
Oracle® OLAP
Application Developer's Guide,

10g Release 2 (10.2.0.3)

B14349-03

September 2006

Oracle OLAP Application Developer’s Guide, 10g Release 2 (10.2.0.3)

B14349-03

Copyright © 2003, 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

What’s New in Oracle OLAP Applications Development? .. xiii

Oracle Database 10g Release 10.2.0.3 Oracle OLAP... xiii
Oracle Database 10g Release 10.2 Oracle OLAP ... xiii
Oracle Database 10g Release 10.1.0.4 Oracle OLAP ... xiv

Part I Fundamentals

1 Overview

OLAP Technology Within Oracle Database .. 1-1
Problems Maintaining Two Distinct Systems.. 1-1
Full Integration of Multidimensional Technology .. 1-2

Using OLAP to Answer Business Questions .. 1-2
Common Analytical Applications... 1-3
Tools for Querying OLAP Data Stores ... 1-3

Formulating Queries.. 1-4
Creating Custom Measures .. 1-4

About Multidimensional Data Stores .. 1-5
Creating Analytic Workspaces... 1-5
Structured Data Stores... 1-6
Processing Analytic Queries... 1-6
Creating Summary Data.. 1-6

Components of Oracle OLAP .. 1-6
OLAP Analytic Engine .. 1-7
Analytic Workspaces ... 1-7
Analytic Workspace Manager .. 1-7
OLAP Worksheet ... 1-7
OLAP DML ... 1-7

iv

SQL Interface to OLAP.. 1-8
Analytic Workspace Java API .. 1-8
OLAP API.. 1-8

Implementing an Analytic Workspace... 1-8
Identifying Business Goals ... 1-8
Identifying Data Sources... 1-9
Defining a Logical Model.. 1-9
Mapping, Loading, and Aggregating the Data.. 1-9
Generating Information-Rich Data .. 1-9

Upgrading Oracle Database 10g Release 1 Analytic Workspaces .. 1-10
Upgrading Oracle9i Analytic Workspaces.. 1-10

Upgrading the Physical Storage Format.. 1-11
Upgrading the Standard Form Metadata .. 1-11

2 The Logical Dimensional Data Model

Overview of the Data Model.. 2-1
Logical Cubes .. 2-2
Logical Measures .. 2-2
Logical Dimensions ... 2-3
Logical Hierarchies and Levels .. 2-3

Level-Based Hierarchies.. 2-3
Value-Based Hierarchies ... 2-3

Logical Attributes ... 2-3

3 The Sample Schema

Case Study Scenario... 3-1
Reporting Requirements ... 3-2
Business Goals .. 3-2
Information Requirements.. 3-3

Business Analysis Questions... 3-3
What products are profitable?... 3-3
Who are our customers, and what and how are they buying? .. 3-3
What accounts are most profitable? ... 3-4
What is the performance of each distribution channel?.. 3-4
Is there still a seasonal variance to the business? ... 3-4
Summary of Information Requirements.. 3-4

Identifying Required Business Facts.. 3-5
Designing a Logical Data Model for Global Computing ... 3-5

Identifying Dimensions... 3-5
Identifying Levels... 3-6
Identifying Hierarchies ... 3-6
Identifying Stored Measures .. 3-6

The Global Schema .. 3-7

v

4 Developing Java Applications for OLAP

Building Analytical Java Applications .. 4-1
About Java... 4-1
The Java Solution for OLAP ... 4-2
Oracle Java Development Environment ... 4-2

Introducing OracleBI Beans ... 4-2
Metadata .. 4-3
Navigation... 4-3
Formatting... 4-4
Graphs.. 4-4
Crosstabs ... 4-4
Data Beans... 4-4
Wizards.. 4-4
JSP Tag Library ... 4-5

Building Java Applications That Manage Analytic Workspaces .. 4-5

Part II Creating and Managing Analytic Workspaces

5 Creating an Analytic Workspace

Introduction to Analytic Workspace Manager.. 5-1
Model View... 5-2
Object View .. 5-2

Getting Started with Analytic Workspace Manager.. 5-2
Installing Analytic Workspace Manager .. 5-2
Opening Analytic Workspace Manager ... 5-3
Defining a Database Connection.. 5-3
Opening a Database Connection.. 5-3

Identifying the Source Data ... 5-3
Schema Requirements ... 5-3

Star Schema.. 5-4
Snowflake Schema .. 5-5
Other ... 5-6
Making Transformations in Your Source Data... 5-7

Choosing a Build Tool ... 5-8
Creating a Standard Form Workspace Using Analytic Workspace Manager 5-8

How Analytic Workspace Manager Saves Changes... 5-8
Basic Steps for Creating an Analytic Workspace... 5-9
Adding Functionality to a Standard Form Analytic Workspace .. 5-9

Creating Logical Dimensions.. 5-10
Creating Levels .. 5-11
Creating Hierarchies... 5-11
Creating Attributes ... 5-12

Automatically Defined Attributes ... 5-12
User-Defined Attributes.. 5-13

vi

Creating Logical Cubes .. 5-13
Creating Cubes .. 5-13
Creating Measures .. 5-14
Creating Calculated Measures .. 5-14

Mapping Logical Objects to Data Sources ... 5-15
Mapping Dimensions .. 5-16
Mapping Cubes ... 5-17

Using the Sparsity Advisor ... 5-18
What is Sparsity? ... 5-19
Ordering the Dimensions in a Cube... 5-19
Choosing a Data Type .. 5-19
Choosing Composite Types... 5-20
Partitioning Large Measures ... 5-20

Effects of Partitioning on Performance... 5-20
Choosing a Dimension for Partitioning.. 5-20
Example of a Partitioned Dimension .. 5-21

Maintaining the Data.. 5-21
Submitting Maintenance Tasks to the Oracle Job Queue.. 5-22
Managing Maintenance Jobs ... 5-22

Defining Measure Folders ... 5-22
Supporting Multiple Languages .. 5-23
Creating and Executing Calculation Plans ... 5-23
Using Templates to Re-Create a Logical Model .. 5-24
Using Plug-Ins ... 5-24
Case Study: Creating the Global Analytic Workspace... 5-25

Defining the GLOBAL_AW User.. 5-25
Creating the GLOBAL Analytic Workspace ... 5-26
Creating GLOBAL Dimensions and Attributes.. 5-26
Creating GLOBAL Cubes and Measures... 5-26
Mapping the GLOBAL Logical Model to Data Sources .. 5-27
Loading and Aggregating the Data.. 5-28
Creating Calculated Measures .. 5-28
Creating a Measure Folder... 5-29

Case Study: Creating the Sales History Analytic Workspace ... 5-29
Creating the SH Analytic Workspace .. 5-30
Defining Database Parameters .. 5-31
Defining Tablespaces for Sales History ... 5-31
Defining the SH_AW User... 5-32
Defining the Logical Dimensions for Sales History ... 5-32

Defining TIMES_DIM.. 5-32
Defining CUSTOMERS_DIM ... 5-33
Defining PRODUCTS_DIM, CHANNELS_DIM, and PROMOTIONS_DIM 5-33

Defining the Logical Sales Cube for Sales History... 5-33
Maintaining Sales History.. 5-34

vii

6 Administering Oracle OLAP

Administration Overview... 6-1
Creating Tablespaces for Analytic Workspaces.. 6-2

Creating an UNDO Tablespace.. 6-2
Creating a Permanent Tablespace for Analytic Workspaces... 6-2
Creating a Temporary Tablespace for Analytic Workspaces .. 6-3

Setting Up User Names ... 6-4
SQL Access For DBAs and Application Developers... 6-4
SQL Access for Analysts ... 6-5
Access to Database Objects Using OracleBI Beans.. 6-5
Access to the Oracle JVM .. 6-5

Initialization Parameters for Oracle OLAP ... 6-6
Procedure: Setting System Parameters for OLAP ... 6-6

Initialization Parameters for OracleBI Beans ... 6-7
Permitting Access to External Files... 6-7

Creating a Directory Object .. 6-8
Granting Access Rights to a Directory Object.. 6-8
Example: Creating and Using a Directory Object ... 6-8

Basic Queries for Monitoring the OLAP Option ... 6-9
Is the OLAP Option Installed in the Database? ... 6-9
What Analytic Workspaces are in the Database? .. 6-9
How Big is the Analytic Workspace? .. 6-9
How Is the Analytic Workspace Stored? ... 6-10
When Were the Analytic Workspaces Created?... 6-10

How Dimensional Data is Stored in the Database ... 6-11
Analytic Workspace Tables ... 6-11
System Tables .. 6-12
Static Data Dictionary Views... 6-13

Monitoring Performance.. 6-13
Copying and Backing Up Analytic Workspaces.. 6-14

Part III Generating Quality Information

7 Aggregating Data

What is Aggregation?... 7-1
Managing Aggregate Data .. 7-3

Managing Aggregate Data in Relational Tables.. 7-3
Managing Aggregate Data in Analytic Workspaces... 7-3

Basic Strategies for Aggregating Data.. 7-4
Aggregating Non-Compressed Composites .. 7-5

Selecting Dimensions for Skip-Level Aggregation .. 7-6
Selecting the Levels to Skip ... 7-6

Aggregating Compressed Composites ... 7-6
Improving Aggregation Performance... 7-7

Finish Data Updates on Time.. 7-7

viii

Keep Within Allocated Resources .. 7-8
Provide Good Response Time... 7-8

Selecting Dimension Members for Aggregation ... 7-8
Defining an Aggregation ... 7-10
Aggregation Operators ... 7-12

Basic Operators.. 7-12
Hierarchical Operators ... 7-12
Scaled and Weighted Operators ... 7-12

Case Study: Aggregating a Moderately Sparse or Dense Cube ... 7-13
Case Study: Aggregating a Very Sparse Cube ... 7-14

8 Allocating Data

What Is an Allocation? .. 8-1
Creating Measures to Support an Allocation.. 8-3

Source Measures... 8-4
Basis Measures.. 8-4
Target Measures ... 8-4
Weight Measures.. 8-4

Selecting Dimension Members for an Allocation ... 8-5
Identifying the Sources and Targets.. 8-5
Identifying the Allocation Path.. 8-7

Creating an Allocation... 8-8
Allocation Operators.. 8-9

Copy Operators .. 8-9
Even Distribution Operators .. 8-9
Proportional Distribution Operator ... 8-10
Relationships Between Allocation and Aggregation Operators .. 8-10

Case Study: Allocating a Budget .. 8-10
Creating the Source Measure... 8-10
Creating the Target Measure ... 8-11
Creating the Calculation Plan.. 8-11
Creating the Allocate Budget Step.. 8-11
Generating and Validating the Allocation .. 8-12

9 Generating Forecasts

Introduction to Forecasting Considerations.. 9-1
Choosing a General Forecasting Approach... 9-2

Time Series .. 9-3
Causal Analysis .. 9-3
Expert Opinion ... 9-4

About the Forecasting Engine .. 9-4
Creating a Forecast ... 9-4

Creating the Forecast Time Periods... 9-5
Creating a Forecast Measure .. 9-5
Selecting the Historical Data .. 9-5
Identifying the Levels for the Forecast.. 9-5
Creating a Forecast Step.. 9-6

ix

Generating the Forecast... 9-6
Evaluating the Forecast Results ... 9-7

Designing Your Own Forecast ... 9-7
What is the Expert System? .. 9-7
What is the Verification Window?... 9-8
When Should You Design a Forecast? .. 9-8
Overriding the Expert System.. 9-8

Forecasting Method Descriptions ... 9-9
Automatic.. 9-9
Regressions.. 9-9

Linear Regression.. 9-9
Nonlinear Regression ... 9-9
Advanced Parameter for Regressions... 9-10

Exponential Smoothing .. 9-10
Comparison Among Exponential Smoothing Methods... 9-10
Advanced Parameters for Exponential Smoothing... 9-11

Advanced Parameter Descriptions... 9-11
Setup Parameters... 9-12
General Parameters... 9-12
Historical Data Smoothing Parameters.. 9-13

Case Study: Forecasting Sales for Global Enterprises ... 9-14
Creating the Sales Forecast Target Measure ... 9-14
Creating the Calculation Plan.. 9-14
Creating the Sales Forecast Step ... 9-14
Generating and Validating the Forecast .. 9-17
Creating an Allocation Basis Measure ... 9-18
Creating the Allocate Sales Forecast Step.. 9-19
Generating and Validating the Allocation .. 9-20
Creating the Sales Forecast Aggregation Step .. 9-20
Generating the Aggregation .. 9-20

Glossary

Index

x

xi

Preface

The Oracle OLAP Application Developer’s Guide explains how SQL and Java applications
can extend their analytic processing capabilities by using the OLAP option in the
Enterprise edition of the Oracle Database. It also provides information for Oracle
DBAs about managing resources for OLAP.

The preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This manual is intended for applications developers and DBAs who need to perform
these tasks:

■ Develop business intelligence applications

■ Design and develop dimensional data stores (analytic workspaces)

■ Administer Oracle Database with the OLAP option

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following manuals in the Oracle Database 10g
documentation set:

■ Oracle OLAP Reference

Explains the syntax of PL/SQL packages and types and the column structure of
views related to Oracle OLAP.

■ Oracle OLAP DML Reference

Contains a complete description of the OLAP Data Manipulation Language
(OLAP DML) used to define and manipulate analytic workspace objects.

■ Oracle OLAP Developer's Guide to the OLAP API

Introduces the Oracle OLAP API, a Java application programming interface for
Oracle OLAP, which is used to perform online analytical processing of the data
stored in an Oracle database. Describes the API and how to discover metadata,
create queries, and retrieve data.

■ Oracle OLAP Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for querying
analytic workspaces and relational data warehouses.

■ Oracle OLAP Analytic Workspace Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for building and
maintaining analytic workspaces.

For documentation about Oracle Business Intelligence, view the Web page at
http://www.oracle.com/technology/documentation/bi.html.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

What’s New in Oracle OLAP
Applications Development?

The following identifies some of the major changes from prior releases.

Oracle Database 10g Release 10.2.0.3 Oracle OLAP
Analytic Workspace Manager in Release 10.2.0.3 provides a Sparsity Advisor, which
examines the source data and makes recommendations for defining OLAP cubes that
will provide the best performance. The functionality of calculation plans has been
enhanced to provide post-load forecasting, allocation, and aggregation. Analytic
Workspace Manager also supports Java add-ins, so that any Java developer can extend
and customize the tools in Analytic Workspace Manager.

Oracle Database 10g Release 10.2 Oracle OLAP
Oracle OLAP in Oracle Database 10g Release 2 (10.2) provides numerous performance
enhancements and extensions to the dimensional data model.

Enhanced Data Model in Analytic Workspace Manager
Analytic Workspace Manager 10.2 supports Calculation Plans and multiple languages.
Compressed composites provide support for partial computation and non-additive
operators.

Support for Transportable Tablespaces
Analytic workspaces are included with other database objects in transportable
tablespaces.

See Also:

■ Chapter 5 for information about the Sparsity Advisor and plug-ins

■ Chapter 7 for information about aggregation

■ Chapter 8 for information about allocation

■ Chapter 9 for information about forecasting

See Also:

■ Chapter 1 for upgrade instructions

■ Chapter 5 for new features in Analytic Workspace Manager

xiv

Oracle Database 10g Release 10.1.0.4 Oracle OLAP
Oracle OLAP 10.1.0.4 provides a simpler approach to building and enabling analytic
workspaces while introducing the more powerful analytic tools of the OLAP engine
into the build process.

New Storage Format for Analytic Workspaces
Analytic workspaces are still stored in LOB tables in Oracle Database 10g, but in a
different format that supports partitioning and multiple writers.

New Model View in Analytic Workspace Manager
The Model View in Analytic Workspace Manager 10g enables you to define the logical
model of your analytic workspace directly in database standard form. You no longer
create logical models in the OLAP Catalog for building analytic workspaces. Analytic
Workspace Manager supports a wider range of schema designs than the OLAP
Catalog.

Database Standard Form 10g
Analytic Workspace Manager and the PL/SQL DBMS_AWM package generate a new
version of standard form metadata that supports the new features of Oracle
Database 10g.

Dynamic Enabling for the OLAP API and OracleBI Beans
The SELECT statements for the views of an analytic workspace are stored in the
analytic workspace itself. Enablement no longer requires the creation of database
objects.

Direct Metadata Access
The OLAP API and OracleBI Beans query the Active Catalog views, which display the
database standard form metadata stored in analytic workspaces. Enablement no
longer requires the creation of OLAP Catalog CWM2 metadata.

See Also: Chapter 6 for information about backing up analytic
workspaces

See Also:

■ Chapter 1 for upgrade instructions

■ Chapter 6 for a description of the storage format

See Also: Chapter 5 for instructions on using the Model View

Part I
Fundamentals

Part I introduces basic concepts, tools, and capabilities of the OLAP option. By reading
the chapters in this part, you will learn how the OLAP option works within Oracle
Database. You will also get an introduction to the sample schema used in examples
throughout this guide.

Part I contains the following chapters:

■ Chapter 1, "Overview"

■ Chapter 2, "The Logical Dimensional Data Model"

■ Chapter 3, "The Sample Schema"

■ Chapter 4, "Developing Java Applications for OLAP"

Overview 1-1

1
Overview

This chapter introduces the powerful analytic resources available in Oracle
Database 10g installed with the OLAP option. It consists of the following topics:

■ OLAP Technology Within Oracle Database

■ Using OLAP to Answer Business Questions

■ Common Analytical Applications

■ Tools for Querying OLAP Data Stores

■ About Multidimensional Data Stores

■ Components of Oracle OLAP

■ Implementing an Analytic Workspace

■ Upgrading Oracle Database 10g Release 1 Analytic Workspaces

■ Upgrading Oracle9i Analytic Workspaces

OLAP Technology Within Oracle Database
Multidimensional technology has been available in the Oracle database since Oracle9i.
Each release since then has provided enhanced integration, functionality, and
performance. Organizations no longer need to choose between a multidimensional
OLAP database and a relational database. By integrating multidimensional tables and
an analytic engine into the database, Oracle provides the power of multidimensional
analysis along with the manageability, scalability, and reliability of Oracle Database.

Problems Maintaining Two Distinct Systems
The integration of multidimensional technology in a relational database is important
because maintaining a standalone multidimensional database is costly. It requires
additional hardware and DBAs who are skilled at using the specialized administrative
tools of the multidimensional database. Moreover, standalone multidimensional
databases require applications that use proprietary APIs. This severely limits the
number of applications that can be run against them, not only because fewer
applications are available in these APIs, but because all the data that they run on must
be transferred from the relational database to the multidimensional database. These
requirements often force enterprises into supporting two sets of query and reporting
tools, one for the relational database and the other for the multidimensional database.

Using OLAP to Answer Business Questions

1-2 Oracle OLAP Application Developer’s Guide

Full Integration of Multidimensional Technology
In contrast, the OLAP option is fully integrated into the Oracle Database. DBAs use the
same tools to administer this option as they use to administer all other components of
the database. The DBA can decide the best location for storing and calculating the data
as part of optimizing the operations of the database. A single application can access
both relational and multidimensional data.

SQL-based applications can now use pure SQL against information-rich relational
views of multidimensional data provided by an OLAP-enabled Oracle Database.
OLAP calculations can be queried using SQL, enabling application developers to
leverage their investment in SQL while expanding the analytic sophistication of their
software to include modeling, forecasting, and what-if analysis. Standard reporting
applications can present the results of complex multidimensional calculations, while
ad-hoc querying tools such as custom aggregate members and custom measures can
expand the analyst's range of calculation functions.

Using OLAP to Answer Business Questions
Relational databases provide the online transactional processing (OLTP) that is
essential for businesses to keep track of their affairs. Designed for efficient selection,
storage, and retrieval of data, relational databases are ideal for housing gigabytes of
detailed data.

The success of relational databases is apparent in their use to store information about
an increasingly wide scope of activities. As a result, they contain a wealth of data that
can yield critical information about a business. This information can provide a
significant edge in an increasingly competitive marketplace.

The challenge is in deriving answers to business questions from the available data, so
that decision makers at all levels can respond quickly to changes in the business
climate.

A standard transactional query might ask, "When did order 84305 ship?" This query
reflects the basic mechanics of doing business. It involves simple data selection and
retrieval of one record (or, at most, several related records) identified by a unique
order number. Any follow-up questions, such as which postal carrier was used and
where was the order shipped to, can probably be answered by the same record. This
record has a useful life span in the transactional world: it begins when a customer
places the order and ends when the order is shipped and paid for. At this point, the
record can be rolled off to an archive.

In contrast, a typical series of analytical queries might ask, "How do sales in the Pacific
Rim for this quarter compare with sales a year ago? What can we predict for sales next
quarter? What factors can we alter to improve the sales forecast? What happens if I
change this number?"

These are not questions about doing business transactions, but about analyzing past
performance and making decisions that will improve future performance, provide a
more competitive edge, and thus enhance profitability. The analytic database provides
the information needed by decision makers whose ability to set goals today is
dependent on how well they can predict the future. Getting the answers to these
questions involves single-row calculations, time series analysis, and access to
aggregated historical and current data. This requires OLAP -- online analytical
processing.

Tools for Querying OLAP Data Stores

Overview 1-3

Common Analytical Applications
Here are a few examples of common applications that can use the OLAP option to
realize valuable gains in functionality and performance:

■ Planning applications enable organizations to predict outcomes. They generate
new data using predictive analytical tools such as models, forecasts, aggregation,
allocation, and scenario management. Some examples of this type of application
are corporate budgeting and financial analyses, and demand planning systems.

■ Budgeting and financial analysis systems enable organizations to analyze past
performance, build revenue and spending plans, manage to attain profit goals,
and model the effects of change on the financial plan. Management can determine
spending and investment levels that are appropriate for the anticipated revenue
and profit levels. Financial analysts can prepare alternative budgets and
investment plans contingent on factors such as fluctuations in currency values.

■ Demand planning systems enable organizations to predict market demand based
on factors such as sales history, promotional plans, and pricing models. They can
model different scenarios that forecast product demand and then determine
appropriate manufacturing goals.

As this discussion highlights, the data processing required to answer analytical
questions is fundamentally different from the data processing required to answer
transactional questions. The users are different, their goals are different, their queries
are different, and the type of data that they need is different. A relational data
warehouse enhanced with the OLAP option provides the best environment for data
analysis.

Tools for Querying OLAP Data Stores
Analysts can choose between two query and analysis tools for selecting, viewing, and
analyzing the data:

■ OracleBI Discoverer Plus OLAP is a full featured tool for business analysis that
provides a variety of presentation options.

Discoverer Plus OLAP provides various wizards to guide power users through the
entire process of building and publishing sophisticated reports containing
crosstabs and graphs. They can choose from multiple layout options to create a
visual representation of their query results. They can create queries, drill, pivot,
slice and dice data, add analytic calculations, graph the data, share results with
other users, and export their Discoverer reports in various data formats.
Discoverer reports can also be published in dashboards where other users can
access them from their browsers.

■ OracleBI Spreadsheet Add-In combines Oracle Database dimensional analytics
with the capabilities of Microsoft Excel.

Spreadsheet Add-In enables analysts to work with live dimensional data in the
familiar spreadsheet environment of Microsoft Excel. The add-in fetches data
using an active connection to an OLAP data store, and displays the data in a
spreadsheet. Users can use the add-in to perform OLAP operations such as
drilling, rotation, and data selection.

In addition, OracleBI Beans is available for developing custom applications, as
described in Chapter 4.

Tools for Querying OLAP Data Stores

1-4 Oracle OLAP Application Developer’s Guide

Formulating Queries
Both Discoverer Plus OLAP and Spreadsheet Add-In use a dimensional data model so
that analysts can formulate their queries in the language of business. Dimensions
provide the context for the data. Consider the following request for information:

For fiscal years 2003 and 2004, show the percent change in sales for the top 10
products for each of the top 10 customers based on sales.

The sales measure is dimensioned by time periods, products, and customers. This
request is articulated in business terms, but easily translates into a query in the
language of dimensional analysis: dimensions, levels, hierarchies, and attributes.

Figure 1–1 shows a step in the Query Wizard in Discoverer Plus OLAP for selecting
the top 10 products. The Query Wizard assists users in selecting by criteria, by value,
and by saved selections. All OLAP tools provide a Query Wizard to assist users in
formulating these queries.

Figure 1–1 Selecting Dimension Values By Criteria

Creating Custom Measures
Multidimensional data types facilitate the creation of custom measures. From the
measures stored in your data warehouse, you can use numerous operators and
functions to generate a wealth of information. Figure 1–2 shows a step in the
Calculation Wizard of Discoverer Plus OLAP for calculating percent change in sales.
Spreadsheet Add-In has the same Calculation Wizard. Both tools use the OracleBI
Beans CalcBuilder.

See Also: Oracle Business Intelligence Concepts Guide, which is
available at
http://www.oracle.com/technology/documentation/bi.ht
ml

About Multidimensional Data Stores

Overview 1-5

Figure 1–2 Choosing a Calculation Method for a Custom Measure

About Multidimensional Data Stores
Multidimensional data is stored in analytic workspaces, where it can be manipulated
by the OLAP engine in Oracle Database. Individual analytic workspaces are stored in
tables in a relational schema, and they can be managed like other relational tables. An
analytic workspace is owned by a particular user ID, and other users can be granted
access to it. Within a single database, many analytic workspaces can be created and
shared among users.

Analytic workspaces have been designed explicitly to handle multidimensionality in
their physical data storage and manipulation of data. The multidimensional
technology that underlies analytic workspaces is based on an indexed
multidimensional array model, which provides direct cell access. This intrinsic
multidimensionality affords analytic workspaces much of their speed and power in
performing multidimensional analysis.

Creating Analytic Workspaces
Creating an analytic workspace involves a physical transformation of the data. The
first step in that transformation is defining dimensional objects such as measures,
dimensions, levels, hierarchies, and attributes. Afterward, you can map the
dimensional objects to the data sources. The analytic workspace instantiates the logical
objects as physical objects, and the data loading process transforms the data from a
relational format into a dimensional format.

The analytic workspaces that are created by Oracle Warehouse Manager and Analytic
Workspace Manager are in database standard form (typically called simply "standard
form"). Standard form specifies the types of physical objects that are used to instantiate
logical objects (such as dimensions and measures), and the type, form, and storage
location of the metadata that describes these logical objects.

This metadata is exposed to SQL in the Active Catalog. The Active Catalog is
composed of views of standard form metadata that is stored in analytic workspaces.
These views are maintained automatically, so that a change to a standard form analytic
workspace is reflected immediately by a change to the Active Catalog. Discoverer Plus

Components of Oracle OLAP

1-6 Oracle OLAP Application Developer’s Guide

OLAP and Spreadsheet Add-In use the Active Catalog to query data in analytic
workspaces.

Structured Data Stores
The dimensional data model is highly structured. Structure implies rules that govern
the relationships among the data and control how the data can be queried. Analytic
workspaces are the physical implementation of the dimensional model, and thus are
highly optimized for dimensional queries. The OLAP engine leverages the model in
performing highly efficient cross-cube joins (for inter-row calculations), outer joins (for
time series analysis), and indexing. Dimensions are pre-joined to the measures.

Processing Analytic Queries
For data stored in analytic workspaces, the OLAP calculation engine performs analytic
operations and supports sophisticated analysis, such as modeling and what-if analysis.
If you require these types of analysis, then you need analytic workspaces. The OLAP
engine also provides the fastest run-time response to analytic queries, which is
important if you anticipate user sessions that are heavily analytical.

Creating Summary Data
A basic characteristic of business analysis is hierarchically structured data; detail data
is summarized at various levels, which allows trends and patterns to emerge. An
analyst who has detected a pattern can drill down to lower levels to identify the
factors that contributed to this pattern.

The creation and maintenance of summary data is a serious issue for DBAs. If no
summary data is stored, then all summarizations must be performed in response to
individual queries. This can easily result in unacceptably slow response time. At the
other extreme, if all summary data is stored, then the database can quickly multiply in
size.

Analytic workspaces store aggregate data in the same objects as the base level data.
Aggregates can be stored permanently in the analytic workspace, or only for the
duration of an individual session, or only for a single query. Aggregation rules identify
which aggregates are stored for each measure. When an application queries the
analytic workspace, either the aggregate values have already been calculated and can
simply be retrieved, or they can be calculated on the fly from a small number of stored
aggregates. The data is always presented to the application as fully solved; that is, both
detail and summary values are provided, without requiring that calculations be
specified in the query. Analytic workspaces are optimized for multidimensional
calculations, making run-time summarizations extremely fast.

Analytic workspaces provide an extensive list of aggregation methods, including
weighted, hierarchical, and weighted hierarchical methods.

Components of Oracle OLAP
The OLAP option is installed with Oracle Database 10g Enterprise Edition. The
following components are installed from the database (db) disk:

OLAP Analytic Engine
Analytic Workspaces
OLAP DML
SQL Interface to OLAP

Components of Oracle OLAP

Overview 1-7

Analytic Workspace Java API
OLAP API

These components are installed from the client disk:

Analytic Workspace Manager
OLAP Worksheet

These OLAP components are described in the following paragraphs. The relationships
among them are described throughout this guide.

OLAP Analytic Engine
The OLAP analytic engine supports the selection and rapid calculation of
multidimensional data. The status of an individual session persists to support a series
of queries, which is typical of analytical applications; the output from one query is
easily used as input to the next query. A comprehensive set of data manipulation tools
supports modeling, aggregation, allocation, forecasting, and what-if analysis. The
OLAP engine runs within the Oracle kernel.

Analytic Workspaces
Analytic workspaces store data in a multidimensional format, as described previously
in "About Multidimensional Data Stores" on page 1-5. An analytic workspace is stored
as a table in a relational schema. Individual workspace objects are stored in one or
more rows as LOBs. This storage structure permits the analytic workspace to be
partitioned and for multiple users to write to the analytic workspace simultaneously.

Analytic Workspace Manager
Analytic Workspace Manager provides an easy-to-use interface for creating and
managing analytic workspaces in database standard form so they can be queried by
OLAP tools. It enables you to develop a logical dimensional model of your data
quickly and easily, map logical objects to relational data sources, and load and
aggregate the data. Using Analytic Workspace Manager, you can manage the life cycle
of your analytic workspaces. You can save the logical model as an XML file.

Analytic Workspace Manager also contains tools for upgrading from Oracle9i and
Oracle Express Server.

OLAP Worksheet
OLAP Worksheet is an interactive environment for working with analytic workspaces,
similar to SQL*Plus Worksheet. It provides easy access to the OLAP DML, which is the
native language of analytic workspaces. You can switch between two different modes,
one for working with analytic workspaces in the OLAP DML, and the other for
working with relational tables and views in SQL. It is available through Analytic
Workspace Manager or as a separate executable.

OLAP DML
OLAP DML is the native language of analytic workspaces. It is a data definition and
manipulation language for creating analytic workspaces, defining data containers, and
manipulating the data stored in these containers. All other levels of operation (GUIs,
Java, and SQL) resolve to the OLAP DML.

Implementing an Analytic Workspace

1-8 Oracle OLAP Application Developer’s Guide

If you are upgrading from Oracle Express or you plan to develop all the tools for
working with analytic workspaces, then you may work directly in the OLAP DML. If
you plan to use Oracle OLAP tools and applications, then do not work directly in the
OLAP DML; your manual changes may invalidate the metadata.

SQL Interface to OLAP
The SQL interface to OLAP provides access to analytic workspaces from SQL. The SQL
interface is implemented in PL/SQL packages.

For more information, refer to the Oracle OLAP Reference.

Analytic Workspace Java API
The Analytic Workspace Java API supports the creation and maintenance of analytic
workspaces in Java. It provides a programmatic method for defining a logical
dimensional data model and instantiating that model in an analytic workspace. This
API is used in Analytic Workspace Manager to create and modify analytic workspaces.

OLAP API
The OLAP API is a Java-based programming interface for OLAP applications, and it
supports OracleBI Beans.

OracleBI Beans contains building blocks for developing analytic applications in Java,
and it is available for use with JDeveloper. If you are an applications developer, then
you will use OracleBI Beans in your OLAP applications. OracleBI Beans is not
included with the OLAP option, but it requires Oracle Database with the OLAP
option.

Implementing an Analytic Workspace
Analytic workspaces can be created in a variety of ways, depending on the
characteristics of the data source and your own personal preference. However, the
basic process is the same for all of them.

These are the basic stages:

1. Identifying Business Goals

2. Identifying Data Sources

3. Defining a Logical Model

4. Mapping, Loading, and Aggregating the Data

5. Generating Information-Rich Data

Identifying Business Goals
The first stage of implementing an analytic workspace is defining the analysis
requirements of end users. By interviewing them, you can identify the business
analysis questions they want to answer with an OLAP application. With this
information, you can determine the business measures that must be available, the base
level at which the measures must be stored, and the types of data calculations that
must be available.

See Also: Oracle OLAP Analytic Workspace Java API Reference

See Also: Oracle OLAP Java API Reference

Implementing an Analytic Workspace

Overview 1-9

Identifying Data Sources
To load data into an analytic workspace using OLAP tools, the source data must be in
relational tables or views. The tables can be in a star, snowflake, or other schema, as
described in Chapter 5. Analytic Workspace Manager supports direct mapping of
logical objects to relational columns. If your relational data requires transformation,
then you must define views that perform the transformations.

If your source data is not stored in relational tables or requires extensive
transformation, then you can choose from one of these options:

■ Use Oracle Warehouse Builder to create a star schema from disparate data sources,
then use Analytic Workspace Manager to create an analytic workspace from the
relational data. Your Information Technology (IT) department may do this task for
you. Choose this option when you are developing a new analytic workspace.

