
Oracle® Text
Application Developer's Guide

10g Release 2 (10.2)

B14217-01

June 2005

Oracle Text Application Developer’s Guide, 10g Release 2 (10.2)

B14217-01

Copyright © 2004, 2005, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xiii

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Structure ... xvi
Related Documents .. xvii
Conventions ... xviii

1 Understanding Oracle Text Application Development

What is Oracle Text?... 1-1
Designing Your Application .. 1-1
Text Queries on Document Collections ... 1-1

Flowchart of Text Query Application ... 1-2
Queries on Catalog Information.. 1-3

Flowchart for Catalog Query Application.. 1-4
Document Classification... 1-4
XML Searching.. 1-5

Using Oracle Text... 1-5
Using the Oracle XML DB Framework ... 1-6
Combining Oracle Text features with Oracle XML DB .. 1-6

Using the Text-on-XML Method... 1-6
Using the XML-on-Text Method... 1-7

2 Getting Started with Oracle Text

Overview of Getting Started with Oracle Text ... 2-1
Creating an Oracle Text User.. 2-1
Query Application Quick Tour.. 2-2

Building Web Applications with the Oracle Text Wizard ... 2-4
Oracle JDeveloper ... 2-5
Oracle Text Wizard Addins... 2-5
Oracle Text Wizard Instructions... 2-5

Catalog Application Quick Tour ... 2-5
Classification Application Quick Tour .. 2-7

Steps for Creating a Classification Application ... 2-8

iv

3 Indexing with Oracle Text

About Oracle Text Indexes.. 3-1
Types of Oracle Text Indexes ... 3-1
Structure of the Oracle Text CONTEXT Index .. 3-4

Merged Word and Theme Index .. 3-4
The Oracle Text Indexing Process.. 3-4

Datastore Object .. 3-5
Filter Object.. 3-5
Sectioner Object ... 3-5
Lexer Object ... 3-6
Indexing Engine .. 3-6

Partitioned Tables and Indexes .. 3-6
Querying Partitioned Tables ... 3-6

Creating an Index Online.. 3-6
Parallel Indexing .. 3-6
Indexing and Views ... 3-7

Considerations For Indexing.. 3-7
Location of Text .. 3-7

Supported Column Types.. 3-8
Storing Text in the Text Table ... 3-9
Storing File Path Names... 3-9
Storing URLs.. 3-9
Storing Associated Document Information .. 3-9
Format and Character Set Columns ... 3-9
Supported Document Formats... 3-10
Summary of DATASTORE Types ... 3-10

Document Formats and Filtering.. 3-11
No Filtering for HTML.. 3-11
Filtering Mixed-Format Columns.. 3-11
Custom Filtering .. 3-11

Bypassing Rows for Indexing.. 3-11
Document Character Set .. 3-11

Mixed Character Set Columns ... 3-12
Document Language... 3-12

Languages Features Outside BASIC_LEXER... 3-12
Indexing Multi-language Columns ... 3-12

Indexing Special Characters .. 3-12
Printjoins Character ... 3-13
Skipjoins Character .. 3-13
Other Characters .. 3-13

Case-Sensitive Indexing and Querying ... 3-13
Language-Specific Features ... 3-13

Indexing Themes.. 3-14
Base-Letter Conversion for Characters with Diacritical Marks .. 3-14
Alternate Spelling .. 3-14
Composite Words .. 3-14
Korean, Japanese, and Chinese Indexing ... 3-15

v

Fuzzy Matching and Stemming .. 3-15
Better Wildcard Query Performance.. 3-15
Document Section Searching... 3-15
Stopwords and Stopthemes ... 3-16

Multi-Language Stoplists.. 3-16
Index Performance .. 3-16
Query Performance and Storage of LOB Columns .. 3-16

Index Creation.. 3-17
Procedure for Creating a CONTEXT Index... 3-17
Creating Preferences .. 3-17

Datastore Examples ... 3-17
NULL_FILTER Example: Indexing HTML Documents ... 3-18
PROCEDURE_FILTER Example.. 3-18
BASIC_LEXER Example: Setting Printjoins Characters ... 3-19
MULTI_LEXER Example: Indexing a Multi-Language Table... 3-19
BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing......................... 3-20

Creating Section Groups for Section Searching.. 3-20
Example: Creating HTML Sections ... 3-20

Using Stopwords and Stoplists ... 3-21
Multi-Language Stoplists.. 3-21
Stopthemes and Stopclasses ... 3-21
PL/SQL Procedures for Managing Stoplists ... 3-21

Creating an Index.. 3-22
Creating a CONTEXT Index.. 3-22

CONTEXT Index and DML.. 3-22
Default CONTEXT Index Example ... 3-22
Custom CONTEXT Index Example: Indexing HTML Documents 3-23

Creating a CTXCAT Index... 3-23
CTXCAT Index and DML... 3-23
About CTXCAT Sub-Indexes and Their Costs .. 3-23
Creating CTXCAT Sub-indexes ... 3-24
Creating CTXCAT Index... 3-25

Creating a CTXRULE Index... 3-26
Create a Table of Queries.. 3-26
Create the CTXRULE Index.. 3-26
Classifying a Document .. 3-27

Index Maintenance.. 3-27
Viewing Index Errors ... 3-27
Dropping an Index.. 3-27
Resuming Failed Index... 3-28

Example: Resuming a Failed Index ... 3-28
Rebuilding an Index.. 3-28

Example: Rebuilding and Index .. 3-28
Dropping a Preference ... 3-28

Example ... 3-28
Managing DML Operations for a CONTEXT Index .. 3-29

Viewing Pending DML... 3-29

vi

Synchronizing the Index .. 3-29
Setting Background DML ... 3-29

Index Optimization... 3-30
CONTEXT Index Structure... 3-30
Index Fragmentation ... 3-30
Document Invalidation and Garbage Collection .. 3-30
Single Token Optimization... 3-31
Viewing Index Fragmentation and Garbage Data .. 3-31
Examples: Optimizing the Index ... 3-31

4 Querying with Oracle Text

Overview of Queries.. 4-1
Querying with CONTAINS.. 4-1

CONTAINS SQL Example... 4-1
CONTAINS PL/SQL Example ... 4-2
Structured Query with CONTAINS... 4-2

Querying with CATSEARCH... 4-3
CATSEARCH SQL Query.. 4-3
CATSEARCH Example .. 4-3

Querying with MATCHES ... 4-4
MATCHES SQL Query .. 4-4
MATCHES PL/SQL Example... 4-6

Word and Phrase Queries ... 4-7
CONTAINS Phrase Queries .. 4-7
CATSEARCH Phrase Queries .. 4-7

Querying Stopwords ... 4-8
ABOUT Queries and Themes ... 4-8

Querying Stopthemes... 4-8
Query Expressions ... 4-9

CONTAINS Operators ... 4-9
CATSEARCH Operator ... 4-9
MATCHES Operator .. 4-9

Case-Sensitive Searching... 4-9
Word Queries ... 4-10
ABOUT Queries ... 4-10

Query Feedback... 4-10
Query Explain Plan... 4-10
Using a Thesaurus in Queries ... 4-11
Document Section Searching... 4-11
Using Query Templating ... 4-11
Query Rewrite.. 4-11
Query Relaxation... 4-12
Query Language.. 4-13
Alternative Scoring ... 4-13
Alternative Grammar ... 4-13
Query Analysis .. 4-13
Other Query Features ... 4-14

vii

The CONTEXT Grammar .. 4-15
ABOUT Query .. 4-15
Logical Operators .. 4-16
Section Searching .. 4-16
Proximity Queries with NEAR and NEAR_ACCUM Operators... 4-16
Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators 4-17
Using CTXCAT Grammar.. 4-17
Stored Query Expressions.. 4-17

Defining a Stored Query Expression... 4-17
SQE Example .. 4-18

Calling PL/SQL Functions in CONTAINS ... 4-18
Optimizing for Response Time ... 4-18

Other Factors that Influence Query Response Time... 4-19
Counting Hits .. 4-19

SQL Count Hits Example.. 4-19
Counting Hits with a Structured Predicate.. 4-19
PL/SQL Count Hits Example .. 4-19

The CTXCAT Grammar.. 4-20
Using CONTEXT Grammar with CATSEARCH.. 4-20

5 Presenting Documents in Oracle Text

Highlighting Query Terms ... 5-1
Text highlighting .. 5-1
Theme Highlighting... 5-1
CTX_DOC Highlighting Procedures... 5-1

Markup Procedure.. 5-2
Highlight Procedure ... 5-3
Concordance .. 5-3

Obtaining Lists of Themes, Gists, and Theme Summaries ... 5-3
Lists of Themes ... 5-4

In-Memory Themes .. 5-4
Result Table Themes... 5-4

Gist and Theme Summary .. 5-4
In-Memory Gist ... 5-5
Result Table Gists.. 5-5
Theme Summary ... 5-5

Document Presentation and Highlighting .. 5-6
Highlighting Example ... 5-7
Document List of Themes Example... 5-8
Gist Example... 5-9

6 Classifying Documents in Oracle Text

Overview .. 6-1
Classification Applications ... 6-1

Classification Solutions .. 6-2
Rule-Based Classification ... 6-3

viii

Rule-based Classification Example.. 6-3
CTXRULE Parameters and Limitations .. 6-6

Supervised Classification ... 6-7
Decision Tree Supervised Classification... 6-7

Decision Tree Supervised Classification Example ... 6-8
SVM-Based Supervised Classification ... 6-10

SVM-Based Supervised Classification Example.. 6-11
Unsupervised Classification (Clustering) .. 6-12

Clustering Example... 6-13

7 Tuning Oracle Text

Optimizing Queries with Statistics .. 7-1
Collecting Statistics ... 7-2

Example .. 7-2
Re-Collecting Statistics .. 7-3
Deleting Statistics ... 7-3

Optimizing Queries for Response Time .. 7-3
Other Factors that Influence Query Response Time ... 7-4
Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries 7-4

About the FIRST_ROWS Hint... 7-5
Improved Response Time using Local Partitioned CONTEXT Index.. 7-5

Range Search on Partition Key Column .. 7-5
ORDER BY Partition Key Column ... 7-6

Improved Response Time with Local Partitioned Index for Order by Score............................ 7-6
 Optimizing Queries for Throughput .. 7-6

CHOOSE and ALL ROWS Modes ... 7-7
FIRST_ROWS Mode... 7-7

Tracing .. 7-7
Parallel Queries .. 7-8
Tuning Queries with Blocking Operations ... 7-8
Frequently Asked Questions a About Query Performance ... 7-9

What is Query Performance?... 7-9
What is the fastest type of text query? .. 7-9
Should I collect statistics on my tables? .. 7-9
How does the size of my data affect queries?.. 7-9
How does the format of my data affect queries?.. 7-10
What is a functional versus an indexed lookup? ... 7-10
What tables are involved in queries? ... 7-10
Does sorting the results slow a text-only query?.. 7-11
How do I make a ORDER BY score query faster? .. 7-11
Which Memory Settings Affect Querying? ... 7-11
Does out of line LOB storage of wide base table columns improve performance?............... 7-11
How can I make a CONTAINS query on more than one column faster?............................... 7-12
Is it OK to have many expansions in a query?.. 7-12
How can local partition indexes help?... 7-13
Should I query in parallel?... 7-13
Should I index themes? .. 7-13

ix

When should I use a CTXCAT index? ... 7-13
When is a CTXCAT index NOT suitable? ... 7-14
What optimizer hints are available, and what do they do? .. 7-14

Frequently Asked Questions About Indexing Performance .. 7-14
How long should indexing take?.. 7-14
Which index memory settings should I use? .. 7-15
How much disk overhead will indexing require?.. 7-15
How does the format of my data affect indexing? ... 7-16
Can parallel indexing improve performance? .. 7-16
How can I improve index performance for creating local partitioned index?....................... 7-16
How can I tell how much indexing has completed?.. 7-17

Frequently Asked Questions About Updating the Index ... 7-17
How often should I index new or updated records? ... 7-17
How can I tell when my indexes are getting fragmented? ... 7-17
Does memory allocation affect index synchronization?.. 7-17

8 Searching Document Section in Oracle Text

About Oracle Text Document Section Searching ... 8-1
Enabling Oracle Text Section Searching ... 8-1

Create a Section Group... 8-1
Define Your Sections .. 8-3
Index Your Documents .. 8-3
Section Searching with the WITHIN Operator... 8-3
Path Searching with INPATH and HASPATH Operators ... 8-3

Oracle Text Section Types... 8-4
Zone Section... 8-4
Field Section... 8-5
Stop Section.. 8-7
MDATA Section .. 8-7
Attribute Section ... 8-9
Special Sections ... 8-9

HTML Section Searching with Oracle Text.. 8-10
Creating HTML Sections.. 8-10
Searching HTML Meta Tags.. 8-10

Example: Creating Sections for <META>Tags ... 8-10
XML Section Searching with Oracle Text ... 8-11

Automatic Sectioning ... 8-11
Attribute Searching ... 8-11

Creating Attribute Sections .. 8-11
Searching Attributes with the INPATH Operator .. 8-12

Creating Document Type Sensitive Sections .. 8-12
Path Section Searching ... 8-12

Creating an Index with PATH_SECTION_GROUP ... 8-13
Top-Level Tag Searching .. 8-13
Any-Level Tag Searching.. 8-13
Direct Parentage Searching... 8-13
Tag Value Testing .. 8-14

x

Attribute Searching.. 8-14
Attribute Value Testing... 8-14
Path Testing .. 8-14
Section Equality Testing with HASPATH ... 8-14

9 Working With a Thesaurus in Oracle Text

Overview of Oracle Text Thesaurus Features ... 9-1
Oracle Text Thesaurus Creation and Maintenance ... 9-1

CTX_THES Package.. 9-1
Thesaurus Operators .. 9-1
ctxload Utility .. 9-2

Using a Case-sensitive Thesaurus ... 9-2
Using a Case-insensitive Thesaurus .. 9-2
Default Thesaurus .. 9-3
Supplied Thesaurus ... 9-3

Supplied Thesaurus Structure and Content.. 9-3
Supplied Thesaurus Location.. 9-3

Defining Terms in a Thesaurus ... 9-3
Defining Synonyms.. 9-4
Defining Hierarchical Relations... 9-4

Using a Thesaurus in a Query Application... 9-4
Loading a Custom Thesaurus and Issuing Thesaurus-based Queries....................................... 9-5

Advantage.. 9-5
Limitations ... 9-5

Augmenting Knowledge Base with Custom Thesaurus .. 9-5
Advantage ... 9-5
Limitations ... 9-6
Linking New Terms to Existing Terms.. 9-6
Loading a Thesaurus with ctxload ... 9-6
Compiling a Loaded Thesaurus.. 9-6

About the Supplied Knowledge Base .. 9-7
Adding a Language-Specific Knowledge Base .. 9-7

Limitations ... 9-8

10 Administering Oracle Text

Oracle Text Users and Roles .. 10-1
CTXSYS User.. 10-1
CTXAPP Role... 10-2
Granting Roles and Privileges to Users ... 10-2

DML Queue .. 10-2
The CTX_OUTPUT Package ... 10-2
The CTX_REPORT Package .. 10-2
Servers ... 10-5
Administration Tool.. 10-5

xi

11 Migrating Oracle Text Applications

Migrating to Oracle Text 10g Release 2 (10.2) .. 11-1
New Filter (INSO_FILTER versus AUTO_FILTER)... 11-1

Migrating to the AUTO_FILTER Filter Type... 11-2
Migrating to Oracle Text 10g Release 1 (10.1) .. 11-2

Security Improvements in Oracle Text 10g Release 1.. 11-3
CTXSYS No Longer Has DBA Permissions ... 11-3
Migrating CTXSYS-Owned Procedures ... 11-3
Effective User During Indexing ... 11-4
Procedures Do Not Need to Be Owned by CTXSYS... 11-4
Synching and Optimizing of Other Users' Indexes .. 11-4
CTX Packages and Invoker's Rights.. 11-4
CREATE TABLE Permissions .. 11-4

Migrating Back to Previous Releases from Release 10.1 ... 11-4

A CONTEXT Query Application

Web Query Application Overview .. A-1
The PSP Web Application.. A-3

Web Application Prerequisites.. A-3
Building the Web Application... A-3
PSP Sample Code .. A-5

loader.ctl .. A-5
loader.dat .. A-5
search_htmlservices.sql... A-5
search_html.psp ... A-7

The JSP Web Application .. A-8
Web Application Prerequisites.. A-9
JSP Sample Code ... A-9

search_html.jsp... A-9

B CATSEARCH Query Application

CATSEARCH Web Query Application Overview .. B-1
The JSP Web Application .. B-1

Building the JSP Web Application.. B-1
JSP Sample Code ... B-3

loader.ctl .. B-3
loader.dat .. B-4
catalogSearch.jsp .. B-4

Glossary

Index

xii

xiii

Send Us Your Comments

Oracle Text Application Developer's Guide, 10g Release 2 (10.2)

B14217-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xiv

xv

Preface

This Preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

Audience
The Oracle Text Application Developer's Guide is intended for users who perform the
following tasks:

■ Develop Oracle Text applications

■ Administer Oracle Text installations

To use this document, you need to have experience with the Oracle object relational
database management system, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xvi

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Structure
This document contains:

Chapter 1, "Understanding Oracle Text Application Development"
This chapter explains the basic features of the query, catalog, and classification
applications that you can build with Oracle Text.

Chapter 2, "Getting Started with Oracle Text"
This chapter explains how to get started on building a simple query applications using
Oracle Text.

Chapter 3, "Indexing with Oracle Text"
This chapter describes how to index your document set. It discusses considerations for
indexing as well as how to create CONTEXT, CTXCAT, and CTXRULE indexes.

Chapter 4, "Querying with Oracle Text"
This chapter describes how to query your document set. It gives examples for how to
use the CONTAINS, CATSEARCH, and MATCHES operators.

Chapter 5, "Presenting Documents in Oracle Text"
This chapter describes how to present documents to the user of your query
application.

Chapter 6, "Classifying Documents in Oracle Text"
This chapter describes how to build classification applications.

Chapter 7, "Tuning Oracle Text"
This chapter describes how to tune your queries to improve response time and
throughput.

Chapter 8, "Searching Document Section in Oracle Text"
This chapter describes how to enable section searching in HTML and XML.

Chapter 9, "Working With a Thesaurus in Oracle Text"
This chapter describes how to work with a thesaurus in your application. It also
describes how to augment your knowledge base with a thesaurus.

Chapter 10, "Administering Oracle Text"
This chapter describes Oracle Text administration.

xvii

Chapter 11, "Migrating Oracle Text Applications"
This chapter describes how to migrate your applications from earlier versions of
Oracle Text.

Appendix A, "CONTEXT Query Application"
This appendix describes a sample Oracle Text CONTEXT Web application and the
wizard used to produce it.

Appendix B, "CATSEARCH Query Application"
This appendix describes an Oracle Text CATSEARCH example Web application.

Related Documents
For more information about Oracle Text, refer to:

■ Oracle Text Reference

For more information about Oracle Database, refer to:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

■ Oracle Database Utilities

■ Oracle Database Performance Tuning Guide

■ Oracle Database SQL Reference

■ Oracle Database Reference

■ Oracle Database Application Developer's Guide - Fundamentals

For more information about PL/SQL, refer to:

■ PL/SQL User's Guide and Reference

You can obtain Oracle Text technical information, collateral, code samples, training
slides and other material at:

http://www.oracle.com/technology/products/text/

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and how
you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

xviii

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, Recovery Manager keywords,
SQL keywords, SQL*Plus or utility
commands, packages and methods, as well
as system-supplied column names,
database objects and structures,
usernames, and roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

xix

The following table describes typographic conventions used in code examples and
provides examples of their use.

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

[] Anything enclosed in brackets is optional. DECIMAL (digits [, precision])

{ } Braces are used for grouping items. {ENABLE | DISABLE}

| A vertical bar represents a choice of two
options.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Ellipsis points mean repetition in syntax
descriptions.

In addition, ellipsis points can mean an
omission in code examples or text.

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other symbols You must use symbols other than brackets
([]), braces ({ }), vertical bars (|), and
ellipsis points (...) exactly as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates user-defined
programmatic elements, such as names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start >
menu item

How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

xx

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\> exp HR/HR TABLES=emp QUERY=\"WHERE
job='REP'\"

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

ORACLE_HOME
and
ORACLE_BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory.

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is
C:\oracle\product\10.1.0. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\product\10.1.0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Installation Guide
for 32-Bit Windows for additional
information about OFA compliances and
for information about installing Oracle
products in non-OFA compliant
directories.

Go to the
ORACLE_BASE\ORACLE_HOME\rdbms\admin
directory.

Convention Meaning Example

Understanding Oracle Text Application Development 1-1

1
Understanding Oracle Text Application

Development

This chapter discuses the following topics:

■ What is Oracle Text?

■ Designing Your Application

■ Text Queries on Document Collections

■ Queries on Catalog Information

■ Document Classification

■ XML Searching

What is Oracle Text?
Oracle Text is a technology that enables you to build text query applications and
document classification applications. Oracle Text provides indexing, word and theme
searching, and viewing capabilities for text.

Designing Your Application
To design your Oracle Text application, you must determine the type of queries you
expect to execute. Doing so enables you to choose the most suitable index for the task.
We can divide application queries into three different categories:

■ Text Queries on Document Collections

■ Queries on Catalog Information

■ Document Classification

Text Queries on Document Collections
A text query application enables users to search document collections such as Web
sites, digital libraries, or document warehouses. Searching is enabled by first indexing
the document collection. The collection is typically static with no significant change in
content after the initial indexing run. Documents can be of any size and of different
formats such as HTML, PDF, or Microsoft Word. These documents are stored in a
document table.

Queries usually consist of words or phrases. Application users can specify logical
combinations of words and phrases using operators such as OR and AND. Other query

Text Queries on Document Collections

1-2 Oracle Text Application Developer's Guide

operations such as stemming, proximity searching, and wildcarding can be used to
improve the search results.

An important factor for this type of application is retrieving documents that are
relevant to a user query while retrieving as few non-relevant documents as possible.
The most relevant documents must be ranked high in the result list.

The queries for this type of application are best served with a CONTEXT index on your
document table. To query this index, your application uses the SQL CONTAINS
operator in the WHERE clause of a SELECT statement

Figure 1–1 Overview of Text Query Application

Flowchart of Text Query Application
A typical text query application on a document collection enables the user to enter a
query. The application issues a CONTAINS query and returns a list, called a hitlist, of
documents that satisfy the query. The results are usually ranked by relevance. The
application enables the user to view one or more documents in the hitlist.

For example, an application might index URLs (HTML files) on the World Wide Web
and provide query capabilities across the set of indexed URLs. Hitlists returned by the
query application are composed of URLs that the user can visit.

Figure 1–2 illustrates the flowchart of how a user interacts with a simple query
application. The figure shows the steps required to enter the query through to viewing
the results. A query application can be modeled according to the following steps:

1. The user enters a query.

2. The application executes a CONTAINS query.

3. The application presents a hitlist.

4. The user selects document from hitlist.

5. The application presents a document to the user for viewing.

Context
Index

Database

SQL
CONTAINS

Query

Text Query
Application

DocTable

Queries on Catalog Information

Understanding Oracle Text Application Development 1-3

Figure 1–2 Flowchart of a query application

Queries on Catalog Information
Catalog information consists of inventory type information such as that of an online
book store or auction site. The stored information consists of text information such as
book titles and related structured information such as price. The information is usually
updated regularly to keep the online catalog up to date with the inventory.

Queries are usually a combination of a text component and a structured component,
such as price or author. Results are almost always sorted by a structured component
such as date or price.

Good response time is always an important factor with this type of query application.

Catalog applications are best served by a CTXCAT index. You query this index with the
CATSEARCH operator in the WHERE clause of a SELECT statement.

Figure 1–3 illustrates the relation of the catalog table, its CTXCAT index, and the
catalog application which uses the CATSEARCH operator to query the index.

Figure 1–3 A Catalog Query Application

Enter Query

Execute Contains Query

Present Hitlist

Select from Hitlist

Present Document
CTY_DOC.HIGHLIGHT

Application Action

User Action

Ctxcat
Index

Database

SQL
CATSEARCH

Query

Catalog
Application

Catalog Table

Document Classification

1-4 Oracle Text Application Developer's Guide

Flowchart for Catalog Query Application
A catalog application enables users to search for specific items in catalogs. For
example, an online store application enables users to search for and purchase items in
inventory. Typically, the user query consists of a text component that searches across
the textual descriptions plus some other ordering criteria, such as price or date.

Figure 1–4 illustrates the flowchart of a catalog query application for an online
electronics store.

1. The user enters the query, consisting of a text component (for example cd player)
and a structured component (for example order by price).

2. The application executes the CATSEARCH query.

3. The application shows the results ordered accordingly.

4. The user browses the results.

5. The user then either issues another query or performs an action, such as
purchasing the item.

Figure 1–4 Flowchart of a Catalog Query Application

Document Classification
In a document classification application, an incoming stream or a set of documents is
compared to a pre-defined set of rules. When a document matches one or more rules,
the application performs some action.

For example, assume we have an incoming stream of news articles. We can define a
rule to represent the category of Finance. The rule is essentially one or more queries

Text Component
'cd player'

Execute Catsearch Query
CATSEARCH

Show Results

User Browses Results

Structured Component
'order by price'

Enter Query

User Purchases Item

Application Action

User Action

New Query

XML Searching

Understanding Oracle Text Application Development 1-5

that select document about the subject of Finance. The rule might have the form 'stocks
or bonds or earnings'.

When a document arrives about a Wall Street earnings forecast and satisfies the rules
for this category, the application takes an action such as tagging the document as
Finance or e-mailing one or more users.

To create a document classification application, you create a table of rules and then
create a CTXRULE index. To classify an incoming stream of text, use the MATCHES
operator in the WHERE clause of a SELECT statement. Refer to Figure 1–5 for the
general flow of a classification application.

Figure 1–5 Overview of a Document Classification Application

XML Searching
An XML search application performs searches over XML documents. In a regular
document search, you usually search across a set of documents to return documents
that satisfy a text predicate; in an XML search, you often use the structure of the XML
document to restrict the search. Typically, only that part of the document that satisfies
the search is returned. For example, instead of finding all purchase orders that contain
the word electric, the user might need only purchase orders in which the comment field
contains electric.

Oracle Text enables you to perform XML searching using the following approaches:

■ Using Oracle Text

■ Using the Oracle XML DB Framework

■ Combining Oracle Text features with Oracle XML DB

Using Oracle Text
The CONTAINS operator is well suited to structured searching, enabling you to
perform restrictive searches with the WITHIN, HASPATH, and INPATH operators. If you
use a CONTEXT index, you can also benefit from the following characteristics of Oracle
Text searches:

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

Ctxrule
Index

Oracle

SQL
MATCHES
Query

Database A Database B

Email
user

Classify
document

Rules Table

XML Searching

1-6 Oracle Text Application Developer's Guide

■ Searches are token-based, whitespace-normalized

■ Hit lists are ranked by relevance

■ You can enable case-sensitive searching

■ You can utilize section searching

■ You can leverage linguistic features such as stemming and fuzzy searching

■ Queries are performance-optimized for large document sets

Using the Oracle XML DB Framework
With Oracle XML DB, you load your XML documents in an XMLType column. XML
searching with Oracle XML DB usually consists of an XPATH expression within an
existsNode(), extract(), or extractValue() query. This type of search can be
characterized as follows:

■ Non-text search with equality and range on dates and numbers

■ String search that is character-based where all characters are treated the same

■ Has the ability to leverage the ora:contains() function with a CTXXPATH
index to speed up existsNode() queries.

This type of search has the following disadvantages:

■ No special linguistic processing

■ Uses exact matching so there is no notion of relevance

■ Can be very slow for some searches, such as wildcarding, as with:

 WHERE col1 like '%dog%'

Combining Oracle Text features with Oracle XML DB
You can combine the features of Oracle Text and Oracle XML DB for applications in
which you want to do a full-text retrieval, leveraging the XML structure by issuing
queries such as "find all nodes that contain the word Pentium." You do so in one of
two ways:

■ Using the Text-on-XML Method

■ Using the XML-on-Text Method

Using the Text-on-XML Method
With Oracle Text, you can create a CONTEXT index on a column that contains your
XML data. Your column type can be XMLType, but can also be any supported type
provided you use the correct index preference for XML data.

With the Text-on-XML method, you use the standard CONTAINS query and add a
structured constraint to limit the scope of a search to a particular section, field, tag, or
attribute. This amounts to specifying the structure inside text operators such as
WITHIN, HASPATH, and INPATH.

See Also: "XML Section Searching with Oracle Text" on page 8-11

See Also: The Oracle XML DB Developer's Guide

See Also: The Oracle XML DB Developer's Guide and "XML Section
Searching with Oracle Text" on page 8-11

XML Searching

Understanding Oracle Text Application Development 1-7

For example, you can set up your CONTEXT index to create sections with XML
documents. Consider the following XML document that defines a purchase order.

<?xml version="1.0"?>
<PURCHASEORDER pono="1">
 <PNAME>Po_1</PNAME>
 <CUSTNAME>John</CUSTNAME>
 <SHIPADDR>
 <STREET>1033 Main Street</STREET>
 <CITY>Sunnyvalue</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
 <ITEMS>
 <ITEM>
 <ITEM_NAME> Dell Computer </ITEM_NAME>
 <DESC> Pentium 2.0 Ghz 500MB RAM </DESC>
 </ITEM>
 <ITEM>
 <ITEM_NAME> Norelco R100 </ITEM_NAME>
 <DESC>Electric Razor </DESC>
 </ITEM>
 </ITEMS>
</PURCHASEORDER>

To query all purchase orders that contain Pentium within the item description section,
you might use the WITHIN operator as follows:

SELECT id from po_tab where CONTAINS(doc, 'Pentium WITHIN desc') > 0;

You can specify more complex criteria with XPATH expressions using INPATH
operator:

SELECT id from po_tab where CONTAINS(doc, 'Pentium INPATH
(/purchaseOrder/items/item/desc') > 0;

Using the XML-on-Text Method
With the XML-on-Text method, you add text operations to an XML search. This
includes using the ora:contains() function in the XPATH expression with
existsNode(), extract(), and extractValue() queries. This amounts to
including the full-text predicate inside the structure. For example:

SELECT
 Extract(doc, '/purchaseOrder//desc{ora:contains(.,"pentium")>0]',
 'xmlns:ora=http://xmlns.oracle.com/xdb')
"Item Comment" FROM po_tab_xmltype
/

Additionally you can improve the performance of existsNode(), extract(), and
extractValue() queries using the CTXXPATH Text domain index.

XML Searching

1-8 Oracle Text Application Developer's Guide

Getting Started with Oracle Text 2-1

2
Getting Started with Oracle Text

This chapter discuses the following topics:

■ Overview of Getting Started with Oracle Text

■ Creating an Oracle Text User

■ Query Application Quick Tour

■ Catalog Application Quick Tour

■ Classification Application Quick Tour

Overview of Getting Started with Oracle Text
This chapter describes how to get started with creating an Oracle Text developer and
building simple text query and catalog applications. For each type of application, this
chapter steps you through the basic SQL statements for loading, indexing and
querying your tables.

More complete application examples are given in the Appendices. To learn more about
building document classification applications, see Chapter 6.

Creating an Oracle Text User
Before you can create Oracle Text indexes and use Oracle Text PL/SQL packages, you
need to create a user with the CTXAPP role. This role enables you to do the following:

■ Create and delete Oracle Text indexing preferences

■ Use the Oracle Text PL/SQL packages

To create an Oracle Text application developer user, do the following as the system
administrator user:

Step 1 Create User
The following SQL command creates a user called MYUSER with a password of
myuser_password:

CREATE USER myuser IDENTIFIED BY myuser_password;

Note: The SQL> prompt has been omitted in this chapter, in part
to improve readability and in part to make it easier for you to cut
and paste text.

Query Application Quick Tour

2-2 Oracle Text Application Developer's Guide

Step 2 Grant Roles
The following SQL command grants the required roles of RESOURCE,CONNECT, and
CTXAPP to MYUSER:

GRANT RESOURCE, CONNECT, CTXAPP TO MYUSER;

Step 3 Grant EXECUTE Privileges on CTX PL/SQL Packages
Oracle Text includes several packages, which enable you to perform actions ranging
from synchronizing an Oracle Text index to highlighting documents. For example, the
CTX_DDL package includes the SYNC_INDEX procedure, which enables you to
synchronize your index. The Oracle Text Reference describes each of these packages in
its own chapter.

To call any of these procedures from a stored procedure, your application requires
execute privileges on the packages.

For example, to grant to MYUSER execute privileges on all Oracle Text packages, issue
the following SQL commands:

GRANT EXECUTE ON CTXSYS.CTX_CLS TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_DOC TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_OUTPUT TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_QUERY TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_REPORT TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_THES TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_ULEXER TO myuser;

Query Application Quick Tour
In a basic text query application, users enter query words or phrases and expect the
application to return a list of documents that best match the query. Such an application
involves creating a CONTEXT index and querying it with CONTAINS.

This example steps you through the basic SQL statements you use to load your text
table, index your documents, and query your index.

Typically, query applications require a user interface. An example of how to build such
a query application using the CONTEXT index type is given in Appendix A.

Step 1 Connect as the New User
Before creating any tables, assume the identity of the user you just created.

CONNECT myuser;

Step 2 Create your Text Table
The following example creates a table called docs with two columns, id and text, by
using the CREATE TABLE statement. This example makes the id column the primary
key. The text column is VARCHAR2.

CREATE TABLE docs (id NUMBER PRIMARY KEY, text VARCHAR2(200));

Step 3 Load Documents into Table
You can use the SQL INSERT statement to load text to a table.

To populate the docs table, use the INSERT statement as follows:

INSERT INTO docs VALUES(1, '<HTML>California is a state in the US.</HTML>');
INSERT INTO docs VALUES(2, '<HTML>Paris is a city in France.</HTML>');
INSERT INTO docs VALUES(3, '<HTML>France is in Europe.</HTML>');

Query Application Quick Tour

Getting Started with Oracle Text 2-3

Using SQL*Loader
You can also load your table in batch with SQL*Loader.

Step 1 Create the CONTEXT index
Index the HTML files by creating a CONTEXT index on the text column as follows.
Since you are indexing HTML, this example uses the NULL_FILTER preference type
for no filtering and uses the HTML_SECTION_GROUP type:

CREATE INDEX idx_docs ON docs(text)
 INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS
 ('FILTER CTXSYS.NULL_FILTER SECTION GROUP CTXSYS.HTML_SECTION_GROUP');

Use the NULL_FILTER because you do not need to filter HTML documents during
indexing. However, if you index PDF, Microsoft Word, or other formatted documents,
use the CTXSYS.AUTO_FILTER (the default) as your FILTER preference.

This example also uses the HTML_SECTION_GROUP section group which is
recommended for indexing HTML documents. Using HTML_SECTION_GROUP enables
you to search within specific HTML tags, and eliminates from the index unwanted
markup such as font information.

Step 2 Querying Your Table with CONTAINS
You query the table with the SELECT statement with CONTAINS to retrieve the
document IDs that satisfy the query.

Before doing so, set the format of the SELECT statement's output so that it is easily
readable. To do so, set the width of the text column to 40 characters:

COLUMN text FORMAT a40;

Now use SELECT. The following query looks for all documents that contain the word
France:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'France', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 3 <HTML>France is in Europe.</HTML>
 4 2 <HTML>Paris is a city in France.</HTML>

Step 3 Present the Document
In a real application, you might want to present the selected document to the user with
query terms highlighted. Oracle Text enables you to mark up documents with the
CTX_DOC package.

We can demonstrate HTML document markup with an anonymous PL/SQL block in
SQL*Plus. However, in a real application you might present the document in a
browser.

This PL/SQL example uses the in-memory version of CTX_DOC.MARKUP to highlight
the word France in document 3. It allocates a temporary CLOB (Character Large Object
datatype) to store the markup text and reads it back to the standard output. The CLOB
is then de-allocated before exiting:

SET SERVEROUTPUT ON;

See Also: "Building the Web Application" in Appendix A,
"CONTEXT Query Application" for an example on how to use
SQL*Loader to load a text table from a data file

Query Application Quick Tour

2-4 Oracle Text Application Developer's Guide

DECLARE
 2 mklob CLOB;
 3 amt NUMBER := 40;
 4 line VARCHAR2(80);
 5 BEGIN
 6 CTX_DOC.MARKUP('idx_docs','3','France', mklob);
 7 DBMS_LOB.READ(mklob, amt, 1, line);
 8 DBMS_OUTPUT.PUT_LINE('FIRST 40 CHARS ARE:'||line);
 9 DBMS_LOB.FREETEMPORARY(mklob);
 10 END;
 11 /
FIRST 40 CHARS ARE:<HTML><<<France>>> is in Europe.</HTML>

PL/SQL procedure successfully completed.

Step 4 Synchronize the Index After Data Manipulation
When you create a CONTEXT index, you need to explicitly synchronize your index to
keep it up to date with any inserts, updates, or deletes to the text table.

Oracle Text enables you to do so with the CTX_DDL.SYNC_INDEX procedure.

Add some rows to the docs table:

INSERT INTO docs VALUES(4, '<HTML>Los Angeles is a city in California.</HTML>');
INSERT INTO docs VALUES(5, '<HTML>Mexico City is big.</HTML>');

Since the index is not synchronized, these new rows are not returned with a query on
city:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 2 <HTML>Paris is a city in France.</HTML>

Therefore, synchronize the index with 2Mb of memory, and rerun the query:

EXEC CTX_DDL.SYNC_INDEX('idx_docs', '2M');

PL/SQL procedure successfully completed.

COLUMN text FORMAT a50;
SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 5 <HTML>Mexico City is big.</HTML>
 4 4 <HTML>Los Angeles is a city in California.</HTML>
 4 2 <HTML>Paris is a city in France.</HTML>

Building Web Applications with the Oracle Text Wizard
Oracle Text enables you to build simple Text and Catalog Web applications with the
Oracle Text Wizard addin for Oracle JDeveloper. The wizard automatically generates
Java Server Pages or PL/SQL server scripts you can use with the Oracle-configured
Apache Web server.

Both JDeveloper and the Text Wizard can be downloaded for free from the following
Oracle Technology Network (OTN) sites. Note that you need to register with OTN
before you can access these pages.

Catalog Application Quick Tour

Getting Started with Oracle Text 2-5

Oracle JDeveloper
You can obtain the latest JDeveloper software from:

http://www.oracle.com/technology/software/products/jdev

See "Building the JSP Web Application" on page B-1 for an example.

Oracle Text Wizard Addins
You can obtain the Text, Catalog, and Classification Wizard addins from:

http://www.oracle.com/technology/software/products/text

Oracle Text Wizard Instructions
You can find instructions on using the Oracle Text Wizard and setting up your JSP files
to run in a Web server environment from:

http://www.oracle.com/technology/software/products/text

Follow the "Text Search Wizard for JDeveloper" link.

Catalog Application Quick Tour
This example creates a catalog index for an auction site that sells electronic equipment
such as cameras and CD players. New inventory is added everyday and item
descriptions, bid dates, and prices must be stored together.

The application requires good response time for mixed queries. The key is to
determine what columns users frequently search so that we can create a suitable
CTXCAT index. Queries on this type of index are issued with the CATSEARCH operator.

Step 1 Connect as the Appropriate User
In this case, we connect as the user myuser, whom we created in section "Create
User".

CONNECT myuser;

Step 2 Create Your Table
Set up an auction table to store your inventory:

CREATE TABLE auction(
item_id NUMBER,
title VARCHAR2(100),
category_id NUMBER,
price NUMBER,
bid_close DATE);

Figure 2–1 illustrates this table.

Step 3 Populate Your Table
Now populate the table with various items, each with an id, title, price and
bid_date:

INSERT INTO AUCTION VALUES(1, 'NIKON CAMERA', 1, 400, '24-OCT-2002');
INSERT INTO AUCTION VALUES(2, 'OLYMPUS CAMERA', 1, 300, '25-OCT-2002');

Note: Typically, query applications require a user interface. An
example of how to build such a query application using the
CATSEARCH index type is given in Appendix B.

Catalog Application Quick Tour

2-6 Oracle Text Application Developer's Guide

INSERT INTO AUCTION VALUES(3, 'PENTAX CAMERA', 1, 200, '26-OCT-2002');
INSERT INTO AUCTION VALUES(4, 'CANON CAMERA', 1, 250, '27-OCT-2002');

Using SQL*Loader
You can also load your table in batch with SQL*Loader.

Step 1 Determine your Queries
You need to determine what criteria are likely to be retrieved. In this example, you
determine that all queries search the title column for item descriptions, and most
queries order by price. When using the CATSEARCH operator later, we'll specify the
terms for the text column and the criteria for the structured clause.

Step 2 Create the Sub-Index to Order by Price
For Oracle Text to serve these queries efficiently, we need a sub-index for the price
column, since our queries will order by price.

Therefore, create an index set called auction_set and add a sub-index for the price
column:

EXEC CTX_DDL.CREATE.INDEXT_SET('auction_iset');
EXEC CTX_DDL.ADD_INDEX('auction_iset','price'); /* sub-index A*/

Figure 2–1 shows how the sub-index relates to the columns.

Step 3 Create the CTXCAT Index
Create the combined catalog index on the AUCTION table with CREATE INDEX as
follows:

CREATE INDEX auction_titlex ON AUCTION(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ('index set auction_iset');

Figure 2–1 shows how the CTXCAT index and its sub-index relates to the columns.

