length equals the longer of the two input values, r1 and r2.

Syntax
function BIT_OR (r1 IN RAW, r2 IN RAW) RETURN RAW;

Where Table C–2 describes the parameters in the function:

Defaults
None

Return Value
A RAW value which is the bitwise logical OR of r1 and r2. Or a null value if both r1
and r2 is null.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.4 BIT_XOR
BIT_XOR performs a bitwise logical EXCLUSIVE OR operation of the values in r1 and
r2 and returns the resulting value.

If r1 and r2 have different lengths, then the EXCLUSIVE OR operation is terminated
after the last byte of the shorter of the two RAW values. The unprocessed portion of
the longer RAW value is appended to the partial result to produce the final result
returned. The result length equals the longer of the two input RAW values.

Syntax
function BIT_XOR (r1 IN RAW, r2 IN RAW) RETURN RAW

Where Table C–3 describes the parameters in this function:

Defaults
None

Return Value
A RAW value which is the bitwise logical XOR of r1 and r2. Or a null value if r1 and
r2 have identical values.

Table C–2 BIT_OR Function Parameters

Parameter Description

r1 is a RAW value to OR with r2.

r2 is a RAW value to OR with r1.

Table C–3 BIT_XOR Function Parameters

Parameter Description

r1 is the RAW value to XOR with r2.

r2 is the RAW value to XOR with r1.

UTL_RAW Functions

C-4 Oracle Procedural Gateway for APPC User’s Guide

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.5 CAST_TO_RAW
CAST_TO_RAW converts a VARCHAR2 c into a RAW with the same number of
bytes.

The input is treated as if it is composed of single 8-bit bytes, not characters. Multibyte
character boundaries are ignored. The data is not modified in any way, it is just
changed to a RAW datatype.

Syntax
function CAST_TO_RAW (c IN VARCHAR2) RETURN RAW;

where: "c" is a VARCHAR2 value to be changed to a RAW value.

Defaults
None

Return Value
A RAW value having the same data and byte length as the input VARCHAR2 value.
Or a null value if c is null.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.6 CAST_TO_VARCHAR2
CAST_TO_VARCHAR2 converts a RAW r into a VARCHAR2 with the same number
of data bytes.

The result is treated as if it is composed of single 8-bit bytes, not characters. Multibyte
character boundaries are ignored. The data is not modified in any way, it is just
changed to a VARCHAR2 datatype.

Syntax
function CAST_TO_VARCHAR2 (r IN RAW) RETURN VARCHAR2;

where:

"r" is a RAW value to be changed to a VARCHAR value.

Defaults
None

Return Value
A VARCHAR2 value having the same data as the RAW input value. Or a null value if
r is null.

UTL_RAW Functions

The UTL_PG and UTL_RAW Interface C-5

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.7 COMPARE
COMPARE compares RAW r1 with RAW r2.

If they are identical, COMPARE returns zero. Otherwise, COMPARE returns the
position of the first byte that does not match. If the input values are of different length,
the shorter RAW value is padded on the right with the byte specified by pad.

Syntax
function COMPARE (r1 IN RAW, r2 IN RAW,
 pad RAW DEFAULT NULL) RETURN NUMBER;

Where Table C–4 describes the parameters in this function:

Defaults
where "pad" is optional and defaults to x’00’.

Return Value
A value of 0 if the strings are null or identical. Or the position, numbered from 1, of
the first mismatched byte.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.8 CONCAT
CONCAT concatenates a set of up to 12 RAW values (r1 - r12) into a single RAW
and returns it.

Input RAW values are appended together in the resulting RAW, left to right, in the
order they appear in the parameter list. Input values need not be contiguous. Null
input RAW values are skipped and the concatenation continues with the next non-null
input RAW value. If the sum of the lengths of the input RAWs exceeds the maximum
allowable length for a RAW (32767), an error is returned.

Syntax
function CONCAT (r1 IN RAW DEFAULT NULL,

Table C–4 COMPARE Function Parameters

Parameter Description

r1 is the first RAW value to be compared. This may be null or have a
length of 0.

r2 is the second RAW value to be compared. This might be null or
have a length of 0.

pad is a 1 byte value used to pad the shorter RAW value.

UTL_RAW Functions

C-6 Oracle Procedural Gateway for APPC User’s Guide

 r2 RAW DEFAULT NULL,
 r3 RAW DEFAULT NULL,
 r4 RAW DEFAULT NULL,
 r5 RAW DEFAULT NULL,
 r6 RAW DEFAULT NULL,
 r7 RAW DEFAULT NULL,
 r8 RAW DEFAULT NULL,
 r9 RAW DEFAULT NULL,
 r10 RAW DEFAULT NULL,
 r11 RAW DEFAULT NULL,
 r12 RAW DEFAULT NULL) RETURN RAW;

where:

"r1 - r12" are the RAW items to be concatenated.

Defaults
None

Return Value
A RAW value with the concatenated items.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.9 CONVERT
CONVERT converts RAW r from character set from_charset to character
set to_charset and returns the resulting RAW value.

Both from_charset and to_charset must specify supported character sets defined
to the Oracle server.

Syntax
function CONVERT (r IN RAW,
 to_charset IN VARCHAR2,
 from_charset IN VARCHAR2) RETURN RAW;

Where Table C–5 describes the parameters in this function:

Defaults
None

Return Value
A RAW string of bytes converted according to the specified character set.

Table C–5 CONVERT Function Parameters

Parameter Description

r is the RAW byte-string to be converted.

to_charset is the NLS character set to convert r to.

from_charset is the NLS character set that r is currently using.

UTL_RAW Functions

The UTL_PG and UTL_RAW Interface C-7

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.10 COPIES
COPIES returns n copies of RAW r concatenated together.

Syntax
function COPIES (r IN RAW,
 n IN NUMBER) RETURN RAW;

Where Table C–6 describes the parameters in this function:

Defaults
None

Return Value
The RAW value copied n times.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.11 LENGTH
LENGTH returns the length in bytes of RAW r.

Syntax
function LENGTH (r IN RAW) RETURN NUMBER;

where:

"r" is the byte stream to be measured.

Defaults
None

Return Value
The current length of the RAW input value.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

Table C–6 COPIES Function Parameters

Parameter Description

r is the RAW value to be copied.

n is the number of times to copy the RAW value. This must be a
positive value.

UTL_RAW Functions

C-8 Oracle Procedural Gateway for APPC User’s Guide

C.1.12 OVERLAY
OVERLAY replaces the specified portion of RAW target with RAW overlay,
beginning at byte position pos of target, and proceeding for len bytes.

If overlay has fewer than len bytes, then overlay is padded to len bytes using the
byte specified by pad. If overlay has more than len bytes, then the extra bytes in
overlay are ignored. If len bytes beginning at position pos of target exceeds the
length of target, target is extended to contain the entire length of overlay. If
pos exceeds the length of target, target is padded with pad bytes to position pos
and then target is further extended with overlay bytes.

Syntax
function OVERLAY (overlay IN RAW,
 target IN RAW,
 pos IN BINARY_INTEGER DEFAULT 1,
 len IN BINARY_INTEGER DEFAULT NULL,
 pad IN RAW DEFAULT NULL) RETURN RAW;

Where Table C–7 describes the parameters in this function:

Defaults
Table C–8 describes the OVERLAY function defaults:

Return Value
The target byte-string overlayed as specified.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

Table C–7 OVERLAY Function Parameters

Parameter Description

overlay is a byte-string used to overlay the target. Bytes are always
selected from the overlay RAW beginning with the leftmost byte.

target is the byte-string to be overlayed.

pos is the position within the target RAW, numbered from 1, at which
to begin overlaying. This value must be greater than zero. This
parameter is optional.

len is the number of bytes to overlay. This must be greater than or
equal to zero. This parameter is optional.

pad is a single byte value used to pad when len exceeds overlay
length or pos exceeds target length. This parameter is optional.

Table C–8 OVERLAY Function Defaults

Parameters Description

pos defaults to 1.

len defaults to length of overlay.

pad defaults to x’00’.

UTL_RAW Functions

The UTL_PG and UTL_RAW Interface C-9

C.1.13 REVERSE
Reverse the byte sequence in RAW r from end-to-end. For example, x’0102F3’ would
be reversed into x’F30201’ and ’xyz’ would be reversed to ’zyx’. The result length is the
same as the input RAW length.

Syntax
function REVERSE (r IN RAW) RETURN RAW;

where "r" is the RAW value to reverse.

Defaults
None

Return Value
A RAW value containing the reverse of the input RAW value.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.14 SUBSTR
SUBSTR extracts a portion of RAW r, starting at byte position pos and including len
bytes.

If pos is positive, SUBSTR counts from the beginning of r to find the first byte. If pos
is negative, SUBSTR counts backward from the end of r. If len is not specified,
SUBSTR returns all bytes to the end of r.

Syntax
function SUBSTR (r IN RAW,
 pos IN BINARY_INTEGER,
 len BINARY_INTEGER DEFAULT NULL) RETURN RAW;

Where Table C–9 describes the parameters in this function:

Defaults
Defaults to the length of position pos to the end of r.

Return Value
The portion of r beginning at pos for len bytes. Or a null value if r is null.

Table C–9 SUBSTR Function Parameters

Parameters Description

r is the RAW byte-string from which a portion is to be extracted.

pos is the byte position from which to start extraction. This value
cannot be zero. If this value is negative, SUBSTR counts backward
from the end of r.

len is the number of bytes from pos to extract from r. This value
must be greater than zero. This parameter is optional.

UTL_RAW Functions

C-10 Oracle Procedural Gateway for APPC User’s Guide

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.15 TRANSLATE
TRANSLATE returns the RAW r after changing the bytes in from_set according to
bytes in to_set.

Successive bytes in r are looked up in from_set and if found, the byte at the same
offset in to_set is copied to the result or omitted from the result if the offset exceeds
the length of to_set. Bytes that appear in r but not in from_set are copied to the
result. Only the first (leftmost) occurrence of a byte in from_set is used and
subsequent duplicate occurrences are ignored.

If from_set contains more bytes than to_set, the extra bytes at the end of
from_set have no corresponding bytes in to_set. Any bytes in r matching such
uncorresponded from_set bytes are omitted from the resulting RAW value.

TRANSLATE differs from TRANSLITERATE in the following ways:

■ translation RAWs have no defaults

■ r bytes undefined in the to_set translation RAW are omitted

■ resulting RAW value can be shorter than the input RAW value

Syntax
function TRANSLATE (r IN RAW,
 from_set IN RAW,
 to_set IN RAW) RETURN RAW;

Table C–10 describes the parameters in this function:

Defaults
None

Return Value
A RAW translated byte-string.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.16 TRANSLITERATE
TRANSLITERATE returns the RAW r after replacing all occurrences of any bytes in
from_set with the corresponding bytes in to_set.

Table C–10 TRANSLATE Function Parameters

Parameter Description

r is the RAW source byte-string to be changed.

from_set is the RAW byte-codes to be matched, if present in r.

to_set is the RAW byte-codes to which corresponding
from_set bytes are changed.

UTL_RAW Functions

The UTL_PG and UTL_RAW Interface C-11

Successive bytes in r are looked up in from_set and, if not found, are copied
unaltered to the resulting RAW value. If found, they are replaced in the resulting
RAW value by either the byte at the same offset in to_set, or the pad byte when the
offset exceeds the to_set length. Bytes found in r but not found in from_set are
copied to the result. Only the first (leftmost) occurrence of a byte infrom_set is used;
subsequent duplicate occurrences are ignored. The result of TRANSLITERATE is
always the same length as RAW r.

If to_set is shorter than from_set, then the pad byte is placed in the resulting RAW
value when a selected from_set byte has no corresponding byte in to_set.

TRANSLITERATE differs from TRANSLATE in the following ways:

■ r bytes undefined in to_set are padded

■ the resulting RAW value is always the same length as the input RAW value

Syntax
function TRANSLITERATE (r IN RAW,
 to_set IN RAW DEFAULT NULL,
 from_set IN RAW DEFAULT NULL,
 pad IN RAW DEFAULT NULL) RETURN RAW;

Where Table C–11 describes the parameters in this function:

Defaults
Table C–12 describes the TRANSLITERATE function defaults:

Return Value
A RAW transliterated byte-string.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

Table C–11 TRANSLITERATE Syntax

Item Description

r is the RAW source byte-string to be changed.

to_set is the RAW byte-codes to which corresponding from_set bytes
are changed This value can be of any valid RAW length.

from_set is the RAW byte-codes to be matched, if present in r. This value
can be of any valid RAW length.

pad is a 1 byte value used when to_set is shorter than from_
set.

Table C–12 Transliterate Function Defaults

Parameter Description

to_set defaults to a null value, and effectively extended with pad to the
length of from_set as necessary.

from_set defaults to x’00 through x’ff’.

pad defaults to x’00’.

UTL_PG Functions

C-12 Oracle Procedural Gateway for APPC User’s Guide

C.1.17 XRANGE
XRANGE returns a RAW containing all valid 1-byte encodings in succession
beginning with the value start_byte and ending with the value end_byte.

If start_byte is greater than end_byte, the succession of result bytes begin with
start_byte, wrap from x’ff’ to x’00’, and end at end_byte.

If specified, start_byte and end_byte must be single-byte RAW values.

Syntax
function XRANGE (start_byte IN RAW DEFAULT NULL,
 end_byte IN RAW DEFAULT NULL) RETURN RAW;

Where Table C–13 describes the parameters in this function:

Defaults
Where Table C–14 describes the XRANGE function defaults:

Return Value
A RAW value containing a succession of 1-byte hexadecimal encodings.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.2 UTL_PG Functions
The UTL_PG package is an extension to PL/SQL that provides a full set of functions
for converting COBOL number formats into Oracle numbers and Oracle numbers into
COBOL number formats.

UTL_PG conversion format RAWs are not portable in this release. Additionally,
generation of conversion format RAWs on one system and transfer to another system
is not supported.

The functions listed in this section are called in the standard PL/SQL manner:

package_name.function_name(arguments)

Specifically for UTL_PG routines, this is:

UTL_PG.function_name(arguments)

Table C–13 XRANGE Function Parameters

Parameter Description

start_byte is the 1-byte beginning byte-code value of the resulting sequence.

end_byte is the 1-byte ending byte-code value of the resulting sequence.

Table C–14 XRANGE Function Defaults

Parameters Description

start_byte defaults to x’00’.

end_byte defaults to x’ff’.

UTL_PG Functions

The UTL_PG and UTL_RAW Interface C-13

For each function listed below, the function name, arguments and their datatypes, and
the return value datatype are provided. Unless otherwise specified, the parameters are
IN, not OUT, parameters.

C.2.1 Common Parameters
The following UTL_PG functions share several similar parameters among themselves:

■ RAW_TO_NUMBER

■ MAKE_NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

■ NUMBER_TO_RAW

These similar parameters are described in detail in Table C–15 and then referenced
only by name in subsequent tables listing the parameters for each UTL_PG function in
this Appendix.

C.2.1.1 Common Input Parameters
Table C–15 describes the input parameters that are common to all of the UTL_PG
functions:

Table C–15 Input Parameters Common to UTL_PG Function

Parameter Description

mask is the compiler datatype mask. This is the datatype to be
converted, specified in the source language of the named compiler
(compname). This implies the internal format of the data as
encoded according to the compiler and host platform.

maskopts is the compiler datatype mask options or NULL. These are
additional options associated with the mask, as allowed or
required, and are specified in the source language of compname.
These can further qualify the type of conversion as necessary.

envrnmnt is the compiler environment clause or NULL. These are additional
options associated with the environment in which the remote data
resides, as allowed or required, and is specified in the source
language of compname. This parameter typically supplies
aspects of data conversion dictated by customer standards, such
as decimal point or currency symbols if applicable.

compname is the compiler name. The only supported value is
IBMVSCOBOLII.

compopts is the compiler options or NULL.

nlslang is the zoned decimal code page specified in Oracle NLS format,
language_territory.charset. This defaults to AMERICAN_
AMERICA.WE8EBCDIC37C.

wind is the warning indicator. A Boolean indicator which controls
whether conversion warning messages are to be returned in the
wmsgblk OUT parameter.

wmsgbsiz is the warning message block declared size in bytes. It is a
BINARY_INTEGER set to the byte length of wmsgblk. The
warning message block must be at least 512 and not more than
8192 bytes in length. When declaring wmsgblk, plan on
approximately 512 bytes for each warning returned, depending on
the nature of the requested conversion.

UTL_PG Functions

C-14 Oracle Procedural Gateway for APPC User’s Guide

C.2.1.2 Common Output Parameter
Table C–16 describes the output parameter that is common to the UTL_PG functions:

C.2.2 RAW_TO_NUMBER
RAW_TO_NUMBER converts a RAW byte-string r from the remote host internal
format specified by mask, maskopts, envrnmnt, compname, compopts, and
nlslang into an Oracle number.

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

For detailed information about the mask, maskopts, envrnmnt, compname, and
compopts arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" on page C-22.

Syntax
function RAW_TO_NUMBER (r IN RAW,
 mask IN VARCHAR2,
 maskopts IN VARCHAR2,
 envrnmnt IN VARCHAR2,
 compname IN VARCHAR2,
 compopts IN VARCHAR2,
 nlslang IN VARCHAR2,
 wind IN BOOLEAN,
 wmsgbsiz IN BINARY_INTEGER,
 wmsgblk OUT RAW) RETURN NUMBER;

Where Table C–17 describes the parameters in this function:

Table C–16 Output Parameters Common to UTL_PG Functions

Parameter Description

wmsgblk is the warning message block. It is a RAW value which can
contain multiple warnings in both full message and substituted
parameter formats, if wind is TRUE. This parameter should be
passed to the WMSGCNT function to test if warnings were issued
and to WMSG to extract any warning that are present.

If wind is TRUE and no warnings are issued or if wind is FALSE,
the length of wmsgblk is 0. This parameter does not need to be
reset before each use. The warning message is documented in the
Oracle Database Error Messages manual. This parameter must be
allocated and passed as a parameter in all cases, regardless of how
wind is specified.

Table C–17 RAW_TO_NUMBER Function Parameters

Parameter Description

r is the remote host data to be converted.

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Oracle NLS format.

UTL_PG Functions

The UTL_PG and UTL_RAW Interface C-15

Defaults and Optional Parameters
Table C–18 describes the default and optional parameters of the RAW_TO_NUMBER
function:

Return Value
An Oracle number corresponding in value to r.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.2.3 NUMBER_TO_RAW
NUMBER_TO_RAW converts an Oracle number n of declared precision and scale into
a RAW byte-string in the remote host internal format specified by mask, maskopts,
envrnmnt, compname, compopts, and nlslang.

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

For detailed information about the mask, maskopts, envrnmnt, compname, and
compopts arguments, refer to"NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" on page C-22.

