
Pro*FORTRAN�

Supplement to the Oracle�
Precompilers Guide
Release 1.8
February 1996
Part No. A42523–1

Pro*FORTRAN� Supplement to the Oracle� Precompilers Guide, Release 1.8

Part No. A42523–1
Copyright � Oracle Corporation 1989, 1996
All rights reserved. Printed in the U.S.A.

Primary Author: Tom Portfolio
Contributing Author: Jack Godwin
Contributors: Stephen Arnold, Sanford Dreskin, Pierre Dufour, Steve Faris,
Radhakrishna Hari, Nancy Ikeda, Ken Jacobs, Maura Joglekar, Phil Locke,
Valarie Moore, Lee Osborne, Jacqui Pons, Tim Smith, Gael Turk, Scott Urman,
Peter Vasterd

This software was not developed for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It is the
customer’s responsibility to take all appropriate measures to ensure the safe
use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering
of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of
the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227–7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with “Restricted Rights”,
as defined in FAR 52.227–14, Rights in Data – General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing.
Oracle Corporation does not warrant that this document is error–free.

Oracle, Pro*COBOL, SQL*Net, and SQL*Plus are registered trademarks of
Oracle Corporation.
Oracle7, PL/SQL, Pro*C, Pro*C/C++, and Trusted Oracle7 are trademarks of
Oracle Corporation.
VMS is a registered trademark of Digital Equipment Corporation. CMS is a
registered trademark of International Business Machines Corporation. All other
products or company names are used for identification purposes only, and may
be trademarks of their respective owners.

T

 iPreface

Preface

his companion book to the Programmer’s Guide to the Oracle
Precompilers shows you how to write FORTRAN programs that use the
powerful database language SQL to access and manipulate Oracle data.
It provides easy–to–follow examples, instructions, and programming
tips, as well as several full–length programs to better your
understanding and demonstrate the usefulness of embedded SQL.

 ii Pro*FORTRAN Supplement to the Oracle Precompilers Guide

What This Manual Has to Offer

This manual shows you how the Oracle Pro*FORTRAN Precompiler
and embedded SQL can benefit your entire applications development
process. It gives you the know–how to design and develop applications
that harness the power of Oracle, and, as quickly as possible, it helps
you become proficient in writing embedded SQL programs.

An important feature of this manual is its emphasis on getting the most
out of Pro*FORTRAN and embedded SQL. To help you master these
tools, this manual, accompanied by the Programmer’s Guide to the Oracle
Precompilers, shows you all the ‘‘tricks of the trade” including ways to
improve program performance.

Note: You will not find installation instructions or
system–specific information in this guide. For that kind of
information, you should refer to your Oracle system–specific
documentation.

Who Should Read This Manual?

Anyone developing new FORTRAN applications or converting existing
FORTRAN applications to run in the Oracle environment will benefit
from reading this manual. Written especially for programmers, it will
also be of value to systems analysts, project managers, and others
interested in embedded SQL applications.

To use this manual effectively, you need a working knowledge of the
following subjects:

• applications programming in FORTRAN

• the concepts, terminology, and methods discussed in the
Programmer’s Guide to the Oracle Precompilers

• the SQL database language

• Oracle database concepts and terminology

 iiiPreface

What’s New in This Edition?

Release 1.8 of the Pro*FORTRAN Precompiler introduces a new
command–line option, UNSAFE_NULL. With UNSAFE_NULL=YES,
you can disable ORA–01405 messages when precompiling applications
that fetch data into host variables that do not have associated indicator
variables.

For more information, see Appendix A of the Programmer’s Guide to the
Oracle Precompilers.

How This Manual Is Organized

This manual contains four chapters and one appendix. A brief
summary of what you will find in each chapter and appendix follows:

Chapter 1: Writing a Pro*FORTRAN Program
This chapter provides the basic information you need to write a
Pro*FORTRAN program. You learn programming guidelines, coding
conventions, language–specific features and restrictions, how to
equivalence datatypes, and how to connect to Oracle.

Chapter 2: Error Handling and Diagnostics
This chapter discusses error reporting and recovery. It shows you how
to use the SQLSTA and SQLCOD status variables with the
WHENEVER statement to detect errors and status changes. It also
shows you how to use the SQLCA and ORACA to detect error
conditions and diagnose problems.

Chapter 3: Sample Programs
This chapter provides several embedded SQL programs to guide you in
writing your own. These well–commented programs illustrate the key
concepts and features of Pro*FORTRAN programming.

Chapter 4: Implementing Dynamic SQL Method 4
This chapter shows you how to implement dynamic SQL Method 4, an
advanced programming technique that lets you write highly flexible
applications. Numerous examples, including a full–length sample
program, are used to illustrate the method.

Appendix A: Operating System Dependencies
Some details of Pro*FORTRAN programming vary from one system to
another. So, you are occasionally referred to other manuals. For
convenience, this appendix collects all external references to
system–specific information.

Notation

 iv Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Conventions Used in This Manual

Important terms being defined for the first time are italicized. In
discussions, UPPERCASE is used for FORTRAN code, database
objects, SQL keywords, and the names of variables, constants, and
arguments.

The following notational conventions are used in some code examples:

< > Angle brackets enclose the name of a syntactic element.

[] Square brackets enclose optional items.

{ } Braces enclose items only one of which is required.

| A vertical bar separates options within brackets or braces.

... An ellipsis shows that the preceding argument or parameter
can be repeated, or that statements or clauses irrelevant to the
discussion were left out.

This character is used in text to represent blank spaces when
referring to the content of a database column.

Your Comments Are Welcome

The Oracle Corporation technical staff values your comments. As we
write and revise, your opinions are the most important input we
receive. Please use the Reader’s Comment Form at the back of this
manual to tell us what you like and dislike about this Oracle
publication. If the form has been used or you want to contact us, please
use the following address or FAX number:

Languages Documentation Manager
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065

Fax: (415) 506–7200

 vContents

Contents

Chapter 1 Writing a Pro*FORTRAN Program 1 – 1.
Programming Guidelines 1 – 2.

Case–sensitivity 1 – 2.
Coding Area 1 – 2.
Comments 1 – 2.
Continuation Lines 1 – 3.
Delimiters 1 – 3.
Embedded SQL Syntax 1 – 4.
File Length 1 – 4.
File Naming Restrictions 1 – 4.
FORTRAN Versions 1 – 4.
Host Variable Names 1 – 4.
Logical and Relational Operators 1 – 5.
MAXLITERAL Default 1 – 6.
Nulls 1 – 6.
Program Units 1 – 6.
Scope of Host Variables 1 – 6.
Statement Labels 1 – 7.
Statement Terminator 1 – 7.

Required Declarations and SQL Statements 1 – 8.
The Declare Section 1 – 8.
Using the INCLUDE Statement 1 – 8.
Event and Error Handling 1 – 9.

Host Variables 1 – 10.
Declaring Host Variables 1 – 10.
Referencing Host Variables 1 – 16.

 vi Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Indicator Variables 1 – 17.
Declaring Indicator Variables 1 – 17.
Referencing Indicator Variables 1 – 17.

Host Arrays 1 – 19.
Declaring Host Arrays 1 – 19.
Referencing Host Arrays 1 – 20.
Using Indicator Arrays 1 – 21.

VARCHAR Host Variables 1 – 22.
Declaring VARCHAR Variables 1 – 22.
Referencing VARCHAR Variables 1 – 23.
Overcoming the Length Limit 1 – 24.

Handling Character Data 1 – 25.
Effects of the
MODE Option 1 – 25.
CHARACTER*n 1 – 25.
VARCHAR Variables 1 – 27.

The Oracle Datatypes 1 – 29.
Internal Datatypes 1 – 29.
External Datatypes 1 – 30.

Datatype Conversion 1 – 31.
Datatype Equivalencing 1 – 32.

Host Variable Equivalencing 1 – 32.
Embedding PL/SQL 1 – 34.

Host Variables 1 – 34.
VARCHAR Variables 1 – 34.
Indicator Variables 1 – 34.
SQLCHECK 1 – 34.

Cursor Variables 1 – 35.
Declaring a Cursor Variable 1 – 35.
Allocating a Cursor Variable 1 – 36.
Opening a Cursor Variable 1 – 36.
Return Types 1 – 37.
Fetching from a Cursor Variable 1 – 38.
Closing a Cursor Variable 1 – 38.
Restrictions 1 – 38.
Error Conditions 1 – 38.
Sample Programs 1 – 39.

Connecting to Oracle 1 – 43.
Automatic Logons 1 – 44.
Concurrent Logons 1 – 45.

 viiContents

Chapter 2 Error Handling and Diagnostics 2 – 1.
Error Handling Alternatives 2 – 2.

SQLCOD and SQLSTA 2 – 2.
SQLCA 2 – 3.
ORACA 2 – 3.

Using Status Variables when MODE={ANSI|ANSI14} 2 – 3.
Some Historical Information 2 – 4.
Declaring Status Variables 2 – 5.
Status Variable Combinations 2 – 6.

Using the SQL Communications Area 2 – 9.
What’s in the SQLCA? 2 – 10.
Declaring the SQLCA 2 – 11.
Key Components of Error Reporting 2 – 12.
Getting the Full Text of Error Messages 2 – 13.
Using the WHENEVER Statement 2 – 14.

Using the Oracle Communications Area 2 – 17.
What’s in the ORACA? 2 – 17.
Declaring the ORACA 2 – 18.
Enabling the ORACA 2 – 18.

Chapter 3 Sample Programs 3 – 1.
Sample Program 1: Simple Query 3 – 2.
Sample Program 2: Cursor Operations 3 – 4.
Sample Program 3: Fetching in Batches 3 – 6.
Sample Program 4: Datatype Equivalencing 3 – 8.
Sample Program 5: Oracle Forms User Exit 3 – 11.
Sample Program 6: Dynamic SQL Method 1 3 – 14.
Sample Program 7: Dynamic SQL Method 2 3 – 16.
Sample Program 8: Dynamic SQL Method 3 3 – 18.
Sample Program 9: Calling a Stored Procedure 3 – 19.

Chapter 4 Implementing Dynamic SQL Method 4 4 – 1.
Meeting the Special Requirements of Method 4 4 – 2.

What Makes Method 4 Special? 4 – 2.
What Information Does Oracle Need? 4 – 2.
Where Is the Information Stored? 4 – 3.
How Is the Information Obtained? 4 – 3.

 viii Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Understanding the SQL Descriptor Area (SQLDA) 4 – 4.
Purpose of the SQLDA 4 – 4.
Multiple SQLDAs 4 – 4.
Naming Conventions 4 – 4.
Declaring a SQLDA 4 – 6.

Using the SQLDA Variables and Arrays 4 – 9.
The N Variable 4 – 9.
The F Variable 4 – 9.
The S Array 4 – 9.
The M Array 4 – 9.
The C Array 4 – 10.
The L Array 4 – 10.
The T Array 4 – 11.
The V Array 4 – 12.
The I Array 4 – 12.
The X Array 4 – 13.
The Y Array 4 – 13.
The Z Array 4 – 13.

Some Preliminaries 4 – 14.
Using SQLADR 4 – 14.
Converting Data 4 – 15.
Coercing Datatypes 4 – 18.
Handling Null/Not Null Datatypes 4 – 21.

The Basic Steps 4 – 22.
A Closer Look at Each Step 4 – 23.

Declare a Host String 4 – 24.
Declare the SQLDAs 4 – 24.
Set the Maximum Number to DESCRIBE 4 – 24.
Initialize the Descriptors 4 – 25.
Store the Query Text in the Host String 4 – 28.
PREPARE the Query from the Host String 4 – 28.
DECLARE a Cursor 4 – 28.
DESCRIBE the Bind Variables 4 – 28.
Reset Number of Placeholders 4 – 30.
Get Values for Bind Variables 4 – 30.
OPEN the Cursor 4 – 32.
DESCRIBE the Select List 4 – 32.
Reset Number of Select–List Items 4 – 34.
Reset Length/Datatype of Each Select–List Item 4 – 34.
FETCH Rows from the Active Set 4 – 36.
Get and Process Select–List Values 4 – 36.
CLOSE the Cursor 4 – 36.

 ixContents

Using Host Arrays with Method 4 4 – 38.
Sample Program 10: Dynamic SQL Method 4 4 – 41.

Appendix A Operating System Dependencies A – 1.

Index

 x Pro*FORTRAN Supplement to the Oracle Precompilers Guide

C H A P T E R

1

T

1 – 1Writing a Pro*FORTRAN Program

Writing a
Pro*FORTRAN
Program

his chapter provides the basic information you need to write a
Pro*FORTRAN program, including:

• programming guidelines

• coding conventions

• language–specific features and restrictions

• how to declare and reference host variables, indicator variables,
host arrays, and variable–length strings

• how to equivalence datatypes

• how to connect to Oracle

Case–sensitivity

Coding Area

Comments

1 – 2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Programming Guidelines

This section deals with embedded SQL syntax, coding conventions,
and FORTRAN–specific features and restrictions. Topics are arranged
alphabetically for quick reference.

Though the standard FORTRAN character set excludes lowercase alpha
characters, many compilers allow them in identifiers, comments, and
quoted literals.

The Pro*FORTRAN Precompiler is not case–sensitive; however, some
compilers are. If your compiler is case–sensitive, you must declare and
reference variables in the same uppercase/lowercase format. Check
your FORTRAN compiler user’s guide.

You must code EXEC SQL and EXEC ORACLE statements in columns
7 through 72 (columns 73 through 80 are ignored). The other columns
are used for the following purposes:

• Column 1 can indicate a comment line or can be part of an
optional statement label.

• Columns 2 through 5 can contain an optional statement label.

• Column 6 indicates continuation lines.

On some systems, terminal format is supported; that is, entry is not
restricted to certain columns. In this manual, the program fragments
and sample programs are in ANSI format (FORMAT=ANSI).

No more than one statement can appear on a single line.

You can place FORTRAN comment lines within SQL statements.
FORTRAN comment lines start with the letter C or an asterisk (*) in
column 1. You can also place ANSI SQL–style comments (–– ...) in SQL
statements at the end of a line, and you can place C–style comments
(/* ... */) in SQL statements.

The following example shows all three styles of comments:

 EXEC SQL SELECT ENAME, SAL

C Assign column values to host variables.

 1 INTO :ENAM, :ESAL –– output host variables

 2 FROM EMP

 3 /* Use input host variable in

 4 search condition */

 5 WHERE DEPTNO = :DNUM

You cannot nest comments. Blank lines are treated as comments, but
are not allowed within a continued statement.

Continuation Lines

Delimiters

1 – 3Writing a Pro*FORTRAN Program

You can continue SQL statements from one line to the next, according
to the rules of FORTRAN. To code a continuation line, place a
non–zero, non–blank character in column 6. In this manual, digits are
used as continuation characters, as the following example shows:

* Retrieve employee data.

 EXEC SQL SELECT EMPNO, ENAME, JOB, SAL

 1 INTO :ENUM, :ENAM, :EJOB, :ESAL

 2 FROM EMP

 3 WHERE DEPTNO = :DNUM

To continue a string literal from one line to the next, code the literal
through column 72. On the next line, code a continuation character and
the rest of the literal. An example follows:

* Execute dynamic SQL statement.

 EXEC SQL EXECUTE IMMEDIATE ’UPDATE EMP SET COMM = 500 WHERE

 1 DEPTNO=20’

Most FORTRAN implementations allow up to 19 continuation lines.
Check your FORTRAN compiler user’s guide.

Though FORTRAN does not require blanks to delimit keywords, you
must use blanks to delimit keywords in SQL statements. FORTRAN
uses apostrophes to delimit string literals, as in

* Display employee name.

 IF (ENAM .LT. ’ZZZZZ’) THEN

 PRINT *, ’ Employee Name: ’, ENAM

 END IF

SQL also uses apostrophes to delimit string literals, as in

* Retrieve employee data.

 EXEC SQL SELECT ENAME, SAL

 1 INTO :ENAM, :ESAL

 2 FROM EMP

 3 WHERE JOB = ’CLERK’

But SQL uses quotation marks to delimit identifiers containing special
or lowercase characters, as in

* Create table.

 EXEC SQL CREATE TABLE ”Emp2” (EMPNO NUMBER(4), ...)

Embedded SQL Syntax

File Length

File Naming
Restrictions

FORTRAN Versions

Host Variable Names

1 – 4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

To use a SQL statement in your host program, precede the SQL
statement with the EXEC SQL clause. Embedded SQL syntax is
described in the Oracle7 Server SQL Reference. The precompiler
translates all EXEC SQL statements into calls to the runtime library
SQLLIB.

The Pro*FORTRAN Precompiler cannot process arbitrarily long source
files. Some of the variables used internally limit the size of the
generated file. There is no absolute limit to the number of lines
allowed, but the following aspects of the source file are contributing
factors to the file–size constraint:

• complexity of the embedded SQL statements (for example, the
number of bind and define variables)

• whether a database name is used (for example, connecting to a
database with an AT clause)

• number of embedded SQL statements

To prevent problems related to this limitation, use multiple program
units to sufficiently reduce the size of the source files.

Avoid using filenames starting with “sql,” because errors might occur.
For example, if you name a file SQLERROR.PFO, name conflicts are
returned by some linkers because there will be an array named
SQLERD and a common block named SQLERD.

The Pro*FORTRAN Precompiler supports the standard implementation
of FORTRAN for your operating system (usually FORTRAN 77). For
more information, see your Oracle system–specific documentation.

Host variable names must consist only of letters and digits, and must
begin with a letter. They can be any length, but only the first 31
characters are significant. Some compilers prohibit variable names
longer than six characters, or ignore characters after the sixth. Check
your FORTRAN compiler user’s guide.

Logical and Relational
Operators

1 – 5Writing a Pro*FORTRAN Program

Logical and relational operators are different for FORTRAN and SQL,
as shown in Table 1 – 1 and Table 1 – 2. For example, the SQL operators
do not have leading and trailing periods.

SQL Operators FORTRAN Operators

NOT .NOT.

AND .AND.

OR .OR.

— .EQV.

— .NEQV.

Table 1 – 1 Logical Operators

SQL Operators FORTRAN Operators

= .EQ.

< >, !=, ^= .NE.

> .GT.

< .LT.

>= .GE.

<= .LE.

Table 1 – 2 Relational Operators

Logical and relational FORTRAN operators are not allowed in SQL
statements.

MAXLITERAL Default

Nulls

Program Units

Scope of Host
Variables

1 – 6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

With the MAXLITERAL precompiler option you can specify the
maximum length of string literals generated by the precompiler, so that
compiler limits are not exceeded. For Pro*FORTRAN, the default value
is 1000, but you might need to specify a lower value.

For example, if your FORTRAN compiler cannot handle string literals
longer than 512 characters, specify MAXLITERAL=512. Check your
FORTRAN compiler user’s guide.

In SQL, a null represents a missing, unknown, or inapplicable column
value; it equates neither to zero nor to a blank. Use the NVL function to
convert nulls to non–null values, use the IS [NOT] NULL comparison
operator to search for nulls, and use indicator variables to insert and
test for nulls.

In FORTRAN, a program unit is a function, subroutine, or main
program. In Pro*FORTRAN, an input file contains one or more
program units.

If a program unit contains SQL statements, it must

• define all local host variables in its Declare Section

• INCLUDE the SQLCA when MODE={ORACLE|ANSI13}

• declare a variable named SQLATA or SQLCOD inside or outside
the Declare Section when MODE={ANSI|ANSI14}

• INCLUDE the ORACA if you specify ORACA=YES

More than one program unit can contain SQL statements. For example,
you can DECLARE a cursor in one program unit, OPEN it in another,
FETCH from it in yet another, and CLOSE it in still another as long as
they are in the same file.

The scoping rules for FORTRAN identifiers apply to host variables.
Host variables declared in a program unit are local to that unit, and
host variables declared in the main program are not global. So, all host
variables used in a program unit must be declared in that unit in the
Declare Section.

Statement Labels

Statement Terminator

1 – 7Writing a Pro*FORTRAN Program

You can associate FORTRAN numeric statement labels (1 – 99999) with
SQL statements, as shown in the following example:

* Insert row into employee table.

 500 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, JOB, DEPTNO)

 1 VALUES (:ENUM, :ENAM, :EJOB, :DNUM)

And, you can reference statement labels in a WHENEVER DO or
WHENEVER GOTO statement, as this example shows:

* Handle SQL execution errors.

 EXEC SQL WHENEVER SQLERROR GOTO 900

 ...

* SQLEMC stores the Oracle error code and message.

 900 WRITE (*, 8500) SQLEMC

 8500 FORMAT (1X, 70A1)

 ...

Statement labels must be coded in columns 1 through 5, and must not
appear in continuation lines. Statement labels may consist of
alphanumeric characters, only; the special characters, underscore (_),
hyphen (–), and dollar sign ($) are not allowed.

The Pro*FORTRAN Precompiler does not use statement labels in
generated code. Therefore, the BEGLABEL and ENDLABEL options that
were available in earlier Pro*FORTRAN versions are not supported in
this version and will return an informational message if found.

Embedded SQL statements are terminated by an end–of–line, as the
following example shows:

* Delete employee.

 EXEC SQL DELETE FROM EMP WHERE EMPNO = :ENUM

However, a continuation character on the next line overrides an
end–of–line.

The Declare Section

Using the INCLUDE
Statement

Filename Extensions

1 – 8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Required Declarations and SQL Statements

Passing data between Oracle and your application program requires
host variables and event handling. This section shows you how to meet
these requirements.

You must declare all program variables to be used in SQL statements in
the Declare Section, which begins with the statement

 EXEC SQL BEGIN DECLARE SECTION

and ends with the statement

 EXEC SQL END DECLARE SECTION

Between these two statements only the following are allowed:

• host variable and indicator variable declarations

• EXEC SQL DECLARE statements

• EXEC SQL INCLUDE statements

• EXEC SQL VAR statements

• EXEC ORACLE statements

• FORTRAN comments

In a Pro*FORTRAN source file, multiple program units can contain
SQL statements. So, multiple Declare Sections are allowed per
precompiled unit. Furthermore, a Pro*FORTRAN program can contain
multiple files.

FORTRAN INCLUDEs are processed by the FORTRAN compiler, while
EXEC SQL INCLUDE statements are processed by Pro*FORTRAN to
copy files into your host program, as the following example shows:

* Copy in the SQL Communications Area (SQLCA)

* and the Oracle Communications Area (ORACA).

 EXEC SQL INCLUDE SQLCA

 EXEC SQL INCLUDE ORACA

You can INCLUDE any file. When you precompile your Pro*FORTRAN
program, each EXEC SQL INCLUDE statement is replaced by a copy of
the file named in the statement.

If your system uses file extensions but you do not specify one, the
Pro*FORTRAN Precompiler assumes the default extension for source
files (usually FOR or F). The default extension is system dependent. For
more information, see your Oracle system–specific documentation.

Search Paths

Caution

Event and
Error Handling

1 – 9Writing a Pro*FORTRAN Program

If your system uses directories, you can set a search path for
INCLUDEd files using the INCLUDE precompiler option, as follows:

INCLUDE=path

where path defaults to the current directory.

The precompiler first searches the current directory, then the directory
specified by the INCLUDE option, and finally the directory for
standard INCLUDE files. You need not specify a path for standard files
such as the SQLCA and ORACA. However, a path is required for
nonstandard files unless they are stored in the current directory.

You can also specify multiple paths on the command line, as follows:

... INCLUDE=<path1> INCLUDE=<path2> ...

When multiple paths are specified, the precompiler searches the current
directory first, then the path1 directory, then the path2 directory, and so
on. The directory containing standard INCLUDE files is searched last.
The path syntax is system specific. Check the Oracle installation or
user’s guide for your system.

Remember, the precompiler searches for a file in the current directory
first even if you specify a search path. If the file you want to INCLUDE
is in another directory, make sure no file with the same name is in the
current directory or any other directory that precedes it in the search
path. Also, if your operating system is case–sensitive, be sure to specify
the same upper/lower case filename under which the file is stored.

Pro*FORTRAN provides forward and backward compatibility when
checking the outcome of executing SQL statements. However, there are
restrictions on using SQLCA, SQLCODE, and SQLSTATE depending
on the MODE and DBMS option settings. For more information, see
Chapter 2 of this manual and Chapter 8 of the Programmer’s Guide to the
Oracle Precompilers.

Declaring Host
Variables

1 – 10 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Host Variables

Host variables are the key to communication between your host
program and Oracle. Typically, a host program inputs data to Oracle,
and Oracle outputs data to the program. Oracle stores input data in
database columns and stores output data in program host variables.

Host variables are declared according to FORTRAN rules, using the
FORTRAN datatypes that are supported by Oracle. FORTRAN
datatypes must be compatible with the source/target database column.
The supported FORTRAN datatypes are shown in Table 1 – 3.
One–dimensional arrays of FORTRAN types are also supported.

Variable Declaration Description

BYTE var
CHARACTER var

single character

CHARACTER var*n
CHARACTER*n var

n–byte character string

CHARACTER(*) var character string

INTEGER var
INTEGER*2 var
INTEGER*4 var

default–length integer
2–byte integer
4–byte integer

LOGICAL var
LOGICAL*1 var
LOGICAL*2 var
LOGICAL*4 var

single character

2–byte character string
4–byte character string

REAL var
REAL*4 var
REAL*8 var
DOUBLE PRECISION var

4–byte real number

8–byte real number

VARCHAR*n � 32765–byte, variable length character string (3)

SQLCURSOR cursor variable

Table 1 – 3 Host Variable Declarations

Notes:

1. The size of FORTRAN numeric types is implementation–dependent. The
sizes given in the table are typical but not universal. Check your FORTRAN
compiler user’s guide.

2. CHARACTER(*) variables have no predetermined length. They are used to
specify dummy arguments in a subroutine declaration. The maximum
length of an actual argument is returned by the LEN intrinsic function.

3. Variables declared with VARCHAR*n (not native to FORTRAN) are
assigned the VARCHAR external datatype. See “Declaring VARCHAR
Variables” on page 1 – 22 for more information.

1 – 11Writing a Pro*FORTRAN Program

Table 1 – 4 shows the compatible Oracle internal datatypes.

Internal Type FORTRAN Type Description

CHAR(x) (1)
VARCHAR2(y) (1)

BYTE
CHARACTER
CHARACTER*n
VARCHAR*n var1, var2, var3

single character
variable–length string
variable–length string
variable–length string

NUMBER
NUMBER (p,s) (2)

CHARACTER*n var
CHARACTER var *n
CHARACTER(*)

DOUBLE PRECISION

INTEGER
INTEGER*2
INTEGER*4

LOGICAL var
LOGICAL*1 var
LOGICAL*2 var
LOGICAL*4 var

REAL
REAL*4
REAL*8

VARCHAR*n var1, var2, var3

n–byte character string (3)

character string (as parameter)

8–byte float number

integer (default size)
2–byte integer
4–byte integer

single character

2–byte character string
4–byte character string

float number
4–byte float number
8–byte float number

variable–length string

DATE (4)
LONG
RAW (1)
LONG RAW
ROWID (5)
MLSLABEL (6)

CHARACTER*n var
CHARACTER*n var
VARCHAR*n var1, var2, var3

n–byte character string
n–byte variable–length string
variable–length string

CURSOR SQLCURSOR cursor variable

Table 1 – 4 Compatible Oracle Internal Datatypes

Notes:

1. x ranges from 1 to 255, and 1 is the default. y ranges from 1 to 2000.

2. p ranges from 2 to 38. s ranges from –84 to 127.

3. Strings can be converted to NUMBERs only if they consist of convertible
characters — 0 to 9, period (.), +, –, E, e. The NLS settings for your system
might change the decimal point from a period (.) to a comma (,).

4. When converted to a string type, the default size of a DATE depends on the
NLS settings in effect on your system. When converted to a binary value, the
length is 7 bytes.

