
Oracle® Workow
API Reference
Release 2.6.4
Part No. B15855-02

June 2005



Oracle Workflow API Reference, Release 2.6.4

Part No. B15855-02

Copyright © 2003, 2005, Oracle. All rights reserved.

Primary Author: Siu Chang, Clara Jaeckel

Contributing Author: Varsha Bhatia, George Buzsaki, John Cordes, Mark Craig, Avinash Dabholkar, Mark
Fisher, Yongran Huang, Kevin Hudson, George Kellner, Sai Kilaru, Angela Kung, David Lam, Janet Lee, Jin
Liu, Kenneth Ma, Steve Mayze, Santhana Natarajan, Rajesh Raheja, Varadarajan Rajaram, Tim Roveda, Robin
Seiden, Vijay Shanmugam, Sachin Sharma, Sheryl Sheh, Allison Sparshott, Susan Stratton, Roshin
Thomas, Robert Wunderlich

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software–Restricted Rights
(June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any
third party.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.



Contents

Send Us Your Comments

Preface

1 Overview of Oracle Workow
Overview of Oracle Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Major Features and Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Workflow Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Oracle Workflow Procedures and Functions . . . . . . . . . . . . . . . . . . . . . . 1-5

2 Workow Engine APIs
Overview of the Workflow Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Oracle Workflow Java Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Additional Workflow Engine Features . . . . . . . . . . . . . . . . . . . . . . . 2-5

Workflow Engine APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
CreateProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
SetItemUserKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
GetItemUserKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
GetActivityLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
SetItemOwner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
StartProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
LaunchProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
SuspendProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
ResumeProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
AbortProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
CreateForkProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
StartForkProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
AddItemAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
AddItemAttributeArray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
SetItemAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
setItemAttrFormattedDate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
SetItemAttrDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38
SetItemAttributeArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
getItemTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41

iii



GetItemAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
GetItemAttrDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
GetItemAttrClob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
getItemAttributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
GetItemAttrInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
GetActivityAttrInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
GetActivityAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
GetActivityAttrClob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
getActivityAttributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
BeginActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
CompleteActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
CompleteActivityInternalName . . . . . . . . . . . . . . . . . . . . . . . . . 2-52
AssignActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53
Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54
HandleError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
SetItemParent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57
ItemStatus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
getProcessStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60

Workflow Function APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60
loadItemAttributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61
loadActivityAttributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61
getActivityAttr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
getItemAttr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
setItemAttrValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
execute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63

Workflow Attribute APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-64
WFAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65
value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
getName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
getValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
getType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
getFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
getValueType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
toString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
compareTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-68

Workflow Core APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-68
CLEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
GET_ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
TOKEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70
RAISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71
CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74
TRANSLATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-76

Workflow Purge APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-76
Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77
Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-78

iv



Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79
Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80
TotalPERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81
Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82
Purge Obsolete Workflow Runtime Data Concurrent Program . . . . . . . . . . . . 2-83

WorkflowMonitor APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-84
GetAccessKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85
GetDiagramURL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85
GetEnvelopeURL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
GetAdvancedEnvelopeURL . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-88

Workflow Status Monitor APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-90
GetEncryptedAccessKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-90
GetEncryptedAdminMode . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91
IsMonitorAdministrator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91

Oracle Workflow Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91
WF_ITEM_ACTIVITY_STATUSES_V . . . . . . . . . . . . . . . . . . . . . . . 2-92
WF_NOTIFICATION_ATTR_RESP_V. . . . . . . . . . . . . . . . . . . . . . . 2-93
WF_RUNNABLE_PROCESSES_V . . . . . . . . . . . . . . . . . . . . . . . . 2-94
WF_ITEMS_V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-94

3 Directory Service APIs
Workflow Directory Service APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

GetRoleUsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
GetUserRoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
GetRoleInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
GetRoleInfo2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
IsPerformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
UserActive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
GetUserName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
GetRoleName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
GetRoleDisplayName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
CreateAdHocUser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
CreateAdHocRole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
CreateAdHocRole2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
AddUsersToAdHocRole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
AddUsersToAdHocRole2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
RemoveUsersFromAdHocRole . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
SetAdHocUserStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
SetAdHocRoleStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
SetAdHocUserExpiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
SetAdHocRoleExpiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
SetAdHocUserAttr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
SetAdHocRoleAttr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
ChangeLocalUserName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
IsMLSEnabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18

v



Workflow LDAP APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
Synch_changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Synch_all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Schedule_changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

Workflow Local Synchronization APIs . . . . . . . . . . . . . . . . . . . . . . . . 3-21
Propagate_User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
Propagate_Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
PropagateUserRole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29

Workflow Role Hierarchy APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
AddRelationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31
ExpireRelationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31
GetRelationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
GetAllRelationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32

Workflow Preferences API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33
get_pref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33

4 Notication System APIs
Overview of the Oracle Workflow Notification System . . . . . . . . . . . . . . . . . 4-1

Notification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Notification Document Type Definition . . . . . . . . . . . . . . . . . . . . . . . 4-6

Notification APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16

Custom Callback Function . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
SendGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22
Cancel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23
CancelGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Respond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Responder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
NtfSignRequirementsMet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
VoteCount. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
OpenNotificationsExist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
Close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
AddAttr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
SetAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30
GetAttrInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31
GetInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
GetText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33
GetShortText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34
GetAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35
GetAttrDoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36
GetSubject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
GetBody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
GetShortBody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38

vi



TestContext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39
AccessCheck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39
WorkCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40
getNotifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40
getNotificationAttributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41
WriteToClob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41
Denormalize_Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
SubstituteSpecialChars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43

Notification Mailer Utility API . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-44
EncodeBLOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-44

5 Business Event System APIs
Overview of the Oracle Workflow Business Event System . . . . . . . . . . . . . . . . 5-1
Business Event System Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Agent Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
getName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
getSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
setName. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
setSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Parameter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
getName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
getValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
setName. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
setValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

Parameter List Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Event Message Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

Initialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
getPriority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
getSendDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
getReceiveDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
getCorrelationID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
getParameterList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
getEventName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
getEventKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
getEventData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
getFromAgent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
getToAgent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
getErrorSubscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
getErrorMessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
getErrorStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
setPriority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
setSendDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
setReceiveDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
setCorrelationID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
setParameterList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13

vii



setEventName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
setEventKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
setEventData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
setFromAgent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
setToAgent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
setErrorSubscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
setErrorMessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
setErrorStack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
AddParameterToList . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
GetValueForParameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17

Example for Using Abstract Datatypes . . . . . . . . . . . . . . . . . . . . . . 5-17
Mapping Between WF_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE . . . . . . . . 5-18

Event APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
Raise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Raise3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
NewAgent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26
Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26
Enqueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27
Listen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27
SetErrorInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29
SetDispatchMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29
AddParameterToList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30
AddParameterToListPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
GetValueForParameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
GetValueForParameterPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
SetMaxNestedRaise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
GetMaxNestedRaise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32

Event Subscription Rule Function APIs . . . . . . . . . . . . . . . . . . . . . . . 5-33
Default_Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-33
Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35
Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35
Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36
Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
Workflow_Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38
Error_Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38
SetParametersIntoParameterList . . . . . . . . . . . . . . . . . . . . . . . . . 5-39
Default_Rule2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40
Default_Rule3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41
SendNotification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41
Instance_Default_Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43

Event Function APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44

viii



SubscriptionParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
AddCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-46
Generate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-47
Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49

Business Event System Replication APIs . . . . . . . . . . . . . . . . . . . . . . . 5-50
WF_EVENTS Document Type Definition . . . . . . . . . . . . . . . . . . . . . 5-51
WF_EVENTS_PKG.Generate . . . . . . . . . . . . . . . . . . . . . . . . . . 5-52
WF_EVENTS_PKG.Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-52
WF_EVENT_GROUPS Document Type Definition . . . . . . . . . . . . . . . . . 5-53
WF_EVENT_GROUPS_PKG.Generate . . . . . . . . . . . . . . . . . . . . . . 5-53
WF_EVENT_GROUPS_PKG.Receive . . . . . . . . . . . . . . . . . . . . . . . 5-53
WF_SYSTEMS Document Type Definition . . . . . . . . . . . . . . . . . . . . . 5-54
WF_SYSTEMS_PKG.Generate . . . . . . . . . . . . . . . . . . . . . . . . . . 5-54
WF_SYSTEMS_PKG.Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-54
WF_AGENTS Document Type Definition . . . . . . . . . . . . . . . . . . . . . 5-55
WF_AGENTS_PKG.Generate . . . . . . . . . . . . . . . . . . . . . . . . . . 5-55
WF_AGENTS_PKG.Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-55
WF_AGENT_GROUPS Document Type Definition . . . . . . . . . . . . . . . . . 5-56
WF_AGENT_GROUPS_PKG.Generate . . . . . . . . . . . . . . . . . . . . . . 5-56
WF_AGENT_GROUPS_PKG.Receive . . . . . . . . . . . . . . . . . . . . . . . 5-57
WF_EVENT_SUBSCRIPTIONS Document Type Definition . . . . . . . . . . . . . 5-57
WF_EVENT_SUBSCRIPTIONS_PKG.Generate . . . . . . . . . . . . . . . . . . . 5-58
WF_EVENT_SUBSCRIPTIONS_PKG.Receive . . . . . . . . . . . . . . . . . . . 5-58

Business Event System Cleanup API . . . . . . . . . . . . . . . . . . . . . . . . 5-58
Cleanup_Subscribers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-58

6 Workow Queue APIs
Workflow Queue APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

EnqueueInbound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
DequeueOutbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
DequeueEventDetail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
PurgeEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
PurgeItemType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
ProcessInboundQueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
GetMessageHandle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
DequeueException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
DeferredQueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
InboundQueue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
OutboundQueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
ClearMsgStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
CreateMsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
WriteMsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
SetMsgAttr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
SetMsgResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13

ix



7 Document Management APIs
Document Management APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

get_launch_document_url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
get_launch_attach_url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
get_open_dm_display_window . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
get_open_dm_attach_window . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
set_document_id_html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4

Glossary

Index

x



Send Us Your Comments

Oracle Workow API Reference, Release 2.6.4
Part No. B15855-02

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication. Your
input is an important part of the information used for revision.

• Did you find any errors?
• Is the information clearly presented?
• Do you need more information? If so, where?
• Are the examples correct? Do you need more examples?
• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and part
number of the documentation and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

• Electronic mail: appsdoc_us@oracle.com
• FAX: 650-506-7200 Attn: Oracle Applications Technology Group Documentation Manager
• Postal service:

Oracle Applications Technology Group Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail address
(optional).

If you have problems with the software, please contact your local Oracle Support Services.

xi





Preface

Intended Audience
Welcome to Release 2.6.4 of the Oracle Workflow API Reference.

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• Oracle Workflow.

If you have never used Oracle Workflow, Oracle suggests you attend training classes
available through Oracle University.

• The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user interface, read the Oracle
Applications User’s Guide.

• Operating system concepts.

• Oracle Database, Oracle Application Server, and PL/SQL technology.

If you have never used these products, Oracle suggests you attend training classes
available through Oracle University.

See Related Documents on page xv for more Oracle Applications product information.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY support,
call 800.446.2398.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible,
with good usability, to the disabled community. To that end, our documentation
includes features that make information available to users of assistive technology.
This documentation is available in HTML format, and contains markup to facilitate
access by the disabled community. Accessibility standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/ .

xiii



Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that consists
solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 Overview of Oracle Workow
This chapter introduces you to the concept of a workflow process and to the major
features of Oracle Workflow.

2 Workow Engine APIs
This chapter describes the APIs for the Workflow Engine. The APIs consist of views and
PL/SQL and Java functions and procedures that you can use to access the Workflow
Engine, the Workflow Monitor, and workflow data.

3 Directory Service APIs
This chapter describes the APIs for the Oracle Workflow directory service. The APIs
consist of PL/SQL functions and procedures that you can use to access the directory
service.

4 Notication System APIs
This chapter describes the APIs for the Oracle Workflow Notification System. The
APIs consist of PL/SQL and Java functions and procedures that you can use to access
the Notification System.

5 Business Event System APIs
This chapter describes the APIs for the Oracle Workflow Business Event System. The
APIs consist of datatypes and PL/SQL functions and procedures that you can use to
access the Business Event System.

6 Workow Queue APIs
This chapter describes the APIs for Oracle Workflow Advanced Queues processing. The
APIs consist of PL/SQL functions and procedures to handle workflow Advanced
Queues processing. Although these APIs will continue to be supported for backward
compatibility, customers using Oracle Workflow Release 2.6 and higher should use the
Business Event System rather than the queue APIs to integrate with Oracle Advanced
Queuing.

7 Document Management APIs
This chapter describes the APIs for Oracle Workflow document management. The APIs
consist of PL/SQL functions and procedures to integrate with document management
systems. Document management functionality is reserved for future use. This
description of Oracle Workflow document management APIs is provided for reference
only.

Glossary

xiv



Related Documents
You can choose from many sources of information, including online
documentation, training, and support services, to increase your knowledge and
understanding of Oracle Workflow.

If this guide refers you to other Oracle Applications documentation, use only the Release
11i versions of those guides.

Online Documentation
If you are using the version of Oracle Workflow embedded in Oracle Applications, note
that all Oracle Applications documentation is available online (HTML or PDF).

• PDF Documentation - See the Oracle Applications Documentation Library CD
for current PDF documentation for your product with each release. The Oracle
Applications Documentation Library is also available on OracleMetaLink and is
updated frequently.

• Online Help - Online help patches (HTML) are available on OracleMetaLink.

• About Documents - Refer to the About document for the mini-pack or family pack
that you have installed to learn about feature updates, installation information, and
new documentation or documentation patches that you can download. About
documents are available on OracleMetaLink.

If you are using the standalone version of Oracle Workflow, note that this guide is
available online in HTML format. The HTML documentation is available from a URL
provided by your system administrator or from the help icon in the Oracle Workflow
Web pages.

Related Guides
You may want to refer to other Oracle Workflow guides and Oracle
Applications implementation documentation when you set up and use Oracle
Workflow. Additionally, Oracle Workflow is used by other Oracle Applications products
to provide embedded workflows and business events. Therefore, if you are using the
version of Oracle Workflow embedded in Oracle Applications, you may want to refer
to other products’ guides to learn more about the workflows and business events they
include.

You can read the guides online by choosing Library from the expandable menu on your
Oracle Applications HTML help window, by reading from the Oracle Applications
Documentation Library CD included in your media pack, or by using a Web browser
with a URL that your system administrator provides.

If you require printed guides, you can purchase them from the Oracle Store at
http://oraclestore.oracle.com.

Guides Related to All Products
Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate using the
graphical user interface (GUI) available with this release of Oracle Workflow (and any
other Oracle Applications products). This guide also includes information on setting
user profiles, as well as running and reviewing reports and concurrent processes.

xv

http://oraclestore.oracle.com
http://oraclestore.oracle.com
http://oraclestore.oracle.com
http://oraclestore.oracle.com
http://oraclestore.oracle.com
http://oraclestore.oracle.com
http://oraclestore.oracle.com
http://oraclestore.oracle.com
http://oraclestore.oracle.com


You can access this user’s guide online by choosing ”Getting Started with Oracle
Applications” from any Oracle Applications help file.

Oracle Workow Documentation Set
Oracle Workflow Administrator’s Guide

This guide explains how to complete the setup steps necessary for any product that
includes workflow-enabled processes, as well as how to monitor the progress of runtime
workflow processes

Oracle Workflow Developer’s Guide

This guide explains how to define new workflow business processes and customize
existing Oracle Applications-embedded workflow processes. It also describes how to
define and customize business events and event subscriptions.

Oracle Workflow User’s Guide

This guide describes how users can view and respond to workflow notifications and
monitor the progress of their workflow processes.

Guides Related to This Product
Oracle Assets User Guide

In Oracle Assets, you can post capital project costs to become depreciable fixed
assets. Refer to this guide to learn how to query mass additions imported from other
products to Oracle Assets and to review asset information.

Oracle General Ledger User Guide

Use this manual when you plan and define your chart of accounts, accounting period
types and accounting calendar, functional currency, and set of books. The manual also
describes how to define journal entry sources and categories so you can create journal
entries for your general ledger. If you use multiple currencies, use this manual when you
define additional rate types, and enter daily rates. This manual also includes complete
information on implementing Budgetary Control.

Oracle HRMS Documentation Set

This set of guides explains how to define your employees, so you can give them
operating unit and job assignments. It also explains how to set up an organization
(operating unit). Even if you do not install Oracle HRMS, you can set up employees and
organizations using Oracle HRMS windows. Specifically, the following manuals will
help you set up employees and operating units:

• Using Oracle HRMS - The Fundamentals

This user guide explains how to set up and use enterprise modeling, organization
management, and cost analysis.

• Managing People Using Oracle HRMS

Use this guide to learn about entering employees.

Oracle Payables User Guide

Refer to this manual to learn how to use Invoice Import to create invoices in Oracle
Payables from expense reports data in the Oracle Payables interface tables. This manual

xvi



also explains how to define suppliers, and how to specify supplier and employee
numbering schemes for invoices.

Oracle Projects Implementation Guide

Use this manual as a guide for implementing Oracle Projects. This manual also includes
appendixes covering function security, menus and responsibilities, and profile options.

Oracle Purchasing User Guide

Use this guide to learn about entering and managing the requisitions and purchase
orders that relate to your projects. This manual also explains how to create purchase
orders from project-related requisitions in the AutoCreate Documents window.

Oracle Receivables User Guide

Use this manual to learn more about Oracle Receivables invoice processing and invoice
formatting, defining customers, importing transactions using AutoInvoice, and defining
automatic accounting in Oracle Receivables.

Oracle Business Intelligence System Implementation Guide

This guide provides information about implementing Oracle Business Intelligence (BIS)
in your environment

BIS 11i User Guide Online Help

This guide is provided as online help only from the BIS application and includes
information about intelligence reports, Discoverer workbooks, and the Performance
Management Framework.

Using Oracle Time Management

This guide provides information about capturing work patterns such as shift hours so
that this information can be used by other applications such as Oracle General Ledger.

Installation and System Administration
Oracle Applications Concepts

This guide provides an introduction to the concepts, features, technology
stack, architecture, and terminology for Oracle Applications Release 11i. It provides a
useful first book to read before installing Oracle Applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle Applications
products. In Release 11i, much of the installation process is handled using Oracle
Rapid Install, which minimizes the time to install Oracle Applications and the Oracle
technology stack by automating many of the required steps. This guide contains
instructions for using Oracle Rapid Install and lists the tasks you need to perform
to finish your installation. You should use this guide in conjunction with individual
product user’s guides and implementation guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications Release 10.7 or
Release 11.0 products to Release 11i. This guide describes the upgrade process and
lists database and product-specific upgrade tasks. You must be either at Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0 to upgrade to Release 11i. You
cannot upgrade to Release 11i directly from releases prior to 10.7.

xvii



Maintaining Oracle Applications

Use this guide to help you run the various AD utilities, such as AutoUpgrade, Auto
Patch, AD Administration, AD Controller, AD Relink, License Manager, and others. It
contains how-to steps, screenshots, and other information that you need to run the AD
utilities. This guide also provides information on maintaining the Oracle Applications
file system and database.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications
system administrator. It contains information on how to define security, customize
menus and online help, and manage concurrent processing.

Oracle Alert User’s Guide

This guide explains how to define periodic and event alerts to monitor the status of
your Oracle Applications data.

Other Implementation Documentation
Oracle Applications Product Update Notes

Use this guide as a reference for upgrading an installation of Oracle Applications. It
provides a history of the changes to individual Oracle Applications products between
Release 11.0 and Release 11i. It includes new features, enhancements, and changes made
to database objects, profile options, and seed data for this interval.

Multiple Reporting Currencies in Oracle Applications

If you use the Multiple Reporting Currencies feature to record transactions in more than
one currency, use this manual before implementing Oracle Applications. This manual
details additional steps and setup considerations for implementing Oracle Applications
with this feature.

Multiple Organizations in Oracle Applications

This guide describes how to set up and use Oracle Applications’ Multiple Organization
support feature, so you can define and support different organization structures when
running a single installation of Oracle Applications.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup, and reference information for the Oracle
Applications implementation team, as well as for users responsible for the ongoing
maintenance of Oracle Applications product data. This guide also provides information
on creating custom reports on flexfields data.

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle Applications
development staff. It describes the Oracle Application Object Library components
needed to implement the Oracle Applications user interface described in the Oracle
Applications User Interface Standards for Forms-Based Products. It also provides information
to help you build your custom Oracle Forms Developer forms so that they integrate
with Oracle Applications.

Oracle Applications User Interface Standards for Forms-Based Products

xviii



This guide contains the user interface (UI) standards followed by the Oracle Applications
development staff. It describes the UI for the forms-based Oracle Applications products
and how to apply this UI to the design of an application built using Oracle Forms.

Oracle eTechnical Reference Manuals

Each eTechnical Reference Manual (eTRM) contains database diagrams and a detailed
description of database tables, forms, reports, and programs for a specific Oracle
Applications product. This information helps you convert data from your existing
applications, integrate Oracle Applications data with non-Oracle applications, and
write custom reports for Oracle Applications products. Oracle eTRM is available on
OracleMetaLink.

Oracle Applications Message Reference Manual

This manual describes Oracle Applications messages. This manual is available in HTML
format on the documentation CD-ROM for Release 11i.

Training and Support
Training

Oracle offers a complete set of training courses to help you and your staff master
Oracle Workflow and reach full productivity quickly. These courses are organized
into functional learning paths, so you take only those courses appropriate to your job
or area of responsibility.

You have a choice of educational environments. You can attend courses offered by
Oracle University at any one of our many Education Centers, you can arrange for our
trainers to teach at your facility, or you can use Oracle Learning Network (OLN), Oracle
University’s online education utility. In addition, Oracle training professionals can tailor
standard courses or develop custom courses to meet your needs. For example, you
may want to use your organization’s structure, terminology, and data as examples in a
customized training session delivered at your own facility.

Support

From on-site support to central support, our team of experienced professionals provides
the help and information you need to keep Oracle Workflow working for you. This team
includes your Technical Representative, Account Manager, and Oracle’s large staff of
consultants and support specialists, with expertise in your business area, managing an
Oracle Database, and your hardware and software environment.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data Browser,
database triggers, or any other tool to modify Oracle Applications data unless otherwise
instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as SQL*Plus
to modify Oracle Applications data, you risk destroying the integrity of your data and
you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using an
Oracle Applications form can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a row
in one table without making corresponding changes in related tables. If your tables get

xix



out of synchronization with each other, you risk retrieving erroneous information and
you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps track of
who changes information. If you enter information into database tables using database
tools, you may store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools do not keep a
record of changes.

xx



1
Overview of Oracle Workow

This chapter introduces you to the concept of a workflow process and to the major
features of Oracle Workflow.

This chapter covers the following topics:

• Overview of Oracle Workflow

• Oracle Workflow Procedures and Functions

Overview of Oracle Workow
Oracle Workflow delivers a complete workflow management system that supports
business process based integration. Its technology enables modeling, automation, and
continuous improvement of business processes, routing information of any type
according to user-defined business rules.

E-business is accelerating the demand for integration of applications within the
enterprise as well as integration of a company’s systems with trading partners and
business-to-business exchanges. Oracle Workflow automates and streamlines business
processes both within and beyond your enterprise, supporting traditional applications
based workflow as well as e-business integration workflow. Oracle Workflow is unique
in providing a workflow solution for both internal processes and business process
coordination between applications.

Routing Information
Business processes today involve getting many types of information to multiple people
according to rules that are constantly changing. With so much information available, and
in so many different forms, how do you get the right information to the right
people? Oracle Workflow lets you provide each person with all the information they
need to take action. Oracle Workflow can route supporting information to each decision
maker in a business process, including people both inside and outside your enterprise.

Dening and Modifying Business Rules
Oracle Workflow lets you define and continuously improve your business processes
using a drag-and-drop process designer.

Unlike workflow systems that simply route documents from one user to another
with some approval steps, Oracle Workflow lets you model sophisticated business
processes. You can define processes that loop, branch into parallel flows and then
rendezvous, decompose into subflows, and more. Because Oracle Workflow can decide
which path to take based on the result of a stored procedure, you can use the power of

Overview of Oracle Workow 1-1



Java and of PL/SQL, the language of the Oracle Database, to express any business rule
that affects a workflow process. See: Workflow Processes, page 1-4.

Delivering Electronic Notications
Oracle Workflow extends the reach of business process automation throughout the
enterprise and beyond to include any e-mail or Internet user. Oracle Workflow lets
people receive notifications of items awaiting their attention via e-mail, and act based on
their e-mail responses. You can even view your list of things to do, including necessary
supporting information, and take action using a standard Web browser.

Integrating Systems
Oracle Workflow lets you set up subscriptions to business events which can launch
workflows or enable messages to be propagated from one system to another when
business events occur. You can communicate events among systems within your
own enterprise and with external systems as well. In this way, you can implement
point-to-point messaging integration or use Oracle Workflow as a messaging hub for
more complex system integration scenarios. You can model business processes that
include complex routing and processing rules to handle events powerfully and flexibly.

Major Features and Denitions

Oracle Workow Builder
Oracle Workflow Builder is a graphical tool that lets you create, view, or modify
a business process with simple drag and drop operations. Using the Workflow
Builder, you can create and modify all workflow objects, including activities, item
types, and messages. See: Workflow Processes, page 1-4.

At any time you can add, remove, or change workflow activities, or set up new
prerequisite relationships among activities. You can easily work with a summary-level
model of your workflow, expanding activities within the workflow as needed to greater
levels of detail. And, you can operate Oracle Workflow Builder from a desktop PC or
from a disconnected laptop PC.

Workow Engine
The Workflow Engine embedded in the Oracle Database implements process definitions
at runtime. The Workflow Engine monitors workflow states and coordinates the routing
of activities for a process. Changes in workflow state, such as the completion of
workflow activities, are signaled to the engine via a PL/SQL API or a Java API. Based
on flexibly-defined workflow rules, the engine determines which activities are eligible
to run, and then runs them. The Workflow Engine supports sophisticated workflow
rules, including looping, branching, parallel flows, and subflows.

Business Event System
The Business Event System is an application service that uses the Oracle Advanced
Queuing (AQ) infrastructure to communicate business events between systems. The
Business Event System consists of the Event Manager, which lets you register
subscriptions to significant events, and event activities, which let you model business
events within workflow processes.

1-2 Oracle Workow API Reference



When a local event occurs, the subscribing code is executed in the same transaction as
the code that raised the event. Subscription processing can include executing custom
code on the event information, sending event information to a workflow process, and
sending event information to other queues or systems.

Workow Denitions Loader
The Workflow Definitions Loader is a utility program that moves workflow definitions
between database and corresponding flat file representations. You can use it to move
workflow definitions from a development to a production database, or to apply upgrades
to existing definitions. In addition to being a standalone server program, the Workflow
Definitions Loader is also integrated into Oracle Workflow Builder, allowing you to open
and save workflow definitions in both a database and file.

Complete Programmatic Extensibility
Oracle Workflow lets you include your own PL/SQL procedures or external functions as
activities in your workflows. Without modifying your application code, you can have
your own program run whenever the Workflow Engine detects that your program’s
prerequisites are satisfied.

Electronic Notications
Oracle Workflow lets you include users in your workflows to handle activities
that cannot be automated, such as approvals for requisitions or sales orders. The
Notification System sends notifications to and processes responses from users in a
workflow. Electronic notifications are routed to a role, which can be an individual user
or a group of users. Any user associated with that role can act on the notification.

Each notification includes a message that contains all the information a user needs to
make a decision. The information may be embedded in the message body or attached
as a separate document. Oracle Workflow interprets each notification activity response
to decide how to move on to the next workflow activity.

Electronic Mail Integration
Electronic mail (e-mail) users can receive notifications of outstanding work items and
can respond to those notifications using their e-mail application of choice. An e-mail
notification can include an attachment that provides another means of responding to
the notification.

Internet-Enabled Workow
Any user with access to a standard Web browser can be included in a workflow. Web
users can access a Notification Web page to see their outstanding work items, then
navigate to additional pages to see more details or provide a response.

Monitoring and Administration
Workflow administrators and users can view the progress of a work item in a workflow
process by connecting to the Workflow Monitor using a standard Web browser that
supports Java. The Workflow Monitor displays an annotated view of the process
diagram for a particular instance of a workflow process, so that users can get a graphical
depiction of their work item status. The Workflow Monitor also displays a separate
status summary for the work item, the process, and each activity in the process.

Overview of Oracle Workow 1-3



If you are using the version of Oracle Workflow embedded in Oracle Applications and
you have implemented Oracle Applications Manager, you can also use the Oracle
Workflow Manager component of Oracle Applications Manager as an additional
administration tool for Oracle Workflow. Oracle Applications Manager is a tool that
provides administrative and diagnostic capabilities for concurrent processing, Oracle
Workflow, and other functionality in Oracle Applications. For more information, please
refer to the Oracle Applications Manager online help.

Also, if you are using the standalone version of Oracle Workflow, you can use the
standalone Oracle Workflow Manager component available through Oracle Enterprise
Manager as an additional administration tool for Oracle Workflow. For more
information, please refer to the Oracle Workflow Manager online help.

Workow Processes
Oracle Workflow manages business processes according to rules that you define. The
rules, which we call a workflow process definition, include the activities that occur
in the process and the relationship between those activities. An activity in a process
definition can be an automated function defined by a PL/SQL stored procedure or an
external function, a notification to a user or role that may optionally request a response, a
business event, or a subflow that itself is made up of a more granular set of activities.

A workflow process is initiated when an application calls a set of Oracle Workflow
Engine APIs. The Workflow Engine takes over by driving the relevant work item defined
by the application, through a specific workflow process definition. According to the
workflow process definition, the Workflow Engine performs automated steps and
invokes appropriate agents when external processing is required.

The following diagram depicts a simplified workflow process definition that routes a
requisition to a manager or set of managers for approval.

1-4 Oracle Workow API Reference



Sample Workow Process in Oracle Workow Builder

We refer to the whole drawing as a process or process diagram. The icons represent
activities, and the arrows represent the transitions between the activities. In the above
example, new items are created for the process when a user creates and submits a
requisition in the appropriate application.

This process contains several workflow activities implemented as PL/SQL stored
procedures, including:

• Select Approver - to select, according to your business rules, who should approve
the requisition.

• Verify Authority - to verify that a selected approver has the spending authority to
approve the requisition.

Oracle Workow Procedures and Functions
Oracle Workflow supplies a list of public PL/SQL and Java procedures and functions
that you can use to set up a workflow process. They are grouped within the following
packages and classes:

• WF_ENGINE, page 2-14

• WFFunctionAPI, page 2-60

• WFAttribute, page 2-64

• WF_CORE, page 2-68

• WF_PURGE, page 2-76

• WF_MONITOR, page 2-84

Overview of Oracle Workow 1-5



• WF_FWKMON, page 2-90

• Oracle Workflow Views, page 2-91

• WF_DIRECTORY, page 3-1

• WF_LDAP, page 3-18

• WF_LOCAL_SYNCH, page 3-21

• WF_ROLE_HIERARCHY, page 3-30

• WF_PREF, page 3-33

• WF_NOTIFICATIONS, page 4-14

• WF_MAIL_UTIL, page 4-44

• WF_EVENT, page 5-20

• WF_RULE, page 5-33

• WF_EVENT_FUNCTIONS_PKG, page 5-44

• WF_EVENTS_PKG, page 5-50

• WF_EVENT_GROUPS_PKG, page 5-50

• WF_SYSTEMS_PKG, page 5-50

• WF_AGENTS_PKG, page 5-50

• WF_AGENT_GROUPS_PKG, page 5-50

• WF_EVENT_SUBSCRIPTIONS_PKG, page 5-50

• WF_BES_CLEANUP, page 5-58

• WF_QUEUE, page 6-1

• FND_DOCUMENT_MANAGEMENT, page 7-1

1-6 Oracle Workow API Reference



2
Workow Engine APIs

This chapter describes the APIs for the Workflow Engine. The APIs consist of views and
PL/SQL and Java functions and procedures that you can use to access the Workflow
Engine, the Workflow Monitor, and workflow data.

This chapter covers the following topics:

• Overview of the Workflow Engine

• Workflow Engine APIs

• Workflow Function APIs

• Workflow Attribute APIs

• Workflow Core APIs

• Workflow Purge APIs

• Workflow Monitor APIs

• Workflow Status Monitor APIs

• Oracle Workflow Views

Overview of the Workow Engine
The Workflow Engine manages all automated aspects of a workflow process for each
item. The engine is implemented in server-side PL/SQL and is activated whenever a call
to a workflow procedure or function is made. Since the engine is embedded inside the
Oracle Database, if the Workflow server goes down for any reason, the Oracle Database
is able to manage the recovery and transactional integrity of any workflow transactions
that were running at the time of the failure.

Additionally, Workflow engines can be set up as background tasks to perform activities
that are too costly to execute in real time.

The Workflow Engine performs the following services for a client application:

• It manages the state of all activities for an item, and in particular, determines which
new activity to transition to whenever a prerequisite activity completes.

• It automatically executes function activities (execution is either immediate or
deferred to a background engine) and sends notifications.

• It maintains a history of an activity’s status.

• It detects error conditions and executes error processes.

Workow Engine APIs 2-1



The state of a workflow item is defined by the various states of all activities that are part
of the process for that item. The engine changes activity states in response to an API call
to update the activity. The API calls that update activity states are:

• CreateProcess, page 2-16

• StartProcess, page 2-21

• CompleteActivity, page 2-50

• CompleteActivityInternalName, page 2-52

• AssignActivity, page 2-53

• HandleError, page 2-55

• SuspendProcess, page 2-24

• ResumeProcess, page 2-25

• AbortProcess, page 2-26

Based on the result of a previous activity, the engine attempts to execute the next activity
directly. An activity may have the following status:

• Active - activity is running.

• Complete - activity completed normally.

• Waiting - activity is waiting to run.

• Notified - notification activity is delivered and open.

• Deferred - activity is deferred.

• Error - activity completed with error.

• Suspended - activity is suspended.

Important: The Workflow Engine traps errors produced by function
activities by setting a savepoint before each function activity. If an
activity produces an unhandled exception, the engine performs a
rollback to the savepoint, and sets the activity to the ERROR status. For
this reason, you should never commit within the PL/SQL procedure of a
function activity. The Workflow Engine never issues a commit as it is the
responsibility of the calling application to commit.

For environments such as database triggers or distributed transactions
that do not allow savepoints, the Workflow Engine automatically traps
"Savepoint not allowed" errors and defers the execution of the activity
to the background engine.

Note: The Oracle Database supports autonomous transactions. By
embedding the pragma AUTONOMOUS_TRANSACTION in your
procedure, you can perform commits and rollbacks independently of the
main transaction. Oracle treats this as a separate session; as such, you
will not have access to any database changes that were made in the main
session but are not yet committed. Consequently, you are restricted
from updating workflow-specific data in an autonomous transaction;
for instance, you cannot set item attributes. You cannot access this data
because the item itself has not yet been committed, and because you
may have lock contentions with the main session.

2-2 Oracle Workow API Reference



Oracle Workflow will not support autonomous commits in any
procedure it calls directly. If you need to perform commits, then embed
your SQL in a subprocedure and declare it as an autonomous block. This
subprocedure must be capable of being rerun. Additionally, note that
Oracle Workflow handles errors by rolling back the entire procedure
and setting its status to ERROR. Database updates performed by
autonomous commits cannot be rolled back, so you will need to
write your own compensatory logic for error handling. For more
information, see: Autonomous Transactions, Oracle Database Concepts.

Oracle Workow Java Interface
The Oracle Workflow Java interface provides a means for any Java program to integrate
with Oracle Workflow. The Oracle Workflow Engine and Notification APIs are accessible
through public server PL/SQL packages and published views. The Oracle Workflow Java
interface exposes those APIs as Java methods that can be called by any Java program
to communicate with Oracle Workflow. The Java methods directly reference the
WF_ENGINE and WF_NOTIFICATION PL/SQL package procedures and views and
communicate with the Oracle Workflow database through JDBC.

The methods are defined within the WFEngineAPI class and the WFNotificationAPI
class, in the Java package ’oracle.apps.fnd.wf.engine’. If a Workflow Engine or
notification API has a corresponding Java method, its Java method syntax is displayed
immediately after its PL/SQL syntax in the documentation. See: Workflow Engine APIs,
page 2-14 and Notification APIs, page 4-14.

Additionally, Java functions can be incorporated within Workflow processes as external
Java function activities. This functionality is currently only available for the standalone
version of Oracle Workflow. The custom Java classes for these activities are implemented
as classes that extend the WFFunctionAPI class. The custom classes must follow a
standard API format so that they can be properly executed by the Oracle Workflow Java
Function Activity Agent. See: Standard API for Java Procedures Called by Function
Activities, Oracle Workflow Developer's Guide and Function Activity, Oracle Workflow
Developer's Guide.

The WFFunctionAPI class and the WFAttribute class also contain methods that can be
called to communicate with Oracle Workflow. These classes are defined in the Java
package ’oracle.apps.fnd.wf’. See: Workflow Function APIs, page 2-60 and
Workflow Attribute APIs, page 2-64.

Java programs that integrate with Oracle Workflow should include the following import
statements to provide access to classes required by Oracle Workflow:

import java.io.*;
import java.sql.*;
import java.math.BigDecimal;

import oracle.sql.*;
import oracle.jdbc.driver.*;

import oracle.apps.fnd.common.*;
import oracle.apps.fnd.wf.engine.*;
import oracle.apps.fnd.wf.*;

Workow Engine APIs 2-3



Oracle Workow Context
Each Oracle Workflow Java method that accesses the database requires an input of a
WFContext object. The WFContext object consists of database connectivity information
which you instantiate and resource context information that the WFContext class
instantiates. To call one of these Workflow Java APIs in your Java program, you must first
instantiate a database variable of class WFDB with your database username, password
and alias. You can also optionally supply a JDBC string. Then you must instantiate the
WFContext object with the database variable. You can retrieve the system property
CHARSET to specify the character set for the database session. The following code
excerpt shows an example of how to instantiate these objects.

WFDB myDB;
WFContext ctx;

myDB = new WFDB(m_user, m_pwd, m_jdbcStr, m_conStr);
m_charSet = System.getProperty("CHARSET");
if (m_charSet == null) { // cannot be null
m_charSet = "UTF8";

}

try {
ctx = new WFContext(myDB, m_charSet);
// m_charSet is ’UTF8’ by default

if (ctx.getDB().getConnection() == null) {
// connection failed
return;

}

// We now have a connection to the database.
}

catch (Exception e) {
// exit Message for this exception
}

If you have already established a JDBC connection, you can simply set that connection
into the WFContext object, as shown in the following example:

WFContext ctx;

m_charSet = System.getProperty("CHARSET");
if (m_charSet == null) { // cannot be null
m_charSet = "UTF8";

}

ctx = new WFContext(m_charSet);
// m_charSet is ’UTF8’ by default

ctx.setJDBCConnection(m_conn);
// m_conn is a pre-established JDBC connection

The Oracle Workflow Java APIs can be used safely in a thread, with certain restrictions:

2-4 Oracle Workow API Reference



• Each thread should have its own WFContext object, meaning you should not
instantiate WFContext before starting threads. Because each context keeps track of
an error stack, contexts cannot be shared.

• You should not use the same JDBC connection for different workflows, because
using the same connection may cause problems with commits and rollbacks for
unrelated transactions.

There is no synchronized code inside the Oracle Workflow Java APIs, but there are no
shared resources, either.

There is also no connection pooling in the Oracle Workflow Java APIs. For Oracle
Applications, connection pooling is implemented at the AOL/J level; after you get
the JDBC connection, you use the WFContext.setJDBCConnection() API to set the
connection. This approach lets you manage your JDBC connection outside of the Oracle
Workflow APIs.

Sample Java Program
Oracle Workflow provides an example Java program that illustrates how to call most of
the Workflow Engine and Notification Java APIs. The Java program is named WFTest. It
calls the various Java APIs to launch the WFDEMO process, set and get attributes, and
suspend, resume, and abort the process, as well as the APIs to send a notification, set and
get notification attributes, and delegate and transfer the notification. Before running the
WFTest Java program, make sure you define CLASSPATH and LD_LIBRARY_PATH for
the Oracle JDBC implementation and a supported version of Oracle. For example, on
UNIX, use the following commands:

setenv CLASSPATH
<Workflow_JAR_file_directory>/wfapi.jar:${ORACLE_HOME}/jdbc/lib/cl
asses111.zip

setenv LD_LIBRARY_PATH ${ORACLE_HOME}/lib:${LD_LIBRARY_PATH}

Note: If you are using the standalone version of Oracle Workflow, the
Workflow JAR files are located in the <ORACLE_HOME>/jlib
directory. If you are using the version of Oracle Workflow embedded
in Oracle Applications, the Workflow JAR files are located in the
<ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/jar/ directory.

To initiate the WFTest program, run Java against oracle.apps.fnd.wf.WFTest. For
example, on UNIX, enter the following statement on the command line:

$java oracle.apps.fnd.wf.WFTest

The source file for this program is also included in your Oracle Workflow installation
so that you can view the sample code. The source file is named WFTest.java and is
located in the <ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/ directory.

Additional Workow Engine Features
In addition to managing a process, the Workflow Engine also supports the following
features:

• Completion Processing, page 2-6

• Deferred Processing, page 2-6

Workow Engine APIs 2-5



• Error Processing, page 2-7

• Looping, page 2-7

• Version/Effective Date, page 2-8

• Item Type Attributes, page 2-9

• Post-Notification Functions, page 2-9

• Synchronous, Asynchronous, and Forced Synchronous Processes, page 2-12

• Business Events, page 2-14

Completion Processing
Engine processing is triggered whenever a process activity completes and calls the
Workflow Engine API. The engine then attempts to execute (or mark for deferred
execution) all activities that are dependent on the completed activity.

Note: A process as a whole can complete but still contain activities that
were visited but not yet completed. For example, a completed process
may contain a standard Wait activity that is not complete because the
designated length of time to wait has not yet elapsed. When the process
as a whole completes, the Workflow Engine marks these incomplete
activities as having a status of COMPLETE and a result of #FORCE. This
distinction is important when you review your process status through
the Workflow Monitor.

Deferred Processing
The engine has a deferred processing feature that allows long-running tasks to be
handled by background engines instead of in real time. Deferring the execution
of activity functions to background engines allows the Workflow Engine to move
forward to process other activities that are currently active. The engine can be set up to
operate anywhere on a continuum between processing all eligible work immediately, to
processing nothing and marking all transitions as deferred.

Each activity has a user-defined processing cost. You can set this cost to be small if the
activity merely sets an item attribute, or you may set it to be very high if the activity
performs a resource-intensive operation. If the result of a completed activity triggers
the execution of a costly function, you might want to defer the execution of that costly
function to a background engine.

The Workflow Engine integrates with Oracle Advanced Queues to carry out deferred
processing. If a function activity has a cost that exceeds the main threshold cost, the
Workflow Engine marks that activity with a status of ’DEFERRED’ in the workflow status
tables and enqueues the deferred activity to a special queue for deferred activities. A
special queue processor called the background engine checks and processes the activities
in the ’deferred’ queue. The order in which the deferred activities are processed are
based on the first in, first out ordering of an activity’s enqueue time. At least one
background engine must be set up to run at all times. Some sites may have multiple
background engines operating at different thresholds or item type specifications, to
avoid tying up all background processing with long-running operations.

See: Setting Up Background Engines, Oracle Workflow Administrator's Guide, Activity
Cost, Oracle Workflow Developer's Guide, and Deferring Activities, Oracle Workflow
Administrator's Guide.

2-6 Oracle Workow API Reference



Error Processing
Errors that occur during workflow execution cannot be directly returned to the
caller, since the caller generally does not know how to respond to the error (in fact, the
caller may be a background engine with no human operator). You can use Oracle
Workflow Builder to define the processing you want to occur in case of an error. Use
Oracle Workflow Builder to assign the Default Error Process associated with the
System:Error item type or create your own custom error process. See: Error Handling
for Workflow Processes, Oracle Workflow Developer's Guide.

The error process can include branches based on error codes, send notifications, and
attempt to deal with the error using automated rules for resetting, retrying, or
skipping the failed activity. Once you define an error process, you can associate it
with any activity. The error process is then initiated whenever an error occurs for that
activity. See: To Define Optional Activity Details, Oracle Workflow Developer's Guide.

The Workflow Engine traps errors produced by function activities by setting a savepoint
before each function activity. If an activity produces an unhandled exception, the engine
performs a rollback to the savepoint, and sets the activity to the ERROR status.

Note: For this reason, you should never commit within the PL/SQL
procedure of a function activity. The Workflow Engine never issues a
commit as it is the responsibility of the calling application to commit.

The Workflow Engine then attempts to locate an error process to run by starting with
the activity which caused the error, and then checking each parent process activity
until an associated error process is located.

Looping
Looping occurs when the completion of an activity causes a transition to another activity
that has already been completed. The first activity that gets detected as a revisited
activity is also called a loop point or pivot activity. The Workflow Engine can handle
a revisited activity in one of three ways:

• Ignore the activity, and stop further processing of the thread, so in effect, the activity
can only run once.

• Reset the loop to the loop point before reexecuting by first running logic to undo
the activities within the loop.

• Reexecute the loop point and all activities within the loop without running any logic.

Every activity has an On Revisit poplist field in its Oracle Workflow Builder Details
property page. The On Revisit poplist lets you specify the behavior of the Workflow
Engine when it revisits the activity in a workflow process. You can set the field to
Ignore, Reset, or Loop.

Setting On Revisit to Ignore is useful for implementing activities that should only run
once, even though they can be transitioned to from multiple sources. For example, this
mode allows you to implement a "logical OR" type of activity which is transitioned to
multiple times, but completes after the first transition only.

Setting On Revisit to Reset for an activity is useful when you want to reexecute
activities in a loop, but you want to first reset the status of the activities in the loop. Reset
causes the Workflow Engine to do the following:

• Build a list of all activities visited following the pivot activity.

Workow Engine APIs 2-7



• Traverse the list of activities, cancelling each activity and resetting its status.

Cancelling an activity is similar to executing the activity, except that the activity is
executed in "CANCEL" mode rather than "RUN" mode. You can include compensatory
logic in "CANCEL" mode that reverses any operation performed earlier in "RUN" mode.

If you set On Revisit to Reset for the pivot activity of a loop that includes an FYI
notification activity, the Workflow Engine cancels the previous notification before
reexecuting the loop and sending a new notification to the current performer of the
notification activity.

Setting On Revisit to Loop for an activity is useful when you want to simply reexecute
activities in a loop without resetting the status of the activities in the loop. Loop causes
the Workflow Engine to reexecute the activity in "RUN" mode without executing any
"CANCEL" mode logic for the activity.

If you set On Revisit to Loop for the pivot activity of a loop that includes an FYI
notification activity, previous notifications remain open when the Workflow Engine
reexecutes the loop and sends a new notification to the current performer of the
notification activity.

Version / Effective Date
Certain workflow objects in a process definition are marked with a version number so
that more than one version of the object can be in use at any one time. These objects are:

• Activities - notifications, functions, and processes

Note: Although function activities support versioning, the
underlying PL/SQL code does not, unless implemented by your
developer. You should avoid adding references to new activity
attributes or returning result lookup codes not modelled by existing
activities in your PL/SQL code.

• Activity attributes

• Process activity nodes

• Activity attribute values

• Activity transitions

If you edit and save any of the above objects in Oracle Workflow Builder to the
database, Oracle Workflow automatically creates a new version of that object or the
owning object by incrementing the version number by one. If you save edits to any of
the above objects to an existing file, then the original objects are overwritten. If you
have a process instance that is still running and you upgrade the underlying workflow
definition in your Workflow server, the process instance continues to run using the
version of the workflow object definitions with which it was originally initiated.

An effective date controls which version of a definition the engine uses when executing a
process. When you edit a process, you can save it with an immediate or future effective
date. Any new process instance that is initiated always uses the version that is specified
to be effective at that point in time. See: Opening and Saving Item Types, Oracle Workflow
Developer's Guide.

Note that Oracle Workflow does not maintain versions for other workflow objects. Any
modifications that you save to the following objects overwrites the existing definition
of the object:

2-8 Oracle Workow API Reference



• Item attributes

• Messages

• Lookup types

Item Type Attributes
A set of item type attributes is defined at both design-time and runtime for each
item. These attributes provide information to the function and notification activities used
in the processes associated with the item type.

When you define item type attributes at runtime, you can add either individual attributes
or arrays containing several attributes of the same type, using the appropriate Workflow
Engine APIs. Similarly, you can set the values of existing attributes either individually or
in arrays containing several attributes of the same type.

Use the array APIs whenever you need to add or set the values of large numbers
of item type attributes at once. These APIs improve performance by using the
bulk binding feature in the Oracle Database to reduce the number of database
operations. See: AddItemAttributeArray, page 2-34 and SetItemAttributeArray, page
2-39.

Note: These array APIs handle arrays that are composed of multiple item
type attributes grouped together by type. Oracle Workflow does not
support individual item type attributes that consist of arrays themselves.

Post-Notication Functions
You can associate a post-notification function with a notification activity. The Workflow
Engine executes the post-notification function in response to an update of the
notification’s state after the notification is delivered. For example, you can specify
a post-notification function that executes when the notification recipient forwards
or transfers the notification. The post-notification function could perform back-end
logic to either validate the legitimacy of the forward or transfer or execute some other
supporting logic.

The post-notification function should be a PL/SQL procedure written to the same API
standards required for function activities. See: Standard API for PL/SQL Procedures
Called by Function Activities, Oracle Workflow Developer's Guide.

When you specify a post-notification function, the Workflow Engine first sets the context
information to use with the function through the following global engine variables. In
some cases the values of the variables differ depending on the mode in which the
post-notification function is called.

• WF_ENGINE.context_nid - The notification ID. For RUN or TIMEOUTmode, if the
Expand Roles property is checked for the notification activity, then this variable
contains the notification group ID for the notifications sent to the individual
members of the role.

• WF_ENGINE.context_user - The user who is responsible for taking the action that
updated the notification’s state.

• For RESPOND, FORWARD, TRANSFER, QUESTION, or ANSWERmode, if the user was
acting on his or her own behalf, then the value of WF_ENGINE.context_user
varies depending on the notification interface. If the user acted through the
Notification Details Web page, then WF_ENGINE.context_user is set to the

Workow Engine APIs 2-9



user name of the logged in user. If the recipient acted through e-mail, then this
variable is set to ’email:’<email_address>.

• For RESPOND, FORWARD, TRANSFER, QUESTION, or ANSWER mode, if the user
was acting on behalf of another user by accessing that user’s Worklist Web page
through the worklist access feature, then WF_ENGINE.context_user is set to
the user name of that other user, to whom that worklist belongs.

• For RUN or TIMEOUT mode, WF_ENGINE.context_user is set to the role
assigned as the performer of the notification activity.

• WF_ENGINE.context_user_comment - Comments appended to the notification.

• For RESPONDmode, this variable is set to any comments entered in the special
WF_NOTE Respond message attribute, if that attribute is defined for the
notification.

• For FORWARD or TRANSFERmode, this variable is set to any comments entered
when the notification was reassigned.

• For QUESTIONmode, this variable is set to the request details entered when the
request for more information was submitted.