Syntax
function NUMBER_TO_RAW (n IN NUMBER,
 mask IN VARCHAR2,
 maskopts IN VARCHAR2,
 envrnmnt IN VARCHAR2,
 compname IN VARCHAR2,
 compopts IN VARCHAR2,
 nlslang IN VARCHAR2,
 wind IN BOOLEAN,
 wmsgbsiz IN BINARY_INTEGER,
 wmsgblk OUT RAW) RETURN RAW;

Where Table C–19 describes the parameters in this function:

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Table C–18 Optional and Default Parameters of the RAW_TO_NUMBER Function

Parameters Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

Table C–17 (Cont.) RAW_TO_NUMBER Function Parameters

Parameter Description

UTL_PG Functions

C-16 Oracle Procedural Gateway for APPC User’s Guide

Defaults and Optional Parameters
Table C–20 describes the defaults and optional parameters for the NUMBER_TO_
RAW function:

Return Value
A RAW value corresponding in value to n.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.2.4 MAKE_RAW_TO_NUMBER_FORMAT
MAKE_RAW_TO_NUMBER_FORMAT makes a RAW_TO_NUMBER format
conversion specification used to convert a RAW byte-string from the remote host
internal format specified by mask, maskopts, envrnmnt, compname, compopts,
and nlslang into an Oracle number of comparable precision and scale.

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

This function returns a RAW value containing the conversion format which can be
passed to UTL_PG.RAW_TO_NUMBER_FORMAT.

For detailed information about the mask, maskopts, envrnmnt, compname, and
compopts arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" on page C-22.

Table C–19 NUMBER_TO_RAW Function Parameters

Parameter Description

n is the Oracle number to be converted.

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Oracle NLS format.

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Table C–20 Defaults and Optional Parameters for NUMBER_TO_RAW Function

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

UTL_PG Functions

The UTL_PG and UTL_RAW Interface C-17

Syntax
function MAKE_RAW_TO_NUMBER_FORMAT (mask IN VARCHAR2,
 maskopts IN VARCHAR2,
 envrnmnt IN VARCHAR2,
 compname IN VARCHAR2,
 compopts IN VARCHAR2,
 nlslang IN VARCHAR2,
 wind IN BOOLEAN,
 wmsgbsiz IN BINARY_INTEGER,
 wmsgblk OUT RAW) RETURN RAW;

Where Table C–21 describes the parameters in this function:

Defaults and Optional Parameters
Table C–22 describes the defaults and optional parameters of the
MAKE_RAW_TO_NUMBER_FORMAT function:

Return Value
A RAW(2048) format conversion specification for RAW_TO_NUMBER.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.2.5 MAKE_NUMBER_TO_RAW_FORMAT
MAKE_NUMBER_TO_RAW_FORMAT makes a NUMBER_TO_RAW format
conversion specification used to convert an Oracle number of declared precision and
scale to a RAW byte-string in the remote host internal format specified by mask,
maskopts, envrnmnt, compname, compopts, and nlslang.

Table C–21 MAKE_RAW_TO_NUMBER_FORMAT Function Parameters

Parameter Description

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Oracle NLS format.

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Table C–22 Default and Optional MAKE_RAW_TO_NUMBER_FORMAT Parameters

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

UTL_PG Functions

C-18 Oracle Procedural Gateway for APPC User’s Guide

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

This function returns a RAW value containing the conversion format which can be
passed to UTL_PG.NUMBER_TO_RAW_FORMAT. The implementation length of the
result format RAW is 2048 bytes.

For detailed information about the mask, maskopts, envrnmnt, compname, and
compopts arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" on page C-22.

Syntax
function MAKE_NUMBER_TO_RAW_FORMAT (mask IN VARCHAR2,
 maskopts IN VARCHAR2,
 envrnmnt IN VARCHAR2,
 compname IN VARCHAR2,
 compopts IN VARCHAR2,
 nlslang IN VARCHAR2,
 wind IN BOOLEAN,
 wmsgbsiz IN BINARY_INTEGER,
 wmsgblk OUT RAW) RETURN RAW;

Where Table C–23 describes the parameters in this function:

Defaults and Optional Parameters
Table C–24 describes the defaults and optional parameters for the
MAKE_NUMBER_TO_RAW_FORMAT function:

Return Value
A RAW(2048) format conversion specification for NUMBER_TO_RAW.

Table C–23 MAKE_NUMBER_TO_RAW_FORMAT Function Parameters

Parameter Description

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Oracle NLS format.

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Table C–24 Optional, Default Parameters: MAKE_NUMBER_TO_RAW_FORMAT

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

UTL_PG Functions

The UTL_PG and UTL_RAW Interface C-19

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.2.6 RAW_TO_NUMBER_FORMAT
RAW_TO_NUMBER_FORMAT converts, according to the RAW_TO_NUMBER
conversion format r2nfmt, a RAW byte-string rawval in the remote host internal
format into an Oracle number.

Syntax
function RAW_TO_NUMBER_FORMAT (rawval IN RAW,
 r2nfmt IN RAW) RETURN NUMBER;

where Table C–25 describes the parameters in this function:

Defaults
None

Return Value
An Oracle number corresponding in value to r.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.2.7 NUMBER_TO_RAW_FORMAT
NUMBER_TO_RAW_FORMAT converts, according to the NUMBER_TO_RAW
conversion format n2rfmt, an Oracle number numval of declared precision and scale
into a RAW byte-string in the remote host internal format.

Syntax
function NUMBER_TO_RAW_FORMAT (numval IN NUMBER,
 n2rfmt IN RAW) RETURN RAW;

Where Table C–26 describes the parameters in this function:

Table C–25 RAW_TO_NUMBER_FORMAT Function Parameters

Parameter Description

rawval is the remote host data to be converted.

r2nfmt is a RAW(2048) format specification returned from
MAKE_RAW_TO_NUMBER_FORMAT.

Table C–26 NUMBER_TO_RAW_FORMAT Function Parameters

Parameters Description

numval is the Oracle number to be converted.

n2rfmt is a RAW(2048) format specification returned from
MAKE_NUMBER_TO_RAW_FORMAT.

UTL_PG Functions

C-20 Oracle Procedural Gateway for APPC User’s Guide

Defaults
None

Return Value
A RAW value corresponding in value to n.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.2.8 WMSGCNT
WMSGCNT tests a wmsgblk to determine how many warnings, if any, are present.

Syntax
function WMSGCNT (wmsgblk IN RAW) RETURN BINARY_INTEGER;

Where Table C–27 describes the parameter in this function.

Defaults
None

Return Value
A BINARY_INTEGER value equal to the count of warnings present in the RAW
wmsgblk.

Table C–28 lists possible returned values:

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.2.9 WMSG
WMSG extracts a warning message specified by wmsgitem from wmsgblk.

Table C–27 WMSGCNT Function Parameter

Parameter Description

wmsgblk is the warning message block returned from one of the following
functions:

■ MAKE_NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

■ NUMBER_TO_RAW

■ RAW_TO_NUMBER

Table C–28 WMSGCNT Return Values

Description

>0 indicates a count of warnings present in wmsgblk.

 0 indicates that no warnings are present in wmsgblk.

UTL_PG Functions

The UTL_PG and UTL_RAW Interface C-21

Syntax
function WMSG (wmsgblk IN RAW,
 wmsgitem IN BINARY_INTEGER,
 wmsgno OUT BINARY_INTEGER,
 wmsgtext OUT VARCHAR2,
 wmsgfill OUT VARCHAR2) RETURN BINARY_INTEGER;

Where Table C–29 describes the parameters in this function:

Defaults
None

Return Value
A BINARY_INTEGER value containing a status return code.

 A return code of "0" indicates that wmsgno, wmsgtext, and wmsgfill are assigned
and valid.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

Table C–30 describes the error messages you could receive:

Table C–29 WMSG Function Parameters

Parameter Description

wmsgblk is a RAW warning message block returned from one of the
following functions:

■ MAKE_NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

■ NUMBER_TO_RAW

■ RAW_TO_NUMBER

wmsgitem is a BINARY_INTEGER value specifying which warning message
to extract, numbered from 0 for the first warning through n minus
1 for the nth warning.

wmsgno is an OUT parameter containing the BINARY_INTEGER
(hexadecimal) value of the warning number. This value, after
conversion to decimal, is documented in the Oracle Database Error
Messages manual.

wmsgtext is a VARCHAR2 OUT parameter value containing the
fully-formatted warning message in ORA-xxxxx format, where
xxxxx is the decimal warning number documented in the Oracle
Database Error Messages manual.

wmsgfill is a VARCHAR2 OUT parameter value containing the list of
warning message parameters to be substituted into a warning
message in the following format:

warnparm1;;warnparm2;;...;;warnparmn

where each warning parameter is delimited by a double
semicolon.

NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

C-22 Oracle Procedural Gateway for APPC User’s Guide

C.3 NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values
This table lists the valid values for the format arguments for NUMBER_TO_RAW and
RAW_TO_NUMBER and related functions. Following are examples of some valid
COBOL picture masks. Any valid COBOL picture mask may be used. Refer to the
appropriate IBM COBOL programming guides for an explanation of COBOL picture
masks.

mask: COBOL picture mask

 PIC 9(n) where 1 <= n <= 18
 PIC S9(n) where 1 <= n <= 18
 PIC 9(n)V9(s) where 1 <= n+s <= 18
 PIC S9(n)V9(s) where 1 <= n+s <= 18
 PIC S9999999V99
 PIC V99999
 PIC SV9(5)
 PIC 999.00
 PIC 99/99/99
 PIC ZZZ.99
 PIC PPP99
 PIC +999.99
 PIC 999.99+
 PIC -999.99
 PIC 999.99-
 PIC $$$$$,$$$.99
 PIC $9999.99DB
 PIC $9999.99CR

maskopts: COBOL picture mask options

 COMP
 USAGE IS COMP
 USAGE IS COMPUTATIONAL
 COMP-3
 USAGE IS COMP-3
 USAGE IS COMPUTATIONAL-3
 COMP-4
 USAGE IS COMP-4
 USAGE IS COMPUTATIONAL-4
 DISPLAY
 USAGE IS DISPLAY
 SIGN IS LEADING
 SIGN IS LEADING SEPARATE
 SIGN IS LEADING SEPARATE CHARACTER
 SIGN IS TRAILING
 SIGN IS TRAILING SEPARATE

Table C–30 WMSG Function Errors

Error Description

-1 indicating the warning specified by wmsgitem was not found in
wmsgblk.

-2 indicating an invalid message block.

-3 indicating wmsgblk is too small to contain the warning
associated with wmsgitem. A partial or no warning message
might be present for this particular wmsgitem.

-4 indicating there are too many substituted warning parameters.

NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

The UTL_PG and UTL_RAW Interface C-23

 SIGN IS TRAILING SEPARATE CHARACTER

envrnmnt: COBOL environment clause

 CURRENCY SIGN IS x where x is a valid currency sign character
 DECIMAL-POINT IS COMMA

compname: COBOL compiler name

 IBMVSCOBOLII

compopts: COBOL compiler options

 (no values are supported at this time)

NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

C-24 Oracle Procedural Gateway for APPC User’s Guide

Datatype Conversions D-1

D
Datatype Conversions

You must convert datatypes and data formats properly when you are using the PGAU
tool to generate TIPs and when you are developing a custom TIP using PL/SQL and
the UTL_RAW and UTL_PG functions.

Read this appendix to learn about datatype conversion as it relates to TIPs.

This appendix contains the following sections:

■ Length Checking on page D-1

■ Conversion on page D-2

D.1 Length Checking
PGAU-generated TIPs perform length checking at the end of every parameter sent and
received.

Table D–1 provides a list of length parameters generated by PGAU:

An exception is raised when the convert length of a sent parameter does not equal its
expected length. This occurs if too many or too few send field conversions are
performed.

An exception is raised when the convert length of a received parameter does not equal
its received length. These length exceptions result when too few or too many
conversions are performed.

A warning is issued when the expected length of a received parameter does not equal
its convert or received length and data conversion tracing is enabled. This occurs when
a maximum length record is expected, but a shorter record is transmitted and correctly
converted.

Table D–1 Length Parameters

Parameter Description

expected length Is computed by PGAU when the TIP is generated.

convert length Is summed by the TIP from each converted field.

send length Is the transmitted send data length and is also equal to the actual
length for send parameters.

receive length Is the transmitted receive data length.

Conversion

D-2 Oracle Procedural Gateway for APPC User’s Guide

D.1.1 Parameters Over 32K in Length
PGAU generates TIPs that support transmission of individual data parameters which
exceed 32K bytes.

PGAU includes this support automatically when PGAU GENERATE processing
detects the maximum length of a data parameter exceeding 32K.

This support is driven by the data definitions placed in the PG DD and cannot be
selected by the user. To include the support, the data definition must actually or
possible exceed 32K. To remove the support, you must decrease the parameter length
to less than 32K, REDEFINE the data, and GENERATE the TIP again.

This support tests for field positions crossing the 32K buffer boundaries before and
after conversion of those fields which lie across such boundaries. In the case of
repeating groups, This can be many fields, for repeating groups, or few fields in the
case of simple linear records.

Each test and the corresponding buffer management logic adds overhead.

D.2 Conversion
The PG DD and TIPs generated by PGAU support COBOL, specified as
IBMVSCOBOLII when defining data.

D.2.1 USAGE(PASS)
When USAGE(PASS) has been specified on the PGAU DEFINE DATA statement, the
following datatype and format conversions are supported:

■ PIC X

■ PIC G

PIC X Datatype Conversions
PGAU TIPs convert the COBOL X datatype to a PL/SQL CHAR datatype of the same
character length. NLS character set translation is also performed.

Note: COBOL lacks a datatype specifically designated for variable length data. It is
represented in COBOL as a subgroup containing a PIC 9 length field followed by a
PIC X character field. For example:

10 NAME.

 15 LENGTH PIC S9(4).

 15 LETTERS PIC X(30).

Given this context, it cannot be guaranteed that all instances of an S9(4) field followed
by an X field are always variable length data. Rather than PGAU TIPs converting the
above COBOL group NAME to a VARCHAR, the TIPs instead construct a nested
PL/SQL record as follows:

TYPE NAME_typ is RECORD (
 LENGTH NUMBER(4,0),
 LETTERS CHAR(30));

Caution: The target of a REDEFINE clause cannot reside in a
previously processed buffer. Run-time TIP processing of the fields
containing such REDEFINE clauses get unpredictable results.

Conversion

Datatype Conversions D-3

TYPE ... is RECORD(
 ...
 NAME NAME_typ,
 ...

It is the client application’s responsibility (based upon specific knowledge of the
remote host data) to extract NAME.LENGTH characters from NAME.LETTERS and
assign the result to a PL/SQL VARCHAR, if a VARCHAR is desired.

Character set conversion is performed for single byte encoded:

■ remote host character data, using either:

– DEFINE TRANSACTION NLS_LANGUAGE character set for an entire
transaction, or

– REDEFINE DATA REMOTE_LANGUAGE character set for a single field, if
specified.

■ local Oracle character data, using either:

– LANGUAGE character set of integrating server for an entire transaction, or

– REDEFINE DATA LOCAL_LANGUAGE character set for a single field, if
specified.

PIC G Datatype Conversions
PGAU generated TIPs convert the COBOL G datatype to a PL/SQL VARCHAR2
datatype of the same length, allowing 2 bytes for every character position.

Character set conversion is performed for double-byte and multi-byte encoded:

■ remote host character data, using either:

– DEFINE TRANSACTION REMOTE_MBCS character set for an entire
transaction, or

– REDEFINE DATA REMOTE_LANGUAGE character set for a single field, if
specified.

■ local Oracle character data, using either:

– DEFINE TRANSACTION LOCAL_MBCS character set for an entire
transaction, or

– REDEFINE DATA LOCAL_LANGUAGE character set for a single field, if
specified.

Alphanumeric and DBCS Editing Field Positions
Table D–2 illustrates how PGAU interprets COBOL symbols in datatype conversions,
by providing the definitions for the symbols.

Table D–2 COBOL Symbol Definitions

COBOL Symbols Oracle Definition of COBOL Symbols - Data Content

’B’ blank (1 byte SBCS or 2 bytes DBCS depending on USAGE)

’0’ zero (1 byte SBCS)

’/’ forward slash (1 byte SBCS)

’G’ double byte

Conversion

D-4 Oracle Procedural Gateway for APPC User’s Guide

Edited positions in COBOL statement data received from the remote host are
converted by PGAU along with the entire field and passed to the client application in
the corresponding PL/SQL VARCHAR2 output variable.

When editing symbols are present, they are interpreted to mean the remote host field
contains the COBOL data content and length indicated. The editing positions are
included in the length of the data field, but conversion of all field positions is
processed by PGAU as a single string and no special scanning or translation is done
for edited byte positions.

Edited positions in COBOL statement data sent to the remote host are converted by
PGAU along with the entire PL/SQL VARCHAR2 input variable passed from the
client application.

Table D–3 provides an example of how PGAU converts COBOL datatypes:

Table D–3 COBOL-PGAU Conversion

COBOL Datatype Description of Conversion by PGAU

PIC XXXBBXX Is an alphanumeric field 7 bytes in length and would be converted
in a single UTL_RAW.CONVERT call. No testing or translation is
done on the contents of the byte positions indicated by ’B’. While
COBOL language rules indicate that these positions contain
"blank" in the character set specified for the remote host, what
data is actually present is the user’s responsibility.

PIC GGBGGG Is a DBCS field 12 bytes in length and would be converted in a
single UTL_RAW.CONVERT call. No testing or translation is
done on the contents of the byte positions indicated by ’B’. While
COBOL language rules indicate that these positions contain
"blank" in the character set specified for the remote host, what
data is actually present is the user’s responsibility.

PIC 9 PGAU TIPs convert the COBOL 9 datatype to a PL/SQL
NUMBER datatype of the same precision and scale. NLS character
set translation is also performed on signs, currency symbols, and
spaces.

The following are supported:

■ COMPUTATIONAL (binary)

■ COMPUTATIONAL-3 (packed decimal)

■ COMPUTATIONAL-4 (binary)

■ DISPLAY (zoned decimal)

For DISPLAY datatypes, the following sign specifications are
supported:

■ SEPARATE [CHARACTER]

■ LEADING

■ TRAILING

Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" in Appendix C, "The UTL_PG and UTL_RAW
Interface" for more information about numeric datatype
conversions.

COMPUTATIONAL-1 and COMPUTATIONAL-2 (floating point)
datatypes are not supported.

Conversion

Datatype Conversions D-5

Format Conversion
Table D–4 describes format conversion:

FILLER COBOL FILLER fields are recognized by PGAU by the spelling of
the element name FILLER. PGAU does not generate any data
conversion for such elements, but does require their space be
properly allocated to preserve offsets within the records
exchanged with the remote host transaction.