5. When converted to a string type, a ROWID requires from 18 to 256 bytes.

6. Trusted Oracle7 only.

Example Declarations

Repeating Definitions

Initialization

1 – 12 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

In the following example, you declare several host variables for use
later in your Pro*FORTRAN program:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM

 CHARACTER*10 ENAM

 REAL*4 ESAL

 INTEGER*2 DNUM

 CHARACTER*15 DNAM

 EXEC SQL END DECLARE SECTION

You can also declare one–dimensional arrays of FORTRAN types, as
the next example shows:

* Declare host arrays.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM(100)

 CHARACTER*10 ENAM(100)

 REAL*4 ESAL(100)

 EXEC SQL END DECLARE SECTION

You can use repeating definitions for datatypes, as in

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 REAL*4 ESAL, ECOM, EBON

 EXEC SQL END DECLARE SECTION

which is equivalent to

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 REAL*4 ESAL

 REAL*4 ECOM

 REAL*4 EBON

 EXEC SQL END DECLARE SECTION

While it is not necessary to initialize host variables inside the Declare
Section, you can use the FORTRAN DATA statement to initialize host
variables, as follows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 REAL*4 MINSAL

 REAL*4 MAXSAL

 DATA MINSAL, MAXSAL /1000.00, 5000.00/

 EXEC SQL END DECLARE SECTION

Constants

COMMON Blocks

1 – 13Writing a Pro*FORTRAN Program

DATA statements must come before the first executable FORTRAN
statement but after any variable and PARAMETER declarations. Later
in your program, you can change the values of variables initialized by a
DATA statement. You cannot, however, reuse a DATA statement to
reset the changed values.

You can use the FORTRAN PARAMETER statement inside or outside
the Declare Section to assign constant values to host variables, as the
following example shows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*5 UID

 CHARACTER*5 PWD

 PARAMETER (UID = ’SCOTT’, PWD = ’TIGER’)

 EXEC SQL END DECLARE SECTION

Using the FORTRAN COMMON statement, you can keep host
variables and arrays in a common storage area as if they were globally
defined, so that their values can be used in different program units. The
COMMON statement must appear outside the Declare Section, and
must come before the first executable FORTRAN statement but after
variable declarations. An example follows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM

 CHARACTER*10 ENAM

 REAL*4 ESAL

 REAL*4 ECOM

 EXEC SQL END DECLARE SECTION

* Define COMMON block.

 COMMON /EMPBLK/ ENUM, ESAL, ECOM

In this example, EMPBLK is the COMMON block name. The names of
COMMON blocks, subroutines, and functions are the only globally
defined identifiers in a FORTRAN program. Avoid using blank
COMMON blocks.

You make a COMMON block available to other program units by
redefining it in those units. You must repeat the type declarations for
variables in a COMMON block in all units where the block is used.

Only the order and datatypes of variables in the COMMON block
matter, not their names. So, the variable names can differ from unit to
unit. However, it is good programming practice to use the same names
for corresponding variables in each occurrence of a COMMON block.

EQUIVALENCE
Statement

Special Requirements
for Subroutines

1 – 14 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

The following restrictions apply to COMMON blocks:

• You cannot put VARCHAR variables in a COMMON block.

• Host arrays cannot be dimensioned in a COMMON statement.

• You cannot use a DATA statement to initialize variables in a
blank COMMON block.

• With most compilers, CHARACTER variables must appear in
their own COMMON blocks; that is, they cannot be mixed with
other variables in a COMMON block.

With the FORTRAN EQUIVALENCE statement, you can use two or
more host variable names for the same storage location. The
EQUIVALENCE statement must come before the first executable
FORTRAN statement.

You can equivalence CHARACTER variables only to other
CHARACTER variables. You cannot equivalence VARCHAR variables.

You must explicitly declare host variables in the Declare Section of the
program unit that uses them in SQL statements. Thus, variables passed
to a subroutine and used in SQL statements within the subroutine must
be declared in the subroutine Declare Section. An example follows:

 ...

 CALL LOGON (UID, PWD)

 ...

 SUBROUTINE LOGON (UID, PWD)

* Declare host variables in subroutine.

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 UID

 CHARACTER*10 PWD

 EXEC SQL END DECLARE SECTION

 ...

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 WRITE(*, 1000) UID

 1000 FORMAT(/,’ Connected to Oracle as user: ’, A10, /)

 RETURN

 END

Restrictions

1 – 15Writing a Pro*FORTRAN Program

Implicit Declarations. FORTRAN allows implicit declaration of
INTEGER and REAL variables. Unless explicitly declared otherwise,
identifiers starting with I, J, K, L, M, or N are assumed to be of type
INTEGER, and other identifiers are assumed to be of type REAL.

However, implicit declaration of host variables is not allowed; it
triggers an “undeclared host variable” error message at precompile
time. Every variable referenced in a SQL statement must be defined in
the Declare Section.

Complex Numbers. In FORTRAN, complex numbers, that is, numbers
with a real part and an imaginary part, are represented using the
datatype COMPLEX. Pro*FORTRAN, however, does not support the
use of COMPLEX host variables in SQL statements.

Referencing Host
Variables

Restrictions

1 – 16 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

You use host variables in SQL data manipulation statements. A host
variable must be prefixed with a colon (:) in SQL statements but must not
be prefixed with a colon in FORTRAN statements, as this example shows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM

 CHARACTER*10 ENAM

 REAL*4 ESAL

 CHARACTER*10 EJOB

 EXEC SQL END DECLARE SECTION

 ...

 WRITE (*, 3100)

 3100 FORMAT (’ Enter employee number: ’)

 READ (*, 3200) ENUM

 3200 FORMAT (I4)

 EXEC SQL SELECT ENAME, SAL, JOB

 1 INTO :ENAM, :ESAL, :EJOB

 2 FROM EMP

 3 WHERE EMPNO = :ENUM

 BONUS = ESAL / 10

 ...

Though it might be confusing, you can give a host variable the same
name as an Oracle table or column, as the following example shows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM

 CHARACTER*10 ENAM

 REAL*4 ESAL

 EXEC SQL END DECLARE SECTION

 ...

 EXEC SQL SELECT ENAME, SAL

 1 INTO :ENAM, :ESAL

 2 FROM EMP

 3 WHERE EMPNO = :ENUM

A host variable cannot substitute for a column, table, or other Oracle
object in a SQL statement and must not be an Oracle reserved word.
See Appendix B of the Programmer’s Guide to the Oracle Precompilers for
a list of Oracle reserved words and keywords.

Declaring Indicator
Variables

Referencing Indicator
Variables

1 – 17Writing a Pro*FORTRAN Program

Indicator Variables

You use indicator variables to provide information to Oracle about the
status of a host variable, or to monitor the status of data that is
returned from Oracle. An indicator variable is always associated with a
host variable.

You use indicator variables in the VALUES or SET clause to assign nulls
to input host variables and in the INTO clause to detect nulls or
truncated values in output host variables.

An indicator variable must be explicitly declared in the Declare Section
as a 2–byte integer (INTEGER*2) and must not be an Oracle reserved
word. In the following example, you declare two indicator variables
(the names IESAL and IECOM are arbitrary):

* Declare host and indicator variables.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM

 CHARACTER*10 ENAM

 REAL*4 ESAL

 REAL*4 ECOM

 INTEGER*2 IESAL

 INTEGER*2 IECOM

 EXEC SQL END DECLARE SECTION

You can define an indicator variable anywhere in the Declare Section. It
need not follow its associated host variable.

In SQL statements, an indicator variable must be prefixed with a colon
and appended to its associated host variable. In FORTRAN statements,
an indicator variable must not be prefixed with a colon or appended to
its associated host variable. An example follows:

* Retrieve employee data.

 EXEC SQL SELECT SAL, COMM

 1 INTO :ESAL, :ECOM:IECOM

 2 FROM EMP

 3 WHERE EMPNO = :ENUM

* When an indicator variable equals –1, its associated

* host variable is null.

 IF (IECOM .EQ. –1) THEN

 PAY = ESAL

 ELSE

 PAY = ESAL + ECOM

 END IF

Restriction

Oracle Restrictions

ANSI Requirements

1 – 18 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

To improve readability, you can precede any indicator variable with the
optional keyword INDICATOR. You must still prefix the indicator
variable with a colon. The correct syntax is

:<host_variable> INDICATOR :<indicator_variable>

which is equivalent to

:<host_variable>:<indicator_variable>

You can use both forms of expression in your host program.

Indicator variables cannot be used in the WHERE clause to search for
nulls. For example, the following DELETE statement triggers an Oracle
error at run time:

* Set indicator variable.

 IECOM = –1

 EXEC SQL DELETE FROM EMP WHERE COMM = :ECOM:IECOM

The correct syntax follows:

 EXEC SQL DELETE FROM EMP WHERE COMM IS NULL

When DBMS=V6, Oracle does not issue an error if you SELECT or
FETCH a null into a host variable that is not associated with an
indicator variable. However, when DBMS=V7, if you SELECT or
FETCH a null into a host variable that has no indicator, Oracle issues
the following error message:

ORA–01405: fetched column value is NULL

When precompiling with MODE=ORACLE and DBMS=V7 specified,
you can disable the ORA–01405 message by also specifying
UNSAFE_NULL=YES on the command line. For more information, see
the Programmer’s Guide to the Oracle Precompilers.

When MODE=ORACLE, if you SELECT or FETCH a truncated column
value into a host variable that is not associated with an indicator
variable, Oracle issues the following error message:

ORA–01406: fetched column value was truncated

However, when MODE={ANSI|ANSI14|ANSI13}, no error is
generated. Values for indicator variables are discussed in Chapter 3 of
the Programmer’s Guide to the Oracle Precompilers.

Declaring Host Arrays

Restrictions

1 – 19Writing a Pro*FORTRAN Program

Host Arrays

Host arrays can boost performance by letting you manipulate an entire
collection of data items with a single SQL statement. With few
exceptions, you can use host arrays wherever scalar host variables are
allowed. And, you can associate an indicator array with any host array.

You declare and dimension host arrays in the Declare Section. In the
following example, three host arrays are declared, each with an upper
dimension bound of 50 (the lower bound defaults to 1):

* Declare and dimension host arrays.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM(50)

 CHARACTER*10 ENAM(50)

 REAL*4 ESAL(50)

 EXEC SQL END DECLARE SECTION

You cannot specify a lower dimension bound for host arrays. For
example, the following declaration is invalid:

* Invalid dimensioning of host array

 EXEC SQL BEGIN DECLARE SECTION

 ...

 REAL*4 VECTOR(0:10)

 EXEC SQL END DECLARE SECTION

Multi–dimensional host arrays are not allowed. Thus, the
two–dimensional host array declared in the following example
is invalid:

* Invalid declaration of host array

 EXEC SQL BEGIN DECLARE SECTION

 ...

 REAL*4 MATRIX(50, 100)

 EXEC SQL END DECLARE SECTION

You cannot dimension host arrays using the FORTRAN DIMENSION
statement. For example, the following usage is invalid:

* Invalid use of DIMENSION statement

 EXEC SQL BEGIN DECLARE SECTION

 REAL*4 ESAL

 REAL*4 ECOM

 DIMENSION ESAL(50), ECOM(50)

 EXEC SQL END DECLARE SECTION

Also, you cannot dimension a host array in a COMMON statement.

Referencing Host
Arrays

1 – 20 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

If you use multiple host arrays in a single SQL statement, their
dimensions should be the same. This is not a requirement, however,
because the Pro*FORTRAN Precompiler always uses the smallest
dimension for the SQL operation. In the following example, only 50
rows are INSERTed:

* Declare host arrays.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM(100)

 CHARACTER*10 ENAM(100)

 INTEGER*4 DNUM(100)

 REAL*4 ECOM(50)

 EXEC SQL END DECLARE SECTION

 ...

* Populate host arrays here.

 ...

 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, COMM, DEPTNO)

 1 VALUES (:ENUM, :ENAM, :ECOM, :DNUM)

Host arrays must not be subscripted in SQL statements. For example,
the following INSERT statement is invalid:

* Declare host arrays.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM(50)

 REAL*4 ESAL(50)

 INTEGER*4 DNUM(50)

 EXEC SQL END DECLARE SECTION

 ...

 DO 200 J = 1, 50

* Invalid use of host arrays

 EXEC SQL INSERT INTO EMP (EMPNO, SAL, DEPTNO)

 1 VALUES (:ENUM(J), :ESAL(J), :DNUM(J))

 200 CONTINUE

You need not process host arrays in a loop. Instead, use unsubscripted
array names in your SQL statement. Oracle treats a SQL statement
containing host arrays of dimension n like the same statement executed
n times with n different scalar variables. For more information, see
Chapter 8 of the Programmer’s Guide to the Oracle Precompilers.

Using Indicator Arrays

1 – 21Writing a Pro*FORTRAN Program

You can use indicator arrays to assign nulls to input host arrays and to
detect nulls or truncated values in output host arrays. The following
example shows how to INSERT with indicator arrays:

* Declare host and indicator arrays.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM(50)

 INTEGER*4 DNUM(50)

 REAL*4 ECOM(50)

 INTEGER*2 IECOM(50) –– indicator array

 EXEC SQL END DECLARE SECTION

 ...

* Populate the host and indicator arrays. To insert

* a null into the COMM column, assign –1 to the

* appropriate element in the indicator array.

 ...

 EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO, COMM)

 1 VALUES (:ENUM, :DNUM, :ECOM:IECOM)

The dimension of the indicator array must be greater than, or equal to,
the dimension of the host array.

Declaring VARCHAR
Variables

1 – 22 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

VARCHAR Host Variables

FORTRAN string datatypes are fixed–length. However, Pro*FORTRAN
lets you declare a variable–length string pseudotype called VARCHAR.

A VARCHAR is a set of three variables declared using the syntax

* Declare a VARCHAR.

 EXEC SQL BEGIN DECLARE SECTION

 VARCHAR*<n> <VARNAM>, <VARLEN>, <VARARR>

 EXEC SQL END DECLARE SECTION

where:

Is the maximum length of the VARCHAR; n must be in the
range 1 through 32765.

Is the name used to reference the VARCHAR in SQL
statements; it is called an aggregate name because it
identifies a set of variables.

Is a 2–byte signed integer variable that stores the actual
length of the string variable.

Is the string variable used in FORTRAN statements.

The advantage of using VARCHAR variables is that you can explicitly
set and reference VARLEN. With input host variables, Oracle reads the
value of VARLEN and uses that many characters of VARARR. With
output host variables, Oracle sets VARLEN to the length of the
character string stored in VARARR.

You can declare a VARCHAR only in the Declare Section. In the
following example, you declare a VARCHAR named EJOB with a
maximum length of 15 characters:

* Declare a VARCHAR.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 VARCHAR*15 EJOB, EJOBL, EJOBA

 EXEC SQL END DECLARE SECTION

The precompiler expands this declaration to

* Expanded VARCHAR declaration

 INTEGER*2 EJOBL

 LOGICAL*1 EJOBA(15)

 INTEGER*2 SQXXX(2)

 EQUIVALENCE (SQXXX(1), EJOBL), (SQXXX(2), EJOBA(1))

where SQXXX is an array generated by the precompiler and XXX
denotes three arbitrary characters. Notice that the aggregate name

n

VARNAM

VARLEN

VARARR

Referencing
VARCHAR Variables

1 – 23Writing a Pro*FORTRAN Program

EJOB is not declared. The EQUIVALENCE statement forces the
compiler to store EJOBL and EJOBA contiguously.

In SQL statements, you reference a VARCHAR variable using the
aggregate name prefixed with a colon, as the following example shows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 INTEGER*4 ENUM

 VARCHAR*15 EJOB, EJOBL, EJOBA

 EXEC SQL END DECLARE SECTION

 ...

 EXEC SQL SELECT JOB

 1 INTO :EJOB

 2 FROM EMP

 3 WHERE EMPNO = :ENUM

After the query executes, EJOBL holds the actual length of the
character string retrieved from the database and stored in EJOBA. In
FORTRAN statements, you reference VARCHAR variables using the
length variable and string variable names, as this example shows:

* Display job title.

 WRITE (*, 5200) (EJOBA(J), J = 1, EJOBL)

 5200 FORMAT (15A1)

 ...

Overcoming the
Length Limit

1 – 24 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Recall that the length variable of a VARCHAR must be a 2–byte integer.
FORTRAN provides a 2–byte signed integer datatype, which can
represent numbers in the range –32768 through 32767. However,
FORTRAN lacks a 2–byte unsigned integer datatype, which can
represent numbers in the range 0 through 65535. Therefore, the
maximum length of a VARCHAR character string is 32765 bytes (32767
minus 2 for the length variable).

With other host languages, the maximum length of a VARCHAR
character string is 65533 bytes. If you want to use 65533–byte
VARCHAR variables, try the technique shown in the following
example:

* Declare a VARCHAR.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 VARCHAR*65533 BUF, BUFL, BUFA

 EXEC SQL END DECLARE SECTION

 ...

* Equivalence two 2–byte integers to one 4–byte integer.

 INTEGER*2 INT2(2)

 INTEGER*4 INT4

 EQUIVALENCE (INT2(1), INT4)

 INTEGER*4 I

 ...

 INT4 = 65533

* Set the VARCHAR length variable equal to the

* equivalenced value of INT4.

 BUFL = INT2(1)

 DO 100 I = 1, 65533

 BUFA(I) = 32

 100 CONTINUE

 EXEC SQL INSERT INTO LONG_TABLE VALUES (:BUF)

 ...

 BUFL = 0

 EXEC SQL SELECT COL1 INTO :BUF FROM LONG_TABLE

 INT2(1) = BUFL

 ...

Note: The way integers are stored varies from system to
system. On some systems, the least significant digits are stored
at the low address; on other systems they are stored at the high
address. In the last example, this determines whether the
length is stored in INT2(1) or INT2(2).

Effects of the
MODE Option

CHARACTER*n

On Input

1 – 25Writing a Pro*FORTRAN Program

Handling Character Data

This section explains how the Pro*FORTRAN Precompiler
handles character host variables. There are two types of character
host variables:

• CHARACTER*n

• VARCHAR

Do not confuse VARCHAR, which is a host variable data structure
supplied by the precompiler, with VARCHAR2, which is an Oracle
column datatype for variable–length character strings.

The MODE option determines how the Pro*FORTRAN Precompiler
treats data in character arrays and strings. The MODE option allows
your program to use ANSI fixed–length strings or to maintain
compatibility with previous versions of the Oracle Server and the
Pro*FORTRAN Precompiler.

With respect to character handling, MODE={ANSI14|ANSI13} is
equivalent to MODE=ORACLE. The MODE option affects character
data on input (from host variables to Oracle) and on output (from
Oracle to host variables).

Note: The MODE option does not affect the way
Pro*FORTRAN handles VARCHAR host variables.

Character variables are declared using the CHARACTER*n datatype.
These types of variables handle character data based on their roles as
input or output variables.

When MODE=ORACLE, the program interface strips trailing blanks
before sending the value to the database. If you insert into a
fixed–length CHAR column, Oracle re–appends trailing blanks up to
the length of the database column. However, if you insert into a
variable–length VARCHAR2 column, Oracle never appends blanks.

When MODE=ANSI, trailing blanks are never stripped.

Make sure that the input value is not trailed by extraneous characters.
For example, nulls are not stripped and are inserted into the database.
Normally, this is not a problem because when a value is READ into or
assigned to a CHARACTER*n variable, FORTRAN appends blanks up
to the length of the variable.

On Output

1 – 26 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

The following example illustrates the point:

* Declare host variables

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER ENAM *10, EJOB *8

 ...

 EXEC SQL END DECLARE SECTION

 ...

 WRITE (*, 300)

 300 FORMAT (/, ’$Employee name? ’)

* Assume the name ’MILLER’ is entered

 READ (*, 400)

 400 FORMAT (A10)

 EJOB = ’SALES’

 EXEC SQL INSERT INTO emp (empno, ename, deptno, job)

 VALUES (1234, :ENAM, 20, :EJOB)

If you precompile the last example with MODE=ORACLE and the
target database columns are VARCHAR2, the program interface strips
the trailing blanks on input and inserts just the 6–character string
“MILLER” and the 5–character string “SALES” into the database.
However, if the target database columns are CHAR, the strings are
blank–padded to the width of the columns.

If you precompile the last example with MODE=ANSI and the JOB
column is defined as CHAR(10), the value inserted into that column is
“SALES#####” (five trailing blanks). However, if the JOB column is
defined as VARCHAR2(10), the value inserted is “SALES###” (three
trailing blanks) because the host variable is a CHARACTER*8. This
might not be what you want, so be careful.

The MODE option has no effect on output to character variables. When
you use a CHARACTER*n variable as an output host variable, Oracle
blank–pads it. In our example, when your program fetches the string
“MILLER” from the database, ENAM contains the value
“MILLER####” (with four trailing blanks). This character string can be
used without change as input to another SQL statement.

VARCHAR Variables

On Input

1 – 27Writing a Pro*FORTRAN Program

VARCHAR variables handle character data based on their roles as
input or output variables

When you use a VARCHAR variable as an input host variable, your
program must assign values to the length and string variables, as
shown in the following example:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM

 VARCHAR*15 EJOB, EJOBL, EJOBA

 INTEGER*2 IEJOB

 INTEGER*4 DNUM

 EXEC SQL END DECLARE SECTION

 ...

 WRITE (*, 4300)

 4300 FORMAT (/, ’ Enter job title: ’)

 READ (*, 4400) EJOBA

 4400 FORMAT (15A1)

* Scan backward for last non–blank character, then

* set length to that position. If input is all blank,

* set indicator variable to –1 to indicate a null.

 DO 5000 J = 15, 1, –1

 IF (EJOBA(J) .NE. ’ ’) GOTO 5100

 5000 CONTINUE

 J = 0

 5100 IF (J .EQ. 0) THEN

 IEJOB = –1

 ELSE

 IEJOB = 0

 END IF

 EJOBL = J

 EXEC SQL INSERT INTO EMP (EMPNO, JOB, DEPTNO)

 1 VALUES (:ENUM, :EJOB:IEJOB, :DNUM)

On Output

1 – 28 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

When you use a VARCHAR variable as an output host variable, Oracle
sets the length variable. An example follows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM

 VARCHAR*15 EJOB, EJOBL, EJOBA

 INTEGER*4 ESAL

 EXEC SQL END DECLARE SECTION

 ...

 EXEC SQL SELECT JOB, SAL INTO :EJOB, :ESAL FROM EMP

 1 WHERE EMPNO = :ENUM

 ...

 IF (EJOBL .EQ. 0) GOTO ...

 ...

An advantage of VARCHAR variables over fixed–length strings is that
the length of the value returned by Oracle is available right away. With
fixed–length strings, to get the length of the value, your program must
count the number of characters. (The intrinsic function LEN returns the
length of a string including blanks, not its current length.)

Internal Datatypes

1 – 29Writing a Pro*FORTRAN Program

The Oracle Datatypes

Oracle recognizes two kinds of datatypes: internal and external. Internal
datatypes specify how Oracle stores data in database columns. Oracle
also uses internal datatypes to represent database pseudocolumns. An
external datatype specifies how data is stored in a host variable. For
descriptions of the Oracle datatypes, see Chapter 3 of the Programmer’s
Guide to the Oracle Precompilers.

For values stored in database columns, Oracle uses the following
internal datatypes:

Name Code Description

CHAR 96 � 255–byte, fixed–length string

DATE 12 7–byte, fixed–length date/time value

LONG 8 � 2147483647–byte, variable–length string

LONG RAW 24 � 2147483647–byte, variable–length binary data

MLSLABEL 105 � 5–byte, variable–length binary label

NUMBER 2 fixed or floating point number

RAW 23 � 255–byte, variable–length binary data

ROWID 11 fixed–length binary value

VARCHAR2 1 � 2000–byte, variable–length string

Table 1 – 5 Internal Datatypes

These internal datatypes can be quite different from FORTRAN
datatypes. For example, FORTRAN has no equivalent to the NUMBER
datatype, which was specially designed for portability and high
precision.

External Datatypes

1 – 30 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

As the table below shows, the external datatypes include all the
internal datatypes plus several datatypes found in other supported
host languages. For example, the STRING external datatype refers to a
C null–terminated string. You use the datatype names in datatype
equivalencing, and you use the datatype codes in dynamic SQL
Method 4.

Name Code Description

CHAR 1
96

� 65535–byte, variable–length character string (1)
� 65535–byte, fixed–length character string (1)

CHARF 96 � 65535–byte, fixed–length character string

CHARZ 97 � 65535–byte, fixed–length, null–terminated string (2)

DATE 12 7–byte, fixed–length date/time value

DECIMAL 7 COBOL packed decimal

DISPLAY 91 COBOL numeric character string

FLOAT 4 4–byte or 8–byte floating–point number

INTEGER 3 2–byte or 4–byte signed integer

LONG 8 � 2147483647–byte, fixed–length string

LONG RAW 24 � 217483647–byte, fixed–length binary data

LONG VARCHAR 94 � 217483643–byte, variable–length string

LONG VARRAW 95 � 217483643–byte, variable–length binary data

MLSLABEL 106 2..5–byte, variable–length binary data

NUMBER 2 integer or floating–point number

RAW 23 � 65535–byte, fixed–length binary data (2)

ROWID 11 (typically) 13–byte, fixed–length binary value

STRING 5 � 65535–byte, null–terminated character string (2)

UNSIGNED 68 2–byte or 4–byte unsigned integer

VARCHAR 9 � 65533–byte, variable–length character string

VARCHAR2 1 � 65535–byte, variable–length character string (2)

VARNUM 6 variable–length binary number

VARRAW 15 � 65533–byte, variable–length binary data

Table 1 – 6 External Datatypes

Notes:

1. CHAR is datatype 1 when MODE={ORACLE|ANSI13|ANSI14} and
datatype 96 when MODE=ANSI.

2. Maximum size is 32767 (32K) on some platforms.

1 – 31Writing a Pro*FORTRAN Program

Datatype Conversion

At precompile time, an external datatype is assigned to each host
variable in the Declare Section. For example, the precompiler assigns
the FLOAT external datatype to host variables of type REAL. At run
time, the datatype code of every host variable used in a SQL statement
is passed to Oracle. Oracle uses the codes to convert between internal
and external datatypes.

Before assigning a SELECTed column value to an output host variable,
Oracle must convert the internal datatype of the source column to the
datatype of the host variable. Likewise, before assigning or comparing
the value of an input host variable to a column, Oracle must convert
the external datatype of the host variable to the internal datatype of the
target column.

Conversions between internal and external datatypes follow the usual
data conversion rules. For example, you can convert a CHAR value of
“1234” to a INTEGER*2 value. You cannot, however, convert a CHAR
value of “65543” (number too large) or “10F” (number not decimal) to a
INTEGER*2 value. Likewise, you cannot convert a CHARACTER*n
value that contains alphabetic characters to a NUMBER value.

For more information about datatype conversion, see Chapter 3 of the
Programmer’s Guide to the Oracle Precompilers.

Host Variable
Equivalencing

1 – 32 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Datatype Equivalencing

Datatype equivalencing lets you control the way Oracle interprets input
data and the way Oracle formats output data. You can equivalence
supported FORTRAN datatypes to Oracle external datatypes on a
variable–by–variable basis.

By default, the Pro*FORTRAN Precompiler assigns a specific external
datatype to every host variable. The default assignments are shown in
Table 1 – 7. For more information about datatype equivalencing, see
Chapter 3 in the Programmer’s Guide to the Oracle Precompilers.

Host Type External Type Code

BYTE var
LOGICAL var
LOGICAL*1 var
LOGICAL*2 var
LOGICAL*4 var

CHARACTER var
CHARACTER var*n
CHARACTER*n var
CHARACTER(*) var

VARCHAR2
CHARF

1 (when MODE != ANSI)
96 (when MODE=ANSI)

VARCHAR*n VARCHAR 9

INTEGER var
INTEGER*2 var
INTEGER*4 var

INTEGER 3

REAL var
REAL*4 var
REAL*8 var
DOUBLE PRECISION var

FLOAT 4

Table 1 – 7 Host Variable Equivalencing

With the VAR statement, you can override the default assignments by
equivalencing host variables to Oracle external datatypes in the Declare
Section. The syntax you use is

 EXEC SQL

 VAR <host_variable>

 IS <ext_type_name> [({<length> | <precision>,<scale>})]

where host_variable is an input or output host variable (or host array)
declared earlier in the Declare Section, ext_type_name is the name of a
valid external datatype, and length is an integer literal specifying a
valid length in bytes.

When ext_type_name is FLOAT, use length; when ext_type_name is
DECIMAL, you must specify precision and scale instead of length.

1 – 33Writing a Pro*FORTRAN Program

Host variable equivalencing is useful in several ways. For example, you
can use it when you want Oracle to store but not interpret data.
Suppose you want to store a host array of 4–byte integers in a RAW
database column. Simply equivalence the host array to the RAW
external datatype, as follows:

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*4 ENUM(50)

 ...

* Reset default datatype (INTEGER) to RAW.