■ Use Oracle Warehouse Builder to create an analytic workspace, then use Analytic
Workspace Manager to manage it. Choose this option when the design phase is
complete and the analytic workspace is in a production environment. The IT
department can manage this task along with its other maintenance tasks.

Defining a Logical Model
A logical dimensional model defines the dimensions, levels, hierarchies, attributes,
cubes, and measures of your data. The Model View in Analytic Workspace Manager
enables you to define the logical model by defining the individual objects and the
relationships among them. When you save the definition of a logical object, Analytic
Workspace Manager creates the physical objects in an analytic workspace that are
needed to instantiate the logical object in database standard form.

Mapping, Loading, and Aggregating the Data
Analytic Workspace Manager provides a graphical tool for mapping the logical objects
to physical data stores. You can drag-and-drop tables and views from schemas to
which you have access onto a mapping canvas. You can then draw lines from the
appropriate columns to the logical objects that you have defined in the analytic
workspace. Using a wizard, you can load data into the analytic workspace and
aggregate the data using the rules that you provided.

Generating Information-Rich Data
As part of setting up an analytic workspace, you can define numerous calculated
measures using the Calculation Wizard, which is described in "Creating Custom
Measures" on page 1-4. In addition, you can create forecasts, allocations, and post-load
aggregations.

See Also: Chapter 3 for a sample approach to identifying business
goals.

See Also: Oracle Warehouse Builder User's Guide

See Also: Chapter 5 for an introduction to the Model View of
Analytic Workspace Manager

Upgrading Oracle Database 10g Release 1 Analytic Workspaces

1-10 Oracle OLAP Application Developer’s Guide

Upgrading Oracle Database 10g Release 1 Analytic Workspaces
If you created an analytic workspace in Oracle 10g Release 1, you can upgrade it to
Release 2 using the following procedure. Upgrading is optional. However, upgrading
enables you to use the new features of Analytic Workspace Manager 10.2, such as
additional aggregation operators for compressed composites, support for multiple
languages, and performance improvements.

To upgrade an analytic workspace, take these steps:

1. Open Analytic Workspace Manager in the Model View.

2. In the navigation tree, select the name of the Oracle Database instance where your
analytic workspace is stored.

3. On the Basic tab of the Database property sheet, verify that the database is running
in 10.2 compatibility mode.

4. Right-click the analytic workspace, and select Upgrade Analytic Workspace to
10.2.

5. Complete the Analytic Workspace Upgrade to Version 10.2 dialog box.

Click Help for additional information.

Upgrading Oracle9i Analytic Workspaces
If you have analytic workspaces that were created in Oracle9i, then you should
upgrade them to take advantage of new features such as partitioning and compressed
composites.

Upgrading may break custom OLAP DML programs. For this reason, you can choose
to upgrade at a time that is convenient for you. You can continue to manage your older
analytic workspaces by using an older version of Analytic Workspace Manager (such
as Oracle9i Release 9.2.0.4.1).

Any new analytic workspaces that you create using the new Oracle Database 10g
version of Analytic Workspace Manager will automatically be in 10g standard form, as
long as Oracle Database is running in 10g compatibility mode.

If Oracle Database is running in 9i compatibility mode, then you will continue to work
the same way as before without upgrading the analytic workspaces.

To upgrade an analytic workspace, take these steps:

1. Set the COMPATIBLE parameter to 10.0.0.0 or later in the database initialization
file.

2. Upgrade the physical storage format.

3. Upgrade the standard form metadata.

You can upgrade the physical storage format without upgrading the standard form
metadata, if you wish. This change will improve performance and support
partitioning. However, the analytic workspace will not be enabled dynamically for
OracleBI Beans until you upgrade the metadata.

You can perform the upgrade steps either in the Object View of Analytic Workspace
Manager or in PL/SQL.

Upgrading Oracle9i Analytic Workspaces

Overview 1-11

Upgrading the Physical Storage Format
Convert the physical storage format by using either of these methods:

■ Recreate the analytic workspace by following these steps:

1. Export the contents to an EIF file.

2. Delete the old analytic workspace.

3. Create a new, empty analytic workspace.

4. Import the contents from the EIF file.

You can export and import in Analytic Workspace Manager. For more information,
see these topics in Help: “Exporting Workspace Objects” and “Importing
Workspace Objects”

■ Use the PL/SQL conversion program:

EXECUTE DBMS_AW.CONVERT('aw_name');

Tip: Use a program such as SQL*Plus to execute this procedure. For the full
syntax, refer to the Oracle OLAP Reference.

Upgrading the Standard Form Metadata
To upgrade the standard form metadata, follow these steps:

1. In Analytic Workspace Manager, open the Object View.

2. Expand the navigation tree until you see the name of the analytic workspace.

3. Right-click the analytic workspace and choose Upgrade Analytic Workspace From
9i to 10g Standard Form from the popup menu.

4. Upgrade to Release 2 by following the instructions in "Upgrading Oracle Database
10g Release 1 Analytic Workspaces" on page 1-10.

Alternatively, you can use DBMS_AWM PL/SQL procedures
CREATE_DYNAMIC_AW_ACCESS and DELETE_ALL_AW_ACCESS to perform the
upgrade. Refer to the Oracle OLAP Reference for the syntax and usage notes.

Upgrading Oracle9i Analytic Workspaces

1-12 Oracle OLAP Application Developer’s Guide

The Logical Dimensional Data Model 2-1

2
The Logical Dimensional Data Model

This chapter describes the logical dimensional data model, which is used by Oracle
OLAP. It consists of the following topics:

■ Overview of the Data Model

■ Logical Cubes

■ Logical Measures

■ Logical Dimensions

■ Logical Hierarchies and Levels

■ Logical Attributes

Overview of the Data Model
The dimensional data model is an integral part of On-Line Analytical Processing, or
OLAP. Because OLAP is on-line, it must provide answers quickly; analysts pose
iterative queries during interactive sessions, not in batch jobs that run overnight. And
because OLAP is also analytic, the queries are complex.

The dimensional data model is composed of logical cubes, measures, dimensions,
hierarchies, levels, and attributes. The simplicity of the model is inherent because it
defines objects that represent real-world business entities. Analysts know which
business measures they are interested in examining, which dimensions and attributes
make the data meaningful, and how the dimensions of their business are organized
into levels and hierarchies.

Figure 2–1 shows the general relationships among logical objects.

Logical Cubes

2-2 Oracle OLAP Application Developer’s Guide

Figure 2–1 Diagram of the OLAP Logical Dimensional Model

Logical Cubes
Logical cubes provide a means of organizing measures that have the same shape, that
is, they have the exact same dimensions. Measures in the same cube have the same
relationships to other logical objects and can easily be analyzed and displayed
together.

Logical Measures
Measures populate the cells of a logical cube with the facts collected about business
operations. Measures are organized by dimensions, which typically include a Time
dimension.

An analytic database contains snapshots of historical data, derived from data in a
transactional database, legacy system, syndicated sources, or other data sources. Three
years of historical data is generally considered to be appropriate for analytic
applications.

Measures are static and consistent while analysts are using them to inform their
decisions. They are updated in a batch window at regular intervals: weekly, daily, or
periodically throughout the day. Some administrators refresh their data by adding
periods to the time dimension of a measure, and may also roll off an equal number of
the oldest time periods. Each update provides a fixed historical record of a particular
business activity for that interval. Other administrators do a full rebuild of their data
rather than performing incremental updates.

A critical decision in defining a measure is the lowest level of detail. Users may never
view this base level data, but it determines the types of analysis that can be
performed. For example, market analysts (unlike order entry personnel) do not need
to know that Beth Miller in Ann Arbor, Michigan, placed an order for a size 10 blue
polka-dot dress on July 6, 2005, at 2:34 p.m. But they might want to find out which
color of dress was most popular in the summer of 2005 in the Midwestern United
States.

The base level determines whether analysts can get an answer to this question. For this
particular question, Time could be rolled up into months, Customer could be rolled up
into regions, and Product could be rolled up into items (such as dresses) with an
attribute of color. However, this level of aggregate data could not answer the question:
At what time of day are women most likely to place an order? An important decision
is the extent to which the data has been aggregated before being loaded into a data
warehouse.

Logical Attributes

The Logical Dimensional Data Model 2-3

Logical Dimensions
Dimensions contain a set of unique values that identify and categorize data. They
form the edges of a logical cube, and thus of the measures within the cube. Because
measures are typically multidimensional, a single value in a measure must be qualified
by a member of each dimension to be meaningful. For example, the Sales measure has
four dimensions: Time, Customer, Product, and Channel. A particular Sales value
(43,613.50) only has meaning when it is qualified by a specific time period (Feb-01), a
customer (Warren Systems), a product (Portable PCs), and a channel (Catalog).

Logical Hierarchies and Levels
A hierarchy is a way to organize data at different levels of aggregation. In viewing
data, analysts use dimension hierarchies to recognize trends at one level, drill down to
lower levels to identify reasons for these trends, and roll up to higher levels to see
what affect these trends have on a larger sector of the business.

Level-Based Hierarchies
Each level represents a position in the hierarchy. Each level above the base (or most
detailed) level contains aggregate values for the levels below it. The members at
different levels have a one-to-many parent-child relation. For example, Q1-05 and
Q2-05 are the children of 2005, thus 2005 is the parent of Q1-05 and Q2-05.

Suppose a data warehouse contains snapshots of data taken three times a day, that is,
every 8 hours. Analysts might normally prefer to view the data that has been
aggregated into days, weeks, quarters, or years. Thus, the Time dimension needs a
hierarchy with at least five levels.

Similarly, a sales manager with a particular target for the upcoming year might want
to allocate that target amount among the sales representatives in his territory; the
allocation requires a dimension hierarchy in which individual sales representatives are
the child values of a particular territory.

Hierarchies and levels have a many-to-many relationship. A hierarchy typically
contains several levels, and a single level can be included in more than one hierarchy.

Value-Based Hierarchies
Although hierarchies are typically composed of levels, they do not have to be. The
parent-child relations among dimension members may not define meaningful levels.
For example, in an employee dimension, each manager has one or more reports, which
forms a parent-child relation. Creating levels based on these relations (such as
individual contributors, first-level managers, second-level managers, and so forth)
may not be meaningful for analysis. Likewise, the line item dimension of financial data
does not have levels. This type of hierarchy is called a value-based hierarchy.

Logical Attributes
An attribute provides additional information about the data. Some attributes are used
for display. For example, you might have a product dimension that uses Stock Keeping
Units (SKUs) for dimension members. The SKUs are an excellent way of uniquely
identifying thousands of products, but are meaningless to most people if they are used
to label the data in a report or a graph. You would define attributes for the descriptive
labels.

Logical Attributes

2-4 Oracle OLAP Application Developer’s Guide

You might also have attributes like colors, flavors, or sizes. This type of attribute can
be used for data selection and answering questions such as: Which colors were the
most popular in women's dresses in the summer of 2005? How does this compare with
the previous summer?

Time attributes can provide information about the Time dimension that may be useful
in some types of analysis, such as identifying the last day or the number of days in
each time period.

The Sample Schema 3-1

3
The Sample Schema

This guide uses the Global schema for its examples. This chapter describes this schema
and explains how it will be mapped to dimensional objects. It consists of the following
topics:

■ Case Study Scenario

■ Identifying Required Business Facts

■ Designing a Logical Data Model for Global Computing

■ The Global Schema

Case Study Scenario
The fictional Global Computing Company was established in 1990. Global Computing
distributes computer hardware and software components to customers on a
worldwide basis. The Sales and Marketing department has not been meeting its
budgeted numbers. As a result, this department has been challenged to develop a
successful sales and marketing strategy.

Global Computing operates in an extremely competitive market. Competitors are
numerous, customers are especially price-sensitive, and profit margins tend to be
narrow. In order to grow profitably, Global Computing must increase sales of its most
profitable products.

Various factors in Global Computing's current business point to a decline in sales and
profits:

■ Traditionally, Global Computing experiences low third-quarter sales (July through
September). However, recent sales in other quarters have also been lower than
expected. The company has experienced bursts of growth but, for no apparent
reason, has had lower first-quarter sales during the last two years as compared
with prior years.

■ Global has been successful with its newest sales channel, the Internet. Although
sales within this channel are growing, overall profits are declining.

■ Perhaps the most significant factor is that margins on personal computers -
previously the source of most of Global Computing's profits - are declining
rapidly.

Global Computing needs to understand how each of these factors is affecting its
business.

Current reporting is done by the IT department, which produces certain standard
reports on a monthly basis. Any ad hoc reports are handled on an as-needed basis and
are subject to the time constraints of the limited IT staff. Complaints have been

Case Study Scenario

3-2 Oracle OLAP Application Developer’s Guide

widespread within the Sales and Marketing department, with regard to the delay in
response to report requests. Complaints have also been numerous in the IT
department, with regard to analysts who change their minds frequently or ask for
further information.

The Sales and Marketing department has been struggling with a lack of timely
information about what it is selling, who is buying, and how they are buying. In a
meeting with the CIO, the VP of Sales and Marketing states, "By the time I get the
information, it's no longer useful. I'm only able to get information at the end of each
month, and it doesn't have the details I need to do my job."

Reporting Requirements
When asked to be more specific about what she needs, the Vice President of Sales and
Marketing identifies the following requirements:

■ Trended sales data for specific customers, regions, and segments.

■ The ability to provide information and some analysis capabilities to the field sales
force. A Web interface would be preferred, since the sales force is distributed
throughout the world.

■ Detail regarding mail-order, phone, and e-mail sales on a monthly and quarterly
basis, as well as a comparison to past time periods. Information must identify
when, how, and what is being sold by each channel.

■ Margin information on products in order to understand the dollar contribution for
each sale.

■ Knowledge of percent change versus the prior and year-ago period for sales, units,
and margin.

■ The ability to perform analysis of the data by ad hoc groupings.

The CIO has discussed these requirements with his team and has come to the
conclusion that a standard reporting solution against the production order entry
system would not be flexible enough to provide the required analysis capabilities. The
reporting requirements for business analysis are so diverse that the projected cost of
development, along with the expected turnaround time for requests, would make this
solution unacceptable.

The CIO's team recommends using an analytic workspace to support analysis. The
team suggests that the Sales and Marketing department's IT group work with
Corporate IT to build an analytic workspace that meets their needs for information
analysis.

Business Goals
The development team identifies the following high-level business goals that the
project must meet:

■ Global Computing's strategic goal is to increase company profits by increasing
sales of higher margin products and by increasing sales volume overall.

■ The Sales and Marketing department objectives are to:

– Analyze industry trends and target specific market segments

– Analyze sales channels and increase profits

– Identify product trends and create a strategy for developing the appropriate
channels

Case Study Scenario

The Sample Schema 3-3

Information Requirements
Once you have established business goals, you can determine the type of information
that will help achieve these goals. To understand how end users will examine the data
in the analytic workspace, it is important to conduct extensive interviews. From
interviews with key end users, you can determine how they look at the business, and
what types of business analysis questions they want to answer

Business Analysis Questions
Interviews with the VP of Sales and Marketing, salespeople, and market analysts at
Global Computing reveal the following business analysis questions:

■ What products are profitable?

■ Who are our customers, and what and how are they buying?

■ What accounts are most profitable?

■ What is the performance of each distribution channel?

■ Is there still a seasonal variance to the business?

We can examine each of these business analysis questions in detail.

What products are profitable?
This business analysis question consists of the following questions:

■ What is the percent of total sales for any item, product family, or product class in
any month, quarter or year, and in any distribution channel? How does this
percent of sales differ from a year ago?

■ What is the unit price, unit cost, and margin for each unit for any item in any
particular month? What are the price, cost, and margin trends for any item in any
month?

■ What items were most profitable in any month, quarter, or year, in any distribution
channel, and in any geographic area or market segment? How did profitability
change from the prior period? What was the percent change in profitability from
the prior period?

■ What items experienced the greatest change in profitability from the prior period?

■ What items contributed the most to total profitability in any month, quarter, or
year, in any distribution channel, and in any geographic area or market segment?

■ What items have the highest per unit margin for any particular month?

■ In summary, what are the trends?

Who are our customers, and what and how are they buying?
This business analysis question consists of the following questions:

■ What were sales for any item, product family, or product class in any month,
quarter, or year?

■ What were sales for any item, product family, or product class in any distribution
channel, geographic area, or market segment?

■ How did sales change from the prior period? What was the percent change in sales
from the prior period?

Case Study Scenario

3-4 Oracle OLAP Application Developer’s Guide

■ How did sales change from a year ago? What was the percent change in sales from
a year ago?

■ In summary, what are the trends?

What accounts are most profitable?
This business analysis question consists of the following questions:

■ What accounts are most profitable in any month, quarter, or year, in any
distribution channel, by any item, product family, or product class?

■ What were sales and extended margin (gross profit) by account for any month,
quarter, or year, for any distribution channel, and for any product?

■ How does account profitability compare to the prior time period?

■ Which accounts experienced the greatest increase in sales as compared to the prior
period?

■ What is the percent change in sales from the prior period? Did the percent change
in profitability increase at the same rate as the percent change in sales?

■ In summary, what are the trends?

What is the performance of each distribution channel?
This business analysis question consists of the following questions:

■ What is the percent of sales to total sales for each distribution channel for any
item, product family, or product class, or for any geographic area or market
segment?

■ What is the profitability of each distribution channel: direct sales, catalog sales,
and the Internet?

■ Is the newest distribution channel, the Internet, "cannibalizing" catalog sales? Are
customers simply switching ordering methods, or is the Internet distribution
channel reaching additional customers?

■ In summary, what are the trends?

Is there still a seasonal variance to the business?
This business analysis question consists of the following questions:

■ Are there identifiable seasonal sales patterns for particular items or product
families?

■ How do seasonal sales patterns vary by geographic location?

■ How do seasonal sales patterns vary by market segment?

■ Are there differences in seasonal sales patterns as compared to last year?

Summary of Information Requirements
By examining the types of analyses that users wish to perform, we can identify the
following key requirements for analysis:

■ Global Computing has a strong need for profitability analysis. The company must
understand profitability by product, account, market segment, and distribution
channel. It also needs to understand profitability trends.

Designing a Logical Data Model for Global Computing

The Sample Schema 3-5

■ Global Computing needs to understand how sales vary by time of year. The
company must understand these seasonal trends by product, geographic area,
market segment, and distribution channel.

■ Global Computing has a need for ad hoc sales analysis. Analysis must identify
what products are sold to whom, when these products are sold, and how
customers buy these products.

■ The ability to perform trend analysis is important to Global Computing.

Identifying Required Business Facts
The key analysis requirements reveal the business facts that are required to support
analysis requirements at Global Computing.

These facts are ordered by time, product, customer shipment or market segment, and
distribution channel:

Sales
Units
Change in sales from prior period
Percent change in sales from prior period
Change in sales from prior year
Percent change in sales from prior year
Product share
Channel share
Market share
Extended cost
Extended margin
Extended margin change from prior period
Extended margin percent change from prior period
Units sold, change from prior period
Units sold, percent change from prior period
Units sold, change from prior year
Units sold, percent change from prior year

These facts are ordered by item and month:

Unit price
Unit cost
Margin per unit

Designing a Logical Data Model for Global Computing
"Business Goals" on page 3-2 identifies the business facts that will support analysis
requirements at Global Computing. Next, we will identify the dimensions, levels, and
attributes in a logical data model. We will also identify the relationships within each
dimension. The resulting data model will be used to design the Global schema, the
logical dimensional model, and the analytic workspace.

Identifying Dimensions
Four dimensions will be used to organize the facts in the database.

■ Product shows how data varies by product.

■ Customer shows how data varies by customer or geographic area.

Designing a Logical Data Model for Global Computing

3-6 Oracle OLAP Application Developer’s Guide

■ Channel shows how data varies according to each distribution channel.

■ Time shows how data varies over time.

Identifying Levels
Now that we have identified dimensions, we can identify the levels of summarization
within each dimension. Analysis requirements at Global Computing reveal that:

■ There are three distribution channels: Sales, Catalog, and Internet. These three
values are the lowest level of detail in the data warehouse and will be grouped in
the Channel level. From the order of highest level of summarization to the lowest
level of detail, levels will be Total Channel and Channel.

■ Global performs customer and geographic analysis along the line of shipments to
customers and by market segmentation. Shipments and Market Segment will be
two hierarchies in the Customer dimension. In each case, the lowest level of detail
in the data model is the Ship To location.

– When analyzing along the line of customer shipments, the levels of
summarization will be (highest to lowest): Total Customer, Region,
Warehouse, and Ship To.

– When analyzing by market segmentation, the levels of summarization will be
(highest to lowest): Total Market, Market Segment, Account, and Ship To.

■ In the examples in this guide, Product is mapped to a parent-child table and is
defined as a value-based hierarchy rather than a level-based hierarchy. Thus, no
levels are defined for Product.

■ The Time dimension will have three levels (highest to lowest): Year, Quarter, and
Month.

Within the Channel, Customer, and Product dimensions is a Total or All level as the
highest level of summarization. Adding this highest level provides additional
flexibility as application users analyze data.

Identifying Hierarchies
We will identify the hierarchies that organize the levels within each dimension. To
identify hierarchies, we will group the levels in the correct order of summarization and
in a way that supports the identified types of analysis.

For the Channel, Product, and Time dimensions, Global Computing requires only one
hierarchy for each dimension. For the Customer dimension, however, Global
Computing requires two hierarchies. Analysis within the Customer dimension tends
to be either by geographic area or market segment. Therefore, we will organize levels
into two hierarchies, Shipments and Market Segment.

Identifying Stored Measures
"Identifying Required Business Facts" on page 3-5 lists 21 business facts that are
required to support the analysis requirements of Global Computing. Of this number,
only four facts need to be acquired from the transactional database:

■ Units

■ Sales

■ Unit Price

■ Unit Cost

The Global Schema

The Sample Schema 3-7

All of the other facts can be derived from these basic facts. The derived facts can be
calculated in the analytic workspace on demand. If experience shows that some of
these derived facts are being used heavily and the calculations are putting a noticeable
load on the system, then some of these facts can be calculated and stored in the
analytic workspace as a data maintenance procedure.

The Global Schema
You can download and install the Global schema from the Oracle Web site and use it to
try the examples shown throughout this guide:

http://www.oracle.com/technology/products/bi/olap/doc_sample_sch
emas/globalschemawithxml.html

Instructions for installing the schema are provided in the readme file.

The Global schema contains alternative data sources for the logical Global model, so
that you can explore these variations:

■ Star schema

■ Snowflake schema

■ Parent-child table

The examples in this guide use a parent-child table for the Product dimension, a star
schema for the Customer and Channel dimensions, and a snowflake schema for the
Time dimension. See Chapter 5 for schema diagrams.

The Global Schema

3-8 Oracle OLAP Application Developer’s Guide

Developing Java Applications for OLAP 4-1

4
Developing Java Applications for OLAP

This chapter presents the rich development environment and the powerful tools that
you can use to create OLAP-aware applications in Java. It includes the following
topics:

■ Building Analytical Java Applications

■ Introducing OracleBI Beans

■ Building Java Applications That Manage Analytic Workspaces

Building Analytical Java Applications
Java is the language of the Internet. Using Java, application developers can write
standalone Java applications (which can be launched from a browser with Java's
WebStart technology) or HTML applications that access live data from Oracle
Database, through servlets, JavaServer Pages (JSP), and Oracle User Interface XML
(UIX).

About Java
Java is the preferred programming language for an ever-increasing number of
professional software developers. For those who have been programming in C or C++,
the move to Java is easy because it provides a familiar environment while avoiding
many of the shortcomings of the C language. Developed by Sun Microsystems, Java is
fast superseding C++ and Visual Basic as the language of choice for application
developers, for the following reasons:

■ Object oriented. Java enables application developers to focus on the data and
methods of manipulating that data, rather than on abstract procedures; the
programmer defines the desired object rather than the steps needed to create that
object. Almost everything in Java is defined as an object.

■ Platform independent. The Java compiler creates byte code that is interpreted at
runtime by the Java Virtual Machine (JVM). As the result, the same software can
run on all Windows, Linux, Unix, and Macintosh platforms where the JVM has
been installed. All major browsers have the JVM built in.

■ Network based. Java was designed to work over a network, which enables Java
programs to handle remote resources as easily as local resources.

■ Secure. Java code is either trusted or untrusted, and access to system resources is
determined by this characteristic. Local code is trusted to have full access to
system resources, but downloaded remote code (that is, an applet) is not trusted.
The Java "sandbox" security model provides a very restricted environment for
untrusted code.

Introducing OracleBI Beans

4-2 Oracle OLAP Application Developer’s Guide

The Java Solution for OLAP
To develop an OLAP application, you can use the Java programming language. Java
enables you to write applications that are platform-independent and easily deployed
over the Internet.

The OLAP API is a Java-based application programming interface that provides access
to dimensional data for analytical business applications. Java classes in the OLAP API
provide all of the functions required of an OLAP application: Connection to an OLAP
instance; authentication of user credentials; access to data in the RDBMS controlled by
the permissions granted to those credentials; and selection and manipulation of that
data for business analysis.

OracleBI Beans simplifies application development by providing these functions as
JavaBeans. Moreover, OracleBI Beans includes JavaBeans for presenting the data in
graphs and crosstabs.

The OLAP API has a companion interface that can be used to build applications for
OLAP DBAs. The OLAP Analytic Workspace Java API is a set of Java classes and an
XML schema for designing, building, and updating analytic workspaces in the Oracle
Database. For more information, see "Building Java Applications That Manage
Analytic Workspaces" on page 4-5.

Oracle Java Development Environment
Oracle JDeveloper provides an integrated development environment (IDE) for
developing Java applications. Although third-party Java IDEs can also be used
effectively, only JDeveloper achieves full integration with the Oracle Database and
OracleBI Beans wizards. The following are a few JDeveloper features:

■ Remote graphical debugger with break points, watches, and an inspector.

■ Multiple document interface (MDI)

■ Codecoach feature that helps you to optimize your code

■ Generation of 100% Pure Java applications, applets, servlets, Java beans, and so
forth with no proprietary code or markers

■ Oracle Database browser

Introducing OracleBI Beans
OracleBI Beans provides reusable components that are the basic building blocks for
OLAP decision support applications. Using OracleBI Beans, developers can rapidly
develop and deploy new applications, because these large functional units have
already been developed and tested — not only for their robustness, but also for their
ease of use. And because OracleBI Beans provides a common look and feel to OLAP
applications, the learning curve for end users is greatly reduced.

OracleBI Beans includes the following:

Note: Oracle JDeveloper and OracleBI Beans are not packaged
with the Oracle RDBMS.

Note: Oracle JDeveloper is an application and is not packaged
with Oracle Database.

Introducing OracleBI Beans

Developing Java Applications for OLAP 4-3

■ Presentation beans display the data in a rich variety of formats so that trends and
variations can easily be detected. Among the presentation beans currently
available are Graph and Crosstab.

■ Data beans acquire and manipulate the data. The data beans use the OLAP API to
connect to a data source, define a query, manipulate the resultant data set, and
return the results to the presentation beans for display. Data beans include a
QueryBuilder, a CalcBuilder, and a Metadata Manager.

■ Persistence Service is a set of packages that support the storage and retrieval of
objects in the OracleBI Beans Catalog, not only so that you can save your work,
but also so that you can share the work with others who have access to the
Catalog.

OracleBI Beans can be incorporated in a Java client or an HTML client application.
Java clients best support users who do immersed analyses, that is, use the system for
extensive periods of time with a lot of interaction. For example, users who create
reports benefit from a Java client. HTML clients best support remote users who use a
low bandwidth connection and have basic analytical needs. Thin clients can be
embedded in a portal or other Web site for these users.

Metadata
The OLAP API and OracleBI Beans use the logical model that is projected by the
Active Catalog to obtain the information they need about dimensional objects defined
in analytic workspaces. They use OLAP Catalog metadata to obtain information about
dimensional objects defined in Oracle relational data warehouses.

OracleBI Beans generates additional metadata to support its additional functionality.
This additional metadata is contained in the OracleBI Beans Catalog. The Metadata
Manager presents applications with a consolidated view of metadata from the Active
Catalog, OLAP Catalog, and the OracleBI Beans Catalog. For example, in the
QueryBuilder, the measures obtained from the Active Catalog and the custom
measures obtained from the OracleBI Beans Catalog appear together.

Navigation
The presentation beans support navigation techniques such as drilling, pivoting, and
paging.

■ Drilling displays lower-level values that contribute to a higher-level aggregate,
such as the cities that contribute to a state total.

■ Pivoting rotates the data cube so that the dimension members that labeled a graph
series now label groups, or the dimension members that labeled columns in a
crosstab now label rows instead. For example, if products label the rows and
regions label the columns, then you can pivot the data cube so that products label
the columns and regions label the rows.

■ Paging handles additional dimensions by showing each member in a separate
graph, crosstab, or table rather than nesting them in the columns or rows. For
example, you might want to see each time period in a separate graph rather than
all time periods on the same graph.

Introducing OracleBI Beans

4-4 Oracle OLAP Application Developer’s Guide

Formatting
The presentation beans enable you to change the appearance of a particular display. In
addition, the values of the data itself can affect the format.

■ Number formatting. Numerical displays can be modified by changing their scale,
number of decimal digits and leading zeros, currency symbol, negative notation,
and so forth.

■ Stoplight formatting. The formatting of the cell background color, border, font, and
so forth can be data driven so that outstanding or problematic results stand out
visually from the other data values.

Graphs
The Graph bean presents data in a large selection of two- and three-dimensional
business graph types, such as bar, area, line, pie, ring, scatter, bubble, pyramid, and
stock market. Most graph types have several subtypes, such as clustered bar, stacked
bar, and percent bar.

Bar, line, and area graphs can be combined so that individual rows in the data cube
can be specified as one of these graph types. You can also assign marker shape and
type, data line type, color, fill color, and width and on a row-by-row basis, depending
on the type of graph.

The graph image can be exported in PNG and other image formats.

Users can zoom in and out of selected areas of a graph. They can also scroll across the
axes.

Crosstabs
The Crosstab bean presents data in a two-dimensional grid similar to a spreadsheet.
Multiple dimensions can be nested along the rows or columns, and additional
dimensions can appear as separate pages. Among the available customizations are:
Font style, size, and color; data-driven formatting, stoplight reporting, and
underlining; individual cell background colors; border formats; and text alignment.

Users can navigate through the data using either a mouse or the keyboard.

Data Beans
The data beans use the OLAP API to provide the basic services needed by an
application. They enable clients to identify a database, present credentials for accessing
that database, and make a connection. The application can then access the metadata
and identify the available data. Users can select the measures they want to see and the
specific slice of data that is of interest to them. That data can then be modified and
manipulated.

Wizards
OracleBI Beans offers wizards that can be used both by application developers in
creating an initial environment and by end users in customizing applications to suit
their particular needs. The wizards lead you step-by-step so that you provide all of the
information needed by an application. The following are some of the tasks that can be
done using wizards.

■ Building a query. Fact tables and materialized views often contain much more
data than users are interested in viewing. Fetching vast quantities of data can also

Building Java Applications That Manage Analytic Workspaces

Developing Java Applications for OLAP 4-5

degrade performance unnecessarily. In addition to selecting measures, you can
limit the amount of data fetched in a query by selecting dimension members from
a list or using a set of conditions. Selections can be saved, and these saved
selections can be used again just by picking their names from a list.

OracleBI Beans takes advantage of all of the new OLAP functions in the database,
including ranking, lag, lead, and windowing. End users can create powerful
queries that ask sophisticated analytical questions, without knowing SQL at all.

■ Generating custom measures. You can define new "custom" measures whose
values are calculated from data stored within the database. For example, a user
might create a custom measure that shows the percent of change in sales from a
year ago. The data in the custom measure would be calculated using the lag
method on data in the Sales measure. Because a DBA cannot anticipate and create
all of the calculations required by all users, OracleBI Beans enables users to create
their own.

JSP Tag Library
OracleBI Beans includes an extensive JSP tag library that enables the development of
applications without writing custom code. After you use wizards to create the
presentations that are needed for an application, you can use JSP tags to insert the
presentations in HTML pages and to create additional pages for the user interface.

The tags in this library are grouped in the following categories:

■ General tags. Used to represent objects such as graphs, crosstabs, formatting tools,
explorers for the OracleBI Beans Catalog, and controls for displaying messages;
also includes a tag that lets you link the queries of graphs and crosstabs.

■ Dialog and wizard tags. Used to create user interface elements that let end users
manipulate presentations. For example, these tags let users change the type of a
graph or export crosstab data.

■ List tags. Used to create lists that let end users perform the following kinds of
tasks: Modify queries by selecting dimensions or measures; browse for graphs or
crosstabs in the Catalog; and navigate pages in an application.

OracleBI Beans also includes an extensive UIX tag library.

Building Java Applications That Manage Analytic Workspaces
The Analytic Workspace application programming interface is a companion API to the
OLAP API and OracleBI Beans. You can use the Analytic Workspace API to build Java
applications that create and maintain analytic workspaces.

The Analytic Workspace API provides a set of Java classes that:

■ Create a logical dimensional model of cubes, dimensions, measures, and attributes

■ Define a set of mappings for loading data from relational columns into objects in
the logical model

■ Define the aggregation rules for data in the logical model

■ Define advanced analytics such as allocations, forecasts, and models on objects in
the logical model

■ Instantiate the logical model in an analytic workspace

The Analytic Workspace API supports two deployment modes: It can be embedded in
a Java application; or it can be used to generate XML that is executable by the DBMS_

Building Java Applications That Manage Analytic Workspaces

4-6 Oracle OLAP Application Developer’s Guide

AW_XML.EXECUTE PL/SQL function. DBMS_AW_XML.EXECUTE can process any XML
document that has been validated against the OLAP XML schema.