• For ANSWERmode, this variable is set to the answering information provided in
response to the request for more information.

• WF_ENGINE.context_recipient_role - The role currently designated as
the recipient of the notification. This value may be the same as the value of the
WF_ENGINE.context_user variable, or it may be a group role of which the
context user is a member.

• WF_ENGINE.context_original_recipient - The role that has ownership
of and responsibility for the notification. This value may differ from the value
of the WF_ENGINE.context_recipient_role variable if the notification has
previously been reassigned.

• WF_ENGINE.context_from_role - The role currently specified as the From role
for the notification. This variable may be null if no From role is specified.

• For RESPONDmode, the From role may be null or may be set by special logic in
the workflow process. See: #FROM_ROLE Attribute, Oracle Workflow Developer's
Guide.

• For FORWARD or TRANSFERmode, the From role is the role that reassigned the
notification.

• For QUESTION mode, the From role is the role that sent the request for more
information.

• For ANSWERmode, the From role is the role that sent the answering information.

• WF_ENGINE.context_new_role - The new role to which the action on the
notification is directed.

• For RESPOND mode, this variable is null.

• For FORWARD or TRANSFERmode, this variable is set to the new recipient role to
which the notification is being reassigned.

• For QUESTION mode, this variable is set to the role to which the request for
more information is being sent.

2-10 Oracle Workow API Reference



• For ANSWERmode, this variable is set to the role that sent the request for more
information and is receiving the answer.

• WF_ENGINE.context_more_info_role - The role to which the most recent
previous request for more information was sent. This variable may be null if no such
request has previously been submitted for this notification.

• WF_ENGINE.context_user_key - If the notification was sent as part of
a workflow process, and a user key is set for this process instance, then
WF_ENGINE.context_user_key is set to that user key. Otherwise, this variable is
null.

• WF_ENGINE.context_proxy - For RESPOND, FORWARD, TRANSFER, QUESTION, or
ANSWERmode, if the user who took that action was acting on behalf of another user
through the worklist access feature, then the value of WF_ENGINE.context_proxy
is the user name of the logged in user who took the action. Otherwise, this variable
is null.

You can reference these global engine variables in your PL/SQL function.

Note: For RUN mode and TIMEOUT mode, only the WF_ENGINE.
context_nid and WF_ENGINE.context_user variables are set.

Note: The WF_ENGINE.context_text variable from earlier versions
of Oracle Workflow is replaced by the WF_ENGINE.context_user
and WF_ENGINE.context_new_role variables. The current version
of Oracle Workflow still recognizes the WF_ENGINE.context_text
variable for backward compatibility, but moving forward, you
should only use the new WF_ENGINE.context_user and
WF_ENGINE.context_new_role variables where appropriate.

Then when the notification’s state changes, a notification callback function
executes the post-notification function in the mode that matches the notification’s
state: RESPOND, FORWARD, TRANSFER, QUESTION, or ANSWER.

When a recipient responds, the Workflow Engine initially runs the post-notification
function in VALIDATE mode which allows you to validate the response values before
accepting the response. Then the Workflow Engine runs the post-notification function in
RESPONDmode to record the response. Finally, when the Notification System completes
execution of the post-notification function in RESPOND mode, the Workflow Engine
automatically runs the post-notification function again in RUNmode. In this mode, the
post-notification function can perform additional processing such as vote tallying.

If a notification activity times out, the Workflow Engine runs the post-notification
function for the activity in TIMEOUT mode. For a Voting activity, the TIMEOUT mode
logic should identify how to tally the votes received up until the timeout.

When the post-notification function completes, the Workflow Engine erases the global
engine variables.

As a final step, if the post-notification function is run in TRANSFERmode and Expand
Roles is not checked for the notification activity, the Workflow Engine sets the assigned
user for the notification to the new role name specified.

Important: If the post-notification function returns ERROR:<errcode>
as a result or raises an exception, the Workflow Engine aborts the
operation. For example, if the post-notification function is executed

Workow Engine APIs 2-11



in FORWARD mode and it raises an exception because the role being
forwarded to is invalid, an error is displayed to the user and the Forward
operation is not executed. The notification recipient is then prompted
again to take some type of action.

See: Notification Model, page 4-1.

Synchronous, Asynchronous, and Forced Synchronous Processes
A workflow process can be either synchronous or asynchronous. A synchronous
process is a process that can be executed without interruption from start to finish. The
Workflow Engine executes a process synchronously when the process includes activities
that can be completed immediately, such as function activities that are not deferred
to the background engine. The Workflow Engine does not return control to the
calling application that initiated the workflow until it completes the process. With a
synchronous process, you can immediately check for process results that were written
to item attributes or directly to the database. However, the user must wait for the
process to complete.

An asynchronous process is a process that the Workflow Engine cannot complete
immediately because it contains activities that interrupt the flow. Examples of activities
that force an asynchronous process include deferred activities, notifications with
responses, blocking activities, and wait activities. Rather than waiting indefinitely
when it encounters one of these activities, the Workflow Engine sets the audit tables
appropriately and returns control to the calling application. The workflow process
is left in an unfinished state until it is started again. The process can be restarted
by the Notification System, such as when a user responds to a notification; by the
background engine, such as when a deferred activity is executed; or by the Business
Event System, such as when an event message is dequeued from an inbound queue and
sent to the workflow process. With an asynchronous process, the user does not have to
wait for the process to complete to continue using the application. However, the results
of the process are not available until the process is completed at a later time.

In addition to regular synchronous and asynchronous processes, the Workflow Engine
also supports a special class of synchronous processes called forced synchronous
processes. A forced synchronous process completes in a single SQL session from start to
finish and never inserts into or updates any database tables. As a result, the execution
speed of a forced synchronous process is significantly faster than a typical synchronous
process. The process results are available immediately upon completion. However, no
audit trail is recorded.

There may be cases when your application requires a forced synchronous process to
generate a specific result quickly when recording an audit trail is not a concern. For
example, in Oracle Applications, several products require Account Generator workflows
to generate a meaningful flexfield code derived from a series of concatenated segments
pulled from various tables. The Account Generator workflows are forced synchronous
processes that compute and pass back completed flexfield codes to the calling
applications instantaneously.

To create a forced synchronous process, you need to set the item key of your process
to #SYNCH or to wf_engine.eng_synch, which returns the #SYNCH constant, when
you call the necessary WF_ENGINE APIs. Since a forced synchronous process never
writes to the database, using a non-unique item key such as #SYNCH is not an issue. Your
process definition, however, must adhere to the following set of restrictions:

2-12 Oracle Workow API Reference



• No notification activities are allowed.

• Limited blocking-type activities are allowed. A process can block and restart with a
call to WF_ENGINE.CompleteActivity only if the blocking and restarting activities:

• Occur in the same database session.

• Contain no intervening calls to Oracle Workflow.

• Contain no intervening commits.

• No error processes can be assigned to the process or the process’s activities.

• Each function activity behaves as if On Revisit is set to Loop, and is run in
non-cancelling mode, regardless of its actual On Revisit setting. Loops are allowed
in the process.

• No Master/Detail coordination activities are allowed.

• No parallel flows are allowed in the process, as transitions from each activity must
have a distinct result. This also means that no <Any> transitions are allowed since
they cause parallel flows.

• None of the following Standard activities are allowed:

• And

• Block (restricted by the conditions stated in the Limited Blocking bullet point
above.)

• Defer Thread

• Wait

• Continue Flow/Wait for Flow

• Role Resolution

• Voting

• Compare Execution Time

• Notify

• No use of the background engine, that is, activities are never deferred.

• No data is ever written to the Oracle Workflow tables and as a result:

• The process cannot be viewed from the Workflow Monitor.

• No auditing is available for the process.

• Only the following WF_ENGINE API calls are allowed to be made, and in all
cases, the item key supplied to these APIs must be specified as #SYNCH or
wf_engine.eng_synch:

• WF_ENGINE.CreateProcess

• WF_ENGINE.StartProcess

• WF_ENGINE.GetItemAttribute

• WF_ENGINE.SetItemAttribute

• WF_ENGINE.GetActivityAttribute

Workow Engine APIs 2-13



• WF_ENGINE.CompleteActivity (for the limited usage of blocking-type
activities)

• WF_ENGINE API calls for any item besides the current synchronous item are not
allowed.

Important: If you encounter an error from a forced synchronous
process, you should rerun the process with a unique item key in
asynchronous mode and check the error stack using the Workflow
Monitor or the script wfstat.sql. If the synchronous process
completes successfully, the error you encountered in the forced
synchronous process is probably due to a violation of one of the above
listed restrictions. See: Wfstat.sql, Oracle Workflow Administrator's Guide.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

See: Synchronous, Asynchronous, and Forced Synchronous Workflows, Oracle Workflow
Administrator's Guide.

Business Events
Events from the Business Event System are represented within workflow processes as
event activities. An event activity can either raise, send, or receive a business event.

A Raise event activity raises an event to the Event Manager, triggering any subscriptions
to that event. The Workflow Engine calls the WF_EVENT.Raise API to raise the
event. See: Raise, page 5-21.

A Send event activity sends an event directly to a Business Event System agent without
raising the event to the Event Manager. The Workflow Engine calls the WF_EVENT.Send
API to send the event. See: Send, page 5-25.

A Receive event activity receives an event from the Event Manager into a workflow
process, which then continues the thread of execution from that activity. The Workflow
Engine can receive an event into an activity in an existing process instance that is waiting
for the event, using the correlation ID in the event message to match the event with
the process to which it belongs. The Workflow Engine can also receive an event into
a Receive event activity that is marked as a Start activity to launch a new workflow
process. The WF_ENGINE.Event API is used to receive an event into a workflow
process. See: Event, page 2-54.

See also: Managing Business Events, Oracle Workflow Developer's Guide and Event
Activities, Oracle Workflow Developer's Guide.

Workow Engine APIs
The Workflow Engine APIs can be called by an application program or a workflow
function in the runtime phase to communicate with the engine and to change the status of
each of the activities. These APIs are defined in a PL/SQL package called WF_ENGINE.

Many of these Workflow Engine APIs also have corresponding Java methods
that you can call from any Java program to integrate with Oracle Workflow. The
following list indicates whether the Workflow Engine APIs are available as PL/SQL
functions/procedures, as Java methods, or both.

2-14 Oracle Workow API Reference



Important: Java is case-sensitive and all Java method names begin with a
lower case letter to follow Java naming conventions.

• CreateProcess - PL/SQL and Java, page 2-16

• SetItemUserKey - PL/SQL and Java, page 2-18

• GetItemUserKey - PL/SQL and Java, page 2-18

• GetActivityLabel - PL/SQL, page 2-19

• SetItemOwner - PL/SQL and Java, page 2-20

• StartProcess - PL/SQL and Java, page 2-21

• LaunchProcess - PL/SQL and Java, page 2-23

• SuspendProcess - PL/SQL and Java, page 2-24

• ResumeProcess - PL/SQL and Java, page 2-25

• AbortProcess - PL/SQL and Java, page 2-26

• CreateForkProcess - PL/SQL, page 2-28

• StartForkProcess - PL/SQL, page 2-29

• Background - PL/SQL, page 2-30

• AddItemAttribute - PL/SQL and Java, page 2-32

• AddItemAttributeArray - PL/SQL, page 2-34

• SetItemAttribute - PL/SQL and Java, page 2-35

• setItemAttrFormattedDate - Java, page 2-37

• SetItemAttrDocument - PL/SQL and Java, page 2-38

• SetItemAttributeArray - PL/SQL, page 2-39

• getItemTypes - Java, page 2-41

• GetItemAttribute - PL/SQL, page 2-42

• GetItemAttrDocument - PL/SQL, page 2-43

• GetItemAttrClob - PL/SQL, page 2-44

• getItemAttributes - Java, page 2-44

• GetItemAttrInfo - PL/SQL, page 2-45

• GetActivityAttrInfo - PL/SQL, page 2-45

• GetActivityAttribute - PL/SQL, page 2-46

• GetActivityAttrClob - PL/SQL, page 2-48

• getActivityAttributes - Java, page 2-48

• BeginActivity - PL/SQL, page 2-49

• CompleteActivity - PL/SQL and Java, page 2-50

• CompleteActivityInternalName - PL/SQL, page 2-52

• AssignActivity - PL/SQL, page 2-53

Workow Engine APIs 2-15



• Event - PL/SQL, page 2-54

• HandleError - PL/SQL and Java, page 2-55

• SetItemParent - PL/SQL and Java, page 2-57

• ItemStatus - PL/SQL and Java, page 2-59

• getProcessStatus - Java, page 2-60

Related Topics
Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

CreateProcess

PL/SQL Syntax
procedure CreateProcess
(itemtype in varchar2,
itemkey in varchar2,
process in varchar2 default ’’,
user_key in varchar2 default null,
owner_role in varchar2 default null);

Java Syntax
public static boolean createProcess
(WFContext wCtx,
String itemType,
String itemKey,
String process)

Description
Creates a new runtime process for an application item.

For example, a Requisition item type may have a Requisition Approval Process as a top
level process. When a particular requisition is created, an application calls CreateProcess
to set up the information needed to start the defined process.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a database trigger to initiate a workflow process, you
should avoid doing so in certain circumstances. For example, if a
database entity has headers, lines and details, and you initiate a
workflow process from an AFTER INSERT trigger at the header-level of
that entity, your workflow process may fail because some subsequent
activity in the process may require information from the entity’s lines or
details level that is not yet populated.

Important: The Workflow Engine always issues a savepoint before
executing each activity in a process so that it can rollback to the previous
activity in case an error occurs. For environments such as database
triggers or distributed transactions that do not allow savepoints, the

2-16 Oracle Workow API Reference



Workflow Engine automatically traps "Savepoint not allowed" errors
and defers the execution of the activity. If you initiate a workflow
process from a database trigger, the Workflow Engine immediately
defers the initial start activities to a background engine, so that they are
no longer executing from a database trigger.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type. Item types are defined in the Workflow Builder.

itemkey
A string derived usually from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the new
process and must be passed to all subsequent API calls for that process.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and Forced
Synchronous Processes, page 2-12.

process
An optional argument that allows the selection of a particular process for that
item. Provide the process internal name. If process is null, the item type’s selector
function is used to determine the top level process to run. If you do not specify a selector
function and this argument is null, an error will be raised.

user_key
A user-friendly key to assign to the item identified by the specified item type and item
key. This argument is optional.

owner_role
A valid role to set as the owner of the item. This argument is optional.

Example
Example
The following code excerpt shows an example of how to call createProcess() in a Java
program. The example code is from the WFTest.java program.

// create an item
if (WFEngineAPI.createProcess(ctx, iType, iKey, pr))
System.out.println("Created Item");
else

{
Systm.out.println("createProcess failed");
WFEngineAPI.showError(ctx);

}

Workow Engine APIs 2-17



SetItemUserKey

PL/SQL Syntax
procedure SetItemUserKey
(itemtype in varchar2,
itemkey in varchar2,
userkey in varchar2);

Java Syntax
public static boolean setItemUserKey
(WFContext wCtx,
String itemType,
String itemKey,
String userKey)

Description
Lets you set a user-friendly identifier for an item in a process, which is initially identified
by an item type and item key. The user key is intended to be a user-friendly identifier to
locate items in the Workflow Monitor and other user interface components of Oracle
Workflow.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype or itemType
A valid item type.

itemkey or itemKey
A string generated usually from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

userkey or userKey
The user key to assign to the item identified by the specified item type and item key.

GetItemUserKey

PL/SQL Syntax
function GetItemUserKey
(itemtype in varchar2,
itemkey in varchar2)
return varchar2;

2-18 Oracle Workow API Reference



Java Syntax
public static String getItemUserKey
(WFContext wCtx,
String itemType,
String itemKey)

Description
Returns the user-friendly key assigned to an item in a process, identified by an item type
and item key. The user key is a user-friendly identifier to locate items in the Workflow
Monitor and other user interface components of Oracle Workflow.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype or itemType
A valid item type.

itemkey or itemKey
A string generated usually from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

GetActivityLabel

PL/SQL Syntax
function GetActivityLabel
(actid in number)
return varchar2;

Description
Returns the instance label of an activity, given the internal activity instance ID. The label
returned has the following format, which is suitable for passing to other Workflow
Engine APIs, such as CompleteActivity and HandleError, that accept activity labels
as arguments:

<process_name>:<instance_label>

Arguments (input)
actid
An activity instance ID.

Workow Engine APIs 2-19



SetItemOwner

PL/SQL Syntax
procedure SetItemOwner
(itemtype in varchar2,
itemkey in varchar2,
owner in varchar2);

Java Syntax
public static boolean setItemOwner
(WFContext wCtx,
String itemType,
String itemKey,
String owner)

Description
A procedure to set the owner of existing items. The owner must be a valid
role. Typically, the role that initiates a transaction is assigned as the process owner, so
that any participant in that role can find and view the status of that process instance in
the Workflow Monitor.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type. Item types are defined in the Workflow Builder.

itemkey
A string derived from the application object’s primary key. The string uniquely identifies
the item within an item type. The item type and key together identify the new process
and must be passed to all subsequent API calls for that process.

owner
A valid role.

Example
Example
The following code excerpt shows an example of how to call setItemOwner() in a Java
program. The example code is from the WFTest.java program.

// set item owner
if (WFEngineAPI.setItemOwner(ctx, iType, iKey, owner))
System.out.println("Set Item Owner: "+owner);

else
{
System.out.println("Cannot set owner.");
WFEngineAPI.showError(ctx);

}

2-20 Oracle Workow API Reference



StartProcess

PL/SQL Syntax
procedure StartProcess
(itemtype in varchar2,
itemkey in varchar2);

Java Syntax
public static boolean startProcess
(WFContext wCtx,
String itemType,
String itemKey)

Description
Begins execution of the specified process. The engine locates the activity marked as
START and then executes it. CreateProcess() must first be called to define the item type
and item key before calling StartProcess().

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a trigger to initiate a workflow process, you should
avoid doing so in certain circumstances. For example, if a database
entity has headers, lines and details, and you initiate a workflow process
from an AFTER INSERT trigger at the header-level of that entity, your
workflow process may fail because some subsequent activity in the
process may require information from the entity’s lines or details level
that is not yet populated.

Caution: The Workflow Engine always issues a savepoint before
executing each activity so that it can rollback to the previous activity in
case an error occurs. Because of this feature, you should avoid initiating
a workflow process from a database trigger because savepoints and
rollbacks are not allowed in a database trigger.

If you must initiate a workflow process from a database trigger, you
must immediately defer the initial start activities to a background
engine, so that they are no longer executing from a database trigger. To
accomplish this:

• Set the cost of the process start activities to a value greater than the
Workflow Engine threshold (default value is 0.5)

or

• Set the Workflow Engine threshold to be less than 0 before initiating
the process:

Workow Engine APIs 2-21



begin
save_threshold := WF_ENGINE.threshold;
WF_ENGINE.threshold := -1;
WF_ENGINE.CreateProcess(...);
WF_ENGINE.StartProcess(...);

--Always reset threshold or all activities in this
--session will be deferred.
WF_ENGINE.threshold := save_threshold;

end

(This method has the same effect as the previous method, but is
more secure as the initial start activities are always deferred even if
the activities’ costs change.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

itemkey
A string derived from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

Note: You can pass #SYNCH as the item key to create a forced
synchronous process. See: Synchronous, Asynchronous, and Forced
Synchronous Processes, page 2-12.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

Example
Example
The following code excerpt shows an example of how to call startProcess() in a Java
program. The example code is from the WFTest.java program.

// start a process
if (WFEngineAPI.startProcess(ctx, iType, iKey))
System.out.println("Process Started successfully");
else

{
System.out.println("launch failed");
WFEngineAPI.showError(ctx);

}

2-22 Oracle Workow API Reference



LaunchProcess

PL/SQL Syntax
procedure LaunchProcess
(itemtype in varchar2,
itemkey in varchar2,
process in varchar2 default ’’,
userkey in varchar2 default ’’,
owner in varchar2 default ’’);

Java Syntax
public static boolean launchProcess
(WFContext wCtx,
String itemType,
String itemKey,
String process,
String userKey,
String owner)

Description
Launches a specified process by creating the new runtime process and beginning its
execution. This is a wrapper that combines CreateProcess and StartProcess.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a database trigger to initiate a workflow process, you
should avoid doing so in certain circumstances. For example, if a
database entity has headers, lines and details, and you initiate a
workflow process from an AFTER INSERT trigger at the header-level of
that entity, your workflow process may fail because some subsequent
activity in the process may require information from the entity’s lines or
details level that is not yet populated.

Important: The Workflow Engine always issues a savepoint before
executing each activity in a process so that it can rollback to the previous
activity in case an error occurs. For environments such as database
triggers or distributed transactions that do not allow savepoints, the
Workflow Engine automatically traps "Savepoint not allowed" errors
and defers the execution of the activity. If you initiate a workflow
process from a database trigger, the Workflow Engine immediately
defers the initial start activities to a background engine, so that they are
no longer executing from a database trigger.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

Workow Engine APIs 2-23



itemkey
A string derived from the application object’s primary key. The string uniquely identifies
the item within an item type. The item type and key together identify the new process
and must be passed to all subsequent API calls for that process.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

You can pass #SYNCH as the item key to create a forced synchronous
process. See: Synchronous, Asynchronous, and Forced Synchronous
Processes, page 2-12.

process
An optional argument that allows the selection of a particular process for that
item. Provide the process internal name. If process is null, the item type’s selector
function is used to determine the top level process to run. This argument defaults to null.

userkey
The user key to assign to the item identified by the specified item type and item key. If
userkey is null, then no user key is assigned to the item instance.

owner
A valid role designated as the owner of the item. If owner is null, then no owner is
assigned to the process and only the workflow administrator role can monitor the
process.

SuspendProcess

PL/SQL Syntax
procedure SuspendProcess
(itemtype in varchar2,
itemkey in varchar2,
process in varchar2 default ’’);

Java Syntax
public static boolean suspendProcess
(WFContext wCtx,
String itemType,
String itemKey,
String process)

Description
Suspends process execution so that no new transitions occur. Outstanding notifications
can complete by calling CompleteActivity(), but the workflow does not transition to the
next activity. Restart suspended processes by calling ResumeProcess().

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

2-24 Oracle Workow API Reference



itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

process
An optional argument that allows the selection of a particular subprocess for that
item. Provide the process activity’s label name. If the process activity label name does
not uniquely identify the subprocess you can precede the label name with the internal
name of its parent process. For example:

<parent_process_internal_name>:<label_name>
If this argument is null, the top level process for the item is suspended. This argument
defaults to null.

Example
Example
The following code excerpt shows an example of how to call suspendProcess() in a Java
program. The example code is from the WFTest.java program.

// suspend, status should become SUSPEND
System.out.println("Suspend Process " + iType +"/"+ iKey +

" ...");
if (WFEngineAPI.suspendProcess(ctx, iType, iKey, null))
System.out.println("Seems to suspend successfully");

else
{
System.out.println("suspend failed");
WFEngineAPI.showError(ctx);

}

ResumeProcess

PL/SQL Syntax
procedure ResumeProcess
(itemtype in varchar2,
itemkey in varchar2,
process in varchar2 default ’’);

Java Syntax
public static boolean resumeProcess
(WFContext wCtx,
String itemType,
String itemKey,
String process)

Workow Engine APIs 2-25



Description
Returns a suspended process to normal execution status. Any activities that were
transitioned to while the process was suspended are now executed.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

process
An optional argument that allows the selection of a particular subprocess for that item
type. Provide the process activity’s label name. If the process activity label name does
not uniquely identify the subprocess you can precede the label name with the internal
name of its parent process. For example:

<parent_process_internal_name>:<label_name>

If this argument is null, the top level process for the item is resumed. This argument
defaults to null.

Example
Example
The following code excerpt shows an example of how to call resumeProcess() in a Java
program. The example code is from the WFTest.java program.

// resume process and status should be ACTIVE
System.out.println("Resume Process " + iType +"/"+ iKey +

" ...");
if (WFEngineAPI.resumeProcess(ctx, iType, iKey, null))
System.out.println("Seems to resume successfully");

else
{
System.out.println("resume failed");
WFEngineAPI.showError(ctx);

}

AbortProcess

PL/SQL Syntax
procedure AbortProcess
(itemtype in varchar2,
itemkey in varchar2,
process in varchar2 default ’’,
result in varchar2 default eng_force);

2-26 Oracle Workow API Reference



Java Syntax
public static boolean abortProcess
(WFContext wCtx,
String itemType,
String itemKey,
String process,
String result)

Description
Aborts process execution and cancels outstanding notifications. The process status is
considered COMPLETE, with a result specified by the result argument. Also, any
outstanding notifications or subprocesses are set to a status of COMPLETEwith a result of
force, regardless of the result argument.

This API also raises the oracle.apps.wf.engine.abort event. Although Oracle
Workflow does not include any predefined subscriptions to this event, you can optionally
define your own subscriptions to this event if you want to perform custom processing
when it occurs. See: Workflow Engine Events, Oracle Workflow Developer's Guide and
To Define an Event Subscription (for standalone Oracle Workflow), Oracle Workflow
Developer's Guide or To Create or Update an Event Subscription (for Oracle Applications),
Oracle Workflow Developer's Guide.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

process
An optional argument that allows the selection of a particular subprocess for that item
type. Provide the process activity’s label name. If the process activity label name does
not uniquely identify the subprocess you can precede the label name with the internal
name of its parent process. For example:

<parent_process_internal_name>:<label_name>
If this argument is null, the top level process for the item is aborted. This argument
defaults to null.

result
A status assigned to the aborted process. The result must be one of the values defined in
the process Result Type, or one of the following standard engine values:

• eng_exception

• eng_timeout

• eng_force

• eng_mail

Workow Engine APIs 2-27



• eng_null

This argument defaults to "eng_force".

Example
Example
The following code excerpt shows an example of how to call abortProcess() in a Java
program. The example code is from the WFTest.java program.

// abort process, should see status COMPLETE with result
// code force
System.out.println("Abort Process ..." + iType + "/" +

iKey);
if (!WFEngineAPI.abortProcess(ctx, iType, iKey, pr, null))
{
System.out.println("Seemed to have problem aborting...");
WFEngineAPI.showError(ctx);

}

CreateForkProcess

PL/SQL Syntax
procedure CreateForkProcess
(copy_itemtype in varchar2,
copy_itemkey in varchar2,
new_itemkey in varchar2,
same_version in boolean default TRUE);

Description
Forks a runtime process by creating a new process that is a copy of the original. After
calling CreateForkProcess(), you can call APIs such as SetItemOwner(), SetItemUserKey(), or
the SetItemAttribute APIs to reset any item properties or modify any item attributes
that you want for the new process. Then you must call StartForkProcess() to start the
new process.

Use CreateForkProcess() when you need to change item specific attributes during the
course of a process. For example, if an order cannot be met due to insufficient inventory
stock, you can use CreateForkProcess() to fork a new transaction for the backorder
quantity. Note that any approval notification will be copied. The result is as if two
items were created for this transaction.

Caution: Do not call CreateForkProcess() and StartForkProcess() from
within a parallel branch in a process. These APIs do not copy any
branches parallel to their own branch that are not active.

Note: When you fork an item, Oracle Workflow automatically creates
an item attribute called #FORKED_FROM for the new item and sets the
attribute to the item key of the original item. This attribute provides
an audit trail for the forked item.

2-28 Oracle Workow API Reference



Arguments (input)
copy_itemtype
A valid item type for the original process to be copied. The new process will have the
same item type.

copy_itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The copy item type and key together identify
the original process to be copied.

new_itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and new item key together
identify the new process.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

same_version
Specify TRUE or FALSE to indicate whether the new runtime process uses the same
version as the original or the latest version. If you specify TRUE, CreateForkProcess()
copies the item attributes and status of the original process to the new process. If you
specify FALSE, CreateForkProcess() copies the item attributes of the original process to the
new process but does not copy the status. Defaults to TRUE.

StartForkProcess

PL/SQL Syntax
procedure StartForkProcess
(itemtype in varchar2,
itemkey in varchar2);

Description
Begins execution of the new forked process that you specify. Before you call
StartForkProcess(), you must first call CreateForkProcess() to create the new process. You
can modify the item attributes of the new process before calling StartForkProcess().

If the new process uses the same version as the original, StartForkProcess() copies the
status and history of each activity in the forked process, activity by activity. If the new
process uses the latest version, then StartForkProcess() executes StartProcess().

If you call StartForkProcess() from within a process, any function activity in the process
that had a status of ’Active’ is updated to have a status of ’Notified’. You must call
CompleteActivity() afterwards to continue the process.

StartForkProcess() automatically refreshes any notification attributes that are based on
item attributes. Any open notifications in the original process are copied and sent again
in the new process. Closed notifications are copied but not resent; their status remains
remains ’Complete’.

Any Wait activities in the new process are activated at the same time as the original
activities. For example, if a 24 hour Wait activity in the original process is due to be
eligible in two hours, the new Wait activity is also eligible in two hours.

Workow Engine APIs 2-29



Caution: Do not call CreateForkProcess() and StartForkProcess() from
within a parallel branch in a process. These APIs do not copy any
branches parallel to their own branch that are not active.

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

Background

PL/SQL Syntax
procedure Background
(itemtype in varchar2,
minthreshold in number default null,
maxthreshold in number default null,
process_deferred in boolean default TRUE,
process_timeout in boolean default FALSE,
process_stuck in boolean default FALSE);

Description
Runs a background engine for processing deferred activities, timed out activities, and
stuck processes using the parameters specified. The background engine executes all
activities that satisfy the given arguments at the time that the background engine is
invoked. This procedure does not remain running long term, so you must restart this
procedure periodically. Any activities that are newly deferred or timed out or processes
that become stuck after the current background engine starts are processed by the
next background engine that is invoked. You can run a script called wfbkgchk.sql
to get a list of the activities waiting to be processed by the next background engine
run. See: Wfbkgchk.sql, Oracle Workflow Administrator's Guide.

You must not call Background() from within application code. If you want to call this
procedure directly, you can run it from SQL*Plus. Otherwise, if you are using the
standalone version of Oracle Workflow, you can use one of the sample background
engine looping scripts described below, create your own script to make the background
engine procedure loop indefinitely, or use the Oracle Workflow Manager component
of Oracle Enterprise Manager to schedule a background engine. If you are using
the version of Oracle Workflow embedded in Oracle Applications, you can use the
concurrent program version of this procedure and take advantage of the concurrent
manager to schedule the background engine to run periodically. You can also use
the Workflow Manager component of Oracle Applications Manager to submit the
background engine concurrent program. See: To Schedule Background Engines, Oracle
Workflow Administrator's Guide.

2-30 Oracle Workow API Reference



Arguments (input)
itemtype
A valid item type. If the item type is null the Workflow engine will run for all item types.

minthreshold
Optional minimum cost threshold for an activity that this background engine
processes, in hundredths of a second. There is no minimum cost threshold if this
parameter is null.

maxthreshold
Optional maximum cost threshold for an activity that this background engine processes
in hundredths of a second. There is no maximum cost threshold if this parameter is null.

process_deferred
Specify TRUE or FALSE to indicate whether to run deferred processes. Defaults to TRUE.

process_timeout
Specify TRUE or FALSE to indicate whether to run timed out processes. Defaults to
FALSE.

process_stuck
Specify TRUE or FALSE to indicate whether to run stuck processes. Defaults to FALSE.

Example Background Engine Looping Scripts
Example
For the standalone version of Oracle Workflow you can use one of two example scripts
to run the background engine regularly.

The first example is a SQL script stored in a file called wfbkg.sql in the
ORACLE_HOME/wf/admin/sql directory. To run this script, go to the directory where
the file is located and type the following command at your operating system prompt:

sqlplus <username/password> @wfbkg <min> <sec>

Replace <username/password> with the Oracle Database account username and
password where you want to run the background engine. Replace <min> with the
number of minutes you want the background engine to run and replace <sec> with the
number of seconds you want the background engine to sleep between calls.

The second example is a shell script stored in a file called wfbkg.csh in the
ORACLE_HOME/bin directory. To run this script, go to the directory where the file is
located and type the following command at your operating system prompt:

wfbkg.csh <username/password>

Replace <username/password> with the Oracle Database account username and
password where you want to run the background engine.

Workow Engine APIs 2-31



AddItemAttribute

PL/SQL Syntax
procedure AddItemAttr
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
text_value in varchar2 default null,
number_value in number default null,
date_value in date default null);

Java Syntax
public static boolean addItemAttr
(WFContext wCtx,
String itemType,
String itemKey,
String aName)

public static boolean addItemAttrText
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String aValue)

public static boolean addItemAttrNumber
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
BigDecimal numberVal)

public static boolean addItemAttrDate
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String aValue)

Description
Adds a new item type attribute variable to the process. Although most item type
attributes are defined at design time, you can create new attributes at runtime for a
specific process. You can optionally set a default text, number, or date value for a new
item type attribute when the attribute is created.

If you are using Java, choose the correct method for your attribute type. To add an empty
item type attribute, use addItemAttr(). When adding an item type attribute with a default
value, use addItemAttrText() for all attribute types except number and date.

Note: If you need to add large numbers of item type attributes at
once, use theAddItemAttributeArrayAPIs rather than theAddItemAttribute
APIs for improved performance. See: AddItemAttributeArray, page 2-34

2-32 Oracle Workow API Reference



Arguments (input)
wCtx
Workflow context information. Required for the Java methods only. See: Oracle
Workflow Context, page 2-4.

itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

aname
The internal name of the item type attribute.

text_value
The default text value for the item type attribute. Required for the PL/SQL procedure
only. Defaults to null.

number_value or
numberVal
The default number value for the item type attribute. Required for the PL/SQL procedure
and addItemAttrNumber() Java method only. Defaults to null.

date_value
The default date value for the item type attribute. Required for the PL/SQL procedure
only. Defaults to null.

aValue
The default value for the item type attribute. Required for the addItemAttrText() and
addItemAttrDate() Java methods only.

Example
Example
The following example shows how API calls can be simplified by using AddItemAttr() to
set the default value of a new item type attribute at the time of creation.

Using AddItemAttr() to create the new attribute and SetItemAttrText() to set the value of
the attribute, the following calls are required:

AddItemAttr(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’);
SetItemAttrText(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’,

’new text values’);

Using AddItemAttr() both to create the new attribute and to set its value, only the
following call is required:

AddItemAttr(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’,
’new text values’);

Workow Engine APIs 2-33



AddItemAttributeArray

PL/SQL Syntax
procedure AddItemAttrTextArray
(itemtype in varchar2,
itemkey in varchar2,
aname in Wf_Engine.NameTabTyp,
avalue in Wf_Engine.TextTabTyp);

procedure AddItemAttrNumberArray
(itemtype in varchar2,
itemkey in varchar2,
aname in Wf_Engine.NameTabTyp,
avalue in Wf_Engine.NumTabTyp);

procedure AddItemAttrDateArray
(itemtype in varchar2,
itemkey in varchar2,
aname in Wf_Engine.NameTabTyp,
avalue in Wf_Engine.DateTabTyp);

Description
Adds an array of new item type attributes to the process. Although most item type
attributes are defined at design time, you can create new attributes at runtime for a
specific process. Use the AddItemAttributeArray APIs rather than the AddItemAttribute
APIs for improved performance when you need to add large numbers of item type
attributes at once.

Use the correct procedure for your attribute type. All attribute types except number and
date use AddItemAttrTextArray.

Note: The AddItemAttributeArray APIs use PL/SQL table composite
datatypes defined in the WF_ENGINE package. The following table
shows the column datatype definition for each PL/SQL table type.

PL/SQL Table Types in WF_ENGINE

PL/SQL Table Type Column Datatype Denition

NameTabTyp Wf_Item_Attribute_Values.
NAME%TYPE

TextTabTyp Wf_Item_Attribute_Values.
TEXT_VALUE%TYPE

NumTabTyp Wf_Item_Attribute_Values.
NUMBER_VALUE%TYPE

DateTabTyp Wf_Item_Attribute_Values.
DATE_VALUE%TYPE

Arguments (input)
itemtype
A valid item type.

2-34 Oracle Workow API Reference



itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

aname
An array of the internal names of the new item type attributes.

avalue
An array of the values for the new item type attributes.

SetItemAttribute

PL/SQL Syntax
procedure SetItemAttrText
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
avalue in varchar2);

procedure SetItemAttrNumber
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
avalue in number);

procedure SetItemAttrDate
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
avalue in date);

procedure SetItemAttrEvent
(itemtype in varchar2,
itemkey in varchar2,
name in varchar2,
event in wf_event_t);

Workow Engine APIs 2-35



Java Syntax
public static boolean setItemAttrText
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String aValue)

public static boolean setItemAttrNumber
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
BigDecimal aValue)

public static boolean setItemAttrDate
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String aValue)

public static boolean setItemAttrDate
(WFContext wCtx,
String itemType,
String itemKey,
String attributeName,
java.util.Date attributeValue)

Description
Sets the value of an item type attribute in a process. Use the correct procedure for your
attribute type. All attribute types except number, date, and event use SetItemAttrText.

In Java, there are two implementations of setItemAttrDate(). One lets you provide the
date value as a Java String object, while the other lets you provide the date value as
a Java Date object.

Note: If you need to set the values of large numbers of item type
attributes at once, use the SetItemAttributeArray APIs rather than
the SetItemAttribute APIs for improved performance. See: Set
ItemAttributeArray, page 2-39.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

2-36 Oracle Workow API Reference



aname, name, or
attributeName
The internal name of the item type attribute.

avalue, event, or
attributeValue
The value for the item type attribute.

Examples
Example 1
The following code excerpt shows an example of how to call setItemAttrText() in a Java
program. The example code is from the WFTest.java program.

if (WFEngineAPI.setItemAttrText(ctx, iType, iKey,
"REQUESTOR_USERNAME", owner))

System.out.println("Requestor: "+owner);
else

{
WFEngineAPI.showError(ctx);

}

Example 2
If an event message is stored within an item attribute of type event, you can access the
event data CLOB within that event message by creating an item attribute of type URL for
the event data. The following sample PL/SQL code shows how to set the value of the
URL attribute in the standalone version of Oracle Workflow to reference the event data.

l_eventdataurl := Wfa_html.base_url||’Wf_Event_Html.
EventDataContents?P_EventAttribute=EVENT_MESSAGE’||’&’||
’P_ItemType=’||itemtype||’&’||’P_ItemKey=’||itemkey||’&’||
’p_mime_type=text/xml’;

WF_ENGINE.SetItemAttrText(’<item_type>’, ’<item_key>’,
’EVENTDATAURL’, l_eventdataurl);

If you have applied a stylesheet to the event data XML document to create HTML, set the
p_mime_type parameter in the URL to text/html instead.

If you omit the p_mime_type parameter from the URL, the MIME type defaults to
text/xml.

Related Topics
Event Message Structure, page 5-6

setItemAttrFormattedDate

Java Syntax
public static boolean setItemAttrFormattedDate
(WFContext wCtx,
String itemType,
String itemKey,
String attributeName,
String attributeValue
String dateFormat)

Workow Engine APIs 2-37



Description
Sets the value of an item type attribute of type date in a process with a date value
provided as a formatted string.

Arguments (input)
wCtx
Workflow context information. See: Oracle Workflow Context, page 2-4.

itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

attributeName
The internal name of the item type attribute.

attributeValue
The date value for the item type attribute.

dateFormat
The format of the date value. The format must be a date format mask that is supported
by the Oracle Database. If no format is provided, the default value is the canonical date
format for the database. See: Date Formats, Oracle Database Globalization Support Guide.

SetItemAttrDocument
Important: Document management functionality is reserved for future
use. This description of the SetItemAttrDocument API is provided for
reference only.

PL/SQL Syntax
procedure SetItemAttrDocument
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
documentid in varchar2);

Java Syntax
public static boolean setItemAttrDocument
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String documentId)

Description
Sets the value of an item attribute of type document, to a document identifier.

2-38 Oracle Workow API Reference



Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

aname
The internal name of the item type attribute.

documentid
The value for the item type attribute as a fully concatenated string of the following values:

DM:<node_id>:<doc_id>:<version>
• <node_id> is the node ID assigned to the document management system node as

defined in the Document Management Nodes Web page.

• <doc_id> is the document ID of the document, as assigned by the document
management system where the document resides.

• <version> is the version of the document. If a version is not specified, the latest
version is assumed.

SetItemAttributeArray

PL/SQL Syntax
procedure SetItemAttrTextArray
(itemtype in varchar2,
itemkey in varchar2,
aname in Wf_Engine.NameTabTyp,
avalue in Wf_Engine.TextTabTyp);

procedure SetItemAttrNumberArray
(itemtype in varchar2,
itemkey in varchar2,
aname in Wf_Engine.NameTabTyp,
avalue in Wf_Engine.NumTabTyp);

procedure SetItemAttrDateArray
(itemtype in varchar2,
itemkey in varchar2,
aname in Wf_Engine.NameTabTyp,
avalue in Wf_Engine.DateTabTyp);

Description
Sets the values of an array of item type attributes in a process. Use the
SetItemAttributeArray APIs rather than the SetItemAttribute APIs for improved
performance when you need to set the values of large numbers of item type attributes at
once.

Workow Engine APIs 2-39



Use the correct procedure for your attribute type. All attribute types except
number, date, and event use SetItemAttrTextArray.

Note: The SetItemAttributeArray APIs use PL/SQL table composite
datatypes defined in the WF_ENGINE package. The following table
shows the column datatype definition for each PL/SQL table type.

PL/SQL Table Types in WF_ENGINE

PL/SQL Table Type Column Datatype Denition

NameTabTyp Wf_Item_Attribute_Values.
NAME%TYPE

TextTabTyp Wf_Item_Attribute_Values.
TEXT_VALUE%TYPE

NumTabTyp Wf_Item_Attribute_Values.
NUMBER_VALUE%TYPE

DateTabTyp Wf_Item_Attribute_Values.
DATE_VALUE%TYPE

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

aname
An array of the internal names of the item type attributes.

avalue
An array of the values for the item type attributes.

Example
Example
The following example shows how using the SetItemAttributeArray APIs rather than the
SetItemAttribute APIs can help reduce the number of calls to the database.

Using SetItemAttrText():

SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR1’, ’value1’);
SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR2’, ’value2’);
SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR3’, ’value3’);

// Multiple calls to update the database.

Using SetItemAttrTextArray():

2-40 Oracle Workow API Reference



declare
varname Wf_Engine.NameTabTyp;
varval Wf_Engine.TextTabTyp;

begin
varname(1) := ’VAR1’;
varval(1) := ’value1’;
varname(2) := ’VAR2’;
varval(2) := ’value2’;
varname(3) := ’VAR3’;
varval(3) := ’value3’;

Wf_Engine.SetItemAttrTextArray(’ITYPE’, ’IKEY’, varname, varval);
exception
when OTHERS then
// handle your errors here
raise;

end;

// Only one call to update the database.

getItemTypes

Java Syntax
public static WFTwoDArray getItemTypes
(WFContext wCtx)

Description
Returns a list of all the item types defined in the Oracle Workflow database as a
two-dimensional data object.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

Workow Engine APIs 2-41



GetItemAttribute

PL/SQL Syntax
function GetItemAttrText
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
ignore_notfound in boolean default FALSE)
return varchar2;

function GetItemAttrNumber
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
ignore_notfound in boolean default FALSE)
return number;

function GetItemAttrDate
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
ignore_notfound in boolean default FALSE)
return date;

function GetItemAttrEvent
(itemtype in varchar2,
itemkey in varchar2,
name in varchar2)
return wf_event_t;

Description
Returns the value of an item type attribute in a process. Use the correct function for your
attribute type. All attribute types except number, date, and event use GetItemAttrText.

For GetItemAttrText(), GetItemAttrNumber(), and GetItemAttrDate(), you can specify
TRUE for the ignore_notfound parameter to ignore the exception encountered if the
specified item type attribute does not exist. In this case the function returns a null value
but does not raise an exception. For example, you can use this parameter if a new item
type attribute is added to an item type, and your code needs to handle both the earlier
version and the upgraded version of the item type.

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

aname
The internal name of an item type attribute, for GetItemAttrText(), GetItemAttrNumber(),
and GetItemAttrDate().

2-42 Oracle Workow API Reference



name
The internal name of an item type attribute, for GetItemAttrEvent().

ignore_notfound
Specify TRUE or FALSE to indicate whether to ignore the exception if the specified
item type attribute does not exist, for GetItemAttrText(), GetItemAttrNumber(), and
GetItemAttrDate(). If you specify TRUE and the item type attribute you specify does not
exist, the function returns a null value but does not raise an exception. Defaults to FALSE.

Related Topics
Event Message Structure, page 5-6

GetItemAttrDocument
Important: Document management functionality is reserved for future
use. This description of the GetItemAttrDocument API is provided for
reference only.

PL/SQL Syntax
function GetItemAttrDocument
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
ignore_notfound in boolean default FALSE)
return varchar2;

Description
Returns the document identifier for a DM document-type item attribute. The document
identifier is a concatenated string of the following values:

DM:<nodeid>:<documentid>:<version>
<nodeid> is the node ID assigned to the document management system node as defined
in the Document Management Nodes Web page.

<documentid> is the document ID of the document, as assigned by the document
management system where the document resides.

<version> is the version of the document. If a version is not specified, the latest
version is assumed.

You can specify TRUE for the ignore_notfound parameter to ignore the exception
encountered if the specified item type attribute does not exist. In this case the function
returns a null value but does not raise an exception. For example, you can use this
parameter if a new item type attribute is added to an item type, and your code needs to
handle both the earlier version and the upgraded version of the item type.

Arguments (input)
itemtype
A valid item type.

Workow Engine APIs 2-43



itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

aname
The internal name of the item type attribute.

ignore_notfound
Specify TRUE or FALSE to indicate whether to ignore the exception if the specified item
type attribute does not exist. If you specify TRUE and the item type attribute you specify
does not exist, the function returns a null value but does not raise an exception. Defaults
to FALSE.

GetItemAttrClob

PL/SQL Syntax
function GetItemAttrClob
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2)
return clob;

Description
Returns the value of an item type attribute in a process as a character large object (CLOB).

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

aname
The internal name of an item type attribute.

getItemAttributes

Java Syntax
public static WFTwoDArray getItemAttributes
(WFContext wCtx,
String itemType,
String itemKey)

Description
Returns a list of all the item attributes, their types, and their values for the specified item
type instance as a two-dimensional data object.

2-44 Oracle Workow API Reference



Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

GetItemAttrInfo

PL/SQL Syntax
procedure GetItemAttrInfo
(itemtype in varchar2,
aname in varchar2,
atype out varchar2,
subtype out varchar2,
format out varchar2);

Description
Returns information about an item type attribute, such as its type and format, if any is
specified. Currently, subtype information is not available for item type attributes.

Arguments (input)
itemtype
A valid item type.

aname
The internal name of an item type attribute.

GetActivityAttrInfo

PL/SQL Syntax
procedure GetActivityAttrInfo
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
aname in varchar2,
atype out varchar2,
subtype out varchar2,
format out varchar2);

Workow Engine APIs 2-45



Description
Returns information about an activity attribute, such as its type and format, if any is
specified. This procedure currently does not return any subtype information for activity
attributes.

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

actid
The activity ID for a particular usage of an activity in a process definition. Also referred
to as the activity ID of the node.

aname
The internal name of an activity attribute.

GetActivityAttribute

PL/SQL Syntax
function GetActivityAttrText
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
aname in varchar2,
ignore_notfound in boolean default FALSE)
return varchar2;

function GetActivityAttrNumber
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
aname in varchar2,
ignore_notfound in boolean default FALSE)
return number;

function GetActivityAttrDate
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
aname in varchar2,
ignore_notfound in boolean default FALSE)
return date;

function GetActivityAttrEvent
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
name in varchar2)
return wf_event_t;

2-46 Oracle Workow API Reference



Description
Returns the value of an activity attribute in a process. Use the correct function for your
attribute type. If the attribute is a Number or Date type, then the appropriate function
translates the number/date value to a text-string representation using the attribute
format.

Note: UseGetActivityAttrText() for form, URL, lookup, role, attribute, and
document attribute types.

For GetActivityAttrText(), GetActivityAttrNumber(), and GetActivityAttrDate(), you can
specify TRUE for the ignore_notfound parameter to ignore the exception encountered
if the specified activity attribute does not exist. In this case the function returns a null
value but does not raise an exception. For example, you can use this parameter if a new
activity attribute is added to an activity, and your code needs to handle both the earlier
version and the upgraded version of the activity.

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

actid
The activity ID for a particular usage of an activity in a process definition. Also referred
to as the activity ID of the node.

aname
The internal name of an activity attribute, for GetActivityAttrText(),
GetActivityAttrNumber(), and GetActivityAttrDate().

name
The internal name of an activity attribute, for GetActivityAttrEvent().

ignore_notfound
Specify TRUE or FALSE to indicate whether to ignore the exception if the specified
activity attribute does not exist, for GetActivityAttrText(), GetActivityAttrNumber(), and
GetActivityAttrDate(). If you specify TRUE and the activity attribute you specify does not
exist, the function returns a null value but does not raise an exception. Defaults to FALSE.

Related Topics
Event Message Structure, page 5-6

Workow Engine APIs 2-47



GetActivityAttrClob

PL/SQL Syntax
function GetActivityAttrClob
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
aname in varchar2)
return clob;

Description
Returns the value of an activity attribute in a process as a character large object (CLOB).

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

actid
The activity ID for a particular usage of an activity in a process definition. Also referred
to as the activity ID of the node.

aname
The internal name of an activity attribute.

getActivityAttributes

Java Syntax
public static WFTwoDArray getActivityAttributes
(WFContext wCtx,
String itemType,
String itemKey,
BigDecimal actID)

Description
Returns a list of all the activity attributes, their types, and their values for the specified
activity as a two-dimensional data object.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

2-48 Oracle Workow API Reference



itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

actID
The activity ID for a particular usage of an activity in a process definition. Also referred
to as the activity ID of the node.

BeginActivity

PL/SQL Syntax
procedure BeginActivity
(itemtype in varchar2,
itemkey in varchar2,
activity in varchar2);

Description
Determines if the specified activity can currently be performed on the process item and
raises an exception if it cannot.

The CompleteActivity() procedure automatically performs this function as part of its
validation. However, you can use BeginActivity() to verify that the activity you intend to
perform is currently allowed before actually calling it. See: CompleteActivity, page 2-50.

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process.

activity
The activity node to perform on the process. Provide the activity node’s label name. If
the activity node label name does not uniquely identify the activity node you can precede
the label name with the internal name of its parent process. For example:

<parent_process_internal_name>:<label_name>

Workow Engine APIs 2-49



Example
Example
/* Verify that a credit check can be performed on an order. If i
t
* is allowed, perform the credit check, then notify the Workflow
* Engine when the credit check completes. */

begin
wf_engine.BeginActivity(’ORDER’, to_char(order_id),
’CREDIT_CHECK’);

OK := TRUE;
exception
when others then
WF_CORE.Clear;
OK := FALSE;

end;

if OK then
-- perform activity --
wf_engine.CompleteActivity(’ORDER’, to_char(order_id),
’CREDIT_CHECK’ :result_code);

end if;

CompleteActivity

PL/SQL Syntax
procedure CompleteActivity
(itemtype in varchar2,
itemkey in varchar2,
activity in varchar2,
result in varchar2);

Java Syntax
public static boolean completeActivity
(WFContext wCtx,
String itemType,
String itemKey,
String activity,
String result)

Description
Notifies the Workflow Engine that the specified activity has been completed for a
particular item. This procedure can be called for the following situations:

• To indicate a completed activity with an optional result - This signals the Workflow
Engine that an asynchronous activity has been completed. This procedure requires
that the activity currently has a status of ’Notified’. An optional activity
completion result can also be passed. The result can determine what transition
the process takes next.