Figure 2–1 Auction table schema and CTXCAT index

Step 1 Querying Your Table with CATSEARCH
When you have created the CTXCAT index on the AUCTION table, you can query this
index with the CATSEARCH operator.

First set the output format to make the output readable:

See Also: "Building the Web Application" in Appendix A,
"CONTEXT Query Application" for an example on how to use
SQL*Loader to load a text table from a data file

Auction Table
item_id
number

title
varchar (100)

category_id
number

price
number

bid_close
date

Sub-index A

CTXCAT
Index

A

Classification Application Quick Tour

Getting Started with Oracle Text 2-7

COLUMN title FORMAT a40;

Now execute the query:

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by
price')> 0;

TITLE PRICE
--------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
NIKON CAMERA 400

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA',
 'price <= 300')>0;

TITLE PRICE
--------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300

Step 2 Update Your Table
You can update your catalog table by adding new rows. When you do so, the CTXCAT
index is automatically synchronized to reflect the change.

For example, add the following new rows to our table and then rerun the query:

INSERT INTO AUCTION VALUES(5, 'FUJI CAMERA', 1, 350, '28-OCT-2002');
INSERT INTO AUCTION VALUES(6, 'SONY CAMERA', 1, 310, '28-OCT-2002');

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by
price')> 0;

TITLE PRICE
----------------------------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
SONY CAMERA 310
FUJI CAMERA 350
NIKON CAMERA 400

6 rows selected.

Note how the added rows show up immediately in the query.

Classification Application Quick Tour
The function of a classification application is to perform some action based on
document content. These actions can include assigning a category id to a document or
sending the document to a user. The result is classification of a document.

Documents are classified according to pre-defined rules. These rules select for a
category. For instance, a query rule of 'presidential elections’ might select documents for
a category about politics.

Oracle Text provides several types of classification. One type is simple, or rule-based
classification, discussed here, in which you create both document categories and the

Classification Application Quick Tour

2-8 Oracle Text Application Developer's Guide

rules for categorizing documents. With supervised classification, Oracle Text derives the
rules from a set of training documents you provide. With clustering, Oracle Text does
all the work for you, deriving both rules and categories. (For more on classification,
see Chapter 6, "Classifying Documents in Oracle Text" in this book.)

To achieve simple classification in Oracle Text, you create rules, which are essentially a
table of queries. You index these rules in a CTXRULE index. To classify an incoming
stream of text, use the MATCHES operator in the WHERE clause of a SELECT statement.
Refer to Figure 2–2 for the general flow of a classification application.

Figure 2–2 Overview of a Document Classification Application

Steps for Creating a Classification Application
The following example steps you through defining simple categories, creating a
CTXRULE index, and using MATCHES to classify documents.

Step 1 Connect As the Appropriate User
In this case, we connect as the user myuser, which we created in section "Create User".

CONNECT myuser;

Step 2 Create the Rule Table
We must create a rule table and populate it with query rules. In this example, we create
a table called queries. Each row defines a category with an id, and a rule which is a
query string:

CREATE TABLE queries (
 query_id NUMBER,
 query_string VARCHAR2(80)
);

 INSERT INTO queries VALUES (1, 'oracle');
 INSERT INTO queries VALUES (2, 'larry or ellison');
 INSERT INTO queries VALUES (3, 'oracle and text');
 INSERT INTO queries VALUES (4, 'market share');

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

Ctxrule
Index

Oracle

SQL
MATCHES
Query

Database A Database B

Email
user

Classify
document

Rules Table

Classification Application Quick Tour

Getting Started with Oracle Text 2-9

Step 3 Create Your CTXRULE Index
Create a CTXRULE index as follows:

 CREATE INDEX queryx ON queries(query_string) INDEXTYPE IS CTXRULE;

Step 4 Classify with MATCHES
Use the MATCHES operator in the WHERE clause of a SELECT statement to match
documents to queries and hence classify.

 COLUMN query_string FORMAT a35;
 SELECT query_id,query_string FROM queries
 WHERE MATCHES(query_string,
 'Oracle announced that its market share in databases
 increased over the last year.')>0;

 QUERY_ID QUERY_STRING
---------- -----------------------------------
 1 oracle
 4 market share

As shown, the document string matches categories 1 and 4. With this classification you
can perform an action, such as writing the document to a specific table or e-mailing a
user.

See Also: Chapter 6, "Classifying Documents in Oracle Text" for
more extended classification examples

Classification Application Quick Tour

2-10 Oracle Text Application Developer's Guide

Indexing with Oracle Text 3-1

3
Indexing with Oracle Text

This chapter provides an introduction to Oracle Text indexing. The following topics
are covered:

■ About Oracle Text Indexes

■ Considerations For Indexing

■ Index Creation

■ Index Maintenance

■ Managing DML Operations for a CONTEXT Index

About Oracle Text Indexes
The following sections discuss the different types of Oracle Text indexes, their
structure, the indexing process, and limitations.

Types of Oracle Text Indexes
With Oracle Text, you can indexes of several types, using CREATE INDEX. Table 3–1
describes each index type, its purpose, and what features it supports:

About Oracle Text Indexes

3-2 Oracle Text Application Developer's Guide

Table 3–1 Oracle Text Index Types

Index Type Description

Supported
Preferences and
Parameters Query Operator Notes

CONTEXT Use this index to
build a text retrieval
application when
your text consists of
large coherent
documents. You can
index documents of
different formats
such as MS Word,
HTML or plain text.

With a context index,
you can customize
your index in a
variety of ways.

This index type
requires CTX_
DDL.SYNC_INDEX
after DML on base
table.

All CREATE INDEX
preferences and
parameters
supported except for
INDEX SET.

These supported
parameters include
the index partition
clause, and the
format, charset, and
language columns.

CONTAINS

Grammar is called
the CONTEXT
grammar, which
supports a rich set of
operations.

The CTXCAT
grammar can be used
with query
templating.

Supports all
documents services
and query services.

Supports indexing of
partitioned text
tables.

CTXCAT Use this index type
for better mixed
query performance.
Typically, with this
index type, you
index small
documents or text
fragments. Other
columns in the base
table, such as item
names, prices and
descriptions can be
included in the index
to improve mixed
query performance.

This index type is
transactional,
automatically
updating itself after
DML to base table.
No CTX_DDL.SYNC_
INDEX is necessary.

INDEX SET

LEXER

STOPLIST

STORAGE

WORDLIST (only
prefix_index
attribute supported
for Japanese data)

Format, charset, and
language columns
not supported.

Table and index
partitioning not
supported.

CATSEARCH

Grammar is called
CTXCAT, which
supports logical
operations, phrase
queries, and
wildcarding.

The CONTEXT
grammar can be used
with query
templating.

Theme querying is
supported.

This index is larger
and takes longer to
build than a
CONTEXT index.

The size of a CTXCAT
index is related to the
total amount of text
to be indexed,
number of indexes in
the index set, and
number of columns
indexed. Carefully
consider your queries
and your resources
before adding
indexes to the index
set.

The CTXCAT index
does not support
table and index
partitioning,
documents services
(highlighting,
markup, themes, and
gists) or query
services (explain,
query feedback, and
browse words.)

About Oracle Text Indexes

Indexing with Oracle Text 3-3

An Oracle Text index is an Oracle Database domain index.To build your query
application, you can create an index of type CONTEXT and query it with the CONTAINS
operator.

You create an index from a populated text table. In a query application, the table must
contain the text or pointers to where the text is stored. Text is usually a collection of
documents, but can also be small text fragments.

For better performance for mixed queries, you can create a CTXCAT index. Use this
index type when your application relies heavily on mixed queries to search small
documents or descriptive text fragments based on related criteria such as dates or
prices. You query this index with the CATSEARCH operator.

To build a document classification application using simple or rule-based classification,
you create an index of type CTXRULE. With such an index, you can classify plain text,
HTML, or XML documents using the MATCHES operator. You store your defining
query set in the text table you index.

If you are working with XMLtype columns, you can create a CTXXPATH index to speed
up queries with existsNode.

You create a text index as a type of extensible index to Oracle Database using standard
SQL. This means that an Oracle Text index operates like an Oracle Database index. It
has a name by which it is referenced and can be manipulated with standard SQL
statements.

The benefits of a creating an Oracle Text index include fast response time for text
queries with the CONTAINS, CATSEARCH, and MATCHES Oracle Text operators. These
operators query the CONTEXT, CTXCAT, and CTXRULE index types respectively.

CTXRULE Use CTXRULE index
to build a document
classification or
routing application.
The CTXRULE index
is an index created
on a table of queries,
where the queries
define the
classification or
routing criteria.

See "CTXRULE
Parameters and
Limitations" on
page 6-6.

MATCHES Single documents
(plain text, HTML, or
XML) can be
classified using the
MATCHES operator,
which turns a
document into a set
of queries and finds
the matching rows in
the CTXRULE index.

CTXPATH Create this index
when you need to
speed up
existsNode() queries
on an XMLType
column.

STORAGE Use with
existsNode()

Can only create this
index on XMLType
column.

Although this index
type can be helpful
for existsNode()
queries, it is not
required for XML
searching. See "XML
Searching" on
page 1-5

See Also: Index Creation in this chapter

Table 3–1 (Cont.) Oracle Text Index Types

Index Type Description

Supported
Preferences and
Parameters Query Operator Notes

About Oracle Text Indexes

3-4 Oracle Text Application Developer's Guide

Structure of the Oracle Text CONTEXT Index
Oracle Text indexes text by converting all words into tokens. The general structure of
an Oracle Text CONTEXT index is an inverted index where each token contains the list
of documents (rows) that contain that token.

For example, after a single initial indexing operation, the word DOG might have an
entry as follows:

This means that the word DOG is contained in the rows that store documents one,
three and five.

For more information, see optimizing the index in this chapter.

Merged Word and Theme Index
By default in English and French, Oracle Text indexes theme information with word
information. You can query theme information with the ABOUT operator. You can
optionally enable and disable theme indexing.

The Oracle Text Indexing Process
This section describes the Oracle Text indexing process.You initiate the indexing
process with the CREATE INDEX statement. The goal is to create an Oracle Text index
of tokens according to the parameters and preferences you specify.

Figure 3–1 shows the indexing process. This process is a data stream that is acted upon
by the different indexing objects. Each object corresponds to an indexing preference
type or section group you can specify in the parameter string of CREATE INDEX or
ALTER INDEX. The sections that follow describe these objects.

See Also: "Index Creation" on page 3-17 in this chapter

Word Appears in Document

DOG DOC1 DOC3 DOC5

See Also: "Creating Preferences" in this chapter to learn more
about indexing theme information

About Oracle Text Indexes

Indexing with Oracle Text 3-5

Figure 3–1 Oracle Text Indexing Process

Datastore Object
The stream starts with the datastore reading in the documents as they are stored in the
system according to your datastore preference. For example, if you have defined your
datastore as FILE_DATASTORE, the stream starts by reading the files from the
operating system. You can also store your documents on the internet or in the Oracle
Database. Wherever your files reside physically, you must always have a text table in
the Oracle Database that points to the file.

Filter Object
The stream then passes through the filter. What happens here is determined by your
FILTER preference. The stream can be acted upon in one of the following ways:

■ No filtering takes place. This happens when you specify the NULL_FILTER
preference type or when the value of the format column is IGNORE. Documents
that are plain text, HTML, or XML need no filtering.

■ Formatted documents (binary) are filtered to marked-up text. This happens when
you specify the AUTO_FILTER preference type or when the value of the format
column is BINARY.

■ Text is converted from a non-database character set to the database character set.
This happens when you specify CHARSET_FILTER preference type.

Sectioner Object
After being filtered, the marked-up text passes through the sectioner that separates the
stream into text and section information. Section information includes where sections
begin and end in the text stream. The type of sections extracted is determined by your
section group type.

The section information is passed directly to the indexing engine which uses it later.
The text is passed to the lexer.

Oracle Text
Index

Datastore
Documents

Marked-up
Text Text Tokens

Lexer Indexing
Engine

Wordlist

Filter Sectioner

Markup

StoplistInternet

O/S file
system

About Oracle Text Indexes

3-6 Oracle Text Application Developer's Guide

Lexer Object
The lexer breaks the text into tokens according to your language. These tokens are
usually words. To extract tokens, the lexer uses the parameters as defined in your lexer
preference. These parameters include the definitions for the characters that separate
tokens such as whitespace, and whether to convert the text to all uppercase or to leave
it in mixed case.

When theme indexing is enabled, the lexer analyses your text to create theme tokens
for indexing.

Indexing Engine
The indexing engine creates the inverted index that maps tokens to the documents that
contain them. In this phase, Oracle Text uses the stoplist you specify to exclude
stopwords or stopthemes from the index. Oracle Text also uses the parameters defined
in your WORDLIST preference, which tell the system how to create a prefix index or
substring index, if enabled.

Partitioned Tables and Indexes
You can create a partitioned CONTEXT index on a partitioned text table. The table must
be partitioned by range. Hash, composite and list partitions are not supported.

You might create a partitioned text table to partition your data by date. For example, if
your application maintains a large library of dated news articles, you can partition
your information by month or year. Partitioning simplifies the manageability of large
databases since querying, DML, and backup and recovery can act on single partitions.

Querying Partitioned Tables
To query a partitioned table, you use CONTAINS in the WHERE clause of a SELECT
statement as you query a regular table. You can query the entire table or a single
partition. However, if you are using the ORDER BY SCORE clause, Oracle recommends
that you query single partitions unless you include a range predicate that limits the
query to a single partition.

Creating an Index Online
When it is not practical to lock up your base table for indexing because of ongoing
updates, you can create your index online with the ONLINE parameter of CREATE
INDEX. This way an application with heavy DML need not stop updating the base
table for indexing.

There are short periods, however, when the base table is locked at the beginning and
end of the indexing process.

Parallel Indexing
Oracle Text supports parallel indexing with CREATE INDEX.

When you issue a parallel indexing command on a non-partitioned table, Oracle Text
splits the base table into temporary partitions, spawns slave processes, and assigns a
slave to a partition. Each slave indexes the rows in its partition. The method of slicing

See Also: Oracle Database Concepts for more information about
partitioning

See Also: Oracle Text Reference to learn more about creating an
index online

Considerations For Indexing

Indexing with Oracle Text 3-7

the base table into partitions is determined by Oracle Text and is not under your direct
control. This is true as well for the number of slave processes actually spawned, which
depends on machine capabilities, system load, your init.ora settings, and other factors.
The actual parallel degree may not match the degree of parallelism requested.

Since indexing is an I/O intensive operation, parallel indexing is most effective in
decreasing your indexing time when you have distributed disk access and multiple
CPUs. Parallel indexing can only affect the performance of an initial index with
CREATE INDEX. It does not affect DML performance with ALTER INDEX, and has
minimal impact on query performance.

Since parallel indexing decreases the initial indexing time, it is useful for

■ Data staging, when your product includes an Oracle Text index

■ Rapid initial startup of applications based on large data collections

■ Application testing, when you need to test different index parameters and
schemas while developing your application

Indexing and Views
Oracle SQL standards do not support creating indexes on views. If you need to index
documents whose contents are in different tables, you can create a data storage
preference using the USER_DATASTORE object. With this object, you can define a
procedure that synthesizes documents from different tables at index time.

Oracle Text does support the creation of CONTEXT, CTXCAT, CTXRULE, and CTXXPATH
indexes on materialized views (MVIEW).

Considerations For Indexing
You use the CREATE INDEX statement to create an Oracle Text index. When you create
an index and specify no parameter string, an index is created with default parameters.
You can create either a CONTEXT, CTXCAT, or CTXRULE index.

You can also override the defaults and customize your index to suit your query
application. The parameters and preference types you use to customize your index
with CREATE INDEX fall into the following general categories.

Location of Text
The basic prerequisite for an Oracle Text query application is to have a populated text
table. The text table is where you store information about your document collection
and is required for indexing.

When you create a CONTEXT index, you can populate rows in your text table with one
of the following elements:

■ Text information (can be documents or text fragments)

See Also: "Frequently Asked Questions About Indexing
Performance" in Chapter 7, "Tuning Oracle Text" to learn more
about creating an index in parallel

Oracle Text Reference

See Also: Oracle Text Reference to learn more about USER_
DATASTORE

Considerations For Indexing

3-8 Oracle Text Application Developer's Guide

■ Path names of documents in your file system

■ URLs that specify World Wide Web documents

Figure 3–2 illustrates these different methods.

When creating a CTXCAT or CTXRULE index, only the first method shown is
supported.

Figure 3–2 Different Ways of Storing Text

By default, the indexing operation expects your document text to be directly loaded in
your text table, which is the first method shown previously.

However, when you create a CONTEXT index, you can specify the other ways of
identifying your documents such as with filenames or with URLs by using the
corresponding data storage indexing preference.

Supported Column Types
With Oracle Text, you can create a CONTEXT index with columns of type VARCHAR2,
CLOB, BLOB, CHAR, BFILE, XMLType, and URIType.

Text Table
author date text

Text Table
author date text

File 1 /my_path/my_system/doc1.doc

File 2 /my_path/my_system/doc2.doc

Document 1

Document 2

Document Collection

Document Stored In
Text Table

Text Column Stores
File Paths

Text Table
author date text

URL 1 http://www.mysite.com/mydoc1.html

URL 2 http://www.mysite.com/mydoc1.html
Text Column
Stores URLs

Considerations For Indexing

Indexing with Oracle Text 3-9

Storing Text in the Text Table
This section discusses how you can store text in directly in your table with the
different indexes.

CONTEXT Data Storage You can store documents in your text table in different ways.

You can store documents in one column using the DIRECT_DATASTORE data storage
type or over a number of columns using the MULTI_COLUMN_DATASTORE type. When
your text is stored over a number of columns, Oracle Text concatenates the columns
into a virtual document for indexing.

You can also create master-detail relationships for your documents, where one
document can be stored across a number of rows. To create master-detail index, use
the DETAIL_DATASTORE data storage type.

You can also store your text in a nested table using the NESTED_DATASTORE type.

Oracle Text supports the indexing of the XMLType datatype, which you use to store
XML documents.

CTXCAT Data Storage In your text table, you can also store short text fragments such as
names, descriptions, and addresses over a number of columns and create a CTXCAT
index. A CTXCAT index improves performance for mixed queries.

Storing File Path Names
In your text table, you can store path names to files stored in your file system. When
you do so, use the FILE_DATASTORE preference type during indexing. This method of
data storage is supported for CONTEXT indexes only.

Storing URLs
You can store URL names to index Web sites. When you do so, use the URL_
DATASTORE preference type during indexing. This method of data storage is
supported for CONTEXT indexes only.

Storing Associated Document Information
In your text table, you can create additional columns to store structured information
that your query application might need, such as primary key, date, description, or
author.

Format and Character Set Columns
If your documents are of mixed formats or of mixed character sets, you can create the
following additional columns:

■ A format column to record the format (TEXT or BINARY) to help filtering during
indexing. You can also use the format column to ignore rows for indexing by
setting the format column to IGNORE. This is useful for bypassing rows that
contain data incompatible with text indexing such as images.

■ A character set column to record the document character set for each row.

When you create your index, you must specify the name of the format or character set
column in the parameter clause of CREATE INDEX.

Note: The column types NCLOB, DATE and NUMBER cannot be
indexed.

Considerations For Indexing

3-10 Oracle Text Application Developer's Guide

For all rows containing the keywords AUTO or AUTOMATIC in character set or language
columns, Oracle Text will apply statistical techniques to determine the character set
and language respectively of the documents and modify document indexing
appropriately.

Supported Document Formats
Because the system can index most document formats including HTML, PDF,
Microsoft Word, and plain text, you can load any supported type into the text column.

When you have mixed formats in your text column, you can optionally include a
format column to help filtering during indexing. With the format column you can
specify whether a document is binary (formatted) or text (non-formatted such as
HTML).

Summary of DATASTORE Types
When you index with CREATE INDEX, you specify the location using the datastore
preference. Use the appropriate datastore according to your application.

Table 3–2 summarizes the different ways you can store your text with the datastore
preference type.

Indexing time and document retrieval time will be increased for indexing URLs since
the system must retrieve the document from the network.

See Also: Oracle Text Reference for more information about the
supported document formats

Table 3–2 Summary of DATASTORE Types

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in a text column. Each row is indexed as
a single document.

Your text column can be VARCHAR2, CLOB, BLOB, CHAR,
or BFILE. XMLType columns are supported for the context
index type.

MULTI_COLUMN_
DATASTORE

Data is stored in a text table in more than one column. Columns
are concatenated to create a virtual document, one document for
each row.

DETAIL_DATASTORE Data is stored internally in a text column. Document consists of
one or more rows stored in a text column in a detail table, with
header information stored in a master table.

FILE_DATASTORE Data is stored externally in operating system files. Filenames are
stored in the text column, one for each row.

NESTED_DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet or the
Internet. Uniform Resource Locators (URLs) are stored in the
text column.

USER_DATASTORE Documents are synthesized at index time by a user-defined
stored procedure.

See Also: Datastore Examples in this chapter

Considerations For Indexing

Indexing with Oracle Text 3-11

Document Formats and Filtering
Formatted documents such as Microsoft Word and PDF must be filtered to text to be
indexed. The type of filtering the system uses is determined by the FILTER preference
type. By default the system uses the AUTO_FILTER filter type, which automatically
detects the format of your documents and filters them to text.

Oracle Text can index most formats. Oracle Text can also index columns that contain
documents with mixed formats.

No Filtering for HTML
If you are indexing HTML or plain text files, do not use the AUTO_FILTER type. For
best results, use the NULL_FILTER preference type.

Filtering Mixed-Format Columns
If you have a mixed-format column such as one that contains Microsoft Word, plain
text, and HTML documents, you can bypass filtering for plain text or HTML by
including a format column in your text table. In the format column, you tag each row
TEXT or BINARY. Rows that are tagged TEXT are not filtered.

For example, you can tag the HTML and plain text rows as TEXT and the Microsoft
Word rows as BINARY. You specify the format column in the CREATE INDEX
parameter clause.

A third format column type, IGNORE, is provided for when you do not want a
document to be indexed at all. This is useful, for example, when you have a
mixed-format table that includes plain-text documents in both Japanese and English,
but you only want to process the English documents; another example might be that of
a mixed-format table that includes both plain-text documents and images. Because
IGNORE is implemented at the datastore level, it can be used with all filters.

Custom Filtering
You can create your own custom filter to filter documents for indexing. You can create
either an external filter that is executed from the file system or an internal filter as a
PL/SQL or Java stored procedure.

For external custom filtering, use the USER_FILTER filter preference type.

For internal filtering, use the PROCEDURE_FILTER filter type.

Bypassing Rows for Indexing
You can bypass rows in your text table that are not to be indexed, such as rows that
contain image data. To do so, create a format column in your table and set it to
IGNORE. You name the format column in the parameter clause of CREATE INDEX.

Document Character Set
The indexing engine expects filtered text to be in the database character set. When you
use the AUTO_FILTER filter type, formatted documents are converted to text in the
database character set.

See Also: NULL_FILTER Example: Indexing HTML Documents
in this chapter

See Also: PROCEDURE_FILTER Example on page 3-18

Considerations For Indexing

3-12 Oracle Text Application Developer's Guide

If your source is text and your document character set is not the database character set,
you can use the AUTO_FILTER or CHARSET_FILTER filter type to convert your text
for indexing.

Mixed Character Set Columns
If your document set contains documents with different character sets, such as
JA16EUC and JA16SJIS, you can index the documents provided you create a charset
column. You populate this column with the name of the document character set for
each row. You name the column in the parameter clause of the CREATE INDEX
statement.

Document Language
Oracle Text can index most languages. By default, Oracle Text assumes the language of
text to index is the language you specify in your database setup.

You use the BASIC_LEXER preference type to index whitespace-delimited languages
such as English, French, German, and Spanish. For some of these languages you can
enable alternate spelling, composite word indexing, and base letter conversion.

You can also index Japanese, Chinese, and Korean.

Languages Features Outside BASIC_LEXER
With the BASIC_LEXER, Japanese, Chinese and Korean lexers, Oracle Text provides a
lexing solution for most languages. For other languages such as Thai and Arabic, you
can create your own lexing solution using the user-defined lexer interface. This
interface enables you to create a PL/SQL or Java procedure to process your documents
during indexing and querying.

You can also use the user-defined lexer to create your own theme lexing solution or
linguistic processing engine.

Indexing Multi-language Columns
Oracle Text can index text columns that contain documents of different languages,
such as a column that contains documents written in English, German, and Japanese.
To index a multi-language column, you need a language column in your text table. Use
the MULTI_LEXER preference type.

You can also incorporate a multi-language stoplist when you index multi-language
columns.

Indexing Special Characters
When you use the BASIC_LEXER preference type, you can specify how
non-alphanumeric characters such as hyphens and periods are indexed in relation to
the tokens that contain them. For example, you can specify that Oracle Text include or
exclude hyphen character (-) when indexing a word such as web-site.

See Also: Oracle Text Reference to learn more about indexing these
languages

See Also: Oracle Text Reference to learn more about this lexer

See Also: MULTI_LEXER Example: Indexing a Multi-Language
Table in this chapter

Considerations For Indexing

Indexing with Oracle Text 3-13

These characters fall into BASIC_LEXER categories according to the behavior you
require during indexing. The way the you set the lexer to behave for indexing is the
way it behaves for query parsing.

Some of the special characters you can set are as follows:

Printjoins Character
Define a non-alphanumeric character as printjoin when you want this character to
be included in the token during indexing.

For example, if you want your index to include hyphens and underscore characters,
define them as printjoins. This means that words such as web-site are indexed as
web-site. A query on website does not find web-site.

Skipjoins Character
Define a non-alphanumeric character as a skipjoin when you do not want this
character to be indexed with the token that contains it.

For example, with the hyphen (-) character defined as a skipjoin, the word web-site is
indexed as website. A query on web-site finds documents containing website and
web-site.

Other Characters
Other characters can be specified to control other tokenization behavior such as token
separation (startjoins, endjoins, whitespace), punctuation identification (punctuations),
number tokenization (numjoins), and word continuation after line-breaks
(continuation). These categories of characters have defaults, which you can modify.

Case-Sensitive Indexing and Querying
By default, all text tokens are converted to uppercase and then indexed. This results in
case-insensitive queries. For example, separate queries on each of the three words cat,
CAT, and Cat all return the same documents.

You can change the default and have the index record tokens as they appear in the
text. When you create a case-sensitive index, you must specify your queries with exact
case to match documents. For example, if a document contains Cat, you must specify
your query as Cat to match this document. Specifying cat or CAT does not return the
document.

To enable or disable case-sensitive indexing, use the mixed_case attribute of the
BASIC_LEXER preference.

Language-Specific Features
You can enable the following language specific features at index time:

See Also: BASIC_LEXER Example: Setting Printjoins Characters
in this chapter

See Also: Oracle Text Reference to learn more about the
BASIC_LEXER

See Also: Oracle Text Reference to learn more about the
BASIC_LEXER

Considerations For Indexing

3-14 Oracle Text Application Developer's Guide

Indexing Themes
For English and French, you can index document theme information. A document
themes is a concept that is sufficiently developed in the document. Themes can be
queried with the ABOUT operator.

You can index theme information in other languages provided you have loaded and
compiled a knowledge base for the language.

By default themes are indexed in English and French. You can enable and disable
theme indexing with the index_themes attribute of the BASIC_LEXER preference type.

Base-Letter Conversion for Characters with Diacritical Marks
Some languages contain characters with diacritical marks such as tildes, umlauts, and
accents. When your indexing operation converts words containing diacritical marks to
their base letter form, queries need not contain diacritical marks to score matches. For
example in Spanish with a base-letter index, a query of energía matches energía and
energia in the index.

However, with base-letter indexing disabled, a query of energía matches only energía.

You can enable and disable base-letter indexing for your language with the base_letter
attribute of the BASIC_LEXER preference type.

Alternate Spelling
Languages such as German, Danish, and Swedish contain words that have more than
one accepted spelling. For instance, in German, ae can be substituted for ä. The ae
character pair is known as the alternate form.

By default, Oracle Text indexes words in their alternate forms for these languages.
Query terms are also converted to their alternate forms. The result is that these words
can be queried with either spelling.

You can enable and disable alternate spelling for your language using the alternate_
spelling attribute in the BASIC_LEXER preference type.

Composite Words
German and Dutch text contain composite words. By default, Oracle Text creates
composite indexes for these languages. The result is that a query on a term returns
words that contain the term as a sub-composite.

For example, in German, a query on the term Bahnhof (train station) returns documents
that contain Bahnhof or any word containing Bahnhof as a sub-composite, such as
Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

You can enable and disable the creation of composite indexes with the composite
attribute of the BASIC_LEXER preference.

See Also:

■ Oracle Text Reference to learn more about the BASIC_LEXER

■ ABOUT Queries and Themes in Chapter 4, "Querying with
Oracle Text"

See Also: Oracle Text Reference to learn more about the
BASIC_LEXER

See Also: Oracle Text Reference to learn more about the
BASIC_LEXER

Considerations For Indexing

Indexing with Oracle Text 3-15

Korean, Japanese, and Chinese Indexing
You index these languages with specific lexers:

These lexers have their own sets of attributes to control indexing.

Fuzzy Matching and Stemming
Fuzzy matching enables you to match similarly spelled words in queries.

Stemming enables you to match words with the same linguistic root. For example a
query on $speak, expands to search for all documents that contain speak, speaks, spoke,
and spoken.

Fuzzy matching and stemming are automatically enabled in your index if Oracle Text
supports this feature for your language.

Fuzzy matching is enabled with default parameters for its similarity score lower limit
and for its maximum number of expanded terms. At index time you can change these
default parameters.

To improve the performance of stem queries, you can create a stem index by enabling
the index_stems attribute of the BASIC_LEXER.

Better Wildcard Query Performance
Wildcard queries enable you to issue left-truncated, right-truncated and doubly
truncated queries, such as %ing, cos%, or %benz%. With normal indexing, these queries
can sometimes expand into large word lists, degrading your query performance.

Wildcard queries have better response time when token prefixes and substrings are
recorded in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index. If
your query application makes heavy use of wildcard queries, consider indexing token
prefixes and substrings. To do so, use the wordlist preference type. The trade-off is a
bigger index for improved wildcard searching.

Document Section Searching
For documents that have internal structure such as HTML and XML, you can define
and index document sections. Indexing document sections enables you to narrow the

See Also: Oracle Text Reference to learn more about the
BASIC_LEXER

Table 3–3 Lexers for Asian Languages

Language Lexer

Korean KOREAN_MORPH_LEXER

Japanese JAPANESE_LEXER, JAPANESE_VGRAM_LEXER

Chinese CHINESE_LEXER,CHINESE_VGRAM_LEXER

See Also: Oracle Text Reference to learn more about these lexers

See Also: Oracle Text Reference

See Also: BASIC_WORDLIST Example: Enabling Substring and
Prefix Indexing in this chapter

Considerations For Indexing

3-16 Oracle Text Application Developer's Guide

scope of your queries to within pre-defined sections. For example, you can specify a
query to find all documents that contain the term dog within a section you define as
Headings.

Sections must be defined prior to indexing and specified with the section group
preference.

Oracle Text provides section groups with system-defined section definitions for HTML
and XML. You can also specify that the system automatically create sections from XML
documents during indexing.

Stopwords and Stopthemes
A stopword is a word that is not to be indexed. Usually stopwords are low
information words in a given language such as this and that in English.

By default, Oracle Text provides a list of stopwords called a stoplist for indexing a
given language. You can modify this list or create your own with the CTX_DDL
package. You specify the stoplist in the parameter string of CREATE INDEX.

A stoptheme is a word that is prevented from being theme-indexed or prevented from
contributing to a theme. You can add stopthemes with the CTX_DDL package.

You can search document themes with the ABOUT operator. You can retrieve document
themes programatically with the CTX_DOC PL/SQL package.

Multi-Language Stoplists
You can also create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you use the MULTI_LEXER to index a table that
contains documents in different languages, such as English, German, and Japanese.

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when using
the multi-lexer.

Index Performance
There are factors that influence indexing performance including memory allocation,
document format, degree of parallelism, and partitioned tables.

Query Performance and Storage of LOB Columns
If your table contains LOB structured columns that are frequently accessed in queries
but rarely updated, you can improve query performance by storing these columns out
of line.

See Also: Chapter 8, "Searching Document Section in Oracle Text"

See Also: "Frequently Asked Questions About Indexing
Performance" in Chapter 7, "Tuning Oracle Text"

See Also: "Does out of line LOB storage of wide base table
columns improve performance?" in Chapter 7, "Tuning Oracle Text"

Index Creation

Indexing with Oracle Text 3-17

Index Creation
You can create four types of indexes with Oracle Text: CONTEXT, CTXCAT, and
CTXRULE, and CTXXPATH

Procedure for Creating a CONTEXT Index
By default, the system expects your documents to be stored in a text column. Once this
requirement is satisfied, you can create a text index using the CREATE INDEX SQL
command as an extensible index of type CONTEXT, without explicitly specifying any
preferences. The system automatically detects your language, the datatype of the text
column, format of documents, and sets indexing preferences accordingly.

To create an Oracle Text index, do the following:

1. Optionally, determine your custom indexing preferences, section groups, or
stoplists if not using defaults. The following table describes these indexing classes:

1. Optionally, create your own custom preferences, section groups, or stoplists. See
"Creating Preferences" in this chapter.

2. Create the Text index with the SQL command CREATE INDEX, naming your index
and optionally specifying preferences. See "Creating an Index" in this chapter.

Creating Preferences
You can optionally create your own custom index preferences to override the defaults.
Use the preferences to specify index information such as where your files are stored
and how to filter your documents. You create the preferences then set the attributes.

Datastore Examples
The following sections give examples for setting direct, multi-column, URL, and file
datastores.

See Also: Default CONTEXT Index Example in this chapter

Class Description

Datastore How are your documents stored?

Filter How can the documents be converted to plaintext?

Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index data be stored?

Stop List What words or themes are not to be indexed?

Section Group How are documents sections defined?

See Also: Considerations For Indexing in this chapter and
Oracle Text Reference

See Also: Oracle Text Reference for more information about data
storage

Index Creation

3-18 Oracle Text Application Developer's Guide

Specifying DIRECT_DATASTORE The following example creates a table with a CLOB
column to store text data. It then populates two rows with text data and indexes the
table using the system-defined preference CTXSYS.DEFAULT_DATASTORE which uses
the DIRECT_DATASTORE preference type.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555,'this text will be indexed');
insert into mytable values(111556,'this is a default datastore example');
commit;

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('DATASTORE CTXSYS.DEFAULT_DATASTORE');

Specifying MULTI_COLUMN_DATASTORE The following example creates a multi-column
datastore preference called my_multi on the three text columns to be concatenated
and indexed:

begin
ctx_ddl.create_preference('my_multi', 'MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('my_multi', 'columns', 'column1, column2, column3');
end;

Specifying URL Data Storage This example creates a URL_DATASTORE preference called
my_url to which the http_proxy, no_proxy, and timeout attributes are set. The timeout
attribute is set to 300 seconds. The defaults are used for the attributes that are not set.

begin
 ctx_ddl.create_preference('my_url','URL_DATASTORE');
 ctx_ddl.set_attribute('my_url','HTTP_PROXY','www-proxy.us.oracle.com');
 ctx_ddl.set_attribute('my_url','NO_PROXY','us.oracle.com');
 ctx_ddl.set_attribute('my_url','Timeout','300');
end;

Specifying File Data Storage The following example creates a data storage preference
using the FILE_DATASTORE. This tells the system that the files to be indexed are
stored in the operating system. The example uses CTX_DDL.SET_ATTRIBUTE to set
the PATH attribute of to the directory /docs.

begin
ctx_ddl.create_preference('mypref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('mypref', 'PATH', '/docs');
end;

NULL_FILTER Example: Indexing HTML Documents
If your document set is entirely HTML, Oracle recommends that you use the NULL_
FILTER in your filter preference, which does no filtering.

For example, to index an HTML document set, you can specify the system-defined
preferences for NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
 parameters('filter ctxsys.null_filter
 section group ctxsys.html_section_group');

PROCEDURE_FILTER Example
Consider a filter procedure CTXSYS.NORMALIZE that you define with the following
signature:

Index Creation

Indexing with Oracle Text 3-19

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, you set up your filter preference as follows:

begin
ctx_ddl.create_preference('myfilt', 'procedure_filter');
ctx_ddl.set_attribute('myfilt', 'procedure', 'normalize');
ctx_ddl.set_attribute('myfilt', 'input_type', 'clob');
ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('myfilt', 'rowid_parameter', 'TRUE');
ctx_ddl.set_attribute('myfilt', 'charset_parameter', 'TRUE');
end;

BASIC_LEXER Example: Setting Printjoins Characters
Printjoin characters are non-alphanumeric characters that are to be included in index
tokens, so that words such as web-site are indexed as web-site.

The following example sets printjoin characters to be the hyphen and underscore with
the BASIC_LEXER:

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
end;

To create the index with printjoins characters set as previously shown, issue the
following statement:

create index myindex on mytable (docs)
 indextype is ctxsys.context
 parameters ('LEXER mylex');

MULTI_LEXER Example: Indexing a Multi-Language Table
You use the MULTI_LEXER preference type to index a column containing documents
in different languages. For example, you can use this preference type when your text
column stores documents in English, German, and French.

The first step is to create the multi-language table with a primary key, a text column,
and a language column as follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with some German and
Japanese documents. To handle the three languages, you must create three sub-lexers,
one for English, one for German, and one for Japanese:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribute('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Index Creation

3-20 Oracle Text Application Developer's Guide

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Since the stored documents are mostly English, make the English lexer the default
using CTX_DDL.ADD_SUB_LEXER:

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Now add the German and Japanese lexers in their respective languages with CTX_
DDL.ADD_SUB_LEXER procedure. Also assume that the language column is expressed
in the standard ISO 639-2 language codes, so add those as alternate values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Now create the index globalx, specifying the multi-lexer preference and the
language column in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing
The following example sets the wordlist preference for prefix and substring indexing.
Having a prefix and sub-string component to your index improves performance for
wildcard queries.

For prefix indexing, the example specifies that Oracle Text create token prefixes
between three and four characters long:

begin
ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH', '3');
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', '4');
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');
end;

Creating Section Groups for Section Searching
When documents have internal structure such as in HTML and XML, you can define
document sections using embedded tags before you index. This enables you to query
within the sections using the WITHIN operator. You define sections as part of a section
group.

Example: Creating HTML Sections
The following code defines a section group called htmgroup of type HTML_SECTION_
GROUP. It then creates a zone section in htmgroup called heading identified by the
<H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

See Also: Chapter 8, "Searching Document Section in Oracle Text"

Index Creation

Indexing with Oracle Text 3-21

Using Stopwords and Stoplists
A stopword is a word that is not to be indexed. A stopword is usually a low
information word such as this or that in English.

The system supplies a list of stopwords called a stoplist for every language. By default
during indexing, the system uses the Oracle Text default stoplist for your language.

You can edit the default stoplist CTXSYS.DEFAULT_STOPLIST or create your own
with the following PL/SQL procedures:

■ CTX_DDL.CREATE_STOPLIST

■ CTX_DDL.ADD_STOPWORD

■ CTX_DDL.REMOVE_STOPWORD

You specify your custom stoplists in the parameter clause of CREATE INDEX.

You can also dynamically add stopwords after indexing with the ALTER INDEX
statement.

Multi-Language Stoplists
You can create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you use the MULTI_LEXER to index a table that
contains documents in different languages, such as English, German, and Japanese.

To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST procedure
and specify a stoplist type of MULTI_STOPLIST. You add language specific stopwords
with CTX_DDL.ADD_STOPWORD.

Stopthemes and Stopclasses
In addition to defining your own stopwords, you can define stopthemes, which are
themes that are not to be indexed. This feature is available for English and French only.

You can also specify that numbers are not to be indexed. A class of alphanumeric
characters such a numbers that is not to be indexed is a stopclass.

You record your own stopwords, stopthemes, stopclasses by creating a single stoplist,
to which you add the stopwords, stopthemes, and stopclasses. You specify the stoplist
in the paramstring for CREATE INDEX.

PL/SQL Procedures for Managing Stoplists
You use the following procedures to manage stoplists, stopwords, stopthemes, and
stopclasses:

■ CTX_DDL.CREATE_STOPLIST

■ CTX_DDL.ADD_STOPWORD

■ CTX_DDL.ADD_STOPTHEME

■ CTX_DDL.ADD_STOPCLASS

■ CTX_DDL.REMOVE_STOPWORD

■ CTX_DDL.REMOVE_STOPTHEME

■ CTX_DDL.REMOVE_STOPCLASS

■ CTX_DDL.DROP_STOPLIST

Index Creation

3-22 Oracle Text Application Developer's Guide

Creating an Index
You create an Oracle Text index as an extensible index using the CREATE INDEX SQL
command.

You can create four types of indexes:

■ CONTEXT

■ CTXCAT

■ CTXRULE

■ CTXXPATH

Creating a CONTEXT Index
The context index type is well-suited for indexing large coherent documents such as
MS Word, HTML or plain text. With a context index, you can also customize your
index in a variety of ways.

The documents must be loaded in a text table.

CONTEXT Index and DML
A CONTEXT index is not transactional. When you perform inserts, updates, or deletes
on the base table, you must explicitly synchronize the index with CTX_DDL.SYNC_
INDEX.

Default CONTEXT Index Example
The following command creates a default context index called myindex on the
text column in the docs table:

CREATE INDEX myindex ON docs(text) INDEXTYPE IS CTXSYS.CONTEXT;

When you use CREATE INDEX without explicitly specifying parameters, the system
does the following for all languages by default:

■ Assumes that the text to be indexed is stored directly in a text column. The text
column can be of type CLOB, BLOB, BFILE, VARCHAR2, or CHAR.