If a RENAMES or REDEFINES definition covers a FILLER
element, PGAU generates data conversion statements for the same
area when it is referenced as a component of the RENAMES or
REDEFINES variable. Such data conversion reflects only the
format of the RENAMES or REDEFINES definition and not the
bounds of the FILLER definition.

Table D–4 Format Conversion Descriptions

Item Description

JUSTIFIED |
JUSTIFIED RIGHT

This causes remote host transaction data to be converted as a
PL/SQL CHAR datatype according to character datatype, as
discussed in "PIC X Datatype Conversions" on page D-2, for both
IN and OUT parameters.

IN parameter data passed from the application is stripped of its
rightmost blanks and left padded as required. Then it is sent to
the remote host.

OUT parameter data is aligned as it is received from the remote
host and padded with blanks as required on the left. Then it is
passed to the application.

JUSTIFIED LEFT This causes warnings to be issued during TIP generation. No
alignment is performed. This is treated as documentation.

The remote host transaction data is converted as a PL/SQL CHAR
datatype according to character datatype, as discussed in "PIC X
Datatype Conversions" on page D-2, for both IN and OUT
parameters.

Table D–3 (Cont.) COBOL-PGAU Conversion

COBOL Datatype Description of Conversion by PGAU

Conversion

D-6 Oracle Procedural Gateway for APPC User’s Guide

LENGTH IS field-2 This is an Oracle extension to the data definition as stored in the
PG DD. This extension exists only in the PGAU context and is not
valid COBOL syntax.

The purpose of this extension is to provide a means for
variable-length character data to be processed more efficiently by
the TIP conversion logic. This is an alternative to defining a
variable-length PIC X field as PIC X(1) OCCURS DEPENDING
ON field-2, where field-2 is the length of the field. With this
extension, the same field could be defined as PIC X(5000)
LENGTH IS field-2, where field -2 is the length of the field. The
TIP is able to pick up the length and do the character set
conversion on the field with a single UTL_RAW.CONVERT call
instead of using a loop to do the conversion one character at a
time.

Note that the use of this construct does not affect the COBOL
program. The PIC X (or PIC G) field is still fixed-length as far as
COBOL is concerned, so the position of the data does not change,
nor does the amount of data that is transferred between the
gateway and the OLTP. However, if the field is the last field in a
COBOL definition, then the COBOL program could be modified
to send only the number of bytes required to satisfy the length set
in the field-2 field referenced by the LENGTH IS clause.

The LENGTH IS clause can be specified only for PIC X and PIC G
fields, and the picture mask for those fields cannot contain editing
characters.

OCCURS n TIMES This causes conversion of exactly ’n’ instances of a set of PL/SQL
variables to or from a repeating group area within the remote host
record, the size of which area equals the group length times ’n’
repetitions. PGAU generated TIPs employ PL/SQL RECORDs of
TABLEs to implement an array-like subscript on fields within a
repeating group. PL/SQL supports a single dimension TABLE,
and consequently PGAU supports only a single level of an
OCCURS group. Nested OCCURS groups are not supported. The
conversion and formatting performed are dictated by the COBOL
datatype of each subfield defined within the repeating group, as
documented in "PIC X Datatype Conversions" on page D-2 and
"Format Conversion" on page D-5.

Table D–4 (Cont.) Format Conversion Descriptions

Item Description

Conversion

Datatype Conversions D-7

OCCURS m TO n TIMES
DEPENDING ON field-2

This causes conversion of at least ’m’ and not over ’n’ instances of
a set of PL/SQL variables to or from a repeating group area
within the remote host record, the size of which area equals the
group length times the repetition count contained in the named
field. PGAU generated TIPs employ PL/SQL RECORDs of
TABLEs to implement an array-like subscript on fields within a
repeating group. PL/SQL supports a single dimension TABLE,
and consequently PGAU supports only a single level of an
OCCURS DEPENDING ON group. Nested OCCURS
DEPENDING ON groups are not supported. The conversion and
formatting performed are dictated by the COBOL datatype of
each subfield defined within the repeating group, as documented
in "PIC X Datatype Conversions" on page D-2 and "Format
Conversion" on page D-5.

Range conversion: PGAU-generated TIPs use a ’FOR ... LOOP’
algorithm with a range of 1 to whatever TIMES upper limit was
specified. When the TIP has been generated with the
DIAGNOSE(PKGEX(DC)) option, the PL/SQL FOR statement
which iterates an OCCURS DEPENDING ON repeating group is
preceded by an IF test to ensure at TIP runtime that the
DEPENDING ON field contains a number which lies within the
specified range for which the lower limit need not be 1. An
exception is raised if this test fails.

RENAMES item-2 THRU
item-3

A single PL/SQL variable declaration corresponds to a
RENAMES definition. If all the subfields covered by a RENAMES
definition are PIC X, then the PL/SQL variable is a VARCHAR2.
Otherwise any non-PIC X subfield causes the PL/SQL variable
datatype to be RAW.

Lengths of renamed fields do not contribute to the overall
parameter data length because the original fields dictate the
lengths.

REDEFINES item-2
WHEN item-3=value

The ’WHEN item-3=value’ is an Oracle extension to the data
definition as stored in the PG DD. This extension exists only in the
PGA context and is not valid COBOL syntax.

The purpose of this extension is to provide a means for the
gateway administrator or application developer to specify the
criteria by which the redefinition is to be applied. For example, a
record type field is often present in a record and different record
formats apply depending on which record type is being
processed. The specification of which type value applies to which
redefinition is typically buried in the transaction programming
logic, not in the data definition. To specify which conversion to
perform on redefined formats in the TIP, the WHEN criteria was
added to PGA data definitions.

PGAU generates PL/SQL nested record declarations which
correspond in name and datatype to the subordinate elements
covered by the REDEFINES definition. The standard PGAU
datatype determination described in "PIC X Datatype
Conversions" on page D-2.

LEVEL 01 REDEFINE is ignored:

This permits remote host copybooks to include definitions which
REDEFINE other transaction working storage buffers without
having to define such buffers in the TIP or alter the copybook
used as input for the definition.

Table D–4 (Cont.) Format Conversion Descriptions

Item Description

Conversion

D-8 Oracle Procedural Gateway for APPC User’s Guide

D.2.2 USAGE(ASIS)
When USAGE(ASIS) is specified on the PGAU DEFINE DATA statement, no
conversion is performed. Consequently, each such field is simply copied to a PL/SQL
RAW of the same byte length. No conversion, translation, or reformatting is done.

D.2.3 USAGE(SKIP)
When USAGE(SKIP) is specified on the PGAU DEFINE DATA statement, no data
exchange is performed. The data is skipped as if it did not exist. Consequently, such
fields are not selected from the PG DD, not reflected in the TIP logic, and presumed
absent from the data streams exchanged with the remote host. The purpose of "SKIP"
is to have definitions in the PG DD, but not active, perhaps because a remote host has
either removed the field or has yet to include the field. SKIP allows an existing data
definition to be used even though some fields do not exist at the remote host.

D.2.4 PL/SQL Naming Algorithms

Delimiters
COBOL special characters in record, group, and element names are translated when
PGAU DEFINE inserts definitions into the PG DD, and by PGAU GENERATE when
definitions are selected from the PG DD. Special characters are translated as follows:

■ hyphen is translated to underscore (_)

■ period is deleted

Qualified Compound Names
PL/SQL variable names are fully qualified and composed from:

■ PL/SQL record name as the leftmost qualifier corresponding to level 01 or 77
COBOL record name.

■ PL/SQL nested record names corresponding to COBOL group names.

■ PL/SQL nested fields corresponding to COBOL elements of datatype:

– CHAR or NUMBER corresponding to non-repeating COBOL elements.

– TABLE corresponding to COBOL elements which fall within an OCCURS or
OCCURS DEPENDING ON group (COBOL repeating fields correspond to
PL/SQL nested RECORDs of TABLE’s).

SYNCHRONIZED |
SYNCHRONIZED RIGHT

This causes the numeric field to be aligned on boundaries as
dictated by the remote host environment, compiler language, and
datatype.

Numeric conversion is performed on the aligned data fields
according to numeric datatype, as discussed in "PIC X Datatype
Conversions" on page D-2, for both IN and OUT parameters.

SYNCHRONIZED LEFT This causes warnings to be issued during TIP generation and no
realignment is performed. This is treated as documentation.

Numeric conversion is performed on the aligned data fields
according to numeric datatype, as discussed in "PIC X Datatype
Conversions" on page D-2, for both IN and OUT parameters.

Table D–4 (Cont.) Format Conversion Descriptions

Item Description

Conversion

Datatype Conversions D-9

Note that when referencing PL/SQL variables from calling applications, the TIP
package name must be prefixed as the leftmost qualifier. Thus the fully qualified
reference to the PL/SQL variable which corresponds to:

■ SKILL is:

tipname.EMPREC_Typ.SKILL(SKILL_Key)

■ HOME_ADDRESS ZIP is:

tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.FIRST_FIVE
tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.LAST_FOUR

Truncated and Non-Unique Names
PGAU truncates field names and corresponding PL/SQL variable names when the
name exceeds:

■ 26 bytes for fields within an aggregate record or group

This is due to the need to suffix each field or PL/SQL variable name with:

– "_Typ" for group names

– "_Tbl" for element names with a repeating group

or

■ 30 bytes due to the PL/SQL limitation of 30 bytes for any name

The rightmost four characters are truncated. This imposes the restriction that
names be unique to 26 characters.

Duplicate Names
COBOL allows repetitive definition of the same group or element names within a
record, and the context of the higher level groups serves to uniquely qualify names.
However, because PGAU-generated TIPs declare PL/SQL record variables which
reference nested PL/SQL records for subordinate groups and fields, such nested
PL/SQL record types can have duplicate names.

Given the following COBOL definition, note that ZIP is uniquely qualified in COBOL,
but the corresponding PL/SQL declaration would have a duplicate nested record type
for ZIP.

01 EMPREC.
 05 HIREDATE PIC X(8).
 05 BIRTHDATE PIC X(8).
 05 SKILL PIC X(12) OCCURS 4.
 05 EMPNO PIC 9(4).
 05 EMPNAME.
 10 FIRST-NAME PIC X(10).
 10 LAST-NAME PIC X(15).
 05 HOME-ADDRESS.
 10 STREET PIC X(20).
 10 CITY PIC X(15).
 10 STATE PIC XX.
 10 ZIP.
 15 FIRST-FIVE PIC X(5).
 15 LAST-FOUR PIC X(4).
 05 DEPT PIC X(45).
 05 OFFICE-ADDRESS.
 10 STREET PIC X(20).
 10 CITY PIC X(15).

Conversion

D-10 Oracle Procedural Gateway for APPC User’s Guide

 10 STATE PIC XX.
 10 ZIP.
 15 FIRST-FIVE PIC X(5).
 15 LAST-FOUR PIC X(4).
 05 JOBTITLE PIC X(20).

PGAU avoids declaring duplicate nested record types, and generates the following
PL/SQL:

SKILL_Key BINARY_INTEGER;
TYPE SKILL_Tbl is TABLE of CHAR(12)
 INDEX by BINARY_INTEGER;
 TYPE EMPNAME_Typ is RECORD (
 FIRST_NAME CHAR(10),
 LAST_NAME CHAR(15));
 TYPE ZIP_Typ is RECORD (
 FIRST_FIVE CHAR(5),
 LAST_FOUR CHAR(4));
 TYPE HOME_ADDRESS_Typ is RECORD (
 STREET CHAR(20),
 CITY CHAR(15),
 STATE CHAR(2),
 ZIP ZIP_Typ);
 TYPE OFFICE_ADDRESS_Typ is RECORD (
 STREET CHAR(20),
 CITY CHAR(15),
 STATE CHAR(2),
 ZIP ZIP_Typ);

 TYPE EMPREC_Typ is RECORD (
 HIREDATE CHAR(8),
 BIRTHDATE CHAR(8),
 SKILL SKILL_Tbl,
 EMPNO NUMBER(4,0),
 EMPNAME EMPNAME_Typ,
 HOME_ADDRESS HOME_ADDRESS_Typ,
 DEPT CHAR(45),
 OFFICE_ADDRESS OFFICE_ADDRESS_Typ,
 JOBTITLE CHAR(20));

However, in the case where multiple nested groups have the same name but have
different subfields (see ZIP following):

05 HOME-ADDRESS.
 10 STREET PIC X(20).
 10 CITY PIC X(15).
 10 STATE PIC XX.
 10 ZIP.
 15 LEFTMOST-FOUR PIC X(4).
 15 RIGHMOST-FIVE PIC X(5).
05 DEPT PIC X(45).
05 OFFICE-ADDRESS.
 10 STREET PIC X(20).
 10 CITY PIC X(15).
 10 STATE PIC XX.
 10 ZIP.
 15 FIRST-FIVE PIC X(5).
 15 LAST-FOUR PIC X(4).
05 JOBTITLE PIC X(20).

Conversion

Datatype Conversions D-11

PGAU alters the name of the PL/SQL nested record type for each declaration in which
the subfields differ in name, datatype, or options. Note the "02" appended to the
second declaration (ZIP_Typ02), and its reference in OFFICE_ADDRESS.

TYPE EMPNAME_Typ is RECORD (
 FIRST_NAME CHAR(10),
 LAST_NAME CHAR(15));
TYPE ZIP_Typ is RECORD (
 LEFTMOST_FOUR CHAR(4),
 RIGHTMOST_FIVE CHAR(5));
TYPE HOME_ADDRESS_Typ is RECORD (
 STREET CHAR(20),
 CITY CHAR(15),
 STATE CHAR(2),
 ZIP ZIP_Typ);
TYPE ZIP_Typ02 is RECORD (
 FIRST_FIVE CHAR(5),
 LAST_FOUR CHAR(4));
TYPE OFFICE_ADDRESS_Typ is RECORD (
 STREET CHAR(20),
 CITY CHAR(15),
 STATE CHAR(2),
 ZIP ZIP_Typ02);
TYPE EMPREC_Typ is RECORD (
 HIREDATE CHAR(8),
 BIRTHDATE CHAR(8),
 SKILL SKILL_Tbl,
 EMPNO NUMBER(4,0),
 EMPNAME EMPNAME_Typ,
 HOME_ADDRESS HOME_ADDRESS_Typ,
 DEPT CHAR(45),
 OFFICE_ADDRESS OFFICE_ADDRESS_Typ,
 JOBTITLE CHAR(20));

And the fully qualified reference to the PL/SQL variable which corresponds to:

■ HOME_ADDRESS.ZIP is:

tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.LEFTMOST_FOUR
tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.RIGHTMOST_FIVE

■ OFFICE_ADDRESS.ZIP is:

tipname.EMPREC_Typ.OFFICE_ADDRESS.ZIP.FIRST_FIVE
tipname.EMPREC_Typ.OFFICE_ADDRESS.ZIP.LAST_FOUR

Note that the nested record type name ZIP_Typ02 is not used in the reference, but is
implicit within PL/SQL’s association of the nested records.

Conversion

D-12 Oracle Procedural Gateway for APPC User’s Guide

National Language Support E-1

E
National Language Support

This appendix documents the National Language Support (NLS) information for the
gateway. More information about using NLS is in the Oracle Database Server Application
Developer’s Guide.

This appendix includes the following sections:

■ "Overview" on page E-1

■ "Languages Supported for Messages" on page E-1

■ "Languages Supported for Data Conversion" on page E-2

E.1 Overview
National Language Support is a technology that enables Oracle applications to interact
with users in their native language, using their conventions for displaying data.

The Oracle NLS architecture is data-driven, enabling support for specific languages
and character encoding schemes to be added without requiring any changes in source
code.

E.2 Languages Supported for Messages
The Oracle Procedural Gateway for APPC is capable of issuing its messages in
languages other than English.

Table E–1 shows the currently supported languages in the left column, and the right
column presents each language’s corresponding language, territory, and
recommended character set specifications for use in the language setting. Other
character sets can be used, but care must be taken to ensure that the character set used
contains the full set of characters required by the specified language.

Table E–1 Languages Supported for Messages Issued by the Gateway

Language Setting for language_territory.charset

American English AMERICAN_AMERICA.US7ASCII

Brazilian Portuguese BRAZILIAN PORTUGUESE_BRAZIL.WE8ISO8859P1

Czech CZECH_CZECH REPUBLIC.EE8ISO8859P2

Danish DANISH_DENMARK.WE8ISO8859P1

Dutch DUTCH_THE NETHERLANDS.WE8ISO8859P1

Egyptian Abrabic ARABIC_EGYPT.AR8ISO8859P6

Languages Supported for Data Conversion

E-2 Oracle Procedural Gateway for APPC User’s Guide

The language used by the Procedural Gateway for APPC server is specified by the
LANGUAGE parameter in the initsid.ora file for the gateway. The syntax for the
LANGUAGE parameter is:

LANGUAGE=language[_territory.charset]

where language, territory, and charset are valid values from the preceding
table. If no LANGUAGE parameter is specified in the initsid.ora file, the default
language used is American English.

The language used by the Procedural Gateway Administration Utility, PGAU, is
specified by the NLS_LANG environment variable, in the same syntax as described for
the LANGUAGE parameter for the server. If the NLS_LANG environment variable is
not set, then the default language used is American English.

E.3 Languages Supported for Data Conversion
The Oracle Procedural Gateway for APPC does no data conversion in the gateway
itself. Instead, all conversion of data flowing between the integrating server and the
gateway is performed by the Oracle Integrating Server. This is accomplished through
calls within the TIP to the UTL_RAW.CONVERT function, which converts data from
the local character set at the integrating server to the character set of the OLTP system.

French FRENCH_FRANCE.WE8ISO8859P1

German GERMAN_GERMANY.WE8ISO8859P1

Greek GREEK_GREECE.EL8ISO8859P7

Hungarian HUNGARIAN_HUNGARY.EE8ISO8859P2

Israeli Hebrew HEBREW_ISRAEL.IW8ISO8859P8

Italian ITALIAN_ITALY.WE8ISO8859P1

Japanese JAPANESE_JAPAN.JA16SJIS

Korean KOREAN_KOREA.KO16KSC5601

Norwegian NORWEGIAN_NORWAY.WE8ISO8859P1

Polish POLISH_POLAND.EE8ISO8859P2

Portuguese PORTUGUESE_PORTUGAL.WE8ISO8859P1

Romanian ROMANIAN_ROMANIA.EE8ISO8859P2

Russian RUSSIAN_CIS.CL8ISO8859P5

Simplified Chinese SIMPLIFIED CHINESE_CHINA.ZHS16GBK

Slovak SLOVAK_SLOVAKIA.EE8ISO8859P2

Spanish SPANISH_SPAIN.WE8ISO8859P1

Spainish Catalan CATALAN_SPAIN.WE8ISO8859P1

Swedish SWEDISH_SWEDEN.WE8ISO8859P1

Thai THAI_THAILAND.TH8TISASCII

Traditional Chinese TRADITIONAL CHINESE_TAIWAN.ZHT16BIG5

Turkish TURKISH_TURKEY.WE8ISO8859P9

Table E–1 (Cont.) Languages Supported for Messages Issued by the Gateway

Language Setting for language_territory.charset

Languages Supported for Data Conversion

National Language Support E-3

The character set of the remote OLTP system is specified for:

■ single-byte encoded data, using either:

– PGAU DEFINE TRANSACTION NLS_LANGUAGE character set for an entire
transaction

– PGAU REDEFINE DATA REMOTE_LANGUAGE character set for a single
field, if specified.