2-50 Oracle Workow API Reference



• To create and start an item - You can call CompleteActivity() for a ’Start’ activity
to implicitly create and start a new item. ’Start’ activities are designated as the
beginning of a process in the Workflow Builder. The item type and key specified in
this call must be passed to all subsequent calls that operate on this item.

Use CompleteActivity() if you cannot use CreateProcess() and StartProcess() to start
your process. For example, call CompleteActivity() if you need to start a process with
an activity node that is mid-stream in a process thread and not at the beginning of a
process thread. The activity node you specify as the beginning of the process must
be set to ’Start’ in the Node tab of its property page or else an error will be raised.

Note: Starting a process using CompleteActivity() differs from starting
a process using CreateProcess() and StartProcess() in these ways:

• The ’Start’ activity called with CompleteActivity()may or may not
have incoming transitions. StartProcess() executes only ’Start’
activities that do not have any incoming transitions.

• CompleteActivity() only completes the single ’Start’ activity with
which it is called. Other ’Start’ activities in the process are not
completed. StartProcess(), however, executes every activity in
the process that is marked as a ’Start’ activity and does not have
any incoming transitions.

• CompleteActivity() does not execute the activity with which it is
called; it simply marks the activity as complete. StartProcess()
does execute the ’Start’ activities with which it starts a process.

• When you use CompleteActivity() to start a new process, the item
type of the activity being completed must either have a selector
function defined to choose a root process, or have exactly one
runnable process with the activity being completed marked as
a ’Start’ activity. You cannot explicitly specify a root process
as you can with StartProcess().

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype or itemType
A valid item type.

itemkey or itemKey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process.

activity
The name of the activity node that is completed. Provide the activity node’s label
name. If the activity node label name does not uniquely identify the subprocess you can
precede the label name with the internal name of its parent process. For example:

<parent_process_internal_name>:<label_name>

This activity node must be marked as a ’Start’ activity.

Workow Engine APIs 2-51



result
An optional activity completion result. Possible values are determined by the process
activity’s Result Type, or one of the engine standard results. See: AbortProcess, page 2-26.

Examples
Example 1
/* Complete the ’ENTER ORDER’ activity for the ’ORDER’ item type.

* The ’ENTER ORDER’ activity allows creation of new items since
* it is the start of a workflow, so the item is created by this
* call as well. */

wf_engine.CompleteActivity(’ORDER’, to_char(order.order_id),
’ENTER_ORDER’, NULL);

Example 2
/* Complete the ’LEGAL REVIEW’ activity with status ’APPROVED’.
* The item must already exist. */

wf_engine.CompleteActivity(’ORDER’, ’1003’, ’LEGAL_REVIEW’,
’APPROVED’);

Example 3
/* Complete the BLOCK activity which is used in multiple
* subprocesses in parallel splits. */

wf_engine.CompleteActivity(’ORDER’, ’1003’,
’ORDER_PROCESS:BLOCK-3’, ’null’);

CompleteActivityInternalName

PL/SQL Syntax
procedure CompleteActivityInternalName
(itemtype in varchar2,
itemkey in varchar2,
activity in varchar2,
result in varchar2);

Description
Notifies the Workflow Engine that the specified activity has been completed for a
particular item. This procedure requires that the activity currently has a status of
’Notified’. An optional activity completion result can also be passed. The result can
determine what transition the process takes next.

CompleteActivityInternalName() is similar to CompleteActivity() except that
CompleteActivityInternalName() identifies the activity to be completed by the activity’s
internal name, while CompleteActivity() identifies the activity by the activity node
label name. You should only use CompleteActivityInternalName() when you do not
know the activity node label name. If you do know the activity node label name, use
CompleteActivity() instead. See: CompleteActivity, page 2-50.

2-52 Oracle Workow API Reference



Note: Unlike CompleteActivity(), you cannot use CompleteActivity
InternalName() to start a process. Also, you cannot use
CompleteActivityInternalName() with a synchronous process.

When CompleteActivityInternalName() is executed, there must be exactly one instance of
the specified activity with a status of ’Notified’. If there are multiple instances of the
activity with ’Notified’ statuses, the process enters an ’ERROR’ state.

Arguments (input)
itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process.

activity
The internal name of the activity that is completed. If the activity internal name does not
uniquely identify the subprocess you can precede the activity internal name with the
internal name of its parent process. For example:

<parent_process_internal_name>:<activity_internal_name>

result
An optional activity completion result. Possible values are determined by the process
activity’s result type, or one of the engine standard results. See: AbortProcess, page 2-26.

AssignActivity

PL/SQL Syntax
procedure AssignActivity
(itemtype in varchar2,
itemkey in varchar2,
activity in varchar2,
performer in varchar2);

Description
Assigns or reassigns an activity to another performer. This procedure may be called
before the activity is transitioned to. For example, a function activity earlier in the
process may determine the performer of a later activity.

If a new user is assigned to a notification activity that already has an outstanding
notification, the outstanding notification is canceled and a new notification is generated
for the new user by callingWF_Notification.Transfer.

Arguments (input)
itemtype
A valid item type.

Workow Engine APIs 2-53



itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process.

activity
The label name of the activity node. If the activity node label name does not uniquely
identify the activity node you can precede the label name with the internal name of
its parent process. For example:

<parent_process_internal_name>:<label_name>

performer
The name of the user who will perform the activity (the user who receives the
notification). The name should be a role name from the Oracle Workflow directory
service.

Event

PL/SQL Syntax
procedure Event
(itemtype in varchar2,
itemkey in varchar2,
process_name in varchar2 default null,
event_message in wf_event_t);

Description
Receives an event from the Business Event System into a workflow process.

If the specified item key already exists, the event is received into that item. If the item key
does not already exist, but the specified process includes an eligible Receive event activity
marked as a Start activity, the Workflow Engine creates a new item running that process.

Within the workflow process that receives the event, the procedure searches for eligible
Receive event activities. For an activity to be eligible to receive an event, its event filter
must either be set to that particular event, set to an event group of which that event is a
member, or left blank to accept any event. Additionally, the activity must either be
marked as a Start activity, or it must have an activity status of NOTIFIED, meaning the
process has transitioned to that activity and is waiting to receive the event.

For each eligible Receive event activity, Event() stores the event name, event key, and
event message in the item type attributes specified in the event activity node, if they have
been defined. Additionally, the procedure sets any parameters in the event message
parameter list as item type attributes for the process, creating new item type attributes
if a corresponding attribute does not already exist for any parameter. It also sets the
subscription’s globally unique identifier (GUID) as a dynamic item attribute so that the
workflow process can reference other information in the subscription definition. Then
the Workflow Engine begins a thread of execution from the event activity.

If no eligible Receive event activity exists for a received event, the procedure returns an
exception and an error message.

Note: If an event arrives at a Start activity to launch a new process
instance, the Workflow Engine also searches for all other receive event
activities that are marked as Start activities and that do not have

2-54 Oracle Workow API Reference



any incoming transitions, regardless of their event filter. For these
activities, the Workflow Engine sets the activity status to NOTIFIED
so that they will be ready to receive an event if any more events are
sent to this process. This feature lets you design a workflow process
that requires multiple events to be received when you do not know in
advance the order in which the events will arrive.

Note: If the event received by a Receive event activity was originally
raised by a Raise event activity in another workflow process, the item
type and item key for that process are included in the parameter
list within the event message. In this case, the Workflow Engine
automatically sets the specified process as the parent for the process that
receives the event, overriding any existing parent setting.

Arguments (input)
itemtype
A valid item type.

itemkey
A string that uniquely identifies the item within an item type. The item type and key
together identify the process.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

process_name
An optional argument that allows the selection of a particular subprocess for that item
type. Provide the process activity’s label name. If the process activity label name does
not uniquely identify the subprocess you can precede the label name with the internal
name of its parent process. For example:

<parent_process_internal_name>:<label_name>
If this argument is null, the top level process for the item is started. This argument
defaults to null.

event_message
The event message containing the details of the event.

HandleError

PL/SQL Syntax
procedure HandleError
(itemtype in varchar2,
itemkey in varchar2,
activity in varchar2,
command in varchar2,
result in varchar2);

Workow Engine APIs 2-55



Java Syntax
public static boolean handleError
(WFContext wCtx,
String itemType,
String itemKey,
String activity,
String command,
String result)

Description
This procedure is generally called from an activity in an ERROR process to handle any
process activity that has encountered an error.

You can also call this procedure for any arbitrary activity in a process, to roll back
part of your process to that activity. The activity that you call this procedure with can
have any status and does not need to have been executed. The activity can also be in a
subprocess. If the activity node label is not unique within the process you can precede
the activity node label name with the internal name of its parent process. For example:

<parent_process_internal_name>:<label_name>
This procedure clears the activity specified and all activities following it that have
already been transitioned to by reexecuting each activity in CANCEL mode. For an
activity in the ’Error’ state, there are no other executed activities following it, so the
procedure simply clears the errored activity.

Once the activities are cleared, this procedure resets any parent processes of the specified
activity to a status of ’Active’, if they are not already active.

The procedure then handles the specified activity based on the command you
provide: SKIP or RETRY.

This API also raises the oracle.apps.wf.engine.skip event or the
oracle.apps.wf.engine.retry event, depending on the command you
provide. Although Oracle Workflow does not include any predefined subscriptions to
these events, you can optionally define your own subscriptions to these events if you
want to perform custom processing when they occur. See: Workflow Engine Events,
Oracle Workflow Developer's Guide and To Define an Event Subscription (for standalone
Oracle Workflow), Oracle Workflow Developer's Guide or To Create or Update an Event
Subscription (for Oracle Applications), Oracle Workflow Developer's Guide.

Note: An item’s active date and the version number of the process that
the item is transitioning through can never change once an item is
created. Occasionally, however, you may want to use HandleError to
manually make changes to your process for an existing item.

If the changes you make to a process are minor, you can use HandleError
to manually push an item through activities that will error or redirect
the item to take different transitions in the process.

If the changes you want to make to a process are extensive, then you
need to perform at least the following steps:

• Abort the process by callingWF_ENGINE.AbortProcess().

• Purge the existing item by callingWF_PURGE.Items().

• Revise the process.

2-56 Oracle Workow API Reference



• Recreate the item by callingWF_ENGINE.CreateProcess().

• Restart the revised process at the appropriate activity by calling
WF_ENGINE.HandleError().

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

item_type or itemType
A valid item type.

item_key or itemKey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process.

activity
The activity node that encountered the error or that you want to undo. Provide the label
name of the activity node. If the activity node label name does not uniquely identify
the subprocess you can precede the label name with the internal name of its parent
process. For example:

<parent_process_internal_name>:<label_name>

command
One of two commands that determine how to handle the process activity:

• SKIP - do not reexecute the activity, but mark the activity as complete with the
supplied result and continue execution of the process from that activity.

• RETRY - reexecute the activity and continue execution of the process from that
activity.

result
The result you wish to supply if the command is SKIP.

SetItemParent

PL/SQL Syntax
procedure SetItemParent
(itemtype in varchar2,
itemkey in varchar2,
parent_itemtype in varchar2,
parent_itemkey in varchar2,
parent_context in varchar2);

Workow Engine APIs 2-57



Java Syntax
public static boolean setItemParent
(WFContext wCtx,
String itemType,
String itemKey,
String parentItemType,
String parentItemKey,
String parentContext)

Description
Defines the parent/child relationship for a master process and a detail process. This
API must be called by any detail process spawned from a master process to define the
parent/child relationship between the two processes. Youmake a call to this API after you
call the CreateProcess API, but before you call the StartProcess API for the detail process.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype or itemType
A valid item type.

itemkey or itemKey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
child process.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

parent_itemtype or
parentItemType
A valid item type for the parent process.

parent_itemkey or parent
ItemKey
A string generated from the application object’s primary key to uniquely identify the
item within the parent item type. The parent item type and key together identify the
parent process.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

parent_context or
parentContext
If the parent process contains more than one Wait for Flow activity, set this parameter to
the activity label name for the Wait for Flow activity node that corresponds to this detail
process. If the parent process contains only one Wait for Flow activity, you can leave
the parent context null.

2-58 Oracle Workow API Reference



ItemStatus

PL/SQL Syntax
procedure ItemStatus
(itemtype in varchar2,
itemkey in varchar2,
status out varchar2,
result out varchar2);

Java Syntax
public static WFTwoDArray itemStatus
(WFContext wCtx,
String itemType,
String itemKey)

Description
Returns the status and result for the root process of the specified item instance. Possible
values returned for the status are: ACTIVE, COMPLETE, ERROR, or SUSPENDED. If the
root process does not exist, then the item key does not exist and will thus cause the
procedure to raise an exception.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemtype
A valid item type.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
item instance.

Example
Example
The following code excerpt shows an example of how to call itemStatus() in a Java
program. The example code is from the WFTest.java program.

// get status and result for this item
dataSource = WFEngineAPI.itemStatus(ctx, iType, iKey);
System.out.print("Status and result for " + iType + "/" +

iKey + " = ");
displayDataSource(ctx, dataSource);

Workow Engine APIs 2-59



getProcessStatus

Java Syntax
public static WFTwoDArray getProcessStatus
(WFContext wCtx,
String itemType,
String itemKey,
BigDecimal process)

Description
Returns the process status for the given item type instance as a two-dimensional data
object.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemType
A valid item type.

itemKey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

process
A process instance ID for the item type. If the instance ID is unknown, you can simply
provide any negative number and the method will return the process status for the
root process.

Workow Function APIs
The WFFunctionAPI Java class is the abstract class from which the Java procedures for
all external Java function activities are derived. This class contains methods for accessing
item type and activity attributes, as well as the execute()method which forms the main
entry point function of the external Java function activity being implemented.

The WFFunctionAPI class is stored in the oracle.apps.fnd.wf Java package. The
following list shows the APIs available in this class.

Important: Java is case-sensitive and all Java method names begin with a
lower case letter to follow Java naming conventions.

• loadItemAttributes, page 2-61

• loadActivityAttributes, page 2-61

• getActivityAttr, page 2-62

• getItemAttr, page 2-63

• setItemAttrValue, page 2-63

• execute, page 2-63

2-60 Oracle Workow API Reference



Related Topics
Standard API for Java Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

Function Activity, Oracle Workflow Developer's Guide

loadItemAttributes

Java Syntax
public void loadItemAttributes
(WFContext pWCtx) throws SQLException

Description
Retrieves the item attributes from the database for the item type from which the external
Java function was called. The item attributes are not loaded by default due to the
performance impact that could occur if the item type contains a large number of item
attributes. You can use this method to load the item attributes explicitly before accessing
them in your function.

If a database access error occurs, this method throws a SQLException.

Arguments (input)
pWCtx
Workflow context information. See: Oracle Workflow Context, page 2-4.

loadActivityAttributes

Java Syntax
public void loadActivityAttributes
(WFContext pWCtx,
String iType,
String iKey,
BigDecimal actid) throws SQLException

Description
Retrieves the activity attributes from the database for the specified activity. This method
is called by default when the function activity is instantiated and before the execute()
function is called.

If a database access error occurs, this method throws a SQLException.

Arguments (input)
pWCtx
Workflow context information. See: Oracle Workflow Context, page 2-4.

iType
A valid item type.

Workow Engine APIs 2-61



iKey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process. See: CreateProcess, page 2-16.

actid
An activity instance ID.

getActivityAttr

Java Syntax
public WFAttribute getActivityAttr
(String aName)

public WFAttribute getActivityAttr
(WFContext pWCtx,
String aName) throws SQLException

Description
There are two implementations of getActivityAttr(). These methods return the activity
attribute information for the specified activity attribute.

• If you call getActivityAttr(String aName) with only the activity attribute name, this
method returns the activity attribute value but does not attempt to resolve any
reference to an item attribute. If an activity attribute does point to an item
attribute, this method returns the internal name of the item attribute. With the item
attribute name, you can then perform additional processing based on the item
attribute.

For example, if you want to write information back to the item attribute, you can
first use getActivityAttr(String aName) to retrieve the item attribute name. Then
use setItemAttrValue(WFContext pWCtx, WFAttribute pAttr) to set the item attribute
value, which also becomes the activity attribute value. See: setItemAttrValue, page
2-63.

• If you call getActivityAttr(WFContext pWCtx, String aName) with both the
Workflow context and the activity attribute name, this method returns the activity
attribute, and if the activity attribute points to an item attribute, the method attempts
to resolve the reference by retrieving the value of that item attribute. You can use
getActivityAttr(WFContext pWCtx, String aName) when you want to obtain the
actual activity attribute value, and you do not need to know which item attribute
it references. This method attempts to resolve the reference within the previously
loaded item attributes, or if the item attributes have not been loaded, the method
calls loadItemAttributes(WFContext pWCtx) to load them. See: loadItemAttributes,
page 2-61.

If a database access error occurs, this method throws a SQLException.

Arguments (input)
pWCtx
Workflow context information. Required for the second method only. See: Oracle
Workflow Context, page 2-4.

2-62 Oracle Workow API Reference



aName
The internal name of an activity attribute.

getItemAttr

Java Syntax
public WFAttribute getItemAttr
(String aName)

Description
Returns the item attribute information for the specified item attribute.

Arguments (input)
aName
The internal name of an item attribute.

setItemAttrValue

Java Syntax
public void setItemAttrValue
(WFContext pWCtx,
WFAttribute pAttr)
throws NumberFormatException, WFException

Description
Sets the value of the specified item attribute in the database.

This method throws a NumberFormatException if it cannot convert the value to the
appropriate format for an attribute of type number or date. The method throws a
WFException if it encounters an error while setting an attribute of type document or text.

Arguments (input)
pWCtx
Workflow context information. See: Oracle Workflow Context, page 2-4.

pAttr
The attribute information for an item attribute.

execute

Java Syntax
public abstract boolean execute
(WFContext pWCtx)

Workow Engine APIs 2-63



Description
This abstract method is implemented by the extending class and forms the main entry
point function of the external Java function activity being implemented. See: Standard
API for Java Procedures Called by Function Activities, Oracle Workflow Developer's Guide.

Arguments (input)
pWCtx
Workflow context information. See: Oracle Workflow Context, page 2-4.

Workow Attribute APIs
The WFAttribute Java class contains descriptive information for an item or activity
attribute, including the internal name of the attribute, attribute value, attribute data
type, format information, and default value type. The attribute value is stored
as an Object type. This class also contains methods for accessing the attribute
information, which can be called by a Java application or the Java procedure for an
external Java function activity.

The WFAttribute class is stored in the oracle.apps.fnd.wf Java package. The
following list shows the APIs available in this class.

Important: Java is case-sensitive and all Java method names, except
the constructor method names, begin with a lower case letter to follow
Java naming conventions.

• WFAttribute, page 2-65

• value, page 2-66

• getName, page 2-66

• getValue, page 2-66

• getType, page 2-67

• getFormat, page 2-67

• getValueType, page 2-67

• toString, page 2-67

• compareTo, page 2-68

WFAttribute Class Constants
The WFAttribute class contains several constants. The following table shows the
constants that can be used to represent the data type of an attribute.

2-64 Oracle Workow API Reference



Data Type Constants

Constant Variable Declaration Constant Value

public static final String TEXT "TEXT"

public static final String NUMBER "NUMBER"

public static final String DATE "DATE"

public static final String LOOKUP "LOOKUP"

public static final String FORM "FORM"

public static final String URL "URL"

public static final String DOCUMENT "DOCUMENT"

public static final String ROLE "ROLE"

public static final String EVENT "EVENT"

The following table shows the constants that can be used to represent the type of the
default value for an attribute. The default value can be either a constant or, for an activity
attribute, a reference to an item type attribute.

Default Value Type Constants

Constant Variable Declaration Constant Value

public static final String CONSTANT "CONSTANT"

public static final String ITEMATTR "ITEMATTR"

Related Topics
Standard API for Java Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

WFAttribute

Java Syntax
public WFAttribute()

public WFAttribute
(String pName
String pType,
Object pValue,
String pValueType)

Description
There are two constructor methods for theWFAttribute class. The first constructor creates
a new WFAttribute object. The second constructor creates a new WFAttribute object and
initializes it with the specified attribute name, attribute type, value, and value type.

Workow Engine APIs 2-65



Arguments (input)
pName
The internal name of an item or activity attribute. Required for the second method only.

pType
The data type of the attribute. Required for the second method only.

pValue
The attribute value. Required for the second method only.

pValueType
The type of the default value for the attribute. The default value can be either a constant
or, for an activity attribute, a reference to an item type attribute. Required for the second
method only.

value

Java Syntax
public void value
(Object pValue)

Description
Sets the value of the item or activity attribute within a WFAttribute object. The value
must be cast to the Object type.

Important: Using value() to set the attribute value within a
WFAttribute object does not set the attribute value in the
database. To set the value of an item attribute in the database, use
WFFunctionAPI.setItemAttrValue(). See: setItemAttrValue, page 2-63.

Arguments (input)
pValue
The attribute value.

getName

Java Syntax
public String getName()

Description
Returns the internal name of the item or activity attribute.

getValue

Java Syntax
public Object getValue()

2-66 Oracle Workow API Reference



Description
Returns the value of the item or activity attribute as type Object.

getType

Java Syntax
public String getType()

Description
Returns the data type of the item or activity attribute. See: Attribute Types, Oracle
Workflow Developer's Guide.

getFormat

Java Syntax
public String getFormat()

Description
Returns the format string for the item or activity attribute, such as the length for an
attribute of type text or the format mask for an attribute of type number or date. See: To
Define an Item Type or Activity Attribute, Oracle Workflow Developer's Guide.

getValueType

Java Syntax
public String getValueType()

Description
Returns the type of the default value for the item or activity attribute. The default
value can be either a constant or, for an activity attribute, a reference to an item type
attribute. See: To Define an Item Type or Activity Attribute, Oracle Workflow Developer's
Guide.

toString

Java Syntax
public String toString()

Description
Returns the internal name and the value of the item or activity attribute as a string
in the following format:

Workow Engine APIs 2-67



<name>=<value>

This method overrides the toString() method in the Object class.

compareTo

Java Syntax
public int compareTo
(String pValue) throws Exception

Description
Compares the value of the item or activity attribute with the specified value. compareTo()
returns 0 if the two values are equal, -1 if the attribute value is less than the specified
value, or 1 if the attribute value is greater than the specified value.

This method throws an Exception if it cannot convert the specified value to the
appropriate format for an attribute of type number or date.

Arguments (input)
pValue
The test value to compare to the attribute value.

Workow Core APIs
PL/SQL procedures called by function activities can use a set of core Oracle Workflow
APIs to raise and catch errors.

When a PL/SQL procedure called by a function activity either raises an
unhandled exception, or returns a result beginning with ’ERROR:’, the
Workflow Engine sets the function activity’s status to ERROR and sets the
columns ERROR_NAME, ERROR_MESSAGE, and ERROR_STACK in the table
WF_ITEM_ACTIVITY_STATUSES to reflect the error.

The columns ERROR_NAME and ERROR_MESSAGE get set to either the values returned
by a call toWF_CORE.RAISE(), or to the SQL error name and message if no call to
RAISE() is found. The column ERROR_STACK gets set to the contents set by a call to
WF_CORE.CONTEXT(), regardless of the error source.

Note: The columns ERROR_NAME, ERROR_MESSAGE, and ERROR_STACK
are also defined as item type attributes for the System: Error predefined
item type. You can reference the information in these columns from the
error process that you associate with an activity. See: Error Handling for
Workflow Processes, Oracle Workflow Developer's Guide.

The following APIs can be called by an application program or workflow function in
the runtime phase to handle error processing. These APIs are stored in the PL/SQL
package called WF_CORE.

• CLEAR, page 2-69

• GET_ERROR, page 2-69

• TOKEN, page 2-70

2-68 Oracle Workow API Reference



• RAISE, page 2-71

• CONTEXT, page 2-74

• TRANSLATE, page 2-76

Related Topics
Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

CLEAR

Syntax
procedure CLEAR;

Description
Clears the error buffers.

Related Topics
GET_ERROR, page 2-69

GET_ERROR

Syntax
procedure GET_ERROR
(err_name out varchar2,
err_message out varchar2
err_stack out varchar2);

Description
Returns the name of a current error message and the token substituted error
message. Also clears the error stack. Returns null if there is no current error.

Workow Engine APIs 2-69



Example
Example
/* Handle unexpected errors in your workflow code by raising
* WF_CORE exceptions. When calling any public Workflow API,
* include an exception handler to deal with unexpected
* errors.*/

declare
errname varchar2(30);
errmsg varchar2(2000);
errstack varchar2(32000);

begin
...
Wf_Engine.CompleteActivity(itemtype, itemkey, activity,
result_code);

...

exception
when others then
wf_core.get_error(err_name, err_msg, err_stack);
if (err_name is not null) then
wf_core.clear;
-- Wf error occurred. Signal error as appropriate.

else
-- Not a wf error. Handle otherwise.

end if;
end;

Related Topics
CLEAR, page 2-69

TOKEN

Syntax
procedure TOKEN
(token_name in varchar2,
token_value in varchar2);

Description
Defines an error token and substitutes it with a value. Calls to TOKEN() and RAISE()
raise predefined errors for Oracle Workflow that are stored in the WF_RESOURCES
table. The error messages contain tokens that need to be replaced with relevant values
when the error message is raised. This is an alternative to raising PL/SQL standard
exceptions or custom-defined exceptions.

Arguments (input)
token_name
Name of the token.

2-70 Oracle Workow API Reference



token_value
Value to substitute for the token.

Related Topics
RAISE, page 2-71

CONTEXT, page 2-74

RAISE

Syntax
procedure RAISE
(name in varchar2);

Description
Raises an exception to the caller by supplying a correct error number and token
substituted message for the name of the error message provided.

Calls to TOKEN() and RAISE() raise predefined errors for Oracle Workflow that are
stored in the WF_RESOURCES table. The error messages contain tokens that need to be
replaced with relevant values when the error message is raised. This is an alternative to
raising PL/SQL standard exceptions or custom-defined exceptions.

Error messages for Oracle Workflow are initially defined in message files (.msg). The
message files are located in the ORACLE_HOME/wf/res/<language> directory for
standalone Oracle Workflow or in the $FND_TOP/import/<language> directory
for Oracle Applications. During the installation of Oracle Workflow, a program called
Workflow Resource Generator takes the designated message files and imports the
messages into the WF_RESOURCES table.

Note: If you want to use custom error messages, you can define your
messages in .msg files, load them to the WF_RESOURCES table, and
then raise them using RAISE(). A custom error message must have an
error number of 90000 or higher.

Arguments (input)
name
Internal name of the error message as stored in the table WF_RESOURCES.

To run the Workow Resource Generator:
The standalone version of Oracle Workflow provides scripts to run the Workflow
Resource Generator. In Oracle Applications, run the Workflow Resource Generator
as a concurrent program.

For standalone Oracle Workow:
To run the Workflow Resource Generator, run the wfresgen.sh script on UNIX
or the wfresgen.bat script on Windows. These scripts are located in the
ORACLE_HOME/wf/admin directory.

To upload seed data from a message source file (.msg) to the database table
WF_RESOURCES, enter the following command at your operating system prompt.

Workow Engine APIs 2-71



• On Unix:

wfresgen.sh /mode loadresourcetodb [/debug true] [/validate on]
/user <user> /connectstring <connectstring> /language <language>
/messagefile <message file>

• On Windows:

wfresgen.bat /mode loadresourcetodb [/debug true] [/validate on]
/user <user> /connectstring <connectstring> /language
<language> /messagefile <message file>

Specify the following parameters for the script:

• /mode - Specify the loadresourcetodbmode to upload seed data from a message
source file to the database table WF_RESOURCES.

• /debug - Optionally include this parameter with the value true to report more
extensive debugging information in the program output.

• /validate - Optionally include this parameter with the value on to validate the
message source file against the database.

• /user - Specify the user name of your Oracle Workflow database account.

• /connectstring - Specify the Oracle Net connect string for the database.

• /language - Specify the language of the seed data to load, using a language
abbreviation supported by the Oracle Database. For example, specify JA for
Japanese. See: Locale Data, Oracle Database Globalization Support Guide.

• /messagefile - Specify the full path and name of the message source file you
want to upload. You can include this parameter multiple times to specify multiple
message source files. For example:

/messagefile <message file1> /messagefile <message file2>

After starting, the Workflow Resource Generator prompts you to enter the password for
your Oracle Workflow database account.

Example
The following command shows an example of how to start the Workflow Resource
Generator on Windows.

wfresgen.bat /mode loadresourcetodb /user OWF_MGR /connectstring
"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=wfhost.oracle.com)
(PORT=1521))(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=orawf)))" /language US /messagefile
D:\Temp\wffile1.msg /messagefile D:\Temp\wffile2.msg

For Oracle Applications:
1. The Workflow Resource Generator program is registered as a concurrent

program. You can run the Workflow Resource Generator concurrent program from
the Submit Requests form or from the command line.

2. To run the concurrent program from the Submit Requests form, navigate to the
Submit Requests form.

Note: Your system administrator needs to add this concurrent
program to a request security group for the responsibility that
you want to run this program from. See: Overview of Concurrent

2-72 Oracle Workow API Reference



Programs and Requests, Oracle Applications System Administrator's
Guide.

3. Submit the Workflow Resource Generator concurrent program as a
request. See: Running Reports and Programs, Oracle Applications User's Guide.

4. In the Parameters window, enter values for the following parameters:

Destination Type
Specify "Database", to upload seed data to the database table WF_RESOURCES
from a source file (.msg), or "File", to generate a resource file from a source file.

Destination
If you specify "File" for Destination Type, then enter the full path and name of
the resource file you wish to generate. If you specify "Database" for Destination
Type, then the program automatically uses the current database account as its
destination.

Source
Specify the full path and name of your source file.

5. Choose OK to close the Parameters window.

6. When you finish modifying the print and run options for this request, choose Submit
to submit the request.

7. Rather than use the Submit Requests form, you can also run the Workflow
Resource Generator concurrent program from the command line using one of two
commands. To generate a resource file from a source file, type:

WFRESGEN apps/pwd 0 Y FILE res_file source_file

To upload seed data to the database table WF_RESOURCES from a source file, type:

WFRESGEN apps/pwd 0 Y DATABASE source_file

Replace apps/pwd with the username and password to the APPS schema, replace
res_file with the file specification of a resource file, and replace source_file
with the file specification of a source file (.msg). A file specification is specified as:

@<application_short_name>:[<dir>/.../]file.ext

or

<native path>

Related Topics
TOKEN, page 2-70

CONTEXT, page 2-74

Workow Engine APIs 2-73



CONTEXT

Syntax
procedure CONTEXT
(pkg_name IN VARCHAR2,
proc_name IN VARCHAR2,
arg1 IN VARCHAR2 DEFAULT ’*none*’,
arg2 IN VARCHAR2 DEFAULT ’*none*’,
arg3 IN VARCHAR2 DEFAULT ’*none*’,
arg4 IN VARCHAR2 DEFAULT ’*none*’,
arg5 IN VARCHAR2 DEFAULT ’*none*’);

Description
Adds an entry to the error stack to provide context information that helps locate the
source of an error. Use this procedure with predefined errors raised by calls to TOKEN()
and RAISE(), with custom-defined exceptions, or even without exceptions whenever
an error condition is detected.

Arguments (input)
pkg_name
Name of the procedure package.

proc_name
Procedure or function name.

arg1
First IN argument.

argn
nth IN argument.

2-74 Oracle Workow API Reference



Example
Example
/*PL/SQL procedures called by function activities can use the
* WF_CORE APIs to raise and catch errors the same way the
* Workflow Engine does. */

package My_Package is

procedure MySubFunction(
arg1 in varchar2,
arg2 in varchar2)

is
...
begin
if (<error condition>) then
Wf_Core.Token(’ARG1’, arg1);
Wf_Core.Token(’ARG2’, arg2);
Wf_Core.Raise(’ERROR_NAME’);

end if;
...

exception
when others then
Wf_Core.Context(’My_Package’, ’MySubFunction’, arg1, arg2);
raise;

end MySubFunction;

procedure MyFunction(
itemtype in varchar2,
itemkey in varchar2,
actid in number,
funcmode in varchar2,
result out varchar2)

is
...
begin
...
begin
MySubFunction(arg1, arg2);

exception
when others then
if (Wf_Core.Error_Name = ’ERROR_NAME’) then
-- This is an error I wish to ignore.
Wf_Core.Clear;

else
raise;

end if;
end;
...

exception
when others then
Wf_Core.Context(’My_Package’, ’MyFunction’, itemtype, itemkey,

to_char(actid), funcmode);
raise;

end MyFunction;

Workow Engine APIs 2-75



Related Topics
TOKEN, page 2-70

RAISE, page 2-71

TRANSLATE

Syntax
function TRANSLATE
(tkn_name IN VARCHAR2)
return VARCHAR2;

Description
Translates the string value of a token by returning the value for the token as defined in
WF_RESOURCES for your language setting.

Arguments (input)
tkn_name
Token name.

Workow Purge APIs
The following APIs can be called by an application program or workflow function in the
runtime phase to purge obsolete runtime and design data. These APIs are defined in
the PL/SQL package called WF_PURGE.

WF_PURGE can be used to purge obsolete runtime data for completed items and
processes, and to purge design information for obsolete activity versions that are no
longer in use and expired users and roles. You may want to periodically purge this
obsolete data from your system to increase performance.

A PL/SQL variable called "persistence_type"in the WF_PURGE package defines
how most of the WF_PURGE APIs behave, with the exception of TotalPerm(). When the
variable is set to TEMP, the WF_Purge APIs only purge data associated with Temporary
item types, whose persistence, in days, has expired. The persistence_type variable
is set to TEMP by default and should not be changed. If you need to purge runtime
data for item types with Permanent persistence, you should use the procedure
TotalPerm(). See: Persistence Type, Oracle Workflow Developer's Guide.

Important: You cannot run any WF_PURGE API for a future end
date. By entering a future end date, you may inadvertently violate the
persistence period for Temporary item types. The WF_PURGE APIs will
display an error message if you enter a future end date.

The three most commonly used procedures are:

• WF_PURGE.ITEMS - purge all runtime data associated with completed items, their
processes, and notifications sent by them.

• WF_PURGE.ACTIVITIES - purge obsolete design versions of activities that are
no longer in use by any item.

2-76 Oracle Workow API Reference



• WF_PURGE.TOTAL - purge both item data and activity design data.

The other auxiliary routines purge only certain tables or classes of data, and can be used
in circumstances where a full purge is not desired.

The complete list of purge APIs is as follows:

• Items, page 2-77

• Activities, page 2-78

• Notifications, page 2-79

• Total, page 2-80

• TotalPERM, page 2-81

• Directory, page 2-82

Note: The AdHocDirectory() API from earlier versions of Oracle
Workflow is replaced by the Directory() API. The current version
of Oracle Workflow still recognizes the AdHocDirectory() API for
backward compatibility, but moving forward, you should only use
the new Directory() API where appropriate.

In Oracle Applications, you can also use the "Purge Obsolete Workflow Runtime Data"
concurrent program to purge obsolete item type runtime status information. See: Purge
Obsolete Workflow Runtime Data, page 2-83.

In standalone Oracle Workflow, you can use the standalone Oracle Workflow Manager
component available through Oracle Enterprise Manager to submit and manage
Workflow purge database jobs. For more information, please refer to the Oracle
Workflow Manager online help.

Related Topics
Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

Purging for Performance, Oracle Workflow Administrator's Guide

Items

Syntax
procedure Items
(itemtype in varchar2 default null,
itemkey in varchar2 default null,
enddate in date default sysdate,
docommit in boolean default TRUE,
force in boolean default FALSE);

Description
Deletes all items for the specified item type, and/or item key, and end date, including
process status information, notifications, and any comments associated with
these notifications. In Oracle Applications, any electronic signature information
associated with these notifications is deleted as well. Deletes from the tables

Workow Engine APIs 2-77



WF_NOTIFICATIONS, WF_COMMENTS, WF_DIG_SIGS, WF_ITEM_ACTIVITY_
STATUSES, WF_ITEM_ATTRIBUTE_VALUES and WF_ITEMS.

Arguments (input)
itemtype
Item type to delete. Leave this argument null to delete all item types.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. If null, the procedure purges all items in the
specified item type.

enddate
Specified date to delete up to.

docommit
Specify TRUE or FALSE to indicate whether to commit data while purging. If
you want Items() to commit data as it purges to reduce rollback size and improve
performance, specify TRUE. If you do not want to perform automatic commits, specify
FALSE. Defaults to TRUE.

force
Specify TRUE or FALSE to indicate whether to delete records for child items that have
ended, even if the corresponding parent item does not yet have an end date. Defaults
to FALSE.

Activities

Syntax
procedure Activities
(itemtype in varchar2 default null,
name in varchar2 default null,
enddate in date default sysdate);

Description
Deletes old design versions of eligible activities from the tables WF_ACTIVITY_ATTR_
VALUES, WF_ACTIVITY_TRANSITIONS, WF_PROCESS_ACTIVITIES, WF_ACT
IVITY_ATTRIBUTES_TL, WF_ACTIVITY_ATTRIBUTES, WF_ACTIVITIES_TL, and
WF_ACTIVITIES that are associated with the specified item type, have an END_DATE
less than or equal to the specified end date, and are not referenced by an existing item as
either a process or activity.

Note: You should call Items() before calling Activities() to avoid having
obsolete item references prevent obsolete activities from being deleted.

Arguments (input)
itemtype
Item type associated with the activities you want to delete. Leave this argument null to
delete activities for all item types.

2-78 Oracle Workow API Reference



name
Internal name of activity to delete. Leave this argument null to delete all activities for
the specified item type.

enddate
Specified date to delete up to.

Notications

Syntax
procedure Notifications
(itemtype in varchar2 default null,
enddate in date default sysdate,
docommit in boolean default TRUE);

Description
Deletes old eligible notifications from the tables WF_NOTIFICATION_ATTRIBUTES
and WF_NOTIFICATIONS that are associated with the specified item type, have an
END_DATE less than or equal to the specified end date, and are not referenced by an
existing item. Also, any comments associated with these notifications are deleted from
the WF_COMMENTS table. In Oracle Applications, any electronic signature information
associated with these notifications is deleted from the WF_DIG_SIGS table as well. You
can use this procedure to delete notifications that are not associated with any work
item, such as notifications that were sent by callingWF_NOTIFICATION.Send() rather
than through a workflow process.

Note: You should call Items() before calling Notifications() to avoid
having obsolete item references prevent obsolete notifications from
being deleted.

Arguments (input)
itemtype
Item type associated with the notifications you want to delete. Leave this argument null
to delete notifications for all item types.

enddate
Specified date to delete up to.

docommit
Specify TRUE or FALSE to indicate whether to commit data while purging. If you
want Notifications() to commit data as it purges to reduce rollback size and improve
performance, specify TRUE. If you do not want to perform automatic commits, specify
FALSE. Defaults to TRUE.

Workow Engine APIs 2-79



Total

Syntax
procedure Total
(itemtype in varchar2 default null,
itemkey in varchar2 default null,
enddate in date default sysdate,
docommit in boolean default TRUE,
runtimeonly in boolean default FALSE.
transactiontype in varchar2 default null,
transactionsubtype in varchar2 default null);

Description
Deletes all eligible obsolete runtime item type data that is associated with the specified
item type and has an END_DATE less than or equal to the specified end date. In
Oracle Applications, this procedure also deletes any Oracle XML Gateway transaction
information associated with the items being purged.

If the RUNTIMEONLY parameter is set to TRUE, Total() deletes only runtime data
associated with work items. However, if the RUNTIMEONLY parameter is set to
FALSE, Total() also deletes these types of data:

• All eligible obsolete activity design data that is associated with the specified
item type and has an END_DATE less than or equal to the specified end
date. See: Activities, page 2-78.

• Expired users and roles in the Workflow local tables that are no longer in
use. See: Directory, page 2-82.

• All eligible notifications that are associated with the specified item type, have an
END_DATE less than or equal to the specified end date, and are not referenced by an
existing item. See: Notifications, page 2-79.

• For Oracle Applications only, Oracle XML Gateway transaction information that is
not associated with any existing work item. This information is purged using the
ECX_PURGE.Purge_Items API. See: Oracle XML Gateway User’s Guide.

Because Total() purges additional design data and runtime data not associated with
work items when you set the RUNTIMEONLY parameter to FALSE, it is more costly in
performance than Items(). If you want to purge a specific item key, use Items(), or set the
RUNTIMEONLY parameter to TRUE when you run Total() to enhance performance. Run
Total() with the RUNTIMEONLY parameter set to FALSE as part of your routine
maintenance during periods of low activity. See: Items, page 2-77.

Arguments (input)
itemtype
Item type associated with the obsolete data you want to delete. Leave this argument null
to delete obsolete data for all item types.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. If null, the procedure purges all items in the
specified itemtype.

2-80 Oracle Workow API Reference



enddate
Specified date to delete up to.

docommit
Specify TRUE or FALSE to indicate whether to commit data while purging. If
you want Total() to commit data as it purges to reduce rollback size and improve
performance, specify TRUE. If you do not want to perform automatic commits, specify
FALSE. Defaults to TRUE.

runtimeonly
Specify TRUE to purge only obsolete runtime data associated with work items, or FALSE
to purge all obsolete runtime data as well obsolete design data. Defaults to FALSE.

transactiontype
The Oracle XML Gateway transaction type to purge. Leave this argument null to purge
the runtime data for all transaction types.

transactionsubtype
The Oracle XML Gateway transaction subtype to purge. The transaction subtype is a
code for a particular transaction within the application specified by the transaction
type. Leave this argument null to purge the runtime data for all transactions of the
specified transaction type.

TotalPERM

Syntax
procedure TotalPERM
(itemtype in varchar2 default null,
itemkey in varchar2 default null,
enddate in date default sysdate,
docommit in boolean default TRUE,
runtimeonly in boolean default FALSE);

Description
Deletes all eligible obsolete runtime data that is of persistence type ’PERM’ (Permanent)
and that is associated with the specified item type and has an END_DATE less than or
equal to the specified end date. In Oracle Applications, this procedure also deletes any
Oracle XML Gateway transaction information associated with the items being purged.

If the RUNTIMEONLY parameter is set to TRUE, TotalPERM() deletes only runtime
data associated with work items. However, if the RUNTIMEONLY parameter is set to
FALSE, TotalPERM() also deletes these types of data:

• All eligible obsolete activity design data that is associated with the specified
item type and has an END_DATE less than or equal to the specified end
date. See: Activities, page 2-78.

• Expired users and roles in the Workflow local tables that are no longer in
use. See: Directory, page 2-82.

• All eligible notifications that are associated with the specified item type, have an
END_DATE less than or equal to the specified end date, and are not referenced by an
existing item. See: Notifications, page 2-79.

Workow Engine APIs 2-81



• For Oracle Applications only, Oracle XML Gateway transaction information that is
not associated with any existing work item. This information is purged using the
ECX_PURGE.Purge_Items API. See: Oracle XML Gateway User’s Guide.

TotalPERM() is similar to Total() except that TotalPERM() deletes only items with a
persistence type of ’PERM’. See: Total, page 2-80.

Arguments (input)
itemtype
Item type associated with the obsolete runtime data you want to delete. Leave this
argument null to delete obsolete runtime data for all item types.

itemkey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. If null, the procedure purges all items in the
specified itemtype.

enddate
Specified date to delete up to.

docommit
Specify TRUE or FALSE to indicate whether to commit data while purging. If you
want TotalPERM() to commit data as it purges to reduce rollback size and improve
performance, specify TRUE. If you do not want to perform automatic commits, specify
FALSE. Defaults to TRUE.

runtimeonly
Specify TRUE to purge only obsolete runtime data associated with work items, or FALSE
to purge all obsolete runtime data as well obsolete design data. Defaults to FALSE.

Directory

Syntax
procedure Directory

(end_date in date default sysdate);

Description
Purges all users and roles in the WF_LOCAL_ROLES and WF_LOCAL_USER_ROLES
tables whose expiration date is less than or equal to the specified end date and that are
not referenced in any notification.

Note that although users and roles whose expiration date has passed do not appear
in the seeded WF_USERS, WF_ROLES, and WF_USER_ROLES views, they are not
removed from the Workflow local tables until you purge them using Directory(). You
should periodically purge expired users and roles in order to improve performance.

Arguments (input)
end_date
Date to purge to.

2-82 Oracle Workow API Reference



Purge Obsolete Workow Runtime Data Concurrent Program
If you are using the version of Oracle Workflow embedded in Oracle Applications, you
can submit the Purge Obsolete Workflow Runtime Data concurrent program to
purge obsolete runtime work item information, including status information and any
associated notifications and Oracle XML Gateway transactions. Use the Submit Requests
form in Oracle Applications to submit this concurrent program.

By default, this program purges obsolete runtime information associated with work
items as well as obsolete design information, such as activities that are no longer in use
and expired users and roles, and obsolete runtime information not associated with work
items, such as notifications or Oracle XML Gateway transactions that were not handled
through a workflow process. You can optionally choose to purge only core runtime
information associated with work items for performance gain during periods of high
activity, and purge all obsolete information as part of your routine maintenance during
periods of low activity.

Note: You can also use the Oracle Workflow Manager component
of Oracle Applications Manager to submit and manage the Purge
Obsolete Workflow Runtime Data concurrent program. For more
information, please refer to the Oracle Applications Manager online
help.

To Purge Obsolete Workow Runtime Data:
1. Navigate to the Submit Requests form in Oracle Applications to submit the Purge

Obsolete Workflow Runtime Data concurrent program. When you install and set
up Oracle Applications and Oracle Workflow, your system administrator needs
to add this concurrent program to a request security group for the responsibility
that you want to run this program from. The executable name for this concurrent
program is "Oracle Workflow Purge Obsolete Data" and its short name is
FNDWFPR. See: Overview of Concurrent Programs and Requests, Oracle Applications
System Administrator's Guide.

2. Submit the Purge Obsolete Workflow Runtime Data concurrent program as a
request. See: Running Reports and Programs, Oracle Applications User's Guide.

3. In the Parameters window, enter values for the following parameters:

Item Type
Item type associated with the obsolete runtime data you want to delete. Leave this
argument null to delete obsolete runtime data for all item types.

Item Key
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. If null, the program purges all items in
the specified item type.

Age
Minimum age of data to purge, in days, if the persistence type is set to ’TEMP’. The
default is 0.

Persistence Type
Persistence type to be purged, either ’TEMP’ for Temporary or ’PERM’ for
Permanent. The default is ’TEMP’.

Workow Engine APIs 2-83



Core Workow Only
Enter ’Y’ to purge only obsolete runtime data associated with work items, or ’N’ to
purge all obsolete runtime data as well obsolete design data. The default is ’N’.

Transaction Type
The Oracle XML Gateway transaction type to purge. Leave this argument null to
purge the runtime data for all transaction types.

Transaction Subtype
The Oracle XML Gateway transaction subtype to purge. The transaction subtype is a
code for a particular transaction within the application specified by the transaction
type. Leave this argument null to purge the runtime data for all transactions of
the specified transaction type.

4. Choose OK to close the Parameters window.

5. When you finish modifying the print and run options for this request, choose Submit
to submit the request.

Workow Monitor APIs
Call the following APIs to retrieve an access key or to generate a complete URL to access
various pages of the Workflow Monitor in standalone Oracle Workflow, or to access
various pages of the administrator version of the Status Monitor in Oracle Applications
with guest access. The Workflow Monitor APIs are defined in the PL/SQL package
called WF_MONITOR.

• GetAccessKey, page 2-85

• GetDiagramURL, page 2-85

• GetEnvelopeURL, page 2-87

• GetAdvancedEnvelopeURL, page 2-88

Note: The GetURL API from earlier versions of Oracle Workflow is
replaced by the GetEnvelopeURL and GetDiagramURL APIs. The
functionality of the previous GetURL API correlates directly with the
new GetDiagramURL. API. The current version of Oracle Workflow still
recognizes the GetURL API, but moving forward, you should only use
the two new APIs where appropriate.

Note: Oracle Workflow also provides Java methods for accessing
the Status Monitor in Oracle Applications, which are defined in
the Java class called oracle.apps.fnd.wf.monitor.webui.Monitor. For
more information about these methods, refer to the Javadoc for the
oracle.apps.fnd.wf.monitor.webui.Monitor class.

Related Topics
Providing Access to the Status Monitor from Applications, Oracle Workflow
Administrator's Guide

Guest Access in PL/SQL, Oracle Workflow Administrator's Guide

2-84 Oracle Workow API Reference



GetAccessKey

Syntax
function GetAccessKey
(x_item_type varchar2,
x_item_key varchar2,
x_admin_mode varchar2)
return varchar2;

Description
Retrieves the access key password that controls access to the Workflow Monitor. Each
process instance has separate access keys for running the WorkflowMonitor in ’ADMIN’
mode or ’USER’ mode.

Arguments (input)
x_item_type
A valid item type.

x_item_key
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process to report on.

x_admin_mode
A value of YES or NO. YES directs the function to retrieve the access key password that
runs the monitor in ’ADMIN’ mode. NO retrieves the access key password that runs the
monitor in ’USER’ mode.

GetDiagramURL

Syntax
function GetDiagramURL
(x_agent in varchar2,
x_item_type in varchar2,
x_item_key in varchar2,
x_admin_mode in varchar2 default ’NO’)
return varchar2;

Description
Can be called by an application to return a URL that allows access to a status diagram
in the Workflow Monitor in standalone Oracle Workflow with an attached access key
password, or to the Status Diagram page in the Status Monitor in Oracle Applications
with guest access.

• In standalone Oracle Workflow, the URL displays the diagram for a specific instance
of a workflow process in the Workflow Monitor operating in either ’ADMIN’ or
’USER’ mode.

The URL returned by the functionWF_MONITOR.GetDiagramURL() looks as follows:

Workow Engine APIs 2-85



<webagent>/wf_monitor.html?x_item_type=<item_type>&x_item_key=
<item_key>&x_admin_mode=<YES or NO>&x_access_key=<access_key>

<webagent> represents the base URL of the Web agent configured for Oracle
Workflow in your Web server. See: Setting Global User Preferences, Oracle Workflow
Administrator's Guide.

wf_monitor.html is the name of the PL/SQL package procedure that generates
the Workflow Monitor diagram of the process instance.

The wf_monitor.html procedure requires four arguments. <item_type> and
<item_key> represent the internal name of the item type and the item key that
uniquely identify an instance of a process. If <YES or NO> is YES, the monitor runs
in ’ADMIN’ mode and if NO, the monitor runs in ’USER’ mode. <access_key>
represents the access key password that determines whether the monitor is run
in ’ADMIN’ or ’USER’ mode.

• In Oracle Applications, the URL displays the Status Diagram page for a specific
instance of a workflow process in the administrator version of the Status
Monitor, operating either with or without administrator privileges.