 EXEC SQL VAR ENUM IS RAW (200);

 EXEC SQL END DECLARE SECTION

 ...

With host arrays, the length you specify must match the buffer size
required to hold the array. In the last example, you specified a length of
200, which is the buffer size required to hold 50 4–byte integers.

For more information about datatype equivalencing, see Chapter 3 in
the Programmer’s Guide to the Oracle Precompilers.

Host Variables

VARCHAR Variables

Indicator Variables

Handling Nulls

Handling Truncated
Values

SQLCHECK

1 – 34 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Embedding PL/SQL

The Pro*FORTRAN Precompiler treats a PL/SQL block like a single
embedded SQL statement. So, you can place a PL/SQL block anywhere
in a host program that you can place a SQL statement.

To embed a PL/SQL block in your host program, declare the variables
to be shared with PL/SQL and bracket the PL/SQL block with the
EXEC SQL EXECUTE and END–EXEC keywords.

Inside a PL/SQL block, host variables are global to the entire block and
can be used anywhere a PL/SQL variable is allowed. Like host
variables in a SQL statement, host variables in a PL/SQL block must be
prefixed with a colon. The colon sets host variables apart from PL/SQL
variables and database objects.

When entering a PL/SQL block, Oracle automatically checks the length
fields of VARCHAR host variables. So, you must set the length fields
before the block is entered. For input variables, set the length field to the
length of the value stored in the string field. For output variables, set
the length field to the maximum length allowed by the string field.

In a PL/SQL block, you cannot refer to an indicator variable by itself; it
must be appended to its associated host variable. Also, if you refer to a
host variable with its indicator variable, you must always refer to it
that way in the same block.

When entering a block, if an indicator variable has a value of –1,
PL/SQL automatically assigns a null to the host variable. When exiting
the block, if a host variable is null, PL/SQL automatically assigns a
value of –1 to the indicator variable.

PL/SQL does not raise an exception when a truncated string value is
assigned to a host variable. However, if you use an indicator variable,
PL/SQL sets it to the original length of the string.

You must specify SQLCHECK=SEMANTICS when precompiling a
program with an embedded PL/SQL block. You must also use the
USERID option. For more information, see Chapter 6 of the
Programmer’s Guide to the Oracle Precompilers.

Declaring a Cursor
Variable

1 – 35Writing a Pro*FORTRAN Program

Cursor Variables

Starting with Release 1.7 of the Pro*FORTRAN Precompiler, you can
use cursor variables in your Pro*FORTRAN programs to process
multi–row queries using static embedded SQL. A cursor variable
identifies a cursor reference that is defined and opened on the Oracle7
Server, Release 7.2 or later, using PL/SQL. See the PL/SQL User’s Guide
and Reference for complete information about cursor variables.

The advantages of cursor variables are

• Encapsulation: queries are centralized in the stored procedure
that opens the cursor variable.

• Ease of maintenance: only the stored procedure needs to be
changed if the table changes.

• Security: the user of the application (the username when the
Pro*FORTRAN application connected to the database) must have
execute permission on the stored procedure that opens the
cursor. This user, however, does not need to have read
permission on the tables used in the query. This capability can be
used to limit access to the columns in the table.

You declare a Pro*FORTRAN cursor variable using the SQLCURSOR
pseudotype. For example:

 EXEC SQL BEGIN DECLARE SECTION

 ...

 SQLCURSOR CURVAR

 ...

 EXEC SQL END DECLARE SECTION

A SQLCURSOR variable is implemented using a FORTRAN
INTEGER*4 array in the code that Pro*FORTRAN generates. A cursor
variable is just like any other Pro*FORTRAN host variable.

Allocating a Cursor
Variable

Opening a Cursor
Variable

Opening Indirectly
through a Stored PL/SQL
Procedure

1 – 36 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Before you can OPEN or FETCH a cursor variable, you must allocate it
using the Pro*FORTRAN ALLOCATE command. For example, to
allocate the cursor variable CURVAR that was declared in the previous
section, write the following statement:

 EXEC SQL ALLOCATE :CURVAR

Allocating a cursor variable does not require a call to the server, either
at precompile time or at run time.

Warning: Allocating a cursor variable does cause heap
memory to be used. For this reason, avoid allocating a cursor
variable in a program loop.

You must use an embedded anonymous PL/SQL block to open a
cursor variable on the Oracle Server. The anonymous PL/SQL block
may open the cursor either indirectly by calling a PL/SQL stored
procedure that opens the cursor (and defines it in the same statement)
or directly from the Pro*FORTRAN program.

Consider the following PL/SQL package stored in the database:

CREATE PACKAGE demo_cur_pkg AS

 TYPE EmpName IS RECORD (name VARCHAR2(10));

 TYPE cur_type IS REF CURSOR RETURN EmpName;

 PROCEDURE open_emp_cur (

 curs IN OUT curtype,

 dept_num IN NUMBER);

END;

CREATE PACKAGE BODY demo_cur_pkg AS

 CREATE PROCEDURE open_emp_cur (

 curs IN OUT curtype,

 dept_num IN NUMBER) IS

 BEGIN

 OPEN curs FOR

 SELECT ename FROM emp

 WHERE deptno = dept_num

 ORDER BY ename ASC;

 END;

END;

Opening Directly from
Your Pro*FORTRAN
Application

Return Types

1 – 37Writing a Pro*FORTRAN Program

After this package has been stored, you can open the variable curs by
calling the open_emp_cur stored procedure from your Pro*FORTRAN
program, and FETCH from the cursor variable ECUR in the program.
For example:

 EXEC SQL BEGIN DECLARE SECTION

 SQLCURSOR ECUR

 INTEGER*4 DNUM

 VARCHAR*10 ENAM, ENAML, ENAMA

 EXEC SQL END DECLARE SECTION

 ...

* Allocate the cursor variable.

 EXEC SQL ALLOCATE :ECUR

 ...

 DNUM=30

* Open the cursor on the Oracle7 Server.

 EXEC SQL EXECUTE

 1 BEGIN

 2 demo_cur_pkg.open_emp_cur(:ECUR, :DNUM);

 3 END;

 4 END–EXEC

 EXEC SQL WHENEVER NOTFOUND DO CALL SIGNOFF

*

 1000 EXEC SQL FETCH :ECUR INTO :ENAM

 PRINT *, ”Employee Name: ”, ENAM

 GOTO 1000

 ...

To open a cursor using a PL/SQL anonymous block in a
Pro*FORTRAN program, define the cursor in the anonymous block.
Consider the following example:

 EXEC SQL EXECUTE

 1 BEGIN

 2 OPEN :ECUR FOR SELECT ENAME FROM EMP

 3 WHERE DEPTNO = :DNUM;

 4 END;

 5 END–EXEC

 ...

When you define a reference cursor (REF CURSOR) in a PL/SQL
stored procedure, you must declare the type that the cursor returns.
The return types allowed for reference cursors are described in the
PL/SQL User’s Guide and Reference.

Fetching from a
Cursor Variable

Closing a Cursor
Variable

Restrictions

Error Conditions

1 – 38 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Use the embedded SQL FETCH INTO command to retrieve the
rows SELECTed when you opened the cursor variable. For example:

 EXEC SQL FETCH :ECUR INTO :EINFO:IEINFO

Before you can FETCH from a cursor variable, the variable must
be initialized and opened. You cannot FETCH from an unopened
cursor variable.

Use the embedded SQL CLOSE command to close a cursor variable.
For example:

 EXEC SQL BEGIN DECLARE SECTION

* Declare the cursor variable.

 SQLCURSOR ECUR

 ...

 EXEC SQL END DECLARE SECTION

* Allocate and open the cursor variable, then

* fetch one or more rows.

 ...

* Close the cursor variable.

 EXEC SQL CLOSE :ECUR

The following restrictions apply to the use of cursor variables:

• You can only use cursor variables with the ALLOCATE,
FETCH, and CLOSE commands. The DECLARE CURSOR
command does not apply to cursor variables.

• You cannot FETCH from a CLOSEd or unALLOCATEd
cursor variable.

• If you precompile with MODE=ANSI, it is an error to close
a cursor variable that is already closed.

• You cannot use the AT clause with the ALLOCATE command.

Do not perform any of the following operations:

• FETCH from a closed cursor variable

• use a cursor variable that is not ALLOCATEd

• CLOSE a cursor variable that is not open

These operations on cursor variables result in errors.

Sample Programs

SAMPLE11.SQL

1 – 39Writing a Pro*FORTRAN Program

The following sample programs — a SQL script (SAMPLE11.SQL) and
a Pro*FORTRAN program (SAMPLE11.PFO) — demonstrate how you
can use cursor variables in Pro*FORTRAN.

Following is the PL/SQL source code for a creating a package that
declares and opens a cursor variable:

CONNECT SCOTT/TIGER

CREATE OR REPLACE PACKAGE emp_demo_pkg AS

 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;

 PROCEDURE open_cur (

 cursor IN OUT emp_cur_type,

 dept_num IN number);

END emp_demo_pkg;

/

CREATE OR REPLACE PACKAGE BODY emp_demo_pkg AS

 PROCEDURE open_cur (

 cursor IN OUT emp_cur_type,

 dept_num IN number) IS

 BEGIN

 OPEN cursor FOR SELECT * FROM emp

 WHERE deptno = dept_num

 ORDER BY ename ASC;

 END;

END emp_demo_pkg;

/

SAMPLE11.PFO

1 – 40 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Following is a Pro*FORTRAN sample program that uses the cursor
declared in the SAMPLE11.SQL example to fetch employee names,
salaries, and commissions from the EMP table.

 PROGRAM SAMPLE11

 EXEC SQL BEGIN DECLARE SECTION

* Declare the cursor variable.

 SQLCURSOR ECUR

* EMPINFO

 INTEGER ENUM

 CHARACTER*10 ENAM

 VARCHAR*9 EJOB, EJOBL, EJOBA

 INTEGER EMGR

 VARCHAR*10 EDAT, EDATL, EDATA

 REAL ESAL

 REAL ECOM

 INTEGER EDEP

* EMPINFO INDICATORS

 INTEGER*2 IENUM

 INTEGER*2 IENAM

 INTEGER*2 IEJOB

 INTEGER*2 IEMGR

 INTEGER*2 IEDAT

 INTEGER*2 IESAL

 INTEGER*2 IECOM

 INTEGER*2 IEDEP

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 COMMON /CURSOR/ ECUR

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.

 CALL LOGON

* Initialize the cursor variable.

 EXEC SQL ALLOCATE :ECUR

 TYPE 1000

 1000 FORMAT (/, ’Enter department number (0 to exit): ’, $)

 ACCEPT 1100, EDEP

 1100 FORMAT (I10)

 IF (EDEP .LE. 0) THEN

 CALL SIGNOFF

 ENDIF

1 – 41Writing a Pro*FORTRAN Program

* Open the cursor by calling a PL/SQL stored procedure.

 EXEC SQL EXECUTE

 1 BEGIN

 2 emp_demo_pkg.open_cur (:ECUR, :EDEP);

 3 END;

 4 END–EXEC

 PRINT 1200, EDEP

 1200 FORMAT (/, ’For department ’, I, ’:’,/)

 PRINT 1300

 1300 FORMAT (/, ’EMPLOYEE SALARY COMMISSION’,

 + /, ’–––––––––– –––––––––– ––––––––––’)

* Fetch data from the cursor into the host variables.

 2000 EXEC SQL WHENEVER NOT FOUND DO CALL SIGNOFF

 EXEC SQL FETCH :ECUR

 1 INTO :ENUM:IENUM,

 2 :ENAM:IENAM,

 3 :EJOB:IEJOB,

 4 :EMGR:IEMGR,

 5 :EDAT:IEDAT,

 6 :ESAL:IESAL,

 7 :ECOM:IECOM,

 8 :EDEP:IEDEP

* Check for commission and print results.

 IF (IECOM .EQ. 0) THEN

 PRINT 2100, ENAM, ESAL, ECOM

 2100 FORMAT (A10, 2X, F10.2, 2X, F10.2)

 ELSE

 PRINT 2200, ENAM, ESAL

 2200 FORMAT (A10, 2X, F10.2, 2X, ’ N/A’)

 ENDIF

 GOTO 2000

 END

* LOG ON TO ORACLE.

 SUBROUTINE LOGON

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 UID

 CHARACTER*10 PWD

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 UID = ’SCOTT’

 PWD = ’TIGER’

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 PRINT 3000, UID

 3000 FORMAT (/, ’CONNECTED TO ORACLE AS USER: ’, A)

 END

1 – 42 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* Close the cursor variable.

 SUBROUTINE SIGNOFF

 EXEC SQL BEGIN DECLARE SECTION

 SQLCURSOR ECUR

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 COMMON /CURSOR/ ECUR

 EXEC SQL CLOSE :ECUR

 PRINT 4100

 4100 FORMAT (/, ’HAVE A GOOD DAY.’, /)

 EXEC SQL COMMIT WORK RELEASE

 STOP

 END

 SUBROUTINE SQLERR

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR CONTINUE

 PRINT*, ’ ’

 PRINT *, ’ORACLE ERROR DETECTED: ’

 PRINT ’(70A1)’, SQLEMC

 PRINT*, ’ ’

 EXEC SQL ROLLBACK WORK RELEASE

 STOP

 END

1 – 43Writing a Pro*FORTRAN Program

Connecting to Oracle

Your Pro*FORTRAN program must log on to Oracle before querying or
manipulating data. To log on, you use the CONNECT statement, as in

* Log on to Oracle.

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

where UID and PWD are CHARACTER or VARCHAR host variables.
Alternatively, you can use the statement

* Log on to Oracle.

 EXEC SQL CONNECT :UIDPWD

where the host variable UIDPWD contains your username and
password separated by a slash (/).

The CONNECT statement must be the first SQL statement executed by
the program. That is, other executable SQL statements can positionally,
but not logically, precede the CONNECT statement.

To supply the Oracle username and password separately, you define
two host variables in the Declare Section as character strings or
VARCHAR variables. If you supply a userid containing both username
and password, only one host variable is needed.

Make sure to set the username and password variables before the
CONNECT is executed or it will fail. Your program can prompt for the
values or you can hard code them as follows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*5 UID

 CHARACTER*5 PWD

 ...

 EXEC SQL END DECLARE SECTION

 UID = ’SCOTT’

 PWD = ’TIGER’

* Handle logon errors.

 EXEC SQL WHENEVER SQLERROR GOTO ...

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

However, you cannot hard code a username and password into the
CONNECT statement or use quoted literals. For example, both of the
following statements are invalid:

* Invalid CONNECT statements

 EXEC SQL CONNECT SCOTT IDENTIFIED BY TIGER

 EXEC SQL CONNECT ’SCOTT’ IDENTIFIED BY ’TIGER’

Automatic Logons

1 – 44 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

You can automatically log on to the Oracle using the following userid:

<prefix><username>

where prefix is the value of the Oracle initialization parameter
OS_AUTHENT_PREFIX (the default value is OPS$) and username is
your operating system user or task name. For example, if the prefix is
OPS$, your user name is TBARNES, and OPS$TBARNES is a valid
Oracle userid, you log on to Oracle as user OPS$TBARNES.

To take advantage of the automatic logon feature, you simply pass a
slash (/) character to the precompiler, as follows:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 CHARACTER*1 ORAID

 EXEC SQL END DECLARE SECTION

 ORAID = ’/’

 EXEC SQL CONNECT :ORAID

This automatically connects you as user OPS$username. For example, if
your operating system username is RHILL, and OPS$RHILL is a valid
Oracle username, connecting with a slash (/) automatically logs you on
to Oracle as user OPS$RHILL.

You can also pass a character string to the precompiler. However, the
string cannot contain trailing blanks. For example, the following
CONNECT statement will fail:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 CHARACTER*5 ORAID

 EXEC SQL END DECLARE SECTION

 ORAID = ’/ ’

 EXEC SQL CONNECT :ORAID

For more information about operating system authentication, see the
Oracle7 Server Administrator’s Guide.

Concurrent Logons

1 – 45Writing a Pro*FORTRAN Program

Your application can use SQL*Net to access any combination of remote
and local databases concurrently or make multiple connections to the
same database. In the following example, you connect to two
non–default databases concurrently:

* Declare host variables.

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*5 UID

 CHARACTER*5 PWD

 CHARACTER*12 DBSTR1

 CHARACTER*12 DBSTR2

 EXEC SQL END DECLARE SECTION

 UID = ’SCOTT’

 PWD = ’TIGER’

 DBSTR1 = ’NEWYORK’

 DBSTR2 = ’BOSTON’

* Give each database connection a unique name.

 EXEC SQL DECLARE DBNAM1 DATABASE

 EXEC SQL DECLARE DBNAM2 DATABASE

* Connect to the two non–default databases.

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 1 AT DBNAM1 USING :DBSTR1

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 1 AT DBNAM2 USING :DBSTR2

The string syntax in DBSTR1 and DBSTR2 depends on your network
driver and how it is configured. DBNAM1 and DBNAM2 name the
non–default connections; they can be undeclared identifiers or host
variables.

For step–by–step instructions on connecting to Oracle via SQL*Net, see
Chapter 3 in the Programmer’s Guide to the Oracle Precompilers

1 – 46 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

C H A P T E R

2
T

2 – 1Error Handling and Diagnostics

Error Handling and
Diagnostics

his chapter supplements Chapter 8 of the Programmer’s Guide to the
Oracle Precompilers. It discusses error reporting and recovery as it
applies to Pro*FORTRAN.

You learn how to declare and use the SQLSTA status variable and the
SQLCOD status variable, and how to include the SQL Communications
Area (SQLCA). You also learn how to declare and enable the Oracle
Communications Area (ORACA).

SQLCOD and SQLSTA

2 – 2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Error Handling Alternatives

The Pro*FORTRAN Precompiler supports four status variables that
serve as error handling mechanisms:

• SQLCOD

• SQLSTA

• SQLCA (using the WHENEVER statement)

• ORACA

The precompiler MODE option governs ANSI/ISO compliance. The
availability of the SQLCOD, SQLSTA, and SQLCA variables depends
on the MODE setting. You can declare and use the ORACA variable
regardless of the MODE setting. For more information, see “Using the
Oracle Communications Area” on page 2 – 17.

When MODE={ORACLE|ANSI13}, you must declare the SQLCA
status variable. SQLCOD and SQLSTA declarations are accepted (not
recommended) but are not recognized as status variables. For more
information, see “Using the SQL Communications Area” on
page 2 – 9.

When MODE={ANSI|ANSI14}, you can use any one, two, or all three
of the SQLCOD, SQLSTA, and SQLCA variables. To determine which
variable (or variable combination) is best for your application, see
“Using Status Variables when MODE={ANSI|ANSI14}” on page 2 – 3.

With Pro*FORTRAN, Release 1.5, the SQLCOD status variable was
introduced as the SQL89 standard ANSI/ISO error reporting
mechanism. The SQL92 standard listed SQLCOD as a deprecated
feature and defined a new status variable, SQLSTA (introduced with
Pro*FORTRAN, Release 1.6), as the preferred ANSI/ISO error
reporting mechanism.

SQLCOD stores error codes and the “not found” condition. It is
retained only for compatibility with SQL89 and is likely to be removed
from future versions of the standard.

Unlike SQLCOD, SQLSTA stores error and warning codes and uses a
standardized coding scheme. After executing a SQL statement, the
Oracle server returns a status code to the SQLSTA variable currently in
scope. The status code indicates whether a SQL statement executed
successfully or raised an exception (error or warning condition). To
promote interoperability (the ability of systems to exchange information
easily), SQL92 predefines all the common SQL exceptions.

SQLCA

ORACA

2 – 3Error Handling and Diagnostics

The SQLCA is a record–like, host–language data structure. Oracle
updates the SQLCA after every executable SQL statement. (SQLCA
values are undefined after a declarative statement.) By checking Oracle
return codes stored in the SQLCA, your program can determine the
outcome of a SQL statement. This can be done in two ways:

• implicit checking with the WHENEVER statement

• explicit checking of SQLCA variables

You can use WHENEVER statements, code explicit checks on SQLCA
variables, or do both. Generally, using WHENEVER statements is
preferable because it is easier, more portable, and ANSI–compliant.

When more information is needed about runtime errors than the
SQLCA provides, you can use the ORACA, which contains cursor
statistics, SQL statement data, option settings, and system statistics.

The ORACA is optional and can be declared regardless of the MODE
setting. For more information about the ORACA status variable, see
“Using the Oracle Communications Area” on page 2 – 17.

Using Status Variables when MODE={ANSI|ANSI14}

When MODE={ANSI|ANSI14}, you must declare at least one — you
may declare two or all three — of the following status variables:

• SQLCOD

• SQLSTA

• SQLCA

Your program can get the outcome of the most recent executable SQL
statement by checking SQLCOD and/or SQLSTA explicitly with your
own code after executable SQL and PL/SQL statements. Your program
can also check SQLCA implicitly (with the WHENEVER SQLERROR
and WHENEVER SQLWARNING statements) or it can check the
SQLCA variables explicitly.

Note: When MODE={ORACLE|ANSI13}, you must declare
the SQLCA status variable. For more information, see “Using
the SQL Communications Area” on page 2 – 9.

Some Historical
Information

Release 1.5

Release 1.6

Release 1.7

2 – 4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

The treatment of status variables and variable combinations by the
Oracle Pro*FORTRAN Precompiler has evolved beginning with
Release 1.5.

Pro*FORTRAN, Release 1.5, presumed there was a status variable
SQLCOD whether or not it was declared in a Declare Section; in fact,
the precompiler never noted whether SQLCOD was declared or not —
it just presumed it was. SQLCA would be used as a status variable if
and only if there was an INCLUDE of the SQLCA.

Beginning with Pro*FORTRAN, Release 1.6, the precompiler no longer
presumes that there is a SQLCOD status variable and it is not required.
The precompiler requires that at least one of SQLCA, SQLCOD, or
SQLSTA be declared.

SQLCOD is recognized as a status variable if and only if at least one of
the following criteria is satisfied:

• It is declared in a Declare Section with exactly the right datatype.

• The precompiler finds no other status variable.

If the precompiler finds a SQLSTA declaration (of exactly the right type
of course) in a Declare Section or finds an INCLUDE of the SQLCA, it
will not presume SQLCOD is declared.

Because Pro*FORTRAN, Release 1.5, allowed the SQLCOD variable to
be declared outside of a Declare Section while also declaring SQLCA,
Pro*FORTRAN, Release 1.6 and greater, is presented with a
compatibility problem. A new option, ASSUME_SQLCODE={YES|NO}
(default NO), was added to fix this in Release 1.6.7 and is documented
as a new feature in Release 1.7.

When ASSUME_SQLCODE=YES, and when SQLSTA and/or SQLCA
are declared as a status variables, the precompiler presumes SQLCOD
is declared whether or not it is declared in a Declare Section or of the
proper type. This causes Releases 1.6.7 and later to act like Release 1.5
in this regard. For information about the precompiler option
ASSUME_SQLCODE, see Chapter 6 in the Programmer’s Guide to the
Oracle Precompilers.

Declaring Status
Variables

Declaring SQLCOD

Declaring SQLSTA

2 – 5Error Handling and Diagnostics

This section describes how to declare SQLCOD and SQLSTA. For
information about declaring the SQLCA status variable, see “Declaring
the SQLCA” on page 2 – 11.

SQLCOD must be declared as a 4–byte integer variable either inside or
outside the Declare Section, In the following example, SQLCOD is
declared outside the Declare Section:

* Declare host and indicator variables.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 EXEC SQL END DECLARE SECTION

* Declare status variable.

 INTEGER*4 SQLCOD

If declared outside the Declare Section, SQLCOD is recognized as a
status variable if and only if ASSUME_SQLCODE=YES. When
MODE={ORACLE|ANSI13|ANSI14}, declarations of the SQLCOD
variable are ignored.

Access to a local SQLCOD is limited by its scope within your program.
After every SQL operation, Oracle returns a status code to the
SQLCOD currently in scope. So, your program can learn the outcome
of the most recent SQL operation by checking SQLCOD explicitly, or
implicitly with the WHENEVER statement.

When you declare SQLCOD instead of the SQLCA in a particular
compilation unit, the precompiler allocates an internal SQLCA for that
unit. Your host program cannot access the internal SQLCA.

SQLSTA must be declared as a five–character alphanumeric string inside
the Declare Section, as shown in the following example:

 EXEC SQL BEGIN DECLARE SECTION

 ...

 CHARACTER*5 SQLSTA

 ...

 EXEC SQL END DECLARE SECTION

When MODE={ORACLE|ANSI13}, SQLSTA declarations are ignored.
Declaring the SQLCA is optional.

Status Variable
Combinations

2 – 6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

When MODE={ANSI|ANSI14}, the behavior of the status variables
depends on the following:

• which variables are declared

• declaration placement (inside or outside the Declare Section)

• ASSUME_SQLCODE setting

Table 2 – 1 and Table 2 – 2 describe the resulting behavior of each status
variable combination when ASSUME_SQLCODE=NO and when
ASSUME_SQLCODE=YES, respectively.

2 – 7Error Handling and Diagnostics

Declare Section (IN/OUT/—)
SQLCODE SQLSTA SQLCA

Behavior

OUT — — SQLCOD is declared and is presumed to be a status variable.

OUT — OUT SQLCA is declared as a status variable, and SQLCOD is declared but is not recognized
as a status variable.

OUT — IN This status variable configuration is not supported.

OUT OUT — SQLCOD is declared and is presumed to be a status variable, and SQLSTA is declared
but is not recognized as a status variable.

OUT OUT OUT SQLCA is declared as a status variable, and SQLCOD and SQLSTA are declared but are
not recognized as status variables.

OUT OUT IN This status variable configuration is not supported.

OUT IN — SQLSTA is declared as a status variable, and SQLCOD is declared but is not recognized
as a status variable.

OUT IN OUT SQLSTA and SQLCA are declared as status variables, and SQLCOD is declared but is
not recognized as a status variable.

OUT IN IN This status variable configuration is not supported.

IN — — SQLCOD is declared as a status variable.

IN — OUT SQLCOD and SQLCA are declared as a status variables.

IN — IN This status variable configuration is not supported.

IN OUT — SQLCOD is declared as a status variable, and SQLSTA is declared but is not reconized
as a status variable.

IN OUT OUT SQLCOD and SQLCA are declared as a status variables, and SQLSTA is declared but is
not recognized as a status variable.

IN OUT IN This status variable configuration is not supported.

IN IN — SQLCOD and SQLSTA are declared as a status variables.

IN IN OUT SQLCOD, SQLSTA, and SQLCA are declared as a status variables.

IN IN IN This status variable configuration is not supported.

— — — This status variable configuration is not supported.

— — OUT SQLCA is declared as a status variable.

— — IN This status variable configuration is not supported.

— OUT — This status variable configuration is not supported.

— OUT OUT SQLCA is declared as a status variable, and SQLSTA is declared but is not recognized as
a status variable.

— OUT IN This status variable configuration is not supported.

— IN — SQLSTA is declared as a status variable.

— IN OUT SQLSTA and SQLCA are declared as status variables.

— IN IN This status variable configuration is not supported.

Table 2 – 1 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI|ANSI14

2 – 8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Declare Section (IN/OUT/—)
SQLCODE SQLSTA SQLCA

Behavior

OUT — — SQLCODE is declared and is presumed to be a status variable.

OUT — OUT SQLCA is declared as a status variable, and SQLCODE is declared and is presumed to
be a status variable.

OUT — IN This status variable configuration is not supported.

OUT OUT — SQLCODE is declared and is presumed to be a status variable, and SQLSTA is declared
but is not recognized as a status variable.

OUT OUT OUT SQLCA is declared as a status variable, SQLCODE is declared and is presumed to be a
status variable, and SQLSTA is declared but is not recognized as status variable.

OUT OUT IN This status variable configuration is not supported.

OUT IN — SQLSTA is declared as a status variable, and SQLCODE is declared and is presumed to
be a status variable.

OUT IN OUT SQLSTA and SQLCA are declared as status variables, and SQLCODE is declared and is
presumed to be a status variable.

OUT IN IN This status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

IN — OUT SQLCODE and SQLCA are declared as a status variables.

IN — IN This status variable configuration is not supported.

IN OUT — SQLCODE is declared as a status variable, and SQLSTA is declared but not as a status
variable.

IN OUT OUT SQLCODE and SQLCA are declared as a status variables, and SQLSTA is declared but
is not recognized as a status variable.

IN OUT IN This status variable configuration is not supported.