■ double-byte and multi-byte encoded data, using either:

– PGAU DEFINE TRANSACTION REMOTE_MBCS character set for an entire
transaction, or

– PGAU REDEFINE DATA REMOTE_LANGUAGE character set for a single
field, if specified.

This information is generated into the TIP automatically by PGAU.

Languages and character sets supported by the UTL_RAW.CONVERT function are the
same as those supported by the Oracle Integrating Server. Refer to the
platform-specific documentation for your Oracle Integrating Server for information on
which languages and character sets are supported. If your integrating server is on an
ASCII platform, then the platform-specific documentation might not list any of the
EBCDIC character sets. This does not necessarily mean they are not supported. You
should contact Oracle Support Services in this case.

Attention: It is extremely important to ensure that the character
set or codepage of the OLTP data be specified for PGAU using
these parameters:

■ DEFINE TRANSACTION . . . NLS_LANGUAGE

■ DEFINE TRANSACTION . . .REMOTE_MBCS

■ REDEFINE DATA . . . REMOTE_LANGUAGE

Languages Supported for Data Conversion

E-4 Oracle Procedural Gateway for APPC User’s Guide

Tip Internals F-1

F
Tip Internals

PGAU generates complete and operational TIPs for most circumstances. TIP internals
information is provided to assist you in diagnosing problems with PGAU-generated
TIPs, and in writing custom TIPs, if you choose to do so.

❏ If your gateway is using the SNA communication protocol:

This appendix refers to a sample called pgadb2i. The source for this TIP is in file
pgadb2i.sql in the $ORACLE_HOME/pg4appc/demo/CICS directory.

❏ If your gateway is using the TCP/IP communication protocol:

This appendix refers to a sample called pgaims. The source for this TIP is in file
pgtflipd.sql in the $ORACLE_HOME/pg4appc/demo/IMS directory.

This appendix contains the following sections:

■ "Background Reading" on page F-1

■ "PL/SQL Package and TIP File Separation" on page F-2

F.1 Background Reading
Several topics are important to understanding TIP operation and development;
following is a list of concepts that are key to TIP operation and suggested sources to
which you can refer for more information.

■ For information about PL/SQL Packages, refer to the PL/SQL User’s Guide and
Reference.

■ For information about PGA Application Concepts, refer to the following chapters
in this guide:

■ If your communication protocol is SNA: refer to Chapter 4, "Client Application
Development (SNA Only)";

■ If your communication protocol is TCP/IP: refer to Chapter 7, "Client Application
Development (TCP/IP Only)".

■ For information about PGA RPC Interface, refer to Appendix B, "Gateway RPC
Interface".

■ For information about PGA UTL_PG/UTL_RAW Interface, refer to Appendix C,
"The UTL_PG and UTL_RAW Interface".

PL/SQL Package and TIP File Separation

F-2 Oracle Procedural Gateway for APPC User’s Guide

F.2 PL/SQL Package and TIP File Separation
PGAU GENERATE writes each output TIP into a standard PL/SQL package
specification file and body file. This separation is beneficial and important. Refer to the
Oracle Database Application Developer’s Guide and the PL/SQL User’s Guide and Reference
for more information. Also refer to "GENERATE" on page 2-14 in Chapter 2,
"Procedural Gateway Administration Utility" for more information about building the
PL/SQL package.

TIPs are PL/SQL packages. Any time a package specification is recompiled, all objects
which depend on that package are invalidated and implicitly recompiled as they are
referenced, even if the specification did not change.

Objects which depend on a TIP specification include client applications that call the
TIP to interact with remote host transactions.

It might be important to change the TIP body for the following reasons:

■ Oracle ships maintenance which affects the TIP body, or

■ Oracle ships maintenance for the UTL_RAW or UTL_PG conversion functions
upon which the TIP body relies.

Refer to Appendix C, "The UTL_PG and UTL_RAW Interface" for more detailed
information about these functions.

■ if the remote host network or program location parameters have changed. Refer to
"DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway Administration
Utility" for more information

Provided that the TIP specification does not need to change or be recompiled, the TIP
body can be regenerated and recompiled to pick up changes without causing
invalidation and implicit recompilation of client applications that call the TIP.

Therefore, PGAU now separates output TIPs into specification and body files. Refer to
"GENERATE" on page 2-14 in Chapter 2, "Procedural Gateway Administration Utility"
for a discussion of file identification.

F.2.1 Independent TIP Body Changes
Independent TIP body changes are internal and require no change to the TIP
specification. Examples of such changes include: a change in UTL_RAW or UTL_PG
conversions, inclusion of diagnostics, or a change to network transaction parameters.

In these cases, when PGAU is used to regenerate the TIP, the new TIP specification file
can be saved or discarded, but should not be recompiled. The new TIP body should be
recompiled under SQL*Plus. Provided that the TIP body change is independent, the
new body compilation completes without errors and the former TIP specification
remains valid.

F.2.1.1 Determine if a Specification Has Remained Valid
To determine if a specification has remained valid, issue the following statements from
SQL*Plus, depending upon your communication protocol:

■ If your gateway is using the SNA communication protocol, issue the following:

SQL> column ddl_date format A22 heading ’LAST_DDL’
SQL> select object_name,
 2 object_type,
 3 to_char(last_ddl_time,’MON-DD-YY HH:MM:SS’) ddl_date,
 4 status

PL/SQL Package and TIP File Separation

Tip Internals F-3

 5 from all_objects where owner = ’PGAADMIN’
 6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
----------- ----------- -------------------- ---------
PGADB2I PACKAGE NOV-24-1999 09:09:13 VALID
PGADB2I PACKAGE BODY NOV-24-1999 09:11:44 VALID
DB2IDRIV PROCEDURE DEC-30-1999 12:12:14 VALID
DB2IDRVM PROCEDURE DEC-30-1999 12:12:53 VALID
DB2IFORM PROCEDURE DEC-14-1999 11:12:24 VALID

The LAST_DDL column is the date and time at which the last DDL change against
the object was done. It shows that the order of compilation was:

PGADB2I PACKAGE (the specification)
DB2IDRVM PROCEDURE (1st client application depending on PGADB2I)
DB2IFORM PROCEDURE (2nd client application depending on PGADB2I)
DB2IDRIV PROCEDURE (3rd client application depending on PGADB2I)
PGADB2I PACKAGE BODY (a recompilation of the body)

Note that the recompilation of the body does not invalidate its dependent object,
the specification, or the client application indirectly.

■ If your gateway is using the TCP/IP communication protocol, issue the following
fro SQL*Plus:

SQL> column ddl_date format A22 heading ’LAST_DDL’
SQL> select object_name,
 2 object_type,
 3 to_char(last_ddl_time,’MON-DD-YY HH:MM:SS’) ddl_date,
 4 status
 5 from all_objects where owner = ’PGAADMIN’
 6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
----------- ----------- -------------------- ---------
PGTFLIP PACKAGE APR-24-03 03:04:58 VALID
PGTFLIP PACKAGE BODY APR-24-03 03:04:02 VALID
PGTFLIPD PROCEDURE APR-24-03 03:04:09 VALID
The LAST_DDL column is the date and time at which the last DDL change against
the object was done. It shows that the order of compilation was:

PGTFLIP PACKAGE (the specification)
PGTFLIPD PROCEDURE (client application depending on PGADB2I)
PGTFLIP PACKAGE BODY (a recompilation of the body)

Note that the recompilation of the body does not invalidate its dependent object, the
specification, or the client application indirectly.

F.2.2 Dependent TIP Body or Specification Changes
You can also change the data structures or call exchange sequences of the remote host
transaction. However, this kind of change is exposed to dependent client applications
because the public datatypes or functions in the TIP specification will also change and
necessitate recompilation, which in turn causes the Oracle server to recompile such
dependent client applications.

■ If your gateway is using the SNA communication protocol, issue the following:

SQL> column ddl_date format A22 heading ’LAST_DDL’
SQL> select object_name,

PL/SQL Package and TIP File Separation

F-4 Oracle Procedural Gateway for APPC User’s Guide

 2 object_type,
 3 to_char(LAST_DDL_TIME,’MON-DD-YY HH:MM:SS’) ddl_date,
 4 status
 5 from all_objects where owner = ’PGAADMIN’
 6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
---------- ----------- --------------------- ---------
PGADB2I PACKAGE NOV-24-1999 09:09:13 VALID
PGADB2I PACKAGE BODY NOV-24-1999 09:11:44 INVALID
DB2IDRIV PROCEDURE DEC-30-1999 12:12:14 INVALID
DB2IDRVM PROCEDURE DEC-30-1999 12:12:53 INVALID
DB2IFORM PROCEDURE DEC-14-1999 11:12:24 INVALID

■ If your gateway is using the TCP/IP communication protocol, issue the
following:

SQL> column ddl_date format A22 heading ’LAST_DDL’
SQL> select object_name,
 2 object_type,
 3 to_char(LAST_DDL_TIME,’MON-DD-YY HH:MM:SS’) ddl_date,
 4 status
 5 from all_objects where owner = ’PGAADMIN’
 6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
---------- ----------- --------------------- ---------
PGTFLIP PACKAGE APR-24-03 03:04:58 VALID
PGTFLIP PACKAGE BODY APR-24-03 05:03:52 INVALID
PGTFLIP PROCEDURE APR-24-03 05:04:29 INVALID

F.2.2.1 Recompile the TIP Body
Note that the recompilation of the specification has invalidated its dependent objects,
the three client applications in addition to the package body. To complete these
changes, the body must be recompiled to bring it into compliance with the
specification and then the three client applications could be compiled manually, or the
Oracle server compiles them automatically as they are referenced.

If the client applications are recompiled by the Oracle server as they are referenced,
there is a one-time delay during recompilation.

Recompilation errors in the client application, if any, are due to:

■ customer changes in the client application source

■ an altered PG DD definition for the TIP if the TIP has been regenerated

■ the wrong version being generated from multiple transaction entry versions saved
in the PG DD if the TIP has been regenerated

F.2.3 Inadvertent Alteration of TIP Specification
If you make a mistake when you generate a tip (for example, if you alter a PG DD
transaction definition, or if you’ve inadvertently specified the wrong version during
regeneration), then the recompiled body will not match the stored specification; as a
result, the Oracle Integrating Server would invalidate the specification and any
dependent client applications.

You may have to regenerate and recompile the TIP and its dependent client
applications to restore correct operation.

PL/SQL Package and TIP File Separation

Tip Internals F-5

Refer to "Listing Dependency Management Information," in the Oracle Database Server
Application Developer’s Guide for more information.

PL/SQL Package and TIP File Separation

F-6 Oracle Procedural Gateway for APPC User’s Guide

Administration Utility Samples G-1

G
Administration Utility Samples

Use the following sample input statements and report output for the Procedural
Gateway Administration Utility to guide you in designing your own PGAU
statements.

This appendix contains these sample PGAU statements:

■ "Sample PGAU DEFINE DATA Statements" on page G-1

■ "Sample PGAU DEFINE CALL Statements" on page G-2

■ "Sample PGAU DEFINE TRANSACTION Statement" on page G-2

■ "Sample PGAU GENERATE Statement" on page G-2

■ "Sample Implicit Versioning Definitions" on page G-3

■ "Sample PGAU REDEFINE DATA Statements" on page G-6

■ "Sample PGAU UNDEFINE Statements" on page G-7

■ "Sample PGAU REPORT Output" on page G-7

■ "Sample TIP Content Documentation" on page G-11

■ "Sample TIP Trace Output" on page G-13

■ "Sample TIP Output" on page G-15

G.1 Sample PGAU DEFINE DATA Statements
DEFINE DATA EMPNO
 PLSDNAME (EMPNO)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 EMP-NO PIC X(6).
);

DEFINE DATA EMPREC
 PLSDNAME (DCLEMP)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 INFILE("emp.cob");

where the file emp.cob contains the following:

01 DCLEMP.
 10 EMPNO PIC X(6).
 10 FIRSTNME.

Sample PGAU DEFINE CALL Statements

G-2 Oracle Procedural Gateway for APPC User’s Guide

 49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
 49 FIRSTNME-TEXT PIC X(12).
 10 MIDINIT PIC X(1).
 10 LASTNAME.
 49 LASTNAME-LEN PIC S9(4) USAGE COMP.
 49 LASTNAME-TEXT PIC X(15).
 10 WORKDEPT PIC X(3).
 10 PHONENO PIC X(4).
 10 HIREDATE PIC X(10).
 10 JOB PIC X(8).
 10 EDLEVEL PIC S9(4) USAGE COMP.
 10 SEX PIC X(1)
 10 BIRTHDATE PIC X(10).
 10 SALARY PIC S9999999V99 USAGE COMP-3.
 10 BONUS PIC S9999999V99 USAGE COMP-3.
 10 COMM PIC S9999999V99 USAGE COMP-3.

DEFINE DATA DB2INFO
 PLSDNAME (DB2)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 INFILE("db2.cob");

where the file db2.cob contains the following:

01 DB2.
 05 SQLCODE PIC S9(9) COMP-4.
 05 SQLERRM.
 49 SQLERRML PIC S9(4) COMP-4.
 49 SQLERRT PIC X(70).
 05 DSNERRM.
 49 DSNERRML PIC S9(4) COMP-4.
 49 DSNERRMT PIC X(240) OCCURS 8 TIMES
 INDEXED BY ERROR-INDEX

G.2 Sample PGAU DEFINE CALL Statements
DEFINE CALL DB2IMAIN
 PKGCALL (PGADB2I_MAIN)
 PARMS ((EMPNO IN),
 (EMPREC OUT));
DEFINE CALL DB2IDIAG
 PKGCALL (PGADB2I_DIAG)
 PARMS ((DB2INFO OUT));

G.3 Sample PGAU DEFINE TRANSACTION Statement
DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN,
 DB2IDIAG)
 SIDEPROFILE(CICSPROD)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

G.4 Sample PGAU GENERATE Statement
GENERATE DB2I

Sample Implicit Versioning Definitions

Administration Utility Samples G-3

 PKGNAME(PGADB2I)
 OUTFILE("pgadb2i");

A user’s high-level application now uses this TIP by referencing these PL/SQL
datatypes passed and returned.

Table G–1 provides a description of the TIP user transaction datatypes in package
name PGADB2I:

and the application calls:

PGADB2I.PGADB2I_INIT(trannum);
PGADB2I.PGADB2I_MAIN(trannum, empno, emprec);
PGADB2I.PGADB2I_DIAG(trannum, db2);
PGADB2I.PGADB2I_TERM(trannum, termtype);

G.5 Sample Implicit Versioning Definitions
The examples are sample definitions of DATA, CALL, and TRANSACTION entries
with implicit versioning.

This example creates a new DATA version of ’EMPREC’ because ’EMPREC’ DATA
was defined previously:

DEFINE DATA EMPREC
 PLSDNAME (NEWEMP)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 INFILE("emp2.cob");

where the file emp2.cob contains the following:

01 NEWEMP.
 10 EMPNO PIC X(6).
 10 FIRSTNME.
 49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
 49 FIRSTNME-TEXT PIC X(12).
 10 MIDINIT PIC X(1).
 10 LASTNAME.
 49 LASTNAME-LEN PIC S9(4) USAGE COMP.
 49 LASTNAME-TEXT PIC X(15).
 10 WORKDEPT PIC X(3).
 10 PHONENO PIC X(3).
 10 HIREDATE PIC X(10).
 10 JOB PIC X(8).
 10 EDLEVEL PIC S9(4) USAGE COMP.
 10 SEX PIC X(1).
 10 BIRTHDATE PIC X(10).
 10 SALARY PIC S9999999V99 USAGE COMP-3.
 10 BONUS PIC S9999999V99 USAGE COMP-3.
 10 COMM PIC S9999999V99 USAGE COMP-3.

Table G–1 TIP User Transaction Datatypes Used in Package Name PGADB2I

Datatype Description

PGADB2I.EMPNO is a PL/SQL variable corresponding to COBOL EMPNO.

PGADB2I.DCLEMP Which is a PL/SQL RECORD corresponding to COBOL DCLEMP.

PGADB2I.DB2 Which is a PL/SQL RECORD corresponding to COBOL
DB2INFO.

Sample Implicit Versioning Definitions

G-4 Oracle Procedural Gateway for APPC User’s Guide

 10 YTD.
 15 SAL PIC S9(9)V99 USAGE COMP-3.
 15 BON PIC S9(9)V99 USAGE COMP-3.
 15 COM PIC S9(9)V99 USAGE COMP-3.

To determine which DATA version number was assigned, this SQL query can be
issued:

SELECT MAX(pd.version)
 FROM pga_data pd
 WHERE pd.dname = ’EMPREC’;

To determine additional information related to the updated version of ’EMPREC’ this
query can be used:

SELECT *
 FROM pga_data pd
 WHERE pd.dname = ’EMPREC’;

This example creates a new CALL version of ’DB2IMAIN’ because the ’DB2IMAIN’
CALL was defined previously:

DEFINE CALL DB2IMAIN
 PKGCALL (PGADB2I_MAIN)
 PARMS ((EMPNO IN),
 (EMPREC OUT VERSION(ddddd)));

where ddddd is the version number of the EMPREC DATA definition queried after
the previous DEFINE DATA updated EMPREC.

To determine which call version number was assigned, this SQL query can be issued:

SELECT MAX(pc.version)
 FROM pga_call pc
 WHERE pc.cname = ’DB2IMAIN’;

To determine additional information related to the updated version of ’DB2IMAIN’
this query can be used:

 SELECT *
 FROM pga_call pc
 WHERE pc.cname = ’DB2IMAIN’;

The DEFINE TRANSACTION example creates a new TRANSACTION version of
’DB2I’ because the ’DB2I’ TRANSACTION was defined previously. The essential
difference of the new version of the DB2I transaction is that the first call uses a new
PL/SQL record format "NEWEMP" (which corresponds to the COBOL NEWEMP
format) to query the employee data.

DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN VERSION (ccccc),

Caution: Record format changes like that discussed above must
be synchronized with the requirements of the remote transaction
program. Changes to the PGA TIP alone result in errors. A new
remote transaction program with the corequisite changes could be
running on a separate CICS system and started through the change
from "CICSPROD" to "CICSTEST" in the SIDEPROFILE parameter
below.

