Oracle9i

JDBC Developer's Guide and Reference

Release 2 (9.2)

March 2002
Part No. A96654-01

ORACLE

Oracle%i JDBC Developer’s Guide and Reference, Release 2 (9.2)

Part No. A96654-01

Copyright © 1999, 2002 Oracle Corporation. All rights reserved.

Primary Author: Elizabeth Hanes Perry, Mike Sanko, Brian Wright, Thomas Pfaeffle

Contributors: Magdi Morsi, Ron Peterson, Ekkehard Rohwedder, Ashok Shivarudraiah, Catherine
Wong, Ed Shirk, Sunil Kunisetty, Joyce Yang, Mehul Bastawala, Luxi Chidambaran, Srinath
Krishnaswamy, Rajkumar Irudayaraj, Scott Urman, Jerry Schwarz, Steve Ding, Soulaiman Htite, Douglas
Surber, Anthony Lai, Paul Lo, Prabha Krishna, Ellen Barnes, Susan Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, Oracle7, PL/SQL, SQL*Plus, and
Oracle Store are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Send US YOUI COMMEBNES ...t XVii
PIEIACE ...ttt ettt ettt enaen XiX
J HaR)T [sTe NN T 1<) Lol IR XX
Documentation AcCesSibilitycoiiiiiiiiiiiiiiiii XX
OrganizZation.........ouiiiiiiiee et e XXi
Related DOCUMENEALION «..ocovviiieiie ittt ettt eete e ste e e st eeetae e svaeesnaesessaessnsaessrseesnnes XXil
(@0) 4721 4k a T0) o V=TSP R PR XXVi

1 Overview

INEFOAUCHON ...ttt ettt sttt et ettt es e 1-2
WRAE 1S JDBC? ..ttt sttt sttt s b bbb st st st bbbt st eb b e st bbb ente s 1-2
JDBC VETrSUS SQL ..ottt ettt sttt ettt ea st e sae st st et e bt et et e b se et e benes 1-2

Overview of the Oracle JDBC DIiVers..........cccooveiriiriiriiet sttt ettt ettt es e 1-4
Common Features of Oracle JDBC DITVELSccccovveverieenieiirieeireeeie e e seees 1-4
JDBC THIN DIIVET ...ttt ettt sttt sttt sttt sttt st st bbb enee s 1-5
JDBC OCT DIIVET ...ttt sttt sttt sttt st st e b et et b e st st st bbb b st ebebe st sen b bebente s 1-6
JDBC Server-Side Thin DIFVETcocoiiiriiiiie ettt sttt e st 1-7
JDBC Server-Side Internal DIFIVETccccvvieuiiiniineieiesee ettt e 1-8
Choosing the Appropriate DIiVer ... 1-8

Overview of Application and Applet Functionality...........cccccooovviniini 1-10
APPLication BasiCScouiiieeieiieicicice s 1-10
APPIEt BaSICS ... 1-10
Oracle EXENSIONSooveuiriiuiriieiiiieciet ettt ettt ettt et s b et e st e st e st st b st ebe e ene 1-11

Package oracle JdDC.........oii e 1-11

Server-Side Basics ... 1-13
Session and Transaction CONtEXt...........ccveiiiiiiiiiiiii s 1-13
Connecting to the Database................oouiiiii e 1-13

Environments and SUpport.............cocooiiiiii 1-14
Supported JDK and JDBC Versionscouuiiiiieeinineicicicieee s 1-14
JNI and Java ENVIrONIMENTScccceiiiriee ittt ettt st e s st et bebe et eneeseeneas 1-14
JDBC @Nd IDES ...ttt s s s 1-15

Changes At This Release................ccocoiiiiiiiiiiiiiii s 1-16

Getting Started

Requirements and Compatibilities for Oracle JDBC Drivers...........ccccoovvvivniiinnniinenns 2-2
Verifying a JDBC Client Installationcccccooviiinniinccces 2-5
Check Installed Directories and Files............cccoioioiiiiiiiiiniiiicc e 2-5
Check the Environment Variables............cccooiiiiiiiiiiicii e 2-6
Make Sure You Can Compile and Run Java ..o 2-8
Determine the Version of the JDBC DIIVETccccocieviviriirieririnieiereereeree e seens 2-8
Testing JDBC and the Database Connection: JdbcCheckupcooooviiiiinii 2-9

Basic Features

First Steps in JDBC ..o s 3-2
IMPOrt PACKAGES........cvieieiiiiee ettt 3-2
Register the JDBC DIIVETScoriiiiriiiiciniicieieeie e s 3-3
Open a Connection to a Database ..o 3-3
Create a Statement ODject..........ooii 3-11
Execute a Query and Return a Result Set Object ... 3-11
Process the Result Set ... 3-11
Close the Result Set and Statement Objects ..o, 3-12
Make Changes to the Database............ccccouoeeinioiiciiiiiiii e 3-12
Commit ChANEESouivieieieiei ettt st 3-13
Close the CONNECLION. ... e s 3-14

Sample: Connecting, Querying, and Processing the Resultscccccoeiniiiinninnne. 3-15

Datatype Mappingsccccovviiiiiiiiiiniiiii s 3-16
Table Of MaPPINGScovveiiiinciiiciiiciiciei sttt s 3-16

Notes Regarding Mappingscccceeuriiiiieiniiitcicicie et 3-18

Java Streams in JDBC.......cociiiiiiiiirence sttt s e st e st s e e ene 3-20

Streaming LONG or LONG RAW Columnsc..coiiiriiiieieeeeecccec e 3-20
Streaming CHAR, VARCHAR, or RAW Columns...........cccoviiiiiiiiiiiccns 3-25
Data Streaming and Multiple COIUMNSc.ccovoiiiiiiiieiiicieee s 3-26
Streaming LOBs and External Filesc.cocoooiiie 3-27
CloSING @ STEAIMN ...ttt e 3-29
Notes and Precautions on Streams ... 3-29
Stored Procedure Calls in JDBC Programs............ccocecviiiiniiiiiininiiiicnseens 3-32
PL/SQL StOred PrOCEAULES........ccvviuveeveeeee ettt ettt et ettt ere e eveeaaeateeaesaseaeeeneeneseseenes 3-32
Java StOred ProCEAUIEScccocveiiuiriieieie ettt ettt e st st e st sttt e sbe e eaaan 3-33
Processing SQL EXCEPLIONS.........ccccciiiiiiiiiiiiiiiic s 3-34
Retrieving Error Information ..o 3-34
Printing the Stack Trace ...t 3-35

Overview of JDBC 2.0 Support

INEFOAUCHON ...ttt ettt sttt et ettt es e 4-2
JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.Xccccouviiiniiiiiiiiiiiii e 4-3
Datatype SUPPOTT ..o 4-3
Standard Feature SUPPOTt ..ot 4-4
Extended Feature SUPPOTt ..o 4-5
Standard versus Oracle Performance Enhancement APIScccovvinireceneninerceneneneececnee 4-5
Migration from JDK 1.1.X t0 JDK 1.2.X .cciuiiiiiiiiiiiiiiiiiiiicnc s 4-5
Overview Of JDBC 2.0 FEAtUTIES.........cccoueourieiriiiriiiriciieeieeee ettt sttt sttt st es s 4-7

Overview of Supported JDBC 3.0 Features

INtrodUCHON ... s 5-2
JDBC 3.0 Support: JDK 1.4 and Previous Releasescccocoovvnnniinninniinii 5-3
Overview of Supported JDBC 3.0 Featurescccoceovviiiiiniiiinninciceces 5-4
Transaction SAVEPOINESccccvvviiiiiiiiii s 5-5
Creating @ SAVEPOINtc.iiiiieee e e 5-5
Rolling back t0 @ SAVePOINtcccceieiiciiiic s 5-6
Releasing a SAVEPOIN ..ottt 5-6
Checking Savepoint SUPPOTT ..o 5-6
SaVEPOINt NOLEScecuiiettct e e 5-6
SavepOINt INtEIfacesccooviieiiieiiiecc e 5-7

Pre-JDK1.4 Savepoint SUPPOTt...........ciiiiiieieiee ettt 5-8

6 Overview of Oracle Extensions

Introduction to Oracle EXteNSIONScccoooiiiiiiiiiiiiic 6-2
Support Features of the Oracle EXtensions.................ccoeiiiiiiiiiiiiiins 6-3
Support for Oracle Datatypes ..o e 6-3
Support for Oracle ObJECEScrimririecieieeieiecie e s 6-4
Support for Schema Naming.........c.coveuiuriiiriiiciicice e 6-5
OCT EXLENSIONScouciiiiiiiiiciiii s s s 6-6
Oracle JDBC Packages and Classes.............cccceimiiiiiiiiiiiiiiciscecs s 6-7
Package oracle.Sql.......ooiiiii e 6-7
Package oracle JdDC........oouiii e 6-16
Package oracle.jdbc2 (for JDK 1.1.X ONLY)....ccooviiriiiiiniiiiiciccc e 6-27
Oracle Character Datatypes SUpport...........ccccccovviiiiiiiiiiii s 6-28
SQL CHAR DatatyPes......cceeeioicieieieiicieieeiceei ettt et 6-28
SQL NCHAR Datatypesccococueieimieiieieieiiceeiee sttt e 6-28
Class oracle.SqLCHAR ... s 6-29
Additional Oracle Type EXtensions.............ccccoviviviiiiniiininiii s 6-33
Oracle ROWID TYPEociuiiiieiiieiectc ettt ettt et 6-33
Oracle REF CURSOR Type Category.......ccococeieiiuiucieiiieeiee ettt 6-34
Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers............ccccecoevniveuniiceiicninnns 6-36

7 Accessing and Manipulating Oracle Data

Data Conversion Considerations...............ccooociiiiiiiiiiiiinii e 7-2
Standard Types versus Oracle TYPes.........cccocvviiiiininiiiiiiiiniiics s 7-2
Converting SOL NULL Data.........ccoooiiiiieiicieeie st 7-2

Result Set and Statement EXteNSions..............cccocciiniiiiiiiiiiic s 7-3

Comparison of Oracle get and set Methods to Standard JDBC..............cccooiiiiinniene. 7-4
Standard getObject() Method..........cccoceviiiiiiiiniiiiiic s 7-4
Oracle getOracleObject() Method...........coooiiiii 7-4
Summary of getObject() and getOracleObject() Return Typesccccvvveevveniniicinivinnninn. 7-6
Other getXXX() Methods ..o 7-7
Casting Your get Method Return Values ..o, 7-10
Standard setObject() and Oracle setOracleObject() Methods...........cccoovviviviniiiinnnne. 7-11
Other setXXX() MEthOdSc.coueirieiriiiriiieiieetece ettt ettt es st e 7-12

Vi

Limitations of the Oracle 8.0.x and 7.3.X JDBC DIIVETScccccovueeiriereienrenreneee e 7-18
Using Result Set Meta Data EXtensions..............cccccooviiiiiinniniiiicee, 7-19

8 Working with LOBs and BFILEs

Oracle Extensions for LOBs and BFILEs...............cccccoceiiiiiiiniice s 8-2
Working with BLOBs and CLOBS ..o 8-3
Getting and Passing BLOB and CLOB LOCatorscc.ceuoiiviieiniiiiccccce e 8-3
Reading and Writing BLOB and CLOB Datacccccooeuiiiiiiiiieeiccc e 8-6
Creating and Populating a BLOB or CLOB Column...........cccoooiiiiiniiiniiicee 8-10
Accessing and Manipulating BLOB and CLOB Data.........ccccooeuiiiioieininiiiiiiceceeecc 8-12
Additional BLOB and CLOB Features............cccccooviiniiininiiiiicece s 8-13
Working With Temporary LOBS ... 8-18
Using Open and Close With LOBS...........cccccciiiiii e 8-19
Working with BFILES.............ccccccooiiiiiniiiiiicc s e 8-20
Getting and Passing BFILE LOCAtOIScoouoiiiieieiiiecicicie s 8-20
Reading BFILE Dataccoiiieeieiiecicie st 8-22
Creating and Populating a BFILE Colum...........cccooooiiiiiiiiiiiicc e 8-23
Accessing and Manipulating BFILE Data ..o 8-25
Additional BFILE Features.............cccooviiiiiiiiiiiniiiiicii s 8-26

9 Working with Oracle Object Types

Mapping Oracle ODbJects ... 9-2
Using the Default STRUCT Class for Oracle Objects............ccccocovviivniiiiiinininiiinen, 9-3
STRUCT Class FUNCHONALEYcvcvovoiicieiiici s 9-3
Creating STRUCT Objects and Descriptors..........cocueueuiuiviieiiiicceieeecccee e 9-4
Retrieving STRUCT Objects and Attributes ..o 9-6
Binding STRUCT Objects into Statements............cccocuovoiiuiiiiiiicieeecc e 9-8
STRUCT Automatic Attribute Buffering.............cccooeoeiiiiiiiiiiiccccccce 9-9
Creating and Using Custom Object Classes for Oracle Objectsc.coeeiiniiiiiinnenne. 9-10
Relative Advantages of ORAData versus SQLData...........ccccoeieimiiiiniiinieccces 9-11
Understanding Type Maps for SQLData Implementations...........ccccveueveiciniecinieciniecinnnns 9-11
Creating a Type Map Object and Defining Mappings for a SQLData Implementation.. 9-12
Understanding the SQLData Interfacec.cocoeuoveiiieiiieiieiicieice s 9-15
Reading and Writing Data with a SQLData Implementation...........c..cocooeoieiieinnnnnee 9-17
Understanding the ORAData Interface............ccocoouoeoiieiiiniinicncccececeeeeeecieeis 9-21

Vii

Reading and Writing Data with a ORAData Implementation.............cccocoeeieniiiininnn, 9-23

Additional Uses for ORADALEcccoeuriiiiiiminiiieiiite i 9-26
The Deprecated CustomDatum Interfacecoooooeniniiiiiniici e 9-27
Object-Type INheritance ... 9-29
Creating SUbLYPeS.... ..o e 9-29
Implementing Customized Classes for Subtypescccoovoriiiiiciinince 9-30
Retrieving Subtype ODJects ..o 9-37
Creating Subtype ODbJEcts ..o 9-40
Sending Subtype ODJectsccocuoiieiiiiiiee e 9-41
Accessing Subtype Data Fields ..., 9-41
Inheritance Meta Data Methodsccccoovivinininiiiiniiii e 9-43
Using JPublisher to Create Custom Object Classes.............ccccerviiiiiiiiiiiiiiiccie, 9-45
JPublisher FUNCHONALItYovoviiiiiiie s 9-45
JPublisher Type Mappings.........ccooceeieiiiiiiiieiiie e 9-45
Describing an Object TYPe.........ccccoviviviiiiiiiiiic s 9-49
Functionality for Getting Object Meta Data...........cccccoeuniriniciiiicise e 9-49
Steps for Retrieving Object Meta Data...........ccooovveiiniiciniiciniiciccc e 9-50
SOQLJ ODBJeCt TYPES....cooumiiiiiiiiiciitiiit s 9-52
Creating a SQLJ Object Type in SQL Representation..............cccceeeeeeeicoccieieiciciciciieene 9-53
Inserting an Instance of a SQLJ Object TYPe.........ccccovvimiiiiniiiiieieccc e 9-59
Retrieving Instances of a SQLJ Object Type........cccoovieieiiiniiciiieicec e 9-60
Meta Data Methods for SQL] Object TYPesc.ccocoveruniiuniciiiienese e 9-61
SQLJ Object Types and Custom Object Types Compared.............cooeieiiioeenininiiiicieiicnnn, 9-62

10 Working with Oracle Object References

viii

Oracle Extensions for Object References.............cccoccovvviniiiiiiininiiinnccns 10-2
Overview of Object Reference Functionality..............ccococeiiiiiiniin, 10-4
Object Reference Getter and Setter Methodsccovnuiniiiiiiiiiniiiiiicecncccns 10-4
Key REF Class Methods...........cccuoiiiiii e 10-4
Retrieving and Passing an Object Reference ..o 10-6
Retrieving an Object Reference from a Result Set............cooooviiiiiiiiiiiiiniicne 10-6
Retrieving an Object Reference from a Callable Statement..........cccccoecviveiiviriiininiccnene. 10-7
Passing an Object Reference to a Prepared Statementccceoveriviiinicincniniiicniiinns 10-8
Accessing and Updating Object Values through an Object Reference.................cc.cccueeeee. 10-9
Custom Reference Classes with JPublisher............cccccoeiiiiiiiiiiniieeeccecceecceene 10-10

11

12

13

Working with Oracle Collections
Oracle Extensions for Collections (AITays)............cccceviiiiiiiniiiiiininiicee s 11-2
Choices in Materializing ColleCtionsccccouoiiueieieiiiiciciie s 11-2
Creating ColleCtioNScucuiiieeieiee st 11-3
Creating Multi-Level Collection TYPesccccooiririeieiiiiciieee s 11-4
Overview of Collection (Array) Functionalitycccccoooevniiiininii 11-5
Array Getter and Setter Methods ..o 11-5
ARRAY Descriptors and ARRAY Class Functionalitycccooeeeioiiiiiiiiiic 11-6
ARRAY Performance Extension Methods...............cccooiiiiiiiis 11-8
Accessing oracle.sql. ARRAY Elements as Arrays of Java Primitive Types.........cccccco.c.... 11-8
ARRAY Automatic Element Buffering..........cccocooeoiniiiniicceccns 11-9
ARRAY Automatic INAeXingcc.cevvviiiiiiiiiiei s 11-9
Creating and USing ATTays..........ccccviiiiiiiiiiiiicc s 11-11
Creating ARRAY Objects and Descriptorsoocueveiiuiiiiiiiiieiceeeecccee e 11-11
Retrieving an Array and Its Elements ..o 11-15
Passing Arrays to Statement Objects ... 11-22
Using a Type Map to Map Array Elements..............ccccocoovivinninnnns 11-25
Custom Collection Classes with JPUDbIiSher............ccocccvciriinninicnnciccrce e 11-27
Performance Extensions
Update Batching.............cccooviiiiiiniiiiiiii s e 12-2
Overview of Update Batching Models.............ccccooeiiiiiiciicccens 12-2
Oracle Update BatChing..........ccooeueioiiiiiiiiiie s 12-4
Standard Update BatChing ..o 12-10
Premature Batch FIUSh........cccccoooiiiiiiiiic 12-18
Additional Oracle Performance Extensionscccccooevviiiinininiiinnins 12-20
Oracle ROW PrefetChing ... 12-20
Defining ColumN TYPEScovueiiiieiiieiiieieeice s 12-23
DatabaseMetaData TABLE_REMARKS Reporting ..o 12-26
Result Set Enhancements
OVEIVIEW ..ot s s se s 13-2
Result Set Functionality and Result Set Categories Supported in JDBC 2.0...................... 13-2
Oracle JDBC Implementation Overview for Result Set Enhancementsccccccececeanee 13-5

14

Creating Scrollable or Updatable Result Sets ..o, 13-8

Specifying Result Set Scrollability and Updatability.........c..ccccooioiiiniiiiiiniccne 13-8
Result Set Limitations and Downgrade Rules...........ccccooiiiiiiiiiiniicicce 13-10
Positioning and Processing in Scrollable Result Setscccccccoovininiiiiiniiiiinns 13-13
Positioning in a Scrollable Result Set.........coooiiiiii e, 13-13
Processing a Scrollable Result Set..........ccooiiiiiiiii e, 13-15
Updating Result Sets............ccccooiiiiiniiiiiiiii s 13-18
Performing a DELETE Operation in a Result Set............ccccooonininiiniiciiccce, 13-18
Performing an UPDATE Operation in a Result Setc...cccoooriiniiinine, 13-19
Performing an INSERT Operation in a Result Setcccooeiiiininiiiicee 13-21
Update CONSLCESucuieiiiiciiicieiiciecece e 13-23
Fetch SQzZe ... s 13-24
Setting the Fetch Size..........ooooooii 13-24
Use of Standard Fetch Size versus Oracle Row-Prefetch Setting...........c.cccooeeriviiiininnn. 13-25
Refetching ROWS ... 13-26
Seeing Database Changes Made Internally and Externallyccccceoviiinniinnnnns 13-27
Seeing Internal Changesccc.oooiururiiiieiee e 13-27
Seeing External Changes..........ccc.cooiuiiiiiiiicc e 13-28
Visibility versus Detection of External Changes............c.cccooiniiniiiniiciicinicecnes 13-29
Summary of Visibility of Internal and External Changes...........ccccocoeeoeiiiiiniiicciininn. 13-30
Oracle Implementation of Scroll-Sensitive Result Setsccccoviiiiininininiicniniins 13-30
Summary of New Methods for Result Set Enhancements ..., 13-32
Modified Connection Methods...........cccviiiiiniiiiiiciniiiic e 13-32
New Result Set Methods..........cccoovviiininiiiiiiii e 13-32
Statement Methods..........cccoiiiviiiiiii e 13-35
Database Meta Data Methods ... 13-35
Statement Caching
About Statement Caching ..o 14-2
Basics of Statement Caching............coceueieioieiiiiniicinicc e 14-2
Implicit Statement Caching............c.coooiii e 14-2
Explicit Statement Caching ..o 14-3
Using Statement Caching ... 14-5
Enabling and Disabling Statement Cachingccoooiiiiiiii, 14-5
Checking for Statement Creation Status............cccocoeueiciniicniiciiie e 14-6

15

16

Physically Closing a Cached Statementc.ccouvuiriiiciiiciicicncecec e 14-7

Using Implicit Statement Cachingccooooeiiiiii 14-7
Using Explicit Statement Caching............ccooooiiiiiiiiiiiice 14-9
Distributed Transactions
OVEIVIEW ..o s s 15-2
Distributed Transaction Components and Scenarios...........cccoceeeeeeecocinieiieieeiieciceeeeenes 15-3
Distributed Transaction CONCEPtS..........cceuieueiiiiiiinieieiictc e 15-3
Switching Between Global and Local Transactions............ccccoeeeeeeiiiiiiciciiieccccceee 15-5
Oracle XA PaCKaGESc.cruiiieeieiei ettt e 15-7
XA COMPONENES ...ttt e e 15-8
XA Data Source Interface and Oracle Implementation...........cccccoceueieiiiinivieeincnincincnes 15-8
XA Connection Interface and Oracle Implementation............ccccoeueueicieicinicniiciniiniciec, 15-9
XA Resource Interface and Oracle Implementation............ccoceoeeiieiiniiniieciicienen. 15-10
XA Resource Method Functionality and Input Parameters..............cccooiieiiiiinnnnne. 15-11
XA ID Interface and Oracle Implementation..........c..ccccooeuieiriiciiccininccees 15-16
Error Handling and Optimizations ... 15-18
XA Exception Classes and Methodsccouiooiiiii e 15-18
Mapping between Oracle Errors and XA EITOTS..........ccoieiiiricnieiecicicice e 15-19
XA Error Handling ..o 15-19
Oracle XA OptimiZationsc.coocueieiiiuiiiiiieee e 15-20
Implementing a Distributed Transaction...............cccccceriviiiiiiiiiii 15-21
Summary of Imports for Oracle XA.........ccocooiiiiiiniciccee s 15-21
Oracle XA Code Sample ... 15-21
Connection Pooling and Caching
Data SOUTCESooiiiiict e e e 16-2
A Brief Overview of Oracle Data Source Support for JNDI.........c.cccoovmrnrniiciniininicinnns 16-2
Data Source Features and Properties............ccccooeioiiiiiiiiieeeecc e 16-3
Creating a Data Source Instance and Connecting (without JNDI).........ccceceiniiiiniinnnnen. 16-7
Creating a Data Source Instance, Registering with JNDI, and Connecting 16-8
Logging and Tracingccoueeeioiiiiiiiiie e e 16-10
Connection PooLINg............coiiiiiiiii s 16-11
Connection Pooling ConCepts........coovriiieiiuiieieiciicceie et e 16-11
Connection Pool Data Source Interface and Oracle Implementationcccoccueverenee. 16-12

Xi

17

18

Xii

Pooled Connection Interface and Oracle Implementationc.cccoocoeeieeniinrieeciiininnn. 16-13

Creating a Connection Pool Data Source and Connectingcccooovieuennicicicieicnna, 16-14
Connection Caching ... 16-16
Overview of Connection Cachingc.ccocueveiieiiiiniiniiiieiicce e 16-16
Typical Steps in Using a Connection Cache ..o, 16-20
Oracle Connection Cache Specification: OracleConnectionCache Interface.................... 16-23
Oracle Connection Cache Implementation: OracleConnectionCachelmpl Class 16-24
Oracle Connection Event Listener: OracleConnectionEventListener Class..................... 16-28
JDBC OCI Extensions
OCI Driver Connection POOLINg ... 17-2
OCI Driver Connection Pooling: Background.............cccoooiiiiiiiiiice 17-3
OCI Driver Connection Pooling and Shared Servers Comparedcccccoeeiniiiiiiieiinnnnn, 17-3
Stateless Sessions Compared to Stateful Sessions.........cccccceviviiieiviiiiiiinincceinicceins 17-4
Defining an OCI Connection POOL...........ccccovriiiriniiiniiee e 17-4
Connecting to an OCI Connection Poolcocucueiiiiiiiiiic e, 17-8
Statement Handling and Caching ..o, 17-10
JNDI and the OCI Connection POolccoiiiininiee et 17-12
Middle-Tier Authentication Through Proxy Connectionsccccccooeviiiiiiiiiiiinnnnnnn. 17-13
OCI Driver Transparent Application Failover ..., 17-16
Failover Type EVeNtS. ... 17-16
TAF CallbaCKS ...ooviiiiiiiiiiiiccii s s 17-17
Java TAF Callback INtEIfaceccoceeeirieieriietieetee ettt e e et sb e s 17-17
OCT HeteroRM XAoiiiiiiiiiciiicieisieisiet ettt e e 17-19
Configuration and INstallationcccceeueveiieiiiieiiiniicc e 17-19
Exception Handling ... s 17-19
HeteroRM XA Code EXample ...t s 17-19
Accessing PL/SQL Index-by Tables...........ccccccovininiiiiiniiiiiiiic e 17-21
OVEIVIEW ..ttt s s s s 17-21
Binding IN Parameters............coiuieueiiiiicieiei ettt s 17-22
Receiving OUT Parameterscoceuiiiociieiecicectcieece et 17-24
Advanced Topics
JDBC and Globalization SUpport...........cccovviiiiiiiiniiiiiiini s 18-2

How JDBC Drivers Perform Globalization Support Conversionsc..cccccoceeeveiicunines 18-3

Globalization Support and Object Types.........ccoeoeueieieiiiiiiciieeee 18-4

SQL CHAR Data Size Restrictions with the Thin Driver..........ccccooceeveiiecicecceceeeeeeeene 18-6
JDBC Client-Side Security Features..............cccccocooiiiiiiiiiiiicas 18-8
JDBC Support for Oracle Advanced SeCurity..........ccccoceveiieieieiicniicieecicee e 18-8
JDBC Support for Login Authenticationccoeieiriniiiniiciiiicccccccc e 18-9
JDBC Support for Data Encryption and Integrity.........ccccooeveeveioriniicniicniicnicceccecne, 18-10
JDBC AN APPIets.......cooooiiiiiiiiiiic s 18-15
Connecting to the Database through the Applet ..o, 18-15
Connecting to a Database on a Different Host Than the Web Server.............cccccccvunenee. 18-17
Using Applets with Firewalls ..o 18-20
Packaging APPIets.........coii s 18-23
Specifying an Applet in an HTML Pageccccooviriiniiiriiiciiccecceeces s 18-24
JDBC in the Server: the Server-Side Internal Driver..........coccccoeneinenninncnnenceneceneene 18-26
Connecting to the Database with the Server-Side Internal Driver.........cccccocooviininnne. 18-26
Exception-Handling Extensions for the Server-Side Internal Driver...........ccccccococeinenane. 18-28
Session and Transaction Context for the Server-Side Internal Driver-.........c.cccooeunvneee. 18-30
Testing JDBC on the Server ... 18-30
Loading an Application into the Server ... 18-32
Server-Side Character Set Conversion of oracle.sq.CHAR Data.........cccccoovueirniriinnnnnee. 18-33

19 Coding Tips and Troubleshooting

JDBC and Multithreading............ccccoooiiiiiiiiiiiii e 19-2
Performance Optimization...........cccocoooiiiiiiiiiiiii s 19-6
Disabling Auto-Commit Mode..........ccouoiiimiiiiiiiic s 19-6
Standard Fetch Size and Oracle Row Prefetchingccccovoiiiiiiciiicicicccccc 19-7
Standard and Oracle Update Batching..........ccooovooiiiiiiiiiii 19-7
Common Problems ... e 19-8
Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables.................... 19-8
Memory Leaks and Running Out of CUISOTScccuruirririnririiiriiieieieciecieentces e 19-8
Boolean Parameters in PL/SQL Stored Procedures..........c.oouieeeveeeeieeieneeeeieieereeieeeeieeneens 19-9
Opening More Than 16 OCI Connections for a Processccccoueuevvrinieinininiiciniiniesicinnns 19-9
Basic Debugging Procedures ... 19-11
Oracle Net Tracing to Trap Network Events...........c.cocooii, 19-11
Third Party Debugging TOOLSccooriiimiiiiiiicec 19-14
Transaction Isolation Levels and Access Modes..........cccoooooiiiiiiiiiiiiiiiceccce e 19-15

Xiii

20 Reference Information

Valid SQL-JDBC Datatype Mappingscccoceviviiiiiiiiniiiiin s 20-2
Supported SQL and PL/SQL Datatypescccccoviiiiiiiiniiiiiiiiiiinciesse s 20-5
Embedded SQLI2 SYNtaXccccceiuiiiiiiiiiiiiiiiiiic e 20-10
Time and Date Literals...........ccoiiiiiiiiiiic e 20-10
Scalar FUNCHONScccoiiiiiiiiiiciiicc s 20-12
LIKE Escape Characters..........cocueieiiuiieiiiiceei ettt 20-13
OULET JOINS .ttt ettt ettt e sttt e st st et es b et eaeeb e b e aen e sb et enben e ste e enbeneenean 20-13
Function Call SYNtax ... 20-14
SQL92 to SQL Syntax Example............coiiiiiiiiiiieee 20-14
Oracle JDBC Notes and Limitationscc.cooeeiriviniiriniiiininieiciecesciesee e e 20-16
CUISOIINAINE ..ot 20-16
SQLI92 Outer Join ESCAPEScocuevieieiiieiiceie ettt 20-16
PL/SQL TABLE, BOOLEAN, and RECORD TYPEScccccvuviimiririmiiiiiriieesesiinieieneincenans 20-16
IEEE 754 Floating Point COMPLANCEc.cceeieiriiiiiiiiciee et 20-17
Catalog Arguments to DatabaseMetaData Callsccccceeviviiininiiiiiiniiiiiee, 20-17
SQLWaINING CLaSS......ocueveieirieieiieitete ettt et 20-17
Bind by Name ..o e 20-17
Related INfOrmation ... 20-19
Oracle JDBC Drivers and SQLJccceoteiererteieetirtire et eeeteieiie et estes e ese et e e see st ensenseneas 20-19
Java TeChNOLOZYcuvviieiie s 20-19
A Row Set
INtrodUcCtON ... A-2
Row Set Setup and Configuration..............ccoeiiiiiiiiiii s A-4
Runtime Properties for ROW Set ... A-5
ROW Set LISEENETooiiiiiiiiiiiic s A-6
Traversing Through the ROWS ..o A-8
Cached ROW Set........oooiiiiiiiii e A-9
CachedRowSet CONSLIAINSccccevviiiiiiiiiiiiiici s A-13
JDBC ROW Set....couiiiiiiiiiiiiccn e A-15

B JDBC Error Messages
General Structure of JDBC Error MeSsages...............ccccvuiuiiiiiiiiiiiiiiiiiciecsencseesesseenenns B-2

Xiv

General JDBC MESSAGES..........cooiuiiiiiiiiiiiiiicttc s s B-3

JDBC Messages Sorted by ORA NumMber...........c.cooiiiii B-3
JDBC Messages Sorted Alphabeticallyc.c.coouiioieioiiiiiii e B-9
HeteroRM XA MESSAES.........cooveviiiriiniiieiciiniietcec et cs st ses s s e en e B-15
HeteroRM XA Messages Sorted by ORA Number ..o B-15
HeteroRM XA Messages Sorted Alphabeticallyc.oooieiiniiiii B-16
TTC IMESSAZES........ceoeviiitiniectct ettt er s s sea b ea e e b st ea e B-17
TTC Messages Sorted by ORA NUMDET..........cccoiimeiiiiiiiiiicieee s B-17
TTC Messages Sorted Alphabeticallyccooouiioiiiiiiiiiiicie B-19

Index

XV

Send Us Your Comments

Oracle9i JDBC Developer’'s Guide and Reference, Release 2 (9.2)
Part No. A96654-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
= What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: jpgcomment_us@oracle.com
= FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
= Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Xviii

Preface

This preface introduces you to the Oracle9i JDBC Developer’s Guide and Reference,
discussing the intended audience, structure, and conventions of this document. A
list of related Oracle documents is also provided.

This preface contains these topics:
= Intended Audience

= Documentation Accessibility
= Organization

= Related Documentation

« Conventions

XiX

Intended Audience

This manual is intended for anyone with an interest in JDBC programming but
assumes at least some prior knowledge of the following:

« Java
« SQL
« Oracle PL/SQL

« Oracle databases

Documentation Accessibility

XX

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //ww or acl e. cont accessi bi lity/

Accessib ility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessib ility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

This document contains the following chapters and appendices:

Chapter 1, "Overview"—Provides an overview of the Oracle implementation of
JDBC and the Oracle JDBC driver architecture.

Chapter 2, "Getting Started"—Introduces the Oracle JDBC drivers and some
scenarios of how you can use them. This chapter also guides you through the
basics of testing your installation and configuration.

Chapter 3, "Basic Features"—Covers the basic steps in creating any JDBC
application. It also discusses additional basic features of Java and JDBC
supported by the Oracle JDBC drivers.

Chapter 4, "Overview of JDBC 2.0 Support"—Presents an overview of JDBC 2.0
features and describes the differences in how these features are supported in the
JDK 1.2.x and JDK 1.1.x environments.

Chapter 6, "Overview of Oracle Extensions"—Provides an overview of the JDBC
extension classes supplied by Oracle.

Chapter 7, "Accessing and Manipulating Oracle Data"—Describes data access
using the Oracle datatype formats rather than Java formats.

Chapter 8, "Working with LOBs and BFILEs"—Covers the Oracle extensions to
the JDBC standard that let you access and manipulate LOBs and LOB data.

Chapter 9, "Working with Oracle Object Types"—Explains how to map Oracle
object types to Java classes by using either standard JDBC or Oracle extensions.

Chapter 10, "Working with Oracle Object References"—Describes the Oracle
extensions to standard JDBC that let you access and manipulate object
references.

Chapter 11, "Working with Oracle Collections"—Discusses the Oracle
extensions to standard JDBC that let you access and manipulate arrays and their
data.

Chapter 12, "Performance Extensions"—Describes Oracle extensions to the
JDBC standard that enhance the performance of your applications.

Chapter 13, "Result Set Enhancements"—This chapter discusses JDBC 2.0 result
set enhancements such as scrollable result sets and updatable result sets,
including support issues under JDK 1.1.x

Chapter 14, "Statement Caching"—Describes Oracle extension statements for
caching.

XXi

Chapter 15, "Distributed Transactions"—Covers distributed transactions,
otherwise known as global transactions, and standard XA functionality.
(Distributed transactions are sets of transactions, often to multiple databases,
that have to be committed in a coordinated manner.)

Chapter 16, "Connection Pooling and Caching"—Discusses JDBC 2.0 data
sources (and their usage of JNDI), connection pooling functionality (a
framework for connection caching implementations), and a sample connection
caching implementation provided by Oracle.

Chapter 17, "JDBC OCI Extensions"—Describes extensions specific to the OCI
driver.

Chapter 18, "Advanced Topics"—Describes advanced JDBC topics such as
globalization support, working with applets, the server-side driver, and
embedded SQLI2 syntax.

Chapter 19, "Coding Tips and Troubleshooting"—Includes coding tips and
general guidelines for troubleshooting your JDBC applications.

Chapter 20, "Reference Information"—Contains detailed JDBC reference
information.

Appendix A, "Row Set"—Describes JDBC and cached row sets.