IN IN — SQLCODE and SQLSTA are declared as a status variables.

IN IN OUT SQLCODE, SQLSTA, and SQLCA are declared as a status variables.

IN IN IN This status variable configuration is not supported.

— — — These status variable configurations are not supported. SQLCODE must be declared—
—

—
—

—
OUT

These status variable configurations are not su orted. SQLCODE must be declared
either inside or outside the Declare Section when ASSUME_SQLCODE=YES.

— —
OUT

IN
either inside or outside the Declare Section when ASSUME_SQLCODE=YES.

— OUT
IN
—

—
OUT
OUT
OUT

OUT
IN— OUT

IN
IN

— IN
IN

—
OUT— IN

IN
OUT

IN— IN IN

Table 2 – 2 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI|ANSI14

2 – 9Error Handling and Diagnostics

Using the SQL Communications Area

Oracle uses the SQL Communications Area (SQLCA) to store status
information passed to your program at run time. The SQLCA is a
record–like, FORTRAN data structure that is a updated after each
executable SQL statement, so it always reflects the outcome of the most
recent SQL operation. To determine that outcome, you can check
variables in the SQLCA explicitly with your own FORTRAN code or
implicitly with the WHENEVER statement.

When MODE={ORACLE|ANSI13}, the SQLCA is required; if the
SQLCA is not declared, compile–time errors will occur. The SQLCA is
optional when MODE={ANSI|ANSI14}, but you cannot use the
WHENEVER SQLWARNING statement without the SQLCA. So, if you
want to use the WHENEVER SQLWARNING statement, you must
declare the SQLCA.

When MODE={ANSI|ANSI14}, you must declare either SQLSTA
(see “Declaring SQLSTA” on page 2 – 5) or SQLCOD (see
“Declaring SQLCOD” on page 2 – 5) or both. The SQLSTA status
variable supports the SQLSTA status variable specified by the SQL92
standard. You can use the SQLSTA status variable with or without
SQLCOD. For more information see Chapter 8 of the Programmer’s
Guide to the Oracle Precompilers.

What’s in the SQLCA?

2 – 10 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

The SQLCA contains runtime information about the execution of SQL
statements, such as Oracle error codes, warning flags, event
information, rows–processed count, and diagnostics.

Figure 2 – 1 shows all the variables in the SQLCA. However, SQLWN2,
SQLWN5, SQLWN6, SQLWN7, and SQLEXT are not currently in use.

 LOGICAL*1 SQLAID(8)
 INTEGER*4 SQLABC
 INTEGER*4 SQLCDE
* SQLERRM
 INTEGER*2 SQLEML
 LOGICAL*1 SQLEMC(70)
 LOGICAL*1 SQLERP(8)
 INTEGER*4 SQLERD(6)
* SQLWRN(8)
 LOGICAL*1 SQLWN0, SQLWN1, SQLWN2, SQLWN3,
 1 SQLWN4, SQLWN5, SQLWN6, SQLWN7
 LOGICAL*1 SQLEXT(8)

 COMMON /SQLCA/
 1 SQLAID,
 2 SQLABC,
 3 SQLCDE,
 4 SQLEML,
 5 SQLEMC,
 6 SQLERP,
 7 SQLERD,
 8 SQLWN0, SQLEN1, SQLWN2, SQLWN3,
 9 SQLWN4, SQLEN5, SQLWN6, SQLWN7,
 1 SQLEXT

 INTEGER*4 DSC2N
 INTEGER*4 DSC2V
 INTEGER*4 DSC2L
 INTEGER*4 DSC2T
 INTEGER*4 DSC2I
 INTEGER*4 DSC2F
 INTEGER*4 DSC2S
 INTEGER*4 DSC2M
 INTEGER*4 DSC2C
 INTEGER*4 DSC2X
 INTEGER*4 DSC2Y
 INTEGER*4 DSC2Z

 COMMON /DSC2/ DSC2N, DSC2V, DSC2L, DSC2T, DSC2I, DSC2F
 1 DSC2S, DSC2M, DSC2C, DSC2X, DSC2Y, DSC2Z

Figure 2 – 1 SQLCA Variable Declarations for Pro*FORTRAN

To ensure portability, LOGICAL variables are used in the SQLCA
instead of CHARACTER variables. For a full description of the
SQLCA, its fields, and the values its fields can store, see Chapter 8 of
the Programmer’s Guide to the Oracle Precompilers.

Declaring the SQLCA

2 – 11Error Handling and Diagnostics

To declare the SQLCA, simply include it (using an EXEC SQL
INCLUDE statement) in your Pro*FORTRAN source file outside the
Declare Section as follows:

* Include the SQL Communications Area (SQLCA).

 EXEC SQL INCLUDE SQLCA

Because it is a COMMON block, the SQLCA must be declared outside
the Declare Section. Furthermore, the SQLCA must come before the
CONNECT statement and the first executable FORTRAN statement.

You must declare the SQLCA in each subroutine and function that
contains SQL statements. Every time a SQL statement in one of the
subroutines or functions is executed, Oracle updates the SQLCA held
in the COMMON block.

Ordinarily, only the order and datatypes of variables in a
COMMON–list matter, not their names. However, you cannot rename
the SQLCA variables because the precompiler generates code that
refers to them. Thus, all declarations of the SQLCA must be identical.

When you precompile your program, the INCLUDE SQLCA statement
is replaced by several variable declarations that allow Oracle to
communicate with the program.

Key Components of
Error Reporting

Status Codes

Warning Flags

Rows–Processed Count

Parse Error Offset

Error Message Text

2 – 12 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

The key components of Pro*FORTRAN error reporting depend on
several fields in the SQLCA.

Every executable SQL statement returns a status code in the SQLCA
variable SQLCDE, which you can check implicitly with WHENEVER
SQLERROR or explicitly with your own FORTRAN code.

Warning flags are returned in the SQLCA variables SQLWN0 through
SQLWN7, which you can check with WHENEVER SQLWARNING or
with your own FORTRAN code. These warning flags are useful for
detecting runtime conditions that are not considered errors by Oracle.

The number of rows processed by the most recently executed SQL
statement is recorded in the SQLCA variable SQLERD(3). For repeated
FETCHes on an OPEN cursor, SQLERD(3) keeps a running total of the
number of rows fetched.

Before executing a SQL statement, Oracle must parse it; that is,
examine it to make sure it follows syntax rules and refers to valid
database objects. If Oracle finds an error, an offset is stored in the
SQLCA variable SQLERD(5), which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse
error begins. The first character occupies position zero. For example, if
the offset is 9, the parse error begins at the tenth character.

If your SQL statement does not cause a parse error, Oracle sets
SQLERD(5) to zero. Oracle also sets SQLERD(5) to zero if a parse error
begins at the first character, which occupies position zero. So, check
SQLERD(5) only if SQLCDE is negative, which means that an error
has occurred.

The error code and message for Oracle errors are available in the
SQLCA variable SQLEMC. For example, you might place the following
statements in an error–handling routine:

 Handle SQL execution errors.

 WRITE (*, 10000) SQLEMC

10000 FORMAT (1X, 70A1)

 EXEC SQL WHENEVER SQLERROR CONTINUE

 EXEC SQL ROLLBACK WORK RELEASE

 ...

At most, the first 70 characters of message text are stored. For messages
longer than 70 characters, you must call the SQLGLM function, which
is discussed next.

Getting the Full Text of
Error Messages

2 – 13Error Handling and Diagnostics

The SQLCA can accommodate error messages of up to 70 characters in
length. To get the full text of longer (or nested) error messages, you
need the SQLGLM function. If connected to Oracle, you can call
SQLGLM using the syntax

 CALL SQLGLM (MSGBUF, BUFLEN, MSGLEN)

where:

Is the buffer in which you want Oracle to store
the error message. Oracle blank–pads to the end of
this buffer.

Is an integer variable that specifies the maximum
length of MSGBUF in bytes.

Is an integer variable in which Oracle stores the
actual length of the error message.

The maximum length of an Oracle error message is 512 characters
including the error code, nested messages, and message inserts such as
table and column names. The maximum length of an error message
returned by SQLGLM depends on the value you specify for BUFLEN.
In the following example, you use SQLGLM to get an error message of
up to 200 characters in length:

* Declare variables for function call.

 LOGICAL*1 MSGBUF(200)

 INTEGER*4 BUFLEN

 INTEGER*4 MSGLEN

 DATA BUFLEN /200/

 EXEC SQL WHENEVER SQLERROR GO TO 9000

 ...

* Handle SQL execution errors.

 9000 WRITE (*,9100)

 9100 FORMAT (1X, ’ >>> Oracle error detected’, /)

* Get and display the full text of the error message.

 CALL SQLGLM (MSGBUF, BUFLEN, MSGLEN)

 WRITE (*, 9200) (MSGBUF(J), J = 1, MSGLEN)

 9200 FORMAT (1X, 200A1, /)

 ...

In the example, SQLGLM is called only when a SQL error has occurred.
Always make sure SQLCOD is negative before calling SQLGLM. If you
call SQLGLM when SQLCOD is zero, you get the message text
associated with a prior SQL statement.

MSGBUF

BUFLEN

MSGLEN

Using the WHENEVER
Statement

2 – 14 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

By default, the Pro*FORTRAN Precompiler ignores Oracle error and
warning conditions and continues processing (if possible). To do
automatic condition checking and error handling, you need the
WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken
when Oracle detects an error, warning condition, or “not found”
condition. These actions include continuing with the next statement,
calling a subroutine, branching to a labeled statement, or stopping.

Code the WHENEVER statement using the following syntax:

 EXEC SQL WHENEVER <condition> <action>

You can have Oracle automatically check the SQLCA for any of the
following conditions, which are described in the Programmer’s Guide to
the Oracle Precompilers:

• SQLWARNING

• SQLERROR

• NOT FOUND

When Oracle detects one of the preceding conditions, you can have
your program take any of the following actions:

• CONTINUE

• DO subroutine_call

• GOTO statement_label

• STOP

When using the WHENEVER ... DO statement, the usual rules for
entering and exiting a subroutine apply. However, passing parameters
to the subroutine is not allowed. Furthermore, the subroutine must not
return a value.

Scope

2 – 15Error Handling and Diagnostics

In the following example, WHENEVER SQLERROR DO statements are
used to handle specific errors:

 EXEC SQL WHENEVER SQLERROR DO CALL INSERR

 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)

 VALUES (:MYEMPNO, :MYENAME, :MYDEPTNO)

 EXEC SQL WHENEVER SQLERROR DO CALL DELERR

 EXEC SQL DELETE FROM DEPT

 WHERE DEPTNO = :MYDEPTNO

 ...

* Error–handling subroutines

 SUBROUTINE INSERR

* Check for ”duplicate key value” Oracle error.

 IF (SQLCDE .EQ. –1) THEN

 ...

* Check for ”value too large” Oracle error.

 ELSE IF (SQLCDE .EQ. –1401) THEN

 ...

 ELSE

 ...

 END IF

 ...

 SUBROUTINE DELERR

* Check for the number of rows processed.

 IF (SQLERD(3) .EQ. 0) THEN

 ...

 ELSE

 ...

 END IF

 ...

Notice how the subroutines check variables in the SQLCA to determine
a course of action. For more information about the WHENEVER
conditions and actions, see Chapter 8 of the Programmer’s Guide to the
Oracle Precompilers.

Because WHENEVER is a declarative statement, its scope is positional,
not logical. It tests all executable SQL statements that follow it in the
source file, not in the flow of program logic. So, code the WHENEVER
statement before the first executable SQL statement you want to test.

A WHENEVER statement stays in effect until superseded by another
WHENEVER statement checking for the same condition.

Suggestion: You might want to place WHENEVER statements
at the beginning of each program unit that contains SQL
statements. That way, SQL statements in one program unit will
not reference WHENEVER actions in another program unit,
causing errors at compile or run time.

Careless Usage: Examples

2 – 16 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Careless use of the WHENEVER statement can cause problems. For
example, the following code enters an infinite loop if the DELETE
statement sets the NOT FOUND condition, because no rows meet the
search condition:

* Improper use of WHENEVER

 EXEC SQL WHENEVER NOT FOUND GOTO 7000

 6000 EXEC SQL FETCH EMPCUR INTO :MYENAME, :MYSAL

 ...

 GOTO 6000

 7000 EXEC SQL DELETE FROM EMP WHERE EMPNO = :MYEMPNO

 ...

In the next example, you handle the NOT FOUND condition properly
by resetting the GOTO target:

* Proper use of WHENEVER

 EXEC SQL WHENEVER NOT FOUND GOTO 7000

 6000 EXEC SQL FETCH EMPCUR INTO :MYENAME, :MYSAL

 ...

 GOTO 6000

 7000 EXEC SQL WHENEVER NOT FOUND GOTO 8000

 EXEC SQL DELETE FROM EMP WHERE EMPNO = :MYEMPNO

 ...

 8000 CONTINUE

Verify that all SQL statements governed by a WHENEVER ... GOTO
statement can branch to the GOTO label. The following code results in
a compilation error because the label 5000 in subroutine DELROW is
not within the scope of the INSERT statement in subroutine INSROW:

 SUBROUTINE DELROW

 ...

 EXEC SQL WHENEVER SQLERROR GOTO 5000

 EXEC SQL DELETE FROM EMP WHERE DEPTNO = :MYDEPTNO

 ...

 5000 WRITE (*, 10000) SQLEMC

10000 FORMAT (1X, 70A1)

 RETURN

 END

 SUBROUTINE INSROW

 ...

 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)

 VALUES (:MYEMPNO, :MYENAME, :MYDEPTNO)

 ...

What’s in the ORACA?

2 – 17Error Handling and Diagnostics

Using the Oracle Communications Area

The SQLCA handles standard SQL communications. The Oracle
Communications Area (ORACA) is a similar structure that you can
include in your program to handle Oracle–specific communications.
When you need more runtime information than the SQLCA provides,
use the ORACA.

Besides helping you to diagnose problems, the ORACA lets you
monitor your program’s use of Oracle resources such as the SQL
Statement Executor and the cursor cache, an area of memory reserved
for cursor management.

The ORACA contains option settings, system statistics, and extended
diagnostics. Figure 2 – 2 shows all the variables in the ORACA.

 LOGICAL*1 ORAAID(8)
 INTEGER*4 ORAABC
 INTEGER*4 ORACHF
 INTEGER*4 ORADBF
 INTEGER*4 ORAHPF
 INTEGER*4 ORATXF
 INTEGER*2 ORATXL
 LOGICAL*1 ORATXC(70)
 INTEGER*1 ORAFNL
 LOGICAL*1 ORAFNC(70)
 INTEGER*4 ORASLN
 INTEGER*4 ORAHOC
 INTEGER*4 ORAMOC
 INTEGER*4 ORACOC
 INTEGER*4 ORANOR
 INTEGER*4 ORANPR
 INTEGER*4 ORANEX

 COMMON /ORACA/
 1 ORAAID,ORAABC,
 2 ORACHF,ORADBF,ORAHPF,ORATXF
 3 ORATXL,ORATXC,ORAFNL,ORAFNC,ORASLN,
 4 ORAHOC,ORAMOC,ORACOC,ORANOR,ORANPR,ORANEX

Figure 2 – 2 ORACA Variable Declarations for Pro*FORTRAN

To ensure portability, LOGICAL variables are used in the ORACA
instead of CHARACTER variables. For a full description of the
ORACA, its fields, and the values its fields can store, see Chapter 8 of
the Programmer’s Guide to the Oracle Precompilers.

Declaring the ORACA

Enabling the ORACA

2 – 18 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

To declare the ORACA, simply include it (using an EXEC SQL
INCLUDE statement) in your Pro*FORTRAN source file outside the
Declare Section as follows:

* Include the Oracle Communications Area (ORACA).

 EXEC SQL INCLUDE ORACA

Because it is a COMMON block, the ORACA must be declared outside
the Declare Section. Furthermore, the ORACA must come before the
CONNECT statement and the first executable FORTRAN statement.

You can redeclare the ORACA in any subroutine or function that
contains SQL statements. Every time a SQL statement in the subroutine or
function is executed, Oracle updates the ORACA held in COMMON.

Ordinarily, only the order and datatypes of variables in a
COMMON–list matter, not their names. However, you cannot rename
the ORACA variables because the precompiler generates code that
refers to them. Thus, all declarations of the ORACA must be identical.

To enable the ORACA, you must set the ORACA precompiler option to
YES on the command line or in a configuration file with

ORACA=YES

or inline with

* Enable the ORACA.

 EXEC ORACLE OPTION (ORACA=YES)

Then, you must choose appropriate runtime options by setting flags in
the ORACA. Enabling the ORACA is optional because it adds to
runtime overhead. The default setting is ORACA=NO.

C H A P T E R

3
T

3 – 1Sample Programs

Sample Programs

his chapter provides several embedded SQL programs to guide you
in writing your own. These programs illustrate the key concepts and
features of Pro*FORTRAN programming and demonstrate techniques
that let you take full advantage of SQL’s power and flexibility.

Each sample program in this chapter is available online. Table 3 – 1
shows the usual filenames of the sample programs. However, the exact
filenames are system–dependent. For specific filenames, see your
Oracle system–specific documentation.

Filename Demonstrates...

SAMPLE1.PFO a simple query

SAMPLE2.PFO cursor operations

SAMPLE3.PFO array fetches

SAMPLE4.PFO datatype equivalencing

SAMPLE5.PFO an Oracle Forms user exit

SAMPLE6.PFO dynamic SQL Method 1

SAMPLE7.PFO dynamic SQL Method 2

SAMPLE8.PFO dynamic SQL Method 3

SAMPLE9.PFO calling a stored procedure

Table 3 – 1 Pro*FORTRAN Sample Programs

3 – 2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 1: Simple Query

This program connects to Oracle, prompts the user for an employee
number, queries the database for the employee’s name, salary, and
commission, then displays the result. The program ends when the user
enters a zero employee number.

 PROGRAM QUERY

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 UID

 CHARACTER*10 PWD

 INTEGER EMPNO

 CHARACTER*10 ENAME

 REAL SAL

 REAL COMM

 INTEGER*2 ICOMM

 EXEC SQL END DECLARE SECTION

 INTEGER TOTAL

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.

 UID = ’SCOTT’

 PWD = ’TIGER’

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 PRINT *, ’CONNECTED TO ORACLE AS USER: ’, UID

* QUERY LOOP REPEATS UNTIL THE USER ENTERS A 0

 TOTAL = 0

2000 CONTINUE

 PRINT *, ’\NENTER EMPLOYEE NUMBER (0 TO QUIT): ’

 READ ’(I10)’, EMPNO

 IF (EMPNO .EQ. 0) CALL SIGNOFF (TOTAL)

 EXEC SQL WHENEVER NOT FOUND GOTO 7000

 EXEC SQL SELECT ENAME, SAL, COMM

 1 INTO :ENAME, :SAL, :COMM:ICOMM

 2 FROM EMP

 3 WHERE EMPNO = :EMPNO

 PRINT *, ’EMPLOYEE SALARY COMMISSION\N’,

 +’–––––––––– ––––––– ––––––––––’

3 – 3Sample Programs

IF (ICOMM .EQ. –1) THEN

 PRINT ’(A10, 2X, F7.2, A12)’, ENAME, SAL, ’ NULL’

 ELSE

 PRINT ’(A10, 2X, F7.2, 5X, F7.2)’, ENAME, SAL, COMM

 END IF

 TOTAL = TOTAL + 1

 GOTO 2000

7000 CONTINUE

 PRINT *, ’NOT A VALID EMPLOYEE NUMBER – TRY AGAIN.’

 GOTO 2000

 END

 SUBROUTINE SIGNOFF (NUMQ)

 INTEGER NUMQ

 EXEC SQL INCLUDE SQLCA

 PRINT *, ’TOTAL NUMBER QUERIED WAS: ’, NUMQ

 PRINT *, ’HAVE A GOOD DAY.’

 EXEC SQL COMMIT WORK RELEASE

 STOP

 END

 SUBROUTINE SQLERR

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR CONTINUE

 PRINT *, ’ORACLE ERROR DETECTED:’

 PRINT ’(70A1)’, SQLEMC

 EXEC SQL ROLLBACK WORK RELEASE

 STOP

 END

3 – 4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 2: Cursor Operations

This program connects to Oracle, declares and opens a cursor, fetches
the names, salaries, and commissions of all salespeople, displays the
results, then closes the cursor.

 PROGRAM CURSOR

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 UID

 CHARACTER*10 PWD

 CHARACTER*10 ENAME

 REAL SAL

 REAL COMM

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.

 UID = ’SCOTT’

 PWD = ’TIGER’

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 PRINT *, ’CONNECTED TO ORACLE AS USER:’, UID

* DECLARE THE CURSOR.

 EXEC SQL DECLARE SALESPEOPLE CURSOR FOR

 1 SELECT ENAME, SAL, COMM

 2 FROM EMP

 3 WHERE JOB LIKE ’SALES%’

 EXEC SQL OPEN SALESPEOPLE

 PRINT *, ’SALESPERSON SALARY COMMISSION\N’,

 +’––––––––––– ––––––– ––––––––––’

* LOOP, FETCHING ALL SALESPERSON’S STATISTICS

 EXEC SQL WHENEVER NOT FOUND DO CALL SIGNOFF

3000 EXEC SQL FETCH SALESPEOPLE INTO :ENAME, :SAL, :COMM

 PRINT ’(1X, A10, 3X, F7.2, 5X, F7.2)’, ENAME, SAL, COMM

 GOTO 3000

 END

 SUBROUTINE SIGNOFF

 EXEC SQL INCLUDE SQLCA

 EXEC SQL CLOSE SALESPEOPLE

 PRINT *, ’HAVE A GOOD DAY.’

 EXEC SQL COMMIT WORK RELEASE

 STOP

 END

3 – 5Sample Programs

 SUBROUTINE SQLERR

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR CONTINUE

 PRINT *, ’ORACLE ERROR DETECTED:’

 PRINT ’(70A1)’, SQLEMC

 EXEC SQL ROLLBACK WORK RELEASE

 STOP

 END

3 – 6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 3: Fetching in Batches

This program logs on to Oracle, declares and opens a cursor, fetches in
batches using arrays, and prints the results using the subroutine
PRTRES.

 PROGRAM ARRAYS

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 UID

 CHARACTER*10 PWD

 CHARACTER*10 ENAME(5)

 INTEGER EMPNO(5)

 REAL SAL(5)

 EXEC SQL END DECLARE SECTION

* NUMBER OF ROWS RETURNED, AND NUMBER TO PRINT

 INTEGER NUMRET

 INTEGER NUMP

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.

 UID = ’SCOTT’

 PWD = ’TIGER’

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 PRINT *, ’CONNECTED TO ORACLE AS USER: ’, UID

* DECLARE THE CURSOR, THEN OPEN IT.

 EXEC SQL DECLARE C1 CURSOR FOR

 1 SELECT EMPNO, ENAME, SAL

 2 FROM EMP

 EXEC SQL OPEN C1

 NUMRET = 0

* LOOP, FETCHING AND PRINTING BATCHES,

* UNTIL NOT FOUND BECOMES TRUE.

 EXEC SQL WHENEVER NOT FOUND GOTO 3000

2000 EXEC SQL FETCH C1 INTO :EMPNO, :ENAME, :SAL

 NUMP = SQLERD(3) – NUMRET

 CALL PRTRES (NUMP, EMPNO, ENAME, SAL)

 NUMRET = SQLERD(3)

 GOTO 2000

* PRINT FINAL SET OF ROWS, IF ANY.

3000 NUMP = SQLERD(3) – NUMRET

 IF (NUMP .GT. 0) CALL PRTRES (NUMP, EMPNO, ENAME, SAL)

 CALL SIGNOFF

 END

3 – 7Sample Programs

 SUBROUTINE PRTRES (NUMP, EMPNO, ENAME, SAL)

 INTEGER NUMP

 INTEGER EMPNO(NUMP)

 CHARACTER*10 ENAME(NUMP)

 REAL SAL(NUMP)

* PRINT HEADER.

 PRINT *, ’EMPLOYEE NUMBER EMPLOYEE NAME SALARY\N’,

 +’––––––––––––––– ––––––––––––– –––––––’

* PRINT BATCH OF ROWS.

 DO 7000 I = 1, NUMP

 PRINT ’(1X, I4, 13X, A10, 5X, F7.2)’,

 + EMPNO(I), ENAME(I), SAL(I)

7000 CONTINUE

 RETURN

 END

 SUBROUTINE SIGNOFF

 EXEC SQL INCLUDE SQLCA

 EXEC SQL CLOSE C1

 PRINT *, ’HAVE A GOOD DAY.’

 EXEC SQL COMMIT WORK RELEASE

 STOP

 END

 SUBROUTINE SQLERR

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR CONTINUE

 PRINT *, ’ORACLE ERROR DETECTED:’

 PRINT ’(70A1)’, SQLEMC

 EXEC SQL ROLLBACK WORK RELEASE

 STOP

 END

3 – 8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 4: Datatype Equivalencing

After connecting to Oracle, this program creates a database table
named IMAGE in the SCOTT account, then simulates the insertion
of bitmap images of employee numbers into the table. Datatype
equivalencing lets the program use the Oracle external datatype LONG
RAW to represent the images. Later, when the user enters an employee
number, the number’s “bitmap” is selected from the IMAGE table and
pseudo–displayed on the terminal screen.

 PROGRAM DTYEQV

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 UID

 CHARACTER*10 PWD

 INTEGER EMPNO

 CHARACTER*10 ENAME

 REAL SAL

 REAL COMM

 CHARACTER*8192 BUFFER

 EXEC SQL VAR BUFFER IS LONG RAW

 INTEGER SELECTION

 EXEC SQL END DECLARE SECTION

 CHARACTER*10 REPLY

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.

 UID = ’SCOTT’

 PWD = ’TIGER’

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 PRINT *, ’CONNECTED TO ORACLE AS USER: ’, UID

 PRINT *, ’PROGRAM IS ABOUT TO DROP THE IMAGE ’,

 +’TABLE – OK [Y/N]? ’

 READ ’(A10)’, REPLY

 IF ((REPLY(1:1) .NE. ’Y’) .AND. (REPLY(1:1) .NE. ’Y’))

 1 CALL SIGNOFF

 EXEC SQL WHENEVER SQLERROR CONTINUE

 EXEC SQL DROP TABLE IMAGE

 IF (SQLCDE .EQ. 0) THEN

 PRINT *, ’TABLE IMAGE HAS BEEN DROPPED – ’,

 + ’CREATING NEW TABLE.’

 ELSE IF (SQLCDE .EQ. –942) THEN

 PRINT *, ’TABLE IMAGE DOES NOT EXIST – ’,

 + ’CREATING NEW TABLE.’

3 – 9Sample Programs

ELSE

 CALL SQLERR

 END IF

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

 EXEC SQL CREATE TABLE IMAGE

 1 (EMPNO NUMBER(4) NOT NULL, BITMAP LONG RAW)

 EXEC SQL DECLARE EMPCUR CURSOR FOR

 1 SELECT EMPNO, ENAME FROM EMP

 EXEC SQL OPEN EMPCUR

 PRINT *, ’INSERTING BITMAPS INTO IMAGE FOR ALL EMPLOYEES...’

7000 CONTINUE

 EXEC SQL WHENEVER NOT FOUND GOTO 10000

 EXEC SQL FETCH EMPCUR INTO :EMPNO, :ENAME

 CALL GETIMG (EMPNO, BUFFER)

 EXEC SQL INSERT INTO IMAGE VALUES (:EMPNO, :BUFFER)

 PRINT *, ’EMPLOYEE ’, ENAME, ’.......... IS DONE!’

 GOTO 7000

10000 EXEC SQL CLOSE EMPCUR

 EXEC SQL COMMIT WORK

 PRINT *, ’DONE INSERTING BITMAPS. NEXT, LETS DISPLAY SOME.’