Sample Implicit Versioning Definitions

Administration Utility Samples G-5

 DB2IDIAG)
 SIDEPROFILE(CICSTEST)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

where ccccc is the version number of the DB2IMAIN CALL definition queried after
the previous DEFINE CALL updated DB2IMAIN.

There are two versions of the DB2I transaction definition in the PGA DD. The original
uses the old "DCLEMP" record format and starts transaction "DB2I" on the production
CICS system. The latest uses the "NEWEMP" record format and starts transaction
"DB2I" on the test CICS system.

To determine which transaction version number was assigned, this SQL query can be
issued:

SELECT MAX(pt.version)
 FROM pga_trans pt
 WHERE pt.tname = ’DB2I’;

To determine additional information related to the updated version of ’DB2I’ this
query can be used:

SELECT *
 FROM pga_trans pt
 WHERE pt.tname = ’DB2I’;

This example generates a new package using the previously defined new versions of
the TRANSACTION, CALL, and DATA definitions:

GENERATE DB2I
VERSION(ttttt)
PKGNAME(NEWDB2I)
OUTFILE("pgadb2i");

where ttttt is the version number of the DB2I TRANSACTION definition queried
after the previous DEFINE TRANSACTION updated DB2I.

Note that the previous PL/SQL package files pgadb2i.pkh and pgadb2i.pkb are
overwritten. To keep the new package separate, change the output file specification.
For example:

GENERATE DB2I
VERSION(ttttt)
PKGNAME(NEWDB2I)
OUTFILE("newdb2i");

A user’s high-level application now uses this TIP by referencing the PL/SQL
datatypes passed and returned.

Table G–2 provides a description of the TIP user transaction datatypes in package
name NEWDB2I:

Table G–2 TIP User Transaction Datatypes for Package Name NEWDB2I

Datatype Description

NEWDB2I.EMPNO Is a PL/SQL variable corresponding to COBOL EMPNO.

NEWDB2I.NEWEMP Is a PL/SQL RECORD corresponding to COBOL NEWEMP.

Sample PGAU REDEFINE DATA Statements

G-6 Oracle Procedural Gateway for APPC User’s Guide

and the application calls:

NEWDB2I.PGADB2I_INIT(trannum);
NEWDB2I.PGADB2I_MAIN(trannum, empno, newemp);
NEWDB2I.PGADB2I_DIAG(trannum, db2);
NEWDB2I.PGADB2I_TERM(trannum, termtype);

G.6 Sample PGAU REDEFINE DATA Statements
Single-field redefinition in which EDLEVEL USAGE becomes COMP-3:

REDEFINE DATA EMPREC
 PLSDNAME(DCLEMP)
 LANGUAGE(IBMVSCOBOLII)
 FIELD(EDLEVEL)
 PLSFNAME(PLSRECTYPE)
 (
 10 EDLEVEL PIC S9(4) USAGE IS COMP-3.
);

By default, this redefines the latest version of EMPREC which implicitly affects the
latest call and transaction definitions which refer to it.

Sample multi-field redefinition in which the employee’s first and last name fields are
expanded and the employee’s middle initial is removed.

REDEFINE DATA EMPREC
 VERSION(1)
 PLSDNAME(DCLEMP)
 LANGUAGE(IBMVSCOBOLII)
 INFILE("emp1.cob");

 where the file emp1.cob contains the following:

01 DCLEMP.
 10 EMPNO PIC X(6).
 10 FIRSTNME.
 49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
 49 FIRSTNME-TEXT PIC X(15).
 10 LASTNAME.
 49 LASTNAME-LEN PIC S9(4) USAGE COMP.
 49 LASTNAME-TEXT PIC X(20).
 10 WORKDEPT PIC X(3).
 10 PHONENO PIC X(4).
 10 HIREDATE PIC X(10).
 10 JOB PIC X(8).
 10 EDLEVEL PIC S9(4) USAGE COMP.
 10 SEX PIC X(1).
 10 BIRTHDATE PIC X(10).
 10 SALARY PIC S9999999V99 USAGE COMP-3.
 10 BONUS PIC S9999999V99 USAGE COMP-3.
 10 COMM PIC S9999999V99 USAGE COMP-3.

The assumption is that version 1 of the data definition for ’EMPREC’ is to be
redefined. This causes a redefinition of the first ’EMPREC’ sample data definition

NEWDB2I.DB2 Is a PL/SQL RECORD corresponding to COBOL DB2.

Table G–2 (Cont.) TIP User Transaction Datatypes for Package Name NEWDB2I

Datatype Description

Sample PGAU REPORT Output

Administration Utility Samples G-7

without changing the version number. Thus, existing call and transaction definitions
which referenced version 1 of ’EMPREC’ automatically reflect the changed ’EMPREC’.
This change becomes effective when a TIP is next generated for a transaction that
references the call which referenced version 1 of ’EMPREC’.

This implicitly affects both versions of the transaction because both refer to EMPREC
in the second call to update the employee data.

G.7 Sample PGAU UNDEFINE Statements
These samples illustrate the deletion of a specific version of a definition which has
multiple versions, followed by deletion of all versions of a specific named definition.

Deletion of DATA Definitions:

UNDEFINE DATA EMPREC VERSION (ddddd);
UNDEFINE DATA EMPREC VERSION (ALL);
UNDEFINE CALL DB2IMAIN VERSION (ccccc);
UNDEFINE CALL DB2IMAIN VERS (all);
UNDEFINE TRANSACTION DB2I vers (ttttt);
UNDEFINE TRANSACTION DB2I vers (all);

Note that the previous UNDEFINE statements leave the DATA definition for EMPNO
and the CALL definition for DB2IDIAG in the PGA DD.

G.8 Sample PGAU REPORT Output
 PGAU> report transaction db2i;

 /* Transaction DB2I version 298 created by PGAADMIN on FEB 14, 2005 17:38.02 */
 DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN VERSION(672),
 DB2IDIAG VERSION(673))
 SIDEPROFILE(CICSPGA)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE(american_america.we8ebcdic37c);

 PGAU> report transaction db2i with calls;

 /* Call DB2IMAIN version 672 created by PGAADMIN on FEB 14, 2005 17:38.01 */
 DEFINE CALL DB2IMAIN PKGCALL(PGADB2I_MAIN)
 PARMS(EMPNO IN VERSION(638),
 EMPREC OUT VERSION(639));

 /* Call DB2IDIAG version 673 created by PGAADMIN on FEB 14, 2005 17:38.02 */
 DEFINE CALL DB2IDIAG PKGCALL(PGADB2I_DIAG)
 PARMS(DB2INFO OUT VERSION(640));

 /* Transaction DB2I version 298 created by PGAADMIN on FEB 14, 2005 17:38.02 */
 DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN VERSION(672),
 DB2IDIAG VERSION(673))
 SIDEPROFILE(CICSPGA)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)

Sample PGAU REPORT Output

G-8 Oracle Procedural Gateway for APPC User’s Guide

 NLS_LANGUAGE(american_america.we8ebcdic37c);

 PGAU> report transaction db2i with data;

 /* Data Definition EMPNO version 638 created/updated by PGAADMIN */
 /* on FEB 14, 2005 17:02.58 */
 DEFINE DATA EMPNO LANGUAGE(IBMVSCOBOLII) USAGE(PASS)
 (
 01 EMPNO PICTURE IS X(6).
);

 /* Data Definition EMPREC version 639 created/updated by PGAADMIN */
 /* on FEB 14,2005 17:02.59 */
 DEFINE DATA EMPREC PLSDNAME(DCLEMP) LANGUAGE(IBMVSCOBOLII) USAGE(PASS)
 (
 01 DCLEMP.
 10 EMPNO PICTURE IS X(6).
 10 FIRSTNME.
 * Field FIRSTNME-LEN has PL/SQL name FIRSTNME_LEN
 49 FIRSTNME-LEN USAGE IS COMP PICTURE IS S9(4).
 * Field FIRSTNME-TEXT has PL/SQL name FIRSTNME_TEXT
 49 FIRSTNME-TEXT PICTURE IS X(12).
 10 MIDINIT PICTURE IS X(1).
 10 LASTNAME.
 * Field LASTNAME-LEN has PL/SQL name LASTNAME_LEN
 49 LASTNAME-LEN USAGE IS COMP PICTURE IS S9(4).
 * Field LASTNAME-TEXT has PL/SQL name LASTNAME_TEXT
 49 LASTNAME-TEXT PICTURE IS X(15).
 10 WORKDEPT PICTURE IS X(3).
 10 PHONENO PICTURE IS X(4).
 10 HIREDATE PICTURE IS X(10).
 10 JOB PICTURE IS X(8).
 10 EDLEVEL USAGE IS COMP PICTURE IS S9(4).
 10 SEX PICTURE IS X(1).
 10 BIRTHDATE PICTURE IS X(10).
 10 SALARY USAGE IS COMP-3 PICTURE IS S9999999V99.
 10 BONUS USAGE IS COMP-3 PICTURE IS S9999999V99.
 10 COMM USAGE IS COMP-3 PICTURE IS S9999999V99.
);

 /* Call DB2IMAIN version 672 created by PGAADMIN on FEB 14, 2005 17:38.01*/
 DEFINE CALL DB2IMAIN PKGCALL(PGADB2I_MAIN)
 PARMS(EMPNO IN VERSION(638),
 EMPREC OUT VERSION(639));

 /*Data 2005 DB2INFO version 640 created/updated by PGAADMIN */
 /* on FEB 14,2005 17:02.00*/
 DEFINE DATA DB2INFO PLSDNAME(DB2) LANGUAGE(IBMVSCOBOLII) USAGE(PASS)
 (
 01 DB2.
 05 SQLCODE USAGE IS COMP-4 PICTURE IS S9(9).
 05 SQLERRM.
 49 SQLERRML USAGE IS COMP-4 PICTURE IS S9(4).
 49 SQLERRMT PICTURE IS X(70).
 05 DSNERRM.
 49 DSNERRML USAGE IS COMP-4 PICTURE IS S9(4).
 49 DSNERRMT PICTURE IS X(240) OCCURS 8 TIMES.
);

Sample PGAU REPORT Output

Administration Utility Samples G-9

 /* Call DB2IDIAG version 673 created by PGAADMIN on FEB 14, 2005 17:38.02*/
 DEFINE CALL DB2IDIAG PKGCALL(PGADB2I_DIAG)
 PARMS(DB2INFO OUT VERSION(640));

 /* Transaction DB2I version 298 created by PGAADMIN on FEB 14, 2005 17:38.02*/
 DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN VERSION(672),
 DB2IDIAG VERSION(673))
 SIDEPROFILE(CICSPGA)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE(american_america.we8ebcdic37c);

 PGAU> report transaction db2i with data with debug;

 /* Data Definition EMPNO version 638 created/updated by PGAADMIN */
 /* on FEB 14, 2005 17:02.58 */
 DEFINE DATA EMPNO /* d#=565 */ LANGUAGE(IBMVSCOBOLII) USAGE(PASS)
 (
 * f#=4005
 01 EMPNO PICTURE IS X(6).
);

 /* Data Definition EMPREC version 639 created/updated by PGAADMIN */
 /* on FEB 14,2005 17:02.59 */
 DEFINE DATA EMPREC /* d#=566 */ PLSDNAME(DCLEMP) LANGUAGE(IBMVSCOBOLII) USAGE(PASS)
 (
 * f#=4006
 01 DCLEMP.
 * f#=4007
 10 EMPNO PICTURE IS X(6).
 * f#=4008
 10 FIRSTNME.
 * f#=4009
 * Field FIRSTNME-LEN has PL/SQL name FIRSTNME_LEN
 49 FIRSTNME-LEN USAGE IS COMP PICTURE IS S9(4).
 * f#=4010
 * Field FIRSTNME-TEXT has PL/SQL name FIRSTNME_TEXT
 49 FIRSTNME-TEXT PICTURE IS X(12).
 * f#=4011
 10 MIDINIT PICTURE IS X(1).
 * f#=4012
 10 LASTNAME.
 * f#=4013
 * Field LASTNAME-LEN has PL/SQL name LASTNAME_LEN
 49 LASTNAME-LEN USAGE IS COMP PICTURE IS S9(4).
 * f#=4014
 * Field LASTNAME-TEXT has PL/SQL name LASTNAME_TEXT
 49 LASTNAME-TEXT PICTURE IS X(15).
 * f#=4015
 10 WORKDEPT PICTURE IS X(3).
 * f#=4016
 10 PHONENO PICTURE IS X(4).
 * f#=4017
 10 HIREDATE PICTURE IS X(10).
 * f#=4018
 10 JOB PICTURE IS X(8).

Sample PGAU REPORT Output

G-10 Oracle Procedural Gateway for APPC User’s Guide

 * f#=4019
 10 EDLEVEL USAGE IS COMP PICTURE IS S9(4).
 * f#=4020
 10 SEX PICTURE IS X(1).
 * f#=4021
 10 BIRTHDATE PICTURE IS X(10).
 * f#=4022
 10 SALARY USAGE IS COMP-3 PICTURE IS S9999999V99.
 * f#=4023
 10 BONUS USAGE IS COMP-3 PICTURE IS S9999999V99.
 * f#=4024
 10 COMM USAGE IS COMP-3 PICTURE IS S9999999V99.
);

 /* Call DB2IMAIN version 672 created by PGAADMIN on FEB 14, 2005 17:38.01*/
 DEFINE CALL DB2IMAIN PKGCALL(PGADB2I_MAIN) /* c#=672 */
 PARMS(EMPNO IN VERSION(638) /* d#=565 */,
 EMPREC OUT VERSION(639) /* d#=566 */);

 /*Data Definition DB2INFO version 640 created/updated by PGAADMIN */
 /* on FEB 14,2005 17:02.00*/
 DEFINE DATA DB2INFO /* d#=567 */ PLSDNAME(DB2) LANGUAGE(IBMVSCOBOLII) USAGE(PASS)
 (
 * f#=4025
 01 DB2.
 * f#=4026
 05 SQLCODE USAGE IS COMP-4 PICTURE IS S9(9).
 * f#=4027
 05 SQLERRM.
 * f#=4028
 49 SQLERRML USAGE IS COMP-4 PICTURE IS S9(4).
 * f#=4029
 49 SQLERRMT PICTURE IS X(70).
 * f#=4030
 05 DSNERRM.
 * f#=4031
 49 DSNERRML USAGE IS COMP-4 PICTURE IS S9(4).
 * f#=4032
 49 DSNERRMT PICTURE IS X(240) OCCURS 8 TIMES.
);

 /* Call DB2IDIAG version 673 created by PGAADMIN on FEB 14, 2005 17:38.02*/
 DEFINE CALL DB2IDIAG PKGCALL(PGADB2I_DIAG) /* c#=673 */
 PARMS(DB2INFO OUT VERSION(640) /* d#=567 */);

 /* Transaction DB2I version 298 created by PGAADMIN on FEB 14, 2005 17:38.02*/
 DEFINE TRANSACTION DB2I /* t#=298 */
 CALL (DB2IMAIN VERSION(672) /* c#=672 */,
 DB2IDIAG VERSION(673) /* c#=673 */)
 SIDEPROFILE(CICSPGA) /* a#=2 */
 TPNAME(DB2I) /* a#=3 */
 LOGMODE(ORAPLU62) /* a#=4 */
 SYNCLEVEL(0) /* a#=6 */
 NLS_LANGUAGE(american_america.we8ebcdic37c) /* a#=7 */ ;

 PGAU>

 PGAU> spool off

Sample TIP Content Documentation

Administration Utility Samples G-11

G.9 Sample TIP Content Documentation
PG4APPC TIP pgadb2i contents:

TIP generation date: 15-FEB-05 10:14:17
TIP generation user: PGAADMIN
PG DD version: 10.2.0.1.0
PGAU version: 10.2.0.1.0

/*--*/
/* TIP user-transaction definition */
/*--*/
 remote host transaction program name: DB2I
 remote host transaction sync level: 0
 remote host application LU name:
 remote host application mode entry: ORAPLU62
 gateway CPI-C Side Profile name: CICSPGA

 remote host environment: IBM370
 remote host NLS name: AMERICAN_AMERICA.WE8EBCDIC37C

/*--*/
/* TIP user-transaction-data type declarations */
/*--*/

 PL/SQL Variable name PL/SQL Variable Type

 TYPE FIRSTNME_Typ is RECORD (
 FIRSTNME_LEN NUMBER(4,0),
 FIRSTNME_TEXT CHAR(12));

 TYPE LASTNAME_Typ is RECORD (
 LASTNAME_LEN NUMBER(4,0),
 LASTNAME_TEXT CHAR(15));

 TYPE DCLEMP_Typ is RECORD (
 EMPNO CHAR(6),
 FIRSTNME FIRSTNME_Typ,
 MIDINIT CHAR(1),
 LASTNAME LASTNAME_Typ,
 WORKDEPT CHAR(3),
 PHONENO CHAR(4),
 HIREDATE CHAR(10),
 JOB CHAR(8),
 EDLEVEL NUMBER(4,0),
 SEX CHAR(1),
 BIRTHDATE CHAR(10),
 SALARY NUMBER(9,2),
 BONUS NUMBER(9,2),
 COMM NUMBER(9,2));

 TYPE SQLERRM_Typ is RECORD (
 SQLERRML NUMBER(4,0),
 SQLERRMT CHAR(70));

 DSNERRMT_Key BINARY_INTEGER;

 TYPE DSNERRMT_Tbl is TABLE of CHAR(240)
 INDEX by BINARY_INTEGER;

Sample TIP Content Documentation

G-12 Oracle Procedural Gateway for APPC User’s Guide

 TYPE DSNERRM_Typ is RECORD (
 DSNERRML NUMBER(4,0),
 DSNERRMT DSNERRMT_Tbl);

 TYPE DB2_Typ is RECORD (
 SQLCODE NUMBER(9,0),
 SQLERRM SQLERRM_Typ,
 DSNERRM DSNERRM_Typ);

/*--*/
/* TIP default functions */
/*--*/

 TYPE override_Typ IS RECORD (
 tranname VARCHAR2(2000), /* Transaction Program */
 transync BINARY_INTEGER, /* RESERVED */
 trannls VARCHAR2(50), /* RESERVED */
 oltpname VARCHAR2(2000), /* Logical Unit */
 oltpmode VARCHAR2(2000), /* LOG Mode Entry */
 netaddr VARCHAR2(2000));/* Side Profile */

 FUNCTION pgadb2i_init(/* init standard */
 tranuse IN OUT BINARY_INTEGER)
 RETURN INTEGER;

 FUNCTION pgadb2i_init(/* init override */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ)
 RETURN INTEGER;