Appendix B, "JDBC Error Messages"—Lists JDBC error messages and the
corresponding ORA error numbers.

Related Documentation

Also available from the Oracle Java Platform group, for Oracle9i releases:

XXii

Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC or SQLJ) is in this book.

Oracle9i Support for JavaServer Pages Reference

This book covers the use of JavaServer Pages technology to embed Java code
and JavaBean invocations inside HTML pages. Both standard JSP features and
Oracle-specific features are described. Discussion covers considerations for the
Oracle9i release 2 Oracle HTTP Server JServ environment, but also covers

features for servlet 2.2 environments and emulation of some of those features by
the Oracle JSP container for JServ.

Oracle9i SQL] Developer’s Guide and Reference

This book covers the use of SQL]J to embed static SQL operations directly into
Java code, covering SQL]J language syntax and SQLJ translator options and
features. Both standard SQL] features and Oracle-specific SQL]J features are
described.

Oracle9i JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing SQLJ
or JDBC applications that use object types, VARRAY types, nested table types,
or object reference types, then JPublisher can generate custom Java classes to
map to them.

Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle9i database. With stored procedures (functions, procedures, triggers, and
SQL methods), Java developers can implement business logic at the server
level, thereby improving application performance, scalability, and security.

The following OC4] documents, for Oracle9i Application Server releases, are also
available from the Oracle Java Platform group:

Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and E]JBs; and general configuration and
deployment instructions.

Oracle9iAS Containers for [2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4]J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

Oracle9iAS Containers for [2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OcC4J.

Oracle9iAS Containers for [2EE Servlet Developer’s Guide

xXiii

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J
configuration files.

« Oracle9iAS Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4]J,
such as JTA, JNDI, and the Oracle9i Application Server Java Object Cache.

« Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

The following documents are from the Oracle Server Technologies group:
« Oracle9i XML Developer’s Kits Guide - XDK

« Oracle9i Application Developer’s Guide - Fundamentals
« Oracle9i Supplied Java Packages Reference

« Oracle9i Supplied PL/SQL Packages and Types Reference
= PL/SQL User’s Guide and Reference

« Oracle9i SQL Reference

« Oracle9i Net Services Administrator’s Guide

« Oracle Advanced Security Administrator’s Guide

« Oracle9i Database Reference

« Oracle9i Database Error Messages

The following documents from the Oracle9i Application Server group may also be
of some interest:

« Oracle9i Application Server Administrator’s Guide

« Oracle Enterprise Manager Administrator’s Guide

« Oracle HTTP Server Administration Guide

« Oracle9i Application Server Performance Guide

« Oracle9i Application Server Globalization Support Guide

« Oracle9iAS Web Cache Administration and Deployment Guide

« Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x

XXiv

The following are available from the JDeveloper group:

« Oracle JDeveloper online help

« Oracle JDeveloper documentation on the Oracle Technology Network:
http://otn.oracl e. com product s/ j dev/ cont ent . ht m

In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

htt p: // ww or acl ebookshop. cont

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. cont adm n/ account / nenber shi p. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. cont docs/ i ndex. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

The following Oracle Technology Network (OTN) resources are available for further
information about JavaServer Pages:

= OTN Web site for Java servlets and JavaServer Pages:

http://otn.oracl e. conitech/java/ servl et s/

= OTNJSP discussion forums, accessible through the following address:

htt p: //ww oracl e. comt f or uns/ f or um j sp?i d=399160

The following resources are available from Sun Microsystems:

= Web site for JavaServer Pages, including the latest specifications:

XXV

http://java. sun. con product s/ j sp/ i ndex. ht m

« Web site for Java Servlet technology, including the latest specifications:

http://java. sun. con pr oduct s/ servl et/ i ndex. ht n

= jsp-interest discussion group for JavaServer Pages

To subscribe, send an e-mail to | i st ser v@ ava. sun. comwith the following
line in the body of the message:

subscribe jsp-interest yourl ast name yourfir st nane

It is recommended, however, that you request only the daily digest of the
posted e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text

= Conventions in Code Examples

XXVi

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
fen):tphams, or terms that are defined in the Ensure that the recovery catalog and target
’ database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates ~ You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-width)
font

| ower case
nonospace
(fixed-width)
font

| ower case
italic
nonospace
(fixed-width)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents place holders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to open SQL*Plus.
The password is specified in the or apwd file.

Back up the data files and control files in the
/ di ski1/ or acl e/ dbs directory.

The depart nent _i d, depar t ment _nane,
and | ocat i on_i d columns are in the
hr . depar t ment s table.

Set the QUERY_REWRI TE_ENABLED
initialization parameter to t r ue.

Connect as oe user.

The JRepUt i | class implements these
methods.

You can specify the par al | el _cl ause.

Run ol d_r el ease. SQL where ol d_r el ease
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

XXVii

SELECT usernane FROM dba_users WHERE usernane = ' M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

[]

Other notation

Italics

UPPERCASE

| ower case

Brackets enclose one or more optional
items. Do not enter the brackets.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the
code that are not directly related to
the example

= That you can repeat a portion of the
code

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates place holders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

DECI MAL (digits [, precision])

{ENABLE | DI SABLE}
[COWPRESS | NOCOWPRESS]
CREATE TABLE ... AS subquery;
SELECT col1, col2, ... , coln FROM
enpl oyees;

acctbal NUMBER(11, 2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em password
DB _NAME = dat abase_nane

SELECT | ast _nane,
enpl oyees;

SELECT * FROM USER _TABLES;
DRCOP TABLE hr. enpl oyees;

enpl oyee_i d FROM

SELECT | ast _nane,
enpl oyees;

enpl oyee_i d FROM

sql plus hr/hr
CREATE USER njones | DENTI FI ED BY t y3MB;

XXViii

1

Overview

This chapter provides an overview of the Oracle implementation of JDBC, covering
the following topics:

Introduction

Overview of the Oracle JDBC Drivers

Overview of Application and Applet Functionality
Server-Side Basics

Environments and Support

Changes At This Release

Overview 1-1

Introduction

Introduction

This section presents a brief introduction to Oracle JDBC, including a comparison to

SQLJ.

What is JDBC?

JDBC (Java Database Connectivity) is a standard Java interface for connecting from
Java to relational databases. The JDBC standard was defined by Sun Microsystems,
allowing individual providers to implement and extend the standard with their
own JDBC drivers.

JDBC is based on the X/Open SQL Call Level Interface and complies with the
SQL92 Entry Level standard.

In addition to supporting the standard JDBC API, Oracle drivers have extensions to
support Oracle-specific datatypes and to enhance performance.

JDBC versus SQLJ

Developers who are familiar with the Oracle Call Interface (OCI) layer of client-side
C code will recognize that JDBC provides the power and flexibility for the Java
programmer that OCI does for the C or C++ programmer. Just as with OCI, you can
use JDBC to query and update tables where, for example, the number and types of
the columns are not known until runtime. This capability is called dynamic SQL.
Therefore, JDBC is a way to use dynamic SQL statements in Java programs. Using
JDBC, a calling program can construct SQL statements at runtime. Your JDBC
program is compiled and run like any other Java program. No analysis or checking
of the SQL statements is performed. Any errors that are made in your SQL code
raise runtime errors. JDBC is designed as an API for dynamic SQL.

However, many applications do not need to construct SQL statements dynamically
because the SQL statements they use are fixed or static. In this case, you can use
SQLJ to embed static SQL in Java programs. In static SQL, all the SQL statements are
complete or "textually evident" in the Java program. That is, details of the database
object, such as the column names, number of columns in the table, and table name,
are known before runtime. SQL]J offers advantages for these applications because it
permits error checking at precompile time.

The precompile step of a SQL] program performs syntax-checking of the embedded
SQL, type checking against the database to assure that the data exchanged between
Java and SQL have compatible types and proper type conversions, and schema
checking to assure congruence between SQL constructs and the database schema.
The result of the precompilation is Java source code with SQL runtime code which,

1-2 Oracle9i JDBC Developer’s Guide and Reference

Introduction

in turn, can use JDBC calls. The generated Java code compiles and runs like any
other Java program.

Although SQLJ provides direct support for static SQL operations known at the time
the program is written, it can also interoperate with dynamic SQL through JDBC.
SQLJ allows you to create JDBC objects when they are needed for dynamic SQL
operations. In this way, SQLJ and JDBC can co-exist in the same program.
Convenient conversions are supported between JDBC connections and SQLJ
connection contexts, as well as between JDBC result sets and SQL] iterators. For
more information on this, see the Oracle9i SQL] Developer’s Guide and Reference.

The syntax and semantics of SQLJ and JDBC do not depend on the configuration
under which they are running, thus enabling implementation on the client or
database side or in the middle tier.

General Guidelines for Using JDBC and SQLJ

SQL]J is effective in the following circumstances:

= You want to be able to check your program for errors at translation-time, rather
than at run-time.

= You want to write an application that you can deploy to another database.
Using SQL]J, you can customize the static SQL for that database at
deployment-time.

« You are working with a database that contains compiled SQL. You will want to
use SQLJ because you cannot compile SQL statements in a JDBC program.

JDBC is effective in the following circumstances:

= Your program uses dynamic SQL. For example, you have a program that builds
queries in real-time or has an interactive query component.

« You do not want to have a SQLJ layer during deployment or development. For
example, you might want to download only the JDBC Thin driver and not the
SQL]J runtime libraries to minimize download time over a slow link.

Note: You can intermix SQL]J code and JDBC code in the same
source. This is discussed in the Oracle9i SQL] Developer’s Guide and
Reference.

Overview 1-3

Overview of the Oracle JDBC Drivers

Overview of the Oracle JDBC Drivers

Oracle9i
! —
| <
JDBC Thin Driver
' Java Sockets Java Endine
, I Server-Side Thin Driver
JDBC OCI Driver S;QL Engine JDBC Server-Side
\ . PL/SOL Engine — Internal Driver
OCI C Library Q gl
' \ KPRB C Library

\ e ——
Oracle9i

Common Features of Oracle JDBC Drivers

The server-side and client-side Oracle JDBC drivers provide the same basic
functionality. They all support the following standards and features:

« either JDK1.2.x / JDBC 2.0 or JDK 1.1.x / JDBC 1.22 (with Oracle extensions for
JDBC 2.0 functionality)

These two implementations use different sets of class files.
= same syntax and APIs
= same Oracle extensions

« full support for multi-threaded applications

1-4 Oracle9i JDBC Developer’s Guide and Reference

Overview of the Oracle JDBC Drivers

Oracle JDBC drivers implement standard Sun Microsystems j ava. sql interfaces.
Through the or acl e. j dbc package, you can access the Oracle features in addition
to the Sun features. This package is equivalent to the or acl e. j dbc. dri ver
package which is deprecated for Oracle9i.

Table 1-1 shows how the client-side drivers compare.

Table 1-1 JDBC Client-Side Drivers Compared at a Glance

External Completen
100% Libraries Platform- Performan ess of
Driver Type Size Protocol Java Use Needed dependent ce Features
1Y Small TTC Yes Appletand No No Better Better
Thin application
OCl I Large TTC No Application Yes Yes Best Best

Note: Most JDBC 2.0 functionality, including that for objects,
arrays, and LOBs, is available in a JDK 1.1.x environment through
Oracle extensions.

JDBC Thin Driver

The Oracle JDBC Thin driver is a 100% pure Java, Type IV driver. It is targeted for
Oracle JDBC applets but can be used for applications as well. Because it is written
entirely in Java, this driver is platform-independent. It does not require any
additional Oracle software on the client side. The Thin driver communicates with
the server using TTC, a protocol developed by Oracle to access the Oracle Relational
Database Management System (RDBMS).

For applets it can be downloaded into a browser along with the Java applet being
run. The HTTP protocol is stateless, but the Thin driver is not. The initial HTTP
request to download the applet and the Thin driver is stateless. Once the Thin
driver establishes the database connection, the communication between the browser
and the database is stateful and in a two-tier configuration.

The JDBC Thin driver allows a direct connection to the database by providing an
implementation of TCP/IP that emulates Oracle Net and TTC (the wire protocol
used by OCI) on top of Java sockets. Both of these protocols are lightweight
implementation versions of their counterparts on the server. The Oracle Net
protocol runs over TCP/IP only.

Overview 1-5

Overview of the Oracle JDBC Drivers

The driver supports only TCP/IP protocol and requires a TNS listener on the
TCP/IP sockets from the database server.

Note: When the JDBC Thin driver is used with an applet, the
client browser must have the capability to support Java sockets.

Using the Thin driver inside an Oracle server or middle tier is considered
separately, under "JDBC Server-Side Thin Driver" below.

JDBC OCI Driver

The JDBC OClI driver is a Type II driver for use with client-server Java applications.
This driver requires an Oracle client installation, and therefore is Oracle
platform-specific and not suitable for applets.

Note: In Oracle%i, the OCI driver is a single OCI driver for use
with all database versions. It replaces the distinct OCI8 and OCI7
drivers of previous releases. While the OCI8 and OCI7 drivers are
deprecated for Oracle9;, they are still supported for backward
compatibility.

The JDBC OCI driver provides OCI connection pooling functionality, which can
either be part of the JDBC client or a JDBC stored procedure. OCI driver connection
pooling requires fewer physical connections than standard connection pooling, it
also provides a uniform interface, and allows you to dynamically configure the
attributes of the connection pool. For a complete description of OCI driver
connection pooling, see "OCI Driver Connection Pooling" on page 17-2.

The OCI driver supports Oracle7, Oracle8/8i, and Oracle9i with the highest
compatibility. It also supports all installed Oracle Net adapters, including IPC,
named pipes, TCP/IP, and IPX/SPX.

The OCI driver, written in a combination of Java and C, converts JDBC invocations
to calls to the Oracle Call Interface (OCI), using native methods to call C-entry
points. These calls are then sent over Oracle Net to the Oracle database server. The
OCI driver communicate with the server using the Oracle-developed TTC protocol.

The OCI driver uses the OCI libraries, C-entry points, Oracle Net, CORE libraries,
and other necessary files on the client machine on which it is installed.

1-6 Oracle9i JDBC Developer’s Guide and Reference

Overview of the Oracle JDBC Drivers

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows you to create applications that use the native procedures or function calls of
a third-generation language to access an Oracle database server and control all
phases of SQL statement execution. The OCI driver is designed to build scalable,
multi-threaded applications that can support large numbers of users securely.

The Oracle9i JDBC OCI driver has the following functionality:
= Uses OCI

= Connection Pooling

= OCI optimized fetch

« Prefetching

= Fastest LOB access

= Client-side object cache

= Transparent Application Failover (TAF)

« Middle-tier authentication

= Advanced security

JDBC Server-Side Thin Driver

The Oracle JDBC server-side Thin driver offers the same functionality as the
client-side Thin driver, but runs inside an Oracle database and accesses a remote
database.

This is especially useful in two situations:
« to access a remote Oracle server from an Oracle server acting as a middle tier

« more generally, to access one Oracle server from inside another, such as from
any Java stored procedure or Enterprise JavaBean

There is no difference in your code between using the Thin driver from a client
application or from inside a server.

Note: Statement cancel () and set Quer yTi meout () methods
are not supported by the server-side Thin driver.

Overview 1-7

Overview of the Oracle JDBC Drivers

About Permission for the Server-Side Thin Driver The thin driver opens a socket to use
for its connection. Because the Oracle server is enforcing the Java security model,
this means that a check is performed for a Socket Per mi ssi on object.

To use the JDBC server-side Thin driver, the connecting user must be granted with
the appropriate permission. This is an example of how the permission can be
granted for user SCOTT:

create rol e jdbcthin;

call dbms_java. grant_permission(' JDBCTHI N ,
"java. net. Socket Perni ssion',

"*' 'connect');

grant jdbcthin to scott;

Note that JDBCTHI Nin the gr ant _per i ssi on call must be in upper case. The *'
is a pattern. It is possible to limit the permission to allow connecting to specific
machines or ports. See the Javadoc for complete details on the

j ava. net . Socket Per mi ssi on class. Also, refer to the Oracle9i Java Developer’s
Guide for further discussion of Java security inside the Oracle server.

JDBC Server-Side Internal Driver

The Oracle JDBC server-side internal driver supports any Java code that runs inside
an Oracle database, such as in a Java stored procedures or Enterprise JavaBean, and
must access the same database. This driver allows the Java virtual machine (JVM) to
communicate directly with the SQL engine.

The server-side internal driver, the JVM, the database, KPRB (server-side) C library,
and the SQL engine all run within the same address space, so the issue of network
round trips is irrelevant. The programs access the SQL engine by using function
calls.

The server-side internal driver is fully consistent with the client-side drivers and
supports the same features and extensions. For more information on the server-side
internal driver, see "JDBC in the Server: the Server-Side Internal Driver" on

page 18-26.

Note: The server-side internal driver supports only JDK 1.2.x.

Choosing the Appropriate Driver

Consider the following when choosing a JDBC driver to use for your application or
applet:

1-8 Oracle9i JDBC Developer’s Guide and Reference

Overview of the Oracle JDBC Drivers

If you are writing an applet, you must use the JDBC Thin driver. JDBC
OCl-based driver classes will not work inside a Web browser, because they call
native (C language) methods.

If you want maximum portability and performance, use the JDBC Thin driver.
You can connect to an Oracle server from either an application or an applet
using the JDBC Thin driver.

If you are writing a client application for an Oracle client environment and need
maximum performance, then choose the JDBC OCI driver.

For code that runs in an Oracle server acting as a middle tier, use the server-side
Thin driver.

If your code will run inside the target Oracle server, then use the JDBC
server-side internal driver to access that server. (You can also access remote
servers using the server-side Thin driver.)

If performance is critical to your application, you want maximum scalability of
the Oracle server, or you need the enhanced availability features like TAF or the
enhanced proxy features like middle-tier authentication

Overview 1-9

Overview of Application and Applet Functionality

Overview of Application and Applet Functionality

This section compares and contrasts the basic functionality of JDBC applications
and applets, and introduces Oracle extensions that can be used by application and
applet programmers.

Application Basics

You can use either the Oracle JDBC Thin or OCI driver for a client application.
Because the JDBC OCI driver uses native methods, there can be significant
performance advantages in using this driver for your applications.

An application that can run on a client can also run in the Oracle server, using the
JDBC server-side internal driver.

If you are using a JDBC OCI driver in an application, then the application will
require an Oracle installation on its clients. For example, the application will require
the installation of Oracle Net and client libraries.

The JDBC Thin and OCI drivers offer support for data encryption and integrity
checksum features of the Oracle Advanced Security option (formerly known as
ANO or ASQO). See "JDBC Client-Side Security Features" on page 18-8. Such security
is not necessary for the server-side internal driver.

Applet Basics

This section describes the issues you should take into consideration if you are
writing an applet that uses the JDBC Thin driver.

For more about applets and a discussion of relevant firewall, browser, and security
issues, see "JDBC in Applets" on page 18-15.

Applets and Security

Without special preparations, an applet can open network connections only to the
host machine from which it was downloaded. Therefore, an applet can connect to
databases only on the originating machine. If you want to connect to a database
running on a different machine, you have two options:

« Usethe Oracle Connection Manager on the host machine. The applet can
connect to Connection Manager, which in turn connects to a database on
another machine.

= Use signed applets, which can request socket connection privileges to other
machines.

1-10 Oracle9i JDBC Developer's Guide and Reference

Overview of Application and Applet Functionality

Both of these topics are described in greater detail in "Connecting to the Database
through the Applet" on page 18-15.

The Thin driver offers support for data encryption and integrity checksum features
of the Oracle Advanced Security option. See "JDBC Client-Side Security Features"
on page 18-8.

Applets and Firewalls

An applet that uses the JDBC Thin driver can connect to a database through a
firewall. See "Using Applets with Firewalls" on page 18-20 for more information on
configuring the firewall and on writing connect strings for the applet.

Packaging and Deploying Applets

To package and deploy an applet, you must place the JDBC Thin driver classes and
the applet classes in the same zip file. This is described in detail in "Packaging
Applets" on page 18-23.

Oracle Extensions

A number of Oracle extensions are available to Oracle JDBC application and applet
programmers, in the following categories:

« type extensions (such as ROWIDs and REF CURSOR types)
« wrapper classes for SQL types (the or acl e. sql package)

« support for custom Java classes to map to user-defined types
« extended LOB support

= extended connection, statement, and result set functionality
« performance enhancements

See Chapter 6, "Overview of Oracle Extensions" for an overview of type extensions
and extended functionality, and succeeding chapters for further detail. See
Chapter 12, "Performance Extensions" regarding Oracle performance enhancements.

Package oracle.jdbc

Beginning in Oracle9i, the Oracle extensions to JDBC are captured in the package
oracl e. j dbc. This package contains classes and interfaces that specify the Oracle
extensions in a manner similar to the way the classes and interfaces in j ava. sql
specify the public JDBC APL

Overview 1-11

Overview of Application and Applet Functionality

Your code should use the package or acl e. j dbc instead of the package

oracl e. jdbc. dri ver used in earlier versions of Oracle. Use of the package
oracl e. jdbc. driver is now deprecated, but will continue to be supported for
backwards compatibility.

All that is required to convert your code is to replace "or acl e. j dbc. dri ver"
with "or acl e. j dbc" in the source and recompile. This cannot be done piece-wise.
You must convert all classes and interfaces that are referenced by an application.
Conversion is not required, but is highly recommended. Future releases of Oracle
may have features that are incompatible with use of the package

oracl e.jdbc.driver.

The purpose of this change is to enable the Oracle JDBC drivers to have multiple
implementations. In all releases up to and including Oracle9;, all of the Oracle JDBC
drivers have used the same top level implementation classes, the classes in the
package or acl e. j dbc. dri ver. By converting your code to use or acl e. j dbc,
you will be able to take advantage of future enhancements that use different
implementation classes. There are no such enhancements in Oracle9i, but there are
plans for such enhancements in the future.

Additionally, these interfaces permit the use of some code patterns that are difficult
to use when your code uses the package or acl e. j dbc. dri ver. For example, you
can more easily develop wrapper classes for the Oracle JDBC classes. If you wished
to wrap the Or acl eSt at ement class in order to log all SQL statements, you could
easily do so by creating a class that wraps Or acl eSt at ment . That class would
implement the interface or acl e. j dbc. Or acl eSt at enent and hold an

oracl e. jdbc. Oracl eSt at enent as an instance variable. This wrapping pattern
is much more difficult when your code uses the package or acl e. j dbc. dri ver as
you cannot extend the class or acl e. j dbc. driver. Oracl eSt at ement .

Once again, your code should use the new package or acl e. j dbc instead of the
package or acl e. j dbc. dri ver. Conversion is not required as

oracl e.jdbc. driver will continue to be supported for backwards compatibility.
Conversion is highly recommended as there may in later releases be features that
are not supported if your code uses or acl e. j dbc. dri ver.

1-12 Oracle9i JDBC Developer's Guide and Reference

Server-Side Basics

Server-Side Basics

By using the Oracle JDBC server-side internal driver, code that runs in an Oracle
database, such as in Java stored procedures or Enterprise JavaBeans, can access the
database in which it runs.

For a complete discussion of the server-side driver, see "JDBC in the Server: the
Server-Side Internal Driver" on page 18-26.

Session and Transaction Context

The server-side internal driver operates within a default session and default
transaction context. For more information on default session and transaction context
for the server-side driver, see "Session and Transaction Context for the Server-Side
Internal Driver" on page 18-30.

Connecting to the Database

The server-side internal driver uses a default connection to the database. You can
connect to the database with either the Dri ver Manager . get Connect i on()
method or the Oracle-specific Or acl eDri ver class def aul t Connecti on()
method. For more information on connecting to the database with the server-side
driver, see "Connecting to the Database with the Server-Side Internal Driver" on
page 18-26.

Overview 1-13

Environments and Support

Environments and Support

This section provides a brief discussion of platform, environment, and support
features of the Oracle JDBC drivers. The following topics are discussed:

= Supported JDK and JDBC Versions
« JNI and Java Environments

« JDBC and IDEs

Supported JDK and JDBC Versions

Starting at Oracle8i release 8.1.6, Oracle has two versions of the Thin and OCI
drivers—one that is compatible with versions JDK 1.2.x and higher, and one that is
compatible with JDK 1.1.x. The JDK 1.2.x versions support standard JDBC 2.0. The
JDK 1.1.x versions support most JDBC 2.0 features, but must do so through Oracle
extensions because JDBC 2.0 features are not available in JDK 1.1.x versions.

Very little is required to migrate from a JDK 1.1.x environment to a JDK 1.2.x
environment. For information, see "Migration from JDK 1.1.x to JDK 1.2.x" on
page 4-5.

Notes:
« The server-side internal driver supports only JDK 1.2.x.

= Each driver implementation uses its own JDBC classes ZIP
file—cl asses12. zi p for JDK 1.4, 1.3.x, and1.2.x versions, and
cl asses111. zi p for JDK 1.1.x versions.

For information about supported combinations of driver versions, JDK versions,
and database versions, see "Requirements and Compatibilities for Oracle JDBC
Drivers" on page 2-2.

JNI and Java Environments

Beginning with Oracle8i release 8.1.6, the Oracle JDBC OCI driver uses the standard
JNI (Java Native Interface) to call Oracle OCI C libraries. Prior to 8.1.6, when the
OCI drivers supported JDK 1.0.2, they used NMI (Native Method Interface) for C
calls. NMI was an earlier specification by Sun Microsystems and was the only
native call interface supported by JDK 1.0.2.

1-14 Oracle9i JDBC Developer's Guide and Reference

Environments and Support

Because JNI is now supported by Oracle JDBC, you can use the OCI driver with
Java virtual machines other than that of Sun Microsystems—in particular, with
Microsoft and IBM JVMs. These JVMs support only JNI for native C calls.

JDBC and IDEs

The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for
the Oracle Internet platform. The Oracle JDeveloper environment contains
integrated support for JDBC and SQLJ, including the 100% pure JDBC Thin driver
and the native OCI drivers. The database component of Oracle JDeveloper uses the
JDBC drivers to manage the connection between the application running on the
client and the server. See your Oracle JDeveloper documentation for more
information.

Overview 1-15

Changes At This Release

Changes At This Release
Release 2 (9.2) of Oracle JDBC provides the following enhancements:

= Support for some JDBC 3.0 and JDK 1.4 features. See Chapter 5, "Overview of
Supported JDBC 3.0 Features".

= A new statement cache API; the old APl is now deprecated. See Chapter 14,
"Statement Caching".

= Support for the Oracle datatypes TS, TSTZ, and TSLTZ .

Desupport Of J2EE In The Oracle Database

With the introduction of Oracle9i Application Server Containers for J2EE (OC4])—a
new, lighter-weight, easier-to-use, faster, and certified J2EE container—Oracle will
desupport the Java 2 Enterprise Edition (J2EE) and CORBA stacks from the
database, starting with Oracle9i Database release 2. However, the
database-embedded Java VM (Oracle JVM) will still be present and will continue to
be enhanced to offer Java 2 Standard Edition (J2SE) features, Java stored procedures,
JDBC, and SQL]J in the database.

As of Oracle9iDB Release 2 (version 9.2.0), Oracle will no longer support the
following technologies in the database:

= Enterprise Java Beans (E]B) container
= JavaServer Pages (JSP) container
= Oracle Servlet Engine (OSE)

= the embedded Common Object Request Broker Architecture (CORBA)
framework based on Visibroker for Java

Customers will no longer be able to deploy servlets, JSP pages, E]Bs and CORBA
objects in Oracle databases . Oracle9i Release 1 (version 9.0.1) will be the last
database release to support the J2EE and CORBA stack. Oracle is encouraging
customers to migrate existing J2EE applications running in the database to OC4J
Now.

1-16 Oracle9i JDBC Developer's Guide and Reference

2

Getting Started

This chapter begins by discussing compatibilities between Oracle JDBC driver
versions, database versions, and JDK versions. It then guides you through the basics
of testing your installation and configuration, and running a simple application.
The following topics are discussed:

« Requirements and Compatibilities for Oracle JDBC Drivers

= Verifying a JDBC Client Installation

Getting Started 2-1

Requirements and Compatibilities for Oracle JDBC Drivers

Requirements and Compatibilities for Oracle JDBC Drivers

Table 2-1 lists the compatibilities between Oracle JDBC driver versions and Oracle
database versions. The JDK versions supported by each JDBC driver version are
also listed.

Note: Notice that starting with Oracle8i release 8.1.6, the Oracle
JDBC drivers no longer support JDK 1.0.x versions.

Table 2-1 JDBC Driver-Database Compatibility

Database
Driver Versions JDK Versions
Versions Supported Supported Drivers Available Remarks
9.2.0 9.2.0,9.0.1,8.1.7, 14,1.3.x,1.2.x, JDBC Thin driver
g(l)g, 23)2, 8.06, 1.1x JDBC OCI driver
JDBC server-side Thin driver
JDBC server-side internal driver
(supports 9.2.0 database and JDK
1.2.x only)
9.0.1 9.0.1,8.1.7,816, 1.2x 1.1x JDBC Thin driver
S0y 00805 JDBC OCI driver
JDBC server-side Thin driver
JDBC server-side internal driver
(supports 9.0.1 database and JDK
1.2.x only)
8.1.7 8.1.7,8.1.6,8.15, 1.2x 1.1x JDBC Thin driver
590805804 JDBC OCI driver

JDBC server-side Thin driver

JDBC server-side internal driver
(supports 8.1.7 database and JDK
1.2.x only)

2-2 Oracle9i JDBC Developer's Guide and Reference

Requirements and Compatibilities for Oracle JDBC Drivers

Table 2-1 JDBC Driver-Database Compatibility(Cont.)

Database
Driver Versions JDK Versions
Versions Supported Supported Drivers Available Remarks
8.1.6 8.1.6,8.1.5,8.06, 1.2.x,1.1.x JDBC Thin driver The Thin driver is also
8.0.5,8.04,7.34 JDBC OCI driver available in the server w.ith the
standard server installation.
JDBC server-side Thin driver This has the same usage and
JDBC server-side internal driver fur}ctlor}ahty as the chgnt—mde
Thin driver, for accessing a
(supports 8.1.6 database and JDK . O,
remote database from inside a
1.2.x only) d
atabase.
8.1.5 8.1.5,8.0.6,8.0.5, 1.1.x,1.0.x JDBC Thin driver Both client- and server-side
8.04,7.34 JDBC OCI driver drivers offer full support for
structured objects when run
JDBC server-side internal driver against an 8.1.5 database.
(supports 8.1.5 database and JDK
1.1.x only)
8.0.6 8.0.6,8.0.5,8.04, 1.1.x,1.0.x JDBC Thin driver
734 JDBC OCI driver
Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.
8.0.5 8.0.5,8.04,734 1.1x,1.0x JDBC Thin driver
JDBC OCI driver
Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.
8.04 8.04,7.34 1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

Getting Started 2-3

Requirements and Compatibilities for Oracle JDBC Drivers

Notes:

« Different JDKs require different class files—classes in
cl asses12. zi p,cl asses1ll. zi p, respectively.

= The JDBC drivers do not support structured objects when run
against an 8.0.x database. This is because JDBC depends on
PL/SQL functions that did not exist in those releases.

= Any client-side driver might work with 7.x databases, but this
has not been tested and is not supported.

2-4 Oracle9i JDBC Developer's Guide and Reference

Verifying a JDBC Client Installation

Verifying a JDBC Client Installation
This section covers the following topics:
= Check Installed Directories and Files
= Check the Environment Variables
= Make Sure You Can Compile and Run Java
« Determine the Version of the JDBC Driver
= Testing JDBC and the Database Connection: JdbcCheckup

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific
documentation.

This section describes the steps of verifying an Oracle client installation of the JDBC
drivers. It assumes that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, no further installation on the client
machine is necessary (the JDBC Thin driver requires a TCP/IP listener to be
running on the database machine).

If you have installed the JDBC OCI driver, you must also install the Oracle client
software. This includes Oracle Net and the OCI libraries.

Check Installed Directories and Files

This section assumes that you have already installed the Sun Microsystems Java
Developer’s Kit (JDK) on your system (although other forms of Java are also
supported). Oracle offers JDBC drivers compatible with the JDK1.4, 1.3.x, 1.2.x, and
1.1.x versions.

Installing the Oracle9 Java products creates, among other things, an
[ORACLE_HOVE] / j dbc directory containing these subdirectories and files:

= denp/ sanpl es: The sanpl es subdirectory contains sample programs,
including examples of how to use SQL92 and Oracle SQL syntax, PL/SQL
blocks, streams, user-defined types, additional Oracle type extensions, and
Oracle performance extensions.

« doc: The doc directory contains documentation about the JDBC drivers.

« |ib:Theli b directory contains . zi p files with these required Java classes:

Getting Started 2-5

Verifying a JDBC Client Installation

— cl asses12. zi p contains the classes for use with 1.2.x, 1.3.x, and 1.4—all
the JDBC driver classes except the classes necessary for globalization
support.

- nls_charset 12. zi p contains the classes necessary for globalization
support with JDK 1.2.x, 1.3.x, and 1.4.

— jta.zipandjndi.zip contain classes for the Java Transaction API and
the Java Naming and Directory Interface for JDK 1.2.x, 1.3.x, and 1.4. These
are only required if you will be using JTA features for distributed
transaction management or JNDI features for naming services. (These files
can also be obtained from the Sun Microsystems Web site, but it is advisable
to use the versions from Oracle, because those have been tested with the
Oracle drivers.)

— classeslll. zi p contains the classes for use with JDK 1.1.x—all the
JDBC driver classes except the classes necessary for globalization support.

cl asses111. zi p also contains Oracle extensions that allow you to use
JDBC 2.0 functionality for objects, arrays, and LOBs under JDK 1.1.x.

- nls_charset 11. zi p contains the classes necessary for globalization
support with the JDK 1.1.x.

Thenl s_charset 12. zi pand nl s_char set 11. zi p files provide support
for specific character sets. They have been separated out from the

cl asses*. zi p files to give you the option of excluding character sets in
situations where complete globalization support is not needed. For more
information onnl s_char set 12. zi pand nl s_char set 11. zi p, see
"Globalization Support and Object Types" on page 18-4.

« 0jdbcl4.jar contains classes for use with JDK 1.4. It contains the JDBC
driver classes except classes necessary for globalization support in Object
and Collection types.

= readne. txt:Thereadne. txt file contains late-breaking and release-specific
information about the drivers that might not be in this manual.

Check that all these directories have been created and populated.

Check the Environment Variables

This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver, focusing on the Sun Microsystems Solaris and
Microsoft Windows NT platforms.

2-6 Oracle9i JDBC Developer’s Guide and Reference

Verifying a JDBC Client Installation

You must set the CLASSPATH for your installed JDBC OCI or Thin driver.
Depending on which JDK version you use, you must set one of these values for the

CLASSPATH:

JDK Version CLASSPATH

14,1.3.x,12x [Oacl eHome] /j dbc/ l'i b/ cl asses12. zip
[Oracl eHone] /jdbc/1i b/ nls_charset12. zi p for
full globalization support

1.1.x [Oacl eHome] /j dbc/1i b/ cl asses11l. zip

[Oracl eHone] /jdbc/1ib/nls_charset1l. zi pfor
full globalization support

Ensure that there is only one cl asses*. zi p file version and one
nl s_charset *. zi p file version in your CLASSPATH.

Note:

If you will be using JTA features or JNDI features, both of

which are discussed in Chapter 16, "Connection Pooling and
Caching", then you will also need to have j t a. zi p and j ndi . zi p
in your CLASSPATH.

JDBC OCI Driver: If you are installing the JDBC OCI driver, you must also set the
following value for the library path environment variable

« OnSolaris, set LD_LI BRARY_PATHas follows:

[Cracle Home]/1ib

This directory contains the | i boci j dbc9. so shared object library.
« On Windows NT, set PATH as follows:

[Oracle Home]\lib

This directory contains the oci j dbc8. dl | dynamic link library.

JDBC Thin Drivers: If you are installing the JDBC Thin driver, you do not have to set
any other environment variables.

Getting Started 2-7

Verifying a JDBC Client Installation

Make Sure You Can Compile and Run Java

To further ensure that Java is set up properly on your client system, go to the
sanpl es directory (for example, C: \ or acl e\ or a81\ j dbc\ denp\ sanpl es if
you are using the JDBC driver on a Windows NT machine), then see if j avac (the
Java compiler) and j ava (the Java interpreter) will run without error. Enter:

j avac
then enter:
j ava

Each should give you a list of options and parameters and then exit. Ideally, verify
that you can compile and run a simple test program.