See Also:

■ Oracle OLAP Analytic Workspace Java API Reference

■ Oracle OLAP Reference for information on DBMS_AW_
XML.EXECUTE

Part II
Creating and Managing Analytic

Workspaces

Part II contains basic information about creating and managing analytic workspaces. It
contains the following chapters:

■ Chapter 5, "Creating an Analytic Workspace"

■ Chapter 6, "Administering Oracle OLAP"

Creating an Analytic Workspace 5-1

5
Creating an Analytic Workspace

This chapter explains how to design a logical data model and create a standard form
analytic workspace using Analytic Workspace Manager.

This chapter contains the following topics:

■ Introduction to Analytic Workspace Manager

■ Getting Started with Analytic Workspace Manager

■ Identifying the Source Data

■ Creating a Standard Form Workspace Using Analytic Workspace Manager

■ Creating Logical Dimensions

■ Creating Logical Cubes

■ Mapping Logical Objects to Data Sources

■ Using the Sparsity Advisor

■ Maintaining the Data

■ Defining Measure Folders

■ Supporting Multiple Languages

■ Creating and Executing Calculation Plans

■ Using Templates to Re-Create a Logical Model

■ Using Plug-Ins

■ Case Study: Creating the Global Analytic Workspace

■ Case Study: Creating the Sales History Analytic Workspace

Introduction to Analytic Workspace Manager
Your goal in using Analytic Workspace Manager is to create a multidimensional data
store that supports business analysis. Analytic Workspace Manager is the primary tool
for creating, developing, and managing analytic workspaces. The main window
provides two views: the Model View and the Object View. You can switch between
views using the View menu. In addition, there are menus, a toolbar, a navigation tree,
and property sheets. When you select an object in the navigation tree, the property
sheet to the right provides detailed information about that object. When you right-click
an object, you get a choice of menu items with appropriate actions for that object.

Analytic Workspace Manager has a full online Help system, which includes
context-sensitive Help.

Getting Started with Analytic Workspace Manager

5-2 Oracle OLAP Application Developer’s Guide

Model View
The Model View enables you to define a logical dimensional model composed of
dimensions, levels, hierarchies, attributes, measures, calculated measures, and
measure folders. The model is stored in the analytic workspace as database standard
form metadata.

A drag-and-drop user interface facilitates mapping of the logical objects to columns in
relational tables, views, and synonyms in Oracle Database. The source columns can be
star, snowflake, or any other schema design that supports the logical model.

Figure 5–1 shows the logical objects created in the GLOBAL analytic workspace.

Figure 5–1 Model View in Analytic Workspace Manager

Object View
The Object View provides a graphical user interface to the OLAP DML. You can create,
modify, and delete individual workspace objects. This view is provided for users who
are familiar with the OLAP DML and want to upgrade from Express databases or
modify custom applications. Do not use this view to manually change a standard form
analytic workspace, because you may create inconsistencies in the metadata.

Getting Started with Analytic Workspace Manager
In this section, you will learn how to obtain the Analytic Workspace Manager
software, install it on your computer, and make a connection to Oracle Database.

Installing Analytic Workspace Manager
The most recent version of Analytic Workspace Manager is available for download
from the Oracle Technology Network:

http://www.oracle.com/technology/products/bi/olap/index.html

Follow the installation instructions provided in the README file.

Identifying the Source Data

Creating an Analytic Workspace 5-3

Opening Analytic Workspace Manager
On Windows, open Analytic Workspace Manager from the Start menu. Choose Oracle
- Oracle_home, then Integrated Management Tools, and then OLAP Analytic
Workspace Manager and Worksheet.

On Linux, open Analytic Workspace Manager from the shell command line:

$ORACLE_HOME/olap/awm/awm.sh

Defining a Database Connection
You can define a connection to each database that you use for OLAP. After you have
defined a connection, the database instance is listed in the navigation tree for you to
access at any time.

To define a database connection:

1. Right-click the top Databases folder in the navigation tree, then choose Add
Database to Tree from the pop-up menu.

2. Complete the Add Database to Tree dialog box.

Opening a Database Connection
To connect to a database:

1. Click the plus icon (+) next to a database in the navigation tree.

2. Complete the Connect to Database dialog box.

Identifying the Source Data
Using Analytic Workspace Manager, you can:

■ Design the logical dimensional model for the analytic workspace

■ Map logical objects to relational data sources

■ Load and aggregate the data

These steps are very closely related. The data that supports your logical model must
exist in your database, and you must have SELECT privileges on the tables containing
the data so you can load it into your analytic workspace.

Schema Requirements
The analytic workspace that you create must contain the logical objects described in
Chapter 2. For the source data to support a logical dimensional data model, these
relationships must exist:

■ Dimensions. You can map dimensions, levels, and attributes to any collection of
tables or views that identify the child-parent relationships and the
member-attribute relationships. The tables and views can be in one schema or
owned by multiple schemas. When mapping dimensions, you can choose from
these categories of schemas:

– Star Schema

– Snowflake Schema

– Other

Identifying the Source Data

5-4 Oracle OLAP Application Developer’s Guide

You can identify different dimensions as having different schema characteristics,
for example, Customer could be a star schema (all levels and their attributes are in
one table) and Time could be a snowflake schema (levels are in two or more tables
with their attributes).

■ Measures. You can map measures to any table or view that contains the
appropriate data.

Hierarchies and cubes are strictly metadata objects and are not mapped to data
sources.

Tables may contain columns of no importance to your analytic workspace. You can
simply omit them from the mappings, and Analytic Workspace Manager will ignore
them.

Star Schema
A star schema is the simplest of the three types. It is called a star schema because a
diagram of this schema resembles a star, with points radiating from a central table. The
center of the star is a fact table and the points of the star are the dimension tables.

■ Dimension tables define the dimensions. In a star schema, all of the information
for a dimension is stored in one table.

■ Fact tables contain foreign keys from each dimension table and a column for each
measure.

Figure 5–2 shows the relationships in a star schema using the GLOBAL relational tables.
These tables provide the data for the Units Cube. These source tables illustrate
different types of schema designs:

■ CUSTOMER_DIM and CHANNEL_DIM are level-based dimensions in a star schema.

■ PRODUCT_CHILD_PARENT is a parent-child table that supports a value-based
hierarchy. There are no level columns.

■ TIME_MONTH_DIM is the base-level table of a snowflake schema. The Time tables
are described in "Snowflake Schema" on page 5-5.

Identifying the Source Data

Creating an Analytic Workspace 5-5

Figure 5–2 Star Schema

Snowflake Schema
A snowflake schema is a type of star schema. It is called a snowflake schema because a
diagram of the schema resembles a snowflake. Snowflake schemas normalize
dimensions to eliminate redundancy. That is, the dimension data has been divided into
multiple tables instead of one large table. Each level may be in a separate table with its
attributes.

Figure 5–3 shows the Time dimension in a snowflake schema, with separate tables for
months, quarters, and years.

Note that the other dimensions are shown only partially in this snowflake diagram.

Identifying the Source Data

5-6 Oracle OLAP Application Developer’s Guide

Figure 5–3 Normalized Time Dimension in a Snowflake Schema

Other
Any schema can be used that contains the parent-child relationships and the
member-attribute relationships needed to implement dimensions in a dimensional
data model. In the most extreme case, each parent-child and member-attribute value
pairs for each hierarchy may be in a different table.

Figure 5–4 shows the Product dimension in a schema that contains the appropriate
relationships. Contrast these 11 tables with the single table shown in Figure 5–2 for the
Product dimension in a star schema. Whereas in the star schema, the Product
dimension has one source table, this schema has been normalized to store each level
and each attribute in a separate table.

Note that the other dimensions are not shown in this diagram.

Identifying the Source Data

Creating an Analytic Workspace 5-7

Figure 5–4 Product Dimension in an "Other" Schema Design

Making Transformations in Your Source Data
Analytic Workspace Manager provides direct mapping of one logical object to one
column of a relational table or view. If you need to transform your data, then you can
choose between these alternatives:

■ Create views that perform the necessary transformations.

■ Use an ETL tool such as Oracle Warehouse Builder to generate a star schema. You
can then create the analytic workspace using Analytic Workspace Manager.

■ Use Oracle Warehouse Builder to generate the analytic workspace.

Following are some of the basic types of transformations that can be handled by
creating views:

Creating a Standard Form Workspace Using Analytic Workspace Manager

5-8 Oracle OLAP Application Developer’s Guide

■ Load a selection of data. The Maintenance Wizard loads all rows from a mapped
column into the analytic workspace. If you only want a selection of the available
data, create a view with a WHERE clause.

■ Load multiple levels of data. Analytic Workspace Manager permits you to map
only one level. Create a view with a WHERE clause that selects the base level for the
analytic workspace.

Choosing a Build Tool
Both Analytic Workspace Manager and Warehouse Builder can be used to generate
analytic workspaces.

Warehouse Builder is designed for Information Technology (IT) professionals who
manage production systems. It is a powerful tool that can generate analytic
workspaces as one element in a larger ETL process.

Analytic Workspace Manager is an easy-to-use tool designed for application
developers, departmental DBAs, and other nonprofessional DBAs. It enables them to
design and develop a data model quickly and interactively based on their reporting
needs. After the data model has been developed and its design is stable, the IT
department may assume responsibility for generating the analytic workspace using
Warehouse Builder. Analytic Workspace Manager can be used to enhance the analytic
workspaces created by the IT department, such as by adding custom measures.

Creating a Standard Form Workspace Using Analytic Workspace Manager
In the Model View, you can define and build an analytic workspace from relational
tables and views. The tables and views can be stored in one or more schemas in which
the appropriate data relationships exist, as described in "Identifying the Source Data"
on page 5-3.

How Analytic Workspace Manager Saves Changes
Analytic Workspace Manager saves changes automatically that you make to the
analytic workspace. You do not explicitly save your changes.

Saves occur when you take an action such as these:

■ Click OK or the equivalent button in a dialog box.

For example, when you click Import in the Import From EIF File dialog box, the
contents are imported, and the revised analytic workspace is committed to the
database. Likewise, when you click Create in the Create Dimension dialog box, the
new dimension is committed to the database.

■ Click Apply in a property sheet.

For example, when you change the labels on the General property page for an
object, the change takes effect when you click Apply.

See Also: Oracle Warehouse Builder User's Guide

Creating a Standard Form Workspace Using Analytic Workspace Manager

Creating an Analytic Workspace 5-9

Basic Steps for Creating an Analytic Workspace
To create an analytic workspace in database standard form:

1. Configure your database instance for OLAP use. Define permanent, temporary,
and undo tablespaces as needed, and set the database parameters to values
appropriate for data loads. Refer to Chapter 6 for details.

2. Define a database user who will own the analytic workspace. Grant the user the
OLAP_USER role and SELECT privileges on the source data tables.

3. Open Analytic Workspace Manager and connect to your database instance as the
user you defined earlier for this purpose.

4. Create a new analytic workspace container in your database:

a. In the Model View navigation tree, expand the folders until you see the
schema where you want to create the analytic workspace.

b. Right-click the schema name, then choose Create Analytic Workspace from
the pop-up menu.

c. Complete the Create Analytic Workspace dialog box, then choose Create.

The new analytic workspace appears in the Analytic Workspaces folder for the
schema.

5. Define the logical dimensions for the data.

See "Creating Logical Dimensions" on page 5-10.

6. Define the logical cubes for the data.

See "Creating Logical Cubes" on page 5-13.

7. Map the logical items to their data sources.

See "Mapping Logical Objects to Data Sources" on page 5-15.

8. Run the Sparsity Advisor to get recommendations for the physical implementation
of the cubes.

See "Using the Sparsity Advisor" on page 5-18.

9. Load the data.

See "Maintaining the Data" on page 5-21.

10. Define measure folders to simplify access for end users.

See "Defining Measure Folders" on page 5-22.

When you have finished, you will have an analytic workspace populated with the
detail data fetched from relational tables or views. You may also have summarized
data and calculated measures.

Adding Functionality to a Standard Form Analytic Workspace
In addition to the basic steps, you can add functionality to an analytic workspace in
these ways:

■ Support multiple languages by adding translations of metadata and attribute
values.

See "Supporting Multiple Languages" on page 5-23.

■ Develop one or more calculation plans for the analytic workspace. Calculation
plans enable you to generate forecasts, allocate data down the dimension

Creating Logical Dimensions

5-10 Oracle OLAP Application Developer’s Guide

hierarchies, aggregate data up the dimension hierarchies, and specify the order of
these calculations.

See "Creating and Executing Calculation Plans" on page 5-23.

Creating Logical Dimensions
Dimensions are lists of unique values that identify and categorize data. They form the
edges of a logical cube, and thus of the measures within the cube.

Dimensions are the parents of levels, hierarchies, and attributes in the logical model.
You define these supporting objects, in addition to the dimension itself, in order to
have a fully functional dimension.

You can define dimensions that have any of these common forms:

■ List or flat dimensions that have no levels or hierarchies.

■ Level-based dimensions that use parent-child relationships to group members into
levels. Most dimensions are level-based.

■ Value-based dimensions that have parent-child relationships among their
members, but these relationships do not form meaningful levels.

Dimension Members Must Be Unique
Every dimension member must be a unique value. Depending on your data, you can
create a dimension that uses either natural keys or surrogate keys from the relational
sources for its members.

■ Natural keys are read from the relational sources without modification. To use
natural keys, the values must be unique across levels. Because each level may be
mapped to a different relational column, this uniqueness may not be enforced in
the source data.

For example, a Geography source table might have a value of NEW_YORK in the
CITY column and a value of NEW_YORK in the STATE column. Unless you take
steps to assure uniqueness, the second value for NEW_YORK will overwrite the first.

If a dimension is flat or value-based, then it must use natural keys because no
levels are defined as metadata. You must take whatever steps you need to assure
that the dimension members are unique.

■ Surrogate keys ensure uniqueness by adding a level prefix to the members while
loading them into the analytic workspace. For the previous example, surrogate
keys create two dimension members named CITY_NEW_YORK and
STATE_NEW_YORK, instead of a single member named NEW_YORK. A dimension
that has surrogate keys must be defined with at least one level-based hierarchy.

Time Dimensions Have Special Requirements
You can define dimensions as either User or Time dimensions. Business analysis is
performed on historical data, so fully defined time periods are vital. A time dimension
table must have columns for period end dates and time span. These required attributes
support time-series analysis, such as comparisons with earlier time periods. If this
information is not available, then you can define Time as a User dimension, but it will
not support time-based analysis.

You must define a Time dimension with at least one level to support time-based
analysis, such as a custom measure that calculates the difference from the prior period.

Creating Logical Dimensions

Creating an Analytic Workspace 5-11

To create a dimension:
1. Expand the folder for the analytic workspace.

An analytic workspace folder contains subfolders named Dimensions, Cubes,
Measure Folders, and Calculation Plans.

2. Right-click Dimensions, then choose Create Dimension from the pop-up menu.

The Create Dimension dialog box is displayed.

3. Complete all tabs.

Click Help for specific information about your choices.

4. Click Create.

The new dimension appears as a subfolder under Dimensions.

Creating Levels
For business analysis, data is typically summarized by level. For example, your
database may contain daily snapshots of a transactional database. Days are thus the
base level. You might summarize this data at the weekly, quarterly, and yearly levels.

Levels have parent-child or one-to-many relationships, which form a level-based
hierarchy. For example, each week summarizes seven days, each quarter summarizes
13 weeks, and each year summarizes four quarters. This hierarchical structure enables
analysts to detect trends at the higher levels, then drill down to the lower levels to
identify factors that contributed to a trend.

For each level that you define, you must identify a data source for dimension members
at that level. Members at all levels are stored in the same dimension. In the previous
example, the Time dimension contains members for weeks, quarters, and years.

To create a level:
1. Expand the folder for the dimension.

A dimension folder contains subfolders named Levels, Hierarchies, and
Attributes.

2. Right-click Levels, then choose Create Level from the pop-up menu.

The Create Level dialog box is displayed.

3. Complete all tabs of the Create Level dialog box.

Click Help for specific information about these choices.

4. Click Create.

The new level appears as an item in the Levels folder.

Creating Hierarchies
Dimensions can have one or more hierarchies. Most hierarchies are level-based.
Analytic Workspace Manager supports these common types of level-based hierarchies:

■ Normal hierarchies consist of one or more levels of aggregation. Members roll up
into the next higher level in a many-to-one relationship, and these members roll
up into the next higher level, and so forth to the top level.

■ Ragged hierarchies contain at least one member with a different base, creating a
"ragged" base level for the hierarchy.

Creating Logical Dimensions

5-12 Oracle OLAP Application Developer’s Guide

■ Skip-level hierarchies contain at least one member whose parents are more than
one level above it, creating a hole in the hierarchy. An example of a skip-level
hierarchy is City-State-Country, where at least one city has a country as its parent
(for example, Washington D.C. in the United States).

In relational source tables, a skip-level hierarchy may contain nulls in the level
columns.

You may also have dimensions with parent-child relations that do not support levels.
For example, an employee dimension might have a parent-child relation that identifies
each employee’s supervisor. However, levels that group together first-, second-, and
third-level supervisors and so forth may not be meaningful for analysis. Similarly, you
might have a line-item dimension with members that cannot be grouped into
meaningful levels. In this situation, you can create a value-based hierarchy defined by
the parent-child relations, which does not have named levels. You can create
value-based hierarchies only for dimensions that use natural keys, because surrogate
keys are formed with the names of the levels.

To create a hierarchy:
1. Expand the folder for the dimension.

A dimension folder contains subfolders named Levels, Hierarchies, and
Attributes.

2. Right-click Hierarchies, then choose Create Hierarchy from the pop-up menu.

The Create Hierarchy dialog box is displayed.

3. Complete all tabs of the Create Hierarchy dialog box.

If you define multiple hierarchies, be sure to define one of them as the default
hierarchy.

Click Help for specific information about these choices.

4. Click Create.

The new hierarchy appears as an item in the Hierarchies folder.

Creating Attributes
Attributes provide information about the individual members of a dimension. They
are used for labeling crosstabular and graphical data displays, selecting data,
organizing dimension members, and so forth.

Automatically Defined Attributes
Analytic Workspace Manager creates some attributes automatically when creating a
dimension. These attributes have a unique type, such as "Member Long Description,"
which OLAP client applications expect to find.

All dimensions are created with long and short description attributes. If your source
tables include long and short descriptions, then you can map the attributes to the
appropriate columns. However, if your source tables include only one set of labels,
then you should always map the long description attributes. You can decide whether
or not to map the short description attributes to the same column. If you do, the data
will be loaded twice.

Discoverer Plus OLAP, Spreadsheet Add-In, and OracleBI Beans use long description
attributes in selection lists and for labelling crosstabs and graphs. The Add-In initially
makes limited use of short description attributes, but users can switch to long

Creating Logical Cubes

Creating an Analytic Workspace 5-13

descriptions. If the appropriate descriptions are not available, then these tools use
dimension members. For example, if the Product dimension has short descriptions but
no long descriptions, then the tools display Product dimension members.

Time dimensions are created with time-span and end-date attributes. This information
must be provided for all Time dimension members.

Be sure to examine all of these attribute definitions, because you may wish to change
the default settings. In particular, expand the hierarchy tree on the Basic tab to verify
that the correct levels are selected. These choices affect the number of columns that
you can map to the dimension.

User-Defined Attributes
You can create additional "User" attributes that provide supplementary information
about the dimension members.

To create a new attribute:
1. Expand the folder for the dimension.

A dimension folder contains subfolders named Levels, Hierarchies, and
Attributes.

2. Right-click Attributes, then choose Create Attribute from the pop-up menu.

The Create Attribute dialog box is displayed.

3. Complete all tabs of the Create Attribute dialog box.

Click Help for specific information about these choices.

4. Click Create.

The new attribute appears as an item in the Attributes folder.

Creating Logical Cubes
Cubes are the parents of measures. They are informational objects that identify
measures with the exact same dimensions and thus are candidates for being processed
together at all stages: data loading, aggregation, storage, and querying.

The physical storage of the cube can have a great impact on performance. After you
map the cube, you can run the Sparsity Advisor to get recommendations for the
appropriate settings.

The measures inherit the characteristics of the cube. For cubes that use compressed
composites to handle sparsity, you cannot override the default characteristics for
individual measures. For cubes that use regular composites, you can use the inherited
characteristics or override them with different choices.

Creating Cubes
Cubes define the shape of your business measures. They are defined by a set of
ordered dimensions. The dimensions form the edges of a cube, and the measures are
the cells in the body of the cube.

Creating Logical Cubes

5-14 Oracle OLAP Application Developer’s Guide

To create a cube:
1. Expand the folder for the analytic workspace.

An analytic workspace folder contains subfolders named Dimensions, Cubes,
Measure Folders, and Calculation Plans.

2. Right-click Cubes, then choose Create Cube from the pop-up menu.

The Create Cube dialog box is displayed.

3. Complete all tabs except Implementation Details of the Create Cube dialog box.

Important: After mapping the cube, run the Sparsity Advisor to see the
recommended settings for the Implementation Details tab. For more information
about the Summary To tab, refer to Chapter 7.

4. Click Create. The new cube appears as a subfolder under Cubes.

Creating Measures
Measures store the facts collected about your business. Each measure belongs to a
particular cube, and thus shares particular characteristics with other measures in the
cube, such as the same dimensions.

To create a measure:
1. Expand the folder for the cube that has the dimensions of the new measure.

A cube folder contains subfolders named Measures and Calculated Measures.

2. Right-click Measures, then choose Create Measure from the pop-up menu.

The Create Measure dialog box is displayed.

3. Complete the General, Translations, and Implementation Details tabs of the Create
Measure dialog box. Complete all tabs if you wish to override the cube settings.

Click Help for specific information about these choices.

4. Click Create.

The new measure appears as an item in the Measures folder.

Creating Calculated Measures
Calculated measures add valuable information to an analytic workspace. They are
created by performing calculations on the measures stored in an analytic workspace.
Oracle OLAP offers an extensive range of functions and operators that can be used to
define custom measures. Analytic Workspace Manager provides a Calculation Wizard,
as shown in Figure 1–2, which provides these calculations:

■ Basic Arithmetic. Addition, subtractions, multiplication, division, ratio

■ Advanced Arithmetic. Cumulative total, index, percent markup, percent variance,
rank, share, variance

■ Prior/Future Comparison. Prior value, difference from prior period, percent
difference from prior period, future value

■ Time Frame. Moving average, moving maximum, moving minimum, moving
total, year to date

Calculated measures are not stored, and so they do not occupy any significant disk
space. The data values are calculated in response to individual queries on the

Mapping Logical Objects to Data Sources

Creating an Analytic Workspace 5-15

calculated measures. In this respect, calculated measures are similar to relational
views.

To create a calculated measure:
1. Expand the folder for the cube that contains the base measures that will be used in

the calculation.

2. Right-click Calculated Measures, then choose Create Calculated Measure from
the pop-up menu.

The Calculation Wizard Welcome page is displayed.

3. Follow the steps of the wizard.

Click Help for specific information about these choices. When you are done, the
name of the new calculated measure appears as an item in the Calculated
Measures folder.

Mapping Logical Objects to Data Sources
After creating logical objects, you can map them to data sources in Oracle Database.
Afterward, you can load data into your analytic workspace using the Maintenance
Wizard.

The mapping window has a tabular view and a graphical view.

■ Tabular view. Drag-and-drop the names of individual columns from the schema
navigation tree to the rows for the logical objects.

■ Graphical view. Drag-and-drop icons, which represent tables and views, from the
schema navigation tree onto the mapping canvas. Then you draw lines from the
columns to the logical objects.

If you want to see the values in a particular source table or view, right-click it in either
the schema tree or the mapping canvas. Choose View Data from the menu to fetch up
to 1000 rows.

Figure 5–5 shows the CHANNEL dimension mapped in the tabular view. The toolbar
appears across the top and the schema navigation tree is on the left.

Mapping Logical Objects to Data Sources

5-16 Oracle OLAP Application Developer’s Guide

Figure 5–5 Dimension Mapped in Tabular View

The following procedure explains how to map a dimension in the graphical view.

Mapping Dimensions
To map a dimension in the graphical view, take these steps:

1. Define the dimension and its levels, hierarchies, and attributes.

2. In the Model View navigation tree, expand the dimension folder and click
Mappings.

The Mapping Window will be displayed in the right pane.

3. Enlarge the mapping window by dragging the divider to the left.

4. In the toolbar, identify the source schema as Star Schema, Snowflake Schema, or
Other.

5. In the schema navigation tree, locate the tables with the dimension members and
attributes for all levels. Drag-and-drop them onto the mapping canvas.

6. Draw lines from the source columns to the target objects. To draw a line, click the
output connector of the source column and drag it to the input connector of the
target object. Be careful to map every logical object to a source column.

Tip: For a star schema with logical names that match the column names, click
Auto Map Star Schema in the toolbar. Verify that all logical objects are mapped
correctly.

7. To uncross the lines, click the Auto Arrange Mappings tool.

8. Click Apply.

9. When you have mapped all objects for the dimension, drag the divider to the right
to restore access to the navigation tree.

Figure 5–6 shows the mapping canvas with the Channel dimension and its attributes
mapped to columns in the CHANNEL_DIM table. The mapping toolbar is at the top, and
the schema navigation tree is on the left.

Mapping Logical Objects to Data Sources

Creating an Analytic Workspace 5-17

Figure 5–6 GLOBAL CHANNEL Dimension Mapped in Graphical View

Mapping Cubes
To map a cube in the graphical view, take these steps:

1. Define the cube and its measures.

You can define calculated measures at any time, because they are calculated, not
loaded.

2. In the Model View navigation tree, expand the Cubes folder and click Mappings.

The Mapping Window will be displayed in the right pane. You will see a schema
navigation tree and a table with rows for the measures, dimensions, and levels.

3. Enlarge the mapping window by dragging the divider to the left.

4. In the schema navigation tree, locate the tables with the measures. Drag-and-drop
them onto the mapping canvas.

5. Draw lines from the source columns to the target objects.

To draw a line, click the output connector of the source column and drag it to the
input connector of the target object. You must map both the measures and the
related dimension keys.

6. To uncross the lines, click the Auto Arrange Mappings tool.

7. When you have mapped all objects for the dimension, drag the divider to the right
to restore access to the navigation tree.

Figure 5–7 shows the mapping canvas with the Price and Cost cube mapped to
columns in the PRICE_AND_COST_HIST_FACT table. The mapping toolbar is at the
top, and the schema navigation tree is on the left.

Using the Sparsity Advisor

5-18 Oracle OLAP Application Developer’s Guide

Figure 5–7 GLOBAL PRICE_AND_COST_CUBE Cube Mapped in Graphical View

Using the Sparsity Advisor
The creation of a cube requires several decisions about data storage that affect the
performance of the analytic workspace. These choices are on the Implementation
Details tab for the cube. The Sparsity Advisor in Analytic Workspace Manager
evaluates the data in the relational tables and recommends appropriate settings. You
can accept all the recommendations or modify them before implementing them in the
cube.

To run the Sparsity Advisor:
1. Create a cube and map it to a relational data source.

2. In the navigation tree, right-click the cube and choose Sparsity Advisor.

Wait while the Sparsity Advisor analyzes the cube. When it is done, the Sparsity
Advisor for Cube dialog box displays the recommendations.

3. For compressed cubes, be sure to select a data type for the cube. In most cases,
DECIMAL is the best choice.

For a discussion of NUMBER and DECIMAL data types, refer to "Keep Within
Allocated Resources" on page 7-8.

4. Look over the recommendations and make any changes.

5. Click Recreate Cube to implement the recommendations.

These changes cannot be made just by editing the definitions of objects in the
analytic workspace. The objects are deleted and re-created, and any data stored in
them is lost in the process.

The following topics provide information that will help you evaluate the
recommendations of the Sparsity Advisor.

Using the Sparsity Advisor

Creating an Analytic Workspace 5-19

What is Sparsity?
Sparsity refers to the extent to which cells contain null (NA) values instead of data. For
example, if a cube is 25 percent sparse, then 25 percent of that cube’s cells contain NA
values and 75 percent contain data. You can also describe this cube as 75% dense.

A cube can be dense, sparse, or extremely sparse.

■ Dense cubes have up to 20% empty cells. Dense data should be stored directly in
the dimensional format.

Dense cubes are extremely rare. If you know that a cube is dense, then do not use
the Sparsity Advisor, because it is optimized for use on sparse data.

■ Sparse cubes have more than 20% empty cells. Sparse data should be stored in a
special format called a composite.

■ Extremely sparse cubes often display these characteristics:

– The cube has a large number of dimensions (seven or more).

– One dimension has more than 300,000 members.

– Two dimensions have more than 100,000 members each.

– Dimension hierarchies have numerous levels, with little change to the number
of dimension members from one level to the next, so that many parents have
only one descendant for several contiguous levels.

Extremely sparse data should be stored in another special format called a
compressed composite. Compressed storage for this type of sparsity uses less
space and results in faster aggregation than normal sparse storage.

Sparsity is calculated as the relationship between the number of actual data values in
the measures and the number of cells defined by the dimensions of the cube. You can
easily project the sparsity of a dimensional cube from the relational source tables. It is
the number of rows in the fact table with data values divided by the product of the
unique keys in the dimension tables.

Ordering the Dimensions in a Cube
The order in which the dimensions are listed for a cube affects performance because it
determines the way the data is stored on disk. Performance is optimized when values
that are accessed together are stored together, because fewer pages must be swapped
in and out of memory.

For regular composites and dimensional storage, order the dimensions from largest to
smallest.

For compressed composites, order the dimensions from smallest to largest.

Choosing a Data Type
The most commonly used data types are NUMBER and DECIMAL.

The NUMBER data type provides the same results on all platforms. All calculations are
performed as integer arithmetic. Because of this, results based on a NUMBER will match
those stored in relational tables. Choose NUMBER when you need a high level of
precision, or when you need to match values. An unscaled NUMBER value is 22 bytes.

The DECIMAL data type is smaller at 8 bytes for each value and thus takes up less disk
space than NUMBER data types. All calculations are done in the CPU Floating Point
Unit, which is many times faster than integer arithmetic. However, floating point

Using the Sparsity Advisor

5-20 Oracle OLAP Application Developer’s Guide

calculations produce slightly differently results on different platforms, typically at the
seventh decimal place. DECIMAL is the best choice when the analytic workspace will
be used heavily for computations.

Choosing Composite Types
A composite is an index into one or more sparse measures, and is used to store sparse
data in a compact form. There are two types of composites: regular and compressed. A
regular composite is used to store measures with moderate sparsity, and compressed
composites are used to store measures with extreme sparsity.

For a cube using regular composites and partitions, you can choose between creating a
single, global composite for use by all partitions and creating a composite for each
partition. When in doubt, do not use global composites. The cube will have one
composite for each partition.

Partitioning Large Measures
Partitioning is a method of physically storing the measures in a cube. It improves the
performance of large measures in the following ways:

■ Improves scalability by keeping data structures small. Each partition functions like
a smaller measure.

■ Keeps the working set of data smaller both for queries and maintenance, since the
relevant data is stored together.

■ Enables parallel aggregation during data maintenance. Each partition can be
aggregated by a separate process.

■ Allows different client sessions to have write access to different partitions of the
same object at the same time.

■ Simplifies removal of old data from storage. Old partitions can be dropped as a
unit, and new partitions can be added.

■ Stores each partition of a compressed cube in a separate analytic workspace object.
If a compressed cube is not partitioned, then all measures of the cube are stored in
one object.

Effects of Partitioning on Performance
The number of partitions affects the database resources that can be allocated to loading
and aggregating the data in an analytic workspace. Partitions can be aggregated
simultaneously when sufficient resources have been allocated, as described in
"Maintaining the Data" on page 5-21.

Choosing a Dimension for Partitioning
The Sparsity Advisor can operate at a very granular level by assigning each dimension
member to a particular partition. If you want to override its recommendations, you
must choose a dimension with a level-based hierarchy and use one of its levels as the
basis for creating the partitions.

Some enterprises redeploy their analytic workspaces with new data instead of
maintaining them. When life-cycle maintenance is not a factor, you may choose the
most dense dimension for partitioning. The most dense dimension is frequently the
one with the fewest members.

Other enterprises maintain their analytic workspaces. For them, the Time dimension
may be a good candidate for partitioning, because this choice supports life-cycle

Maintaining the Data

Creating an Analytic Workspace 5-21

maintenance. Old time periods can be dropped as a unit in a partition, and new time
periods can be added in a new partition. Moreover, the partitions will be
approximately the same size because of the inherent regularity of the calendar. In a
calendar hierarchy, months have 28-31 children, quarters have 3 children, and years
have 4 children.

Example of a Partitioned Dimension
For example, you might choose the Quarter level of the Time dimension. Each Quarter
and its descendants are stored in a separate partition. If there are three years of data in
the analytic workspace, then partitioning on Quarter produces 12 partitions, in
addition to the default partition. The default partition contains all remaining levels,
that is, those above Quarter (such as Year) and those in other hierarchies (such as
Fiscal Year or Year-to-Date). The aggregate levels in the new partitions are calculated
and stored in the analytic workspace as a data maintenance step, while the levels in
the default partition are calculated on the fly.

Figure 5–8 illustrates a Time dimension partitioned by Quarter.