* BEGINNING OF DISPLAY LOOP

12000 SELECTION = 0

 PRINT *, ’\NENTER EMPLOYEE NUMBER (0 TO QUIT):’

 READ ’(I10)’, SELECTION

 IF (SELECTION .EQ. 0) CALL SIGNOFF

 EXEC SQL WHENEVER NOT FOUND GOTO 16000

 EXEC SQL SELECT EMP.EMPNO, ENAME, SAL, NVL(COMM,0), BITMAP

 1 INTO :EMPNO, :ENAME, :SAL, :COMM, :BUFFER

 2 FROM EMP, IMAGE

 3 WHERE EMP.EMPNO = :SELECTION

 4 AND EMP.EMPNO = IMAGE.EMPNO

 CALL SHWIMG (BUFFER)

 PRINT *, ’\NEMPLOYEE ’, ENAME, ’ HAS SALARY ’, SAL,

 + ’ AND COMMISSION ’, COMM

 GOTO 12000

16000 PRINT *, ’NOT A VALID EMPLOYEE NUMBER – TRY AGAIN.’

 GOTO 12000

 END

3 – 10 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 SUBROUTINE GETIMG (ENUM, BUF)

 INTEGER ENUM

 CHARACTER*8192 BUF

 INTEGER I

 DO 18000 I = 1, 8192

 BUF(I:I) = ’*’

18000 CONTINUE

 END

 SUBROUTINE SHWIMG (BUF)

 CHARACTER*8192 BUF

 INTEGER I

 PRINT *, ’ ***************************’

 DO 22000 I = 1, 9

 PRINT *, ’ ***************************’

22000 CONTINUE

 END

 SUBROUTINE SIGNOFF

 EXEC SQL INCLUDE SQLCA

 PRINT *, ’HAVE A GOOD DAY.’

 EXEC SQL COMMIT WORK RELEASE

 STOP

 END

 SUBROUTINE SQLERR

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR CONTINUE

 PRINT *, ’ORACLE ERROR DETECTED:’

 PRINT ’(70A1)’, SQLEMC

 EXEC SQL ROLLBACK WORK RELEASE

 STOP

 END

3 – 11Sample Programs

Sample Program 5: Oracle Forms User Exit

This user exit concatenates form fields. To call the user exit from a
Oracle Forms trigger, use the syntax

<user_exit>(’CONCAT <field1>, <field2>, ..., <result_field>’);

where user_exit is a packaged procedure supplied with Oracle Forms
and CONCAT is the name of the user exit. A sample CONCAT form
invokes the user exit. For more information about Oracle Forms user
exits, see Chapter 11 of the Programmer’s Guide to the Oracle Precompilers.

Note: The sample code listed is for a Oracle*Forms user exit
and is not intended to be compiled in the same manner as the
other sample programs listed in this chapter.

 INTEGER FUNCTION CONCAT (CMD,CMDL,ERR,ERRL,INQRY)

 EXEC SQL BEGIN DECLARE SECTION

 LOGICAL*1 VALUE(81)

 LOGICAL*1 FINAL(241)

 LOGICAL*1 FIELD(81)

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR GO TO 999

 LOGICAL*1 CMD(80)

 LOGICAL*1 ERR(80)

 INTEGER*2 CMDL, ERRL, INQRY

* CERR IS A DYNAMICALLY BUILT ERROR MESSAGE RETURNED

* TO SQL*FORMS.

 LOGICAL*1 CERR(80)

* TEMPORARY VARIABLES TO DO STRING MANIPULATIONS.

 INTEGER*2 CMDCNT

 INTEGER*2 FLDCNT

 INTEGER*2 FNLCNT

* INITIALIZE VARIABLES.

 DO 1 I = 1, 81

 FIELD(I) = ’ ’

1 VALUE(I) = ’ ’

 DO 2 I = 1, 241

2 FINAL(I) = ’ ’

 FNLCNT = 0

3 – 12 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* STRIP CONCAT FROM COMMAND LINE.

 CMDCNT = 7

 I = 1

* LOOP UNTIL END OF COMMAND LINE.

 DO WHILE (CMDCNT .LE. CMDL)

* PARSE EACH FIELD DELIMITED BY A COMMA.

 FLDCNT = 0

 DO WHILE ((CMD(CMDCNT) .NE. ’,’).AND.(CMDCNT .LE. CMDL))

 FLDCNT = FLDCNT + 1

 FIELD(FLDCNT) = CMD(CMDCNT)

 CMDCNT = CMDCNT + 1

 END DO

 IF (CMDCNT .LT. CMDL) THEN

* WE HAVE FIELD1...FIELDN. THESE ARE NAMES OF

* SQL*FORMS FIELDS; GET THE VALUE.

 EXEC IAF GET :FIELD INTO :VALUE

* REINITIALIZE FIELD NAME.

 DO 20 K = 1, FLDCNT

20 FIELD(K) = ’ ’

* MOVE VALUE RETRIEVED FROM FIELD TO A CHARACTER

* TO FIND LENGTH.

 DO WHILE (VALUE(I) .NE. ’ ’)

 FNLCNT = FNLCNT + 1

 FINAL(FNLCNT) = VALUE(I)

 I = I + 1

 END DO

 I = 1

 CMDCNT = CMDCNT + 1

 ELSE

* WE HAVE RESULT_FIELD; STORE IN SQL*FORMS FIELD.

 EXEC IAF PUT :FIELD VALUES (:FINAL)

 END IF

 END DO

3 – 13Sample Programs

* ALL OK. RETURN SUCCESS CODE.

 CONCAT = IAPSUC

 RETURN

* ERROR OCCURRED. PREFIX NAME OF USER EXIT TO ORACLE

* ERROR MESSAGE, SET FAILURE RETURN CODE, AND EXIT.

999 CERR(1) = ’C’

 CERR(2) = ’O’

 CERR(3) = ’N’

 CERR(4) = ’C’

 CERR(5) = ’A’

 CERR(6) = ’T’

 CERR(7) = ’:’

 CERR(8) = ’ ’

 DO 1000 J = 1, 70

 CERR(J + 8) = SQLEMC(J)

1000 CONTINUE

 ERRL = 78

 CALL SQLIEM (CERR, ERRL)

 CONCAT = IAPFAI

 RETURN

 END

3 – 14 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 6: Dynamic SQL Method 1

This program uses dynamic SQL Method 1 to create a table, insert a
row, commit the insert, then drop the table.

 PROGRAM DYN1

 EXEC SQL INCLUDE SQLCA

 EXEC SQL INCLUDE ORACA

 EXEC ORACLE OPTION (ORACA=YES)

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES)

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 USERNAME

 CHARACTER*10 PASSWORD

 CHARACTER*80 DYNSTM

 EXEC SQL END DECLARE SECTION

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 ORATXF = 1

 USERNAME = ’SCOTT’

 PASSWORD = ’TIGER’

 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD

 PRINT *, ’CONNECTED TO ORACLE.’

 PRINT *, ’CREATE TABLE DYN1 (COL1 CHAR(4))’

 EXEC SQL EXECUTE IMMEDIATE

 1 ’CREATE TABLE DYN1 (COL1 CHAR(4))’

 DYNSTM = ’INSERT INTO DYN1 VALUES (’’TEST’’)’

 PRINT *, DYNSTM

 EXEC SQL EXECUTE IMMEDIATE :DYNSTM

 EXEC SQL COMMIT WORK

 DYNSTM = ’DROP TABLE DYN1’

 PRINT *, DYNSTM

 EXEC SQL EXECUTE IMMEDIATE :DYNSTM

 EXEC SQL COMMIT RELEASE

 PRINT *, ’HAVE A GOOD DAY!’

 GOTO 9999

3 – 15Sample Programs

9000 PRINT *, ’\N–– ORACLE ERROR:’

 PRINT ’(70A)’, SQLEMC

 PRINT ’(3A, 70A)’, ’IN ’, ORATXC

 PRINT *, ’ON LINE’, ORASLN

 PRINT ’(3A, 70A)’, ’OF ’, ORAFNC

 EXEC SQL WHENEVER SQLERROR CONTINUE

 EXEC SQL ROLLBACK RELEASE

9999 CONTINUE

 END

3 – 16 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 7: Dynamic SQL Method 2

This program uses dynamic SQL Method 2 to insert two rows into the
EMP table, then delete them.

 PROGRAM DYN2

 EXEC SQL INCLUDE SQLCA

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 USERNAME

 CHARACTER*10 PASSWORD

 CHARACTER*80 DYNSTM

 INTEGER*2 EMPNO

 INTEGER*2 DEPTNO1

 INTEGER*2 DEPTNO2

 EXEC SQL END DECLARE SECTION

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 USERNAME = ’SCOTT’

 PASSWORD = ’TIGER’

 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD

 PRINT *, ’CONNECTED TO ORACLE.’

 DYNSTM = ’INSERT INTO EMP (EMPNO,DEPTNO) VALUES(:V1, :V2)’

 PRINT *, DYNSTM

 EMPNO = 1234

 DEPTNO1 = 97

 PRINT *, ’V1 = ’, EMPNO

 PRINT *, ’V2 = ’, DEPTNO1

 EXEC SQL PREPARE S FROM :DYNSTM

 EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO1

 PRINT *, ’INSERT STATEMENT EXECUTED.\N’

 EMPNO = EMPNO + 1

 DEPTNO2 = 99

 PRINT *, ’CHANGED BIND VARIABLES V1 AND V2\NV1 = ’, EMPNO

 PRINT *, ’V2 = ’, DEPTNO2

 PRINT *, ’EXECUTING STATEMENT AGAIN WITH NEW BIND ’,

 + ’VARIABLES.’

 EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO2

 PRINT *, ’DONE, NOW DELETING...\N’

 DYNSTM =

 + ’DELETE FROM EMP WHERE DEPTNO = :V1 OR DEPTNO = :V2’

3 – 17Sample Programs

 PRINT *, DYNSTM

 PRINT *, ’V1 = ’, DEPTNO1

 PRINT *, ’V2 = ’, DEPTNO2

 EXEC SQL PREPARE S FROM :DYNSTM

 EXEC SQL EXECUTE S USING :DEPTNO1, :DEPTNO2

 EXEC SQL COMMIT RELEASE

 PRINT *, ’HAVE A GOOD DAY!’

 GOTO 9999

9000 PRINT ’(70A1)’, SQLEMC

 EXEC SQL WHENEVER SQLERROR CONTINUE

 EXEC SQL ROLLBACK RELEASE

9999 CONTINUE

 END

3 – 18 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 8: Dynamic SQL Method 3

This program uses dynamic SQL Method 3 to retrieve the names of all
employees in a given department from the EMP table.

 PROGRAM DYN3

 EXEC SQL INCLUDE SQLCA

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 USERNAME

 CHARACTER*10 PASSWORD

 CHARACTER*80 DYNSTM

 CHARACTER*10 ENAME

 INTEGER*2 DEPTNO

 EXEC SQL END DECLARE SECTION

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 USERNAME = ’SCOTT’

 PASSWORD = ’TIGER’

 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD

 PRINT *, ’CONNECTED TO ORACLE.\N’

 DYNSTM = ’SELECT ENAME FROM EMP WHERE DEPTNO = :V1’

 PRINT *, DYNSTM

 DEPTNO = 10

 PRINT *, ’V1 = ’, DEPTNO

 EXEC SQL PREPARE S FROM :DYNSTM

 EXEC SQL DECLARE C CURSOR FOR S

 EXEC SQL OPEN C USING :DEPTNO

 EXEC SQL WHENEVER NOT FOUND GOTO 110

 PRINT *, ’\NEMPLOYEE NAME\N–––––––––––––’

100 EXEC SQL FETCH C INTO :ENAME

 PRINT *, ENAME

 GOTO 100

110 PRINT *, ’\NQUERY RETURNED’, SQLERD(3), ’ ROWS.’

 EXEC SQL CLOSE C

 EXEC SQL COMMIT RELEASE

 PRINT *, ’\NHAVE A GOOD DAY.’

 GOTO 9999

9000 PRINT ’(70A1)’, SQLEMC

 EXEC SQL WHENEVER SQLERROR CONTINUE

 EXEC SQL CLOSE C

 EXEC SQL ROLLBACK RELEASE

9999 CONTINUE

 END

3 – 19Sample Programs

Sample Program 9: Calling a Stored Procedure

Before trying the sample program, you must create a PL/SQL package
named calldemo, by running a script named CALLDEMO.SQL, which is
supplied with Pro*FORTRAN and shown below. The script can be
found in the Pro*FORTRAN demo library. Check your Oracle
system–specific documentation for exact spelling of the script.

CREATE OR REPLACE PACKAGE calldemo AS

 TYPE name_array IS TABLE OF emp.ename%type

 INDEX BY BINARY_INTEGER;

 TYPE job_array IS TABLE OF emp.job%type

 INDEX BY BINARY_INTEGER;

 TYPE sal_array IS TABLE OF emp.sal%type

 INDEX BY BINARY_INTEGER;

 PROCEDURE get_employees(

 dept_number IN number, –– department to query

 batch_size IN INTEGER, –– rows at a time

 found IN OUT INTEGER, –– rows actually returned

 done_fetch OUT INTEGER, –– all done flag

 emp_name OUT name_array,

 job OUT job_array,

 sal OUT sal_array);

END calldemo;

/

CREATE OR REPLACE PACKAGE BODY calldemo AS

 CURSOR get_emp (dept_number IN number) IS

 SELECT ename, job, sal FROM emp

 WHERE deptno = dept_number;

3 – 20 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 –– Procedure ”get_employees” fetches a batch of employee

 –– rows (batch size is determined by the client/caller

 –– of the procedure). It can be called from other

 –– stored procedures or client application programs.

 –– The procedure opens the cursor if it is not

 –– already open, fetches a batch of rows, and

 –– returns the number of rows actually retrieved. At

 –– end of fetch, the procedure closes the cursor.

 PROCEDURE get_employees(

 dept_number IN number,

 batch_size IN INTEGER,

 found IN OUT INTEGER,

 done_fetch OUT INTEGER,

 emp_name OUT name_array,

 job OUT job_array,

 sal OUT sal_array) IS

 BEGIN

 IF NOT get_emp%ISOPEN THEN –– open the cursor if

 OPEN get_emp(dept_number); –– not already open

 END IF;

 –– Fetch up to ”batch_size” rows into PL/SQL table,

 –– tallying rows found as they are retrieved. When all

 –– rows have been fetched, close the cursor and exit

 –– the loop, returning only the last set of rows found.

 done_fetch := 0; –– set the done flag FALSE

 found := 0;

 FOR i IN 1..batch_size LOOP

 FETCH get_emp INTO emp_name(i), job(i), sal(i);

 IF get_emp%NOTFOUND THEN –– if no row was found

 CLOSE get_emp;

 done_fetch := 1; –– indicate all done

 EXIT;

 ELSE

 found := found + 1; –– count row

 END IF;

 END LOOP;

 END;

END;

/

3 – 21Sample Programs

The following sample program connects to Oracle, prompts the user for
a department number, then calls a PL/SQL procedure named
get_employees, which is stored in package calldemo. The procedure
declares three PL/SQL tables as OUT formal parameters, then fetches a
batch of employee data into the PL/SQL tables. The matching actual
parameters are host tables. When the procedure finishes, row values in
the PL/SQL tables are automatically assigned to the corresponding
elements in the host tables. The program calls the procedure repeatedly,
displaying each batch of employee data, until no more data is found.

 PROGRAM CALLSP

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 UID

 CHARACTER*10 PWD

 INTEGER DEPTNO

 CHARACTER*10 ENAME(10)

 CHARACTER*10 JOB(10)

 REAL SAL(10)

 INTEGER ENDFLG

 INTEGER ARYSIZ

 INTEGER NUMRET

 INTEGER*4 SQLCOD

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

 UID = ’SCOTT’

 PWD = ’TIGER’

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 PRINT *, ’CONNECTED TO ORACLE AS USER ’, UID

 PRINT *, ’ENTER DEPARTMENT NUMBER: ’

 READ ’(I10)’, DEPTNO

3 – 22 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* INITIALIZE VARIABLES AND ARRAYS.

 ENDFLG = 0

 ARYSIZ = 10

 NUMRET = 0

 DO 4000 I = 1, ARYSIZ

 ENAME(I) = ’ ’

 JOB(I) = ’ ’

 SAL(I) = 0

4000 CONTINUE

* DISPLAY HEADER.

 PRINT *, ’EMPLOYEE NAME JOB TITLE SALARY\N’,

 +’––––––––––––– ––––––––– ––––––’

* LOOP, FETCHING AND PRINTING BATCHES UNTIL END–FLAG IS SET.

6000 EXEC SQL EXECUTE

 1 BEGIN

 2 CALLDEMO.GET_EMPLOYEES (:DEPTNO, :ARYSIZ,

 3 :NUMRET, :ENDFLG, :ENAME, :JOB, :SAL);

 4 END;

 5 END–EXEC

 CALL PBATCH (NUMRET, ENAME, JOB, SAL)

 IF (ENDFLG .EQ. 0) GOTO 6000

 CALL SIGNOFF

 END

*********************** SUBROUTINES *********************

* DISPLAY A BATCH OF ROWS.

 SUBROUTINE PBATCH (ROWS, ENAME, JOB, SAL)

 INTEGER ROWS

 CHARACTER*10 ENAME(ROWS)

 CHARACTER*10 JOB(ROWS)

 REAL SAL(ROWS)

 DO 8000 I = 1, ROWS

 PRINT ’(1X, A10, 5X, A10, 1X, F7.2)’, ENAME(I), JOB(I),

SAL(I)

8000 CONTINUE

 RETURN

 END

3 – 23Sample Programs

* LOG OFF ORACLE.

 SUBROUTINE SIGNOFF

 EXEC SQL INCLUDE SQLCA

 PRINT *, ’HAVE A GOOD DAY.’

 EXEC SQL COMMIT WORK RELEASE

 STOP

 END

* HANDLE SQL ERRORS.

 SUBROUTINE SQLERR

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR CONTINUE

 PRINT *, ’ORACLE ERROR DETECTED:’

 PRINT ’(70A1)’, SQLEMC

 EXEC SQL ROLLBACK WORK RELEASE

 STOP

 END

3 – 24 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

C H A P T E R

4
T

4 – 1Implementing Dynamic SQL Method 4

Implementing Dynamic
SQL Method 4

his chapter shows you how to implement dynamic SQL Method 4,
which lets your program accept or build dynamic SQL statements that
contain a varying number of host variables. Subjects discussed include
the following:

• meeting the special requirements of Method 4

• declaring the SQL Descriptor Area (SQLDA)

• using the SQLDA variables

• converting data

• coercing datatypes

• handling null/not null datatypes

• initializing and using descriptors

Note: For a discussion of dynamic SQL Methods 1, 2, and 3,
and an overview of Method 4, see Chapter 10 of the
Programmer’s Guide to the Oracle Precompilers.

What Makes Method 4
Special?

What Information
Does Oracle Need?

4 – 2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Meeting the Special Requirements of Method 4

Before looking into the requirements of Method 4, you should feel
comfortable with the terms select–list item and placeholder. Select–list
items are the columns or expressions following the keyword SELECT in
a query. For example, the following dynamic query contains three
select–list items:

SELECT ENAME, JOB, SAL + COMM FROM EMP WHERE DEPTNO = 20

Placeholders are dummy bind (input) variables that hold places in a
SQL statement for actual bind variables. You do not declare placeholders
and can name them anything you like. Placeholders for bind variables
are most often used in the SET, VALUES, and WHERE clauses. For
example, the following dynamic SQL statements each contain
two placeholders:

INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:E, :D)

DELETE FROM DEPT WHERE DEPTNO = :DNUM AND LOC = :DLOC

Placeholders cannot reference table or column names.

Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program

• accept or build dynamic SQL statements that contain an
unknown number of select–list items or placeholders

• take explicit control over datatype conversion between Oracle
and FORTRAN types

To add this flexibility to your program, you must give the Oracle
runtime library additional information.

The Pro*FORTRAN Precompiler generates calls to Oracle for all
executable dynamic SQL statements. If a dynamic SQL statement
contains no select–list items or placeholders, Oracle needs no
additional information to execute the statement. The following
DELETE statement falls into this category:

* Dynamic SQL statement

 STMT = ’DELETE FROM EMP WHERE DEPTNO = 30’

However, most dynamic SQL statements contain select–list items
or placeholders for bind variables, as shown in the following
UPDATE statement:

* Dynamic SQL statement with placeholders

 STMT = ’UPDATE EMP SET COMM = :C WHERE EMPNO = :E’

Where Is the
Information Stored?

How Is the
Information Obtained?

4 – 3Implementing Dynamic SQL Method 4

rrTo execute a dynamic SQL statement that contains select–list items
and/or placeholders for bind variables, Oracle needs information
about the program variables that will hold output or input values.
Specifically, Oracle needs the following information:

• the number of select–list items and the number of bind variables

• the length of each select–list item and bind variable

• the datatype of each select–list item and bind variable

• the memory address of each output variable that will store the
value of a select–list item, and the address of each bind variable

For example, to write the value of a select–list item, Oracle needs the
address of the corresponding output variable.

All the information Oracle needs about select–list items or placeholders
for bind variables, except their values, is stored in a program data
structure called the SQL Descriptor Area (SQLDA).

Descriptions of select–list items are stored in a select SQLDA, and
descriptions of placeholders for bind variables are stored in a
bind SQLDA.

The values of select–list items are stored in output buffers; the values of
bind variables are stored in input buffers. You use the library routine
SQLADR to store the addresses of these data buffers in a select or bind
SQLDA, so that Oracle knows where to write output values and read
input values.

How do values get stored in these data buffers? Output values are
FETCHed using a cursor, and input values are filled in by your
program, typically from information entered interactively by the user.

You use the DESCRIBE statement to help get the information
Oracle needs. The DESCRIBE SELECT LIST statement examines each
select–list item to determine its name, datatype, constraints, length,
scale, and precision, then stores this information in the select SQLDA
for your use. For example, you might use select–list names as column
headings in a printout. DESCRIBE also stores the total number of
select–list items in the SQLDA.

The DESCRIBE BIND VARIABLES statement examines each
placeholder to determine its name and length, then stores this
information in an input buffer and bind SQLDA for your use. For
example, you might use placeholder names to prompt the user for the
values of bind variables.

Purpose of the SQLDA

Multiple SQLDAs

Naming Conventions

4 – 4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Understanding the SQL Descriptor Area (SQLDA)

This section describes the SQLDA data structure in detail. You learn
how to declare it, what variables it contains, how to initialize them, and
how to use them in your program.

Method 4 is required for dynamic SQL statements that contain an
unknown number of select–list items or placeholders for bind
variables. To process this kind of dynamic SQL statement, your
program must explicitly declare SQLDAs, also called descriptors (not to
be confused with the CHARACTER variable descriptors generated by
some FORTRAN compilers). Each descriptor is a named COMMON
block, which you must copy or hard code into your program.

A select descriptor holds descriptions of select–list items and the
addresses of output buffers where the names and values of select–list
items are stored.

Note: The name of a select–list item can be a column name, a
column alias, or the text of an expression such as SAL + COMM.

A bind descriptor holds descriptions of bind variables and indicator
variables and the addresses of input buffers where the names and
values of bind variables and indicator variables are stored.

Remember, some descriptor variables contain addresses, not values. So,
you must declare data buffers to hold the values. You decide the sizes
of the required input and output buffers. Because FORTRAN does not
support pointers, you must use the library subroutine SQLADR to get
the addresses of input and output buffers. You learn how to call
SQLADR in the section “Using SQLADR” on page 4 – 14.

If your program has more than one active dynamic SQL statement,
each statement must have its own SQLDA(s). You can declare any
number of SQLDAs with different names. For example, you might
declare three select SQLDAs named SEL1, SEL2, and SEL3, so that you
can FETCH from three concurrently open cursors. However,
non–concurrent cursors can reuse SQLDAs.

You can name select and bind descriptors anything you like. Typically,
the names SEL and BND are used. The precompiler references
descriptor variables by appending single–character suffixes to the
descriptor name (see Table 4 – 1). You use the descriptor name in the
DESCRIBE, OPEN, and FETCH statements.

4 – 5Implementing Dynamic SQL Method 4

For example, the statement

* Open a cursor.

 EXEC SQL OPEN CUR1 USING DESCRIPTOR BND

* Fetch select–list values.

 EXEC SQL FETCH CUR1 USING DESCRIPTOR SEL

fetches select–list values into output data buffers.

You decide the names and sizes of the required data buffers. The
variable and buffer names shown in Table 4 – 1 and Table 4 – 2,
respectively, are used in the following discussion. For example, the
elements of descriptor array SELS address the elements of data buffer
array SELSB.

Suffix Host Datatype Description

N INTEGER var maximum number of select–list items or placeholders

F INTEGER var actual number of select–list items or placeholders

S INTEGER*4 var(n) addresses of select–list or placeholder names

M INTEGER*2 var(n) maximum lengths of select–list or placeholder names

C INTEGER*2 var(n) actual lengths of select–list or placeholder names

L INTEGER*4 var(n) lengths of select–list or bind–variable values

T INTEGER*2 var(n) datatypes of select–list or bind–variable values

V INTEGER*4 var(n) addresses of select–list or bind–variable values

I INTEGER*4 var(n) addresses of indicator–variable values (1)

X (2) INTEGER*4 var(n) addresses of indicator–variable names (1)

Y (2) INTEGER*2 var(n) maximum lengths of indicator–variable names (1)

Z (2) INTEGER*2 var(n) actual lengths of indicator–variable names (1)

Table 4 – 1 SQLDA Variables

1. Indicator–variable names apply only in a bind SQLDA.

2. These suffixes apply only to bind variables.

Buffer Host Datatype Description

SELSB LOGICAL*1 var(m,n) select–list names

SELVB LOGICAL*1 var(m,n) select–list names

SELIV INTEGER*2 var(n) indicator–variable values

BNDSB LOGICAL*1 var(m,n) placeholder names

BNDVB LOGICAL*1 var(m,n) bind–variable values

BNDXB LOGICAL*1 var(m,n) indicator–variable names

BNDIV INTEGER*2 var(n) indicator–variable names

Table 4 – 2 SQLDA Data Buffers

1. There is no SELXB buffer because indicator–variable names can not be
associated with select–list items.

Declaring a SQLDA

4 – 6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

To declare select and bind SQLDAs, you can hardcode them into your
program using the sample SQLDA shown in Figure 4 – 1.

* Sample Select Descriptors and Data Buffers

* Descriptors
 INTEGER SELN
 INTEGER SELF
 INTEGER*4 SELS(20)
 INTEGER*2 SELM(20)
 INTEGER*2 SELC(20)
 INTEGER*4 SELL(20)
 INTEGER*2 SELT(20)
 INTEGER*4 SELV(20)
 INTEGER*4 SELI(20)

* Buffers
 LOGICAL*1 SELSB(30,20)
 LOGICAL*1 SELVB(80,20)
 INTEGER SELIV(20)

 COMMON /SELDSC/
 1 SELN, SELF, SELS, SELM, SELC, SELL,
 2 SELT, SELV, SELI, SELSB, SELVB, SELIV

* Sample Bind Descriptors and Data Buffers

* Descriptors
 INTEGER BNDN
 INTEGER BNDF
 INTEGER*4 BNDS(20)
 INTEGER*2 BNDM(20)
 INTEGER*2 BNDC(20)
 INTEGER*4 BNDL(20)
 INTEGER*2 BNDT(20)
 INTEGER*4 BNDV(20)
 INTEGER*4 BNDI(20)
 INTEGER*4 BNDX(20)
 INTEGER*4 BNDY(20)
 INTEGER*4 BNDZ(20)

* Buffers
 LOGICAL*1 BNDSB(30,20)
 LOGICAL*1 BNDVB(80,20)
 LOGICAL*1 BNDXB(30,20)
 INTEGER BNDIV(20)

 COMMON /BNDDSC/
 1 BNDN, BNDF, BNDS, BNDM, BNDC, BNDL,
 2 BNDT, BNDV, BNDI, BNDX, BNDY, BNDZ,
 3 BNDSB, BNDVB, BNDXB, BNDIV

Figure 4 – 1 Sample Pro*FORTRAN SQLDA Variables and Data Buffers

4 – 7Implementing Dynamic SQL Method 4

You can modify the array dimensions to suit your needs. The following
example uses a parameter to specify array dimensions; which makes
changing the dimensions easy:

 INTEGER SIZE

* Set dimension of descriptor arrays.

 PARAMETER (SIZE = 25)

* Declare select descriptor.

 INTEGER SELN

 INTEGER SELF

 INTEGER*4 SELV(SIZE)

 INTEGER*4 SELL(SIZE)

 ...

You might want to store the SQLDAs in files (named SELDSC and
BNDDSC, for example), revise them as needed, then copy the files into
your program with the INCLUDE statement as follows:

* Declare select and bind SQLDAs.