Determine the Version of the JDBC Driver

If at any time you must determine the version of the JDBC driver that you installed,
you can invoke the get Dri ver Ver si on() method of the
Or acl eDat abaseMet aDat a class.

Here is sample code showing how to do it:

inport java.sql.*;
inport oracle.jdbc.driver.*;

class JDBCVer sion
{
public static void main (String args[])
throws SQLException
{
/1 Load the Oracle JDBC driver
DriverManager . regi sterDriver
(new oracle.jdbc.driver.OracleDriver());
Connection conn = DriverManager. get Connecti on
("jdbc:oracl e:thin: @ost:port:sid","scott","tiger");

/| Create Oracle DatabaseMetaData object
Dat abaseMet aData neta = conn. get MetaData();

/] gets driver info:
Systemout . println("JDBC driver version is " + neta.getDriverVersion());

2-8 Oracle9i JDBC Developer’s Guide and Reference

Verifying a JDBC Client Installation

Testing JDBC and the Database Connection: JdbcCheckup

The sanpl es directory contains sample programs for a particular Oracle JDBC
driver. One of the programs, JdbcCheckup. j ava, is designed to test JDBC and the
database connection. The program queries you for your user name, password, and
the name of a database to which you want to connect. The program connects to the
database, queries for the string "Hel | o Wor | d", and prints it to the screen.

Go to the sanpl es directory and compile and run JdbcCheckup. j ava. If the
results of the query print without error, then your Java and JDBC installations are
correct.

Although JdbcCheckup. j ava is a simple program, it demonstrates several
important functions by executing the following:

« imports the necessary Java classes, including JDBC classes
= registers the JDBC driver

« connects to the database

= executes a simple query

= outputs the query results to your screen

"First Steps in JDBC" on page 3-2, describes these functions in greater detail. A
listing of Jdbc Checkup. j ava for the JDBC OCI driver appears below.

/*

* This sanpl e can be used to check the JDBC installation.

* Just run it and provide the connect information. It will select
* "Hello Wrld" fromthe database.

*|

/] You need to inport the java.sql package to use JDBC
inport java.sql.*;

/] W inport java.io to be able to read fromthe command |ine
inport java.io.*;

class JdbcCheckup
{

public static void main(String args[])
throws SQLException, |OException

{
/! Load the Oracle JDBC driver

Driver Manager.registerDriver(new oracle.jdbc.driver.OracleDriver());

Getting Started 2-9

Verifying a JDBC Client Installation

}

/1 Prompt the user for connect information

Systemout. println("Please enter information to test connection to
the dat abase");

String user;

String password;

String database;

user = readEntry("user: ");
int slash_index = user.indexCf('/");
!

if (slash_index !=-1)

{
password = user.substring(slash_index + 1);
user = user.substring(0, slash_index);

}

el se

password = readEntry("password: ");
dat abase = readEntry("database(a TNSNAME entry): ");

System out . print("Connecting to the database...");
System out . fl ush();

System out . println("Connecting...");
Connection conn = DriverManager. get Connecti on

("jdbc:oracl e:oci: @ + database, user, password);
System out . println("connected.");

Il Create a statement
Statement stnt = conn.createStatenment();

/] Do the SQL "Hello Wrld" thing
Resul t Set rset = stnt.executeQuery("select 'Hello Wrld'
fromdual ");

while (rset.next())
Systemout.println(rset.getString(1));

/1l close the result set, the statement and connect

rset.cl ose();

stnt.close();

conn. cl ose();

Systemout. println("Your JDBC installation is correct.");

[l Wility function to read a line fromstandard input
static String readEntry(String pronpt)

{

2-10 Oracle9i JDBC Developer's Guide and Reference

Verifying a JDBC Client Installation

try

StringBuffer buffer = new StringBuffer();
System out . pri nt (pronpt);
System out . fl ush();
int ¢ = Systemin.read();
while (¢ !'="\n" & c !=-1)
{
buf f er. append((char)c);
c = Systemin.read();

}
return buffer.toString().trin();

}
cat ch(| OException e)

{ nn

return "";

}
}
}

Getting Started 2-11

Verifying a JDBC Client Installation

2-12 Oracle9i JDBC Developer's Guide and Reference

3

Basic Features

This chapter covers the most basic steps taken in any JDBC application. It also
describes additional basic features of Java and JDBC supported by the Oracle JDBC
drivers.

The following topics are discussed:

First Steps in JDBC

Sample: Connecting, Querying, and Processing the Results
Datatype Mappings

Java Streams in JDBC

Stored Procedure Calls in JDBC Programs

Processing SQL Exceptions

Basic Features 3-1

First Steps in JDBC

First Steps in JDBC

This section describes how to get up and running with the Oracle JDBC drivers.
When using the Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial,
where and how to add the information. The tutorial guides you through creating
code to connect to and query a database from the client.

To connect to and query a database from the client, you must provide code for these
tasks:

Import Packages

Register the JDBC Drivers

Open a Connection to a Database

Create a Statement Object

Execute a Query and Return a Result Set Object
Process the Result Set

Close the Result Set and Statement Objects
Make Changes to the Database

© © N o g > w N BRE

Commit Changes
10. Close the Connection

You must supply Oracle driver-specific information for the first three tasks, which
allow your program to use the JDBC API to access a database. For the other tasks,
you can use standard JDBC Java code as you would for any Java application.

Import Packages

Regardless of which Oracle JDBC driver you use, include the following i npor t
statements at the beginning of your program (j ava. mat h only if needed):

i mport java.sql.*; for standard JDBC packages
i mport java.math.*; for Bi gDeci mal and Bi gl nt eger classes
Import the following Oracle packages when you want to access the extended

functionality provided by the Oracle drivers. However, they are not required for the
example presented in this section:

3-2 Oracle9i JDBC Developer’s Guide and Reference

First Steps in JDBC

i mport oracle.jdbc.*; for Oracle extensions to JDBC
i mport oracle.sql.*;

For an overview of the Oracle extensions to the JDBC standard, see Chapter 6,
"Overview of Oracle Extensions".

Register the JDBC Drivers

You must provide the code to register your installed driver with your program. You
do this with the staticr egi st er Dri ver () method of the JDBC Dr i ver Manager
class. This class provides a basic service for managing a set of JDBC drivers.

Note: Alternatively, you can use the f or Name() method of the
java. |l ang. Cl ass class to load the JDBC drivers directly. For
example:

Class.forNanme ("oracle.jdbc. OracleDriver");

However, this method is valid only for JDK-compliant Java virtual
machines. It is not valid for Microsoft Java virtual machines.

Because you are using one of Oracle’s JDBC drivers, you declare a specific driver
name string to r egi st er Dri ver (). You register the driver only once in your Java
application.

Driver Manager.regi sterDriver (new oracle.jdbc. OracleDriver());

Open a Connection to a Database

Open a connection to the database with the static get Connect i on() method of
the JDBC Dri ver Manager class. This method returns an object of the JDBC
Connect i on class that needs as input a user name, password, connect string that
identifies the JDBC driver to use, and the name of the database to which you want
to connect.

Connecting to a database is a step where you must enter Oracle JDBC
driver-specific information in the get Connect i on() method. If you are not
familiar with this method, continue reading the "Understanding the Forms of
getConnection()" section below.

Basic Features 3-3

First Steps in JDBC

If you are already familiar with the get Connect i on() method, you can skip
ahead to either of these sections, depending on the driver you installed:

= "Opening a Connection for the JDBC OCI Driver" on page 3-9
= "Opening a Connection for the JDBC Thin Driver" on page 3-10

Notes:

= With JDK 1.2, using JNDI (Java Naming and Directory
Interface) is becoming the recommended way to make
connections. See "A Brief Overview of Oracle Data Source
Support for INDI" on page 16-2 and "Creating a Data Source
Instance, Registering with JNDI, and Connecting" on page 16-8.

« Ifyou are using the Thin driver, be aware that it does not
support OS authentication in making the connection. As a
result, special logins are not supported.

= This discussion in this section does not apply to the server-side
internal driver, which uses an implicit connection. See
"Connecting to the Database with the Server-Side Internal
Driver" on page 18-26.

Understanding the Forms of getConnection()

The Dri ver Manager class get Connect i on() method whose signatures and
functionality are described in the following sections:

= "Specifying a Database URL, User Name, and Password" on page 3-5

= "Specifying a Database URL That Includes User Name and Password" on
page 3-5

= "Specifying a Database URL and Properties Object" on page 3-6

If you want to specify a database name in the connection, it must be in one of the
following formats:

« aOracle Net keyword-value pair
= astring of the form <host_name>:<port_number>:<sid> (Thin driver only)
= a TNSNAMES entry (OCI driver only)

For information on how to specify a keyword-value pair or a TNSNAMES entry, see
your Oracle Net Services Administrator’s Guide.

3-4 Oracle9i JDBC Developer’s Guide and Reference

First Steps in JDBC

Specifying a Database URL, User Name, and Password

The following signature takes the URL, user name, and password as separate
parameters:

get Connection(String URL, String user, String password);

Where the URL is of the form:

jdbc:oracl e: <dri vertype>: @dat abase>

The following example connects user scot t with password t i ger to a database
with | NSTANCE_NAME or ¢l through port 1521 of host nyhost , using the Thin
driver.

Connection conn = DriverManager. get Connection
("jdbc:oracl e:thin: @yhost:1521:orcl", "scott", "tiger");

If you want to use the default connection for an OCI driver, specify either:

Connection conn = DriverManager. get Connection
("jdbc:oracle:oci:scott/tiger@);

or:

Connection conn = DriverManager. get Connection
("jdbc:oracle:oci: @, "scott", "tiger");

For all JDBC drivers, you can also specify the database with a Oracle Net
keyword-value pair. The Oracle Net keyword-value pair substitutes for the
TNSNAMES entry. The following example uses the same parameters as the
preceding example, but in the keyword-value format:

Connection conn = DriverManager. get Connection
(jdbc:oracle:oci: @Host String","scott","tiger");

or:

Connection conn = DriverManager. get Connection
("jdbc:oracle:oci:@description=(address=(host= myhost)
(protocol =tcp) (port=1521)) (connect _dat a=(1 NSTANCE_NAME=or cl)))",
"scott", "tiger");

Specifying a Database URL That Includes User Name and Password

The following signature takes the URL, user name, and password all as part of a
URL parameter:

get Connection(String URL);

Basic Features 3-5

First Steps in JDBC

Where the URL is of the form:
jdbc: oracl e: <dri vertype>: <user >/ <passwor d>@dat abase>
The following example connects user scot t with password t i ger to a database on

host myhost using the OCI driver. In this case, however, the URL includes the
userid and password, and is the only input parameter.

Connection conn = DriverManager. get Connection
("jdbc:oracl e:oci:scott/tiger@rmhost);

If you want to connect with the Thin driver, you must specify the port number and
SID. For example, if you want to connect to the database on host myhost that has a
TCP/IP listener up on port 1521, and the SI D (system identifier) is or cl :

Connection conn = DriverManager. get Connection
("jdbc:oracl e:thin:scott/tiger@ryhost: 1521:orcl);

Specifying a Database URL and Properties Object

The following signature takes a URL, together with a properties object that specifies
user name and password (perhaps among other things):

get Connection(String URL, Properties info);

Where the URL is of the form:

jdbc:oracl e: <dri vertype>: @dat abase>

In addition to the URL, use an object of the standard Java Pr oper ti es class as
input. For example:

java.util.Properties info = newjava.util.Properties();
info.put ("user", "scott");

info.put ("password","tiger");

info.put ("defaultRowPrefetch","15");

get Connection ("jdbc:oracle:oci:@,info);

Table 3-1 lists the connection properties that Oracle JDBC drivers support.

3-6 Oracle9i JIDBC Developer’s Guide and Reference

First Steps in JDBC

Table 3-1 Connection Properties Recognized by Oracle JDBC Drivers

Short
Name Name Type Description
user n/a String the user name for logging into the
database
password n/a String the password for logging into the database
database server String the connect string for the database
internal_logon n/a String arole, such as sysdba or sysoper, that
allows you to log on as sys
defaultRowPrefetch prefetch String the default number of rows to prefetch
(containing from the server (default value is "10")
integer
value)
remarksReporting remarks String "true” if get Tabl es() and
(containing get Col unms() should report
boolean TABLE_REMARKS; equivalent to using
value) set Remar ksReporting() (default
value is "false")
defaultBatchValue batchvalue String the default batch value that triggers an
(containing execution request (default value is "10")
integer
value)
includeSynonyms synonyms String "true" to include column information from
(containing predefined "synonym" SQL entities when
boolean you execute a Dat aBaseMet aDat a
value) get Col ums() call; equivalent to
connection set | ncl udeSynonyns() call
(default value is "false")
processEscapes String "true” if escape processing is enabled for all
(containing statements, "false" if escape processing is
boolean disabled (default value is "false")
value)

See Table 184, "OCI Driver Client Parameters for Encryption and Integrity" and
Table 18-5, "Thin Driver Client Parameters for Encryption and Integrity" for
descriptions of encryption and integrity drivers.

Basic Features 3-7

First Steps in JDBC

Using Roles for Sys Logon

To specify the role (mode) for sys logon, use the i nt er nal _| ogon connection
property. (See Table 31, "Connection Properties Recognized by Oracle JDBC
Drivers", for a complete description of this connection property.) To logon as sys,
set the i nt er nal _I ogon connection property to sysdba or sysoper.

Note: The ability to specify a role is supported only for sys user
name.

Example The following example illustrates how to use the i nt er nal _| ogon and
sysdba arguments to specify sys logon.

/linport packages and register the driver

inport java.sql.*;

inport java.math.*;

Driver Manager.regi sterDriver (new oracle.jdbc. OracleDriver());

/Ispecify the properties object
java.util.Properties info = newjava.util.Properties();
info.put ("user", "sys");
info.put ("password", "change_on_install");
info.put ("internal _|ogon","sysdba");
//specify the connection object
Connection conn = DriverManager. get Connection
("jdbc:oracl e:thin: @atabase",info);

Properties for Oracle Performance Extensions Some of these properties are for use with
Oracle performance extensions. Setting these properties is equivalent to using
corresponding methods on the Or acl eConnect i on object, as follows:

« Setting the def aul t RowPr ef et ch property is equivalent to calling
set Def aul t RowPr ef et ch() .

See "Oracle Row Prefetching" on page 12-20.

« Setting the r emar ksRepor t i ng property is equivalent to calling
set Remar ksReporting().

See "DatabaseMetaData TABLE_REMARKS Reporting" on page 12-26.

3-8 Oracle9i JDBC Developer’s Guide and Reference

First Steps in JDBC

« Setting the def aul t Bat chVal ue property is equivalent to calling
set Def aul t Execut eBat ch() .

See "Oracle Update Batching" on page 12-4.

Example The following example shows how to use the put () method of the j ava.
util. Properties class, in this case to set Oracle performance extension
parameters.

/linport packages and register the driver

inport java.sql.*;

inport java.math.*;

Driver Manager.registerDriver (new oracle.jdbc. OracleDriver());

/Ispecify the properties object
java.util.Properties info = newjava.util.Properties();

info.put ("user", "scott");

info.put ("password", "tiger");
info.put ("defaultRowPrefetch","20");
info.put ("defaultBatchValue", "5");

//specify the connection object
Connection conn = DriverManager. get Connection
("jdbc:oracl e:thin: @atabase",info);

Opening a Connection for the JDBC OCI Driver

For the JDBC OCI driver, you can specify the database by a TNSNAMES entry. You
can find the available TNSNAMES entries listed in the file t nsnanes. or a on the
client computer from which you are connecting. On Windows NT, this file is located
in the [ORACLE_HOVE] \ NETWORK\ ADM N directory. On UNIX systems, you can
find it in the/ var / opt / or acl e directory.

For example, if you want to connect to the database on host myhost as user scot t
with password t i ger that has a TNSNAMES entry of MyHost St r i ng, enter:

Connection conn = DriverManager. get Connection
("jdbc:oracl e:oci: @Host String", "scott", "tiger");
Note that both the ": " and "@ characters are necessary.

For the JDBC OCI and Thin drivers, you can also specify the database with a Oracle
Net keyword-value pair. This is less readable than a TNSNAMES entry but does not
depend on the accuracy of the TNSNAMES. ORA file. The Oracle Net keyword-value
pair also works with other JDBC drivers.

Basic Features 3-9

First Steps in JDBC

For example, if you want to connect to the database on host nyhost that has a
TCP/IP listener up on port 1521, and the SI D (system identifier) is or cl , use a
statement such as:

Connection conn = DriverManager. get Connection
("jdbc:oracle:oci:@description=(address=(host= myhost)
(protocol =tcp) (port=1521)) (connect _dat a=(| NSTANCE_NAME=orcl)))",
"scott", "tiger");

Note: Oracle JDBC does not support login timeouts. Calling the
static Dri ver Manager . set Logi nTi neout () method will have
no effect.

Opening a Connection for the JDBC Thin Driver

Because you can use the JDBC Thin driver in applets that do not depend on an
Oracle client installation, you cannot use a TNSNANMES entry to identify the database
to which you want to connect. You have to either:

« Explicitly list the host name, TCP/IP port and Oracle SID of the database to
which you want to connect.

or:

= Use a keyword-value pair list.

Note: The JDBC Thin driver supports only the TCP /IP protocol.

For example, use this string if you want to connect to the database on host nyhost
that has a TCP/IP listener on port 1521 for the database Sl D (system identifier)
or ¢l . You can logon as user scot t , with password t i ger :

Connection conn = DriverManager. get Connection
("jdbc:oracl e:thin: @yhost:1521:orcl", "scott", "tiger");

You can also specify the database with a Oracle Net keyword-value pair. This is less
readable than the first version, but also works with the other JDBC drivers.

Connection conn = DriverManager. get Connection

("jdbc:oracl e:thin: @description=(address=(host=nyhost)

(protocol =tcp) (port=1521)) (connect _dat a=(| NSTANCE_NAME=orcl)))", "scott",
"tiger");

3-10 Oracle9i JDBC Developer's Guide and Reference

First Steps in JDBC

Notes: Oracle JDBC does not support login timeouts. Calling the
static Dri ver Manager . set Logi nTi neout () method will have
no effect.

Create a Statement Object

Once you connect to the database and, in the process, create your Connect i on
object, the next step is to create a St at ement object. The cr eat eSt at errent ()
method of your JDBC Connect i on object returns an object of the JDBC

St at ement class. To continue the example from the previous section where the
Connect i on object conn was created, here is an example of how to create the
St at ement object:

Statement stnt = conn.createStatenent();

Note that there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Execute a Query and Return a Result Set Object

To query the database, use the execut eQuer y() method of your St at ement
object. This method takes a SQL statement as input and returns a JDBC Resul t Set
object.

To continue the example, once you create the St at enment object st it , the next step
is to execute a query that populates a Resul t Set object with the contents of the
ENAME (employee name) column of a table of employees named EMP:

Resul t Set rset = stnt.executeQuery ("SELECT ename FROM enp");

Again, there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Process the Result Set

Once you execute your query, use the next () method of your Resul t Set object to
iterate through the results. This method steps through the result set row by row,
detecting the end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate
get XXX() methods of the Resul t Set object, where XXX corresponds to a Java
datatype.

Basic Features 3-11

First Steps in JDBC

For example, the following code will iterate through the Resul t Set object r set
from the previous section and will retrieve and print each employee name:

while (rset.next())
Systemout.println (rset.getString(1));

Once again, this is standard JDBC syntax. The next () method returns false when it
reaches the end of the result set. The employee names are materialized as Java
strings.

Close the Result Set and Statement Objects

You must explicitly close the Resul t Set and St at ement objects after you finish
using them. This applies to all Resul t Set and St at ement objects you create
when using the Oracle JDBC drivers. The drivers do not have finalizer methods;
cleanup routines are performed by the cl ose() method of the Resul t Set and

St at ement classes. If you do not explicitly close your Resul t Set and

St at ement objects, serious memory leaks could occur. You could also run out of
cursors in the database. Closing a result set or statement releases the corresponding
cursor in the database.

For example, if your Resul t Set objectisr set and your St at ement object is
st nt, close the result set and statement with these lines:

rset.close();
stnt.close();

When you close a St at enent object that a given Connect i on object creates, the
connection itself remains open.

Note: Typically, you should put cl ose() statements in a
finally clause.

Make Changes to the Database

To write changes to the database, such as for | NSERT or UPDATE operations, you
will typically create a Pr epar edSt at ement object. This allows you to execute a
statement with varying sets of input parameters. The pr epar eSt at ement ()
method of your JDBC Connect i on object allows you to define a statement that
takes variable bind parameters, and returns a JDBC Pr epar edSt at ement object
with your statement definition.

3-12 Oracle9i JDBC Developer's Guide and Reference

First Steps in JDBC

Use set XXX() methods on the Pr epar edSt at enment object to bind data into the
prepared statement to be sent to the database. The various set XXX() methods are
described in "Standard setObject() and Oracle setOracleObject() Methods" on

page 7-11 and "Other setXXX() Methods" on page 7-12.

Note that there is nothing Oracle-specific about the functionality described here; it
follows standard JDBC syntax.

The following example shows how to use a prepared statement to execute | NSERT
operations that add two rows to the EMP table.

/] Prepare to insert new names in the EMP table
PreparedSt at ement pstnt =
conn. prepareStatenment ("insert into EMP (EVMPNO, ENAME) values (?, ?)");

/] Add LESLIE as enpl oyee nunber 1500

pstnt.setint (1, 1500); [l The first ? is for EMPNO
pstnt.setString (2, "LESLIE"); /] The second ? is for ENAME
/1 Do the insertion

pstnt.execute ();

/] Add MARSHA as enpl oyee nunber 507

pstnt.setlnt (1, 507); [l The first ? is for EMPNO
pstnt.setString (2, "MARSHA"); /] The second ? is for ENAME
/1 Do the insertion

pstnt.execute ();

/1 Close the statenent
pstnt.close();

Commit Changes

By default, DML operations (I NSERT, UPDATE, DELETE) are committed
automatically as soon as they are executed. This is known as auto-commit mode. You
can, however, disable auto-commit mode with the following method call on the
Connect i on object:

conn. set Aut oCommi t (fal se);

(For further discussion of auto-commit mode and an example of disabling it, see
"Disabling Auto-Commit Mode" on page 19-6.)

If you disable auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connect i on object:

Basic Features 3-13

First Steps in JDBC

conn.comit();

or:

conn. rol | back();

A COW T or ROLLBACK operation affects all DML statements executed since the
last COVMM T or ROLLBACK.

Important:

= If auto-commit mode is disabled and you close the connection
without explicitly committing or rolling back your last changes,
then an implicit COMM T operation is executed.

= Any DDL operation, such as CREATE or ALTER, always
includes an implicit COMM T. If auto-commit mode is disabled,
this implicit COMM T will not only commit the DDL statement,
but also any pending DML operations that had not yet been
explicitly committed or rolled back.

Close the Connection

You must close your connection to the database once you finish your work. Use the
cl ose() method of the Connect i on object to do this:

conn. cl ose();

Note: Typically, you should put cl ose() statementsina
finally clause.

3-14 Oracle9i JDBC Developer's Guide and Reference

Sample: Connecting, Querying, and Processing the Results

Sample: Connecting, Querying, and Processing the Results

The steps in the preceding sections are illustrated in the following example, which
registers an Oracle JDBC Thin driver, connects to the database, creates a
St at ement object, executes a query, and processes the result set.

Note that the code for creating the St at ement object, executing the query,
returning and processing the Resul t Set object, and closing the statement and
connection all follow standard JDBC syntax.

inport java.sql.*;
inport java.math.*;
inport java.io.*;

inport java.aw.*;

class JdbcTest {
public static void main (String args []) throws SQ.Exception {
/1 Load COracle driver
Driver Manager.registerDriver (new oracle.jdbc. OracleDriver());
/1 Connect to the |ocal database
Connection conn = DriverManager. get Connecti on
("jdbc: oracl e:thin: @yhost:1521: ORCL", "scott", "tiger");

/] Query the enpl oyee names
Statement stnt = conn.createStatenment ();
Resul t Set rset = stnt.executeQuery ("SELECT ename FROM enp");
[l Print the nane out
while (rset.next ())
Systemout.println (rset.getString (1));

//close the result set, statenment, and the connection
rset.close();
stnt.close();
conn. cl ose();

}

If you want to adapt the code for the OCI driver, replace the Connect i on
statement with the following:

Connection conn = DriverManager. get Connection
("jdbc:oracl e:oci: @Host String", “"scott", "tiger");

Where MyHost St ri ng is an entry in the TNSNAMVES. ORA file.

Basic Features 3-15

Datatype Mappings

Datatype Mappings

The Oracle JDBC drivers support standard JDBC 1.0 and 2.0 types as well as
Oracle-specific BFI LE and ROW D datatypes and types of the REF CURSOR

category.
This section documents standard and Oracle-specific SQL-Java default type
mappings.

Table of Mappings

For reference, Table 3-2 shows the default mappings between SQL datatypes, JDBC
typecodes, standard Java types, and Oracle extended types.

The SQL Datatypes column lists the SQL types that exist in the database.

The JDBC Typecodes column lists data typecodes supported by the JDBC standard
and defined in the j ava. sql . Types class, or by Oracle in the or acl e. j dbc.

Or acl eTypes class. For standard typecodes, the codes are identical in these two
classes.

The Standard Java Types column lists standard types defined in the Java language.

The Oracle Extension Java Types column lists the or acl e. sqgl . * Java types that
correspond to each SQL datatype in the database. These are Oracle extensions that
let you retrieve all SQL data in the form of a or acl e. sql . * Java type. Mapping
SQL datatypes into the or acl e. sql datatypes lets you store and retrieve data
without losing information. Refer to "Package oracle.sql" on page 6-7 for more
information on the or acl e. sql . * package.

Table 3-2 Default Mappings Between SQL Types and Java Types

Oracle Extension Java

SQL Datatypes JDBC Typecodes Standard Java Types Types
STANDARD JDBC 1.0 TYPES:

CHAR java.sql.Types. CHAR java.lang.String oracle.sql. CHAR
VARCHAR?2 java.sql.Types. VARCHAR java.lang.String oracle.sql. CHAR
LONG java.sql. Types. LONGVARCHAR java.lang.String oracle.sql. CHAR
NUMBER java.sql.Types. NUMERIC java.math.BigDecimal oracle.sq. NUMBER
NUMBER java.sql.Types. DECIMAL java.math.BigDecimal oracle.sq. NUMBER
NUMBER java.sql.Types.BIT boolean oracle.sq. NUMBER

3-16 Oracle9i JDBC Developer's Guide and Reference

Datatype Mappings

Table 3-2 Default Mappings Between SQL Types and Java Types (Cont.)

Oracle Extension Java

SQL Datatypes JDBC Typecodes Standard Java Types Types
NUMBER java.sql.Types. TINYINT byte oracle.sq. NUMBER
NUMBER java.sql.Types.SMALLINT short oracle.sq. NUMBER
NUMBER java.sql. TypesINTEGER int oracle.sq. NUMBER
NUMBER java.sql.Types.BIGINT long oracle.sq. NUMBER
NUMBER java.sql.Types.REAL float oracle.sq. NUMBER
NUMBER java.sql.Types.FLOAT double oracle.sq. NUMBER
NUMBER java.sql.Types. DOUBLE double oracle.sq. NUMBER
RAW java.sql.Types.BINARY byte[] oracle.sql. RAW
RAW java.sql.Types.VARBINARY byte[] oracle.sql. RAW
LONGRAW java.sql. Types. LONGVARBINARY byte[] oracle.sql. RAW
DATE java.sql.Types.DATE java.sql.Date oracle.sql. DATE
DATE java.sql.Types. TIME java.sql.Time oracle.sql. DATE
DATE java.sql.Types. TIMESTAMP javal.sql.Timestamp oracle.sql. DATE
STANDARD JDBC 2.0 TYPES:
BLOB java.sql.Types.BLOB java.sql.Blob oracle.sql. BLOB
CLOB java.sql.Types.CLOB java.sql.Clob oracle.sql. CLOB
user-defined java.sql.Types.STRUCT java.sql.Struct oracle.sql. STRUCT
object
user-defined java.sql.Types.REF java.sql.Ref oracle.sql.REF
reference
user-defined java.sql. Types. ARRAY java.sql.Array oracle.sql. ARRAY
collection
ORACLE EXTENSIONS:
BFILE oracle.jdbc.OracleTypes.BFILE n/a oracle.sql. BFILE
ROWID oracle.jdbc.OracleTypes. ROWID n/a oracle.sql. ROWID
FEF CURSOR oracle.jdbc.OracleTypes. CURSOR java.sql.ResultSet oracle.jdbc.OracleResultSet
ype

Basic Features 3-17

Datatype Mappings

Table 3-2 Default Mappings Between SQL Types and Java Types (Cont.)

Oracle Extension Java

SQL Datatypes JDBC Typecodes Standard Java Types Types
TS oracle.jdbc.OracleTypes. n/a oracle.sql. TIMESTAMP
TIMESTAMP
TSTZ oracle.jdbc.OracleTypes. n/a oracle.sql. TIMESTAMPTZ
TIMESTAMPTZ
TSLTZ oracle.jdbc.OracleTypes. n/a oracle.sql. TIMESTAMPLTZ
TIMESTAMPLTZ
Note: Under JDK 1.1.x, the Oracle package or acl e. j dbc2 is
required to support JDBC 2.0 types. (Under JDK 1.2.x they are
supported by the standard j ava. sql package.)
For a list of all the Java datatypes to which you can validly map a SQL datatype, see
"Valid SQL-JDBC Datatype Mappings" on page 20-2.
See Chapter 6, "Overview of Oracle Extensions", for more information on type
mappings. In Chapter 6 you can also find more information on the following:
= packagesoracl e. sql,oracle.jdbc,andoracle.jdbc2
= type extensions for the Oracle BFI LE and ROW D datatypes and user-defined
types of the REF CURSOR category
Notes Regarding Mappings

This section goes into further detail regarding mappings for NUMBER and
user-defined types.

Regarding User-Defined Types

User-defined types such as objects, object references, and collections map by default
to weak Java types (such as j ava. sql . St ruct), but alternatively can map to
strongly typed custom Java classes. Custom Java classes can implement one of two
interfaces:

« Thestandard j ava. sql . SQLDat a (for user-defined objects only)

3-18 Oracle9i JDBC Developer's Guide and Reference

Datatype Mappings

« The Oracle-specific or acl e. sql . ORADat a (primarily for user-defined objects,
object references, and collections, but able to map from any SQL type where you
want customized processing of any kind)

For information about custom Java classes and the SQLDat a and ORADat a
interfaces, see "Mapping Oracle Objects" on page 9-2 and "Creating and Using
Custom Object Classes for Oracle Objects" on page 9-10. (Although these sections
focus on custom Java classes for user-defined objects, there is some general
information about other kinds of custom Java classes as well.)

Regarding NUMBER Types

For the different typecodes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work
properly. For example, call get Byt e() to getaJavati nyi nt value, for an item x
where -128 < x < 128.

Basic Features 3-19

Java Streams in JDBC

Java Streams in JDBC

This section covers the following topics:

= Streaming LONG or LONG RAW Columns

« Streaming CHAR, VARCHAR, or RAW Columns
« Data Streaming and Multiple Columns

= Streaming and Row Prefetching

= Closing a Stream

= Streaming LOBs and External Files

This section describes how the Oracle JDBC drivers handle Java streams for several
datatypes. Data streams allow you to read LONG column data of up to 2 gigabytes.
Methods associated with streams let you read the data incrementally.

Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary,
ASCII, and Unicode. Following is a brief description of each type of stream:

= Dbinary stream—Used for RAWbytes of data. This corresponds to the
get Bi narySt r ean() method.

= ASCII stream—~Used for ASCII bytes in ISO-Latin-1 encoding. This corresponds
to the get Asci i Strean() method.

« Unicode stream—Used for Unicode bytes with the UTF- 16 encoding. This
corresponds to the get Uni codeSt r ean() method.

The methods get Bi narySt rean() ,get Ascii Strean(),and

get Uni codeSt r ean() return the bytes of data in an | nput St r eamobject. These
methods are described in greater detail in Chapter 8, "Working with LOBs and
BFILEs".

Streaming LONG or LONG RAW Columns

When a query selects one or more LONG or LONG RAWcolumns, the JDBC driver
transfers these columns to the client in streaming mode. After a call to
execut eQuery() or next (), the data of the LONGcolumn is waiting to be read.

To access the data in a LONG column, you can get the column as a Java

[nput St r eamand use the r ead() method of the | nput St r eamobject. As an
alternative, you can get the data as a string or byte array, in which case the driver
will do the streaming for you.

3-20 Oracle9i JDBC Developer's Guide and Reference

Java Streams in JDBC

You can get LONG and LONG RAWdata with any of the three stream types. The driver
performs conversions for you, depending on the character set of your database and
the driver. For more information about globalization support, see "JDBC and
Globalization Support" on page 18-2.

LONG RAW Data Conversions

A call to get Bi narySt reanm() returns RAWdata "as-is". A call to

get Asci i Strean() converts the RAWdata to hexadecimal and returns the ASCII
representation. A call to get Uni codeSt r ean() converts the RAWdata to
hexadecimal and returns the Unicode bytes.

For example, if your LONG RAWcolumn contains the bytes 20 21 22, you receive the
following bytes:

LONG RAW BinaryStream ASCIIStream UnicodeStream
20 21 22 20 21 22 49 5249 53 49 54 0049 0052 0049 0053 0049 0054
which is also which is also:

T O T LS T4 1T 5 T e

For example, the LONG RAWvalue 20 is represented in hexadecimal as 14 or "1" "4".
In ASCII, 1 is represented by "49" and "4" is represented by "52". In Unicode, a
padding of zeros is used to separate individual values. So, the hexadecimal value 14
is represented as 0 "1" 0 "4". The Unicode representation is 0 "49" 0 "52".

LONG Data Conversions

When you get LONG data with get Asci i St r ean{(), the drivers assume that the
underlying data in the database uses an US7ASCI | or WE8I SC8859P1 character
set. If the assumption is true, the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCI | or WE8| SO8859P1 character
set, a call to get Asci i St reamn() returns meaningless information.

When you get LONGdata with get Uni codeSt r ean() , you get a stream of
Unicode characters in the UTF- 16 encoding. This applies to all underlying database
character sets that Oracle supports.

When you get LONG data with get Bi nar ySt r ean() , there are two possible cases:

« If the driver is JDBC OCI and the client character set is not US7ASCI | or
WE8| SOB859P1, then a call to get Bi nar ySt r ean{) returns UTF- 8. If the

Basic Features 3-21

Java Streams in JDBC

client character set is US7ASCI | or WESI SO8859P1, then the call returns a
US7ASCI | stream of bytes.

« If the driver is JDBC Thin and the database character set is not US7ASCI | or
WE8| SOB859P1, then a call to get Bi nar ySt r ean() returns UTF- 8. If the
server-side character set is US7TASCI | or WESI SCB8859P1, then the call returns a
US7ASCI | stream of bytes.

For more information on how the drivers return data based on character set, see
"JDBC and Globalization Support" on page 18-2.

Note: Receiving LONG or LONG RAWcolumns as a stream (the
default case) requires you to pay special attention to the order in
which you receive data from the database. For more information,
see "Data Streaming and Multiple Columns" on page 3-26.

Table 3-3 summarizes LONG and LONG RAWdata conversions for each stream type.

Table 3-3 LONG and LONG RAW Data Conversions

Datatype BinaryStream AsciiStream UnicodeStream
LONG bytes representing characters in bytes representing bytes representing
Unicode UTF- 8. The bytes can characters in ISO-Latin-1 characters in Unicode

represent characters in US7TASCI | or (WE8I SCB859P1) encoding UTF- 16 encoding
WES| SO8859P1 if:

k the value of NLS_LANGon the
client is US7ASCI | or
WVE8I| SO8859P1.

or:

h the database character set is
US7ASCI | or W\ESI SOB859P1.

LONG RAW fas-is ASCII representation of Unicode representation
hexadecimal bytes of hexadecimal bytes

Streaming Example for LONG RAW Data

One of the features of a get XXXSt r ean() method is that it allows you to fetch data
incrementally. In contrast, get Byt es() fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the
get Bi naryStrean() method to obtain LONG RAWdata; the second version uses
the get Byt es() method.