Figure 5–8 Partitioning Time by Quarter

Maintaining the Data
The Maintenance Wizard loads and aggregates the data as a single job. You can load all
mapped objects in the analytic workspace, or individual dimensions, measures, or
cubes. You can also choose to run the job immediately, enter it in the Oracle job queue,
or save it as a SQL script.

To maintain the data:

1. Right-click the name of the analytic workspace, a cube, a measure, or a dimension,
then choose Maintenance Wizard from the pop-up menu.

Choose a folder that includes all the items that you want to maintain. For example,
if you open the Maintenance Wizard from a particular cube, you will load that
cube and summarize its measures. You will not load or summarize data for other
cubes.

Defining Measure Folders

5-22 Oracle OLAP Application Developer’s Guide

2. Follow the steps of the wizard.

Click Help for additional information about each step.

3. Verify the results in the Data Viewer. Right-click a cube, and choose View Data
from the pop-up menu.

Submitting Maintenance Tasks to the Oracle Job Queue
If you submit a maintenance task to the Oracle job queue, you can specify the
maximum number of simultaneous processes the job can use. This number is limited
by two factors:

■ The number of objects in the analytic workspace that can be summarized in
parallel. Each cube and each partition (including the default partition) can use a
separate process.

■ The number of simultaneous database processes the user is authorized to run.

This number is controlled by the JOB_QUEUE_PROCESSES parameter. The setting
for this parameter is based on the number of processors, as described in
"Initialization Parameters for Oracle OLAP" on page 6-6. You can obtain the
current parameter setting with the following SQL command:

SHOW PARAMETER JOB_QUEUE_PROCESSES

Specify the smaller of these two numbers when submitting a job.

Oracle Database allocates the specified number of processes (if you have sufficient
authorization) regardless of whether all of them can be used simultaneously at any
point in the job. For example, if your job can use up to three processes, but you specify
five, then two of the processes allocated to your job cannot be used by it or any other
job.

Managing Maintenance Jobs
When submitting a maintenance task to the job queue, be sure to note the job number
so that you can verify that the job completed successfully. Runtime messages are
stored in a table named OLAPSYS.XML_LOAD_LOG. Messages in this file are identified
just by the digits in the job number. The following SQL statement returns the messages
for job AWXML$_54:

SELECT XML_MESSAGE FROM OLAPSYS.XML_LOAD_LOG WHERE XML_LOADID='54';

You can manage these jobs using tools such as Oracle Enterprise Manager Scheduler or
the DBMS_SCHEDULER PL/SQL package.

Defining Measure Folders
You can define a measure folder for use by OLAP tools, so that the measures can be
located and identified quickly by users. They may have access to several analytic
workspaces or relational schemas with measures named Sales or Costs, and they will
have no means of differentiating them outside of a measure folder.

To create a measure folder:

1. Expand the folder for the analytic workspace.

2. Right-click Measure Folders, then choose Create Measure Folders from the
pop-up menu.

Creating and Executing Calculation Plans

Creating an Analytic Workspace 5-23

3. Complete the General tab of the Create Measure Folder dialog box.

Click Help for specific information about these choices.

You can also create subfolders.

Supporting Multiple Languages
A single analytic workspace can support multiple languages. This support enables
users of OLAP applications and tools to view the metadata in their native languages.
For example, you can provide translations for the display names of measures, cubes,
and dimensions. You can also map attributes to multiple columns, one for each
language.

The number and choice of languages is restricted only by the database character set
and your ability to provide translated text. Languages can be added or removed at any
time.

To add support for multiple languages:

1. In the Model View navigation tree, expand the folder for the analytic workspace.

2. Click the Languages folder, and select the languages for the analytic workspace on
the Basic tab.

3. For each dimension, level, hierarchy, attribute, cube, measure, calculated measure,
and measure folder, open the Translations tab of the property sheet. Enter the
object labels and descriptions in each language.

4. For each dimension, open the Mappings window. Map the attributes to columns
for each language.

Creating and Executing Calculation Plans
Calculation plans are composed of an ordered list of steps. Each step is either an
aggregation, an allocation, or a forecast. By specifying the order in which these steps
are performed, you can allow for interdependencies.

You execute calculation plans using the Maintenance Wizard, typically after loading
new data into the analytic workspace.

To create a calculation plan:

1. Expand the folder for the analytic workspace.

2. Right-click Calculation Plans, then choose Create Calculation Plan from the
pop-up menu.

The Create Calculation Plan dialog box is displayed.

3. Complete the General tab.

Click Help for specific information about these choices.

4. To create a new step, click New Step.

5. Choose the type of step: Forecast, allocation, or aggregation.

The New Step dialog box is displayed for that type of calculation.

6. Complete all tabs, then click Create.

The new step is listed on the Calculation Plan General tab.

7. Click Create.

Using Templates to Re-Create a Logical Model

5-24 Oracle OLAP Application Developer’s Guide

The new calculation plan appears as an item in the Calculation Plans folder.

8. To run the calculation plan:

a. Right-click it on the navigation tree and choose Execute Calculation Plan.

The Maintenance wizard opens.

b. Follow the steps of the wizard.

Using Templates to Re-Create a Logical Model
Analytic Workspace Manager enables you to save all or part of the logical model as a
text file. This text file contains the XML definitions of the logical objects, such as
dimensions, levels, hierarchies, attributes, and measures. Only the metadata is saved,
not the data or any customizations. Templates are small files, so you can easily
distribute them by email or on a Web site, just as the templates for Global and Sales
History are distributed on the Oracle Web site. To re-create the logical objects, you
simply identify the templates in Analytic Workspace Manager.

You can save the following types of objects as XML templates:

■ Analytic workspace: Saves all logical objects. You can save measure folders and
calculation plans only by saving the complete analytic workspace.

■ Cube: Saves the cube and its measures, calculated measures, and mappings.

■ Calculated measure: Saves just the calculated measure.

■ Dimension: Saves the dimension and its levels, hierarchies, attributes, and
mappings.

To create a template:
In the navigation tree, right-click the object and choose Save object to Template.

To create logical objects from a template:
In the navigation tree, right-click the object type and choose Create object From
Template.

Using Plug-Ins
Plug-ins extend the functionality of Analytic Workspace Manager. Any Java developer
can create a plug-in. Plug-ins are distributed as JAR files. The developer should
provide information about what the plug-in does and how to use it.

If you have one or more plug-ins, then you only need to identify their location to
Analytic Workspace Manager.

To use plug-ins:

1. Create a local directory for storing plug-ins for Analytic Workspace Manager.

2. Copy the JAR files to that directory.

3. Open Analytic Workspace Manager.

4. Choose Configuration from the Tools menu.

The Configuration dialog box opens.

See Also: Part III for information about creating forecasts,
allocations, and aggregations.

Case Study: Creating the Global Analytic Workspace

Creating an Analytic Workspace 5-25

5. Complete the Plug-in tab and click OK.

6. Close and reopen Analytic Workspace Manager.

The new functionality provided by the plug-ins is available as right-click menu
choices in the navigator.

7. Right-click an object and select one of the new choices from the pop-up menu.

Case Study: Creating the Global Analytic Workspace
You can download and install the Global relational tables from this Oracle Web site,
following the instructions provided with the download:

http://www.oracle.com/technology/products/bi/olap/

You can then either create an analytic workspace from a template or create it manually
by following the instructions given here.

Defining the GLOBAL_AW User
This example creates the GLOBAL analytic workspace in a different schema from the
source tables. Example 5–1 lists the SQL commands to define the GLOBAL_AW user
with sufficient access rights to use Analytic Workspace Manager and to access the
GLOBAL star schema. Alternatively, you can define users through Oracle Enterprise
Manager.

The installation scripts for Global create the GLOBAL_AW user, so you do not need to
run the script shown here. However, you may wish to use it as a model for creating
other users.

Example 5–1 SQL Script for Defining the GLOBAL_AW User

CREATE USER "GLOBAL_AW" PROFILE "DEFAULT"
 IDENTIFIED BY "global_aw" DEFAULT TABLESPACE "GLOBAL"
 TEMPORARY TABLESPACE "GLOBAL_TEMP"
 QUOTA UNLIMITED ON "GLOBAL"
 ACCOUNT UNLOCK;

GRANT OLAP_USER TO GLOBAL_AW;

GRANT SELECT ON global.channel_dim TO global_aw;
GRANT SELECT ON global.product_child_parent TO global_aw;
GRANT SELECT ON global.customer_dim TO global_aw;
GRANT SELECT ON global.time_month_dim TO global_aw;
GRANT SELECT ON global.time_quarter_dim TO global_aw;
GRANT SELECT ON global.time_year_dim TO global_aw;
GRANT SELECT ON global.units_history_fact TO global_aw;
GRANT SELECT ON global.price_and_cost_history_fact TO global_aw;

See Also: Developing Analytic Workspace Manager Plug-ins, which you
can download from the Oracle Technology Network at
http://www.oracle.com/technology/products/bi/olap.

See Also: Chapter 3 for additional information about installing the
Global schema

Case Study: Creating the Global Analytic Workspace

5-26 Oracle OLAP Application Developer’s Guide

Creating the GLOBAL Analytic Workspace
Take these steps to create the GLOBAL analytic workspace:

1. Open Analytic Workspace Manager and connect to Oracle Database as the
GLOBAL_AW user, using GLOBAL_AW as the password.

2. In the Model View navigation tree, expand the GLOBAL_AW folder, and right-click
Analytic Workspaces.

3. Choose Create Analytic Workspace from the pop-up menu.

4. Complete the Create Analytic Workspace dialog box, then choose Create.

This step creates the analytic workspace container and populates it with standard form
catalogs and similar objects. You must now define the logical model.

Creating GLOBAL Dimensions and Attributes
GLOBAL has four dimensions: TIME, PRODUCT, CUSTOMER, and CHANNEL. Implement
the logical model described in Chapter 3 by following the basic instructions in
"Creating Logical Dimensions" on page 5-10.

Note these choices:

■ Time Dimension: On the General tab, select Time Dimension as the dimension
type. You can map Time to a star schema (TIME_DIM table) or to a snowflake
schema (TIME_MONTH_DIM, TIME_QUARTER_DIM, and TIME_YEAR_DIM tables)
as described in this example.

■ Product Dimension: You can map Product to a star, level-based table
(PRODUCT_DIM) or to a parent-child table (PRODUCT_CHILD_PARENT) as
described in this example.

■ All Dimensions: On the Implementation Details tab, select Use Natural Keys
From Data Source.

The source tables have numeric surrogate keys that assure unique dimension
members across all levels.

■ All Attributes: On the General tab, verify that the attributes apply to all levels.

■ Languages: Add French and Dutch.

Creating GLOBAL Cubes and Measures
GLOBAL is a very small and dense sample data set, so that some decisions that are
crucial when handling huge data sets are simply non-consequential in this case.
Nonetheless, this example shows the best practices for handling dense data. "Case
Study: Creating the Sales History Analytic Workspace" on page 5-29 shows the best
practices for handling sparse data; sparsity is typical of real data sets.

GLOBAL has two cubes: UNITS_CUBE and PRICE_AND_COST_CUBE.

■ UNITS_CUBE is dimensioned by TIME, PRODUCT, CUSTOMER, and CHANNEL. It
contains two measures, UNITS and SALES.

■ PRICE_AND_COST_CUBE is dimensioned by TIME and PRODUCT. It contains two
measures, UNIT_PRICE and UNIT_COST.

Implement the logical model described in Chapter 3 by following the basic
instructions in "Creating Logical Cubes" on page 5-13.

Case Study: Creating the Global Analytic Workspace

Creating an Analytic Workspace 5-27

UNITS_CUBE
On the Implementation Details page, list the dimensions in this order:

1. TIME

2. CUSTOMER

3. PRODUCT

4. CHANNEL

Time is first to facilitate data maintenance. The other dimensions are listed in order
from largest to smallest.

Deselect the sparsity check boxes for all dimensions. They are dense.

PRICE_AND_COST_CUBE
On the Implementation Details page, list the dimensions in this order:

1. TIME

2. PRODUCT

Measures in the Price Cube and the Units Cube will be used together frequently in
calculated measures. For performance, the dimensions that the cubes share must be
listed in the same order.

Deselect the sparsity check boxes for all dimensions. They are dense.

On the Aggregation page, select Last Non-NA Data Value for Time and Average for
Product.

Mapping the GLOBAL Logical Model to Data Sources
The data for the GLOBAL analytic workspace is stored in the GLOBAL schema.

To map the PRODUCT dimension, take these steps:

1. Expand the Dimensions folder, then click the Mappings node for PRODUCT.

2. Drag the divider to the left to expand the size of the mapping canvas.

3. In the schema navigation tree, expand the GLOBAL folder, then drag-and-drop the
PRODUCT_CHILD_PARENT table onto the canvas.

4. Drag a line from the output connectors in the PRODUCT_CHILD_PARENT table to
the appropriate input connector in the PRODUCT table.

5. Click Apply.

Repeat these steps to map CUSTOMER to the CUSTOMER_DIM table and CHANNEL to the
CHANNEL_DIM table. For TIME, select Snowflake Schema and map to
TIME_MONTH_DIM, TIME_QUARTER_DIM, and TIME_YEAR_DIM.

To map UNITS_CUBE, take these steps:

1. Expand the Cubes folder, then click the Mappings node for UNITS_CUBE.

2. Drag the divider to the left to expand the size of the mapping canvas.

3. In the schema navigation tree, expand the GLOBAL folder, then drag-and-drop the
UNITS_DETAIL_FACT table onto the canvas.

4. Drag lines from the output connectors in the UNITS_DETAIL_FACT table to the
appropriate input connectors in the UNITS_CUBE table.

5. Click Apply.

Case Study: Creating the Global Analytic Workspace

5-28 Oracle OLAP Application Developer’s Guide

Repeat these steps to map PRICE_AND_COST_CUBE to the
PRICE_AND_COST_HIST_FACT table.

Loading and Aggregating the Data
To load all of the data for GLOBAL, run the Maintenance Wizard as described in
"Maintaining the Data" on page 5-21. Note these choices:

■ Run the Maintenance Wizard from the GLOBAL folder in the Model navigation
tree.

■ Select Objects page: Select the Add the Dimensions of the Cubes box, then move
Cubes to the Selected Source Objects column. Click Finish to run the job
immediately.

Figure 5–9 shows the results of a query in OracleBI Discoverer Plus OLAP.

Figure 5–9 Discoverer Plus OLAP Displays Data from PRICE_AND_COST_CUBE

Creating Calculated Measures
"Identifying Required Business Facts" on page 3-5 identifies the business measures
required by the Global Corporation. Only three measures were acquired from the
source fact tables: Units, Unit Price, and Unit Cost. The remaining business measures
can be calculated from those three. Table 5–1 shows the calculated measures for the
Units Cube.

Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 5-29

Creating a Measure Folder
Define a measure folder with a name such as Global Enterprises, and add all measures
and calculated measures to the folder.

Case Study: Creating the Sales History Analytic Workspace
Sales History (SH) is a sample star schema that is delivered with Oracle Database.
Although Global is used for most of the examples in this manual, Sales History has a
very different set of data characteristics and demonstrates a correspondingly different
set of build choices.

You can download a template for a Sales History analytic workspace from:

http://www.oracle.com/technology/products/bi/olap

Then you can simply examine the definitions of various objects instead of creating
them manually. You will still need to run the Maintenance wizard to load the data.

Figure 5–10 shows a schema diagram of Sales History.

Table 5–1 Custom Measures for the GLOBAL Analytic Workspace

Required Business Measures Calculation Type Based On Measures

Sales Basic Arithmetic > Multiplication UNITS*UNIT_PRICE

Extended Cost Basic Arithmetic > Multiplication UNITS*UNIT_COST

Extended Margin Basic Arithmetic > Subtraction SALES-EXTENDED_COST

Change in sales from prior period
(month, quarter, or year)

Change in sales from prior year

Prior/Future Comparison > Difference from
Prior Period

SALES

Percent change in sales from prior
period

Percent change in sales from prior
year

Prior/Future Comparison > Percent Difference
from Prior Period

SALES

Product share Advanced Arithmetic > Share SALES(PRODUCT)

Channel share Advanced Arithmetic > Share SALES(CHANNEL)

Market share Advanced Arithmetic > Share SALES(CUSTOMER)

Extended margin change from
prior period

Extended margin change from
prior year

Prior/Future Comparison > Difference from
Prior Period

EXTENDED_MARGIN

Extended margin percent change
from prior period

Extended margin percent change
from prior year

Prior/Future Comparison > Percent Difference
from Prior Period

EXTENDED_MARGIN

Units sold, change from prior
period

Prior/Future Comparison > Difference from
Prior Period

UNITS

Extended margin per unit Basic Arithmetic > Division EXTENDED_MARGIN/UNITS

Case Study: Creating the Sales History Analytic Workspace

5-30 Oracle OLAP Application Developer’s Guide

Figure 5–10 Sales History Schema Diagram

Creating the SH Analytic Workspace
Take these steps to create the SH analytic workspace:

1. Define database parameters for OLAP.

2. Create permanent and temporary tablespaces specifically for use by the SH
analytic workspace.

3. Define the SH_AW user.

4. Open Analytic Workspace Manager and connect to Oracle Database as the SH_AW
user.

5. Create the SH analytic workspace, and define the logical dimensions.

See Also: Oracle Database Sample Schemas for a full description of
Sales History

Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 5-31

6. Define the logical cube and map it to the relational tables.

7. Run the Sparsity Advisor.

8. Load and summarize the data.

9. Query the analytic workspace.

Defining Database Parameters
When building a large analytic workspace, the parameters for Oracle Database may
affect how quickly the build proceeds. Before changing any database parameters, you
should monitor performance using the default settings.

Example 5–2 shows a few of the settings in the init.ora file for a computer with 32G
of physical memory and four processors. Note that you must define an undo
tablespace before you can specify it in a startup parameter. For more information
about these settings, refer to Chapter 6.

Example 5–2 Startup Parameters for Building Sales History

UNDO_MANAGEMENT=AUTO
UNDO_TABLESPACE=OLAPUNDO
SGA_TARGET=16G
PGA_AGGREGATE_TARGET=8G
JOB_QUEUE_PROCESSES=5

Defining Tablespaces for Sales History
While the GLOBAL analytic workspace has about a half million cells for base-level data
in its largest cube, the Sales History SALES cube has over 18 trillion. This makes the
Sales History analytic workspace small to average for a real application, although
quite large for a sample data set. It is sufficiently large for a build to fail on a small
desktop computer unless resources have been allocated for its use.

You should define temporary and permanent tablespaces for use by Sales History.

■ Define a tablespace that is large enough to hold the base-level data, stored
aggregates, forecast data, and so forth. If multiple physical disks are available,
define an extension file for each one.

■ Define a temporary tablespace that is large enough to hold the data for the SALES
cube. Stripe this tablespace across multiple disks the same as for the permanent
tablespace. Use a small EXTENT MANAGEMENT SIZE value, such as 256K.

Example 5–3 shows how the tablespaces might be defined for Sales History when four
disk drives are available.

Example 5–3 SQL Script for Defining Tablespaces for the Sales History Analytic Workspace

/* Create permanent tablespaces on four disks */
CREATE TABLESPACE sh_aw DATAFILE '/disk1/oradata/sh_aw1.dbf' SIZE 64M
AUTOEXTEND ON NEXT 64M MAXSIZE 1024M
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER TABLESPACE sh_aw ADD DATAFILE
'/disk2/oradata/sh_aw2.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,
'/disk3/oradata/sh_aw3.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,
'/disk4/oradata/sh_aw4.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE UNLIMITED;

/* Create temporary tablespaces on four disks */
CREATE TEMPORARY TABLESPACE sh_temp TEMPFILE '/disk1/oradata/sh_aw1.tmp' SIZE 64M REUSE

Case Study: Creating the Sales History Analytic Workspace

5-32 Oracle OLAP Application Developer’s Guide

AUTOEXTEND ON NEXT 64M MAXSIZE 1024M
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

ALTER TABLESPACE sh_temp ADD TEMPFILE
'/disk2/oradata/sh_aw2.tmp' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,
'/disk3/oradata/sh_aw3.tmp' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,
'/disk4/oradata/sh_aw4.tmp' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE UNLIMITED;

Defining the SH_AW User
Example 5–4 shows a script that is similar to the one used to create the GLOBAL_AW
user in Example 5–1. It defines a user named SH_AW and authorizes it to access the SH
star schema. The script sets the new permanent and temporary tablespaces as the
defaults for the SH_AW user.

Example 5–4 SQL Script for Creating the SH_AW User

/* Create the user and grant privileges */
CREATE USER sh_aw PROFILE "DEFAULT"
 IDENTIFIED BY "sh_aw"
 DEFAULT TABLESPACE sh_perm
 TEMPORARY TABLESPACE sh_temp
 QUOTA UNLIMITED ON sh_perm
 ACCOUNT UNLOCK;
GRANT OLAP_USER TO sh_aw;

/* Grant access to SH star schema */
GRANT SELECT ON SH.CHANNELS to SH_AW;
GRANT SELECT ON SH.PRODUCTS to SH_AW;
GRANT SELECT ON SH.TIMES to SH_AW;
GRANT SELECT ON SH.CUSTOMERS to SH_AW;
GRANT SELECT ON SH.COUNTRIES to SH_AW;
GRANT SELECT ON SH.PROMOTIONS to SH_AW;
GRANT SELECT ON SH.SALES to SH_AW;

Defining the Logical Dimensions for Sales History
Because Sales History is a star schema, the logical model for the analytic workspace is
primarily indicated by the schema design, as shown in Figure 5–10.

The two fact tables, SALES and COSTS, are the data sources for two logical cubes. This
case study only uses SALES.

The SALES table has a primary key composed of foreign keys from five dimension
tables, which are named TIMES, PRODUCTS, CHANNELS, PROMOTIONS, and
CUSTOMERS. CUSTOMERS is related to a sixth dimension table, COUNTRIES, by a
foreign key. In addition, SALES has two columns that contain business measures
named QUANTITY_SOLD and AMOUNT_SOLD. Thus, the star schema defines a logical
SALES cube with five dimensions and two measures for the analytic workspace.

Defining TIMES_DIM
The Times table has a numeric surrogate key for each level, so you can specify natural
keys as an implementation detail for TIMES_DIM.

Each level in a Time dimension must have time-span and end-date attributes.
However, the Times table does not have this data for Day or Fiscal Week. One way to
correct this problem is to add the columns to the Times table, using SQL statements
like the following:

Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 5-33

ALTER TABLE times ADD
 (days_in_day NUMBER(1) DEFAULT 1,
 days_in_week NUMBER(1) DEFAULT 7);

When you have finished mapping the dimension, run the Maintenance Wizard to load
the members and attributes. Because they load quickly, you can run the job
immediately (instead of in the job queue) to verify that the mappings are correct.

Defining CUSTOMERS_DIM
The Customers and Countries tables are related on the Countries key column, and
together they support two hierarchies, CUST_ROLLUP and GEOG_ROLLUP. Because the
two hierarchies share two aggregate levels (CITY and STATE), you must generate
surrogate keys in the analytic workspace so that each hierarchy has unique dimension
members. Otherwise, a single set of aggregates might not be correct for both
hierarchies.

Only 7,059 customers have sales data of the 55,500 listed in the Customers table. You
can choose the way you implement CUSTOMERS_DIM:

■ Load all of the customers into the analytic workspace, regardless of their
purchasing history. This case study implements this choice.

■ Create a view of the Customers table with a WHERE clause in the SELECT
statement that filters the customers so that only those who have made purchases
are included in the analytic workspace. Map CUSTOMERS_DIM to the new view.

■ Define City as the base level; do not map the Customer level or its attributes.
Create a view of the SALES table with a GROUP BY clause in the SELECT
statement that aggregates the data to the CITY level. This choice is appropriate
only if data at the Customer level is not needed for analysis.

When you have finished mapping the dimension, run the Maintenance Wizard to load
the members and attributes. Because they load quickly, you can run the job
immediately (instead of in the job queue) to verify that the mappings are correct.

Defining PRODUCTS_DIM, CHANNELS_DIM, and PROMOTIONS_DIM
The three remaining dimensions do not present any new challenges. Their source
tables can be identified as star schema in the Mappings canvas, because all levels and
attributes are in a single source table.

The measures in the Sales cube use only 4 of the 503 promotions listed in the
PROMOTIONS_DIM dimension table. You have the same choices for handling this
dimension as you did for the CUSTOMERS_DIM dimension, which also has a large
percentage of unused key values.

Defining the Logical Sales Cube for Sales History
The definition of a cube involves decisions that affect performance. Unlike Global, the
Sales History data set is fairly large and sparse like most real data sets. It is a good
candidate for using the Sparsity Advisor. The Sparsity Advisor analyzes the sparsity
characteristics of the data as it is stored in the relational source tables.

Run the Sparsity Advisor. Be sure that the data type is set to DECIMAL, then re-create
the cube using the recommended settings.

Case Study: Creating the Sales History Analytic Workspace

5-34 Oracle OLAP Application Developer’s Guide

Maintaining Sales History
When building the cube, submit the maintenance task to the job queue, either to run
immediately or at a later time. If you are running Oracle Database on a
single-processor computer, keep the number of processes at 1. Otherwise, check the
value of JOB_QUEUE_PROCESSES to see how many jobs you can run simultaneously.

Administering Oracle OLAP 6-1

6
Administering Oracle OLAP

This chapter describes the various administrative tasks that are associated with Oracle
OLAP. It contains the following topics:

■ Administration Overview

■ Creating Tablespaces for Analytic Workspaces

■ Setting Up User Names

■ Initialization Parameters for Oracle OLAP

■ Initialization Parameters for OracleBI Beans

■ Permitting Access to External Files

■ Basic Queries for Monitoring the OLAP Option

■ How Dimensional Data is Stored in the Database

■ Monitoring Performance

■ Copying and Backing Up Analytic Workspaces

Administration Overview
Because Oracle OLAP is contained in the database and its resources are managed
using the same tools, the management tasks of Oracle OLAP and the database
converge. Nonetheless, a database administrator or applications developer needs to
address management tasks in the specific context of Oracle OLAP, in addition to
creating and maintaining analytic workspaces. Following is a list of these tasks.

■ Tablespaces. Create permanent and temporary tablespaces to prevent I/O
bottlenecks, as described in "Creating Tablespaces for Analytic Workspaces" on
page 6-2.

■ Security. Users of OLAP applications must have database identities that have
been granted the appropriate access rights. For users to have access to files, you
must define directory objects and grant users access to them. Refer to "Setting Up
User Names" on page 6-4.

■ Database configuration. Set initialization parameters to optimize performance, as
described in "Initialization Parameters for Oracle OLAP" on page 6-6 and
"Initialization Parameters for OracleBI Beans" on page 6-7.

■ Performance. Database monitoring tools can identify recommended changes to
the database configuration based on past usage, as described in "Monitoring
Performance" on page 6-13.

Creating Tablespaces for Analytic Workspaces

6-2 Oracle OLAP Application Developer’s Guide

Creating Tablespaces for Analytic Workspaces
Before you create an analytic workspace, you should create undo, permanent, and
temporary tablespaces that are appropriate for their use. Analytic workspaces contain
many objects and each one occupies at least one extent. You should create tablespaces
with EXTENT MANAGEMENT LOCAL and allow an automatic allocation. Otherwise,
with a fixed extent size, you may waste most of the allocated space. For example, if an
object is 64K and the extents are set to a uniform size of 1M, then only a small portion
of the extent is used.

Analytic workspaces are created in the user's default tablespace, unless the user
specifies otherwise. The default tablespace for all users is set initially to SYS. Creating
analytic workspaces in the SYS tablespace can degrade overall performance.

Oracle OLAP makes heavy use of temporary tablespaces, so it is particularly
important that they be set up correctly to prevent I/O bottlenecks.

If possible, you should stripe the data files and temporary files across as many
controllers and drives as are available.

Creating an UNDO Tablespace
The following SQL commands create an undo tablespace with the appropriate
parameters for use by analytic workspaces:

CREATE UNDO TABLESPACE tablespace DATAFILE 'pathname'
 SIZE size REUSE AUTOEXTEND ON NEXT size
 MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL;

Where:

tablespace is the name of the tablespace
pathname is the fully qualified file name
size is an appropriate number of bytes

For example:

CREATE UNDO TABLESPACE olapundo DATAFILE '$ORACLE_HOME/oradata/undo.dbf'
 SIZE 64M REUSE AUTOEXTEND ON NEXT 8M
 MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL;

After creating the undo tablespace, change your system parameter file to include these
settings, then restart the database as described in "Initialization Parameters for Oracle
OLAP" on page 6-6.

UNDO_TABLESPACE=tablespace
UNDO_MANAGEMENT=AUTO

Creating a Permanent Tablespace for Analytic Workspaces
When a user creates an analytic workspace, it is created in the user's default
tablespace, which is initially set to the SYS tablespace. The following SQL statements
create a tablespace appropriate for storing analytic workspaces.

CREATE TABLESPACE tablespace DATAFILE 'pathname'
 SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

See Also: Oracle Database Administrator's Guide for detailed
information about managing Oracle Database.

Creating Tablespaces for Analytic Workspaces

Administering Oracle OLAP 6-3

ALTER USER username DEFAULT TABLESPACE tablespace

Where:

tablespace is the name of the tablespace
pathname is the fully qualified file name
size is an appropriate number of bytes
username is the name of a database user

For example:

CREATE TABLESPACE glo DATAFILE '$ORACLE_HOME/oradata/glo.dbf'
 SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

If your computer has multiple disks, then you can stripe the tablespace across them.
The next example shows SQL statements that distribute the GLO tablespace across
three physical disks:

CREATE TABLESPACE glo DATAFILE
 'disk1/oradata/glo1.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER TABLESPACE glo ADD DATAFILE
 'disk2/oradata/glo2.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M,
 'disk3/oradata/glo3.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE UNLIMITED;

Creating a Temporary Tablespace for Analytic Workspaces
Oracle OLAP uses temporary tablespace to store all changes to the data in an analytic
workspace, whether the changes are the result of a data load, what-if analysis,
forecasting, aggregation, or some other analysis. An OLAP DML UPDATE command
moves the changes into the permanent tablespace and clears the temporary tablespace.

Oracle OLAP also uses temporary tablespace to maintain different generations of an
analytic workspace. This enables it to present a consistent view of the analytic
workspace when one or more users are reading it while the contents are being
updated. This usage creates numerous extensions within the tablespace, so be sure to
specify a small EXTENT MANAGEMENT size.

The following commands create a temporary tablespace suitable for use by Oracle
OLAP.

CREATE TEMPORARY TABLESPACE tablespace TEMPFILE 'pathname'
 SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE size;

Where:

tablespace is the name of the tablespace
pathname is a fully qualified file name
size is an appropriate number of bytes

For example:

CREATE TEMPORARY TABLESPACE glotmp TEMPFILE '$ORACLE_HOME/oradata/glotmp.tmp'
 SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

Setting Up User Names

6-4 Oracle OLAP Application Developer’s Guide

You can stripe temporary tablespaces across several disks the same as permanent
tablespaces. The next example shows the GLOTMP temporary tablespace striped across
three physical disks.

CREATE TEMPORARY TABLESPACE glotmp TEMPFILE
 'disk1/oradata/glotmp1.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE 1024M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

ALTER TABLESPACE glotmp ADD TEMPFILE
 'disk2/oradata/glotmp2.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE 1024M,
 'disk3/oradata/glotmp3.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED;

Setting Up User Names
To connect to the database, a user must present a user name and password that can be
authenticated by database security. All users must have the CONNECT role. The
additional privileges associated with that user name control the user's access to data.
As a database administrator, you must set up user names with appropriate credentials
for all users of Oracle OLAP applications.

You can define user names and grant them these rights from the Users General Page of
Oracle Enterprise Manager Database Control or by using SQL commands.

Two roles are defined on installation of the database explicitly to support Oracle
OLAP:

■ OLAP_USER role provides users with the privileges to create, manage, or access
standard form analytic workspaces. All OLAP users should have the OLAP_USER
role or equivalent privileges.

■ OLAP_DBA role provides a DBA or system administrator with privileges to create
CWM metadata for relational tables. The OLAP_DBA role is granted with the DBA
role.

SQL Access For DBAs and Application Developers
To use Analytic Workspace Manager, users need SELECT privileges on the source
schema tables, and an unlimited quota on the tablespace in which the workspace is
created. Example 6–1 shows the SQL statements for creating the GLOBAL_AW user.

Example 6–1 SQL Statements for Creating the GLOBAL_AW User

CREATE USER 'GLOBAL_AW' IDENTIFIED BY 'global_aw'
 DEFAULT TABLESPACE glo
 TEMPORARY TABLESPACE glotmp
 QUOTA UNLIMITED ON glo
 ACCOUNT UNLOCK;

GRANT SELECT ON global.channel_dim TO global_aw;
GRANT SELECT ON global.customer_dim TO global_aw;
GRANT SELECT ON global.product_dim TO global_aw;
GRANT SELECT ON global.time_dim TO global_aw;
GRANT SELECT ON global.price_and_cost_history_fact TO global_aw;
GRANT SELECT ON global.price_and_cost_update_fact TO global_aw;
GRANT SELECT ON global.units_history_fact TO global_aw;
GRANT SELECT ON global.units_update_fact TO global_aw;

See Also: Oracle Database SQL Reference for more information
about granting privileges.

Setting Up User Names

Administering Oracle OLAP 6-5

SQL Access for Analysts
To access an existing analytic workspace, users must have these access privileges on
the table in which the workspace is stored:

■ To read from the analytic workspace, SELECT privileges.

■ To write to the analytic workspace, SELECT, INSERT, and UPDATE privileges.