 EXEC SQL INCLUDE SELDSC

 EXEC SQL INCLUDE BNDDSC

Because they are COMMON blocks, SQLDAs must be declared outside
the Declare Section. How the data buffers are declared is up to you.
You need not include them in the SQLDA COMMON blocks. For
example, you might want to declare one large data buffer to store all
names and values, then access them using byte offsets.

4 – 8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Figure 4 – 2 shows whether variables are set by SQLADR calls,
DESCRIBE commands, FETCH commands, or program assignments.

Select SQLDA Bind SQLDA

Output Buffers Input Buffers

Address of SLI name buffer

Address of SLI value buffer

Length of SLI name

Datatype of select–list item

Length of SLI name buffer

Length of SLI value buffer

Datatype of SLI value buffer

Name of select–list item

Value of select–list item

Address of P name buffer

Address of BV value buffer

Length of P name

Length of P name buffer

Length of BV value buffer

Datatype of BV value buffer

Name of placeholder

Value of bind variable

Set by:

SQLADR

SQLADR

DESCRIBE

DESCRIBE

Program

Program

Program

DESCRIBE

FETCH

select–list Item (SLI) placeholder (P) for
bind variable (BV)

‘SELECT ENAME FROM EMP WHERE EMPNO=:NUM’

Dynamic SQL Statement

Figure 4 – 2 How Variables Are Set

The N Variable

The F Variable

The S Array

The M Array

4 – 9Implementing Dynamic SQL Method 4

Using the SQLDA Variables and Arrays

This section explains the purpose and use of each SQLDA variable. In
examples, the arbitrary SQLDA file names, descriptor names, and data
buffer names given earlier are used.

This variable specifies the maximum number of select–list items or
placeholders that can be DESCRIBEd. For example, SELN determines
the number of elements in the select descriptor arrays.

Before issuing a DESCRIBE command, you must set this variable to the
dimension of the descriptor arrays. After the DESCRIBE, you must
reset it to the actual number of variables DESCRIBEd, which is stored
in the F variable.

This is the actual number of select–list items or placeholders found by
the DESCRIBE command.

The F variable is set by DESCRIBE. If the F variable is negative, the
DESCRIBE command found too many select–list items or placeholders
for the size of the descriptor. For example, if you set SELN to 10 but
DESCRIBE finds 11 select–list items, SELF is set to –11. If this
happens, you cannot process the SQL statement without reallocating
the descriptor.

After the DESCRIBE command, you must set the N variable equal to
the F variable.

This array contains the addresses of data buffers that store select–list or
placeholder names as they appear in dynamic SQL statements.

You must set the elements of the S array using SQLADR before issuing
the DESCRIBE command.

DESCRIBE directs Oracle to store the name of the Jth select–list item or
placeholder in the buffer addressed by SELS(J) or BNDS(J). If the
elements of SELS and BNDS address elements of data buffer arrays
named SELSB and BNDSB, Oracle stores the Jth select–list or
placeholder name in SELSB(J) or BNDSB(J).

This array contains the lengths of the data buffers that store select–list
or placeholder names. The buffers are addressed by elements of the
S array.

You must set the elements of the M array before issuing the DESCRIBE
command. Each select–list or placeholder name buffer can have a
different length.

The C Array

The L Array

Select Descriptors

Bind Descriptors

4 – 10 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

This array contains the actual lengths of select–list or placeholder
names. DESCRIBE sets the array of actual lengths to the number of
characters in each select–list or placeholder name.

This array contains the lengths of select–list or bind–variable values
stored in the data buffers.

DESCRIBE sets the array of lengths to the maximum expected for each
select–list item. However, you might want to reset some lengths before
issuing a FETCH command. FETCH returns at most n characters, where
n is the value of SELL(J) before the FETCH.

The format of the length differs among Oracle datatypes. For character
select–list items, DESCRIBE sets SELL(J) to the maximum length in
bytes of the select–list item. For NUMBER select–list items, scale and
precision are returned respectively in the low and next–higher bytes of
the variable. You can use the library subroutine SQLPRC to extract
precision and scale values from SELL. See the section “Extracting
Precision and Scale” on page 4 – 19.

You must reset SELL(J) to the required length of the data buffer before
the FETCH. For example, when coercing a NUMBER to a FORTRAN
CHARACTER string, set SELL(J) to the precision of the number plus
two for the sign and decimal point. When coercing a NUMBER to a
FORTRAN REAL, set SELL(J) to the length of REALs on your system.
For more information about the lengths of coerced datatypes, see the
section “Converting Data” on page 4 – 15.

You must set the array of lengths before issuing the OPEN command.

Because Oracle accesses a data buffer indirectly, using the address in
SELV(J) or BNDV(J), it does not know the length of the value in that
buffer. If you want to change the length Oracle uses for the Jth
select–list or bind–variable value, reset SELL(J) or BNDL(J) to the
length you need. Each input or output buffer can have a different
length.

The T Array

Select Descriptors

Bind Descriptors

4 – 11Implementing Dynamic SQL Method 4

This array contains the datatype codes of select–list or bind–variable
values. These codes determine how Oracle data is converted when
stored in the data buffers addressed by elements of SELV. This topic is
covered in the section “Converting Data” on page 4 – 15.

DESCRIBE sets the array of datatype codes to the internal datatype (for
example, VARCHAR2, CHAR, NUMBER, or DATE) of the items in the
select list.

Before FETCHing, you might want to reset some datatypes because the
internal format of Oracle datatypes can be difficult to handle. For
display purposes, it is usually a good idea to coerce the datatype of
select–list values to VARCHAR2. For calculations, you might want to
coerce numbers from Oracle to FORTRAN format. See the section
“Coercing Datatypes” on page 4 – 18.

The high bit of SELT(J) is set to indicate the null/not null status of the
Jth select–list column. You must always clear this bit before issuing an
OPEN or FETCH command. You use the library subroutine SQLNUL
to retrieve the datatype code and clear the null/not null bit. See the
section “Handling Null/Not Null Datatypes” on page 4 – 21.

You should change the Oracle NUMBER internal datatype to an
external datatype compatible with that of the FORTRAN data buffer
addressed by SELV(J).

DESCRIBE sets the array of datatype codes to zeros. You must reset the
datatype code stored in each element before issuing the OPEN
command. The code represents the external (FORTRAN) datatype of
the data buffer addressed by BNDV(J). Often, bind–variable values are
stored in character strings, so the datatype array elements are set to 1
(the VARCHAR2 datatype code).

To change the datatype of the Jth select–list or bind–variable value,
reset SELT(J) or BNDT(J) to the datatype you want.

The V Array

Select Descriptors

Bind Descriptors

The I Array

Select Descriptors

4 – 12 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

This array contains the addresses of data buffers that store select–list or
bind–variable values. You must set the elements of the V array
using SQLADR.

You must set this array before issuing the FETCH command. The
following statement

* Fetch select–list values.

 EXEC SQL FETCH ... USING DESCRIPTOR SEL

directs Oracle to store FETCHed select–list values in the data buffers
addressed by SELV(1) through SELV(SELN). If the elements of SELV
address elements of a data buffer array named SELVB, Oracle stores
the Jth select–list value in SELVB(J).

You must set this array before issuing the OPEN command. The
following statement

* Open cursor.

 EXEC SQL OPEN ... USING DESCRIPTOR BND

directs Oracle to execute the dynamic SQL statement using the
bind–variable values addressed by BNDV(1) through BNDV(BNDN). If
the elements of BNDV address elements of a data buffer array named
BNDVB, Oracle finds the Jth bind–variable value in data buffer
BNDVB(J).

This array contains the addresses of data buffers that store
indicator–variable values.

You must set the elements of the I array using SQLADR.

You must set this array before issuing the FETCH command. When
Oracle executes the statement

* Fetch select–list values.

 EXEC SQL FETCH ... USING DESCRIPTOR SEL

if the Jth returned select–list value is null, the buffer addressed by
SELI(J) is set to –1. Otherwise, it is set to zero (the value is not null) or a
positive integer (the value was truncated). For example, if the elements
of SELI address elements of a data buffer array named SELIV, and the
Jth returned select–list value is null, SELIV(J) is set to –1.

Bind Descriptors

The X Array

The Y Array

The Z Array

4 – 13Implementing Dynamic SQL Method 4

You must initialize this array and set the associated indicator variables
before issuing the OPEN command. When Oracle executes the
following statement

* Open cursor.

 EXEC SQL OPEN ... USING DESCRIPTOR BND

the buffer addressed by BNDI(J) determines whether the Jth bind
variable is a null. If the value of an indicator variable is –1, its
associated host variable is null. For example, if the elements of BNDI
address elements of a data buffer array named BNDIV, and the value of
BNDIV(J) is –1, the value of the Jth bind variable is set to NULL.

This array contains the addresses of data buffers that store
indicator–variable names. You can associate indicator–variable values
with select–list items and bind variables. However, you can associate
indicator–variable names only with bind variables. So, you can use the
X array only with bind descriptors.

You must set the elements of the X array using SQLADR before issuing
the DESCRIBE command.

DESCRIBE directs Oracle to store any indicator–variable names in the
buffers addressed by BNDX(1) through BNDX(BNDN). If the elements
of BNDX address elements of a data buffer array named BNDXB,
Oracle stores the Jth indicator–variable name in BNDXB(J).

This array contains the maximum lengths of the data buffers that
store indicator–variable names. The buffers are addressed by elements
of the X array. Like the X array, you can use the Y array only with
bind descriptors.

You must set the elements BNDY(1) through BNDY(BNDN) before
issuing the DESCRIBE command. Each indicator–variable name buffer
can have a different length.

This array contains the actual lengths of indicator–variable names. Like
the X and Y arrays, you can use the Z array only with bind descriptors.

DESCRIBE sets the array of actual lengths to the number of characters
in each indicator–variable name.

Using SQLADR

Restriction

4 – 14 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Some Preliminaries

You need a working knowledge of the following subjects to implement
dynamic SQL Method 4:

• using the library subroutine SQLADR

• converting data

• coercing datatypes

• handling null/not null datatypes

You must call the library subroutine SQLADR to get the addresses of
data buffers that store input and output values. You store the addresses
in a select or bind SQLDA so that Oracle knows where to read
bind–variable values or write select–list values.

Call SQLADR using the syntax

 CALL SQLADR (BUFF, ADDR)

where:

Is a data buffer that stores the value or name of a
select–list item, bind variable, or indicator variable.

Is an integer variable that returns the address of
the data buffer.

A call to SQLADR stores the address of BUFF in ADDR. In the example
below, you use SQLADR to initialize the select descriptor arrays SELV,
SELS, and SELI. Their elements address data buffers for select–list
values, select–list names, and indicator values.

* Initialize select descriptor arrays.

 DO 100 J = 1, SELN

 CALL SQLADR (SELVB(1, J), SELV(J))

 CALL SQLADR (SELSB(1, J), SELS(J))

 CALL SQLADR (SELIV(J), SELI(J))

100 CONTINUE

You cannot use CHARACTER variables with SQLADR if your
FORTRAN compiler generates descriptors for CHARACTER variables
and passes the descriptor address (rather than the data address) to
SQLADR. Check your FORTRAN compiler user’s guide. In such cases,
SQLADR gets the wrong address. Instead, use LOGICAL*1 variables,
because they always have simple addresses.

BUFF

ADDR

Converting Data

Internal Datatypes

4 – 15Implementing Dynamic SQL Method 4

However, you can (cautiously) use SQLADR with CHARACTER
variables if your compiler provides a built–in function to access the
data address. For example, if your compiler provides a function named
%REF, and X is a CHARACTER variable, you call SQLADR as follows:

* Use %REF built–in function.

 CALL SQLADR (%REF(X), ...)

This section provides more detail about the datatype descriptor array.
In host programs that use neither datatype equivalencing nor dynamic
SQL Method 4, the conversion between Oracle internal and external
datatypes is determined at precompile time. By default, the
precompiler assigns a specific external datatype to each host variable in
the Declare Section. For example, the precompiler assigns the FLOAT
external datatype to host variables of type REAL.

However, Method 4 lets you control data conversion and formatting.
You specify conversions by setting datatype codes in the datatype
descriptor array.

Internal datatypes specify the formats used by Oracle to store
column values in database tables and the formats to represent
pseudocolumn values.

When you issue a DESCRIBE SELECT LIST command, Oracle returns
the internal datatype code for each select–list item to the SELT
(datatype) descriptor array. For example, the datatype code for the Jth
select–list item is returned to SELT(J).

Table 4 – 3 shows the Oracle internal datatypes and their codes.

Oracle Internal Datatype Code

VARCHAR2 1

NUMBER 2

LONG 8

ROWID 11

DATE 12

RAW 23

LONG RAW 24

CHAR 96

MLSLABEL 105

Table 4 – 3 Oracle Internal Datatypes and Related Codes

External Datatypes

4 – 16 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

External datatypes specify the formats used to store values in input
and output host variables.

The DESCRIBE BIND VARIABLES command sets the BNDT array of
datatype codes to zeros. So, you must reset the codes before issuing the
OPEN command. The codes tell Oracle which external datatypes to
expect for the various bind variables. For the Jth bind variable, reset
BNDT(J) to the external datatype you want.

The following table shows the Oracle external datatypes and their
codes, as well as the corresponding FORTRAN datatypes:

Name Code FORTRAN Datatype

VARCHAR2 1 CHARACTER*n when MODE != ANSI

NUMBER 2 CHARACTER*n

INTEGER 3 INTEGER

FLOAT 4 REAL

STRING (1) 5 CHARACTER*(n+1)

VARNUM 6 CHARACTER*n

DECIMAL 7 CHARACTER*n

LONG 8 CHARACTER*n

VARCHAR (2) 9 CHARACTER*n

ROWID 11 CHARACTER*n

DATE 12 CHARACTER*n

VARRAW (2) 15 CHARACTER*n

RAW 23 CHARACTER*n

LONG RAW 24 CHARACTER*n

UNSIGNED 68 INTEGER

DISPLAY 91 CHARACTER*n

LONG VARCHAR (2) 94 CHARACTER*n

LONG VARRAW (2) 95 CHARACTER*n

CHARF 96 CHARACTER*n when MODE = ANSI

CHARZ (1) 97 CHARACTER*(n+1)

CURSOR 102 SQLCURSOR

MLSLABEL 106 CHARACTER*n

Table 4 – 4 Oracle External and Related FORTRAN Datatypes

Notes:

1. For use in an EXEC SQL VAR statement only.

2. Include the n–byte length field.

For more information about the Oracle datatypes and their formats, see
Chapter 3 of the Programmer’s Guide to the Oracle Precompilers.

PL/SQL Datatypes

4 – 17Implementing Dynamic SQL Method 4

PL/SQL provides a variety of predefined scalar and composite
datatypes. A scalar type has no internal components. A composite type
has internal components that can be manipulated individually.
Table 4 – 5 shows the predefined PL/SQL scalar datatypes and their
Oracle internal datatype equivalences.

PL/SQL Datatype Oracle Internal Datatype

VARCHAR
VARCHAR2

VARCHAR2

BINARY_INTEGER
DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INT
INTEGER
NATURAL
NUMBER
NUMERIC
POSITIVE
REAL
SMALLINT

NUMBER

LONG LONG

ROWID ROWID

DATE DATE

RAW RAW

LONG RAW LONG RAW

CHAR
CHARACTER
STRING

CHAR

MLSLABEL MLSLABEL

Table 4 – 5 PL/SQL Datatype Equivalences with Oracle Internal Datatypes

Coercing Datatypes

Exceptions

4 – 18 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

For a select descriptor, DESCRIBE SELECT LIST can return any of the
Oracle internal datatypes. Often, as in the case of character data, the
internal datatype corresponds exactly to the external datatype you
want to use. However, a few internal datatypes map to external
datatypes that can be difficult to handle. So, you might want to reset
some elements in the SELT descriptor array.

For example, you might want to reset NUMBER values to FLOAT
values, which correspond to REAL values in FORTRAN. Oracle does
any necessary conversion between internal and external datatypes at
FETCH time. So, be sure to reset the datatypes after the DESCRIBE
SELECT LIST but before the FETCH.

For a bind descriptor, DESCRIBE BIND VARIABLES does not return
the datatypes of bind variables, only their number and names.
Therefore, you must explicitly set the BNDT array of datatype codes
to tell Oracle the external datatype of each bind variable. Oracle does
any necessary conversion between external and internal datatypes at
OPEN time.

When you reset datatype codes in the SELT or BNDT descriptor array,
you are “coercing datatypes.” For example, to coerce the Jth select–list
value to VARCHAR2, use the following statement:

* Coerce select–list value to VARCHAR2.

 SELT(J) = 1

When coercing a NUMBER select–list value to VARCHAR2 for display
purposes, you must also extract the precision and scale bytes of the
value and use them to compute a maximum display length. Then,
before the FETCH, you must reset the appropriate element of the SELL
(length) descriptor array to tell Oracle the buffer length to use. To
specify the length of the Jth select–list value, set SELL(J) to the length
you need.

For example, if DESCRIBE SELECT LIST finds that the Jth select–list
item is of type NUMBER, and you want to store the returned value in a
FORTRAN variable declared as REAL, simply set SELT(J) to 4 and
SELL(J) to the length of REAL numbers on your system.

In some cases, the internal datatypes that DESCRIBE SELECT LIST
returns might not suit your purposes. Two examples of this are DATE
and NUMBER. When you DESCRIBE a DATE select–list item, Oracle
returns the datatype code 12 to the SELT array. Unless you reset the
code before the FETCH, the date value is returned in its 7–byte internal
format. To get the date in its default character format, you must change
the datatype code from 12 to 1 (VARCHAR2), and increase the SELL
value from 7 to 9.

Extracting Precision
and Scale

4 – 19Implementing Dynamic SQL Method 4

Similarly, when you DESCRIBE a NUMBER select–list item, Oracle
returns the datatype code 2 to the SELT array. Unless you reset the code
before the FETCH, the numeric value is returned in its internal format,
which is probably not what you want. So, change the code from
2 to 1 (VARCHAR2), 3 (INTEGER), 4 (FLOAT), or some other
appropriate datatype.

The library subroutine SQLPRC extracts precision and scale. Normally,
it is used after the DESCRIBE SELECT LIST, and its first argument is
SELL(J). You call SQLPRC using the syntax

 CALL SQLPRC (LENGTH, PREC, SCALE)

where:

Is an integer variable that stores the length of an
Oracle NUMBER value. The scale and precision of
the value are stored in the low and next–higher
bytes, respectively.

Is an integer variable that returns the precision of
the NUMBER value. Precision is the number of
significant digits. It is set to zero if the select–list
item refers to a NUMBER of unspecified size. In
this case, because the size is unspecified, you might
want to assume the maximum precision, 38.

Is an integer variable that returns the scale of the
NUMBER value. Scale specifies where rounding will
occur. For example, a scale of 2 means the value is
rounded to the nearest hundredth (3.456 becomes
3.46); a scale of –3 means the number is rounded to
the nearest thousand (3456 becomes 3000).

LENGTH

PREC

SCALE

4 – 20 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

The following example shows how SQLPRC is used to compute
maximum display lengths for NUMBER values that will be coerced
 to VARCHAR2:

* Declare variables for function call.

 INTEGER PREC

 INTEGER SCALE

 EXEC SQL DESCRIBE SELECT LIST FOR S INTO SEL

 DO 1300 J = 1, SELN

 IF (SELT(J) .NE. 2) GOTO 1300

* If datatype is NUMBER, extract precision and scale.

 CALL SQLPRC (SELL(J), PREC, SCALE)

* If no precision was specified, assign a maximum.

 IF (PREC .NE. 0) GOTO 1100

 SELL(J) = 10

 GOTO 1300

 1100 CONTINUE

 SELL(J) = PREC

* Allow for possible sign and decimal point.

 SELL(J) = SELL(J) + 2

 1300 CONTINUE

 ...

The SQLPRC subroutine returns zero as the precision and scale values
for certain SQL datatypes. The SQLPR2 subroutine is similar to SQLPRC
in that it has the same syntax and returns the same binary values,
except for the datatypes shown in Table 4 – 6.

SQL Datatype Binary Precision Binary Scale

FLOAT 126 –127

FLOAT(n) n (range is 1 .. 126) –127

REAL 63 –127

DOUBLE PRECISION 126 –127

Table 4 – 6 Datatype Exceptions to the SQLPR2 Procedure

Handling Null/Not
Null Datatypes

4 – 21Implementing Dynamic SQL Method 4

For every select–list column (not expression), DESCRIBE SELECT LIST
returns a null/not null indication in the datatype array (SELT) of the
select descriptor. If the Jth select–list column is constrained to be not
null, the high–order bit of SELT(J) is clear; otherwise, it is set.

Before using the datatype in an OPEN or FETCH statement, if the null
status bit is set, you must clear it. Never set the bit.

You can use the library subroutine SQLNUL to find out if a column
allows nulls, and to clear the datatype’s null status bit. You call
SQLNUL using the syntax

 CALL SQLNUL (VALTYP, TYPCODE, NULSTAT)

where:

Is a 2–byte integer variable that stores the datatype
code of a select–list column.

Is a 2–byte integer variable that returns the
datatype code of the select–list column with the
high–order bit cleared.

Is an integer variable that returns the null status of
the select–list column. 1 means the column allows
nulls; 0 means it does not.

The following example shows how to use SQLNUL:

* Declare variable for subroutine call.

 INTEGER*2 DATYPE

 INTEGER NULLOK

 DO 1500 J = 1, SELN

* Find out if column is NOT NULL, and

* clear high–order bit.

 CALL SQLNUL (SELT(J), DATYPE, NULLOK)

 SELT(J) = DATYPE

* If NULLOK equals 1, nulls are allowed.

 ...

 1500 CONTINUE

 ...

The first argument in the subroutine is the Jth element of the SELT
datatype array before its null/not null bit is cleared. Though some
systems let you use SELT(J) as the second argument too, it is poor
programming practice to use the same variable as multiple arguments.

VALTYP

TYPCODE

NULSTAT

4 – 22 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

The Basic Steps

Method 4 can be used to process any dynamic SQL statement. In the
example on page 4 – 38, a query is processed so that you can see how
both input and output host variables are handled. Again, the arbitrary
SQLDA file names, descriptor names, and data buffer names given
earlier are used.

To process the dynamic query, our example program takes the
following steps:

1. Declare a host string in the Declare Section to hold the query text.

2. Declare select and bind descriptors.

3. Set the maximum number of select–list items and placeholders
that can be DESCRIBEd.

4. Initialize the select and bind descriptors.

5. Store the query text in the host string.

6. PREPARE the query from the host string.

7. DECLARE a cursor FOR the query.

8. DESCRIBE the bind variables INTO the bind descriptor.

9. Reset the number of placeholders to the number actually found
by the DESCRIBE command.

10. Get values for the bind variables found by DESCRIBE.

11. OPEN the cursor USING the bind descriptor.

12. DESCRIBE the select list INTO the select descriptor.

13. Reset the number of select–list items to the number actually
found by the DESCRIBE command.

14. Reset the length and datatype of each select–list item for
display purposes.

15. FETCH a row from the database INTO data buffers using the
select descriptor.

16. Process the select–list values returned by FETCH.

17. CLOSE the cursor when there are no more rows to FETCH.

Note: If the dynamic SQL statement is not a query or contains
a known number of select–list items or placeholders, then some
of the above steps are unnecessary.

4 – 23Implementing Dynamic SQL Method 4

A Closer Look at Each Step

This section discusses each step in more detail. Also, at the end of this
chapter is a full–length program illustrating Method 4.

With Method 4, you use the following sequence of embedded
SQL statements:

EXEC SQL

 PREPARE <statement_name>

 FROM {:<host_string>|<string_literal>}

EXEC SQL DECLARE <cursor_name> CURSOR FOR <statement_name>

EXEC SQL

 DESCRIBE BIND VARIABLES FOR <statement_name>

 INTO <bind_descriptor_name>

EXEC SQL

 OPEN <cursor_name>

 [USING DESCRIPTOR <bind_descriptor_name>]

EXEC SQL

 DESCRIBE [SELECT LIST FOR] <statement_name>

 INTO <select_descriptor_name>

EXEC SQL

 FETCH <cursor_name>

 USING DESCRIPTOR <select_descriptor_name>

EXEC SQL CLOSE <cursor_name>

If the number of select–list items in a dynamic query is known, you
can omit DESCRIBE SELECT LIST and use the following Method 3
FETCH statement:

EXEC SQL FETCH <cursor_name> INTO <host_variable_list>

If the number of placeholders for bind variables in a dynamic SQL
statement is known, you can omit DESCRIBE BIND VARIABLES and
use the following Method 3 OPEN statement:

EXEC SQL OPEN <cursor_name> [USING <host_variable_list>]

Next, you see how these statements allow your host program to accept
and process a dynamic SQL statement using descriptors.

Note: Several figures accompany the following discussion. To
avoid cluttering the figures, it was necessary to confine
descriptor arrays to 3 elements and to limit the maximum
length of names and values to 5 and 10 characters, respectively.

Declare a Host String

Declare the SQLDAs

Set the Maximum
Number to DESCRIBE

4 – 24 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Your program needs a host variable to store the text of the dynamic
SQL statement. The host variable (SELSTM in our example) must be
declared as a character string.

 EXEC SQL BEGIN DECLARE SECTION

 ...

 CHARACTER*120 SELSTM

 EXEC SQL END DECLARE SECTION

Because the query in our example might contain an unknown number
of select–list items or placeholders, you must declare select and bind
descriptors. Instead of hard coding the SQLDAs, you use the
INCLUDE statement to copy them into your program, as follows:

 EXEC SQL INCLUDE SELDSC

 EXEC SQL INCLUDE BNDDSC

Next, you set the maximum number of select–list items or placeholders
that can be DESCRIBEd, as follows:

SELN = 3

BNDN = 3

Initialize the
Descriptors

4 – 25Implementing Dynamic SQL Method 4

You must initialize several descriptor variables; some require the
library subroutine SQLADR. In our example, you store the maximum
lengths of name buffers in the M and Y arrays, and use SQLADR to
store the addresses of value and name buffers in the V, S, I, and
X arrays:

* Initialize select descriptor arrays.

* Store addresses of select–list value and name

* buffers in SELV and SELS, addresses of indicator

* value buffers in SELI, and maximum length of

* select–list name buffers in SELM.

 DO 100 J = 1, SELN

 CALL SQLADR (SELVB(1, J), SELV(J))

 CALL SQLADR (SELSB(1, J), SELS(J))

 CALL SQLADR (SELIV(J), SELI(J))

 SELM(J) = 5

 100 CONTINUE

* Initialize bind descriptor arrays.

* Store addresses of bind–variable value and name

* buffers in BNDV and BNDS, addresses of indicator

* value and name buffers in BNDI and BNDX, and maximum

* lengths of placeholder and indicator name buffers in

* BNDM and BNDY.

 DO 200 J = 1, BNDN

 CALL SQLADR (BNDVB(1, J), BNDV(J))

 CALL SQLADR (BNDSB(1, J), BNDS(J))

 CALL SQLADR (BNDIV(J), BNDI(J))

 CALL SQLADR (BNDXB(1, J), BNDX(J))

 BNDM(J) = 5

 BNDY(J) = 5

 200 CONTINUE

 ...

Figure 4 – 3 and Figure 4 – 4 represent the resulting descriptors.

4 – 26 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

SELN

SELF

SELS

SELM

SELC

SELI

SELV

SELL

SELT

address of SELSB(1)

address of SELSB(2)

address of SELSB(3)

address of SELIV(1)

address of SELIV(2)

address of SELIV(3)

address of SELVB(1)

address of SELVB(2)

address of SELVB (3)

Data Buffers

SELIV array values of indicators:

1 2 3 4 5

1

2

3

SELSB array for names of select–list items:

3

1

2

3

1

2

3

5

5

5

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1 2 3 4 5 6 7 8 9 10

SELVB array for values of select–list items:

1

2

3

Figure 4 – 3 Initialized Select Descriptor

4 – 27Implementing Dynamic SQL Method 4

BNDN

BNDF

BNDS

BNDM

BNDC

BNDI

address of BNDSB(1)

address of BNDSB(2)

address of BNDSB(3)

address of BNDIV(1)

address of BNDIV(2)

address of BNDIV(3)

Data Buffers

BNDIV array for values of indicators:

1 2 3 4 5 6 7 8 9 10

1

2

3

BNDVB array for values of bind variables:

3

1

2

3

1

2

3

1

2

3

1

2

3

BNDX

BNDY

BNDZ

address of BNDXB(1)

address of BNDXB(2)

address of BNDXB(3)

BNDBS array for names of placeholders:

1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

BNDV

BNDL

BNDT

address of BNDVB(1)

address of BNDVB(2)

address of BNDVB(3)

1

2

3

1

2

3

5

5

5

1

2

3

BNDXB array for names of indicators:

1

2

3

1 2 3 4 5

1 2 3 4 5

1

2

3

Figure 4 – 4 Initialized Bind Descriptor

Store the Query Text in
the Host String

PREPARE the Query
from the Host String

DECLARE a Cursor

DESCRIBE the Bind
Variables

4 – 28 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Continuing our example, you prompt the user for a SQL statement,
then store the input string in SELSTM as follows:

 WRITE (*, 1900)

 1900 FORMAT (’ Enter query: ’)

 READ (*, 2000) SELSTM

 2000 FORMAT (A120)

We assume the user entered the following string:

SELECT ENAME, EMPNO, COMM FROM EMP WHERE COMM < :BONUS

PREPARE parses the SQL statement and gives it a name. In our
example, PREPARE parses the host string SELSTM and gives it the
name DYNSTMT, as follows:

 EXEC SQL PREPARE DYNSTMT FROM :SELSTM

DECLARE CURSOR defines a cursor by giving it a name and
associating it with a specific SELECT statement.