 FUNCTION pgadb2i_init(/* init diagnostic */
 tranuse IN OUT BINARY_INTEGER,
 tipdiag IN CHAR)
 RETURN INTEGER;

 FUNCTION pgadb2i_init(/* init over-diag */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ,
 tipdiag IN CHAR)
 RETURN INTEGER;

 FUNCTION pgadb2i_term(/* terminate */
 tranuse IN BINARY_INTEGER,
 termtype IN BINARY_INTEGER)
 RETURN INTEGER;

/*--*/
/* TIP user-transaction-call function definitions */
/*--*/
 FUNCTION PGADB2I_MAIN(
 tranuse IN BINARY_INTEGER,
 EMPNO IN CHAR,
 DCLEMP OUT DCLEMP_Typ)
 RETURN INTEGER;

 FUNCTION PGADB2I_DIAG(
 tranuse IN BINARY_INTEGER,
 DB2 OUT DB2_Typ)
 RETURN INTEGER;

Sample TIP Trace Output

Administration Utility Samples G-13

/*--*/
/* TIP field variables */
/*--*/

 PL/SQL name PL/SQL type

 EMPNO CHAR(6)

 DCLEMP DCLEMP_Typ
 DCLEMP.EMPNO CHAR(6)
 DCLEMP.FIRSTNME FIRSTNME_Typ
 DCLEMP.FIRSTNME.FIRSTNME_LEN NUMBER(4,0)
 DCLEMP.FIRSTNME.FIRSTNME_TEXT CHAR(12)
 DCLEMP.MIDINIT CHAR(1)
 DCLEMP.LASTNAME LASTNAME_Typ
 DCLEMP.LASTNAME.LASTNAME_LEN NUMBER(4,0)
 DCLEMP.LASTNAME.LASTNAME_TEXT CHAR(15)
 DCLEMP.WORKDEPT CHAR(3)
 DCLEMP.PHONENO CHAR(4)
 DCLEMP.HIREDATE CHAR(10)
 DCLEMP.JOB CHAR(8)
 DCLEMP.EDLEVEL NUMBER(4,0)
 DCLEMP.SEX CHAR(1)
 DCLEMP.BIRTHDATE CHAR(10)
 DCLEMP.SALARY NUMBER(9,2)
 DCLEMP.BONUS NUMBER(9,2)
 DCLEMP.COMM NUMBER(9,2)

 DB2 DB2_Typ
 DB2.SQLCODE NUMBER(9,0)
 DB2.SQLERRM SQLERRM_Typ
 DB2.SQLERRM.SQLERRML NUMBER(4,0)
 DB2.SQLERRM.SQLERRMT CHAR(70)
 DB2.DSNERRM DSNERRM_Typ
 DB2.DSNERRM.DSNERRML NUMBER(4,0)
 DB2.DSNERRM.DSNERRMT(DSNERRMT_Key) CHAR(240)

G.10 Sample TIP Trace Output
SQL> set serveroutput on size 20000
SQL> exec db2idriv(’000340’,’11110000’);
Name
JASON R GOUNOT
Sex Birthdate Edlevel
M 05/17/1926 16
Empno Dept Job Phone Hiredate Salary Bonus Commission
000340 E21 FIELDREP 5698 05/05/1947 23840.00 500.00 1907.00

PL/SQL procedure successfully completed.

SQL> exec rtrace(’PGADB2I’);
UTL_PG warnings enabled
function entry/exit trace enabled
data conversion trace enabled
gateway exchange trace enabled
enter PGADB2I_init diagnostic
time 22-MAR-1995 13:54:47
from PGAADMIN
exit PGADB2I_init diagnostic

Sample TIP Trace Output

G-14 Oracle Procedural Gateway for APPC User’s Guide

enter PGADB2I_MAIN
enter updsndlt
sendcnt, parmlenm => 1, 6
sendllst(sendcnt) => 0
sendllst(sendcnt) => 6
exit updsndlt
EMPNO CHAR(6)
at pos, off, len => 1, 1, 6
enter updrcvlt
recvcnt, parmlenm => 1, 91
recvllst(recvcnt) => 0
recvllst(recvcnt) => 91
exit updrcvlt
enter dataxfer
tranuse => 2
enter bldsxfrl
sendmax => 1
sendbufl => 6
sxfrllst => 0000000100000006
exit bldsxfrl
recvmax => 1
enter bldrxfrl
recvbufl => 91
rxfrllst => 000000010000005B
exit bldrxfrl
enter xfersr
tranuse => 2
trancid => 200E8E08200F2E1800000000
sendbufl => 6
sxfrllst => 000000010000000600000000
recvbufl => 91
rxfrllst => 000000010000005B00000000
recvbufl => 91
rxfrllst => 000000010000005B00000000
exit xfersr
exit dataxfer
enter getrcvla
recvcnt => 1
recvalst(recvcnt) => 0
recvalst(recvcnt) => 91
numplen => 91
exit getrcvla
DCLEMP.EMPNO CHAR(6)
at pos, off, len => 1, 1, 6
DCLEMP.FIRSTNME.FIRSTNME_LEN NUMBER(4,0)
at pos, off, len => 7, 7, 2
DCLEMP.FIRSTNME.FIRSTNME_TEXT CHAR(12)
at pos, off, len => 9, 9, 12
DCLEMP.MIDINIT CHAR(1)
at pos, off, len => 21, 21, 1
DCLEMP.LASTNAME.LASTNAME_LEN NUMBER(4,0)
at pos, off, len => 22, 22, 2
DCLEMP.LASTNAME.LASTNAME_TEXT CHAR(15)
at pos, off, len => 24, 24, 15
DCLEMP.WORKDEPT CHAR(3)
at pos, off, len => 39, 39, 3
DCLEMP.PHONENO CHAR(4)
at pos, off, len => 42, 42, 4
DCLEMP.HIREDATE CHAR(10)
at pos, off, len => 46, 46, 10

Sample TIP Output

Administration Utility Samples G-15

DCLEMP.JOB CHAR(8)
at pos, off, len => 56, 56, 8
DCLEMP.EDLEVEL NUMBER(4,0)
at pos, off, len => 64, 64, 2
DCLEMP.SEX CHAR(1)
at pos, off, len => 66, 66, 1
DCLEMP.BIRTHDATE CHAR(10)
at pos, off, len => 67, 67, 10
DCLEMP.SALARY NUMBER(9,2)
at pos, off, len => 77, 77, 5
DCLEMP.BONUS NUMBER(9,2)
at pos, off, len => 82, 82, 5
DCLEMP.COMM NUMBER(9,2)
at pos, off, len => 87, 87, 5
exit PGADB2I_MAIN
enter PGADB2I_term
exit PGADB2I_term
time 22-MAR-1995 13:54:49
from PGAADMIN
no more PGADB2I trace messages

PL/SQL procedure successfully completed.

SQL> spool off

G.11 Sample TIP Output
SQL> exec db2idriv(’000340’);
Name
JASON R GOUNOT
Sex Birthdate Edlevel
M 05/17/1926 16
Empno Dept Job Phone Hiredate Salary Bonus Commission
000340 E21 FIELDREP 5698 05/05/1947 23840.00 500.00 1907.00

PL/SQL procedure successfully completed.

SQL> spool off

Sample TIP Output

G-16 Oracle Procedural Gateway for APPC User’s Guide

Index-1

Index

A
APPC

runtime, 4-22
SENDs and RECEIVEs

TIP CALL correspondence, 4-11
trace, 8-11
using with terminal-oriented transaction

program, 4-26
APPC conversation sharing, 4-20

concepts, 4-21
examples, 4-23
for too large TIPs, 4-23
overrides and diagnostics, 4-25
TIP compatibility, 4-22
usage, 4-22

architecture
commit-confirm, 5-4
components of the gateway, 1-7

ASCII
automatic conversion, 1-3

B
BIT_AND function, C-1
BIT_COMPLEMENT function, C-2
BIT_OR function, C-2
BIT_XOR function, C-3

C
CALL correspondence

on gateway using SNA, 4-11
on gateway using TCP/IP, 7-5

call correspondence order restrictions
on gateway using SNA, 4-13
on gateway using TCP/IP, 7-7

CAST_TO_RAW function, C-4
CAST_TO_VARCHAR2 function, C-4
CICS, 1-10
CICS Transaction Server

gateway starts communication with, 1-11
client application development

calling a TIP
on gateway using SNA, 4-14
on gateway using TCP/IP, 7-8

customized TIPs for remote host transaction, 4-6
declaring TIP variables, 4-14, 7-8
error handling

on gateway using SNA, 4-20
on gateway using TCP/IP, 7-14

examples and samples, 1-6
exchanging data, 4-19

on gateway using TCP/IP, 7-13
executing, 4-20, 7-14
granting execute authority, 4-20, 7-14
on gateway using TCP/IP, 7-1
overriding TIP initializations, 4-17

on gateway using TCP/IP, 7-11
overview, 4-1
preparation, 4-3
remote host transaction types

multi-conversational transactions, 4-5
one-shot transactions, 4-4
persistent transactions, 4-5
See also, index entries for each transaction type

requirements, 4-6
declare RHT/TIP data to be exchanged, 4-7,

4-8
exchange data with RHT using TIP user

function, 4-7, 4-9
initialize RHT for multi-conversational

applications, 4-9
initialize RHT using TIP initialization

function, 4-7, 4-8
repetitively exchange data with RHT using TIP

user function, 4-8
terminate RHT using TIP termination

function, 4-7, 4-8, 4-9
security considerations, 4-19, 7-13
terminating the conversation, 4-19, 7-13
TIP and remote transaction program

correspondence, 4-10, 7-4
TIP CALL correspondence, 4-11
TIP content and purpose, 4-3
TIP DATA correspondence, 4-10, 7-4
TIP TRANSACTION correspondence

on gateway using SNA, 4-13
on gateway using TCP/IP, 7-7

client application development for gateway using
TCP/IP

overview, 7-1

Index-2

client application development on gateway using
TCP/IP

preparing, 7-3
COBOL, 4-3, 7-3, D-2, D-8

datatype conversion supported by PG DD and
TIPs, D-2

lacks datatype for variable length data, D-2
PGAU interpretation of COBOL symbols, D-3
support for double byte character sets, PIC G

datatypes, 4-25, 7-15
COMMIT command, 2-2

user responsibility, 2-2
COMMIT processing, 2-2
commit-confirm, 5-1

application design requirements, 5-4
architecture, 5-4

components, 5-5
interactions, 5-5

components, 5-2
logic flow, 5-5

step by step, 5-5
Oracle Global Transaction ID, 5-2
purpose, 5-1
relation to two-phase commit, 5-1
required components

OLTP commit-confirm transaction log, 5-3
OLTP forget/recovery transaction, 5-3
OLTP transaction logging code, 5-3
Oracle logging server, 5-3

supported OLTPs, 5-2
transaction log, 5-7

communication
between mainframe and Oracle integrating server

on gateway using SNA, 1-11
between server, gateway and remote host, 1-8

COMPARE function, C-5
compiling a TIP, 3-7
CONCAT function, C-5
CONNECT command, 2-3, 2-6
control file

creating
on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

conversation sharing, see APPC conversation sharing
CONVERT function, C-6
COPIES function, C-7
creating a TIP

(detailed), 3-1
overview, 1-12, 1-17

D
data conversion

errors, 8-4
languages supported, E-2

DATA correspondence, 4-10, 7-4
data dictionary, see PG DD
data exchange

PGAXFER function, 1-9
data format conversion, D-1

database instance, 1-8
database link, 1-9
datastores

gateway access to, 1-2
datatype

RAW, C-1
datatype conversion, D-1

COBOL editing symbols, D-3
convert length, D-1
duplicate names, D-9
expected length, D-1
format conversion, D-5
parameters over 32K in length, D-2
PL/SQL, D-8

naming algorithms, D-8
receive length, D-1
removing support for parameters over 32K in

length, D-2
See USAGE (PASS), USAGE (ASIS). USAGE

(SKIP), and PL/SQL Naming Algorithms
send length, D-1
truncated and non-unique names, D-9

datatype conversions
COBOL symbols interpreted by PGAU, D-3

datatypes
See PIC X and PIC G

DBCS
See double-byte character sets

DBMS_PIPE PL/SQL package, 3-1
debugging tool

PGATRAC function, B-6
DEFINE CALL, 2-2
DEFINE CALL parameters, 2-6
DEFINE CALL statement ("command"), 1-13, 1-17,

3-4, 4-23, G-2
DEFINE DATA, 2-2
DEFINE DATA statement ("command"), 1-12, 1-17,

2-25, 3-4, 4-10, 4-23, 7-4, A-10, G-1
DEFINE TRANSACTION parameters, 2-10
DEFINE TRANSACTION statement

("command"), 3-5, 4-23, G-2
defining and generating a TIP, 3-6
definition versioning, 2-4
deleting and inserting rows into PGA_TCP_IMSC

table, 6-4
DESCRIBE command, 2-12
DISCONNECT command, 2-13
double byte character sets (DBCS)

in application development, 4-25, 7-15
driver procedure

on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18

E
EBCDIC

automatic conversion, 1-3
environment dictionary

sequence numbers, A-1
errors

Index-3

causes of, 8-1
data conversion, 8-4
including exception handlers in your TIP, 4-20,

7-14
NUMBER_TO_RAW function, C-16
PLS -00123

program too large, 4-23
truncation, 8-5

examples
APPC conversation sharing, 4-23

EXECUTE command, 2-13
executing

client application development, 4-20, 7-14
EXIT command, 2-14

F
file

initsid.ora, 1-4, 8-10, 8-11, E-2
pagaims, F-1
pgadb2i, F-1
pgadb2id.sql, 4-20
pgadb2i.pkb, 1-6, 1-13, 4-2, 4-4
pgadb2i.pkh, 1-6, 1-13, 4-4
pgadb2i.sql, F-1
pgau.trc, 2-16, 2-18
pgddausr.sql, 4-27, 7-16
pgddcr8.sql, 2-5, A-5
pgtflipd.sql, 7-14, F-1
pgtflip.pkb, 1-18, 7-2, 7-4
pgtflip.pkh, 1-18, 7-4
tipname.doc, 3-7, 4-10, 4-14, 7-8
tipname.pkb, 8-6
tname.ctl, 3-5, 3-6

flexible call sequence
on gateway using SNA, 4-12
on gateway using TCP/IP, 7-6

FLIP
and pgacics PL/SQL stored procedure

on gateway using SNA, 1-11
transaction in CICS, 1-11
transaction in IMS, 1-14

format conversion, D-5
function

PGATERM, B-5
PGAXFER, 4-4, 7-3, B-3
UTL_PG, C-12
UTL_RAW, C-1

functions
see RPC (remote procedural call)
See UTL_PG
see UTL_PG
See UTL_RAW, C-1
see UTL_RAW

G
gateway

access to IBM datastores, 1-2
communication

overview, 1-8

with all platforms, 1-2
with CICS in mainframe on gateway using

SNA, 1-11
components, 1-7
creating a TIP, 3-1
enabling a trace, 8-11
features

application transparency, 1-2
code generator, 1-3
fast interface, 1-2
flexible interface, 1-3
location transparency, 1-2
Oracle server integration, 1-3
performs automatic conversions, 1-3
site autonomy and security, 1-3
support for tools, 1-3

function, 1-1
initialization files, 1-4
language support, E-1
overview, 1-2

using TCP/IP, 1-2
remote procedure, definition, 1-4
remote transaction initiation

using SNA, 1-9
using TCP/IP, 1-9

remote transaction termination
using SNA, 1-10
using TCP/IP, 1-10

server trace output sample, 8-12
starting, 1-8
tracing, 8-10
transaction types

on gateway using SNA, 1-10
on gateway using TCP/IP, 1-14

gateway sample files
using SNA

pgadb2i.pkb, 1-6
using TCP/IP

pgadb2i.pkb, 1-7
pgadb2i.pkh, 1-7

gateway sample files, using SNA
pgadb2i.pkh, 1-6

gateway server, 5-5
function in commit-confirm architecture, 5-5
transaction log tables, 5-7

gateway server trace, 8-10, 8-11
output sample, 8-12

GENERATE, 2-2
GENERATE statement ("command"), 1-13, 1-18, 3-5,

3-7, 4-10, 7-4, F-2, G-2
GLOBAL_TRAN_ID, 5-7
granting privileges for creating TIPs, 3-1
GROUP statement (PGAU), 3-7

H
HOST command, 2-20
hp-ux

in gateway architecture, 1-7
starting the gateway, 1-8

Index-4

I
implicit APPC, 4-27
implicit versioning

sample definitions, G-3
IMS, 1-2

communication with Integrating Server
using TCP/IP, 1-15

IMS inquiry
location of sample file, 1-7

IMS/TM
communication through the gateway, 1-1

initialization files
see gateway initialization files, also see PGA

parameters
initiating remote transactions, 1-9
initsid.ora file, 1-4, 8-10, 8-11, E-2

parameters to run pg4tcpmap tool, 6-3
I/O PCB, 1-14, 3-2, 7-2

J
JUSTIFIED, D-5
JUSTIFIED LEFT, D-5
JUSTIFIED RIGHT, D-5

K
keywords

PGAU, 2-5

L
LANGUAGE parameter
LENGTH function, C-7
LENGTH IS field-2, D-6
LU_NAME, 5-7

M
MAKE_NUMBER_TO_RAW_FORMAT

function, C-17
MAKE_RAW_TO_NUMBER_FORMAT

function, C-16
mapping parameters

from SNA to TCP/IP, 1-15, 6-1
mapping table

PGA_TCP_IMSC, 1-15
MBCS, See multi-byte character sets
messages

UTL_RAW interface, C-1
MODE_NAME, 5-7
multi-byte character sets (MBCS), 4-25, 7-15

application development support, 4-26, 7-15
multi-conversational transaction type

for gateway using SNA, 1-10
multi-conversational transactions, 4-5, 4-8

N
National Language Support (NLS), 3-3, E-1

in the gateway, E-1
languages supported for data conversion, E-2
multi-byte character set support, 4-25, 7-15
on various platforms, E-3

NLS LANGUAGE parameter
syntax, E-2

non-persistent socket transaction type for TCP/IP for
IMS Connect, 1-14

NUMBER_TO_RAW and RAW_TO_NUMBER
argument values, C-22

NUMBER_TO_RAW function, C-15
errors, C-16

NUMBER_TO_RAW_FORMAT function, C-19

O
OCCURS DEPENDING ON, D-7
OCCURS n TIMES, D-6
OLTP

and TCP/IP, 1-5, 1-7
character set, E-3
commit-confirm transaction log, 5-3
definition, 1-5
forget/recovery transaction, 5-3
functional requirements of the gateway, 5-4
in commit-confirm, 5-2
in gateway architecture featuring SNA, 1-7
in gateway using TCP/IP, 1-7
logic flow for successful commit, 5-5
only IMS supported on gateway using