Note that the name of the table is the same as the name of the analytic workspace, with
the addition of an AW$ prefix. For example, the GLOBAL analytic workspace is stored in
the AW$GLOBAL relational table.

For users to access views of workspace data, they must be granted EXECUTE privileges
explicitly on those views.

Example 6–2 shows the SQL statements that gives all users read-only privileges to the
GLOBAL analytic workspace, and user SCOTT read/write privileges.

Example 6–2 Granting Access Rights to the GLOBAL Analytic Workspace

GRANT SELECT ON global_aw.aw$global TO public;
GRANT INSERT ON global_aw.aw$global TO scott;
GRANT UPDATE ON global_aw.aw$global TO scott;

Access to Database Objects Using OracleBI Beans
To connect to a database using OracleBI Beans, users must have the following access
rights:

■ CONNECT role.

■ SELECT privileges on the database objects containing the data to be analyzed,
whether the data is stored in an analytic workspace or in relational tables. Refer to
the previous topic, "SQL Access for Analysts", for information about granting
access to analytic workspaces.

■ QUERY REWRITE system privilege (for relational tables).

■ OLAP_USER role (for relational tables).

Access to the Oracle JVM
Users who want to author or execute Analytic Workspace Java API applications within
the Oracle Java Virtual Machine (JVM) may need the following Java permissions, in
addition to the OLAP_DBA or OLAP_USER role:

You can grant these permissions in either Java or SQL.

Table 6–1 Java Permissions

Permission Type Action

java.io.FilePermission read, write, execute

java.util.PropertyPermission read, write

java.net.SocketPermission connect, resolve

java.lang.RuntimePermission null

Initialization Parameters for Oracle OLAP

6-6 Oracle OLAP Application Developer’s Guide

Initialization Parameters for Oracle OLAP
Table 6–2 identifies the parameters that affect the performance of Oracle OLAP. Alter
your server parameter file or init.ora file to these values, then restart your database
instance. You can monitor the effectiveness of these settings and adjust them as
necessary.

The recommendations for memory assume that the computer is dedicated to running
Oracle Database. If you want to reserve some resources for other applications, then
first calculate the percent of resources that are available to Oracle Database. For
example, if your computer has 4G of physical memory and you want to reserve 25%
for other applications, then you would calculate PGA_AGGREGATE_TARGET and SGA_
TARGET based on 75% of 4G, which is 3G.

Procedure: Setting System Parameters for OLAP
Take the following steps to set system parameters:

1. Open the init.ora initialization file in a text editor.

2. Add or change the settings in the file.

For example, you might enter a command like this:

PGA_AGGREGATE_TARGET=1G

See Also:

■ Oracle Database Java Developer's Guide for information about Oracle
JVM security and Java permissions

■ Oracle OLAP Analytic Workspace Java API Reference for information
about using this Java API

Table 6–2 Initial Settings for Database Parameter Files

Parameter Setting

JOB_QUEUE_PROCESSES Number of CPUs, plus one additional process for every
three CPUs

For example, JOB_QUEUE_PROCESSES=5 for a
four-processor computer

OPEN_CURSORS 300 or more to support Analytic Workspace Manager

PGA_AGGREGATE_TARGET 50% of physical memory to start, then tune as indicated
by performance statistics

SGA_TARGET 25% or less of physical memory to start, then tune as
indicated by performance statistics

SESSIONS 2.5 * maximum number of simultaneous OLAP users

UNDO_MANAGEMENT AUTO

UNDO_TABLESPACE Name of the undo tablespace, which must be defined
first as shown in "Creating an UNDO Tablespace" on
page 6-2

See Also: Oracle Database Performance Tuning Guide for
information about these parameters.

Permitting Access to External Files

Administering Oracle OLAP 6-7

3. Stop and restart the database, using commands such as the following. Be sure to
identify the initialization file in the STARTUP command.

SQLPLUS '/ AS SYSDBA'
SHUTDOWN IMMEDIATE
STARTUP pfile=$ORACLE_HOME/admin/rel10g/pfile/initrel10g.ora

Initialization Parameters for OracleBI Beans
OracleBI Beans performs best when the configuration parameters for the database are
optimized for its use. During installation of Oracle Database, an OLAP configuration
table is created and populated with ALTER SESSION commands that have been tested
to optimize the performance of OracleBI Beans. Each time OracleBI Beans opens a
session, it executes these ALTER SESSION commands.

If a database instance is being used only to support Java applications that use
OracleBI Beans, then you can modify your server parameter file or init.ora file to
include these settings. Alternatively, you might want to include some of the settings in
the server parameter file and leave others in the table, depending upon how your
database instance is going to be used. These are your choices:

■ Keep all of the parameters in the configuration table, so that they are set as part of
the initialization of a OracleBI Beans session. This method fully isolates these
configuration settings solely for OracleBI Beans. (Default)

■ Add some of the configuration parameters to the server parameter file or
init.ora file, and delete those rows from the configuration table. This is useful if
your database is being used by other applications that require the same settings.

■ Add all of the configuration parameters to the server parameter file or init.ora
file, and delete all rows from the configuration table. This is the most convenient if
your database instance is being used only by OracleBI Beans.

Regardless of where these parameters are set, you should check the Oracle Technology
Network for updated recommendations.

Permitting Access to External Files
The OLAP DML contains three types of commands that read from and write to
external files:

■ File read commands that copy data from flat files to workspace objects.

■ Import and export commands that copy workspace objects and their contents to
files for transfer to another database instance.

■ File input and output commands that read and execute DML commands from a
file and redirect command output to a file.

These commands control access to files by using BFILE security. This database
security mechanism creates a logical directory object to represent a physical disk
directory. Permissions are assigned to the directory object, which control access to files
within the associated physical directory.

See Also: Oracle Database SQL Reference for descriptions of
initialization parameters that can be set by the ALTER SESSION
command

Permitting Access to External Files

6-8 Oracle OLAP Application Developer’s Guide

You use PL/SQL statements to create a directory object and grant permissions. The
relevant syntax of these SQL statements is provided in this chapter.

Creating a Directory Object
To create a directory object, you must have CREATE ANY DIRECTORY system
privileges.

Use a CREATE DIRECTORY statement to create a new directory, or a REPLACE
DIRECTORY statement to redefine an existing directory, using the following PL/SQL
syntax:

{CREATE | REPLACE | CREATE OR REPLACE} DIRECTORY directory AS 'pathname';

Where:

directory is the name of the logical directory object
pathname is the physical directory path

Granting Access Rights to a Directory Object
After you create a directory, grant users and groups access rights to the files contained
in that directory, using the following PL/SQL syntax:

GRANT permission ON DIRECTORY directory TO {user | role | PUBLIC};

Where:

permission is one of the following:

READ for read-only access
WRITE for write-only access
ALL for read and write access

directory is the name of the directory object

user is a database user

role is a database role

PUBLIC is all database users

Example: Creating and Using a Directory Object
The following SQL commands create a directory object named OLAPFILES to control
access to a physical directory named /users/oracle/OraHome1/olap and grant
read access to all users.

CREATE DIRECTORY olapfiles as '/users/oracle/OraHome1/olap';
GRANT READ ON DIRECTORY olapfiles TO PUBLIC;

Users access files located in /users/oracle/OraHome1/olap with DML
commands such as this one:

IMPORT ALL FROM EIF FILE 'olapfiles/salesq2.eif' DATA DFNS

See Also: Oracle Database SQL Reference under the entries for
CREATE DIRECTORY and GRANT for the full syntax and usage
notes.

Basic Queries for Monitoring the OLAP Option

Administering Oracle OLAP 6-9

Basic Queries for Monitoring the OLAP Option
The following queries extract OLAP information from the data dictionary. In most of
the SELECT statements, you must replace GLOBAL with the name of your analytic
workspace.

More complex queries are provided in a script that you can download from the Oracle
OLAP Web site. For descriptions of these scripts and download instructions, refer to
"Monitoring Performance" on page 6-13.

Is the OLAP Option Installed in the Database?
The OLAP option is provided with Oracle Database Enterprise Edition. To verify that
the OLAP components have been installed, issue this SQL command:

SELECT COMP_NAME, VERSION, STATUS FROM DBA_REGISTRY WHERE COMP_NAME LIKE '%OLAP%';

COMP_NAME VERSION STATUS
------------------------- ------------ -----------
OLAP Analytic Workspace 10.2.0.3.0 VALID
Oracle OLAP API 10.2.0.3.0 VALID
OLAP Catalog 10.2.0.3.0 VALID

What Analytic Workspaces are in the Database?
The DBA_AWS view provides information about all analytic workspaces. Use the
following SQL command to get a list of names and their owners:

SELECT OWNER, AW_NAME FROM DBA_AWS;

OWNER AW_NAME
------------------------------ ------------------------------
SYS EXPRESS
SYS AWMD
SYS AWCREATE
SYS AWCREATE10G
SYS AWXML
SYS AWREPORT
GLOBAL_AW GLOBAL

How Big is the Analytic Workspace?
To find out the size of the tablespace extensions for a particular analytic workspace,
use the following SQL statements, replacing GLOBAL with the name of your analytic
workspace.

COLUMN DBMS_LOB.GETLENGTH(AWLOB) HEADING "Bytes";
SELECT EXTNUM, SUM(DBMS_LOB.GETLENGTH(AWLOB)) FROM AW$GLOBAL GROUP BY EXTNUM;

 EXTNUM SUM(DBMS_LOB.GETLENGTH(AWLOB))
---------- ------------------------------
 0 50450928

The DBMS_LOB PL/SQL package includes a program for reporting the size of a LOB
table that stores an analytic workspace. Use a SQL command like the following,
replacing GLOBAL with the name of your analytic workspace and GLOBAL_AW with the
name of the schema.

Basic Queries for Monitoring the OLAP Option

6-10 Oracle OLAP Application Developer’s Guide

SELECT ROUND(SUM(DBMS_LOB.GETLENGTH(AWLOB))/1024,0) "KB" FROM global_aw.aw$global;

 KB

 53700

How Is the Analytic Workspace Stored?
The DBMS_METADATA PL/SQL package contains a subprogram that shows how any
particular analytic workspace is stored in the database. Use a SQL command like the
following, replacing GLOBAL with the name of your analytic workspace and GLOBAL_
AW with the name of the schema.

SELECT DBMS_METADATA.GET_DDL('TABLE', 'AW$GLOBAL', 'GLOBAL_AW') FROM DUAL;

DBMS_METADATA.GET_DDL('TABLE','AW$GLOBAL','GLOBAL_AW')
--

 CREATE TABLE "GLOBAL_AW"."AW$GLOBAL"
 ("PS#" NUMBER(10,0),
 "GEN#" NUMBER(10,0),
 "EXTNUM" NUMBER(8,0),
 "AWLOB" BLOB,
 "OBJNAME" VARCHAR2(256),
 "PARTNAME" VARCHAR2(256)
) PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255
 STORAGE(
 BUFFER_POOL DEFAULT)
 TABLESPACE "GLOBAL"
 LOB ("AWLOB") STORE AS (
 DISABLE STORAGE IN ROW CHUNK 8192 PCTVERSION 0
 CACHE
 STORAGE(
 BUFFER_POOL DEFAULT))
 PARTITION BY RANGE ("GEN#")
 SUBPARTITION BY HASH ("PS#","EXTNUM")
 SUBPARTITIONS 8
 .
 .
 .

When Were the Analytic Workspaces Created?
The DBA_OBJECTS view provides the creation date of the objects in your database.
The following SQL command generates an easily readable report for analytic
workspaces.

SELECT OWNER ||'.'||SUBSTR(OBJECT_NAME,4) AS AW_NAME, CREATED FROM DBA_OBJECTS
WHERE OBJECT_NAME LIKE 'AW$%' AND OBJECT_NAME != 'AW$' GROUP BY OWNER, OBJECT_
NAME, CREATED ORDER BY OWNER, AW_NAME;

AW_NAME CREATED
-------------------- ---------
GLOBAL_AW.GLOBAL 10-JUL-06
SYS.AWCREATE 08-JUL-06
SYS.AWCREATE10G 08-JUL-06
SYS.AWMD 08-JUL-06
SYS.AWREPORT 08-JUL-06
SYS.AWXML 08-JUL-06
SYS.EXPRESS 08-JUL-06

How Dimensional Data is Stored in the Database

Administering Oracle OLAP 6-11

How Dimensional Data is Stored in the Database
Oracle OLAP multidimensional data is stored in analytic workspaces. An analytic
workspace can contain a variety of objects, such as dimensions, variables, and OLAP
DML programs. These objects typically support a particular application or set of data.

Each analytic workspace is stored in a relational table. Whenever an analytic
workspace is created, modified, or accessed, the information is stored in a table in the
relational database.

Analytic Workspace Tables
Analytic workspaces are stored in tables in the Oracle Database. The names of these
tables always begin with AW$.

For example, if the GLOBAL_AW user creates two analytic workspaces, one named
GLOBAL and the other named GLOBAL_PROGRAMS, then these tables will be created in
the GLOBAL_AW schema:

AW$GLOBAL
AW$GLOBAL_PROGRAMS

Tables are created by default with eight partitions. You can manage these partitions the
same as you would for any other table in your database.

The tables store all of the object definitions and data. Each object in an analytic
workspace is stored in one or more page spaces, and each page space is stored in a
separate row of the table. A page space is grouping of related data pages; a page is a
unit for swapping data in and out of memory.

For example, a dimension is stored in three page spaces and thus has three rows (one
each for dimension members, a hash index, and a logical-to-physical map). A measure
is stored in one row; a partitioned measure has a row for each partition.

Table 6–3 describes the columns of a table that stores an analytic workspace.

Important: These tables are vital for the operation of Oracle OLAP.
Do not delete them or attempt to modify them directly without
being fully aware of the consequences.

Table 6–3 Column Descriptions for Analytic Workspace Tables

Column Data Type NULL Description

EXTNUM NUMBER(8) - Extension number

Analytic workspaces are stored in physical
LOBs (called extensions), which have a
default maximum size of 500MB. The first
extension is 0, the second is 1, and so forth.

PS# NUMBER(10) - Page space number

Each object is stored in at least one page
space.

GEN# NUMBER(10) - Generation number

A generation (a snapshot of the page space) is
maintained for each reader to assure a
consistent view of the analytic workspace
throughout a session.

How Dimensional Data is Stored in the Database

6-12 Oracle OLAP Application Developer’s Guide

Table 6–4 shows a few sample rows of an analytic workspace table, which are the
results of the following query.

SELECT ps#, gen#, objname, partname FROM aw$global WHERE
 OBJNAME = 'TIME' OR
 OBJNAME = 'UNITS_CUBE_UNITS_STORED'
 ORDER BY GEN#, PS#;

System Tables
The SYS user owns several tables and views associated with analytic workspaces.
Most of them are LOB tables that contain analytic workspaces, which are attached
automatically to a user’s session as needed. Following are brief descriptions of these
objects.

■ AW$ maintains a record of all analytic workspaces in the database, recording its
name, owner, and other information.

■ The following tables contain analytic workspaces:

– AW$AWCREATE10G stores the AWCREATE10G analytic workspace, which
contains programs for using OLAP Catalog metadata in Oracle Database 10g
Release 10.1.0.3.

– AW$AWMD stores the AWMD analytic workspace, which contains programs for
creating standard form catalogs.

AWLOB BLOB - Analytic workspace LOB

Actual storage of the analytic workspace
object.

OBJNAME VARCHAR2(60) - Object name

The name of the object in the analytic
workspace.

PARTNAME VARCHAR2(60) - Partition name

A name for the page space in which the object
is stored. Each object is stored in its own page
space. A partitioned variable is stored with a
page space for each partition. The number of
partitions and their names are specified when
a partition template is created in the analytic
workspace.

Table 6–4 Sample Rows From AW$GLOBAL

PS# GEN# OBJNAME PARTNAME

2515 0 TIME TIME

2516 0 TIME TIME

2517 0 TIME TIME

2745 0 UNITS_CUBE_UNITS_STORED UNITS_CUBE_UNITS_STORED

2515 2 TIME TIME

2516 2 TIME TIME

2517 2 TIME TIME

Table 6–3 (Cont.) Column Descriptions for Analytic Workspace Tables

Column Data Type NULL Description

Monitoring Performance

Administering Oracle OLAP 6-13

– AW$AWREPORT stores the AWREPORT analytic workspace, which contains a
program named AWREPORT for generating a summary space report.

– AW$AWXML stores the AWXML analytic workspace, which contains programs for
creating and managing standard form analytic workspaces for Oracle
Database 10g Release 10.2 and later.

– AW$EXPRESS stores the EXPRESS analytic workspace. This workspace
contains objects and programs that support the OLAP DML. The EXPRESS
workspace is used any time that a session is open.

■ PS$ maintains a history of all page spaces. A page space is an ordered series of
bytes equivalent to a file. Oracle OLAP manages a cache of workspace pages.
Pages are read from storage in a table and written into the cache in response to a
query. The same page can be accessed by several sessions.

The information stored in PS$ enables the Oracle OLAP to discard pages that are
no longer in use, and to maintain a consistent view of the data for all users, even
when the workspace is being modified during their sessions. When changes to a
workspace are saved, unused pages are purged and the corresponding rows are
deleted from PS$.

Static Data Dictionary Views
Among the static views of the database data dictionary are several that provide
information about analytic workspaces. Table 6–5 brief descriptions of them. There are
corresponding DBA and USER views.

Monitoring Performance
Each Oracle Database instance maintains fixed tables that record current database
activity. These tables collect data on internal disk structures and memory structures.
Among them are tables that collect data on Oracle OLAP.

These tables are available to users through a set of dynamic performance views. By
monitoring these views, you can detect usage trends and diagnose system bottlenecks.
Table 6–6 provides a brief description of each view. Global dynamic performance
views (GV$) are also provided.

Table 6–5 Static Data Dictionary Views for OLAP

View Description

ALL_AWS Describes the analytic workspaces accessible to the current user.

ALL_AW_OBJ Describes the current objects in all analytic workspaces accessible to the
current user.

ALL_AW_PROP Describes the OLAP DML properties defined in all analytic workspaces
accessible to the current user.

ALL_AW_PS Describes the page spaces currently in use by all analytic workspaces
accessible to the current user.

See Also: Oracle Database Reference for descriptions of these and
other data dictionary views.

See Also: Oracle OLAP Reference for full descriptions of the OLAP
dynamic performance views.

Copying and Backing Up Analytic Workspaces

6-14 Oracle OLAP Application Developer’s Guide

You can download from the Oracle OLAP Web site a file that contains several SQL
scripts. These scripts extract information from two or more system views and generate
a report that may be useful in tuning a database. To download the file, go to this URL:

http://www.oracle.com/technology/products/bi/olap/DBA_
scripts.zip

Table 6–7 describes these scripts. For more information, refer to the README file
provided with the scripts.

Copying and Backing Up Analytic Workspaces
You can copy analytic workspaces at several levels, either as a way of replicating it on
another computer or backing it up.

■ XML Templates. A template saves the XML definition of logical objects in a
standard form analytic workspace. You can save the entire analytic workspace, or
individual cubes, dimensions, and calculated measures. Using a saved template,
you can create a new analytic workspace exactly like an existing one. The template

Table 6–6 OLAP Dynamic Performance Views

View Description

V$AW_AGGREGATE_OP Lists the aggregation operators available in the OLAP DML.

V$AW_ALLOCATE_OP Lists the allocation operators available in analytic workspaces.

V$AW_CALC Collects information about the use of cache space and the status
of dynamic aggregation.

V$AW_LONGOPS Collects status information about SQL fetches.

V$AW_SESSION_INFO Collects information about each active session.

V$AW_OLAP Collects information about the status of active analytic
workspaces.

Table 6–7 OLAP DBA Scripts

SQL Script Description

aw_objects_in_cache Identifies the objects in the buffer cache that are related to
analytic workspaces.

aw_rows_rw Tallies the number of reads from temporary segments and the
LOB tables where analytic workspaces are stored, the number of
cache rights, and the number of rows processed.

aw_size Displays the amount of disk space used by each analytic
workspace.

aw_tablespaces Provides extensive information about the tablespaces used by
analytic workspaces.

aw_users Identifies the users of analytic workspaces.

cursor_parameters Indicates whether the database parameters that limit the number
of open cursors are set too low.

olap_pga_performance Determines how much PGA is in use, the size of the OLAP page
pool, and the hit/miss ratio for OLAP pages for each user.

olap_pga_use Determines how much PGA is consumed by the OLAP page
pool to perform operations on analytic workspaces.

session_resources Identifies the use of cursors, PGA, and UGA for each open
session.

Copying and Backing Up Analytic Workspaces

Administering Oracle OLAP 6-15

does not save any data, nor does it save any customizations to the analytic
workspace. You can copy a template to a different platform.

■ EIF Files. An EIF file saves the object definitions of any analytic workspace (not
just standard form analytic workspaces), and optionally, saves the data also. You
can copy an EIF file to a different platform.

■ Database Dump Files. Analytic workspaces are copied with the other objects in a
schema or database export. Use the expdp/impdb database utilities.

■ Transportable Tablespaces. Analytic workspaces are copied with the other objects
to a transportable tablespace. However, you can only transport the tablespace to
the same platform (for example, from Linux to Linux, Solaris to Solaris, or
Windows to Windows). Use the expdp/impdb database utilities. Transportable
tablespaces are much faster than dump files.

The owner of an analytic workspace can create an XML template or an EIF file, or
export the schema to a dump file. Only users with the EXP_FULL_DATABASE privilege
or a privileged user (such as SYS or a user with the DBA role) can export the full
database or create a transportable tablespace.

See Also:

■ Analytic Workspace Manager Help for information about
exporting to an XML template or an EIF file. Search for the topic
"Saving Analytic Workspaces in Flat Files."

■ Oracle Database Utilities for information about Oracle Data Pump
and the expdp/impdp commands.

Copying and Backing Up Analytic Workspaces

6-16 Oracle OLAP Application Developer’s Guide

Part III
 Generating Quality Information

Part III contains information about generating information from the data loaded into
an analytic workspace. It contains the following chapters:

■ Chapter 7, "Aggregating Data"

■ Chapter 8, "Allocating Data"

■ Chapter 9, "Generating Forecasts"

Aggregating Data 7-1

7
Aggregating Data

An analytic workspace always returns summary data to a query as needed. While the
analytic workspace may store data, for example, at the day level, it will return a result
at the quarter or year level without requiring a calculation in the query. This chapter
explains how to optimize the unique aggregation subsystem of Oracle OLAP to
provide the best performance for both data maintenance and querying.

This chapter contains the following topics:

■ What is Aggregation?

■ Managing Aggregate Data

■ Basic Strategies for Aggregating Data

■ Selecting Dimension Members for Aggregation

■ Defining an Aggregation

■ Aggregation Operators

■ Case Study: Aggregating a Moderately Sparse or Dense Cube

■ Case Study: Aggregating a Very Sparse Cube

What is Aggregation?
Aggregation is the process of consolidating multiple values into a single value. For
example, data can be collected on a daily basis and aggregated into a value for the
week, the weekly data can be aggregated into a value for the month, and so on.
Aggregation allows patterns in the data to emerge, and these patterns are the basis for
analysis and decision making. When you define a data model with hierarchical
dimensions, you are providing the framework in which aggregate data can be
calculated.

Aggregation is frequently called summarization, and aggregate data is called
summary data. While the most frequently used aggregation operator is Sum, there are
many other operators, such as Average, First, Last, Minimum, and Maximum. Oracle
OLAP also supports weighted and hierarchical methods. Following are some simple
diagrams showing how the basic types of operators work. For descriptions of all the
operators, refer to "Aggregation Operators" on page 7-12.

Figure 7–1 shows a simple hierarchy with four children and one parent value. Three of
the children have values, while the fourth is empty. This empty cell has a null or NA
value. The Sum operator calculates a value of 12 (2 + 4 + 6) for the parent value.

What is Aggregation?

7-2 Oracle OLAP Application Developer’s Guide

Figure 7–1 Summary Aggregation in a Simple Hierarchy

The Average operator calculates the average of all real data, producing an aggregate
value of 4 ((2 + 4 + 6)/3), as shown in Figure 7–2.

Figure 7–2 Average Aggregation in a Simple Hierarchy

The hierarchical operators include null values in the count of cells. In Figure 7–3, the
Hierarchical Average operator produces an aggregate value of 3 ((2 + 4 + 6 +NA)/4).

Figure 7–3 Hierarchical Average Aggregation in a Simple Hierarchy

The weighted operators use the values in another measure to generate weighted
values before performing the aggregation. Figure 7–4 shows how the simple sum of
Figure 7–1 is altered by using weights ((3*2) + (2*4) + (1*6) +(4*NA)).

Managing Aggregate Data

Aggregating Data 7-3

Figure 7–4 Weighted Sum Aggregation in a Simple Hierarchy

Managing Aggregate Data
The creation and maintenance of summary data is a serious issue for DBAs. If no
summary data is stored, then all summarizations must be performed in response to
individual queries. This may slow the response time. At the other extreme, if all
summary data is stored, then the database multiplies in size.

Managing Aggregate Data in Relational Tables
Relational schemas store aggregate data in materialized views and summary tables.
The query rewrite feature of Oracle Database redirects queries for summary data from
the fact tables to the materialized views. When predefined reports are run on a routine
basis, the DBA knows which areas of the data are queried and what summary data is
needed. This situation may be handled easily with a relatively small number of
materialized views.

However, extensive use of ad-hoc queries and user-defined calculated measures create
a random situation in which any part of the data store may be queried and
summarized. Because a materialized view only has data for one combination of levels
for the dimensions of the data, thousands of materialized views might be needed to
provide coverage for most queries. A large number of materialized views requires
extensive storage space and slows the query rewrite process for every request. When a
particular materialized view is not available, the summary data is generated at
runtime from the data in the fact table.

Managing Aggregate Data in Analytic Workspaces
Analytic workspaces use an entirely different paradigm for managing aggregate data
than relational tables. This paradigm is based on the dimensional model, which is
inherent in analytic workspaces.

A cube is defined by its dimensions. Each cell in the cube is identified by a unique
combination of dimension members, with one member from each dimension. The
dimension members function as an index into the cube.

For each measure in the cube, a cell either has a data value or an NA value. While an
NA is equivalent to empty or null, it is handled as the value of the cell. Thus, a cell
with a value of NA can be queried the same as a cell with an actual data value. This is

Basic Strategies for Aggregating Data

7-4 Oracle OLAP Application Developer’s Guide

an important feature of dimensional data analysis, because it enables analysts to
investigate the absence of data (that is, no activity) as well as the actual data.

A dimension is a list of all its members from the base to the most aggregate. Thus, a
measure stores all of its data, regardless of its level of aggregation. There are no
additional objects for storing aggregate data, and thus no need to redirect queries.

Basic Strategies for Aggregating Data
In an analytic workspace, a data load typically fetches data only at the lowest, or base,
level. The data cells at the higher levels are empty until the values are calculated from
the base values.

Table 7–1 shows a small portion of the Global Sales measure before aggregation.

■ The Channel dimension is set to a single base-level member named Catalog.

■ The Product dimension is set to a single base-level member named Sentinel
Financial.

■ The Time dimension is set to Jul-04 and its ancestors, Q3-04 and 2004.

■ The Customer dimension is set to KOSH Enterprises Boston and its ancestors,
United States, North America, and All Customers.

Out of the 12 cells shown, only one has a data value. If the three ancestors of Sentinel
Financial and the one ancestor of Catalog were added, then this number would
expand to one out of 96 cells.

Nonetheless, the data is always presented to the application as fully solved; that is,
both detail and summary values are provided, without requiring that calculations be
specified in the query.

In an analytic workspace, aggregate data is generated at two distinct times:

■ As part of the build procedure. You can calculate and store all of the aggregates,
none, or a portion of them. Calculated values are stored in the analytic workspace
and shared by all sessions. This is often called pre-aggregation.

■ In response to a query. Any "missing" aggregate data will be calculated for the
query, even if the analytic workspace has no stored aggregate data. Calculated
values may be cached for use throughout a session, but they are not shared among
sessions. This is often called aggregating on the fly.

If your dimensions have multiple hierarchies or if the hierarchies have many levels,
then fully aggregating the measures can increase the size of your analytic workspace
(and thus your database) geometrically. At the same time, much of the intermediate
level data may be accessed infrequently or not at all.

Table 7–1 Portion of Sales Data Before Aggregation

Catalog

Sentinel Financial 2004 Q3-04 Jul-04

All Customers NA NA NA

North America NA NA NA

United States NA NA NA

KOSH Entrpr Boston NA NA 12,281.79

Basic Strategies for Aggregating Data

Aggregating Data 7-5

The most effective method of summarizing data in any analytic workspace is by
storing some aggregates and calculating others on the fly. When choosing which
aggregate values to store, your goal is to select those that require time- and
resource-intensive calculations. Calculations that can be performed quickly can be left
until runtime.

Table 7–2 shows the same portion of the Global Sales measure after it has been
aggregated as part of the data maintenance process. The Warehouse level of Customer
and the Year level of time have been calculated and stored. Out of the 12 cells shown,
four now have data values, which is one-third the total. The entire measure has this
ratio when Channel and Product are fully aggregated during maintenance.

When an application queries the analytic workspace, either the aggregate values have
already been calculated and can simply be retrieved, or they can be calculated on the
fly from a small number of stored aggregates. In addition, you can choose to cache
aggregate values for the duration of a session, so that they are calculated on the fly
only once. Table 7–3 shows the Sales measure when it is fully aggregated in response
to a query. Eight values are calculated on the fly to return the answer set to the client.

Aggregating Non-Compressed Composites
The strategy for aggregation shown in "Basic Strategies for Aggregating Data" on
page 7-4 is called skip-level aggregation, because some levels are stored and others are
skipped until runtime. The success of this strategy depends on choosing the right
levels to skip, which are those that can be calculated quickly in response to a query.

Table 7–2 Portion of Sales Data After Data Maintenance Aggregation

Catalog

Sentinel Financial 2004 Q3-04 Jul-04

All Customers NA NA NA

North America 2,819,969.60 NA 368,453.61

United States NA NA NA

KOSH Entrpr Boston 91,208.57 NA 12,281.79

Table 7–3 Portion of Sales Data Fully Aggregated For a Query

Catalog

Sentinel Financial 2004 Q3-04 Jul-04

All Customers 4,415,575.54 600,053.02 600,053.02

North America 2,819,969.60 368,453.61 368,453.61

United States 2,660,444.61 352,662.74 352,662.74

KOSH Entrpr Boston 91,208.57 12,281.79 12,281.79

Note: Skip-level aggregation is used only for regular
(non-compressed) composites. For the recommended strategy for
compressed composites, refer to "Aggregating Compressed
Composites" on page 7-6.

Basic Strategies for Aggregating Data

7-6 Oracle OLAP Application Developer’s Guide

Selecting Dimensions for Skip-Level Aggregation
As a general rule, you should skip levels for only one or two dimensions and for no
more than half of the dimensions of the cube. Choose the dimensions with the most
levels in their hierarchies for skip-level aggregation.

Slower varying dimensions take longer to aggregate because the data is scattered
throughout its storage space. If you are optimizing for data maintenance, then fully
aggregate the faster varying dimensions and use skip-level aggregation on the slower
varying dimensions.

Selecting the Levels to Skip
You can identify the best levels to skip by determining the ratio of dimension members
at each level, and keeping the ratio of members to be rolled up on the fly at
approximately 10:1 or less. This ratio assures that all answer sets can be returned
quickly. Either a data value is stored in the analytic workspace so it can simply be
retrieved, or it can be calculated quickly from 10 stored values.

This 10:1 rule is best applied with some judgment. You might want to permit a higher
ratio for levels that you know are seldom accessed. Or you might want to store levels
at a lower ratio if you know they have heavy use. Generally, you should strive for a
lower ratio instead of a higher one to maintain the best performance.

Aggregation rules identify how and when the aggregate values are calculated. You
define the aggregation rules for each cube, and you can override these rules by
defining new ones for a particular measure.

Aggregating Compressed Composites
Compressed composites are used to store extremely sparse data. They are designed
specifically to handle data structures in which several levels may store the same value.
Figure 7–5 shows an aggregation in which one out of 12 cells has a data value. The
skip-level strategy described in "Aggregating Non-Compressed Composites" on
page 7-5 does not produce any benefit under these circumstances.

Figure 7–5 Aggregation of Very Sparse Data

Use this aggregation strategy for compressed cubes:

Basic Strategies for Aggregating Data

Aggregating Data 7-7

■ Identify the dimension with the most members. If several dimensions have about
the same number, then choose the dimension with the most levels. Do not
pre-aggregate this dimension.

■ Pre-aggregate all other dimensions up to, but not including, the top level, unless
the next level down has a large number of members.

You can adjust these basic guidelines to the particular characteristics of your data. For
example, you may skip levels that are seldom queried from pre-aggregation. Or you
may need to pre-aggregate a level with a large number of child values, to provide
acceptable run-time performance.

Improving Aggregation Performance
The previous guidelines provide an approach to aggregation that should help you
meet these basic goals:

■ Finish Data Updates on Time

■ Keep Within Allocated Resources

■ Provide Good Response Time

If you anticipate problems with one or more of these goals, then you should keep them
in mind while devising your aggregation rules. Otherwise, you may need to make
adjustments after the initial build, if you experience problems meeting all of these
goals.

Often the problem can be solved by changing factors other than the aggregation rules,
as described in the following topics.

Finish Data Updates on Time
Most organizations allocate a batch window in which all data maintenance must be
complete. If you are unable to finish refreshing the data in the allotted time, then you
can make the following adjustments.