To declare a cursor for static queries, you use the following syntax:

 EXEC SQL DECLARE cursor_name CURSOR FOR SELECT ...

To declare a cursor for dynamic queries, you substitute the statement
name given to the dynamic query by PREPARE for the static query.
In our example, DECLARE CURSOR defines a cursor named EMPCUR
and associates it with DYNSTMT, as follows:

 EXEC SQL DECLARE EMPCUR CURSOR FOR DYNSTMT

Note: You must declare a cursor for all dynamic SQL
statements, not just queries. With non–queries, OPENing the
cursor executes the dynamic SQL statement.

DESCRIBE BIND VARIABLES puts descriptions of bind variables into
a bind descriptor. In our example, DESCRIBE readies BND as follows:

 EXEC SQL DESCRIBE BIND VARIABLES FOR DYNSTMT INTO BND

Note that BND must not be prefixed with a colon.

The DESCRIBE BIND VARIABLES statement must follow the
PREPARE statement but precede the OPEN statement.

Figure 4 – 5 shows the bind descriptor in our example after the
DESCRIBE. Notice that DESCRIBE has set BNDF to the actual number
of placeholders found in the processed SQL statement.

4 – 29Implementing Dynamic SQL Method 4

set by DESCRIBE

BNDN

BNDF

BNDS

BNDM

BNDC

BNDI

address of BNDSB(1)

address of BNDSB(2)

address of BNDSB(3)

address of BNDIV(1)

address of BNDIV(2)

address of BNDIV(3)

Data Buffers

BNDIV array for values of indicators:

1 2 3 4 5 6 7 8 9 10

1

2

3

BNDVB array for values of bind variables:

3

1

2

3

1

2

3

5

5

5

1

2

3

1

2

3

5

0

0

BNDX

BNDY

BNDZ

address of BNDXB(1)

address of BNDXB(2)

address of BNDXB(3)

BNDBS array for names of placeholders:

B O N U S1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

0

0

0

BNDV

BNDL

BNDT

address of BNDVB(1)

address of BNDVB(2)

address of BNDVB(3)

1

2

3

1

2

3

1

2

3

0

0

0

BNDXB array for names of indicators:

1

2

3

1 2 3 4 5

1 2 3 4 5

1

2

3

1

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

Figure 4 – 5 Bind Descriptor after the DESCRIBE

Reset Number of
Placeholders

Get Values for
Bind Variables

4 – 30 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Next, you must reset the maximum number of placeholders to the
number actually found by DESCRIBE, as follows:

BNDN = BNDF

Your program must get values for the bind variables in the SQL
statement. How the program gets the values is up to you. For example,
they can be hard coded, read from a file, or entered interactively.

In our example, a value must be assigned to the bind variable that
replaces the placeholder BONUS in the query’s WHERE clause. Prompt
the user for the value, then process it as follows:

 CHARACTER*1 COLON

 COLON = ’:’

* BNDN was set equal to BNDF after the DESCRIBE.

 DO 500 J = 1, BNDN

* Prompt user for value of bind variable.

 WRITE (*, 10200) (BNDSB(K,J), K = 1, BNDC(J)), COLON

10200 FORMAT (1X, ’Enter value for ’, 6A1)

* Get value for bind variable.

 READ (*, 10300) (BNDVB(K,J), K = 1, 10)

10300 FORMAT (10A1)

* Find length of value by scanning backward for first

* non–blank character.

 DO 200 K = 1, 10

 IF (BNDVB(BNDL(J),J) .NE. ’ ’) GOTO 300

 BNDL(J) = BNDL(J) – 1

 200 CONTINUE

* Set datatype of bind variable to VARCHAR2 (code 1), and set

* indicator variable to NOT NULL.

 300 BNDT(J) = 1

 BNDIV(J) = 0

 500 CONTINUE

Assuming that the user supplied a value of 625 for BONUS,
Figure 4 – 6 shows the resulting bind descriptor.

4 – 31Implementing Dynamic SQL Method 4

reset by programBNDN

BNDF

BNDS

BNDM

BNDC

BNDI

address of BNDSB(1)

address of BNDSB(2)

address of BNDSB(3)

address of BNDIV(1)

address of BNDIV(2)

address of BNDIV(3)

Data Buffers

BNDIV array for values of indicators:

6 2 5

1 2 3 4 5 6 7 8 9 10

1

2

3

0

BNDVB array for values of bind variables:

1

1

2

3

1

2

3

5

5

5

1

2

3

1

2

3

5

0

0

BNDX

BNDY

BNDZ

address of BNDXB(1)

address of BNDXB(2)

address of BNDXB(3)

BNDBS array for names of placeholders:

B O N U S1

2

3

1

2

3

1

2

3

5

5

5

1

2

3

0

0

0

BNDV

BNDL

BNDT

address of BNDVB(1)

address of BNDVB(2)

address of BNDVB(3)

1

2

3

1

2

3

3

1

2

3

1

0

0

BNDXB array for names of indicators:

1

2

3

1 2 3 4 5

1 2 3 4 5

1

2

3

1

set by program

set by program

set by program

set by program

Figure 4 – 6 Bind Descriptor After Assigning Values

OPEN the Cursor

DESCRIBE the
Select List

4 – 32 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

The OPEN statement for dynamic queries is similar to the one for static
queries, except the cursor is associated with a bind descriptor. Values
determined at run time and stored in buffers addressed by elements of
the bind descriptor arrays are used to evaluate the SQL statement. With
queries, the values are also used to identify the active set.

In our example, OPEN associates EMPCUR with BND as follows:

 EXEC SQL OPEN EMPCUR USING DESCRIPTOR BND

Remember, BND must not be prefixed with a colon.

Then, OPEN executes the SQL statement. With queries, OPEN also
identifies the active set and positions the cursor at the first row.

If the dynamic SQL statement is a query, the DESCRIBE SELECT LIST
statement must follow the OPEN statement and must precede the
FETCH statement.

DESCRIBE SELECT LIST puts descriptions of select–list items into a
select descriptor. In our example, DESCRIBE readies SEL as follows:

 EXEC SQL DESCRIBE SELECT LIST FOR DYNSTMT INTO SEL

Accessing the Oracle data dictionary, DESCRIBE sets the length and
datatype of each select–list value.

Figure 4 – 7 shows the select descriptor in our example after the
DESCRIBE. Notice that DESCRIBE has set SELF to the actual number
of items found in the query select list. If the SQL statement is not a
query, SELF is set to zero.

Also notice that the NUMBER lengths are not usable yet. For columns
defined as NUMBER, you must use the library subroutine SQLPRC to
extract precision and scale. See the section “Coercing Datatypes” on
page 4 – 18.

4 – 33Implementing Dynamic SQL Method 4

SELN

SELF

SELS

SELM

SELC

SELI

SELV

SELL

SELT

address of SELSB(1)

address of SELSB(2)

address of SELSB(3)

address of SELIV(1)

address of SELIV(2)

address of SELIV(3)

address of SELVB(1)

address of SELVB(2)

address of SELVB(3)

Data Buffers

SELIV array values of indicators:

E

E

C

N

M

O

A

P

M

M

N

M

E

O

1 2 3 4 5

1

2

3

SELSB array for names of select–list items:

3

3

1

2

3

1

2

3

5

5

5

1

2

3

1

2

3

1

2

3

10

#

#

1

2

3

1

2

2

1

2

3

5

5

4

1 2 3 4 5 6 7 8 9 10

SELVB array for values of select–list items:

1

2

3

set by DESCRIBE

1

2

3

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

set by DESCRIBE

= binary number

Figure 4 – 7 Select Descriptor after the DESCRIBE

Reset Number of
Select–List Items

Reset Length/Datatype
of Each Select–List
Item

4 – 34 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Next, you must reset the maximum number of select–list items to the
number actually found by DESCRIBE, as follows:

 SELN = SELF

In our example, before fetching the select–list values, you reset some
elements in the length and datatype arrays for display purposes.

 DO 500 J = 1, SELN

* Clear null/not null bit.

 CALL SQLNUL (SELT(J), DATYPE, NULLOK)

 SELT(J) = DATYPE

* If datatype is NUMBER, extract precision and scale.

 IF (SELT(J) .NE. 2) GOTO 400

 CALL SQLPRC (SELL(J), PREC, SCALE)

* Allow for maximum precision.

 IF (PREC .NE. 0) GOTO 200

* Although maximum precision is 38, we use 10 because

* that is our buffer size.

 SELL(J) = 10

 GOTO 400

 200 CONTINUE

 SELL(J) = PREC

* Allow for possible sign and decimal point.

 SELL(J) = SELL(J) + 2

* Adjust length if it exceeds size of buffer. This

* applies to character as well as numeric data.

 400 IF (SELL(J) .GT. 10) SELL(J) = 10

* Coerce datatype to VARCHAR2.

 SELT(J) = 1

 500 CONTINUE

Figure 4 – 8 shows the resulting select descriptor. Notice that the
NUMBER lengths are now usable and that all the datatypes are
VARCHAR2. The lengths in SELL(2) and SELL(3) are 6 and 9 because
we increased the DESCRIBEd lengths of 4 and 7 by two to allow for a
possible sign and decimal point.

Note: When the datatype code returned by DESCRIBE is 2
(NUMBER), it must be coerced to a compatible FORTRAN
type. The FORTRAN type need not be CHARACTER. For
example, you can coerce a NUMBER to a REAL by setting
SELT(J) to 4, and SELL(J) to the length of REALs on your
system.

4 – 35Implementing Dynamic SQL Method 4

SELN

SELF

SELS

SELM

SELC

SELI

SELV

SELL

SELT

address of SELSB(1)

address of SELSB(2)

address of SELSB(3)

address of SELIV(1)

address of SELIV(2)

address of SELIV(3)

address of SELVB(1)

address of SELVB(2)

address of SELVB(3)

Data Buffers

SELIV array values of indicators:

E

E

C

N

M

O

A

P

M

M

N

M

E

O

1 2 3 4 5

1

2

3

SELSB array for names of select–list items:

3

3

1

2

3

1

2

3

5

5

5

1

2

3

1

2

3

1

2

3

10

6

9

1

2

3

1

1

1

1

2

3

5

5

4

1 2 3 4 5 6 7 8 9 10

SELVB array for values of select–list items:

1

2

3

reset by program

1

2

3

reset by program

reset by program

Figure 4 – 8 Select Descriptor before the FETCH

FETCH Rows from
the Active Set

Get and Process
Select–List Values

CLOSE the Cursor

4 – 36 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

FETCH returns a row from the active set, stores select–list values in the
data buffers, and advances the cursor to the next row in the active set.
If there are no more rows, FETCH sets SQLCDE in the SQLCA, the
SQLCODE variable, or the SQLSTATE variable to the “no data found”
Oracle error code. In the following example, FETCH returns the values
of columns ENAME, EMPNO, and COMM to SEL:

 EXEC SQL FETCH EMPCUR USING DESCRIPTOR SEL

Figure 4 – 9 shows the select descriptor in our example after the
FETCH. Notice that Oracle has stored the select–list and indicator
values in the data buffers addressed by the elements of SELV and SELI.

For output buffers of datatype 1, Oracle, using the lengths stored in
SELL, left–justifies CHAR or VARCHAR2 data, and right–justifies
NUMBER data.

The value ’MARTIN’ was retrieved from a VARCHAR2(10) column in
the EMP table. Using the length in SELL(1), Oracle left–justifies the
value in a 10–byte field, filling the buffer.

The value 7654 was retrieved from a NUMBER(4) column and coerced
to “7654.” However, the length in SELL(2) was increased by two to
allow for a possible sign and decimal point, so Oracle right–justifies the
value in a 6–byte field.

The value 482.50 was retrieved from a NUMBER(7,2) column and
coerced to “482.50.” Again, the length in SELL(3) was increased by two,
so Oracle right–justifies the value in a 9–byte field.

After the FETCH, your program can process the select–list values
returned by FETCH. In our example, values for columns ENAME,
EMPNO, and COMM are processed.

CLOSE disables the cursor. In our example, CLOSE disables EMPCUR
as follows:

 EXEC SQL CLOSE EMPCUR

4 – 37Implementing Dynamic SQL Method 4

SELN

SELF

SELS

SELM

SELC

SELI

SELV

SELL

SELT

address of SELSB(1)

address of SELSB(2)

address of SELSB(3)

address of SELIV(1)

address of SELIV(2)

address of SELIV(3)

address of SELVB(1)

address of SELVB(2)

address of SELVB(3)

Data Buffers

SELIV array values of indicators:

E

E

C

N

M

O

A

P

M

M

N

M

E

O

1 2 3 4 5

1

2

3

0

0

0

SELSB array for names of select–list items:

3

3

1

2

3

1

2

3

5

5

5

1

2

3

1

2

3

1

2

3

10

6

9

1

2

3

1

1

1

1

2

3

5

5

4

M A

7

R

6

T

5

4

I

4

8

1 2 3 4 5

N

2 . 5 0

6 7 8 9 10

SELVB array for values of select–list items:

1

2

3

1

2

3

set by FETCH

set by FETCH

Figure 4 – 9 Select Descriptor after the FETCH

4 – 38 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Using Host Arrays with Method 4

To use input or output host arrays with Method 4, you must use the
optional FOR clause to tell Oracle the size of your host array. For more
information about the FOR clause, see Chapter 9 of the Programmer’s
Guide to the Oracle Precompilers.

Set descriptor entries for the Jth select–list item or bind variable, but
instead of addressing a single data buffer, SELV(J) or BNDV(J)
addresses the first element of a data buffer array. Then use a FOR
clause in the EXECUTE or FETCH statement, as appropriate, to tell
Oracle the number of table elements you want to process.

This procedure is necessary, because Oracle has no other way of
knowing the size of your host ARRAY.

In the example below, an input host array is used to DELETE rows
from the EMP table. Note that EXECUTE can be used for non–queries
with Method 4.

* Use host arrays with Method 4.

 PROGRAM DYN4HA

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*20 UID

 CHARACTER*20 PWD

 CHARACTER*60 STMT

 INTEGER*4 SIZE

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 CHARACTER*10 NAMES(5)

 INTEGER*2 NUMBERS(5)

 INTEGER*2 DEPTS(5)

 EXEC SQL INCLUDE BNDDSC

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 UID = ’SCOTT’

 PWD = ’TIGER’

4 – 39Implementing Dynamic SQL Method 4

* Log on to Oracle.

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 WRITE (*, 10000)

10000 FORMAT (’ Connected to Oracle’)

 SIZE = 5

 STMT = ’INSERT INTO EMP (EMPNO, ENAME, DEPTNO)

 1 VALUES (:E, :N, :D)’

* Prepare and describe the SQL statement.

 EXEC SQL PREPARE S FROM :STMT

 BNDN = 3

 EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO BND

* Initialize bind descriptor items.

 BNDN = BNDF

 CALL SQLADR(NUMBERS(1), BNDV(1))

 BNDL(1) = 2

 BNDT(1) = 3

 BNDI(1) = 0

* %REF is used to pass the address of the data, not

* of the FORTRAN compiler–generated descriptor of

* CHARACTER variable NAMES. (See the section ”Using

* SQLADR” earlier in this chapter.)

 CALL SQLADR(%REF(NAMES(1)), BNDV(2))

 BNDL(2) = 10

 BNDT(2) = 1

 BNDI(2) = 0

 CALL SQLADR(DEPTS(1), BNDV(3))

 BNDL(3) = 2

 BNDT(3) = 3

 BNDI(3) = 0

 DO 110 I = 1, SIZE

 BNDM(I) = 0

 BNDY(I) = 0

 BNDX(I) = 0

 110 CONTINUE

4 – 40 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* Fill the data buffers. Normally, this data would

* be entered interactively by the user, or read from

* a file.

 NAMES(1) = ’TRUSDALE’

 NUMBERS(1) = 1014

 DEPTS(1) = 30

 NAMES(2) = ’WILKES’

 NUMBERS(2) = 1015

 DEPTS(2) = 30

 NAMES(3) = ’BERNSTEIN’

 NUMBERS(3) = 1016

 DEPTS(3) = 30

 NAMES(4) = ’FRAZIER’

 NUMBERS(4) = 1017

 DEPTS(4) = 30

 NAMES(5) = ’MCCOMB’

 NUMBERS(5) = 1018

 DEPTS(5) = 30

* Do the INSERT.

 WRITE (*, 10020)

10020 FORMAT(1X, ’Adding to Sales force ...’)

 EXEC SQL FOR :SIZE EXECUTE S USING DESCRIPTOR BND

 EXEC SQL COMMIT RELEASE

 GOTO 150

* Here if SQLERROR occurred.

 9000 CONTINUE

 WRITE (*, 10030) SQLEMC

10030 FORMAT (1X, 70A1)

 EXEC SQL WHENEVER SQLERROR CONTINUE

 EXEC SQL ROLLBACK RELEASE

* Here when ready to exit the program.

 150 CONTINUE

 STOP

 END

4 – 41Implementing Dynamic SQL Method 4

Sample Program 10: Dynamic SQL Method 4

This program shows the basic steps required to use dynamic SQL
Method 4. After logging on to Oracle, the program prompts the user
for a SQL statement, PREPAREs the statement, DECLAREs a cursor,
checks for any bind variables using DESCRIBE BIND, OPENs the
cursor, and DESCRIBEs any select–list items. If the input SQL
statement is a query, the program FETCHes each row of data, then
CLOSEs the cursor. Notice that a VARCHAR is used to store the
dynamic SQL statement.

 PROGRAM DYN4

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*20 UID

 CHARACTER*20 PWD

 VARCHAR *1024 STMT, STMTL, STMTA

 EXEC SQL END DECLARE SECTION

 CHARACTER*1 ANS

 EXEC SQL INCLUDE SQLCA

 EXEC SQL INCLUDE BNDDSC

 EXEC SQL INCLUDE SELDSC

* INITIALIZE.

 CALL INIT

* LOG ON TO ORACLE.

10 PRINT *, ’ENTER USERNAME:’

 READ ’(20A)’, UID

 PRINT *, ’ENTER PASSWORD:’

 READ ’(20A)’, PWD

 EXEC SQL WHENEVER SQLERROR GOTO 8500

 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 PRINT *,

 1’TO EXIT, TYPE NULL SQL STATEMENT (;) AT DSQL PROMPT.’

* GET SQL STATEMENT FROM USER.

100 CONTINUE

 CALL GETSQL (STMTA, STMTL)

 IF (STMTL .EQ. 0) GOTO 9500

* PREPARE THE SQL STATEMENT, AND DECLARE A CURSOR FOR IT.

 EXEC SQL PREPARE S FROM :STMT

 EXEC SQL DECLARE C CURSOR FOR S

4 – 42 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* DESCRIBE THE BIND VARIABLES. FIRST, INITIALIZE BNDN TO

* THE MAXIMUM NUMBER OF VARIABLES THAT CAN BE DESCRIBED.

 BNDN = 20

 EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO BND

 IF (BNDF .GE. 0) GOTO 125

 PRINT *, ’TOO MANY BIND VARIABLE – TRY AGAIN...’

 GOTO 300

* HAVE DESCRIBED BIND VARIABLES. GET VALUES FOR ANY

* BIND VARIABLES.

125 BNDN = BNDF

 IF (BNDN .GT. 0) CALL GETBND

* OPEN CURSOR TO EXECUTE THE SQL STATEMENT.

 EXEC SQL OPEN C USING DESCRIPTOR BND

* DESCRIBE THE SELECT–LIST ITEMS. FIRST, INITIALIZE SELN TO

* THE MAXIMUM NUMBER OF ITEMS THAT CAN BE DESCRIBED.

 SELN = 20

 EXEC SQL DESCRIBE SELECT LIST FOR S INTO SEL

 IF (SELF .GE. 0) GOTO 150

 PRINT *, ’TOO MANY SELECT–LIST ITEMS. TRY AGAIN...’

 GOTO 300

* HAVE DESCRIBED SELECT LIST. IF THIS IS A SELECT STATEMENT,

* RESET LENGTHS AND DATATYPES OF FETCHED VALUES, AND OUTPUT

* COLUMN HEADINGS.

150 SELN = SELF

 IF (SELN .EQ. 0) GO TO 300

 CALL PRCOLH

* FETCH EACH ROW, AND PRINT IT.

 EXEC SQL WHENEVER NOT FOUND GOTO 300

200 EXEC SQL FETCH C USING DESCRIPTOR SEL

 CALL PRROW

 GOTO 200

* THERE ARE NO MORE ROWS (ROW NOT FOUND), OR NON–SELECT

* STATEMENT COMPLETED.

300 EXEC SQL CLOSE C

 IF (SELN .EQ. 0) GOTO 310

* THERE WERE SOME SELECT–LIST ITEMS, SO SQL STATEMENT

* MUST BE A SELECT.

 PRINT *, SQLERD(3), ’ ROW(S) SELECTED.’

 GOTO 100

4 – 43Implementing Dynamic SQL Method 4

* THERE WERE NO SELECT–LIST ITEMS, SO SQL STATEMENT

* CANNOT BE A SELECT.

310 PRINT *, SQLERD(3), ’ ROW(S) PROCESSED.’

 GOTO 100

* A SQL EXECUTION ERROR (SQLERROR) OCCURRED.

* CONNECT ERROR

8500 PRINT ’(70A1)’, SQLEMC

 PRINT *, ’TRY AGAIN (Y OR N)?’

 READ ’(A1)’, ANS

 IF ((ANS .EQ. ’Y’) .OR. (ANS .EQ. ’Y’)) GOTO 10

 GOTO 9500

* OTHER SQL ERRORS

9000 PRINT ’(70A1)’, SQLEMC

 GOTO 100

* NOW READY TO EXIT PROGRAM.

9500 EXEC SQL WHENEVER SQLERROR CONTINUE

 EXEC SQL COMMIT WORK RELEASE

 PRINT *, ’HAVE A GOOD DAY.’

9600 CONTINUE

 END

* NAME: INIT (INITIALIZE)

* FUNCTION: INITIALIZES THE BIND AND SELECT DESCRIPTORS.

* RETURNS: NONE

 SUBROUTINE INIT

 EXEC SQL INCLUDE BNDDSC

 EXEC SQL INCLUDE SELDSC

* INITIALIZE BIND DESCRIPTOR ITEMS.

 DO 100 I = 1, 20

 CALL SQLADR (BNDSB(1,I), BNDS(I))

 CALL SQLADR (BNDVB(1,I), BNDV(I))

 CALL SQLADR (BNDXB(1,I), BNDX(I))

 CALL SQLADR (BNDIV(I), BNDI(I))

 BNDM(I) = 30

 BNDY(I) = 30

100 CONTINUE

4 – 44 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* INITIALIZE SELECT DESCRIPTOR ITEMS.

 DO 200 I = 1, 20

 CALL SQLADR (SELSB(1,I), SELS(I))

 CALL SQLADR (SELVB(1,I), SELV(I))

 CALL SQLADR (SELIV(I), SELI(I))

 SELM(I) = 30

200 CONTINUE

 RETURN

 END

* NAME: GETSQL (GET SQL STATEMENT FROM TERMINAL)

* FUNCTION: ASKS THE USER TO TYPE IN A SQL STATEMENT.

* RETURNS: SARR IS A STRING (LOGICAL*1) CONTAINING

* THE SQL STATEMENT. SLEN IS THE NUMBER OF

* CHARACTERS IN SARR. IF SLEN IS 0, THEN NO

* SQL STATEMENT WAS ENTERED (DSQL USES THIS

* TO INDICATE THAT USER WANTS TO LOG OFF).

 SUBROUTINE GETSQL (SARR, SLEN)

 LOGICAL*1 SARR(1)

 INTEGER*2 SLEN

 LOGICAL*1 INP(80)

 INTEGER INPL

 INTEGER CNTLIN

 CNTLIN = 0

 SLEN = 0

 PRINT *, ’DSQL>’

50 READ ’(80A1)’, (INP(I), I = 1, 80)

* FIND LENGTH OF SQL STATEMENT BY SCANNING BACKWARD FOR

* FIRST NON–BLANK CHARACTER.

 INPL = 80

 DO 100 I = 1, 80

 IF (INP(INPL) .NE. ’ ’) GOTO 150

 INPL = INPL – 1

100 CONTINUE

* MOVE THIS PIECE OF THE SQL STATEMENT TO SQL STATEMENT

* BUFFER.

150 CONTINUE

 DO 200 I = 1, INPL

 SLEN = SLEN + 1

 IF (SLEN .GT. 1024) GOTO 1000

 SARR(SLEN) = INP(I)

200 CONTINUE

 IF (SARR(SLEN) .EQ. ’;’) GOTO 1000

4 – 45Implementing Dynamic SQL Method 4

* LINE NOT TERMINATED BY ’;’. REQUEST CONTINUED LINE.

 CNTLIN = CNTLIN + 1

 WRITE (*, 10300) CNTLIN

10300 FORMAT (’$’, I5, ’:’)

 SLEN = SLEN + 1

 IF (SLEN .GT. 1024) GOTO 1000

 SARR(SLEN) = ’ ’

 GOTO 50

1000 CONTINUE

 SLEN = SLEN – 1

 RETURN

 END

* NAME: PRCOLH (PRINT COLUMN HEADINGS)

* FUNCTION: RESETS LENGTH AND DATATYPE ARRAYS IN SELECT

* DESCRIPTOR, AND PRINTS COLUMN HEADINGS FOR

* SELECT–LIST ITEMS.

* NOTES: FOR EXAMPLE, GIVEN THE STATEMENT

*

* SELECT TNAME, TABTYPE FROM TAB

*

* AND ASSUMING TNAME COLUMN IS 30 CHARACTERS

* WIDE AND TABTYPE COLUMN IS 7 CHARACTERS WIDE,

* PRCOLH PRINTS:

*

* TNAME TABTYPE

* ––––––––––––––––––––––––––––– –––––––

 SUBROUTINE PRCOLH

 EXEC SQL INCLUDE SELDSC

 LOGICAL*1 LINE(132)

 INTEGER LINESZ

 INTEGER PREC, SCALE, NULLOK

 INTEGER*2 DATYPE

 PREC = 26

 SCALE = 0

 LINESZ = 132

 L = 0

 DO 500 I = 1, SELN

4 – 46 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* SQLPRC IS USED TO EXTRACT PRECISION AND SCALE FROM THE

* LENGTH (SELL(I)).

* SQLNUL IS USED TO RESET HIGH ORDER BIT OF THE DATATYPE

* AND TO CHECK IF THE COLUMN IS NOT NULL.

* CHAR DATATYPES HAVE LENGTH, BUT ZERO PRECISION AND

* SCALE. THE LENGTH IS THAT DEFINED AT CREATE TIME.

* NUMBER DATATYPES HAVE PRECISION AND SCALE IF DEFINED

* AT CREATE TIME. HOWEVER, IF THE COLUMN DEFINITION

* WAS JUST NUMBER, THE PRECISION AND SCALE ARE ZERO,

* SO WE DEFAULT THE COLUMN WIDTH TO 10.

* RIGHT JUSTIFY COLUMN HEADING FOR NUMBERS.

 CALL SQLNUL (SELT(I), DATYPE, NULLOK)

 SELT(I) = DATYPE

 IF (SELT(I) .NE. 2) GOTO 150

 CALL SQLPRC (SELL(I), PREC, SCALE)

* IF NO PRECISION, USE DEFAULT.