Arguments (input)
x_agent
The base Web agent string defined for Oracle Workflow or Oracle Self-Service Web
Applications in your Web server. The base Web agent string should be stored in the
WF_RESOURCES table, and looks something like:

http://<server.com:portID>/<PLSQL_agent_path>
When calling this function, your application must first retrieve the Web
agent string from the WF_RESOURCES token WF_WEB_AGENT by calling
WF_CORE.TRANSLATE(). See: Setting Global User Preferences, Oracle Workflow
Administrator's Guide or Applications Web Agent, Oracle Applications System
Administrator's Guide.

x_item_type
A valid item type.

x_item_key
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process to report on.

x_admin_mode
A value of YES or NO. YES directs the function to retrieve the access key password
that runs the monitor in ’ADMIN’ mode in standalone Oracle Workflow, or to
grant administrator privileges to the user accessing the Status Monitor in Oracle
Applications. NO directs the function to retrieve the access key password that runs the
monitor in ’USER’ mode in standalone Oracle Workflow, or to withhold administrator
privileges from the user accessing the Status Monitor in Oracle Applications.

Example
Example
Following is an example of how you can call GetDiagramUrl(). This example returns a
URL that displays the diagram page for a process instance identified by the item type
WFDEMO and item key 10022, in ’USER’ mode or without administrator privileges:

2-86 Oracle Workow API Reference



URL := WF_MONITOR.GetDiagramURL
(WF_CORE.Translate(’WF_WEB_AGENT’),
’WFDEMO’,
’10022’,
’NO’);

Related Topics
TRANSLATE, page 2-76

GetEnvelopeURL

Syntax
function GetEnvelopeURL
(x_agent in varchar2,
x_item_type in varchar2,
x_item_key in varchar2,
x_admin_mode in varchar2 default ’NO’)
return varchar2;

Description
Can be called by an application to return a URL that allows access to the Workflow
Monitor Notifications List in standalone Oracle Workflow with an attached access
key password, or to the Participant Responses page in the Status Monitor in Oracle
Applications with guest access.

• In standalone Oracle Workflow, the URL displays the Notifications List for a specific
instance of a workflow process in the Workflow Monitor.

The URL returned by the functionWF_MONITOR.GetEnvelopeURL() looks as follows:

<webagent>/wf_monitor.envelope?x_item_type=<item_type>&x_item_key=
<item_key>&x_admin_mode=<YES or NO>&x_access_key=<access_key>

<webagent> represents the base URL of the Web agent configured for Oracle
Workflow in your Web server. See: Setting Global User Preferences, Oracle Workflow
Administrator's Guide.

wf_monitor.envelope is the name of the PL/SQL package procedure that
generates the Workflow Monitor Notifications List for the process instance.

• In Oracle Applications, the URL displays the Participant Responses page for a
specific instance of a workflow process in the administrator version of the Status
Monitor, operating either with or without administrator privileges.

Arguments (input)
x_agent
The base Web agent string defined for Oracle Workflow or Oracle Self-Service Web
Applications in your Web server. The base Web agent string should be stored in the
WF_RESOURCES table, and looks something like:

http://<server.com:portID>/<PLSQL_agent_path>

Workow Engine APIs 2-87



When calling this function, your application must first retrieve the Web
agent string from the WF_RESOURCES token WF_WEB_AGENT by calling
WF_CORE.TRANSLATE(). See: Setting Global User Preferences, Oracle Workflow
Administrator's Guide or Applications Web Agent, Oracle Applications System
Administrator's Guide.

x_item_type
A valid item type.

x_item_key
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process to report on.

x_admin_mode
A value of YES or NO. YES directs the function to retrieve the access key password
that runs the monitor in ’ADMIN’ mode in standalone Oracle Workflow, or to
grant administrator privileges to the user accessing the Status Monitor in Oracle
Applications. NO directs the function to retrieve the access key password that runs the
monitor in ’USER’ mode in standalone Oracle Workflow, or to withhold administrator
privileges from the user accessing the Status Monitor in Oracle Applications.

Related Topics
TRANSLATE, page 2-76

GetAdvancedEnvelopeURL

Syntax
function GetAdvancedEnvelopeURL
(x_agent in varchar2,
x_item_type in varchar2,
x_item_key in varchar2,
x_admin_mode in varchar2 default ’NO’,
x_options in varchar2 default null)
return varchar2;

Description
Can be called by an application to return a URL that displays the Workflow Monitor
Activities List in standalone OracleWorkflowwith an attached access key password, or to
the Activity History page in the Status Monitor in Oracle Applications with guest access.

• In standalone Oracle Workflow, the URL displays the Activities List for a specific
instance of a workflow process in the Workflow Monitor. The Activities List allows
you to apply advanced filtering options in displaying the list of activities for a
process instance.

The URL returned by the functionWF_MONITOR.GetAdvancedEnvelopeURL() looks
as follows if the x_options argument is null:

<webagent>/wf_monitor.envelope?x_item_type=<item_type>&x_item_key=
<item_key>&x_admin_mode=<YES or NO>&x_access_key=<access_key>
&x_advanced=TRUE

2-88 Oracle Workow API Reference



<webagent> represents the base URL of the Web agent configured for Oracle
Workflow in your Web server. See: Setting Global User Preferences, Oracle Workflow
Administrator's Guide.

wf_monitor.envelope is the name of the PL/SQL package procedure that
generates the Workflow Monitor Notifications List for the process instance.

• In Oracle Applications, the URL displays the Activity History page for a
specific instance of a workflow process in the administrator version of the Status
Monitor, operating either with or without administrator privileges. All activity type
and activity status filtering options are automatically selected by default.

Arguments (input)
x_agent
The base Web agent string defined for Oracle Workflow or Oracle Self-Service Web
Applications in your Web server. The base Web agent string should be stored in the
WF_RESOURCES table, and looks something like:

http://<server.com:portID>/<PLSQL_agent_path>

When calling this function, your application must first retrieve the Web
agent string from the WF_RESOURCES token WF_WEB_AGENT by calling
WF_CORE.TRANSLATE(). See: Setting Global User Preferences, Oracle Workflow
Administrator's Guide or Applications Web Agent, Oracle Applications System
Administrator's Guide.

x_item_type
A valid item type.

x_item_key
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
process to report on.

x_admin_mode
A value of YES or NO. YES directs the function to retrieve the access key password
that runs the monitor in ’ADMIN’ mode in standalone Oracle Workflow, or to
grant administrator privileges to the user accessing the Status Monitor in Oracle
Applications. NO directs the function to retrieve the access key password that runs the
monitor in ’USER’ mode in standalone Oracle Workflow, or to withhold administrator
privileges from the user accessing the Status Monitor in Oracle Applications.

x_options
In standalone Oracle Workflow only, specify ’All’ if you wish to return a URL that
displays the Activities List with all filtering options checked. If you leave this argument
null, then a URL is returned that displays the Activities List with no filtering options
checked. This allows you to append any specific options if you wish. The default is null.

Note: The x_options parameter does not apply for the Status Monitor
in Oracle Applications. When you access the Status Monitor with a URL
from GetAdvancedEnvelopeURL(), all filtering options are always selected
by default.

Related Topics
TRANSLATE, page 2-76

Workow Engine APIs 2-89



Workow Status Monitor APIs
Call the following APIs to retrieve parameters for use with the self-service functions that
provide access to the Status Monitor from Oracle Applications forms. You can use these
APIs to help integrate other applications with the Status Monitor.

The Workflow Status Monitor PL/SQL APIs are defined in the PL/SQL package called
WF_FWKMON.

• GetEncryptedAccessKey, page 2-90

• GetEncryptedAdminMode, page 2-91

• IsMonitorAdministrator, page 2-91

Related Topics
Providing Access to the Status Monitor from Applications, Oracle Workflow
Administrator's Guide

Guest Access from Oracle E-Business Suite Forms, Oracle Workflow Administrator's Guide

GetEncryptedAccessKey

PL/SQL Syntax
function GetEncryptedAccessKey
(itemType in varchar2,
itemKey in varchar2,
adminMode in varchar2 default ’N’)
return varchar2;

Description
Returns an encrypted access key password that controls access to the specified
workflow process instance in the Status Monitor with the specified administrator
mode. The administrator mode lets you determine whether the user who accesses the
Status Monitor with this access key should have privileges to perform administrative
operations in the Status Monitor.

Arguments (input)
itemType
A valid workflow item type.

itemKey
A string generated from the application object’s primary key. The string uniquely
identifies the item within an item type. The item type and key together identify the
workflow process.

adminMode
Specify ’Y’ to grant administrator privileges to the user accessing the Status Monitor, or
’N’ to withhold administrator privileges from the user. The default is ’N’.

2-90 Oracle Workow API Reference



GetEncryptedAdminMode

PL/SQL Syntax
function GetEncryptedAdminMode
(adminMode in varchar2)
return varchar2;

Description
Returns an encrypted value for the specified administrator mode. The administrator
mode lets you determine whether a user accessing the Status Monitor should have
privileges to perform administrative operations in the Status Monitor.

Arguments (input)
adminMode
Specify ’Y’ to grant administrator privileges to the user accessing the Status Monitor, or
’N’ to withhold administrator privileges from the user. The default is ’N’.

IsMonitorAdministrator

PL/SQL Syntax
function IsMonitorAdministrator
(userName in varchar2)
return varchar2;

Description
Returns ’Y’ if the specified user has workflow administrator privileges, or ’N’ if the
specified user does not have workflow administrator privileges. Workflow administrator
privileges are assigned in the Workflow Configuration page. See: Setting Global User
Preferences, Oracle Workflow Administrator's Guide.

For example, you can use this function to help determine what administrator mode to
choose when calling GetEncryptedAccesKey() or GetEncryptedAdminMode() to retrieve
parameters for use with the Status Monitor form functions.

Arguments (input)
userName
A valid user name.

Oracle Workow Views
Public views are available for accessing workflow data. If you are using the version of
Oracle Workflow embedded in Oracle Applications, these views are installed in the
APPS account. If you are using the standalone version of Oracle Workflow, these views
are installed in the same account as the Oracle Workflow server.

• WF_ITEM_ACTIVITY_STATUSES_V, page 2-92

• WF_NOTIFICATION_ATTR_RESP_V, page 2-93

Workow Engine APIs 2-91



• WF_RUNNABLE_PROCESSES_V, page 2-94

• WF_ITEMS_V, page 2-94

Note: These database views are public, meaning they are available for
you to use for your custom data requirements. This description does not
mean that any privileges for these views have been granted to PUBLIC.

WF_ITEM_ACTIVITY_STATUSES_V
This view contains denormalized information about a workflow process and its
activities’ statuses. Use this view to create custom queries and reports on the status
of a particular item or process.

The following table describes the columns of the view.

WF_ITEM_ACTIVITY_STATUSES_V Columns

Name Null? Type

ROWID ROWID

SOURCE CHAR(1)

ITEM_TYPE VARCHAR2(8)

ITEM_TYPE_DISPLAY_
NAME

VARCHAR2(80)

ITEM_TYPE_DESCRIPTION VARCHAR2(240)

ITEM_KEY VARCHAR2(240)

USER_KEY VARCHAR2(240)

ITEM_BEGIN_DATE DATE

ITEM_END_DATE DATE

ACTIVITY_ID NUMBER

ACTIVITY_LABEL VARCHAR2(30)

ACTIVITY_NAME VARCHAR2(30)

ACTIVITY_DISPLAY_NAME VARCHAR2(80)

ACTIVITY_DESCRIPTION VARCHAR2(240)

ACTIVITY_TYPE_CODE VARCHAR2(8)

ACTIVITY_TYPE_DISPLAY_
NAME

VARCHAR2(80)

EXECUTION_TIME NUMBER

ACTIVITY_BEGIN_DATE DATE

ACTIVITY_END_DATE DATE

ACTIVITY_STATUS_CODE VARCHAR2(8)

2-92 Oracle Workow API Reference



Name Null? Type

ACTIVITY_STATUS_DIS
PLAY_NAME

VARCHAR2(80)

ACTIVITY_RESULT_CODE VARCHAR2(30)

ACTIVITY_RESULT_DIS
PLAY_NAME

VARCHAR2(4000)

ASSIGNED_USER VARCHAR2(30)

ASSIGNED_USER_DISPLAY_
NAME

VARCHAR2(4000)

NOTIFICATION_ID NUMBER

OUTBOUND_QUEUE_ID RAW(16)

ERROR_NAME VARCHAR2(30)

ERROR_MESSAGE VARCHAR2(2000)

ERROR_STACK VARCHAR2(4000)

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

WF_NOTIFICATION_ATTR_RESP_V
This view contains information about the Respond message attributes for a notification
group. If you plan to create a custom voting activity, use this view to create the function
that tallies the responses from the users in the notification group. See: Voting Activity,
Oracle Workflow Developer's Guide.

The following table describes the columns of the view.

Workow Engine APIs 2-93



WF_NOTIFICATION_ATTR_RESP_V Columns

Name Null? Type

GROUP_ID NOT NULL NUMBER

RECIPIENT_ROLE NOT NULL VARCHAR2(30)

RECIPIENT_ROLE_DISPLAY_
NAME

VARCHAR2(4000)

ATTRIBUTE_NAME NOT NULL VARCHAR2(30)

ATTRIBUTE_DISPLAY_
NAME

NOT NULL VARCHAR2(80)

ATTRIBUTE_VALUE VARCHAR2(2000)

ATTRIBUTE_DISPLAY_
VALUE

VARCHAR2(4000)

MESSAGE_TYPE NOT NULL VARCHAR2(8)

MESSAGE_NAME NOT NULL VARCHAR2(30)

WF_RUNNABLE_PROCESSES_V
This view contains a list of all runnable workflow processes in the ACTIVITIES table.

The following table describes the columns of the view.

WF_RUNNABLE_PROCESSES_V Columns

Name Null? Type

ITEM_TYPE NOT NULL VARCHAR2(8)

PROCESS_NAME NOT NULL VARCHAR2(30)

DISPLAY_NAME NOT NULL VARCHAR2(80)

WF_ITEMS_V
This view is a select-only version of the WF_ITEMS table.

The following table describes the columns of the view.

2-94 Oracle Workow API Reference



WF_ITEMS_V Columns

Name Null? Type

ITEM_TYPE NOT NULL VARCHAR2(8)

ITEM_KEY NOT NULL VARCHAR2(240)

USER_KEY VARCHAR2(240)

ROOT_ACTIVITY NOT NULL VARCHAR2(30)

ROOT_ACTIVITY_VERSION NOT NULL NUMBER

OWNER_ROLE VARCHAR2(30)

PARENT_ITEM_TYPE VARCHAR2(8)

PARENT_ITEM_KEY VARCHAR2(240)

PARENT_CONTEXT VARCHAR2(2000)

BEGIN_DATE NOT NULL DATE

END_DATE DATE

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

Workow Engine APIs 2-95





3
Directory Service APIs

This chapter describes the APIs for the Oracle Workflow directory service. The APIs
consist of PL/SQL functions and procedures that you can use to access the directory
service.

This chapter covers the following topics:

• Workflow Directory Service APIs

• Workflow LDAP APIs

• Workflow Local Synchronization APIs

• Workflow Role Hierarchy APIs

• Workflow Preferences API

Workow Directory Service APIs
The following APIs can be called by an application program or a workflow function in
the runtime phase to retrieve information about existing users and roles, as well as create
and manage new ad hoc users and roles in the directory service. These APIs are defined
in a PL/SQL package called WF_DIRECTORY.

• GetRoleUsers, page 3-2

• GetUserRoles, page 3-3

• GetRoleInfo, page 3-3

• GetRoleInfo2, page 3-4

• IsPerformer, page 3-5

• UserActive, page 3-5

• GetUserName, page 3-6

• GetRoleName, page 3-6

• GetRoleDisplayName, page 3-7

• CreateAdHocUser, page 3-7

• CreateAdHocRole, page 3-9

• CreateAdHocRole2, page 3-10

• AddUsersToAdHocRole, page 3-12

• AddUsersToAdHocRole2, page 3-12

Directory Service APIs 3-1



• RemoveUsersFromAdHocRole, page 3-13

• SetAdHocUserStatus, page 3-13

• SetAdHocRoleStatus, page 3-14

• SetAdHocUserExpiration, page 3-14

• SetAdHocRoleExpiration, page 3-15

• SetAdHocUserAttr, page 3-15

• SetAdHocRoleAttr, page 3-17

• ChangeLocalUserName, page 3-18

• IsMLSEnabled, page 3-18

Important: If you implement Oracle Internet Directory integration, you
must maintain your users only through Oracle Internet Directory. You
must not create ad hoc users in the WF_LOCAL_ROLES table, because
you risk discrepancies in your user information and unpredictable results
if you use any tool other than Oracle Internet Directory to maintain users
after integrating with Oracle Internet Directory. Consequently, if you
implement Oracle Internet Directory integration, you must not use the
CreateAdHocUser(), SetAdHocUserStatus(), SetAdHocUserExpiration(), or
SetAdHocUserAttr() APIs in the WF_DIRECTORY package.

You can still use ad hoc roles, however, since Workflow roles are not
maintained through Oracle Internet Directory.

Some directory service APIs use PL/SQL table composite datatypes defined in the
WF_DIRECTORY package. The following table shows the column datatype definition
for each PL/SQL table type.

PL/SQL Table Types in WF_DIRECTORY

PL/SQL Table Type Column Datatype Denition

UserTable varchar2(320)

RoleTable varchar2(320)

Related Topics
Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

GetRoleUsers

Syntax
procedure GetRoleUsers
(role in varchar2,
users out wF_DIRECTORY.UserTable);

3-2 Oracle Workow API Reference



Description
Returns a table of users for a given role.

Note: A role can contain only individual users as its members. It cannot
contain another role.

Arguments (input)
role
A valid role name.

GetUserRoles

Syntax
procedure GetUserRoles
(user in varchar2,
roles out WF_DIRECTORY.RoleTable);

Description
Returns a table of roles that a given user is assigned to.

Arguments (input)
user
A valid username.

GetRoleInfo

Syntax
procedure GetRoleInfo
(Role in varchar2,
Display_Name out varchar2,
Email_Address out varchar2,
Notification_Preference out varchar2,
Language out varchar2,
Territory out varchar2);

Description
Returns the following information about a role:

• Display name

• E-mail address

• Notification Preference (’QUERY’, ’MAILTEXT’, ’MAILHTML’, ’MAILATTH’, ’MA
ILHTM2’, ’SUMMARY’, or, for Oracle Applications only, ’SUMHTML’)

• Language

• Territory

Directory Service APIs 3-3



Note: In Oracle Applications, for roles that are Oracle Applications users
marked with an originating system of FND_USR or PER, the GetRoleInfo()
procedure by default retrieves the language and territory values from
the ICX: Language and ICX: Territory profile options for that Oracle
Applications user.

However, if the WF_PREFERENCE resource token is defined and set to
FND, then the GetRoleInfo() procedure obtains the language and territory
values from the Oracle Workflow preferences table instead.

The WF_PREFERENCE resource token is not used in the standalone
version of Oracle Workflow.

Arguments (input)
role
A valid role name.

GetRoleInfo2

Syntax
procedure GetRoleInfo2
(Role in varchar2,
Role_Info_Tbl out wf_directory.wf_local_roles_tbl_type);

Description
Returns the following information about a role in a PL/SQL table:

• Name

• Display name

• Description

• Notification preference (’QUERY’, ’MAILTEXT’, ’MAILHTML’, ’MAILATTH’, ’MA
ILHTM2’, ’SUMMARY’, or, for Oracle Applications only, ’SUMHTML’)

• Language

• Territory

• E-mail address

• Fax

• Status

• Expiration date

• Originating system

• Originating system ID

• Parent originating system

• Parent originating system ID

• Owner tag

• Standard Who columns

3-4 Oracle Workow API Reference



Note: In Oracle Applications, for roles that are Oracle Applications
users marked with an originating system of FND_USR or PER, the
GetRoleInfo2() procedure by default retrieves the language and territory
values from the ICX: Language and ICX: Territory profile options for
that Oracle Applications user.

However, if the WF_PREFERENCE resource token is defined and set
to FND, then the GetRoleInfo2() procedure obtains the language and
territory values from the Oracle Workflow preferences table instead.

The WF_PREFERENCE resource token is not used in the standalone
version of Oracle Workflow.

Arguments (input)
role
A valid role name.

IsPerformer

Syntax
function IsPerformer
(user in varchar2,
role in varchar2)
return boolean;

Description
Returns TRUE or FALSE to identify whether a user is a performer, also known as a
member, of a role.

Arguments (input)
user
A valid username.

role
A valid role name.

UserActive

Syntax
function UserActive
(username in varchar2)
return boolean;

Description
Determines if a user currently has a status of ’ACTIVE’ and is available to participate
in a workflow. Returns TRUE if the user has a status of ’ACTIVE’, otherwise it returns
FALSE.

Directory Service APIs 3-5



Arguments (input)
username
A valid username.

GetUserName

Syntax
procedure GetUserName
(p_orig_system in varchar2,
p_orig_system_id in varchar2,
p_name out varchar2,
p_display_name out varchar2);

Description
Returns a Workflow display name and username for a user given the system information
from the original user and roles repository.

Arguments (input)
p_orig_system
Code that identifies the original repository table.

p_orig_system_id
ID of a row in the original repository table.

GetRoleName

Syntax
procedure GetRoleName
(p_orig_system in varchar2,
p_orig_system_id in varchar2,
p_name out varchar2,
p_display_name out varchar2);

Description
Returns a Workflow display name and role name for a role given the system information
from the original user and roles repository.

Arguments (input)
p_orig_system
Code that identifies the original repository table.

p_orig_system_id
ID of a row in the original repository table.

3-6 Oracle Workow API Reference



GetRoleDisplayName

Syntax
function GetRoleDisplayName
(p_role_name in varchar2)
return varchar2;
pragma restrict_references(GetRoleDisplayName, WNDS, WNPS);

Description
Returns a Workflow role’s display name given the role’s internal name.

Arguments (input)
p_role_name
The internal name of the role.

CreateAdHocUser

Syntax
procedure CreateAdHocUser
(name in out varchar2,
display_name in out varchar2,
language in varchar2 default null,
territory in varchar2 default null,
description in varchar2 default null,
notification_preference in varchar2 default ’MAILHTML’,
email_address in varchar2 default null,
fax in varchar2 default null,
status in varchar2 default ’ACTIVE’,
expiration_date in date default null,
parent_orig_system in varchar2 default null,
parent_orig_system_id in number default null);

Description
Creates a user at runtime by creating a value in the WF_LOCAL_ROLES table with the
user flag set to Y. This is referred to as an ad hoc user.

Important: If you implement Oracle Internet Directory integration for
standalone OracleWorkflow, youmust maintain your users only through
Oracle Internet Directory. You must not use the CreateAdHocUser() API
to create new users in the WF_LOCAL_ROLES table, because you risk
discrepancies in your user information and unpredictable results if you
use any tool other than Oracle Internet Directory to maintain users after
integrating with Oracle Internet Directory.

Arguments (input)
name
An internal name for the user. The internal name must be no longer than 320
characters. It is recommended that the internal name be all uppercase. This procedure
checks that the name provided does not already exist in WF_USERS and returns an error

Directory Service APIs 3-7



if the name already exists. If you do not provide an internal name, the system generates
an internal name for you where the name contains a prefix of ’~WF_ADHOC-’ followed
by a sequence number.

display_name
The display name of the user. This procedure checks that the display name provided
does not already exist in WF_USERS and returns an error if the display name already
exists. If you do not provide a display name, the system generates one for you where the
display name contains a prefix of ’~WF_ADHOC-’ followed by a sequence number.

language
The value of the database NLS_LANGUAGE initialization parameter that specifies the
default language-dependent behavior of the user’s notification session. If null, the
procedure resolves this to the language setting of your current session.

territory
The value of the database NLS_TERRITORY initialization parameter that specifies the
default territory-dependent date and numeric formatting used in the user’s notification
session. If null, the procedure resolves this to the territory setting of your current session.

description
An optional description for the user.

notication_preference
Indicate how this user prefers to receive notifications: ’MAILTEXT’, ’MAILHTML’,
’MAILATTH’, ’MAILHTM2’, ’QUERY’, ’SUMMARY’, or, for Oracle Applications
only, ’SUMHTML’. If null, the procedure sets the notification preference to ’MAILHTML’.

email_address
A optional electronic mail address for this user.

fax
An optional fax number for the user.

status
The availability of the user to participate in a workflow process. The possible statuses
are ’ACTIVE’, ’EXTLEAVE’, ’INACTIVE’, and ’TMPLEAVE’. If null, the procedure
sets the status to ’ACTIVE’.

expiration_date
The date at which the user is no longer valid in the directory service.

parent_orig_system
An optional code for the originating system of an entity that you want to mark as being
related to this user.

parent_orig_system_id
The primary key that identifies the parent entity in the parent originating system.

Related Topics
Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator's Guide

3-8 Oracle Workow API Reference



CreateAdHocRole

Syntax
procedure CreateAdHocRole
(role_name in out varchar2,
role_display_name in out varchar2,
language in varchar2 default null,
territory in varchar2 default null,
role_description in varchar2 default null,
notification_preference in varchar2 default ’MAILHTML’,
role_users in varchar2 default null,
email_address in varchar2 default null,
fax in varchar2 default null,
status in varchar2 default ’ACTIVE’,
expiration_date in date default null,
parent_orig_system in varchar2 default null,
parent_orig_system_id in number default null,
owner_tag in varchar2 default null);

Description
Creates a role at runtime by creating a value in the WF_LOCAL_ROLES table with the
user flag set to N. This is referred to as an ad hoc role.

Note: A role can contain only individual users as its members. It cannot
contain another role.

Arguments (input)
role_name
An internal name for the role. The internal name must be no longer than 320
characters. It is recommended that the internal name be all uppercase. This procedure
checks that the name provided does not already exist in WF_ROLES and returns an error
if the name already exists. If you do not provide an internal name, the system generates
an internal name for you where the name contains a prefix of ’~WF_ADHOC-’ followed
by a sequence number.

role_display_name
The display name of the role. This procedure checks that the display name provided
does not already exist in WF_ROLES and returns an error if the display name already
exists. If you do not provide a display name, the system generates one for you where the
display name contains a prefix of ’~WF_ADHOC-’ followed by a sequence number.

language
The value of the database NLS_LANGUAGE initialization parameter that specifies the
default language-dependent behavior of the user’s notification session. If null, the
procedure resolves this to the language setting of your current session.

territory
The value of the database NLS_TERRITORY initialization parameter that specifies the
default territory-dependent date and numeric formatting used in the user’s notification
session. If null, the procedure resolves this to the territory setting of your current session.

role_description
An optional description for the role.

Directory Service APIs 3-9



notication_preference
Indicate how this role receives notifications: ’MAILTEXT’, ’MAILHTML’, ’MAILATTH’,
’MAILHTM2’, ’QUERY’, ’SUMMARY’, or, for Oracle Applications only, ’SUMHTML’. If
null, the procedure sets the notification preference to ’MAILHTML’.

role_users
Indicate the names of the users that belong to this role, using commas or spaces to
delimit the list.

email_address
A optional electronic mail address for this role or a mail distribution list defined by your
electronic mail system.

fax
An optional fax number for the role.

status
The availability of the role to participate in a workflow process. The possible statuses
are ACTIVE, EXTLEAVE, INACTIVE, and TMPLEAVE. If null, the procedure sets the
status to ’ACTIVE’.

expiration_date
The date at which the role is no longer valid in the directory service.

parent_orig_system
An optional code for the originating system of an entity that you want to mark as being
related to this role.

parent_orig_system_id
The primary key that identifies the parent entity in the parent originating system.

owner_tag
A code to identify the program or application that owns the information for this role.

Related Topics
Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator's Guide

CreateAdHocRole2

Syntax
procedure CreateAdHocRole2
(role_name in out varchar2,
role_display_name in out varchar2,
language in varchar2 default null,
territory in varchar2 default null,
role_description in varchar2 default null,
notification_preference in varchar2 default ’MAILHTML’,
role_users in WF_DIRECTORY.UserTable,
email_address in varchar2 default null,
fax in varchar2 default null,
status in varchar2 default ’ACTIVE’,
expiration_date in date default null,
parent_orig_system in varchar2 default null,
parent_orig_system_id in number default null,
owner_tag in varchar2 default null);

3-10 Oracle Workow API Reference



Description
Creates a role at runtime by creating a value in the WF_LOCAL_ROLES table with the
user flag set to N. This is referred to as an ad hoc role. CreateAdHocRole2() accepts the list
of users who belong to the role in the WF_DIRECTORY.UserTable format, which lets
you include user names that contain spaces or commas.

Note: A role can contain only individual users as its members. It cannot
contain another role.

Arguments (input)
role_name
An internal name for the role. The internal name must be no longer than 320
characters. It is recommended that the internal name be all uppercase. This procedure
checks that the name provided does not already exist in WF_ROLES and returns an error
if the name already exists. If you do not provide an internal name, the system generates
an internal name for you where the name contains a prefix of ’~WF_ADHOC-’ followed
by a sequence number.

role_display_name
The display name of the role. This procedure checks that the display name provided
does not already exist in WF_ROLES and returns an error if the display name already
exists. If you do not provide a display name, the system generates one for you where the
display name contains a prefix of ’~WF_ADHOC-’ followed by a sequence number.

language
The value of the database NLS_LANGUAGE initialization parameter that specifies the
default language-dependent behavior of the user’s notification session. If null, the
procedure resolves this to the language setting of your current session.

territory
The value of the database NLS_TERRITORY initialization parameter that specifies the
default territory-dependent date and numeric formatting used in the user’s notification
session. If null, the procedure resolves this to the territory setting of your current session.

role_description
An optional description for the role.

notication_preference
Indicate how this role receives notifications: ’MAILTEXT’, ’MAILHTML’, ’MAILATTH’,
’MAILHTM2’, ’QUERY’, ’SUMMARY’, or, for Oracle Applications only, ’SUMHTML’. If
null, the procedure sets the notification preference to ’MAILHTML’.

role_users
The names of the users that belong to this role, as a table in the WF_DIRECTORY.
UserTable format.

email_address
A optional electronic mail address for this role or a mail distribution list defined by your
electronic mail system.

fax
An optional fax number for the role.

status
The availability of the role to participate in a workflow process. The possible statuses
are ACTIVE, EXTLEAVE, INACTIVE, and TMPLEAVE. If null, the procedure sets the
status to ’ACTIVE’.

Directory Service APIs 3-11



expiration_date
The date at which the role is no longer valid in the directory service.

parent_orig_system
An optional code for the originating system of an entity that you want to mark as being
related to this role.

parent_orig_system_id
The primary key that identifies the parent entity in the parent originating system.

owner_tag
A code to identify the program or application that owns the information for this role.

Related Topics
Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator's Guide

AddUsersToAdHocRole

Syntax
procedure AddUsersToAdHocRole
(role_name in varchar2,
role_users in varchar2);

Description
Adds users to an existing ad hoc role.

Note: A role can contain only individual users as its members. It cannot
contain another role.

Arguments (input)
role_name
The internal name of the ad hoc role.

role_users
The list of users, delimited by spaces or commas. Users can be ad hoc users or users
defined in an application, but they must already be defined in the Oracle Workflow
directory service.

AddUsersToAdHocRole2

Syntax
procedure AddUsersToAdHocRole2
(role_name in varchar2,
role_users in WF_DIRECTORY.UserTable);

Description
Adds users to a existing ad hoc role. AddUsersToAdHocRole2() accepts the list of users
in the WF_DIRECTORY.UserTable format, which lets you include user names that
contain spaces or commas.

3-12 Oracle Workow API Reference



Note: A role can contain only individual users as its members. It cannot
contain another role.

Arguments (input)
role_name
The internal name of the ad hoc role.

role_users
The list of users, as a table in the WF_DIRECTORY.UserTable format. Users can be ad
hoc users or users defined in an application, but they must already be defined in the
Oracle Workflow directory service.

RemoveUsersFromAdHocRole

Syntax
procedure RemoveUsersFromAdHocRole
(role_name in varchar2,
role_users in varchar2 default null);

Description
Removes users from an existing ad hoc role.

Arguments (input)
role_name
The internal name of the ad hoc role.

role_users
List of users to remove from the ad hoc role. The users are delimited by commas or
spaces. If null, all users are removed from the role.

SetAdHocUserStatus

Syntax
procedure SetAdHocUserStatus
(user_name in varchar2,
status in varchar2 default ’ACTIVE’);

Description
Sets the status of an ad hoc user as ’ACTIVE’ or ’INACTIVE’.

Important: If you implement Oracle Internet Directory integration, you
must maintain your users only through Oracle Internet Directory. You
must not use the SetAdHocUserStatus() API to update user information
in the WF_LOCAL_ROLES table, because you risk discrepancies in your
user information and unpredictable results if you use any tool other
than Oracle Internet Directory to maintain users after integrating with
Oracle Internet Directory.

Directory Service APIs 3-13



Arguments (input)
user_name
The internal name of the user.

status
A status of ’ACTIVE’ or ’INACTIVE’ to set for the user. If null, the status is ’ACTIVE’.

SetAdHocRoleStatus

Syntax
procedure SetAdHocRoleStatus
(role_name in varchar2,
status in varchar2 default ’ACTIVE’);

Description
Sets the status of an ad hoc role as ’ACTIVE’ or ’INACTIVE’.

Arguments (input)
role_name
The internal name of the role.

status
A status of ’ACTIVE’ or ’INACTIVE’ to set for the role. If null, the status is ’ACTIVE’.

SetAdHocUserExpiration

Syntax
procedure SetAdHocUserExpiration
(user_name in varchar2,
expiration_date in date default sysdate);

Description
Updates the expiration date for an ad hoc user.

Note that although users and roles whose expiration date has passed do not
appear in the seeded WF_USERS, WF_ROLES, and WF_USER_ROLES views, they
are not removed from the Workflow local tables until you purge them using
Directory(). You should periodically purge expired users and roles in order to improve
performance. See: Directory, page 2-82.

Important: If you implement Oracle Internet Directory integration, you
must maintain your users only through Oracle Internet Directory. You
must not use the SetAdHocUserExpiration() API to update user
information in the WF_LOCAL_ROLES table, because you risk
discrepancies in your user information and unpredictable results if you
use any tool other than Oracle Internet Directory to maintain users after
integrating with Oracle Internet Directory.

3-14 Oracle Workow API Reference



Arguments (input)
user_name
The internal name of the ad hoc user.

expiration_date
New expiration date. If null, the procedure defaults the expiration date to sysdate.

SetAdHocRoleExpiration

Syntax
procedure SetAdHocRoleExpiration
(role_name in varchar2,
expiration_date in date default sysdate);

Description
Updates the expiration date for an ad hoc role.

Note that although users and roles whose expiration date has passed do not
appear in the seeded WF_USERS, WF_ROLES, and WF_USER_ROLES views, they
are not removed from the Workflow local tables until you purge them using
Directory(). You should periodically purge expired users and roles in order to improve
performance. See: Directory, page 2-82.

Arguments (input)
role_name
The internal name of the ad hoc role.

expiration_date
New expiration date. If null, the procedure defaults the expiration date to sysdate.

SetAdHocUserAttr

Syntax
procedure SetAdHocUserAttr
(user_name in varchar2,
display_name in varchar2 default null,
notification_preference in varchar2 default null,
language in varchar2 default null,
territory in varchar2 default null,
email_address in varchar2 default null,
fax in varchar2 default null,
parent_orig_system in varchar2 default null,
parent_orig_system_id in number default null,
owner_tag in varchar2 default null);

Description
Updates the attributes for an ad hoc user.

Important: If you implement Oracle Internet Directory integration, you
must maintain your users only through Oracle Internet Directory. You

Directory Service APIs 3-15



must not use the SetAdHocUserAttr() API to update user information in
the WF_LOCAL_ROLES table, because you risk discrepancies in your
user information and unpredictable results if you use any tool other
than Oracle Internet Directory to maintain users after integrating with
Oracle Internet Directory.

Arguments (input)
user_name
The internal name of the ad hoc user to update.

display_name
A new display name for the ad hoc user. If null, the display name is not updated.

notication_preference
A new notification preference of ’MAILTEXT’, ’MAILHTML’, ’MAILATTH’, ’MA
ILHTM2’, ’QUERY’, ’SUMMARY’, or, for Oracle Applications only, ’SUMHTML’. If
null, the notification preference is not updated.

language
A new value of the database NLS_LANGUAGE initialization parameter for the ad hoc
user. If null, the language setting is not updated.

territory
A new value of the database NLS_TERRITORY initialization parameter for the ad hoc
user. If null, the territory setting is not updated.

email_address
A new valid electronic mail address for the ad hoc user. If null, the electronic mail
address is not updated.

fax
A new fax number for the ad hoc user. If null, the fax number is not updated.

parent_orig_system
An optional code for the originating system of an entity that you want to mark as being
related to this user.

parent_orig_system_id
The primary key that identifies the parent entity in the parent originating system.

owner_tag
A code to identify the program or application that owns the information for this user.

3-16 Oracle Workow API Reference



SetAdHocRoleAttr

Syntax
procedure SetAdHocRoleAttr
(role_name in varchar2,
display_name in varchar2 default null,
notification_preference in varchar2 default null,
language in varchar2 default null,
territory in varchar2 default null,
email_address in varchar2 default null,
fax in varchar2 default null,
parent_orig_system in varchar2 default null,
parent_orig_system_id in number default null,
owner_tag in varchar2 default null);

Description
Updates the attributes for an ad hoc role.

Arguments (input)
role_name
The internal name of the ad hoc role to update.

display_name
A new display name for the ad hoc role. If null, the display name is not updated.

notication_preference
A new notification preference of ’MAILTEXT’, ’MAILHTML’, ’MAILATTH’, ’MA
ILHTM2’, ’QUERY’, ’SUMMARY’, or, for Oracle Applications only, ’SUMHTML’. If
null, the notification preference is not updated.

language
A new value of the database NLS_LANGUAGE initialization parameter for the ad hoc
role. If null, the language setting is not updated.

territory
A new value of the database NLS_TERRITORY initialization parameter for the ad hoc
role. If null, the territory setting is not updated.

email_address
A new valid electronic mail address for the ad hoc role. If null, the electronic mail
address is not updated.

fax
A new fax number for the ad hoc role. If null, the fax number is not updated.

parent_orig_system
An optional code for the originating system of an entity that you want to mark as being
related to this role.

parent_orig_system_id
The primary key that identifies the parent entity in the parent originating system.

owner_tag
A code to identify the program or application that owns the information for this role.

Directory Service APIs 3-17



ChangeLocalUserName

Syntax
function ChangeLocalUserName
(OldName in varchar2,
NewName in varchar2,
Propagate in boolean default TRUE)
return boolean;

Description
Changes a user’s name in the WF_LOCAL_ROLES table. Returns TRUE if the name
change completes successfully; otherwise, the API returns FALSE.

Arguments (input)
OldName
The current name of the user.

NewName
The new name for the user.

Propagate
Specify TRUE to change all occurrences of the old user name to the new user name.

IsMLSEnabled

Syntax
function IsMLSEnabled
(p_orig_system in varchar2)
return boolean;

Description
Determines whether Multilingual Support (MLS) is enabled for the specified originating
system. Returns TRUE if MLS is enabled; otherwise the API returns FALSE.

Arguments (input)
p_orig_system
A system from which directory service information originates.

Workow LDAP APIs
Call the following APIs to synchronize local user information in yourWorkflow directory
service with the users in an LDAP directory such as Oracle Internet Directory. These
APIs are defined in a PL/SQL package called WF_LDAP.

• Synch_changes, page 3-19

• Synch_all, page 3-19

• Schedule_changes, page 3-20

3-18 Oracle Workow API Reference



Related Topics
Synchronizing Workflow Directory Services with Oracle Internet Directory, Oracle
Workflow Administrator's Guide

Synch_changes

Syntax
function synch_changes
return boolean;

Description
Determines whether there have been any user changes to an LDAP directory
since the last synchronization by querying the LDAP change log records; if there
are any changes, including creation, modification, and deletion, Synch_changes()
stores the user attribute information in an attribute cache and raises the
oracle.apps.global.user.change event to alert interested parties. The function
connects to the LDAP directory specified in the global workflow preferences. One event
is raised for each changed user.

If the function completes successfully, it returns TRUE; otherwise, if it encounters an
exception, it returns FALSE.

Related Topics
Synchronizing Workflow Directory Services with Oracle Internet Directory, Oracle
Workflow Administrator's Guide

Setting Global User Preferences, Oracle Workflow Administrator's Guide

User Entry Has Changed Event, Oracle Workflow Developer's Guide

Synch_all

Syntax
function synch_all
return boolean;

Description
Retrieves all users from an LDAP directory, stores the user attribute information in an
attribute cache, and raises the oracle.apps.global.user.change event to alert
interested parties. The function connects to the LDAP directory specified in the global
workflow preferences. One event is raised for each user.

Because Synch_all() retrieves information for all users stored in the LDAP directory, you
should use this function only once during setup, or as required for recovery or
cleanup. Subsequently, you can use Synch_changes() or Schedule_changes() to retrieve
only changed user information.

If the function completes successfully, it returns TRUE; otherwise, if it encounters an
exception, it returns FALSE.

Directory Service APIs 3-19



The standalone Oracle Workflow installation runsSynch_all() to begin your Workflow
directory service synchronization with Oracle Internet Directory if you implement
Oracle Internet Directory integration.

Related Topics
Synchronizing Workflow Directory Services with Oracle Internet Directory, Oracle
Workflow Administrator's Guide

Setting Global User Preferences, Oracle Workflow Administrator's Guide

User Entry Has Changed Event, Oracle Workflow Developer's Guide

Synch_changes, page 3-19

Schedule_changes, page 3-20

Schedule_changes

Syntax
procedure schedule_changes
(l_day in pls_integer default 0,
l_hour in pls_integer default 0,
l_minute in pls_integer default 10);

Description
Runs the Synch_changes() API repeatedly at the specified time interval to check for user
changes in an LDAP directory and alert interested parties of any changes. The default
interval is ten minutes. Schedule_changes() submits a database job using the DBMS_JOB
utility to run Synch_changes().

Run Schedule_changes() to maintain your Workflow directory service synchronization
with Oracle Internet Directory if you implement Oracle Internet Directory integration.

Arguments (input)
l_day
The number of days in the interval to specify how often you want to run the
Synch_changes() API. The default value is zero.

l_hour
The number of hours in the interval to specify how often you want to run the
Synch_changes() API. The default value is zero.

l_minute
The number of minutes in the interval to specify how often you want to run the
Synch_changes() API. The default value is ten.

Related Topics
Synchronizing Workflow Directory Services with Oracle Internet Directory, Oracle
Workflow Administrator's Guide

Synch_changes, page 3-19

3-20 Oracle Workow API Reference



Workow Local Synchronization APIs
The following APIs can be called in Oracle Applications to synchronize user and role
information stored in application tables with the information in the Workflow local
tables. These APIs are defined in a PL/SQL package called WF_LOCAL_SYNCH.

• Propagate_User, page 3-21

• Propagate_Role, page 3-25

• PropagateUserRole, page 3-29

Note: The Propagate_User_Role() API from earlier versions of Oracle
Workflow is replaced by the PropagateUserRole() API. The current
version of Oracle Workflow still recognizes the Propagate_User_Role()
API for backward compatibility, but moving forward, you should
only use the new PropagateUserRole() API where appropriate.

Related Topics
Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator's Guide

Propagate_User

Syntax
procedure Propagate_User
(p_orig_system in varchar2,
p_orig_system_id in number,
p_attributes in wf_parameter_list_t,
p_start_date in date default null,
p_expiration_date in date default null);

Description
Synchronizes the information for a user from an application table with the
WF_LOCAL_ROLES table and marks this record as an individual user by setting the
user flag to Y. The user is identified by the specified originating system and originating
system ID. The partition ID where the user’s information is stored is set automatically
depending on the originating system.

Note: For Oracle Applications, only Oracle Applications users from
the FND_USER table, Oracle Trading Community Architecture (TCA)
person parties, and TCA contacts (relationship parties) should be
synchronized using Propagate_User(). All other Oracle Applications
modules should synchronize their information using Propagate_Role().

The user information to be stored in the WF_LOCAL_ROLES table must be provided in
the WF_PARAMETER_LIST_T format. You can use theWF_EVENT.AddParameterToList()
API to add attributes to the list. The following table shows the attributes that should
be included in the list to populate the required columns in WF_LOCAL_ROLES. The
standard LDAP attribute names should be used for these attributes.

Directory Service APIs 3-21



User Attributes

Database Column Attribute Name

NAME [USER_NAME]

DISPLAY_NAME [DisplayName]

DESCRIPTION [description]

NOTIFICATION_PREFERENCE [orclWorkFlowNotificationPref]

LANGUAGE [preferredLanguage]

TERRITORY [orclNLSTerritory]

EMAIL_ADDRESS [mail]

FAX [FacsimileTelephoneNumber]

STATUS [orclIsEnabled]

EXPIRATION_DATE [ExpirationDate]

ORIG_SYSTEM [orclWFOrigSystem]

ORIG_SYSTEM_ID [orclWFOrigSystemID]

PARENT_ORIG_SYSTEM [orclWFParentOrigSys]

PARENT_ORIG_SYSTEM_ID [orclWFParentOrigSysID]

OWNER_TAG [OWNER_TAG]

PERSON_PARTY_ID [PERSON_PARTY_ID]

LAST_UPDATED_BY [LAST_UPDATED_BY]

LAST_UPDATE_DATE [LAST_UPDATE_DATE]

LAST_UPDATE_LOGIN [LAST_UPDATE_LOGIN]

CREATED_BY [CREATED_BY]

CREATION_DATE [CREATION_DATE]

In normal operating mode, if any of these attributes except USER_NAME are not
passed in the attribute list or are null, the existing value in the corresponding field in
WF_LOCAL_ROLES remains the same. For example, if no e-mail address is passed, the
existing e-mail address for the user is retained. However, you must always pass the
USER_NAME attribute, because the Propagate_User() procedure uses this value in a WHERE
condition and will fail if the USER_NAME is not provided. Also, if the user record does
not already exist, you must pass all of the listed attributes since there are no existing
values to use.

For more robust code, you should always pass all of the listed attributes when calling
Propagate_User(). In this way you can avoid errors caused by trying to determine
dynamically which attributes to pass.

Note: If a display name is not provided in the attribute list when
the user record is first created in normal operating mode, this

3-22 Oracle Workow API Reference



value is set by default to a composite value in the format
<orig_system>:<orig_system_ID> in the user record in
WF_LOCAL_ROLES. Additionally, if no notification preference is
provided, the notification preference for the user record is set by
default to MAILHTML, and if no status is provided, the status for the
user record is set by default to ACTIVE. If no TCA person party ID is
provided, Oracle Workflow uses a value consisting of the originating
system and originating system ID as the person party ID.

You can also call Propagate_User() in overwrite mode by including a special attribute
named WFSYNCH_OVERWRITE with a value of ’TRUE’. In overwrite mode, if one
of the following attributes is not passed or is null, the procedure sets the value of the
corresponding field in WF_LOCAL_ROLES to null, deleting the previous value.

• description

• preferredLanguage

• orclNLSTerritory

• mail

• FacsimileTelephoneNumber

• ExpirationDate

• orclWFParentOrigSys

• orclWFParentOrigSysID

• OWNER_TAG

• LAST_UPDATED_BY

• LAST_UPDATE_DATE

• LAST_UPDATE_LOGIN

Consequently, when you are using overwrite mode, you must pass values for all the
attributes that you do not want to be null. Also, you must always pass the USER_NAME
attribute.

Note: The DISPLAY_NAME, NOTIFICATION_PREFERENCE,
STATUS, ORIG_SYSTEM, and ORIG_SYSTEM_ID columns in the
WF_LOCAL_ROLES table have a NOT NULL constraint, so these
columns retain their existing values if you do not pass a value for the
corresponding attributes, even if you are using overwrite mode.

The NAME column in WF_LOCAL_ROLES also has a NOT NULL
constraint, and you cannot omit the USER_NAME attribute in any case
because it is required for the API.

Certain values, including the originating system, originating system ID, and expiration
date, can be passed both as parameters for the Propagate_User() API and as attributes
within the attribute list parameter. These values are repeated in the attribute list because
Propagate_User() sends only the attribute list to the Entity Manager that coordinates
LDAP integration, and not any of the procedure’s other parameters.

Directory Service APIs 3-23



• The originating system and originating system ID values that are passed as
parameters to the procedure override any originating system and originating system
ID values that are provided as attributes within the attribute list, if these values differ.

• Likewise, if an expiration date value is passed as a parameter to the procedure, that
value overrides any expiration date value provided as an attribute within the
attribute list. However, if the p_expiration_date parameter is null, the value of
the ExpirationDate attribute will be used, if one is provided. You must provide
the ExpirationDate attribute value in the following format:

to_char(<your date variable>, WF_ENGINE.Date_Format)

Oracle Workflow also provides two additional special attributes that you can use to
specify how the user information should be modified.

• DELETE - You can use this attribute when you want to remove a user from
availability to participate in a workflow. If you include this attribute with a value of
’TRUE’, the expiration date for the user in WF_LOCAL_ROLES is set to sysdate and
the status is set to INACTIVE.

Note: If you also pass a value for the p_expiration_date
parameter, however, that value will override the DELETE
attribute. Additionally, if the p_expiration_date parameter is
null but you include the ExpirationDate attribute, that attribute
value will override the DELETE attribute. In these cases the user will
remain valid and active until the specified expiration date.

• UpdateOnly - You can use this attribute for performance gain when you
want to modify information for a user for whom a record already exists in
WF_LOCAL_ROLES. If you include this attribute with a value of ’TRUE’, the
Propagate_User() API attempts to update the record directly, without first inserting
the record.

If this update attempt fails because a record does not already exist for that user, the
procedure will then insert the record. However, the initial unsuccessful attempt will
degrade performance, so you should only use the UpdateOnly attribute when you
are certain that the user record already exists in WF_LOCAL_ROLES.

Arguments (input)
p_orig_system
A code that you assign to the directory repository that is the source of the user
information.

p_orig_system_id
The primary key that identifies the user in this repository system.

p_attributes
A list of attribute name and value pairs containing information about the user.

p_start_date
The date at which the user becomes valid in the directory service.

p_expiration_date
The date at which the user is no longer valid in the directory service.

3-24 Oracle Workow API Reference



Related Topics
AddParameterToList, page 5-30

Propagate_Role

Syntax
procedure Propagate_Role
(p_orig_system in varchar2,
p_orig_system_id in number,
p_attributes in wf_parameter_list_t,
p_start_date in date default null,
p_expiration_date in date default null);

Description
Synchronizes the information for a role from an application table with the
WF_LOCAL_ROLES table and sets the user flag for the role to N. The role is identified by
the specified originating system and originating system ID. The partition ID where the
role’s information is stored is set automatically depending on the originating system.

The role information to be stored in the WF_LOCAL_ROLES table must be provided in
the WF_PARAMETER_LIST_T format. You can use theWF_EVENT.AddParameterToList()
API to add attributes to the list. The following table shows the attributes that should
be included in the list to populate the required columns in WF_LOCAL_ROLES. The
standard LDAP attribute names should be used for these attributes.