The more levels that you aggregate for storage, the longer the maintenance process
will take. Review your reasons for choosing levels for pre-aggregation. If you know
that some levels are seldom queried, you may skip them during the builds. Exercise
care in skipping additional levels, however, because you run the risk of degrading
run-time performance.

Be sure that you have set the database initialization parameters correctly for data
maintenance, as described in "Initialization Parameters for Oracle OLAP" on page 6-6.
You can make significant improvements in build performance by setting
SGA_TARGET, PGA_AGGREGATE_TARGET, and JOB_QUEUE_PROCESSES.

After the initial build, you can save time by aggregating only newly loaded values,
instead of aggregating all of them again. Partial aggregation is a choice you can make
in the Maintenance Wizard.

Analytic workspaces are stored in partitioned tables, and you can create partitioned
cubes. You can use these partitions to stripe the data across several disks, thus
avoiding bottlenecks in I/O operations, if you have purchased the partitioning option
to Oracle Database.

Note: Be sure to run the Sparsity Advisor so that the data is
structured in the most efficient way. Refer to "Using the Sparsity
Advisor" on page 5-18.

Selecting Dimension Members for Aggregation

7-8 Oracle OLAP Application Developer’s Guide

Keep Within Allocated Resources
Your analytic workspace must fit within the allocated resources. The more levels of
aggregate data that you store, the larger the tablespaces must be to store the analytic
workspace.

The data type is an important consideration when estimating the size of an analytic
workspace. The most commonly used data types for measures are NUMBER and
DECIMAL. The difference in size is significant: an unscaled NUMBER value is 22 bytes
and a DECIMAL value is 8 bytes.

Refer to "Choosing a Data Type" on page 5-19 for a comparison between these two
data types.

Provide Good Response Time
An analytic workspace must provide good performance for end users. When
pre-aggregation is done correctly, the response time for queries does not noticeably
slow down. Analytic workspaces are optimized for multidimensional calculations, so
that run-time summarizations should be extremely fast. However, runtime
performance will suffer if the wrong choices were made.

If response time is poor, then review the decisions you made in skipping levels and
find those that should be pre-aggregated. Try to identify and pre-aggregate those areas
of the data that are queried heavily. Check the level on which you partitioned the cube.
Remember that all levels above the partition are calculated on the fly. When
partitioning over Time, the Month level is a much better choice than Day.

Read the recommendations given in the previous topics. The savings in maintenance
time and disk storage may be used to pre-aggregate more of the data.

Selecting Dimension Members for Aggregation
The aggregation rules defined for a cube or a measure are always performed over all
dimension members. You can perform a partial aggregation only in a calculation plan
and only for regular composites.

To aggregate over a portion of a measure, you select the dimension members that
identify the cells containing the source data, using the Status page of the Aggregation
property sheet. You do not need to select the target cells. All of the cells identified by
the ancestors of the selected dimension members are aggregated, either when you
execute the calculation plan or when a user queries the measure.

When you select the dimension members, they are in status. This means that the
dimension members have been selected for use in a calculation, a query, or other data
manipulation. Likewise, out of status means that the dimension members have been
excluded from use.

Figure 7–6 shows an aggregation in which the 12 months of 2006 are in status. Neither
the quarters nor the year are in status, but aggregates are generated for all levels.

See Also: Chapter 6, "Administering Oracle OLAP"

Note: Do not set status for a compressed cube. All members must be
in status.

Selecting Dimension Members for Aggregation

Aggregating Data 7-9

Figure 7–6 Sum Aggregation With All Source Values in Status

Figure 7–7 shows the same portion of data, but with only Feb to Jun in status.
Aggregates are calculated only for Q1, Q2, and 2006. Note that Jan is included in the
aggregation, even though it is out of status. The aggregation engine adds the
ancestors, then the children to status before aggregating the data, as a means of
maintaining the integrity of the data. The values for Jul to Dec are not included in the
aggregation.

Figure 7–7 Sum Aggregation With Some Source Values Out of Status

You may need to aggregate data that is stored in the middle of a hierarchy, perhaps if
the data for a particular measure is not available or needed at the base level. You must
be sure that the cells with the data are the lowest levels in the hierarchy in status.
Figure 7–8 shows quarterly forecast data in status and aggregated to the year. The
monthly values are not in status, and thus are excluded from the aggregation.

Defining an Aggregation

7-10 Oracle OLAP Application Developer’s Guide

Figure 7–8 Sum Aggregation From the Quarterly Level

Aggregation begins at the lowest level in status and rolls up the hierarchy. The
aggregate values will overwrite any pre-existing values higher in the hierarchy.
Figure 7–9 shows that when the Month level is in status, those values will overwrite
the forecast values at the Quarter level. The status of Quarter and Year has no effect on
the aggregation.

Figure 7–9 Sum Aggregation From the Month Level Overwrites Quarters

Defining an Aggregation
Analytic Workspace Manager enables you to define aggregations at three different
times. You can use whatever combination best suits your needs:

■ Cube. You can define default aggregation rules for all measures in a cube by
defining them just once. You define these rules when creating or modifying a cube.

■ Measure. You can define unique aggregation rules for a particular measure that
will override the default cube rules. You define these rules when creating or
modifying a measure. You cannot specify aggregation rules for individual
measures for compressed cubes.

Defining an Aggregation

Aggregating Data 7-11

■ Calculation Plan. You can define rules for one or more measures and determine
the order in which the measures are calculated. In this way, you can support
dependencies among the measures and the calculations, such as aggregating data
that is generated by a forecast. You define these rules when creating or modifying
a calculation plan. This type of aggregation is performed after the measures are
aggregated using either the Cube or the Measure rules.

Regardless of the level at which you define the summarization rules, the basic
decisions and the user interface are the same:

■ Select an aggregation operator and, depending on the operator, a weight measure
on the Rules tab.

■ Select the levels for storing values on the Summarize To tab.

To aggregate a measure using the cube rules:

1. On the General page of the Cube property sheet, select Use Default Aggregation
Plan for Cube Aggregation.

2. On the General page of the Measure property sheet, select Use Aggregation
Specification From the Cube.

To aggregate a measure using its individual rules:

1. On the General page of the Cube property sheet, select Use Default Aggregation
Plan for Cube Aggregation.

Any measure in the cube without its own individual rules will use this default
plan.

2. On the General page of the Measure property sheet, select Override the
Aggregation Specification of the Cube.

To aggregate a measure using a calculation plan:

1. Define the aggregation rules for the measure or the cube, as described previously.

You can aggregate all the values first, then execute the calculation plan to
overwrite a portion of the aggregate values. Or you can define the rules for the
measure so that no aggregates are created during data maintenance.

2. Create a calculation plan that will aggregate all or part of the measure.

To aggregate all measures in a cube using a calculation plan:

1. On the General page of the Cube property sheet, clear the Use Default
Aggregation Plan for Cube Aggregation box.

2. Create a calculation plan containing one or more aggregation steps that will
aggregate all measures in the cube.

Note: All measures are aggregated during data maintenance using
the rules defined for the cube or the rules defined for the measure.
Any additional aggregation rules defined in a calculation plan are
calculated separately.

Aggregation Operators

7-12 Oracle OLAP Application Developer’s Guide

Aggregation Operators
Analytic workspaces provide an extensive list of aggregation methods, including
weighted, hierarchical, and weighted hierarchical methods.

Basic Operators
These are the basic aggregation operators:

■ Average: Adds non-null data values, then divides the sum by the number of data
values that were added together.

■ First Non-NA Data Value: The first real data value.

■ Last Non-NA Data Value: The last real data value.

■ Maximum: The largest data value among the children of each parent.

■ Minimum: The smallest data value among the children of each parent.

■ Nonadditive: Do not aggregate any data for this dimension.

■ Sum: Adds data values.

Hierarchical Operators
These are the hierarchical operators. They include all cells identified by the hierarchy
in the calculations, whether or not the cells contain data. You should use these
operators only when you want null values to be treated as zeroes instead of as missing
data.

■ Hierarchical Average: Adds data values, then divides the sum by the number of
the children in the dimension hierarchy. Unlike Average, which counts only
non-null children, hierarchical average counts all of the logical children of a
parent, regardless of whether each child does or does not have a value.

■ Hierarchical First Member: The first data value in the hierarchy, even when that
value is null.

■ Hierarchical Last Member: The last data value in the hierarchy, even when that
value is null.

■ Hierarchical Weighted Average: Multiplies non-null child data values by their
corresponding weight values, then divides the result by the sum of the weight
values. Unlike Weighted Average, Hierarchical Weighted Average includes weight
values in the denominator sum even when the corresponding child values are
null.

■ Hierarchical Weighted First: The first data value in the hierarchy multiplied by its
corresponding weight value, even when that value is null.

■ Hierarchical Weighted Last: The last data value in the hierarchy multiplied by its
corresponding weight value, even when that value is null.

Scaled and Weighted Operators
These are the scaled and weighted aggregation operators. They require a measure
containing the weights in the same cube.

■ Scaled Sum: Adds the value of a weight object to each data value, then adds the
data values.

Case Study: Aggregating a Moderately Sparse or Dense Cube

Aggregating Data 7-13

■ Weighted Average: Multiplies each data value by a weight factor, adds the data
values, and then divides that result by the sum of the weight factors.

■ Weighted First: The first non-null data value multiplied by its corresponding
weight value.

■ Weighted Last: The last non-null data value multiplied by its corresponding
weight value.

■ Weighted Sum: Multiplies each data value by a weight factor, then adds the data
values.

Case Study: Aggregating a Moderately Sparse or Dense Cube
The Global data set is a good candidate for skip-level aggregation. This example
discusses aggregation of the Units Cube, which has four dimensions: Time, Customer,
Product, and Channel. You could skip levels on one or two dimensions. For this
example, skip levels on only one dimension; because Global is small, precalculating
the additional levels does not create a problem with time or disk space.

The Customer dimension has two hierarchies with a total of seven levels. Because it
has the most levels of any dimension, it is the best choice for skipping levels.

To identify the levels to be precalculated, you must know the number of dimension
members at each level. You can easily acquire this information in SQL, using this SQL
command:

SELECT COUNT(DISTINCT ship_to_id), COUNT(DISTINCT warehouse_id),
COUNT(DISTINCT region_id),COUNT(DISTINCT total_customer_id),
COUNT(DISTINCT account_id), COUNT(DISTINCT market_segment_id),
COUNT(DISTINCT total_market_id), FROM global.customer_dim;

Global is a very small data set, so few adjacent levels have the desired 10:1 ratio of
children-to-parent dimension members. Table 7–4 and Table 7–5 identify the
appropriate levels to be calculated and stored for the two hierarchies. Only eight
members are stored out of a total of 45 aggregate members.

On the Summarize To page for the Units Cube, select the precalculated levels for
Customer, and select all levels for Time, Product, and Channel.

Table 7–4 Precalculated Levels in the Customer Shipments Hierarchy

Level Members Precalculate?

Total_Customer 1 No

Region 3 Yes

Warehouse 11 No

Ship_To 61 Yes

Table 7–5 Precalculated Levels in the Customer Market Segment Hierarchy

Level Members Precalculate?

Total_Market 1 No

Market_Segment 5 Yes

Account 24 No

Ship_To 61 Yes

Case Study: Aggregating a Very Sparse Cube

7-14 Oracle OLAP Application Developer’s Guide

Figure 7–10 shows this selection on the Summarize To page of the Units Cube property
sheet.

Figure 7–10 Selection of Customer Levels

Case Study: Aggregating a Very Sparse Cube
Sales History is a very sparse data set, so it uses compressed composites for all cubes.
You should fully aggregate all but the largest dimension. Table 7–6 shows the number
of base-level members for each dimension. This information is easily acquired by
counting the unique values in the dimension tables like this:

SELECT COUNT(DISTINCT time_id) FROM sh.times;

Because Customers is far larger than any of the other dimensions, you do not need to
count the aggregate members or the number of levels to identify it as the largest one.
On the Summarize To page for the cubes, deselect all levels for Customers and select
all but the top level for Channels, Products, Promotions, and Times.

Table 7–6 Precalculated Dimensions in Sales History

Dimension Members Precalculate?

Channels 5 Yes

Customers 55,500 No

Products 72 Yes

Promotions 503 Yes

Times 1,826 Yes

Allocating Data 8-1

8
Allocating Data

In Analytic Workspace Manager, you can create forecasts, set goals, and create budgets
at a high level, and then allocate those numbers down a hierarchy to see how those
numbers impact the contributing values.

This chapter contains the following topics:

■ What Is an Allocation?

■ Creating Measures to Support an Allocation

■ Selecting Dimension Members for an Allocation

■ Creating an Allocation

■ Allocation Operators

■ Case Study: Allocating a Budget

What Is an Allocation?
Allocations distribute aggregate level data to detail level data, sometimes using an
existing set of data as the basis for the allocation. This technology is often used in
forecasting and budgeting systems. An example of a financial allocation is the
automated distribution of a bonus pool, based on the current salaries and performance
ratings of the employees.

You can think of allocations as inverse aggregations.

■ In aggregations, a group of child values are aggregated into a single parent value
using an aggregation method, such as Sum.

■ In allocations, a parent value is distributed to a group of child cells using an
allocation method that is the inverse of the aggregation method, such as Average.

One important difference between aggregation and allocation is that an aggregation
has one defined answer. An allocation has many possible answers for the same source
value.

For example, consider the hierarchy in Figure 8–1. The value 9 is derived by
aggregating the values 2, 3 and 4 using the Sum operator.

What Is an Allocation?

8-2 Oracle OLAP Application Developer’s Guide

Figure 8–1 Aggregation in a Simple Hierarchy

Now change the value of 9 to 18 and allocate the results to the children. The Even
allocation operator divides the source value evenly by the number of children, and so
assigns each child a value of 6, as shown in Figure 8–2.

Figure 8–2 Even Allocation In a Simple Hierarchy

In contrast, the Proportional allocation operator divides the value into proportions
based on the current value of each target cell, and so assigns values of 4, 6 and 8, as
shown in Figure 8–3.

Figure 8–3 Proportional Allocation In a Simple Hierarchy

The previous examples show direct allocation, that is, where there is a parent-child
relation between the source cell and the target cells. However, most hierarchies have
multiple levels, and an allocation may assign values down the hierarchy, as shown in
Figure 8–4.

Creating Measures to Support an Allocation

Allocating Data 8-3

Figure 8–4 Even Allocation in a Multilevel Hierarchy

Next, consider a skip level hierarchy. The source value is allocated down the hierarchy,
as shown in Figure 8–5. The relationship of the target cell to the allocation source, not
the hierarchical level of a cell, determines the allocation. Note that, as the result of an
intermediate value in one branch, the base-level cells are allocated different values
than in the simple hierarchy shown in Figure 8–2.

Figure 8–5 Even Allocation in a Skip Level Hierarchy

Creating Measures to Support an Allocation
Source, basis, and target are the most fundamental terms for describing allocation. You
may use the same measure for all three roles or assign a different measure to each role.
All allocation operators require a source and a target, but some operators do not use a
basis. You can also multiply the results of an allocation by a weight measure.

Creating Measures to Support an Allocation

8-4 Oracle OLAP Application Developer’s Guide

Source Measures
The source measure contains the set of numbers that you want to allocate. You may
use an existing measure, or you may perform some computation on existing data to
construct new source values. For instance, you might want to budget 30 percent
growth over the next year and perform an allocation to see the sales targets required
for each product to meet that budget. You would create a calculated measure based on
actual sales to use as the allocation source. Alternatively, you might generate a forecast
at the middle or top of a hierarchy and then allocate the forecast results down to the
lower levels.

Basis Measures
Depending on the type of allocation, the basis measure may identify which cells will
be the targets of an allocation, and what proportion of the allocation each target cell
will receive. Different operators use the basis measure in different ways, as illustrated
by the diagrams of Even and Proportional operators in "What Is an Allocation?" on
page 8-1. Note that a basis measure is not used by the hierarchical operators. Refer to
"Allocation Operators" on page 8-9 for descriptions of all the operators and their use of
a basis measure.

The basis measure can be the same as the target measure, or it can be a different
measure. For example, suppose you want to calculate the sales of each individual
product for an increase in total sales of 15 percent. You would create a calculated
measure from Sales that contains the desired aggregate values, and use it as the
allocation source. By using the original Sales measure as both the target and the
allocation basis, and allocating with the Proportional distribution method, you can
generate the individual product sales figures that are needed to produce the desired
total sales figure.

If, however, you want to write the results of the allocation to a completely new
measure, you would still use the Sales measure as the basis. The new target enables
you to preview the allocated results before overwriting the original data. Similarly,
you may want to allocate data into a Budget target measure and use an Actuals
measure as the basis of the allocation.

Target Measures
The target measure stores the results of an allocation. By default, the target and the
basis are the same measure. However, you may prefer to use a different target measure
so that you can preview the results of an allocation before overwriting any original
values.

Weight Measures
You can perform a calculation on the allocated values before they are stored in the
target measure. For example, you might need to convert Sales numbers to a different
currency. You might create a budget in US dollars, and then translate the allocation
target into local currencies. To accomplish this, you would multiply the target values
by a weight measure that contains the currency translation rates.

Selecting Dimension Members for an Allocation

Allocating Data 8-5

Selecting Dimension Members for an Allocation
You can perform an allocation over an entire measure or over selected branches of the
hierarchy. You must restrict the allocation to a portion of the measure under these
circumstances:

■ You want to allocate some of the values at the top of the hierarchy, but not all the
values.

For example, you may need to restrict the Time dimension to a few future periods
to prevent allocating over all the historical data.

■ You want to allocate some values that are in the middle of the hierarchy.

For example, you may have generated a forecast at the Month level of Time and
the Brand level of Product, and you want to allocate those numbers down to the
base.

■ You want to allocate down to the middle of the hierarchy, not to the base.

For example, you do not want to proliferate data to the Day level of Time and the
SKU level of Product, because you are setting sales quotas, which do not need that
level of detail.

Identifying the Sources and Targets
The dimension members that you select for the allocation is used to identify the source
and the target cells. The selection must include:

■ In the source measure, the cells at the top of the hierarchy that contain the values
to be allocated.

■ In the target measure, the cells down the hierarchy that will be allocated values.

Figure 8–6 shows a portion of a Time hierarchy with the source allocation values at the
Quarter level. How the allocation is performed depends on which members are
selected (or in status). Table 8–1 describes various status settings and their effect on
the allocation.

Figure 8–6 Allocating at the Quarter Level

Selecting Dimension Members for an Allocation

8-6 Oracle OLAP Application Developer’s Guide

Figure 8–7 shows the correct status for allocating only Q1.

Figure 8–7 Status for Allocating One Mid-Level Branch of a Hierarchy

When calculating the allocation, the OLAP engine will, if necessary, expand the
current status to include siblings. Figure 8–8 shows an even allocation when Q2, Apr
and May are in status. Jun is not a target and does not get a value. Nonetheless, the
engine divides the allocated value of 12 by all three children, not just the two targets,
to calculate the values for Apr and May.

Table 8–1 Results of Status on Allocation at the Quarter Level

Status Allocation Explanation

All None The top member of the hierarchy (2006) has no value,
so there is no source value to allocate.

All quarters None The children of Q1 and Q2 are not in status, so there is
no target for allocation.

All quarters, all months Jan to Jun Q1 and Q2 are in status, so the value 9 is allocated to
Jan, Feb, and Mar, and the value 12 is allocated to
Apr, May, and Jun.

Q1, Jan to Mar Jan to Mar Q1 and its children are in status, so the value 9 is
allocated to Jan, Feb, and Mar. Q2 is not in status and
is not allocated.

Selecting Dimension Members for an Allocation

Allocating Data 8-7

Figure 8–8 Even Allocation to Selected Child Members

Identifying the Allocation Path
When the allocation path from the source to the target cells is not defined by the
current status, the engine may populate the siblings of cells along the path. This
information is important only if you want to avoid overwriting existing values or
unnecessarily proliferating data.

Figure 8–9 shows the results of an allocation from 2006 to the three months in Q2. Only
2006, Apr, May, and Jun are in status. This status does not define a path from the
source to the target. Because the Quarter level is on the path to the target, all of the
quarters are allocated a value.

Figure 8–9 Even Allocation Without a Defined Allocation Path

Creating an Allocation

8-8 Oracle OLAP Application Developer’s Guide

However, when Q2 is included in status, it is the only quarter to get an allocated value,
as shown in Figure 8–10.

Figure 8–10 Even Allocation With a Defined Allocation Path

Creating an Allocation
You can create allocations in Analytic Workspace Manager by defining an allocation
step in a Calculation Plan. Take these steps:

1. Create the source, basis, target, and weight measures. They must be in the same
cube. The source, basis, and weight measures can be either stored measures or
calculated measures. The target measure must be a stored measure.

2. Create an allocation step:

a. In the navigation tree, create a new Calculation Plan or open an existing plan.

b. On the General tab of the Calculation Plan property page, click New Step,
then choose New Allocation Step.

The New Allocation Step property pages are displayed.

c. Complete the General page, being careful to select the correct source, target,
and basis measures.

d. On the Rules page, use the up- and down-arrows to list the dimensions in the
order you want them calculated. If you assign different operators to different
dimensions, then the allocated values may be different depending on the
order.

e. Select an operator for each dimension that you want to allocate, and a weight
measure if desired.

f. On the Status page, select the members for each dimension of the measure. To
allocate values from the top down to the base, retain the default selection of
All Levels. Otherwise, select the dimension members with the source data and
the target members.

Refer to "Selecting Dimension Members for an Allocation" on page 8-5 for
information on selecting the dimension values.

Allocation Operators

Allocating Data 8-9

g. Click Create to save the allocation step, then Apply to save the Calculation
Plan.

3. To allocate the data, right-click the Calculation Plan in the navigation tree, then
choose Execute Calculation Plan.

4. To view the results of the allocation, right-click the target measure and choose
View Data.

Allocation Operators
Allocation operators determine the methodology for distributing source values to their
targets. There are three basic types of allocation operators: Copy, Even Distribution,
and Proportional Distribution.

Within these basic types are regular operators and hierarchical operators. The regular
operators only assign values to cells identified by the basis measure as having a value.
The hierarchical operators do not use a basis measure. They assign values to all target
cells.

Copy Operators
These are the copy operators:

■ Copy: Copies the allocation source to all of the target cells that have a basis value
that is not NA (null).

■ Hierarchical Copy: Copies the allocation source to all of the target cells specified
by the hierarchy, regardless of the basis value.

■ Minimum: Copies the allocation source to the target that has the smallest basis
value.

■ Maximum: Copies the allocation source to the target that has the largest basis
value.

■ First non-NA Data Value: Copies the allocation source to the first target cell that
has a non-NA basis value.

■ Hierarchical First Member: Copies the allocation source to the first target cell
specified by the hierarchy, regardless of the basis value.

■ Last non-NA Data Value: Copies the allocation source to the last target cell that
has a non-NA basis value.

■ Hierarchical Last Member: Copies the allocation source to the last target cell
specified by the hierarchy, regardless of the basis value.

Even Distribution Operators
These are the even distribution operators:

Even: Divides the allocation source by the number of target cells that have non-NA
basis values and applies the quotient to each target cell.

Hierarchical Even: Divides the allocation source by the number of target cells,
including the ones that have NA values, and applies the quotient to each target cell.

Note: The hierarchical operators may increase the size of a measure
dramatically by allocating values to previously empty cells. Be careful
to set the status of all dimensions.

Case Study: Allocating a Budget

8-10 Oracle OLAP Application Developer’s Guide

Proportional Distribution Operator
The proportional distribution operator is:

Proportional: Divides the allocation source by the sum of the basis values, then
multiplies the quotient by the individual basis value for each target cell.

Relationships Between Allocation and Aggregation Operators
The allocation system operates as the logical inverse of the aggregation system. In
other words, if you allocate down from a middle level of a hierarchy, you can
aggregate up to the top of the hierarchy using an aggregation operator that
corresponds to the allocation operator. Table 8–2 shows the correspondence between
allocation operators and aggregation operators.

Case Study: Allocating a Budget
This example creates a sales budget that is 10% higher than the previous year’s sales. It
uses a calculated measure to generate the increase, then distributes the total increase
evenly down the dimension hierarchies.

Creating the Source Measure
To create the source measure:

1. Expand the UNITS_CUBE folder, right-click Calculated Measures, and choose
Create Calculated Measure.

The Calculation Wizard opens.

2. Complete the Name and Type page with these values:

■ Name: sales_py

■ Calculation Type: Prior Value (under Prior/Future Comparison)

3. Complete the Prior Value page with these values:

■ Measure: Sales

Table 8–2 Corresponding Allocation and Aggregation Operators

Allocation Operator Aggregation Operator

Copy Average

Hierarchical Copy Average

Minimum Minimum

Maximum Maximum

First non-NA Data Value First Non-NA Data Value

Last non-NA Data Value Last Non-NA Data Value

Hierarchical First Member Hierarchical First Member

Hierarchical Last Member Hierarchical Last Member

Even Sum or Average

Hierarchical Even Hierarchical Average

Proportional Sum

Case Study: Allocating a Budget

Allocating Data 8-11

■ Over Time in: Calendar Year

■ Go back by: 1 Year

4. Create a second calculated measure with the name SALES_BUDGET.

5. For the calculation, expand the Basic Arithmetic folder and choose Multiplication.

6. On the Multiplication page, multiply SALES_PY by 1.1.

Creating the Target Measure
This example stores the allocated data in a separate measure from the source data to
assure that the allocated data does not overwrite any source data.

To create the target measure:

1. In the UNITS_CUBE folder, right-click Measures and select Create Measure.

The Create Measure dialog box opens.

2. On the General page, create a measure named ALLOC_SALES_BUDGET.

3. Select Override the Aggregation Specification of the Cube.

4. On the Summarize To page, deselect all levels for all dimensions.

The measure is not mapped to a data source, so no aggregation needs to be done
during regular builds. Instead, aggregation will be defined in the Calculation Plan. The
aggregation step is not shown in this example; refer to "Case Study: Forecasting Sales
for Global Enterprises" on page 9-14 for an example that shows forecasting, allocation,
and aggregation.

Creating the Calculation Plan
Budget Plan will have an allocation step and an aggregation step (not shown).

To create a new Calculation Plan:

1. Right-click Calculation Plans and select Create Calculation Plan.

The Create Calculation Plan dialog box opens.

2. Create a new plan named BUDGET_PLAN. Click Create.

BUDGET_PLAN appears as a new item in the Calculation Plans folder. It does not
yet contain any steps.

Creating the Allocate Budget Step
The SALES_BUDGET calculated measures generates data at all levels. The allocation
will redistribute the data from the top of the hierarchy to the lowest levels and store it
in the target measure.

To create an allocation step:

1. On the General page of Sales Plan, click New Step, then select New Allocation
Step.

The Create Allocation Step dialog box opens.

2. Complete the General page with these values:

■ Name: allocate_budget_step

■ Cube: UNITS_CUBE

Case Study: Allocating a Budget

8-12 Oracle OLAP Application Developer’s Guide

■ Source Measure: SALES_BUDGET

■ Target Measure: ALLOC_SALES_BUDGET

■ Basis Measure: SALES_BUDGET

3. On the Rules page, assign Hierarchical Even for the Time operator. For the other
dimensions, assign the Proportional operator.

4. On the Status page, keep the default status of All Levels for all dimensions.

5. Click Create to save the allocation step.

6. Click Apply to save the Calculation Plan.

Generating and Validating the Allocation
To generate the allocation:

1. Expand the Calculation Plans folder. Right-click BUDGET_PLAN and choose
Execute Calculation Plan BUDGET_PLAN.

The Maintenance Wizard opens, and BUDGET_PLAN is a selected target object.

2. Click Finish.

The build log is displayed when the Calculation Plan is done executing.

To view the forecast results, take these steps:

1. Fully expand the UNITS_CUBE folder, right-click the ALLOC_SALES_BUDGET
measure, and choose View Data ALLOC_SALES_BUDGET.

The Measure Data Viewer opens. No data is displayed, because the top dimension
levels provide the source data, not the allocated data.

2. From the File menu, choose Query Builder.

The Query Builder opens.

3. On the Layout tab, switch Product and Customer. Click Help for instructions.

4. On the Dimensions tab, set the status of all dimensions to the base level. You may
wish to select just a few values from these lists. For Time, limit the months to 2004,
since that it is only allocated year.

5. Click OK to close the Query Builder.

Figure 8–11 shows a sample of the allocated data. The allocated data should be
aggregated from these base levels to the top by an aggregation step.

Case Study: Allocating a Budget

Allocating Data 8-13

Figure 8–11 Allocated Sales Budget Data

Case Study: Allocating a Budget

8-14 Oracle OLAP Application Developer’s Guide

Generating Forecasts 9-1

9
Generating Forecasts

Forecasting is a natural extension to the types of data analysis typically performed on
the historical data stored in analytic workspaces. Using Analytic Workspace Manager,
you can quickly generate forecasts of your measures. This chapter provides a basic
framework for generating and using quantitative forecasting methods for those who
do not have a strong statistical background. It also provides specific information about
the particular forecasting engine provided with Oracle OLAP.

This chapter contains the following topics:

■ Introduction to Forecasting Considerations

■ Choosing a General Forecasting Approach

■ About the Forecasting Engine

■ Creating a Forecast

■ Designing Your Own Forecast

■ Forecasting Method Descriptions

■ Advanced Parameter Descriptions

■ Case Study: Forecasting Sales for Global Enterprises

Introduction to Forecasting Considerations
Forecasts are predictions about future events. They provide a basis for making
decisions in a timely manner, which is often in advance of the facts. There are many
ways of creating forecasts, and the best method for a particular forecast depends on
many factors. Consider this question: Will it rain tomorrow?

The degree of difficulty in correctly predicting tomorrow’s weather depends on where
you live. You may live where the weather is extremely stable, with little or no variation
from one day to the next. In this situation, if it is raining today, then you can be fairly
certain that it will rain tomorrow.

However, if you live where the weather is in constant flux, with sudden and dramatic
changes, then today’s rainfall is not a reliable predictor. You may just make an
informed guess, based on your analysis of the current weather pattern, or you might
consult an arthritis sufferer whose joints ache with changes in the weather.
Nonetheless, all of these methods (today’s rainfall, informed guess, or swollen joints)
should over time prove to be more accurate than just flipping a coin.

Now consider this question: Will it rain three months from today? Instead of basing
your prediction on today’s weather, you need to consider the frequency of rainfall for
the forecast period in previous years. If you live where rainy seasons and dry seasons

Choosing a General Forecasting Approach

9-2 Oracle OLAP Application Developer’s Guide

are clearly defined, then you can probably answer this question with relative certainty
based on the season. Otherwise, your ability to predict rainfall on a particular day that
far into the future may be no better than a coin toss. To make a meaningful prediction,
you may need to expand the forecast period to a week or more. You may also need to
expand the size of the area in which you are predicting rain from your neighborhood
to a larger region.

Finally, how important is it to correctly predict the weather on a particular day and at
a particular place? If accuracy is critical -- such as planning a large outdoor event --
then an accurate forecast is worth some effort, and you might try several forecasting
methods to see if their predictions converge. Regardless, you might still plan to erect a
tent in case you get a downpour instead of the forecasted clear skies.

This simple example demonstrates several characteristics of forecasting:

■ Stable patterns in historical data are more likely to generate an accurate forecast.

■ Different methods are appropriate for different forecasts, depending on how far
into the future you want to make a forecast and how stable your data is.

■ Some forecasting methods are experiential or qualitative (informed guess or
aching joints), and others are quantitative (historical data).

■ The season may be an important factor in the forecast.

■ Forecasting is not 100% accurate.

■ The more precise the forecast, the more prone it is to error.

■ Longer-range forecasts should generate data at higher levels to offset the
increasing likelihood of error.

■ The degree of error may be offset by your tolerance for error.

■ If you have a low tolerance for error, then you may want to make some provisions
that will lessen the consequences of forecasting incorrectly.

These observations may help give you a perspective on what you want to forecast,
how you want to design the forecast, and how you want to use the forecast in making
decisions about your business.

Choosing a General Forecasting Approach
The first step in generating a forecast is to decide how far into the future you want to
make your predictions. The approach that produces the best results for short-term
forecasts is not a good predictor of long-term performance. The opposite is also true.

The critical question is, of course, how far into the future these time frames reach. Is
"short" five weeks or five months? Is "long" five quarters or five years? As illustrated
by the rain prediction example in "Introduction to Forecasting Considerations" on
page 9-1, it all depends on a variety of factors:

■ What are you trying to forecast?

■ How stable is the historical data?

■ How are you going to use this information?

These are just a few of the questions that you need to answer in order to define the
forecasting time frames for your specific business. Table 9–1 provides some general
guidelines for these time periods.

Choosing a General Forecasting Approach

Generating Forecasts 9-3

Time Series
Time series forecasting methods are based on the premise that you can predict future
performance of a measure simply by analyzing its past results. These methods identify
a pattern in the historical data and use that pattern to extrapolate future values.

Past results can, in fact, be a very reliable predictor for a short period into the future.
You can generate this type of forecast very quickly and easily, and you do not need
either forecasting expertise or an in-depth knowledge of your data. The modeling
techniques used by the time-series methods are relatively simple and run very fast.
Time-series forecasting is extremely useful when hundreds or thousands of items must
be forecast.

You may also use time-series methods to generate forecast data further into the future.
However, the results will not be as accurate, because factors other than past
performance have a greater impact over time. For example, you or your competitors
may change the pricing structure or run advertising campaigns, competitive products
may come onto the market, or shifts in the economy or political events may affect
performance. You should consider the forecast data generated by time series methods
to be one component of a medium- or long-range forecast, which may be adjusted by
expert opinion and other factors.