TCP/IP, 1-4, 1-5
parameters needed for NLS, E-3
remote, 1-1
security considerations, 4-19, 7-13
transaction logging code, 5-3

one-shot transaction types, 1-10, 4-4, 4-7, 5-4
online transaction processor

See OLTP
operating system

role in gateway installation, 1-7
Oracle global transaction ID, 5-2, 5-3, 5-4, 5-7
Oracle integrating server, 1-9, 4-2

and role in client application, on gateway using
TCP/IP, 7-1

calling RPC functions, 5-5
component of commit-confirm architecture, 5-5
component of the gateway, 1-7
definition, 1-5
function in gateway communication

on gateway using TCP/IP, 1-14
interaction with gateway server in

commit-confirm, 5-5
multiple servers on the gateway

using SNA, 1-7
using TPC/IP, 1-7

precompiles PL/SQL package, 1-2
role

in gateway communication, 1-8
in starting the gateway, 1-8

simple communication

Index-5

on gateway using SNA, 1-11
on gateway using TCP/IP, 1-14

steps to communication
between server and IMS, 1-15
between server and mainframe

using SNA, 1-11
stores PL/SQL, 1-5
support for NLS, E-3

Oracle logging server, 5-3, 5-5
description, 5-5
interaction with gateway server, 5-5

Oracle Net, 1-5, 4-27, 7-16, C-1
restrictions for data conversion, C-1

Oracle Procedural Gateway for APPC
also see gateway
compatibility with version 3.4.0, 4-22
development environment, 1-3
See also, gateway server

OVERLAY function, C-8
overrides, 4-18, 7-12

LOGMODE, 4-18, 7-12
LUname, 4-18, 7-12
Side profile, 4-18, 7-12
TPname, 4-18, 7-12

P
package

UTL_PG, 3-1
parameters

mapped to TPC/IP, 6-2
See NLS LANGUAGE
see PGAU commands
See remote procedural call (RPC)
See SET LOG_DESTINATION
See SET TRACE_LEVEL

persistent socket transaction type
for TCP/IP for IMS Connect, 1-14

persistent transaction type, for gateway using
SNA, 1-10

persistent transactions, 4-5, 4-7, 5-4
PG DD (Data Dictionary), 2-2, 2-9

active dictionary, A-5
sequence numbers, A-6
versioning, A-5

active dictionary tables
pga_call, A-9
pga_call_parm, A-10
pga_data, A-10
pga_data_attr, A-12
pga_data_values, A-13
pga_fields, A-11
pga_trans, A-6
pga_trans_attr, A-7
pga_trans_calls, A-8
pga_trans_values, A-8

data definitions for parameters over 32K in
length, D-2

datatype conversion support for COBOL, D-2
definition, 1-5

definition names
valid characters in, 2-4

diagnostic
options, 8-2
references, 8-2

entries, creating a TIP, 3-6
environment dictionary tables, A-1, A-2

pga_modes, A-5
pga_usage, A-5

in writing PGAU statements, 3-4
keyword form in storage, 2-5
maintenance, 2-3
overview, A-1
preparing client application

on gateway using SNA, 4-3
on gateway using TCP/IP, 7-3

purpose of REPORT command, 2-24
relationship to PGAU, 2-1
remote transaction definitions, 2-3
ROLLBACK command, 2-2
select scripts, 8-3
storage of information needed for PGAU

GENERATE to perform, 4-10, 7-4
transaction attributes, 4-18, 7-12
USAGE (SKIP), D-8
version definition tables, 2-4

pg4tcpmap tool, 1-15, 3-4, 7-1
calling, to map DEFINE TRANSACITON

parameters, 7-14
commands to operate PGA_TCP_IMSC table, 6-4
definition, 1-4
description and function in the gateway, 1-3
function, 1-3

in mapping input parameters, 1-15, 6-1
function in remote transaction initiation, 1-9
preparation for populating PGA_TCP_IMSC

table, 6-1
setting parameters in initsid.ora, 6-3
to map SideProfile name, 2-10

PGA
administrator, 2-1
definition, 1-4

pga_call table, A-9
pga_call_parm table, A-10
PGA_CC_PENDING table

commit-confirm transaction log, 5-7
pga_compilers table, A-3
pga_data table, A-10
pga_data_attr, A-12
pga_data_values table, A-13
pga_datatype_attr table, A-4
pga_datatype_values table, A-4
pga_datatypes table, A-4
pga_env_attr table, A-3
pga_env_values table, A-3
pga_environments table, A-2
pga_fields table, A-11
pga_maint table, A-2
pga_modes constant, A-5
PGA_TCP_IMSC table, 1-15, 3-4, 6-1, 7-1, 7-2, 7-8

Index-6

content and parameters, 6-2
querying, 6-5
TCP/IP parameter table, 1-15

PGA_TCP_PASS, 6-2
PGA_TCP_USER, 6-2
pga_trans table, A-6
pga_trans_attr table, A-7
pga_trans_calls table, A-8
pga_trans_values table, A-8
pga_usage, A-5
pga_usage constant, A-5
pgacics.sql, 1-11
pgadb2i file, F-1
pgadb2id.sql file, 4-4, 4-20
pgadb2i.pkb, 1-6
pgadb2i.pkb file, 1-6, 1-13, 4-2, 4-4
pgadb2i.pkh file, 1-6, 1-13
pgadb2i.sql file, 4-4, F-1
pgaims file, F-1
pgaims.sql, 1-14
PGAINIT, 1-9, B-1

role in mapping SNA parameters to
TCP/IP, 1-15, 6-1

PGAINIT function, 1-4, 1-9
PGATCTL, B-5
PGATERM, B-5
PGATERM function, 1-4, 1-9
PGATRAC, B-6
PGAU, 4-1

accesses definitions in PG DD, 1-5
commands- also called "statements", 2-5
COMMIT processing, 2-2
defining and testing a TIP, 2-4
definition, 2-1

used to generate TIP specifications, 1-5
definition names, 2-4
definition versioning, 2-4
definitions, 2-3
functions, 2-2
-generated TIP specifications, 1-8
generation, 2-3
interpretation of COBOL symbols in datatype

conversion, D-3
invoking, 2-3
keywords, 2-5
NLS Language usage, E-2
overview, 2-1
purpose of PGDL, 1-4
role in calling TIPs, on gateway using

TCP/IP, 7-1
ROLLBACK processing, 2-2
sample input, G-1
writing statements, 3-4

PGAU commands, 1-12, 1-17
CONNECT, 2-3, 2-6
CONNECT, parameters, 2-6
DEFINE CALL, 2-6, 2-25, 3-4, 4-23

call list, 3-2
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-17

sample, G-2
DEFINE DATA, 2-7, 2-25, 3-4, 4-10, 4-23, 7-4,

A-10
on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17
parameters, 2-8
sample, G-1

DEFINE DATA, datatype conversions
USAGE (ASIS), D-8
USAGE (PASS), D-2
USAGE (SKIP), D-8

DEFINE PGAU, call list, 3-3
DEFINE TRANSACTION, 1-13, 2-2, 2-9, 3-5, 4-23

on gateway using TCP/IP, 1-17
sample, G-2

DEFINE TRANSACTION, parameters, 2-10, 3-3
defining correlation between TIP and RTP, 2-1
DESCRIBE, 2-12
DESCRIBE, parameters, 2-13
DISCONNECT, 2-13
DISCONNECT, parameters, 2-13
EXECUTE, 2-13
EXECUTE, parameters, 2-14
EXIT, 2-14
EXIT, parameters, 2-14
formatting of Call and Transaction reports, 2-25
four main types, in control file, 1-12, 1-17
GENERATE, 2-14, 3-5, 3-7, 4-10, 7-4, F-2

error messages, 8-3
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18
parameters, 2-15
problem analysis, 8-2
sample, G-2
support and non-support for parameters over

32K length, D-2
traces, 8-1

GROUP, 2-19, 3-7
HOST, 2-20

parameters, 2-20
on gateway using SNA, 1-13
PRINT, 2-20
REDEFINE DATA, 2-21, A-10

sample, G-6
REM, 2-24
REM, parameters, 2-24
REPORT, 2-24

output sample, G-7
REPORT, parameters, 2-24
SET, 2-27
SET, parameters, 2-27
SHOW, 2-28
SHOW, parameters, 2-28
SPOOL, 2-29
SPOOL, parameters, 2-29
TRANSACTION, 2-25
UNDEFINE CALL, 2-29
UNDEFINE CALL, parameters, 2-29
UNDEFINE DATA, 2-30
UNDEFINE DATA, parameters, 2-30

Index-7

UNDEFINE TRANSACTION, 2-31
UNDEFINE TRANSACTION, parameters, 2-31
UNDEFINE, sample, G-7
VARIABLE, 2-32
VARIABLE, parameters, 2-32

PGAU script file
adding spool and echo, 3-7
creating, 3-5

pgau.trc file, 2-16, 2-18
PGAXFER, 7-7, B-3
PGAXFER function, 1-4, 1-9, 4-4, 7-3
PGDD (Data Dictionary)

environment sequence numbers, A-1
pgddausr.sql file, 4-27, 7-16
pgddcr8.sql file, 2-5, A-5
PGDL (Procedural Gateway Definition

Language), 2-2, B-1
definition, 1-4

pgtflip, 7-14
pgtflipd, 1-18
pgtflipd.sql, 7-10
pgtflipd.sql file, 7-4, 7-14, F-1
pgtflip.pkb, 1-7
pgtflip.pkb file, 1-18, 7-2, 7-4
pgtflip.pkh, 1-7
pgtflip.pkh file, 1-18
pgtflip.sql file, 7-4
PIC 9, 8-4, D-4
PIC G, 8-4

datatypes, 4-25, 7-15
PIC G datatype conversions, D-3
PIC G datatypes, D-2
PIC X, D-2
PIC X datatypes, 8-4, D-2
PKGEX(DC) diagnostic option, 8-6
PKGEX(DR)

GENERATE diagnostic option, 8-2
PL/SQL, 1-5, C-1

call, A-8, A-9
code, B-1
code generator, 1-3, 8-4
data length limits, 8-5
datatypes, 1-8, 4-7, 4-8, 4-10, G-3, G-5

converted to RAW, 1-9
developing TIPs, D-1
enabling a trace, 8-11
function in the gateway, 1-2, 1-9
invoking PG4APPC, 1-11, 1-14
naming algorithms, D-8

delimiters, D-8
duplicate names, D-9
qualified compound names, D-8

parameters, 4-14, 7-8
record format, G-4
stored procedure, 1-11
transferring data

using RAW datatype, C-1
UTL_PG package function, 1-5
UTL_RAW function, 1-5
variable names, D-9

datatype conversion, D-8
variables, 3-7, D-6, D-7, D-9

PL/SQL package, 2-3, 2-7, 2-30, 2-31, 3-1, 4-4, 8-2,
B-1, F-2

components, 4-3, 7-3
contents

package specification, 4-3, 7-3
DBMS_PIPE, 3-1
definition, 1-5, 1-6
execute authority, 4-20, 7-14
function, 4-2, 7-2
functions, 1-8
grants required, 3-1
pagcics, 1-11
parameter, 2-17
See TIP
specifying names, 4-14, 7-8

PL/SQL stored procedure, 5-5
changing trace level, B-5
starting up communication with

mainframe, 1-11, 1-15
PL/SQL stored procedure specification

also called "TIP"
See PL/SQL package

PRINT command, 2-20
privileges

needed to use TIPs, 4-27
problem analysis

of data conversion and truncation errors, 8-5
with PG DD diagnostic references, 8-2
with PG DD select scripts, 8-3
with TIP runtime traces, 8-6

Procedural Gateway Administration
see PGA

Procedural Gateway Administration Utility
see PGAU, 1-8

R
RAW, C-5
RAW_TO_NUMBER FORMAT function, C-19
RAW_TO_NUMBER function, C-14
recompilation errors

causes, F-4
REDEFINE DATA statement, A-10, G-6
REDEFINES, D-7
REM command, 2-24
remote host transactions (RHT)

APPC conversation sharing, 4-20
attributes needed, 4-13, 7-7
client application, 4-7
defined using the PGAU DEFINE TRANSACTION

statement, 4-13, 7-7
evaluating, 3-2
multi-conversational, client applications, 4-8
one-shot, client applications, 4-7
persistent, client applications, 4-7
requirements

understanding, 4-3
steps involved in, 4-6

Index-8

types
on gateway using SNA, 1-10, 4-4
on gateway using TCP/IP, 7-4

remote procedural call
See RPC

remote procedural call (RPC), A-9
calling the gateway, B-1
executing gateway functions, B-1
parameters, B-5
PGAINIT and PGAINIT_SEC, B-3
PGAINIT and PGAINIT_SEC, parameters, B-3
PGATCTL, B-5
PGATERM, B-5
PGATERM, parameters, B-5
PGATRAC, B-6
PGATRAC, parameters, B-6
PGAXFER, B-3
PGAXFER, parameters, B-3

remote procedure
definition, 1-4

remote transaction initiation
on gateway using SNA, 1-9
on gateway using TC/IP, 1-9

remote transaction program
See RTP

remote transaction termination
on gateway using SNA, 1-10
on gateway using TCP/IP, 1-10

RENAMES, D-7
REPORT statement, 3-5
REVERSE function, C-9
RHT, See remote host transactions
ROLLBACK command, 2-2
ROLLBACK processing, 2-2
RPC

definition, 1-5
function

PGAINIT, 1-4, 1-9
PGATERM, 1-4
PGAXFER, 1-4, 1-9
within the gateway, 1-2, 1-9

processing, 1-1
RPC interface

PGATCTL, B-5
PGATERM, B-5
PGATRAC, B-6
PGAXFER, B-3
See also, remote procedural call (RPC)

RTP
activities, 4-5
definition, 1-5
executing, 1-5
function in the gateway, 1-2
on gateway using SNA, 4-6
purpose, 4-4, 7-3

runtime traces, 8-6
controls, 8-7
conversion warnings, 8-8
data conversion tracing, 8-8
gateway exchange tracing, 8-9

runtime function entry/exit tracing, 8-8

S
sample

PGAU DEFINE CALL command, G-2
PGAU DEFINE DATA command, G-1
PGAU DEFINE TRANSACTION command, G-2
PGAU GENERATE command, G-2
PGAU REDEFINE DATA command, G-6
PGAU REPORT output, G-7
PGAU UNDEFINE command, G-7
TIP output, G-15
TIP trace output, G-13

sample definitions
implicit versioning, G-3

script file, 3-5
sequence objects

in the PGDD environment dictionary, A-1
server

role in gateway architecture, 1-7
SET command, 2-27
SET LOG_DESTINATION parameter, 8-5, 8-6, 8-10,

8-11
SET TRACE_LEVEL parameter, 8-5, 8-10, 8-11, 8-12
Side Information Profile, 2-11, B-3
SIDE_NAME, 5-7
SIDEPROFILE (name), 2-10
simple PG4APPC communication

on gateway using SNA, 1-11
SNA

and gateway components, 1-7
communication between mainframe and Oracle

Integrating Server, 1-11
communications function, 1-11
creating a TIP, 1-12
determining validity of TIP specification, F-2
examples and sample files used in this guide, 1-6
flexible call sequence, 4-12
function in the gateway, 1-2
gateway transaction types, 1-10
implementing commit-confirm, 5-1
overview of the gateway, using, 1-2
parameters, 1-9
PGAU DEFINE TRANSACTION command, 3-3
remote transaction initiation, 1-9
remote transaction termination on the

gateway, 1-10
steps to connecting Integrating Server and

mainframe, 1-11
supported remote host languages, 3-2
TIP internals, F-1
trace output files, 8-12
uses APPC to access all systems, 1-2
writing TIPs, 1-12

socket file descriptor
returned by TCP/IP network to PGAINIT, 1-9

specification file
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18

Index-9

SPOOL command, 2-29
SQL*Plus

connecting server and mainframe, 1-11
invoking, 3-7
recompiling TIP body changes, F-2
running scripts, 4-27, 7-16
test scripts, 8-3

starting
the gateway, 1-8

statements
see PGAU commands

SUBSTR function, C-9
supported languages, E-1
SYNCHRONIZED, D-8
SYNCHRONIZED LEFT, D-8
SYNCHRONIZED RIGHT, D-8

T
TCP/IP for IMS Connect, 1-14, 7-11

and gateway components, 1-7
and PGA_TCP_IMSC parameter table, 1-15, 6-1
and PGAINIT, 1-15, 6-1
and Remote Transaction Initiation, 1-9
Client application overview, 7-1
communication between gateway and OIS, 1-14
content of PGA_TCP_IMSC table, 6-2
creating a TIP, 7-1
determining validity of TIP specification, F-2
elements of TIP-RTP correspondence, 7-4
examples and sample files used in this guide, 1-7
function in the gateway, 1-2
gateway support for, description, 1-3
IMS enabled, 1-5
mapping parameters using pg4tcpmap tool, 7-14
mapping SNA parameters to TCP/IP, 1-15, 6-1
non-persistent socket transaction type, 1-14
OLTP in gateway architecture, 1-7
persistent socket transaction type, 1-14
PGAU DEFINE TRANSACTION command, 3-4
remote host languages supported, 3-2
remote transaction initiation, 1-9
remote transaction termination, 1-10
SENDs and RECEIVEs

TIP CALL correspondence, 7-5
setting initsid.ora parameters, 6-3
simple communication

between gateway and integrating server, 1-14
steps to communication between server and

IMS, 1-15
steps to writing a TIP, 1-17
supports only IMS as OLTP, 1-4, 1-5
TIP granting privileges needed, 7-16
TIP internals, F-1
trace output files, 8-16
TRANSACTION correspondence, 7-7
transaction types, 1-14

terminal-oriented transactions
modifying, 4-26

terminating a TIP conversation, 4-19, 7-13

terms, gateway terms defined, 1-4
tg4pwd utility

definition, 1-4
recommended security utility feature, 1-4

TIP, 1-7, 4-2, 7-2
also called PL/SQL package
APPC conversation sharing, 4-21, 4-22
background references, F-1
CALL correspondence, 4-11

on gateway using SNA, 4-11
on gateway using TCP/IP, 7-5
order restrictions, 4-13

calling
from the client application, 4-14, 7-8

calling and controlling
on gateway using SNA, 4-1
on gateway using TCP/IP, 7-1

client application development
content and purpose on gateway using

SNA, 4-3
content and purpose on gateway using

TCP/IP, 7-3
compiling, 3-7
content documentation (tipname.doc), 3-7
content file sections