■ Detects the column type and uses filtering for the binary column types of BLOB
and BFILE. Most document formats are supported for filtering. If your column is
plain text, the system does not use filtering.

■ Assumes the language of text to index is the language you specify in your
database setup.

See Also: Oracle Text Reference to learn more about using these
commands

See Also: "Synchronizing the Index" in this chapter

Note: For document filtering to work correctly in your system,
you must ensure that your environment is set up correctly to
support the AUTO_FILTER filter.

To learn more about configuring your environment to use the
AUTO_FILTER filter, see the Oracle Text Reference.

Index Creation

Indexing with Oracle Text 3-23

■ Uses the default stoplist for the language you specify in your database setup.
Stoplists identify the words that the system ignores during indexing.

■ Enables fuzzy and stemming queries for your language, if this feature is available
for your language.

You can always change the default indexing behavior by creating your own
preferences and specifying these custom preferences in the parameter string of
CREATE INDEX.

Custom CONTEXT Index Example: Indexing HTML Documents
To index an HTML document set located by URLs, you can specify the system-defined
preference for the NULL_FILTER in the CREATE INDEX statement.

You can also specify your section group htmgroup that uses HTML_SECTION_GROUP
and datastore my_url that uses URL_DATASTORE as follows:

begin
 ctx_ddl.create_preference('my_url','URL_DATASTORE');
 ctx_ddl.set_attribute('my_url','HTTP_PROXY','www-proxy.us.oracle.com');
 ctx_ddl.set_attribute('my_url','NO_PROXY','us.oracle.com');
 ctx_ddl.set_attribute('my_url','Timeout','300');
end;

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

You can then index your documents as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('datastore my_url filter ctxsys.null_filter section group htmgroup');

Creating a CTXCAT Index
The CTXCAT indextype is well-suited for indexing small text fragments and related
information. If created correctly, this type of index can give better structured query
performance over a CONTEXT index.

CTXCAT Index and DML
A CTXCAT index is transactional. When you perform DML (inserts, updates, and
deletes) on the base table, Oracle Text automatically synchronizes the index. Unlike a
CONTEXT index, no CTX_DDL.SYNC_INDEX is necessary.

About CTXCAT Sub-Indexes and Their Costs
A CTXCAT index is comprised of sub-indexes that you define as part of your index set.
You create a sub-index on one or more columns to improve mixed query performance.

See Also: "Creating Preferences" in this chapter for more
examples on creating a custom context index

Note: Applications that insert without invoking triggers such as
SQL*Loader will not result in automatic index synchronization as
described previously.

Index Creation

3-24 Oracle Text Application Developer's Guide

However, adding sub-indexes to the index set has its costs. The time Oracle Text takes
to create a CTXCAT index depends on its total size, and the total size of a CTXCAT index
is directly related to

■ Total text to be indexed

■ Number of sub-indexes in the index set

■ Number of columns in the base table that make up the sub-indexes

Having many component indexes in your index set also degrades DML performance
since more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index,
carefully consider the query performance benefit each component index gives your
application before adding it to your index set.

Creating CTXCAT Sub-indexes
An online auction site that must store item descriptions, prices and bid-close dates for
ordered look-up provides a good example for creating a CTXCAT index.

Figure 3–3 Auction Table Schema and CTXCAT Index

Figure 3–3 shows a table called AUCTION with the following schema:

create table auction(
item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

To create your sub-indexes, create an index set to contain them:

begin
ctx_ddl.create_index_set('auction_iset');
end;

Next, determine the structured queries your application is likely to issue. The
CATSEARCH query operator takes a mandatory text clause and optional structured
clause.

Auction Table
item_id
number

title
varchar (100)

category_id
number

price
number

bid_close
date

Sub-index A

Sub-index B

CTXCAT
Index

B

A

Index Creation

Indexing with Oracle Text 3-25

In our example, this means all queries include a clause for the title column which is
the text column.

Assume that the structured clauses fall into the following categories:

Structured Query Clause Category A The structured query clause contains an expression
for only the price column as follows:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price < 200')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price = 150')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by price')> 0;

These queries can be served using sub-index B, but for efficiency you can also create a
sub-index only on price, which we call sub-index A:

begin
ctx_ddl.add_index('auction_iset','price'); /* sub-index A */
end;

Structured Query Clause Category B The structured query clause includes an equivalence
expression for price ordered by bid_close, and an expression for ordering by price
and bid_close in that order:

SELECT FROM auction WHERE CATSEARCH(title, 'camera','price = 100 order by bid_
close')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera','order by price, bid_close')>
0;

These queries can be served with a sub-index defined as follows:

begin
ctx_ddl.add_index('auction_iset','price, bid_close'); /* sub-index B */
end;

Like a combined b-tree index, the column order you specify with CTX_DDL.ADD_
INDEX affects the efficiency and viability of the index scan Oracle Text uses to serve
specific queries. For example, if two structured columns p and q have a b-tree index
specified as 'p,q', Oracle Text cannot scan this index to sort 'order by q,p'.

Creating CTXCAT Index
The following example combines the previous examples and creates the index set
preference with the two sub-indexes:

begin
ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','price'); /* sub-index A */
ctx_ddl.add_index('auction_iset','price, bid_close'); /* sub-index B */
end;

Structured Clauses
Sub-index Definition
to Serve Query Category

'price < 200'

'price = 150'

'order by price'

'price' A

'price = 100 order by bid_close'

'order by price, bid_close'

'price, bid_close' B

Index Creation

3-26 Oracle Text Application Developer's Guide

Figure 3–3 on page 3-24 shows how the sub-indexes A and B are created from the
auction table. Each sub-index is a b-tree index on the text column and the named
structured columns. For example, sub-index A is an index on the title column and
the bid_close column.

You create the combined catalog index with CREATE INDEX as follows:

CREATE INDEX auction_titlex ON AUCTION(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ('index set auction_iset');

Creating a CTXRULE Index
You use the CTXRULE index to build a document classification application. In such an
application, a stream of incoming documents is classified based on their content.

Document routing is achieved by creating a CTXRULE index on a table or queries. The
queries define your categories. You can use the MATCHES operator to classify single
documents.

Create a Table of Queries
The first step is to create a table of queries that define your classifications. We create a
table myqueries to hold the category name and query text:

CREATE TABLE myqueries (
queryid NUMBER PRIMARY KEY,
category VARCHAR2(30),
query VARCHAR2(2000)
);

Populate the table with the classifications and the queries that define each. For
example, consider a classification for the subjects US Politics, Music, and Soccer.:

INSERT INTO myqueries VALUES(1, 'US Politics', 'democrat or republican');
INSERT INTO myqueries VALUES(2, 'Music', 'ABOUT(music)');
INSERT INTO myqueries VALUES(3, 'Soccer', 'ABOUT(soccer)');

Using CTX_CLS.TRAIN You can also generate a table of rules (queries) with the CTX_
CLS.TRAIN procedure, which takes as input a document training set.

Create the CTXRULE Index
Use CREATE INDEX to create the CTXRULE index. You can specify lexer, storage,
section group, and wordlist parameters if needed:

CREATE INDEX ON myqueries(query)
 INDEXTYPE IS CTXRULE PARAMETERS
 ('lexer lexer_pref
 storage storage_pref
 section group section_pref
 wordlist wordlist_pref');

See Also: Oracle Text Reference to learn more about creating a
CTXCAT index with CREATE INDEX

See Also: Chapter 6, "Classifying Documents in Oracle Text" for
more information on document classification and the CTXRULE
index

See Also: Oracle Text Reference for more information on
CTX_CLS.TRAIN

Index Maintenance

Indexing with Oracle Text 3-27

Classifying a Document
With a CTXRULE index created on query set, you can use the MATCHES operator to
classify a document.

Assume that incoming documents are stored in the table news:

CREATE TABLE news (
newsid NUMBER,
author VARCHAR2(30),
source VARCHAR2(30),
article CLOB);

You can create a before insert trigger with MATCHES to route each document to another
table news_route based on its classification:

BEGIN
 -- find matching queries
 FOR c1 IN (select category
 from myqueries
 where MATCHES(query, :new.article)>0)
 LOOP
 INSERT INTO news_route(newsid, category)
 VALUES (:new.newsid, c1.category);
 END LOOP;
END;

Index Maintenance
This section describes maintaining your index in the event of an error or indexing
failure.

Viewing Index Errors
Sometimes an indexing operation might fail or not complete successfully. When the
system encounters an error indexing a row, it logs the error in an Oracle Text view.

You can view errors on your indexes with CTX_USER_INDEX_ERRORS. View errors on
all indexes as CTXSYS with CTX_INDEX_ERRORS.

For example to view the most recent errors on your indexes, you can issue:

SELECT err_timestamp, err_text FROM ctx_user_index_errors ORDER BY err_timestamp
DESC;

To clear the view of errors, you can issue:

DELETE FROM ctx_user_index_errors;

This view is cleared automatically when you create a new index.

Dropping an Index
You must drop an existing index before you can re-create it with CREATE INDEX.

You drop an index using the DROP INDEX command in SQL.

If you try to create an index with an invalid PARAMETERS string, you still need to drop
it before you can re-create it.

For example, to drop an index called newsindex, issue the following SQL command:

See Also: Oracle Text Reference to learn more about these views

Index Maintenance

3-28 Oracle Text Application Developer's Guide

DROP INDEX newsindex;

If Oracle Text cannot determine the state of the index, for example as a result of an
indexing malfunction, you cannot drop the index as described previously. Instead use:

DROP INDEX newsindex FORCE;

Resuming Failed Index
You can sometimes resume a failed index creation operation using the ALTER INDEX
command. You typically resume a failed index after you have investigated and
corrected the index failure. Not all index failures can be resumed.

Index optimization commits at regular intervals. Therefore if an optimization
operation fails, all optimization work up to the commit point has already been saved.

Example: Resuming a Failed Index
The following command resumes the indexing operation on newsindex with 10
megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS('resume memory 10M');

Rebuilding an Index
You can rebuild a valid index using ALTER INDEX. You might rebuild an index when
you want to index with a new preference.

Generally, there is no advantage in rebuilding an index over dropping it and
re-creating it with CREATE INDEX.

Example: Rebuilding and Index
The following command rebuilds the index, replacing the lexer preference with my_
lexer.

ALTER INDEX newsindex REBUILD PARAMETERS('replace lexer my_lexer');

Dropping a Preference
You might drop a custom index preference when you no longer need it for indexing.

You drop index preferences with the procedure CTX_DDL.DROP_PREFERENCE.

Dropping a preference does not affect the index created from the preference.

Example
The following code drops the preference my_lexer.

begin

See Also: Oracle Text Reference to learn more about this command

See Also: Oracle Text Reference to learn more about the
ALTER INDEX command syntax

See Also: Oracle Text Reference to learn more about the
ALTER INDEX command syntax

See Also: Oracle Text Reference to learn more about the syntax for
the CTX_DDL.DROP_PREFERENCE procedure

Managing DML Operations for a CONTEXT Index

Indexing with Oracle Text 3-29

ctx_ddl.drop_preference('my_lexer');
end;

Managing DML Operations for a CONTEXT Index
DML operations to the base table refer to when documents are inserted, updated or
deleted from the base table. This section describes how you can monitor, synchronize,
and optimize the Oracle Text CONTEXT index when DML operations occur.

Viewing Pending DML
When documents in the base table are inserted, updated, or deleted, their ROWIDs are
held in a DML queue until you synchronize the index. You can view this queue with
the CTX_USER_PENDING view.

For example, to view pending DML on all your indexes, issue the following statement:

SELECT pnd_index_name, pnd_rowid, to_char(pnd_timestamp, 'dd-mon-yyyy hh24:mi:ss')
timestamp FROM ctx_user_pending;

This statement gives output in the form:

PND_INDEX_NAME PND_ROWID TIMESTAMP
------------------------------ ------------------ --------------------
MYINDEX AAADXnAABAAAS3SAAC 06-oct-1999 15:56:50

Synchronizing the Index
Synchronizing the index involves processing all pending updates, inserts, and deletes
to the base table. You can do this in PL/SQL with the CTX_DDL.SYNC_INDEX
procedure.

The following example synchronizes the index with 2 megabytes of memory:

begin
ctx_ddl.sync_index('myindex', '2M');
end;

Setting Background DML
You can set CTX_DDL.SYNC_INDEX to run automatically at regular intervals using the
DBMS_JOB.SUBMIT procedure. Oracle Text includes a SQL script you can use to do
this. The location of this script is:

$ORACLE_HOME/ctx/sample/script/drjobdml.sql

To use this script, you must be the index owner and you must have execute privileges
on the CTX_DDL package. You must also set the job_queue_processes parameter
in your Oracle Database initialization file.

For example, to set the index synchronization to run every 360 minutes on myindex,
you can issue the following in SQL*Plus:

Note: CTXCAT indexes are transactional and thus updated
immediately when there is an update to the base table. Manual
synchronization as described in this section is not necessary for a
CTXCAT index.

See Also: Oracle Text Reference to learn more about this view

Managing DML Operations for a CONTEXT Index

3-30 Oracle Text Application Developer's Guide

SQL> @drjobdml myindex 360

Index Optimization
Frequent index synchronization can fragment your CONTEXT index. Index
fragmentation can adversely affect query response time. You can optimize your
CONTEXT index to reduce fragmentation and index size and so improve query
performance.

To understand index optimization, you must understand the structure of the index
and what happens when it is synchronized.

CONTEXT Index Structure
The CONTEXT index is an inverted index where each word contains the list of
documents that contain that word. For example, after a single initial indexing
operation, the word DOG might have an entry as follows:

DOG DOC1 DOC3 DOC5

Index Fragmentation
When new documents are added to the base table, the index is synchronized by
adding new rows. Thus if you add a new document (DOC 7) with the word dog to the
base table and synchronize the index, you now have:

DOG DOC1 DOC3 DOC5
DOG DOC7
Subsequent DML will also create new rows:

DOG DOC1 DOC3 DOC5
DOG DOC7
DOG DOC9
DOG DOC11

Adding new documents and synchronizing the index causes index fragmentation. In
particular, background DML which synchronizes the index frequently generally
produces more fragmentation than synchronizing in batch.

Less frequent batch processing results in longer document lists, reducing the number
of rows in the index and hence reducing fragmentation.

You can reduce index fragmentation by optimizing the index in either FULL or FAST
mode with CTX_DDL.OPTIMIZE_INDEX.

Document Invalidation and Garbage Collection
When documents are removed from the base table, Oracle Text marks the document as
removed but does not immediately alter the index.

Because the old information takes up space and can cause extra overhead at query
time, you must remove the old information from the index by optimizing it in FULL
mode. This is called garbage collection. Optimizing in FULL mode for garbage
collection is necessary when you have frequent updates or deletes to the base table.

See Also: Oracle Text Reference to learn more about the
CTX_DDL.SYNC_INDEX command syntax

Managing DML Operations for a CONTEXT Index

Indexing with Oracle Text 3-31

Single Token Optimization
In addition to optimizing the entire index, you can optimize single tokens. You can use
token mode to optimize index tokens that are frequently searched, without spending
time on optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if
you know that this token is updated and queried frequently.

An optimized token can improve query response time for the token.

To optimize an index in token mode, you can use CTX_DDL.OPTIMIZE_INDEX.

Viewing Index Fragmentation and Garbage Data
With the CTX_REPORT.INDEX_STATS procedure, you can create a statistical report on
your index. The report includes information on optimal row fragmentation, list of
most fragmented tokens, and the amount of garbage data in your index. Although this
report might take long to run for large indexes, it can help you decide whether to
optimize your index.

Examples: Optimizing the Index
To optimize an index, Oracle recommends that you use CTX_DDL.OPTIMIZE_INDEX.

See Also: Oracle Text Reference to learn more about using this
procedure

See Also: Oracle Text Reference for the CTX_DDL.OPTIMIZE_INDEX
command syntax and examples

Managing DML Operations for a CONTEXT Index

3-32 Oracle Text Application Developer's Guide

Querying with Oracle Text 4-1

4
Querying with Oracle Text

This chapter describes Oracle Text querying and associated features. The following
topics are covered:

■ Overview of Queries

■ The CONTEXT Grammar

■ The CTXCAT Grammar

Overview of Queries
The basic Oracle Text query takes a query expression, usually a word with or without
operators, as input. Oracle Text returns all documents (previously indexed) that satisfy
the expression along with a relevance score for each document. Scores can be used to
order the documents in the result set.

To issue an Oracle Text query, use the SQL SELECT statement. Depending on the type
of index you create, you use either the CONTAINS or CATSEARCH operator in the
WHERE clause. You can use these operators programatically wherever you can use the
SELECT statement, such as in PL/SQL cursors.

Use the MATCHES operator to classify documents with a CTXRULE index.

Querying with CONTAINS
When you create an index of type CONTEXT, you must use the CONTAINS operator to
issue your query. An index of type CONTEXT is suited for indexing collections of large
coherent documents.

With the CONTAINS operator, you can use a number of operators to define your search
criteria. These operators enable you to issue logical, proximity, fuzzy, stemming,
thesaurus and wildcard searches. With a correctly configured index, you can also issue
section searches on documents that have internal structure such as HTML and XML.

With CONTAINS, you can also use the ABOUT operator to search on document themes.

CONTAINS SQL Example
In the SELECT statement, specify the query in the WHERE clause with the CONTAINS
operator. Also specify the SCORE operator to return the score of each hit in the hitlist.
The following example shows how to issue a query:

SELECT SCORE(1), title from news WHERE CONTAINS(text, 'oracle', 1) > 0;

You can order the results from the highest scoring documents to the lowest scoring
documents using the ORDER BY clause as follows:

Overview of Queries

4-2 Oracle Text Application Developer's Guide

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 ORDER BY SCORE(1) DESC;

The CONTAINS operator must always be followed by the > 0 syntax, which specifies
that the score value returned by the CONTAINS operator must be greater than zero for
the row to be returned.

When the SCORE operator is called in the SELECT statement, the CONTAINS operator
must reference the score label value in the third parameter as in the previous example.

CONTAINS PL/SQL Example
In a PL/SQL application, you can use a cursor to fetch the results of the query.

The following example issues a CONTAINS query against the NEWS table to find all
articles that contain the word oracle. The titles and scores of the first ten hits are output.

declare
 rowno number := 0;
begin
 for c1 in (SELECT SCORE(1) score, title FROM news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 ORDER BY SCORE(1) DESC)
 loop
 rowno := rowno + 1;
 dbms_output.put_line(c1.title||': '||c1.score);
 exit when rowno = 10;
 end loop;
end;

This example uses a cursor FOR loop to retrieve the first ten hits. An alias score is
declared for the return value of the SCORE operator. The score and title are output to
standard out using cursor dot notation.

Structured Query with CONTAINS
A structured query, also called a mixed query, is a query that has a CONTAINS
predicate to query a text column and has another predicate to query a structured data
column.

To issue a structured query, you specify the structured clause in the WHERE condition
of the SELECT statement.

For example, the following SELECT statement returns all articles that contain the word
oracle that were written on or after October 1, 1997:

SELECT SCORE(1), title, issue_date from news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 AND issue_date >= ('01-OCT-97')
 ORDER BY SCORE(1) DESC;

Note: Even though you can issue structured queries with
CONTAINS, consider creating a ctxcat index and issuing the query
with CATSEARCH, which offers better structured query
performance.

Overview of Queries

Querying with Oracle Text 4-3

Querying with CATSEARCH
When you create an index of type CTXCAT, you must use the CATSEARCH operator to
issue your query. An index of type CTXCAT is best suited when your application stores
short text fragments in the text column and other associated information in related
columns.

For example, an application serving an online auction site might have a table that
stores item description in a text column and associated information such as date and
price in other columns. With a CTXCAT index, you can create b-tree indexes on one or
more of these columns. The result is that when you use the CATSEARCH operator to
search a CTXCAT index, query performance is generally faster for mixed queries.

The operators available for CATSEARCH queries are limited to logical operations such
as AND or OR. The operators you can use to define your structured criteria are greater
than, less than, equality, BETWEEN, and IN.

CATSEARCH SQL Query
A typical query with CATSEARCH might include a structured clause as follows to find
all rows that contain the word camera ordered by the bid_close date:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close desc')>
0;

The type of structured query you can issue depends on how you create your
sub-indexes.

As shown in the previous example, you specify the structured part of a CATSEARCH
query with the third structured_query parameter. The columns you name in the
structured expression must have a corresponding sub-index.

For example, assuming that category_id and bid_close have a sub-index in the
ctxcat index for the AUCTION table, you can issue the following structured query:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'category_id=99 order by bid_
close desc')> 0;

CATSEARCH Example
The following example shows a field section search against a CTXCAT index using
CONTEXT grammar by means of a query template in a CATSEARCH query.

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values(1, '<author>NOAM CHOMSKY</author><subject>CIVIL
 RIGHTS</subject><language>ENGLISH</language><publisher>MIT
 PRESS</publisher>', '01-NOV-2003');

insert into BOOKS values(2, '<author>NICANOR PARRA</author><subject>POEMS
 AND ANTIPOEMS</subject><language>SPANISH</language>
 <publisher>VASQUEZ</publisher>', '01-JAN-2001');

insert into BOOKS values(1, '<author>LUC SANTE</author><subject>XML
 DATABASE</subject><language>FRENCH</language><publisher>FREE
 PRESS</publisher>', '15-MAY-2002');

See Also: "Creating a CTXCAT Index" in Chapter 3, "Indexing
with Oracle Text"

Overview of Queries

4-4 Oracle Text Application Developer's Guide

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set('BOOK_INDEX_SET');
exec ctx_ddl.add_index('BOOKSET','PUBDATE');

exec ctx_ddl.create_section_group('BOOK_SECTION_GROUP',
 'BASIC_SECTION_GROUP');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','AUTHOR','AUTHOR');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','SUBJECT','SUBJECT');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','LANGUAGE','LANGUAGE');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','PUBLISHER','PUBLISHER');

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
 parameters('index set book_index_set section group book_section_group');

-- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
-- We need to use query template with CONTEXT grammar to access field
-- sections with CATSEARCH

select id, info from books
where catsearch(info,
'<query>
 <textquery grammar="context">
 NOAM within author and english within language
 </textquery>
 </query>',
'order by pubdate')>0;

Querying with MATCHES
When you create an index of type CTXRULE, you must use the MATCHES operator to
classify your documents. The CTXRULE index is essentially an index on the set of
queries that define your classifications.

For example, if you have an incoming stream of documents that need to be routed
according to content, you can create a set of queries that define your categories. You
create the queries as rows in a text column. It is possible to create this type of table
with the CTX_CLS.TRAIN procedure.

You then index the table to create a CTXRULE index. When documents arrive, you use
the MATCHES operator to classify each document

MATCHES SQL Query
A MATCHES query finds all rows in a query table that match a given document.
Assuming that a table querytable has a CTXRULE index associated with it, you can
issue the following query:

SELECT classification FROM querytable WHERE MATCHES(query_string,:doc_text) > 0;

Note the bind variable :doc_text which contains the document CLOB to be
classified.

Putting it all together for a simple example:

See Also: Chapter 6, "Classifying Documents in Oracle Text"

Overview of Queries

Querying with Oracle Text 4-5

 create table queries (
 query_id number,
 query_string varchar2(80)
);

 insert into queries values (1, 'oracle');
 insert into queries values (2, 'larry or ellison');
 insert into queries values (3, 'oracle and text');
 insert into queries values (4, 'market share');

 create index queryx on queries(query_string)
 indextype is ctxsys.ctxrule;

 select query_id from queries
 where matches(query_string,
 'Oracle announced that its market share in databases
 increased over the last year.')>0

This query will return queries 1 (the word oracle appears in the document) and 4 (the
phrase market share appears in the document), but not 2 (neither the word larry nor the
word ellison appears, and not 3 (there is no text in the document, so it does not match
the query).

Note that in this example, the document was passed in as a string for simplicity.
Typically, your document would be passed in a bind variable.

The document text used in a matches query can be VARCHAR2 or CLOB. It does not
accept BLOB input, so you cannot match filtered documents directly. Instead, you must
filter the binary content to CLOB using the AUTO_FILTER filter. For the following
example, we make two assumptions: one, that the document data is in bind variable
:doc_blob; and, two, that we have already defined a policy, my_policy, that CTX_
DOC.POLICY_FILTER can use:

 declare
 doc_text clob;
 begin
 -- create a temporary CLOB to hold the document text
 doc_text := dbms_lob.createtemporary(doc_text, TRUE, DBMS_LOB.SESSION);

 -- create a simple policy for this example
 ctx_ddl.create_preference(preference_name => 'fast_filter',
 object_name => 'AUTO_FILTER');
 ctx_ddl.set_attribute(preference_name => 'fast_filter',
 attribute_name => 'OUTPUT_FORMATTING',
 attribute_value => 'FALSE');
 ctx_ddl.create_policy(policy_name => 'my_policy',
 filter => 'fast_filter);

 -- call ctx_doc.policy_filter to filter the BLOB to CLOB data
 ctx_doc.policy_filter('my_policy', :doc_blob, doc_text, FALSE);

 -- now do the matches query using the CLOB version
 for c1 in (select * from queries where matches(query_string, doc_text)>0)
 loop
 -- do what you need to do here
 end loop;

 dbms_lob.freetemporary(doc_text);
 end;

Overview of Queries

4-6 Oracle Text Application Developer's Guide

The procedure CTX_DOC.POLICY_FILTER filters the BLOB into the CLOB data, since
you need to get the text into a CLOB to issue a MATCHES query. It takes as one
argument the name of a policy you have already created with CTX_DDL.CREATE_
POLICY. (See the Oracle Text Reference for information on CTX_DOC.POLICY_FILTER.)

If your file is text in the database character set, you can create a BFILE and load it to a
CLOB using the function DBMS_LOB.LOADFROMFILE, or you can use UTL_FILE to
read the file into a temp CLOB locator.

If your file needs AUTO_FILTER filtering, you can load the file into a BLOB instead,
and call CTX_DOC.POLICY_FILTER as previously shown.

MATCHES PL/SQL Example
The following example assumes that the table of queries profiles has a CTXRULE
index associated with it. It also assumes that the table newsfeed contains a set of
news articles to be categorized.

This example loops through the newsfeed table, categorizing each article using the
MATCHES operator. The results are stored in the results table.

PROMPT Populate the category table based on newsfeed articles
PROMPT
set serveroutput on;
declare
 mypk number;
 mytitle varchar2(1000);
 myarticles clob;
 mycategory varchar2(100);
 cursor doccur is select pk,title,articles from newsfeed;
 cursor mycur is select category from profiles where matches(rule,
myarticles)>0;
 cursor rescur is select category, pk, title from results order by category,pk;

begin
 dbms_output.enable(1000000);
 open doccur;
 loop
 fetch doccur into mypk, mytitle, myarticles;
 exit when doccur%notfound;
 open mycur;
 loop
 fetch mycur into mycategory;
 exit when mycur%notfound;
 insert into results values(mycategory, mypk, mytitle);
 end loop;
 close mycur;
 commit;
 end loop;
 close doccur;
 commit;

end;
/

The following example displays the categorized articles by category.

PROMPT display the list of articles for every category

See Also: Chapter 6, "Classifying Documents in Oracle Text" for
more extended classification examples

Overview of Queries

Querying with Oracle Text 4-7

PROMPT
set serveroutput on;

declare
 mypk number;
 mytitle varchar2(1000);
 mycategory varchar2(100);
 cursor catcur is select category from profiles order by category;
 cursor rescur is select pk, title from results where category=mycategory order
by pk;

begin
 dbms_output.enable(1000000);
 open catcur;
 loop
 fetch catcur into mycategory;
 exit when catcur%notfound;
 dbms_output.put_line('********** CATEGORY: '||mycategory||' *************');
open rescur;
 loop
 fetch rescur into mypk, mytitle;
 exit when rescur%notfound;
dbms_output.put_line('** ('||mypk||'). '||mytitle);
 end loop;
 close rescur;
 dbms_output.put_line('**');
dbms_output.put_line('***');
 end loop;
 close catcur;
end;
/

Word and Phrase Queries
A word query is a query on a word or phrase. For example, to find all the rows in your
text table that contain the word dog, you issue a query specifying dog as your query
term.

You can issue word queries with both CONTAINS and CATSEARCH SQL operators.
However, phrase queries are interpreted differently.

CONTAINS Phrase Queries
If multiple words are contained in a query expression, separated only by blank spaces
(no operators), the string of words is considered a phrase and Oracle Text searches for
the entire string during a query.

For example, to find all documents that contain the phrase international law, you issue
your query with the phrase international law.

CATSEARCH Phrase Queries
With the CATSEARCH operator, the AND operator is inserted between words in phrases.
For example, a query such as international law is interpreted as international AND law.

See Also: Chapter 6, "Classifying Documents in Oracle Text" for
more extended classification examples

Overview of Queries

4-8 Oracle Text Application Developer's Guide

Querying Stopwords
Stopwords are words for which Oracle Text does not create an index entry. They are
usually common words in your language that are unlikely to be searched on by
themselves.

Oracle Text includes a default list of stopwords for your language. This list is called a
stoplist. For example, in English, the words this and that are defined as stopwords in
the default stoplist. You can modify the default stoplist or create new stoplists with the
CTX_DDL package. You can also add stopwords after indexing with the ALTER INDEX
statement.

You cannot query on a stopword by itself or on a phrase composed of only stopwords.
For example, a query on the word this returns no hits when this is defined as a
stopword.

You can query on phrases that contain stopwords as well as non-stopwords such as
this boy talks to that girl. This is possible because the Oracle Text index records the
position of stopwords even though it does not create an index entry for them.

When you include a stopword within your query phrase, the stopword matches any
word. For example, the query:

'Jack was big'

matches phrases such as Jack is big and Jack grew big assuming was is a stopword. Note
that this query matches grew, even though it is not a stopword.

ABOUT Queries and Themes
An ABOUT query is a query on a document theme. A document theme is a concept that
is sufficiently developed in the text. For example, an ABOUT query on US politics might
return documents containing information about US presidential elections and US
foreign policy. Documents need not contain the exact phrase US politics to be returned.

During indexing, document themes are derived from the knowledge base, which is a
hierarchical list of categories and concepts that represents a view of the world. Some
examples of themes in the knowledge catalog are concrete concepts such as jazz music,
football, or Nelson Mandela. Themes can also be abstract concepts such as happiness or
honesty.

During indexing, the system can also identify and index document themes that are
sufficiently developed in the document, but do not exist in the knowledge base.

You can augment the knowledge base to define concepts and terms specific to your
industry or query application. When you do so, ABOUT queries are more precise for the
added concepts.

ABOUT queries perform best when you create a theme component in your index.
Theme components are created by default for English and French.

Querying Stopthemes
Oracle Text enables you to query on themes with the ABOUT operator. A stoptheme is a
theme that is not to be indexed. You can add and remove stopthemes with the CTX_
DLL package. You can add stopthemes after indexing with the ALTER INDEX
statement.

See Also: Oracle Text Reference

Overview of Queries

Querying with Oracle Text 4-9

Query Expressions
A query expression is everything in between the single quotes in the text_query
argument of the CONTAINS or CATSEARCH operator. What you can include in a query
expression in a CONTAINS query is different from what you can include in a
CATSEARCH operator.

CONTAINS Operators
A CONTAINS query expression can contain query operators that enable logical,
proximity, thesaural, fuzzy, and wildcard searching. Querying with stored expressions
is also possible. Within the query expression, you can use grouping characters to alter
operator precedence. This book refers to these operators as the CONTEXT grammar.

With CONTAINS, you can also use the ABOUT query to query document themes.

CATSEARCH Operator
With the CATSEARCH operator, you specify your query expression with the text_
query argument and your optional structured criteria with the structured_query
argument. The text_query argument enables you to query words and phrases. You
can use logical operations, such as logical and, or, and not. This book refers to these
operators as the CTXCAT grammar.

If you want to use the much richer set of operators supported by the CONTEXT
grammar, you can use the query template feature with CATSEARCH.

With structured_query argument, you specify your structured criteria. You can
use the following SQL operations:

■ =

■ <=

■ >=

■ >

■ <

■ IN

■ BETWEEN

You can also use ORDER BY clause to order your output.

MATCHES Operator
Unlike CONTAINS and CATSEARCH, MATCHES does not take a query expression as
input.

Instead, the MATCHES operator takes a document as input and finds all rows in a query
(rule) table that match it. As such, you can use MATCHES to classify documents
according to the rules they match.

Case-Sensitive Searching
Oracle Text supports case-sensitivity for word and ABOUT queries.

See Also: "The CONTEXT Grammar" in this chapter

See Also: "The CTXCAT Grammar" in this chapter

See Also: "Querying with MATCHES" in this chapter

Overview of Queries

4-10 Oracle Text Application Developer's Guide

Word Queries
Word queries are case-insensitive by default. This means that a query on the term dog
returns the rows in your text table that contain the word dog, Dog, or DOG.

You can enable case-sensitive searching by enabling the mixed_case attribute in your
BASIC_LEXER index preference. With a case-sensitive index, your queries must be
issued in exact case. This means that a query on Dog matches only documents with
Dog. Documents with dog or DOG are not returned as hits.

Stopwords and Case-Sensitivity If you have case-sensitivity enabled for word queries and
you issue a query on a phrase containing stopwords and non-stopwords, you must
specify the correct case for the stopwords. For example, a query on the dog does not
return text that contains The Dog, assuming that the is a stopword.

ABOUT Queries
ABOUT queries give the best results when your query is formulated with proper case.
This is because the normalization of your query is based on the knowledge catalog
which is case-sensitive. Attention to case is required especially for words that have
different meanings depending on case, such as turkey the bird and Turkey the country.

However, you need not enter your query in exact case to obtain relevant results from
an ABOUT query. The system does its best to interpret your query. For example, if you
enter a query of ORACLE and the system does not find this concept in the knowledge
catalog, the system might use Oracle as a related concept for look-up.

Query Feedback
Feedback information provides broader term, narrower term, and related term
information for a specified query with a context index. You obtain this information
programatically with the CTX_QUERY.HFEEDBACK procedure.

Broader term, narrower term, and related term information is useful for suggesting
other query terms to the user in your query application.

The feedback information returned is obtained from the knowledge base and contains
only those terms that are also in the index. This increases the chances that terms
returned from HFEEDBACK produce hits over the currently indexed document set.

Query Explain Plan
Explain plan information provides a graphical representation of the parse tree for a
CONTAINS query expression. You can obtain this information programatically with the
CTX_QUERY.EXPLAIN procedure.

Explain plan information tells you how a query is expanded and parsed without
having the system execute the query. Obtaining explain information is useful for
knowing the expansion for a particular stem, wildcard, thesaurus, fuzzy, soundex, or
ABOUT query. Parse trees also show the following information:

■ Order of execution

■ ABOUT query normalization

■ Query expression optimization

■ Stop-word transformations

See Also: Oracle Text Reference for more information about using
CTX_QUERY.HFEEDBACK

Overview of Queries

Querying with Oracle Text 4-11

■ Breakdown of composite-word tokens for supported languages

Using a Thesaurus in Queries
Oracle Text enables you to define a thesaurus for your query application.

Defining a custom thesaurus enables you to process queries more intelligently. Since
users of your application might not know which words represent a topic, you can
define synonyms or narrower terms for likely query terms. You can use the thesaurus
operators to expand your query to include thesaurus terms.

Document Section Searching
Section searching enables you to narrow text queries down to sections within
documents.

Section searching can be implemented when your documents have internal structure,
such as HTML and XML documents. For example, you can define a section for the
<H1> tag that enables you to query within this section using the WITHIN operator.

You can set the system to automatically create sections from XML documents.

You can also define attribute sections to search attribute text in XML documents.

Using Query Templating
Query templates are an alternative to the existing query languages. Rather than
passing a query string to CONTAINS or CATSEARCH, you pass a structured document
which contains the query string in a tagged element. Within this document, you can
enable additional query features:

■ Query Rewrite

■ Query Relaxation

■ Query Language

■ Alternative Scoring

■ Alternative Grammar

Query Rewrite
Query applications sometimes parse end user queries, interpreting a query string in
one or more ways using different operator combinations. For example, if a user enters
a query of kukui nut, your application might issue the queries {kukui nut} and {kukui or
nut} in order to increase recall.

See Also: Oracle Text Reference for more information about using
CTX_QUERY.EXPLAIN

See Also: Chapter 9, "Working With a Thesaurus in Oracle Text"

Note: Section searching is supported for only word queries with a
CONTEXT index.

See Also: Chapter 8, "Searching Document Section in Oracle Text"

Overview of Queries

4-12 Oracle Text Application Developer's Guide

The query rewrite feature enables you to submit a single query that expands the
original query into the rewritten versions. The results are returned with no
duplication.

You specify your rewrite sequences with the query template feature. The rewritten
versions of the query are executed efficiently with a single call to CONTAINS or
CATSEARCH.

The following template defines a query rewrite sequence. The query of {kukui nut} is
rewritten as follows:

{kukui} {nut}

{kukui} ; {nut}

{kukui} AND {nut}

{kukui} ACCUM {nut}

The query rewrite template for these transformations is as follows:

select id from docs where CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite></seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Query Relaxation
Query relaxation enables your application to execute the most restrictive version of a
query first, progressively relaxing the query until the required number of hits are
obtained.

For example, your application might search first on black pen and then the query is
relaxed to black NEAR pen to obtain more hits.

The following query template defines a query relaxation sequence. The query of black
pen is issued in sequence as

{black} {pen}

{black} NEAR {pen}

{black} AND {pen}

{black} ACCUM {pen}

The query rewrite template for these transformations is as follows:

select id from docs where CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>{black} {pen}</seq>
 <seq>{black} NEAR {pen}</seq>
 <seq>{black} AND {pen}</seq>
 <seq>{black} ACCUM {pen}</seq>
 </progression>

Overview of Queries

Querying with Oracle Text 4-13

 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Query hits are returned in this sequence with no duplication as long as the application
needs results.

Query relaxation is most effective when your application needs the top n hits to a
query, which you can obtain with the FIRST_ROWS hint or in a PL/SQL cursor.

Using query templating to relax a query as such is more efficient than re-executing a
query.

Query Language
When you use the multi-lexer to index a column containing documents in different
languages, you can specify which language lexer to use during querying. You do so
using the lang parameter in the query template.

With the MULTI_LEXER in previous releases, you could only change the query
language by altering the session language before executing the query.

select id from docs where CONTAINS (text,
'<query><textquery lang="french">bon soir</textquery></query>')>0;

Alternative Scoring
You can use query templating to specify alternative scoring algorithms to use, other
than the default.

select id from docs where CONTAINS (text,
'<query>
 <textquery grammar="CONTEXT" lang="english"> mustang </textquery>
 <score datatype="float" algorithm="DEFAULT"/>
</query>')>0

Alternative Grammar
Query templating enables you to use the CONTEXT grammar with CATSEARCH queries
and vice-versa.

select id from docs where CONTAINS (text,
'<query>
 <textquery grammar="CTXCAT">San Diego</textquery>
 <score datatype="integer"/>
</query>')>0;

Query Analysis
Oracle Text enables you to create a log of queries and to analyze the queries it contains.
For example, suppose you have an application that searches a database of large
animals, and your analysis of its queries shows that users are continually searching for
the word mouse; this analysis might induce you to rewrite your application so that a
search for mouse redirects the user to a database of small animals instead of simply
returning an unsuccessful search.

With query analysis, you can find out

■ Which queries were made

■ Which queries were successful

Overview of Queries

4-14 Oracle Text Application Developer's Guide

■ Which queries were unsuccessful

■ How many times each query was made

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

You start query logging with CTX_OUTPUT.START_QUERY_LOG. The query log will
contain all queries made to all context indexes that the program is using until a CTX_
OUTPUT.END_QUERY_LOG procedure is issued. Use CTX_REPORT.QUERY_LOG_
SUMMARY to get a report of queries made.

Other Query Features
In your query application, you can use other query features such as proximity
searching. Table 4–1 lists some of these features.

See Also: Oracle Text Reference for syntax and examples for these
procedures

Table 4–1 Other Oracle Text Query Features

Feature Description Implement With

Case Sensitive Searching Enables you to search on
words or phrases exactly as
entered in the query. For
example, a search on Roman
returns documents that
contain Roman and not
roman.

BASIC_LEXER when you
create the index

Base Letter Conversion Queries words with or
without diacritical marks
such as tildes, accents, and
umlauts. For example, with a
Spanish base-letter index, a
query of energía matches
documents containing both
energía and energia.

BASIC_LEXER when you
create the index

Word Decompounding

(German and Dutch)

Enables searching on words
that contain specified term as
sub-composite.

BASIC_LEXER when you
create the index

Alternate Spelling

(German, Dutch, and
Swedish)

Searches on alternate
spellings of words

BASIC_LEXER when you
create the index

Proximity Searching Searches for words near one
another

NEAR operator when you
issue the query

Stemming Searches for words with
same root as specified term

$ operator at when you issue
the query

Fuzzy Searching Searches for words that have
similar spelling to specified
term

FUZZY operator when you
issue the query

Query Explain Plan Generates query parse
information

CTX_QUERY.EXPLAIN
PL/SQL procedure after you
index

Hierarchical Query Feedback Generates broader term,
narrower term and related
term information for a query

CTX_QUERY.HFEEDBACK
PL/SQL procedure after you
index.