 IF (PREC .EQ. 0) PREC = 10

 SELL(I) = PREC

* ADD 2 FOR POSSIBLE SIGN AND DECIMAL POINT.

 SELL(I) = SELL(I) + 2

* BLANK–PAD COLUMN NAME TO RIGHT–JUSTIFY COLUMN HEADING.

 NBLANKS = SELL(I) – SELC(I)

 DO 130 J = 1, NBLANKS

 L = L + 1

 IF (L .GT. LINESZ – 1) GOTO 450

 LINE(L) = ’ ’

130 CONTINUE

 GOTO 190

* CHECK FOR LONG COLUMN, AND SET DATA BUFFER

* LENGTH TO 240.

150 IF (SELT(I) .NE. 8) GOTO 153

 SELL(I) = 240

 GOTO 190

* CHECK FOR LONG RAW COLUMN, AND SET DATA BUFFER

* LENGTH TO 240.

153 IF (SELT(I) .NE. 24) GOTO 155

 SELL(I) = 240

 GOTO 190

4 – 47Implementing Dynamic SQL Method 4

* CHECK FOR ROWID COLUMN, AND SET DATA BUFFER

* LENGTH TO 18 (DISPLAY LENGTH).

155 IF (SELT(I) .NE. 11) GOTO 160

 SELL(I) = 18

 GOTO 190

* CHECK FOR DATE COLUMN, AND SET DATA BUFFER LENGTH

* TO 9 (DEFAULT FORMAT IS DD–MON–YY).

160 IF (SELT(I) .NE. 12) GOTO 165

 SELL(I) = 9

 GOTO 190

* CHECK FOR RAW COLUMN, AND ADD 1 TO DATA BUFFER LENGTH.

165 IF (SELT(I) .NE. 23) GOTO 190

 SELL(I) = SELL(I) + 1

* COPY COLUMN NAME TO OUTPUT LINE.

190 DO 200 J = 1, MIN (SELC(I), SELL(I))

 L = L + 1

 IF (L .GT. LINESZ – 1) GOTO 450

 LINE(L) = SELSB(J, I)

200 CONTINUE

* PAD COLUMN NAME WITH BLANKS PLUS 1 FOR INTER–COLUMN

* SPACING. NOTE THAT NUMBER COLUMNS ARE RIGHT–JUSTIFIED

* SO JUST ONE BLANK IS NEEDED FOR INTER–COLUMN SPACING.

 NBLANKS = 1

 IF (SELT(I) .EQ. 2) GOTO 210

 NBLANKS = MAX (SELL(I) – SELC(I) + 1, 1)

210 DO 300 J = 1, NBLANKS

 L = L + 1

 IF (L .GT. LINESZ – 1) GOTO 450

 LINE(L) = ’ ’

300 CONTINUE

* EXCEPT FOR LONG RAW COLUMNS, COERCE COLUMN

* DATATYPE TO VARCHAR2 TO SIMPLIFY PRINTING ROW.

450 IF (SELT(I) .NE. 24) SELT(I) = 1

500 CONTINUE

* NOW READY TO PRINT THE HEADING LINE.

1000 WRITE (*, 10100) (LINE(I), I = 1, L)

10100 FORMAT (/, 1X, 132A1)

4 – 48 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* UNDERLINE THE COLUMN HEADINGS.

 L = 0

 DO 1500 I = 1, SELN

 NUNDER = SELL(I)

 DO 1250 J = 1, NUNDER

 L = L + 1

 IF (L .GT. LINESZ – 1) GOTO 2000

 LINE(L) = ’–’

1250 CONTINUE

 L = L + 1

 IF (L .GT. LINESZ – 1) GOTO 2000

 LINE(L) = ’ ’

1500 CONTINUE

* NOW READY TO PRINT THE UNDERLINE.

2000 WRITE (*, 10200) (LINE(I), I = 1, L)

10200 FORMAT (1X, 132A1)

 RETURN

 END

* NAME: PRROW (PRINT ROW)

* FUNCTION: PRINTS A SINGLE FETCHED ROW.

 SUBROUTINE PRROW

 EXEC SQL INCLUDE SELDSC

 LOGICAL*1 LINE(132)

 INTEGER LINESZ

 LINESZ = 132

 L = 0

 DO 500 I = 1, SELN

* CHECK FOR NULL COLUMN. IF NULL, BLANK–PAD COLUMN.

 IF (SELIV(I) .GE. 0) GOTO 100

 DO 90 J = 1, SELL(I)

 L = L + 1

 IF (L .GT. LINESZ – 1) GOTO 1000

 LINE(L) = ’ ’

90 CONTINUE

 GOTO 250

4 – 49Implementing Dynamic SQL Method 4

* COLUMN DATATYPE IS VARCHAR2. COPY COLUMN VALUE TO

* OUTPUT LINE.

100 CONTINUE

 DO 200 J = 1, SELL(I)

 L = L + 1

 IF (L .GT. LINESZ – 1) GOTO 1000

 LINE(L) = SELVB(J, I)

200 CONTINUE

* APPEND ONE BLANK FOR INTER–COLUMN SPACING.

250 CONTINUE

 L = L + 1

 IF (L .GT. LINESZ – 1) GOTO 1000

 LINE(L) = ’ ’

500 CONTINUE

* NOW READY TO PRINT THE LINE.

1000 WRITE (*, 10100) (LINE(I), I = 1, L)

10100 FORMAT (1X, 132A1)

 RETURN

 END

* NAME: GETBND (GET BIND VARIABLES)

* FUNCTION: USING THE DESCRIPTOR BND, SET UP BY

* THE DESCRIBE BIND VARIABLES STATEMENT,

* GETBND PROMPTS THE USER FOR VALUES OF BIND

* VARIABLES.

* RETURNS: BNDVB AND BNDL ARRAYS SET UP WITH VALUES

* FOR BIND VARIABLES.

 SUBROUTINE GETBND

 EXEC SQL INCLUDE BNDDSC

 CHARACTER*1 CLN, SPC

 CLN = ’:’

 SPC = ’ ’

 WRITE (*, 10100)

10100 FORMAT (/, ’PLEASE ENTER VALUES OF BIND VARIABLES.’, /)

 DO 500 I = 1, BNDN

 WRITE (*, 10200)(BNDSB(J, I), J = 1, BNDC(I)), CLN, SPC

10200 FORMAT (’ENTER VALUE FOR ’, 32A1)

* GET VALUE FOR BIND VARIABLE.

 READ ’(80A1)’, (BNDVB(J, I), J = 1, 80)

4 – 50 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* FIND LENGTH OF VALUE BY SCANNING BACKWARD

* FOR FIRST NON–BLANK CHARACTER.

 BNDL(I) = 80

 DO 200 J = 1, 80

 IF (BNDVB(BNDL(I), I) .NE. ’ ’) GOTO 300

 BNDL(I) = BNDL(I) – 1

200 CONTINUE

* SET DATATYPE OF BIND VARIABLE TO VARCHAR2, AND SET

* INDICATOR VARIABLE TO NOT NULL.

300 CONTINUE

 BNDT(I) = 1

 BNDIV(I) = 0

500 CONTINUE

 RETURN

 END

A P P E N D I X

A
S

A – 1Operating System Dependencies

Operating System
Dependencies

ome details of Pro*FORTRAN programming vary from one system
to another. This appendix is a collection all system–specific issues
regarding Pro*FORTRAN. References are provided, where applicable,
to other sources in your document set.

Case–sensitivity

Coding Area

Continuation Lines

A – 2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

System–Specific References in Chapter 1

The references in this section appear in Chapter 1 using similar order
and headings.

Though the standard FORTRAN character set excludes lowercase alpha
characters, many compilers allow them in identifiers, comments, and
quoted literals.

The Pro*FORTRAN Precompiler is not case–sensitive; however, some
compilers are. If your compiler is case–sensitive, you must declare and
reference variables in the same uppercase/lowercase format. Check
your FORTRAN compiler user’s guide.

You must code EXEC SQL and EXEC ORACLE statements in columns
7 through 72 (columns 73 through 80 are ignored). The other columns
are used for the following purposes: column 1 indicates comment lines,
columns 1 through 5 contain an optional statement label, and column 6
indicates continuation lines.

On some systems, terminal format is supported; that is, entry is not
restricted to certain columns. Check your Oracle system–specific
documentation.

No more than one statement can appear on a single line.

You can continue SQL statements from one line to the next according to
the rules of FORTRAN. To code a continuation line, place a non–zero,
non–blank character in column 6. In this manual, digits are used as
continuation characters, as the following example shows:

* Retrieve employee data.

 EXEC SQL SELECT EMPNO, ENAME, JOB, SAL

 1 INTO :MYEMPNO, :MYENAME, :MYJOB, :MYSAL

 2 FROM EMP

 3 WHERE DEPTNO = :MYDEPTNO

You can also continue string literals from one line to the next. Code the
literal through column 72, then, on the next line, code a continuation
character and the rest of the literal. An example follows:

* Execute dynamic SQL statement.

 EXEC SQL EXECUTE IMMEDIATE ’UPDATE EMP SET COMM = 500 WHERE

 1 DEPTNO=20’

Most FORTRAN implementations allow up to 19 continuation lines.
Check your FORTRAN language user’s guide.

FORTRAN Versions

Host Variables

Declaring

Naming

INCLUDE Statements

A – 3Operating System Dependencies

The Pro*FORTRAN Precompiler supports the standard implementation
of FORTRAN for your operating system (usually FORTRAN 77). Check
your Oracle system–specific documentation.

How you declare and name host variables depends on which
FORTRAN compiler you use. Check your FORTRAN user’s guide for
details about declaring and naming host variables.

Declare host variables in the Declare Section according to FORTRAN
rules, specifying a FORTRAN datatype supported by Oracle.
Table 1 – 3 on page 1 – 10 shows the FORTRAN datatypes and
pseudotypes you can specify in the Declare Section. However, your
FORTRAN implementation might not include all of them.

The host datatypes and pseudotypes you can specify in the Declare
Section are shown in the table on page 1–10. However, your
implementation might not include all of them. Check your FORTRAN
language user’s guide.

The size of FORTRAN numeric types is implementation–dependent.
The sizes given in the table are typical but not universal. Check your
FORTRAN language user’s guide.

Host variable names must consist only of letters and digits, and must
begin with a letter. They can be any length, but only the first 31
characters are significant. Some compilers prohibit variable names
longer than six characters, or ignore characters after the sixth. Check
your FORTRAN compiler user’s guide.

You can INCLUDE any file. When you precompile your Pro*FORTRAN
program, each EXEC SQL INCLUDE statement is replaced by a copy of
the file named in the statement.

If your system uses file extensions but you do not specify one, the
Pro*FORTRAN Precompiler assumes the default extension for source
files (usually FOR or F). The default extension is system–dependent.
Check your Oracle system–specific documentation.

If your system uses directories, you can set a directory path for
INCLUDEd files by specifying the precompiler option INCLUDE=path.
You must use INCLUDE to specify a directory path for nonstandard
files unless they are stored in the current directory. The syntax for
specifying a directory path is system–specific. Check your Oracle
system–specific documentation.

MAXLITERAL Default

Sample Programs

SQLADR

A – 4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

With the MAXLITERAL precompiler option you can specify the
maximum length of string literals generated by the precompiler, so that
compiler limits are not exceeded. The MAXLITERAL default value is
1000, but you might have to specify a lower value.

For example, if your FORTRAN compiler cannot handle string literals
longer than 512 characters, specify “MAXLITERAL=512.” Check your
FORTRAN compiler user’s guide. For more information about the
MAXLITERAL option, see the Programmer’s Guide to the Oracle
Precompilers.

System–Specific Reference in Chapter 3

The reference in this section appears in Chapter 3 under the same
heading.

All the sample programs in this chapter are available online. The names
of the online files are shown on page 3 – 1. However, the exact
filenames are system–dependent. For more information, check your
Oracle system–specific documentation.

System–Specific Reference in Chapter 4

The reference in this section appears in Chapter 4 under the same
heading.

You cannot use CHARACTER variables with SQLADR if your
FORTRAN compiler generates descriptors of CHARACTER variables
and passes the descriptor address (rather than the data address) to
SQLADR. Check your FORTRAN compiler user’s guide. In such cases,
SQLADR gets the wrong address. Instead, use LOGICAL*1 variables,
because they always have simple addresses.

You can, however, use (cautiously) SQLADR with CHARACTER
variables if your compiler provides a built–in function to access the
data address. For example, if the compiler provides a function named
%REF, and X is a CHARACTER variable, you call SQLADR as follows:

* Use %REF built–in function.

 CALL SQLADR (%REF(X), ...)

Index – 1

Index

A
aggregate name, definition, 1 – 22
ALLOCATE statement, 1 – 36
allocating cursor variables, 1 – 36
arrays. See host arrays
automatic logons, 1 – 44

B
BEGLABEL,

obsolete in 1.6 and later releases, 1 – 7
bind descriptor, 4 – 4
bind SQLDA, 4 – 3

C
C array in SQLDA

purpose, 4 – 10
setting values, 4 – 10

case–sensitivity, 1 – 2
character host variables

as output variables, 1 – 26
handling, 1 – 25
server handling, 1 – 26
types, 1 – 25

CLOSE statement
cursor variable, 1 – 38
in dynamic SQL Method 4, 4 – 36

coding area, 1 – 2, A – 2
for statement labels, 1 – 7

coding conventions, 1 – 2
comments

ANSI SQL–style, 1 – 2
C–style, 1 – 2
embedded SQL statements, 1 – 2

COMMON blocks
defining, 1 – 13
restrictions, 1 – 14

COMMON statement, 1 – 13
COMPLEX datatype, 1 – 15
composite type, 4 – 17
concurrent logons, 1 – 45
CONNECT statement

logging on to Oracle, 1 – 43
placement, 1 – 43
requirements, 1 – 43

connecting to Oracle, 1 – 43
automatically, 1 – 44
concurrently, 1 – 45
example, 1 – 43
via SQL*Net, 1 – 45

constants, defining, 1 – 13
continuation lines, syntax, 1 – 3, A – 2
CONTINUE action

(WHENEVER statement), 2 – 14
Conventions, description of, iv
cursor cache, purpose, 2 – 17
cursor variables

advantages, 1 – 35
allocating, 1 – 36
closing, 1 – 38

Index – 2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

declaring, 1 – 35
error conditions, 1 – 38
fetching from, 1 – 38
heap memory usage, 1 – 36
opening

anonymous block, 1 – 37
stored procedure, 1 – 36

restrictions, 1 – 38
scope, 1 – 35

D
DATA statement,

initializing host variables, 1 – 12
datatype equivalencing, example, 1 – 33
datatypes

coercing NUMBER to VARCHAR2, 4 – 18
conversions, 1 – 31
dealing with Oracle internal, 4 – 18
equivalencing, 1 – 32
external, 4 – 16
FORTRAN, 1 – 10
internal, 4 – 15
need to coerce, 4 – 18
PL/SQL equivalents, 4 – 17
used in descriptors, 4 – 18
when to reset, 4 – 18

DECLARE CURSOR statement,
in dynamic SQL Method 4, 4 – 28

declare section
allowable statements, 1 – 8
defining usernames and passwords, 1 – 43
FORTRAN datatypes supported, 1 – 10
multiple declare sections, 1 – 8
purpose, 1 – 8
rules, 1 – 8

declaring
cursor variables, 1 – 35
host arrays, 1 – 19
host variables, 1 – 10
implicit INTEGERs and REALs, 1 – 15
indicator variables, 1 – 17
ORACA, 2 – 18
SQLCA, 2 – 11
SQLDA, 4 – 7
VARCHAR variables, 1 – 22

default
error handling, 2 – 14
lower bound of host array, 1 – 19
setting of ORACA option, 2 – 18

DESCRIBE BIND VARIABLES statement,
in dynamic SQL Method 4, 4 – 28

DESCRIBE SELECT LIST statement,
in dynamic SQL Method 4, 4 – 32

descriptors
bind descriptor, 4 – 4
purpose, 4 – 4
select descriptor, 4 – 4
SQLADR subroutine, 4 – 3

DIMENSION statement,
invalid usage, 1 – 19

dimensioning host arrays, 1 – 19
directory path, INCLUDE files, 1 – 9
DO action (WHENEVER statement), 2 – 14
dynamic SQL Method 4

CLOSE statement, 4 – 36
DECLARE CURSOR statement, 4 – 28
DESCRIBE statement, 4 – 28, 4 – 32
FETCH statement, 4 – 36
FOR clause, 4 – 38
host arrays, 4 – 38
OPEN statement, 4 – 32
PREPARE statement, 4 – 28
prerequisites, 4 – 14
purpose of descriptors, 4 – 4
requirements, 4 – 2
sample program, 4 – 41
sequence of statements used with, 4 – 23
SQLDA, 4 – 4
steps, 4 – 22

E
embedded PL/SQL

host variables, 1 – 34
indicator variables, 1 – 34
requirements, 1 – 34
VARCHAR variables, 1 – 34
where allowed, 1 – 34

Index – 3

embedded SQL statements
associating statement labels with, 1 – 7
comments, 1 – 2
continuing from

one line to the next, 1 – 3, A – 2
referencing host arrays in, 1 – 20
referencing host variables, 1 – 16
referencing indicator variables, 1 – 17
requirements, 1 – 4
syntax, 1 – 4
terminator, 1 – 7

ENDLABEL,
obsolete in 1.6 and later releases, 1 – 7

equivalencing datatypes, description, 1 – 32
error conditions, cursor variable, 1 – 38
error handling

alternatives, 2 – 2
default, 2 – 14
using status variables

combinations, 2 – 6 to 2 – 8
SQLCA, 2 – 3, 2 – 9
SQLCOD, 2 – 2, 2 – 5
SQLSTA, 2 – 2, 2 – 5

error message text, SQLGLM function, 2 – 13
error messages, maximum length, 2 – 13
error reporting

error message text, 2 – 12
key components of, 2 – 12
parse error offset, 2 – 12
rows–processed count, 2 – 12
status codes, 2 – 12
warning flags, 2 – 12

EXEC SQL clause, 1 – 4
explicit logons, multiple, 1 – 45
external datatypes

general, 1 – 30
in dynamic SQL Method 4, 4 – 16

F
F variable in SQLDA

purpose, 4 – 9
setting value, 4 – 9

FETCH statement
cursor variable, 1 – 38
in dynamic SQL Method 4, 4 – 36

filenames
extension for INCLUDE files, 1 – 8
restrictions, 1 – 4

flags. See warning flags
FOR clause, in dynamic SQL Method 4, 4 – 38
FORTRAN datatypes,

supported by Oracle, 1 – 10

G
GOTO action (WHENEVER statement), 2 – 14

H
heap memory,

allocating cursor variables, 1 – 36
host arrays

declaring, 1 – 19
dimensioning, 1 – 19
in dynamic SQL Method 4, 4 – 38
lower bound default, 1 – 19
multidimensional, 1 – 19
referencing, 1 – 20
restrictions, 1 – 19
restrictions on, 1 – 20
support, 1 – 12

host variables
declaring, 1 – 10
definition, 1 – 4
initializing, 1 – 12
naming, 1 – 16
passed to a subroutine, 1 – 14
referencing, 1 – 16
repeating definitions of, 1 – 12
restrictions, 1 – 16
scope, 1 – 6
where to declare, 1 – 14
with PL/SQL, 1 – 34

I
I array in SQLDA

purpose, 4 – 12
setting values, 4 – 12

implicit declaration, 1 – 15

Index – 4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

INCLUDE statement
declaring the ORACA, 2 – 18
declaring the SQLCA, 2 – 11
declaring the SQLDA, 4 – 7
effect, 1 – 8
purpose, 1 – 8

INCLUDEd files, with
case–sensitive operating systems, 1 – 9

indicator arrays
example, 1 – 21
uses for, 1 – 21

indicator variables
association with host variables, 1 – 17
declaring, 1 – 17
nulls, 1 – 34
purpose, 1 – 17
referencing, 1 – 17
required size, 1 – 17
truncated values, 1 – 34
with PL/SQL, 1 – 34

internal datatypes
general, 1 – 29
in dynamic SQL Method 4, 4 – 15

IS NULL operator, for testing null values, 1 – 6

L
L array in SQLDA

purpose, 4 – 10
setting values, 4 – 10

LEN intrinsic function, 1 – 28
loggin on, automatically, 1 – 44
logging on, connecting to Oracle, 1 – 43
logical operators, 1 – 5

M
M array in SQLDA

purpose, 4 – 9
setting values, 4 – 9

MAXLITERAL option, 1 – 6, A – 4
message text. See error message text

MODE option
effects of, 1 – 25
status variables, 2 – 2

multidimensional arrays, invalid use of, 1 – 19

N
N variable in SQLDA

purpose, 4 – 9
setting value, 4 – 9

naming
host variables, 1 – 4
select–list items, 4 – 4

NOT FOUND condition
(WHENEVER statement), 2 – 14

Notation, rules for, iv
nulls

handling, indicator variables, 1 – 34
handling in Dynamic SQL Method 4, 4 – 21
meaning in SQL (NVL function), 1 – 6
SQLNUL subroutine, 4 – 21

NUMBER datatype,
SQLPRC subroutine, 4 – 19

NVL function, for retrieving null values, 1 – 6

O
obsolete precompiler features

BEGLABEL statement label, 1 – 7
ENDLABEL statement label, 1 – 7

OPEN statement,
in dynamic SQL Method 4, 4 – 32

opening a cursor variable, 1 – 36
operators, logical and relational, 1 – 5
ORACA

declaring, 2 – 18
enabling, 2 – 18
precompiler option, 2 – 18
purpose, 2 – 3, 2 – 17
restrictions on, 2 – 18

Oracle Communications Area, ORACA, 2 – 17

Index – 5

P
PARAMETER statement,

defining constants, 1 – 13
parse error offset, 2 – 12
password

defining, 1 – 43
hardcoding, 1 – 43

PL/SQL
datatype equivalents, 4 – 17
embedded, 1 – 34
opening a cursor variable

anonymous block, 1 – 37
stored procedure, 1 – 36

precision
definition, 4 – 19
extracting with SQLPRC, 4 – 19
when not specified, 4 – 19

precompiler options
ASSUME_SQLCODE, 2 – 4, 2 – 7
MAXLITERAL, 1 – 6, A – 4
MODE, 2 – 2, 2 – 3
ORACA, 2 – 18
SQLCHECK, 1 – 34

PREPARE statement,
in dynamic SQL Method 4, 4 – 28

program unit, 1 – 6
programming guidelines, 1 – 2

R
reference cursor. See cursor variables
referencing

host variables, 1 – 16
indicator variables, 1 – 17
of host arrays, 1 – 20
VARCHAR variables, 1 – 23

relational operators, 1 – 5
restrictions

cursor variables, 1 – 38
host variables, 1 – 16

declaring, 1 – 15
naming, 1 – 4

names of source files, 1 – 4
VARCHAR variables, 1 – 24

rows–processed count, 2 – 12

S
S array in SQLDA

purpose, 4 – 9
setting values, 4 – 9

sample programs
calling a stored procedure, 3 – 19
cursor operations, 3 – 4
cursor variables

PL/SQL source, 1 – 39
Pro*FORTRAN source, 1 – 40

datatype equivalencing, 3 – 8
dynamic SQL Method 1, 3 – 14
dynamic SQL Method 2, 3 – 16
dynamic SQL Method 3, 3 – 18
fetching in batches, 3 – 6
list, 3 – 1
Oracle Forms user exit, 3 – 11
simple query, 3 – 2

scalar type, 4 – 17
scale

definition, 4 – 19
extracting with SQLPRC, 4 – 19
when negative, 4 – 19

scope
cursor variables, 1 – 35
host variables, 1 – 6
WHENEVER statement, 2 – 15

select descriptor, 4 – 4
select SQLDA, purpose of, 4 – 3
select–list items, naming, 4 – 4
SQL Descriptor Area. See SQLDA
SQL*Net, for concurrent logons, 1 – 45
SQLADR subroutine

example, 4 – 25
parameters, 4 – 14
storing buffer addresses, 4 – 3
syntax, 4 – 14

SQLCA status variable
data structure, 2 – 10
declaring, 2 – 11
effect of MODE option, 2 – 3
explicit versus implicit checking, 2 – 3
purpose, 2 – 9
restrictions, 2 – 11

SQLCHECK option, 1 – 34

Index – 6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

SQLCOD status variable
ASSUME_SQLCODE option, 2 – 4
declaring, 2 – 5
description, 2 – 2
effect of MODE option, 2 – 3
SQL92 deprecated feature, 2 – 2
usage, 2 – 3

SQLDA
C array, 4 – 10
declaring, 4 – 7
example, 4 – 7
F variable, 4 – 9
I array, 4 – 12
L array, 4 – 10
M array, 4 – 9
N variable, 4 – 9
purpose, 4 – 4
S array, 4 – 9
SQLADR subroutine, 4 – 14
structure, 4 – 9
T array, 4 – 11
V array, 4 – 12
X array, 4 – 13
Y array, 4 – 13
Z array, 4 – 13

SQLEMC variable, 2 – 12
SQLERD(3) variable, 2 – 12
SQLERROR condition

(WHENEVER statement), 2 – 14
SQLGLM function

example, 2 – 13
parameters, 2 – 13
purpose, 2 – 13
syntax, 2 – 13

SQLNUL subroutine
arguments, 4 – 21
example, 4 – 21
purpose, 4 – 21
syntax, 4 – 21
with T variable, 4 – 11

SQLPR2 subroutine, 4 – 20
SQLPRC subroutine

arguments, 4 – 19
purpose, 4 – 19
syntax, 4 – 19
usage example, 4 – 20

SQLSTA status variable
declaring, 2 – 5
effect of MODE option, 2 – 3
usage, 2 – 3

SQLWARNING condition
(WHENEVER statement), 2 – 14

statement labels
associating with SQL statements, 1 – 7
BEGLABEL and ENDLABEL osolete, 1 – 7
coding area for, 1 – 7

status codes for error reporting, 2 – 12
STOP action (WHENEVER statement), 2 – 14
stored procedure

opening a cursor, 1 – 36, 1 – 39
sample programs, 1 – 39, 3 – 19

string literals
continuing from one line to the next, A – 2
continuing to the next line, 1 – 3

subroutines, declare section in, 1 – 14
syntax

continuation lines, 1 – 3
embedded SQL statements, 1 – 4
SQLADR subroutine, 4 – 14
SQLGLM function, 2 – 13
SQLNUL subroutine, 4 – 21
SQLPRC subroutine, 4 – 19

T
T array in SQLDA

purpose, 4 – 11
setting values, 4 – 11

terminal format, 1 – 2, A – 2
terminator for

embedded SQL statements, 1 – 7
truncated values, indicator variables, 1 – 34
Trusted Oracle7, 4 – 17

U
username

defining, 1 – 43
hardcoding, 1 – 43

Index – 7

V
V array in SQLDA

purpose, 4 – 12
setting values, 4 – 12

VAR statement, syntax, 1 – 32
VARCHAR variables

advantages, 1 – 28
as input variables, 1 – 27
as output variables, 1 – 28
declaring, 1 – 22
length variable, 1 – 22
maximum length, 1 – 22
referencing, 1 – 23
restrictions, 1 – 24
server handling, 1 – 27, 1 – 28
string variable, 1 – 22
structure, 1 – 22
versus fixed–length strings, 1 – 28
with PL/SQL, 1 – 34

W
warning flags for error reporting, 2 – 12
WHENEVER statement

CONTINUE action, 2 – 14
DO action, 2 – 14
example, 2 – 15

GOTO action, 2 – 14
maintaining addressability for, 2 – 16
NOT FOUND condition, 2 – 14
purpose, 2 – 14
scope, 2 – 15
SQLERROR condition, 2 – 14
SQLWARNING condition, 2 – 14
STOP action, 2 – 14
syntax, 2 – 14

X
X array in SQLDA

purpose, 4 – 13
setting values, 4 – 13

Y
Y array in SQLDA

purpose, 4 – 13
setting values, 4 – 13

Z
Z array in SQLDA

purpose, 4 – 13
setting values, 4 – 13

Index – 8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Reader’s Comment Form

Pro*FORTRAN � Supplement to the Oracle � Precompilers Guide
Part No. A42523–1

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Languages Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.
Fax: (415) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

����������
����������

A42523–1

Pro*FORTRAN � Supplement to the Oracle � Precompilers Guide Release 1.8