3-22 Oracle9i JDBC Developer's Guide and Reference

Java Streams in JDBC

Getting a LONG RAW Data Column with getBinaryStream() This Java example writes the
contents of a LONG RAWcolumn to a file on the local file system. In this case, the
driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAWdata
associated with the name LESLIE:

- SQ code:
create table streamexanpl e (NAMVE varchar2 (256), G FDATA |ong raw);
insert into streamexanple val ues ('LESLIE, '00010203040506070809");

The following Java code snippet writes the data from the LESLIE L ONG RAWcolumn
into a file called | esl i e. gi f:

Resul t Set rset = stnt.executeQuery
("sel ect G FDATA from streanexanpl e where NAME='LESLIE ");

Il get first row
if (rset.next())
{
/] Get the GIF data as a streamfromOracle to the client
Input Stream gif _data = rset.getBinaryStream (1);
try
{
FileQutputStreamfile = null;

file = new FileQutputStream ("leslie.gif");
int chunk;
while ((chunk = gif_data.read()) != -1)
file.wite(chunk);

}

catch (Exception e)

{
String err = e.toString();
Systemout.println(err);

}
finally

{
if file != null()

file.close();

}

In this example the contents of the G FDATA column are transferred incrementally
in chunk-sized pieces between the database and the client. The | nput St r eam

Basic Features 3-23

Java Streams in JDBC

object returned by the call to get Bi nar ySt r ean() reads the data directly from the
database connection.

Getting a LONG RAW Data Column with getBytes() This version of the example gets the
content of the G FDATA column with get Byt es() instead of

get Bi nar ySt r ean() . In this case, the driver fetches all the data in one call and
stores it in a byte array. The previous code snippet can be rewritten as:

Resul t Set rset2 = stnt.executeQuery
("sel ect G FDATA from streanexanpl e where NAME=' LESLIE'");

Il get first row
if (rset2.next())

{
[/ CGet the G F data as a streamfrom Oracle to the client
byte[] bytes = rset2.getBytes(1);
try
{
FileQutput Streamfile = null;
file = new FileQutputStream ("leslie2.gif");
file.wite(bytes);
}
catch (Exception e)
{
String err = e.toString();
Systemout.println(err);
}
finally
if file!=null()
file.close();
}
}

Because a LONG RAWcolumn can contain up to 2 gigabytes of data, the get Byt es()
example will probably use much more memory than the get Bi nar ySt r eant()
example. Use streams if you do not know the maximum size of the data in your
LONG or LONG RAWcolumns.

Avoiding Streaming for LONG or LONG RAW

The JDBC driver automatically streams any LONGand L ONG RAWcolumns.
However, there may be situations where you want to avoid data streaming. For

3-24 Oracle9i JDBC Developer's Guide and Reference

Java Streams in JDBC

example, if you have a very small LONG column, you might want to avoid returning
the data incrementally and instead, return the data in one call.

To avoid streaming, use the def i neCol umType() method to redefine the type of
the LONG column. For example, if you redefine the LONGor LONG RAWcolumn as
type VARCHAR or VARBI NARY, then the driver will not automatically stream the
data.

If you redefine column types with def i neCol uimType(), you must declare the
types of all columns in the query. If you do not, execut eQuer y() will fail. In
addition, you must cast the St at enment object toan or acl e. j dbc.

Or acl eSt at enent object.

As an added benefit, using def i neCol utmType() saves the driver two round
trips to the database when executing the query. Without def i neCol umType(),
the JDBC driver has to request the datatypes of the column types.

Using the example from the previous section, the St at ement object st nt is cast to
the Or acl eSt at enent and the column containing L ONG RAWdata is redefined to
be of the type VARBI NARAY. The data is not streamed—instead, it is returned in a
byte array.

[/cast the statement stmt to an Oracl eStat enent
oracle.jdbc. Oracl eStatenent ostnt =
(oracle.jdbc. Oracl eStatenent)stnt;

[/redefine the LONG col uim at index position 1 to VARBI NARY
ost nt. def i neCol umType(1, Types. VARBI NARY);

/] Do a query to get the images named ' LESLIE
Resul t Set rset = ostnt.executeQuery
("sel ect G FDATA from streanexanpl e where NAME=' LESLIE ");

/] The data is not streamed here
rset.next();
byte [] bytes = rset.getBytes(1);

Streaming CHAR, VARCHAR, or RAW Columns

If you use the def i neCol umType() Oracle extension to redefine a CHAR,
VARCHAR, or RAWcolumn as a LONGVARCHAR or LONGVARBI NARY, then you can get
the column as a stream. The program will behave as if the column were actually of
type LONGor LONG RAWNote that there is not much point to this, because these
columns are usually short.

Basic Features 3-25

Java Streams in JDBC

If you try to get a CHAR, VARCHAR, or RAWcolumn as a data stream without
redefining the column type, the JDBC driver will return a Java | nput St r eam but
no real streaming occurs. In the case of these datatypes, the JDBC driver fully
fetches the data into an in-memory buffer during a call to the execut eQuer y()
method or next () method. The get XXXSt r ean() entry points return a stream
that reads data from this buffer.

Data Streaming and Multiple Columns

If your query selects multiple columns and one of the columns contains a data
stream, then the contents of the columns following the stream column are not
available until the stream has been read, and the stream column is no longer
available once any following column is read. Any attempt to read a column beyond
a streaming column closes the streaming column. See "Streaming Data Precautions”
on page 3-29 for more information.

Streaming Example with Multiple Columns
Consider the following query:

Resul t Set rset = stnt.executeQuery
("sel ect DATECOL, LONGCOL, NUMBERCCOL from TABLE");
whi l e rset.next()
{
//get the date data
java.sql . Date date = rset.getDate(1);

/] get the stream ng data
InputStreamis = rset.getAscii Stream2);

/] Open a file to store the gif data
FileQutput Streamfile = new Fil eQut put Stream ("ascii.dat");

/'l Loop, reading fromthe ascii stream and

Il wite to the file

int chunk;

while ((chunk =is.read ()) !'=-1)
file.wite(chunk);

I/ Cose the file

file.close();

//get the number colum data
int n=rset.getlnt(3);

3-26 Oracle9i JDBC Developer's Guide and Reference

Java Streams in JDBC

The incoming data for each row has the following shape:

<a dat e><the characters of the long col um><a nunber >

As you process each row of the iterator, you must complete any processing of the
stream column before reading the number column.

An exception to this behavior is LOB data, which is also transferred between server
and client as a Java stream. For more information on how the driver treats LOB
data, see "Streaming LOBs and External Files" on page 3-27.

Bypassing Streaming Data Columns

There might be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read the data for the streaming column, then
call the cl ose() method of the stream object. This method discards the stream data
and allows the driver to continue reading data for all the non-streaming columns
that follow the stream. Even though you are intentionally discarding the stream, it
is good programming practice to call the columns in SELECT-list order.

In the following example, the stream data in the LONG column is discarded and the
data from only the DATE and NUMBER column is recovered:

Resul t Set rset = stnt.executeQuery
("sel ect DATECOL, LONGCOL, NUMBERCCL from TABLE');

whil e rset.next()

{
//get the date

java.sql .Date date = rset.getDate(1);

/] access the streamdata and discard it with close()
InputStreamis = rset.getAscii Stream2);
is.close();

/] get the nunber colum data
int n=rset.getlnt(3);

Streaming LOBs and External Files

The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table and points to

Basic Features 3-27

Java Streams in JDBC

the location of the actual data. External files (binary files, or BFILEs) are managed
similarly. The JDBC drivers can support these types through the use of streams:

= BLOBs (unstructured binary data)
« CLOBs (character data)
» BFILEs (external files)

LOBs and BFILEs behave differently from the other types of streaming data
described in this chapter. The driver transfers data between server and client as a
Java stream. However, unlike most Java streams, a locator representing the data is
stored in the table. Thus, you can access the data at any time during the life of the
connection.

Streaming BLOBs and CLOBs

When a query selects one or more CLOB or BLOB columns, the JDBC driver transfers
to the client the data pointed to by the locator. The driver performs the transfer as a
Java stream. To manipulate CLOB or BLOB data from JDBC, use methods in the
Oracle extension classes or acl e. sql . BLOBand or acl e. sql . CLOB. These
classes provide functionality such as reading from the CLOB or BLOB into an input
stream, writing from an output stream into a CLOB or BLOB, determining the
length of a CLOB or BLOB, and closing a CLOB or BLOB.

For a complete discussion of how to use streaming CLOB and BLOB data, see
"Reading and Writing BLOB and CLOB Data" on page 8-6.

Important: The JDBC 2.0 specification states that

Pr epar edSt at ement methods set Bi naryStrean() and

set Obj ect () can be used to input a stream value as a BLOB, and
that the Pr epar edSt at ement methods set Asci i Streant(),
set Uni codeSt ream(), set Charact er Streamn(), and

set Cbj ect () can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 database and 8.
1.6 JDBC OCI driver. Do not use this functionality for any other
configuration, as data corruption can result.

3-28 Oracle9i JDBC Developer's Guide and Reference

Java Streams in JDBC

Streaming BFILEs

An external file, or BFILE, is used to store a locator to a file outside the database,
stored somewhere on the filesystem of the data server. The locator points to the
actual location of the file.

When a query selects one or more BFI LE columns, the JDBC driver transfers to the
client the file pointed to by the locator. The transfer is performed in a Java stream.
To manipulate BFILE data from JDBC, use methods in the Oracle extension class

or acl e. sql . BFI LE. This class provides functionality such as reading from the
BFILE into an input stream, writing from an output stream into a BFILE,
determining the length of a BFILE, and closing a BFILE.

For a complete discussion of how to use streaming BFILE data, see "Reading BFILE
Data" on page 8-22.

Closing a Stream

You can discard the data from a stream at any time by calling the stream’s cl ose()
method. You can also close and discard the stream by closing its result set or
connection object. You can find more information about the cl ose() method for
data streams in "Bypassing Streaming Data Columns" on page 3-27. For information
on how to avoid closing a stream and discarding its data by accident, see
"Streaming Data Precautions” on page 3-29.

Notes and Precautions on Streams

This section discusses several noteworthy and cautionary issues regarding the use
of streams:

= Streaming Data Precautions
= Using Streams to Avoid Limits on setBytes() and setString()

= Streaming and Row Prefetching

Streaming Data Precautions

This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the
database, other than reading the current stream. Two common precautions are
described:

= Use the stream data after you access it.

Basic Features 3-29

Java Streams in JDBC

To recover the data from a column containing a data stream, it is not enough to
get the column; you must immediately process its contents. Otherwise, the
contents will be discarded when you get the next column.

« Call the stream column in SELECT-list order.

If your query selects multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns
contains stream data, the database sends the entire data stream before
proceeding to the next column.

If you do not use the SELECT-list order to access data, then you can lose the
stream data. That is, if you bypass the stream data column and access data in a
column that follows it, the stream data will be lost. For example, if you try to
access the data for the NUMBER column before reading the data from the stream
data column, the JDBC driver first reads then discards the streaming data
automatically. This can be very inefficient if the LONG column contains a large
amount of data.

If you try to access the LONG column later in the program, the data will not be
available and the driver will return a "St r eam Cl osed" error.

The second point is illustrated in the following example:

Resul t Set rset = stnt.executeQuery
("sel ect DATECOL, LONGCOL, NUMBERCCL from TABLE');
whi l e rset.next()

{
int n=rset.getlnt(3); // This discards the stream ng data
InputStreamis = rset.getAscii Stream2);
/'l Raises an error: stream closed.
}

If you get the stream but do not use it before you get the NUMBER column, the stream
still closes automatically:

Resul t Set rset = stnt.executeQuery
("select DATECOL, LONGCOL, NUMBERCOL from TABLE');
whi l e rset.next()

{
InputStreamis = rset.getAscii Stream(2); // Get the stream

int n=rset.getlnt(3);
/] Discards streanming data and cl oses the stream

}

int ¢c =is.read(); // cis -1. no nore characters to read-streamclosed

3-30 Oracle9i JDBC Developer's Guide and Reference

Java Streams in JDBC

Using Streams to Avoid Limits on setBytes() and setString()

There is a limit on the maximum size of the array which can be bound using the
Prepar edSt at ement class set Byt es() method, and on the size of the string
which can be bound using the set St ri ng() method.

Above the limits, which depend on the version of the server you use, you should
use set Bi narySt ream() or set Charact er Strean() instead.

Table 3-4 Bind-Size Limitations By Database

maximumsetBytes() maximum setString()

(equals maximum (equals maximum
Database Version RAW size) VARCHAR? size)
Oracle8 and later 2000 4000
Oracle7 255 2000

Note: This discussion applies to binds in SQL, not PL/SQL. If you
use set Bi narySt r ean() in PL/SQL, the maximum array size is
32 Kbytes.

The 8.1.6 Oracle JDBC drivers may not raise an error if you exceed the limit when
using set Byt es() orset String(), but you may receive the following error:

ORA-17070: Data size bigger than max size for this type

Future versions of the Oracle drivers will raise an error if the length exceeds these
limits.

Streaming and Row Prefetching
If the JDBC driver encounters a column containing a data stream, row prefetching is
set back to 1.

Row prefetching is an Oracle performance enhancement that allows multiple rows
of data to be retrieved with each trip to the database. See "Oracle Row Prefetching"
on page 12-20.

Basic Features 3-31

Stored Procedure Calls in JDBC Programs

Stored Procedure Calls in JDBC Programs

This section describes how the Oracle JDBC drivers support the following kinds of
stored procedures:

« PL/SQL Stored Procedures

« Java Stored Procedures

PL/SQL Stored Procedures

Oracle JDBC drivers support execution of PL/SQL stored procedures and
anonymous blocks. They support both SQL92 escape syntax and Oracle PL/SQL
block syntax. The following PL/SQL calls would work with any Oracle JDBC
driver:

/] SQ92 synt ax
Cal I abl eSt atenent csl = conn. prepareCal |
("{call proc (?,?)}") ; I/l stored proc
Cal I abl eSt at enent c¢s2 = conn. prepareCal |
("{? =call func (?,?)}") ; /I stored func
/] Oracle PL/SQ bl ock syntax
Cal | abl eSt at enent c¢s3 = conn. prepareCal |
("begin proc (?,?); end;") ; /] stored proc
Cal | abl eSt at enent cs4 = conn. prepareCal |
("begin ? :=func(?,?); end;") ; // stored func

As an example of using Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (vall char)
return char as
begin
return vall || 'suffix’;
end;

Your invocation call in your JDBC program should look like:

Connection conn = DriverManager. get Connection
("jdbc:oracl e:oci: @hoststring>", "scott", "tiger");

Cal I abl eSt atenment cs = conn. prepareCall ("begin ? := foo(?); end;");
cs. regi sterQutParaneter (1, Types. CHAR);

cs.setString(2, "aa");

cs. execut eUpdate();

3-32 Oracle9i JDBC Developer's Guide and Reference

Stored Procedure Calls in JDBC Programs

String result = cs.getString(1);

Java Stored Procedures

You can use JDBC to invoke Java stored procedures through the SQL and PL/SQL
engines. The syntax for calling Java stored procedures is the same as the syntax for
calling PL/SQL stored procedures, presuming they have been properly "published"
(that is, have had call specifications written to publish them to the Oracle data
dictionary). See the Oracle9i Java Stored Procedures Developer’s Guide for more
information on writing, publishing, and using Java stored procedures.

Basic Features 3-33

Processing SQL Exceptions

Processing SQL Exceptions

To handle error conditions, the Oracle JDBC drivers throws SQL exceptions,
producing instances of class j ava. sql . SQLExcept i on or a subclass. Errors can
originate either in the JDBC driver or in the database (RDBMS) itself. Resulting
messages describe the error and identify the method that threw the error.
Additional run-time information can also be appended.

Basic exception-handling can include retrieving the error message, retrieving the
error code, retrieving the SQL state, and printing the stack trace. The
SQLExcept i on class includes functionality to retrieve all of this information,
where available.

Errors originating in the JDBC driver are listed with their ORA numbers in
Appendix B, "JDBC Error Messages".

Errors originating in the RDBMS are documented in the Oracle9i Error Messages
reference.

Retrieving Error Information

You can retrieve basic error information with these SQLExcept i on methods:
« get Message()

For errors originating in the JDBC driver, this method returns the error message
with no prefix. For errors originating in the RDBMS, it returns the error
message prefixed with the corresponding ORA number.

« getErrorCode()

For errors originating in either the JDBC driver or the RDBMS, this method
returns the five-digit ORA number.

« getSQState()

For errors originating in the JDBC driver, this returns no useful information. For
errors originating in the RDBMS, this method returns a five-digit code
indicating the SQL state. Your code should be prepared to handle null data.

The following example prints output from a get Message() call.

cat ch(SQLExcepti on e)
{

System out . println("exception:

}

+ e. get Message());

3-34 Oracle9i JDBC Developer's Guide and Reference

Processing SQL Exceptions

This would print output such as the following for an error originating in the JDBC
driver:

exception: Invalid colum type

(There is no ORA number message prefix for errors originating in the JDBC driver,
although you can get the ORA number with a get Er r or Code() call.)

Note: Error message text is available in alternative languages and
character sets supported by Oracle.

Printing the Stack Trace
The SQLExcept i on class provides the following method for printing a stack trace.

« printStackTrace()

This method prints the stack trace of the throwable object to the standard error
stream. You can also specify aj ava. i 0. Pri nt St r eamobject or j ava. i 0.
PrintWiter object for output.

The following code fragment illustrates how you can catch SQL exceptions and
print the stack trace.

try { <sone code> }
cat ch(SQLException e) { e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

/] Iterate through the result and print the enpl oyee names
/1 of the code

try {
while (rset.next ())

Systemout.println (rset.getString (5)); // incorrect colum index

}
cat ch(SQLException e) { e.printStackTrace (); }

Assuming the column index is incorrect, executing the program would produce the
following error text:

java.sql . SQLException: Invalid colum index
at oracle.jdbc.dbaccess. DBError. check_error(DBError.java: 235)
at oracle.jdbc. Oracl eStatenent. prepare_for_new_get (Oracl eSt at enen

Basic Features 3-35

Processing SQL Exceptions

t.java: 1560)

at oracle.jdbc. OracleStatenent. getStringVal ue(Oracl eStatenent.jav
a: 1653)

at oracle.jdbc. Oracl eResul t Set. getString(Oracl eResul t Set.java: 175
)

at Enpl oyee. mai n(Enpl oyee. j ava: 41)

3-36 Oracle9i JDBC Developer's Guide and Reference

A

Overview of JDBC 2.0 Support

Oracle JDBC supports JDBC 2.0 functionality and standardizes functionality that
was previously supported through Oracle extensions.

This chapter provides an overview of JDBC 2.0 support in the Oracle JDBC drivers,
focusing in particular on any differences in support between the JDK 1.2.x and JDK
1.1.x environments. The following topics are discussed:

» Introduction
= JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
« Overview of JDBC 2.0 Features

Overview of JDBC 2.0 Support 4-1

Introduction

Introduction

The Oracle JDBC drivers are compliant with the JDBC 2.0 specification. JDBC 2.0
functionality previously implemented through Oracle extensions in the

or acl e. j dbc2 package—such as structured objects, object references, arrays, and
LOBs—is now implemented through the standard j ava. sql package in JDK 1.2.

In a JDK 1.1.x environment, you can continue to use the or acl e. j dbc2 package.
You can also use JDBC 2.0 features in connection objects, statement objects, result
set objects, and database meta data objects under JDK 1.1.x by casting your objects
to the Oracle types.

Furthermore, you can use features of the JDBC 2.0 Optional Package (also known as
the JDBC 2.0 Standard Extension API) under either JDK 1.2.x or JDK 1.1.x. These
features, including connection pooling and distributed transactions, are supported
through the standard j avax. sql package. This package and the classes that
implement its interfaces are now included with the JDBC classes ZIP file for either
JDK 1.2.x or JDK 1.1.x.

4-2 Oracle9i JDBC Developer’'s Guide and Reference

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

Support for standard JDBC 2.0 features differs depending on whether you are using
JDK 1.2.x or JDK 1.1.x. There are three areas to consider:

= datatype support—such as for objects, arrays, and LOBs—which is handled
through the standard j ava. sql package under JDK 1.2.x and through the
Oracle extension or acl e. j dbc2 package under JDK 1.1.x

= standard feature support—such as result set enhancements and update
batching—which is handled through standard objects such as Connect i on,
Resul t Set , and Pr epar edSt at ement under JDK 1.2.x, but requires
Oracle-specific functionality under JDK 1.1.x

« extended feature support—features of the JDBC 2.0 Optional Package (also
known as the Standard Extension API), including data sources, connection
pooling, and distributed transactions—which has the same support and
functionality in either JDK 1.2.x or JDK 1.1.x

This section also discusses performance enhancements available under JDBC
2.0—update batching and fetch size—that are also still available as Oracle
extensions, then concludes with a brief discussion about migration from JDK 1.1.x
to JDK 1.2.x.

Datatype Support

Oracle JDBC fully supports JDK 1.2.x, which includes standard JDBC 2.0
functionality through implementation of interfaces in the standard j ava. sql
package. These interfaces are implemented as appropriate by classes in the
oracl e. sql and or acl e. j dbc packages.

For JDBC 2.0 functionality under JDK 1.2.x, where you are using cl asses12. zi p,
no special imports are required. The following imports, both of which you will
likely need even if you are not using JDBC 2.0 features, will suffice:

inport java.sql.*;
inport oracle.sql.*;

JDBC 2.0 features are not supported by JDK 1.1.x; however, Oracle provides
extensions that allow you to use a significant subset of JDBC 2.0 datatypes under
JDK 1.1.x, where you are using cl asses111. zi p. These extensions support
database objects, object references, arrays, and LOBs.

The package or acl e. j dbc2 is included in cl asses111. zi p. This package
provides interfaces that mimic JDBC 2.0-related interfaces that became standard

Overview of JDBC 2.0 Support 4-3

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

with JDK 1.2.x for SQL3 and advanced datatypes. The interfaces in or acl e. j dbc2
are implemented as appropriate by classes in the or acl e. sql package for a JDK
1.1.x environment.

The following imports are required for JDBC 2.0 datatypes under JDK 1.1.x:

inport java.sql.*;
inport oracle.jdbc2.*;
inport oracle.sql.*;

Standard Feature Support

In a JDK 1.2.x environment (using the JDBC classes in ¢l asses12. zi p), JDBC 2.0
features such as scrollable result sets, updatable result sets, and update batching are
supported through methods specified by standard JDBC 2.0 interfaces. Therefore,
under JDK 1.2.x, you can use standard objects such as Connecti on,

Dat abaseMet aDat a, Resul t Set Met aDat a, St at enent , Pr epar edSt at enment ,
Cal | abl eSt at ement , and Resul t Set to use these features.

In a JDK 1.1.x environment (using the JDBC classes in cl asses111. zi p), Oracle
JDBC provides support for these JDBC 2.0 features as Oracle extensions. To use this
functionality, you must cast your objects to the Oracle types:

« Oracl eConnection

« Oracl eDat abaseMet aDat a

« Oracl eResul t Set Met aDat a

« Oracl eSt at enent

« Oracl ePreparedSt at enent

« Oracl eCal | abl eSt at enent

« Oracl eResul t Set

For example, to use JDBC 2.0 result set enhancements, you must do the following:

= Explicitly type or cast scrollable or updatable result sets as type
Oracl eResul t Set .

= Explicitly type or cast connection objects as type Or acl eConnecti on
whenever the connection object will be required to produce a statement object
that will in turn produce a scrollable or updatable result set.

In addition, you might have to cast statement objects to Or acl eSt at ement,
O acl ePrepar edSt at enent , or O acl eCal | abl eSt at ement , and cast

4-4 Oracle9i JDBC Developer's Guide and Reference

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

database meta data objects to Or acl eDat abaseMet aDat a. This would be if you
want to use JDBC 2.0 statement or database meta data methods described under
"Summary of New Methods for Result Set Enhancements" on page 13-32.

Extended Feature Support

Features of the JDBC 2.0 Optional Package (also known as the Standard Extension
API), including data sources, connection pooling, and distributed transactions, are
supported equally in a JDK 1.2.x or 1.1.x environment.

The standard j avax. sql package and classes that implement its interfaces are
included in the JDBC classes ZIP file for either environment.

Standard versus Oracle Performance Enhancement APIs

There are two performance enhancements available under JDBC 2.0, which had
previously been available as Oracle extensions:

= update batching
« fetchsize / row prefetching

In each case, you have the option of using the standard model or the Oracle model.
Do not, however, try to mix usage of the standard model and Oracle model within a
single application for either of these features.

For more information, see the following sections:
= "Update Batching" on page 12-2

= "Petch Size" on page 13-24

= "Oracle Row Prefetching" on page 12-20

Migration from JDK 1.1.x to JDK 1.2.x

The only migration requirements in going from JDK 1.1.x to JDK 1.2.x are as
follows:

« Remove your imports of the or acl e. j dbc2 package, as discussed above
under "Datatype Support" on page 4-3.

« Replace any direct references to or acl e. j dbc2. * interfaces with references to
the standard j ava. sql . * interfaces.

= Type map objects (for mapping SQL structured objects to Java types), which
must extend the j ava. uti | . Di ctionary class under JDK 1.1.x, must

Overview of JDBC 2.0 Support 4-5

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

implement the j ava. uti | . Map interface under JDK 1.2.x. Note, however, that
the class j ava. uti | . Hasht abl e satisfies either requirement. If you used
Hasht abl e objects for your type maps under JDK 1.1.x, then no change is
necessary. For more information, see "Creating a Type Map Object and Defining
Mappings for a SQLData Implementation" on page 9-12.

If these points do not apply to your code, then you do not need to make any code
changes or recompile to run under JDK 1.2.x.

4-6 Oracle9i JDBC Developer’'s Guide and Reference

Overview of JDBC 2.0 Features

Overview of JDBC 2.0 Features

Table 4-1 lists key areas of JDBC 2.0 functionality and points to where you can go in
this manual for more information about Oracle support.

Table 4-1 Key Areas of JDBC 2.0 Functionality

Feature

Comments and References

update batching

result set enhancements
(scrollable and updatable
result sets)

fetch size / row prefetching

use of JNDI (Java Naming
and Directory Interface) to
specify and obtain database
connections

connection pooling
(framework for connection
caching)

connection caching (sample
Oracle implementation)

Also available previously as an Oracle extension. Under
either JDK 1.2.x or JDK 1.1.x you can use either the standard
update batching model or the Oracle model.

See "Update Batching" on page 12-2 for information.

This is also available under JDK 1.1.x as an Oracle extension.

See Chapter 13, "Result Set Enhancements"” for information.

The JDBC 2.0 fetch size feature is also available under JDK
1.1.x as an Oracle extension.

Under either JDK 1.2.x or JDK 1.1.x, you can also use Oracle
row prefetching, which is largely equivalent to the JDBC 2.0
fetch size feature but predates JDBC 2.0.

See "Fetch Size" on page 13-24 and "Oracle Row Prefetching”
on page 12-20 for information.

This requires data sources, which are part of the JDBC 2.0
Optional Package (JDBC 2.0 Standard Extension API) in the

j avax. sql package. This is available under either JDK 1.2.x
or JDK 1.1.x.

See "A Brief Overview of Oracle Data Source Support for
JNDI" on page 16-2 and "Creating a Data Source Instance,
Registering with JNDI, and Connecting" on page 16-8 for
information.

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the j avax. sql package. This is
available under either JDK 1.2.x or 1.1.x.

See "Connection Pooling" on page 16-11 for information.

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the j avax. sql package. This is
available under either JDK 1.2.x or 1.1.x.

See "Connection Caching" on page 16-16 for information..

Overview of JDBC 2.0 Support 4-7

Overview of JDBC 2.0 Features

Table 4-1 Key Areas of JDBC 2.0 Functionality (Cont.)

Feature Comments and References

distributed transactions / This requires the JDBC 2.0 Optional Package (JDBC 2.0
XA functionality Standard Extension API) in the j avax. sql package. This is
available under either JDK 1.2.x or 1.1.x.

See Chapter 15, "Distributed Transactions" for information.

miscellaneous get XXX() See "Other getXXX() Methods" on page 7-7 for information

methods about which get XXX() methods are Oracle extensions under
JDK 1.2.x and 1.1.x, and about any differences in functionality
with JDBC 2.0.

miscellaneous set XXX() See "Other setXXX() Methods" on page 7-12 for information

methods about which set XXX() methods are Oracle extensions under
JDK 1.2.x and 1.1.x, and about any differences in functionality
with JDBC 2.0.

Note: The Oracle JDBC drivers do not support the Cal endar
datatype because it is not yet feasible to support j ava. sql . Dat e
timezone information. Cal endar input to set XXX() or get XXX()
method calls for Dat e, Ti ne, and Ti mest anp is ignored. The

Cal endar type will be supported in a future Oracle release.

4-8 Oracle9i JDBC Developer’'s Guide and Reference

D

Overview of Supported JDBC 3.0 Features

This chapter provides an overview of the JDBC 3.0 features supported in the Oracle
JDBC drivers, focusing in particular on any differences in support between the JDK
1.4 environment and previous JDK environments. The following topics are
discussed:

» Introduction
= JDBC 3.0 Support: JDK 1.4 and Previous Releases
« Overview of Supported JDBC 3.0 Features

= Transaction Savepoints

Overview of Supported JDBC 3.0 Features 5-1

Introduction

Introduction
The Oracle JDBC drivers support the following JDBC 3.0 features:

= Using global and distributed transactions on the same connection (see "Oracle
XA Packages" on page 15-5)

« Transaction savepoints (see "Transaction Savepoints" on page 5-5)

« Re-use of prepared statements by connection pools (also known as statement
caching; see Chapter 14, "Statement Caching")

« Full support for JDK1.4 (see "JDBC 3.0 Support: JDK 1.4 and Previous Releases"
in this chapter)

All of these features are provided in the package or acl e. j dbc. This package
supports all JDK releases from 1.1.x through 1.4; JDBC 3.0 features that depend on
JDK1.4 are made available to earlier JDK versions through Oracle extensions.

5-2 Oracle9i JDBC Developer’s Guide and Reference

JDBC 3.0 Support: JDK 1.4 and Previous Releases

JDBC 3.0 Support: JDK 1.4 and Previous Releases

This release adds or extends the following interfaces and classes.

Table 5-1 JDBC 3.0 Feature Support

New feature JDK1.4 implementation Pre-JDK1.4 implementation
Savepoints (new j ava. sql . Savepoi nt oracl e.jdbc. Oracl eSavepoi nt
class)

Savepoints java. sql . connecti on oracle. j dbc.

(connection Oracl eConnection
extensions)

Querying java. sql . Paraneter MetaData oracle.jdbc.

parameter Or acl ePar amet er Met aDat a
capacities (new

class)

Querying Not applicable oracl e. j dbc.

parameter Or acl ePr epar edSt at enent
capacities (interface

change)

Overview of Supported JDBC 3.0 Features 5-3

Overview of Supported JDBC 3.0 Features

Overview of Supported JDBC 3.0 Features

Table 5-2 lists the JDBC 3.0 features supported at this release and gives references to
a detailed discussion of each feature.

Table 5-2 Key Areas of JDBC 3.0 Functionality

Feature Comments and References
Transaction savepoints See "Transaction Savepoints" on page 5-5 for information.
Connection sharing Re-use of prepared statements by connection pools (see

Chapter 14, "Statement Caching".

Switching between local and See "Switching Between Global and Local Transactions" on
global transactions page 15-5 for information.

5-4 Oracle9i JIDBC Developer’s Guide and Reference

Transaction Savepoints

Transaction Savepoints

The JDBC 3.0 specification supports savepoints, which offer finer demarcation
within transactions. Applications can set a savepoint within a transaction and then
roll back (but not commit) all work done after the savepoint. Savepoints relax the
atomicity property of transactions. A transaction with a savepoint is atomic in the
sense that it appears to be a single unit outside the context of the transaction, but
code operating within the transaction can preserve partial states.

Note: Savepoints are supported for local transactions only.
Specifying a savepoint within a global transaction causes
SQLExcept i on to be thrown.

JDK1.4 specifies a standard savepoint API. Oracle JDBC provides two different
savepoint interfaces: one (j ava. sql . Savepoi nt) for JDK1.4 and one

(oracl e. j dbc. O acl eSavepoi nt) that works across all supported JDK
versions. JDK1.4 adds savepoint-related APIs to j ava. sql . Connecti on; the
Oracle JDK version-independent interface or acl e. j dbc. Or acl eConnecti on
provides equivalent functionality.

Creating a Savepoint

You create a savepoint using either Connect i on. set Savepoi nt (), which
returns a j ava. sqgl . Savepoi nt instance, or

Or acl eConnect i on. or acl eSet Savepoi nt (), which returns an

oracl e.jdbc. Oracl eSavepoi nt instance.

A savepoint is either named or unnamed. You specify a savepoint’s name by
supplying a string to the set Savepoi nt () method; if you do not specify a name,
the savepoint is assigned an integer ID. You retrieve a name using

get Savepoi nt Nanme() ; you retrieve an ID using get Savepoi nt 1 d() .

Overview of Supported JDBC 3.0 Features 5-5

Transaction Savepoints

Note: Attempting to retrieve a name from an unnamed savepoint
or attempting to retrieve an ID from a named savepoint throws an
SQLException.

Rolling back to a Savepoint

You roll back to a savepoint using Connect i on. r ol | back(Savepoi nt svpt)
or Oracl eConnecti on. oracl eRol | back(Or acl eSavepoi nt svpt).If you
try to roll back to a savepoint that has been released, SQLExcept i on is thrown.

Releasing a Savepoint
You remove a savepoint using Connect i on. r el easeSavepoi nt (Savepoi nt
svpt) or
Oracl eConnect i on. or acl eRel easeSavepoi nt (O acl eSavepoi nt svpt).

Note: As of Release 2 (9.2), r el easeSavepoi nt () and

or acl eRel easeSavepoi nt () are not supported; if you invoke
either message, SQLExcept i on is thrown with the message
"Unsupported feature".

Checking Savepoint Support

You find out whether savepoints are supported by your database by calling
oracl e. jdbc. O acl eDat abaseMet aDat a. suppor t sSavepoi nt s(), which
returns Tr ue if savepoints are available.

Savepoint Notes

= After a savepoint has been released, attempting to reference it in a rollback
operation will cause an SQLExcept i on to be thrown.

= When a transaction is committed or rolled back, all savepoints created in that
transaction are automatically released and become invalid.

= Rolling a transaction back to a savepoint automatically releases and makes
invalid any savepoints created after the savepoint in question.

5-6 Oracle9i JDBC Developer’s Guide and Reference

Transaction Savepoints

Savepoint Interfaces

The following methods are used to get information from savepoints. These methods
are defined within both the j ava. sqgl . Connecti on and
oracl e. jdbc. Oracl eSavepoi nt interfaces:

public int getSavepointld() throws SQLException;

Return the savepoint ID for an unnamed savepoint.

Exceptions:

= SQLException: Thrownif sel f is a named savepoint.
public String getSavepointName() throws SQLException;

Return the name of a named savepoint.

Exceptions:

= SQLException: Thrownif sel f is an unnamed savepoint.
These methods are defined within the j ava. sql . Connect i on interface:
public Savepoint setSavepoint() throws SQLException;

Create an unnamed savepoint.

Exceptions:

« SQLExcepti on: Thrown on database error, or if Connection is in
auto-commit mode or participating in a global transaction.

publicSavepoint setSavepoint(String name) throws SQLException;

Create a named savepoint. If a Savepoi nt by this name already exists, this
instance replaces it.

Exceptions:

« SQLExcepti on: Thrown on database error or if Connection is in
auto-commit mode or participating in a global transaction.

public void rollback(Savepoint savepoint) throws SQLException;

Remove specified Savepoint from current transaction. Any references to the
savepoint after it is removed cause an SQLExcept i on to be thrown.

Exceptions:

=« SQLExcepti on: Thrown on database error or if Connection is in
auto-commit mode or participating in a global transaction.

Overview of Supported JDBC 3.0 Features 5-7

Transaction Savepoints

public void releaseSavepoint(Savepoint savepoint) throws SQLException;

Not supported at this release. Always throws SQLExcept i on.