The CONTEXT Grammar

Querying with Oracle Text 4-15

The CONTEXT Grammar
The CONTEXT grammar is the default grammar for CONTAINS. With this grammar,
you can add complexity to your searches with operators. You use the query operators
in your query expression. For example, the logical operator AND enables you to search
for all documents that contain two different words. The ABOUT operator enables you to
search on concepts.

You can also use the WITHIN operator for section searching, the NEAR operator for
proximity searches, the stem, fuzzy, and thesaural operators for expanding a query
expression.

With CONTAINS, you can also use the CTXCAT grammar with the query template
feature.

The following sections describe some of the Oracle Text operators.

ABOUT Query
Use the ABOUT operator in English or French to query on a concept. The query string is
usually a concept or theme that represents the idea to be searched on. Oracle Text
returns the documents that contain the theme.

Word information and theme information are combined into a single index. To issue a
theme query, your index must have a theme component which is created by default in
English and French.

You issue a theme query using the ABOUT operator inside the query expression. For
example, to retrieve all documents that are about politics, write your query as follows:

SELECT SCORE(1), title FROM news
 WHERE CONTAINS(text, 'about(politics)', 1) > 0
 ORDER BY SCORE(1) DESC;

Browse index Browses the words around a
seed word in the index

CTX_QUERY.BROWSE_
WORDS PL/SQL after you
index.

Count hits Counts the number of hits in
a query

CTX_QUERY.COUNT_HITS
PL/SQL procedure after you
index.

Stored Query Expression Stores the text of a query
expression for later reuse in
another query.

CTX_QUERY.STORE_SQE
PL/SQL procedure after you
index.

Thesaural Queries Uses a thesaurus to expand
queries.

Thesaurus operators such as
SYN and BT as well as the
ABOUT operator.

Use CTX_THES package to
maintain thesaurus.

See Also: Oracle Text Reference for complete information about
using query operators

See Also: Oracle Text Reference for more information about using
the ABOUT operator

Table 4–1 (Cont.) Other Oracle Text Query Features

Feature Description Implement With

The CONTEXT Grammar

4-16 Oracle Text Application Developer's Guide

Logical Operators
Logical operators such as AND or OR allow you to limit your search criteria in a number
of ways. Table 4–2 describes some of these operators.

Section Searching
Section searching is useful for when your document set is HTML or XML. For HTML,
you can define sections using embedded tags and then use the WITHIN operator to
search these sections.

For XML, you can have the system automatically create sections for you. You can
query with the WITHIN operator or with the INPATH operator for path searching.

Proximity Queries with NEAR and NEAR_ACCUM Operators
You can search for terms that are near to one another in a document with the NEAR
operator.

For example, to find all documents where dog is within 6 words of cat, issue the
following query:

'near((dog, cat), 6)'

Table 4–2 Logical Operators

Operator Symbol Description Example Expression

AND & Use the AND operator to search
for documents that contain at
least one occurrence of each of
the query terms.

Score returned is the minimum
of the operands.

'cats AND dogs'
'cats & dogs'

OR | Use the OR operator to search
for documents that contain at
least one occurrence of any of
the query terms.

Score returned is the maximum
of the operands.

'cats | dogs'
'cats OR dogs'

NOT ~ Use the NOT operator to search
for documents that contain one
query term and not another.

To obtain the documents that
contain the term animals but not
dogs, use the following expression:

'animals ~ dogs'

ACCUM , Use the ACCUM operator to
search for documents that
contain at least one occurrence
of any of the query terms. The
accumulate operator ranks
documents according to the
total term weight of a
document.

The following query returns all
documents that contain the terms
dogs, cats and puppies giving the
highest scores to the documents
that contain all three terms:

'dogs, cats, puppies'

EQUIV = Use the EQUIV operator to
specify an acceptable
substitution for a word in a
query.

The following example returns all
documents that contain either the
phrase alsatians are big dogs or
German shepherds are big dogs:

'German shepherds=alsatians are
big dogs'

See Also: Chapter 8, "Searching Document Section in Oracle Text"

The CONTEXT Grammar

Querying with Oracle Text 4-17

The NEAR_ACCUM operator combines the functionality of the NEAR operator with that
of the ACCUM operator. Like NEAR, it returns terms that are within a given proximity of
each other; however, if one term is not found, it ranks documents according to the
frequency of the occurrence of the term that is found.

Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
You can expand your queries into longer word lists with operators such as wildcard,
fuzzy, stem, soundex, and thesaurus.

Using CTXCAT Grammar
You can use the CTXCAT grammar in CONTAINS queries. To do so, use a query
template specification in the text_query parameter of CONTAINS.

You might take advantage of the CTXCAT grammar when you need an alternative and
simpler query grammar.

Stored Query Expressions
You can use the procedure CTX_QUERY.STORE_SQE to store the definition of a query
without storing any results. Referencing the query with the CONTAINS SQL operator
references the definition of the query. In this way, stored query expressions make it
easy for defining long or frequently used query expressions.

Stored query expressions are not attached to an index. When you call CTX_
QUERY.STORE_SQE, you specify only the name of the stored query expression and the
query expression.

The query definitions are stored in the Text data dictionary. Any user can reference a
stored query expression.

Defining a Stored Query Expression
You define and use a stored query expression as follows:

1. Call CTX_QUERY.STORE_SQE to store the queries for the text column. With
STORE_SQE, you specify a name for the stored query expression and a query
expression.

2. Call the stored query expression in a query expression using the SQE operator.
Oracle Text returns the results of the stored query expression in the same way it
returns the results of a regular query. The query is evaluated at the time the stored
query expression is called.

See Also: Oracle Text Reference for more information about using
the NEAR and NEAR_ACCUM operators

See Also: Oracle Text Reference for more information about using
these operators

"Is it OK to have many expansions in a query?" in Chapter 7,
"Tuning Oracle Text"

See Also: Oracle Text Reference for more information about using
these operators

See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY.STORE_SQE

The CONTEXT Grammar

4-18 Oracle Text Application Developer's Guide

You can delete a stored query expression using REMOVE_SQE.

SQE Example
The following example creates a stored query expression called disaster that searches
for documents containing the words tornado, hurricane, or earthquake:

begin
ctx_query.store_sqe('disaster', 'tornado | hurricane | earthquake');
end;

To execute this query in an expression, write your query as follows:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, 'SQE(disaster)', 1) > 0
 ORDER BY SCORE(1);

Calling PL/SQL Functions in CONTAINS
You can call user-defined functions directly in the CONTAINS clause as long as the
function satisfies the requirements for being named in a SQL statement. The caller
must also have EXECUTE privilege on the function.

For example, assuming the function french returns the French equivalent of an English
word, you can search on the French word for cat by writing:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, french('cat'), 1) > 0
 ORDER BY SCORE(1);

Optimizing for Response Time
A CONTAINS query optimized for response time provides a fast solution for when you
need the highest scoring documents from a hitlist.

The following example returns the first twenty hits to standard out. This example uses
the FIRST_ROWS(n) hint and a cursor.

declare
cursor c is
 select /*+ FIRST_ROWS(20) */ title, score(1) score
 from news where contains(txt_col, 'dog', 1) > 0 order by score(1) desc;
begin
 for c1 in c
 loop
 dbms_output.put_line(c1.score||':'||substr(c1.title,1,50));
 exit when c%rowcount = 21;
 end loop;
end;
/

See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY.STORE_SQE

See Also: Oracle Database SQL Reference for more information
about creating user functions and calling user functions from SQL

See Also: "Optimizing Queries for Response Time" in Chapter 7,
"Tuning Oracle Text"

The CONTEXT Grammar

Querying with Oracle Text 4-19

Other Factors that Influence Query Response Time
Besides using query hints, there are other factors that can influence query response
time such as:

■ Collection of table statistics

■ Memory allocation

■ Sorting

■ Presence of LOB columns in your base table

■ Partitioning

■ Parallelism

■ The number term expansions in your query

Counting Hits
To count the number of hits returned from a query with only a CONTAINS predicate,
you can use CTX_QUERY.COUNT_HITS in PL/SQL or COUNT(*) in a SQL SELECT
statement.

If you want a rough hit count, you can use CTX_QUERY.COUNT_HITS in estimate
mode (EXACT parameter set to FALSE). With respect to response time, this is the fastest
count you can get.

To count the number of hits returned from a query that contains a structured predicate,
use the COUNT(*) function in a SELECT statement.

SQL Count Hits Example
To find the number of documents that contain the word oracle, issue the query with the
SQL COUNT function as follows:

SELECT count(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0;

Counting Hits with a Structured Predicate
To find the number of documents returned by a query with a structured predicate, use
COUNT(*) as follows:

SELECT COUNT(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0 and author =
'jones';

PL/SQL Count Hits Example
To find the number of documents that contain the word oracle, use COUNT_HITS as
follows:

declare count number;
begin
 count := ctx_query.count_hits(index_name => my_index, text_query => 'oracle',
exact => TRUE);
 dbms_output.put_line('Number of docs with oracle:');
 dbms_output.put_line(count);
end;

See Also: "Frequently Asked Questions a About Query
Performance" in Chapter 7, "Tuning Oracle Text"

See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY.COUNT_HITS

The CTXCAT Grammar

4-20 Oracle Text Application Developer's Guide

The CTXCAT Grammar
The CTXCAT grammar is the default grammar for CATSEARCH. This grammar supports
logical operations such as AND and OR as well as phrase queries.

The CATSEARCH query operators have the following syntax:

Using CONTEXT Grammar with CATSEARCH
In addition, you can use the CONTEXT grammar in CATSEARCH queries. To do so, use a
query template specification in the text_query parameter.

You might use the CONTAINS grammar as such when you need to issue proximity,
thesaurus, or ABOUT queries with a CTXCAT index.

Table 4–3 CATSEARCH Query Operator Syntax

Operation Syntax Description of Operation

Logical AND a b c Returns rows that contain a, b and c.

Logical OR a | b | c Returns rows that contain a, b, or c.

Logical NOT a - b Returns rows that contain a and not b.

hyphen with no space a-b Hyphen treated as a regular character.

For example, if the hyphen is defined as
skipjoin, words such as web-site treated as the
single query term website.

Likewise, if the hyphen is defined as a
printjoin, words such as web-site treated as web
site with the space in the CTXCAT query
language.

" " "a b c" Returns rows that contain the phrase "a b c".

For example, entering "Sony CD Player"
means return all rows that contain this
sequence of words.

() (A B) | C Parentheses group operations. This query is
equivalent to the CONTAINS query (A &B) |
C.

See Also: Oracle Text Reference for more information about using
these operators

Presenting Documents in Oracle Text 5-1

5
Presenting Documents in Oracle Text

This chapter describes document presentation. The following topics are covered:

■ Highlighting Query Terms

■ Obtaining Lists of Themes, Gists, and Theme Summaries

■ Document Presentation and Highlighting

Highlighting Query Terms
In Oracle Text query applications, you can present selected documents with query
terms highlighted for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting:

■ A marked-up version of the document

■ Query offset information for the document

■ A concordance of the document, in which occurrences of the query term are
returned with their surrounding text

Text highlighting
For text highlighting, you supply the query, and Oracle Text highlights words in
document that satisfy the query. You can obtain plain-text or HTML highlighting.

Theme Highlighting
For ABOUT queries, the CTX_DOC procedures highlight and mark up words or phrases
that best represent the ABOUT query.

CTX_DOC Highlighting Procedures
These are the highlighting procedures in CTX_DOC:

■ CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP

■ CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT

■ CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET

The POLICY and non-POLICY versions of the procedures are equivalent, except that
the POLICY versions do not require an index.

Highlighting Query Terms

5-2 Oracle Text Application Developer's Guide

Markup Procedure
The CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP procedures take a document
reference and a query, and return a marked-up version of the document. The output
can be either marked-up plaintext or marked-up HTML. For example, you might
specify that a marked-up document be returned with the query term surrounded by
angle brackets (<<<tansu>>>) or HTML (tansu).

CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP are equivalent, except that CTX_
DOC.POLICY_MARKUP does not require an index.

You can customize the markup sequence for HTML navigation.

CTX_DOC.MARKUP Example The following example is taken from the Web application
described in Appendix A, "CONTEXT Query Application". The procedure showDoc
takes an HTML document and a query, creates the highlight markup—in this case, the
query term will display in red—and outputs the result to an in-memory buffer. It then
uses htp.print to display it in the browser.

procedure showDoc (p_id in varchar2, p_query in varchar2) is

 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 v_query varchar(2000);
 v_cursor integer;

 begin
 htp.p('<html><title>HTML version with highlighted terms</title>');
 htp.p('<body bgcolor="#ffffff">');
 htp.p('HTML version with highlighted terms');

 begin
 ctx_doc.markup (index_name => 'idx_search_table',
 textkey => p_id,
 text_query => p_query,
 restab => v_clob_selected,
 starttag => '<i>',
 endtag => '</i>');

 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;

 exception
 when others then
 null; --showHTMLdoc(p_id);
 end;
end showDoc;
end;

Obtaining Lists of Themes, Gists, and Theme Summaries

Presenting Documents in Oracle Text 5-3

/
show errors
set define on

Highlight Procedure
CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT take a query and a
document and return offset information for the query in either plaintext or HTML
formats. This offset information can be used to write your own custom routines for
displaying documents.

CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT are equivalent, except
that CTX_DOC.POLICY_HIGHLIGHT does not require an index.

With offset information, you can display a highlighted version of document as desired.
For example, you can display the document with different font types or colors rather
than using the standard plain text markup obtained from CTX_DOC.MARKUP.

Concordance
CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET produce a concordance of the
document, in which occurrences of the query term are returned with their surrounding
text. This result is sometimes known as Key Word in Context, or KWIC, because
instead of returning the entire document (with or without the query term highlighted),
it returns the query term in text fragments, allowing a user to see it in context. You can
control the way the query term is highlighted in the returned fragments.

CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET are equivalent, except that
CTX_DOC.POLICY_SNIPPET does not require an index.

Obtaining Lists of Themes, Gists, and Theme Summaries
The following table describes lists of themes, gists, and theme summaries.

To obtain this output, you use procedures in the CTX_DOC supplied package. With this
package, you can do the following:

■ Identify documents by ROWID in addition to primary key

See Also: Oracle Text Reference for more information about
CTX_DOC.MARKUP and CTX_DOC.POLICY_SNIPPET

See Also: Oracle Text Reference for more information about using
CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHTLIGHT

See Also: Oracle Text Reference for more information about
CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET

Table 5–1 Lists of Themes, Gists, and Theme Summaries

Output Type Description

List of Themes A list of the main concepts of a document.

You can generate list of themes where each theme is a single word or
phrase or where each theme is a hierarchical list of parent themes.

Gist Text in a document that best represents what the document is about as a
whole.

Theme Summary Text in a document that best represents a given theme in the document.

Obtaining Lists of Themes, Gists, and Theme Summaries

5-4 Oracle Text Application Developer's Guide

■ Store results in-memory for improved performance

Lists of Themes
A list of themes is a list of the main concepts in a document. Use the CTX_
DOC.THEMES procedure to generate lists of themes.

In-Memory Themes
The following example generates the top 10 themes for document 1 and stores them in
an in-memory table called the_themes. The example then loops through the table to
display the document themes.

declare
 the_themes ctx_doc.theme_tab;

begin
 ctx_doc.themes('myindex','1',the_themes, numthemes=>10);
 for i in 1..the_themes.count loop
 dbms_output.put_line(the_themes(i).theme||':'||the_themes(i).weight);
 end loop;
end;

Result Table Themes
To create a theme table:

create table ctx_themes (query_id number,
 theme varchar2(2000),
 weight number);

Single Themes To obtain a list of themes where each element in the list is a single
theme, issue:

begin
ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => FALSE);
end;

Full Themes To obtain a list of themes where each element in the list is a hierarchical
list of parent themes, issue:

begin
ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => TRUE);
end;

Gist and Theme Summary
A gist is the text of a document that best represents what the document is about as a
whole. A theme summary is the text of a document that best represents a single theme
in the document.

Use the procedure CTX_DOC.GIST to generate gists and theme summaries. You can
specify the size of the gist or theme summary when you call the procedure.

See Also: Oracle Text Reference to learn more about the command
syntax for CTX_DOC.THEMES

See Also: Oracle Text Reference to learn about the command syntax
for CTX_DOC.GIST

Obtaining Lists of Themes, Gists, and Theme Summaries

Presenting Documents in Oracle Text 5-5

In-Memory Gist
The following example generates a nondefault size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then
de-allocates the returned CLOB locator after using it.

declare
 gklob clob;
 amt number := 40;
 line varchar2(80);

begin
 ctx_doc.gist('newsindex','34','gklob',1,glevel => 'P',pov => 'GENERIC',
numParagraphs => 10);
 -- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
 -- CLOB for us and place the results there.

 dbms_lob.read(gklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(gklob);
 end;

Result Table Gists
To create a gist table:

create table ctx_gist (query_id number,
 pov varchar2(80),
 gist CLOB);

The following example returns a default sized paragraph level gist for document 34:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1,'PARAGRAPH', pov =>'GENERIC');
end;

The following example generates a nondefault size gist of ten paragraphs:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1,'PARAGRAPH', pov =>'GENERIC',
numParagraphs => 10);
end;

The following example generates a gist whose number of paragraphs is ten percent of
the total paragraphs in document:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1, 'PARAGRAPH', pov =>'GENERIC',
maxPercent => 10);
end;

Theme Summary
The following example returns a theme summary on the theme of insects for document
with textkey 34. The default Gist size is returned.

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1, 'PARAGRAPH', pov => 'insects');
end;

Document Presentation and Highlighting

5-6 Oracle Text Application Developer's Guide

Document Presentation and Highlighting
Typically, a query application enables the user to view the documents returned by a
query. The user selects a document from the hit list and then the application presents
the document in some form.

With Oracle Text, you can display a document in different ways. For example, you can
present documents with query terms highlighted. Highlighted query terms can be
either the words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from documents
with the CTX_DOC PL/SQL package.

Table 5–2 describes the different output you can obtain and which procedure to use to
obtain each type.

Figure 5–1 shows an original document to which we can apply highlighting, gisting,
and theme extraction in the following sections.

Table 5–2 CTX_DOC Output

Output Procedure

Plain text version, no highlights CTX_DOC.FILTER

HTML version of document, no highlights CTX_DOC.FILTER

Highlighted document, plain text version CTX_DOC.MARKUP

Highlighted document, HTML version CTX_DOC.MARKUP

Highlight offset information for plain text version CTX_DOC.HIGHLIGHT

Highlight offset information for HTML version CTX_DOC.HIGHLIGHT

Theme summaries and gist of document. CTX_DOC.GIST

List of themes in document. CTX_DOC.THEMES

See Also: The Oracle Text Reference

Document Presentation and Highlighting

Presenting Documents in Oracle Text 5-7

Figure 5–1 Sample Document for Highlighting, Gisting, and Theme Extraction

Highlighting Example
Figure 5–2 is a screen shot of a query application presenting the document shown in
Figure 5–1 with the query term pet highlighted. This output was created using the text
query application produced by a wizard described in Appendix A, "CONTEXT Query
Application".

Document Presentation and Highlighting

5-8 Oracle Text Application Developer's Guide

Figure 5–2 Pet Highlighted in Pet Magnet Document

Document List of Themes Example
Figure 5–3 is a screen shot of a query application presenting a list of themes for the
document shown in Figure 5–1. This output was created using the text query
application produced by a wizard described in Appendix A, "CONTEXT Query
Application".

Document Presentation and Highlighting

Presenting Documents in Oracle Text 5-9

Figure 5–3 Query Application Displaying Document Themes

Gist Example
Figure 5–4 is a screen shot of a query application presenting a gist of the document
shown in Figure 5–1. This output was created using the text query application
produced by a wizard described in Appendix A, "CONTEXT Query Application".

Document Presentation and Highlighting

5-10 Oracle Text Application Developer's Guide

Figure 5–4 Query Application Presenting Document Gist

Classifying Documents in Oracle Text 6-1

6
Classifying Documents in Oracle Text

This chapter includes the following topics:

■ Overview

■ Classification Solutions

■ Rule-Based Classification

■ Supervised Classification

■ Unsupervised Classification (Clustering)

Overview
A major problem facing businesses and institutions today is that of information
overload. Sorting out useful documents from documents that are not of interest
challenges the ingenuity and resources of both individuals and organizations.

One way to sift through numerous documents is to use keyword search engines.
However, keyword searches have limitations. One major drawback is that keyword
searches don't discriminate by context. In many languages, a word or phrase may have
multiple meanings, so a search may result in many matches that are not on the desired
topic. For example, a query on the phrase river bank might return documents about the
Hudson River Bank & Trust Company, because the word bank has two meanings.

An alternative strategy is to have human beings sort through documents and classify
them by content, but this is not feasible for very large volumes of documents.

Oracle Text offers various approaches to document classification. Under rule-based
classification, you write the classification rules yourself. With supervised classification,
Oracle Text creates classification rules based on a set of sample documents that you
pre-classify. Finally, with unsupervised classification (also known as clustering), Oracle
Text performs all the steps, from writing the classification rules to classifying the
documents, for you.

Classification Applications
Oracle Text enables you to build document classification applications. A document
classification application performs some action based on document content. Actions
include assigning category ids to a document for future lookup or sending a document
to a user. The result is a set or stream of categorized documents. Figure 6–1 illustrates
how the classification process works.

Oracle Text enables you to create document classification applications in different
ways. This chapter defines a typical classification scenario and shows how you can use
Oracle Text to build a solution.

Classification Solutions

6-2 Oracle Text Application Developer's Guide

Figure 6–1 Overview of a Document Classification Application

Classification Solutions
Oracle Text enables you to classify documents in the following ways:

■ Rule-Based Classification. In rule-based classification, you group your documents
together, decide on categories, and formulate the rules that define those categories;
these rules are actually query phrases. You then index the rules and use the
MATCHES operator to classify documents.

Advantage: Rule-based classification is very accurate for small document sets.
Results are always based on what you define, since you write the rules.

Disadvantages: Defining rules can be tedious for large document sets with many
categories. As your document set grows, you may need to write correspondingly
more rules.

■ Supervised Classification. This method is similar to rule-based classification, but
the rule writing step is automated with CTX_CLS.TRAIN. CTX_CLS.TRAIN
formulates a set of classification rules from a sample set of pre-classified
documents that you provide. As with rule-based classification, you use MATCHES
operator to classify documents.

Oracle Text offers two versions of supervised classification, one using the RULE_
CLASSIFIER preference and one using the SVM_CLASSIFIER preference. These
are discussed in "Supervised Classification" on page 6-7.

Advantage: Rules are written for you automatically. This is useful for large
document sets.

Disadvantages:

■ You must assign documents to categories before generating the rules.

■ Rules may not be as specific or accurate as those you write yourself.

■ Unsupervised Classification (Clustering). All steps from grouping your documents
to writing the category rules are automated with CTX_CLS.CLUSTERING. Oracle

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

Ctxrule
Index

Oracle

SQL
MATCHES
Query

Database A Database B

Email
user

Classify
document

Rules Table

Rule-Based Classification

Classifying Documents in Oracle Text 6-3

Text statistically analyzes your document set and correlates them with clusters
according to content.

Advantages:

■ You don't need to provide either the classification rules or the sample
documents as a training set.

■ Helps to discover patterns and content similarities in your document set that
you might overlook.

In fact, you can use unsupervised classification when you do not have a clear
idea of rules or classifications. One possible scenario is to use unsupervised
classification to provide an initial set of categories, and to subsequently build
on these through supervised classification.

Disadvantages:

■ Clustering might result in unexpected groupings, since the clustering
operation is not user-defined, but based on an internal algorithm.

■ You do not see the rules that create the clusters.

■ The clustering operation is CPU-intensive and can take at least the same time
as indexing.

Rule-Based Classification
Rule-based classification (sometimes called "simple classification") is the basic way of
creating an Oracle Text classification application.

The basic steps for rule-based classification are as follows. Specific steps are explored
in greater detail in the example.

1. Create a table for the documents to be classified, and populate it.

2. Create a rule table (also known as a category table). The rule table consists of
categories that you name, such as "medicine" or "finance," and the rules that sort
documents into those categories.

These rules are actually queries. For example, you might define the "medicine"
category as consisting of documents that include the words "hospital," "doctor," or
"disease," so you would set up a rule of the form "hospital OR doctor OR disease."
See "CTXRULE Parameters and Limitations" for information on which operators
are allowed for queries.

3. Create a CTXRULE index on the rule table.

4. Classify the documents.

Rule-based Classification Example
In this example, we gather news articles on different subjects and then classify them.

Once our rules are created, we can index them and then use the MATCHES statement to
classify documents. The steps are as follows:

Step 1 Create schema
We create the tables to store the data. The news_table stores the documents to be
classified. The news_categories table stores the categories and rules that define our
categories. The news_id_cat table stores the document ids and their associated
categories after classification.

Rule-Based Classification

6-4 Oracle Text Application Developer's Guide

create table news_table (
 tk number primary key not null,
 title varchar2(1000),
 text clob);

create table news_categories (
 queryid number primary key not null,
 category varchar2(100),
 query varchar2(2000));

create table news_id_cat (
 tk number,
 category_id number);

Step 2 Load Documents with SQLLDR
In this step, we load the HTML news articles into the news_table using the SQLLDR
program. The filenames and titles are read from loader.dat.

LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE news_table
 REPLACE
 FIELDS TERMINATED BY ';'
 (tk INTEGER EXTERNAL,
 title CHAR,
 text_file FILLER CHAR,
 text LOBFILE(text_file) TERMINATED BY EOF)

Step 3 Create Categories
In this step, we define our categories and write the rules that define each of our
categories. Our categories are the following:

A rule is a query that selects documents for the category. For example, the category
'Asia' has a rule of 'China or Pakistan or India or Japan'. We insert our rules in the
news_categories table as follows:

insert into news_categories values
 (1,'United States','Washington or George Bush or Colin Powell');

insert into news_categories values
 (2,'Europe','England or Britain or Germany');

insert into news_categories values
 (3,'Middle East','Israel or Iran or Palestine');

insert into news_categories values(4,'Asia','China or Pakistan or India or Japan');

insert into news_categories values(5,'Africa','Egypt or Kenya or Nigeria');

insert into news_categories values

United States Europe Middle East

Asia Africa Conflicts

Finance Technology Consumer Electronics

Latin America World Politics U.S. Politics

Astronomy Paleontology Health

Natural Disasters Law Music News

Rule-Based Classification

Classifying Documents in Oracle Text 6-5

 (6,'Conflicts','war or soliders or military or troops');

insert into news_categories values(7,'Finance','profit or loss or wall street');
insert into news_categories values
 (8,'Technology','software or computer or Oracle
 or Intel or IBM or Microsoft');

insert into news_categories values
 (9,'Consumer electronics','HDTV or electronics');

insert into news_categories values
 (10,'Latin America','Venezuela or Colombia
 or Argentina or Brazil or Chile');

insert into news_categories values
 (11,'World Politics','Hugo Chavez or George Bush
 or Tony Blair or Saddam Hussein or United Nations');

insert into news_categories values
 (12,'US Politics','George Bush or Democrats or Republicans
 or civil rights or Senate or White House');

insert into news_categories values
 (13,'Astronomy','Jupiter or Earth or star or planet or Orion
 or Venus or Mercury or Mars or Milky Way
 or Telescope or astronomer
 or NASA or astronaut');

insert into news_categories values
 (14,'Paleontology','fossils or scientist
 or paleontologist or dinosaur or Nature');

insert into news_categories values
 (15,'Health','stem cells or embryo or health or medical
 or medicine or World Health Organization or AIDS or HIV
 or virus or centers for disease control or vaccination');

insert into news_categories values
 (16,'Natural Disasters','earthquake or hurricane or tornado');

insert into news_categories values
 (17,'Law','abortion or Supreme Court or illegal
 or legal or legislation');

insert into news_categories values
 (18,'Music News','piracy or anti-piracy
 or Recording Industry Association of America
 or copyright or copy-protection or CDs
 or music or artist or song');

commit;

Step 4 Create the CTXRULE index
In this step, we create a CTXRULE index on our news_categories query column.

create index news_cat_idx on news_categories(query)
indextype is ctxsys.ctxrule;

Rule-Based Classification

6-6 Oracle Text Application Developer's Guide

Step 5 Classify Documents
To classify the documents, we use the CLASSIFIER.THIS PL/SQL procedure (a
simple procedure designed for this example), which scrolls through the news_table,
matches each document to a category, and writes the categorized results into the
news_id_cat table.

create or replace package classifier as
procedure this;
end;
/

show errors

create or replace package body classifier as

 procedure this
 is
 v_document clob;
 v_item number;
 v_doc number;
 begin

 for doc in (select tk, text from news_table)
 loop
 v_document := doc.text;
 v_item := 0;
 v_doc := doc.tk;
 for c in (select queryid, category from news_categories
 where matches(query, v_document) > 0)
 loop
 v_item := v_item + 1;
 insert into news_id_cat values (doc.tk,c.queryid);
 end loop;
 end loop;

 end this;

end;
/
show errors
exec classifier.this

CTXRULE Parameters and Limitations
The following considerations apply to indexing a CTXRULE index.

■ If the SVM_CLASSIFIER classifier is used, then you may use the BASIC_LEXER,
CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexers. If SVM_
CLASSIFIER is not used, only the BASIC_LEXER lexer type may be used for
indexing your query set. (See the Oracle Text Reference for more on lexer and
classifier preferences.)

■ Filter, memory, datastore, and [no]populate parameters are not applicable to index
type CTXRULE.

■ The CREATE INDEX storage clause is supported for creating the index on the
queries.

■ Wordlists are supported for stemming operations on your query set.

Supervised Classification

Classifying Documents in Oracle Text 6-7

■ Queries for CTXRULE are similar to those of CONTAINS queries. Basic phrasing
("dog house") is supported, as are the following CONTAINS operators: ABOUT,
AND, NEAR, NOT, OR, STEM, WITHIN, and THESAURUS. Additionally, wildcards are
supported. Section groups are supported for using the MATCHES operator to
classify documents. Field sections are also supported; however, CTXRULE does not
directly support field queries, so you must use a query rewrite on a CONTEXT
query.

Supervised Classification
With supervised classification, you employ the CTX_CLS.TRAIN procedure to
automate the rule writing step. CTX_CLS.TRAIN uses a training set of sample
documents to deduce classification rules. This is the major advantage over rule-based
classification, in which you must write the classification rules.

However, before you can run the CTX_CLS.TRAIN procedure, you must manually
create categories and assign each document in the sample training set to a category.
See the Oracle Text Reference for more information on CTX_CLS.TRAIN.

When the rules are generated, you index them to create a CTXRULE index. You can
then use the MATCHES operator to classify an incoming stream of new documents.

You may choose between two different classification algorithms for supervised
classification:

■ Decision Tree classification. The advantage of Decision Tree classification is that
the generated rules are easily observed (and modified).

■ SVM-based classification. This method uses the Support Vector Machine (SVM)
algorithm for creating rules. The advantage of SVM-based classification is that it is
often more accurate than Decision Tree classification. The disadvantage is that it
generates binary rules, so the rules themselves are opaque.

Decision Tree Supervised Classification
To use Decision Tree classification, you set the preference argument to CTX_
CLS.TRAIN to RULE_CLASSIFIER.

This form of classification uses a decision tree algorithm for creating rules. Generally
speaking, a decision tree is a method of deciding between two (or more, but usually
two) choices. In document classification, the choices are "the document matches the
training set" or "the document does not match the training set."

A decision tree has a set of attributes that can be tested. In this case, these include:

■ words from the document

■ stems of words from the document (as an example, the stem of running is run)

■ themes from the document (if themes are supported for the language in use)

The learning algorithm in Oracle Text builds one or more decision trees for each
category provided in the training set. These decision trees are then coded into queries
suitable for use by a CTXRULE index. As a trivial example, if one category is provided
with a training document that consists of "Japanese beetle" and another category with
a document reading "Japanese currency," the algorithm may create decision trees based
on the words "Japanese," "beetle," and "currency," and classify documents accordingly.

See Also: "Creating a CTXRULE Index" in Chapter 3, "Indexing
with Oracle Text"

Supervised Classification

6-8 Oracle Text Application Developer's Guide

The decision trees include the concept of confidence. Each rule that is generated is
allocated a percentage value that represents the accuracy of the rule, given the current
training set. In trivial examples, this accuracy is almost always 100%, but this merely
represents the limitations of the training set. Similarly, the rules generated from a
trivial training set may seem to be less than what you might expect, but these are
sufficient to distinguish the different categories given the current training set.

The advantage of the Decision Tree method is that it can generate rules that are easily
inspected and modified by a human. Using Decision Tree classification makes sense
when you want to the computer to generate the bulk of the rules, but you want to fine
tune them afterward by editing the rule sets.

Decision Tree Supervised Classification Example
The following SQL example steps through creating your document and classification
tables, classifying the documents, and generating the rules. It then goes on to generate
rules with CTX_CLS.TRAIN.

Rules are then indexed to create CTXRULE index and new documents are classified
with MATCHES.

The general steps for supervised classification can be broken down as follows:

■ Create the Category Rules

■ Index Rules to Categorize New Documents

Create the Category Rules The CTX_CLS.TRAIN procedure requires an input training
document set. A training set is a set of documents that have already been assigned a
category.

Step 1 Create and populate a training document table
Create and load a table of training documents. This example uses a simple set; three
concern fast food and three concern computers.

create table docs (
 doc_id number primary key,
 doc_text clob);

insert into docs values
(1, 'MacTavishes is a fast-food chain specializing in burgers, fries and -
shakes. Burgers are clearly their most important line.');
insert into docs values
(2, 'Burger Prince are an up-market chain of burger shops, who sell burgers -
and fries in competition with the likes of MacTavishes.');
insert into docs values
(3, 'Shakes 2 Go are a new venture in the low-cost restaurant arena,
specializing in semi-liquid frozen fruit-flavored vegetable oil products.');
insert into docs values
(4, 'TCP/IP network engineers generally need to know about routers,
firewalls, hosts, patch cables networking etc');
insert into docs values
(5, 'Firewalls are used to protect a network from attack by remote hosts,
 generally across TCP/IP');

Step 2 Create category tables, category descriptions and ids
--
-- Create category tables
-- Note that "category_descriptions" isn't really needed for this demo -
-- it just provides a descriptive name for the category numbers in

Supervised Classification

Classifying Documents in Oracle Text 6-9

-- doc_categories
--

create table category_descriptions (
 cd_category number,
 cd_description varchar2(80));

create table doc_categories (
 dc_category number,
 dc_doc_id number,
 primary key (dc_category, dc_doc_id))
 organization index;

-- descriptons for categories

insert into category_descriptions values (1, 'fast food');
insert into category_descriptions values (2, 'computer networking');

Step 3 Assign each document to a category
In this case, the fast food documents all go into category 1, and the computer
documents into category 2.

insert into doc_categories values (1, 1);
insert into doc_categories values (1, 2);
insert into doc_categories values (1, 3);
insert into doc_categories values (2, 4);
insert into doc_categories values (2, 5);

Step 4 Create a CONTEXT index to be used by CTX_CLS.TRAIN
Create an Oracle Text preference for the index. This enables us to experiment with the
effects of turning themes on and off:

exec ctx_ddl.create_preference('my_lex', 'basic_lexer');
exec ctx_ddl.set_attribute ('my_lex', 'index_themes', 'no');
exec ctx_ddl.set_attribute ('my_lex', 'index_text', 'yes');

create index docsindex on docs(doc_text) indextype is ctxsys.context
parameters ('lexer my_lex');

Step 5 Create the rules table
Create the table that will be populated by the generated rules.

create table rules(
 rule_cat_id number,
 rule_text varchar2(4000),
 rule_confidence number
);

Step 6 Call CTX_CLS.TRAIN procedure to generate category rules
Now call the CTX_CLS.TRAIN procedure to generate some rules. Note all the
arguments are the names of tables, columns or indexes previously created in this
example. The rules table now contains the rules, which you can view.

begin
 ctx_cls.train(
 index_name => 'docsindex',
 docid => 'doc_id',
 cattab => 'doc_categories',
 catdocid => 'dc_doc_id',

Supervised Classification

6-10 Oracle Text Application Developer's Guide

 catid => 'dc_category',
 restab => 'rules',
 rescatid => 'rule_cat_id',
 resquery => 'rule_text',
 resconfid => 'rule_confidence'
);
end;
/

Step 7 Fetch the generated rules, viewed by category
Fetch the generated rules. For convenience's sake, the rules table is joined with
category_descriptions so we can see to which category each rule applies:

select cd_description, rule_confidence, rule_text from rules,
category_descriptions where cd_category = rule_cat_id;

Index Rules to Categorize New Documents Once the rules are generated, you can test them
by first indexing them and then using MATCHES to classify new documents. The
process is as follows:

Step 1 Index the rules to create the CTXRULE index
Use CREATE INDEX to create the CTXRULE index on the previously generated rules:

create index rules_idx on rules (rule_text) indextype is ctxsys.ctxrule;

Step 2 Test an incoming document using MATCHES
set serveroutput on;

declare
 incoming_doc clob;
begin
 incoming_doc
 := 'I have spent my entire life managing restaurants selling burgers';
 for c in
 (select distinct cd_description from rules, category_descriptions
 where cd_category = rule_cat_id
 and matches (rule_text, incoming_doc) > 0) loop
 dbms_output.put_line('CATEGORY: '||c.cd_description);
 end loop;
end;
/

SVM-Based Supervised Classification
The second method we can use for training purposes is known as Support Vector
Machine (SVM) classification. SVM is a type of machine learning algorithm derived
from statistical learning theory. A property of SVM classification is the ability to learn
from a very small sample set.

Using the SVM classifier is much the same as using the Decision Tree classifier, with
the following differences.

■ The preference used in the call to CTX_CLS.TRAIN should be of type SVM_
CLASSIFIER instead of RULE_CLASSIFIER. (If you don't want to modify any
attributes, you can use the predefined preference CTXSYS.SVM_CLASSIFIER.)

■ The CONTEXT index on the table does not have to be populated; that is, you can
use the NOPOPULATE keyword. The classifier uses it only to find the source of the

Supervised Classification

Classifying Documents in Oracle Text 6-11

text, by means of datastore and filter preferences, and to determine how to process
the text, through lexer and sectioner preferences.

■ The table for the generated rules must have (as a minimum) these columns:

cat_id number,
type number,
rule blob);

As you can see, the generated rule is written into a BLOB column. It is therefore
opaque to the user, and unlike Decision Tree classification rules, it cannot be edited or
modified. The trade-off here is that you often get considerably better accuracy with
SVM than with Decision Tree classification.

With SVM classification, allocated memory has to be large enough to load the SVM
model; otherwise, the application built on SVM will incur an out-of-memory error.
Here is how to calculate the memory allocation:

Minimum memory request (in bytes) = number of unique categories x number of features
 example: (value of MAX_FEATURES attributes) x 8

If necessary to meet the minimum memory requirements, either:

■ increase SGA memory (if in shared server mode)

■ increase PGA memory (if in dedicated server mode)

SVM-Based Supervised Classification Example
The following example uses SVM-based classification. It uses essentially the same
steps as the Decision Tree example. Some differences between the examples:

■ In this example, we set the SVM_CLASSIFIER preference with CTX_
DDL.CREATE_PREFERENCE rather than setting it in CTX_CLS.TRAIN. (You can
do it either way.)

■ In this example, our category table includes category descriptions, unlike the
category table in the Decision Tree example. (You can do it either way.)

■ CTX_CLS.TRAIN takes fewer arguments than in the Decision Tree example, as
rules are opaque to the user.

Step 1 Create and populate the training document table:
create table doc (id number primary key, text varchar2(2000));
insert into doc values(1,'1 2 3 4 5 6');
insert into doc values(2,'3 4 7 8 9 0');
insert into doc values(3,'a b c d e f');
insert into doc values(4,'g h i j k l m n o p q r');
insert into doc values(5,'g h i j k s t u v w x y z');

Step 2 Create and populate the category table:
create table testcategory (
 doc_id number,
 cat_id number,
 cat_name varchar2(100)
);
insert into testcategory values (1,1,'number');
insert into testcategory values (2,1,'number');
insert into testcategory values (3,2,'letter');
insert into testcategory values (4,2,'letter');
insert into testcategory values (5,2,'letter');

Unsupervised Classification (Clustering)

6-12 Oracle Text Application Developer's Guide

Step 3 Create the context index on the document table:
In this case, we create the index without population.

create index docx on doc(text) indextype is ctxsys.context
 parameters('nopopulate');

Step 4 Set SVM_CLASSIFIER:
This can also be done in CTX.CLS_TRAIN.

exec ctx_ddl.create_preference('my_classifier','SVM_CLASSIFIER');
exec ctx_ddl.set_attribute('my_classifier','MAX_FEATURES','100');

Step 5 Create the result (rule) table:
create table restab (
 cat_id number,
 type number(3) not null,
 rule blob
);

Step 6 Perform the training:
exec ctx_cls.train('docx', 'id','testcategory','doc_id','cat_id',
 'restab','my_classifier');

Step 7 Create a CTXRULE index on the rules table:
exec ctx_ddl.create_preference('my_filter','NULL_FILTER');
create index restabx on restab (rule)
 indextype is ctxsys.ctxrule
 parameters ('filter my_filter classifier my_classifier');

Now we can classify two unknown documents:

select cat_id, match_score(1) from restab
 where matches(rule, '4 5 6',1)>50;

select cat_id, match_score(1) from restab
 where matches(rule, 'f h j',1)>50;

drop table doc;
drop table testcategory;
drop table restab;
exec ctx_ddl.drop_preference('my_classifier');
exec ctx_ddl.drop_preference('my_filter');

Unsupervised Classification (Clustering)
With Rule-Based Classification, you write the rules for classifying documents yourself.
With Supervised Classification, Oracle Text writes the rules for you, but you must
provide a set of training documents that you pre-classify. With unsupervised
classification (also known as clustering), you don't even have to provide a training set of
documents.