Directory Service APIs 3-25



Role Attributes

Database Column Attribute Name

NAME [USER_NAME]

DISPLAY_NAME [DisplayName]

DESCRIPTION [description]

NOTIFICATION_PREFERENCE [orclWorkFlowNotificationPref]

LANGUAGE [preferredLanguage]

TERRITORY [orclNLSTerritory]

EMAIL_ADDRESS [mail]

FAX [FacsimileTelephoneNumber]

STATUS [orclIsEnabled]

EXPIRATION_DATE [ExpirationDate]

ORIG_SYSTEM [orclWFOrigSystem]

ORIG_SYSTEM_ID [orclWFOrigSystemID]

PARENT_ORIG_SYSTEM [orclWFParentOrigSys]

PARENT_ORIG_SYSTEM_ID [orclWFParentOrigSysID]

OWNER_TAG [OWNER_TAG]

LAST_UPDATED_BY [LAST_UPDATED_BY]

LAST_UPDATE_DATE [LAST_UPDATE_DATE]

LAST_UPDATE_LOGIN [LAST_UPDATE_LOGIN]

CREATED_BY [CREATED_BY]

CREATION_DATE [CREATION_DATE]

In normal operating mode, if any of these attributes except USER_NAME are not
passed in the attribute list or are null, the existing value in the corresponding field in
WF_LOCAL_ROLES remains the same. For example, if no e-mail address is passed, the
existing e-mail address for the role is retained. However, you must always pass the
USER_NAME attribute, because the Propagate_Role() procedure uses this value in a WHERE
condition and will fail if the USER_NAME is not provided. Also, if the user record does
not already exist, you must pass all of the listed attributes since there are no existing
values to use.

For more robust code, you should always pass all of the listed attributes when calling
Propagate_Role(). In this way you can avoid errors caused by trying to determine
dynamically which attributes to pass.

Note: If a display name is not provided in the attribute list when
the role record is first created in normal operating mode, this
value is set by default to a composite value in the format
<orig_system>:<orig_system_ID> in the role record in

3-26 Oracle Workow API Reference



WF_LOCAL_ROLES. Additionally, if no notification preference is
provided, the notification preference for the role record is set by default
to MAILHTML, and if no status is provided, the status for the role record
is set by default to ACTIVE.

You can also call Propagate_Role() in overwrite mode by including a special attribute
named WFSYNCH_OVERWRITE with a value of ’TRUE’. In overwrite mode, if one
of the following attributes is not passed or is null, the procedure sets the value of the
corresponding field in WF_LOCAL_ROLES to null, deleting the previous value.

• description

• preferredLanguage

• orclNLSTerritory

• mail

• FacsimileTelephoneNumber

• ExpirationDate

• orclWFParentOrigSys

• orclWFParentOrigSysID

• OWNER_TAG

• LAST_UPDATED_BY

• LAST_UPDATE_DATE

• LAST_UPDATE_LOGIN

Consequently, when you are using overwrite mode, you must pass values for all the
attributes that you do not want to be null. Also, you must always pass the USER_NAME
attribute.

Note: The DISPLAY_NAME, NOTIFICATION_PREFERENCE,
STATUS, ORIG_SYSTEM, and ORIG_SYSTEM_ID columns in the
WF_LOCAL_ROLES table have a NOT NULL constraint, so these
columns retain their existing values if you do not pass a value for the
corresponding attributes, even if you are using overwrite mode.

The NAME column in WF_LOCAL_ROLES also has a NOT NULL
constraint, and you cannot omit the USER_NAME attribute in any case
because it is required for the API.

Certain values, including the originating system, originating system ID, and expiration
date, can be passed both as parameters for the Propagate_Role() API and as attributes
within the attribute list parameter. These values are repeated in the attribute list because
Propagate_Role() sends only the attribute list to the Entity Manager that coordinates
LDAP integration, and not any of the procedure’s other parameters.

• The originating system and originating system ID values that are passed as
parameters to the procedure override any originating system and originating system
ID values that are provided as attributes within the attribute list, if these values differ.

• Likewise, if an expiration date value is passed as a parameter to the procedure, that
value overrides any expiration date value provided as an attribute within the

Directory Service APIs 3-27



attribute list. However, if the p_expiration_date parameter is null, the value of
the ExpirationDate attribute will be used, if one is provided. You must provide
the ExpirationDate attribute value in the following format:

to_char(<your date variable>, WF_ENGINE.Date_Format)

Oracle Workflow also provides two additional special attributes that you can use to
specify how the role information should be modified.

• DELETE - You can use this attribute when you want to remove a role from availability
to participate in a workflow. If you include this attribute with a value of ’TRUE’, the
expiration date for the role in WF_LOCAL_ROLES is set to sysdate and the status is
set to INACTIVE.

Note: If you also pass a value for the p_expiration_date
parameter, however, that value will override the DELETE
attribute. Additionally, if the p_expiration_date parameter is
null but you include the ExpirationDate attribute, that attribute
value will override the DELETE attribute. In these cases the role will
remain valid and active until the specified expiration date.

• UpdateOnly - You can use this attribute for performance gain when you
want to modify information for a role for which a record already exists in
WF_LOCAL_ROLES. If you include this attribute with a value of ’TRUE’, the
Propagate_Role() API attempts to update the record directly, without first inserting
the record.

If this update attempt fails because a record does not already exist for that role, the
procedure will then insert the record. However, the initial unsuccessful attempt will
degrade performance, so you should only use the UpdateOnly attribute when you
are certain that the role record already exists in WF_LOCAL_ROLES.

Note: In Oracle Applications, if an Oracle Human Resources person
role with an originating system of PER_ROLE is propagated using
Propagate_Role(), and that person is linked to an Oracle Applications
user, then the procedure updates the corresponding user record
with an originating system of PER in WF_LOCAL_ROLES, as well
as the person record.

Arguments (input)
p_orig_system
A code that you assign to the directory repository that is the source of the role
information.

p_orig_system_id
The primary key that identifies the role in this repository system.

p_attributes
A list of attribute name and value pairs containing information about the role.

p_start_date
The date at which the role becomes valid in the directory service.

p_expiration_date
The date at which the role is no longer valid in the directory service.

3-28 Oracle Workow API Reference



Related Topics
AddParameterToList, page 5-30

PropagateUserRole

Syntax
procedure PropagateUserRole
(p_user_name in varchar2,
p_role_name in varchar2,
p_user_orig_system in varchar2 default null,
p_user_orig_system_id in number default null,
p_role_orig_system in varchar2 default null,
p_role_orig_system_id in number default null,
p_start_date in date default null,
p_expiration_date in date default null,
p_overwrite in boolean default FALSE,
p_raiseErrors in boolean default FALSE,
p_parent_orig_system in varchar2 default null,
p_parent_orig_system_id in varchar2 default null,
p_ownerTag in varchar2 default null,
p_createdBy in number default null,
p_lastUpdatedBy in number default null,
p_lastUpdateLogin in number default null,
p_creationDate in date default null,
p_lastUpdateDate in date default null);

Description
Synchronizes the information for an association of a user and a role from an application
table with the WF_LOCAL_USER_ROLES table.

Arguments (input)
p_user_name
The internal name of the user.

p_role_name
The internal name of the role.

p_user_orig_system
A code that you assign to the directory repository that is the source of the user
information.

p_user_orig_system_id
The primary key that identifies the user in this repository system.

p_role_orig_system
A code that you assign to the directory repository that is the source of the role
information.

p_role_orig_system_id
The primary key that identifies the role in this repository system.

p_start_date
The date at which the association of this user with this role becomes valid in the
directory service.

Directory Service APIs 3-29



p_expiration_date
The date at which the association of this user with this role is no longer valid in the
directory service.

p_overwrite
Specify TRUE or FALSE to determine whether to propagate the information in overwrite
mode. In overwrite mode, if any attribute is not passed or is null, the procedure sets
the value of the corresponding field in WF_LOCAL_USER_ROLES to null, deleting
the previous value.

Note: Overwrite mode does not affect the user name and role name
attributes. You must pass values for these parameters, because they
are required for this procedure, and because the USER_NAME and
ROLE_NAME columns in the WF_LOCAL_USER_ROLES table have a
NOT NULL constraint.

p_raiseErrors
Specify TRUE or FALSE to determine whether the procedure should raise an exception
if it encounters an error.

p_parent_orig_system
A code for the originating system of an entity that you want to mark as being related to
the association of this user with this role.

p_parent_orig_system_
id
The primary key that identifies the parent entity in the parent originating system.

p_ownerTag
A code to identify the program or application that owns the information for the
association of this user with this role.

p_createdBy
Standard Who column.

p_lastUpdatedBy
Standard Who column.

p_lastUpdateLogin
Standard Who column.

p_creationDate
Standard Who column.

p_lastUpdateDate
Standard Who column.

Workow Role Hierarchy APIs
The following APIs can be called by an application program or a workflow function
in the runtime phase to manage role hierarchy relationships in the Oracle E-Business
Suite directory service. These APIs are defined in a PL/SQL package called
WF_ROLE_HIERARCHY.

• AddRelationship, page 3-31

• ExpireRelationship, page 3-31

• GetRelationships, page 3-32

3-30 Oracle Workow API Reference



• GetAllRelationships, page 3-32

Related Topics
Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator's Guide

AddRelationship

Syntax
function AddRelationship
(p_sub_name in varchar2,
p_super_name in varchar2,
p_deferMode in boolean default FALSE,
p_enabled in varchar2 default ’Y’)
return number;

Description
Creates a hierarchical relationship between two roles in the WF_ROLE_HIERARCHIES
table and returns the relationship ID.

Arguments (input)
p_sub_name
The internal name of the subordinate role.

p_super_name
The internal name of the superior role.

p_deferMode
Specify TRUE or FALSE to determine whether to defer propagation of the new
relationship. If you specify FALSE, existing user and role assignments are updated
according to the new relationship, without deferral.

p_enabled
Specify ’Y’ if the relationship is initially enabled or ’N’ if the relationship is initially
disabled.

ExpireRelationship

Syntax
function ExpireRelationship
(p_sub_name in varchar2,
p_super_name in varchar2,
p_defer_mode in boolean default FALSE)
return number;

Description
Expires a hierarchical relationship between two roles in the WF_ROLE_HIERARCHIES
table and returns the relationship ID.

Directory Service APIs 3-31



Arguments (input)
p_sub_name
The internal name of the subordinate role.

p_super_name
The internal name of the superior role.

p_defer_mode
Specify TRUE or FALSE to determine whether to defer propagation of the expired
relationship. If you specify FALSE, existing user and role assignments are updated
according to the expired relationship, without deferral.

GetRelationships

Syntax
procedure GetRelationships
(p_name in varchar2,
p_superiors out WF_ROLE_HIERARCHY.relTAB,
p_subordinates out WF_ROLE_HIERARCHY.relTAB,
p_direction in VARCHAR2 default ’BOTH’);

Description
Retrieves the hierarchical relationships for the specified role and returns a table of
superior roles and a table of subordinate roles. GetRelationships() stops retrieving
relationships in a hierarchy when it encounters a disabled relationship.

Arguments (input)
p_name
The internal name of the role.

p_direction
Specify ’SUPERIORS’ to retrieve superior roles for this role, ’SUBORDINATES’
to retrieve subordinate roles for this role, or ’BOTH’ to retrieve both superior and
subordinate roles.

GetAllRelationships

Syntax
procedure GetAllRelationships
(p_name in varchar2,
p_superiors out WF_ROLE_HIERARCHY.relTAB,
p_subordinates out WF_ROLE_HIERARCHY.relTAB,
p_direction in VARCHAR2 default ’BOTH’);

Description
Retrieves the hierarchical relationships for the specified role and returns a table of
superior roles and a table of subordinate roles. GetAllRelationships() retrieves all
hierarchical relationships, whether they are enabled or disabled.

3-32 Oracle Workow API Reference



Arguments (input)
p_name
The internal name of the role.

p_direction
Specify ’SUPERIORS’ to retrieve superior roles for this role, ’SUBORDINATES’
to retrieve subordinate roles for this role, or ’BOTH’ to retrieve both superior and
subordinate roles.

Workow Preferences API
Call the following API to retrieve user preference information. The API is defined in the
PL/SQL package called WF_PREF.

get_pref

Syntax
function get_pref
(p_user_name in varchar2,
p_preference_name in varchar2)
return varchar2;

Description
Retrieves the value of the specified preference for the specified user.

Arguments (input)
p_user_name
The internal name of the user. To retrieve the value for a global preference, specify the
user as -WF_DEFAULT-.

p_preference_name
The name of the user preference whose value you wish to retrieve. Valid preference
names are:

• LANGUAGE

• TERRITORY

• MAILTYPE

• DMHOME

• DATEFORMAT

Directory Service APIs 3-33





4
Notication System APIs

This chapter describes the APIs for the Oracle Workflow Notification System. The
APIs consist of PL/SQL and Java functions and procedures that you can use to access
the Notification System.

This chapter covers the following topics:

• Overview of the Oracle Workflow Notification System

• Notification APIs

• Notification Mailer Utility API

Overview of the Oracle Workow Notication System
Oracle Workflow communicates with users by sending notifications. Notifications
contain messages that may request users to take some type of action and/or provide
users with information. You define the notification activity and the notification message
that the notification activity sends in the Workflow Builder. The messages may have
optional attributes that can specify additional resources and request responses.

Users can query their notifications online using the Notifications Web page in an
HTML browser. Users can also receive notifications in their e-mail applications. E-mail
notifications can contain HTML content or include other documents as optional
attachments. The Notification System delivers the messages and processes the incoming
responses.

Related Topics
Notification Model, page 4-1

Notification Document Type Definition, page 4-6

Notification APIs, page 4-14

Notification Mailer Utility API, page 4-44

Notication Model
A notification activity in a workflow process consists of a design-time message and a
list of message attributes. In addition, there may be a number of runtime named values
called item type attributes from which the message attributes draw their values.

Notication System APIs 4-1



The Workflow Engine moves through the workflow process, evaluating each activity in
turn. Once it encounters a notification activity, the engine makes a call to the Notification
System Send() or SendGroup() API to send the notification.

Sending Notication Messages
The Send() API or the SendGroup() API is called by the Workflow Engine when it
encounters a notification activity. These APIs do the following:

• Check that the performer role of the notification activity is valid.

• Identify the notification preference for of the performer role.

• Look up the message attributes for the message.

• If a message attribute is of source SEND, the Send() or SendGroup() API retrieves
its value from the item type attribute that the message attribute references. If
the procedure cannot find an item type attribute, it uses the default value of the
message attribute, if available. The Subject and Body of the message may include
message attributes of source SEND, which the Send() or SendGroup() API token
replaces with each attribute’s current value when creating the notification.

• If a message includes a message attribute of source RESPOND, the Send()
or SendGroup() API checks to see if it has a default value assigned to it. The
procedure then uses these RESPOND attributes to create the default response
section of the notification.

• ’Construct’ the notification content by inserting relevant information into the
Workflow notification tables.

• Update the notification activity’s status to ’NOTIFIED’ if a response is required or
to ’COMPLETE’ if no response is required.

Note: If a notification activity sends a message that is for the
performer’s information only (FYI), where there are no RESPOND
message attributes associated with it, the notification activity gets
marked as complete as soon as the Notification System delivers the
message.

Note: In the case of a voting activity, the status is updated to
’WAITING’ instead of ’NOTIFIED’. See: Special Handling of
Voting Activities, page 4-5.

• Raise the oracle.apps.wf.notification.send event. When this
event is processed, a notification mailer generates an e-mail version of
the notification if the performer role of a notification has a notification
preference of MAILTEXT, MAILHTML, MAILHTM2, or MAILATTH, and sends
the e-mail to the performer. For roles with a notification preference of
SUMMARY, or, for Oracle Applications only, SUMHTML, a summary e-mail is
sent when the oracle.apps.wf.notification.summary.send event is
raised. See: Implementing Notification Mailers, Oracle Workflow Administrator's
Guide.

Users who view their notifications from the Notifications Web page, regardless of their
notification preferences, are simply querying the Workflow notification tables from
this interface.

4-2 Oracle Workow API Reference



A notification recipient can perform the following actions with the notification:

• Respond to the notification or close the notification if it does not require a
response. See: Processing a Notification Response, page 4-3.

• Forward the notification to another role. See: Forwarding a Notification, page 4-3.

• Transfer ownership of the notification to another role. See: Transferring a
Notification, page 4-4.

• Request more information about the notification from another role, or respond to
such a request with more information. See: Requesting More Information About a
Notification, page 4-4.

• Ignore the notification and let it time out. See: Processing a Timed Out Notification,
page 4-5.

Note: In Oracle Applications, you can use the WF: Notification
Reassign Mode profile option to determine whether users can
reassign notifications by forwarding (also known as delegating) the
notifications, transferring the notifications, or both. See: Setting the
WF: Notification Reassign Mode, Oracle Workflow Administrator's Guide.

Processing a Notication Response
After a recipient responds, the Notification Details Web page or a notification mailer
assigns the response values to the notification response attributes and calls the
notification Respond() API. The Respond() API first calls a notification callback function to
execute the notification activity’s post-notification function (if it has one) in VALIDATE
mode. In this mode, the post-notification function can validate the response values
before accepting and recording the response. For example, if the notification requires
an electronic signature, the post-notification function can run in VALIDATE mode to
verify the response values and inform the user of any errors before requiring the user to
enter a signature. If the post-notification function raises an exception, the response is
aborted. See: Post-notification Functions, page 2-9.

Next, Respond() calls the notification callback function to execute the post-notification
function in RESPONDmode. The post-notification function may interpret the response
and perform tightly-coupled post-response processing. Again, if the post-notification
function raises an exception, the response is aborted.

If no exception is raised, Respond() marks the notification as closed and then calls the
notification callback function again in SET mode to update the corresponding item
attributes with the RESPOND notification attributes values. If the notification message
prompts for a response that is specified in the Result tab of the message’s property
page, that response value is also set as the result of the notification activity.

Finally, Respond() callsWF_ENGINE.CompleteActivity() to inform the engine that the
notification activity is complete so it can transition to the next qualified activity.

Forwarding a Notication
If a recipient forwards a notification to another role, the Notification Details Web page
calls the Notification System’s Forward() API.

Note: The Notification System is not able to track notifications that are
forwarded via e-mail. It records only the eventual responder’s e-mail
address and any Respond message attributes values included in the
response.

Notication System APIs 4-3



The Forward() API validates the role, then calls a notification callback function to
execute the notification activity’s post-notification function (if it has one) in FORWARD
mode. As an example, the post-notification function may verify whether the role that the
notification is being forwarded to has appropriate authority to view and respond to the
notification. If it doesn’t, the post-notification function may return an error and prevent
the Forward operation from proceeding. See: Post-notification Functions, page 2-9.

Forward() then forwards the notification to the new role, along with any appended
comments.

Note: Forward() does not update the owner or original recipient of the
notification.

Transferring a Notication
If a recipient transfers the ownership of a notification to another role, the Notification
Details Web page calls the Notification System’s Transfer() API.

Note: Recipients who view notifications from an e-mail application
cannot transfer notifications. To transfer a notification, the recipient
must use the Notifications Web page.

The Transfer() API validates the role, then calls a notification callback function to
execute the notification activity’s post-notification function (if it has one) in TRANSFER
mode. As an example, the post-notification function may verify whether the role that
the notification is being transferred to has appropriate authority. If it doesn’t, the
post-notification function may return an error and prevent the Transfer operation from
proceeding. See: Post-notification Functions, page 2-9.

Transfer() then assigns ownership of the notification to the new role, passing along any
appended comments. Note that a transfer is also recorded in the comments of the
notification.

Requesting More Information About a Notication
If a recipient requests more information about the notification from another role, the
Notification Details Web page calls the Notification System’s UpdateInfo() API, or a
notification mailer calls the Notification System’s UpdateInfo2() API.

The UpdateInfo() or UpdateInfo2() API calls a notification callback function to execute the
notification activity’s post-notification function (if it has one) in QUESTIONmode. As an
example, the post-notification function may verify that the request is directed to a role
that has appropriate authority to view the notification. If it doesn’t, the post-notification
function may return an error and prevent the request for more information from being
sent. See: Post-notification Functions, page 2-9.

If no error is returned, the API then sends the request for more information to the
designated role. Note that a request for information is also recorded in the comments
of the notification.

If the recipient of a request for more information responds with answering
information, the Notification Details Web page calls the Notification System’s
UpdateInfo() API if the responder is logged in individually or the UpdateInfoGuest()
API if the responder is logged in as the GUEST user, or a notification mailer calls the
Notification System’s UpdateInfo2() API.

4-4 Oracle Workow API Reference



The UpdateInfo(),UpdateInfoGuest(), or UpdateInfo2() API calls a notification callback
function to execute the notification activity’s post-notification function (if it has one) in
ANSWERmode. As an example, the post-notification function may validate the answering
information. If such validation fails, the post-notification function may return an error
and prevent the answer from being sent. See: Post-notification Functions, page 2-9.

If no error is returned, the API then sends the answering information back to the
recipient role of the original notification. Note that an answer to a request for information
is also recorded in the comments of the notification.

Processing a Timed Out Notication
Timed out notification or subprocess activities are initially detected by the background
engine. Background engines set up to handle timed out activities periodically check
for activities that have time out values specified. If an activity does have a time out
value, and the current date and time exceeds that time out value, the background engine
marks that activity’s status as ’TIMEOUT’ and calls the Workflow Engine. The Workflow
Engine then resumes by trying to execute the activity to which the <Timeout> transition
points.

Special Handling of Voting Activities
A voting activity by definition is a notification activity that:

• Has its roles expanded, so that an individual copy of the notification message is sent
to each member of the Performer role.

• Has a message with a specified Result, that requires recipients to respond from a
list of values.

• Has a post-notification function associated with it that contains logic in the RUN
mode to process the polled responses from the Performer members to generate a
single response that the Workflow Engine interprets as the result of the notification
activity. See: Voting Activity, Oracle Workflow Developer's Guide.

Once the Notification System sends the notification for a voting activity, it marks
the voting activity’s status as ’NOTIFIED’. The voting activity’s status is updated to
’WAITING’ as soon as some responses are received, but not enough responses are
received to satisfy the voting criteria.

The individual role members that each receive a copy of the notification message can
then respond or forward the notification, or request or respond with more information, if
they use e-mail or the Worklist Web pages to access the notification. They can also
transfer the notification if they use the Worklist Web pages.

The notification user interface calls the appropriate Respond(), Forward(),
Transfer(), UpdateInfo(), UpdateInfo2(), or UpdateInfoGuest() API, depending on
the action that the performer takes. Each API in turn calls the notification
callback function to execute the post-notification function in VALIDATE and
RESPOND, FORWARD, TRANSFER, QUESTION, or ANSWER mode, as appropriate. When
the Notification System finishes executing the post-notification function in FORWARD or
TRANSFERmode, it carries out the Forward or Transfer operation, respectively. When
the Notification System finishes executing the post-notification function in QUESTION or
ANSWER mode, it sends the request for more information to the designated role or the
answer to the requesting role, respectively.

When the Notification System completes execution of the post-notification function in
RESPONDmode, the Workflow Engine then runs the post-notification function again in

Notication System APIs 4-5



RUNmode. It calls the function in RUNmode after all responses are received to execute
the vote tallying logic.

Also if the voting activity is reset to be reexecuted as part of a loop, or if it times
out, the Workflow Engine runs the post-notification function in CANCEL or TIMEOUT
mode, respectively. The logic for TIMEOUTmode in a voting activity’s post-notification
function should identify how to tally the votes received up until the timeout.

Notication Document Type Denition
The following document type definition (DTD) describes the required structure for
the XML document that represents a notification. The Notification System uses this
structure to communicate messages to a notification mailer. The following table shows
the level, tag name, and description for each element in the DTD.

Notication DTD

Level Tag Description

1 <NOTIFICATIONGROUP
maxcount="">

The <NOTIFICATIONGROU
P> tag is the opening tag for the
XML structure. The maxcount
attribute defines the maximum
number of <NOTIFICATION>
tags to expect. This number
may not be reached, but will
not be exceeded within the
<NOTIFICATIONGROUP>
tag.

4-6 Oracle Workow API Reference



Level Tag Description

2 <NOTIFICATION nid=""
language="" territory=
"" codeset="" priority=""
accesskey="" node="" item_
type="" message_name=""
nidstr="">

The <NOTIFICATION>
element defines a single
message entity. A <NOTIF
ICATION> is a repeating
structure within <NOTIFICAT
IONGROUP>, the number
of which will not exceed the
specified maxcount value.
Each <NOTIFICATION>
element for a notification sent
by the Notification System
is identified by its unique
nid attribute, which is the
notification ID. For messages
received from an external
source, such as notification
responses from users, the
notification ID should be zero
(0).
The language and territory
values represent the language
and territory preferences of
the notification recipients.
The codeset attribute is the
preferred codeset associated
with the language in the
WF_LANGUAGES table. The
value of the codeset attribute
must be in the Oracle Database
codeset notation. If the Reset
NLS parameter is selected
for the mailer that sends this
notification, then the e-mail
will be encoded to the IANA
(Internet Assigned Numbers
Authority) equivalent of the
Oracle Database codeset.
The priority attribute is
the relative priority for the
message. A priority of 1
through 33 is high, 34 through
66 is normal, and 67 through
99 is low.
The accesskey and node
attributes store information for
inbound response messages.
These attributes are used
together with the nid attribute
to validate the response.
The item_type attribute is the
internal name of the item type
that owns the notification. The
message_name attribute is the
internal message name for the
notification within that item
type. These two attributes are
provided for reference and
are not used by a notification
mailer.
The nidstr attribute is for
internal use only.

Notication System APIs 4-7



Level Tag Description

3 <HEADER> <The HEADER> element
defines the envelope
information for the message,
which contains the details
of the recipients, where the
message was sent from, and
the subject for the message.

4 <RECIPIENTLIST> The <RECIPIENTLIST>
tag enables the message to
be sent to more than one
recipient. The first recipient
in the list is treated as the
primary recipient. Subsequent
recipients will receive copies
of the message. All recipients
in the list will receive the same
e-mail in the language and
formatting of the primary
recipient’s preferences.

5 <RECIPIENT name="" type=""> The <RECIPIENT> tag defines
a recipient for the message. A
<RECIPIENT> is a repeating
structure within the <RECI
PIENTLIST>. Each <RECIP
IENT> is identified by its name
attribute, which is the internal
name of the recipient role.
The type attribute contains the
copy type for the recipient.
Valid values for this attribute
are to, cc, and bcc. If the type
attribute is not provided, then
the recipient is treated as
having a copy type of to.

6 <NAME> </NAME> The <NAME> tag defines the
display name of the recipient.

6 <ADDRESS> </ADDRESS> The <ADDRESS> tag defines
the e-mail address of the
recipient.

5 </RECIPIENT> This tag marks the end of a
<RECIPIENT> element.

4 </RECIPIENTLIST> This tag marks the end of the
<RECIPIENTLIST> element.

4-8 Oracle Workow API Reference



Level Tag Description

4 <FROM> The <FROM> tag shows the
sender of the message. For
outbound notifications, the
from role can be set using
the #FROM_ROLE message
attribute. The from role
is also set to the role who
reassigned the notification
if this notification has been
reassigned, to the requesting
role if this notification is a
request for more information,
or to the responding role if this
notification is a response to a
request for more information.
For inbound notifications, this
information is determined
by the From address of the
incoming e-mail message.

5 <NAME> </NAME> The <NAME> tag defines the
display name of the sender.

5 <ADDRESS> </ADDRESS> The <ADDRESS> tag defines
the e-mail address of the
sender.

4 </FROM> This tag marks the end of the
<FROM> element.

4 <SUBJECT> </SUBJECT> The <SUBJECT> element
holds the subject line of the
notification.

3 </HEADER> This tag marks the end of the
<HEADER> element.

3 <CONTENT content-type=""> The <CONTENT> element
holds the contents of the
notification message. The
<CONTENT> element contains
one or more <BODYPART>
elements. The content-
type attribute contains the
valid MIME type definition
for the content within the
<CONTENT> element. Valid
values for the content-type
attribute include multipart/
mixed, text/plain and
text/html. The first <BODY
PART> element within the
<CONTENT> tag is treated
as the main content of the
message, and will be the
first component within a
multipart/* message
structure. Subsequent <BODY
PART> elements are treated as
attachments to the message.

Notication System APIs 4-9



Level Tag Description

4 <BODYPART content-type=""> The <BODYPART> tag
represents a MIME
component of the final
message. This element
contains a <MESSAGE>
tag and optionally one or
more <RESOURCE> tags. If
the <RESOURCE> tags
are implemented, then the
content-type attribute must be
defined for the <BODYPART>
tag to explain the relationship
of the <RESOURCE> elements
to the <MESSAGE> element.
The only valid value for
this content-type attribute is
multipart/related.
The first <BODYPART>
element is treated as the main
content of the message. This
content will be either text/*
or multipart/related.
The subsequent <BODY
PART> elements contain any
attachments as required by the
notification message definition
and the recipient’s notification
preference. Attachments may
include an HTML-formatted
version of the notification, a
Notification Detail Link, and
any message attributes for
which the Attach Content
option is selected.
For inbound messages, the
<BODYPART> element
contains the message and
any attachments where
appropriate.

4-10 Oracle Workow API Reference



Level Tag Description

5 <MESSAGE content-type=""
content-transfer-encoding=""
content-disposition="" src="">

The content-type attribute
contains the media type
definition for the <MESSAGE>
element. Valid values for
this content-type attribute
are text/plain, text/
html, multipart/mixed, or
multipart/related.
The content-transfer-encoding
attribute is an optional
attribute to qualify further the
encoding of the text/plain
or text/html content.
The content-disposition
attribute specifies that the
component is an attachment.
The src attribute can optionally
be defined if the content for
the <MESSAGE> element is
not readily available when the
notification XML document is
generated. The value of the
src attribute must be a URL
from which the content can be
obtained during final e-mail
message rendering.

- <![CDATA[ ]]> This structure holds the raw
message content.
If the content of a
<RESOURCE> element
should be merged into the
content of the <MESSAGE>
element, then the message
content must include a token
prefixed by an ampersand (&)
to mark the position at which
the resource content should
appear. The token must match
the token attribute value of the
corresponding <RESOURCE>
element.

5 </MESSAGE> This tag marks the end of a
<MESSAGE> element.

Notication System APIs 4-11



Level Tag Description

5 <RESOURCE content-type=""
content-transfer-encoding=""
content-disposition="" content-
id="" src="" language=""
territory="" page-type=""
token="">

The content-type attribute
contains the media
type definition for the
<RESOURCE> element. This
value should be a media-type/
subtype definition.
The content-transfer-encoding
attribute is an optional
attribute to qualify further the
encoding of the text/plain
or text/html content.
The content-disposition
attribute specifies that the
component is an attachment.
The content-id attribute holds
the unique content identifier
for the component. This
identifier is referenced within
the content of the <MESSAGE>
element.
The src attribute can optionally
be defined if the content for
the <RESOURCE> element is
not readily available when the
notification XML document is
generated. The value of the
src attribute must be a URL
from which the content can be
obtained during final e-mail
message rendering.
In Oracle Applications only, if
the src attribute is defined to
refer to Oracle Applications
Framework content and the
message recipient is not an
Oracle Applications user
defined in the FND_USER
table, then the language
and territory attributes hold
the language and territory
preferences of the recipient.
Also, if the src attribute
refers to Oracle Applications
Framework content, then the
page-type attribute is set to the
value fwk to identify Oracle
Applications Framework as
the source of the content. The
page-type attribute should be
defined only if the src attribute
is defined correspondingly.
The token attribute holds the
token value used to mark the
position at which the content
of the <RESOURCE> element
will be merged into the content
of the <MESSAGE> element.
Within the <MESSAGE>
element, the token value is
prefixed by an ampersand (&).

4-12 Oracle Workow API Reference



Level Tag Description

- <![CDATA[ ]]> This structure holds the
content for the <RESOURCE>
element.

5 </RESOURCE> This tag marks the end of a
<RESOURCE> element.

4 </BODYPART> This tag marks the end of a
<BODYPART> element.

3 </CONTENT> This tag marks the end of the
<CONTENT> element.

3 <RESPONSE> The <RESPONSE> tag is
implemented only for inbound
notifications. It is not part of
the specification for outbound
notifications. The <RES
PONSE> element contains
one or more <ATTRIBUTE>
elements, which hold the
response values found in the
incoming e-mail message.
There should be an <ATTR
IBUTE> tag for each response
attribute associated with the
notfication. However, only the
RESULT message attribute is
mandatory. The other respond
attributes are optional. If no
value is specified for a respond
attribute, Oracle Workflow
uses the default value defined
for the message attribute.

Notication System APIs 4-13



Level Tag Description

4 <ATTRIBUTE name="" type=""
format="">

The <ATTRIBUTE> tag holds
the response value found in
the incoming e-mail message
for a particular response
attribute. An <ATTRIBUTE>
is a repeating structure within
the <RESPONSE>.
The name attribute for this
element is the internal name of
the response attribute.
The type attribute of this
element is the OracleWorkflow
data type of the reponse
attribute, which can be either
TEXT, NUMBER, DATE,
DOCUMENT, or LOOKUP.
The format attribute for
this element contains the
format string for the response
attribute. For response
attributes of type LOOKUP, the
format is used to identify the
lookup type code according
to the value of the name
attribute. For other data
types, the format attribute is
not used.

- <![CDATA ]]> This structure holds the
response information to be
assigned to the attribute.

4 </ATTRIBUTE> This tag marks the end of an
<ATTRIBUTE> element.

3 </RESPONSE> This tag marks the end of a
<RESPONSE> element.

2 </NOTIFICATION> This tag marks the end of a
<NOTIFICATION> element.

1 </NOTIFICATIONGROUP> This tag marks the end of the
<NOTIFICATIONGROUP>
element.

Notication APIs
The following APIs can be called by a notification agent to manage notifications
for a notification activity. The APIs are stored in the PL./SQL package called
WF_NOTIFICATION.

Many of these notification APIs also have corresponding Java methods that you can call
from any Java program to integrate with Oracle Workflow. The following list indicates
whether the notification APIs are available as PL/SQL functions/procedures, as Java
methods, or both. See: Oracle Workflow Java Interface, page 2-3.

4-14 Oracle Workow API Reference



Note: Java is case-sensitive and all Java method names begin with a
lower case letter to follow Java naming conventions.

• Send - PL/SQL and Java, page 4-16

• SendGroup - PL/SQL, page 4-20

• Forward - PL/SQL and Java, page 4-21

• Transfer - PL/SQL and Java, page 4-22

• Cancel - PL/SQL and Java, page 4-23

• CancelGroup - PL/SQL, page 4-24

• Respond - PL/SQL and Java, page 4-24

• Responder - PL/SQL and Java, page 4-26

• NtfSignRequirementsMet - PL/SQL, page 4-26

• VoteCount - PL/SQL and Java, page 4-27

• OpenNotificationsExist - PL/SQL and Java, page 4-28

• Close - PL/SQL and Java, page 4-28

• AddAttr - PL/SQL and Java, page 4-29

• SetAttribute - PL/SQL and Java, page 4-30

• GetAttrInfo - PL/SQL and Java, page 4-31

• GetInfo - PL/SQL and Java, page 4-32

• GetText - PL/SQL and Java, page 4-33

• GetShortText - PL/SQL, page 4-34

• GetAttribute - PL/SQL and Java, page 4-35

• GetAttrDoc - PL/SQL and Java, page 4-36

• GetSubject - PL/SQL and Java, page 4-37

• GetBody - PL/SQL and Java, page 4-37

• GetShortBody - PL/SQL, page 4-38

• TestContext - PL/SQL, page 4-39

• AccessCheck - PL/SQL and Java, page 4-39

• WorkCount - PL/SQL and Java, page 4-40

• getNotifications - Java, page 4-40

• getNotificationAttributes - Java, page 4-41

• WriteToClob - PL/SQL, page 4-41

• Denormalize_Notification - PL/SQL, page 4-42

• SubstituteSpecialChars - PL/SQL, page 4-43

Note: The Notification System raises business events when a notification
is sent, closed, canceled, or reassigned, or when a user responds
to a notification. Although Oracle Workflow does not include any

Notication System APIs 4-15



predefined subscriptions to some of these events, you can optionally
define your own subscriptions to these events if you want to perform
custom processing when they occur. See: Notification Events, Oracle
Workflow Developer's Guide and To Define an Event Subscription (for
standalone Oracle Workflow), Oracle Workflow Developer's Guide or To
Create or Update an Event Subscription (for Oracle Applications), Oracle
Workflow Developer's Guide.

Send

PL/SQL Syntax
function SEND
(role in varchar2,
msg_type in varchar2,
msg_name in varchar2,
due_date in date default null,
callback in varchar2 default null,
context in varchar2 default null,
send_comment in varchar2 default null
priority in number default null)
return number;

Java Syntax
public static BigDecimal send
(WFContext wCtx,
String role,
String messageType,
String messageName,
String dueDate,
String callback,
String context,
string sendComment,
BigDecimal priority)

Description
This function sends the specified message to a role, returning a notification ID if
successful. The notification ID must be used in all future references to the notification.

If your message has message attributes, the procedure looks up the values of the
attributes from the message attribute table or it can use an optionally supplied callback
interface function to get the value from the item type attributes table. A callback function
can also be used when a notification is responded to.

Note: If you are using the Oracle Workflow Notification System and
its e-mail-based or Web-based notification client, the Send procedure
implicitly calls the WF_ENGINE.CB callback function. If you are
using your own custom notification system that does not call the
Workflow Engine, then you must define your own callback function
following a standard format and specify its name for the callback
argument. See: Custom Callback Function, page 4-17.

4-16 Oracle Workow API Reference



Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

role
The role name assigned as the performer of the notification activity.

msg_type or
messageType
The item type associated with the message.

msg_name or
messageName
The message internal name.

due_date or dueDate
The date that a response is required. This optional due date is only for the recipient’s
information; it has no effect on processing.

callback
The callback function name used for communication of SEND and RESPOND source
message attributes.

context
Context information passed to the callback function.

send_comment or
sendComment
A comment presented with the message.

priority
The priority of the message, as derived from the #PRIORITY notification activity
attribute. If #PRIORITY does not exist or if the value is null, the Workflow Engine
uses the default priority of the message.

Custom Callback Function
A default callback function can be called at various points by the actions of the
WF_NOTIFICATION APIs. You may provide your own custom callback function, but it
must follow standard specifications.

If you do not need to handle attributes of type event through your callback function, the
procedure must use the following standard API:

procedure <name in callback argument>
(command in varchar2,
context in varchar2,
attr_name in varchar2,
attr_type in varchar2,
text_value in out varchar2,
number_value in out number,
date_value in out date);

If the callback function does need to handle attributes of type event, you can overload
the procedure name with a second implementation that includes an additional argument
for the event value. In this case you should also retain the original implementation for
backward compatibility. However, it is recommended that you do not overload the
procedure unless you have a requirement to handle event attributes.

Notication System APIs 4-17



The implementation of the procedure for event values must use the following standard
API:

procedure <name in callback argument>
(command in varchar2,
context in varchar2,
attr_name in varchar2,
attr_type in varchar2,
text_value in out varchar2,
number_value in out number,
date_value in out date
event_value in out nocopy wf_event_t);

For ease of maintenance, you can define the procedure that does not include the
event_value argument to call the procedure that does include that argument, so that
you only need to maintain one version of your code. The following example shows
one way to implement such a call:

Example
procedure your_callback
(command in varchar2,
context in varchar2,
attr_name in varchar2,
attr_type in varchar2,
text_value in out varchar2,
number_value in out number,
date_value in out date)

is
event_value wf_event_t;

begin
your_package.your_callback(command, context, attr_name,

attr_type, text_value,
number_value, date_value,
event_value);

exception
when others then
Wf_Core.Context(’your_package’, ’your_callback’,

command, context, attr_name, attr_type,
’:’||text_value||’:’||to_char(number_value)
||’:’||to_char(date_value)||’:’);

raise;

end your_callback;

Arguments (input)
command
Specify GET, SET, COMPLETE, ERROR, TESTCTX, FORWARD, TRANSFER, QUESTION,
ANSWER, VALIDATE, or RESPOND as the action requested. Use GET to get the value
of an attribute, SET to set the value of an attribute, COMPLETE to indicate that the
response is complete, ERROR to set the associated notification activity to a status of
’ERROR’, TESTCTX to test the current context by calling the item type’s Selector/Callback
function, or FORWARD, TRANSFER, QUESTION, ANSWER, VALIDATE, or RESPOND to
execute the post-notification function in those modes.

4-18 Oracle Workow API Reference



context
The context passed to SEND() or SendGroup(). The format is <itemtype>:<itemkey>:
<activityid>.

attr_name
An attribute name to set/get if command is SET or GET.

attr_type
An attribute type if command is SET or GET.

text_value
Value of a text attribute if command is SET or value of text attribute returned if
command is GET.

number_value
Value of a number attribute if command is SET or value of a number attribute returned if
command is GET.

date_value
Value of a date attribute if command is SET or value of a date attribute returned if
command is GET.

event_value
Value of an event attribute if command is SET or value of an event attribute returned
if command is GET. Required only if the procedure name is overloaded with a second
implementation that handles event attributes.

Note: The arguments text_value, number_value, and
date_value, as well as event_value if you are using this
argument, are mutually exclusive. That is, you should use only one of
these arguments, depending on the value of the attr_type argument.

Examples
Example 1
When a notification is sent, the system calls the specified callback function once for each
SEND attribute (to get the attribute value).

For each SEND attribute, call:

your_callback(’GET’, context, ’BUGNO’, ’NUMBER’, textval,
numval, dateval);

Example 2
When the user responds to the notification, the callback is called again, once for each
RESPOND attribute.

your_callback(’SET’, context, ’STATUS’, ’TEXT’,
’COMPLETE’, numval, dateval);

Example 3
Then finally the Notification System calls the ’COMPLETE’ command to indicate the
response is complete.

your_callback(’COMPLETE’, context, attrname, attrtype,
textval, numval, dateval);

Example 4
For a SEND attribute of type event, call the implementation that includes the
event_value argument.

Notication System APIs 4-19



your_callback(’GET’, context, ’RECEIVE_EVENT’, ’EVENT’,
textval, numval, dateval, eventval);

SendGroup

PL/SQL Syntax
function SendGroup
(role in varchar2,
msg_type in varchar2,
msg_name in varchar2,
due_date in date default null,
callback in varchar2 default null,
context in varchar2 default null,
send_comment in varchar2 default null
priority in number default null)
return number;

Description
This function sends a separate notification to all the users assigned to a specific role and
returns a number called a notification group ID, if successful. The notification group ID
identifies that group of users and the notification they each received.

If your message has message attributes, the procedure looks up the values of the
attributes from the message attribute table or it can use an optionally supplied callback
interface function to get the value from the item type attributes table. A callback function
can also be used when a notification is responded to.

Note: If you are using the Oracle Workflow Notification System and
its e-mail-based or Web-based notification client, the Send procedure
implicitly calls theWF_ENGINE.CB callback function. If you are using
your own custom notification system, then you must define your own
callback function following a standard format and specify its name for
the callback argument. See: Custom Callback Function, page 4-17.

Generally, this function is called only if a notification activity has ’Expanded Roles’
checked in its properties page. If Expanded Roles is not checked, then the Send() function
is called instead. See: Voting Activity, Oracle Workflow Developer's Guide.

Arguments (input)
role
The role name assigned as the performer of the notification activity.

msg_type
The item type associated with the message.

msg_name
The message internal name.

due_date
The date that a response is required. This optional due date is only for the recipient’s
information; it has no effect on processing.

4-20 Oracle Workow API Reference



callback
The callback function name used for communication of SEND source message attributes.

context
Context information passed to the callback function.

send_comment
A comment presented with the message.

priority
The priority of the message, as derived from the #PRIORITY notification activity
attribute. If #PRIORITY does not exist or if the value is null, the Workflow Engine
uses the default priority of the message.

Forward

PL/SQL Syntax
procedure FORWARD
(nid in number,
new_role in varchar2,
forward_comment in varchar2 default null);

Java Syntax
public static boolean forward
(WFContext wCtx,
BigDecimal nid,
String newRole
String comment)

Description
This procedure delegates a notification to a new role to perform work, even though
the original role recipient still maintains ownership of the notification activity. Also
implicitly calls the Callback function specified in the Send or SendGroup function with
FORWARD mode. A comment can be supplied to explain why the forward is taking
place. Existing notification attributes (including due date) are not refreshed or otherwise
changed. The Delegate feature in the Notification System calls this procedure. Note
that when you forward a notification, the forward is recorded in the USER_COMMENT
field of the notification.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

new_role or newRole
The role name of the person the note is reassigned to.

Notication System APIs 4-21



forward_comment or
comment
An optional forwarding comment.

Example
Example
The following code excerpt shows an example of how to call forward() in a Java
program. The example code is from the WFTest.java program.

// forward to MBEECH
System.out.println("Delegate Test");
count = WFNotificationAPI.workCount(ctx, "MBEECH");
System.out.println("There are " + count +

" open notification(s) for" + " MBEECH");
System.out.println("Delegate nid " + myNid +

" from BLEWIS to MBEECH");
WFNotificationAPI.forward(ctx, myNid, "MBEECH",

"Matt, Please handle.");
count = WFNotificationAPI.workCount(ctx, "MBEECH");
System.out.println("There are " + count +

" open notification(s) for" +
" MBEECH after Delegate.");

Transfer

PL/SQL Syntax
procedure TRANSFER
(nid in number,
new_role in varchar2,
forward_comment in varchar2 default null);

Java Syntax
public static boolean transfer
(WFContext wCtx,
BigDecimal nid,
String newRole
String comment)

Description
This procedure forwards a notification to a new role and transfers ownership of the
notification to the new role. It also implicitly calls the Callback function specified in the
Send or SendGroup function with TRANSFER mode. A comment can be supplied to
explain why the forward is taking place. The Transfer feature in the Notification System
calls this procedure. Note that when you transfer a notification, the transfer is recorded
in the USER_COMMENT field of the notification.

Important: Existing notification attributes (including due
date) are not refreshed or otherwise changed except for
ORIGINAL_RECIPIENT, which identifies the owner of the notification.

4-22 Oracle Workow API Reference



Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

new_role or newRole
The role name of the person the note is transferred to.

forward_comment or
comment
An optional comment to append to notification.

Example
Example
The following code excerpt shows an example of how to call transfer() in a Java
program. The example code is from the WFTest.java program.

// transfer to MBEECH
System.out.println("Transfer Test");
System.out.println("Transfer nid " + myNid +

" from BLEWIS to MBEECH");
WFNotificationAPI.transfer(ctx, myNid, "MBEECH",

"Matt, You own it now.");
count = WFNotificationAPI.workCount(ctx, "MBEECH");
System.out.println("There are " + count +

" open notification(s) for" +
" MBEECH after Transfer.");

Cancel

PL/SQL Syntax
procedure CANCEL
(nid in number,
cancel_comment in varchar2 default null);

Java Syntax
public static boolean cancel

(WFContext wCtx,
BigDecimal nid,
String comment)

Description
This procedure may be invoked by the sender or administrator to cancel a
notification. The notification status is then changed to ’CANCELED’ but the row is not
removed from the WF_NOTIFICATIONS table until a purge operation is performed.

If the notification was delivered via e-mail and expects a response, a ’Canceled’ e-mail is
sent to the original recipient as a warning that the notification is no longer valid.

Notication System APIs 4-23



Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

cancel_comment or
comment
An optional comment on the cancellation.

CancelGroup

PL/SQL Syntax
procedure CancelGroup
(gid in number,
cancel_comment in varchar2 default null);

Description
This procedure may be invoked by the sender or administrator to cancel the individual
copies of a specific notification sent to all users in a notification group. The notifications
are identified by the notification group ID (gid). The notification status is then changed
to ’CANCELED’ but the rows are not removed from the WF_NOTIFICATIONS table
until a purge operation is performed.

If the notification was delivered via e-mail and expects a response, a ’Canceled’ e-mail is
sent to the original recipient as a warning that the notification is no longer valid.

Generally, this function is called only if a notification activity has ’Expanded Roles’
checked in its properties page. If Expanded Roles is not checked, then the Cancel()
function is called instead. See: Voting Activity, Oracle Workflow Developer's Guide.

Arguments (input)
gid
The notification group ID.

cancel_comment
An optional comment on the cancellation.

Respond

PL/SQL Syntax
procedure RESPOND
(nid in number,
respond_comment in varchar2 default null,
responder in varchar2 default null);

4-24 Oracle Workow API Reference



Java Syntax
public static boolean respond
(WFContext wCtx,
BigDecimal nid,
String comment,
String responder)

Description
This procedure may be invoked by the notification agent (Notification Web page or
e-mail agent) when the performer completes the response to the notification. The
procedure marks the notification as ’CLOSED’ and communicates RESPOND attributes
back to the database via the callback function (if supplied).

This procedure also accepts the name of the individual who actually responded to
the notification. This may be useful to know especially if the notification is assigned
to a multi-user role. The information is stored in the RESPONDER column of the
WF_NOTIFICATIONS table. The value stored in this column depends on how the user
responds to the notification. The following table shows the value that is stored for each
response mechanism.

Responder Values

Response Mechanism Value Stored

Web Web login username

E-mail E-mail username as displayed in the mail
response

Additionally, the Respond() procedure calls NtfSignRequirementsMet() to determine
whether the response meets any signature requirements imposed by the electronic
signature policy of the notification. If the requirements have not been met, Respond()
raises an error. See: #WF_SIG_POLICY Attribute, Oracle Workflow Developer's Guide
and NtfSignRequirementsMet, page 4-26.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

comment
An optional comment on the response

responder
The user who responded to the notification.

Notication System APIs 4-25



Responder

PL/SQL Syntax
function RESPONDER
(nid in number)
return varchar2;

Java Syntax
public static String responder
(WFContext wCtx,
BigDecimal nid)

Description
This function returns the responder of a closed notification.

If the notification was closed using the Web notification interface the value returned will
be a valid role defined in the view WF_ROLES. If the notification was closed using
the e-mail interface then the value returned will be an e-mail address. See: Respond,
page 4-24.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

NtfSignRequirementsMet

PL/SQL Syntax
function NtfSignRequirementsMet
(nid in number)
return boolean;

Description
Returns ’TRUE’ if the response to a notification meets the signature requirements
imposed by the electronic signature policy for the notification. See: #WF_SIG_POLICY
Attribute, Oracle Workflow Developer's Guide.

• If the notification uses a signature policy that requires an electronic signature to
validate a user’s response, then a valid signature by a user who has authority
to sign the response must be submitted in order for the response to meet the
requirements. The signature must be of the appropriate type, either password-based
or certificate-based, depending on the signature policy.

• If the notification uses the default policy, which does not require a signature, or if no
signature policy is defined for the notification, then a response without a signature
meets the requirements.

4-26 Oracle Workow API Reference



However, if the signature policy for the notification requires an electronic signature, but
a valid signature has not been submitted, then the response does not meet the
requirements. In this case NtfSignRequirementsMet() returns ’FALSE’.

Arguments (input)
nid
The notification ID.

Related Topics
Respond, page 4-24

VoteCount

PL/SQL Syntax
procedure VoteCount
(gid in number,
ResultCode in varchar2,
ResultCount out number,
PercentOfTotalPop out number,
PercentOfVotes out number);

Java Syntax
public static WFTwoDArray voteCount
(WFContext wCtx,
BigDecimal gid,
String resultCode)

Description
Counts the number of responses for a specified result code.

Use this procedure only if you are writing your own custom Voting activity. See: Voting
Activity, Oracle Workflow Developer's Guide.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

gid
The notification group ID.

ResultCode
Result code to be tallied.

Notication System APIs 4-27



OpenNoticationsExist

PL/SQL Syntax
function OpenNotificationsExist
(gid in number)
return boolean;

Java Syntax
public static boolean openNotificationsExist
(WFContext wCtx,
BigDecimal gid)

Description
This function returns ’TRUE’ if any notification associated with the specified notification
group ID is ’OPEN’, otherwise it returns ’FALSE’.