Pre-JDK1.4 Savepoint Support

These methods are defined within the or acl e. j dbc. Or acl eConnecti on
interface; except for using Or acl eSavepoi nt in the signatures, they are identical
to the methods above.

public OracleSavepoint oracleSetSavepoint() throws SQLException;
public OracleSavepoint oracleSetSavepoint(String name) throws SQLException;
public void oracleRollback(OracleSavepoint savepoint) throws SQLException;

public void oracleReleaseSavepoint(OracleSavepoint savepoint) throws SQLException;

5-8 Oracle9i JDBC Developer’s Guide and Reference

S

Overview of Oracle Extensions

Oracle’s extensions to the JDBC standard include Java packages and interfaces that
let you access and manipulate Oracle datatypes and use Oracle performance
extensions. Compared to standard JDBC, the extensions offer you greater flexibility
in how you can manipulate the data. This chapter presents an overview of the
packages and classes included in Oracle’s extensions to standard JDBC. It also
describes some of the key support features of the extensions.

This chapter includes these topics:

Introduction to Oracle Extensions
Support Features of the Oracle Extensions
Oracle JDBC Packages and Classes

Oracle Character Datatypes Support
Additional Oracle Type Extensions

Note: This chapter focuses on type extensions, as opposed to
performance extensions, which are discussed in detail in
Chapter 12, "Performance Extensions".

Overview of Oracle Extensions 6-1

Introduction to Oracle Extensions

Introduction to Oracle Extensions

Oracle provides two implementations of its JDBC drivers—one that supports Sun
Microsystems JDK versions 1.2.x through 1.4 and complies with the Sun JDBC 2.0
standard, and one that supports JDK 1.1.x and complies with the Sun JDBC 1.22
standard.

Beyond standard features, Oracle JDBC drivers provide Oracle-specific type
extensions and performance extensions.

Note: The JDBC OCI, Thin, and server-side internal drivers
support the same functionality and all Oracle extensions.

Both implementations include the following Java packages:
« oracle. sqgl (classes to support all Oracle type extensions)

= oracl e.jdbc (interfaces to support database access and updates in Oracle
type formats)

In addition to these packages, the implementation for JDK 1.1.x includes the
following Java package. This package supports some JDBC 2.0 and JDBC 3.0
features by providing interfaces that mimic the new interfaces in the standard
j ava. sqgl package:

= oracle.jdbc2 (interfaces equivalent to standard JDBC 2.0 interfaces)

(For example, or acl e. j dbc2. St ruct mimicsj ava. sql . St r uct, which exists
inJDK 1.2.)

"Oracle JDBC Packages and Classes" on page 6-7 further describes the preceding
packages and their classes.

6-2 Oracle9i JIDBC Developer’s Guide and Reference

Support Features of the Oracle Extensions

Support Features of the Oracle Extensions

The Oracle extensions to JDBC include a number of features that enhance your
ability to work with Oracle databases. Among these are support for Oracle
datatypes, Oracle objects, and specific schema naming.

Support for Oracle Datatypes

A key feature of the Oracle JDBC extensions is the type support in the or acl e. sql
package. This package includes classes that map to all the Oracle SQL datatypes,
acting as wrappers for raw SQL data. This functionality provides two significant
advantages in manipulating SQL data:

Accessing data directly in SQL format is more efficient than first converting it to
Java format.

Performing mathematical manipulations of the data directly in SQL format
avoids the loss of precision that occurs in converting between SQL and Java
formats.

Once manipulations are complete and it is time to output the information, each of
theoracl e. sql . * type support classes has all the necessary methods to convert
data to appropriate Java formats. For a more detailed description of these general
issues, see "Package oracle.sql" on page 6-7.

See the following for more information on specific or acl e. sql . * datatype
classes:

"Oracle Character Datatypes Support" on page 6-28 for information on
oracl e. sql . * character datatypes which includes the SQL CHAR and SQL
NCHAR datatypes

"Additional Oracle Type Extensions" on page 6-33 for information on the
oracl e. sql . * datatype classes for ROWIDs and REF CURSOR types

Chapter 8, "Working with LOBs and BFILEs" for information on
oracl e. sql . * datatype support for BLOBs, CLOBs, and BFILEs

Chapter 9, "Working with Oracle Object Types" for information on
oracl e. sql . * datatype support for composite data structures (Oracle objects)
in the database

Chapter 10, "Working with Oracle Object References" for information on
oracl e. sql . * datatype support for object references

Overview of Oracle Extensions 6-3

Support Features of the Oracle Extensions

= Chapter 11, "Working with Oracle Collections" for information on
oracl e. sql . * datatype support for collections (VARRAYs and nested tables)

Support for Oracle Objects

Oracle JDBC supports the use of structured objects in the database, where an object
datatype is a user-defined type with nested attributes. For example, a user
application could define an Enpl oyee object type, where each Enpl oyee object
has afir st nane attribute (a character string), a| ast nane attribute (another
character string), and an enpl oyeenunber attribute (integer).

Oracle’s JDBC implementation supports Oracle object datatypes. When you work
with Oracle object datatypes in a Java application, you must consider the following:

= how to map between Oracle object datatypes and Java classes

= how to store Oracle object attributes in corresponding Java objects (they can be
stored in standard Java types or in or acl e. sqgl . * types)

« how to convert attribute data between SQL and Java formats
« how to access data

Oracle objects can be mapped either to the weak j ava. sql . Struct or

or acl e. sql . STRUCT types or to strongly typed customized classes. These strong
types are referred to as custom Java classes, which must implement either the
standard j ava. sqgl . SQLDat a interface or the Oracle extension

or acl e. sql . ORADat a interface. (Chapter 9, "Working with Oracle Object Types"
provides more detail regarding these interfaces.) Each interface specifies methods to
convert data between SQL and Java.

Note: The ORADat a interface has replaced the Cust onDat um
interface. While the latter interface is deprecated for Oracle9i, it is
still supported for backward compatibility.

To create custom Java classes to correspond to your Oracle objects, Oracle
recommends that you use the Oracle9i JPublisher utility to create the classes. To do
this, you must define attributes according to how you want to store the data.
JPublisher performs this task seamlessly with command-line options and can
generate either SQLDat a or ORADat a implementations.

For SQLDat a implementations, a type map defines the correspondence between
Oracle object datatypes and Java classes. Type maps are objects of a special Java
class that specify which Java class corresponds to each Oracle object datatype.

6-4 Oracle9i JDBC Developer’s Guide and Reference

Support Features of the Oracle Extensions

Oracle JDBC uses these type maps to determine which Java class to instantiate and
populate when it retrieves Oracle object data from a result set.

Note: Oracle recommends using the ORADat a interface, instead of
the SQLDat a interface, in situations where portability is not a
concern. ORADat a works more easily and flexibly in conjunction
with other features of the Oracle Java platform offerings.

JPublisher automatically defines get XXX() methods of the custom Java classes,
which retrieve data into your Java application. For more information on the
JPublisher utility, see the Oracle9i JPublisher User’s Guide.

Chapter 9, "Working with Oracle Object Types" describes Oracle JDBC support for
Oracle objects.

Support for Schema Naming

Oracle JDBC classes have the ability to accept and return fully qualified schema
names. A fully qualified schema name has this syntax:

{[schema_nare] . }[sql _type_nane]

Where schenma_nane is the name of the schema and sql _t ype_nane is the SQL
type name of the object. Notice that schema_nane and sql _t ype_nane are
separated by a dot (".").

To specify an object type in JDBC, you use its fully qualified name (that is, a schema
name and SQL type name). It is not necessary to enter a schema name if the type
name is in current naming space (that is, the current schema). Schema naming
follows these rules:

= Both the schema name and the type name may or may not be quoted. However,
if the SQL type name has a dot in it, such as CORPORATE. EMPLOYEE, the type
name must be quoted.

= The JDBC driver looks for the first unquoted dot in the object’s name and uses
the string before the dot as the schema name and the string following the dot as
the type name. If no dot is found, the JDBC driver takes the current schema as
default. That is, you can specify only the type name (without indicating a
schema) instead of specifying the fully qualified name if the object type name
belongs to the current schema. This also explains why you must quote the type
name if the type name has a dot in it.

Overview of Oracle Extensions 6-5

Support Features of the Oracle Extensions

OCI Extensions

For example, assume that user Scott creates a type called per son. addr ess
and then wants to use it in his session. Scott might want to skip the schema
name and pass in per son. addr ess to the JDBC driver. In this case, if

per son. addr ess is not quoted, then the dot will be detected, and the JDBC
driver will mistakenly interpret per son as the schema name and addr ess as
the type name.

JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver will not change the character case even if it is quoted.

For example, if ScQt T. Per sonType is passed to the JDBC driver as an object
type name, the JDBC driver will pass the string to the database unchanged. As
another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

See Chapter 17, "JDBC OCI Extensions" for the following OCI driver-specific
information:

OCI Driver Connection Pooling

Middle-Tier Authentication Through Proxy Connections
OCI Driver Transparent Application Failover

OCI HeteroRM XA

Accessing PL/SQL Index-by Tables

6-6 Oracle9i JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes

Oracle JDBC Packages and Classes

This section describes the Java packages that support the Oracle JDBC extensions
and the key classes that are included in these packages:

= Package oracle.sql
= Package oracle.jdbc
« Package oracle.jdbc2 (for JDK 1.1.x only)

You can refer to the Oracle JDBC Javadoc for more information about all the classes
mentioned in this section.

Package oracle.sql

The or acl e. sql package supports direct access to data in SQL format. This
package consists primarily of classes that provide Java mappings to SQL datatypes.

Essentially, the classes act as Java wrappers for the raw SQL data. Because data in
anoracl e. sqgl . * object remains in SQL format, no information is lost. For SQL
primitive types, these classes simply wrap the SQL data. For SQL structured types
(objects and arrays), they provide additional information such as conversion
methods and details of structure.

Each of the or acl e. sql . * datatype classes extends or acl e. sql . Dat um a
superclass that encapsulates functionality common to all the datatypes. Some of the
classes are for JDBC 2.0-compliant datatypes. These classes, as Table 6-1 indicates,
implement standard JDBC 2.0 interfaces in the j ava. sql package (or acl e. j dbc2
for JDK 1.1.x), as well as extending the or acl e. sql . Dat umclass.

Overview of Oracle Extensions 6-7

Oracle JDBC Packages and Classes

Classes of the oracle.sql Package
Table 6-1 lists the or acl e. sql datatype classes and their corresponding Oracle

SQL types.

Table 6-1 Oracle Datatype Classes

Java Class Oracle SQL Types and Interfaces Implemented

oracl e.sqgl. STRUCT STRUCT (objects) implements j ava. sql . St ruct
(oracl e.jdbc2. Struct under JDK 1.1.x)

oracl e.sqgl.REF REF (object references) implements j ava. sql . Ref
(oracl e.j dbc2. Ref under JDK 1.1.x)

oracl e. sqgl . ARRAY VARRAY or nested table (collections) implements
java.sql . Array (oracl e.j dbc2. Arr ay under
JDK 1.1.x)

oracle.sqgl.BLOB BL OB (binary large objects) implements java.sql.Blob

(oracl e. j dbc2. Bl ob under JDK 1.1.x)

oracle.sqgl.CLOB SQL CLOB (character large objects) and globalization
support NCLOB datatypes both implement
java.sql.d ob (oracle.jdbc2. A ob under JDK

1.1.x)
oracl e. sql . BFI LE BFI LE (external files)
oracl e.sqgl . CHAR CHAR, NCHAR, VARCHAR2, NVARCHAR2
oracl e. sql . DATE DATE
oracl e.sqgl . TI MESTAWP TI MESTAWP
oracl e.sql . TI MESTAMPTZ TI MESTAMPTZ (Timestamp with Time Zone)
oracl e.sqgl. TI MESTAVMPLTZ TI MESTAMPLTZ (Timestamp with Local Time Zone)
oracl e. sql . NUMBER NUMBER
oracl e. sql . RAW RAW
oracle.sql. ROND ROW D (row identifiers)
oracl e. sql . OPAQUE OPAQUE

You can find more detailed information about each of these classes later in this
chapter. Additional details about use of the Oracle extended types (STRUCT, REF,
ARRAY, BLOB, CLOB, BFI LE, and ROW D) are described in the following locations:

= "Oracle Character Datatypes Support" on page 6-28

6-8 Oracle9i JIDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes

"Additional Oracle Type Extensions" on page 6-33
Chapter 8, "Working with LOBs and BFILEs"
Chapter 9, "Working with Oracle Object Types"
Chapter 10, "Working with Oracle Object References"
Chapter 11, "Working with Oracle Collections"

Notes:

= For information about retrieving data from a result set or
callable statement object into or acl e. sqgl . * types, as
opposed to Java types, see Chapter 7, "Accessing and
Manipulating Oracle Data".

= The LONGand LONG RAWSQL types and REF CURSOR type
category have no or acl e. sql . * classes. Use standard JDBC
functionality for these types. For example, retrieve LONGor
LONGRAWdata as input streams using the standard JDBC result
set and callable statement methods get Bi nar ySt r ean() and
get Char act er Strean() . Use the get Cur sor () method for
REF CURSOR types.

In addition to the datatype classes, the or acl e. sql package includes the
following support classes and interfaces, primarily for use with objects and
collections:

oracl e.sql . ArrayDescri ptor class: Used in constructing
or acl e. sql . ARRAY objects; describes the SQL type of the array. (See
"Creating ARRAY Objects and Descriptors" on page 11-11.)

oracl e.sql. Struct Descri ptor class: Used in constructing

or acl e. sql . STRUCT objects, which you can use as a default mapping to
Oracle objects in the database. (See "Creating STRUCT Objects and Descriptors"
on page 9-4.)

oracl e. sql . ORADat a and or acl e. sql . ORADat aFact or y interfaces: Used
in Java classes implementing the Oracle ORADat a scenario of Oracle object
support. (The other possible scenario is the JDBC-standard SQLDat a
implementation.) See "Understanding the ORAData Interface" on page 9-21 for
more information on ORADat a.

Overview of Oracle Extensions 6-9

Oracle JDBC Packages and Classes

« oracle.sql.OpaqueDescri ptor class: Used to obtain the meta data for an
instance of the or acl e. sql . OPAQUE class.

General oracle.sql.* Datatype Support
Each of the Oracle datatype classes provides, among other things, the following;:

= one or more constructors, typically with a constructor that uses raw bytes as
input and a constructor that takes a Java type as input

= data storage as Java byte arrays for SQL data

= aget Byt es() method, which returns the SQL data as a byte array (in the raw
format in which JDBC received the data from the database)

« atoJdbc() method that converts the data into an object of a corresponding
Java class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific datatypes that are not part of
the JDBC specification, such as RON D; the driver returns the object in the
corresponding or acl e. sql . * format. For example, it returns an Oracle
ROWID as an or acl e. sgl . RON D.

= appropriate xxxVal ue() methods to convert SQL data to Java typed—for
example: st ri ngVal ue(),i nt Val ue(), bool eanVal ue(), dat eVal ue(),
bi gDeci mal Val ue()

« additional conversion, get XXX() and set XXX() methods as appropriate for
the functionality of the datatype (such as methods in the LOB classes that get
the data as a stream, and methods in the REF class that get and set object data
through the object reference)

Refer to the Oracle JDBC Javadoc for additional information about these classes. See
"Class oracle.sql. CHAR" on page 6-29 to learn how the or acl e. sgl . CHAR class
supports character data.

Overview of Class oracle.sql.STRUCT

For any given Oracle object type, it is usually desirable to define a custom mapping
between SQL and Java. (If you use a SQLDat a custom Java class, the mapping must
be defined in a type map.)

If you choose not to define a mapping, however, then data from the object type will
be materialized in Java in an instance of the or acl e. sql . STRUCT class.

6-10 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

The STRUCT class implements the standard JDBC 2.0j ava. sql . Struct interface
(oracl e.jdbc2. Struct under JDK 1.1.x) and extends the or acl e. sql . Dat um
class.

In the database, Oracle stores the raw bytes of object data in a linearized form. A
STRUCT object is a wrapper for the raw bytes of an Oracle object. It contains the
SQL type name of the Oracle object and a "values" array of or acl e. sql . Dat um
objects that hold the attribute values in SQL format.

You can materialize a STRUCT’s attributes as or acl e. sql . Dat uni] objects if you
use the get Or acl eAttri but es() method, orasj ava. | ang. Qbj ect[] objects
if you use the get At t ri but es() method. Materializing the attributes as

oracl e. sql . * objects gives you all the advantages of the or acl e. sql . * format:

= Materializing or acl e. sql . STRUCT data in or acl e. sql . * format
completely preserves data by maintaining it in SQL format. No translation is
performed. This is useful if you want to access data but not necessarily display
it.

= It allows complete flexibility in how your Java application unpacks data.

Notes:

« Elements of the values array, although of the generic Dat um
type, actually contain data associated with the relevant
oracl e. sql . * type appropriate for the given attribute. You
can cast the element to the appropriate or acl e. sql . * type as
desired. For example, a CHAR data attribute within the STRUCT
is materialized as or acl e. sql . Dat um To use it as CHAR data,
you must cast it to the or acl e. sql . CHAR type.

= Nested objects in the values array of a STRUCT object are
materialized by the JDBC driver as instances of STRUCT.

In some cases, you might want to manually create a STRUCT object and pass it to a
prepared statement or callable statement. To do this, you must also create a
Struct Descri pt or object.

For more information about working with Oracle objects using the
oracl e. sql . STRUCT and St r uct Descr i pt or classes, see "Using the Default
STRUCT Class for Oracle Objects" on page 9-3.

Overview of Oracle Extensions 6-11

Oracle JDBC Packages and Classes

Overview of Class oracle.sql.REF

The or acl e. sql . REF class is the generic class that supports Oracle object
references. This class, as with all or acl e. sql . * datatype classes, is a subclass of
the or acl e. sql . Dat umclass. It implements the standard JDBC 2.0

j ava. sql . Ref interface (or acl e. j dbc2. Ref under JDK 1.1.x).

The REF class has methods to retrieve and pass object references. Be aware,
however, that selecting an object reference retrieves only a pointer to an object. This
does not materialize the object itself. But the REF class also includes methods to
retrieve and pass the object data.

You cannot create REF objects in your JDBC application—you can only retrieve
existing REF objects from the database.

For more information about working with Oracle object references using the
oracl e. sql . REF class, see Chapter 10, "Working with Oracle Object References".

Overview of Class oracle.sql.ARRAY

The or acl e. sql . ARRAY class supports Oracle collections—either VARRAY's or
nested tables. If you select either a VARRAY or nested table from the database, then
the JDBC driver materializes it as an object of the ARRAY class; the structure of the
data is equivalent in either case. The or acl e. sql . ARRAY class extends

or acl e. sqgl . Dat umand implements the standard JDBC 2.0 j ava. sql . Array
interface (or acl e. j dbc2. Arr ay under JDK 1.1.x).

You can use the set ARRAY() method of the Or acl ePr epar edSt at enent or

Or acl eCal | abl eSt at ement class to pass an array as an input parameter to a
prepared statement. Similarly, you might want to manually create an ARRAY object
to pass it to a prepared statement or callable statement, perhaps to insert into the
database. This involves the use of Ar r ayDescr i pt or objects.

For more information about working with Oracle collections using the
oracl e. sgl . ARRAY and ArrayDescri pt or classes, see "Overview of Collection
(Array) Functionality" on page 11-5.

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE

BLOBs and CLOBs (referred to collectively as "LOBs"), and BFILEs (for external
files) are for data items that are too large to store directly in a database table.
Instead, the database table stores a locator that points to the location of the actual
data.

The or acl e. sgl package supports these datatypes in several ways:

6-12 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

= BLOBs point to large unstructured binary data items and are supported by the
oracl e. sql . BLOB class.

« CLOBs point to large fixed-width character data items (that is, characters that
require a fixed number of bytes per character) and are supported by the
oracl e. sql . CLOB class.

= BFILEs point to the content of external files (operating system files) and are
supported by the or acl e. sql . BFI LE class.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement, but bear in mind that you are receiving only the locator, not the
data itself. Additional steps are necessary to retrieve the data.

For information about how to access and manipulate locators and data for LOBs
and BFILEs, see Chapter 8, "Working with LOBs and BFILEs".

Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW

These classes map to primitive SQL datatypes, which are a part of standard JDBC,
and supply conversions to and from the corresponding JDBC Java types. For more
information, see the Javadoc.

Classes oracle.sql.TIMESTAMP, oracle.sql.TIMESTAMPTZ, and
oracle.sql.TIMESTAMPLTZ
The Oracle9i JDBC drivers support the following date/time datatypes:

« Timestamp (TS)
= Timestamp with Time Zone (TSTZ)
« TIMESTAMP with Local Time Zone (TSLTZ)

Oracle9i JDBC drivers allow conversions among DATE and date/time datatypes.
For example, you can access a TI MESTAMPTZ column as a DATE value.

Oracle9i JDBC drivers support the most popular time zone names used in the
industry as well as most of the time zone names defined in the JDK from Sun
Microsystems. Time zones are specified by using the j ava. uti | . Cal endar class.

Note: Do notuseTi meZone. get Ti neZone() to create timezone
objects; the Oracle timezone datatypes support more time zone
names than does the JDK.

Overview of Oracle Extensions 6-13

Oracle JDBC Packages and Classes

The following code shows how the Ti meZone and Cal endar objects are created
for US_PACI FI C, which is a time zone name not defined in the JDK:

Ti meZone tz = Ti meZone. get Defaul t ();
tz.setlID("US_PACIFIC");
G egorianCal endar gcal = new G egorianCal endar (tz);

The following Java classes represent the SQL date/time types:
« oracle.sql. Tl MESTAMP

« oracle.sqgl. Tl MESTAMPTZ

« oracle.sql. TI MESTAMPLTZ

Use the following methods from the or acl e. j dbc. Or acl ePr epar edSt at enent
interface to set a date/time:

« setTI MESTAMP(i nt param dx, TI MESTAMP Xx)
« setTI MESTAMPTZ(int param dx, TI MESTAMPTZ Xx)
« setTIMESTAMPLTZ(int param dx, TI MESTAMPLTZ x)

Use the following methods from the or acl e. j dbc. Or acl eCal | abl eSt at enent
interface to get a date/time:

« TIMESTAMP get TI MESTAMP (int param dx)
« TIMESTAMPTZ get TI MESTAMPTZ(i nt paranl dx)
« TIMESTAMPLTZ get TI MESTAMPLTZ(i nt param dx)

Use the following methods from the or acl e. j dbc. Or acl eResul t Set interface
to get a date/time:

« TIMESTAMP get TI MESTAMP(i nt parami dx)

« TIMESTAMP get TI MESTAMP(j ava. |l ang. String col Nane)

« TIMESTAMPTZ get TI MESTAMPTZ(i nt paranl dx)

« TIMESTAMPTZ get TI MESTAMPTZ(j ava. | ang. String col Name)

« TIMESTAMPLTZ get TI MESTAMPLTZ(i nt param dx)

« TIMESTAMPLTZ get TI MESTAMPLTZ(j ava.l ang. String col Nane)
« TIMESTAMPLTZ get TI MESTAMPLTZ(i nt param dx)

Use the following methods from the or acl e. j dbc. Oracl eResul t Set interface
to update a date/time:

6-14 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

« updat eTl MESTAMP(i nt param dx)
« updat eTl MESTAMPTZ(i nt paraml dx)
« updat eTl MESTAMPLTZ(i nt param dx)

Before accessing TI MESTAMPLTZ data, call the

Or acl eConnect i on. set Sessi onTi me() method to set the session time zone.
When this method is called, the JDBC driver sets the session time zone of the
connection and saves the session time zone so that any TI MESTAMPLTZ data
accessed through JDBC can be adjusted using the session time zone.

Overview of Class oracle.sql.ROWID

This class supports Oracle ROWIDs, which are unique identifiers for rows in
database tables. You can select a ROWID as you would select any column of data
from the table. Note, however, that you cannot manually update ROWIDs—the
Oracle database updates them automatically as appropriate.

The or acl e. sql . ROWN Dclass does not implement any noteworthy functionality
beyond what is in the or acl e. sql . Dat umsuperclass. However, ROA D does
provide a st ri ngVal ue() method that overrides the st ri ngVal ue() method in
the or acl e. sql . Dat umclass and returns the hexadecimal representation of the
ROW Dbytes.

For information about accessing ROWID data, see "Oracle ROWID Type" on
page 6-33.

Class oracle.sql.OPAQUE

The or acl e. sql . OPAQUE class gives you the name and characteristics of the
OPAQUE type and any attributes. OPAQUE types provide access only to the
uninterrupted bytes of the instance.

Note: For Oracle9i 9.0.1, there is minimal support for OPAQUE
types.

The following are the methods of the or acl e. sql . OPAQUE class:

= getBytesVal ue() :Returns a byte array that represents the value of the
OPAQUE object, in the format used in the database.

= public boolean isConvertibl eTo(Cl ass jCl ass): Determines if a
Dat umobiject can be converted to a particular class, where Cl ass is any class

Overview of Oracle Extensions 6-15

Oracle JDBC Packages and Classes

and j Cl ass is the class to convert. t r ue is returned if conversion to j Cl ass is
permitted and f al se if conversion to j Cl ass is not permitted.

= getDescriptor():Returns the OpaqueDescri pt or object that contains the
type information.

« getJavaSqgl Connecti on() : Returns the connection associated with the
receiver. Because methods that use the or acl e. j dbc. dri ver package are
deprecated, the get Connect i on() method has been deprecated in favor of
the get JavaSql Connecti on() method.

= get SQLTypeNane() : Implements the j ava. sql . St ruct interface function
and retrieves the SQL type name of the SQL structured type that this St r uct
object represents. This method returns the fully-qualified type name of the SQL
structured type which this STRUCT object represents.

= get Val ue() : Returns a Java object that represents the value (raw bytes).

= toJdbc(): Returns the JDBC representation of the Dat umobject.

Package oracle.jdbc

6-16

The interfaces of the or acl e. j dbc package provide Oracle-specific extensions to
allow access to raw SQL format data by using or acl e. sql . * objects.

Note: The interfaces of the or acl e. j dbc package replace the
deprecated classes of the or acl e. j dbc. dri ver package found in
previous releases. (See "Package oracle.jdbc" on page 1-11 for more
information.)

For the or acl e. j dbc package, Table 6-2 lists key interfaces and classes used for
connections, statements, and result sets.

Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

Table 6-2 Key Interfaces and Classes of the oracle.jdbc Package

Interface
Name or Class Key Functionality

Oracl eDriver Class implements j ava. sql . Dri ver

O acl eConnection Interface methods to return Oracle statement
objects; methods to set Oracle
performance extensions for any statement
executed in the current connection
(implements
j ava. sql . Connecti on)

Or acl eSt at enent Interface methods to set Oracle performance
extensions for individual statement;
superclass of
O acl ePrepar edSt at enent and
Or acl eCal | abl eSt at emrent
(implements j ava. sqgl . St at ement)

O acl ePr epar edSt at ement Interface set XXX() methods to bind
oracl e. sgl . * types into a prepared
statement (implements
j ava. sql . Prepar edSt at enmrent ;
extends Or acl eSt at enent ;
superclass of
Oracl eCal | abl eSt at enent)

O acl eCal | abl eSt at ement Interface get XXX() methods to retrieve data in
oracl e. sgl format; set XXX()
methods to bind or acl e. sqgl . * types
into a callable statement (implements
java.sqgl . Cal |l abl eSt at errent ;
extends
Or acl ePrepar edSt at emrent)

O acl eResul t Set Interface get XXX() methods to retrieve data in
oracl e. sgl format (implements
java. sqgl . Resul t Set)

O acl eResul t Set Met aDat a Interface methods to get meta information about
Oracle result sets, such as column names
and datatypes (implements
java. sqgl . Resul t Set Met aDat a)

Overview of Oracle Extensions 6-17

Oracle JDBC Packages and Classes

Table 6-2 Key Interfaces and Classes of the oracle.jdbc Package (Cont.)

Interface
Name or Class Key Functionality
O acl eDat abaseMet aDat a Class methods to get meta information about
the database, such as database product
name/version, table information, and
default transaction isolation level
(implements
j ava. sql . Dat abaseMet aDat a)
OracleTypes Class defines integer constants used to identify

SQL types. For standard types, it uses the
same values as the standard

j ava. sgl . Types class. In addition, it
adds constants for Oracle extended types.

The remainder of this section describes the interfaces and classes of the

or acl e. j dbc package. For more information about using these interfaces and
classes to access Oracle type extensions, see Chapter 7, "Accessing and
Manipulating Oracle Data".

Class oracle.jdbc.OracleDriver

Use this class to register the Oracle JDBC drivers for use by your application. You
can input a new instance of this class to the static r egi st er Dri ver () method of
thej ava. sql . Dri ver Manager class so that your application can access and use
the Oracle drivers. Ther egi st er Dri ver () method takes as input a "driver" class,
that is, a class that implements the j ava. sql . Dri ver interface, as is the case with
Oracl eDri ver.

Once you register the Oracle JDBC drivers, you can create your connection using
the Dri ver Manager class. For more information on registering drivers and writing
a connection string, see "First Steps in JDBC" on page 3-2.

Interface oracle.jdbc.OracleConnection

This interface extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
support type maps for Oracle objects, and support client identifiers.

"Additional Oracle Performance Extensions” on page 12-20 describes the
performance extensions, including row prefetching, update batching, and metadata
TABLE_REMARKS reporting.

6-18 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

Client Identifiers In a connection pooling environment, the client identifier can be
used to identify which light-weight user is currently using the database session. A
client identifier can also be used to share the Globally Accessed Application Context
between different database sessions. The client identifier set in a database session is
audited when database auditing is turned on.

Note: See the Oracle9i Application Developer’s Guide - Fundamentals
for a full discussion of Globally Accessed Contexts.

Key methods include:

= createStatemnent(): Allocates anew Or acl eSt at emrent object.

= prepareStatemnent (): Allocates anew Or acl ePr epar edSt at ement object.
= prepareCall ():Allocates anew Or acl eCal | abl eSt at emrent object.

= get TypeMap() : Retrieves the type map for this connection (for use in mapping
Oracle object types to Java classes).

= set TypeMap() : Initializes or updates the type map for this connection (for use
in mapping Oracle object types to Java classes).

=« getTransactionlsol ati on() : Gets this connection’s current isolation
mode.

- setTransactionl sol ati on() : Changes the transaction isolation level using
one of the TRANSACTI ON_* values.

These or acl e. j dbc. Or acl eConnect i on methods are Oracle-defined
extensions:

« setClientldentifier():Setsthe client identifier for this connection.
« clearCientldentifier():Clears the client identifier for this connection.

= get Def aul t Execut eBat ch() : Retrieves the default update-batching value
for this connection.

= set Def aul t Execut eBat ch() : Sets the default update-batching value for this
connection.

= get Def aul t RowPr ef et ch() : Retrieves the default row-prefetch value for
this connection.

= set Def aul t RowPr ef et ch() : Sets the default row-prefetch value for this
connection.

Overview of Oracle Extensions 6-19

Oracle JDBC Packages and Classes

= get Remar ksReporting() : Returns true if TABLE_REMARKS reporting is
enabled.

=« setRemar ksReporting() :Enables or disables TABLE_REMARKS reporting.

Interface oracle.jdbc.OracleStatement

This interface extends standard JDBC statement functionality and is the
superinterface of the Or acl ePr epar edSt at ement and

Or acl eCal | abl eSt at ement classes. Extended functionality includes support for
setting flags and options for Oracle performance extensions on a
statement-by-statement basis, as opposed to the Or acl eConnect i on interface that
sets these on a connection-wide basis.

"Additional Oracle Performance Extensions” on page 12-20 describes the
performance extensions, including row prefetching and column type definitions.

Key methods include:

= executeQuery():Executes a database query and returns an
Or acl eResul t Set object.

= getResul t Set ():Retrieves an Or acl eResul t Set object.
=« close(): Closes the current statement.
These or acl e. j dbc. Or acl eSt at enent methods are Oracle-defined extensions:

= defineCol umType() : Defines the type you will use to retrieve data from a
particular database table column.

= get RowPr ef et ch() : Retrieves the row-prefetch value for this statement.

= set RowPr ef et ch() : Sets the row-prefetch value for this statement.

Interface oracle.jdbc.OraclePreparedStatement

This interface extends the Or acl eSt at enent interface and extends standard JDBC
prepared statement functionality. Also, the

oracl e. jdbc. O acl ePrepar edSt at ement interface is extended by the

Oracl eCal | abl eSt at ement interface. Extended functionality consists of

set XXX() methods for binding or acl e. sqgl . * types and objects into prepared
statements, and methods to support Oracle performance extensions on a
statement-by-statement basis.

"Additional Oracle Performance Extensions” on page 12-20 describes the
performance extensions, including database update batching.

6-20 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

Key methods include:

get Execut eBat ch() : Retrieves the update-batching value for this statement.
set Execut eBat ch() : Sets the update-batching value for this statement.

set Or acl eObj ect () : This is a generic set XXX() method for binding
oracl e. sgl . * data into a prepared statement as an or acl e. sql . Dat um
object.

set XXX() : These methods, such as set BLOB() , are for binding specific
oracl e. sqgl . * types into prepared statements.

set ORADat a() : Binds an ORADat a object (for use in mapping Oracle object
types to Java) into a prepared statement.

set Nul | () : Sets the value of the object specified by its SQL type name to
NULL. For set Nul | (param_i ndex, t ype_code, sql _type_nane), ift ype_
code is REF, ARRAY, or STRUCT, then sql _t ype_nane is the fully qualified
name (Schema. sql _t ype_nane) of the SQL type.

set For mOf Use() : Sets which form of use this method is going to use. There
are two constants that specify the form of use: FORM_CHAR and FORM_NCHAR,
where FORM_CHAR s the default. If the form of use is set to FORM_NCHAR, the
JDBC driver will represent the provided data in the national character set of the
server. The following code show how the FORM_NCHARs used:

pst nt. set For mOf Use
(paraneter index,
oracl e.jdbc. O acl ePrepar edSt at enent . FORM_NCHAR)

cl ose() : Closes the current statement.

Interface oracle.jdbc.OracleCallableStatement

This interface extends the Or acl ePr epar edSt at ement interface (which extends
the Or acl eSt at enent interface) and incorporates standard JDBC callable
statement functionality.

Key methods include:

get Or acl eCbj ect () : This is a generic get XXX() method for retrieving data
into an or acl e. sql . Dat umobject, which can be cast to the specific
oracl e. sqgl . * type as necessary.

get XXX() : These methods, such as get CLOB() , are for retrieving data into
specific or acl e. sqgl . * objects.

Overview of Oracle Extensions 6-21

Oracle JDBC Packages and Classes

= setOracl e(bj ect () : This is a generic set XXX() method for binding
oracl e. sqgl . * data into a callable statement as an or acl e. sql . Dat um
object.

« set XXX() : These methods, such as set BLOB() , are inherited from
Oracl ePr epar edSt at ement for binding specific or acl e. sql . * objects into
callable statements.

= set Nul | () :Sets the value of the object specified by its SQL type name to
NULL. For set Nul | (param_ i ndex, t ype_code, sql _type_nane), ift ype_
code is REF, ARRAY, or STRUCT, then sql _t ype_nane is the fully qualified
(schema. t ype) name of the SQL type.

= set For nOf Use() : Sets which form of use this method is going to use. There
are two constants that specify the form of use: FORM_CHAR and FORM_NCHAR,
where FORM_CHAR s the default. If the form of use is set to FORM_NCHAR, the
JDBC driver will represent the provided data in the national character set of the
server. The following code show how the FORM_NCHARs used:

pst nt. set For mOf Use

(paraneter index,

oracl e.jdbc. O acl ePrepar edSt at enent . FORM_NCHAR)

= registerCutParanet er () : Registers the SQL typecode of the statement’s

output parameter. JDBC requires this for any callable statement with an OUT
parameter. It takes an integer parameter index (the position of the output
variable in the statement, relative to the other parameters) and an integer SQL
type (the type constant defined in or acl e. j dbc. Or acl eTypes).

This is an overloaded method. One version of this method is for named types
only—when the SQL typecode is Or acl eTypes. REF, STRUCT, or ARRAY. In
this case, in addition to a parameter index and SQL type, the method also takes
a St ri ng SQL type name (the name of the Oracle user-defined type in the
database, such as EMPLOYEE).

= close():Closes the current result set, if any, and the current statement.