Clustering is performed with the CTX_CLS.CLUSTERING procedure. CTX_
CLS.CLUSTERING creates a hierarchy of document groups, known as clusters, and, for
each document, returns relevancy scores for all leaf clusters.

For example, suppose that you have a large collection of documents concerning
animals. CTX_CLS.CLUSTERING might create one leaf cluster about dogs, another
about cats, another about fish, and a fourth cluster about bears. (The first three might

Unsupervised Classification (Clustering)

Classifying Documents in Oracle Text 6-13

be grouped under a node cluster concerning pets.) Suppose further that you have a
document about one breed of dogs, such as chihuahuas. CTX_CLS.CLUSTERING
would assign the dog cluster to the document with a very high relevancy score, while
the cat cluster would be assigned with a lower score and the fish and bear clusters
with still lower scores. Once scores for all clusters have been assigned to all
documents, an application can then take action based on the scores.

As noted in "Decision Tree Supervised Classification" on page 6-7, attributes used for
determining clusters may consist of simple words (or tokens), word stems, and themes
(where supported).

CTX_CLS.CLUSTERING assigns output to two tables (which may be in-memory
tables):

■ A document assignment table showing how similar the document is to each leaf
cluster. This information takes the form of document identification, cluster
identification, and a similarity score between the document and a cluster.

■ A cluster description table containing information about what a generated cluster
is about. This table contains cluster identification, cluster description text, a
suggested cluster label, and a quality score for the cluster.

CTX_CLS.CLUSTERING employs a K-MEAN algorithm to perform clustering. Use the
KMEAN_CLUSTERING preference to determine how CTX_CLS.CLUSTERING works.

Clustering Example
The following SQL example creates a small collection of documents in the collection
table and creates a CONTEXT index. It then creates a document assignment and cluster
description table, which are populated with a call to the CLUSTERING procedure. The
output would then be viewed with a select statement:

set serverout on

/* collect document into a table */
create table collection (id number primary key, text varchar2(4000));
insert into collection values (1, 'Oracle Text can index any document or textual content.');
insert into collection values (2, 'Ultra Search uses a crawler to access documents.');
insert into collection values (3, 'XML is a tag-based markup language.');
insert into collection values (4, 'Oracle Database 10g XML DB treats XML
as a native datatype in the database.');
insert into collection values (5, 'There are three Text index types to cover
all text search needs.');
insert into collection values (6, 'Ultra Search also provides API
for content management solutions.');

create index collectionx on collection(text) indextype is ctxsys.context parameters('nopopulate');

/* prepare result tables, if you omit this step, procedure will create table automatically */
create table restab (
 docid NUMBER,
 clusterid NUMBER,
 score NUMBER);

create table clusters (
 clusterid NUMBER,
 descript varchar2(4000),
 label varchar2(200),

See Also: Oracle Text Reference for more on cluster types and
hierarchical clustering

Unsupervised Classification (Clustering)

6-14 Oracle Text Application Developer's Guide

 sze number,
 quality_score number,
 parent number);

/* set the preference */
exec ctx_ddl.drop_preference('my_cluster');
exec ctx_ddl.create_preference('my_cluster','KMEAN_CLUSTERING');
exec ctx_ddl.set_attribute('my_cluster','CLUSTER_NUM','3');

/* do the clustering */
exec ctx_output.start_log('my_log');
exec ctx_cls.clustering('collectionx','id','restab','clusters','my_cluster');
exec ctx_output.end_log;

See Also: Oracle Text Reference for CTX_CLS.CLUSTERING syntax
and examples

Tuning Oracle Text 7-1

7
Tuning Oracle Text

This chapter discusses how to improve your query and indexing performance. The
following topics are covered:

■ Optimizing Queries with Statistics

■ Optimizing Queries for Response Time

■ Optimizing Queries for Throughput

■ Tracing

■ Parallel Queries

■ Tuning Queries with Blocking Operations

■ Frequently Asked Questions a About Query Performance

■ Frequently Asked Questions About Indexing Performance

■ Frequently Asked Questions About Updating the Index

Optimizing Queries with Statistics
Query optimization with statistics uses the collected statistics on the tables and
indexes in a query to select an execution plan that can process the query in the most
efficient manner. As a general rule, Oracle recommends that you collect statistics on
your base table if you are interested in improving your query performance.

The optimizer attempts to choose the best execution plan based on the following
parameters:

■ The selectivity on the CONTAINS predicate

■ The selectivity of other predicates in the query

■ The CPU and I/O costs of processing the CONTAINS predicates

The following sections describe how to use statistics with the extensible query
optimizer. Optimizing with statistics enables a more accurate estimation of the
selectivity and costs of the CONTAINS predicate and thus a better execution plan.

Note: Importing and exporting of statistics on domain indexes,
including Oracle Text indexes, is not supported with the DBMS_
STATS package. For more information on importing and exporting
statistics, see the PL/SQL Packages and Types Reference guide.

Optimizing Queries with Statistics

7-2 Oracle Text Application Developer's Guide

Collecting Statistics
By default, Oracle Text uses the cost-based optimizer to determine the best execution
plan for a query. To allow the optimizer to better estimate costs, you can calculate the
statistics on the table you query. To do so, issue the following statement:

ANALYZE TABLE <table_name> COMPUTE STATISTICS;

Alternatively, you can estimate the statistics on a sample of the table as follows:

ANALYZE TABLE <table_name> ESTIMATE STATISTICS 1000 ROWS;

or

ANALYZE TABLE <table_name> ESTIMATE STATISTICS 50 PERCENT;

You can also collect statistics in parallel with the DBMS_STATS.GATHER_TABLE_
STATS procedure.

begin
DBMS_STATS.GATHER_TABLE_STATS('owner', 'table_name',
 estimate_percent=>50,
 block_sample=>TRUE,
 degree=>4) ;
end ;

These statements collect statistics on all the objects associated with table_name including
the table columns and any indexes (b-tree, bitmap, or Text domain) associated with the
table.

To re-collect the statistics on a table, you can issue the ANALYZE command as many
times as necessary or use the DBMS_STATS package

By collecting statistics on the Text domain index, the Oracle Database cost-based
optimizer is able to do the following:

■ estimate the selectivity of the CONTAINS predicate

■ estimate the I/O and CPU costs of using the Text index, that is, the cost of
processing the CONTAINS predicate using the domain index

■ estimate the I/O and CPU costs of each invocation of CONTAINS

Knowing the selectivity of a CONTAINS predicate is useful for queries that contain
more than one predicate, such as in structured queries. This way the cost-based
optimizer can better decide whether to use the domain index to evaluate CONTAINS or
to apply the CONTAINS predicate as a post filter.

Example
Consider the following structured query:

select score(1) from tab where contains(txt, 'freedom', 1)
 > 0 and author = 'King' and year > 1960;

See Also:

■ Oracle Database SQL Reference and Oracle Database Performance
Tuning Guide for more information about the ANALYZE
command

■ PL/SQL Packages and Types Reference for information about
DBMS_STATS package

Optimizing Queries for Response Time

Tuning Oracle Text 7-3

Assume the author column is of type VARCHAR2 and the year column is of type
NUMBER. Assume that there is a b-tree index on the author column.

Also assume that the structured author predicate is highly selective with respect to
the CONTAINS predicate and the year predicate. That is, the structured predicate
(author = 'King') returns a much smaller number of rows with respect to the
year and CONTAINS predicates individually, say 5 rows returned versus 1000 and
1500 rows respectively.

In this situation, Oracle Text can execute this query more efficiently by first doing a
b-tree index range scan on the structured predicate (author = 'King'), followed by
a table access by rowid, and then applying the other two predicates to the rows
returned from the b-tree table access.

Re-Collecting Statistics
After synchronizing your index, you can re-collect statistics on a single index to
update the cost estimates.

If your base table has been re-analyzed before the synchronization, it is sufficient to
analyze the index after the synchronization without re-analyzing the entire table.

To do so, you can issue any of the following statements:

ANALYZE INDEX <index_name> COMPUTE STATISTICS;
or

ANALYZE INDEX <index_name> ESTIMATE STATISTICS SAMPLE 1000 ROWS;

or

ANALYZE INDEX <index_name> ESTIMATE STATISTICS SAMPLE 50 PERCENT;

Deleting Statistics
You can delete the statistics associated with a table by issuing:

ANALYZE TABLE <table_name> DELETE STATISTICS;

You can delete statistics on one index by issuing the following statement:

ANALYZE INDEX <index_name> DELETE STATISTICS;

Optimizing Queries for Response Time
By default, Oracle Text optimizes queries for throughput. This results in queries
returning all rows in shortest time possible.

However, in many cases, especially in a Web application scenario, queries must be
optimized for response time, when you are only interested in obtaining the first few
hits of a potentially large hitlist in the shortest time possible.

The following sections describe some ways to optimize CONTAINS queries for
response time:

■ Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries

Note: When statistics are not collected for a Text index, the
cost-based optimizer assumes low selectivity and index costs for
the CONTAINS predicate.

Optimizing Queries for Response Time

7-4 Oracle Text Application Developer's Guide

■ Improved Response Time using Local Partitioned CONTEXT Index

■ Improved Response Time with Local Partitioned Index for Order by Score

Other Factors that Influence Query Response Time
There are other factors that can influence query response time such as:

■ Collection of table statistics

■ Memory allocation

■ Sorting

■ Presence of LOB columns in your base table

■ Partitioning

■ Parallelism

■ The number term expansions in your query

Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries
When you need the first rows of an ORDER BY query, Oracle recommends that you use
this new fully cost-based hint in place of FIRST_ROWS.

You use the FIRST_ROWS(n) in cases where you want the first n number of rows in
the shortest possible time. For example, consider the following PL/SQL block that
uses a cursor to retrieve the first 10 hits of a query and uses the FIRST_ROWS(n) hint
to optimize the response time:

declare
cursor c is

select /* FIRST_ROWS(10) */ article_id from articles_tab
 where contains(article, 'Omophagia')>0 order "by pub_date desc;

begin
for i in c
loop
insert into t_s values(i.pk, i.col);
exit when c%rowcount > 11;
end loop;
end;
/

The cursor c is a SELECT statement that returns the rowids that contain the word
omophagia in sorted order. The code loops through the cursor to extract the first 10
rows. These rows are stored in the temporary table t_s.

With the FIRST_ROWS hint, Oracle Text instructs the Text index to return rowids in
score-sorted order, if possible.

See Also: "Frequently Asked Questions a About Query
Performance" in this chapter

Note: As this hint is cost-based, Oracle recommends that you
collect statistics on your tables before you use this hint. See
"Collecting Statistics" in this chapter.

Optimizing Queries for Response Time

Tuning Oracle Text 7-5

Without the hint, Oracle Text sorts the rowids after the Text index has returned all the
rows in unsorted order that satisfy the CONTAINS predicate. Retrieving the entire
result set as such takes time.

Since only the first 10 hits are needed in this query, using the hint results in better
performance.

About the FIRST_ROWS Hint
You can also optimize for response time using the related FIRST_ROWS hint. Like
FIRST_ROWS(n), when queries are optimized for response time, Oracle Text returns
the first rows in the shortest time possible.

For example, you can use this hint as follows

select /*+ FIRST_ROWS */ pk, score(1), col from ctx_tab
 where contains(txt_col, 'test', 1) > 0 order by score(1) desc;

However, this hint is only rule-based. This means that Oracle Text always chooses the
index which satisfies the ORDER BY clause. This might result in sub-optimal
performance for queries in which the CONTAINS clause is very selective. In these cases,
Oracle recommends that you use the FIRST_ROWS(n) hint, which is fully cost-based.

Improved Response Time using Local Partitioned CONTEXT Index
Partitioning your data and creating local partitioned indexes can improve your query
performance. On a partitioned table, each partition has its own set of index tables.
Effectively, there are multiple indexes, but the results from each are combined as
necessary to produce the final result set.

You create the CONTEXT index using the LOCAL keyword:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context
PARAMETERS ('...')
LOCAL

With partitioned tables and indexes, you can improve performance of the following
types of queries:

■ Range Search on Partition Key Column

■ ORDER BY Partition Key Column

Range Search on Partition Key Column
This is a query that restricts the search to a particular range of values on a column that
is also the partition key. For example, consider a query on a date range:

SELECT storyid FROM storytab WHERE CONTAINS(story, 'oliver')>0 and pub_date
BETWEEN '1-OCT-93' AND '1-NOV-93';

If the date range is quite restrictive, it is very likely that the query can be satisfied by
only looking in a single partition.

Note: Use the FIRST_ROWS(n) hint when you need only the first
few hits of a query. When you need the entire result set, do not use
this hint as it might result in poor performance.

Optimizing Queries for Throughput

7-6 Oracle Text Application Developer's Guide

ORDER BY Partition Key Column
This is a query that requires only the first n hits and the ORDER BY clause names the
partition key. Consider an ORDER BY query on a price column to fetch the first 20 hits
such as:

SELECT * FROM (
SELECT itemid FROM item_tab WHERE CONTAINS(item_desc, 'cd player')
 >0 ORDER BY price)
 WHERE ROWNUM < 20;

In this example, with the table partitioned by price, the query might only need to get
hits from the first partition to satisfy the query.

Improved Response Time with Local Partitioned Index for Order by Score
Using the FIRST_ROWS hint on a local partitioned index might result in poor
performance, especially when you order by score. This is because all hits to the query
across all partitions must be obtained before the results can be sorted.

You can work around this by using an inline view when you use the FIRST_ROWS
hint. Specifically, you can use the FIRST_ROWS hint to improve query performance on
a local partitioned index under the following conditions:

■ The text query itself including the order by SCORE() clause is expressed as an
in-line view.

■ The text query inside the in-line view contains the FIRST_ROWS or DOMAIN_
INDEX_SORT hint.

■ The query on the in-line view has ROWNUM predicate limiting number of rows to
fetch from the view.

For example, if you have the following text query and local text index created on a
partitioned table doc_tab:

 select doc_id, score(1) from doc_tab
 where contains(doc, 'oracle', 1)>0
 order by score(1) desc;

and you are only interested in fetching top 20 rows, you can rewrite the query to

 select * from
 (select /*+ FIRST_ROWS */ doc_id, score(1) from doc_tab
 where contains(doc, 'oracle', 1)>0 order by score(1) desc)
 where rownum < 21;

 Optimizing Queries for Throughput
Optimizing a query for throughput returns all hits in the shortest time possible. This is
the default behavior.

The following sections describe how you can explicitly optimize for throughput.

See Also:

■ Oracle Database Performance Tuning Guide for more information
about the query optimizer and using hints such as FIRST_
ROWS

■ Oracle Database Performance Tuning Guide and Oracle Database
SQL Reference for more information about the EXPLAIN PLAN
command

Tracing

Tuning Oracle Text 7-7

CHOOSE and ALL ROWS Modes
By default, queries are optimized for throughput under the CHOOSE and ALL_ROWS
modes. When queries are optimized for throughput, Oracle Text returns all rows in the
shortest time possible.

FIRST_ROWS Mode
In FIRST_ROWS mode, the Oracle Database optimizer optimizes for fast response time
by having the Text domain index return score-sorted rows, if possible. This is the
default behavior when you use the FIRST_ROWS hint.

If you want to optimize for better throughput under FIRST_ROWS, you can use the
DOMAIN_INDEX_NO_SORT hint. Better throughput means you are interested in getting
all the rows to a query in the shortest time.

The following example achieves better throughput by not using the Text domain index
to return score-sorted rows. Instead, Oracle Text sorts the rows after all the rows that
satisfy the CONTAINS predicate are retrieved from the index:

select /*+ FIRST_ROWS DOMAIN_INDEX_NO_SORT */ pk, score(1), col from ctx_tab
 where contains(txt_col, 'test', 1) > 0 order by score(1) desc;

Tracing
Oracle Text includes a tracing facility that enables you to identify bottlenecks in
indexing and querying.

Oracle Text provides a set of predefined traces. Each trace is identified by a unique
number. There is also a symbol in CTX_OUTPUT for this number.

Each trace measures a specific numeric quantity—for instance, the number of $I rows
selected during text queries.

Traces are cumulative counters, so usage is as follows:

1. The user enables a trace.

2. The user performs one or more operations. Oracle Text measures activities and
accumulates the results in the trace.

3. The user retrieves the trace value, which is the total value across all operations
done in step 2.

4. The user resets the trace to 0.

5. The user starts over at Step 2.

So, for instance, if in step 2 the user runs two queries, and query 1 selects 15 rows from
$I, and query 2 selects 17 rows from $I, then in step 3 the value of the trace would be
32 (15 + 17).

Traces are associated with a session—they can measure operations that take place
within a single session, and, conversely, cannot make measurements across sessions.

During parallel sync or optimize, the trace profile will be copied to the slave sessions if
and only if tracing is currently enabled. Each slave will accumulate its own traces and
implicitly write all trace values to the slave logfile before termination.

See Also: Oracle Database Performance Tuning Guide for more
information about the query optimizer and using hints such as
FIRST_ROWS and CHOOSE

Parallel Queries

7-8 Oracle Text Application Developer's Guide

For more information on tracing, see the Oracle Text Reference.

Parallel Queries
Oracle Text supports parallel query on a local CONTEXT index. That is, based on the
parallel degree of the index and various system attributes, Oracle Text determines
number of parallel query slaves to be spawned to process the index. Each parallel
query slave will process one or more index partitions. This is the default query
behavior for local indexes created in parallel.

In general, parallel queries are good for DSS or analytical systems with large data
collection, multiple CPUs, and low number of concurrent users.

However, for heavily loaded systems with high number of concurrent users, parallel
query can result in degrading your overall query throughput. In addition, typical top
N text queries with order by partition key column, such as

select * from (
 select story_id from stories_tab where contains(...)>0 order by
publication_date desc)
 where rownum <= 10;

will generally perform worse with a parallel query.

You can disable parallel querying after a parallel index operation with ALTER INDEX
command as follows

Alter index <text index name> NOPARALLEL;
Alter index <text index name> PARALLEL 1;

You can also enable or increase the parallel degree by doing

Alter index <text index name> paralllel < parallel degree >;

Tuning Queries with Blocking Operations
Issuing a query with more than one predicate can cause a blocking operation in the
execution plan. For example, consider the following mixed query:

select docid from mytab where contains(text, 'oracle', 1) > 0
 AND colA > 5
 AND colB > 1
 AND colC > 3;

Assume that all predicates are unselective and colA, colB, and colC have bitmap
indexes. The Oracle Database cost-based optimizer chooses the following execution
plan:

TABLE ACCESS BY ROWIDS
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP INDEX COLA_BMX
 BITMAP INDEX COLB_BMX
 BITMAP INDEX COLC_BMX
 BITMAP CONVERSION FROM ROWIDS
 SORT ORDER BY
 DOMAIN INDEX MYINDEX

Since the BITMAP AND is a blocking operation, Oracle Text must temporarily save the
rowid and score pairs returned from the Oracle Text domain index before executing
the BITMAP AND operation.

Frequently Asked Questions a About Query Performance

Tuning Oracle Text 7-9

Oracle Text attempts to save these rowid and score pairs in memory. However, when
the size of the result set containing these rowid and score pairs exceeds the SORT_
AREA_SIZE initialization parameter, Oracle Text spills these results to temporary
segments on disk.

Since saving results to disk causes extra overhead, you can improve performance by
increasing the SORT_AREA_SIZE parameter using ALTER SESSION as follows:

alter session set SORT_AREA_SIZE = <new memory size in bytes>;

For example, to set the buffer to approximately 8 megabytes, you can issue:

alter session set SORT_AREA_SIZE = 8300000;

Frequently Asked Questions a About Query Performance
This section answers some of the frequently asked questions about query performance.

What is Query Performance?
Answer: There are generally two measures of query performance:

■ Response time, the time to get an answer to an individual query, and

■ Throughput, the number of queries that can be run in any time period; for
example, queries each second).

These two are related, but are not the same. In a heavily loaded system, you normally
want maximum throughput, whereas in a relatively lightly loaded system, you
probably want minimum response time. Also, some applications require a query to
deliver all its hits to the user, whereas others might only require the first 20 hits from
an ordered set. It is important to distinguish between these two scenarios.

What is the fastest type of text query?
Answer: The fastest type of query will meet the following conditions:

■ Single CONTAINS clause

■ No other conditions in the WHERE clause

■ No ORDER BY clause at all

■ Only the first page of results is returned (for example, the first 10 or 20 hits).

Should I collect statistics on my tables?
Answer: Yes. Collecting statistics on your tables enables Oracle Text to do cost-based
analysis. This helps Oracle Text choose the most efficient execution plan for your
queries.

How does the size of my data affect queries?
Answer: The speed at which the text index can deliver ROWIDs is not affected by the
actual size of the data. Text query speed will be related to the number of rows that

See Also: Oracle Database Performance Tuning Guide and Oracle
Database Reference for more information on SORT_AREA_SIZE

See Also: "Optimizing Queries with Statistics" in this chapter

Frequently Asked Questions a About Query Performance

7-10 Oracle Text Application Developer's Guide

must be fetched from the index table, number of hits requested, number of hits
produced by the query, and the presence or absence of sorting.

How does the format of my data affect queries?
Answer: The format of the documents (plain ascii text, HTML or Microsoft Word)
should make no difference to query speed. The documents are filtered to plain text at
indexing time, not query time.

The cleanliness of the data will make a difference. Spell-checked and sub-edited text
for publication tends to have a much smaller total vocabulary (and therefore size of the
index table) than informal text such as e-mails, which will contain many spelling
errors and abbreviations. For a given index memory setting, the extra text takes up
more memory, which can lead to more fragmented rows than in the cleaner text, which
can adversely affect query response time.

What is a functional versus an indexed lookup?
Answer: There are two ways the kernel can query the text index. In the first and most
common case, the kernel asks the text index for all the rowids that satisfy a particular
text search. These rowids are returned in batches. In the second, the kernel passes
individual rowids to the text index, and asks whether that particular rowid satisfies a
certain text criterion.

The second is known as a functional lookup, and is most commonly done where there
is a very selective structured clause, so that only a few rowids must be checked against
the text index. An example of a search where a functional lookup may be used:

SELECT ID, SCORE(1), TEXT FROM MYTABLE
WHERE START_DATE = '21 Oct 1992' <- highly selective
AND CONTAINS (TEXT, 'commonword') > 0 <- unselective

Functional invocation is also used for text query ordered by structured column (for
example date, price) and text query is unselective.

What tables are involved in queries?
Answer: All queries look at the index token table. Its name has the form
DR$indexname$I. This contains the list of tokens (column TOKEN_TEXT) and the
information about the row and word positions where the token occurs (column
TOKEN_INFO).

The row information is stored as internal DOCID values. These must be translated into
external ROWID values. The table used for this depends on the type of lookup: For
functional lookups, the $K table, DR$indexname$K, is used. This is a simple Index
Organized Table (IOT) which contains a row for each DOCID/ROWID pair.

For indexed lookups, the $R table, DR$indexname$R, is used. This holds the complete
list of ROWIDs in a BLOB column.

Hence we can easily find out whether a functional or indexed lookup is being used by
examining a SQL trace, and looking for the $K or $R tables.

Note: These internal index tables are subject to change from
release to release. Oracle recommends that you do not directly
access these tables in your application.

Frequently Asked Questions a About Query Performance

Tuning Oracle Text 7-11

Does sorting the results slow a text-only query?
Answer: Yes, it certainly does.

If there is no sorting, then Oracle Text can return results as it finds them, which is
quicker in the common case where the application needs to display only a page of
results at a time.

How do I make a ORDER BY score query faster?
Answer: Sorting by relevance (SCORE(n)) can be extremely quick if the FIRST_
ROWS(n) hint is used. In this case, Oracle Text performs a high speed internal sort
when fetching from the text index tables.

An example of such a query:

 SELECT /*+ FIRST_ROWS(10) */ ID, SCORE(1), TEXT FROM MYTABLE
 WHERE CONTAINS (TEXT, 'searchterm', 1) > 0
 ORDER BY SCORE(1) DESC;

Note that for this to work efficiently, there must be no other criteria in the WHERE
clause other than a single CONTAINS.

Which Memory Settings Affect Querying?
Answer: For querying, you want to strive for a large system global area (SGA). You
can set these parameters related to SGA in your Oracle Database initialization file. You
can also set these parameters dynamically.

The SORT_AREA_SIZE parameter controls the memory available for sorting for
ORDER BY queries. You should increase the size of this parameter if you frequently
order by structured columns.

Does out of line LOB storage of wide base table columns improve performance?
Answer: Yes. Typically, a SELECT statement selects more than one column from your
base table. Since Oracle Text fetches columns to memory, it is more efficient to store
wide base table columns such as LOBs out of line, especially when these columns are
rarely updated but frequently selected.

When LOBs are stored out of line, only the LOB locators need to be fetched to memory
during querying. Out of line storage reduces the effective size of the base table making
it easier for Oracle Text to cache the entire table to memory. This reduces the cost of
selecting columns from the base table, and hence speeds up text queries.

In addition, having smaller base tables cached in memory enables more index table
data to be cached during querying, which improves performance.

See Also:

■ Oracle Database Administrator's Guide for more information on
setting SGA related parameters

■ Oracle Database Performance Tuning Guide for more information
on memory allocation and setting the SORT_AREA_SIZE
parameter

Frequently Asked Questions a About Query Performance

7-12 Oracle Text Application Developer's Guide

How can I make a CONTAINS query on more than one column faster?
Answer: The fastest type of query is one where there is only a single CONTAINS clause,
and no other conditions in the WHERE clause.

Consider the following multiple CONTAINS query:

 SELECT title, isbn FROM booklist
 WHERE CONTAINS (title, 'horse') > 0
 AND CONTAINS (abstract, 'racing') > 0

We can obtain the same result with section searching and the WITHIN operator as
follows:

 SELECT title, isbn FROM booklist
 WHERE CONTAINS (alltext,
 'horse WITHIN title AND racing WITHIN abstract')>0

This will be a much faster query. In order to use a query like this, we must copy all the
data into a single text column for indexing, with section tags around each column's
data. This can be done with PL/SQL procedures before indexing, or by making use of
the USER_DATASTORE datastore during indexing to synthesize structured columns
with the text column into one document.

Is it OK to have many expansions in a query?
Answer: Each distinct word used in a query will require at least one row to be fetched
from the index table. It is therefore best to keep the number of expansions down as
much as possible.

You should not use expansions such as wild cards, thesaurus, stemming and fuzzy
matching unless they are necessary to the task. In general, a few expansions (say up to
20) is OK, but you should try to avoid more than 100 or so expansions in a query. The
query feedback mechanism can be used to determine the number of expansions for
any particular query expression.

In addition for wildcard and stem queries, you can remove the cost of term expansion
from query time to index time by creating prefix, substring or stem indexes. Query
performance increases at the cost of longer indexing time and added disk space.

Prefix and substring indexes can improve wildcard performance. You enable prefix
and substring indexing with the BASIC_WORDLIST preference. The following example
sets the wordlist preference for prefix and substring indexing. For prefix indexing, it
specifies that Oracle Text create token prefixes between 3 and 4 characters long:

begin
ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH', '3');
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', '4');
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');
end

 You enable stem indexing with the BASIC_LEXER preference:

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute ('mylex', 'index_stems', 'ENGLISH');
end;

Frequently Asked Questions a About Query Performance

Tuning Oracle Text 7-13

How can local partition indexes help?
Answer: You can create local partitioned CONTEXT indexes on partitioned tables. This
means that on a partitioned table, each partition has its own set of index tables.
Effectively, there are multiple indexes, but the results from each are combined as
necessary to produce the final result set.

The index is created using the LOCAL keyword:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context
PARAMETERS ('...')
LOCAL

With partitioned tables and local indexes, you can improve performance of the
following types of CONTAINS queries:

■ Range Search on Partition Key Column

This is a query that restricts the search to a particular range of values on a column
that is also the partition key.

■ ORDER BY Partition Key Column

This is a query that requires only the first n hits and the ORDER BY clause names
the partition key

Should I query in parallel?
Answer: Depends. Even though parallel querying is the default behavior for indexes
created in parallel, it usually results in degrading overall query throughput on heavily
loaded systems.

In general, parallel queries are good for DSS or analytical systems with large data
collections, multiple CPUs, and low number of concurrent users.

Should I index themes?
Answer: Indexing theme information with a CONTEXT index takes longer and also
increases the size of your index. However, theme indexes enable ABOUT queries to be
more precise by using the knowledge base, if available. If your application uses ABOUT
queries heavily, it might be worthwhile to create a theme component to the index,
despite the extra indexing time and extra storage space required.

When should I use a CTXCAT index?
Answer: CTXCAT indexes work best when text is in small chunks, maybe a few lines
maximum, and searches need to restrict or sort the result set according to certain
structured criteria, usually numbers or dates.

For example, consider an on-line auction site. Each item for sale has a short
description, a current bid price, and dates for the start and end of the auction. A user
might want to see all the records with antique cabinet in the description, with a current

See Also: "Improved Response Time using Local Partitioned
CONTEXT Index" in this chapter

See Also: "Parallel Queries" in this chapter

See Also: "ABOUT Queries and Themes" in Chapter 4, "Querying
with Oracle Text"

Frequently Asked Questions About Indexing Performance

7-14 Oracle Text Application Developer's Guide

bid price less than $500. Since he's particularly interested in newly posted items, he
wants the results sorted by auction start time.

Such a search is not always efficient with a CONTAINS structured query on a CONTEXT
index, where the response time can vary significantly depending on the structured and
CONTAINS clauses. This is because the intersection of structured and CONTAINS
clauses or the ordering of text query is computed during query time.

By including structured information such as price and date within the CTXCAT index,
query response time is always in an optimal range regardless of search criteria. This is
because the interaction between text and structured query is pre-computed during
indexing. Consequently query response time is optimum.

When is a CTXCAT index NOT suitable?
Answer: There are differences in the time and space needed to create the index.
CTXCAT indexes take a bit longer to create and use considerably more disk space than
CONTEXT indexes. If you are tight on disk space, you should consider carefully
whether CTXCAT indexes are appropriate for you.

With respect to query operators, you can now use the richer CONTEXT grammar in
CATSEARCH queries with query templates. The older restriction of a single
CATSEARCH query grammar no longer holds.

What optimizer hints are available, and what do they do?
Answer: The optimizer hint INDEX(table column) can be used in the usual way
to drive the query with a text or b-tree index.

You can also use the NO_INDEX(table column) hint to disable a specific index.

Additionally, the FIRST_ROWS(n) hint has a special meaning for text queries and
should be used when you need the first n hits to a query. Use of the FIRST_ROWS hint
in conjunction with ORDER BY SCORE(n) DESC tells Oracle Text to accept a sorted
set from the text index, and not to do a further sort.

Frequently Asked Questions About Indexing Performance
This section answers some of the frequently asked questions about indexing
performance.

How long should indexing take?
Answer: Indexing text is a resource-intensive process. Obviously, the speed of
indexing will depend on the power of the hardware involved.

As a benchmark, with an average document size of 5K, Oracle Text can index
approximately 200 documents each second with the following hardware and parallel
configuration:

■ 4x400Mhz Sun Sparc CPUs

■ 4 gig of RAM

■ EMC symmetrix (24 disks striped)

■ Parallel degree of 5 with 5 partitions

■ Index memory of 600MB for each index process

See Also: "Optimizing Queries for Response Time" in this chapter

Frequently Asked Questions About Indexing Performance

Tuning Oracle Text 7-15

■ XML news documents that averaged 5K in size

■ USER_DATASTORE

Other factors such as your document format, location of your data, and the calls to
user-defined datastores, filters, and lexers can have an impact on your indexing speed.

Which index memory settings should I use?
Answer: You can set your index memory with the system parameters DEFAULT_
INDEX_MEMORY and MAX_INDEX_MEMORY. You can also set your index memory at
run time with the CREATE INDEX memory parameter in the parameter string.

You should aim to set the DEFAULT_INDEX_MEMORY value as high as possible,
without causing paging.

You can also improve Indexing performance by increasing the SORT_AREA_SIZE
system parameter.

Experience has shown that using a large index memory setting, even into hundreds of
megabytes, will improve the speed of indexing and reduce the fragmentation of the
final indexes. However, if set too high, then the memory paging that occurs will
cripple indexing speed.

With parallel indexing, each stream requires its own index memory. When dealing
with very large tables, you can tune your database system global area (SGA)
differently for indexing and retrieval. For querying, you are hoping to get as much
information cached in the system global area's (SGA) block buffer cache as possible. So
you should be allocating a large amount of memory to the block buffer cache. But this
will not make any difference to indexing, so you would be better off reducing the size
of the SGA to make more room for a large index memory settings during indexing.

You set the size of SGA in your Oracle Database initialization file.

How much disk overhead will indexing require?
Answer: The overhead, the amount of space needed for the index tables, varies
between about 50% of the original text volume and 200%. Generally, the larger the
total amount of text, the smaller the overhead, but many small records will use more
overhead than fewer large records. Also, clean data (such as published text) will
require less overhead than dirty data such as emails or discussion notes, since the dirty
data is likely to include many unique words from mis-spellings and abbreviations.

A text-only index is smaller than a combined text and theme index. A prefix and
substring index makes the index significantly larger.

See Also:

■ Oracle Text Reference to learn more about Oracle Text system
parameters

■ Oracle Database Administrator's Guide for more information on
setting SGA related parameters

■ Oracle Database Performance Tuning Guide for more information
on memory allocation and setting the SORT_AREA_SIZE
parameter

Frequently Asked Questions About Indexing Performance

7-16 Oracle Text Application Developer's Guide

How does the format of my data affect indexing?
Answer: You can expect much lower storage overhead for formatted documents such
as Microsoft Word files since such documents tend to be very large compared to the
actual text held in them. So 1GB of Word documents might only require 50MB of index
space, whereas 1GB of plain text might require 500MB, since there is ten times as much
plain text in the latter set.

Indexing time is less clear-cut. Although the reduction in the amount of text to be
indexed will have an obvious effect, you must balance this out against the cost of
filtering the documents with the AUTO_FILTER filter or other user-defined filters.

Can parallel indexing improve performance?
Answer: Parallel indexing can improve index performance when you have a large
amount of data, and have multiple CPUs.

You use the PARALLEL keyword when creating the index:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context PARAMETERS ('...') PARALLEL 3;

This will create the index with up to three separate indexing processes depending on
your resources.

Parallel indexing can also be used to create local partitioned indexes on partitioned
tables. However, indexing performance only improves when you have multiple CPUs.

How can I improve index performance for creating local partitioned index?
Answer: When you have multiple CPUs, you can improve indexing performance by
creating a local index in parallel. There are two ways to index in parallel:

You can create a local partitioned index in parallel in two ways:

■ Use the PARALLEL clause with the LOCAL clause in CREATE INDEX.In this case,
the maximum parallel degree is limited to the number of partitions you have.

■ Create an unusable index first, then run the DBMS_PCLXUTIL.BUILD_PART_
INDEX utility. This method can result in a higher degree of parallelism, especially
if you have more CPUs than partitions.

The following is an example for the second method. In this example, the base table has
three partitions. We create a local partitioned unusable index first, the run the DBMS_
PCLUTIL.BUILD_PART_INDEX, which builds the 3 partitions in parallel
(inter-partition parallelism). Also inside each partition, index creation is done in
parallel (intra-partition parallelism) with a parallel degree of 2.

create index tdrbip02bx on tdrbip02b(text)
indextype is ctxsys.context local (partition tdrbip02bx1,
 partition tdrbip02bx2,

Note: Using PARALLEL to create a local partitioned index enables
parallel queries. (Creating a non-partitioned index in parallel does
not turn on parallel query processing.)

Parallel querying degrades query throughput especially on heavily
loaded systems. Because of this, Oracle recommends that you
disable parallel querying after parallel indexing. To do so, use
ALTER INDEX NOPARALLEL.

Frequently Asked Questions About Updating the Index

Tuning Oracle Text 7-17

 partition tdrbip02bx3)
unusable;

exec dbms_pclxutil.build_part_index(3,2,'TDRBIP02B','TDRBIP02BX',TRUE);

How can I tell how much indexing has completed?
Answer: You can use the CTX_OUTPUT.START_LOG procedure to log output from the
indexing process. Filename will normally be written to $ORACLE_HOME/ctx/log, but
you can change the directory using the LOG_DIRECTORY parameter in CTX_
ADM.SET_PARAMETER.

Frequently Asked Questions About Updating the Index
This section answers some of the frequently asked questions about updating your
index and related performance issues.

How often should I index new or updated records?
Answer: The less often you run reindexing with CTX_DLL.SYNC_INDEX, the less
fragmented your indexes will be, and the less you will need to optimize them.

However, this means that your data will become progressively more out of date, which
may be unacceptable for your users.

Many systems are OK with overnight indexing. This means data that is less than a day
old is not searchable. Other systems use hourly, ten minute, or five minute updates.

How can I tell when my indexes are getting fragmented?
Answer: The best way is to time some queries, run index optimization, then time the
same queries (restarting the database to clear the SGA each time, of course). If the
queries speed up significantly, then optimization was worthwhile. If they don't, you
can wait longer next time.

You can also use CTX_REPORT.INDEX_STATS to analyze index fragmentation.

Does memory allocation affect index synchronization?
Answer: Yes, the same way as for normal indexing. But of course, there are often far
fewer records to be indexed during a synchronize operation, so it is not usually
necessary to provide hundreds of megabytes of indexing memory.

See Also: Oracle Text Reference to learn more about using this
procedure

See Also:

■ Oracle Text Reference to learn more about using CTX_
DDL.SYNC_INDEX

■ "Managing DML Operations for a CONTEXT Index" in
Chapter 3, "Indexing with Oracle Text"

See Also:

■ Oracle Text Reference to learn more about using the CTX_
REPORT package

■ "Index Optimization" in Chapter 3, "Indexing with Oracle Text"

Frequently Asked Questions About Updating the Index

7-18 Oracle Text Application Developer's Guide

Searching Document Section in Oracle Text 8-1

8
Searching Document Section in Oracle Text

This chapter describes how to use document sections in an Oracle Text query
application.

The following topics are discussed in this chapter:

■ About Oracle Text Document Section Searching

■ HTML Section Searching with Oracle Text

■ XML Section Searching with Oracle Text

About Oracle Text Document Section Searching
Section searching enables you to narrow text queries down to blocks of text within
documents. Section searching is useful when your documents have internal structure,
such as HTML and XML documents.

You can also search for text at the sentence and paragraph level.

Enabling Oracle Text Section Searching
The steps for enabling section searching for your document collection are:

1. Create a section group

2. Define your sections

3. Index your documents

4. Section search with WITHIN, INPATH, or HASPATH operators

Create a Section Group
Section searching is enabled by defining section groups. You use one of the
system-defined section groups to create an instance of a section group. Choose a
section group appropriate for your document collection.

You use section groups to specify the type of document set you have and implicitly
indicate the tag structure. For instance, to index HTML tagged documents, you use the
HTML_SECTION_GROUP. Likewise, to index XML tagged documents, you can use the
XML_SECTION_GROUP.

Table 8–1 lists the different types of section groups you can use:

About Oracle Text Document Section Searching

8-2 Oracle Text Application Developer's Guide

You use the CTX_DDL package to create section groups and define sections as part of
section groups. For example, to index HTML documents, create a section group with
HTML_SECTION_GROUP:

begin

Table 8–1 Types of Section Groups

Section Group Preference Description

NULL_SECTION_GROUP This is the default. Use this group type when you
define no sections or when you define only SENTENCE
or PARAGRAPH sections.

BASIC_SECTION_GROUP Use this group type for defining sections where the
start and end tags are of the form <A> and .

Note: This group type dopes not support input such as
unbalanced parentheses, comments tags, and attributes.
Use HTML_SECTION_GROUP for this type of input.

HTML_SECTION_GROUP Use this group type for indexing HTML documents
and for defining sections in HTML documents.

XML_SECTION_GROUP Use this group type for indexing XML documents and
for defining sections in XML documents.

AUTO_SECTION_GROUP Use this group type to automatically create a zone
section for each start-tag/end-tag pair in an XML
document. The section names derived from XML tags
are case-sensitive as in XML.

Attribute sections are created automatically for XML
tags that have attributes. Attribute sections are named
in the form tag@attribute.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section
groups:

■ You cannot add zone, field or special sections to an
automatic section group.

■ Automatic sectioning does not index XML
document types (root elements.) However, you can
define stop-sections with document type.

■ The length of the indexed tags including prefix and
namespace cannot exceed 64 bytes. Tags longer
than this are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. Behaves
like the AUTO_SECTION_GROUP.

The difference is that with this section group you can
do path searching with the INPATH and HASPATH
operators. Queries are also case-sensitive for tag and
attribute names.

NEWS_SECTION_GROUP Use this group for defining sections in newsgroup
formatted documents according to RFC 1036.

Note: Documents sent to the HTML, XML, AUTO and PATH sectioners
must begin with \s*<, where \s* represents zero or more whitespace
characters. Otherwise, the document is treated as a plaintext
document, and no sections are recognized.

About Oracle Text Document Section Searching

Searching Document Section in Oracle Text 8-3

ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
end;

Define Your Sections
You define sections as part of the section group. The following example defines an
zone section called heading for all text within the HTML < H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

Index Your Documents
When you index your documents, you specify your section group in the parameter
clause of CREATE INDEX.