Analytic Workspace Manager provides access to a time-series forecasting engine,
which is described in this chapter.

Causal Analysis
Causal analysis takes into consideration the external factors (the causes) that can affect
a forecast, as described under "Time Series". Statistical regression methods are the basis
for causal analysis. They use the forecasts for several independent measures to forecast
a dependent measure. This type of forecast requires considerable skill and
understanding of forecasting methodology and the relationships between independent
and dependent variables. A good regression model will produce the best results for
medium-range forecasts.

However, because of the time, expense, and expertise needed to develop a model,
most businesses restrict regression analysis to a few key business measures. For the
other measures, they use a combination of methods including time-series and expert
opinion.

The forecasting engine used by Analytic Workspace Manager does not support causal
analysis. The linear and nonlinear regression methods in the forecasting engine are
time-series regression methods that use historical data from a single measure.

Table 9–1 Guidelines for Choosing a Forecasting Approach

Time Frame Typical Forecasting Horizon Best Approach

Short Up to 18 months Time Series

Medium 6 to 36 months Causal Analysis

Long 19 months to 5 years Expert Opinion

Note: Oracle Data Mining supports both time series and causal
analysis methods for data stored in a relational format. This type of
forecasting is done using the SQL PREDICTION function within a
Data Mining model. Refer to Oracle Data Mining Concepts.

About the Forecasting Engine

9-4 Oracle OLAP Application Developer’s Guide

Expert Opinion
As the time horizon for the forecast moves further out into the future, expert opinion
becomes the most reliable predictor. The experts, who are usually corporate
executives, have their fingers on the pulse of myriad factors that may influence future
performance, such as the general direction of the market and plans for new products.
Customer surveys also provide input to long-term forecasts. An equivalent computer
model to rival expert opinion for long-term forecasts would be too complex to
generate within a usable time frame.

About the Forecasting Engine
Oracle OLAP incorporates a statistical forecasting engine that is used extensively for
demand planning applications. This engine has a variety of time-series forecasting
methods, which are described in "Forecasting Method Descriptions" on page 9-9.

The forecasting engine incorporates advanced filtering technology to identify and
process outliers, which are data values that are extremely high or low in relation to the
mean. Exception handing is a critical component of forecasting efficiency, and the
forecasting engine reduces the time and money spent analyzing exceptions. This
technology also enables the forecasting engine to produce accurate short-term
forecasts using wildly fluctuating historical data.

Typical applications for OLAP forecasting include the following:

■ Distribution requirements planning for seasonal monthly forecasts of retail sales
for products reaching market saturation.

■ Business planning with seasonal quarterly forecasts of expenses with upward
linear trends.

■ Sales quota management by forecasting exponential decay in company sales for
aging products.

■ Materials requirement planning with trends in raw material prices with cyclical
behavior.

■ Sales forecasts with exponential growth in industry sales.

■ Inventory control planning by forecasting S-curve demand growth from increasing
distribution.

Creating a Forecast
You can create forecasts in Analytic Workspace Manager by defining a forecast step in
a Calculation Plan. These are the steps for creating a forecast. Each one is discussed in
more detail in the sections that follow.

1. Creating the Forecast Time Periods

2. Creating a Forecast Measure

3. Selecting the Historical Data

4. Identifying the Levels for the Forecast

5. Creating a Forecast Step

6. Generating the Forecast

7. Evaluating the Forecast Results

Creating a Forecast

Generating Forecasts 9-5

Creating the Forecast Time Periods
The future time periods that you want to forecast must be defined as members of the
time dimension in your analytic workspace. If they do not exist already, you must:

1. Add the new time periods and attributes to the relational tables in the source
schema.

2. Use the Maintenance Wizard in Analytic Workspace Manager to add the new
members to the Time dimension in the analytic workspace.

Use whatever mechanism guarantees that these Time dimension members are
identical to those for loading actual data at a later date.

Creating a Forecast Measure
You can store the forecast data in the same measure as the actual data, or you can store
it in a separate measure. If you store the forecast in the same measure, then the actual
data will eventually overwrite it. This prevents you from monitoring the accuracy of
the forecast. For this reason, you should create a separate forecast measure in the same
cube as the source measure.

To create a forecast measure:

1. In the navigation tree, expand the cube for the actual data.

2. Right-click Measures and choose Create Measure.

3. Complete the Create Measure property sheet. Do not map the measure to a data
source.

Selecting the Historical Data
The forecasting engine needs only a year of data to detect trends and seasonality.
Business cycles may take two or three years of data to detect.

If your business has experienced a paradigm shift, then you should exclude previous
data from your forecast as irrelevant. The following are examples of events that might
cause a paradigm shift:

■ Cellular telephones on the telecommunications industry.

■ Digital cameras on the photography industry.

■ The Internet on the book and music publishing industries.

You will select the historical data when creating the forecast step.

Identifying the Levels for the Forecast
To generate consistent data at all levels of a hierarchy, you must generate the forecast
data at a single level and use it to populate the other forecast levels by aggregation or
allocation. If you generate a forecast from multiple levels, then the aggregate forecast
data may be inconsistent with the lower levels of forecast data.

The "correct" levels are determined by the time frame of your forecast and by your
reasons for making the forecast. For example, you may forecast Customers at the Total
level for manufacturing, but at a lower level for marketing. Table 9–2 shows the
recommended dimension levels for forecasting products over various time frames.

If you set the levels too low, then large variations in the data may decrease accuracy.
These inaccuracies may be magnified in the aggregated forecasts. If you set the levels

Creating a Forecast

9-6 Oracle OLAP Application Developer’s Guide

too high, then the aggregated forecasts may smooth out localized trends and allocate
them incorrectly.

You will select the levels when creating the forecast step.

Creating a Forecast Step
To create a forecast step in Analytic Workspace Manager:

1. In the navigation tree, create a new Calculation Plan or open an existing plan.

2. On the General tab of the Calculation Plan, click New Step, then select New
Forecast Step.

The New Forecast Step property pages are displayed.

3. Complete the General page. For the forecast method, select Automatic.

For information about using other methods, refer to "Designing Your Own
Forecast" on page 9-7. For information about completing the other fields, click
Help.

4. Keep the default values on the Advanced Settings page unless you have expertise
in time-series forecasting.

5. On the Status page, select the historical time periods and other dimension values
that will be used as the basis for the forecast. Select only one level for each
dimension.

6. Save the forecast step, then save the Calculation Plan.

Generating the Forecast
To generate the forecast data:

If all the time periods and data are already loaded into the analytic workspace, then
right-click the Calculation Plan and choose Execute Calculation Plan.

or

If you need to load new data, then include the Calculation Plan in the regular
maintenance process using the Maintenance Wizard.

Afterward, you can view the forecast data in the Measure Viewer.

Table 9–2 Example of Dimension Levels for Forecasts

Time Frame Time Level Product Level
Other Dimension
Levels

Short Week, Biweek, or
Month

UPC, SKU, NDC, ISBN Level of interest

Medium Month or Quarter Brand Level of interest

Long Quarter or higher Brand, Company, Market Level of interest

Note: Depending on how you set up the forecast, you may need to
follow it with an allocation step, or an aggregation step, or both to
populate all levels.

Designing Your Own Forecast

Generating Forecasts 9-7

Evaluating the Forecast Results
If the forecast does not initially look plausible to you, then check that there are no
errors in the design of the forecast:

■ Compare the first few forecast periods to the last few historical periods to verify
that a discrepancy exists.

■ Use the forecast step editor to check the number of forecast periods against the
status of the Time dimension. The forecast periods are the last ones in status. For
example, if the Time dimension has dimension members defined through the next
five months and you designed a 4-month forecast, then you must remove the last
month from status. Otherwise, the forecast will be based on a month of null
historical data.

■ Use the Measure Viewer to verify that all of the historical data has been loaded in
the source measure. If several periods immediately prior to the forecast period
have not been loaded, then the forecast will be 0.

■ If you used a specific forecasting method (not Automatic):

– Compare its results with those of the Automatic option.

– Verify that you set Forecast Approach to Manual and Data Filter to the
appropriate choice.

■ If you set any of the advanced parameters, then compare the results against a
forecast that uses the default settings.

A standard part of forecasting is to continually monitor the accuracy of the forecast
data. The easiest way to compare the forecast data with the actual data is to set up a
standard report that includes a line graph. Then you can see how closely the forecast
data converges with the actual data.

Short-term forecasts should be fairly precise, with only a small difference between
forecast and actual data. If this is not the case, then you should consider modifying the
forecast using some of the suggestions listed previously. You may even want to create
several forecasts and compare their results over time.

Medium- and long-range forecasts generated by time-series forecasting methods
should be qualified by other input, such as expert opinion, because external factors
will affect performance in these time frames.

Designing Your Own Forecast
The OLAP forecast engine provides an Expert System that generates the best
short-term forecasts over the long run, so you should use the Automatic method and
the default parameters for most forecasts. However, there may be times when you
should override the Expert System and design the forecast yourself.

What is the Expert System?
The Expert System supports the Automatic method by identifying the best statistical
method and selecting the best parameter settings for your data. It also distinguishes
outliers from factors like trend and seasonality.

The Expert System separates the data into seasonal effects and trend effects. It then
uses an iterative approximation method to forecast the seasonal component of the
data. After completing the trend forecast, it factors the seasonality portion into the
trend forecast for all methods except Holt-Winters, which calculates its own seasonal
factors.

Designing Your Own Forecast

9-8 Oracle OLAP Application Developer’s Guide

The Expert System represents a type of artificial intelligence for statistical forecasting
that has been in common use ever since computers took over the task of performing
complex and lengthy numerical calculations. Instead of the analyst’s having to
evaluate the data and make an educated guess as to the best method, the software can
quickly try all methods and select the best one based on the results.

You can override the Expert System by setting the Forecast Approach parameter to
Manual. The default value of Automatic gives the Expert System the most control in
overriding your choices. This is the appropriate setting when using the Automatic
method, but it will invalidate your attempt to design a forecast.

What is the Verification Window?
The Expert System always tests the accuracy of a forecast method using a portion of
the historical data called a verification window. For the Automatic method, the Expert
System uses this window to select the best statistical method. For the other methods, it
verifies that your selection of a method and the parameter settings provide a good fit
to the historical data.

For this test, the Expert System divides the historical time periods into two groups.
The older time periods retain their role as historical data. The newer historical time
periods become the "forecast" periods and form the verification window. The Expert
System generates forecast data for the newer time periods, using the older time
periods as the basis for the forecast.

The Expert System calculates the precision of the method by comparing the forecast
data to the actual data in the verification window. The precision is the distance
between the forecast data and the actual data.

The Expert System uses several standard calculations to compare the precision of
different forecasting methods: Mean Absolute Deviation (MAD), Mean Absolute
Percentage Error (MAPE), and Root Mean Square Error (RMSE).

When Should You Design a Forecast?
You may want to control the forecast when you have special knowledge that future
performance will deviate from past results.

For example, you may recently have entered an agreement for a major national chain
of stores to carry your products, so you anticipate a dramatic increase in sales. Or your
company might have been an innovator in developing a new product line, but your
competitors are about to introduce rival products. In this case, you expect sales to level
off. You or your competitors might also be negotiating a corporate merger, and you
expect that transaction to affect performance.

Under circumstances like these, your special knowledge may enable you to design a
more accurate forecast than the Expert System.

Overriding the Expert System
To override the Expert System, take these steps:

1. Create or edit a forecast step, as described in "Creating a Forecast Step" on
page 9-6.

2. On the General page, select the method that best describes the future performance
that you expect, based on your expert knowledge.

3. On the Advanced Settings page, set Forecast Approach to Manual.

Forecasting Method Descriptions

Generating Forecasts 9-9

4. Set the Data Filter parameter to an appropriate setting for your data.

5. Change the Verification Window Size parameter as desired.

6. Make whatever other changes to the parameter settings are appropriate.

7. Complete the definition of the forecast, and run it as described in "Creating a
Forecast" on page 9-4.

Forecasting Method Descriptions
The forecasting methods represent several basic approaches to time-series forecasting.
This topic provides descriptions of the various approaches, the methods that use each
approach, and the optimization parameters that apply specifically to them.

Automatic
The Expert System identifies the best fit by quickly testing each statistical method
against the portion of historical data specified by the Verification Window Size
parameter. The Expert System selects the method and the parameter settings that
would have generated the most accurate forecast in the past. It automatically detects
and handles outliers, removing noise so that it can better detect trends and seasonality.

The forecasting engine generates a forecast for every combination of dimension
members. The Expert System evaluates each forecast separately and picks the best
method and parameter settings for each one.

In general, Automatic is the best choice unless you have knowledge that future
performance will deviate from the past. Under these special circumstances, you can
substitute your own expert judgment for the Expert System.

"What is the Verification Window?" on page 9-8 provides more information about how
the Expert System selects a method.

Regressions
Time series regression methods relate a variable (measure) to functions of time
describing trend and seasonal components. Regression generates the most reliable
forecasts when the trend or seasonal components remain constant.

OLAP forecasting provides both linear and nonlinear regression models.

Linear Regression
Linear regression attempts to fit the historical data to a straight line (y=ax+b), and
extends that line into future time periods for the forecast. All data points have equal
weight. This method identifies steady, long-term trends in the data.

Nonlinear Regression
Nonlinear regression attempts to fit the historical data to a curve, and extrapolates that
curve into the forecast time periods. All data points have equal weight. The curved
lines are defined by mathematical equations. You can choose from the following types
of curves:

■ Polynomial: Fits data that fluctuates with a rise and a drop (x'=log(x); y'=log(y)).

■ Exponential: Fits data points that rise or drop at an increasingly faster rate (x'=x;
y'=ln(y)).

Forecasting Method Descriptions

9-10 Oracle OLAP Application Developer’s Guide

■ Logarithmic: Fits data points that rise or drop quickly and then level off (x'=log(x);
y'=y).

■ Asymptotic: Fits data points that rise or drop until they approach a fixed value
and then level off (x'=1/x; y'=1/y).

■ Exponential Asymptotic: Fits data points that rise or drop at an increasingly faster
rate until they approach a fixed value and then level off (x'=x; y'=ln(y/(K-y))).

For more information about the equations used by each method, refer to the topic
"Equations for Forecasting Methods" in Analytic Workspace Manager Help.

Advanced Parameter for Regressions
The Cyclical Decay smoothing constant is used in the equations for linear and
nonlinear regression. This constant determines how quickly a cycle reverts to the
mean. A higher value implies slower decay while a lower value implies faster decay.
The smaller the value, the less effect cyclical activity has on the forecast.

You can specify a maximum value, a minimum value, and a step, or you can specify
the same value for both the maximum and the minimum. The step is an incremental
value between the maximum and minimum, which the forecasting engine uses to find
the optimal value of the constant. Keep the default settings unless you have a strong
background in time-series forecasting.

Exponential Smoothing
The exponential smoothing methods weight the historical data using exponentially
decreasing weights. The prior period has the most weight and each period prior to it
has comparatively less weight. The decline in weight is expressed mathematically as
an exponential function. The smoothing parameters determine the weights.

Comparison Among Exponential Smoothing Methods
You can choose from the following methods of exponential smoothing:

■ Single Exponential Smoothing: Identifies the percentage of weight given to the
prior period and all other historical periods. It does not adjust for trend or for
seasonal variance.

■ Double Exponential Smoothing: Identifies the trend, and adjusts the forecast data
to reflect this trend instead of generating a single parameter for all forecast
periods.

■ Holt-Winters Exponential Smoothing: Identifies both trend and seasonal
variance, and adjusts the forecast data to reflect these factors. This method is
particularly sensitive to both high and low outliers. A better choice for handling
seasonality is Double Exponential Smoothing with the Data Filters parameter set
to Seasonal Adjustment.

Note: For the optimization parameters, a maximum of 3 to 5 steps is
sufficient to find the best value. Increasing the number of steps
increases the time it takes to generate a forecast, so that an increase in
just two or three parameters may noticeably impact performance.
However, it may also yield a small improvement in the forecast. The
extra time may be worthwhile for small- to medium-sized measures
(up to 10,000 products), but not for larger measures.

Advanced Parameter Descriptions

Generating Forecasts 9-11

Advanced Parameters for Exponential Smoothing
These smoothing constants are used in the equations for exponential smoothing
methods. Keep the default settings unless you have a strong background in time-series
forecasting.

■ Alpha: Determines how responsive a forecast is to sudden jumps and drops. It is
the percentage weight given to the prior period, and the remainder is distributed
to the other historical periods. Alpha is used in all exponential smoothing
methods.

The lower the value of alpha, the less responsive the forecast is to sudden change.
A value of 0.5 is very responsive. A value of 1.0 gives 100% of the weight to the
prior period, and gives the same results as a prior period calculation. A value of
0.0 eliminates the prior period from the analysis.

■ Beta: Determines how sensitive a forecast is to the trend. The smaller the value of
beta, the less weight is given to the trend. The value of beta is usually small,
because trend is a long-term effect. Beta is not used in Single Exponential
Smoothing.

■ Gamma: Determines how sensitive a forecast is to seasonal factors. The smaller the
value of gamma, the less weight is given to seasonal factors. Gamma is used only
by the Holt-Winters method.

■ Trend Dampening: Determines how sensitive the forecast is to large trends in
recent time periods. Dampening identifies how quickly the trend reverts to the
mean. A higher value implies slower dampening while a lower value implies
faster dampening. The smaller the value, the less effect the trend has on the
forecast.

For each constant, you can specify a maximum value, a minimum value, and a step.
The step is an incremental value between the maximum and minimum, which the
forecasting engine uses to find the optimal value of the constant. For more information
about steps, refer to "Advanced Parameter for Regressions" on page 9-10.

Advanced Parameter Descriptions
Following are descriptions of the advanced parameters that can be used with all
methods.

Parameters that are specific to a particular approach are described in "Forecasting
Method Descriptions" on page 9-9.

Note: When using a specific forecasting method (not Automatic), be
sure to set the following parameters:

■ Forecast Approach

■ Data Filter

Advanced Parameter Descriptions

9-12 Oracle OLAP Application Developer’s Guide

Setup Parameters
These parameters provide the forecasting engine with basic information about how
you want it to approach a forecast. Always set the Forecast Approach and Data Filter
parameters when using a specific forecasting method.

■ Forecast Approach: Specifies whether the forecasting engine gives control to the
Expert System.

– Automatic: Give control to the Expert System. Use this setting with the
Automatic method.

– Manual: Give control to the user. It enables you to choose a method and set
the parameters that are appropriate for the historical data. Use this setting
with all methods other than Automatic.

■ Data Filter: Identifies a basic characteristic of the data.

– Non-Seasonal Data: No seasonality.

– Seasonal Data: Adjust for seasonal patterns in the data. You can use this filter
with Double Exponential Smoothing to get a more accurate forecast than
Holt-Winters.

– Intermittent Data Adjusts for sporadic or intermittent data and, if
appropriate, seasonal patterns. Intermittent data has null or zero for over 50%
of the values. Do not use median smoothing with this filter, because
smoothing eliminates the intermittent characteristic of the data. The purpose
of the intermittent data filter is to forecast intermittent demand.

Set the Moving Periodic Total Decay parameter when using this filter.

■ Verification Window Size: The Expert System uses the verification window to
determine the best method and parameter settings, as described in "What is the
Verification Window?" on page 9-8.

The verification window is specified as a fraction of the total number of historical
periods. For example, assume that you have three years of historical data for 2004,
2005, and 2006. The default window size is .3333, so the Expert System will use
1/3 of the historical data for the verification window. Thus, the data for 2004 and
2005 will be used to generate a "forecast" for 2006. The difference between the
forecast data and the actual data for 2006 indicates the precision of the method.

You may want to adjust the window size, depending on the granularity of the
data. For monthly data, use a window size of 20% (1/5) or more. For weekly data,
use a window size of 12.5% (1/8) or more. For daily or hourly data, you can use a
window size of 11.1% (1/9) or less.

General Parameters
These parameters apply to all of the specific forecasting methods.

■ Allocate Last Cycle: Controls whether the last cycle is calculated by forecasting
alone or with allocation. Allocation may reduce the risk of overadjustment for
trend or seasonality.

Allocation forecasts an average value for one period of the last cycle. That average
value is then multiplied by factors to give the remaining points in that period. For
example, a forecast at the day level would calculate an average for all days in the
last week rather than forecasting individual days.

Set Periodicity to a value greater than 1 when using this parameter.

Advanced Parameter Descriptions

Generating Forecasts 9-13

■ Boundary Maximum and Minimum: Boundaries constrain the forecasting engine
from occasionally generating unreasonably high or low values. The upper
boundary is calculated by multiplying Boundary Maximum by the largest value in
the historical series. The lower boundary is calculated by multiplying Boundary
Minimum by the smallest value in the historical series.

For example, if the Boundary Maximum parameter is 100.0 and the largest
historical value 5,600, then no forecast value can be greater than 560,000. If the
Boundary Minimum parameter is 0.5 and the smallest historical value 300, then no
forecast value can be less than 150.

■ Moving Periodic Total Decay: The maximum value of a decay constant that is
inversely related to noise, random deviation, and stability in the history of
intermittent data. Set this value higher when the history is evolving rapidly from
one cycle to the next or when the noise level is low. This parameter is used only
with the Intermittent Data filter. The difference between the maximum and the
minimum must be evenly divisible by 0.4.

■ Periodicity: The number of periods in a single cycle or the number of periods in
each set of nested cycles. The default value of 1 does not group the periods at all,
so each period is logically independent.

For example, if you are using Month as the base level for the forecast, and the time
hierarchy has levels for Month, Quarter, and Year, then the cycles are 12 months in
a year and 3 months in a quarter. For a single cycle, enter the number of periods.
For nested cycles, list the cycles in parentheses from the most aggregate to the least
aggregate, separated by commas, such as (12,3).

■ Trials: The number of trials that are run to determine the best method and
combination of parameter settings.

Historical Data Smoothing Parameters
These parameters help generate a smoother forecast from intermittent historical data.
Alternatively, you can use the intermittent data filter to forecast intermittent demand.
Do not combine the smoothing parameters with the intermittent demand filter,
because these adjustments are contradictory.

■ Use Smoothed Historical Data: Controls whether the historical data is smoothed.
Smoothing is typically used for weekly or finer-grained data that has many
missing values. Smoothing the historical data produces a smoother baseline
forecast.

■ Interpolate Missing Values: Specifies whether you want to smooth the data by
inserting estimates for missing values instead of by averaging. This parameter is
useful when missing values indicate incomplete data instead of a lack of activity.

■ Median Smoothing Window: The number of time periods used in a median
smoothing window to identify outliers and replace them with adjusted data
values. Median smoothing eliminates extreme variations in the data by replacing
each data point in a series by the median value of itself and its neighbors. This
setting must be an odd number, so that the current time period is in the center of
the window.

The larger the window, the smoother the data. If the window is too large,
smoothing may eliminate important data patterns. If the window is too small, then
smoothing may include outliers that could not be filtered out. As a rule, you
should not set this parameter below 3; setting it to 1 has the effect of turning off
smoothing.

Case Study: Forecasting Sales for Global Enterprises

9-14 Oracle OLAP Application Developer’s Guide

For monthly data, use a maximum value of 5 to prevent excessive flattening of the
data. For weekly data, use a maximum of 13. Use a longer window (15 or more)
for daily or hourly data.

Case Study: Forecasting Sales for Global Enterprises
The GLOBAL analytic workspace has historical data from January 1998 to July 2004.
Thus, the last five months of 2004 and all of 2005 is NA. This example creates a
Calculation Plan that generates a four-month Sales forecast from August 2004 to
December 2005. An allocation step distributes the forecast data down to the base levels
of all dimensions. An aggregation step generates and stores some of the aggregate
values to improve runtime performance.

Creating the Sales Forecast Target Measure
This example stores the forecast data in a separate measure from the historical data so
that the results of the forecast can be evaluated more easily.

To create the target measure:

1. In the UNITS_CUBE folder, right-click Measures and select Create Measure.

The Create Measure dialog box opens.

2. On the General page, create a measure named SALES_FORECAST.

3. Select Override the Aggregation Specification of the Cube.

4. On the Summarize To page, deselect all levels for all dimensions.

5. Click Create.

The measure is not mapped to a data source, so no aggregation needs to be done
during regular builds. Instead, aggregation will be defined in the Calculation Plan.

Creating the Calculation Plan
Sales Plan will have a forecast step, an allocation step, and an aggregation step.

To create a new Calculation Plan:

1. Right-click Calculation Plans and select Create Calculation Plan.

The Create Calculation Plan dialog box opens.

2. Create a new plan named SALES_PLAN. Click Create.

SALES_PLAN appears as a new item in the Calculation Plans folder. It does not yet
contain any steps.

Creating the Sales Forecast Step
To create the forecast step:

1. On the General page of SALES_PLAN, click New Step, then select New Forecast
Step.

The Create Forecast Step dialog box opens.

2. Complete the General page with these values, as shown in Figure 9–1

■ Name: forecast_sales_step

■ Cube: UNITS_CUBE

Case Study: Forecasting Sales for Global Enterprises

Generating Forecasts 9-15

■ Source Measure: SALES

■ Target Measure: SALES_FORECAST

■ Time Dimension: TIME

■ Forecast Method: Automatic

■ Number of Forecast Periods: 5

Figure 9–1 Forecasting Global Sales

3. Keep the default settings on the Advanced Parameters page.

4. On the Status page, set the Time dimension:

a. On the Selected Steps tab, click All Levels and select Month from the
drop-down list.

b. On the Available Conditions tab, expand the Hierarchy folder. Select Children
of Jan-98 and click the Edit Step icon.

The Edit Step dialog box opens, as shown in Figure 9–2.

c. Set Action to Remove, and set Relation to Descendants.

d. Click Member and choose More from the list.

The Select Members dialog box opens.

e. Select 2005.

f. Click OK to close the Select Members dialog box, then click OK to close the
Edit Step dialog box.

g. Add this condition to the Selected Steps.

h. On the Members tab, verify that only months are in the list and Dec-04 is the
last value.

Case Study: Forecasting Sales for Global Enterprises

9-16 Oracle OLAP Application Developer’s Guide

Figure 9–2 Selecting Time Dimension Members

5. Set the status of the Customer dimension:

a. On the Steps tab, click All Levels and choose Total Customer.

b. On the Members tab, verify that All Customers is the only value.

6. Set the status of the Product dimension:

a. On the Steps tab, remove the initial selection.

b. On the Conditions tab, expand the Hierarchy folder. Add the Children of
Total Product condition to the Selected Steps.

c. On the Members tab, verify that Hardware and Software/Other are the only
values.

7. Set the status of the Channel dimension:

a. On the Steps tab, click All Levels and choose Total Channel.

b. On the Members tab, verify that All Channels is the only value.

8. Click Create to save the forecast step.

9. Click Apply to save the Calculation Plan.

Case Study: Forecasting Sales for Global Enterprises

Generating Forecasts 9-17

Generating and Validating the Forecast
You do not need to generate the forecast now. You can wait until you have created all
the steps of the Calculation Plan. However, this step-by-step approach simplifies
troubleshooting.

To generate the forecast:

1. Expand the Calculation Plans folder. Right-click SALES_PLAN and choose
Execute Calculation Plan SALES_PLAN.

The Maintenance Wizard opens, and SALES_PLAN is a selected target object.

2. Click Finish.

The build log is displayed when the Calculation Plan is done executing.

To view the forecast results, take these steps:

1. Fully expand the UNITS_CUBE folder, right-click the SALES_FORECAST
measure, and choose View Data SALES_FORECAST.

The Measure Data Viewer opens. No data is displayed, because the base levels for
Product, Customer, and Channel are NA.

2. From the File menu, choose Query Builder.

The Query Builder opens.

3. On the Layout tab, switch Product and Customer. Click Help for instructions.

4. On the Dimensions tab, set the status of Time:

a. On the Steps tab, remove the initial selection.

b. On the Conditions tab, expand the Hierarchy folder.

c. Change Children of 1998 to Children of Q3-04, Q4-04, and add this condition
to the Selected Steps.

d. On the Members tab, verify that only months are in the list from Jul-04 to
Dec-04.

5. Set the status of Product:

a. On the Steps tab, remove the initial selection.

b. On the Available Members tab, expand Total Product.

c. Select Hardware and Software/Other, and add them to the Selected list.

6. Click OK to close the Query Builder.

Figure 9–3 shows the results of the forecast, which are displayed in the Measure
Viewer. Notice the empty cells in the crosstab that need to be populated by allocation.

Case Study: Forecasting Sales for Global Enterprises

9-18 Oracle OLAP Application Developer’s Guide

Figure 9–3 Forecast Data Displayed in the Measure Viewer

Creating an Allocation Basis Measure
This example uses the Proportional method to distribute the values based on the sales
performance for the previous year. Before creating the allocation step, you must create
a calculated measure for sales values for the prior year to use as the basis measure.

To create the basis measure if you did not already create SALES_PY in Chapter 8:

1. Expand the UNITS_CUBE folder, right-click Calculated Measures, and choose
Create Calculated Measure.

The Calculation Wizard opens.

2. Complete the Name and Type page with these values:

■ Name: sales_py

■ Calculation Type: Prior Value (under Prior/Future Comparison)

3. Complete the Prior Value page with these values, as shown in Figure 9–4.

■ Measure: Sales

■ Over Time in: Calendar Year

■ Go back by: 1 Year

Case Study: Forecasting Sales for Global Enterprises

Generating Forecasts 9-19

Figure 9–4 Creating a Calculated Measure

Creating the Allocate Sales Forecast Step
The forecast created the data only for a single level of each dimension. Only Time is
populated at the base level. The data must be allocated to the base levels of the other
dimensions before it can be aggregated.

To create an allocation step:

1. On the General page of Sales Plan, click New Step, then select New Allocation
Step.

The Create Allocation Step dialog box opens.

2. Complete the General page with these values:

■ Name: allocate_sales_forecast_step

■ Cube: UNITS_CUBE

■ Source Measure: SALES_FORECAST

■ Target Measure: SALES_FORECAST

■ Basis Measure: SALES_PY

3. On the Rules page, select None for the Time operator. For the other dimensions,
select Proportional.

4. On the Status page, set the dimension status using conditions:

■ Time: Start with Month

On the Members tab, verify that only months are listed.

■ Customer: Start with All Levels

On the Members tab, verify that all members are listed.

■ Product: Start with Descendants of Total Product

On the Members tab, verify that all members except Total Products are
listed.

Case Study: Forecasting Sales for Global Enterprises

9-20 Oracle OLAP Application Developer’s Guide

■ Channel: Start with All Levels

On the Members tab, verify that all members are listed.

5. Click Create to save the allocation step.

6. Click Apply to save the Calculation Plan.

Generating and Validating the Allocation
Rerun the Calculation Plan, as described in "Generating and Validating the Forecast"
on page 9-17. Both the forecast step and the allocation step will be executed.

To view the allocation results, use the Measure Viewer to see the data in the Sales
Forecast measure. The allocation populated the base levels of Product, Customer, and
Time.

Creating the Sales Forecast Aggregation Step
As the previous display of the allocated measure shows, the aggregated data is
available without an aggregation step. All aggregated values are generated on the fly.
The aggregation step simply generates and stores some of the aggregate values to
improve runtime performance.

To create a new aggregation step:

1. On the General page of Sales Plan, click New Step, then select New Aggregation
Step.

The Create Aggregation Step dialog box opens.

2. Complete the General page with these values:

■ Name: aggregate_sales_forecast_step

■ Cube: UNITS_CUBE

■ Selected Measures: SALES_FORECAST

3. On the Summarize To page, select the levels the same as for UNITS_CUBE, that is,
select all levels for Time, Product, and Channel, and skip levels for Customer.
Refer to "Case Study: Aggregating a Moderately Sparse or Dense Cube" on
page 7-13.

4. On the Status page, keep the default status of All Levels for all dimensions.
Keep the default settings for Rules and Cache also.

5. Click Create to save the aggregation step.

6. Click Apply to save the Calculation Plan.

Generating the Aggregation
Rerun the Calculation Plan, as described in "Generating and Validating the Forecast"
on page 9-17. The forecast step, the allocation step, and the aggregation step will be
executed. You can view the data in the Measure Viewer.

Glossary-1

Glossary

Active Catalog

A set of relational views that expose the standard form metadata stored in analytic
workspaces, where it can be accessed by SQL. Applications that use OracleBI Beans
query the Active Catalog.

See also database standard form.

abstract data type (ADT)

See object type.

additive

Describes a fact (or measure) that can be summarized through addition. An additive
fact is the most common type of fact. Examples include sales, cost, and profit.

Contrast with nonadditive, semi-additive.

aggregation

The process of consolidating data values into a single value. For example, sales data
could be collected on a daily basis and then be aggregated to the week level, the week
data could be aggregated to the month level, and so on. The data can then be referred
to as aggregate data. Aggregation is synonymous with summarization, and aggregate
data is synonymous with summary data.

analytic workspace

A dimensional schema stored in a LOB table in the relational database. An analytic
workspace can contain a variety of objects. Some of these objects may be integrally
connected to other objects, while others are totally independent. Some objects store
data that is useful to applications, and other objects may only exist for the purposes of
the DBA or developer. There are several basic types of objects which play a variety of
roles in the dimensional model. In these respects, an analytic workspace is very similar
to a relational schema.

The OLAP DML is the basic, low-level language for working in an analytic workspace.
Tools are available in PL/SQL and Java that provide an interface to the OLAP DML for
users already familiar with those languages.