Interface oracle.jdbc.OracleResultSet

This interface extends standard JDBC result set functionality, implementing
get XXX() methods for retrieving data into or acl e. sql . * objects.

Key methods include:

= getOracl eQbj ect (): This is a generic get XXX() method for retrieving data
into an or acl e. sql . Dat umobject. It can be cast to the specific
oracl e. sqgl . * type as necessary.

6-22 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

= get XXX() : These methods, such as get CLOB(), are for retrieving data into
oracl e. sql . * objects.

Interface oracle.jdbc.OracleResultSetMetaData

This interface extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects. See "Using Result Set Meta Data
Extensions" on page 7-19 for information on the functionality of the

Oracl eResul t Set Met adat a interface.

Class oracle.jdbc.OracleTypes

The Or acl eTypes class defines constants that JDBC uses to identify SQL types.
Each variable in this class has a constant integer value. The

oracl e. jdbc. O acl eTypes class duplicates the typecode definitions of the
standard Java j ava. sql . Types class and contains these additional typecodes for
Oracle extensions:

« Oracl eTypes. BFI LE

« Oracl eTypes. RON D

= Oracl eTypes. CURSOR (for REF CURSOR types)

Asinj ava. sql . Types, all the variable names are in all-caps.

JDBC uses the SQL types identified by the elements of the Or acl eTypes class in
two main areas: registering output parameters, and in the set Nul | () method of
the Pr epar edSt at enent class.

OracleTypes and Registering Output Parameters The typecodes in j ava. sql . Types or
oracl e.jdbc. Oracl eTypes identify the SQL types of the output parameters in
ther egi st er Cut Par anmet er () method of thej ava. sql . Cal | abl eSt at ement
interface and or acl e. j dbc. Or acl eCal | abl eSt at enent interface.

These are the forms that r egi st er Qut put Par amet er () can take for
Cal | abl eSt at ement and Or acl eCal | abl eSt at ement (assume a standard
callable statement object cs):

cs.registerCQutParaneter (int index, int sqgl Type);
cs.registerQutParaneter (int index, int sgl Type, String sql _nane);

cs.registerQutParaneter (int index, int sgl Type, int scale);

Overview of Oracle Extensions 6-23

Oracle JDBC Packages and Classes

In these signatures, i ndex represents the parameter index, sql Type is the
typecode for the SQL datatype, sql _nane is the name given to the datatype (for
user-defined types, when sql Type is a STRUCT, REF, or ARRAY typecode), and
scal e represents the number of digits to the right of the decimal point (when
sqgl Type is a NUMERI C or DECI MAL typecode).

Note: The second signature is standard under JDBC 2.0 in a JDK
1.2.x environment, but is an Oracle extension under JDK 1.1.x.

The following example uses a Cal | abl eSt at ement to call a procedure named
char out , which returns a CHAR datatype. Note the use of the Or acl eTypes. CHAR
typecode in the r egi st er Qut Par anmet er () method (although

j ava. sgl . Types. CHAR could have been used as well).

Cal | abl eSt atenent c¢s = conn. prepareCall ("BEGA N charout (?); END");
cs.registerQutParaneter (1, Oracl eTypes.CHAR);

cs. execute ();

Systemout.printlin ("Qut argunent is:

+ cs.getString (1));

The next example uses a Cal | abl eSt at ement to call st r uct out , which returns a
STRUCT datatype. The form of r egi st er Qut Par anet er () requires you to specify
the typecode (Types. STRUCT or Or acl eTypes. STRUCT), as well as the SQL
name (EMPLOYEE).

The example assumes that no type mapping has been declared for the EMPLOYEE
type, so it is retrieved into a STRUCT datatype. To retrieve the value of EMPLOYEE as
anoracl e. sql . STRUCT object, the statement object cs is cast to an

Or acl eCal | abl eSt at enent and the Oracle extension get STRUCT() method is
invoked.

Cal l abl eSt atement c¢s = conn.prepareCall ("BEG N structout (?); END;");
cs.registerQutParaneter (1, Oracl eTypes. STRUCT, "EMPLOYEE");
cs. execute ();

/] get the value into a STRUCT because it
/] is assunmed that no type map has been defined
STRUCT enmp = ((Oracl eCal | abl eStat enent) cs) . get STRUCT (1);

OracleTypes and the setNull() Method The typecodes in Types and Or acl eTypes
identify the SQL type of the data item, which the set Nul | () method sets to NULL.
The set Nul | () method can be found in the j ava. sql . Pr epar edSt at enent
interface and the or acl e. j dbc. Or acl ePr epar edSt at enent interface.

6-24 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

These are the forms that set Nul | () can take for Pr epar edSt at enent and
Or acl ePr epar edSt at ement objects (assume a standard prepared statement
object ps):

ps.setNul'l (int index, int sql Type);
ps.setNul'l (int index, int sql Type, String sqgl_nane);

In these signatures, i ndex represents the parameter index, sql Type is the
typecode for the SQL datatype, and sql _nane is the name given to the datatype
(for user-defined types, when sql Type is a STRUCT, REF, or ARRAY typecode). If
you enter an invalid sql Type, a Paramet er Type Confl i ct exception is
thrown.

Note: The second signature is standard under JDBC 2.0 in a JDK
1.2.x environment, but is an Oracle extension under JDK 1.1.x.

The following example uses a Pr epar edSt at ement to insert a NULL numeric
value into the database. Note the use of Or acl eTypes. NUMERI C to identify the
numeric object set to NULL (although Types. NUMERI C could have been used as
well).

Prepar edSt at ement pstnt =
conn. prepareStatement ("I NSERT I NTO numtable VALUES (?)");

pstnt.setNull (1, Oracl eTypes. NUMER C);
pstnt. execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type
EMPLOYEE into the database.
Prepar edSt at ement pstnt = conn. prepar eSt at enent

("I NSERT I NTO enpl oyee_tabl e VALUES (?)");

pstnt.setNull (1, Oracl eTypes. STRUCT, "EMPLOYEE");
pstnt. execute ();

Oracle Interfaces for Oracle-specific Features

The or acl e. j dbc interfaces introduced in Oracle9i are recommended alternatives
to the classes by the same name in the or acl e. j dbc. dri ver package in older

Overview of Oracle Extensions 6-25

Oracle JDBC Packages and Classes

releases. These interfaces essentially duplicate the functionality in the
oracl e. jdbc. driver package.

The following example shows how the or acl e. j dbc package is used to cast
pst nt as an Oracle type:

java.sql . PreparedStatenment pstnt
= conn. prepareStatenent(...);

((oracle.jdbc. Oracl ePreparedStatenment) pstnt)
. set Execut eBat ch(10) ; /] Oracle-specific method

Method getJavaSqlConnection()

The get JavaSql Connect i on() method of the oracle.sql.* classes returns

j ava. sqgl . Connect i on while the get Connect i on() method returns

oracl e.jdbc.driver. O acl eConnecti on. Because the methods that use the
oracl e.jdbc. driver package are deprecated, the get Connecti on() method
is also deprecated in favor of the get JavaSqgl Connecti on() method.

For the following Oracle datatype classes, the get JavaSql Connecti on() method
was added:

« oracle.sql.ARRAY
« oracle.sql.BFILE
« oracle.sql.BLOB

« oracle.sql.CLOB

« oracle.sql.OPAQUE
« oracle.sql.REF

« oracle.sql.STRUCT

The following shows the get JavaSgl Connecti on() and the get Connecti on()
methods in the Ar r ay class:

public class ARRAY

{
/1 New API

Il
java.sql . Connecti on getJavaSgl Connection()
throws SQLExcepti on;

/| Deprecated API.

6-26 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Packages and Classes

Il
oracle.jdbc.driver. O acl eConnection
get Connection() throws SQLException;

Package oracle.jdbc2 (for JDK 1.1.x only)

The or acl e. j dbc2 package is an Oracle implementation for use with JDK 1.1.x,
containing classes and interfaces that mimic a subset of standard JDBC 2.0 classes
and interfaces (which exist in the JDK 1.2 version of the standard j ava. sql
package).

The following interfaces are implemented by or acl e. sql . * type classes for JDBC
2.0-compliant Oracle type extensions under JDK 1.1.x.

« oracle.jdbc2. Array isimplemented by or acl e. sgl . ARRAY

« oracle.jdbc2. Struct is implemented by or acl e. sql . STRUCT
« oracle.jdbc2. Ref isimplemented by or acl e. sql . REF

= oracle.jdbc2. C obisimplemented by or acl e. sql . CLOB

= oracle.jdbc2. Bl obisimplemented by or acl e. sql . BLOB

In addition, the or acl e. j dbc2 package includes the following interfaces for users
employing the JDBC-standard SQLDat a interface to create Java classes that map to
Oracle objects. Again, these interfaces mimic j ava. sql interfaces available with
JDK 1.2:

« oracle.jdbc2. SQLDat a is implemented by classes that map to Oracle
objects; users must provide this implementation

= oracle.jdbc2. SQLI nput is implemented by classes that read object data;
Oracle provides a SQLI nput class that the JDBC drivers use

« oracle.jdbc2. SQLQut put isimplemented by classes that write object data;
Oracle provides a SQLQut put class that the JDBC drivers use

The SQLDat a interface is one of the two facilities you can use to support Oracle
objects in Java. (The other choice is the Oracle ORADat a interface, included in the
oracl e. sql package.) See "Understanding the SQLData Interface" on page 9-15
for more information about SQLDat a, SQLI nput , and SQLQut put .

Overview of Oracle Extensions 6-27

Oracle Character Datatypes Support

Oracle Character Datatypes Support

Oracle character datatypes include the SQL CHAR and SQL NCHAR datatypes.
The following sections describe how these datatypes can be accessed using the
Oracle JDBC drivers.

SQL CHAR Datatypes

The SQL CHAR datatypes include CHAR, VARCHAR2, and CLOB. These datatypes
allow you to store character data in the database character set encoding scheme. The
character set of the database is established when you create the database.

SQL NCHAR Datatypes

SQL NCHAR datatypes were created for Globalization Support (formerly NLS).
SQL NCHAR datatypes include NCHAR, N\VARCHAR2, and NCLOB. These datatypes
allow you to store unicode data in the database NCHAR character set encoding. The
NCHAR character set, which never changes, is established when you create the
database. See the Oracle9i Database Globalization Support Guide for information on
SQL NCHAR datatypes.

Note: Because the Uni codeSt r eamclass is deprecated in favor of
the Char act er St r eamclass, the set Uni codeSt rean() and

get Uni codeSt r ean() methods are not supported for NCHAR
datatype access. Use the set Char act er St r ean() method and
the get Char act er St r ean() method if you want to use stream
access.

The usage of SQL NCHAR datatypes is similar to that of the SQL CHAR (CHAR,
VARCHAR?, and CLOB) datatypes. JDBC uses the same classes and methods to access
SQL NCHAR datatypes that are used for the corresponding SQL CHAR datatypes.
Therefore, there are no separate, corresponding classes defined in the or acl e. sql
package for SQL NCHAR datatypes. Likewise, there is no separate, corresponding
constant defined in the or acl e. j dbc. Or acl eTypes class for SQL NCHAR
datatypes. The only difference in usage between the two datatypes occur in a data
bind situation: a JDBC program must call the set For nOf Use() method to specify
if the data is bound for a SQL NCHAR datatype.

6-28 Oracle9i JDBC Developer's Guide and Reference

Oracle Character Datatypes Support

Note: For Oracle9i 9.0.1, the set For mOf Use() method must be
called before the r egi st er Qut Par anet er () method is called in
order to avoid unpredictable results.

The following code shows how to access SOL NCHAR data:

11

/] Table TEST has the follow ng col ums:
/1 - NUMBER

Il - NVARCHAR2

/1 - NCHAR

11

oracl e.jdbc. Oracl ePreparedStatenent pstnt =
(oracle.jdbc. Oracl ePreparedSt at enent)
conn. prepareStat ement ("insert into TEST values(?, 2, ?)");

I

/] oracle.jdbc. Oracl ePreparedSt at ement. FORM NCHAR shoul d be used for all NCHAR,
/1 NVARCHAR2 and NCLOB data types.

11

pstnt. set For mOf Use(2, Const.NCHAR);

pst nt. set For mOf Use(3, Const.NCHAR);

pstnt.setint(1, 1); /1 NUMBER col um
pstnt.setString(2, nyUnicodeStringl); // NVARCHAR2 col um
pstnt.setString(3, nyUnicodeString2); // NCHAR colum
pstnt. execute();

Class oracle.sql.CHAR

The CHARclass is used by Oracle JDBC in handling and converting character data.
The JDBC driver constructs and populates or acl e. sql . CHAR objects once
character data has been read from the database.

Note: The or acl e. sql . CHAR class is used for both SQL. CHAR
and SQL NCHAR datatypes.

The CHAR objects constructed and returned by the JDBC driver can be in the
database character set, UTF- 8, or | SO Lat i n- 1 (WE8I SO8859P1). The CHAR
objects that are Oracle object attributes are returned in the database character set.

Overview of Oracle Extensions 6-29

Oracle Character Datatypes Support

JDBC application code rarely needs to construct CHAR objects directly, since the
JDBC driver automatically creates CHAR objects as character data are obtained
from the database. There may be circumstances, however, where constructing CHAR
objects directly in application code is useful—for example, to repeatedly pass the
same character data to one or more prepared statements without the overhead of
converting from Java strings each time.

oracle.sql.CHAR Objects and Character Sets

The CHAR class provides Globalization Support functionality to convert character
data. This class has two key attributes: (1) Globalization Support character set and
(2) the character data. The Globalization Support character set defines the encoding
of the character data. It is a parameter that is always passed when a CHAR object is
constructed. Without the Globalization Support character set being know, the bytes
of data in the CHAR object are meaningless.

The or acl e. sql . Char act er Set class is instantiated to represent character sets.
To construct a CHAR object, you must provide character set information to the CHAR
object by way of an instance of the Char act er Set class. Each instance of this class
represents one of the Globalization Support character sets that Oracle supports. A
Char act er Set instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets. You can
find a complete list of the character sets that Oracle supports in the Oracle9i Database
Globalization Support Guide.

Constructing an oracle.sql.CHAR Object

Follow these general steps to construct a CHAR object:

1. Create a Char act er Set object by calling the static Char act er Set . make()
method.

This method is a factory for the character set instance. The make() method
takes an integer as input, which corresponds to a character set ID that Oracle
supports. For example:

int oracleld = CharacterSet.JAL16SJI S CHARSET; // this is character set ID,
/1 832

Character Set nycharset = CharacterSet. make(oracleld);

Each character set that Oracle supports has a unique, predefined Oracle ID.

For more information on character sets and character set IDs, see the Oracle9i
Database Globalization Support Guide.

6-30 Oracle9i JDBC Developer's Guide and Reference

Oracle Character Datatypes Support

Construct a CHAR object.

Pass a string (or the bytes that represent the string) to the constructor along
with the Char act er Set object that indicates how to interpret the bytes based
on the character set. For example:

String nystring = "teststring";
CHAR nychar = new CHAR(teststring, mycharset);

The CHAR class has multiple constructors—they can take a string, a byte array;,
or an object as input along with the Char act er Set object. In the case of a
string, the string is converted to the character set indicated by the

Char act er Set object before being placed into the CHAR object.

See the or acl e. sql . CHAR class Javadoc for more information.

Notes:
« The Char act er Set object cannot be null.

« The Char act er Set class is an abstract class, therefore it has
no constructor. The only way to create instances is to use the
make() method.

= The server recognizes the special value
Char act er Set . DEFAULT_CHARSET as the database character
set. For the client, this value is not meaningful.

« Oracle does not intend or recommend that users extend the
Char act er Set class.

oracle.sql.CHAR Conversion Methods

The CHAR class provides the following methods for translating character data to
strings:

get String() : Converts the sequence of characters represented by the CHAR
object to a string, returning a Java St r i ng object. If you enter an invalid

Or acl el D, then the character set will not be recognized and the get St ri ng()
method throws a SQLExcept i on.

t oSt ri ng() :Identical to the get St ri ng() method. But if you enter an
invalid Or acl el D, then the character set will not be recognized and the

t oSt ri ng() method returns a hexadecimal representation of the CHAR data
and does not throw a SQLExcept i on.

Overview of Oracle Extensions 6-31

Oracle Character Datatypes Support

= getStringWthRepl acement () :Identicaltoget String(), excepta
default replacement character replaces characters that have no unicode
representation in the CHAR object character set. This default character varies
from character set to character set, but is often a question mark ("?").

The server (a database) and the client, or application running on the client, can use
different character sets. When you use the methods of the CHAR class to transfer
data between the server and the client, the JDBC drivers must convert the data from
the server character set to the client character set or vice versa. To convert the data,
the drivers use Globalization Support. For more information on how the JDBC
drivers convert between character sets, see "JDBC and Globalization Support" on
page 18-2.

6-32 Oracle9i JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

Additional Oracle Type Extensions
See other chapters in this book for information about key Oracle type extensions:
= Chapter 8, "Working with LOBs and BFILEs"
= Chapter 9, "Working with Oracle Object Types"
« Chapter 10, "Working with Oracle Object References"
= Chapter 11, "Working with Oracle Collections"

This section covers additional Oracle type extensions and concludes with a
discussion of differences between the current Oracle JDBC drivers and the Oracle
8.0.x and 7.3.x drivers regarding support of Oracle extensions.

Oracle JDBC drivers support the Oracle-specific BFI LE and ROW D datatypes and
REF CURSOR types, which were introduced in Oracle7 and are not part of the
standard JDBC specification. This section describes the RON Dand REF CURSOR
type extensions. See Chapter 8 for information about BFILEs.

ROW Dis supported as a Java string, and REF CURSOR types are supported as JDBC
result sets.

Oracle ROWID Type

A ROWID is an identification tag unique for each row of an Oracle database table.
The ROWID can be thought of as a virtual column, containing the ID for each row.

The or acl e. sql . RON Dclass is supplied as a wrapper for type RON DSQL data.

ROWIDs provide functionality similar to the get Cur sor Name() method specified
inthe j ava. sql . Resul t Set interface, and the set Cur sor Nane() method
specified in the j ava. sql . St at ement interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set get St ri ng() method (passing in either the column
index or the column name). You can also bind a ROWID to a Pr epar edSt at enment
parameter with the set St ri ng() method. This allows in-place updates, as in the
example that follows.

Overview of Oracle Extensions 6-33

Additional Oracle Type Extensions

Note: The oracl e. sql . RON Dclass replaces
oracl e. jdbc. driver. RON D, which was used in previous
releases of Oracle JDBC.

Example: ROWID The following example shows how to access and manipulate RON D
data.

Statement stnt = conn.createStatenent();

/] Query the enployee names with "FOR UPDATE" to |lock the rows.
/] Select the ROND to identify the rows to be updat ed.

Resul t Set rset =
stmt.executeQuery ("SELECT enanme, rowi d FROM enp FOR UPDATE");

/] Prepare a statenent to update the ENAME col um at a given ROND

Prepar edSt at enent pstnt =
conn. prepareSt at ement (" UPDATE enp SET enanme = ? WHERE rowid = ?");

/1 Loop through the results of the query
while (rset.next ())

{
String ename = rset.getString (1);
oracle.sql .ROND rowid = rset.getROND (2); // Get the ROND as a String
pstnt.setString (1, ename.tolLowerCase ());
pstnt.setROND (2, rowid); // Pass ROND to the update statenent
pstnt. execut eUpdate (); /1 Do the update
}

Oracle REF CURSOR Type Category

A cursor variable holds the memory location (address) of a query work area, rather
than the contents of the area. Declaring a cursor variable creates a pointer. In SQL, a
pointer has the datatype REF x , where REF is short for REFERENCE and x
represents the entity being referenced. A REF CURSOR, then, identifies a reference
to a cursor variable. Because many cursor variables might exist to point to many
work areas, REF CURSOR can be thought of as a category or "datatype specifier" that
identifies many different types of cursor variables.

To create a cursor variable, begin by identifying a type that belongs to the REF
CURSOR category. For example:

6-34 Oracle9i JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

DECLARE TYPE Dept Cursor Typ 1S REF CURSOR

Then create the cursor variable by declaring it to be of the type Dept Cur sor Typ:

dept _cv DeptCursorTyp - - declare cursor variable

REF CURSCR, then, is a category of datatypes, rather than a particular datatype.

Stored procedures can return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set. A REF CURSOR
essentially encapsulates the results of a query.

In JDBC, REF CURSORs are materialized as Resul t Set objects and can be
accessed as follows:

1. Use a]JDBC callable statement to call a stored procedure. It must be a callable
statement, as opposed to a prepared statement, because there is an output
parameter.

2. The stored procedure returns a REF CURSOR.

3. The Java application casts the callable statement to an Oracle callable statement
and uses the get Cur sor () method of the Or acl eCal | abl eSt at ement class
to materialize the REF CURSOR as a JDBC Resul t Set object.

4. The result set is processed as requested.

Important: The cursor associated with a REF CURSOR is closed
whenever the statement object that produced the REF CURSOR is
closed.

Unlike in past releases, the cursor associated with a REF CURSOR
is not closed when the result set object in which the REF CURSOR
was materialized is closed.

Example: Accessing REF CURSOR Data This example shows how to access REF
CURSOR data.

inport oracle.jdbc.*;

Cal | abl eSt at enent cstnt;
Resul t Set cursor;

/] Use a PL/SQL block to open the cursor

Overview of Oracle Extensions 6-35

Additional Oracle Type Extensions

cstmt = conn. prepareCal |
("begin open ? for select enane fromenp; end;");

cstnt.registerQutParaneter(1, OacleTypes. CURSCR);
cstnt. execute();
cursor = ((Oracl eCall abl eStat enent)cstnt). get Cursor(1);

/1 Use the cursor like a normal Result Set
while (cursor.next ())
{Systemout.println (cursor.getString(1));}

In the preceding example:

= ACallabl eStatement object is created by using the pr epar eCal | ()
method of the connection class.

= The callable statement implements a PL/SQL procedure that returns a REF
CURSOR.

= As always, the output parameter of the callable statement must be registered to
define its type. Use the typecode Or acl eTypes. CURSOR for a REF CURSOR.

= The callable statement is executed, returning the REF CURSOR.

« TheCal | abl eSt at enment object is cast to an Or acl eCal | abl eSt at emrent
object to use the get Cur sor () method, which is an Oracle extension to the
standard JDBC API, and returns the REF CURSOR into a Resul t Set object.

Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers

Some of the Oracle type extensions supported by the current Oracle JDBC drivers
are either not supported or are supported differently by the Oracle 8.0.x and 7.3.x
JDBC drivers. The following are the key points:

=« The8.0.xand 7.3.x drivers have no or acl e. sql package, meaning there are no
wrapper types such as or acl e. sql . NUMBERand or acl e. sql . CHAR that
you can use to wrap raw SQL data.

= The 8.0.x and 7.3.x drivers do not support Oracle object and collection types.

« The8.0.x and 7.3.x drivers support the Oracle RON D datatype with the
Or acl eRowi d class in the or acl e. j dbc package.

= The 8.0.x drivers support the Oracle BLOB, CLOB, and BFI LE datatypes with the
Or acl eBl ob, Or acl eCl ob, and Or acl eBf i | e classes in the or acl e. j dbc
package. These classes do not include LOB and BFILE manipulation
methods—you must instead use the PL/SQL DBM5_L OB package.

6-36 Oracle9i JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

« The7.3.xdrivers do not support BLOB, CLOB, and BFI LE.

Table 6-3 summarizes these differences. "OracleTypes Definition" refers to static
typecode constants defined in the or acl e. j dbc. Or acl eTypes class.

Table 6-3 Support for Oracle Type Extensions, 8.0.x and 7.3.x JDBC Drivers

Type Extension, Type Extension,
Oracle Datatype OracleTypes Definition Current Drivers 8.0.x/7.3.x drivers
NUMBER OracleTypes NUMBER oracle.sql. NUMBER no type extension for wrapper class
CHAR OracleTypes.CHAR oracle.sql. CHAR no type extension for wrapper class
RAW OracleTypes. RAW oracle.sql. RAW no type extension for wrapper class
DATE OracleTypes.DATE oracle.sql. DATE no type extension for wrapper class
ROWID OracleTypes.ROWID oracle.sql. ROWID oracle.jdbc.driver.OracleRowid
BLOB OracleTypes.BLOB oracle.sql. BLOB oracle.jdbc.driver.OracleBlob in 8.0.x;

not supported in 7.3.x

CLOB OracleTypes.CLOB oracle.sql. CLOB oracle.jdbc.driver.OracleClob in 8.0.x;

not supported in 7.3.x

BFILE n/a oracle.sql. BFILE oracle.jdbc.driver.OracleBfile in 8.0.x;
not supported in 7.3.x

structured object OracleTypes.STRUCT oracle.sql.STRUCT or not supported
custom class

object reference OracleTypes.REF oracle.sql.REF or custom not supported
class

collection (array) OracleTypes. ARRAY oracle.sql. ARRAY or not supported
custom class

OPAQUE OracleTypes.OPAQUE oracle.sql. OPAQUE not supported

Overview of Oracle Extensions 6-37

Additional Oracle Type Extensions

6-38 Oracle9i JDBC Developer's Guide and Reference

v

Accessing and Manipulating Oracle Data

This chapter describes data access in or acl e. sql . * formats, as opposed to
standard Java formats. As described in the previous chapter, the or acl e. sql . *
formats are a key factor of the Oracle JDBC extensions, offering significant
advantages in efficiency and precision in manipulating SQL data.

Using or acl e. sql . * formats involves casting your result sets and statements to
O acl eResul t Set, Or acl eSt at emrent , Or acl ePr epar edSt at emrent , and
Or acl eCal | abl eSt at ement objects, as appropriate, and using the

get Oracl ebj ect (),set Oracl eObj ect (), get XXX(), and set XXX()
methods of these classes (where XXX corresponds to the types in the or acl e. sql
package).

This chapter covers the following topics:

= Data Conversion Considerations

= Result Set and Statement Extensions

« Comparison of Oracle get and set Methods to Standard JDBC
= Using Result Set Meta Data Extensions

Accessing and Manipulating Oracle Data 7-1

Data Conversion Considerations

Data Conversion Considerations

When JDBC programs retrieve SQL data into Java, you can use standard Java types,
or you can use types of the or acl e. sql package. The classes in this package
simply wrap the raw SQL data.

Standard Types versus Oracle Types

In processing speed and effort, the or acl e. sql . * classes provide the most
efficient way of representing SQL data. These classes store the usual representations
of SQL data as byte arrays. They do not reformat the data or perform any
character-set conversions (aside from the usual network conversions) on it. The data
remains in SQL format, and therefore no information is lost. For SQL primitive
types (such as NUMBER, and CHAR), the or acl e. sqgl . * classes simply wrap the
SQL data. For SQL structured types (such as objects and arrays), the classes provide
additional information such as conversion methods and structure details.

If you are moving data within the database, then you will probably want to keep
your data in or acl e. sql . * format. If you are displaying the data or performing
calculations on it in a Java application running outside the database, then you will
probably want to materialize the data as instances of standard types such as
java.sql.* orjava. | ang. * types. Similarly, if you are using a parser that
expects the data to be in a standard Java format, then you must use one of the
standard formats instead of or acl e. sqgl . * format.

Converting SQL NULL Data

Java represents a SQL NULL datum by the Java value nul | . Java datatypes fall into
two categories: primitive types (such as byt e, i nt, f | oat) and object types (class
instances). The primitive types cannot represent nul | . Instead, they store the null
as the value zero (as defined by the JDBC specification). This can lead to ambiguity
when you try to interpret your results.

In contrast, Java object types can represent nul | . The Java language defines an
object wrapper type corresponding to every primitive type (for example, | nt eger
fori nt, Fl oat for f| oat) that can represent nul | . The object wrapper types must
be used as the targets for SQL data to detect SQL NULL without ambiguity.

7-2 Oracle9i JDBC Developer’s Guide and Reference

Result Set and Statement Extensions

Result Set and Statement Extensions

The JDBC St at ermrent object returns an Or acl eResul t Set object, typed as a

j ava. sqgl . Resul t Set . If you want to apply only standard JDBC methods to the
object, keep it as a Resul t Set type. However, if you want to use the Oracle
extensions on the object, you must cast it to an Or acl eResul t Set type. Although
the type by which the Java compiler will identify the object is changed, the object
itself is unchanged.

For example, assuming you have a standard St at ement object st nt , do the
following if you want to use only standard JDBC Resul t Set methods:

Result Set rs = stnt.executeQuery("SELECT * FROM enp");

If you need the extended functionality provided by the Oracle extensions to JDBC,
you can select the results into a standard Resul t Set object, as above, and then cast
that object into an Or acl eResul t Set object later.

Similarly, when you want to execute a stored procedure using a callable statement,
the JDBC drivers will return an Or acl eCal | abl eSt at ement object typed as a
java. sql . Cal | abl eSt at enent . If you want to apply only standard JDBC
methods to the object, then keep it as a Cal | abl eSt at ement type. However, if
you want to use the Oracle extensions on the object, you must cast it to an

Oracl eCal | abl eSt at ement type. Although the type by which the Java compiler
will identify the object is changed, the object itself is unchanged.

You use the standard JDBCj ava. sql . Connecti on. prepareSt at ement ()
method to create a Pr epar edSt at enent object. If you want to apply only
standard JDBC methods to the object, keep it as a Pr epar edSt at enent type.
However, if you want to use the Oracle extensions on the object, you must cast it to
an Or acl ePr epar edSt at enent type. While the type by which the Java compiler
will identify the object is changed, the object itself is unchanged.

Key extensions to the result set and statement classes include

get Or acl eObj ect () and set Or acl eCbj ect () methods that you can use to
access and manipulate data in or acl e. sql . * formats, instead of standard Java
formats. For more information, see the next section: "Comparison of Oracle get and
set Methods to Standard JDBC".

Accessing and Manipulating Oracle Data 7-3

Comparison of Oracle get and set Methods to Standard JDBC

Comparison of Oracle get and set Methods to Standard JDBC

This section describes get and set methods, particularly the JDBC standard
get bj ect () and set Obj ect () methods and the Oracle-specific

get Oracl eObj ect () and set Or acl ebj ect () methods, and how to access
datain or acl e. sql . * format compared with Java format.

Although there are specific get XXX() methods for all the Oracle SQL types (as
described in "Other getXXX() Methods" on page 7-7), you can use the general get
methods for convenience or simplicity, or if you are not certain in advance what
type of data you will receive.

Standard getObject() Method

The standard JDBC get Obj ect () method of a result set or callable statement
returns data into aj ava. | ang. Cbj ect object. The format of the data returned is
based on its original type, as follows:

= For SQL datatypes that are not Oracle-specific, get Obj ect () returns the
default Java type corresponding to the column's SQL type, following the
mapping specified in the JDBC specification.

= For Oracle-specific datatypes (such as RON D, discussed in "Oracle ROWID
Type" on page 6-33), get Obj ect () returns an object of the appropriate
oracl e. sql . * class (such as or acl e. sql . ROW D).

= For Oracle objects, get Cbj ect () returns an object of the Java class specified in
your type map. (Type maps specify the correlation between Java classes and
database SQL types and are discussed in "Understanding Type Maps for
SQLData Implementations" on page 9-11.) The get Obj ect (par amet er _
i ndex) method uses the connection’s default type map. The
get bj ect (par anet er _i ndex, nmap) enables you to pass in a type map. If
the type map does not provide a mapping for a particular Oracle object, then
get Obj ect () returns an or acl e. sgl . STRUCT object.

For more information on get Obj ect () return types, see Table 7-1, "Summary of
getObject() and getOracleObject() Return Types" on page 7-6.

Oracle getOracleObject() Method

If you want to retrieve data from a result set or callable statement into an

oracl e. sgl . * object, then cast your result set to an Or acl eResul t Set type or
your callable statement to an Or acl eCal | abl eSt at ement type, and use the
get Or acl eoj ect () method.

7-4 Oracle9i JIDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

When you use get Or acl eObj ect (), the data will be of the appropriate
oracl e. sql . * type and is returned into an or acl e. sql . Dat umobject (the
oracl e. sql type classes extend Dat um). The signature for the method is:

public oracle.sql.Datum get Oracl eChj ect (int paraneter_index)

When you have retrieved data into a Dat umobject, you can use the standard Java
i nst anceof operator to determine which or acl e. sql . * type it really is.

For more information on get Or acl ebj ect () return types, see Table 7-1,
"Summary of getObject() and getOracleObject() Return Types" on page 7-6.

Example: Using getOracleObject() with a ResultSet The following example creates a table
that contains a column of character data (in this case, a row number) and a column
containing a BFI LE locator. A SELECT statement retrieves the contents of the table
into a result set. The get Or acl eCbj ect () then retrieves the CHAR data into the
char _dat umvariable and the BFI LE locator into the bf i | e_dat umvariable. Note
that because get Or acl eObj ect () returns a Dat umobject, the results must be cast
to CHAR and BFI LE, respectively.

stnt.execute ("CREATE TABLE bfile_table (x varchar2 (30), b bfile)");
stnt.execute
("I'NSERT INTO bfile_table VALUES (' one', bfilename (' TEST. DR, 'filel))");

Resul t Set rset = stnt.executeQuery ("SELECT * FROM bfile_table");
while (rset.next ())

CHAR char _datum = (CHAR) ((COracleResultSet)rset).getOracl eCbject (1);
BFI LE bfile_datum= (BFILE) ((COracleResultSet)rset).getOracleject (2);

}

Example: Using getOracleObject() in a Callable Statement The following example prepares
a call to the procedure ny Get Dat e() , which associates a character string (in this
case a name) with a date. The program passes the string SCOTT to the prepared call
and registers the DATE type as an output parameter. After the call is executed,

get Or acl eObj ect () retrieves the date associated with the name SCOTT. Note
that because get Or acl eObj ect () returns a Dat umobject, the results are cast to a
DATE object.

Oracl eCal | abl eSt atement cstnt = (Oracl eCal | abl eSt at enent) conn. prepareCal |
("begin nyGetDate (?, ?); end;");

cstnt.setString (1, "SCOIT");
cstnt.registerQutParaneter (2, Types.DATE);

Accessing and Manipulating Oracle Data 7-5

Comparison of Oracle get and set Methods to Standard JDBC

cstnt. execute ();

DATE date = (DATE) ((OracleCallableStatenent)cstnt). getOracleChject (2);

Summary of getObject() and getOracleObject() Return Types

Table 7-1 summarizes the information in the preceding sections, "Standard
getObject() Method" and "Oracle getOracleObject() Method" on page 7-4.

This table lists the underlying return types for each method for each Oracle SQL
type, but keep in mind the signatures of the methods when you write your code:

= get Obj ect () : Always returns data into aj ava. | ang. Obj ect instance.

= get O acl e(bj ect () : Always returns data into an or acl e. sql . Dat um
instance.

You must cast the returned object to use any special functionality (see "Casting Your
get Method Return Values" on page 7-10).

Table 7-1 Summary of getObject() and getOracleObject() Return Types

getObject() getOracleObject()
Oracle SQL Type Underlying Return Type Underlying Return Type
CHAR String oracle.sql. CHAR
VARCHAR?2 String oracle.sql. CHAR
LONG String oracle.sql. CHAR
NUMBER java.math.BigDecimal oracle.sq. NUMBER
RAW byte[] oracle.sql. RAW
LONGRAW byte([] oracle.sql. RAW
DATE java.sql. Timestamp oracle.sql. DATE
ROWID oracle.sql. ROWID oracle.sql. ROWID
REF CURSOR java.sql.ResultSet (not supported)
BLOB oracle.sql. BLOB oracle.sql. BLOB
CLOB oracle.sql. CLOB oracle.sql. CLOB
BFILE oracle.sql. BFILE oracle.sql. BFILE

7-6 Oracle9i JIDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

Table 7-1 Summary of getObject() and getOracleObject() Return Types (Cont.)

getObject() getOracleObject()
Oracle SQL Type Underlying Return Type Underlying Return Type
Oracle object class specified in type map oracle.sqL.STRUCT

or oracle.sql. STRUCT

(if no type map entry)
Oracle object reference oracle.sql.REF oracle.sqL.REF
collection (varray or oracle.sql. ARRAY oracle.sql. ARRAY
nested table)

For information on type compatibility between all SQL and Java types, see
Table 20-1, "Valid SQL Datatype-Java Class Mappings" on page 20-2.