Use this procedure only if you are writing your own custom Voting activity. See: Voting
Activity, Oracle Workflow Developer's Guide.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

gid
The notification group ID.

Close

PL/SQL Syntax
procedure Close
(nid in number,
responder in varchar2 default null);

Java Syntax
public static boolean close
(WFContext wCtx,
BigDecimal nid,
String responder)

Description
This procedure closes a notification.

4-28 Oracle Workow API Reference



Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

responder
The user or role who responded to the notification.

AddAttr

PL/SQL Syntax
procedure AddAttr
(nid in number,
aname in varchar2);

Java Syntax
public static boolean addAttr
(WFContext wCtx,
BigDecimal nid,
String aName)

Description
Adds a new runtime notification attribute. You should perform validation and insure
consistency in the use of the attribute, as it is completely unvalidated by Oracle
Workflow.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

aname
The attribute name.

avalue
The attribute value.

Example
Example
The following code excerpt shows an example of how to call addAttr() in a Java
program. The example code is from the WFTest.java program.

Notication System APIs 4-29



if (WFNotificationAPI.addAttr(ctx, myNid, myAttr) == false)
{
System.out.println("Add attribute " + myAttr + " failed.");
}

SetAttribute

PL/SQL Syntax
procedure SetAttrText
(nid in number,
aname in varchar2,
avalue in varchar2);

procedure SetAttrNumber
(nid in number,
aname in varchar2,
avalue in number);

procedure SetAttrDate
(nid in number,
aname in varchar2,
avalue in date);

Java Syntax
public static boolean setAttrText
(WFContext wCtx,
BigDecimal nid,
String aName,
String aValue)

public static boolean setAttrNumber
(WFContext wCtx,
BigDecimal nid,
String aName,
BigDecimal aValue)

public static boolean setAttrDate
(WFContext wCtx,
BigDecimal nid,
String aName,
String aValue)

Description
Used at both send and respond time to set the value of notification attributes. The
notification agent (sender) may set the value of SEND attributes. The performer
(responder) may set the value of RESPOND attributes.

4-30 Oracle Workow API Reference



Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

aname
The attribute name.

avalue
The attribute value.

Example
Example
The following code excerpt shows an example of how to call a setAttributemethod in a
Java program. The example code is from the WFTest.java program.

if (WFNotificationAPI.setAttrDate(ctx, myNid, myAttr, value)
== false)

{
System.out.println("set attribute " + myAttr + " to " +
value + " failed.");

}

GetAttrInfo

PL/SQL Syntax
procedure GetAttrInfo
(nid in number,
aname in varchar2,
atype out varchar2,
subtype out varchar2,
format out varchar2);

Java Syntax
public static WFTwoDArray getAttrInfo
(WFContext wCtx,
BigDecimal nid,
String aName)

Description
Returns information about a notification attribute, such as its type, subtype, and
format, if any is specified. The subtype is always SEND or RESPOND to indicate the
attribute’s source.

Notication System APIs 4-31



Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

aname
The attribute name.

Example
Example
The following code excerpt shows an example of how to call getAttrInfo() in a Java
program. The example code is from the WFTest.java program.

dataSource = WFNotificationAPI.getAttrInfo(ctx, myNid,
myAttr);

displayDataSource(ctx, dataSource);

// the first element is the attribute type
myAttrType = (String) dataSource.getData(0,0);

GetInfo

PL/SQL Syntax
procedure GetInfo
(nid in number,
role out varchar2,
message_type out varchar2,
message_name out varchar2,
priority out number,
due_date out date,
status out varchar2);

Java Syntax
public static WFTwoDArray getInfo
(WFContext wCtx,
BigDecimal nid)

Description
Returns the role that the notification is sent to, the item type of the message, the name
of the message, the notification priority, the due date and the status for the specified
notification.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

4-32 Oracle Workow API Reference



nid
The notification ID.

Example
Example
The following code excerpt shows an example of how to call getInfo() in a Java
program. The example code is from the WFTest.java program.

// Notification Info
System.out.println("Notification Info for nid " + myNid);
dataSource = WFNotificationAPI.getInfo(ctx, myNid);
displayDataSource(ctx, dataSource);

GetText

PL/SQL Syntax
function GetText
(some_text in varchar2,
nid in number,
disptype in varchar2 default ’’)
return varchar2;

Java Syntax
public static String getText
(WFContext wCtx,
String someText,
BigDecimal nid,
String dispType)

Description
Substitutes tokens in an arbitrary text string using token values from a particular
notification. This function may return up to 32K characters. You cannot use this function
in a view definition or in an Oracle Forms Developer form. For views and forms, use
GetShortText() which truncates values at 1950 characters.

If an error is detected, this function returns some_text unsubstituted rather than raise
exceptions.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

some_text or someText
Text to be substituted.

nid
Notification ID of notification to use for token values.

Notication System APIs 4-33



disptype or dispType
The display type of the message body that you are token substituting the text into. Valid
display types are:

• wf_notification.doc_text, which returns text/plain

• wf_notification.doc_html, which returns text/html

• wf_notification.doc_attach, which returns null

The default is null.

GetShortText

PL/SQL Syntax
function GetShortText
(some_text in varchar2,
nid in number)
return varchar2;

Description
Substitutes tokens in an arbitrary text string using token values from a particular
notification. This function may return up to 1950 characters. This function is meant
for use in view definitions and Oracle Forms Developer forms, where the field size is
limited to 1950 characters. Use GetText() in other situations where you need to retrieve
up to 32K characters.

If an error is detected, this function returns some_text unsubstituted rather than raise
exceptions.

Arguments (input)
some_text
Text to be substituted.

nid
Notification ID of notification to use for token values.

4-34 Oracle Workow API Reference



GetAttribute

PL/SQL Syntax
function GetAttrText
(nid in number,
aname in varchar2)
return varchar2;

function GetAttrNumber
(nid in number,
aname in varchar2)
return number;

function GetAttrDate
(nid in number,
aname in varchar2)
return date;

Java Syntax
public static String getAttrText
(WFContext wCtx,
BigDecimal nid,
String aName)

public static BigDecimal getAttrNumber
(WFContext wCtx,
BigDecimal nid,
String aName)

public static String getAttrDate
(WFContext wCtx,
BigDecimal nid,
String aName)

Description
Returns the value of the specified message attribute.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

aname
The message attribute name.

Example
Example
The following code excerpt shows an example of how to call the getAttributemethods in
a Java program. The example code is from the WFTest.java program.

Notication System APIs 4-35



// we get the value according to the type.
if (myAttrType == "DATE")
{
value = WFNotificationAPI.getAttrDate(ctx, myNid, myAttr);

}
else if (myAttrType == "NUMBER")
{
value = (WFNotificationAPI.getAttrNumber(ctx, myNid,
myAttr)).toString();

}
else if (myAttrType == "DOCUMENT")
{
value = WFNotificationAPI.getAttrDoc(ctx, myNid, myAttr,
null);

}
else
value = WFNotificationAPI.getAttrText(ctx, myNid, myAttr);

System.out.println(myAttr.toString() + " = ’" + value +
"’");

GetAttrDoc

PL/SQL Syntax
function GetAttrDoc
(nid in number,
aname in varchar2,
disptype in varchar2)
return varchar2;

Java Syntax
public static String getAttrDoc
(WFContext wCtx,
BigDecimal nid,
String aName,
String dispType)

Description
Returns the displayed value of a Document-type attribute. The referenced document
appears in either plain text or HTML format, as requested.

If you wish to retrieve the actual attribute value, that is, the document key string instead
of the actual document, use GetAttrText().

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

4-36 Oracle Workow API Reference



aname
The message attribute name.

disptype
The display type of the document you wish to return. Valid display types are:

• wf_notification.doc_text, which returns text/plain

• wf_notification.doc_html, which returns text/html

• wf_notification.doc_attach, which returns null

GetSubject

PL/SQL Syntax
function GetSubject
(nid in number)
return varchar2

Java Syntax
public static String getSubject
(WFContext wCtx,
BigDecimal nid)

Description
Returns the subject line for the notification message. Any message attribute in the subject
is token substituted with the value of the corresponding message attribute.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

GetBody

PL/SQL Syntax
function GetBody
(nid in number,
disptype in varchar2 default ’’)
return varchar2;

Java Syntax
public static String getBody
(WFContext wCtx,
BigDecimal nid,
String dispType)

Notication System APIs 4-37



Description
Returns the HTML or plain text message body for the notification, depending on the
message body type specified. Anymessage attribute in the body is token substituted with
the value of the corresponding notification attribute. This function may return up to 32K
characters. You cannot use this function in a view definition or in an Oracle Applications
form. For views and forms, use GetShortBody()which truncates values at 1950 characters.

Note that the returned plain text message body is not formatted; it should be
wordwrapped as appropriate for the output device. Body text may contain tabs (which
indicate indentation) and newlines (which indicate paragraph termination).

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

disptype
The display type of the message body you wish to fetch. Valid display types are:

• wf_notification.doc_text, which returns text/plain

• wf_notification.doc_html, which returns text/html

• wf_notification.doc_attach, which returns null

The default is null.

GetShortBody

PL/SQL Syntax
function GetShortBody
(nid in number)
return varchar2;

Description
Returns the message body for the notification. Any message attribute in the body is token
substituted with the value of the corresponding notification attribute. This function may
return up to 1950 characters. This function is meant for use in view definitions and
Oracle Forms Developer forms, where the field size is limited to 1950 characters. Use
GetBody() in other situations where you need to retrieve up to 32K characters.

Note that the returned plain text message body is not formatted; it should be
wordwrapped as appropriate for the output device. Body text may contain tabs (which
indicate indentation) and newlines (which indicate paragraph termination).

If an error is detected, this function returns the body unsubstituted or null if all else
fails, rather than raise exceptions.

4-38 Oracle Workow API Reference



Note: This function is intended for displaying messages in forms or
views only.

Arguments (input)
nid
The notification ID.

TestContext

PL/SQL Syntax
function TestContext
(nid in number)
return boolean;

Description
Tests if the current context is correct by calling the Item Type Selector/Callback
function. This function returns TRUE if the context check is OK, or if no Selector/Callback
function is implemented. It returns FALSE if the context check fails.

Arguments (input)
nid
The notification ID.

AccessCheck

PL/SQL Syntax
function AccessCheck
(access_str in varchar2)
return varchar2;

Java Syntax
public static String accessCheck
(WFContext wCtx,
String accessString)

Description
Returns a username if the notification access string is valid and the notification is
open, otherwise it returns null. The access string is automatically generated by the
notification mailer that sends the notification and is used to verify the authenticity of
both text and HTML versions of e-mail notifications.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

Notication System APIs 4-39



access_str or
accessString
The access string, in the format nid/nkey where nid is the notification ID and nkey is
the notification key.

WorkCount

PL/SQL Syntax
function WorkCount
(username in varchar2)
return number;

Java Syntax
public static BigDecimal workCount
(WFContext wCtx,
String userName)

Description
Returns the number of open notifications assigned to a role.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

username
The internal name of a role.

getNotications

Java Syntax
public static WFTwoDArray getNotifications
(WFContext wCtx,
String itemType,
String itemKey)

Description
Returns a list of notifications for the specified item type and item key.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

itemType
The internal name of the item type.

4-40 Oracle Workow API Reference



itemKey
A string derived from the application object’s primary key. The string uniquely identifies
the item within the item type. The item type and key together identify the process
instance.

getNoticationAttributes

Java Syntax
public static WFTwoDArray getNotificationAttributes
(WFContext wCtx,
BigDecimal nid)

Description
Returns a list of notification attributes and their corresponding values for the specified
notification ID.

Arguments (input)
wCtx
Workflow context information. Required for the Java method only. See: Oracle Workflow
Context, page 2-4.

nid
The notification ID.

Example
Example
The following code excerpt shows an example of how to call getNotificationAttributes() in
a Java program. The example code is from the WFTest.java program.

// List available Notification Attributes
System.out.println("List of Attributes for id " + myNid +

":");
dataSource =

WFNotificationAPI.getNotificationAttributes(ctx, myNid);
displayDataSource(ctx, dataSource);

WriteToClob

PL/SQL Syntax
procedure WriteToClob
(clob_loc in out clob,
msg_string in varchar2);

Description
Appends a character string to the end of a character large object (CLOB). You can use
this procedure to help build the CLOB for a PL/SQL CLOB document attribute for
a notification.

Notication System APIs 4-41



Arguments (input)
clob_loc
The CLOB to which the string should be added.

msg_string
A string of character data.

Related Topics
To Define a Document Attribute, Oracle Workflow Developer's Guide

"PL/SQL CLOB" Documents, Oracle Workflow Developer's Guide

Denormalize_Notication

PL/SQL Syntax
procedure Denormalize_Notification
(nid in number,
username in varchar2 default null,
langcode in varchar2 default null);

Description
Stores denormalized values for certain notification fields, including the notification
subject, in the WF_NOTIFICATIONS table. If you are using the Notification System to
send a notification outside of a workflow process, you must callDenormalize_Notification()
after setting the values for any notification attributes, in order to populate the
denormalized fields.

Denormalize_Notification() tests whether the language in which the notification should
be delivered matches the current session language, and stores the denormalized
information according to this setting only if the languages match. You can indicate the
language for the notification in a number of ways.

• If you specify a role name when you call the API, the language setting for that role is
used to determine the notification language.

• If you do not specify a role name, you can specify a language code for the language
you want.

Note: If you specify both a role name and a language code, the
role name is used to determine the notification language, and the
language code is ignored.

• If you specify neither a role name nor a language code, the notification language
defaults to the language setting for the recipient role of the notification.

If the notification language and the current session language do not match, the procedure
does not store any denormalized information. In this case, the viewing interface through
which the notification recipients access notifications must check the language and
perform the denormalization. The Oracle WorkflowWorklist will perform these tasks for
you if your users access their notifications through the Worklist Web pages.

4-42 Oracle Workow API Reference



Arguments (input)
nid
The notification ID.

username
An optional internal name of a role used to determine the notification language.

langcode
An optional language code used to determine the notification language if no role name is
provided.

SubstituteSpecialChars

PL/SQL Syntax
function SubstituteSpecialChars
(some_text in varchar2)
return varchar2;

Pragmas
pragma RESTRICT_REFERENCES(SubstituteSpecialChars, WNDS);

Description
Substitutes HTML character entity references for special characters in a text string and
returns the modified text including the substitutions.

You can use this function as a security precaution when creating a PL/SQL document
or a PL/SQL CLOB document that contains HTML, to ensure that only the HTML code
you intend to include is executed. If you retrieve any data from the database at runtime
for inclusion in the document, use SubstituteSpecialChars() to replace any HTML tag
characters in that data, so that those characters will not be interpreted as HTML code
and executed.

Note that you should not substitute entity references for HTML tags that you include
in the document yourself. Otherwise, the document will not be displayed with your
intended HTML formatting. You only need to perform this substitution for data that is
retrieved from the database at runtime, which may be entered from an external source.

The following table shows each special character and the entity reference with which
it is replaced.

Notication System APIs 4-43



Entity Reference Replacements for Special Characters

Character Entity Reference

< &lt;

> &gt;

\ &#92;

& &amp;

" &quot;

’ &#39;

Arguments (input)
some_text
The text string in which you want to replace special characters.

Notication Mailer Utility API
The notification mailer utility API can be used to encode data in a binary large object
(BLOB) to base64. This API is defined in a PL/SQL package called WF_MAIL_UTIL.

Note: This package is only available if your database version is Oracle9i
Database or higher. The Oracle8i Database does not support base64
encoding.

EncodeBLOB

PL/SQL Syntax
procedure EncodeBLOB
(pIDoc in blob,
pODoc in out nocopy clob);

Description
Encodes the specified BLOB to base64 and returns the encoded data as a character large
object (CLOB). You can use this procedure to store a BLOB in a PL/SQL CLOB document
to be included in a notification message.

Note: This API is only available if your database version is Oracle9i
Database or higher. The Oracle8i Database does not support base64
encoding.

Arguments (input)
pIDoc
The BLOB to encode.

pODoc
The CLOB in which the encoded data should be stored.

4-44 Oracle Workow API Reference



Related Topics
Standard APIs for "PL/SQL" Documents, Oracle Workflow Developer's Guide

Notication System APIs 4-45





5
Business Event System APIs

This chapter describes the APIs for the Oracle Workflow Business Event System. The
APIs consist of datatypes and PL/SQL functions and procedures that you can use to
access the Business Event System.

This chapter covers the following topics:

• Overview of the Oracle Workflow Business Event System

• Business Event System Datatypes

• Event APIs

• Event Subscription Rule Function APIs

• Event Function APIs

• Business Event System Replication APIs

• Business Event System Cleanup API

Overview of the Oracle Workow Business Event System
The Oracle Workflow Business Event System leverages the Oracle Advanced Queuing
infrastructure to communicate business events between systems. When a significant
business event occurs in an internet or intranet application on a system, it triggers event
subscriptions that specify the processing to execute for that event.

Subscriptions can include the following types of processing:

• Sending event information to a workflow process

• Sending event information to named communication points called agents on the
local system or external systems

• Sending a notification to a role

• Receiving an Oracle XML Gateway message from a trading partner (Oracle
E-Business Suite only)

• Sending an Oracle XML Gateway message to a trading partner (Oracle E-Business
Suite only)

• Executing custom code on the event information

The event information communicated by the Business Event System is called an event
message. The event message includes header properties to identify the event as well
as event data describing what occurred.

Business Event System APIs 5-1



You define events, systems, agents, and subscriptions in the Event Manager. You can
also define event activities in the Workflow Builder to include business events in your
workflow processes.

Related Topics
Business Event System Datatypes, page 5-2

Event APIs, page 5-20

Event Subscription Rule Function APIs, page 5-33

Event Function APIs, page 5-44

Business Event System Replication APIs, page 5-50

Business Event System Cleanup APIs, page 5-58

Managing Business Events, Oracle Workflow Developer's Guide

Event Activities, Oracle Workflow Developer's Guide

Business Event System Datatypes
Oracle Workflow uses a number of abstract datatypes (ADTs) to model the structure and
behavior of Business Event System data. These datatypes include the following:

• Agent structure: WF_AGENT_T, page 5-2

• Parameter structure: WF_PARAMETER_T, page 5-4

• Parameter list structure: WF_PARAMETER_LIST_T, page 5-5

• Event message structure: WF_EVENT_T, page 5-6

The Business Event System datatypes are created by a script called wftypes.sql, which
is located in the ORACLE_HOME/wf/sql directory for the standalone version of Oracle
Workflow, or in the $FND_TOP/sql directory for the version of Oracle Workflow
embedded in Oracle Applications.

See: User-Defined Datatypes, Oracle Concepts.

Related Topics
Example for Using Abstract Datatypes, page 5-17

Agent Structure
Oracle Workflow uses the object type WF_AGENT_T to store information about an agent
in a form that can be referenced by an event message. The following table lists the
attributes of the WF_AGENT_T datatype.

WF_AGENT_T Attributes

Attribute Name Datatype Description

NAME VARCHAR2(30) The name of the agent.

SYSTEM VARCHAR2(30) The system where the agent is
located.

5-2 Oracle Workow API Reference



The WF_AGENT_T object type also includes the following methods, which you can use to
retrieve and set the values of its attributes.

• getName, page 5-3

• getSystem, page 5-3

• setName, page 5-3

• setSystem, page 5-4

Related Topics
Agents, Oracle Workflow Developer's Guide

getName

PL/SQL Syntax
MEMBER FUNCTION getName
return varchar2

Description
Returns the value of the NAME attribute in a WF_AGENT_T object.

getSystem

PL/SQL Syntax
MEMBER FUNCTION getSystem
return varchar2

Description
Returns the value of the SYSTEM attribute in a WF_AGENT_T object.

setName

PL/SQL Syntax
MEMBER PROCEDURE setName
(pName in varchar2)

Description
Sets the value of the NAME attribute in a WF_AGENT_T object.

Arguments (input)
pName
The value for the NAME attribute.

Business Event System APIs 5-3



setSystem

PL/SQL Syntax
MEMBER PROCEDURE setSystem

(pSystem in varchar2)

Description
Sets the value of the SYSTEM attribute in a WF_AGENT_T object.

Arguments (input)
pSystem
The value for the SYSTEM attribute.

Parameter Structure
Oracle Workflow uses the object type WF_PARAMETER_T to store a parameter
name and value pair in a form that can be included in an event message parameter
list. WF_PARAMETER_T allows custom values to be added to the WF_EVENT_T event
message object. The following table lists the attributes of the WF_PARAMETER_T
datatype.

WF_PARAMETER_T Attributes

Attribute Name Datatype Description

NAME VARCHAR2(30) The parameter name.

VALUE VARCHAR2(2000) The parameter value.

The WF_PARAMETER_T object type also includes the following methods, which you can
use to retrieve and set the values of its attributes.

• getName, page 5-4

• getValue, page 5-5

• setName, page 5-5

• setValue, page 5-5

getName

PL/SQL Syntax
MEMBER FUNCTION getName
return varchar2

Description
Returns the value of the NAME attribute in a WF_PARAMETER_T object.

5-4 Oracle Workow API Reference



getValue

PL/SQL Syntax
MEMBER FUNCTION getValue
return varchar2

Description
Returns the value of the VALUE attribute in a WF_PARAMETER_T object.

setName

PL/SQL Syntax
MEMBER PROCEDURE setName
(pName in varchar2)

Description
Sets the value of the NAME attribute in a WF_PARAMETER_T object.

Arguments (input)
pName
The value for the NAME attribute.

setValue

PL/SQL Syntax
MEMBER PROCEDURE setValue

(pValue in varchar2)

Description
Sets the value of the VALUE attribute in a WF_PARAMETER_T object.

Arguments (input)
pValue
The value for the VALUE attribute.

Parameter List Structure
Oracle Workflow uses the named varying array (varray) WF_PARAMETER_LIST_T
to store a list of parameters in a form that can be included in an event
message. WF_PARAMETER_LIST_T allows custom values to be added to the
WF_EVENT_T event message object. The WF_PARAMETER_LIST_T datatype can include
up to 100 parameter name and value pairs. A description of this datatype is as follows:

WF_PARAMETER_LIST_T
• Maximum size: 100

• Element datatype: WF_PARAMETER_T

Business Event System APIs 5-5



Event Message Structure
Oracle Workflow uses the object type WF_EVENT_T to store event messages. This
datatype contains all the header properties of an event message as well as the event data
payload, in a serialized form that is suitable for transmission outside the system.

WF_EVENT_T defines the event message structure that the Business Event System and
the Workflow Engine use to represent a business event. Internally, the Business Event
System and the Workflow Engine can only communicate events in this format. Many
of the standard queues that Oracle Workflow provides for the Business Event System
use WF_EVENT_T as their payload type.

Note: If you want to use queues with a custom payload type, including
any existing queues you already have defined on your system, you must
create a queue handler to translate between the standard Workflow
WF_EVENT_T structure and your custom payload type. See: Setting Up
Queues, Oracle Workflow Administrator's Guide and Standard APIs for a
Queue Handler, Oracle Workflow Developer's Guide.

The following table lists the attributes of the WF_EVENT_T datatype.

WF_EVENT_T Attributes

Attribute Name Datatype Description

PRIORITY NUMBER The priority with which the
message recipient should
dequeue the message. A
smaller number indicates a
higher priority. For example, 1
represents a high priority, 50
represents a normal priority,
and 99 represents a low
priority.

SEND_DATE DATE The date and time when
the message is available for
dequeuing. The send date
can be set to the system date
to indicate that the message
is immediately available for
dequeuing, or to a future date
to indicate future availability.
If the send date is set to a
future date when an event is
raised, the event message is
placed on the WF_DEFERRED
queue, and subscription
processing does not begin until
the specified date. If the send
date is set to a future datewhen
an event is sent to an agent, the
event message is propagated
to that agent’s queue, but does
not become available for the
consumer to dequeue until the
specified date.

5-6 Oracle Workow API Reference



Attribute Name Datatype Description

RECEIVE_DATE DATE The date and time when the
message is dequeued by an
agent listener.

CORRELATION_ID VARCHAR2(240) A correlation identifier that
associates this message with
other messages. This attribute
is initially blank but can be set
by a function. If a value is set
for the correlation ID, then that
value is used as the item key if
the event is sent to a workflow
process. Note that the item
key for a process instance
can only contain single-byte
characters. It cannot contain a
multibyte value.

PARAMETER_LIST WF_PARAMETER_LIST_T A list of additional parameter
name and value pairs.

EVENT_NAME VARCHAR2(240) The internal name of the event.

EVENT_KEY VARCHAR2(240) The string that uniquely
identifies the instance of the
event.

EVENT_DATA CLOB A set of additional details
describing what occurred in
the event. The event data
can be structured as an XML
document.

FROM_AGENT WF_AGENT_T The agent from which the
event is sent. For locally raised
events, this attribute is initially
null.

TO_AGENT WF_AGENT_T The agent to which the event
should be sent (the message
recipient).

ERROR_SUBSCRIPTION RAW(16) If an error occurs while
processing this event, this is
the subscription that was being
executed when the error was
encountered.

ERROR_MESSAGE VARCHAR2(4000) An error message that the
Event Manager generates if an
error occurs while processing
this event.

ERROR_STACK VARCHAR2(4000) An error stack of arguments
that the Event Manager
generates if an error occurs
while processing this event.
The error stack provides
context information to help
you locate the source of an
error.

Business Event System APIs 5-7



The WF_EVENT_T object type also includes the following methods, which you can use to
retrieve and set the values of its attributes.

• Initialize, page 5-9

• getPriority, page 5-9

• getSendDate, page 5-9

• getReceiveDate, page 5-10

• getCorrelationID, page 5-10

• getParameterList, page 5-10

• getEventName, page 5-10

• getEventKey, page 5-10

• getEventData, page 5-11

• getFromAgent, page 5-11

• getToAgent, page 5-11

• getErrorSubscription, page 5-11

• getErrorMessage, page 5-11

• getErrorStack, page 5-12

• setPriority, page 5-12

• setSendDate, page 5-12

• setReceiveDate, page 5-12

• setCorrelationID, page 5-13

• setParameterList, page 5-13

• setEventName, page 5-13

• setEventKey, page 5-13

• setEventData, page 5-14

• setFromAgent, page 5-14

• setToAgent, page 5-14

• setErrorSubscription, page 5-15

• setErrorMessage, page 5-15

• setErrorStack, page 5-15

• Content, page 5-15

• Address, page 5-16

• AddParameterToList, page 5-16

• GetValueForParameter, page 5-17

Note: You can set the values of the EVENT_NAME, EVENT_KEY, and
EVENT_DATA attributes individually using the setEventName,
setEventKey, and setEventData methods, or you can use the Content

5-8 Oracle Workow API Reference



method to set all three event content attributes at once. See: Content,
page 5-15.

Similarly, you can set the values of the FROM_AGENT, TO_AGENT,
PRIORITY, and SEND_DATE attributes individually using the
setFromAgent, setToAgent, setPriority, and setSendDate methods, or
you can use the Address method to set all four address attributes at
once. See: Address, page 5-16.

Related Topics
Example for Using Abstract Datatypes, page 5-17

Mapping Between WF_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE, page 5-18

Initialize

PL/SQL Syntax
STATIC PROCEDURE initialize
(new_wf_event_t in out wf_event_t)

Description
Initializes a new WF_EVENT_T object by setting the PRIORITY attribute to 0, initializing
the EVENT_DATA attribute to EMPTY using the Empty_CLOB() function, and setting all
other attributes to NULL.

Important: You must call the Initialize method before you can perform
any further manipulation on a new WF_EVENT_T object.

Arguments (input)
new_wf_event_t
The WF_EVENT_T object to initialize.

getPriority

PL/SQL Syntax
MEMBER FUNCTION getPriority
return number

Description
Returns the value of the PRIORITY attribute in a WF_EVENT_T object.

getSendDate

PL/SQL Syntax
MEMBER FUNCTION getSendDate
return date

Description
Returns the value of the SEND_DATE attribute in a WF_EVENT_T object.

Business Event System APIs 5-9



getReceiveDate

PL/SQL Syntax
MEMBER FUNCTION getReceiveDate
return date

Description
Returns the value of the RECEIVE_DATE attribute in a WF_EVENT_T object.

getCorrelationID

PL/SQL Syntax
MEMBER FUNCTION getCorrelationID
return varchar2

Description
Returns the value of the CORRELATION_ID attribute in a WF_EVENT_T object.

getParameterList

PL/SQL Syntax
MEMBER FUNCTION getParameterList
return wf_parameter_list_t

Description
Returns the value of the PARAMETER_LIST attribute in a WF_EVENT_T object.

getEventName

PL/SQL Syntax
MEMBER FUNCTION getEventName
return varchar2

Description
Returns the value of the EVENT_NAME attribute in a WF_EVENT_T object.

getEventKey

PL/SQL Syntax
MEMBER FUNCTION getEventKey
return varchar2

Description
Returns the value of the EVENT_KEY attribute in a WF_EVENT_T object.

5-10 Oracle Workow API Reference



getEventData

PL/SQL Syntax
MEMBER FUNCTION getEventData
return clob

Description
Returns the value of the EVENT_DATA attribute in a WF_EVENT_T object.

getFromAgent

PL/SQL Syntax
MEMBER FUNCTION getFromAgent
return wf_agent_t

Description
Returns the value of the FROM_AGENT attribute in a WF_EVENT_T object.

getToAgent

PL/SQL Syntax
MEMBER FUNCTION getToAgent
return wf_agent_t

Description
Returns the value of the TO_AGENT attribute in a WF_EVENT_T object.

getErrorSubscription

PL/SQL Syntax
MEMBER FUNCTION getErrorSubscription
return raw

Description
Returns the value of the ERROR_SUBSCRIPTION attribute in a WF_EVENT_T object.

getErrorMessage

PL/SQL Syntax
MEMBER FUNCTION getErrorMessage
return varchar2

Description
Returns the value of the ERROR_MESSAGE attribute in a WF_EVENT_T object.

Business Event System APIs 5-11



getErrorStack

PL/SQL Syntax
MEMBER FUNCTION getErrorStack
return varchar2

Description
Returns the value of the ERROR_STACK attribute in a WF_EVENT_T object.

setPriority

PL/SQL Syntax
MEMBER PROCEDURE setPriority
(pPriority in number)

Description
Sets the value of the PRIORITY attribute in a WF_EVENT_T object.

Arguments (input)
pPriority
The value for the PRIORITY attribute.

setSendDate

PL/SQL Syntax
MEMBER PROCEDURE setSendDate
(pSendDate in date default sysdate)

Description
Sets the value of the SEND_DATE attribute in a WF_EVENT_T object.

Arguments (input)
pSendDate
The value for the SEND_DATE attribute.

setReceiveDate

PL/SQL Syntax
MEMBER PROCEDURE setReceiveDate
(pReceiveDate in date default sysdate)

Description
Sets the value of the RECEIVE_DATE attribute in a WF_EVENT_T object.

Arguments (input)
pReceiveDate
The value for the RECEIVE_DATE attribute.

5-12 Oracle Workow API Reference



setCorrelationID

PL/SQL Syntax
MEMBER PROCEDURE setCorrelationID

(pCorrelationID in varchar2)

Description
Sets the value of the CORRELATION_ID attribute in a WF_EVENT_T object.

Arguments (input)
pCorrelationID
The value for the CORRELATION_ID attribute.

setParameterList

PL/SQL Syntax
MEMBER PROCEDURE setParameterList
(pParameterList in wf_parameter_list_t)

Description
Sets the value of the PARAMETER_LIST attribute in a WF_EVENT_T object.

Arguments (input)
pParameterList
The value for the PARAMETER_LIST attribute.

setEventName

PL/SQL Syntax
MEMBER PROCEDURE setEventName
(pEventName in varchar2)

Description
Sets the value of the EVENT_NAME attribute in a WF_EVENT_T object.

Arguments (input)
pEventName
The value for the EVENT_NAME attribute.

setEventKey

PL/SQL Syntax
MEMBER PROCEDURE setEventKey
(pEventKey in varchar2)

Description
Sets the value of the EVENT_KEY attribute in a WF_EVENT_T object.

Business Event System APIs 5-13



Arguments (input)
pEventKey
The value for the EVENT_KEY attribute.

setEventData

PL/SQL Syntax
MEMBER PROCEDURE setEventData

(pEventData in clob)

Description
Sets the value of the EVENT_DATA attribute in a WF_EVENT_T object.

Arguments (input)
pEventData
The value for the EVENT_DATA attribute.

setFromAgent

PL/SQL Syntax
MEMBER PROCEDURE setFromAgent
(pFromAgent in wf_agent_t)

Description
Sets the value of the FROM_AGENT attribute in a WF_EVENT_T object.

Arguments (input)
pFromAgent
The value for the FROM_AGENT attribute.

setToAgent

PL/SQL Syntax
MEMBER PROCEDURE setToAgent
(pToAgent in wf_agent_t)

Description
Sets the value of the TO_AGENT attribute in a WF_EVENT_T object.

Arguments (input)
pToAgent
The value for the TO_AGENT attribute.

5-14 Oracle Workow API Reference



setErrorSubscription

PL/SQL Syntax
MEMBER PROCEDURE setErrorSubscription
(pErrorSubscription in raw)

Description
Sets the value of the ERROR_SUBSCRIPTION attribute in a WF_EVENT_T object.

Arguments (input)
pErrorSubscription
The value for the ERROR_SUBSCRIPTION attribute.

setErrorMessage

PL/SQL Syntax
MEMBER PROCEDURE setErrorMessage
(pErrorMessage in varchar2)

Description
Sets the value of the ERROR_MESSAGE attribute in a WF_EVENT_T object.

Arguments (input)
pErrorMessage
The value for the ERROR_MESSAGE attribute.

setErrorStack

PL/SQL Syntax
MEMBER PROCEDURE setErrorStack

(pErrorStack in varchar2)

Description
Sets the value of the ERROR_STACK attribute in a WF_EVENT_T object.

Arguments (input)
pErrorStack
The value for the ERROR_STACK attribute.

Content

PL/SQL Syntax
MEMBER PROCEDURE Content
(pName in varchar2,
pKey in varchar2,
pData in clob)

Business Event System APIs 5-15



Description
Sets the values of all the event content attributes in a WF_EVENT_T object, including
EVENT_NAME, EVENT_KEY, and EVENT_DATA.

Arguments (input)
pName
The value for the EVENT_NAME attribute.

pKey
The value for the EVENT_KEY attribute.

pData
The value for the EVENT_DATA attribute.

Address

PL/SQL Syntax
MEMBER PROCEDURE Address
(pOutAgent in wf_agent_t,
pToAgent in wf_agent_t,
pPriority in number,
pSendDate in date)

Description
Sets the values of the all address attributes in a WF_EVENT_T object, including
FROM_AGENT, TO_AGENT, PRIORITY, and SEND_DATE.

Arguments (input)
pOutAgent
The value for the FROM_AGENT attribute.

pToAgent
The value for the TO_AGENT attribute.

pPriority
The value for the PRIORITY attribute.

pSendDate
The value for the SEND_DATE attribute.

AddParameterToList

PL/SQL Syntax
MEMBER PROCEDURE AddParameterToList
(pName in varchar2,
pValue in varchar2)

Description
Adds a new parameter name and value pair to the list stored in the PARAMETER_LIST
attribute of a WF_EVENT_T object. If a parameter with the specified name already exists
in the parameter list, then the previous value of that parameter is overwritten with
the specified value.

5-16 Oracle Workow API Reference



Arguments (input)
pName
The parameter name.

pValue
The parameter value.

GetValueForParameter

PL/SQL Syntax
MEMBER FUNCTION GetValueForParameter
(pName in varchar2) return varchar2

Description
Returns the value of the specified parameter from the list stored in the PARAMETER_LIST
attribute of a WF_EVENT_T object. This method begins at the end of the parameter list
and searches backwards through the list. If no parameter with the specified name is
found in the parameter list, then the method returns NULL.

Arguments (input)
pName
The parameter name.

Example for Using Abstract Datatypes
The following example shows some ways to use abstract datatype methods in a SQL
script, including:

• Initializing a new event message structure with the Initialize method

Important: You must call the Initialize method before you can
perform any further manipulation on a new WF_EVENT_T object.

• Initializing a CLOB locator

• Writing a text variable into a CLOB variable

• Setting the content attributes of the event message structure with the Content method

• Setting the address attributes of the event message structure with the Address
method

The example code is from the script wfevtenq.sql, which enqueues an event message
on a queue using an override agent. See: Wfevtenq.sql, Oracle Workflow Administrator's
Guide.

Business Event System APIs 5-17



declare
l_overrideagent varchar2(30) := ’&overrideagent’;
l_overridesystem varchar2(30) := ’&overridesystem’;
l_fromagent varchar2(30) := ’&fromagent’;
l_fromsystem varchar2(30) := ’&fromsystem’;
l_toagent varchar2(30) := ’&toagent’;
l_tosystem varchar2(30) := ’&tosystem’;
l_eventname varchar2(100) := ’&eventname’;
l_eventkey varchar2(100) := ’&eventkey’;
l_msg varchar2(200) := ’&message’;
l_clob clob;
l_overrideagent_t wf_agent_t;
l_toagent_t wf_agent_t;
l_fromagent_t wf_agent_t;
l_event_t wf_event_t;

begin

/*You must call wf_event_t.initialize before you can manipulate
a new wf_event_t object.*/

wf_event_t.initialize(l_event_t);
l_overrideagent_t := wf_agent_t(l_overrideagent, l_overridesyste

m);
l_toagent_t := wf_agent_t(l_toagent, l_tosystem);
l_fromagent_t := wf_agent_t(l_fromagent, l_fromsystem);

if l_msg is null then
l_event_t.Content(l_eventname, l_eventkey, null);

else
dbms_lob.createtemporary(l_clob, FALSE, DBMS_LOB.CALL);
dbms_lob.write(l_clob, length(l_msg), 1, l_msg);
l_event_t.Content(l_eventname, l_eventkey, l_clob);

end if;

l_event_t.Address(l_fromagent_t, l_toagent_t, 50, sysdate);

wf_event.enqueue(l_event_t, l_overrideagent_t);

end;

Mapping Between WF_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE
Java Message Service (JMS) is a messaging standard defined by Sun
Microsystems, Oracle, IBM, and other vendors. JMS is a set of interfaces and associated
semantics that define how a JMS client accesses the facilities of an enterprise messaging
product.

Oracle Java Message Service provides a Java API for Oracle Advanced Queuing (AQ)
based on the JMS standard. Oracle JMS supports the standard JMS interfaces and has
extensions to support the AQ administrative operations and other AQ features that are
not a part of the standard. The abstract datatype used to store a JMS Text message in
an AQ queue is called SYS.AQ$_JMS_TEXT_MESSAGE.

Oracle Workflow supports communication of JMS Text messages through the Business
Event System by providing a queue handler called WF_EVENT_OJMSTEXT_QH. This
queue handler translates between the standard Workflow WF_EVENT_T message

5-18 Oracle Workow API Reference



structure and SYS.AQ$_JMS_TEXT_MESSAGE. Oracle Workflow also provides standard
inbound and outbound queues that you can use for JMS Text messages, These
queues are called WF_JMS_IN and WF_JMS_OUT, respectively, and use the
WF_EVENT_OJMSTEXT_QH queue handler. See: Agents, Oracle Workflow Developer's
Guide.

The SYS.AQ$_JMS_TEXT_MESSAGE datatype contains the following attributes.

• HEADER - Header properties in the SYS.AQ$_JMS_HEADER datatype

• TEXT_LEN - The size of the message payload, set automatically

• TEXT_VC - The message payload in VARCHAR2 format, if the payload is equal to
or less than 4000 bytes

• TEXT_LOB - The message payload in CLOB format, if the payload is greater than
4000 bytes

The SYS.AQ$_JMS_HEADER datatype contains the following attributes.

• REPLYTO - A Destination supplied by a client when a message is sent

• TYPE - The type of the message

• USERID - The identity of the user sending the message

• APPID - The identity of the application sending the message

• GROUPID - The identity of the message group of which this message is a part; set
by the client

• GROUPSEQ - The sequence number of the message within the group

• PROPERTIES - Additional message properties in the SYS.AQ$_JMS_USERPRO
PARRAY datatype

The SYS.AQ$_JMS_USERPROPARRAY datatype is a named varying array with
a maximum size of 100. The datatype of its elements is another ADT named
SYS.AQ$_JMS_USERPROPERTY.

The following table shows how the attributes of the WF_EVENT_Tmessage structure are
mapped to the attributes within the SYS.AQ$_JMS_TEXT_MESSAGE structure.

Business Event System APIs 5-19



Mapping WF_EVENT_T Attributes to SYS.AQ$_JMS_TEXT_MESSAGE Attributes

WF_EVENT_T SYS.AQ$_JMS_TEXT_MESSAGE

WF_EVENT_T.PRIORITY SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.SEND_DATE SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.RECEIVE_DATE SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.CORRELATION_ID SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.EVENT_NAME SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.EVENT_KEY SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.EVENT_DATA TEXT_VC or TEXT_LOB

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.REPLYTO

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.TYPE

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.USERID

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.APPID

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.GROUPID

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.GROUPSEQ

WF_EVENT_T.PARAMETER_LIST (any
parameters other than JMS header properties)

SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.FROM_AGENT SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.TO_AGENT SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.ERROR_SUBSCRIPTION SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.ERROR_MESSAGE SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.ERROR_STACK SYS.AQ$_JMS_USERPROPARRAY

See: Using Oracle Java Message Service to Access AQ, Oracle Application Developer’s
Guide - Advanced Queuing or Using Oracle Java Message Service (OJMS) to Access Oracle
Streams AQ, Oracle Streams Advanced Queuing User’s Guide and Reference and Package
oracle.jms, Oracle Supplied Java Packages Reference.

Event APIs
The Event APIs can be called by an application program or a workflow process in
the runtime phase to communicate with the Business Event System and manage
events. These APIs are defined in a PL/SQL package called WF_EVENT.

• Raise, page 5-21

• Raise3, page 5-24

• Send, page 5-25

• NewAgent, page 5-26

5-20 Oracle Workow API Reference



• Test, page 5-26

• Enqueue, page 5-27

• Listen, page 5-27

• SetErrorInfo, page 5-29

• SetDispatchMode, page 5-29

• AddParameterToList, page 5-30

• AddParameterToListPos, page 5-31

• GetValueForParameter, page 5-31

• GetValueForParameterPos, page 5-32

• SetMaxNestedRaise, page 5-32

• GetMaxNestedRaise, page 5-32

Raise

PL/SQL Syntax
procedure Raise
(p_event_name in varchar2,
p_event_key in varchar2,
p_event_data in clob default NULL,
p_parameters in wf_parameter_list_t default NULL,
p_send_date in date default NULL);

Description
Raises a local event to the Event Manager. Raise() creates a WF_EVENT_T structure for
this event instance and sets the specified event name, event key, event data, parameter
list, and send date into the structure.

The event data can be passed to the Event Manager within the call to the Raise() API, or
the Event Manager can obtain the event data itself by calling the generate function for
the event, after first checking whether the event data is required by a subscription. If the
event data is not already available in your application, you can improve performance by
allowing the Event Manager to run the generate function and generate the event data
only when subscriptions exist that require that data, rather than always generating the
event data from your application at runtime. See: Events, Oracle Workflow Developer's
Guide and Standard API for an Event Data Generate Function,Oracle Workflow Developer's
Guide.

The send date can optionally be set to indicate when the event should become available
for subscription processing. If the send date is null, Raise() sets the send date to the
current system date. You can defer an event by setting the send date to a date later
than the system date. In this case, the Event Manager places the event message on
the standard WF_DEFERRED queue, where it remains in a WAIT state until the send
date. When the send date arrives, the event message becomes available for dequeuing
and will be dequeued the next time an agent listener runs on the WF_DEFERRED queue.

Business Event System APIs 5-21



Note: If an event is deferred when it is raised, the event retains its
original Local source type when it is dequeued from theWF_DEFERRED
queue.

When an event is raised and is not deferred, or when an event that was deferred is
dequeued from the WF_DEFERRED queue, the Event Manager begins subscription
processing for the event. The Event Manager searches for and executes any enabled
subscriptions by the local system to that event with a source type of Local, and also any
enabled subscriptions by the local system to the Any event with a source type of Local. If
no enabled subscriptions exist for the event that was raised (apart from subscriptions to
the Any event), then Oracle Workflow executes any enabled subscriptions by the local
system to the Unexpected event with a source type of Local.

Note: The Event Manager does not raise an error if the event is not
defined.

The Event Manager checks each subscription before executing it to determine whether
the subscription requires the event data. If the event data is required but is not already
provided, the Event Manager calls the generate function for the event to produce the
event data. If the event data is required but no generate function is defined for the
event, Oracle Workflow creates a default set of event data using the event name and
event key.

Note: Any exceptions raised during Raise() processing are not
trapped, but instead are exposed to the code that called the Raise()
procedure. This behavior enables you to use subscriptions and their
rule functions to perform validation, with the same results as if the
validation logic were coded inline.

Arguments (input)
p_event_name
The internal name of the event.

p_event_key
A string generated when the event occurs within a program or application. The event
key uniquely identifies a specific instance of the event.

p_event_data
An optional set of information about the event that describes what occurred. The
Event Manager checks each subscription before executing it to determine whether the
subscription requires the event data. If the event data is required but is not already
provided, the Event Manager calls the generate function for the event to produce the
event data. See: Events, Oracle Workflow Developer's Guide and Standard API for an Event
Data Generate Function, Oracle Workflow Developer's Guide.

p_parameters
An optional list of additional parameter name and value pairs.

p_send_date
An optional date to indicate when the event should become available for subscription
processing.

5-22 Oracle Workow API Reference



Example
Example
declare
l_xmldocument varchar2(32000);
l_eventdata clob;
l_parameter_list wf_parameter_list_t;
l_message varchar2(10);

begin

/*
** If the complete event data is easily available, we can
** optionally test if any subscriptions to this event
** require it (rule data = Message).
*/

l_message := wf_event.test(’<EVENT_NAME>’);

/*
** If we do require a message, and we have the message now,
** set it; else we can just rely on the Event Generate
** Function callback code. Then raise the event with the
** required parameters.
*/

if l_message = ’MESSAGE’ then
if l_xmldocument is not null then
dbms_lob.createtemporary(l_eventdata, FALSE, DBMS_LOB.CALL);
dbms_lob.write(l_eventdata, length(l_xmldocument), 1 ,
l_xmldocument);

-- Raise the Event with the message
wf_event.raise( p_event_name => ’<EVENT_NAME>’,
p_event_key => ’<EVENT_KEY>’,
p_event_data => l_eventdata,
p_parameters => l_parameter_list);

else
-- Raise the Event without the message
wf_event.raise( p_event_name => ’<EVENT_NAME>’,
p_event_key => ’<EVENT_KEY>’,
p_parameters => l_parameter_list);

end if;
elsif
l_message = ’KEY’ then
-- Raise the Event
wf_event.raise( p_event_name => <EVENT_NAME>,
p_event_key => <EVENT_KEY>,
p_parameters => l_parameter_list);

end if;

/*
** Up to your own custom code to commit the transaction
*/

commit;

/*
** Up to your own custom code to handle any major exceptions

Business Event System APIs 5-23



*/

exception
when others then
null;
end;

Related Topics
Any Event, Oracle Workflow Developer's Guide

Unexpected Event, Oracle Workflow Developer's Guide

Raise3

PL/SQL Syntax
procedure Raise3
(p_event_name in varchar2,
p_event_key in varchar2,
p_event_data in clob default NULL,
p_parameter_list in out nocopy wf_parameter_list_t,
p_send_date in date default NULL);

Description
Raises a local event to the Event Manager and returns the parameter list for the
event. Raise3() performs the same processing as the Raise() procedure, except that
Raise3() passes the event parameter list back to the calling application after completing
the event subsription processing. See: Raise, page 5-21.

Raise3() creates a WF_EVENT_T structure for this event instance and sets the
specified event name, event key, event data, parameter list, and send date into the
structure. Then, if the event is not deferred, the Event Manager begins subscription
processing for the event. The Event Manager searches for and executes any enabled
subscriptions by the local system to that event with a source type of Local, and also any
enabled subscriptions by the local system to the Any event with a source type of Local. If
no enabled subscriptions exist for the event that was raised (apart from subscriptions to
the Any event), then Oracle Workflow executes any enabled subscriptions by the local
system to the Unexpected event with a source type of Local.

After completing subscription processing for the event, Raise3() returns the parameter list
for the event, including any modifications made to the parameters by the rule functions
of the subscriptions. In this way, event subscriptions can communicate parameters back
to the application that raised the event.

Note: Any exceptions raised during Raise3() processing are not
trapped, but instead are exposed to the code that called the Raise3()
procedure. This behavior enables you to use subscriptions and their
rule functions to perform validation, with the same results as if the
validation logic were coded inline.

5-24 Oracle Workow API Reference



Arguments (input)
p_event_name
The internal name of the event.

p_event_key
A string generated when the event occurs within a program or application. The event
key uniquely identifies a specific instance of the event.

p_event_data
An optional set of information about the event that describes what occurred. The
Event Manager checks each subscription before executing it to determine whether the
subscription requires the event data. If the event data is required but is not already
provided, the Event Manager calls the generate function for the event to produce the
event data. See: Events, Oracle Workflow Developer's Guide and Standard API for an Event
Data Generate Function, Oracle Workflow Developer's Guide.

p_parameter_list
A list of additional parameter name and value pairs.

p_send_date
An optional date to indicate when the event should become available for subscription
processing.

Send

PL/SQL Syntax
procedure Send

(p_event in out wf_event_t);

Description
Sends an event message from one agent to another. If the event message contains both
a From Agent and a To Agent, the message is placed on the outbound queue of the
From Agent and then asynchronously delivered to the To Agent by AQ propagation, or
whichever type of propagation is implemented for the agents’ protocol.

If the event message contains a To Agent but no specified From Agent, the message is
sent from the default outbound agent that matches the queue type of the To Agent.

If the event message contains a From Agent but no specified To Agent, the event message
is placed on the From Agent’s queue without a specified recipient.

• You can omit the To Agent if the From Agent uses a multi-consumer queue
with a subscriber list. (The standard Workflow queue handlers work only with
multi-consumer queues.) In this case, the queue’s subscriber list determines which
consumers can dequeue the message. If no subscriber list is defined for that
queue, however, the event message is placed on the WF_ERROR queue for error
handling.

Note: The subscriber list for a multi-consumer queue in Oracle
Advanced Queuing is different from event subscriptions
in the Oracle Workflow Business Event System. For more
information, see: Subscription and Recipient Lists, Oracle Application
Developer’s Guide - Advanced Queuing or Oracle Streams Advanced
Queuing User’s Guide and Reference.

Business Event System APIs 5-25



• You can also omit the To Agent if the From Agent uses a single-consumer queue for
which you have defined a custom queue handler. For a single-consumer queue, no
specified consumer is required.

The send date within the event message indicates when the message should become
available for the consumer to dequeue. If the send date is blank, the Send() procedure
resets the value to the current system date, meaning the message is immediately
available for dequeuing as soon as it is propagated. If the send date is a future date, the
message is marked with a delay time corresponding to that date and does not become
available for dequeuing until the delay time has passed. For more information, see: Time
Specification: Delay, Oracle Application Developer’s Guide - Advanced Queuing or Oracle
Streams Advanced Queuing User’s Guide and Reference.