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

Section Searching with the WITHIN Operator
When your documents are indexed, you can query within sections using the WITHIN
operator. For example, to find all the documents that contain the word Oracle within
their headings, issue the following query:

'Oracle WITHIN heading'

Path Searching with INPATH and HASPATH Operators
When you use the PATH_SECTION_GROUP, the system automatically creates XML
sections for you. In addition to using the WITHIN operator to issue queries, you can
issue path queries with the INPATH and HASPATH operators.

Note: If you are using the AUTO_SECTION_GROUP or PATH_
SECTION_GROUP to index an XML document collection, you need
not explicitly define sections since the system does this for you
during indexing.

See Also:

■ "Oracle Text Section Types" in this chapter for more information
about sections

■ "XML Section Searching with Oracle Text" in this chapter for
more information about section searching with XML

See Also: Oracle Text Reference to learn more about using the
WITHIN operator

See Also:

■ "XML Section Searching with Oracle Text" to learn more about
using these operators

■ Oracle Text Reference to learn more about using the INPATH
operator

About Oracle Text Document Section Searching

8-4 Oracle Text Application Developer's Guide

Oracle Text Section Types
All sections types are blocks of text in a document. However, sections can differ in the
way they are delimited and the way they are recorded in the index. Sections can be one
of the following:

■ Zone Section

■ Field Section

■ Stop Section

■ MDATA Section

■ Attribute Section (for XML documents)

■ Special Sections (sentence or paragraphs)

Table 8–2 shows which section types may be used with each kind of section group.

Zone Section
A zone section is a body of text delimited by start and end tags in a document. The
positions of the start and end tags are recorded in the index so that any words in
between the tags are considered to be within the section. Any instance of a zone
section must have a start and an end tag.

For example, the text between the <TITLE> and </TITLE> tags can be defined as a
zone section as follows:

<TITLE>Tale of Two Cities</TITLE>
It was the best of times...

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the WITHIN operator to search for a term across
all sections. Oracle Text returns those documents that contain the term within the
defined section.

Zone sections are well suited for defining sections in HTML and XML documents. To
define a zone section, use CTX_DDL.ADD_ZONE_SECTION.

For example, assume you define the section booktitle as follows:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'booktitle', 'TITLE');
end;

Table 8–2 Section Types and Section Groups

Section
Group ZONE FIELD SPECIAL STOP ATTRIBUTE MDATA

NULL NO NO YES NO NO NO

BASIC YES YES YES NO NO YES

HTML YES YES YES NO NO YES

XML YES YES YES NO YES YES

NEWS YES YES YES NO NO YES

AUTO NO NO NO YES NO NO

PATH NO NO NO NO NO NO

About Oracle Text Document Section Searching

Searching Document Section in Oracle Text 8-5

After you index, you can search for all the documents that contain the term Cities
within the section booktitle as follows:

'Cities WITHIN booktitle'

With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle Text returns
those documents that contain cat and dog within the same instance of a booktitle
section.

Repeated Zone Sections Zone sections can repeat. Each occurrence is treated as a
separate section. For example, if <H1> denotes a heading section, they can repeat in
the same documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading, the query Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN Heading
does not.

Overlapping Zone Sections Zone sections can overlap each other. For example, if and
<I> denote two different zone sections, they can overlap in a document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Zone Sections Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within
sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur
as follows in documents doc1 and doc2:

doc1:

<book1> <author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

'(Scott within author) within book1'

This query returns only doc1.

Field Section
A field section is similar to a zone section in that it is a region of text delimited by start
and end tags. A field section is different from a zone section in that the region is
indexed separately from the rest of the document.

Since field sections are indexed differently, you can also get better query performance
over zone sections for when you have a large number of documents indexed.

Field sections are more suited to when you have a single occurrence of a section in a a
document such as a field in a news header. Field sections can also be made visible to
the rest of the document.

Unlike zone sections, field sections have the following restrictions:

■ Field sections cannot overlap

About Oracle Text Document Section Searching

8-6 Oracle Text Application Developer's Guide

■ Field sections cannot repeat

■ Field sections cannot nest

Visible and Invisible Field Sections By default, field sections are indexed as a
sub-document separate from the rest of the document. As such, field sections are
invisible to the surrounding text and can only be queried by explicitly naming the
section in the WITHIN clause.

You can make field sections visible if you want the text within the field section to be
indexed as part of the enclosing document. Text within a visible field section can be
queried with or without the WITHIN operator.

The following example shows the difference between using invisible and visible field
sections.

The following code defines a section group basicgroup of the BASIC_SECTION_
GROUP type. It then creates a field section in basicgroup called Author for the <A>
tag. It also sets the visible flag to FALSE to create an invisible section:

begin
ctx_ddl.create_section_group('basicgroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', FALSE);
end;

Because the Author field section is not visible, to find text within the Author section,
you must use the WITHIN operator as follows:

'(Martin Luther King) WITHIN Author'

A query of Martin Luther King without the WITHIN operator does not return instances
of this term in field sections. If you want to query text within field sections without
specifying WITHIN, you must set the visible flag to TRUE when you create the section
as follows:

begin
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', TRUE);
end;

Nested Field Sections Field sections cannot be nested. For example, if you define a field
section to start with <TITLE> and define another field section to start with <FOO>, the
two sections cannot be nested as follows:

<TITLE> dog <FOO> cat </FOO> </TITLE>

To work with nested sections, define them as zone sections.

Repeated Field Sections Repeated field sections are allowed, but WITHIN queries treat
them as a single section. The following is an example of repeated field section in a
document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query dog and cat within title returns the document, even though these words occur
in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

About Oracle Text Document Section Searching

Searching Document Section in Oracle Text 8-7

Stop Section
A stop section may be added to an automatic section group. Adding a stop section
causes the automatic section indexing operation to ignore the specified section in XML
documents.

Adding a stop section is useful when your documents contain many low-information
tags. Adding stop sections also improves indexing performance with the automatic
section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section
views.

MDATA Section
An MDATA section is used to reference user-defined metadata for a document. Using
MDATA sections can speed up mixed queries.

Consider the case in which you want to query both according to text content and
document type (magazine or newspaper or novel). You could create an index with a
column for text and a column for the document type, and then perform a mixed query
of this form—in this case, searching for all novels with the phrase Adam Thorpe (author
of the novel Ulverton):

SELECT id FROM documents
 WHERE doctype = 'novel'
 AND CONTAINS(text, 'Adam Thorpe')>0;

However, it is usually faster to incorporate the attribute (in this case, the document
type) into a field section, rather than use a separate column, and then use a single
CONTAINS query:

SELECT id FROM documents
 WHERE CONTAINS(text, 'Adam Thorpe AND novel WITHIN doctype')>0;

There are two drawbacks to this approach:

■ Each time the attribute is updated, the entire text document must be re-indexed,
resulting in increased index fragmentation and slower rates of processing DML.

■ Field sections tokenize the section value. This has several effects. Special
characters in metadata, such as decimal points or currency characters, are not
easily searchable; value searching (searching for Thurston Howell but not Thurston
Howell, Jr.) is difficult; multi-word values are queried by phrase, which is slower
than single-token searching; and multi-word values do not show up in
browse-words, making author browsing or subject browsing impossible.

For these reasons, using MDATA sections instead of field sections may be worthwhile.
MDATA sections are indexed like field sections, but metadata values can be added to
and removed from documents without the need to re-index the document text. Unlike
field sections, MDATA values are not tokenized. Additionally, MDATA section indexing
generally takes up less disk space than field section indexing.

Note: Adding a stop section causes no section information to be
created in the index. However, the text within a stop section is
always searchable.

About Oracle Text Document Section Searching

8-8 Oracle Text Application Developer's Guide

Use CTX_DDL.ADD_MDATA_SECTION to add an MDATA section to a section group.
This example adds an MDATA section called AUTHOR and gives it the value Soseki
Natsume (author of the novel Kokoro).

ctx_ddl.create.section.group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_mdata_section('htmgroup', 'author', 'Soseki Natsume');

MDATA values can be changed with CTX_DDL.ADD_MDATA and removed with CTX_
DDL.REMOVE_MDATA. MDATA sections can have multiple values. Only the owner of
the index is allowed to call CTX_DDL.ADD_MDATA and CTX_DDL.REMOVE_MDATA.

Neither CTX_DDL.ADD_MDATA nor CTX_DDL.REMOVE_MDATA are supported for
CTXCAT, CTXXPTH and CTXRULE indexes.

MDATA values are not passed through a lexer. Instead, all values undergo a simplified
normalization:

■ Leading and trailing whitespace on the value is removed.

■ The value is truncated to 64 bytes.

■ The value is converted to upper case.

■ The value is indexed as a single value; if the value consists of multiple words, it is
not broken up.

■ Case is preserved. If the document is dynamically generated, you can implement
case-insensitivity by uppercasing MDATA values and making sure to search only in
uppercase.

Once a document has had MDATA metadata added to it, you can query for that
metadata using the MDATA CONTAINS query operator:

SELECT id FROM documents
 WHERE CONTAINS(text, 'Tokyo and MDATA(author, Soseki Natsume)')>0;

This query will only be successful if an AUTHOR tag has the exact value Soseki Natsume
(after simplified tokenization). Soseki or Natsume Soseki will not work.

Other things to note about MDATA:

■ MDATA values are not highlightable, will not appear in the output of CTX_
DOC.TOKENS, and will not show up when FILTER PLAINTEXT is enabled.

■ MDATA sections must be unique within section groups. You cannot have an MDATA
section named FOO and a zone or field section of the same name in the same
section group.

■ Like field sections, MDATA sections cannot overlap or nest. An MDATA section is
implicitly closed by the first tag encountered. For instance, in this example:

<AUTHOR>Dickens Shelley Keats</AUTHOR>

The tag closes the AUTHOR MDATA section; as a result, this document has an
AUTHOR of 'Dickens', but not of 'Shelley' or 'Keats'.

■ To prevent race conditions, each call to ADD_MDATA and REMOVE_MDATA locks out
other calls on that rowid for that index for all values and sections. However, since
ADD_MDATA and REMOVE_MDATA do not commit, it is possible for an application
to deadlock when calling them both. It is the application's responsibility to prevent
deadlocking.

About Oracle Text Document Section Searching

Searching Document Section in Oracle Text 8-9

Attribute Section
You can define attribute sections to query on XML attribute text. You can also have the
system automatically define and index XML attributes for you.

Special Sections
Special sections are not recognized by tags. Currently the only special sections
supported are sentence and paragraph. This enables you to search for combination of
words within sentences or paragraphs.

The sentence and paragraph boundaries are determined by the lexer. For example, the
BASIC_LEXER recognizes sentence and paragraph section boundaries as follows:

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are
indexed.

To add a special section, use the CTX_DDL.ADD_SPECIAL_SECTION procedure. For
example, the following code enables searching within sentences within HTML
documents:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
end;

You can also add zone sections to the group to enable zone searching in addition to
sentence searching. The following example adds the zone section Headline to the
section group htmgroup:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
ctx_ddl.add_zone_section('htmgroup', 'Headline', 'H1');
end;

See Also:

■ the CONTAINS query operators chapter of the Oracle Text
Reference for information on the MDATA operator

■ the CTX_DDL package chapter of Oracle Text Reference for
information on adding and removing MDATA sections

See Also: "XML Section Searching with Oracle Text" in this
chapter

Table 8–3 Sentence and Paragraph Section Boundaries for BASIC_LEXER

Special Section Boundary

SENTENCE WORD/PUNCT/WHITESPACE

WORD/PUNCT/NEWLINE

PARAGRAPH WORD/PUNCT/NEWLINE/WHITESPACE

WORD/PUNCT/NEWLINE/NEWLINE

HTML Section Searching with Oracle Text

8-10 Oracle Text Application Developer's Guide

HTML Section Searching with Oracle Text
HTML has internal structure in the form of tagged text which you can use for section
searching. For example, you can define a section called headings for the <H1> tag. This
enables you to search for terms only within these tags across your document set.

To query, you use the WITHIN operator. Oracle Text returns all documents that contain
your query term within the headings section. Thus, if you wanted to find all
documents that contain the word oracle within headings, you issue the following
query:

'oracle within headings'

Creating HTML Sections
The following code defines a section group called htmgroup of type HTML_SECTION_
GROUP. It then creates a zone section in htmgroup called heading identified by the
<H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

You can then index your documents as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

After indexing with section group htmgroup, you can query within the heading
section by issuing a query as follows:

'Oracle WITHIN heading'

Searching HTML Meta Tags
With HTML documents you can also create sections for NAME/CONTENT pairs in
<META> tags. When you do so you can limit your searches to text within CONTENT.

Example: Creating Sections for <META>Tags
Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a zone section that indexes all CONTENT attributes for the META tag whose
NAME value is author:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'author', 'meta@author');
end

After indexing with section group htmgroup, you can query the document as follows:

'ken WITHIN author'

XML Section Searching with Oracle Text

Searching Document Section in Oracle Text 8-11

XML Section Searching with Oracle Text
Like HTML documents, XML documents have tagged text which you can use to define
blocks of text for section searching. The contents of a section can be searched on with
the WITHIN or INPATH operators.

For XML searching, you can do the following:

■ Automatic sectioning

■ Attribute searching

■ Document type sensitive sections

■ Path section searching

Automatic Sectioning
You can set up your indexing operation to automatically create sections from XML
documents using the section group AUTO_SECTION_GROUP. The system creates zone
sections for XML tags. Attribute sections are created for the tags that have attributes
and these sections named in the form tag@attribute.

For example, the following command creates the index myindex on a column
containing the XML files using the AUTO_SECTION_GROUP:

CREATE INDEX myindex
ON xmldocs(xmlfile)
 INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group ctxsys.auto_section_group'
);

Attribute Searching
You can search XML attribute text in one of two ways:

■ Create attribute sections with CTX_DDL.ADD_ATTR_SECTION and then index with
XML_SECTION_GROUP. If you use AUTO_SECTION_GROUP when you index,
attribute sections are created automatically. You can query attribute sections with
the WITHIN operator.

■ Index with the PATH_SECTION_GROUP and query attribute text with the INPATH
operator.

Creating Attribute Sections
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
 It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP
and define the attribute section as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');
end;

To index:

XML Section Searching with Oracle Text

8-12 Oracle Text Application Developer's Guide

CREATE INDEX myindex
ON xmldocs(xmlfile)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group myxmlgroup'
);

You can query the XML attribute section booktitle as follows:

'Cities within booktitle'

Searching Attributes with the INPATH Operator
You can search attribute text with the INPATH operator. To do so, you must index your
XML document set with the PATH_SECTION_GROUP.

Creating Document Type Sensitive Sections
You have an XML document set that contains the <book> tag declared for different
document types. You want to create a distinct book section for each document type.

Assume that mydocname1 is declared as an XML document type (root element) as
follows:

<!DOCTYPE mydocname1 ... [...

Within mydocname1, the element <book> is declared. For this tag, you can create a
section named mybooksec1 that is sensitive to the tag's document type as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec1', 'mydocname1(book)');
end;

Assume that mydocname2 is declared as another XML document type (root element)
as follows:

<!DOCTYPE mydocname2 ... [...

Within mydocname2, the element <book> is declared. For this tag, you can create a
section named mybooksec2 that is sensitive to the tag's document type as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec2', 'mydocname2(book)');
end;

To query within the section mybooksec1, use WITHIN as follows:

'oracle within mybooksec1'

Path Section Searching
XML documents can have parent-child tag structures such as the following:

<A> <C> dog </C>

In this example, tag C is a child of tag B which is a child of tag A.

See Also: "Path Section Searching" on page 8-12

XML Section Searching with Oracle Text

Searching Document Section in Oracle Text 8-13

With Oracle Text, you can do path searching with PATH_SECTION_GROUP. This
section group enables you to specify direct parentage in queries, such as to find all
documents that contain the term dog in element C which is a child of element B and so
on.

With PATH_SECTION_GROUP, you can also perform attribute value searching and
attribute equality testing.

The new operators associated with this feature are

■ INPATH

■ HASPATH

Creating an Index with PATH_SECTION_GROUP
To enable path section searching, index your XML document set with PATH_
SECTION_GROUP.

Create the preference:

begin
ctx_ddl.create_section_group('xmlpathgroup', 'PATH_SECTION_GROUP');
end;

Create the index:

CREATE INDEX myindex
ON xmldocs(xmlfile)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group xmlpathgroup'
);

When you create the index, you can use the INPATH and HASPATH operators.

Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)

or

dog INPATH(A)

Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

<C><A>dog</C>

Direct Parentage Searching
To find all documents that contain the term dog in a B element that is a direct child of a
top-level A element:

XML Section Searching with Oracle Text

8-14 Oracle Text Application Developer's Guide

dog INPATH(A/B)

This query finds the following XML document:

<A>My dog is friendly.

but does not find:

<C>My dog is friendly.</C>

Tag Value Testing
You can test the value of tags. For example, the query:

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

Attribute Searching
You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document

<C> </C>

Attribute Value Testing
You can test the value of attributes. For example, the query

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA

But does not find:

San Francisco, California, USA

Path Testing
You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Section Equality Testing with HASPATH
You can use the HASPATH operator to do section quality tests. For example, consider
the following query:

dog INPATH A

XML Section Searching with Oracle Text

Searching Document Section in Oracle Text 8-15

finds

<A>dog

but it also finds

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality test
with the HASPATH operator. For example,

HASPATH(A="dog")

finds and returns a score of 100 only for the first document, and not the second.

See Also: Oracle Text Reference to learn more about using the
INPATH and HASPATH operators

XML Section Searching with Oracle Text

8-16 Oracle Text Application Developer's Guide

Working With a Thesaurus in Oracle Text 9-1

9
Working With a Thesaurus in Oracle Text

This chapter describes how to improve your query application with a thesaurus. The
following topics are discussed in this chapter:

■ Overview of Oracle Text Thesaurus Features

■ Defining Terms in a Thesaurus

■ Using a Thesaurus in a Query Application

■ About the Supplied Knowledge Base

Overview of Oracle Text Thesaurus Features
Users of your query application looking for information on a given topic might not
know which words have been used in documents that refer to that topic.

Oracle Text enables you to create case-sensitive or case-insensitive thesauri which
define synonym and hierarchical relationships between words and phrases. You can
then retrieve documents that contain relevant text by expanding queries to include
similar or related terms as defined in the thesaurus.

You can create a thesaurus and load it into the system.

Oracle Text Thesaurus Creation and Maintenance
Thesauri and thesaurus entries can be created, modified, and deleted by all Oracle Text
users with the CTXAPP role.

CTX_THES Package
To maintain and browse your thesaurus programatically, you can use the PL/SQL
package, CTX_THES. With this package, you can browse terms and hierarchical
relationships, add and delete terms, and add and remove thesaurus relations.

Thesaurus Operators
You can also use the thesaurus operators in the CONTAINS clause to expand query
terms according to your loaded thesaurus. For example, you can use the SYN operator
to expand a term such as dog to its synonyms as follows:

'syn(dog)'

Note: The Oracle Text thesauri formats and functionality are
compliant with both the ISO-2788 and ANSI Z39.19 (1993)
standards.

Overview of Oracle Text Thesaurus Features

9-2 Oracle Text Application Developer's Guide

ctxload Utility
The ctxload utility can be used for loading thesauri from a plain-text file into the
thesaurus tables, as well as dumping thesauri from the tables into output (dump) files.

The thesaurus dump files created by ctxload can be printed out or used as input for
other applications. The dump files can also be used to load a thesaurus into the
thesaurus tables. This can be useful for using an existing thesaurus as the basis for
creating a new thesaurus.

Using a Case-sensitive Thesaurus
In a case-sensitive thesaurus, terms (words and phrases) are stored exactly as entered.
For example, if a term is entered in mixed-case (using either the CTX_THES package or
a thesaurus load file), the thesaurus stores the entry in mixed-case.

When loading a thesaurus, you can specify that the thesaurus be loaded case-sensitive
using the -thescase parameter.

When creating a thesaurus with CTX_THES.CREATE_THESAURUS, you can specify that
the thesaurus created be case-sensitive.

In addition, when a case-sensitive thesaurus is specified in a query, the thesaurus
lookup uses the query terms exactly as entered in the query. Therefore, queries that use
case-sensitive thesauri allow for a higher level of precision in the query expansion,
which helps lookup when and only when you have a case-sensitive index.

For example, a case-sensitive thesaurus is created with different entries for the distinct
meanings of the terms Turkey (the country) and turkey (the type of bird). Using the
thesaurus, a query for Turkey expands to include only the entries associated with
Turkey.

Using a Case-insensitive Thesaurus
In a case-insensitive thesaurus, terms are stored in all-uppercase, regardless of the case
in which they were entered.

The ctxload program loads a thesaurus case-insensitive by default.

When creating a thesaurus with CTX_THES.CREATE_THESAURUS, the thesaurus is
created case-insensitive by default.

In addition, when a case-insensitive thesaurus is specified in a query, the query terms
are converted to all-uppercase for thesaurus lookup. As a result, Oracle Text is unable
to distinguish between terms that have different meanings when they are in
mixed-case.

For example, a case-insensitive thesaurus is created with different entries for the two
distinct meanings of the term TURKEY (the country or the type of bird). Using the
thesaurus, a query for either Turkey or turkey is converted to TURKEY for thesaurus
lookup and then expanded to include all the entries associated with both meanings.

Note: To take full advantage of query expansions that result from
a case-sensitive thesaurus, your index must also be case-sensitive.

Defining Terms in a Thesaurus

Working With a Thesaurus in Oracle Text 9-3

Default Thesaurus
If you do not specify a thesaurus by name in a query, by default, the thesaurus
operators use a thesaurus named DEFAULT. However, Oracle Text does not provide a
DEFAULT thesaurus.

As a result, if you want to use a default thesaurus for the thesaurus operators, you
must create a thesaurus named DEFAULT. You can create the thesaurus through any of
the thesaurus creation methods supported by Oracle Text:

■ CTX_THES.CREATE_THESAURUS (PL/SQL)

■ ctxload

Supplied Thesaurus
Although Oracle Text does not provide a default thesaurus, Oracle Text does supply a
thesaurus, in the form of a ctxload load file, that can be used to create a
general-purpose, English-language thesaurus.

The thesaurus load file can be used to create a default thesaurus for Oracle Text or it
can be used as the basis for creating thesauri tailored to a specific subject or range of
subjects.

Supplied Thesaurus Structure and Content
The supplied thesaurus is similar to a traditional thesaurus, such as Roget's Thesaurus,
in that it provides a list of synonymous and semantically related terms.

The supplied thesaurus provides additional value by organizing the terms into a
hierarchy that defines real-world, practical relationships between narrower terms and
their broader terms.

Additionally, cross-references are established between terms in different areas of the
hierarchy.

Supplied Thesaurus Location
The exact name and location of the thesaurus load file is operating system dependent;
however, the file is generally named dr0thsus (with an appropriate extension for text
files) and is generally located in the following directory structure:

<Oracle_home_directory>
 <interMedia_Text_directory>
 sample
 thes

Defining Terms in a Thesaurus
You can create synonyms, related terms, and hierarchical relationships with a
thesaurus. The following sections give examples.

See Also: Oracle Text Reference to learn more about using
ctxload and the CTX_THES package

See Also: Oracle Text Reference to learn more about using
ctxload and the CTX_THES package

See Also: Oracle Database installation documentation specific to
your operating system for more information about the directory
structure of Oracle Text

Using a Thesaurus in a Query Application

9-4 Oracle Text Application Developer's Guide

Defining Synonyms
If you have a thesaurus of computer science terms, you might define a synonym for
the term XML as extensible markup language. This enables queries on either of these
terms to return the same documents.

XML
SYN Extensible Markup Language

You can thus use the SYN operator to expand XML into its synonyms:

'SYN(XML)'

is expanded to:

'XML, Extensible Markup Language'

Defining Hierarchical Relations
If your document set is made up of news articles, you can use a thesaurus to define a
hierarchy of geographical terms. Consider the following hierarchy that describes a
geographical hierarchy for the U.S state of California:

California
 NT Northern California
 NT San Francisco
 NT San Jose
 NT Central Valley
 NT Fresno
 NT Southern California
 NT Los Angeles

You can thus use the NT operator to expand a query on California as follows:

'NT(California)'

expands to:

'California, Northern California, San Francisco, San Jose, Central Valley,
 Fresno, Southern California, Los Angeles'

The resulting hitlist shows all documents related to the U.S. state of California regions
and cities.

Using a Thesaurus in a Query Application
Defining a custom thesaurus enables you to process queries more intelligently. Since
users of your application might not know which words represent a topic, you can
define synonyms or narrower terms for likely query terms. You can use the thesaurus
operators to expand your query into your thesaurus terms.

There are two ways to enhance your query application with a custom thesaurus so that
you can process queries more intelligently:

■ Load your custom thesaurus and issue queries with thesaurus operators

■ Augment the knowledge base with your custom thesaurus (English only) and use
the ABOUT operator to expand your query.

Each approach has its advantages and disadvantages.

Using a Thesaurus in a Query Application

Working With a Thesaurus in Oracle Text 9-5

Loading a Custom Thesaurus and Issuing Thesaurus-based Queries
To build a custom thesaurus, follow these steps:

1. Create your thesaurus. See "Defining Terms in a Thesaurus" in this chapter.

2. Load thesaurus with ctxload. For example, the following example imports a
thesaurus named tech_doc from an import file named tech_thesaurus.txt:

ctxload -user jsmith/123abc -thes -name tech_doc -file tech_thesaurus.txt

1. Use THES operators to query. For example, you can find all documents that
contain XML and its synonyms as defined in tech_doc:

'SYN(XML, tech_doc)'

Advantage
The advantage of using this method is that you can modify the thesaurus after
indexing.

Limitations
This method requires you to use thesaurus expansion operators in your query. Long
queries can cause extra overhead in the thesaurus expansion and slow your query
down.

Augmenting Knowledge Base with Custom Thesaurus
You can add your custom thesaurus to a branch in the existing knowledge base. The
knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT
queries, and deriving themes for document services.

When you augment the existing knowledge base with your new thesaurus, you query
with the ABOUT operator which implicitly expands to synonyms and narrower terms.
You do not query with the thesaurus operators.

To augment the existing knowledge base with your custom thesaurus, follow these
steps:

1. Create your custom thesaurus, linking new terms to existing knowledge base
terms. See "Defining Terms in a Thesaurus" and "Linking New Terms to Existing
Terms".

2. Load thesaurus with ctxload. See "Loading a Thesaurus with ctxload".

3. Compile the loaded thesaurus with ctxkbtc compiler. "Compiling a Loaded
Thesaurus" later in this section.

4. Index your documents. By default the system creates a theme component to your
index.

5. Use ABOUT operator to query. For example, to find all documents that are related
to the term politics including any synonyms or narrower terms as defined in the
knowledge base, issue the query:

'about(politics)'

Advantage
Compiling your custom thesaurus with the existing knowledge base before indexing
enables faster and simpler queries with the ABOUT operator. Document services can

Using a Thesaurus in a Query Application

9-6 Oracle Text Application Developer's Guide

also take full advantage of the customized information for creating theme summaries
and Gists.

Limitations
Use of the ABOUT operator requires a theme component in the index, which requires
slightly more disk space. You must also define the thesaurus before indexing your
documents. If you make any change to the thesaurus, you must recompile your
thesaurus and re-index your documents.

Linking New Terms to Existing Terms
When adding terms to the knowledge base, Oracle recommends that new terms be
linked to one of the categories in the knowledge base for best results in theme proving.

If new terms are kept completely separate from existing categories, fewer themes from
new terms will be proven. The result of this is poor precision and recall with ABOUT
queries as well as poor quality of gists and theme highlighting.

You link new terms to existing terms by making an existing term the broader term for
the new terms.

Example: Linking New Terms to Existing Terms You purchase a medical thesaurus medthes
containing a a hierarchy of medical terms. The four top terms in the thesaurus are the
following:

■ Anesthesia and Analgesia

■ Anti-Allergic and Respiratory System Agents

■ Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators

■ Antineoplastic and Immunosuppressive Agents

To link these terms to the existing knowledge base, add the following entries to the
medical thesaurus to map the new terms to the existing health and medicine branch:

health and medicine
 NT Anesthesia and Analgesia
 NT Anti-Allergic and Respiratory System Agents
 NT Anti-Inflamammatory Agents, Antirheumatic Agents, and Inflamation Mediators
 NT Antineoplastic and Immunosuppressive Agents

Loading a Thesaurus with ctxload
Assuming the medical thesaurus is in a file called med.thes, you load the thesaurus
as medthes with ctxload as follows:

ctxload -thes -thescase y -name medthes -file med.thes -user ctxsys/ctxsys

Compiling a Loaded Thesaurus
To link the loaded thesaurus medthes to the knowledge base, use ctxkbtc as
follows:

ctxkbtc -user ctxsys/ctxsys -name medthes

See Also: Oracle Text Reference for more information about the
supplied English knowledge base

About the Supplied Knowledge Base

Working With a Thesaurus in Oracle Text 9-7

About the Supplied Knowledge Base
Oracle Text supplies a knowledge base for English and French. The supplied
knowledge contains the information used to perform theme analysis. Theme analysis
includes theme indexing, ABOUT queries, and theme extraction with the CTX_DOC
package.

The knowledge base is a hierarchical tree of concepts and categories. It has six main
branches:

■ Science and technology

■ Business and economics

■ Government and military

■ Social environment

■ Geography

■ Abstract ideas and concepts

The supplied knowledge base is like a thesaurus in that it is hierarchical and contains
broader term, narrower term, and related term information. As such, you can improve
the accuracy of theme analysis by augmenting the knowledge base with your
industry-specific thesaurus by linking new terms to existing terms.

You can also extend theme functionality to other languages by compiling a
language-specific thesaurus into a knowledge base.

Knowledge Base Character Set
Knowledge bases can be in any single-byte character set. Supplied knowledge bases
are in WE8ISO8859P1. You can store an extended knowledge base in another character
set such as US7ASCII.

Adding a Language-Specific Knowledge Base
You can extend theme functionality to languages other than English or French by
loading your own knowledge base for any single-byte whitespace delimited language,
including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting, and
the generation of themes, gists, and theme summaries with CTX_DOC.

See Also: Oracle Text Reference for the breakdown of the category
hierarchy

See Also: "Augmenting Knowledge Base with Custom
Thesaurus" in this chapter

Note: Oracle Text supplied knowledge bases may not necessarily be
installed when Oracle Text is installed. You may need to separately
install the knowledge bases if they have not been installed. For more
information, refer to the Oracle Database installation guide for your
platform.

See Also: "Adding a Language-Specific Knowledge Base" in this
chapter

About the Supplied Knowledge Base

9-8 Oracle Text Application Developer's Guide

You extend theme functionality by adding a user-defined knowledge base. For
example, you can create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base, follow these steps:

1. Load your custom thesaurus using ctxload.

2. Set NLS_LANG so that the language portion is the target language. The charset
portion must be a single-byte character set.

3. Compile the loaded thesaurus using ctxkbtc:

ctxkbtc -user ctxsys/ctxsys -name my_lang_thes

This command compiles your language-specific knowledge base from the loaded
thesaurus. To use this knowledge base for theme analysis during indexing and ABOUT
queries, specify the NLS_LANG language as the THEME_LANGUAGE attribute value for
the BASIC_LEXER preference.

Limitations
The following limitations apply for adding knowledge bases:

■ Oracle supplies knowledge bases in English and French only. You must provide
your own thesaurus for any other language.

■ You can only add knowledge bases for languages with single-byte character sets.
You cannot create a knowledge base for languages which can be expressed only in
multibyte character sets. If the database is a multibyte universal character set, such
as UTF-8, the NLS_LANG parameter must still be set to a compatible single-byte
character set when compiling the thesaurus.

■ Adding a knowledge base works best for whitespace delimited languages.

■ You can have at most one knowledge base for each NLS_LANG language.

■ Obtaining hierarchical query feedback information such as broader terms,
narrower terms and related terms does not work in languages other than English
and French. In other languages, the knowledge bases are derived entirely from
your thesauri. In such cases, Oracle recommends that you obtain hierarchical
information directly from your thesauri.

See Also: Oracle Text Reference for more information about theme
indexing, ABOUT queries, using the CTX_DOC package, and the
supplied English knowledge base

Administering Oracle Text 10-1

10
Administering Oracle Text

This chapter describes Oracle Text administration. The following topics are covered:

■ Oracle Text Users and Roles

■ DML Queue

■ The CTX_OUTPUT Package

■ The CTX_REPORT Package

■ Servers

■ Administration Tool

Oracle Text Users and Roles
While any user can create an Oracle Text index and issue a CONTAINS query, Oracle
Text provides the CTXSYS user for administration and the CTXAPP role for application
developers.

CTXSYS User
The CTXSYS user is created at install time. CTXSYS can do the following:

■ View all indexes

■ Sync all indexes

■ Run ctxkbtc, the knowledge base extension compiler

■ Query all system-defined views

■ Perform all the tasks of a user with the CTXAPP role

During a manual installation, after installation of the CTXSYS schema is complete, you
may want to run dr0lsys.sql to lock and expire the CTXSYS schema for security
reasons. Alternatively, you can choose a good password for CTXSYS when running
dr0csys.sql.

Note: In previous releases of Oracle Text, CTXSYS had DBA
privileges, and only CTXSYS could perform certain functions, such
as modifying system-defined preferences or setting system
parameters.

DML Queue

10-2 Oracle Text Application Developer's Guide

CTXAPP Role
The CTXAPP role is a system-defined role that enables users to do the following:

■ Create and delete Oracle Text preferences

■ Use the Oracle Text PL/SQL packages

Any user can create an Oracle Text index and issue a Text query. The CTXAPP role
enables users to create preferences and use the PL/SQL packages.

Granting Roles and Privileges to Users
The system uses the standard SQL model for granting roles to users. To grant a Text
role to a user, use the GRANT statement.

In addition, to allow application developers to call procedures in the Oracle Text
PL/SQL packages, you must explicitly grant to each user EXECUTE privileges for the
Oracle Text package.

DML Queue
When there are inserts, updates, or deletes to documents in your base table, the DML
queue stores the requests for documents waiting to be indexed. When you synchronize
the index with CTX_DDL.SYNC_INDEX, requests are removed from this queue.

Pending DML requests can be queried with the CTX_PENDING and CTX_USER_
PENDING views.

DML errors can be queried with the CTX_INDEX_ERRORS or CTX_USER_INDEX_
ERRORS view.

The CTX_OUTPUT Package
Use the CTX_OUTPUT PL/SQL package to log indexing and document service
requests.

The CTX_REPORT Package
Use the CTX_REPORT package to produce reports on indexes and queries. These
reports can help you fine-tune or troubleshoot your applications.

The CTX_REPORT package contains the following procedures:

CTX_REPORT.DESCRIBE_INDEX
CTX_REPORT.DESCRIBE_POLICY
These procedures create reports that describe an existing index or policy, including the
settings of the index metadata, the indexing objects used, the settings of the attributes

See Also: "Creating an Oracle Text User" in Chapter 2, "Getting
Started with Oracle Text"

See Also: Oracle Text Reference for more information about these
views

See Also: Oracle Text Reference for more information about this
package

See Also: The CTX_REPORT chapter in the Oracle Text Reference

The CTX_REPORT Package

Administering Oracle Text 10-3

of the objects, and (for CTX_REPORT.DESCRIBE_INDEX) index partition information,
if any. These procedures are especially useful for diagnosing index-related problems.

This is sample output from DESCRIBE_INDEX, run on a simple context index:

===
 INDEX DESCRIPTION
===
index name: "DR_TEST"."TDRBPRX0"
index id: 1160
index type: context
base table: "DR_TEST"."TDRBPR"
primary key column: ID
text column: TEXT2
text column type: VARCHAR2(80)
language column:
format column:
charset column:
===
 INDEX OBJECTS
===
datastore: DIRECT_DATASTORE
filter: NULL_FILTER
section group: NULL_SECTION_GROUP
lexer: BASIC_LEXER
wordlist: BASIC_WORDLIST
 stemmer: ENGLISH
 fuzzy_match: GENERIC
stoplist: BASIC_STOPLIST
 stop_word: teststopword
storage: BASIC_STORAGE
 r_table_clause: lob (data) store as (cache)
 i_index_clause: compress 2

CTX_REPORT.CREATE_INDEX_SCRIPT
CTX_REPORT.CREATE_POLICY_SCRIPT
CREATE_INDEX_SCRIPT creates a SQL*Plus script that can create a duplicate of a
given text index. Use this when you have an index but don't have the original script (if
any) used to create that script and want to be able to re-create the index. For example,
if you accidentally drop a script, CREATE_INDEX_SCRIPT can re-create it; likewise,
CREATE_INDEX_SCRIPT can be useful if you have inherited indexes from another
user but not the scripts that created them.

CREATE_POLICY_SCRIPT does the same thing as CREATE_INDEX_SCRIPT, except
that it enables you to re-create a policy instead of an index.

This is sample output from CREATE_INDEX_SCRIPT, run on a simple context index
(not a complete listing):

begin
 ctx_ddl.create_preference('"TDRBPRX0_DST"','DIRECT_DATASTORE');
end;
/
...
/
begin
 ctx_ddl.create_section_group('"TDRBPRX0_SGP"','NULL_SECTION_GROUP');
end;
/
...
begin

The CTX_REPORT Package

10-4 Oracle Text Application Developer's Guide

 ctx_ddl.create_preference('"TDRBPRX0_WDL"','BASIC_WORDLIST');
 ctx_ddl.set_attribute('"TDRBPRX0_WDL"','STEMMER','ENGLISH');
 ctx_ddl.set_attribute('"TDRBPRX0_WDL"','FUZZY_MATCH','GENERIC');
end;
/
begin
 ctx_ddl.create_stoplist('"TDRBPRX0_SPL"','BASIC_STOPLIST');
 ctx_ddl.add_stopword('"TDRBPRX0_SPL"','teststopword');
end;
/
...
/
begin
 ctx_output.start_log('TDRBPRX0_LOG');
end;
/
create index "DR_TEST"."TDRBPRX0"
 on "DR_TEST"."TDRBPR"
 ("TEXT2")
 indextype is ctxsys.context
 parameters('
 datastore "TDRBPRX0_DST"
 filter "TDRBPRX0_FIL"
 section group "TDRBPRX0_SGP"
 lexer "TDRBPRX0_LEX"
 wordlist "TDRBPRX0_WDL"
 stoplist "TDRBPRX0_SPL"
 storage "TDRBPRX0_STO"
 ')
/

CTX_REPORT.INDEX_SIZE
This procedure creates a report showing the names of the internal index objects, along
with their tablespaces, allocated sizes, and used sizes. It is useful for DBAs who may
need to monitor the size of their indexes (for example, when disk space is at a
premium).

Sample output from this procedure looks like this (partial listing):

===
 INDEX SIZE FOR DR_TEST.TDRBPRX10
===
TABLE: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 4
BLOCKS USED: 1
BYTES ALLOCATED: 8,192 (8.00 KB)
BYTES USED: 2,048 (2.00 KB)

INDEX (LOB): DR_TEST.SYS_IL0000023161C00006$$
TABLE NAME: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 5
BLOCKS USED: 2
BYTES ALLOCATED: 10,240 (10.00 KB)
BYTES USED: 4,096 (4.00 KB)

INDEX (NORMAL): DR_TEST.DR$TDRBPRX10$X
TABLE NAME: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 4

Administration Tool

Administering Oracle Text 10-5

BLOCKS USED: 2
BYTES ALLOCATED: 8,192 (8.00 KB)
BYTES USED: 4,096 (4.00 KB)

CTX_REPORT.INDEX_STATS
INDEX_STATS produces a variety of calculated statistics about an index, such as how
many documents are indexed, how many unique tokens the index contains, average
size of its tokens, fragmentation information for the index, and so on. An example of a
use of INDEX_STATS might be in optimizing stoplists.

See the Oracle Text Reference for an example of the output of this procedure.

CTX_REPORT.QUERY_LOG_SUMMARY
This procedure creates a report of logged queries, which you can use to perform
simple analyses. With query analysis, you can find out:

■ which queries were made

■ which queries were successful

■ which queries were unsuccessful

■ how many times each query was made

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

See the Oracle Text Reference for an example of the output of this procedure.

CTX_REPORT.TOKEN_INFO
TOKEN_INFO is used mainly to diagnose query problems; for instance, to check that
index data is not corrupted. As an example, you can use it to find out which
documents are producing unexpected or bad tokens.

CTX_REPORT.TOKEN_TYPE
This is a lookup function, used mainly as input to other functions (CTX_
DDL.OPTIMIZE_INDEX, CTX_REPORT.TOKEN_INFO, and so on).

Servers
You index documents and issue queries with standard SQL. No server is needed for
performing batch DML. You can synchronize the CONTEXT index with the CTX_
DDL.SYNC_INDEX procedure.

Administration Tool
Oracle Text Manager is a Java application integrated with Oracle Enterprise Manager.

The Text Manager enables administrators to create preferences, stoplists, sections, and
indexes. This tool also enables administrators to perform DML.

See Also: Chapter 3, "Indexing with Oracle Text" for more
information about indexing and index synchronization

See Also: the online help shipped with this tool for more
information about the Oracle Text Manager

Administration Tool

10-6 Oracle Text Application Developer's Guide

Migrating Oracle Text Applications 11-1

11
Migrating Oracle Text Applications

This chapter covers issues relating to migrating your applications from previous
releases of Oracle Text. It consists of two sections:

■ Migrating to Oracle Text 10g Release 2 (10.2) describes factors to consider when
upgrading to the current release of Oracle Text.