See also OLAP DML.

ancestor

A value at any level higher than a given value in a hierarchy. For example, in a Time
dimension, the value 2002 might be the ancestor of the values Q1-02 and Jan-02. In a

Glossary-2

dimension hierarchy, the data value of the ancestor is the aggregated value of the data
values of its descendants.

Contrast with descendant. See also hierarchy, level, parent.

attribute

A descriptive characteristic of either a single dimension member or a group of
dimension members. When applied to a single member, attributes provide
supplementary information that can be used for display (such as a descriptive name)
or in analysis (such as the number of days in a time period). When applied to a group,
attributes represent logical groupings that enable users to select data based on like
characteristics. For example, in a database representing footwear, you can use a shoe
color attribute to select all boots, sneakers, and slippers that share the same color.

base level data

Data at the lowest level, often acquired from another source, such as a transactional
database.

Contrast with aggregation.

cell

A single data value of an expression. In a dimensioned expression, a cell is identified
by one value from each of the dimensions of the expression. For example, if you have a
variable with the dimensions MONTH and DISTRICT, then each combination of a
month and a district identifies a separate cell of that variable.

See also dimension, variable.

child

A value at the level under a given value in a hierarchy. For example, in a Time
dimension, the value Jan-02 might be the child of the value Q1-2002. A value can be a
child for more than one parent if the child value belongs to multiple hierarchies.

Contrast with parent. See also descendant, hierarchy, level.

composite

An analytic workspace object that lists dimension-value combinations (also called a
tuple) for which there is data. When a data value is added to a variable dimensioned
by a composite, that action triggers the creation of a composite tuple. A composite is
an index into one or more sparse data variables, and is used to store sparse data in a
compact form.

See also dimension, sparsity, variable.

container

See object.

cube

A logical organization of measures with identical dimensions. The edges of the cube
contain dimension members and the body of the cube contains data values. For
example, sales data can be organized into a cube, whose edges contain values from the
time, product, and customer dimensions and whose body contains Volume Sales and
Dollar Sales data. In a star schema, a cube is represented by a fact table.

Glossary-3

calculated measure

A measure that is calculated at run-time. The result set includes a value for each
dimension member currently in status. For example, a calculated measure might
calculate the difference in costs from the prior period by using the OLAP DML
LAGDIF function on the COSTS measure. Another calculated measure might calculate
profits by subtracting the COSTS measure from the SALES measure.

See also dimension member, OLAP DML, measure, status.

data source

A database, application, repository, or file that provides data.

data warehouse

A relational database that is designed for query and analysis rather than transaction
processing. A data warehouse usually contains historical data that is derived from
transaction data, but it can include data from other sources. It separates analysis
workload from transaction workload and enables a business to consolidate data from
several sources.

database standard form

An analytic workspace that has been constructed with a specific set of objects, such as
hierarchy dimensions, level dimensions, parent relations, and level relations. Each
object must be defined with a set of properties that identify its role and its
relationships with other objects in the analytic workspace. Standard form is required
for an analytic workspace to be accessible to OLAP tools, however, it is not a
prerequisite for multidimensional analysis.

DBA

Database administrator. The person responsible for creating, installing, configuring
and maintaining Oracle Databases.

definition

The description of an analytic workspace object. An object definition includes
characteristics such as the object's name, type (for example, dimension or variable),
data type, dimensions, long description, permission specifications, and properties.

See also dictionary, object, property.

denormalized

Permit redundancy in a table. Contrast with normalize.

descendant

A dimension member at any level below a particular member in a hierarchy. The level
immediately below is the child.

Contrast with ancestor. See also aggregation, child, hierarchy, level.

dictionary

The collection of object definitions in an analytic workspace. The dictionary is also
called the workspace dictionary.

See also definition, object.

Glossary-4

dimension

A structure that categorizes data. Among the most common dimensions for
sales-oriented data are time, geography, and product. Most dimensions have
hierarchies.

In an analytic workspace, a dimension is a container for a list of values. A dimension
acts as an index for identifying the values of a variable. For example, if sales data has a
separate sales figure for each month, then the data has a month dimension; that is, the
data is organized by month.

In SQL, a dimension is a type of object that defines hierarchical (parent/child)
relationships between pairs of column sets.

See also hierarchy.

dimension member

One element in the list that makes up a dimension. Also called a dimension value. A
computer company might have dimension members in the product dimension called
LAPPC and DESKPC. Members in the geography dimension might include Boston
and Paris. Members in the time dimension might include NOV02, DEC02, JAN03,
FEB03, MAR03, and so forth.

dimension table

A relational table that stores all or part of the values for a logical dimension in a star or
snowflake schema. Dimension tables describe the business entities of an enterprise,
represented as hierarchical, categorical information such as time, departments,
locations, and products. They are sometimes called lookup or reference tables.

dimension value

See dimension member.

dimension view

A relational view of data in an analytic workspace that contains the same types of data
as a dimension table in a star schema, that is, columns for dimension members and
attributes. A dimension view typically lists all dimension members in the key column,
regardless of their level in the dimension hierarchy.

See also dimension table, star schema.

drill

To navigate from one item to a set of related items. Drilling typically involves
navigating up and down through the levels in a hierarchy. When selecting data, you
can expand or collapse a hierarchy by drilling down or up in it, respectively.

drill down

To expand the view to include child values that are associated with parent values in
the hierarchy.

drill up

To collapse the list of descendant values that are associated with a parent value in the
hierarchy.

EIF file

A specially formatted file for transferring data between analytic workspaces. Using the
OLAP DML, you can create an EIF file using the EXPORT command and read an EIF
file using the IMPORT command.

Glossary-5

fact

See measure. See also additive.

fact table

A table in a star schema that contains facts. A fact table typically has two types of
columns: those that contain facts and those that are foreign keys to dimension tables.
The primary key of a fact table is usually a composite key that is made up of all of its
foreign keys.

A fact table might contain either detail level facts or facts that have been aggregated.
Fact tables that contain aggregated facts are typically called summary tables or
materialized views. A fact table usually contains facts with the same level of
aggregation.

formula

A type of workspace object that represents a stored calculation, expression, or
procedure that produces a value. A formula provides a way to define and save
complex or frequently used relationships within the data without storing the result set.
Each time you query a formula, the OLAP engine performs the calculation or
procedure that is required to produce the value.

hierarchy

A logical structure that uses ordered levels as a means of organizing data. A hierarchy
can be used to define data aggregation; for example, in a time dimension, a hierarchy
might be used to aggregate data from the month level to the quarter level to the year
level. A hierarchy can be used to define a navigational drill path, regardless of whether
the levels in the hierarchy represent aggregated totals.

In PL/SQL, hierarchies can be defined as part of a dimension object.

level

A position in a hierarchy. For example, a time dimension might have a hierarchy that
represents data at the month, quarter, and year levels.

level relation

An analytic workspace relation object that identifies the level of each dimension
member.

See also level, relation.

mapping

The definition of the relationship and data flow between source and target objects.

materialized view

A precomputed relational table comprising aggregated or joined data from fact and
possibly dimension tables. Also known as a summary or aggregate table.

measure

Data that can be examined and analyzed, such as sales or cost data. You can select and
display the data in a measure. Measures can be stored as variables or relations, or
measures can be calculated by means of formulas. The terms measure and fact are
synonymous; measure is more commonly used in a dimensional environment and fact
is more commonly used in a relational environment.

Glossary-6

There are both base measures and calculated measures. Base measures, such as
Volume Sales and Dollar Sales, are stored. calculated measures, such as Volume Share
Year Ago, are calculated from base measures.

See also formula, relation, variable.

measure view

A relational view of data in analytic workspace that contains the same types of data as
a fact table in a star schema. However, in addition to the base-level facts, a measure
view also contains derived data, such as aggregates and inter-row calculations.

See also fact table, star schema.

metadata

Data that describes data and other structures, such as objects, business rules, and
processes.

model

A type of analytic workspace object that contains a set of interrelated equations, which
are used to calculate data and assign it to a variable or dimension value. Models are
used frequently when working with financial data.

See also dimension member, object, variable.

NA value

A special data value that indicates that data is "not available" (NA). It is the value of
any cell to which a specific data value has not been assigned or for which data cannot
be calculated.

See also cell, sparsity.

nonadditive

Describes a fact (or measure) that cannot be summarized through addition, such as
average. Contrast with additive, semi-additive.

normalize

In a relational database, the process of removing redundancy in data by separating the
data into multiple tables. Contrast with denormalized.

object

In an analytic workspace, a distinct item in the workspace dictionary. Analytic
workspaces consist of one or more objects, such as variables, formulas, dimensions,
relations, and programs, which are used to organize, store, and retrieve data. Each
object is created with a particular object type and stores a particular type of
information. Objects that are the same type (for example, three variables) can have
different roles within the analytic workspace.

See also role.

object type

In Oracle object technology, a form of user-defined data type that is an abstraction of a
real-world entity. An object type is a schema object with the following components:

■ A name, which identifies the object type uniquely within a schema

■ Attributes, which model the structure and state of the real-world entity

Glossary-7

■ Methods, which implement the behavior of the real-world entity, in either PL/SQL
or Java

OLAP DML

The low-level data definition and manipulation language for analytic workspaces.

on the fly

Calculated at run-time in response to a specific query. In an analytic workspace,
calculated measures and custom members are typically calculated on the fly.
Aggregate data can be precalculated, calculated on the fly, or a combination of the two
methods.

Contrast with precalculate.

online analytical processing (OLAP)

Functionality characterized by dynamic, dimensional analysis of historical data, which
supports activities such as the following:

■ Calculating across dimensions and through hierarchies

■ Analyzing trends

■ Drilling up and down through hierarchies

■ Rotating to change the dimensional orientation

online transaction processing (OLTP)

Systems optimized for fast and reliable transaction handling. Compared to data
analysis systems, most OLTP interactions involve a relatively small number of rows,
but a larger group of tables.

parent

A dimension member at the level immediately above a particular member in a
hierarchy. In a dimension hierarchy, the data value of the parent is the aggregated total
of the data values of its children.

Contrast with child. See also hierarchy, level.

parent-child relation

A one-to-many relationship between one parent and one or more children in a
hierarchical dimension. For example, New York (at the state level) might be the parent
of Albany, Buffalo, Poughkeepsie, and Rochester (at the city level).

See also child, parent.

parent relation

An analytic workspace relation object that defines a dimension's hierarchies by storing
the parent of each dimension member.

See also parent, relation.

precalculate

Calculated and stored as a data maintenance procedure. In an analytic workspace,
aggregate data can be precalculated, calculated on the fly, or a combination of the two
methods.

Contrast with on the fly.

Glossary-8

program

A type of database object that contains a series of OLAP DML commands. A program
executes a set of related commands. Programs can be nested, with one calling another.
A program can return a value; in this case, it is called a user-defined function.

See also object.

property

A characteristic of an object or component. Properties provide identifiers and
descriptions, define object features (such as the number of decimal places or the color),
or define object behaviors (such as whether an object is enabled). Properties are used
extensively in standard form analytic workspaces.

See also object.

QDR

See qualified data reference.

qualified data reference

A qualifier that limits one or more dimensions to a single value for the duration of an
OLAP DML command. A QDR is useful when you want to temporarily reference a
value without affecting the current status. In the following example of an OLAP DML
command, the QDR limits the MONTH dimension to JUN02.

SHOW sales(month 'JUN02')

See also dimension, dimension member, status.

relation

A type of workspace object that is similar to a variable, except that it restricts its data
values to the members of a particular dimension (such as PRODUCT) instead of to a
particular data type (such as NUMBER). A relation establishes a correspondence
between the values of a given dimension and the values of that dimension or other
dimensions in the database.

For example, you might have a relation between cities and sales regions, such that
each city belongs to a particular region. In a relation between cities and sales regions,
the relation is dimensioned by CITY. Each cell holds the corresponding value of the
REGION dimension.

See also cell, dimension, dimension member, variable.

role

The function of a workspace object within its broader categorization of object type. For
example, a variable that stores numeric business measures has a role of measure. A
variable that stores descriptive product names has a role of attribute. Both are
variables, but they contain different types of information and play different roles in the
dimensional model.

See also object.

schema

A collection of related database objects. Relational schemas are grouped by database
user ID and include tables, views, and other objects. Multidimensional schemas are
called analytic workspaces and include dimensions, relations, variables, and other
objects.

See also analytic workspace, snowflake schema, star schema.

Glossary-9

semi-additive

Describes a fact (or measure) that can be summarized through addition along some,
but not all, dimensions. Examples include head count and on-hand stock.

Contrast with additive, nonadditive.

snowflake schema

A type of star schema in which the dimension tables are partly or fully normalized.

See also normalize, schema, star schema.

solved data

A result set in which all derived data has been calculated. Data fetched from an
analytic workspace is always fully solved, because all of the data in the result set is
calculated before it is returned to the SQL-based application. The result set from the
analytic workspace is the same whether the data was precalculated or calculated on
the fly.

See also on the fly, precalculate.

source

A database, application, file, or other storage facility from which the data in a data
warehouse is derived.

sparsity

A concept that refers to multidimensional data in which a relatively high percentage of
the combinations of dimension values do not contain actual data. Such "empty," or NA,
values can take up storage space in an analytic workspace. To handle sparse data
efficiently, you can create a composite.

There are two types of sparsity.

■ Controlled sparsity occurs when a range of values of one or more dimensions has
no data; for example, a new variable dimensioned by month for which you do not
have data for past months. The cells exist because you have past months in the
month dimension, but the cells contain NA values.

■ Random sparsity occurs when NA values are scattered throughout the variable,
usually because some combinations of dimension values never have any data. For
example, a district might only sell certain products and never have data for other
products. Other districts might sell some of those products and other ones, too.

See also composite, NA value.

standard form

See database standard form.

star query

A join between a fact table and a number of dimension tables. Each dimension table is
joined to the fact table using a primary key to foreign key join, but the dimension
tables are not joined to each other.

star schema

A relational schema whose design represents a dimensional data model. The star
schema consists of one or more fact tables and one or more dimension tables that are
related through foreign keys.

See also schema, snowflake schema

Glossary-10

status

The list of currently accessible values for a given dimension. If the status of a given
dimension is limited to a subset of its stored values, then all expressions that are based
on that dimension will be limited to the corresponding subset of data. The status of a
dimension persists within a particular session, and does not change until it is changed
deliberately. When an analytic workspace is first attached to a session, all members are
in status.

See also dimension, dimension member.

summary

See aggregation, materialized view.

update window

The length of time available for loading new data into your database.

valueset

A type of workspace object. A valueset contains a list of dimension members for a
particular dimension. After defining a valueset, you use the LIMIT command to assign
members from the dimension to the valueset. The values in a valueset can be saved
across Oracle OLAP sessions.

When you begin a new Oracle OLAP session or start up a workspace, each dimension
has all values in status. You can then limit a dimension to the values stored in the
valueset for that dimension.

See also dimension.

variable

A type of workspace object that stores data. The data type of a variable indicates the
kind of data that it contains, such as numeric or text data.

If a variable has dimensions, then those dimensions organize its data, and there is one
cell for each combination of dimension members. A dimensioned variable is an array
whose cells are individual data values. If a variable has no dimensions, then it is a
single-cell variable, which contains one data value.

See also cell, dimension, dimension member, object.

Index-1

Index

A
access rights, 6-5
active catalogs, 4-3
aggregation, 7-1 to 7-14

average operator, 7-2
definition, 7-1
hierarchical average operator, 7-2
hierarchical operators, 7-2
objects, 7-10
performance issues, 7-7
status (regular composites only), 7-8
sum operator, 7-2
weighted operators, 7-2

aggregation methods
dimensional, 7-3
relational, 7-3

aggregation operators
comparison with allocation operators, 8-10
defined, 7-12

aggregation strategies
basics, 7-4
compressed composites, 7-6
regular composites, 7-5
skip-level, 7-6

ALL_AW_OBJ view, 6-13
ALL_AW_PROP view, 6-13
ALL_AW_PS view, 6-13
ALL_AWS view, 6-13
allocation, 8-1 to 8-12

basis measures, 8-4
creating, 8-8
even operator, 8-2, 8-3
proportional operator, 8-2
source measures, 8-4
status, 8-5
target measures, 8-4
weight measures, 8-4

allocation operators
comparison with aggregation operators, 8-10
descriptions, 8-9

ALTER SESSION commands, 6-7
analysis tools

described, 1-3
analytic capabilities

compared, 1-6

Analytic Workspace Java API, 4-5
Analytic Workspace Manager, 5-1 to 5-9

opening, 5-3
analytic workspaces

basic process overview, 1-8
basic steps for creating, 5-9
creating, 5-9
database storage, 6-11
defined, 1-5, 1-7
enhancing functionality, 5-9
standard form, 5-8

analytic workspaces, listing, 6-9
analytic workspaces, size, 6-9
attributes

creating, 5-13
description, 5-12
logical, 2-3

authentication, 6-4
average operator (aggregation), 7-2
AW$ tables, 6-12
AW$AWCREATE10G table, 6-12
AW$AWMD table, 6-12
AW$AWXML table, 6-13
AW$EXPRESS table, 6-13
AWXML package, 4-5

B
backup options, for analytic workspaces, 6-14
basis measures (allocation), 8-4
batch processing, 5-22
BFILE security, 6-7
BI Beans

described, 4-2
build tools, 5-8

C
calculated measures

creating, 5-14
calculation engine

defined, 1-7
calculation plan

allocation step, 8-8
forecast, 9-4

Index-2

calculation plans
creating, 5-23
forecast steps, 9-6

causal analysis, 9-3
changes

saving, 5-8
composites

description, 5-20
compressed cubes

data characteristics, 5-19
configuration procedures, 6-1
CONNECT role, 6-5
connect string

for Analytic Workspace Manager, 5-3
connections

defining, 5-3
copy allocation operators, 8-9
creation, analytic workspaces, 6-10
crosstab bean, 4-4
cubes, 1-5

creating, 5-13
description, 5-13
mapping, 5-17

custom measures
BI Beans support, 4-5

D
data dictionary views, 6-13
data formatting, 4-4
data maintenance, 5-21
data mapping requirements, 5-3
Data Mining

forecasting, 9-3
data models, 2-1
data sources

mapping, 5-15
data striping, 6-2
data transformations, 5-7
data types, 5-19
database configuration, 6-1
database connections

defining, 5-3
database security, 6-4
DBA scripts download, 6-14
DBA_AW_OBJ view, 6-13
DBA_AW_PROP view, 6-13
DBA_AW_PS view, 6-13
DBA_AWS view, 6-9, 6-13
DBA_OBJECTS view, 6-10
DBA_REGISTRY view, 6-9
DBMS_LOB package, 6-9
DBMS_METADATA package, 6-10
DECIMAL data type, 5-19

comparison with NUMBER, 7-8
demand planning systems, 1-3
dimension hierarchies

 See hierarchies

dimension members
selecting (allocation), 8-5
selecting for aggregation, 7-8

dimension order
basic rules, 5-19

dimensions
creating, 5-11
description, 5-10
logical, 2-3

directories
database, 6-7

Discoverer Plus OLAP, 5-12
drilling, 4-3
dump files, 6-15
dynamic performance tables, 6-13

E
edits

saving, 5-8
EIF files, 6-15
even distribution allocation operators, 8-9
even operator (allocation), 8-2, 8-3
Excel add-in, 1-3
expert opinion in forecasting, 9-4
Expert System, 9-7
extensibility using plug-ins, 5-24

F
files

allowing access, 6-7
financial applications, 1-3
forecast

creating, 9-4
forecast steps

creating, 9-6
forecasting, 9-1 to 9-14

applications, 9-4
Data Mining, 9-3
dimension levels, 9-5
Expert System, 9-7
time horizons, 9-2
verification window, 9-8

formatting
data, 4-4

G
Global Computing Company

data requirements, 3-2 to 3-7
Global schema

downloading, 5-25
Global star schema, 3-7
GLOBAL_AW user

defining, 5-25
graph bean, 4-4

Index-3

H
hierarchical average (aggregation), 7-2
hierarchical average operator (aggregation), 7-2
hierarchies

creating, 5-12
description, 5-11
logical, 2-3

I
IDE

defined, 4-2
initialization parameters, 6-6, 6-7
init.ora file, 6-6
installation of OLAP option, validating, 6-9

J
Java

described, 4-1
sandbox security, 4-1

Java APIs for OLAP, 4-1 to 4-6
JDeveloper, 4-2
job queue, 5-22
JOB_QUEUE_PROCESSES parameter, 5-22, 6-6
JVM access, 6-5

L
language support, 5-23
level-based dimensions, 5-10
levels

creating, 5-11
logical, 2-3

loading data, 5-21
localization, 5-23
logical objects

mapping, 5-15
login names, 6-4

M
maintenance, 5-21
Maintenance Wizard, 5-21
mapping requirements, 5-3
mappings

creating, 5-15, 5-16
MDI

defined, 4-2
measure folders

creating, 5-22
measures

creating, 5-14
custom, 4-5
logical, 2-2

model
saving, 5-24

MOLAP
analytic operations, 1-6

multidimensional data, 1-5

N
natural keys, 5-10
normal hierarchies, 5-11
NUMBER data type, 5-19

comparison with DECIMAL, 7-8
number formatting, 4-4

O
objects

mapping, 5-15
OLAP

defined, 1-2
OLAP API

described, 1-8, 4-2
OLAP Beans, 4-3, 4-4
OLAP DML

described, 1-7
OLAPSYS.XML_LOAD_LOG file, 5-22
OLTP

defined, 1-2
OPEN_CURSORS parameter, 6-6
optimization techniques, 6-2
Oracle Java Virtual Machine access permissions, 6-5
Oracle Warehouse Builder, 5-8
OracleBI Beans, 5-12
owners, identifying for analytic workspaces, 6-9

P
paging, 4-3
parameter file, 6-6
parent-child relations

described, 2-3
partitioning, 6-11

benefits, 5-20
description, 5-21

performance checklist, 7-8
performance counters, 6-13
permissions

JVM, 6-5
pfile settings, 6-6
PGA_AGGREGATE_TARGET parameter, 6-6, 7-7
PGA_TARGET parameter, 6-6
pivoting, 4-3
plug-ins, 5-24
predictive analysis applications, 1-3
Presentation Beans, 4-3
proportional allocation operators, 8-10
proportional operator (allocation), 8-2
PS$ tables, 6-13

Q
query builder, 4-4
QUERY REWRITE system privilege, 6-5
query tools

described, 1-3

Index-4

R
ragged hierarchies, 5-11
refreshing data, 5-21
response time

improving, 7-8
ROLAP

analytic operations, 1-6
roles, 6-5

S
scheduling maintenance, 5-22
schema requirements, 5-3
SELECT privilege, 6-5
server parameter file, 6-6
SESSIONS parameter, 6-6
SGA_TARGET parameter, 7-7
size, analytic workspace, 6-9
skip-level aggregation, 7-6
skip-level hierarchies, 5-11
snowflake schema

description, 5-5
source data, 5-3
source measures (allocation), 8-4
sparsity

description, 5-19
Sparsity Advisor, 5-13, 5-18
Spreadsheet Add-In, 5-12

described, 1-3
SQL analytic operations, 1-6
SQL interface, 1-8
star schema

description, 5-4
startup parameters

database, 5-31
static data dictionary views, 6-13
status

aggregation, 7-8
allocation, 8-5

stoplight formatting, 4-4
storage, analytic workspace, 6-10
striping, 6-2
sum operator (aggregation), 7-2
summary data methods

compared, 1-6
surrogate keys, 5-10

T
tablespaces

defining, 5-31
for analytic workspaces, 6-2

target measures (allocation), 8-4
templates

logical model
saving, 5-24

time dimensions, 5-10
time-series forecasting, 9-3

transformations
data, 5-7

transportable tablespaces, 6-15

U
UNDO_MANAGEMENT parameter, 6-6
UNDO_TABLESPACE parameter, 6-6
user access rights, 6-5
user names, 6-4
USER_AW_OBJ view, 6-13
USER_AW_PROP view, 6-13
USER_AW_PS view, 6-13
USER_AWS view, 6-13
users, creating (example), 5-25

V
V$AW_AGGREGATE_OP view, 6-14
V$AW_ALLOCATE_OP view, 6-14
V$AW_CALC view, 6-14
V$AW_LONGOPS view, 6-14
V$AW_OLAP view, 6-14
V$AW_SESSION_INFO view, 6-14
value-based dimensions, 5-10
value-based hierarchies, 5-12
verification window, 9-8

W
Warehouse Builder, 5-8
weight measures (allocation), 8-4
weighted sum (aggregation), 7-2
wizards

BI Beans, 4-4

X
XML metadata, 4-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Oracle OLAP Applications Development?
	Oracle Database 10g Release 10.2.0.3 Oracle OLAP
	Oracle Database 10g Release 10.2 Oracle OLAP
	Oracle Database 10g Release 10.1.0.4 Oracle OLAP

	Part I Fundamentals
	1 Overview
	OLAP Technology Within Oracle Database
	Problems Maintaining Two Distinct Systems
	Full Integration of Multidimensional Technology

	Using OLAP to Answer Business Questions
	Common Analytical Applications
	Tools for Querying OLAP Data Stores
	Formulating Queries
	Creating Custom Measures

	About Multidimensional Data Stores
	Creating Analytic Workspaces
	Structured Data Stores
	Processing Analytic Queries
	Creating Summary Data

	Components of Oracle OLAP
	OLAP Analytic Engine
	Analytic Workspaces
	Analytic Workspace Manager
	OLAP Worksheet
	OLAP DML
	SQL Interface to OLAP
	Analytic Workspace Java API
	OLAP API

	Implementing an Analytic Workspace
	Identifying Business Goals
	Identifying Data Sources
	Defining a Logical Model
	Mapping, Loading, and Aggregating the Data
	Generating Information-Rich Data

	Upgrading Oracle Database 10g Release 1 Analytic Workspaces
	Upgrading Oracle9i Analytic Workspaces
	Upgrading the Physical Storage Format
	Upgrading the Standard Form Metadata

	2 The Logical Dimensional Data Model
	Overview of the Data Model
	Logical Cubes
	Logical Measures
	Logical Dimensions
	Logical Hierarchies and Levels
	Level-Based Hierarchies
	Value-Based Hierarchies

	Logical Attributes

	3 The Sample Schema
	Case Study Scenario
	Reporting Requirements
	Business Goals
	Information Requirements
	Business Analysis Questions
	What products are profitable?
	Who are our customers, and what and how are they buying?
	What accounts are most profitable?
	What is the performance of each distribution channel?
	Is there still a seasonal variance to the business?
	Summary of Information Requirements

	Identifying Required Business Facts
	Designing a Logical Data Model for Global Computing
	Identifying Dimensions
	Identifying Levels
	Identifying Hierarchies
	Identifying Stored Measures

	The Global Schema

	4 Developing Java Applications for OLAP
	Building Analytical Java Applications
	About Java
	The Java Solution for OLAP
	Oracle Java Development Environment

	Introducing OracleBI Beans
	Metadata
	Navigation
	Formatting
	Graphs
	Crosstabs
	Data Beans
	Wizards
	JSP Tag Library

	Building Java Applications That Manage Analytic Workspaces

	Part II Creating and Managing Analytic Workspaces
	5 Creating an Analytic Workspace
	Introduction to Analytic Workspace Manager
	Model View
	Object View

	Getting Started with Analytic Workspace Manager
	Installing Analytic Workspace Manager
	Opening Analytic Workspace Manager
	Defining a Database Connection
	Opening a Database Connection

	Identifying the Source Data
	Schema Requirements
	Star Schema
	Snowflake Schema
	Other
	Making Transformations in Your Source Data

	Choosing a Build Tool

	Creating a Standard Form Workspace Using Analytic Workspace Manager
	How Analytic Workspace Manager Saves Changes
	Basic Steps for Creating an Analytic Workspace
	Adding Functionality to a Standard Form Analytic Workspace

	Creating Logical Dimensions
	Creating Levels
	Creating Hierarchies
	Creating Attributes
	Automatically Defined Attributes
	User-Defined Attributes

	Creating Logical Cubes
	Creating Cubes
	Creating Measures
	Creating Calculated Measures

	Mapping Logical Objects to Data Sources
	Mapping Dimensions
	Mapping Cubes

	Using the Sparsity Advisor
	What is Sparsity?
	Ordering the Dimensions in a Cube
	Choosing a Data Type
	Choosing Composite Types
	Partitioning Large Measures
	Effects of Partitioning on Performance
	Choosing a Dimension for Partitioning
	Example of a Partitioned Dimension

	Maintaining the Data
	Submitting Maintenance Tasks to the Oracle Job Queue
	Managing Maintenance Jobs

	Defining Measure Folders
	Supporting Multiple Languages
	Creating and Executing Calculation Plans
	Using Templates to Re-Create a Logical Model
	Using Plug-Ins
	Case Study: Creating the Global Analytic Workspace
	Defining the GLOBAL_AW User
	Creating the GLOBAL Analytic Workspace
	Creating GLOBAL Dimensions and Attributes
	Creating GLOBAL Cubes and Measures
	Mapping the GLOBAL Logical Model to Data Sources
	Loading and Aggregating the Data
	Creating Calculated Measures
	Creating a Measure Folder

	Case Study: Creating the Sales History Analytic Workspace
	Creating the SH Analytic Workspace
	Defining Database Parameters
	Defining Tablespaces for Sales History
	Defining the SH_AW User
	Defining the Logical Dimensions for Sales History
	Defining TIMES_DIM
	Defining CUSTOMERS_DIM
	Defining PRODUCTS_DIM, CHANNELS_DIM, and PROMOTIONS_DIM

	Defining the Logical Sales Cube for Sales History
	Maintaining Sales History

	6 Administering Oracle OLAP
	Administration Overview
	Creating Tablespaces for Analytic Workspaces
	Creating an UNDO Tablespace
	Creating a Permanent Tablespace for Analytic Workspaces
	Creating a Temporary Tablespace for Analytic Workspaces

	Setting Up User Names
	SQL Access For DBAs and Application Developers
	SQL Access for Analysts
	Access to Database Objects Using OracleBI Beans
	Access to the Oracle JVM

	Initialization Parameters for Oracle OLAP
	Procedure: Setting System Parameters for OLAP

	Initialization Parameters for OracleBI Beans
	Permitting Access to External Files
	Creating a Directory Object
	Granting Access Rights to a Directory Object
	Example: Creating and Using a Directory Object

	Basic Queries for Monitoring the OLAP Option
	Is the OLAP Option Installed in the Database?
	What Analytic Workspaces are in the Database?
	How Big is the Analytic Workspace?
	How Is the Analytic Workspace Stored?
	When Were the Analytic Workspaces Created?

	How Dimensional Data is Stored in the Database
	Analytic Workspace Tables
	System Tables
	Static Data Dictionary Views

	Monitoring Performance
	Copying and Backing Up Analytic Workspaces

	Part III Part III Generating Quality Information
	7 Aggregating Data
	What is Aggregation?
	Managing Aggregate Data
	Managing Aggregate Data in Relational Tables
	Managing Aggregate Data in Analytic Workspaces

	Basic Strategies for Aggregating Data
	Aggregating Non-Compressed Composites
	Selecting Dimensions for Skip-Level Aggregation
	Selecting the Levels to Skip

	Aggregating Compressed Composites
	Improving Aggregation Performance
	Finish Data Updates on Time
	Keep Within Allocated Resources
	Provide Good Response Time

	Selecting Dimension Members for Aggregation
	Defining an Aggregation
	Aggregation Operators
	Basic Operators
	Hierarchical Operators
	Scaled and Weighted Operators

	Case Study: Aggregating a Moderately Sparse or Dense Cube
	Case Study: Aggregating a Very Sparse Cube

	8 Allocating Data
	What Is an Allocation?
	Creating Measures to Support an Allocation
	Source Measures
	Basis Measures
	Target Measures
	Weight Measures

	Selecting Dimension Members for an Allocation
	Identifying the Sources and Targets
	Identifying the Allocation Path

	Creating an Allocation
	Allocation Operators
	Copy Operators
	Even Distribution Operators
	Proportional Distribution Operator
	Relationships Between Allocation and Aggregation Operators

	Case Study: Allocating a Budget
	Creating the Source Measure
	Creating the Target Measure
	Creating the Calculation Plan
	Creating the Allocate Budget Step
	Generating and Validating the Allocation

	9 Generating Forecasts
	Introduction to Forecasting Considerations
	Choosing a General Forecasting Approach
	Time Series
	Causal Analysis
	Expert Opinion

	About the Forecasting Engine
	Creating a Forecast
	Creating the Forecast Time Periods
	Creating a Forecast Measure
	Selecting the Historical Data
	Identifying the Levels for the Forecast
	Creating a Forecast Step
	Generating the Forecast
	Evaluating the Forecast Results

	Designing Your Own Forecast
	What is the Expert System?
	What is the Verification Window?
	When Should You Design a Forecast?
	Overriding the Expert System

	Forecasting Method Descriptions
	Automatic
	Regressions
	Linear Regression
	Nonlinear Regression
	Advanced Parameter for Regressions

	Exponential Smoothing
	Comparison Among Exponential Smoothing Methods
	Advanced Parameters for Exponential Smoothing

	Advanced Parameter Descriptions
	Setup Parameters
	General Parameters
	Historical Data Smoothing Parameters

	Case Study: Forecasting Sales for Global Enterprises
	Creating the Sales Forecast Target Measure
	Creating the Calculation Plan
	Creating the Sales Forecast Step
	Generating and Validating the Forecast
	Creating an Allocation Basis Measure
	Creating the Allocate Sales Forecast Step
	Generating and Validating the Allocation
	Creating the Sales Forecast Aggregation Step
	Generating the Aggregation

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