Note: If you want to use the send date to determine when a message
becomes available for dequeuing on the To Agent, you should set the
send date during subscription processing before Send() is called.

Send() returns the final event message that was sent, including any properties set by
the procedure.

Arguments (input)
p_event
The event message.

NewAgent

PL/SQL Syntax
function NewAgent
(p_agent_guid in raw) return wf_agent_t;

Description
Creates a WF_AGENT_T structure for the specified agent and sets the agent’s system and
name into the structure. See: Agent Structure, page 5-2.

Arguments (input)
p_agent_guid
The globally unique identifier of the agent.

Test

PL/SQL Syntax
function Test
(p_event_name in varchar2) return varchar2;

Description
Tests whether the specified event is enabled and whether there are any enabled
subscriptions by the local system referencing the event, or referencing an enabled event

5-26 Oracle Workow API Reference



group that contains the event. Test() returns the most costly data requirement among
these subscriptions, using the following result codes:

• NONE - No enabled local subscriptions reference the event, or the event does not exist.

• KEY - At least one enabled local subscription references the event, but all such
subscriptions require only the event key.

• MESSAGE - At least one enabled local subscription on the event requires the complete
event data.

Arguments (input)
p_event_name
The internal name of the event.

Enqueue

PL/SQL Syntax
procedure Enqueue
(p_event in wf_event_t,
p_out_agent_override in wf_agent_t default null);

Description
Enqueues an event message onto a queue associated with an outbound agent. You
can optionally specify an override agent where you want to enqueue the event
message. Otherwise, the event message is enqueued on the From Agent specified
within the message. The message recipient is set to the To Agent specified in the event
message. Enqueue() uses the queue handler for the outbound agent to place the message
on the queue.

Arguments (input)
p_event
The event message.

p_out_agent_override
The outbound agent on whose queue the event message should be enqueued.

Listen

PL/SQL Syntax
procedure Listen
(p_agent_name in varchar2,
p_wait in binary_integer default dbms_aq.no_wait,
p_correlation in varchar2 default null,
p_deq_condition in varchar2 default null);

Description
Monitors an agent for inbound event messages and dequeues messages using the agent’s
queue handler, in the database tier.

Business Event System APIs 5-27



The standard WF_EVENT_QH queue handler sets the date and time when an event
message is dequeued into the RECEIVE_DATE attribute of the event message. Custom
queue handlers can also set the RECEIVE_DATE value if this functionality is included in
the Dequeue API.

When an event is dequeued, the Event Manager searches for and executes any enabled
subscriptions by the local system to that event with a source type of External, and also
any enabled subscriptions by the local system to the Any event with a source type
of External. If no enabled subscriptions exist for the event that was received (apart
from subscriptions to the Any event), then Oracle Workflow executes any enabled
subscriptions by the local system to the Unexpected event with a source type of External.

The Listen() procedure exits after all event messages on the agent’s queue have been
dequeued, unless you specify a wait period to block on the queue waiting for additional
messages.

You must not call Listen() from within application code. If you want to call this
procedure directly, you can run it from SQL*Plus. Otherwise, you can schedule PL/SQL
agent listeners for your inbound agents from Oracle Applications Manager or Oracle
Enterprise Manager, depending on your version of Oracle Workflow. See: Scheduling
Listeners for Local Inbound Agents, Oracle Workflow Administrator's Guide.

You can optionally restrict the event messages that the Listen() procedure will process
by specifying an AQ correlation ID consisting of an event name, or a partial event
name followed by a percent sign (%) as a wildcard character. Additionally, if your
database version is Oracle9i Database or higher, you can also optionally restrict the event
messages that the Listen() procedure will process by specifying a dequeue condition that
references the properties or content of the message. However, you cannot specify both of
these parameters at the same time. If you specify one, you must leave the other null.

Arguments (input)
p_agent_name
The name of the inbound agent.

p_wait
An optional wait period, in seconds, during which you want the agent listener to block
on the agent’s queue to wait for messages. By default an agent listener does not wait but
exits after all messages on the queue have been dequeued.

p_correlation
Optionally specify an AQ correlation ID to identify the event messages that you want the
agent listener to process. The AQ correlation ID for an event message in the Business
Event System is usually specified as an event name, or as a partial event name followed
by a percent sign (%) as a wildcard character. Consequently, by specifying an AQ
correlation ID in this parameter, you can dedicate the agent listener to listen only for
messages that are instances of the specified event or events. For example, you can specify
oracle.apps.wf.notification% to listen for all events related to notifications
whose names begin with that value. The default value for this correlation ID is
null, which allows the agent listener to process messages that are instances of any event.

If a dequeue condition is specified in the next parameter, this parameter must be null.

See: Dequeue Methods, Oracle Application Developer’s Guide - Advanced Queuing or Oracle
Streams Advanced Queuing User’s Guide and Reference.

Note: The AQ correlation ID is different than the correlation ID
contained within the WF_EVENT_T event message structure.

5-28 Oracle Workow API Reference



p_deq_condition
Optionally specify a dequeue condition to identify the event messages that you want the
agent listener to process. A dequeue condition is an expression that is similar in syntax
to the WHERE clause of a SQL query. Dequeue conditions are expressed in terms of the
attributes that represent message properties or message content. The messages in the
queue are evaluated against the condition, so you can restrict the agent listener to listen
only for messages that satisfy this condition. The default value is null, which does not
place any restriction on the messages the agent listener can process.

If an AQ correlation ID is specified in the previous parameter, this parameter must be
null.

See: Dequeue Methods, Oracle Application Developer’s Guide - Advanced Queuing or Oracle
Streams Advanced Queuing User’s Guide and Reference.

Related Topics
Any Event, Oracle Workflow Developer's Guide

Unexpected Event, Oracle Workflow Developer's Guide

Wfagtlst.sql, Oracle Workflow Administrator's Guide

Standard APIs for a Queue Handler, Oracle Workflow Developer's Guide

SetErrorInfo

PL/SQL Syntax
procedure SetErrorInfo
(p_event in out wf_event_t,
p_type in varchar2);

Description
Retrieves error information from the error stack and sets it into the event message. The
error message and error stack are set into the corresponding attributes of the event
message. The error name and error type are added to the PARAMETER_LIST attribute of
the event message.

Arguments (input)
p_event
The event message.

p_type
The error type, either ’ERROR’ or ’WARNING’.

SetDispatchMode

PL/SQL Syntax
procedure SetDispatchMode
(p_mode in varchar2);

Business Event System APIs 5-29



Description
Sets the dispatch mode of the Event Manager to either deferred or synchronous
subscription processing. Call SetDispatchMode() with the mode ’ASYNC’ just before
calling Raise() to defer all subscription processing forever for the event that you will
raise. In this case, the Event Manager places the event on the WF_DEFERRED queue
before executing any subscriptions for that event. The subscriptions are not executed
until an agent listener runs to dequeue the event from the WF_DEFERRED queue.

You can call SetDispatchMode() with the mode ’SYNC’ to set the dispatch mode back to
normal synchronous subscription processing. In this mode, the phase number for each
subscription determines whether the subscription is executed immediately or deferred.

Note: This method of deferring subscription processing is
not recommended and should only be used in exceptional
circumstances, since it requires hard-coding the deferral in your
application. To retain the flexibility to modify subscription processing
without intrusion into the application, you can simply mark some or
all of the individual subscriptions for deferral using the subscription
phase numbers.

Arguments (input)
p_mode
The dispatch mode: either ’ASYNC’ for deferred (asynchronous) subscription
processing, or ’SYNC’ for synchronous subscription processing.

Related Topics
Deferred Subscription Processing, Oracle Workflow Developer's Guide

Raise, page 5-21

AddParameterToList

PL/SQL Syntax
procedure AddParameterToList
(p_name in varchar2,
p_value in varchar2,
p_parameterlist in out wf_parameter_list_t);

Description
Adds the specified parameter name and value pair to the end of the specified parameter
list varray. If the varray is null, AddParameterToList() initializes it with the new parameter.

Arguments (input)
p_name
The parameter name.

p_value
The parameter value.

p_parameterlist
The parameter list.

5-30 Oracle Workow API Reference



AddParameterToListPos

PL/SQL Syntax
procedure AddParameterToListPos
(p_name in varchar2,
p_value in varchar2,
p_position out integer,
p_parameterlist in out wf_parameter_list_t);

Description
Adds the specified parameter name and value pair to the end of the specified parameter
list varray. If the varray is null, AddParameterToListPos() initializes it with the new
parameter. The procedure also returns the index for the position at which the parameter
is stored within the varray.

Arguments (input)
p_name
The parameter name.

p_value
The parameter value.

p_parameterlist
The parameter list.

GetValueForParameter

PL/SQL Syntax
function GetValueForParameter
(p_name in varchar2,
p_parameterlist in wf_parameter_list_t)
return varchar2;

Description
Retrieves the value of the specified parameter from the specified parameter list
varray. GetValueForParameter() begins at the end of the parameter list and searches
backwards through the list.

Arguments (input)
p_name
The parameter name.

p_parameterlist
The parameter list.

Business Event System APIs 5-31



GetValueForParameterPos

PL/SQL Syntax
function GetValueForParameterPos
(p_position in integer,
p_parameterlist in wf_parameter_list_t)
return varchar2;

Description
Retrieves the value of the parameter stored at the specified position in the specified
parameter list varray.

Arguments (input)
p_position
The index representing the position of the parameter within the parameter list.

p_parameterlist
The parameter list.

SetMaxNestedRaise

PL/SQL Syntax
procedure SetMaxNestedRaise
(maxcount in number default 100);

Description
Sets the maximum number of nested raises that can be performed to the specified
value. A nested raise occurs when one event is raised and a Local subscription to that
event is executed and raises another event. The default maximum is 100.

Arguments (input)
max_count
The maximum number of nested raises to allow.

GetMaxNestedRaise

PL/SQL Syntax
function GetMaxNestedRaise
return number;

Description
Returns the maximum number of nested raises that can currently be performed. A
nested raise occurs when one event is raised and a Local subscription to that event is
executed and raises another event.

5-32 Oracle Workow API Reference



Event Subscription Rule Function APIs
The event subscription rule function APIs provide standard rule functions that you
can assign to event subscriptions. A rule function specifies the processing that Oracle
Workflow performs when the subscription’s triggering event occurs.

Oracle Workflow provides a standard Default_Rule function to perform basic
subscription processing. The default rule function includes the following actions:

• Sending the event message to a workflow process, if specified in the subscription
definition

• Sending the event message to an agent, if specified in the subscription definition

Oracle Workflow also provides some other standard rule functions that you can use. The
Log, Error, Warning, and Success functions can be used for testing and debugging your
application. Other standard rule functions provide specialized processing used in
predefined Oracle Workflow event subscriptions or in special options you can choose to
refine your subscription processing.

These rule function APIs are defined in a PL/SQL package called WF_RULE.

• Default_Rule, page 5-33

• Log, page 5-35

• Error, page 5-35

• Warning, page 5-36

• Success, page 5-37

• Workflow_Protocol, page 5-38

• Error_Rule, page 5-38

• SetParametersIntoParameterList, page 5-39

• Default_Rule2, page 5-40

• Default_Rule3, page 5-41

• SendNotification, page 5-41

• Instance_Default_Rule, page 5-43

Related Topics
Event Subscriptions, Oracle Workflow Developer's Guide

Standard API for an Event Subscription Rule Function, Oracle Workflow Developer's Guide

Default_Rule

PL/SQL Syntax
function Default_Rule
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Business Event System APIs 5-33



Description
Performs default subscription processing for an event subscription. The default
processing includes:

• Sending the event message to a workflow process, if specified in the subscription
definition

• Sending the event message to an agent, if specified in the subscription definition

If either of these operations raises an exception, Default_Rule() traps the
exception, stores the error information in the event message, and returns the status code
ERROR. Otherwise, Default_Rule() returns the status code SUCCESS.

Note: If the event message is being sent to the Default Event Error
workflow process by the subscription, Default_Rule() generates a new
correlation ID to use as the item key for the process in order to ensure
that the item key is unique.

If you want to run a custom rule function on the event message before it is sent, you can
define one subscription with a low phase number that uses the custom rule function, and
then define another subscription with a higher phase number that uses the default rule
function to send the event.

For example, follow these steps:

1. Define a subscription to the relevant event with your custom rule function and
a phase of 10.

2. Define another subscription to the event with the rule functionWF_EVENT.Default_
Rule and a phase of 20, and specify the workflow or agent to which you want to
send the event.

3. Raise the event to trigger the subscriptions. The subscription with the lower phase
number will be executed first and will run your custom rule function on the event
message. When the event is passed to the second subscription, the modified event
message will be sent to the workflow or agent you specified.

You can also call Default_Rule() to add the default send processing within a custom rule
function. If you enter a rule function other than Default_Rule() for a subscription, Oracle
Workflow does not automatically send the event message to the workflow and agent
specified in the subscription. Instead, if you want to send the message from the same
subscription, you must explicitly include the send processing in your custom rule
function, which you can optionally accomplish by calling Default_Rule(). See: Standard
API for an Event Subscription Rule Function, Oracle Workflow Developer's Guide.

Note: You may find it advantageous to define multiple subscriptions
to an event with simple rule functions that you can reuse, rather than
creating complex specialized rule functions that cannot be reused.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

5-34 Oracle Workow API Reference



Log

PL/SQL Syntax
function Log
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Logs the contents of the specified event message using DBMS_OUTPUT.put_line and
returns the status code SUCCESS. Use this function to output the contents of an event
message to a SQL*Plus session for testing and debugging purposes.

For example, if you want to test a custom rule function that modifies the event
message, you can use Log() to show the event message both before and after your custom
rule function is run. Define three subscriptions to the relevant event as follows:

• Define the first subscription with a phase of 10 and the rule functionWF_RULE.Log.

• Define the second subscription with a phase of 20 and your custom rule function.

• Define the third subscription with a phase of 30 and the rule functionWF_RULE.Log.

Next, connect to SQL*Plus. Execute the following command:

set serveroutput on size 100000

Then raise the event usingWF_EVENT.Raise. As the Event Manager executes your
subscriptions to the event in phase order, you should see the contents of the event
message both before and after your custom rule function is run.

Note: You should not assign Log() as the rule function for any enabled
subscriptions in a production instance of Oracle Workflow. This function
should be used for debugging only.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Error

PL/SQL Syntax
function Error
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Returns the status code ERROR. Additionally, when you assign this function as the
rule function for a subscription, you must enter a text string representing the internal
name of an error message in the Parameters field for the subscription. When the

Business Event System APIs 5-35



subscription is executed, Error() will set that error message into the event message using
setErrorMessage(). See: setErrorMessage, page 5-15.

The text string you enter in the Parameters field must be a valid name of an Oracle
Workflow error message. The names of the error messages provided by Oracle Workflow
are stored in the NAME column of the WF_RESOURCES table for messages with a type
of WFERR.

You can use Error() as a subscription rule function if you want to send the system
administrator an error notification with one of the predefined Workflow error messages
whenever a particular event is raised.

For example, define a subscription to the relevant event with the rule function
WF_RULE.Error and enter WFSQL_ARGS in the Parameters field. Then raise the
event to trigger the subscription. Because Error() returns the status code ERROR, the
Event Manager places the event message on the WF_ERROR queue and subscription
processing for the event is halted. When the listener runs on the WF_ERROR queue, an
error notification will be sent to the system administrator with the message "Invalid
value(s) passed for arguments", which is the display name of the WFSQL_ARGS
error message.

Note: Error() does not raise any exception to the calling application
when it completes normally.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Warning

PL/SQL Syntax
function Warning
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Returns the status code WARNING. Additionally, when you assign this function as the
rule function for a subscription, you must enter a text string representing the internal
name of an error message in the Parameters field for the subscription. When the
subscription is executed,Warning() will set that error message into the event message
using setErrorMessage(). See: setErrorMessage, page 5-15.

The text string you enter in the Parameters field must be a valid name of an Oracle
Workflow error message. The names of the error messages provided by Oracle Workflow
are stored in the NAME column of the WF_RESOURCES table for messages with a type
of WFERR.

You can useWarning() as a subscription rule function if you want to send the system
administrator a warning notification with one of the predefined Workflow error
messages whenever a particular event is raised.

5-36 Oracle Workow API Reference



For example, define a subscription to the relevant event with the rule function
WF_RULE.Warning and enter WFSQL_ARGS in the Parameters field. Then raise the event
to trigger the subscription. BecauseWarning() returns the status code WARNING, the
Event Manager places the event message on the WF_ERROR queue, but subscription
processing for the event still continues. When the listener runs on the WF_ERROR
queue, a warning notification will be sent to the system administrator with the message
"Invalid value(s) passed for arguments", which is the display name of
the WFSQL_ARGS error message.

Note: Warning() does not raise any exception to the calling application
when it completes normally.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Success

PL/SQL Syntax
function Success
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Returns the status code SUCCESS. This function removes the event message from the
queue but executes no other code except returning the SUCCESS status code to the
calling subscription.

You can use Success for testing and debugging purposes while developing code for
use with the Business Event System. For example, if you are trying to debug multiple
subscriptions to the same event, you can modify one of the subscriptions by replacing
its rule function withWF_RULE.Success, leaving all other details for the subscription
intact. When the subscription is executed, it will return SUCCESS but not perform any
other subscription processing. This strategy can help you isolate a problem subscription.

Success() is analogous to the WF_STANDARD.Noop procedure used in the standard
Noop activity.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Business Event System APIs 5-37



Workow_Protocol

PL/SQL Syntax
function Workflow_Protocol
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Sends the event message to the workflow process specified in the subscription, which
will in turn send the event message to the inbound agent specified in the subscription.

Note: Workflow_Protocol() does not itself send the event message to
the inbound agent. This function only sends the event message to the
workflow process, where you can model the processing that you want to
send the event message on to the specified agent.

If the subscription also specifies an outbound agent, the workflow process places the
event message on that agent’s queue for propagation to the inbound agent. Otherwise, a
default outbound agent will be selected.

If the subscription parameters include the parameter name and value pair
ACKREQ=Y, then the workflow process waits to receive an acknowledgement after
sending the event message.

If the workflow process raises an exception, Workflow_Protocol() stores
the error information in the event message and returns the status code
ERROR. Otherwise,Workflow_Protocol() returns the status code SUCCESS.

Workflow_Protocol() is used as the rule function in several predefined subscriptions to
Workflow Send Protocol and Event System Demonstration events. See: Workflow Send
Protocol, Oracle Workflow Developer's Guide and Event System Demonstration, Oracle
Workflow Developer's Guide.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Error_Rule

PL/SQL Syntax
function Error_Rule
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Performs the same subscription processing as Default_Rule(), including:

5-38 Oracle Workow API Reference



• Sending the event message to a workflow process, if specified in the subscription
definition

• Sending the event message to an agent, if specified in the subscription definition

However, if either of these operations encounters an exception, Error_Rule()
reraises the exception so that the event is not placed back onto the WF_ERROR
queue. Otherwise, Error_Rule() returns the status code SUCCESS.

Error_Rule() is used as the rule function for the predefined subscriptions to the
Unexpected event and to the Any event with the Error source type. The predefined
subscriptions specify that the event should be sent to the Default Event Error process
in the System: Error item type.

You can also use this rule function with your own error subscriptions. Enter
WF_RULE.Error as the rule function for your error subscription and specify the workflow
item type and process that you want the subscription to launch.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Related Topics
Unexpected Event, Oracle Workflow Developer's Guide

Any Event, Oracle Workflow Developer's Guide

SetParametersIntoParameterList

PL/SQL Syntax
function SetParametersIntoParameterList
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Sets the parameter name and value pairs from the subscription parameters into the
PARAMETER_LIST attribute of the event message, except for any parameter named
ITEMKEY or CORRELATION_ID. For a parameter with one of these names, the function
sets the CORRELATION_ID attribute of the event message to the parameter value.

If these operations raise an exception, SetParametersIntoParameterList() stores
the error information in the event message and returns the status code
ERROR. Otherwise, SetParametersIntoParameterList() returns the status code SUCCESS.

You can use SetParametersIntoParameterList() as the rule function for a subscription with
a lower phase number, to add predefined parameters from the subscription into the
event message. Then subsequent subscriptions with higher phase numbers can access
those parameters within the event message.

Note: If the event message will later be sent to a workflow process, then
the value for any ITEMKEY or CORRELATION_ID parameter can only

Business Event System APIs 5-39



contain single-byte characters, because the CORRELATION_ID attribute
of the event message will be used as the item key for the process. The
item key for a process instance can only contain single-byte characters. It
cannot contain a multibyte value.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Related Topics
Event Message Structure, page 5-6

Default_Rule2

PL/SQL Syntax
function Default_Rule2
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Performs the default subscription processing only if the PARAMETER_LIST attribute of
the event message includes parameters whose names and values match all the parameters
defined for the subscription. If the event includes the required parameters, then the rule
function calls Default_Rule() to perform the following processing:

• Sending the event message to a workflow process, if specified in the subscription
definition

• Sending the event message to an agent, if specified in the subscription definition

If either of these operations raises an exception, Default_Rule2() traps the
exception, stores the error information in the event message, and returns the status code
ERROR. Otherwise, Default_Rule2() returns the status code SUCCESS.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Related Topics
Default_Rule, page 5-33

5-40 Oracle Workow API Reference



Default_Rule3

PL/SQL Syntax
function Default_Rule3
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Sets the parameter name and value pairs from the subscription parameters into the
PARAMETER_LIST attribute of the event message, and then performs the default
subscription processing with the modified event message. This rule function first calls
SetParametersIntoParameterList() to set the parameters and then calls Default_Rule() to
perform the following processing:

• Sending the event message to a workflow process, if specified in the subscription
definition

• Sending the event message to an agent, if specified in the subscription definition

If either of these operations raises an exception, Default_Rule3() traps the
exception, stores the error information in the event message, and returns the status code
ERROR. Otherwise, Default_Rule3() returns the status code SUCCESS.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Related Topics
SetParametersIntoParameterList, page 5-39

Default_Rule, page 5-33

SendNotication

PL/SQL Syntax
function SendNotification
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Sends a notification as specified by the parameters in the PARAMETER_LIST attribute of
the event message. Use this rule function to send notifications outside of a workflow
process.

After sending the notification, this function sets the notification ID into the event
parameter list as a parameter named #NID. If you want to use the notification ID
in further processing, raise the event using WF_EVENT.Raise3(), which returns the
event parameter list after Oracle Workflow completes subscription processing for the

Business Event System APIs 5-41



event. You can then callWF_EVENT.GetValueForParameter() to obtain the value of the
#NID parameter.

For example, if the notification requires a response, you can retrieve the response
values from the user’s reply by obtaining the notification ID and using it to call
WF_NOTIFICATION.GetAttrText(), WF_NOTIFICATION.GetAttrNumber(), or
WF_NOTIFICATION.GetAttrDate() for the RESPOND attributes.

SendNotification() calls theWF_NOTIFICATION.Send() API to send the notification, using
the event parameters as the input arguments for WF_NOTIFICATION.Send(). The
following table shows the names of the parameters you should include in the event
parameter list to specify the notification you want to send, and the information you
should provide in each parameter’s value.

Parameters for Sending a Notication

Parameter Name Parameter Value

RECIPIENT_ROLE The role name assigned to receive the
notification.

MESSAGE_TYPE The item type associated with the message.

MESSAGE_NAME The message internal name.

CALLBACK The callback function name used for
communication of SEND and RESPOND source
message attributes.

CONTEXT Context information passed to the callback
function.

SEND_COMMENT A comment presented with the message.

PRIORITY The priority of the message. If this value is
null, the Notification System uses the default
priority of the message.

DUE_DATE The date that a response is required. This
optional due date is only for the recipient’s
information; it has no effect on processing.

Note: Although you can send a notification using the SendNotification()
rule function without defining or running a workflow process, you do
need to define the message you want to send within a workflow item
type.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Related Topics
Send, page 4-16

5-42 Oracle Workow API Reference



Event Message Structure, page 5-6

Raise3, page 5-24

GetValueForParameter, page 5-31

GetAttribute, page 4-35

Instance_Default_Rule

PL/SQL Syntax
function Instance_Default_Rule
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Sends the event to all existing workflow process instances that have eligible receive event
activities waiting to receive it. This rule function lets you use a business key attribute
to identify one or more workflow processes that should receive the event, instead
of sending the event to one particular process based on a specific item type, process
name, and item key, as with Default_Rule().

Note: Instance_Default_Rule() only sends the event to continue existing
workflow processes. If you want to send the event to launch a new
process instance, use Default_Rule() instead.

First, Instance_Default_Rule() calls SetParametersIntoParameterList() to set any parameter
name and value pairs from the subscription parameters into the PARAMETER_LIST
attribute of the event message.

Next, the function searches for existing workflow processes that are eligible to receive
this event. To be eligible, a workflow process must meet the following requirements:

• The process includes a receive event activity with an activity status of
NOTIFIED, meaning the process has transitioned to that activity and is waiting to
receive the event.

• The event filter for the receive event activity is set to one of the following values:

• This individual event

• An event group of which this event is a member

• NULL, meaning the activity can receive any event

• The receive event activity has an activity attribute named #BUSINESS_KEY whose
default value is an item type attribute.

• The current value of that item type attribute matches the event key.

After sending the event to all eligible workflow processes, Instance_Default_Rule() also
sends the event message to an agent, if specified in the subscription definition.

If any operations raise an exception, Instance_Default_Rule() traps the exception, stores
the error information in the event message, and returns the status code
ERROR. Otherwise, Instance_Default_Rule() returns the status code SUCCESS.

Business Event System APIs 5-43



Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Related Topics
SetParametersIntoParameterList, page 5-39

Default_Rule, page 5-33

Event Function APIs
The Event Function APIs provide utility functions that can be called by an application
program, the Event Manager, or a workflow process in the runtime phase to
communicate with the Business Event System and manage events. These APIs are
defined in a PL/SQL package called WF_EVENT_FUNCTIONS_PKG.

• Parameters, page 5-44

• SubscriptionParameters, page 5-45

• AddCorrelation, page 5-46

• Generate, page 5-47

• Receive, page 5-49

Parameters

PL/SQL Syntax
function Parameters
(p_string in varchar2,
p_numvalues in number,
p_separator in varchar2) return t_parameters;

Description
Parses a string of text that contains the specified number of parameters delimited
by the specified separator. Parameters() returns the parsed parameters in a
varray using the T_PARAMETERS composite datatype, which is defined in the
WF_EVENT_FUNCTIONS_PKG package. The following table describes the
T_PARAMETERS datatype:

T_PARAMETERS Datatype

Datatype Name Element Datatype Denition

T_PARAMETERS VARCHAR2(240)

Parameters() is a generic utility that you can call in generate functions when the event
key is a concatenation of values separated by a known character. Use this function to
separate the event key into its component values.

5-44 Oracle Workow API Reference



Arguments (input)
p_string
A text string containing concatenated parameters.

p_numvalues
The number of parameters contained in the string.

p_separator
The separator used to delimit the parameters in the string.

Example
Example
set serveroutput on

declare
l_parameters wf_event_functions_pkg.t_parameters;
begin
-- Initialize the datatype
l_parameters := wf_event_functions_pkg.t_parameters(1,2);

l_parameters := wf_event_functions_pkg.parameters(’1111/2222’,2,’/
’);
dbms_output.put_line(’Value 1:’||l_parameters(1));
dbms_output.put_line(’Value 2:’||l_parameters(2));
end;
/

SubscriptionParameters

PL/SQL Syntax
function SubscriptionParameters
(p_string in varchar2,
p_key in varchar2) return varchar2;

Description
Returns the value for the specified parameter from a text string containing the parameters
defined for an event subscription. The parameter name and value pairs in the text string
should be separated by spaces and should appear in the following format:

<name1>=<value1> <name2>=<value2> ... <nameN>=<valueN>
SubscriptionParameters() searches the text string for the specified parameter name and
returns the value assigned to that name. For instance, you can call this function in a
subscription rule function to retrieve the value of a subscription parameter, and then
code different behavior for the rule function based on that value.

Arguments (input)
p_string
A text string containing the parameters defined for an event subscription.

p_key
The name of the parameter whose value should be returned.

Business Event System APIs 5-45



Example
Example
In the following example, SubscriptionParameters() is used to assign the value of the
ITEMKEY subscription parameter to the l_function program variable. The example
code is from the AddCorrelation function, which adds a correlation ID to an event message
during subscription processing. See: AddCorrelation, page 5-46.

...
--
-- This is where we will do some logic to determine
-- if there is a parameter
--
l_function := wf_event_functions_pkg.SubscriptionParameters
(l_parameters,’ITEMKEY’);

...

AddCorrelation

PL/SQL Syntax
function AddCorrelation
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Adds a correlation ID to an event message during subscription processing.
AddCorrelation() searches the subscription parameters for a parameter named ITEMKEY
that specifies a custom function to generate a correlation ID for the event message. In
standalone Oracle Workflow, the function must be specified in the Parameters field for
the subscription in the following format:

ITEMKEY=<package_name.function_name>
In Oracle Applications, enter ITEMKEY as the parameter name and
<package_name.function_name> as the parameter value.

AddCorrelation() uses SubscriptionParameters() to search for and retrieve the value of the
ITEMKEY parameter. See: SubscriptionParameters, page 5-45.

If a custom correlation ID function is specified with the ITEMKEY parameter, then
AddCorrelation() runs that function and sets the correlation ID to the value returned by
the function. Otherwise, AddCorrelation() sets the correlation ID to the system date. If
the event message is then sent to a workflow process, the Workflow Engine uses that
correlation ID as the item key to identify the process instance.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

If AddCorrelation() encounters an exception, the function returns the status code
ERROR. Otherwise, AddCorrelation() returns the status code SUCCESS.

AddCorrelation() is defined according the standard API for an event subscription rule
function. You can use AddCorrelation() as the rule function for a subscription with a low
phase number to add a correlation ID to an event, and then use a subscription with a
higher phase number to perform any further processing.

5-46 Oracle Workow API Reference



For example, follow these steps:

1. Define a subscription to the relevant event with the rule functionWF_EVENT_
FUNCTIONS_PKG.AddCorrelation and a phase of 10. Enter the parameter name
and value pair ITEMKEY=<package_name.function_name> in the Parameters
field for the subscription, replacing <package_name.function_name> with the
package and function that will generate the correlation ID.

2. Define another subscription to the event with a phase of 20, and specify the
processing you want to perform by entering a custom rule function or a workflow
item type and process, or both.

3. Raise the event to trigger the subscriptions. The subscription with the lower
phase number will be executed first and will add a correlation ID to the event
message. When the event is passed to the second subscription, that correlation ID
will be used as the item key.

You can also call AddCorrelation() within a custom rule function to add a correlation
ID during your custom processing. See: Standard API for an Event Subscription Rule
Function, Oracle Workflow Developer's Guide.

Note: You may find it advantageous to define multiple subscriptions
to an event with simple rule functions that you can reuse, rather than
creating complex specialized rule functions that cannot be reused.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Generate

PL/SQL Syntax
function Generate
(p_event_name in varchar2,
p_event_key in varchar2) return clob;

Description
Generates the event data for events in the Seed event group. This event data contains
Business Event System object definitions which can be used to replicate the objects
from one system to another.

The Seed event group includes the following events:

• oracle.apps.wf.event.event.create

• oracle.apps.wf.event.event.update

• oracle.apps.wf.event.event.delete

• oracle.apps.wf.event.group.create

• oracle.apps.wf.event.group.update

Business Event System APIs 5-47



• oracle.apps.wf.event.group.delete

• oracle.apps.wf.event.system.create

• oracle.apps.wf.event.system.update

• oracle.apps.wf.event.system.delete

• oracle.apps.wf.event.agent.create

• oracle.apps.wf.event.agent.update

• oracle.apps.wf.event.agent.delete

• oracle.apps.wf.agent.group.create

• oracle.apps.wf.agent.group.update

• oracle.apps.wf.agent.group.delete

• oracle.apps.wf.event.subscription.create

• oracle.apps.wf.event.subscription.update

• oracle.apps.wf.event.subscription.delete

• oracle.apps.wf.event.all.sync

For the event, event group, system, agent, agent group member, and subscription
definition events,WF_EVENT_FUNCTIONS_PKG.Generate() calls the Generate APIs
associated with the corresponding tables to produce the event data XML document. For
the Synchronize Event Systems event, WF_EVENT_FUNCTIONS_PKG.Generate()
produces an XML document containing all the event, event group, system, agent, agent
group member, and subscription definitions from the Event Manager on the local system.

Note: Agent groups are currently only available for the version of Oracle
Workflow embedded in Oracle Applications.

Arguments (input)
p_event_name
The internal name of the event.

p_event_key
A string generated when the event occurs within a program or application. The event
key uniquely identifies a specific instance of the event.

Related Topics
WF_EVENTS_PKG.Generate, page 5-52

WF_EVENT_GROUPS_PKG.Generate, page 5-53

WF_SYSTEMS_PKG.Generate, page 5-54

WF_AGENTS_PKG.Generate, page 5-55

WF_AGENT_GROUPS_PKG.Generate, page 5-56

WF_EVENT_SUBSCRIPTIONS_PKG.Generate, page 5-58

Predefined Workflow Events, Oracle Workflow Developer's Guide

5-48 Oracle Workow API Reference



Receive

PL/SQL Syntax
function Receive
(p_subscription_guid in raw,
p_event in out wf_event_t) return varchar2;

Description
Receives Business Event System object definitions during subscription processing and
loads the definitions into the appropriate Business Event System tables. This function
completes the replication of the objects from one system to another.

WF_EVENT_FUNCTIONS_PKG.Receive() is defined according the the
standard API for an event subscription rule function. Oracle Workflow uses
WF_EVENT_FUNCTIONS_PKG.Receive() as the rule function for two predefined
subscriptions, one that is triggered when the System Signup event is raised locally, and
one that is triggered when any of the events in the Seed event group is received from
an external source.

The Seed event group includes the following events:

• oracle.apps.wf.event.event.create

• oracle.apps.wf.event.event.update

• oracle.apps.wf.event.event.delete

• oracle.apps.wf.event.group.create

• oracle.apps.wf.event.group.update

• oracle.apps.wf.event.group.delete

• oracle.apps.wf.event.system.create

• oracle.apps.wf.event.system.update

• oracle.apps.wf.event.system.delete

• oracle.apps.wf.event.agent.create

• oracle.apps.wf.event.agent.update

• oracle.apps.wf.event.agent.delete

• oracle.apps.wf.agent.group.create

• oracle.apps.wf.agent.group.update

• oracle.apps.wf.agent.group.delete

• oracle.apps.wf.event.subscription.create

• oracle.apps.wf.event.subscription.update

• oracle.apps.wf.event.subscription.delete

• oracle.apps.wf.event.all.sync

WF_EVENT_FUNCTIONS_PKG.Receive() parses the event data XML document from
the event message that was received and then loads the Business Event System object
definitions into the appropriate tables.

Business Event System APIs 5-49



Note: For the event, event group, system, agent, agent group, and
subscription definition events,WF_EVENT_FUNCTIONS_PKG.Receive()
calls the Receive APIs associated with the corresponding tables to parse
the XML document and load the definition into the table.

Agent groups are currently only available for the version of Oracle
Workflow embedded in Oracle Applications.

Arguments (input)
p_subscription_guid
The globally unique identifier of the subscription.

p_event
The event message.

Related Topics
WF_EVENTS_PKG.Receive, page 5-52

WF_EVENT_GROUPS_PKG.Receive, page 5-53

WF_SYSTEMS_PKG.Receive, page 5-54

WF_AGENTS_PKG.Receive, page 5-55

WF_AGENT_GROUPS_PKG.Receive, page 5-57

WF_EVENT_SUBSCRIPTIONS_PKG.Receive, page 5-58

Predefined Workflow Events, Oracle Workflow Developer's Guide

Business Event System Replication APIs
You can call the following APIs to replicate Business Event System data across your
systems. The replication APIs are stored in the following PL/SQL packages, each of
which corresponds to a Business Event System table. Oracle Workflow provides both a
generate function and a receive function for each table.

• WF_EVENTS_PKG

• WF_EVENTS_PKG.Generate, page 5-52

• WF_EVENTS_PKG.Receive, page 5-52

• WF_EVENT_GROUPS_PKG

• WF_EVENT_GROUPS_PKG.Generate, page 5-53

• WF_EVENT_GROUPS_PKG.Receive, page 5-53

• WF_SYSTEMS_PKG

• WF_SYSTEMS_PKG.Generate, page 5-54

• WF_SYSTEMS_PKG.Receive, page 5-54

• WF_AGENTS_PKG

• WF_AGENTS_PKG.Generate, page 5-55

• WF_AGENTS_PKG.Receive, page 5-55

• WF_AGENT_GROUPS_PKG

5-50 Oracle Workow API Reference



• WF_AGENT_GROUPS_PKG.Generate, page 5-56

• WF_AGENT_GROUPS_PKG.Receive, page 5-57

• WF_EVENT_SUBSCRIPTIONS_PKG

• WF_EVENT_SUBSCRIPTIONS_PKG.Generate, page 5-58

• WF_EVENT_SUBSCRIPTIONS_PKG.Receive, page 5-58

Each generate API produces an XML message containing the complete information
from the appropriate table for the specified Business Event System object
definition. The corresponding receive API parses the XML message and loads the
row into the appropriate table.

Oracle Workflow uses these APIs during the automated replication of Business Event
System data. The generate APIs are called byWF_EVENT_FUNCTIONS_PKG.Generate(),
while the receive APIs are called byWF_EVENT_FUNCTIONS_PKG.Receive(). See:
Generate, page 5-47 and Receive, page 5-49.

Document Type Denitions
The document type definitions (DTDs) for the Workflow table XML messages are
defined under the master tag WF_TABLE_DATA. Beneath the master tag, each DTD has a
tag identifying the Workflow table name to which it applies, and beneath that, a version
tag as well as tags for each column in the table. The following example shows how
the DTDs are structured:

<WF_TABLE_DATA> <- masterTagName
<WF_TABLE_NAME> <- m_table_name
<VERSION></VERSION> <- m_package_version
<COL1></COL1>
<COL2></COL2>

</WF_TABLE_NAME>
</WF_TABLE_DATA>
The Business Event System replication APIs use the following DTDs:

• WF_EVENTS DTD, page 5-51

• WF_EVENT_GROUPS DTD, page 5-53

• WF_SYSTEMS DTD, page 5-54

• WF_AGENTS DTD, page 5-55

• WF_AGENT_GROUPS DTD, page 5-56

Note: Agent groups are currently only available for the version of
Oracle Workflow embedded in Oracle Applications.

• WF_EVENT_SUBSCRIPTIONS DTD, page 5-57

WF_EVENTS Document Type Denition
The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for an event definition in the
WF_EVENTS table.

Business Event System APIs 5-51



<WF_TABLE_DATA>
<WF_EVENTS>
<VERSION></VERSION>
<GUID></GUID>
<NAME></NAME>
<TYPE></TYPE>
<STATUS></STATUS>
<GENERATE_FUNCTION></GENERATE_FUNCTION>
<OWNER_NAME></OWNER_NAME>
<OWNER_TAG></OWNER_TAG>
<CUSTOMIZATION_LEVEL></CUSTOMIZATION_LEVEL>
<LICENSED_FLAG></LICENSED_FLAG>
<DISPLAY_NAME></DISPLAY_NAME>
<DESCRIPTION></DESCRIPTION>

</WF_EVENTS>
</WF_TABLE_DATA>

WF_EVENTS_PKG.Generate

PL/SQL Syntax
function Generate
(x_guid in raw)
return varchar2;

Description
Generates an XML message containing the complete information from the WF_EVENTS
table for the specified event definition.

Arguments (input)
x_guid
The globally unique identifier of the event.

WF_EVENTS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);

Description
Receives an XML message containing the complete information for an event definition
and loads the information into the WF_EVENTS table.

Arguments (input)
x_message
An XML message containing the complete information for an event definition.

5-52 Oracle Workow API Reference



WF_EVENT_GROUPS Document Type Denition
The following document type definition (DTD) describes the required structure for
an XML message that contains the complete information for an event group member
definition in the WF_EVENT_GROUPS table.

Note: Event group header information is defined in the WF_EVENTS
table, similarly to an individual event. Only the event group member
definitions are stored in the WF_EVENT_GROUPS table.

<WF_TABLE_DATA>
<WF_EVENT_GROUPS>
<VERSION></VERSION>
<GROUP_GUID></GROUP_GUID>
<MEMBER_GUID></MEMBER_GUID>

</WF_EVENT_GROUPS>
</WF_TABLE_DATA>

WF_EVENT_GROUPS_PKG.Generate

PL/SQL Syntax
function Generate
(x_group_guid in raw,
x_member_guid in raw)
return varchar2;

Description
Generates an XML message containing the complete information from the
WF_EVENT_GROUPS table for the specified event group member definition.

Arguments (input)
x_group_guid
The globally unique identifier of the event group.

x_member_guid
The globally unique identifier of the individual member event.

WF_EVENT_GROUPS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);

Description
Receives an XML message containing the complete information for an event group
member definition and loads the information into the WF_EVENT_GROUPS table.

Business Event System APIs 5-53



Arguments (input)
x_message
An XML message containing the complete information for an event group member
definition.

WF_SYSTEMS Document Type Denition
The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for a system definition in the
WF_SYSTEMS table.

<WF_TABLE_DATA>
<WF_SYSTEMS>
<VERSION></VERSION>
<GUID></GUID>
<NAME></NAME>
<MASTER_GUID></MASTER_GUID>
<DISPLAY_NAME></DISPLAY_NAME>
<DESCRIPTION></DESCRIPTION>

</WF_SYSTEMS>
</WF_TABLE_DATA>

WF_SYSTEMS_PKG.Generate

PL/SQL Syntax
function Generate
(x_guid in raw)
return varchar2;

Description
Generates an XMLmessage containing the complete information from the WF_SYSTEMS
table for the specified system definition.

Arguments (input)
x_guid
The globally unique identifier of the system.

WF_SYSTEMS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);

Description
Receives an XML message containing the complete information for a system definition
and loads the information into the WF_SYSTEMS table.

5-54 Oracle Workow API Reference



Arguments (input)
x_message
An XML message containing the complete information for a system definition.

WF_AGENTS Document Type Denition
The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for an agent definition in the
WF_AGENTS table.

<WF_TABLE_DATA>
<WF_AGENTS>
<VERSION></VERSION>
<GUID></GUID>
<NAME></NAME>
<SYSTEM_GUID></SYSTEM_GUID>
<PROTOCOL></PROTOCOL>
<ADDRESS></ADDRESS>
<QUEUE_HANDLER></QUEUE_HANDLER>
<QUEUE_NAME></QUEUE_NAME>
<DIRECTION></DIRECTION>
<STATUS></STATUS>
<DISPLAY_NAME></DISPLAY_NAME>
<DESCRIPTION></DESCRIPTION>
<TYPE></TYPE>

</WF_AGENTS>
</WF_TABLE_DATA>

WF_AGENTS_PKG.Generate

PL/SQL Syntax
function Generate
(x_guid in raw)
return varchar2;

Description
Generates an XML message containing the complete information from the WF_AGENTS
table for the specified agent definition.

Arguments (input)
x_guid
The globally unique identifier of the agent.

WF_AGENTS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);

Business Event System APIs 5-55



Description
Receives an XML message containing the complete information for an agent definition
and loads the information into the WF_AGENTS table.

Arguments (input)
x_message
An XML message containing the complete information for an agent definition.

WF_AGENT_GROUPS Document Type Denition
The following document type definition (DTD) describes the required structure for
an XML message that contains the complete information for an agent group member
definition in the WF_AGENT_GROUPS table.

Note: Agent group header information is defined in the WF_AGENTS
table, similarly to an individual agent. Only the agent group member
definitions are stored in the WF_AGENT_GROUPS table.

Agent groups are currently only available for the version of Oracle
Workflow embedded in Oracle Applications.

<WF_TABLE_DATA>
<WF_AGENT_GROUPS>
<VERSION></VERSION>
<GROUP_GUID></GROUP_GUID>
<MEMBER_GUID></MEMBER_GUID>

</WF_AGENT_GROUPS>
</WF_TABLE_DATA>

WF_AGENT_GROUPS_PKG.Generate

PL/SQL Syntax
function Generate
(x_group_guid in raw,
x_member_guid in raw)
return varchar2;

Description
Generates an XML message containing the complete information from the
WF_AGENT_GROUPS table for the specified agent group member definition.

Note: Agent groups are currently only available for the version of Oracle
Workflow embedded in Oracle Applications.

Arguments (input)
x_group_guid
The globally unique identifier of the agent group.

x_member_guid
The globally unique identifier of the individual member agent.

5-56 Oracle Workow API Reference



WF_AGENT_GROUPS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);

Description
Receives an XML message containing the complete information for an agent group
member definition and loads the information into the WF_AGENT_GROUPS table.

Note: Agent groups are currently only available for the version of Oracle
Workflow embedded in Oracle Applications.

Arguments (input)
x_message
An XML message containing the complete information for an agent group member
definition.

WF_EVENT_SUBSCRIPTIONS Document Type Denition
The following document type definition (DTD) describes the required structure for an
XMLmessage that contains the complete information for an event subscription definition
in the WF_EVENT_SUBSCRIPTIONS table.

<WF_TABLE_DATA>
<WF_EVENT_SUBSCRIPTIONS>
<VERSION></VERSION>
<GUID></GUID>
<SYSTEM_GUID></SYSTEM_GUID>
<SOURCE_TYPE></SOURCE_TYPE>
<SOURCE_AGENT_GUID></SOURCE_AGENT_GUID>
<EVENT_FILTER_GUID></EVENT_FILTER_GUID>
<PHASE></PHASE>
<STATUS></STATUS>
<RULE_DATA></RULE_DATA>
<OUT_AGENT_GUID></OUT_AGENT_GUID>
<TO_AGENT_GUID></TO_AGENT_GUID>
<PRIORITY></PRIORITY>
<RULE_FUNCTION></RULE_FUNCTION>
<WF_PROCESS_TYPE></WF_PROCESS_TYPE>
<WF_PROCESS_NAME></WF_PROCESS_NAME>
<PARAMETERS></PARAMETERS>
<OWNER_NAME></OWNER_NAME>
<OWNER_TAG></OWNER_TAG>
<CUSTOMIZATION_LEVEL></CUSTOMIZATION_LEVEL>
<LICENSED_FLAG></LICENSED_FLAG>
<DESCRIPTION></DESCRIPTION>
<EXPRESSION></EXPRESSION>

</WF_EVENT_SUBSCRIPTIONS>
</WF_TABLE_DATA>

Business Event System APIs 5-57



WF_EVENT_SUBSCRIPTIONS_PKG.Generate

PL/SQL Syntax
function Generate
(x_guid in raw)
return varchar2;

Description
Generates an XML message containing the complete information from the
WF_EVENT_SUBSCRIPTIONS table for the specified event subscription definition.

Arguments (input)
x_guid
The globally unique identifier of the event subscription.

WF_EVENT_SUBSCRIPTIONS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);

Description
Receives an XML message containing the complete information for an event subscription
definition and loads the information into the WF_EVENT_SUBSCRIPTIONS table.

Arguments (input)
x_message
An XML message containing the complete information for an event subscription
definition.

Business Event System Cleanup API
The Workflow Business Event System cleanup API can be used to clean up the standard
WF_CONTROL queue in the Business Event System by removing inactive subscribers
from the queue. This API is defined in a PL/SQL package called WF_BES_CLEANUP.

Cleanup_Subscribers

PL/SQL Syntax
procedure Cleanup_Subscribers
(errbuf out varchar2,
retcode out varchar2);

Description
Performs cleanup for the standard WF_CONTROL queue.

5-58 Oracle Workow API Reference



When a middle tier process for Oracle Applications or for standalone Oracle Workflow
starts up, it creates a JMS subscriber to the WF_CONTROL queue. Then, when an
event message is placed on the queue, a copy of the event message is created for each
subscriber to the queue. If a middle tier process dies, however, the corresponding
subscriber remains in the database. For more efficient processing, you should ensure that
WF_CONTROL is periodically cleaned up by running Cleanup_Subscribers() to remove
the subscribers for any middle tier processes that are no longer active.

The Cleanup_Subscribers() procedure sends an event named oracle.apps.wf.bes.
control.ping to check the status of each subscriber to the WF_CONTROL queue. If
the corresponding middle tier process is still alive, it sends back a response.

The next time the cleanup procedure runs, it checks whether responses have been
received for each ping event sent during the previous run. If no response was received
from a particular subscriber, that subscriber is removed.

Finally, after removing any subscribers that are no longer active, the procedure sends a
new ping event to the remaining subscribers.

The recommended frequency for performing cleanup is every twelve hours. In order to
allow enough time for subscribers to respond to the ping event, the minimum wait time
between two cleanup runs is thirty minutes. If you run the procedure again less than
thirty minutes after the last run, it will not perform any processing.

The maximum retention time for information about ping events sent to subscribers is
thirty days. Cleanup_Subscribers() deletes information for previously sent pings that
are more than thirty days old.

The procedure returns an error buffer that contains an error message if any inactive
subscriber could not be removed during the cleanup. It also returns one of the following
codes to indicate the status of the cleanup.

• 0 - Success

• 1 - Warning

• 2 - Error

Related Topics
Cleaning Up the Workflow Control Queue, Oracle Workflow Administrator's Guide

Standard Agents, Oracle Workflow Developer's Guide

Business Event System Control Events, Oracle Workflow Developer's Guide

Business Event System APIs 5-59





6
Workow Queue APIs

This chapter describes the APIs for Oracle Workflow Advanced Queues processing. The
APIs consist of PL/SQL functions and procedures to handle workflow Advanced
Queues processing. Although these APIs will continue to be supported for backward
compatibility, customers using Oracle Workflow Release 2.6 and higher should use the
Business Event System rather than the queue APIs to integrate with Oracle Advanced
Queuing.

This chapter covers the following topics:

• Workflow Queue APIs

Workow Queue APIs
Oracle Workflow queue APIs can be called by an application program or a workflow
function in the runtime phase to handle workflow Advanced Queues processing.

Note: Although these APIs will continue to be supported for backward
compatibility, customers using Oracle Workflow Release 2.6 and higher
should use the Business Event System rather than the queue APIs to
integrate with Oracle Advanced Queuing.

In a future release, this workflow Advanced Queues processing will
be implemented within the Business Event System using a specialized
queue handler to handle dequeue and enqueue operations.

In Oracle Workflow, an ’outbound’ and an ’inbound’ queue are established. A package
of data on the queue is referred to as an event or a message.

Note: An event in this context is different from the business events
associated with the Business Event System, and a message in this context
is different from the messages associated with notification activities.

Events are enqueued in the outbound queue for agents to consume and process. These
agents may be any application that is external to the database. Similarly an agent may
enqueue some message to the inbound queue for the Workflow Engine to consume
and process. The outbound and inbound queues facilitate the integration of external
activities into your workflow processes.

Note: Background engines use a separate ’deferred’ queue.

Workow Queue APIs 6-1



All Oracle Workflow queue APIs are defined in a PL/SQL package called
WF_QUEUE. You must execute these queue APIs from the same Oracle Workflow
account since the APIs are account dependent.

Important: In using these APIs, we assume that you have
prior knowledge of Oracle Advanced Queuing concepts and
terminology. Refer to the Oracle Application Developer’s Guide - Advanced
Queuing or Oracle Streams Advanced Queuing User’s Guide and Reference
for more information on Advanced Queues.