Other getXXX() Methods

Standard JDBC provides a get XXX() for each standard Java type, such as
get Byte(),getInt(),getFloat(),and so on. Each of these returns exactly
what the method name implies (a byt e, ani nt,af| oat, and so on).

In addition, the Or acl eResul t Set and Or acl eCal | abl eSt at enent classes
provide a full complement of get XXX() methods corresponding to all the
oracl e. sqgl . * types. Each get XXX() method returns an or acl e. sgl . XXX
object. For example, get ROA D() returns an or acl e. sql . ROW D object.

Some of these extensions are taken from the JDBC 2.0 specification. They return
objects of type j ava. sql . * (oror acl e. j dbc2. * under JDK 1.1.x), instead of
oracl e. sql . *. For example, compare the following method names and return

types:
java.sql.Blob getBl ob(int paraneter_index)

oracle.sql . BLOB get BLOB(i nt paraneter_i ndex)

Although there is no particular performance advantage in using the specific
get XXX() methods, they can save you the trouble of casting, because they return
specific object types.

Return Types and Input Parameter Types of getXXX() Methods

Table 7-2 summarizes the underlying return types and the input parameter types
for each get XXX() method, and notes which are Oracle extensions under JDK 1.2.x

Accessing and Manipulating Oracle Data 7-7

Comparison of Oracle get and set Methods to Standard JDBC

and JDK 1.1.x. You must cast to an Or acl eResul t Set or
Oracl eCal | abl eSt at enent to use methods that are Oracle extensions.

Table 7-2 Summary of getXXX() Return Types

Oracle Oracle
Extfor Extfor

Underlying Return JDK JDK

Method Type Signature Type 12x? 11x?
getArray() oracle.sql. ARRAY java.sql.Array No Yes

(oraclejdbc2.Array

under JDK 1.1.x)
getARRAY() oracle.sql. ARRAY oracle.sql. ARRAY Yes Yes
getAsciiStream() java.io.InputStream java.io.InputStream No No
getBfile() oracle.sql. BFILE oracle.sql. BFILE Yes Yes
getBFILE() oracle.sql. BFILE oracle.sql. BFILE Yes Yes
getBigDecimal() java.math.BigDecimal java.math.BigDecimal No No
(see Notes section below)
getBinaryStream() java.io.InputStream java.io.InputStream No No
getBlob() oracle.sql. BLOB java.sql.Blob No Yes

(oracle.jdbc2.Blob

under JDK 1.1.x)
getBLOB oracle.sql. BLOB oracle.sql. BLOB Yes Yes
getBoolean() boolean boolean No No
getByte() byte byte No No
getBytes() byte[] byte[] No No
getCHAR() oracle.sql. CHAR oracle.sql. CHAR Yes Yes
getCharacterStream() java.io.Reader java.io.Reader No Yes
(new with 8.1.6)
getClob() oracle.sql. CLOB java.sql.Clob No Yes

(oracle jdbc2.Clob

under JDK 1.1.x)
getCLOB() oracle.sql. CLOB oracle.sql. CLOB Yes Yes
getDate() java.sql.Date java.sql.Date No No

(see Notes section below)

7-8 Oracle9i JIDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

Table 7-2 Summary of getXXX() Return Types (Cont.)

Oracle Oracle

Extfor Extfor
Underlying Return JDK JDK
Method Type Signature Type 12x? 11x?
getDATE() oracle.sql. DATE oracle.sql. DATE Yes Yes
getDouble() double double No No
getFloat() float float No No
getInt() int int No No
getLong() long long No No
getNUMBER() oracle.sgLNUMBER oracle.sg. NUMBER Yes Yes
getOracleObject() subclasses of oracle.sql.Datum Yes Yes
oracle.sql.Datum
getRAW() oracle.sql. RAW oracle.sql. RAW Yes Yes
getRef() oracle.sql.REF java.sql.Ref No Yes
(oracle. jdbc2.Ref
under JDK 1.1.x)

getREF() oracle.sql.REF oracle.sql.REF Yes Yes
getROWID() oracle.sql. ROWID oracle.sql. ROWID Yes Yes
getShort() short short No No
getString() String String No No
getSTRUCT() oracle.sql.STRUCT. oracle.sql. STRUCT Yes Yes
getTime() java.sql.Time java.sql.Time No No
(see Notes section below)

getTimestamp() java.sql. Timestamp java.sql. Timestamp No No
(see Notes section below)

getUnicodeStream() java.io.InputStream java.io.InputStream No No

Special Notes about getXXX() Methods
This section provides additional details about some of the get XXX() methods.

getBigDecimal() Note

Accessing and Manipulating Oracle Data 7-9

Comparison of Oracle get and set Methods to Standard JDBC

JDBC 2.0 supports a simplified method signature for the get Bi gDeci mal ()
method. The previous input signature was:

(int columlndex, int scale) or(String columNane, int scale)
The new input signature is simply:
(int columl ndex) or (String col unmNane)

The scal e parameter, used to specify the number of digits to the right of the
decimal, is no longer necessary. The Oracle JDBC drivers retrieve numeric values
with full precision.

getDate(), getTime(), and getTimestamp() Note

InJDBC 2.0, the get Dat e(), get Ti ne(), and get Ti nest anp() methods have
the following input signatures:

(int col uml ndex, Cal endar cal)
or:
(String col umNanme, Cal endar cal)

The Oracle JDBC drivers ignore the Cal endar object input, because it is not
currently feasible to supportj ava. sql . Dat e timezone information together with
the data. You should continue to use previous input signatures that take only the
column index or column name. Calendar input will be supported in a future Oracle
JDBC release.

Casting Your get Method Return Values

As described in "Standard getObject() Method" on page 7-4, Oracle’s
implementation of get Obj ect () alwaysreturnsaj ava. | ang. Obj ect instance,
and get Or acl eCbj ect () always returns an or acl e. sgl . Dat uminstance.
Usually, you would cast the returned object to the appropriate class so that you
could use particular methods and functionality of that class.

In addition, you have the option of using a specific get XXX() method instead of
the generic get Qbj ect () or get Or acl eCbj ect () methods. The get XXX()
methods enable you to avoid casting, because the return type of get XXX()
corresponds to the type of object returned. For example, get CLOB() returns an
or acl e. sql . CLOB instance, as opposed to aj ava. | ang. Cbj ect instance.

Example: Casting Return Values This example assumes that you have fetched data of
type CHARinto a result set (where it is in column 1). Because you want to

7-10 Oracle9i JDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

manipulate the CHAR data without losing precision, cast your result set to an

O acl eResul t Set , and use get Or acl eObj ect () to return the CHAR data in
oracl e. sql . * format. If you do not cast your result set, you have to use

get Obj ect (), which returns your character data into a Java St r i ng and loses
some of the precision of your SQL data.

The get Or acl eCbj ect () method returns an or acl e. sql . CHAR object into an
or acl e. sqgl . Dat umreturn variable unless you cast the output. Cast the

get O acl eCbj ect () output to or acl e. sgl . CHARif you want to use a CHAR
return variable and any of the special functionality of that class (such as the

get Char act er Set () method that returns the character set used to represent the
characters).

CHAR char = (CHAR)ors. get Oracl eChj ect (1);
Character Set cs = char. get CharacterSet();

Alternatively, you can return the object into a generic or acl e. sql . Dat umreturn
variable and cast it later when you must use the CHAR get Char act er Set ()
method.

Dat um rawdat um = ors. get Oracl eQbj ect (1);
Character Set cs = ((CHAR)rawdat unm). get Char acter Set () ;

This uses the get Char act er Set () method of or acl e. sql . CHAR. The
get Char act er Set () method is not defined on or acl e. sql . Dat umand would
not be reachable without the cast.

Standard setObject() and Oracle setOracleObject() Methods

Just as there is a standard get Obj ect () and Oracle-specific

get O acl eCbj ect () in result sets and callable statements for retrieving data,
there is also a standard set Cbj ect () and an Oracle-specific

set Oracl eObj ect () in Oracle prepared statements and callable statements for
updating data. The set Or acl eObj ect () methods take or acl e. sql . * input
parameters.

To bind standard Java types to a prepared statement or callable statement, use the
set Cbj ect () method, which takes aj ava. | ang. Obj ect as input. The

set Cbj ect () method does support a few of the or acl e. sql . * types—it has
been implemented so that you can also input instances of the or acl e. sql . *
classes that correspond to JDBC 2.0-compliant Oracle extensions: BLOB, CLOB,

BFI LE, STRUCT, REF, and ARRAY.

Accessing and Manipulating Oracle Data 7-11

Comparison of Oracle get and set Methods to Standard JDBC

To bind or acl e. sql . * types to a prepared statement or callable statement, use the
set Or acl eObj ect () method, which takes an or acl e. sql . Dat um(or any
subclass) as input. To use set Or acl eChbj ect (), you must cast your prepared
statement or callable statement to an Or acl ePr epar edSt at enent or

Oracl eCal | abl eSt at ement object.

Example: Using setObject() and setOracleObject() in a Prepared Statement This example
assumes that you have fetched character data into a standard result set (where it is
in column 1), and you want to cast the results to an Or acl eResul t Set so that you
can use Oracle-specific formats and methods. Because you want to use the data as
or acl e. sqgl . CHAR format, cast the results of the get O acl eQbj ect () (which
returns type or acl e. sql . Dat um to CHAR. Similarly, because you want to
manipulate the data in column 2 as strings, cast the data to a Java St r i ng type
(because get Obj ect () returns data of type Cbj ect). In this example, r s
represents the result set, char Val represents the data from column 1 in

oracl e. sql . CHARformat, and st r Val represents the data from column 2 in Java
St ri ng format.

CHAR char Val =(CHAR) ((Or acl eResul t Set) rs) . get Oracl eQbject (1);
String strVal =(String)rs.getObject(2);

For a prepared statement object ps, the set Or acl eCbj ect () method binds the
oracl e. sql . CHAR data represented by the char Val variable to the prepared
statement. To bind the or acl e. sql . * data, the prepared statement must be cast to
an Or acl ePr epar edSt at ement . Similarly, the set Obj ect () method binds the
Java St ri ng data represented by the variable st r Val .

Prepar edSt at ement ps= conn. prepareSt at enent ("t ext _of _prepared_stat ement");
((Oracl ePreparedStatenent) ps) . set Oracl ethj ect (1, charVal) ;
ps. set bj ect (2,strVal);

Other setXXX() Methods

As with get XXX() methods, there are several specific set XXX() methods.
Standard set XXX() methods are provided for binding standard Java types, and
Oracle-specific set XXX() methods are provided for binding Oracle-specific types.

7-12 Oracle9i JDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

Note: Under JDK 1.1.x, for compatibility with the JDBC 2.0
standard, Or acl ePr epar edSt at ement and

Or acl eCal | abl eSt at ement classes provide set XXX() methods
that take or acl e. j dbc2 input parameters for BLOBs, CLOBs,
object references, and arrays. For example, a set Bl ob() method
takes an or acl e. j dbc2. Bl ob input parameter, where it would
take aj ava. sql . Bl ob input parameter under JDK 1.2.x.

Similarly, there are two forms of the set Nul | () method:
« void setNull (int paraneterlndex, int sqgl Type)

This is specified in the standard j ava. sql . Pr epar edSt at ement interface.
This signature takes a parameter index and a SQL typecode defined by the
java. sql . Types ororacl e. jdbc. Oracl eTypes class. Use this signature
to set an object other than a REF, ARRAY, or STRUCT to NULL.

« void setNull (int paraneterindex, int sqgl Type, String sgl_type_nane)

With JDBC 2.0, this signature is also specified in the standard

java. sql . Prepar edSt at ement interface. Under JDK 1.1.x, it is available as
an Oracle extension. It takes a SQL type name in addition to a parameter index
and a SQL type code. Use this method when the SQL typecode is

j ava. sql . Types. REF, ARRAY, or STRUCT. (If the typecode is other than REF,
ARRAY, or STRUCT, then the given SQL type name is ignored.)

Similarly, the r egi st er Qut Par anet er () method has a signature for use with
REF, ARRAY, or STRUCT data:

voi d regi sterQut Paranet er
(int paraneterindex, int sql Type, String sql _type_nane)

For binding Oracle-specific types, using the appropriate specific set XXX()
methods instead of methods for binding standard Java types may offer some
performance advantage.

Input Parameter Types of setXXX() Methods

Table 7-3 summarizes the input types for all the set XXX() methods and notes
which are Oracle extensions under JDK 1.2.x and JDK 1.1.x. To use methods that are
Oracle extensions, you must cast your statement to an

Or acl ePrepar edSt at enent or Or acl eCal | abl eSt at emrent .

Accessing and Manipulating Oracle Data 7-13

Comparison of Oracle get and set Methods to Standard JDBC

Table 7-3 Summary of setXXX() Input Parameter Types

Oracle Ext Oracle Ext
for JDK for JDK

Method Input Parameter Type 1.2.x? 1.1.x?
setArray() java.sql.Array No Yes

(oracle jdbc2.Array under

JDK 1.1.x)
setARRAY() oracle.sql. ARRAY Yes Yes
setAsciiStream() java.io.InputStream No No
(see Notes section below)
setBfile() oracle.sql. BFILE Yes Yes
setBFILE() oracle.sql. BFILE Yes Yes
setBigDecimal() BigDecimal No No
setBinaryStream() java.io.InputStream No No
(see Notes section below)
setBlob() java.sql.Blob No Yes

(oracle jdbc2.Blob under

JDK 1.1.x)
setBLOB() oracle.sql. BLOB Yes Yes
setBoolean() boolean No No
setByte() byte No No
setBytes() byte[] No No
setCHAR() oracle.sql. CHAR Yes Yes
(also see setFixedCHAR() method)
setCharacterStream() java.io.Reader No Yes
(see Notes section below)
setClob() java.sql.Clob No Yes

(oracle jdbc2.Clob under

JDK 1.1.x)
setCLOB() oracle.sql. CLOB Yes Yes
setDate() java.sql.Date No No
(see Notes section below)
setDATE() oracle.sql. DATE Yes Yes

7-14 Oracle9i JDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

Table 7-3 Summary of setXXX() Input Parameter Types (Cont.)

Oracle Ext Oracle Ext
for IDK for IDK

Method Input Parameter Type 1.2.x? 1.1.x?
setDouble() double No No
setFixedCHAR() java.lang.String Yes Yes
(see setFixedCHAR() section below)
setFloat() float No No
setInt() int No No
setLong() long No No
setNUMBER() oracle.sq. NUMBER Yes Yes
setRAW() oracle.sql. RAW Yes Yes
setRef() java.sql.Ref No Yes

(oracle jdbc2.Ref under

JDK 1.1.x)
setREF() oracle.sql.REF Yes Yes
setROWID() oracle.sql. ROWID Yes Yes
setShort() short No No
setString)() String No No
setSTRUCTY() oracle.sql. STRUCT Yes Yes
setTime() java.sql.Time No No

(see note below)

setTimestamp() java.sql. Timestamp No No
(see note below)

setUnicodeStreamy() java.io.InputStream No No
(see note below)

For information on all supported type mappings between SQL and Java, see
Table 20-1, "Valid SQL Datatype-Java Class Mappings" on page 20-2.

Setter Method Size Limitations

Table 74 lists size limitations for the set Byt es() and set St ri ng() methods for
SQL binds to different Oracle databases. (These limitations do not apply to PL/SQL

Accessing and Manipulating Oracle Data 7-15

Comparison of Oracle get and set Methods to Standard JDBC

binds.) For information about how to work around these limits using the stream
AP], see "Using Streams to Avoid Limits on setBytes() and setString()" on page 3-31.

Table 7-4 Size Limitations for setByes() and setString() Methods

Oracle8 and Later Oracle7

setBytes() size limitation 2000 bytes 255 bytes
setString() size limitation 4000 bytes 2000 bytes

Setter Methods That Take Additional Input

The following set XXX() methods take an additional input parameter other than
the parameter index and the data item itself:

« setAsciiStream(int param ndex, |nputStreamistream
int |ength)

Takes the length of the stream, in bytes.

« setBinaryStrean(int param ndex, InputStreamistream
int |ength)

Takes the length of the stream, in bytes.

« setCharacterStream(int param ndex, Reader reader,
i nt | ength)

Takes the length of the stream, in characters.

« setUnicodeStrean(int param ndex, |nputStreamistream
int length)

Takes the length of the stream, in bytes.

The particular usefulness of the set Char act er St r ean() method is that when a
very large Uni code value is input to a LONGVARCHAR parameter, it can be more
practical to send it through a j ava. i 0. Reader object. JDBC will read the data
from the stream as needed, until it reaches the end-of-file mark. The JDBC driver
will do any necessary conversion from Uni code to the database character format.

Important: The preceding stream methods can also be used for
LOBs. See "Reading and Writing BLOB and CLOB Data" on
page 8-6 for more information.

« setDate(int param ndex, Date x, Cal endar cal)

7-16 Oracle9i JDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

« setTime(int param ndex, Tinme x, Calendar cal)
« setTimestanmp(int param ndex, Tinmestanp x, Cal endar cal)

The JDBC 2.0 signatures for set Dat e(), set Ti me(), and set Ti mest anp()
include a Cal endar object, but in Oracle8i release 8.1.6 and higher the Oracle
JDBC drivers ignore this input because it is not yet feasible to support

j ava. sql . Dat e timezone information together with the data. You should
continue to use the previous signatures that take only the parameter index and
data item. Calendar input will be supported in a future release.

Method setFixedCHAR() for Binding CHAR Data into WHERE Clauses

CHAR data in the database is padded to the column width. This leads to a limitation
in using the set CHAR() method to bind character data into the WHERE clause of a
SELECT statement—the character data in the WHERE clause must also be padded to
the column width to produce a match in the SELECT statement. This is especially
troublesome if you do not know the column width.

To remedy this, Oracle has added the set Fi xedCHAR() method to the
Or acl ePr epar edSt at ement class. This method executes a non-padded
comparison.

Note:

= Remember to cast your prepared statement object to
O acl ePrepar edSt at enent to use the set Fi xedCHAR()
method.

« There is no need to use set Fi xedCHAR() for an | NSERT
statement. The database always automatically pads the data to
the column width as it inserts it.

Example The following example demonstrates the difference between the
set CHAR() and set Fi xedCHAR() methods.

/* Schema is :
create table ny_table (coll char(10));
insert into ny_table values ('JDBC);
*/
PreparedStat ement pstnt = conn. prepareSt at enent
("select count(*) fromny_table where coll = ?");

pstnt.setString (1, "JDBC'); // Set the Bind Val ue

Accessing and Manipulating Oracle Data 7-17

Comparison of Oracle get and set Methods to Standard JDBC

runQuery (pstnt); [l This will print " No of rows are 0"
CHAR ch = new CHAR("JDBC “,onull);

((Oracl ePreparedStatement) pstnt).setCHAR(1, ch); // Pad it to 10 bytes
runQuery (pstnt); [l This will print "No of rows are 1"

((Oracl ePreparedSt atement) pstnt) . set Fi xedCHAR(1, "JDBC');
runQuery (pstnt); /] This will print "No of rows are 1"

voi d runQuery (PreparedStatenent ps)

{
/] Run the Query

ResultSet rs = pstnt.executeQuery ();

while (rs.next())
Systemout.printin("No of rows are " + rs.getint(1));

rs.close();
rs = null;

Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers

The Oracle 8.0.x JDBC drivers use the same protocol as the Oracle 7.3.x JDBC
drivers. In both cases, Oracle datatypes are as defined for an Oracle 7.3.x database,
and data items longer than 2K bytes must be LONG.

As with any LONG data, use the stream APIs to read and write data between your
application and the database. Essentially, this means that you cannot use the normal
get String() and set String() methods to read or write data longer than 2K
bytes when using the 8.0.x and 7.3.x drivers.

The stream APIs include methods such as get Bi narySt r ean(),
set Bi naryStrean(),get Ascii Streamn(),and set Asci i Strean() . These
methods are discussed under "Java Streams in JDBC" on page 3-20.

7-18 Oracle9i JDBC Developer's Guide and Reference

Using Result Set Meta Data Extensions

Using Result Set Meta Data Extensions

Theoracl e. j dbc. Oracl eResul t Set Met aDat a interface is JDBC 2.0-compliant
but does not implement the get SchemaNane() and get Tabl eName() methods
because underlying protocol does not make this feasible. Oracle does implement
many methods to retrieve information about an Oracle result set, however.

Key methods include the following:

« int getCol umCount () : Returns the number of columns in an Oracle result
set.

= String getCol umName(int col um) : Returns the name of a specified
column in an Oracle result set.

= int getColumType(int col um) :Returns the SQL type of a specified
column in an Oracle result set. If the column stores an Oracle object or
collection, then this method returns Or acl eTypes. STRUCT or
Or acl eTypes. ARRAY respectively.

= String get Col umTypeNane(int col um) : Returns the SQL type name
for a specified column of type REF, STRUCT, or ARRAY. If the column stores an
array or collection, then this method returns its SQL type name. If the column
stores REF data, then this method returns the SQL type name of the objects to
which the object reference points.

The following example uses several of the methods in the
Oracl eResul t Set Met adat a interface to retrieve the number of columns from the
EMP table, and each column’s numerical type and SQL type name.

Dat abaseMet aDat a dbnd = conn. get Met aDat a() ;
Resul t Set rset = dbnd. get Tabl es("", "SCOTT", "EMP", null);

while (rset.next())

{
Oracl eResul t Set Met aData orsnmd = ((Oracl eResul t Set)rset). get MetaDat a();
int nunCol ums = orsmd. get Col umCount () ;
Systemout . println("Num of colums =" + nunCol ums);

for (int i=0; i<nunColums; i++)

{
Systemout. print ("Colum Nane=" + orsnd. get Col utmName (i +1));
Systemout.print (" Type=" + orsnd. get Col umType (i + 1));
Systemout.println (" Type Name=" + orsnd. get Col umTypeNane (i + 1));

Accessing and Manipulating Oracle Data 7-19

Using Result Set Meta Data Extensions

The program returns the following output:

Num of
Col um
Col um
Col umm
Col um
Col umm

colums = 5

Name=TABLE_CAT Type=12 Type Nane=VARCHAR2
Name=TABLE_SCHEM Type=12 Type Nane=VARCHAR2
Name=TABLE_NAME Type=12 Type Name=VARCHAR2
Name=TABLE_TYPE Type=12 Type Name=VARCHAR2
Name=TABLE_REMARKS Type=12 Type Nanme=VARCHAR2

7-20 Oracle9i JDBC Developer's Guide and Reference

8

Working with LOBs and BFILEs

This chapter describes how you use JDBC and the or acl e. sql . * classes to access
and manipulate LOB and BFILE locators and data, covering the following topics:

« Oracle Extensions for LOBs and BFILEs
= Working with BLOBs and CLOBs
= Working with BFILEs

Working with LOBs and BFILEs 8-1

Oracle Extensions for LOBs and BFILEs

Oracle Extensions for LOBs and BFILEs

LOBs ("large objects") are stored in a way that optimizes space and provides
efficient access. The JDBC drivers provide support for two types of LOBs: BLOBs
(unstructured binary data) and CLOBs (character data). BLOB and CLOB data is
accessed and referenced by using a locator, which is stored in the database table and
points to the BLOB or CLOB data, which is outside the table.

BFILEs are large binary data objects stored in operating system files outside of
database tablespaces. These files use reference semantics. They can also be located
on tertiary storage devices such as hard disks, CD-ROMs, PhotoCDs and DVDs. As
with BLOBs and CLOBs, a BFILE is accessed and referenced by a locator which is
stored in the database table and points to the BFILE data.

To work with LOB data, you must first obtain a LOB locator. Then you can read or
write LOB data and perform data manipulation. The following sections also
describe how to create and populate a LOB column in a table.

The JDBC drivers support these or acl e. sql . * classes for BLOBs, CLOBs, and
BFILEs:

« oracle.sql.BLOB
« oracle.sql.CLOB
« oracle.sql.BFILE

The or acl e. sql . BLOB and CLOB classes implement the j ava. sqgl . Bl ob and
Cl ob interfaces, respectively (or acl e. j dbc2. Bl ob and Cl ob interfaces under
JDK 1.1.x). By contrast, BFI LE is an Oracle extension, without a corresponding
java. sql (ororacl e.j dbc2) interface.

Instances of these classes contain only the locators for these datatypes, not the data.
After accessing the locators, you must perform some additional steps to access the
data. These steps are described in "Reading and Writing BLOB and CLOB Data" on
page 8-6 and "Reading BFILE Data" on page 8-22.

Note: You cannot construct BLOB, CLOB, or BFI LE objects in your
JDBC application—you can only retrieve existing BLOBs, CLOBs,
or BFILEs from the database or create them using the
createTenporary() and enpty_| ob() methods.

8-2 Oracle9i JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs

Working with BLOBs and CLOBs

This section describes how to read and write data to and from binary large objects
(BLOBs) and character large objects (CLOBs) in an Oracle database, using LOB
locators.

For general information about Oracle9i LOBs and how to use them, see the Oracle9i
Application Developer’s Guide—Large Objects (LOBs).

Getting and Passing BLOB and CLOB Locators

Standard as well as Oracle-specific getter and setter methods are available for
retrieving or passing LOB locators from or to the database.

Retrieving BLOB and CLOB Locators

Given a standard JDBC result set (j ava. sql . Resul t Set) or callable statement

(j ava. sqgl . Cal | abl eSt at enent) that includes BLOB or CLOB locators, you can
access the locators by using standard getter methods, as follows. All the standard
and Oracle-specific getter methods discussed here take either an i nt column index
ora St ri ng column name as input.

= Under JDK 1.2.x and higher, you can use the standard get Bl ob() and
get Cl ob() methods, which return j ava. sql . Bl ob and Cl ob objects,
respectively.

= Under JDK 1.1.x, there is no standard BLOB or CLOB functionality, but you can
use the generic get Obj ect () method, which returns j ava. | ang. Cbj ect,
and cast the output as desired.

If you retrieve or cast the result set or callable statement to an Or acl eResul t Set
or Oracl eCal | abl eSt at ement object, then you can use Oracle extensions as
follows:

= Under JDK 1.1.x and higher, you can use get BLOB() and get CLOB() , which
return or acl e. sql . BLOB and CLOB objects, respectively.

=« Under JDK 1.1.x and higher, you can also use the get Or acl eObj ect ()
method, which returns an or acl e. sql . Dat umobject, and cast the output
appropriately.

= Under JDK 1.1.x, you also have the option of using the Oracle extensions
get Bl ob() and get Cl ob() , which return or acl e. j dbc2. Bl ob and Cl ob
objects, respectively. (These Bl ob and Cl ob interfaces mimic the standard
interfaces available in JDK 1.2.x.)

Working with LOBs and BFILEs 8-3

Working with BLOBs and CLOBs

Note: If using get Obj ect () or get Or acl eCbj ect (), then
remember to cast the output, as necessary. For more information,
see "Casting Your get Method Return Values" on page 7-10.

Example: Getting BLOB and CLOB Locators from a Result Set Assume the database has a
table called | ob_t abl e with a column for a BLOB locator, bl ob_col ,and a
column for a CLOB locator, cl ob_col . This example assumes that you have
already created the St at ement object, st it .

First, select the LOB locators into a standard result set, then get the LOB data into
appropriate Java classes:

/1 Select LOB locator into standard result set.
ResultSet rs =

stnt. executeQuery ("SELECT blob_col, clob_col FROMIob_table");
while (rs.next())

/] Get LOB locators into Java wapper classes.
java.sql.Blob blob = (java.sql.Bl ob)rs. get Object(1);
java.sql.Clob clob = (java.sqgl.d ob)rs. get Object(2);
(...process...)

}

The outputis casttoj ava. sql . Bl ob and Cl ob. As an alternative, you can cast the
output to or acl e. sql . BLOB and CLOB to take advantage of extended
functionality offered by the or acl e. sql . * classes. For example, you can rewrite
the above code to get the LOB locators as:

/] Get LOB locators into Java wapper classes.
oracle.sql.BLOB blob = (BLOB)rs. get Obj ect (1);
oracle.sql.CLOB clob = (CLOB)rs. get Obj ect (2);
(...process...)

Example: Getting a CLOB Locator from a Callable Statement The callable statement
methods for retrieving LOBs are identical to the result set methods.

For example, if you have an Or acl eCal | abl eSt at ement ocs that calls a
function f unc that has a CLOB output parameter, then set up the callable statement
as in the following example.

This example registers Or acl eTypes. CLOB as the typecode of the output
parameter.

8-4 Oracle9i JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs

Oracl eCal | abl eSt atement ocs =
(Oracl eCal I abl eSt at enent) conn. prepareCal | ("{? = call func()}");
ocs. registerQut Paranmeter(1, Oracl eTypes.CLOB);
ocs. execute();
oracle.sql.CLOB clob = ocs.get CLOB(1);

Passing BLOB and CLOB Locators

Given a standard JDBC prepared statement (j ava. sql . Pr epar edSt at ement) or
callable statement (j ava. sqgl . Cal | abl eSt at ement), you can use standard setter
methods to pass LOB locators, as follows. All the standard and Oracle-specific setter
methods discussed here take an i nt parameter index and the LOB locator as input.

= Under JDK 1.2.x and higher, you can use the standard set Bl ob() and
set Cl ob() methods, which take j ava. sqgl . Bl ob and Cl ob locators as input.

= Under JDK 1.1.x, there is no standard BLOB or CLOB functionality, but you can
use the generic set Obj ect () method, which simply specifies a
j ava. | ang. Qbj ect input.

Given an Oracle-specific Or acl ePr epar edSt at ement or
Oracl eCal | abl eSt at ement , then you can use Oracle extensions as follows:

=« Under JDK 1.1.x and higher, you can use set BLOB() and set CLOB(), which
take or acl e. sql . BLOB and CLOB locators as input, respectively.

= Under JDK 1.1.x and higher, you can also use the set Or acl eCbj ect ()
method, which simply specifies an or acl e. sql . Dat uminput.

= Under JDK 1.1.x, you also have the option of using the Oracle extensions
set Bl ob() and set Cl ob(), which take or acl e. j dbc2. Bl ob and Cl ob
locators as input, respectively. (These Bl ob and Cl ob interfaces mimic the
standard interfaces available in JDK 1.2.x.)

Example: Passing a BLOB Locator to a Prepared Statement If you have an
Or acl ePr epar edSt at ement object ops and a BLOB named ny_bl ob, then write
the BLOB to the database as follows:

Oracl ePreparedSt at ement ops = (O acl ePrepar edSt at ement) conn. pr epar eSt at enent
("I'NSERT | NTO bl ob_tabl e VALUES(?)");

ops. setBLOB(1, ny_blob);

ops. execute();

Example: Passing a CLOB Locator to a Callable Statement If you have an

Oracl eCal | abl eSt at ement object ocs and a CLOB named ny_cl ob, then input
the CLOB to the stored procedure pr oc as follows:

Working with LOBs and BFILEs 8-5

Working with BLOBs and CLOBs

Oracl eCal | abl eSt atement ocs =

(OracleCal I abl eSt at enent) conn. prepareCal | ("{call proc(?))}");
ocs.setdob(1, ny_clob);
ocs. execut e();

Reading and Writing BLOB and CLOB Data

Once you have a LOB locator, you can use JDBC methods to read and write the LOB
data. LOB data is materialized as a Java array or stream. However, unlike most Java
streams, a locator representing the LOB data is stored in the table. Thus, you can
access the LOB data at any time during the life of the connection.

To read and write the LOB data, use the methods in the or acl e. sql . BLOB or
oracl e. sql . CLOB class, as appropriate. These classes provide functionality such
as reading from the LOB into an input stream, writing from an output stream into a
LOB, determining the length of a LOB, and closing a LOB.

Notes:

= To write LOB data, the application must acquire a write lock on
the LOB object. One way to accomplish this is through a
SELECT FOR UPDATE. Also, disable auto-commit mode.

« The implementation of the data access API uses direct native
calls in the JDBC OCI and server-side internal drivers, thereby
providing better performance. You can use the same API on the
LOB classes in all Oracle JDBC drivers.

= In the case of the JDBC Thin driver only, the implementation of
the data access API uses the PL/SQL DBMS_LOB package
internally. You never have to use DBMS_L OB directly. This is in
contrast to the 8.0.x drivers. For more information on the
DBMS_L OB package, see the Oracle9i Supplied PL/SQL Packages
Reference.

To read and write LOB data, you can use these methods:

» Toread from a BLOB, use the get Bi nar ySt r ean{) method of an
oracl e. sqgl . BLOB object to retrieve the entire BLOB as an input stream. This
returns aj ava. i 0. | nput St r eamobject.

As with any | nput St r eamobject, use one of the overloaded r ead() methods
to read the LOB data, and use the cl ose() method when you finish.

8-6 Oracle9i JIDBC Developer's Guide and Reference

Working with BLOBs and CLOBs

To write to a BLOB, use the get Bi nar yQut put St r ean{) method of an
oracl e. sqgl . BLOB object to retrieve the BLOB as an output stream. This
returns aj ava. i 0. Qut put St r eamobject to be written back to the BLOB.

As with any Qut put St r eamobject, use one of the overloaded wri t ()
methods to update the LOB data, and use the cl ose() method when you
finish.

To read from a CLOB, use the get Asci i Strean() or

get Char act er St r ean() method of an or acl e. sql . CLOB object to retrieve
the entire CLOB as an input stream. The get Asci i St r ean() method returns
an ASCII input stream in aj ava. i 0. | nput St r eamobject. The

get Char act er St r ean() method returns a Uni code input stream in a
java.io. Reader object.

As with any | nput St r eamor Reader object, use one of the overloaded
read() methods to read the LOB data, and use the cl ose() method when
you finish.

You can also use the get SubSt ri ng() method of or acl e. sql . CLOB object
to retrieve a subset of the CLOB as a character string of type
java.lang. String.

To write to a CLOB, use the get Asci i Qut put Strean() or

get Char act er Qut put St r ean() method of an or acl e. sql . CLOB object to
retrieve the CLOB as an output stream to be written back to the CLOB. The

get Asci i Qut put St r ean() method returns an ASCII output stream in a

j ava. i o. Qut put St r eamobject. The get Char act er Qut put St r ean()
method returns a Uni code output streaminaj ava.i 0. Wi ter object.

As with any Qut put St r eamor Wi t er object, use one of the overloaded
wri t e() methods to update the LOB data, and use the f | ush() andcl ose()
methods when you finish.

Working with LOBs and BFILEs 8-7

Working with BLOBs and CLOBs

Notes:

= The stream "write" methods described in this section write
directly to the database when you write to the output stream.
You do not need to execute an UPDATE to write the data. CLOBs
and BLOBs are transaction controlled. After writing to either,
you must commit the transaction for the changes to be
permanent. BFILEs are not transaction controlled. Once you
write to them the changes are permanent, even if the
transaction is rolled back, unless the external file system does
something else.

« When writing to or reading from a CLOB, the JDBC drivers
perform all character set conversions for you.

Important: The JDBC 2.0 specification states that

Pr epar edSt at ement methods set Bi narySt rean() and

set Obj ect () can be used to input a stream value as a BLOB, and
that the Pr epar edSt at ement methods set Asci i Streant(),
set Uni codeSt ream(), set Charact er Stream(), and

set Cbj ect () can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 and higher
database and 8.1.6 and higher JDBC OCI driver. Do not use this
functionality for any other configuration, as data corruption may
result.

Example: Reading BLOB Data Use the get Bi nar ySt r eanm() method of the
oracl e. sql . BLOB class to read BLOB data. The get Bi nar ySt r ean() method
reads the BLOB data into a binary stream.

The following example uses the get Bi nar ySt r ean() method to read BLOB data
into a byte stream and then reads the byte stream into a byte array (returning the
number of bytes read, as well).

/| Read BLOB data from BLOB | ocator.

I nput Stream byte_stream = ny_bl ob. get Bi naryStrean();
byte [] byte_array = new byte [10];

int bytes_read = byte_streamread(byte_array);

8-8 Oracle9i JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs

Example: Reading CLOB Data The following example uses the

get Char act er St r eanm() method to read CLOB data into a Uni code character
stream. It then reads the character stream into a character array (returning the
number of characters read, as well).

/!l Read CLOB data from CLOB | ocator into Reader char stream
Reader char_stream = ny_cl ob. get Char act er Strean() ;

char [] char_array = new char [10];

int chars_read = char_streamread (char_array, 0, 10);

The next example uses the get Asci i St r ean() method of the or acl e. sql . CLOB
class to read CLOB data into an ASCII character stream. It then reads the ASCII
stream into a byte array (returning the number of bytes read, as well).