■ Migrating to Oracle Text 10g Release 1 (10.1) is provided for those users who may
be upgrading from the next-to-last release of Oracle Text and who want to know
what migration steps were required to upgrade to the last release.

Migrating to Oracle Text 10g Release 2 (10.2)
This section covers issues relating to migrating your applications to Oracle Text 10g
Release 2 (10.2).

New Filter (INSO_FILTER versus AUTO_FILTER)
For Oracle Text 10g Release 2, the INSO_FILTER filter type has been replaced by the
AUTO_FILTER filter type. To maintain compatibility with existing Oracle Text
applications, INSO_FILTER functionality is supported by AUTO_FILTER, and the
INSO_FILTER filter type is being retained, although its behavior has been changed to
match that of AUTO_FILTER.

For most users, the change in filter types will have no significant effect, and most users
will not have to change their applications or otherwise take any steps to migrate to the
new filter type. The most significant differences produced by this change are as
follows:

■ AUTO_FILTER supports a different set of document types than INSO_FILTER. For
a list of supported document types, see the Supported File Formats appendix of
the Oracle Text Reference.

■ Display characteristics of HTML output from the new filter may differ from those
output by the old filter.

■ A different set of platforms support the AUTO_FILTER type than support INSO_
FILTER. For a list of supported platforms, see the Supported File Formats
appendix of the Oracle Text Reference.

Along with the change from INSO_FILTER to AUTO_FILTER, several related changes
are also part of the filter migration:

■ The INSO_TIMEOUT and INSO_OUTPUT_FORMATTING attributes of MAIL_
FILTER have been replaced by the AUTO_FILTER_TIMEOUT and AUTO_FILTER_
OUTPUT_FORMATTING attributes, respectively.

Migrating to Oracle Text 10g Release 1 (10.1)

11-2 Oracle Text Application Developer's Guide

■ The INSOFILTER directive used in the mail configuration file of MAIL_FILTER
has been replaced with the AUTO_FILTER directive.

■ The PL/SQL constant TRACE_IDX_INSO_FILTER for tracing, used in procedures
such as CTX_OUTPUT.ADD_TRACE, has been replaced by the TRACE_IDX_AUTO_
FILTER filter.

■ The system-defined preference CTXSYS.INSO_FILTER has been replaced by the
CTXSYS.AUTO_FILTER preference.

■ The default values of DEFAULT_FILTER_FILE and DEFAULT_FILTER_BINARY
system parameters has been changed from CTXSYS.INSO_FILTER to
CTXSYS.AUTO_FILTER for new installations and databases upgrading to this
release, if these default values have not been modified. For databases upgrading to
this release which have modified these default values, the modified default values
will continue to be used.

For backward compatibility, INSO_FILTER, as well as most of its associated filter
types, constants, and attributes have been retained in this release; however, users
should use AUTO_FILTER in new applications and update their older applications
whenever possible.

Migrating to the AUTO_FILTER Filter Type
Most applications will not have to be modified to reflect the change to the AUTO_
FILTER type. The following migration steps will be performed automatically when
you upgrade to this release:

■ If an existing index uses the INSO_FILTER filter type, then it will be migrated to
the AUTO_FILTER filter type.

■ If an existing index uses the MAIL_FILTER filter type, then the INSO_TIMEOUT
and INSO_OUTPUT_FORMATTING attributes will be migrated to the AUTO_
FILTER_TIMEOUT nd AUTO_FILTER_OUTPUT_FORMATTING attributes,
respectively.

■ If the default values of the system parameters DEFAULT_FILTER_FILE and
DEFAULT_FILTER_BINARY have not already been modified, then they will be
migrated from CTXSYS.INSO_FILTER to CTXSYS.AUTO_FILTER.

Although no actions are required to migrate to the new filter system, Oracle Text users
upgrading their databases to this release should take the following steps to migrate
away from using APIs deprecated by this release:

■ If an index uses the MAIL_FILTER filter type with a nondefault mail configuration
file, edit the file, replacing all occurrences of the INSOFILTER directive with the
AUTO_FILTER directive.

■ Replace the use of the PL/SQL constant TRACE_IDX_INSO_FILTER in your
application with the TRACE_IDX_AUTO_FILTER constant.

■ Replace the use of the system-defined preference CTXSYS.INSO_FILTER in your
applications with CTXSYS.AUTO_FILTER.

Migrating to Oracle Text 10g Release 1 (10.1)
This section covers issues relating to migrating your applications to Oracle Text 10g
Release 1 (10.1). It also contains a note on migrating back from release 10.1.

Migrating to Oracle Text 10g Release 1 (10.1)

Migrating Oracle Text Applications 11-3

Security Improvements in Oracle Text 10g Release 1
In releases of Oracle Text previous to 10g Release 1, CTXSYS had DBA privileges. To
tighten security and protect the database in the case of unauthorized access, CTXSYS
now has only CONNECT and RESOURCE roles, and only limited, necessary direct grants
on some system views and packages. Some applications using Oracle Text may
therefore require minor changes in order to work properly with this security change.
Here are the major effects of the security improvements, their possible effects on
Oracle Text applications, and the steps needed to ensure proper operation in Oracle
Database 10g.

CTXSYS No Longer Has DBA Permissions
CTXSYS no longer has DBA permissions. This may affect indexes using USER_
DATASTORE, PROCEDURE_FILTER, or USER_LEXER objects. For example, suppose
that you have an index using a USER_DATASTORE whose procedure is CTXSYS.PROC,
and that procedure refers to other schemas' objects:

create procedure proc(r in rowid, d in out nocopy clob)
is
begin
 select text into l_data from scott.example ...

Previously, this user datastore would have worked properly because CTXSYS was able
to select from any table—namely, SCOTT.EXAMPLE. However, in Oracle Database 10g,
CTXSYS does not have DBA privileges and is not allowed to select from
SCOTT.EXAMPLE. This makes the procedure PROC invalid, which leads to errors
when indexing or sync is done for this index.

To resolve this problem, Oracle recommends migrating all user datastores, procedure
filters, and user lexers from CTXSYS-owned procedures to index-owner-owned
procedures (see "Migrating CTXSYS-Owned Procedures").

Migrating CTXSYS-Owned Procedures
Here are the steps to migrate an index using a CTXSYS-owned procedure to use an
index-owner-owned procedure:

1. Create a procedure owned by the index owner that is equivalent to the
CTXSYS-owned procedure. If your application's CTXSYS-owned procedure simply
calls another procedure owned by the index owner, use that procedure for step 2.
Otherwise, copy the code from the CTXSYS-owned procedure into a new
procedure owned by the index owner, making any needed changes for the change
in schema.

2. Create a new user datastore, procedure filter, or user lexer preference that uses the
index-owner-owned procedure. Alternatively, you can modify the existing
preference using CTX_DDL.SET_ATTRIBUTE, if the preference used to create the
index still exists.

3. Replace the existing datastore or filter or lexer with the new, updated preference
using the new REPLACE METADATA command. For instance, to replace a user
datastore:

alter index <myindex> rebuild parameters ('replace metadata datastore <new_
datastore_preference>');

REPLACE METADATA does not rebuild the index, so this command will not affect
existing index data.

Migrating to Oracle Text 10g Release 1 (10.1)

11-4 Oracle Text Application Developer's Guide

Effective User During Indexing
In previous releases of Oracle Text, the effective user during indexing or sync was
CTXSYS. As a result, CTXSYS required execute permission on all BFILE directories,
execute permission on any procedures called from user datastores, procedure filters, or
user lexers, and the CTXSYS user's TEMP tablespace was used during indexing. In
Oracle Database 10g, the effective user during indexing is the index owner, which
eliminates these caveats.

Procedures Do Not Need to Be Owned by CTXSYS
Previously, procedures used in user datastores, procedure filters, and user lexers had
to be owned by CTXSYS. In Oracle Database 10g, these procedures can be owned by
any schema, so long as the index owner has execute privileges on them.

This principally affects creation of preferences. In previous releases of Oracle Text, a
user datastore created with:

begin
ctx_ddl.create_preference('example','user_datastore');
ctx_ddl.set_attribute('example','procedure','proc');
end;

would have used the procedure CTXSYS.PROC. However, in Oracle Database 10g,
standard Oracle Database rules are applied to the input "PROC," and this resolves to
USER.PROC. Any application code that creates user datastores, procedure filters, or
user lexers should either create the preferences as the owner of the procedure, or
prepend the correct owner name to the procedure name. For example:

ctx_ddl.set_attribute('example','procedure','user.proc');

Synching and Optimizing of Other Users' Indexes
In previous releasess of Oracle Text, only the owner of the index and CTXSYS were
allowed to sync or optimize an index through CTX_DDL.SYNC_INDEX and CTX_
DDL.OPTIMIZE_INDEX. In Oracle Database 10g, any user with the ALTER ANY
INDEX system privilege is also allowed to sync or optimize any index.

CTX Packages and Invoker's Rights
Most public CTX packages, such as CTX_DDL, CTX_QUERY, and CTX_REPORT, are now
invoker's rights packages.

CREATE TABLE Permissions
In Oracle Database 10g, if a text index is created by one user for another user, or if the
create index statement is issued from a PL/SQL block, the index owner must be
granted the CREATE TABLE privilege in order for the indexing to succeed. Even if the
index owner has the RESOURCE role, CREATE TABLE must be specifically granted.

Migrating Back to Previous Releases from Release 10.1
During the upgrade to Oracle Database 10g, Oracle Text drops a number of procedures
belonging to CTXSYS. (These procedures are invalid under Oracle Database 10g and
have the name format DR$indexid$U.) If you migrate back to a pre-10g release of
Oracle Database, you must re-create these procedures in order for DML to work. To do

See Also: "Migrating Back to Previous Releases from Release
10.1" on page 11-4

Migrating to Oracle Text 10g Release 1 (10.1)

Migrating Oracle Text Applications 11-5

this, after the backward migration—once all the pre-10g packages have been
reinstalled—rename each CTXCAT index; the rename code will re-create that
procedure. (You can rename the procedures back if you want to retain the original
names).

Migrating to Oracle Text 10g Release 1 (10.1)

11-6 Oracle Text Application Developer's Guide

CONTEXT Query Application A-1

A
CONTEXT Query Application

This appendix describes how to build a simple Web search application using the
CONTEXT index type, whether by writing your own code or using the Oracle Text
Wizard. The following topics are covered:

■ Web Query Application Overview

■ The PSP Web Application

■ The JSP Web Application

Web Query Application Overview
A common use of Oracle Text is to index HTML files on Web sites and provide search
capabilities to users. The sample application in this appendix indexes a set of HTML
files stored in the database and uses a Web server connected to Oracle Database to
provide the search service.

This appendix describes two versions of the Web query application:

■ One using PL/SQL Server Pages (PSP)

■ One using Java Server Pages (JSP)

Both versions of these applications can be produced by means of a query application
wizard, which produces the necessary code automatically.

You can view and download both the PSP and JSP application code, as well as the text
query application wizard, at the Oracle Technology Network Web site:

http://www.oracle.com/technology/products/text

The text query application wizard Web page also contains complete instructions on
how to use the wizard.

Figure A–1 shows what the JSP version of the text query application looks like. This
application was created with the Oracle Text application wizard.

Web Query Application Overview

A-2 Oracle Text Application Developer's Guide

Figure A–1 The Text Query Application

Figure A–2 shows the results of the text query.

Figure A–2 The Text Query Application with Results

The application returns links to documents containing the search term. Each document
has four links:

■ The HTML link displays the document.

Graphics are not displayed in the filtered document. (You can see the source
document for the first hit by looking at Figure 5–1, "Sample Document for
Highlighting, Gisting, and Theme Extraction" on page 5-7.)

■ The Highlight link displays the document with the search term highlighted.
Figure 5–2, "Query Application Presenting Highlighted Document" on page 5-8
shows an example of highlighting.

The PSP Web Application

CONTEXT Query Application A-3

■ The Theme link shows the top 50 themes associated with the document.
Figure 5–3, "Query Application Displaying Document Themes" on page 5-9 shows
an example of theme extraction.

■ The Gist link displays a short summary of the document. Figure 5–4, "Query
Application Presenting Document Gist" on page 5-10 shows an example of this
gisting feature.

The PSP Web Application
This application is based on PL/SQL server pages. Figure A–3, "The PSP Web
Application" illustrates how the browser calls the PSP-stored procedure on Oracle
Database through a Web server.

Figure A–3 The PSP Web Application

Web Application Prerequisites
This application has the following requirements:

■ Your Oracle Database (version 8.1.6 or higher) is up and running.

■ You have the Oracle PL/SQL gateway running

■ You have a Web server such as Apache up and running and correctly configured to
send requests to the Oracle Database server.

Building the Web Application
This section describes how to build the PSP Web application.

Step 1 Create your Text Table
You must create a text table to store your HTML files. This example creates a table
called search_table as follows:

create table search_table (tk numeric primary key, title varchar2(2000),
 text clob);

Browser

Browser calls
PSP stored
procedure
with URL

Web Server maps
URLs to PSP
stored procedure

Database

PSP
Stored

Procedure

PL/SQL
Gateway

Database stores
compiled PSP files
as PL/SQL Stored
Procedures

http://mymachine:7777 / mypath / search_html

idx_search_table

search_table

The PSP Web Application

A-4 Oracle Text Application Developer's Guide

Step 2 Load HTML Documents into Table Using SQL*Loader
You must load the text table with the HTML files. This example uses the control file
loader.ctl to load the files named in loader.dat. The SQL*Loader command is as
follows:

% sqlldr userid=scott/tiger control=loader.ctl

Step 3 Create the CONTEXT index
If you are using the text query wizard: The wizard produces a script to create an index.
(See the instructions on the download Web page for the wizard.) Run that script.

If you are not using the wizard: Index the HTML files by creating a CONTEXT index on
the text column as follows. Since you are indexing HTML, this example uses the
NULL_FILTER preference type for no filtering and uses the HTML_SECTION_GROUP
type:

create index idx_search_table on search_table(text)
 indextype is ctxsys.context parameters
 ('filter ctxsys.null_filter section group CTXSYS.HTML_SECTION_GROUP');

Step 4 Compile search_htmlservices Package in Oracle Database
The application must present selected documents to the user. To do so, Oracle
Database must read the documents from the CLOB in search_table and output the
result for viewing, This is done by calling procedures in the search_htmlservices
package. The file search_htmlservices.sql must be compiled. You can do this at the
SQL*Plus prompt:

SQL> @search_htmlservices.sql

Package created.

Step 5 Compile the search_html PSP page with loadpsp
The search page is invoked by calling search_html.psp from a browser. You compile
search_html in Oracle Database with the loadpsp command-line program:

% loadpsp -replace -user scott/tiger search_html.psp
"search_html.psp": procedure "search_html" created.

Step 6 Configure Your Web Server
You must configure your Web server to accept client PSP requests as a URL. Your Web
server forwards these requests to the Oracle Database server and returns server output
to the browser. Refer to Figure A–3 on page A-3.

You can use the Oracle WebDB Web listener or Oracle Application Server, which
includes the Apache Web server. See your Web server documentation for more
information.

Step 7 Issue Query from Browser
You can access the query application from a browser using a URL. You configure the
URL with your Web server. An example URL might look like:

http://mymachine:7777/mypath/search_html

See Also: Oracle Database Application Developer's Guide -
Fundamentals for more information about using PSP

The PSP Web Application

CONTEXT Query Application A-5

The application displays a query entry box in your browser and returns the query
results as a list of HTML links, as shown in Figure A–1 on page A-2 and Figure A–2 on
page A-2.

PSP Sample Code
This section lists the code used to build the example Web application. It includes the
following files:

■ loader.ctl

■ loader.dat

■ search_htmlservices.sql

■ search_html.psp

loader.ctl
This example shows a sample loader.ctl file. It is used by sqlldr to load the data
file, loader.dat.

LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE search_table
 REPLACE
 FIELDS TERMINATED BY ';'
 (tk INTEGER,
 title CHAR,
 text_file FILLER CHAR,
 text LOBFILE(text_file) TERMINATED BY EOF)

loader.dat
This example shows a sample loader.dat file. Each row contains three fields: a
reference number for the document, a label (or "title"), and the name of the HTML
document to load into the text column of search_table. The file has been truncated
for this example.

1; Pizza Shredder;Pizza.html
2; Refrigerator w/ Front-Door Auto Cantaloupe Dispenser;Cantaloupe.html
3; Self-Tipping Couch;Couch.html
4; Home Air Dirtier;Mess.html
5; Set of Pet Magnets;Pet.html
6; Esteem-Building Talking Pillow;Snooze.html
 . . .
28; Shaggy Found Inspiration For Success In Jamaica ;shaggy_found.html
29; Solar Flare Eruptions Likely ;solar_flare.html
30; Supersonic Plane Breaks Food Barrier ;food_barrier.html
31; SOUNDSCAN REPORT: Recipe for An Aspiring Top Ten;urban_groove_1.html
 . . .

search_htmlservices.sql
set define off
create or replace package search_htmlServices as
 procedure showHTMLDoc (p_id in numeric);
 procedure showDoc (p_id in varchar2, p_query in varchar2);
end;

See Also:

http://www.oracle.com/technology/products/text/

The PSP Web Application

A-6 Oracle Text Application Developer's Guide

/
show errors;

create or replace package body search_htmlServices as

 procedure showHTMLDoc (p_id in numeric) is
 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 begin

 select text into v_clob_selected from search_table where tk = p_id;
 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;
 end showHTMLDoc;

procedure showDoc (p_id in varchar2, p_query in varchar2) is

 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 v_query varchar(2000);
 v_cursor integer;

 begin
 htp.p('<html><title>HTML version with highlighted terms</title>');
 htp.p('<body bgcolor="#ffffff">');
 htp.p('HTML version with highlighted terms');

 begin
 ctx_doc.markup (index_name => 'idx_search_table',
 textkey => p_id,
 text_query => p_query,
 restab => v_clob_selected,
 starttag => '<i>',
 endtag => '</i>');

 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;

The PSP Web Application

CONTEXT Query Application A-7

 end loop;
 exception
 when no_data_found then
 null;
 end;

 exception
 when others then
 null; --showHTMLdoc(p_id);
 end;
end showDoc;
end;
/
show errors

set define on

search_html.psp
<%@ plsql procedure="search_html" %>
<%@ plsql parameter="query" default="null" %>
<%! v_results numeric := 0; %>

<html>
<head>
 <title>search_html Search </title>
</head>
<body>

<%

If query is null Then
%>

 <center>
 <form method=post action="search_html">
 Search for:
 <input type=text name="query" size=30>
 <input type=submit value=Search>
 </center>
<hr>

<%
 Else
%>

 <p>
 <%!
 color varchar2(6) := 'ffffff';
 %>

 <center>
 <form method=post action="search_html">
 Search for:
 <input type=text name="query" size=30 value="<%= query %>">
 <input type=submit value=Search>
 </form>
 </center>
 <hr>

The JSP Web Application

A-8 Oracle Text Application Developer's Guide

 <p>

 <%
 -- select statement
 for doc in (
 select /*+ FIRST_ROWS */ rowid, tk, title, score(1) scr
 from search_table
 where contains(text, query,1) >0
 order by score(1) desc
)
 loop
 v_results := v_results + 1;
 if v_results = 1 then

 %>

 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Score</th>
 <th>Title</th>
 </tr>

 <% end if; %>
 <tr bgcolor="#<%= color %>">
 <td> <%= doc.scr %>% </td>
 <td> <%= doc.title %>
 [<a href="search_htmlServices.showHTMLDoc?p_id=
 <%= doc.tk %>">HTML]
 [<a href="search_htmlServices.showDoc?p_id=
 <%= doc.tk %>&p_query=<%= query %>">Highlight]
 </td>
 </tr>

 <%
 if (color = 'ffffff') then
 color := 'eeeeee';
 else
 color := 'ffffff';
 end if;

 end loop;
 %>

 </table>
 </center>

<%
 end if;
%>
</body></html>

The JSP Web Application
Creating the JSP-based Web application involves most of the same steps as those used
in building the PSP-based application (see "Building the Web Application" on
page A-3). You can use the same loader.dat and loader.ctl files. However, with
the JSP-based application, you do not need to do the following:

■ Compile the search_htmlservices package

The JSP Web Application

CONTEXT Query Application A-9

■ Compile the search_html PSP page with loadpsp

Web Application Prerequisites
This application has the following requirements:

■ Your Oracle database (version 8.1.6 or higher) is up and running.

■ You have a Web server such as Apache up and running and correctly configured to
send requests to the Oracle Database server.

JSP Sample Code
This section lists the Java code used to build the example Web application. It includes
the following files:

■ search_html.jsp

The code for this file was generated by the text query application wizard. (Some
longer lines have been split to make the code easier to read.)

search_html.jsp
<%@ page import="java.sql.*, java.util.*, java.net.*,
 oracle.jdbc.*, oracle.jsp.dbutil.*" %>
<%@ page contentType="text/html;charset=UTF-8" %>
<% oracle.jsp.util.PublicUtil.setReqCharacterEncoding(request, "UTF-8"); %>
<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope ="request" >
<jsp:setProperty name="name" property="value" param="query" />
</jsp:useBean>

<%
String connStr="jdbc:oracle:thin:@jsmith-pc.us.oracle.com:1521:zippy922";

java.util.Properties info=new java.util.Properties();
Connection conn = null;
ResultSet rset = null;
OracleCallableStatement callStmt = null;
Statement stmt = null;
String userQuery = null;
String myQuery = null;
URLEncoder myEncoder;
int count=0;
int loopNum=0;
int startNum=0;
if (name.isEmpty()) {
%>
 <html>
 <title>Text Search</title>
 <body>
 <table width="100%">
 <tr bgcolor="#336699">
 <td><font face="arial, helvetica" align="left"
 color="#CCCC99" size=+2>Text Search</td>
 </tr>
 </table>
 <center>
 <form method = post>
 Search for:
 <input type=text name=query size = 30>
 <input type=submit value="Search">

The JSP Web Application

A-10 Oracle Text Application Developer's Guide

 </form>
 </center>
 </body>
 </html>

<%
}

else {
%>
 <html>
 <title>Text Search</title>
 <body text="#000000" bgcolor="#FFFFFF" link="#663300"
 vlink="#996633" alink="#ff6600">
 <table width="100%">
 <tr bgcolor="#336699">
 <td><font face="arial, helvetica" align="left"
 color="#CCCC99" size=+2>Text Search</td>
 </tr>
 </table>
 <center>
 <form method = post action="TextSearchApp.jsp">
 Search for:
 <input type=text name="query" value="<%=name.getValue() %>" size = 30>
 <input type=submit value="Search">
 </form>
 </center>
<%
 try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", "jsmith");
 info.put ("password","hello");
 conn = DriverManager.getConnection(connStr,info);
 stmt = conn.createStatement();
 userQuery = request.getParameter("query");
 myQuery = URLEncoder.encode(userQuery);
 String numStr = request.getParameter("sn");
 if(numStr!=null)
 startNum=Integer.parseInt(numStr);
 String theQuery = translate(userQuery);
 callStmt =(OracleCallableStatement)conn.prepareCall("begin "+
 "?:=ctx_query.count_hits(index_name=>'ULTRA_IDX1', "+
 "text_query=>?"+
 "); " +
 "end; ");
 callStmt.setString(2,theQuery);
 callStmt.registerOutParameter(1, OracleTypes.NUMBER);
 callStmt.execute();
 count=((OracleCallableStatement)callStmt).getNUMBER(1).intValue();
 if(count>=(startNum+20)){
%>
 Results
 <%=startNum+1%> - <%=startNum+20%> of <%=count%> matches
<%
 }
 else if(count>0){
%>
 Results
 <%=startNum+1%> - <%=count%> of <%=count%> matches
<%

The JSP Web Application

CONTEXT Query Application A-11

 }
 else {
%>
 No match found
<%
 }
%>
 <table width="100%">
 <TR ALIGN="RIGHT">
<%
 if((startNum>0)&(count<=startNum+20))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum==0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum+20
 %>&query=<%=myQuery %>">next20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum>0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%
 }
%>
 </TR>
 </table>
<%
 String ctxQuery = "select /*+ FIRST_ROWS */ rowid, 'TITLE',
 score(1) scr from 'ULTRA_TAB1' where contains('TEXT', '"+theQuery+"',1)
 > 0 order by score(1) desc";
 rset = stmt.executeQuery(ctxQuery);
 String color = "ffffff";
 String rowid = null;
 String fakeRowid = null;
 String[] colToDisplay = new String[1];
 int myScore = 0;
 int items = 0;
 while (rset.next()&&items< 20) {
 if(loopNum>=startNum)
 {
 rowid = rset.getString(1);
 fakeRowid = URLEncoder.encode(rowid);
 colToDisplay[0] = rset.getString(2);
 myScore = (int)rset.getInt(3);

The JSP Web Application

A-12 Oracle Text Application Developer's Guide

 items++;
 if (items == 1) {
%>
 <center>
 <table BORDER=1 CELLSPACING=0 CELLPADDING=0 width="100%"
 <tr bgcolor="#CCCC99">
 <th>Score</th>
 <th>TITLE</th>
 <th> <font face="arial, helvetica"
 color="#336699">Document Services</th>
 </tr>
<% } %>
 <tr bgcolor="#FFFFE0">
 <td ALIGN="CENTER"> <%= myScore %>%</td>
 <td> <%= colToDisplay[0] %>
 <td>
 </td>
 </tr>
<%
 if (color.compareTo("ffffff") == 0)
 color = "eeeeee";
 else
 color = "ffffff";
 }
 loopNum++;
 }
} catch (SQLException e) {
%>
 Error: <%= e %><p>
<%
} finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }
%>
 </table>
 </center>
 <table width="100%">
 <TR ALIGN="RIGHT">
<%
 if((startNum>0)&(count<=startNum+20))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum==0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum>0))

The JSP Web Application

CONTEXT Query Application A-13

 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%
 }
%>
 </TR>
 </table>
 </body></html>
<%
}

%>
<%!
 public String translate (String input)
 {
 Vector reqWords = new Vector();
 StringTokenizer st = new StringTokenizer(input, " '", true);
 while (st.hasMoreTokens())
 {
 String token = st.nextToken();
 if (token.equals("'"))
 {
 String phrase = getQuotedPhrase(st);
 if (phrase != null)
 {
 reqWords.addElement(phrase);
 }
 }
 else if (!token.equals(" "))
 {
 reqWords.addElement(token);
 }
 }
 return getQueryString(reqWords);
 }

 private String getQuotedPhrase(StringTokenizer st)
 {
 StringBuffer phrase = new StringBuffer();
 String token = null;
 while (st.hasMoreTokens() && (!(token = st.nextToken()).equals("'")))
 {
 phrase.append(token);
 }
 return phrase.toString();
 }

 private String getQueryString(Vector reqWords)
 {
 StringBuffer query = new StringBuffer("");
 int length = (reqWords == null) ? 0 : reqWords.size();
 for (int ii=0; ii < length; ii++)
 {

The JSP Web Application

A-14 Oracle Text Application Developer's Guide

 if (ii != 0)
 {
 query.append(" & ");
 }
 query.append("{");
 query.append(reqWords.elementAt(ii));
 query.append("}");
 }
 return query.toString();
 }
%>

CATSEARCH Query Application B-1

B
CATSEARCH Query Application

This appendix describes how to build a simple Web-search application using the
CATSEARCH index type, whether by writing your own code or using the Oracle Text
Wizard. The following topics are covered:

■ CATSEARCH Web Query Application Overview

■ The JSP Web Application

CATSEARCH Web Query Application Overview
The CTXCAT index type is well suited for merchandise catalogs that have short
descriptive text fragments and associated structured data. This appendix describes
how to build a browser based bookstore catalog that users can search to find titles and
prices.

This application is written in Java Server Pages (JSP).

The application can be produced by means of a catalog query application wizard,
which produces the necessary code automatically. You can view and download the JSP
application code, as well as the catalog query application wizard, at the Oracle
Technology Network Web site:

http://www.oracle.com/technology/products/text

This Web site also has complete instructions on how to use the catalog query wizard.

The JSP Web Application
This application is based on Java Server pages and has the following requirements:

■ Your Oracle Database (version 8.1.7 or higher) is up and running.

■ You have a Web server such as Apache up and running and correctly configured to
send requests to the Oracle Database server.

Building the JSP Web Application
This application models an online bookstore where you can look up book titles and
prices.

Step 1 Create Your Table
You must create the table to store book information such as title, publisher, and price.
From SQL*Plus:

sqlplus>create table book_catalog (

The JSP Web Application

B-2 Oracle Text Application Developer's Guide

 id numeric,
 title varchar2(80),
 publisher varchar2(25),
 price numeric)

Step 2 Load data using SQL*Loader
You load the book data from the operating system command line with SQL*Loader:

% sqlldr userid=ctxdemo/ctxdemo control=loader.ctl

Step 3 Create index set
You can create the index set from SQL*Plus:

sqlplus>begin
 ctx_ddl.create_index_set('bookset');
 ctx_ddl.add_index('bookset','price');
 ctx_ddl.add_index('bookset','publisher');
 end;
/

Step 4 Index creation
You can create the CTXCAT index from SQL*Plus as follows:

sqlplus>create index book_idx on book_catalog (title)
 indextype is ctxsys.ctxcat
 parameters('index set bookset');

Step 5 Try a simple search using CATSEARCH
You can test the newly created index in SQL*Plus as follows:

sqlplus>select id, title from book_catalog
 where catsearch(title,'Java','price > 10 order by price') > 0

Step 6 Copy the catalogSearch.jsp file to your Web site JSP directory.
When you do so, you can access the application from a browser. The URL should be
http://localhost:port/path/catalogSearch.jsp

The application displays a query entry box in your browser and returns the query
results as a list of HTML links. See Figure B–1.

The JSP Web Application

CATSEARCH Query Application B-3

Figure B–1 Screen shot of Web Query Application

JSP Sample Code
This section lists the code used to build the example Web application. It includes the
following files:

■ loader.ctl

■ loader.dat

■ catalogSearch.jsp

loader.ctl
 LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE book_catalog
 REPLACE
 FIELDS TERMINATED BY ';'
 (id, title, publisher, price)

See Also:

http://www.oracle.com/technology/products/text/

The JSP Web Application

B-4 Oracle Text Application Developer's Guide

loader.dat
1; A History of Goats; SPINDRIFT BOOKS;50
2; Robust Recipes Inspired by Eating Too Much;SPINDRIFT BOOKS;28
3; Atlas of Greenland History; SPINDRIFT BOOKS; 35
4; Bed and Breakfast Guide to Greenland; SPINDRIFT BOOKS; 37
5; Quitting Your Job and Running Away; SPINDRIFT BOOKS;25
6; Best Noodle Shops of Omaha ;SPINDRIFT BOOKS; 28
7; Complete Book of Toes; SPINDRIFT BOOKS;16
8; Complete Idiot's Guide to Nuclear Technology;SPINDRIFT BOOKS; 28
9; Java Programming for Woodland Animals; LOW LIFE BOOK CO; 10
10; Emergency Surgery Tips and Tricks;SPOT-ON PUBLISHING;10
11; Programming with Your Eyes Shut; KLONDIKE BOOKS; 10
12; Forest Fires of North America, 1858-1882; CALAMITY BOOKS; 11
13; Spanish in Twelve Minutes; WRENCH BOOKS 11
14; Better Sex and Romance Through C++; CALAMITY BOOKS; 12
15; Oracle Internet Application Server Enterprise Edition; KANT BOOKS; 12
16; Oracle Internet Developer Suite; SPAMMUS BOOK CO;13
17; Telling the Truth to Your Pets; IBEX BOOKS INC; 13
18; Go Ask Alice's Restaurant;HUMMING BOOKS; 13
19; Life Begins at 93; CALAMITY BOOKS; 17
20; Dating While Drunk; BALLAST BOOKS; 14
21; The Second-to-Last Mohican; KLONDIKE BOOKS; 14
22; Eye of Horus; An Oracle of Ancient Egypt; BIG LITTLE BOOKS; 15
23; Introduction to Sitting Down; IBEX BOOKS INC; 15

catalogSearch.jsp
<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>
<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
<jsp:setProperty name="name" property="value" param="v_query" />
</jsp:useBean>

<%
 String connStr="jdbc:oracle:thin:@machine-domain-name:1521:betadev";

 java.util.Properties info = new java.util.Properties();

 Connection conn = null;
 ResultSet rset = null;
 Statement stmt = null;

 if (name.isEmpty()) {

%>
 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post>
 Search for book title:
 <input type=text name="v_query" size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="HUMMING BOOKS">HUMMING BOOKS
 <option value="WRENCH BOOKS">WRENCH BOOKS
 <option value="SPOT-ON PUBLISHING">SPOT-ON PUBLISHING

The JSP Web Application

CATSEARCH Query Application B-5

 <option value="SPINDRIFT BOOKS">SPINDRIFT BOOKS
 <option value="LOW LIFE BOOK CO">LOW LIFE BOOK CO
 <option value="KLONDIKE BOOKS">KLONDIKE BOOKS
 <option value="CALAMITY BOOKS">CALAMITY BOOKS
 <option value="IBEX BOOKS INC">IBEX BOOKS INC
 <option value="BIG LITTLE BOOKS">BIG LITTLE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" size=2>
 <input type=submit value="Search">
 </form>
 </center>
 <hr>
 </body>
 </html>

<%
 }
 else {

 String v_query = request.getParameter("v_query");
 String v_publisher = request.getParameter("v_publisher");
 String v_price = request.getParameter("v_price");
 String v_op = request.getParameter("v_op");
%>

 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post action="catalogSearch.jsp">
 Search for book title:
 <input type=text name="v_query" value=
 <%= v_query %>
 size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="HUMMING BOOKS">HUMMING BOOKS
 <option value="WRENCH BOOKS">WRENCH BOOKS
 <option value="SPOT-ON PUBLISHING">SPOT-ON PUBLISHING
 <option value="SPINDRIFT BOOKS">SPINDRIFT BOOKS
 <option value="LOW LIFE BOOK CO">LOW LIFE BOOK CO
 <option value="KLONDIKE BOOKS">KLONDIKE BOOKS
 <option value="CALAMITY BOOKS">CALAMITY BOOKS
 <option value="IBEX BOOKS INC">IBEX BOOKS INC
 <option value="BIG LITTLE BOOKS">BIG LITTLE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" value=

The JSP Web Application

B-6 Oracle Text Application Developer's Guide

 <%= v_price %> size=2>
 <input type=submit value="Search">
 </form>
 </center>

<%
 try {

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", "ctxdemo");
 info.put ("password","ctxdemo");
 conn = DriverManager.getConnection(connStr,info);

 stmt = conn.createStatement();
 String theQuery = request.getParameter("v_query");
 String thePrice = request.getParameter("v_price");

 // select id,title
 // from book_catalog
 // where catsearch (title,'Java','price >10 order by price') > 0

 // select title
 // from book_catalog
 // where catsearch(title,'Java','publisher = ''CALAMITY BOOKS''
 and price < 40 order by price')>0

 String myQuery = "select title, publisher, price from book_catalog
 where catsearch(title, '"+theQuery+"',
 'publisher = ''"+v_publisher+"'' and price "+v_op+thePrice+"
 order by price') > 0";
 rset = stmt.executeQuery(myQuery);

 String color = "ffffff";

 String myTitle = null;
 String myPublisher = null;
 int myPrice = 0;
 int items = 0;

 while (rset.next()) {
 myTitle = (String)rset.getString(1);
 myPublisher = (String)rset.getString(2);
 myPrice = (int)rset.getInt(3);
 items++;

 if (items == 1) {
%>
 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Title</th>
 <th>Publisher</th>
 <th>Price</th>
 </tr>
<%
 }
%>
 <tr bgcolor="#<%= color %>">
 <td> <%= myTitle %></td>
 <td> <%= myPublisher %></td>

The JSP Web Application

CATSEARCH Query Application B-7

 <td> $<%= myPrice %></td>
 </tr>
<%
 if (color.compareTo("ffffff") == 0)
 color = "eeeeee";
 else
 color = "ffffff";

 }

 } catch (SQLException e) {

%>

 Error: <%= e %><p>

<%

 } finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }

%>
 </table>
 </center>
 </body>
 </html>
<%
 }
%>

The JSP Web Application

B-8 Oracle Text Application Developer's Guide

Glossary-1

Glossary

alternate spelling

In Oracle Text, alternate spelling refers specifically to the use of spelling variations in
German, Swedish, and Dutch; these variations may be indexed if the BASIC_LEXER
attribute ALTERNATE_SPELLING has been specified.

attribute

An attribute is an optional parameter associated with a preference. For example, the
BASIC_LEXER preference includes the base_letter attribute, which can have either
the value of YES (perform base-letter conversions) or NO (do not perform such
conversions). Attributes are set with the CTX_DDL.SET_ATTRIBUTE procedure or
with the ALTER INDEX statement. See also: preference, base-letter conversion.

attribute section

A user-defined section, representing an attribute of an XML document, such as
AUTHOR or TITLE. Attribute sections are added to section groups with CTX_
DDL.ADD_ATTR_SECTION or with the ALTER INDEX statement. See also: AUTO_
SECTION_GROUP, section, XML_SECTION_GROUP.

AUTO_SECTION_GROUP

A section group used to automatically crate a zone section for each start-and end-tag
pair in an XML document; attribute sections are automatically created for XML tags
that have attributes. See also: attribute section, section, section group, XML_
SECTION_GROUP, zone section.

base-letter conversion

The conversion of a letter with alternate forms (such as accents, umlauts, or cedillas) to
its basic form (for example, without an accent).

BASIC_SECTION_GROUP

A section group used to define sections where the start and end tags are of the form
<tag> and </tag>. It does not support non-basic tags, such as comment tags or those
with attributes or unbalanced parentheses. See also: HTML_SECTION_GROUP,
section, section group.

case

Case refers to the capitalization of a word or letter, where upper-case letters are capitals
(M instead of m, for example). Not all languages have case. Mixed-case indexing is
supported for some languages, notably those of Western Europe.

Glossary-2

classification

Also known as document classification. The conceptual separation of source documents
into groups, or clusters, based on their content. For example, a group of documents
might be separated into clusters concerning medicine, finance, and sports.

Oracle Text includes rule-based classification, in which a person writes the rules for
classifying documents (in the form of queries), and Oracle Text performs the document
classification according to the rules; supervised classification, in which Oracle Text
creates classification rules based on a set of sample documents; and clustering (also
known as unsupervised classification), in which the clusters and rules are both created by
Oracle Text.

clustering

Also known as unsupervised classification. See: classification.

CONTEXT index

The basic type of Oracle Text index; an index on a text column. A CONTEXT index is
useful when your source text consists of many large, coherent documents.
Applications making use of CONTEXT indexes use the CONTAINS query operator to
retrieve text.

CTXAPP role

A role for application developers that enables a user to create Oracle Text indexes and
index preferences, and to use PL/SQL packages. This role should be granted to Oracle
Text users.

CTXCAT index

A combined index on a text column and one or more other columns. Typically used to
index small documents or text fragments, such as item names, prices and descriptions
typically found in catalogs, the CTXCAT index typically has better mixed-query
performance than the CONTEXT index.

Applications query this index with the CATSEARCH operator. This index is
transactional, automatically updating itself with DML to the base table.

CTXRULE index

A CTXRULE index used to build a document classification application. The CTXRULE
index is an index created on a table of queries, where the queries serve as rules to
define the classification criteria. This index is queried with the MATCHES operator.

CTXSYS user

The CTXSYS user is created at install time. The CTXSYS user can view all indexes; sync
all indexes; run ctxkbtc, the knowledge base extension compiler; query all
system-defined views; and perform all the tasks of a user with the CTXAPP role.

CTXXPATH index

An index used to speed up existsNode() queries on an XMLType column

datastore

In Oracle Text, datastore refers to the method of storing text. The method is determined
by specifying a storage preference of a particular type. For example, the DIRECT_
DATASTORE type stores data directly into the text column, while the URL_DATASTORE
specifies that data is stored externally in a location specified by a URL.

Glossary-3

endjoin

One or more non-alphanumeric characters that, when encountered as the last character
in a token, explicitly identify the end of the token. The characters, as well as any
startjoin characters that immediately follow it, are included in the Text index entry for
the token. For example, if ++ is specified as an endjoin, then C++ will be recognized
and indexed as a single token. See also: printjoin, skipjoin, startjoin.

field section

A field section is similar to a zone section, with the main difference that the content
between the start and end tags of a field section can be indexed separately from the
rest of the document. This enables field section content to be "hidden" from a normal
query. (The INPATH and WITHIN operators may be used to find the term in such a
section.) Field sections are useful when there is a single occurrence of a section in a
document, such as a filed in a news header. Field sections are added to section groups
with the CTX_DDL.ADD_FIELD_SECTION procedure or with the ALTER INDEX
statement. See also: INPATH operator, section, WITHIN operator, zone section.

filtering

One of the steps in the Oracle Text index-creation process. Depending on the filtering
preferences associated with the creation of the index, one of three things happens
during filtering: Formatted documents are filtered into marked-up text; text is
converted from a non-database character set to a database character set; or no filtering
takes place (HTML, XML, and plain-text documents are not filtered).

fuzzy matching

A fuzzy-matching query is one in which the query is expanded to include words that
are spelled similarly to the specified term. This type of expansion is helpful for finding
more accurate results when there are frequent misspellings in a document set. Fuzzy
matching is invoked with the FUZZY query operator.

HASPATH operator

A CONTAINS query operator used to find XML documents that contain a section path
exactly as specified in the query. See also: PATH_SECTION_GROUP.

highlighting

Generically, in Oracle Text, highlighting refers to generating a version of a document, or
document fragments, with query terms displayed or called out in a special way.