Queue APIs
• EnqueueInbound, page 6-3

• DequeueOutbound, page 6-4

• DequeueEventDetail, page 6-7

• PurgeEvent, page 6-8

• PurgeItemType, page 6-8

• ProcessInboundQueue, page 6-9

• GetMessageHandle, page 6-9

• DequeueException, page 6-10

• DeferredQueue, page 6-10

• InboundQueue, page 6-11

• OutboundQueue, page 6-11

Developer APIs for the Inbound Queue
The followingAPIs are for developers whowish towrite to the inbound queue by creating
messages in the internal stack rather than using WF_QUEUE.EnqueueInbound(). The
internal stack is purely a storage area and you must eventually write each message that
you create on the stack to the inbound queue.

Note: For efficient performance, you should periodically write to the
inbound queue to prevent the stack from growing too large.

• ClearMsgStack, page 6-11

• CreateMsg, page 6-11

• WriteMsg, page 6-12

• SetMsgAttr, page 6-12

• SetMsgResult, page 6-13

Payload Structure
Oracle Workflow queues use the datatype system.wf_payload_t to define the
payload for any given message. The payload contains all the information that is required
about the event. The following table lists the attributes of system.wf_payload_t.

6-2 Oracle Workow API Reference



System.wf_payload_t Attributes

Attribute Name Datatype Description

ITEMTYPE VARCHAR2(8) The item type of the event.

ITEMKEY VARCHAR2(240) The item key of the event.

ACTID NUMBER The function activity instance
ID.

FUNCTION_NAME VARCHAR2(200) The name of the function to
execute.

PARAM_LIST VARCHAR2(4000) A list of "value_name=
value" pairs. In the inbound
scenario, the pairs are passed
as item attributes and item
attribute values. In the
outbound scenario, the pairs
are passed as all the attributes
and attribute values of the
function (activity attributes).

RESULT VARCHAR2(30) An optional activity
completion result. Possible
values are determined by the
function activity’s Result Type
or can be an engine standard
result.

Related Topics
Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

EnqueueInbound

Syntax
procedure EnqueueInbound
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
result in varchar2 default null,
attrlist in varchar2 default null,
correlation in varchar2 default null,
error_stack in varchar2 default null);

Description
Enqueues the result from an outbound event onto the inbound queue. An outbound
event is defined by an outbound queue message that is consumed by some agent.

Oracle Workflow marks the external function activity as complete with the specified
result when it processes the inbound queue. The result value is only effective for
successful completion, however. If you specify an external program error in the
error_stack parameter, Oracle Workflow marks the external function activity

Workow Queue APIs 6-3



as complete with an ERROR status, overriding the result value. Additionally, if a
corresponding error process is defined in the item type, Oracle Workflow launches
that error process.

Arguments (input)
itemtype
The item type of the event.

itemkey
The item key of the event. An item key is a string generated from the application object’s
primary key. The string uniquely identifies the item within an item type. The item type
and key together identify the process instance.

actid
The function activity instance ID that this event is associated with.

result
An optional activity completion result. Possible values are determined by the function
activity’s Result Type.

attrlist
A longlist of "value name=value" pairs that you want to pass back as item attributes
and item attribute values. Each pair must be delimited by the caret character (^), as in the
example, "ATTR1=A^ATTR2=B^ATTR3=C". If a specified value name does not exist as
an item attribute, Oracle Workflow creates the item attribute for you, of type varchar2.

correlation
Specify an optional correlation identifier for the message to be enqueued. Oracle
Advanced Queues allow you to search a queue for messages based on a specific
correlation value. If null, the Workflow Engine creates a correlation identifier based on
the Workflow schema name and the item type.

error_stack
Specify an optional external program error that will be placed on Oracle Workflow’s
internal error stack. You can specify any text value up to a maximum length of 200
characters.

DequeueOutbound

Syntax
procedure DequeueOutbound
(dequeuemode in number,
navigation in number default 1,
correlation in varchar2 default null,
itemtype in varchar2 default null,
payload out system.wf_payload_t,
message_handle in out raw,
timeout out boolean);

Description
Dequeues a message from the outbound queue for some agent to consume.

Important: If you call this procedure within a loop, you must remember
to set the returned message handle to null, otherwise, the procedure

6-4 Oracle Workow API Reference



dequeues the same message again. This may not be the behavior you
want and may cause an infinite loop.

Arguments (input)
dequeuemode
A value of DBMS_AQ.BROWSE, DBMS_AQ.LOCKED, or DBMS_AQ.REMOVE,
corresponding to the numbers 1, 2 and 3 respectively, to represent the locking behavior
of the dequeue. A mode of DBMS_AQ.BROWSE means to read the message from the
queue without acquiring a lock on the message. A mode of DBMS_AQ.LOCKED means
to read and obtain a write lock on the message, where the lock lasts for the duration of
the transaction. A mode of DBMS_AQ.REMOVE means read the message and delete it.

navigation
Specify DBMS_AQ.FIRST_MESSAGE or DBMS_AQ.NEXT_MESSAGE, corresponding
to the number 1 or 2 respectively, to indicate the position of the message that will be
retrieved. A value of DBMS_AQ.FIRST_MESSAGE retrieves the first message that
is available and matches the correlation criteria. The first message is inherently the
beginning of the queue. A value of DBMS_AQ.NEXT_MESSAGE retrieves the next
message that is available and matches the correlation criteria, and lets you read through
the queue. The default is 1.

correlation
Specify an optional correlation identifier for the message to be dequeued. Oracle
Advanced Queues allow you to search a queue for messages based on a specific
correlation value. You can use the Like comparison operator, ’%’, to specify the identifier
string. If null, the Workflow Engine creates a correlation identifier based on the
Workflow schema name and the item type.

itemtype
The item type of the event.

message_handle
Specify an optional message handle ID for the specific event to be dequeued. If you
specify a message handle ID, the correlation identifier is ignored.

Important: The timeout output returns TRUE when there is nothing
further to read in the queue.

Example
Example
Following is an example of code that loops through the outbound queue and displays
the output.

Workow Queue APIs 6-5



declare

event system.wf_payload_t;
i number;
msg_id raw(16);
queuename varchar2(30);
navigation_mode number;
end_of_queue boolean;

begin
queuename:=wf_queue.OUTBOUNDQUEUE;
i:=0;
LOOP
i:=i+1;

-- always start with the first message then progress to next
if i = 1 then
navigation_mode := dbms_aq.FIRST_MESSAGE;

else
navigation_mode := dbms_aq.NEXT_MESSAGE;

end if;

-- not interested in specific msg_id. Leave it null so
-- as to loop through all messages in queue
msg_id :=null;

wf_queue.DequeueOutbound(
dequeuemode => dbms_aq.BROWSE,
payload => event,
navigation => navigation_mode,
message_handle => msg_id,
timeout => end_of_queue);

if end_of_queue then
exit;

end if;

-- print the correlation itemtype:itemKey
dbms_output.put_line(’Msg ’||to_char(i)||’ = ’||
event.itemtype||’:’||event.itemkey||’ ’||
event.actid||’ ’||event.param_list);

END LOOP;

end;
/

6-6 Oracle Workow API Reference



DequeueEventDetail

Syntax
procedure DequeueEventDetail
(dequeuemode in number,
navigation in number default 1,
correlation in varchar2 default null,
itemtype in out varchar2,
itemkey out varchar2,
actid out number,
function_name out varchar2,
param_list out varchar2,
message_handle in out raw,
timeout out boolean);

Description
Dequeue from the outbound queue, the full event details for a given message. This API
is similar to DequeueOutbound except it does not reference the payload type. Instead, it
outputs itemkey, actid, function_name, and param_list, which are part of the
payload.

Important: If you call this procedure within a loop, you must remember
to set the returned message handle to null, otherwise, the procedure
dequeues the same message again. This may not be the behavior you
want and may cause an infinite loop.

Arguments (input)
dequeuemode
A value of DBMS_AQ.BROWSE, DBMS_AQ.LOCKED, or DBMS_AQ.REMOVE,
corresponding to the numbers 1, 2 and 3 respectively, to represent the locking behavior
of the dequeue. A mode of DBMS_AQ.BROWSE means to read the message from the
queue without acquiring a lock on the message. A mode of DBMS_AQ.LOCKED means
to read and obtain a write lock on the message, where the lock lasts for the duration of
the transaction. A mode of DBMS_AQ.REMOVE means read the message and update or
delete it.

navigation
Specify DBMS_AQ.FIRSTMESSAGE or DBMS_AQ.NEXTMESSAGE, corresponding
to the number 1 or 2 respectively, to indicate the position of the message that will be
retrieved. A value of DBMS_AQ.FIRSTMESSAGE retrieves the first message that is
available and matches the correlation criteria. It also resets the position to the beginning
of the queue. A value of DBMS_AQ.NEXTMESSAGE retrieves the next message that is
available and matches the correlation criteria. The default is 1.

correlation
Specify an optional correlation identifier for the message to be dequeued. Oracle
Advanced Queues allow you to search a queue for messages based on a specific
correlation value. You can use the Like comparison operator, ’%’, to specify the identifier
string. If null, the Workflow Engine creates a correlation identifier based on the
Workflow schema name and the item type.

Workow Queue APIs 6-7



acctname
The Oracle Workflow database account name. If acctname is null, it defaults to the
pseudocolumn USER.

itemtype
Specify an optional item type for the message to dequeue if you are not specifying
a correlation.

message_handle
Specify an optional message handle ID for the specific event to be dequeued. If you
specify a message handle ID, the correlation identifier is ignored.

Important: The timeout output returns TRUE when there is nothing
further to read in the queue.

PurgeEvent

Syntax
procedure PurgeEvent
(queuename in varchar2,
message_handle in raw);

Description
Removes an event from a specified queue without further processing.

Arguments (input)
queuename
The name of the queue from which to purge the event.

message_handle
The message handle ID for the specific event to purge.

PurgeItemType

Syntax
procedure PurgeItemType
(queuename in varchar2,
itemtype in varchar2 default null,
correlation in varchar2 default null);

Description
Removes all events belonging to a specific item type from a specified queue without
further processing.

Arguments (input)
queuename
The name of the queue from which to purge the events.

6-8 Oracle Workow API Reference



itemtype
An optional item type of the events to purge.

correlation
Specify an optional correlation identifier for the message to be purged. Oracle Advanced
Queues allow you to search a queue for messages based on a specific correlation
value. You can use the Like comparison operator, ’%’, to specify the identifier string. If
null, the Workflow Engine creates a correlation identifier based on the Workflow schema
name and the item type.

ProcessInboundQueue

Syntax
procedure ProcessInboundQueue
(itemtype in varchar2 default null,
correlation in varchar2 default null);

Description
Reads every message off the inbound queue and records each message as a completed
event. The result of the completed event and the list of item attributes that are updated
as a consequence of the completed event are specified by each message in the inbound
queue. See: EnqueueInbound, page 6-3.

Arguments (input)
itemtype
An optional item type of the events to process.

correlation
If you wish to process only messages with a specific correlation, enter a correlation
identifier. If correlation is null, the Workflow Engine creates a correlation identifier
based on the Workflow schema name and the item type.

GetMessageHandle

Syntax
function GetMessageHandle
(queuename in varchar2,
itemtype in varchar2,
itemkey in varchar2,
actid in number,
correlation in varchar2 default null)
return raw;

Description
Returns a message handle ID for a specified message.

Workow Queue APIs 6-9



Arguments (input)
queuename
The name of the queue from which to retrieve the message handle.

itemtype
The item type of the message.

itemkey
The item key of the message. An item key is a string generated from the application
object’s primary key. The string uniquely identifies the item within an item type. The
item type and key together identify the process instance.

actid
The function activity instance ID that this message is associated with.

correlation
Specify an optional correlation identifier for the message. If the correlation is null, the
Workflow Engine creates a correlation identifier based on the Workflow schema name
and the item type.

DequeueException

Syntax
procedure DequeueException
(queuename in varchar2);

Description
Dequeues all messages from an exception queue and places the messages on the
standard Business Event System WF_ERROR queue with the error message ’Message
Expired’. When the messages are dequeued from WF_ERROR, a predefined
subscription is triggered that launches the Default Event Error process.

Arguments (input)
queuename
The name of the exception queue that has been enabled for dequeue.

Related Topics
Default Event Error Process, Oracle Workflow Developer's Guide

DeferredQueue

Syntax
function DeferredQueue return varchar2;

Description
Returns the name of the queue and schema used by the background engine for deferred
processing.

6-10 Oracle Workow API Reference



InboundQueue

Syntax
function InboundQueue return varchar2;

Description
Returns the name of the inbound queue and schema. The inbound queue contains
messages for the Workflow Engine to consume.

OutboundQueue

Syntax
function OutboundQueue return varchar2;

Description
Returns the name of the outbound queue and schema. The outbound queue contains
messages for external agents to consume.

ClearMsgStack

Syntax
procedure ClearMsgStack;

Description
Clears the internal stack. See: Developer APIs for the Inbound Queue, page 6-2.

CreateMsg

Syntax
procedure CreateMsg
(itemtype in varchar2,
itemkey in varchar2,
actid in number);

Description
Creates a new message in the internal stack if it doesn’t already exist. See: Developer
APIs for the Inbound Queue, page 6-2.

Arguments (input)
itemtype
The item type of the message.

Workow Queue APIs 6-11



itemkey
The item key of the message. An item key is a string generated from the application
object’s primary key. The string uniquely identifies the item within an item type. The
item type and key together identify the process instance.

actid
The function activity instance ID that this message is associated with.

WriteMsg

Syntax
procedure WriteMsg
(itemtype in varchar2,
itemkey in varchar2,
actid in number);

Description
Writes a message from the internal stack to the inbound queue. See: Developer APIs
for the Inbound Queue, page 6-2.

Arguments (input)
itemtype
The item type of the message.

itemkey
The item key of the message. An item key is a string generated from the application
object’s primary key. The string uniquely identifies the item within an item type. The
item type and key together identify the process.

actid
The function activity instance ID that this message is associated with.

SetMsgAttr

Syntax
procedure SetMsgAttr
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
attrName in varchar2,
attrValue in varchar2);

Description
Appends an item attribute to the message in the internal stack. See: Developer APIs
for the Inbound Queue, page 6-2.

Arguments (input)
itemtype
The item type of the message.

6-12 Oracle Workow API Reference



itemkey
The item key of the message. An item key is a string generated from the application
object’s primary key. The string uniquely identifies the item within an item type. The
item type and key together identify the process instance.

actid
The function activity instance ID that this message is associated with.

attrName
The internal name of the item attribute you wish to append to the message.

attrValue
The value of the item attribute you wish to append.

SetMsgResult

Syntax
procedure SetMsgResult
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
result in varchar2);

Description
Sets a result to the message written in the internal stack. See: Developer APIs for the
Inbound Queue, page 6-2.

Arguments (input)
itemtype
The item type of the message.

itemkey
The item key of the message. An item key is a string generated from the application
object’s primary key. The string uniquely identifies the item within an item type. The
item type and key together identify the process instance.

actid
The function activity instance ID that this message is associated with.

result
The completion result for the message. Possible values are determined by the activity’s
Result Type.

Workow Queue APIs 6-13





7
Document Management APIs

This chapter describes the APIs for Oracle Workflow document management. The APIs
consist of PL/SQL functions and procedures to integrate with document management
systems. Document management functionality is reserved for future use. This
description of Oracle Workflow document management APIs is provided for reference
only.

This chapter covers the following topics:

• Document Management APIs

Document Management APIs
Important: Document management functionality is reserved for future
use. This description of Oracle Workflow document management APIs
is provided for reference only.

The following document management APIs can be called by user interface (UI) agents
to return URLs or javascript functions that enable integrated access to supported
document management systems. All supported document management (DM) systems
accommodate a URL interface to access documents.

The document management APIs allow you to access documents across multiple
instances of the same DM system, as well as across multiple instances of DM systems
from different vendors within the same network.

The document management APIs are defined in a PL/SQL package called
FND_DOCUMENT_MANAGEMENT.

• get_launch_document_url, page 7-2

• get_launch_attach_url, page 7-2

• get_open_dm_display_window, page 7-3

• get_open_dm_attach_window, page 7-3

• set_document_id_html, page 7-4

Related Topics
Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

Document Management APIs 7-1



get_launch_document_url
Important: Document management functionality is reserved for future
use. This description of the get_launch_document_url API is provided
for reference only.

Syntax
procedure get_launch_document_url
(username in varchar2,
document_identifier in varchar2,
display_icon in Boolean,
launch_document_url out varchar2);

Description
Returns an anchor URL that launches a new browser window containing the DM
integration screen that displays the specified document. The screen is a frame set of two
frames. The upper frame contains a customizable company logo and a toolbar of Oracle
Workflow-integrated document management functions. The lower frame displays the
specified document.

Arguments (input)
username
The username of the person accessing the document management system.

document_identier
The document identifier for the document you wish to display. The document identifier
should be stored as a value in an item attribute of type document. You can retrieve the
document identifier using the GetItemAttrDocument API. See: GetItemAttrDocument,
page 2-43 and SetItemAttrDocument, page 2-38.

display_icon
True or False. True tells the procedure to return the URL with the paper clip attachment
icon and translated prompt name, whereas False tells the procedure to return only the
URL. This argument provides you the flexibility needed when you call this procedure
from a form- or HTML-based UI agent.

get_launch_attach_url
Important: Document management functionality is reserved for future
use. This description of the get_launch_attach_url API is provided for
reference only.

Syntax
procedure get_launch_attach_url
(username in varchar2,
callback_function in varchar2,
display_icon in Boolean,
launch_attach_url out varchar2);

7-2 Oracle Workow API Reference



Description
Returns an anchor URL that launches a new browser window containing a DM
integration screen that allows you to attach a document. The screen is a frame set of two
frames. The upper frame contains a customizable company logo and a toolbar of Oracle
Workflow-integrated document management functions. The lower frame displays the
search screen of the default document management system.

Arguments (input)
username
The username of the person accessing the document management system.

callback_function
The URL you would like to invoke after the user selects a document to attach. This
callback function should be the callback_url syntax that is returned from the
set_document_id_html API.

display_icon
True or False. True tells the procedure to return the URL with the paper clip attachment
icon and translated prompt name, whereas False tells the procedure to return only the
URL. This argument provides you the flexibility needed when you call this procedure
from a form- or HTML-based UI agent.

get_open_dm_display_window
Important: Document management functionality is reserved for future
use. This description of the get_open_dm_display_window API is
provided for reference only.

Syntax
procedure get_open_dm_display_window

Description
Returns a javascript function that displays an attached document from the current
UI. The javascript function is used by all the document management functions that the
user can perform on an attached document. Each DM function also gives the current DM
integration screen a name so that the Document Transport Window can call back to the
javascript function in the current window.

get_open_dm_attach_window
Important: Document management functionality is reserved for future
use. This description of the get_open_dm_attach_window API is
provided for reference only.

Syntax
procedure get_open_dm_attach_window

Document Management APIs 7-3



Description
Returns a javascript function to open a Document Transport Window when a user
tries to attach a document in the current UI. The javascript function is used by all the
document management functions that the user can perform to attach a document. Each
DM function also gives the current DM integration screen a name so that the Document
Transport Window can call back to the javascript function in the current window.

set_document_id_html
Important: Document management functionality is reserved for future
use. This description of the set_document_id_html API is provided for
reference only.

Syntax
procedure set_document_id_html
(frame_name in varchar2,
form_name in varchar2,
document_id_field_name in varchar2
document_name_field_name in varchar2,
callback_url out varchar2);

Description
Returns a callback URL that gets executed when a user selects a document from
the DM system. Use this procedure to set the document that is selected from the
document management Search function to the specified destination field of an HTML
page. The destination field is the field from which the user launches the DM integration
screen to attach a document. Pass the returned callback URL as an argument to the
get_launch_attach_url API.

Arguments (input)
frame_name
The name of the HTML frame that you wish to interact with in the current UI.

form_name
The name of the HTML form that you wish to interact with in the current UI.

document_id_eld_
name
The name of the HTML field in the current UI that you would like to write the
resulting document identifier to. The resulting document identifier is determined by
the document the user selects from the document management Search function. The
document identifier is a concatenation of the following values:

DM:<node_id>:<document_id>:<version>

<nodeid> is the node ID assigned to the document management system node as defined
in the Document Management Nodes Web page.

<documentid> is the document ID of the document, as assigned by the document
management system where the document resides.

<version> is the version of the document. If a version is not specified, the latest
version is assumed.

7-4 Oracle Workow API Reference



document_name_eld_
name
The name of the HTML field in the current UI that you would like to write the resulting
document name to.

Document Management APIs 7-5





Glossary

Access Level
A numeric value ranging from 0 to 1000. Every workflow user operates at a specific
access level. The access level defines whether the user can modify certain workflow
data. You can only modify data that is protected at a level equal to or higher than
your access level.

Activity
A unit of work performed during a business process.

Activity Attribute
A parameter that has been externalized for a function activity that controls how the
function activity operates. You define an activity attribute by displaying the activity’s
Attributes properties page in the Activities window. You assign a value to an activity
attribute by displaying the activity node’s Attribute Values properties page in the Process
window.

Agent
A named point of communication within a system.

Agent Listener
A type of service component that processes event messages on inbound agents.

Attribute
See Activity Attribute, Item Type Attribute, or Message Attribute.

Background Engines
A supplemental Workflow Engine that processes deferred or timed out activities or
stuck processes.

Business Event
See Event.

Cost
A relative value that you can assign to a function or notification activity to inform the
Workflow Engine how much processing is required to complete the activity. Assign a
higher cost to longer running, complex activities. The Workflow Engine can be set to
operate with a threshold cost. Any activity with a cost above the Workflow Engine
threshold cost gets set to ’DEFERRED’ and is not processed. A background engine can be
set up to poll for and process deferred activities.

Glossary-1



Concurrent Manager
An Oracle Applications component that manages the queuing of requests and the
operation of concurrent programs.

Concurrent Process
An instance of running a non-interactive, data-dependent function, simultaneously with
online operations. Each time you submit a request, a concurrent manager processes your
request, starts a concurrent process, and runs a concurrent program.

Concurrent Program
A concurrent program is an executable file that performs a specific task, such as posting
a journal entry or generating a report.

Concurrent Queue
A list of concurrent requests awaiting completion by a concurrent manager. Each
concurrent manager has a queue of requests waiting in line to be run. If your system
administrator sets up your Oracle Application to have simultaneous queuing, your
request can wait to run in more than one queue.

Directory Services
A mapping of Oracle Workflow users and roles to a site’s directory repository.

Event
An occurrence in an internet or intranet application or program that might be significant
to other objects in a system or to external agents.

Event Activity
A business event modelled as an activity so that it can be included in a workflow process.

Event Data
A set of additional details describing an event. The event data can be structured as an
XML document. Together, the event name, event key, and event data fully communicate
what occurred in the event.

Event Key
A string that uniquely identifies an instance of an event. Together, the event name, event
key, and event data fully communicate what occurred in the event.

Event Message
A standard Workflow structure for communicating business events, defined by the
datatype WF_EVENT_T. The event message contains the event data as well as several
header properties, including the event name, event key, addressing attributes, and
error information.

Event Subscription
A registration indicating that a particular event is significant to a system and specifying
the processing to perform when the triggering event occurs. Subscription processing
can include calling custom code, sending the event message to a workflow process, or
sending the event message to an agent.

Glossary-2



External Functions
Programs that are executed outside of the Oracle Database.

External Java Functions
Java programs that are executed outside of the Oracle Database by the Java Function
Activity Agent.

Function
A PL/SQL stored procedure that can define business rules, perform automated tasks
within an application, or retrieve application information. The stored procedure accepts
standard arguments and returns a completion result.

Function Activity
An automated unit of work that is defined by a PL/SQL stored procedure.

Generic Service Component Framework
A facility that helps to simplify and automate the management of background Java
services.

Item
A specific process, document, or transaction that is managed by a workflow process.

Item Attribute
See Item Type Attribute.

Item Type
A grouping of all items of a particular category that share the same set of item
attributes. Item type is also used as a high level grouping for processes.

Item Type Attribute
A feature associated with a particular item type, also known as an item attribute. An
item type attribute is defined as a variable whose value can be looked up and set by the
application that maintains the item. An item type attribute and its value are available to
all activities in a process.

Lookup Code
An internal name of a value defined in a lookup type.

Lookup Type
A predefined list of values. Each value in a lookup type has an internal and a display
name.

Message
The information that is sent by a notification activity. A message must be defined before
it can be associated with a notification activity. A message contains a subject, a priority, a
body, and possibly one or more message attributes.

Message Attribute
A variable that you define for a particular message to either provide information or
prompt for a response when the message is sent in a notification. You can use a predefine
item type attribute as a message attribute. Defined as a ’Send’ source, a message attribute

Glossary-3



gets replaced with a runtime value when the message is sent. Defined as a ’Respond’
source, a message attribute prompts a user for a response when the message is sent.

Node
An instance of an activity in a process diagram as shown in the Process window.

Notication
An instance of a message delivered to a user.

Notication Activity
A unit of work that requires human intervention. A notification activity sends a message
to a user containing the information necessary to complete the work.

Notication Mailer
A type of service component that sends e-mail notifications to users through a mail
application, and processes e-mail responses.

Notication Worklist
AWeb page that you can access to query and respond to workflow notifications.

Performer
A user or role assigned to perform a human activity (notification). Notification activities
that are included in a process must be assigned to a performer.

Process
A set of activities that need to be performed to accomplish a business goal.

Process Denition
A workflow process as defined in Oracle Workflow Builder, which can be saved as a
flat file or in a database.

Process Activity
A process modelled as an activity so that it can be referenced by other processes.

Protection Level
A numeric value ranging from 0 to 1000 that represents who the data is protected from
for modification. When workflow data is defined, it can either be set to customizable
(1000), meaning anyone can modify it, or it can be assigned a protection level that is equal
to the access level of the user defining the data. In the latter case, only users operating at
an access level equal to or lower than the data’s protection level can modify the data.

Result Code
The internal name of a result value, as defined by the result type.

Result Type
The name of the lookup type that contains an activity’s possible result values.

Result Value
The value returned by a completed activity.

Glossary-4



Role
One or more users grouped by a common responsibility or position.

Service Component Container
An instance of a service or servlet that manages the running of the individual service
components that belong to it. The container monitors the status of its components and
handles control events for itself and for its components.

Service Component
An instance of a Java program which has been defined according to the Generic Service
Component Framework standards so that it can be managed through this framework.

Subscription
See Event Subscription.

System
A logically isolated software environment such as a host machine or database instance.

Timeout
The amount of time during which a notification activity must be performed before the
Workflow Engine transitions to an error process or an alternate activity if one is defined.

Transition
The relationship that defines the completion of one activity and the activation of another
activity within a process. In a process diagram, the arrow drawn between two activities
represents a transition.

Workow Denitions Loader
A concurrent program that lets you upload and download workflow definitions between
a flat file and a database.

Workow Engine
The Oracle Workflow component that implements a workflow process definition. The
Workflow Engine manages the state of all activities for an item, automatically executes
functions and sends notifications, maintains a history of completed activities, and detects
error conditions and starts error processes. The Workflow Engine is implemented in
server PL/SQL and activated when a call to an engine API is made.

Glossary-5





Index

A
AbortProcess(), 2-26
AccessCheck(), 4-39
Activities
processing cost, 2-6
statuses, 2-2

Activities(), 2-78
Ad hoc users and roles
APIs, 3-1

AddAttr(), 4-29
AddCorrelation(), 5-46
AddItemAttr(), 2-32
addItemAttrDate(), 2-32
AddItemAttrDateArray(), 2-34
addItemAttrNumber(), 2-32
AddItemAttrNumberArray(), 2-34
addItemAttrText(), 2-32
AddItemAttrTextArray(), 2-34
AddParameterToList, 5-16
AddParameterToList(), 5-30
AddParameterToListPos(), 5-31
AddRelationship(), 3-31
Address, 5-16
AddUsersToAdHocRole(), 3-12
AddUsersToAdHocRole2(), 3-12
Advanced Queues integration, 6-1
Agent datatype, 5-2
ANSWER mode, 2-11
APIs, 2-1
AQ message payload, 6-2
AQ$_JMS_TEXT_MESSAGE, 5-18
AssignActivity(), 2-53
Asynchronous processes, 2-12

B
Background(), 2-30
BeginActivity(), 2-49
Business Event System, 1-2
overview, 5-1

Business Event System Replication APIs, 5-50
Business events
in Workflow processes, 2-14

C
Cancel(), 4-23
CancelGroup(), 4-24
ChangeLocalUserName(), 3-18
Cleanup_Subscribers(), 5-58
CLEAR(), 2-69
ClearMsgStack(), 6-11
Close(), 4-28
compareTo(), 2-68
CompleteActivity(), 2-50
CompleteActivityInternalName(), 2-52
Concurrent programs
Purge Obsolete Workflow Runtime Data, 2-83
Workflow Resource Generator, 2-72

Constants
WFAttribute class, 2-64

Content, 5-15
CONTEXT(), 2-74
CreateAdHocRole(), 3-9
CreateAdHocRole2(), 3-10
CreateAdHocUser(), 3-7
CreateForkProcess(), 2-28
CreateMsg(), 6-11
CreateProcess(), 2-16

D
Data types
wf_payload_t, 6-2

Datatypes
example, 5-17
for the Business Event System, 5-2
WF_AGENT_T, 5-2
WF_EVENT_T, 5-6
WF_PARAMETER_LIST_T, 5-5
WF_PARAMETER_T, 5-4

Default_Rule(), 5-33
Default_Rule2(), 5-40
Default_Rule3(), 5-41
Deferred processing
for workflow processes, 2-6

DeferredQueue function, 6-10
Denormalize_Notification(), 4-42
DequeueEventDetail(), 6-7
DequeueException(), 6-10
DequeueOutbound(), 6-4

Index-1



Directory Service APIs, 3-1
Directory services
synchronization, 3-18

Directory(), 2-82
Document Management APIs, 7-1
Document Type Definitions
Business Event System, 5-51
notifications, 4-6
WF_AGENT_GROUPS, 5-56
WF_AGENTS, 5-55
WF_EVENT_GROUPS, 5-53
WF_EVENT_SUBSCRIPTIONS, 5-57
WF_EVENTS, 5-51
WF_SYSTEMS, 5-54

E
E-mail notifications, 1-3
Effective dates, 2-8
EncodeBLOB(), 4-44
Enqueue(), 5-27
EnqueueInbound(), 6-3
Error handling
for process activities, 2-56
for workflow processes, 2-7

Error(), 5-35
Error_Rule(), 5-38
Event activities, 2-14
Event APIs, 5-20
Event data URL, 2-37
Event Function APIs, 5-44
Event message datatype, 5-6
Event Rule APIs, 5-33
Event(), 2-54
execute(), 2-63
ExpireRelationship(), 3-31
External Java function activities, 2-3, 2-60

F
FNDWFPR, 2-83
Forced synchronous processes, 2-12
FORWARD mode, 2-11
Forward(), 4-3, 4-21

G
Generate()
WF_AGENT_GROUPS_PKG, 5-56
WF_AGENTS_PKG, 5-55
WF_EVENT_FUNCTIONS_PKG, 5-47
WF_EVENT_GROUPS_PKG, 5-53
WF_EVENT_SUBSCRIPTIONS_PKG, 5-58
WF_EVENTS_PKG, 5-52
WF_SYSTEMS_PKG, 5-54

GET_ERROR(), 2-69
get_launch_attach_url(), 7-2
get_launch_document_url(), 7-2

get_open_dm_attach_window(), 7-3
get_open_dm_display_window(), 7-3
get_pref(), 3-33
GetAccessKey(), 2-85
getActivityAttr(), 2-62
GetActivityAttrClob(), 2-48
GetActivityAttrDate(), 2-46
GetActivityAttrEvent(), 2-46
getActivityAttributes(), 2-48
GetActivityAttrInfo(), 2-45
GetActivityAttrNumber(), 2-46
GetActivityAttrText(), 2-46
GetActivityLabel(), 2-19
GetAdvancedEnvelopeURL(), 2-88
GetAllRelationships(), 3-32
GetAttrDate(), 4-35
GetAttrDoc(), 4-36
GetAttrInfo(), 4-31
GetAttrNumber(), 4-35
GetAttrText(), 4-35
GetBody(), 4-37
getCorrelationID, 5-10
GetDiagramURL(), 2-85
GetEncryptedAccessKey(), 2-90
GetEncryptedAdminMode(), 2-91
GetEnvelopeURL(), 2-87
getErrorMessage, 5-11
getErrorStack, 5-12
getErrorSubscription, 5-11
getEventData, 5-11
getEventKey, 5-10
getEventName, 5-10
getFormat(), 2-67
getFromAgent, 5-11
GetInfo(), 4-32
getItemAttr(), 2-63
GetItemAttrClob(), 2-44
GetItemAttrDate(), 2-42
GetItemAttrDocument(), 2-43
GetItemAttrEvent(), 2-42
getItemAttributes(), 2-44
GetItemAttrInfo(), 2-45
GetItemAttrNumber(), 2-42
GetItemAttrText(), 2-42
getItemTypes(), 2-41
GetItemUserKey(), 2-18
GetMaxNestedRaise(), 5-32
GetMessageHandle(), 6-9
getName
WF_AGENT_T, 5-3
WF_PARAMETER_T, 5-4
WFAttribute, 2-66

getNotificationAttributes(), 4-41
getNotifications(), 4-40
getParameterList, 5-10
getPriority, 5-9
getProcessStatus(), 2-60
getReceiveDate, 5-10

Index-2



GetRelationships(), 3-32
GetRoleDisplayName(), 3-7
GetRoleInfo(), 3-3
GetRoleInfo2(), 3-4
GetRoleName(), 3-6
GetRoleUsers(), 3-2
getSendDate, 5-9
GetShortBody(), 4-38
GetShortText(), 4-34
GetSubject(), 4-37
getSystem, 5-3
GetText(), 4-33
getToAgent, 5-11
getType(), 2-67
GetUserName(), 3-6
GetUserRoles(), 3-3
getValue
WF_PARAMETER_T, 5-5
WFAttribute, 2-66

GetValueForParameter, 5-17
GetValueForParameter(), 5-31
GetValueForParameterPos(), 5-32
getValueType(), 2-67

H
HandleError(), 2-55

I
InboundQueue function, 6-11
Initialize, 5-9
Instance_Default_Rule(), 5-43
IsMLSEnabled(), 3-18
IsMonitorAdministrator(), 2-91
IsPerformer(), 3-5
Item type attributes, 2-9
arrays, 2-9

Items(), 2-77
ItemStatus(), 2-59

J
Java APIs, 2-3
Java interface, 2-3
Java Message Service, 5-18
JMS, 5-18

L
LaunchProcess(), 2-23
LDAP APIs, 3-18
Listen(), 5-27
loadActivityAttributes(), 2-61
loadItemAttributes(), 2-61
Log(), 5-35
Loops, 2-7

M
Monitoring work items, 1-3

N
NewAgent(), 5-26
Notification activities
coupling with custom functions, 2-9

Notification APIs, 4-1, 4-14
Notification Document Type Definition, 4-6
Notification functions, 2-9
Notification Mailer Utility API, 4-44
Notification System, 4-1
Notification Web page, 1-3
Notifications
forwarding, 4-3
identifying the responder, 4-25
requesting more information, 4-4
timed out, 4-5
transferring, 4-4

Notifications(), 2-79
NtfSignRequirementsMet(), 4-26

O
On Revisit, 2-7
OpenNotificationsExist(), 4-28
Oracle Advanced Queues integration, 6-1
Oracle Applications Manager, 1-4
Oracle Java Message Service, 5-18
Oracle Workflow Builder, 1-2
Oracle Workflow Manager, 1-4
Oracle Workflow views, 2-91
OutboundQueue function, 6-11

P
Parameter datatype, 5-4
Parameter list datatype, 5-5
Parameters(), 5-44
Payload
for Advanced Queues messages, 6-2

PL/SQL, 1-3
Post-notification functions, 2-9
Process rollback, 2-56
Processes
loops, 2-7

ProcessInboundQueue(), 6-9
Propagate_Role(), 3-25
Propagate_User(), 3-21
PropagateUserRole(), 3-29
Purge
Workflow Purge APIs, 2-76

Purge Obsolete Workflow Runtime Data
concurrent program, 2-83
PurgeEvent(), 6-8
PurgeItemType(), 6-8

Index-3



Q
QUESTION mode, 2-11

R
RAISE(), 2-71
Raise(), 5-21
Raise3(), 5-24
Receive date
for event messages, 5-28

Receive()
WF_AGENT_GROUPS_PKG, 5-57
WF_AGENTS_PKG, 5-55
WF_EVENT_FUNCTIONS_PKG, 5-49
WF_EVENT_GROUPS_PKG, 5-53
WF_EVENT_SUBSCRIPTIONS_PKG, 5-58
WF_EVENTS_PKG, 5-52
WF_SYSTEMS_PKG, 5-54

RemoveUsersFromAdHocRole, 3-13
Replication APIs
Business Event System, 5-50

Reset process, 2-56
RESPOND mode, 2-11
Respond(), 4-3, 4-24
Responder, 4-25
Responder(), 4-26
Responses
processing, 4-3

ResumeProcess(), 2-25
Role hierarchies
APIs, 3-30

Rollback of a process, 2-56

S
Savepoints, 2-2
Schedule_changes(), 3-20
Send date
for event messages, 5-26

Send(), 4-2, 4-16, 5-25
SendGroup(), 4-2, 4-20
SendNotification(), 5-41
set_document_id_html(), 7-4
SetAdHocRoleAttr(), 3-17
SetAdHocRoleExpiration(), 3-15
SetAdHocRoleStatus(), 3-14
SetAdHocUserAttr(), 3-15
SetAdHocUserExpiration(), 3-14
SetAdHocUserStatus(), 3-13
SetAttrDate(), 4-30
SetAttrNumber(), 4-30
SetAttrText(), 4-30
setCorrelationID, 5-13
SetDispatchMode(), 5-29
SetErrorInfo(), 5-29
setErrorMessage, 5-15
setErrorStack, 5-15
setErrorSubscription, 5-15

setEventData, 5-14
setEventKey, 5-13
setEventName, 5-13
setFromAgent, 5-14
SetItemAttrDate(), 2-35
SetItemAttrDateArray(), 2-39
SetItemAttrDocument(), 2-38
SetItemAttrEvent(), 2-35
setItemAttrFormattedDate(), 2-37
SetItemAttrNumber(), 2-35
SetItemAttrNumberArray(), 2-39
SetItemAttrText(), 2-35
SetItemAttrTextArray(), 2-39
setItemAttrValue(), 2-63
SetItemOwner(), 2-20
SetItemParent(), 2-57
SetItemUserKey(), 2-18
SetMaxNestedRaise(), 5-32
SetMsgAttr(), 6-12
SetMsgResult(), 6-13
setName
WF_AGENT_T, 5-3
WF_PARAMETER_T, 5-5

setParameterList, 5-13
SetParametersIntoParameterList(), 5-39
setPriority, 5-12
setReceiveDate, 5-12
setSendDate, 5-12
setSystem, 5-4
setToAgent, 5-14
setValue, 5-5
StartForkProcess(), 2-29
StartProcess(), 2-21
SubscriptionParameters(), 5-45
SubstituteSpecialChars(), 4-43
Success(), 5-37
SuspendProcess(), 2-24
Synch_all(), 3-19
Synch_changes(), 3-19
Synchronization
APIs, 3-21
with Oracle Internet Directory, 3-18
with Workflow local tables, 3-21

Synchronous processes, 2-12
SYS.AQ$_JMS_TEXT_MESSAGE, 5-18

T
Test(), 5-26
TestContext(), 4-39
TIMEOUT mode, 2-11
TOKEN(), 2-70
toString(), 2-67
Total(), 2-80
TotalPERM(), 2-81
TRANSFER mode, 2-11
Transfer(), 4-4, 4-22
TRANSLATE(), 2-76

Index-4



U
UpdateInfo(), 4-4
UpdateInfo2(), 4-4
UpdateInfoGuest(), 4-4
Upgrading workflow definitions, 2-8
URLs for event data, 2-37
User-defined datatypes
for the Business Event System, 5-2

UserActive(), 3-5

V
value(), 2-66
Version, 2-8
Views
Oracle Workflow, 2-91

VoteCount(), 4-27
Voting activities
processing, 4-5

W
Warning(), 5-36
WF_AGENT_GROUPS Document Type
Definition, 5-56
WF_AGENT_GROUPS_PKG.Generate, 5-56
WF_AGENT_GROUPS_PKG.Receive, 5-57
WF_AGENT_T, 5-2
WF_AGENTS Document Type Definition, 5-55
WF_AGENTS_PKG.Generate, 5-55
WF_AGENTS_PKG.Receive, 5-55
WF_EVENT_FUNCTIONS_PKG.Generate(), 5-47
WF_EVENT_FUNCTIONS_PKG.Receive(), 5-49
WF_EVENT_GROUPS Document Type
Definition, 5-53
WF_EVENT_GROUPS_PKG.Generate, 5-53
WF_EVENT_GROUPS_PKG.Receive, 5-53
WF_EVENT_OJMSTEXT_QH
attribute mapping, 5-18

WF_EVENT_SUBSCRIPTIONS Document Type
Definition, 5-57
WF_EVENT_SUBSCRIPTIONS_PKG.Generate,
5-58
WF_EVENT_SUBSCRIPTIONS_PKG.Receive,
5-58
WF_EVENT_T, 5-6
mapping attributes to
SYS.AQ$_JMS_TEXT_MESSAGE,
5-18

WF_EVENTS Document Type Definition, 5-51
WF_EVENTS_PKG.Generate, 5-52
WF_EVENTS_PKG.Receive, 5-52
WF_ITEM_ACTIVITY_STATUSES_V, 2-92
WF_ITEMS_V, 2-94
WF_LDAP, 3-18

WF_LOCAL_SYNCH, 3-21
WF_NOTIFICATION_ATTR_RESP_V, 2-93
WF_PARAMETER_LIST_T, 5-5
WF_PARAMETER_T, 5-4
wf_payload_t, 6-2
WF_PURGE, 2-76
WF_ROLE_HIERARCHY, 3-30
WF_RUNNABLE_PROCESSES_V, 2-94
WF_SYSTEMS Document Type Definition, 5-54
WF_SYSTEMS_PKG.Generate, 5-54
WF_SYSTEMS_PKG.Receive, 5-54
WFAttribute class, 2-64, 2-64
WFAttribute(), 2-65
WFFunctionAPI class, 2-60
wfresgen, 2-71
Wftypes.sql, 5-2
WorkCount(), 4-40
Workflow Business Event System Cleanup API,
5-58
Workflow Core APIs, 2-68
Workflow definitions
loading, 1-3

Workflow Definitions Loader, 1-3
Workflow Designer
Oracle Workflow Builder, 1-2

Workflow Directory Service APIs, 3-1
Workflow Engine, 1-2
calling after activity completion, 2-6
calling for activity initiation, 2-2
CANCEL mode, 2-8
core APIs, 2-68
deferred activities, 2-6
directory services, 3-1
error processing, 2-7
Java APIs, 2-3, 2-14
looping, 2-7
master/detail processes, 2-57
PL/SQL APIs, 2-14
RUN mode, 2-8
threshold cost, 2-6

Workflow Engine APIs, 2-1
Workflow Framework Monitor APIs, 2-90
Workflow LDAP APIs, 3-18
Workflow Local Synchronization APIs, 3-21
Workflow Monitor APIs, 2-84
Workflow Preferences API, 3-33
Workflow Purge APIs, 2-76
Workflow Queue APIs, 6-1
Workflow Resource Generator, 2-71, 2-72
concurrent program, 2-72

Workflow Role Hierarchy APIs, 3-30
Workflow Views, 2-91
Workflow_Protocol(), 5-38
WriteMsg(), 6-12
WriteToClob(), 4-41

Index-5




	Oracle Workflow API Reference
	Preface
	1 Overview of Oracle Workflow
	Overview of Oracle Workflow
	Major Features and Definitions
	Workflow Processes

	Oracle Workflow Procedures and Functions

	2 Workflow Engine APIs
	Overview of the Workflow Engine
	Oracle Workflow Java Interface
	Additional Workflow Engine Features

	Workflow Engine APIs
	CreateProcess
	SetItemUserKey
	GetItemUserKey
	GetActivityLabel
	SetItemOwner
	StartProcess
	LaunchProcess
	SuspendProcess
	ResumeProcess
	AbortProcess
	CreateForkProcess
	StartForkProcess
	Background
	AddItemAttribute
	AddItemAttributeArray
	SetItemAttribute
	setItemAttrFormattedDate
	SetItemAttrDocument
	SetItemAttributeArray
	getItemTypes
	GetItemAttribute
	GetItemAttrDocument
	GetItemAttrClob
	getItemAttributes
	GetItemAttrInfo
	GetActivityAttrInfo
	GetActivityAttribute
	GetActivityAttrClob
	getActivityAttributes
	BeginActivity
	CompleteActivity
	CompleteActivityInternalName
	AssignActivity
	Event
	HandleError
	SetItemParent
	ItemStatus
	getProcessStatus

	Workflow Function APIs
	loadItemAttributes
	loadActivityAttributes
	getActivityAttr
	getItemAttr
	setItemAttrValue
	execute

	Workflow Attribute APIs
	WFAttribute
	value
	getName
	getValue
	getType
	getFormat
	getValueType
	toString
	compareTo

	Workflow Core APIs
	CLEAR
	GET_ERROR
	TOKEN
	RAISE
	CONTEXT
	TRANSLATE

	Workflow Purge APIs
	Items
	Activities
	Notifications
	Total
	TotalPERM
	Directory
	Purge Obsolete Workflow Runtime Data Concurrent Program

	Workflow Monitor APIs
	GetAccessKey
	GetDiagramURL
	GetEnvelopeURL
	GetAdvancedEnvelopeURL

	Workflow Status Monitor APIs
	GetEncryptedAccessKey
	GetEncryptedAdminMode
	IsMonitorAdministrator

	Oracle Workflow Views
	WF_ITEM_ACTIVITY_STATUSES_V
	WF_NOTIFICATION_ATTR_RESP_V
	WF_RUNNABLE_PROCESSES_V
	WF_ITEMS_V


	3 Directory Service APIs
	Workflow Directory Service APIs
	GetRoleUsers
	GetUserRoles
	GetRoleInfo
	GetRoleInfo2
	IsPerformer
	UserActive
	GetUserName
	GetRoleName
	GetRoleDisplayName
	CreateAdHocUser
	CreateAdHocRole
	CreateAdHocRole2
	AddUsersToAdHocRole
	AddUsersToAdHocRole2
	RemoveUsersFromAdHocRole
	SetAdHocUserStatus
	SetAdHocRoleStatus
	SetAdHocUserExpiration
	SetAdHocRoleExpiration
	SetAdHocUserAttr
	SetAdHocRoleAttr
	ChangeLocalUserName
	IsMLSEnabled

	Workflow LDAP APIs
	Synch_changes
	Synch_all
	Schedule_changes

	Workflow Local Synchronization APIs
	Propagate_User
	Propagate_Role
	PropagateUserRole

	Workflow Role Hierarchy APIs
	AddRelationship
	ExpireRelationship
	GetRelationships
	GetAllRelationships

	Workflow Preferences API
	get_pref


	4 Notification System APIs
	Overview of the Oracle Workflow Notification System 
	Notification Model
	Notification Document Type Definition

	Notification APIs
	Send
	Custom Callback Function

	SendGroup
	Forward
	Transfer
	Cancel
	CancelGroup
	Respond
	Responder
	NtfSignRequirementsMet
	VoteCount
	OpenNotificationsExist
	Close
	AddAttr
	SetAttribute
	GetAttrInfo
	GetInfo
	GetText
	GetShortText
	GetAttribute
	GetAttrDoc
	GetSubject
	GetBody
	GetShortBody
	TestContext
	AccessCheck
	WorkCount
	getNotifications
	getNotificationAttributes
	WriteToClob
	Denormalize_Notification
	SubstituteSpecialChars

	Notification Mailer Utility API
	EncodeBLOB


	5 Business Event System APIs
	Overview of the Oracle Workflow Business Event System
	Business Event System Datatypes
	Agent Structure
	getName
	getSystem
	setName
	setSystem

	Parameter Structure
	getName
	getValue
	setName
	setValue

	Parameter List Structure
	Event Message Structure
	Initialize
	getPriority
	getSendDate
	getReceiveDate
	getCorrelationID
	getParameterList
	getEventName
	getEventKey
	getEventData
	getFromAgent
	getToAgent
	getErrorSubscription
	getErrorMessage
	getErrorStack
	setPriority
	setSendDate
	setReceiveDate
	setCorrelationID
	setParameterList
	setEventName
	setEventKey
	setEventData
	setFromAgent
	setToAgent
	setErrorSubscription
	setErrorMessage
	setErrorStack
	Content
	Address
	AddParameterToList
	GetValueForParameter

	Example for Using Abstract Datatypes
	Mapping Between WF_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE

	Event APIs
	Raise
	Raise3
	Send
	NewAgent
	Test
	Enqueue
	Listen
	SetErrorInfo
	SetDispatchMode
	AddParameterToList
	AddParameterToListPos
	GetValueForParameter
	GetValueForParameterPos
	SetMaxNestedRaise
	GetMaxNestedRaise

	Event Subscription Rule Function APIs
	Default_Rule
	Log
	Error
	Warning
	Success
	Workflow_Protocol
	Error_Rule
	SetParametersIntoParameterList
	Default_Rule2
	Default_Rule3
	SendNotification
	Instance_Default_Rule

	Event Function APIs
	Parameters
	SubscriptionParameters
	AddCorrelation
	Generate
	Receive

	Business Event System Replication APIs
	WF_EVENTS Document Type Definition
	WF_EVENTS_PKG.Generate
	WF_EVENTS_PKG.Receive
	WF_EVENT_GROUPS Document Type Definition
	WF_EVENT_GROUPS_PKG.Generate
	WF_EVENT_GROUPS_PKG.Receive
	WF_SYSTEMS Document Type Definition
	WF_SYSTEMS_PKG.Generate
	WF_SYSTEMS_PKG.Receive
	WF_AGENTS Document Type Definition
	WF_AGENTS_PKG.Generate
	WF_AGENTS_PKG.Receive
	WF_AGENT_GROUPS Document Type Definition
	WF_AGENT_GROUPS_PKG.Generate
	WF_AGENT_GROUPS_PKG.Receive
	WF_EVENT_SUBSCRIPTIONS Document Type Definition
	WF_EVENT_SUBSCRIPTIONS_PKG.Generate
	WF_EVENT_SUBSCRIPTIONS_PKG.Receive

	Business Event System Cleanup API
	Cleanup_Subscribers


	6 Workflow Queue APIs
	Workflow Queue APIs
	EnqueueInbound
	DequeueOutbound
	DequeueEventDetail
	PurgeEvent
	PurgeItemType
	ProcessInboundQueue
	GetMessageHandle
	DequeueException
	DeferredQueue
	InboundQueue
	OutboundQueue
	ClearMsgStack
	CreateMsg
	WriteMsg
	SetMsgAttr
	SetMsgResult


	7 Document Management APIs
	Document Management APIs
	get_launch_document_url
	get_launch_attach_url
	get_open_dm_display_window
	get_open_dm_attach_window
	set_document_id_html


	Glossary
	Index