GENERATION Status, 3-8
TIP Default Calls, 3-8
TIP Transaction, 3-8
TIP User Calls, 3-8
TIP User Declarations, 3-8
TIP User Variables, 3-8

control file, 2-2
controlling

runtime conversion warnings, 8-8
runtime data conversion tracing, 8-8
runtime function tracing, 8-8
runtime gateway exchange tracing, 8-9

conversation sharing used to circumvent large
TIPs, 4-23

conversion, 1-3, 4-25, 7-15
converting PL/SQL datatypes to RAW, 1-9
creating, 3-1
custom TIP writing, F-1
customized interface for each remote host

transaction (RTP), 4-6
DATA correspondence, 4-10

on gateway using TCP/IP, 7-4
datatype conversion support for COBOL, D-2
declaring variables to create a TIP, 4-14, 7-8
defining and generating, 3-6
defining, with PGAU, 2-4
definition, 1-6
definition errors, 8-1
dependent TIP body or specification changes, F-3
diagnostic parameters, 4-25
driver procedures

on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18

flexible call sequence, 4-12
four steps to generate

Index-10

on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

functions, 1-8
in Oracle integrating server, 1-9

generated by PGAU, 4-2
granting privileges to use, 3-1, 4-27, 7-16
independent TIP body changes, F-2
initializations, 4-18, 7-12

overriding, 4-17
on gateway using TCP/IP, 7-11

initializing the conversation, 4-16, 7-10
internals, F-1
output, sample, G-15
override parameters, 4-25
overriding default attributes, 4-18, 7-12
overview, 1-12, 1-17
privileges needed, 3-1, 4-27
public functions

tip_init, 4-5
tip_inqr, 4-5
tip_mode, 4-5
tip_term, 4-5
tip_updt, 4-5

recompiling, F-2, F-3
remote transaction

correspondence, 4-10
remote transaction correspondence, on gateway

using TCP/IP, 7-4
remote transaction initiation (PGAINIT), 1-9
requirements for corresponding with RHT

on gateway using SNA, 4-10
on gateway using TCP/IP, 7-4

requirements of the client application, 4-6
service, 4-21
specification file, 3-6

on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18

specifications
generated by PGAU, 1-8

steps to writing
on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

terminating the conversation, 4-19, 7-13
trace controls, 8-7
trace output sample, G-13
tracing, 8-5
TRANSACTION correspondence, 4-13, 7-7

on gateway using SNA, 4-13
using transaction instance parameter

on gateway using TCP/IP, 7-11
writing

on gateway using SNA, 1-12
on gateway using TCP/IP, 3-4

TIP control file commands, 1-12, 1-13, 1-17, 1-18
on gateway using TCP/IP, 1-17

TIP specification, 4-2, F-2
changes, F-3
errors, F-4

TIP warnings and tracing
suppressing, 8-9

tipname.doc file, 3-7, 4-10, 4-14, 7-8
tipname.pkb file, 8-6
tname.ctl file, 3-5, 3-6
TP_NAME, 5-8
trace option, 8-1

TIP definition errors, 8-1
trace output files

for gateway using SNA, 8-12
for gateway using TCP/IP, 8-16

TRACE_LEVEL, 8-10
traces, 8-8, 8-9

diagnostic, 8-5
enable gateway server trace, 8-11
enabling APPC trace from PL/SQL, 8-11
enabling through initsid.ora, 8-11
gateway server, 8-10
purpose of initializing conversations, 4-16, 7-10
runtime, 8-6

trace controls, 8-7
sample gateway server output, 8-12
suppressing, 8-9
TIP, 8-6, 8-9

TRANSACTION correspondence
on gateway using SNA, 4-13
on gateway using TCP/IP, 7-7

transaction instance parameter
on gateway using SNA, 4-17
on gateway using TCP/IP, 7-11

Transaction Interface Package
See TIP

transaction socket
transaction type for TCP/IP, 1-14

TRANSACTION tname, 2-10
transaction types

one-shot, persistent and multi-conversational, for
SNA, 1-10

TRANSLATE function, C-10
TRANSLITERATE function, C-10
transparency

(application), 1-2
(location), on gateway using SNA, 1-2

U
UNDEFINE statement, 3-6, G-7
USAGE(ASIS), D-8
USAGE(PASS), D-2

datatype conversion, D-2
FILLER, D-5
PIC 9, D-4
PIC G, D-3

format conversion
OCCURS DEPENDING ON, D-7
OCCURS n TIMES, D-6

USAGE(SKIP), D-8
utility

tg4pwd, 1-4
UTL_PG

input parameters
wmsgbsiz, C-13

Index-11

output parameters
wmsgblk, C-14

package
definition, 1-5

parameters (input and output), C-13
PL/SQL package, 3-1

UTL_PG function, C-12
MAKE_NUMBER_TO_RAW_FORMAT, C-17
MAKE_RAW_TO_NUMBER_FORMAT, C-16
NUMBER_TO_RAW, C-15
NUMBER_TO_RAW and RAW_TO_NUMBER

argument values, C-22
NUMBER_TO_RAW_FORMAT, C-19
RAW_TO_NUMBER, C-14
RAW_TO_NUMBER_FORMAT, C-19
WMSG, C-20
WMSGCNT, C-20

UTL_PG input parameters
compname, C-13
compopts, C-13
envrnmnt, C-13
mask, C-13
maskopts, C-13
nlslang, C-13
wind, C-13

UTL_RAW function
BIT_AND, C-1
BIT_COMPLEMENT, C-2
BIT_OR, C-2
BIT_XOR, C-3
CAST_TO_RAW, C-4
CAST_TO_VARCHAR2, C-4
COMPARE, C-5
CONCAT, C-5
CONVERT, C-6
COPIES, C-7
LENGTH, C-7
OVERLAY, C-8
REVERSE, C-9
SUBSTR, C-9
TRANSLATE, C-10
TRANSLITERATE, C-10
XRANGE, C-12

UTL_RAW PL/SQL package, 3-1, C-1
definition, 1-5
functions, C-1

V
VARIABLE command, 2-32

W
WMSG function, C-20
WMSGCNT function, C-20
writing PGAU statements, 3-4

X
XRANGE function, C-12

Index-12

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Typographic Conventions
	Command Syntax
	Accessing Installed Documentation
	Oracle Services and Support

	1 Introduction to Oracle Procedural Gateway for APPC
	1.1 Overview of the Gateway
	1.2 Features of the Gateway
	1.3 Terms
	1.4 Examples and Sample Files for the Gateway
	1.5 Architecture of the Gateway
	1.6 Starting the Gateway
	1.7 Communication With the Gateway
	1.8 Remote Procedural Call Functions
	1.8.1 TIP Function
	1.8.1.1 Remote Transaction Initiation
	1.8.1.2 Data Exchange
	1.8.1.3 Remote Transaction Termination

	1.9 Overview of a Gateway Using SNA
	1.9.1 Transaction Types for a Gateway Using SNA

	1.10 Simple Gateway Communication With the Oracle Server (SNA)
	1.10.1 Steps to Communication Between Gateway and Mainframe, Using SNA

	1.11 Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA
	1.11.1 Steps to Writing a TIP on a Gateway Using SNA

	1.12 Overview of a Gateway Using TCP/IP
	1.12.1 Transaction Types for a Gateway Using TCP/IP

	1.13 Simple Gateway Communication with the Oracle Server (TCP/IP)
	1.13.1 Preparing the Gateway to Communicate Using TCP/IP
	1.13.2 Steps to Communication Between the Gateway and IMS, Using TCP/IP

	1.14 Writing TIPs to Generate PL/SQL Programs on Gateway Using TCP/IP
	1.14.1 Steps to Writing a TIP on a Gateway Using TCP/IP

	2 Procedural Gateway Administration Utility
	2.1 Overview of PGAU
	2.2 COMMIT/ROLLBACK Processing
	2.2.1 COMMIT Processing
	2.2.2 ROLLBACK Processing

	2.3 Invoking PGAU
	2.4 Definitions and Generation in PGAU
	2.5 Process to Define and Test a TIP
	2.5.1 Definition Names
	2.5.2 Definition Versioning
	2.5.3 Keywords

	2.6 PGAU Commands
	2.6.1 CONNECT
	2.6.2 DEFINE CALL
	2.6.3 DEFINE DATA
	2.6.4 DEFINE TRANSACTION
	2.6.5 DESCRIBE
	2.6.6 DISCONNECT
	2.6.7 EXECUTE
	2.6.8 EXIT
	2.6.9 GENERATE
	2.6.10 GROUP
	2.6.11 HOST
	2.6.12 PRINT
	2.6.13 REDEFINE DATA
	2.6.14 REM
	2.6.15 REPORT
	2.6.16 SET
	2.6.17 SHOW
	2.6.18 SPOOL
	2.6.19 UNDEFINE CALL
	2.6.20 UNDEFINE DATA
	2.6.21 UNDEFINE TRANSACTION
	2.6.22 VARIABLE

	3 Creating a TIP
	3.1 Granting Privileges for TIP Creators
	3.2 Evaluating the RHT
	3.2.1 Identify the Remote Host Transaction
	3.2.2 PGAU DEFINE CALL Command
	3.2.3 PGAU DEFINE DATA Command
	3.2.4 PGAU DEFINE TRANSACTION Command on a Gateway Using SNA
	3.2.5 PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP
	3.2.6 Writing the PGAU Statements
	3.2.7 Writing a PGAU Script File

	3.3 Defining and Generating the TIP
	3.4 Compiling the TIP
	3.5 TIP Content Documentation (tipname.doc)

	4 Client Application Development (SNA Only)
	4.1 Overview of Client Application
	4.2 Preparing the Client Application
	4.3 Understanding the Remote Host Transaction Requirements
	4.3.1 TIP Content and Purpose
	4.3.2 Remote Host Transaction Types
	4.3.2.1 One-Shot Transactions
	4.3.2.2 Persistent Transactions
	4.3.2.3 Multi-Conversational Transactions

	4.4 Customized TIPs for Each Remote Host Transaction
	4.5 Client Application Requirements
	4.6 Ensuring TIP and Remote Transaction Program Correspondence
	4.6.1 DATA Correspondence
	4.6.2 CALL Correspondence
	4.6.2.1 Flexible Call Sequence
	4.6.2.2 Call Correspondence Order Restrictions

	4.6.3 TRANSACTION Correspondence

	4.7 Calling the TIP from the Client Application
	4.7.1 Declaring TIP Variables
	4.7.2 Initializing the Conversation
	4.7.2.1 Transaction Instance Parameter
	4.7.2.2 Overriding TIP Initializations
	4.7.2.3 Security Considerations

	4.8 Exchanging Data
	4.8.1 Terminating the Conversation
	4.8.2 Error Handling
	4.8.3 Granting Execute Authority

	4.9 Executing the Application
	4.10 APPC Conversation Sharing
	4.10.1 APPC Conversation Sharing Concepts
	4.10.2 APPC Conversation Sharing Usage
	4.10.3 APPC Conversation Sharing TIP Compatibility
	4.10.4 APPC Conversation Sharing for TIPs That Are Too Large
	4.10.5 APPC Conversation Sharing Example
	4.10.6 APPC Conversation Sharing Overrides and Diagnostics

	4.11 Application Development with Multi-Byte Character Set Support
	4.12 Modifying a Terminal-Oriented Transaction to Use APPC
	4.13 Privileges Needed to Use TIPs

	5 Implementing Commit-Confirm (SNA Only)
	5.1 Overview of Commit-Confirm
	5.2 Supported OLTPs
	5.3 Components Required to Support Commit-Confirm
	5.4 Application Design Requirements
	5.5 Commit-Confirm Architecture
	5.5.1 Components
	5.5.2 Interactions

	5.6 Commit-Confirm Flow
	5.6.1 Commit-Confirm Logic Flow, Step by Step
	5.6.2 Gateway Server Commit-Confirm Transaction Log

	6 PG4TCPMAP Commands (TCP/IP Only)
	6.1 Preparation for Populating the PGA_TCP_IMSC Table
	6.2 Overview
	6.3 Populating the PGA_TCP_IMSC Table
	6.4 Before You Run the pg4tcpmap Tool
	6.5 pg4tcpmap Tool Commands
	6.5.1 Inserting a Row into the PGA_TCP_IMSC Table
	6.5.2 Deleting Rows from the PGA_TCP_IMSC Table
	6.5.3 Querying the PGA_TCP_IMSC Table

	7 Client Application Development (TCP/IP Only)
	7.1 Overview of Client Application
	7.2 Preparing the Client Application
	7.2.1 TIP Content and Purpose
	7.2.2 Remote Host Transaction Types

	7.3 Ensuring TIP and Remote Transaction Program Correspondence
	7.3.1 DATA Correspondence
	7.3.2 CALL Correspondence
	7.3.2.1 Flexible Call Sequence
	7.3.2.2 Call Correspondence Order Restrictions

	7.3.3 TRANSACTION Correspondence

	7.4 Calling the TIP from the Client Application
	7.4.1 Declaring TIP Variables
	7.4.2 Initializing the Conversation
	7.4.2.1 Transaction Instance Parameter
	7.4.2.2 Overriding TIP Initializations
	7.4.2.3 Security Considerations

	7.5 Exchanging Data
	7.5.1 Terminating the Conversation
	7.5.2 Error Handling
	7.5.3 Granting Execute Authority

	7.6 Calling PG4TCPMAP
	7.7 Executing the Application
	7.8 Application Development with Multi-Byte Character Set Support
	7.9 Privileges Needed to Use TIPs

	8 Problem Determination
	8.1 TIP Definition Errors
	8.2 Problem Analysis with PG DD Diagnostic References
	8.3 Problem Analysis with PG DD Select Scripts
	8.4 Data Conversion Errors
	8.5 Problem Analysis of Data Conversion and Truncation Errors
	8.6 Problem Analysis with TIP Runtime Traces
	8.7 TIP Runtime Trace Controls
	8.7.1 Generating Runtime Data Conversion Trace and Warning Support
	8.7.2 Controlling TIP Runtime Conversion Warnings
	8.7.3 Controlling TIP Runtime Function Entry/Exit Tracing
	8.7.4 Controlling TIP Runtime Data Conversion Tracing
	8.7.5 Controlling TIP Runtime Gateway Exchange Tracing

	8.8 Suppressing TIP Warnings and Tracing
	8.9 Gateway Server Tracing
	8.9.1 Defining the Gateway Trace Destination
	8.9.2 Enabling the Gateway Trace
	8.9.2.1 Enabling the Gateway Trace Using Initialization Parameters
	8.9.2.2 Enabling the Gateway Trace Dynamically from PL/SQL

	8.10 Sample Gateway Server Initialization and Trace Output Files
	8.10.1 Sample Trace Output File for Gateway Using SNA
	8.10.2 Sample Trace Output File for Gateway Using TCP/IP
	8.10.3 Sample Output Log for pg4tcpmap Tool

	A Procedural Gateway for APPC Data Dictionary
	A.1 PG DD Environment Dictionary
	A.1.1 Environment Dictionary Sequence Numbers
	A.1.2 Environment Dictionary Tables
	A.1.2.1 pga_maint
	A.1.2.2 pga_environments
	A.1.2.3 pga_env_attr
	A.1.2.4 pga_env_values
	A.1.2.5 pga_compilers
	A.1.2.6 pga_datatypes
	A.1.2.7 pga_datatype_attr
	A.1.2.8 pga_datatype_values
	A.1.2.9 pga_usage
	A.1.2.10 pga_modes

	A.2 PG DD Active Dictionary
	A.2.1 Active Dictionary Versioning
	A.2.2 Active Dictionary Sequence Numbers
	A.2.3 Active Dictionary Tables
	A.2.3.1 pga_trans
	A.2.3.2 pga_trans_attr
	A.2.3.3 pga_trans_values
	A.2.3.4 pga_trans_calls
	A.2.3.5 pga_call
	A.2.3.6 pga_call_parm
	A.2.3.7 pga_data
	A.2.3.8 pga_fields
	A.2.3.9 pga_data_attr
	A.2.3.10 pga_data_values

	B Gateway RPC Interface
	B.1 Calling Gateway Functions to Execute Transaction Programs
	B.1.1 PGAINIT and PGAINIT_SEC
	B.1.2 PGAXFER
	B.1.3 PGATERM
	B.1.4 PGATCTL
	B.1.5 PGATRAC

	C The UTL_PG and UTL_RAW Interface
	C.1 UTL_RAW Functions
	C.1.1 BIT_AND
	C.1.2 BIT_COMPLEMENT
	C.1.3 BIT_OR
	C.1.4 BIT_XOR
	C.1.5 CAST_TO_RAW
	C.1.6 CAST_TO_VARCHAR2
	C.1.7 COMPARE
	C.1.8 CONCAT
	C.1.9 CONVERT
	C.1.10 COPIES
	C.1.11 LENGTH
	C.1.12 OVERLAY
	C.1.13 REVERSE
	C.1.14 SUBSTR
	C.1.15 TRANSLATE
	C.1.16 TRANSLITERATE
	C.1.17 XRANGE

	C.2 UTL_PG Functions
	C.2.1 Common Parameters
	C.2.1.1 Common Input Parameters
	C.2.1.2 Common Output Parameter

	C.2.2 RAW_TO_NUMBER
	C.2.3 NUMBER_TO_RAW
	C.2.4 MAKE_RAW_TO_NUMBER_FORMAT
	C.2.5 MAKE_NUMBER_TO_RAW_FORMAT
	C.2.6 RAW_TO_NUMBER_FORMAT
	C.2.7 NUMBER_TO_RAW_FORMAT
	C.2.8 WMSGCNT
	C.2.9 WMSG

	C.3 NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

	D Datatype Conversions
	D.1 Length Checking
	D.1.1 Parameters Over 32K in Length

	D.2 Conversion
	D.2.1 USAGE(PASS)
	D.2.2 USAGE(ASIS)
	D.2.3 USAGE(SKIP)
	D.2.4 PL/SQL Naming Algorithms

	E National Language Support
	E.1 Overview
	E.2 Languages Supported for Messages
	E.3 Languages Supported for Data Conversion

	F Tip Internals
	F.1 Background Reading
	F.2 PL/SQL Package and TIP File Separation
	F.2.1 Independent TIP Body Changes
	F.2.1.1 Determine if a Specification Has Remained Valid

	F.2.2 Dependent TIP Body or Specification Changes
	F.2.2.1 Recompile the TIP Body

	F.2.3 Inadvertent Alteration of TIP Specification

	G Administration Utility Samples
	G.1 Sample PGAU DEFINE DATA Statements
	G.2 Sample PGAU DEFINE CALL Statements
	G.3 Sample PGAU DEFINE TRANSACTION Statement
	G.4 Sample PGAU GENERATE Statement
	G.5 Sample Implicit Versioning Definitions
	G.6 Sample PGAU REDEFINE DATA Statements
	G.7 Sample PGAU UNDEFINE Statements
	G.8 Sample PGAU REPORT Output
	G.9 Sample TIP Content Documentation
	G.10 Sample TIP Trace Output
	G.11 Sample TIP Output

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