 Specifically, there are three forms of highlighting. First, CTX_DOC.MARKUP returns a
document with the query term surrounded by plaintext or HTML tags. Second, CTX_
DOC.HIGHLIGHT returns offsets for the query terms, allowing the user to mark up the
document as desired. Third, CTX_DOC.SNIPPET produces a concordance, with the
query term displayed in fragments of surrounding text. markup.

HTML_SECTION_GROUP

A section group type used for defining sections in HTML documents. See also: BASIC_
SECTION_GROUP, section, section group.

INPATH operator

A CONTAINS query operator used to search within tags, or paths, of an XML
document. It enables more generic path denomination than the WITHIN operator. See
also: WITHIN operator.

Glossary-4

Key Word in Context (KWIC)

In Oracle Text, a presentation of a query term with the text that surrounds it in the
source document. This presentation may consist of a single instance of the query term,
several instances, or every instance in the source document. The CTX_DOC.SNIPPET
procedure produces such a presentation. Also known as Key Word in Context (KWIC).

knowledge base

Oracle Text includes a knowledge base, which is a hierarchical tree of concepts used for
theme indexing, ABOUT queries, and deriving themes for document services. The
knowledge base may be optionally installed. You can create your own knowledge base
or extend the standard Oracle Text knowledge base.

lexer

The Oracle Text lexer breaks source text into tokens—usually words—in accordance
with a specified language. To extract tokens, the lexer uses parameters as defined by a
lexer preference. These parameters include the definitions for the characters that
separate tokens, such as whitespace, and whether to convert text to all uppercase or
not. When theme indexing is enabled, the lexer analyses text to create theme tokens.

When an application needs to index a table containing documents in more than one
language, it can utilize the MULTI_LEXER (the multilingual lexer) and create sub-lexers
to handle each language. Each sub-lexer is added to the main multi-lexer with the
CTX_DDl.ADD_SUB_LEXER procedure.

markup

A form of highlighting. The CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP
procedures take a query term and a document, and return the document with the
query terms marked up; that is, surrounded either by plaintext characters or HTML
tags. You can use predefined markup tags or specify your own. In comparison, CTX_
DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT return offsets for query terms,
so you can add your own highlighting tags. See also: highlighting.

MDATA

See: metadata.

MDATA section

An MDATA section contains user-defined index metadata. Use of this metadata can
speed up mixed CONTAINS queries. See also: metadata, mixed query, section.

metadata

Metadata is information about a document that is not part of a document's regular
content. For example, if an HTML document contains <author>Mark
Twain</author>, author is considered the metadata type and Mark Twain is
considered the value for author.

Sections containing metadata, known as MDATA sections, can be added to a document
with the CTX_DDL.ADD_MDATA_SECTION procedure. Taking advantage of metadata
can speed up mixed queries. Such queries can be made with the MDATA operator. See
also: mixed query, section.

mixed query

A query that searches for two different types of information; for example, text content
and document type. For example, a search for Romeo and Juliet in <title> metadata is
a mixed query.

Glossary-5

NEWS_SECTION_GROUP

A section group type used for defining sections in newsgroup-formatted documents as
defined by RFC 1036. See also: section, section group.

normalized word

The form of a word after it has been transformed for indexing, according to
transformational rules in effect. Depending on the rules in effect, the normalized form
of a word may be the same as the form found in the source document. The normalized
form of a word may also include both the original and transformed versions. For
example, if New German Spelling has been specified, the word Potential is normalized
to both Potenzial and Potential.

NULL_SECTION_GROUP

The default section group type when no sections are defined or when only SENTENCE
or PARAGRAPH sections are defined. See also: section, section group, special section.

PATH_SECTION_GROUP

A section group type used for indexing XML documents. It is similar to the AUTO_
SECTION_GROUP type, except that it enables the use of the HASPATH and INPATH
operators. See also: AUTO_SECTION_GROUP, HASPATH operator, INPATH
operator, section, section group.

preference

A preference is an optional parameter that affects the way Oracle Text creates an index.
For example, a lexer preference specifies the lexer to use when processing documents,
such as the JAPANESE_VGRAM_LEXER. There are preferences for storage, filtering,
lexers, classifiers, wordlist, section types, and more. A preference may or may not have
attributes associated with it. Preferences are set with the CTX_DDL.CREATE_
PREFERENCE procedure. See also: attribute.

printjoin

One or more non-alphanumeric character that, when they appear anywhere in a word
(beginning, middle, or end), are processed as alphanumeric and included with the
token in an Oracle Text index. This includes printjoins that occur consecutively.

For example, if the hyphen (-) and underscore (_) characters are defined as printjoins,
terms such as pseudo-intellectual and _file_ are stored in the Oracle Text index as
pseudo-intellectual and _file_.

Printjoins differ from endjoins and startjoins in that position does not matter. For
example, $35 will be indexed as one token if $ is defined as a startjoin or a printjoin,
but as two tokens if it is an endjoin. See also: endjoin, printjoin, startjoin.

rule-based classification

See: classification.

section

A section is a subdivision of a document; for example, everything within an
<a>... section of an HTML page.

Dividing a document into sections and then searching within sections enables you to
narrow text queries down to blocks of text within documents. Section searching is
useful when your documents have internal structure, such as HTML and XML
documents. You can also search for text at the sentence and paragraph level.

Glossary-6

Section searching is performed with the HASPATH, ISPATH, or WITHIN operator.
Sections searching is enabled by the used of the section group when indexing.

The various section types include attribute, field, HTML, MDATA, special, stop, XML,
and zone sections.

section group

A section group identifies a type of document set and implicitly indicate the tag
structure for indexing. For instance, to index HTML tagged documents, you use the
HTML_SECTION_GROUP. section group type. Likewise, to index XML tagged
documents, you can use the XML_SECTION_GROUP section group type. Section groups
are declared with the CTX_DDL.CREATE_SECTION_GROUP procedure or with the
ALTER INDEX statement. See also: section.

skipjoin

A non-alphanumeric character that, when it appears within a word, identifies the
word as a single token; however, the character is not stored with the token in the Text
index. For example, if the hyphen character '-' is defined as a skipjoin, the word
pseudo-intellectual is stored in the Text index as pseudointellectual. See also: endjoin,
printjoin, startjoin.

startjoin

One or more non-alphanumeric characters that, when encountered as the first
character in a token explicitly identify the start of the token. The characters, as well as
any other startjoins characters that immediately follow it, are included in the Text index
entry for the token. For example, if '$' is defined as a startjoin, then $35 is indexed as a
single token. In addition, the first startjoins character in a string of startjoins characters
implicitly ends the previous token. See also: endjoin, printjoin, skipjoin.

stemming

The expansion of a query term to include all terms having the same root word. For
example, stemming the verb talk yields talking, talks, and talked, as well as talk (but not
talkie). Stemming is distinct from wildcard expansion, in which results are related only
through spelling, not through morphology. See also: wildcard expansion.

special section

A document section that is not bounded by tags. Instead, sections are formed by
plaintext document structures such as sentences and paragraphs. Special sections are
added to a section group with the CTX_DDL.ADD_SPECIAL_SECTION procedure. See
also: section, section group.

stop section

A section that, when added to an AUTO_SECTION_GROUP, causes the information for
document sections of that type to be ignored during indexing; the section content may
still be searched, however. Stop sections are added to section groups with the CTX_
DDL.ADD_STOP_SECTION procedure. See also: AUTO_SECTION_GROUP, section,
section group.

stopclass

A class of tokens, such as NUMBERs, that are to be skipped over during indexing.
Stopclasses are specified by adding them to stoplists with CTX_DDL.ADD_STOPCLASS.
See also: stoplist.

Glossary-7

stoplist

A list of words, known as stopwords, themes (stopthemes), and data classes (stopclasses)
that are not to be indexed. By default, the system indexes text using the
system-supplied stoplist that corresponds to a given database language.

Oracle Text provides default stoplists for most common languages including English,
French, German, Spanish, Chinese, Dutch, and Danish. These default stoplists contain
only stopwords. Stoplists are created with CTX_DDL.CREATE_STOPLIST or with the
ALTER INDEX command. See also: stopclass, stoptheme, stopword.

stoptheme

A theme to be skipped over during indexing. Stopthemes are specified by adding
them to stoplists with CTX_DDL.ADD_STOPTHEMES. See also: stoplist.

stopword

A word to be skipped over during indexing. Stopwords are specified by adding them
to stoplists with CTX_DDL.ADD_STOPWORD. They can also be dynamically added to an
index using the ALTER INDEX command. See also: stoplist.

sub-lexer

See: lexer.

supervised classification

See: classification.

theme

A topic associated with a given document. A document may have many themes. A
theme does not have to appear in a document; for example, a document containing the
words San Francisco may have California as one of its themes.

Theme components are added to indexes with the INDEX_THEMES attribute of the
BASIC_LEXER preference; they may be extracted from a document with CTX_
DOC.THEMES and queried with the ABOUT operator.

unsupervised classification

Also known as clustering. See: classification.

wildcard expansion

The expansion of a query term to return words that fit a given pattern. For example,
expansion of the query term %rot% would return both trot and rotten. Wildcard
expansion is distinct from stemming. See also: stemming.

whitespace

Characters that are treated as blank spaces between tokens. The predefined default
values for whitespace are 'space' and 'tab'. The BASIC_LEXER uses whitespace
characters (in conjunction with punctuations and newline characters) to identify character
strings that serve as sentence delimiters for sentence and paragraph searching.

WITHIN operator

A CONTAINS query operator used to search for query terms within a given XML
document section. It is similar to the INPATH operator, but less generic. See also:
INPATH operator.

Glossary-8

wordlist

An Oracle Text preference that enables features such as fuzzy, stemming, and prefix
indexing for better wildcard searching, as well as substring and prefix indexing, which
improves performance for wildcard queries with CONTAINS and CATSEARCH.
Wordlists are created with the CTX_DDL.ADD_WORDLIST procedure or with the
ALTER INDEX statement. See also: preference.

XML section

A section that defined by XML tags, enabling XML section searching. Indexing with
XML sections permits automatic sectioning as well as declaring
document-type-sensitive sections. XML section searching includes attribute searching
as well as path section searching with the INPATH, HASPATH, and WITHIN operators.
See also: section.

XML_SECTION_GROUP

A section group used for identifying XML documents for indexing. See also: section,
section group.

zone section

The basic type of document section; a body of text delimited by start and end tags in a
document. Zone sections are well suited for defining sections in HTML and XML
documents. Zone sections are added to section groups with the CTX_DDL.ADD_ZONE_
SECTION procedure or with the ALTER INDEX statement. See also: field section,
section, section group.

Index-1

Index

A
ABOUT query, 4-15

adding for your language, 9-7
case-sensitivity, 4-10
definition, 4-8

accents
indexing characters with, 3-14

ACCUM operator, 4-16
ADD_STOPCLASS procedure, 3-21
ADD_STOPTHEME procedure, 3-21
ADD_STOPWORD procedure, 3-21
ADD_SUB_LEXER procedure

example, 3-19
administration tool, 10-5
ALTER INDEX statement

rebuilding index, 3-28
resuming failed index, 3-28

alternate spelling, 3-14
alternative grammar, 4-13
alternative scoring, 4-13
AND operator, 4-16
application

sample, A-1, B-1
applications, updating, 11-1
attribute

searching XML, 8-11
attribute sections, 8-9
AUTO_FILTER filter, 3-5, 3-11, 3-12, 7-16
AUTO_SECTION_GROUP object, 8-2
automatic sections, 8-11

B
background DML, 10-5
base-letter conversion, 3-14
BASIC_LEXER, 3-12
BASIC_SECTION_GROUP object, 8-2
BFILE column, 3-8

indexing, 3-22
BINARY format column value, 3-11
BLOB column, 3-8

indexing, 3-22
blocking operations

tuning queries with, 7-8
bypassing rows, 3-11

C
cantaloupe dispenser, A-2
case-sensitive

ABOUT query, 4-10
indexing, 3-13
queries, 4-9
thesaurus, 9-2

catalog application, 2-5
example, 2-5

CATSEARCH, 4-3
creating index for, 3-24
operators, 4-20
SQL example, 4-3
structured query, 4-3

CATSEARCH queries, 2-6
CHAR column, 3-8
Character Large Object (CLOB), 2-3
character set

indexing, 3-11
indexing mixed, 3-12

character set column, 3-9
charset column, 3-12
CHARSET_FILTER, 3-5, 3-12
Chinese indexing, 3-15
CHINESE_VGRAM_LEXER, 3-15
classification

Decision Tree (supervised), 6-7
rule-based, 6-3
simple, see rule-based classification
supervised, 6-7
SVM (supervised), 6-10
unsupervised

classification application
example, 2-7

CLOB (Character Large Object) datatype, 2-3
CLOB column, 3-8

indexing, 3-22
clustering, see unsupervised classification
column types

supported for indexing, 3-8
composite words

indexing, 3-14
concordance, 5-3
CONTAINS

operators, 4-15

Index-2

PL/SQL example, 4-2
query, 4-1
SQL example, 4-1
structured query, 4-2

CONTAINS query, 2-3
CONTEXT grammar, 4-15
CONTEXT index

about, 3-2
creating, 3-17, 3-22
HTML example, 2-3, 3-23, A-4

couch, self-tipping, A-2
counting hits, 4-19
CREATE INDEX statement, 3-22
CREATE TABLE permissions, 11-4
CREATE_INDEX_SCRIPT, 10-3
CREATE_POLICY_SCRIPT, 10-3
CREATE_STOPLIST procedure, 3-21
CTX_CLS.TRAIN procedure, 6-7
CTX_DDL.SYNC_INDEX procedure, 2-4, 3-29
CTX_DOC.POLICY_SNIPPET procedure, 5-3
CTX_DOC.SNIPPET procedure, 5-3
CTX_INDEX_ERRORS view, 3-27, 10-2
CTX_OUTPUT.END_QUERY_LOG, 4-14
CTX_OUTPUT.START_QUERY_LOG, 4-14
CTX_PENDING view, 10-2
CTX_REPORT, 3-31
CTX_REPORT package, 10-2
CTX_REPORT_QUERY_LOG_SUMMARY, 4-14
CTX_REPORT_TOKEN_TYPE, 10-5
CTX_REPORT.CREATE_INDEX_SCRIPT, 10-3
CTX_REPORT.CREATE_POLICY_SCRIPT, 10-3
CTX_REPORT.DESCRIBE_INDEX, 10-2
CTX_REPORT.DESCRIBE_POLICY, 10-2
CTX_REPORT.INDEX_SIZE, 10-4
CTX_REPORT.INDEX_STATS, 10-5
CTX_REPORT.QUERY_LOG_SUMMARY, 10-5
CTX_REPORT.TOKEN_INFO, 10-5
CTX_THES package

about, 9-1
CTX_USER_INDEX_ERRORS view, 3-27, 10-2
CTX_USER_PENDING view, 10-2
CTXAPP role, 2-1, 10-1
CTXCAT grammar, 4-20
CTXCAT index

about, 3-2
about performance, 7-13
automatic synchronization, 2-7
creating, 2-5
example, 3-23

ctxkbtc
example, 9-6

ctxload
load thesaurus example, 9-2, 9-5, 9-6

CTXRULE index, 6-6
about, 3-3
allowable queries, 6-6
creating, 2-8, 3-26
lexer types, 6-6
limitations, 6-6
parameters, 6-6

CTXSYS user, 10-1
and DBA permissions, 11-3
and effective user, 11-4
and procedure ownership, 11-4
CREATE TABLE permissions, 11-4
migrating procedures owned by, 11-3, 11-4
preferences, 11-4
synching and optimizing other indexes, 11-4

CTXXPATH index, 1-7
about, 3-3

D
data storage

index default, 3-22
preference example, 3-18

datastore
about, 3-5, 3-17

DATE column, 3-22
DBA permissions and CTXSYS, 11-3
DBMS_JOB.SUBMIT procedure, 3-29
Decision Tree supervised classification, 6-7
default thesaurus, 9-3
DEFAULT_INDEX_MEMORY, 7-15
defaults

index, 3-22
DESCRIBE_INDEX, 10-2
DETAIL_DATASTORE, 3-9

about, 3-10
diacritical marks

characters with, 3-14
DIRECT_DATASTORE, 3-9

about, 3-10
example, 3-18

DML
view pending, 3-29

DML processing
background, 10-5

DML queue, 10-2
document

classification, 3-26, 6-1
document format

affect on index performance, 7-16
affect on performance, 7-10

document formats
filtering, 3-11
supported, 3-10

document invalidation, 3-30
document presentation

about, 5-6
document sections, 3-20
document services

about, 5-6
DOMAIN_INDEX_NO_SORT hint

better throughput example, 7-7
drjobdml.sql script, 3-29
DROP INDEX command, 3-27
DROP_STOPLIST procedure, 3-21
dropping an index, 3-27

Index-3

E
effective user, 11-4
EQUIV operator, 4-16
errors

DML, 10-2
viewing, 3-27

explain plan, 4-10
exporting statistics, 7-1
extensible query optimizer, 7-1

F
feedback

query, 4-10
field section

definition, 8-5
nested, 8-6
repeated, 8-6
visible and invisible, 8-6

file paths
storing, 3-9

FILE_DATASTORE, 3-5
about, 3-9, 3-10
example, 3-18

filter
about, 3-5, 3-17

filtering
custom, 3-11
index default, 3-22
to plain text and HTML, 5-6

filtering documents, 3-11
FIRST_ROWS hint, 4-18

better response time example, 7-5
better throughput example, 7-7

format column, 3-9, 3-11
formats

filtering, 3-11
supported, 3-10

fragmentation of index, 3-30, 7-17
viewing, 3-31

full themes
obtaining, 5-4

functional lookup, 7-10
fuzzy matching, 3-15

default, 3-23
fuzzy operator, 4-17

G
garbage collection, 3-30
German

alternate spelling, 3-14
composite words, 3-14

gist
definition, 5-3
example, 5-5

GIST procedure, 5-4
grammar

alternative, 4-13
CTXCAT, 4-20

grammar CONTEXT, 4-15
granting roles, 2-2, 10-2

H
HASPATH operator, 8-12

examples, 8-14
HFEEDBACK procedure, 4-10
highlighting

about, 5-6
overview, 5-1

highlighting documents, 2-3
highlighting text, 5-1
highlighting themes, 5-1
hit count, 4-19
home air dirtier, A-2
HTML

filtering to, 5-6
indexing, 3-18, 8-2
indexing example, 2-3, A-4
searching META tags, 8-10
zone section example, 3-20, 8-10

HTML_SECTION_GROUP object, 3-20, 8-2, 8-10
with NULL_FILTER, 2-3, 3-18, A-4

I
IGNORE

format column value, 3-11
IGNORE format column value, 3-11
importing statistics, 7-1
index

about, 3-1
creating, 3-17, 3-22
dropping, 3-27
getting report on, 10-2
optimizing, 3-30, 3-31
rebuilding, 3-28
statistics on, 10-5
structure, 3-4, 3-30
synchronizing, 3-29, 10-5
viewing information on, 10-2

index defaults
general, 3-22

index engine
about, 3-6

index errors
viewing, 3-27

index fragmentation, 3-30, 7-17
index maintenance, 3-27
index memory, 7-15
index synchronization, 2-4
index types

choosing, 3-1
INDEX_SIZE, 10-4
INDEX_STATS, 10-5
INDEX_STATS procedure, 3-31
indexed lookup, 7-10
indexing

and views, 3-7

Index-4

bypassing rows, 3-11
considerations, 3-7
overview of process, 3-4
parallel, 3-6, 7-16
resuming failed, 3-28
special characters, 3-12

indexing performance
FAQs, 7-14
parallel, 7-16

indexing time, 7-14
INPATH operator, 8-12

examples, 8-13
INSO_FILTER (deprecated), 11-1
INSO_OUTPUT_FORMATTING attribute

(deprecated), 11-1
INSO_TIMEOUT attribute (deprecated), 11-1
INSOFILTER directive (deprecated), 11-1

J
Japanese indexing, 3-15
JAPANESE_LEXER, 3-15
Jdeveloper

Text wizard, 2-4, A-1, B-1

K
knowledge base

about, 9-7
augmenting, 9-5
linking new terms, 9-6
supported character set, 9-7
user-defined, 9-7

Korean indexing, 3-15
KOREAN_MORPH_LEXER, 3-15

L
language

default setting for indexing, 3-22
language specific features, 3-13
languages

indexing, 3-12
language-specific knowledge base, 9-7
lexer

about, 3-6, 3-17
and CTXRULE, 6-6

list of themes
definition, 5-3
obtaining, 5-4

loading text
about, 3-7

LOB columns
improving query performance, 7-11
indexing, 3-22

local partitioned index, 7-13
improved response time, 7-5

location of text, 3-7
logical operators, 4-16

M
magnet, pet see pet magnet
maintaining the index, 3-27
marked-up document

obtaining, 5-2
MARKUP procedure, 2-3, 5-2
MATCHES

about, 4-4
PL/SQL example, 3-27, 4-6
SQL example, 4-4

MATCHES operator, 2-9, 6-6
materialized views, indexes on
MAX_INDEX_MEMORY, 7-15
MDATA operator, 8-7
MDATA section, 8-7
memory allocation

index synchronization, 7-17
indexing, 7-15
querying, 7-11

META tag
creating zone section for, 8-10

metadata
adding, 8-7
removing, 8-7
section, 8-7

migrating from previous releases, 11-1
migrating procedures, 11-3
migrating to previous releases, 11-4
mixed formats

filtering, 3-11
mixed query, 8-7
MULTI_COLUMN_DATASTORE, 3-9

about, 3-10
example, 3-18

MULTI_LEXER, 3-12
example, 3-19

multi-language columns
indexing, 3-12

multi-language stoplist
about, 3-21

multiple CONTAINS
improving performance, 7-12

MVIEW see materialized views

N
NCLOB column, 3-22
NEAR operator, 4-16
NEAR_ACCUM operator, 4-16
nested zone sections, 8-5
NESTED_DATASTORE, 3-9

about, 3-10
NEWS_SECTION_GROUP object, 8-2
NOT operator, 4-16
NULL_FILTER, 3-5

example, 2-3, 3-18, A-4
NULL_SECTION_GROUP object, 8-2
NUMBER column, 3-22

Index-5

O
offset information

highlight, 5-3
operator

MDATA, 8-7
operators

CATSEARCH, 4-20
CONTAINS, 4-15
logical, 4-16
thesaurus, 9-1

optimizing index, 3-30
example, 3-31
single token, 3-31

optimizing queries, 4-18, 7-1
FAQs, 7-9
response time, 7-3
statistics, 7-1
throughput, 7-6
with blocking operations, 7-8

OR operator, 4-16
ora

contains, 1-6
Oracle Enterprise Manager, 10-5
Oracle XML DB, 1-5
Oracle9i Text Manager, 10-5
out of line LOB storage

improving performance, 7-11

P
parallel indexing, 3-6, 7-16

partitioned table, 7-16
parallel queries, 7-8, 7-13
paramstring for CREATE INDEX, 3-22
partitioned index, 7-13

improved response time, 7-5
path section searching, 8-12
PATH_SECTION_GROUP

example, 8-13
pending DML

viewing, 3-29
pending updates, 10-2
performance tuning

indexing, 7-14
querying, 7-9
updating index, 7-17

pet magnet, A-2
gist, 5-10
highlighted term, 5-8
illustration, 5-7
themes, 5-9

phrase query, 4-7
pizza shredder, A-2
plain text

indexing with NULL_FILTER, 3-18
plain text filtering, 5-6
PL/SQL functions

calling in contains, 4-18
preferences

and CTXSYS, 11-4

creating (examples), 3-17
creating with admin tool, 10-5
dropping, 3-28

previous releases, migrating from, 11-1
previous releases, migrating to, 11-4
printjoins character, 3-13
PROCEDURE_FILTER, 3-11
PSP application, A-3, B-1

Q
query

ABOUT, 4-15
analysis, 4-13
blocking operations, 7-8
case-sensitive, 4-9
CATSEARCH, 4-3
CONTAINS, 4-1
counting hits, 4-19
CTXRULE, 6-6
getting report on, 10-2
log, 4-13
MATCHES, 4-4
mixed, 8-7
optimizing for throughput, 7-6
overview, 4-1
parallel, 7-8
speeding up with MDATA, 8-7
viewing information on, 10-2
viewing log of, 10-5

query analysis, 4-13
query application

example, 2-2
sample, 1-2

query explain plan, 4-10
query expressions, 4-9
query features, 4-14
query feedback, 4-10
query language, 4-13
query log, 4-13, 10-5
query optimization, 4-18

FAQs, 7-9
response time, 7-3

query performance
FAQs, 7-9

query relaxation, 4-12
query rewrite, 4-11
query template, 4-17, 4-20
QUERY_LOG_SUMMARY, 10-5
queue

DML, 10-2

R
rebuilding an index, 3-28
relaxing queries, 4-12
REMOVE_SQE procedure, 4-18
REMOVE_STOPCLASS procedure, 3-21
REMOVE_STOPTHEME procedure, 3-21
REMOVE_STOPWORD procedure, 3-21

Index-6

response time
improving, 7-3
optimizing for, 4-18

result buffer size
increasing, 7-8

resuming failed index, 3-28
rewriting queries, 4-11
roles

granting, 2-2, 10-2
system-defined, 10-1

rule-based classification, 6-3

S
sample application, A-1, B-1
scoring

alternative, 4-13
searching

XML, 1-5
section

attribute, 8-9
field, 8-5
groups and types, 8-4
HTML example, 3-20
MDATA, 8-7
nested, 8-5
overlapping, 8-5
repeated zone, 8-5
special, 8-9
stop section, 8-7
types and groups, 8-4
zone, 8-4

section group
about, 3-17
and section types, 8-4
creating with admin tool, 10-5

section searching
about, 4-11, 8-1
enabling, 8-1
HTML, 8-10

sectioner
about, 3-5

sectioning
automatic, 8-11
path, 8-12

security improvements in current release, 11-3
self-tipping couch, A-2
SGA memory allocation, 7-15
simple classification, see rule-based classification
single themes

obtaining, 5-4
size of index, viewing, 10-4
skipjoins character, 3-13
SORT_AREA_SIZE, 7-8, 7-11, 7-15
special characters

indexing, 3-12
special sections, 8-9
spelling

alternate, 3-14
SQE operator, 4-17

statistics
exporting and importing, 7-1
optimizing with, 7-2

stem operator, 3-15, 4-17
stemming

default, 3-23
improving performance, 7-12

stop section, 8-7
stopclass, 3-21
stoplist, 3-21

about, 3-17
creating with admin tool, 10-5
default, 3-23
multi-language, 3-16, 3-21
PL/SQL procedures, 3-21

stoptheme, 3-21
about, 3-16
definition, 4-8

stopword, 3-21
about, 3-16, 4-8
case-sensitive, 4-10

storage
about, 3-17

STORE_SQE procedure, 4-17
stored query expressions, 4-17
storing text, 3-7

about, 3-9
structure of index, 3-30
structured query

example, 3-23
supervised classification, 6-7

Decision Tree, 6-7
SVM supervised classification, 6-10

memory requirements, 6-11
SYN operator, 9-4
SYNC_INDEX procedure, 2-4, 3-29
synching and optimizing other indexes, 11-4
synchronize index, 2-4
synchronizing index, 3-29, 10-5

improving performance, 7-17
synonyms

defining, 9-4

T
talking pillow, A-2
template queries, 4-17, 4-20
text column

supported types, 3-8
TEXT format column value, 3-11
text highlighting, 5-1
Text Manager tool, 10-5
text storage, 3-7
theme functionality

adding, 9-7
theme highlighting, 5-1
theme summary

definition, 5-3
themes

indexing, 3-14

Index-7

THEMES procedure, 5-4
thesaural queries

about, 4-11
thesaurus

about, 9-1
adding to knowledge base, 9-5
case-sensitive, 9-2
DEFAULT, 9-3
default, 9-3
defining terms, 9-3
hierarchical relations, 9-4
loading custom, 9-5
operators, 9-1
supplied, 9-3
using in application, 9-4

thesaurus operator, 4-17
throughput

improving query, 7-6
tildes

indexing characters with, 3-14
TOKEN_INFO, 10-5
TOKEN_TYPE, 10-5
tracing, 7-7
TRAIN procedure, 6-7
tuning queries

for response time, 7-3
for throughput, 7-6
increasing result buffer size, 7-8
with statistics, 7-1

U
umlauts

indexing characters with, 3-14
unsupervised classification, 6-12
updating index performance

FAQs, 7-17
updating your applications, 11-1
URL_DATASTORE

about, 3-10
example, 3-18

URLs
storing, 3-9

user
creating Oracle Text, 2-1
system-defined, 10-1

USER_DATASTORE, 3-7
about, 3-10

USER_FILTER, 3-11

V
VARCHAR2 column, 3-8
viewing information on indexes and queries, 10-2
viewing size of index, 10-4
views

and indexing, 3-7
materialized

W
wildcard operator, 4-17

improving performance, 7-12
WITHIN operator, 3-20
wizard

Oracle Text addin, 2-4, A-1, B-1
word query, 4-7

case-sensitivity, 4-10
wordlist

about, 3-17

X
XML DB, 1-5
XML documents

attribute searching, 8-11
doctype sensitive sections, 8-12
indexing, 8-2
section searching, 8-11

XML searching, 1-5
XML_SECTION_GROUP object, 8-2

Z
zone section

definition, 8-4
nested, 8-5
overlapping, 8-5
repeating, 8-5

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Understanding Oracle Text Application Development
	What is Oracle Text?
	Designing Your Application
	Text Queries on Document Collections
	Flowchart of Text Query Application

	Queries on Catalog Information
	Flowchart for Catalog Query Application

	Document Classification
	XML Searching
	Using Oracle Text
	Using the Oracle XML DB Framework
	Combining Oracle Text features with Oracle XML DB
	Using the Text-on-XML Method
	Using the XML-on-Text Method

	2 Getting Started with Oracle Text
	Overview of Getting Started with Oracle Text
	Creating an Oracle Text User
	Query Application Quick Tour
	Building Web Applications with the Oracle Text Wizard
	Oracle JDeveloper
	Oracle Text Wizard Addins
	Oracle Text Wizard Instructions

	Catalog Application Quick Tour
	Classification Application Quick Tour
	Steps for Creating a Classification Application

	3 Indexing with Oracle Text
	About Oracle Text Indexes
	Types of Oracle Text Indexes
	Structure of the Oracle Text CONTEXT Index
	Merged Word and Theme Index

	The Oracle Text Indexing Process
	Datastore Object
	Filter Object
	Sectioner Object
	Lexer Object
	Indexing Engine

	Partitioned Tables and Indexes
	Querying Partitioned Tables

	Creating an Index Online
	Parallel Indexing
	Indexing and Views

	Considerations For Indexing
	Location of Text
	Supported Column Types
	Storing Text in the Text Table
	Storing File Path Names
	Storing URLs
	Storing Associated Document Information
	Format and Character Set Columns
	Supported Document Formats
	Summary of DATASTORE Types

	Document Formats and Filtering
	No Filtering for HTML
	Filtering Mixed-Format Columns
	Custom Filtering

	Bypassing Rows for Indexing
	Document Character Set
	Mixed Character Set Columns

	Document Language
	Languages Features Outside BASIC_LEXER
	Indexing Multi-language Columns

	Indexing Special Characters
	Printjoins Character
	Skipjoins Character
	Other Characters

	Case-Sensitive Indexing and Querying
	Language-Specific Features
	Indexing Themes
	Base-Letter Conversion for Characters with Diacritical Marks
	Alternate Spelling
	Composite Words
	Korean, Japanese, and Chinese Indexing

	Fuzzy Matching and Stemming
	Better Wildcard Query Performance
	Document Section Searching
	Stopwords and Stopthemes
	Multi-Language Stoplists

	Index Performance
	Query Performance and Storage of LOB Columns

	Index Creation
	Procedure for Creating a CONTEXT Index
	Creating Preferences
	Datastore Examples
	NULL_FILTER Example: Indexing HTML Documents
	PROCEDURE_FILTER Example
	BASIC_LEXER Example: Setting Printjoins Characters
	MULTI_LEXER Example: Indexing a Multi-Language Table
	BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

	Creating Section Groups for Section Searching
	Example: Creating HTML Sections

	Using Stopwords and Stoplists
	Multi-Language Stoplists
	Stopthemes and Stopclasses
	PL/SQL Procedures for Managing Stoplists

	Creating an Index
	Creating a CONTEXT Index
	CONTEXT Index and DML
	Default CONTEXT Index Example
	Custom CONTEXT Index Example: Indexing HTML Documents

	Creating a CTXCAT Index
	CTXCAT Index and DML
	About CTXCAT Sub-Indexes and Their Costs
	Creating CTXCAT Sub-indexes
	Creating CTXCAT Index

	Creating a CTXRULE Index
	Create a Table of Queries
	Create the CTXRULE Index
	Classifying a Document

	Index Maintenance
	Viewing Index Errors
	Dropping an Index
	Resuming Failed Index
	Example: Resuming a Failed Index

	Rebuilding an Index
	Example: Rebuilding and Index

	Dropping a Preference
	Example

	Managing DML Operations for a CONTEXT Index
	Viewing Pending DML
	Synchronizing the Index
	Setting Background DML

	Index Optimization
	CONTEXT Index Structure
	Index Fragmentation
	Document Invalidation and Garbage Collection
	Single Token Optimization
	Viewing Index Fragmentation and Garbage Data
	Examples: Optimizing the Index

	4 Querying with Oracle Text
	Overview of Queries
	Querying with CONTAINS
	CONTAINS SQL Example
	CONTAINS PL/SQL Example
	Structured Query with CONTAINS

	Querying with CATSEARCH
	CATSEARCH SQL Query
	CATSEARCH Example

	Querying with MATCHES
	MATCHES SQL Query
	MATCHES PL/SQL Example

	Word and Phrase Queries
	CONTAINS Phrase Queries
	CATSEARCH Phrase Queries

	Querying Stopwords
	ABOUT Queries and Themes
	Querying Stopthemes

	Query Expressions
	CONTAINS Operators
	CATSEARCH Operator
	MATCHES Operator

	Case-Sensitive Searching
	Word Queries
	ABOUT Queries

	Query Feedback
	Query Explain Plan
	Using a Thesaurus in Queries
	Document Section Searching
	Using Query Templating
	Query Rewrite
	Query Relaxation
	Query Language
	Alternative Scoring
	Alternative Grammar
	Query Analysis
	Other Query Features

	The CONTEXT Grammar
	ABOUT Query
	Logical Operators
	Section Searching
	Proximity Queries with NEAR and NEAR_ACCUM Operators
	Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
	Using CTXCAT Grammar
	Stored Query Expressions
	Defining a Stored Query Expression
	SQE Example

	Calling PL/SQL Functions in CONTAINS
	Optimizing for Response Time
	Other Factors that Influence Query Response Time

	Counting Hits
	SQL Count Hits Example
	Counting Hits with a Structured Predicate
	PL/SQL Count Hits Example

	The CTXCAT Grammar
	Using CONTEXT Grammar with CATSEARCH

	5 Presenting Documents in Oracle Text
	Highlighting Query Terms
	Text highlighting
	Theme Highlighting
	CTX_DOC Highlighting Procedures
	Markup Procedure
	Highlight Procedure
	Concordance

	Obtaining Lists of Themes, Gists, and Theme Summaries
	Lists of Themes
	In-Memory Themes
	Result Table Themes

	Gist and Theme Summary
	In-Memory Gist
	Result Table Gists
	Theme Summary

	Document Presentation and Highlighting
	Highlighting Example
	Document List of Themes Example
	Gist Example

	6 Classifying Documents in Oracle Text
	Overview
	Classification Applications

	Classification Solutions
	Rule-Based Classification
	Rule-based Classification Example
	CTXRULE Parameters and Limitations

	Supervised Classification
	Decision Tree Supervised Classification
	Decision Tree Supervised Classification Example

	SVM-Based Supervised Classification
	SVM-Based Supervised Classification Example

	Unsupervised Classification (Clustering)
	Clustering Example

	7 Tuning Oracle Text
	Optimizing Queries with Statistics
	Collecting Statistics
	Example

	Re-Collecting Statistics
	Deleting Statistics

	Optimizing Queries for Response Time
	Other Factors that Influence Query Response Time
	Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries
	About the FIRST_ROWS Hint

	Improved Response Time using Local Partitioned CONTEXT Index
	Range Search on Partition Key Column
	ORDER BY Partition Key Column

	Improved Response Time with Local Partitioned Index for Order by Score

	Optimizing Queries for Throughput
	CHOOSE and ALL ROWS Modes
	FIRST_ROWS Mode

	Tracing
	Parallel Queries
	Tuning Queries with Blocking Operations
	Frequently Asked Questions a About Query Performance
	What is Query Performance?
	What is the fastest type of text query?
	Should I collect statistics on my tables?
	How does the size of my data affect queries?
	How does the format of my data affect queries?
	What is a functional versus an indexed lookup?
	What tables are involved in queries?
	Does sorting the results slow a text-only query?
	How do I make a ORDER BY score query faster?
	Which Memory Settings Affect Querying?
	Does out of line LOB storage of wide base table columns improve performance?
	How can I make a CONTAINS query on more than one column faster?
	Is it OK to have many expansions in a query?
	How can local partition indexes help?
	Should I query in parallel?
	Should I index themes?
	When should I use a CTXCAT index?
	When is a CTXCAT index NOT suitable?
	What optimizer hints are available, and what do they do?

	Frequently Asked Questions About Indexing Performance
	How long should indexing take?
	Which index memory settings should I use?
	How much disk overhead will indexing require?
	How does the format of my data affect indexing?
	Can parallel indexing improve performance?
	How can I improve index performance for creating local partitioned index?
	How can I tell how much indexing has completed?

	Frequently Asked Questions About Updating the Index
	How often should I index new or updated records?
	How can I tell when my indexes are getting fragmented?
	Does memory allocation affect index synchronization?

	8 Searching Document Section in Oracle Text
	About Oracle Text Document Section Searching
	Enabling Oracle Text Section Searching
	Create a Section Group
	Define Your Sections
	Index Your Documents
	Section Searching with the WITHIN Operator
	Path Searching with INPATH and HASPATH Operators

	Oracle Text Section Types
	Zone Section
	Field Section
	Stop Section
	MDATA Section
	Attribute Section
	Special Sections

	HTML Section Searching with Oracle Text
	Creating HTML Sections
	Searching HTML Meta Tags
	Example: Creating Sections for <META>Tags

	XML Section Searching with Oracle Text
	Automatic Sectioning
	Attribute Searching
	Creating Attribute Sections
	Searching Attributes with the INPATH Operator

	Creating Document Type Sensitive Sections
	Path Section Searching
	Creating an Index with PATH_SECTION_GROUP
	Top-Level Tag Searching
	Any-Level Tag Searching
	Direct Parentage Searching
	Tag Value Testing
	Attribute Searching
	Attribute Value Testing
	Path Testing
	Section Equality Testing with HASPATH

	9 Working With a Thesaurus in Oracle Text
	Overview of Oracle Text Thesaurus Features
	Oracle Text Thesaurus Creation and Maintenance
	CTX_THES Package
	Thesaurus Operators
	ctxload Utility

	Using a Case-sensitive Thesaurus
	Using a Case-insensitive Thesaurus
	Default Thesaurus
	Supplied Thesaurus
	Supplied Thesaurus Structure and Content
	Supplied Thesaurus Location

	Defining Terms in a Thesaurus
	Defining Synonyms
	Defining Hierarchical Relations

	Using a Thesaurus in a Query Application
	Loading a Custom Thesaurus and Issuing Thesaurus-based Queries
	Advantage
	Limitations

	Augmenting Knowledge Base with Custom Thesaurus
	Advantage
	Limitations
	Linking New Terms to Existing Terms
	Loading a Thesaurus with ctxload
	Compiling a Loaded Thesaurus

	About the Supplied Knowledge Base
	Adding a Language-Specific Knowledge Base
	Limitations

	10 Administering Oracle Text
	Oracle Text Users and Roles
	CTXSYS User
	CTXAPP Role
	Granting Roles and Privileges to Users

	DML Queue
	The CTX_OUTPUT Package
	The CTX_REPORT Package
	Servers
	Administration Tool

	11 Migrating Oracle Text Applications
	Migrating to Oracle Text 10g Release 2 (10.2)
	New Filter (INSO_FILTER versus AUTO_FILTER)
	Migrating to the AUTO_FILTER Filter Type

	Migrating to Oracle Text 10g Release 1 (10.1)
	Security Improvements in Oracle Text 10g Release 1
	CTXSYS No Longer Has DBA Permissions
	Migrating CTXSYS-Owned Procedures
	Effective User During Indexing
	Procedures Do Not Need to Be Owned by CTXSYS
	Synching and Optimizing of Other Users' Indexes
	CTX Packages and Invoker's Rights
	CREATE TABLE Permissions

	Migrating Back to Previous Releases from Release 10.1

	A CONTEXT Query Application
	Web Query Application Overview
	The PSP Web Application
	Web Application Prerequisites
	Building the Web Application
	PSP Sample Code
	loader.ctl
	loader.dat
	search_htmlservices.sql
	search_html.psp

	The JSP Web Application
	Web Application Prerequisites
	JSP Sample Code
	search_html.jsp

	B CATSEARCH Query Application
	CATSEARCH Web Query Application Overview
	The JSP Web Application
	Building the JSP Web Application
	JSP Sample Code
	loader.ctl
	loader.dat
	catalogSearch.jsp

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