/] Read CLOB data from CLOB locator into Input ASCI| character stream
I nput stream asci i Char_stream = ny_cl ob. get Ascii Strean();

byte[] asciiChar_array = new byte[10];

int asciiChar_read = ascii Char_streamread(asciiChar_array, 0, 10);

Example: Writing BLOB Data Use the get Bi nar yQut put St r eam() method of an
oracl e. sql . BLOB object to write BLOB data.

The following example reads a vector of data into a byte array, then uses the
get Bi nar yCQut put St r eam() method to write an array of character data to a
BLOB.

java.io.Qutput Stream out stream

/] read data into a byte array
byte[] data = {0, 1, 2, 3, 4, 5 6, 7, 8 9};

/] wite the array of binary data to a BLOB
out stream = ((BLOB) ny_bl ob). get Bi nar yQut put Strean();
outstreamwite(data);

Example: Writing CLOB Data Use the get Char act er Qut put St r ean() method or
the get Asci i Qut put Stream() method to write data to a CLOB. The

get Char act er Qut put St r ean() method returns a Uni code output stream; the
get Asci i Qut put St r eam() method returns an ASCII output stream.

Working with LOBs and BFILEs 8-9

Working with BLOBs and CLOBs

The following example reads a vector of data into a character array, then uses the
get Char act er Qut put St r ean() method to write the array of character data to a
CLOB. The get Char act er Qut put St r ean{) method returns a
java.io.Witer instance inan oracl e. sql . CLOB object, not a

j ava. sql . Cl ob object.

java.io.Witer wiiter;

/] read data into a character array
Char[] data:{IOI’IlI’IZI’I3I’I4I’I5I’I6I’I7I’I8I’I9I};

Il wite the array of character data to a CLOB
writer = ((CLOB)ny_clob).getCharacterQutputStrean);
witer.wite(data);

writer.flush();

writer.close();

The next example reads a vector of data into a byte array, then uses the

get Asci i Qut put St r eanm() method to write the array of ASCII data to a CLOB.
Because get Asci i Qut put St rean() returns an ASCII output stream, you must
cast the output to a or acl e. sql . CLOB datatype.

java.io.Qutput Stream out;

/] read data into a byte array
byte[] data:{IOI,IlI,IZI,I3I,I4I,I5I,I6I,I7I,I8I,|9|};

/]l wite the array of ascii data to a CLOB
out = ((CLOB)clob). getAsciiCQutputStrean();
out.wite(data);

out. flush();

out. cl ose();

Creating and Populating a BLOB or CLOB Column
Create and populate a BLOB or CLOB column in a table by using SQL statements.

8-10 Oracle9i JDBC Developer's Guide and Reference

Working with BLOBs and CLOBs

Note: You cannot construct a new BLOB or CLOB locator in your
application with a Java newstatement. You must create the locator
through a SQL operation, and then select it into your application or
with the cr eat eTenporary() orenpty_| ob() methods.

Create a BLOB or CLOB column in a table with the SQL. CREATE TABLE statement,
then populate the LOB. This includes creating the LOB entry in the table, obtaining
the LOB locator, creating a file handler for the data (if you are reading the data from
a file), and then copying the data into the LOB.

Creating a BLOB or CLOB Column in a New Table

To create a BLOB or CLOB column in a new table, execute the SQL CREATE TABLE
statement. The following example code creates a BLOB column in a new table. This
example assumes that you have already created your Connect i on object conn and
St at ement object st nt :

String cmd = "CREATE TABLE ny_bl ob_tabl e (x varchar2 (30), c blob)";
stnt.execute (cnd);

In this example, the VARCHAR2 column designates a row number, such as 1 or 2,
and the BLOB column stores the locator of the BLOB data.

Populating a BLOB or CLOB Column in a New Table

This example demonstrates how to populate a BLOB or CLOB column by reading
data from a stream. These steps assume that you have already created your
Connect i on object conn and St at ement object st nt . The table my_bl ob_t abl e
is the table that was created in the previous section.

The following example writes the G F file j ohn. gi f to a BLOB.

1. Begin by using SQL statements to create the BLOB entry in the table. Use the
enpt y_bl ob syntax to create the BLOB locator.

stmt.execute ("I NSERT I NTO ny_blob_table VALUES ('rowl’, enpty_blob())");

2. Get the BLOB locator from the table.

BLOB bl ob;

cnmd = "SELECT * FROM ny_bl ob_tabl e WHERE X="rowl' ";
Resul t Set rset = stnt.executeQuery(cnd);
rset.next();

BLOB bl ob = ((Oracl eResul t Set)rset). get BLOB(2);

Working with LOBs and BFILEs 8-11

Working with BLOBs and CLOBs

3. Declare a file handler for the j ohn. gi f file, then print the length of the file.
This value will be used later to ensure that the entire file is read into the BLOB.
Next, create a Fi | el nput St r eamobject to read the contents of the Gl F file,
and an Qut put St r eamobject to retrieve the BLOB as a stream.

File binaryFile = new File("john.gif");
Systemout.printin("john.gif length =" + binaryFile.length());
Fi |l el nput Stream instream = new Fil el nput Stream(bi naryFile);

Qut put St ream out stream = bl ob. get Bi naryCQut put Strean();

4. Callget Buf ferSize() toretrieve the ideal buffer size (according to
calculations by the JDBC driver) to use in writing to the BLOB, then create the
buf f er byte array.

int size = bl ob. getBufferSize();
byte[] buffer = new byte[size];
int length = -1;

5. Usetheread() method to read the A F file to the byte array buf f er, then use
thewr it e() method to write it to the BLOB. When you finish, close the input
and output streams.

while ((length = instreamread(buffer)) != -1)
outstreamwite(buffer, 0, length);

instream cl ose();

out stream cl ose();

Once your data is in the BLOB or CLOB, you can manipulate the data. This is
described in the next section, "Accessing and Manipulating BLOB and CLOB Data".

Accessing and Manipulating BLOB and CLOB Data

Once you have your BLOB or CLOB locator in a table, you can access and

manipulate the data to which it points. To access and manipulate the data, you first
must select their locators from a result set or from a callable statement. "Getting and
Passing BLOB and CLOB Locators" on page 8-3 describes these techniques in detail.

After you select the locators, you can retrieve the BLOB or CLOB data. You will
usually want to cast the result set to the Or acl eResul t Set datatype so that you
can retrieve the data in or acl e. sql . * format. After retrieving the BLOB or CLOB
data, you can manipulate it however you want.

This example is a continuation of the example in the previous section. It uses the
SQL SELECT statement to select the BLOB locator from the table my_bl ob_t abl e

8-12 Oracle9i JDBC Developer's Guide and Reference

Working with BLOBs and CLOBs

into a result set. The result of the data manipulation is to print the length of the
BLOB in bytes.

/] Select the blob - what we are really doing here
/] is getting the blob locator into a result set
BLOB bl ob;

cmd = "SELECT * FROM my_bl ob_table";

Resul t Set rset = stnt.executeQuery (cnd);

[/ CGet the blob data - cast to OracleResult set to
/] retrieve the data in oracle.sql format

String index = ((OracleResultSet)rset).getString(1);
blob = ((Oracl eResul t Set)rset).get BLOB(2);

/] get the length of the blob
int length = blob.length();

[l print the length of the blob
Systemout.printin("blob I ength" + | ength);

/] read the blob into a byte array

/] then print the blob fromthe array
byte bytes[] = blob.getBytes(1, |ength);
printBytes(bytes, length);

Additional BLOB and CLOB Features

In addition to what has already been discussed in this chapter, the
or acl e. sgl . BLOB and CLOB classes have a number of methods for further
functionality.

Note: Theor acl e. sql . CLOBclass supports all the character sets
that the Oracle data server supports for CLOB types.

Additional BLOB Methods

The or acl e. sql . BLOB class includes the following methods:

=« close(): Closes the BLOB associated with the locator. (See "Using Open and
Close With LOBs" on page 8-19 for more information.)

= freeTenporary() :Frees the storage used by a temporary BLOB. (See
"Working With Temporary LOBs" on page 8-18 for more information.)

Working with LOBs and BFILEs 8-13

Working with BLOBs and CLOBs

« getBinaryQut put Stream():Returnsaj ava. i 0. Qut put St r eamto write
data to the BLOB as a stream.

« getBinaryQut put Stream(l ong) : Returnsaj ava. i 0. Qut put St r eamto
write data to the BLOB as a stream. The data is written beginning at the position
in the BLOB specified in the argument.

= get Bi naryStrean() : Returns the BLOB data for this Bl ob instance as a
stream of bytes.

= get Bi naryStrean(| ong) : Returns the BLOB data for this Blob instance as a
stream of bytes beginning at the position in the BLOB specified in the argument.

= getBufferSize():Returns the ideal buffer size, according to calculations by
the JDBC driver, to use in reading and writing BLOB data. This value is a
multiple of the chunk size (see get ChunkSi ze() below) and is close to 32K.

= getBytes():Reads from the BLOB data, starting at a specified point, into a
supplied buffer.

= get ChunkSi ze() : Returns the Oracle chunking size, which can be specified by
the database administrator when the LOB column is first created. This value, in
Oracle blocks, determines the size of the chunks of data read or written by the
LOB data layer in accessing or modifying the BLOB value. Part of each chunk
stores system-related information, and the rest stores LOB data. Performance is
enhanced if read and write requests use some multiple of the chunk size.

= isOpen():Returnst r ue if the BLOB was opened by calling the open()
method; otherwise, it returns f al se. (See "Using Open and Close With LOBs"
on page 8-19 for more information.)

= isTenporary():Returns true if the BLOB is a temporary BLOB. (See
"Working With Temporary LOBs" on page 8-18 for more information.)

= | engt h(): Returns the length of the BLOB in bytes.

= open(): Opens the BLOB associated with the locator. (See "Using Open and
Close With LOBs" on page 8-19 for more information.)

= open(int):Opens the BLOB associated with the locator in the mode specified
by the argument. (See "Using Open and Close With LOBs" on page 8-19 for
more information.)

= position():Determines the byte position in the BLOB where a given pattern
begins.

= put Byt es(): Writes BLOB data, starting at a specified point, from a supplied
buffer.

8-14 Oracle9i JDBC Developer's Guide and Reference

Working with BLOBs and CLOBs

t ri m(1 ong) : Trims the value of the BLOB to the length specified by the
argument.

Additional CLOB Methods
The or acl e. sqgl . CLOB class includes the following methods:

cl ose() : Closes the CLOB associated with the locator. (See "Using Open and
Close With LOBs" on page 8-19 for more information.)

f reeTenpor ar y() : Frees the storage used by a temporary CLOB. (See
"Working With Temporary LOBs" on page 8-18 for more information.)

get Asci i Qut put St rean() : Returns aj ava. i 0. Qut put St r eamto write
data to the CLOB as a stream.

get Asci i Qut put Strean(| ong) : Returnsaj ava. i 0. Qut put St r eamobject
to write data to the CLOB as a stream. The data is written beginning at the
position in the CLOB specified by the argument.

get Asci i St rean() : Returns the CLOB value designated by the Cl ob object
as a stream of ASCII bytes.

get Asci i Strean(| ong) : Returns the CLOB value designated by the CLOB
object as a stream of ASCII bytes, beginning at the position in the CLOB
specified by the argument.

get Buf f er Si ze() : Returns the ideal buffer size, according to calculations by
the JDBC driver, to use in reading and writing CLOB data. This value is a
multiple of the chunk size (see get ChunkSi ze() below) and is close to 32K.

get Char act er Qut put St rean() : Returnsaj ava. i o. Wit er to write data
to the CLOB as a stream.

get Char act er Qut put St rean(| ong) : Returnsaj ava. i o. Wi t er object to
write data to the CLOB as a stream. The data is written beginning at the
position in the CLOB specified by the argument.

get Char act er St r ean() : Returns the CLOB data as a stream of Uni code
characters.

get Char act er Str ean(| ong) : Returns the CLOB data as a stream of
Unicode characters beginning at the position in the CLOB specified by the
argument.

get Char s() : Retrieves characters from a specified point in the CLOB data into
a character array.

Working with LOBs and BFILEs 8-15

Working with BLOBs and CLOBs

= get ChunkSi ze() : Returns the Oracle chunking size, which can be specified by
the database administrator when the LOB column is first created. This value, in
Oracle blocks, determines the size of the chunks of data read or written by the
LOB data layer in accessing or modifying the CLOB value. Part of each chunk
stores system-related information and the rest stores LOB data. Performance is
enhanced if you make read and write requests using some multiple of the
chunk size.

= isOpen():Returnst rue if the CLOB was opened by calling the open()
method; otherwise, it returns f al se. (See "Using Open and Close With LOBs"
on page 8-19 for more information.)

= isTenporary():Returns true if and only if the CLOB is a temporary CLOB.
(See "Working With Temporary LOBs" on page 8-18 for more information.)

= | engt h(): Returns the length of the CLOB in characters.

= open() : Opens the CLOB associated with the locator. (See "Using Open and
Close With LOBs" on page 8-19 for more information.)

= open(int):Opens the CLOB associated with the locator in the mode specified
by the argument. (See "Using Open and Close With LOBs" on page 8-19 for
more information.)

= position():Determines the character position in the CLOB at which a given
substring begins.

= put Char s() : Writes characters from a character array to a specified point in
the CLOB data.

= getSubString():Retrieves a substring from a specified point in the CLOB
data.

= putString(): Writes a string to a specified point in the CLOB data.

« trim(long):Trims the value of the CLOB to the length specified by the
argument.

Creating Empty LOBs

Before writing data to an internal LOB, you must make sure the LOB
column/attribute is not nul | : it must contain a locator. You can accomplish this by
initializing the internal LOB as an empty LOB in an | NSERT or UPDATE statement,
using the enpt y_| ob() method defined in the or acl e. sql . BLOB and

oracl e. sql . CLOB classes:

« public static BLOB enpty_Il ob() throws SQLException

8-16 Oracle9i JDBC Developer's Guide and Reference

Working with BLOBs and CLOBs

« public static CLOB enpty_Ilob() throws SQLException

A JDBC driver creates an empty LOB instance without making database round trips.
You can use empty LOBs in the following:

« set XXX() methods of the Or acl ePr epar edSt at ement class
= updat eXXX() methods of updatable result sets

= attributes of STRUCT objects

= elements of ARRAY objects

Note: Because anenpty_| ob() method creates a special marker
that does not contain a locator, a JDBC application cannot read or
write to it. The JDBC driver throws the exception ORA- 17098
Invalid enpty LOB operation ifa]DBC application attempts
to read or write to an empty LOB before it is stored in the database.

Working with LOBs and BFILEs 8-17

Working With Temporary LOBs

Working With Temporary LOBs

You can use temporary LOBs to transient data. The data is stored in temporary table
space rather than regular table space. You should free temporary LOBs after you no
longer need them. If you do not, the space the LOB consumes in temporary table
space will not be reclaimed.

You create a temporary LOB with the static method,

creat eTenpor ary(Connecti on, bool ean, int), defined in the

oracl e. sql . BLOBand or acl e. sql . CLOB classes. You free a temporary LOB
with the f r eeTenpor ar y() method.

public static BLOB createTenporary(Connection conn, bool ean isCached, int
duration);
public static CLOB createTenporary(Connection conn, bool ean isCached, int
duration);

The duration must be either DURATI ON_SESSI ON or DURATI ON_CALL as defined
inthe oracl e. sql . BLOBor or acl e. sqgl . CLOB class. In client applications
DURATI ON_SESSI ONis appropriate. In Java stored procedures you can use either
DURATI ON_SESSI ON or DURATI ON_CALL, which ever is appropriate.

You can test whether a LOB is temporary by calling the i sTenpor ar y() method.
If the LOB was created by calling the cr eat eTenpor ar y() method, the
i sTenmpor ar y() method returns t r ue; otherwise, it returns f al se.

You can free a temporary LOB by calling the f r eeTenpor ar y() method. Free any
temporary LOBs before ending the session or call. Otherwise, the storage used by
the temporary LOB will not be reclaimed.

Note: Failure to free a temporary LOB will result in the storage
used by that LOB being unavailable. Frequent failure to free
temporary LOBs will result in filling up temporary table space with
unavailable LOB storage.

8-18 Oracle9i JDBC Developer's Guide and Reference

Using Open and Close With LOBs

Using Open and Close With LOBs

You do not have to open and close your LOBs. You might choose to open and close
them for performance reasons.

If you do not wrap LOB operations inside an Open/Close call operation: Each
modification to the LOB will implicitly open and close the LOB thereby firing any
triggers on an domain index. Note that in this case, any domain indexes on the LOB
will become updated as soon as LOB modifications are made. Therefore, domain
LOB indexes are always valid and may be used at any time.

If you wrap your LOB operations inside the Open/Close operation, triggers will not
be fired for each LOB modification. Instead, the trigger on domain indexes will be
fired at the Close call. For example, you might design your application so that
domain indexes are not be updated until you call the cl ose() method. However,
this means that any domain indexes on the LOB will not be valid in-between the
Open/Close calls.

You open a LOB by calling the open() or open(i nt) method. You may then read
and write the LOB without any triggers associated with that LOB firing. When you
are done accessing the LOB, close the LOB by calling the cl ose() method. When
you close the LOB, any triggers associated with the LOB will fire. You can see if a
LOB is open or closed by calling the i sOpen() method. If you open the LOB by
calling the open(i nt) method, the value of the argument must be either MODE_
READONLY or MODE_READWRI TE, as defined in the or acl e. sql . BLOB and

oracl e. sql . CLOB classes. If you open the LOB with MODE_READONLY, any
attempt to write to the LOB will result in a SQL exception.

Note: An error occurs if you commit the transaction before closing
all opened LOBs that were opened by the transaction. The openness
of the open LOBs is discarded, but the transaction is successfully
committed. Hence, all the changes made to the LOB and non-LOB
data in the transaction are committed but the triggers for domain
indexing are not fixed.

Working with LOBs and BFILEs 8-19

Working with BFILEs

Working with BFILEs

This section describes how to read and write data to and from external binary files
(BFILESs), using file locators.

Getting and Passing BFILE Locators

Getter and setter methods are available for retrieving or passing BFILE locators
from or to the database.

Retrieving BFILE Locators

Given a standard JDBC result set or callable statement object that includes BFILE
locators, you can access the locators by using the standard result set get Cbj ect ()
method. This method returns an or acl e. sql . BFI LE object.

You can also access the locators by casting your result set to Or acl eResul t Set or
your callable statement to Or acl eCal | abl eSt at ement and using the
get Oracl eoj ect () or get BFI LE() method.

Notes:

« Inthe Oracl eResult Set and Or acl eCal | abl eSt at enent
classes, get BFI LE() and get Bf i | e() both return
oracl e. sqgl . BFI LE. Thereisnoj ava. sql interface (or
or acl e. j dbc?2 interface) for BFILEs.

= Ifusingget Cbj ect () or get Oracl eCbj ect (), remember to
cast the output, as necessary. For more information, see
"Casting Your get Method Return Values" on page 7-10.

Example: Getting a BFILE locator from a Result Set Assume that the database has a table
called bf i | e_t abl e with a single column for the BFILE locator bf i | e_col . This
example assumes that you have already created your St at ement object st it .

Select the BFILE locator into a standard result set. If you cast the result set to an
Or acl eResul t Set, you can use get BFI LE() to get the BFILE locator:

/] Select the BFILE locator into a result set
Result Set rs = stnt.executeQuery("SELECT bfile_col FROM bfile_table");
while (rs.next())
{
oracle.sql.BFILE ny_bfile = ((OacleResultSet)rs).get BFI LE(1);

}

8-20 Oracle9i JDBC Developer's Guide and Reference

Working with BFILEs

Note that as an alternative, you can use get Qbj ect () to return the BFILE locator.
In this case, because get Obj ect () returnsaj ava. | ang. Obj ect, cast the results
to BFI LE. For example:

oracle.sql.BFILE ny_bfile = (BFILE)rs.getOhject(1);

Example: Getting a BFILE Locator from a Callable Statement Assume you have an
Oracl eCal | abl eSt at ement object ocs that calls a function f unc that has a
BFI LE output parameter. The following code example sets up the callable
statement, registers the output parameter as Or acl eTypes. BFI LE, executes the
statement, and retrieves the BFILE locator:

Oracl eCal | abl eSt atement ocs =
(Oracl eCal I abl eSt at ement) conn. prepareCal | ("{? = call func()}");
ocs. regi sterQutParanmeter (1, Oracl eTypes. BFILE);
ocs. execute();
oracle.sql.BFILE bfile = ocs. get BFI LE(1);

Passing BFILE Locators

To pass a BFILE locator to a prepared statement or callable statement (to update a
BFILE locator, for example), you can do one of the following:

= Use the standard set Obj ect () method.
or:

« Cast the statement to Or acl ePr epar edSt at ement or
Oracl eCal | abl eSt at erent , and use the set Or acl eQbj ect () or
set BFI LE() method.

These methods take the parameter index and an or acl e. sql . BFI LE object as
input.

Example: Passing a BFILE Locator to a Prepared Statement Assume you want to insert a
BFILE locator into a table, and you have an Or acl ePr epar edSt at enment object
ops to insert data into a table. The first column is a string (to designate a row
number), the second column is a BFILE, and you have a valid or acl e. sql . BFI LE
object (bf i | e). Write the BFILE to the database as follows:

Oracl ePreparedSt at ement ops = (O acl ePrepar edSt at ement) conn. pr epar eSt at enent
("I'NSERT I NTO ny_bfile_table VALUES (?,?)");

ops.setString(1,"one");

ops.setBFILE(2, bfile);

ops. execute();

Working with LOBs and BFILEs 8-21

Working with BFILEs

Example: Passing a BFILE Locator to a Callable Statement Passing a BFILE locator to a
callable statement is similar to passing it to a prepared statement. In this case, the
BFILE locator is passed to the myGet Fi | eLengt h() procedure, which returns the
BFILE length as a numeric value.

Oracl eCal | abl eSt atenment cstnt = (Oracl eCal | abl eSt at enent) conn. prepareCal |
("begin ? := nyGetFilelLength (?); end;");
try

{
cstnt.registerCQutParaneter (1, Types.NUMER O);

cstnt.setBFILE (2, bfile);
cstnt.execute ();
return cstnt.getlLong (1);

Reading BFILE Data

To read BFILE data, you must first get the BFILE locator. You can get the locator
from either a callable statement or a result set. "Getting and Passing BFILE Locators'
on page 8-20 describes this.

Once you obtain the locator, you can invoke a number of methods on the BFILE
without opening it. For example, you can use the or acl e. sql . BFI LE methods
fileExists() andi sFil eOpen() to determine whether the BFILE exists and if
it is open. If you want to read and manipulate the data, however, you must open
and close the BFILE, as follows:

= Use the openFi | e() method of the or acl e. sql . BFI LE class to open a
BFILE.

= When you are done, use the cl oseFi | e() method of the BFI LE class.

BFILE data is materialized as a Java stream. To read from a BFILE, use the
get Bi narySt r ean() method of an or acl e. sql . BFI LE object to retrieve the
entire file as an input stream. This returns aj ava. i 0. | nput St r eamobject.

As with any | nput St r eamobject, use one of the overloaded r ead() methods to
read the file data, and use the cl 0ose() method when you finish.

8-22 Oracle9i JDBC Developer's Guide and Reference

Working with BFILEs

Notes:

« BFILEs are read-only. You cannot insert data or otherwise write
to a BFILE.

= You cannot use JDBC to create a new BFILE. They are created
only externally.

Example: Reading BFILE Data The following example uses the get Bi nar ySt r ean()
method of an or acl e. sql . BFI LE object to read BFILE data into a byte stream and
then read the byte stream into a byte array. The example assumes that the BFILE has
already been opened.

/'l Read BFILE data froma BFILE | ocator
Inputstreamin = bfile.getBinaryStrean();
byte[] byte_array = new byte{10};

int byte read = in.read(byte_array);

Creating and Populating a BFILE Column

This section discusses how to create a BFI LE column in a table with SQL operations
and specify the location where the BFILE resides. The examples below assume that
you have already created your Connect i on object conn and St at ement object
stnt.

Creating a BFILE Column in a New Table

To work with BFILE data, create a BFI LE column in a table, and specify the location
of the BFILE. To specify the location of the BFILE, use the SQL CREATE

DI RECTORY...AS statement to specify an alias for the directory where the BFILE
resides. Then execute the statement. In this example, the directory alias is t est _

di r, and the BFILE resides in the / horre/ wor k directory.

String cnd,
cnmd = "CREATE DI RECTORY test_dir AS '/home/work'";
stnt.execute (cnd);

Use the SQL CREATE TABLE statement to create a table containing a BFI LE column,
then execute the statement. In this example, the name of the table is my_bf il e_
t abl e.

/] Create a table containing a BFILE field
cnmd = "CREATE TABLE ny_bfile_table (x varchar2 (30), b bfile)";

Working with LOBs and BFILEs 8-23

Working with BFILEs

stnt.execute (cnd);

In this example, the VARCHAR2 column designates a row number, and the BFI LE
column stores the locator of the BFILE data.

Populating a BFILE Column

Use the SQL | NSERT | NTO. . . VALUES statement to populate the VARCHAR2 and
BFI LE fields, then execute the statement. The BFI LE column is populated with the
locator to the BFILE data. To populate the BFI LE column, use the bf i | enane
function to specify the directory alias and the name of the BFILE file.

cnmd ="INSERT INTO ny_bfile_table VALUES ('one', bfilenanme(test_dir,
‘filel.data"))";

stnt.execute (cnd);

cnmd ="INSERT INTO ny_bfile_table VALUES ('two', bfilenanme(test_dir,
"jdbcTest.data'))";

stnt.execute (cnd);

In this example, the name of the directory alias is t est _di r. The locator of the
BFILEfi | el. dat a is loaded into the BFI LE column on row one, and the locator
of the BFI LE j dbcTest . dat a is loaded into the bf i | € column on row t wo.

As an alternative, you might want to create the row for the row number and BFILE
locator now, but wait until later to insert the locator. In this case, insert the row
number into the table, and nul | as a place holder for the BFILE locator.

cnd ="INSERT INTO ny_bfile_table VALUES ('three', null)";
stnt. execute(cnd);

Here, t hr ee is inserted into the row number column, and nul | is inserted as the
place holder. Later in your program, insert the BFILE locator into the table by using
a prepared statement.

First get a valid BFILE locator into the bf i | e object:

rs = stm.execut eQuery("SELECT b FROM ny_bfile_table WHERE x="two'");
rs.next();
oracle.sql.BFILE bfile = ((Oracl eResul t Set)rs). get BFI LE(1);

8-24 Oracle9i JDBC Developer's Guide and Reference

Working with BFILEs

Then, create your prepared statement. Note that because this example uses the
set BFI LE() method to identify the BFILE, the prepared statement must be cast to
an Or acl ePrepar edSt at enent :

Oracl ePreparedSt at ement ops = (O acl ePrepar edSt at ement) conn. pr epar eSt at enent
(UPDATE ny_bfile_table SET b=? WHERE x = "three’);

ops.setBFILE(1, bfile);

ops. execute();

Now row t wo and row t hr ee contain the same BFILE.

Once you have the BFILE locators available in a table, you can access and
manipulate the BFILE data. The next section, "Accessing and Manipulating BFILE
Data", describes this.

Accessing and Manipulating BFILE Data

Once you have the BFILE locator in a table, you can access and manipulate the data
to which it points. To access and manipulate the data, you must first select its
locator from a result set or a callable statement.

The following code continues the example from "Populating a BFILE Column" on
page 8-24, getting the locator of the BFILE from row t wo of a table into a result set.
The result set is cast to an Or acl eResul t Set so thator acl e. sqgl . * methods can
be used on it. Several of the methods applied to the BFILE, such as

getDir Al i as() and get Nanme(), do not require you to open the BFILE. Methods
that manipulate the BFILE data, such as reading, getting the length, and displaying,
do require you to open the BFILE.

When you finish manipulating the BFILE data, you must close the BFILE.

/] select the bfile locator
cnmd = "SELECT * FROMny_bfile_table WHERE x = "two'";
rset = stnt.executeQuery (cnd);

if (rset.next ())
BFILE bfile = ((Oracl eResul t Set) rset). get BFILE (2);

[l for these nethods, you do not have to open the bfile
printin("getDirAlias() =" + bfile.getDirAlias());
println("getName() =" + bfile.getName());
printin("fileExists() =" + bfile.fileExists(
println("isFileOpen() =" + bfile.isFileOpen(

):
)

~— —

/1 now open the bfile to get the data

Working with LOBs and BFILEs 8-25

Working with BFILEs

bfile. openFile();

/] get the BFILE data as a binary stream
InputStreamin = bfile.getBinaryStrean();
int length ;

/] read the bfile data in 6-byte chunks
byte[] buf = new byte[6];

while ((length = in.read(buf)) = -1)

{
/] append and display the bfile data in 6-byte chunks
StringBuffer sb = new StringBuffer(length);
for (int i=0; i<length; i++)
sb. append((char)buf[i]);
Systemout. printin(sh.toString());
}

/] we are done working with the input stream Cose it.
in.close();

/] we are done working with the BFILE. Cose it.
bfile.closeFile();

Additional BFILE Features

In addition to the features already discussed in this chapter, the
or acl e. sql . BFI LE class has a number of methods for further functionality,
including the following:

= openFi | e(): Opens the external file for read-only access.
« closeFil e():Closes the external file.

= get Bi naryStrean() : Returns the contents of the external file as a stream of
bytes.

= get Bi naryStrean(| ong) : Returns the contents of the external file as a
stream of bytes beginning at the position in the external file specified by the
argument.

= getBytes():Reads from the external file, starting at a specified point, into a
supplied buffer.

= get Nanme() : Gets the name of the external file.

8-26 Oracle9i JDBC Developer's Guide and Reference

Working with BFILEs

get Di r Al i as() : Gets the directory alias of the external file.
I engt h() : Returns the length of the BFILE in bytes.

posi ti on() : Determines the byte position at which the given byte pattern
begins.

i sFi | eOpen() : Determines whether the BFILE is open (for read-only access).

Working with LOBs and BFILEs 8-27

Working with BFILEs

8-28 Oracle9i JDBC Developer's Guide and Reference

9

Working with Oracle Object Types

This chapter describes JDBC support for user-defined object types. It discusses
functionality of the generic, weakly typed or acl e. sql . STRUCT class, as well as
how to map to custom Java classes that implement either the JDBC standard
SQLDat a interface or the Oracle ORADat a interface. This chapter also describes
how JDBC drivers access SQL]J object types in SQL representation.

The following topics are covered:

= Mapping Oracle Objects

= Using the Default STRUCT Class for Oracle Objects

« Creating and Using Custom Object Classes for Oracle Objects
= Object-Type Inheritance

= Using JPublisher to Create Custom Object Classes

= Describing an Object Type

= SQLJ Object Types

Note: For general information about Oracle object features and
functionality, see the Oracle9i Application Developer’s Guide -
Object-Relational Features.

Working with Oracle Object Types 9-1

Mapping Oracle Objects

Mapping Oracle Objects

Oracle object types provide support for composite data structures in the database.
For example, you can define a type Per son that has attributes such as name (type
CHAR), phone number (type CHAR), and employee number (type NUVBER).

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can use a standard, generic JDBC type to map to Oracle objects, or
you can customize the mapping by creating custom Java type definition classes. In
this book, Java classes that you create to map to Oracle objects will be referred to as
custom Java classes or, more specifically, custom object classes. This is as opposed to
custom references classes to map to object references, and custom collection classes to
map to Oracle collections. Custom object classes can implement either a standard
JDBC interface or an Oracle extension interface to read and write data.

JDBC materializes Oracle objects as instances of particular Java classes. Two main
steps in using JDBC to access Oracle objects are: 1) creating the Java classes for the
Oracle objects, and 2) populating these classes. You have two options:

« Let JDBC materialize the object as a STRUCT. This is described in "Using the
Default STRUCT Class for Oracle Objects" on page 9-3.

or:

« Explicitly specify the mappings between Oracle objects and Java classes. This
includes customizing your Java classes for object data. The driver then must be
able to populate instances of the custom object classes that you specify. This
imposes a set of constraints on the Java classes. To satisfy these constraints, you
can define your classes to implement either the JDBC standard
j ava. sql . SQLDat a interface or the Oracle extension or acl e. sql . ORADat a
interface. This is described in "Creating and Using Custom Object Classes for
Oracle Objects" on page 9-10.

You can use the Oracle JPublisher utility to generate custom Java classes.

Note: When you use the SQLDat a interface, you must use a Java
type map to specify your SQL-Java mapping, unless weakly typed
j ava. sql . Struct objects will suffice. See "Understanding Type
Maps for SQLData Implementations" on page 9-11.

9-2 Oracle9i JDBC Developer's Guide and Reference

Using the Default STRUCT Class for Oracle Objects

Using the Default STRUCT Class for Oracle Objects

If you choose not to supply a custom Java class for your SQL-Java mapping for an
Oracle object, then Oracle JDBC will materialize the object as an instance of the
oracl e. sgl . STRUCT class.

You would typically want to use STRUCT objects, instead of custom Java objects, in
situations where you are manipulating SQL data. For example, your Java
application might be a tool to manipulate arbitrary object data within the database,
as opposed to being an end-user application. You can select data from the database
into STRUCT objects and create STRUCT objects for inserting data into the database.
STRUCT objects completely preserve data, because they maintain the data in SQL
format. Using STRUCT objects is more efficient and more precise in these situations
where you don’t need the information in a convenient form.

STRUCT Class Functionality

This section discusses standard versus Oracle-specific features of the
or acl e. sqgl . STRUCT class, introduces STRUCT descriptors, and lists methods of
the STRUCT class to give an overview of its functionality.

Standard java.sql.Struct Methods

If your code must comply with standard JDBC 2.0, then use aj ava. sql . St ruct
instance (or acl e. j dbc2. St ruct under JDK 1.1.x), and use the following
standard methods:

= getAttributes(map):Retrieves the values of the attributes, using entries in
the specified type map to determine the Java classes to use in materializing any
attribute that is a structured object type. The Java types for other attribute
values would be the same as for a get Qbj ect () call on data of the underlying
SQL type (the default JDBC types).

=« getAttributes():Thisis the same as the preceding get At t ri but es(map)
method, except it uses the default type map for the connection.

= get SQLTypeNane() : Returns a Java St r i ng that represents the fully qualified
name (Schema. sqgl _t ype_nane) of the Oracle object type that this St r uct
represents (such as SCOTT. EMPLOYEE).

Oracle oracle.sql.STRUCT Class Methods

If you want to take advantage of the extended functionality offered by
Oracle-defined methods, then use an or acl e. sql . STRUCT instance.

Working with Oracle Object Types 9-3

Using the Default STRUCT Class for Oracle Objects

The or acl e. sqgl . STRUCT class implements the j ava. sql . Struct interface
(oracl e.jdbc2. Struct interface under JDK 1.1.x) and provides extended
functionality beyond the JDBC 2.0 standard.

The STRUCT class includes the following methods in addition to standard St r uct
functionality:

= getOracl eAttributes():Retrieves the values of the values array as
oracl e. sgl . * objects.

= getDescriptor():Returns the St ruct Descri pt or object for the SQL type
that corresponds to this STRUCT object.

« getJavaSQ.Connecti on(): Returns the current connection instance
(j ava. sgl . Connecti on).

= toJdbc():Consults the default type map of the connection, to determine what
class to map to, and then uses t 0Cl ass() .

= toJdbc(map) : Consults the specified type map to determine what class to map
to, and then uses t 0Cl ass() .

STRUCT Descriptors

Creating and using a STRUCT object requires a descriptor—an instance of the
oracl e. sql . StructDescri ptor class—to exist for the SQL type (such as
EMPLOYEE) that will correspond to the STRUCT object. You need only one

St ruct Descri pt or object for any number of STRUCT objects that correspond to
the same SQL type.

STRUCT descriptors are further discussed in "Creating STRUCT Objects and
Descriptors" on page 9-4.

Creating STRUCT Objects and Descriptors

This section describes how to create STRUCT objects and descriptors and lists useful
methods of the St ruct Descri pt or class.

Steps in Creating StructDescriptor and STRUCT Objects

This section describes how to construct an or acl e. sql . STRUCT object for a given
Oracle object type. To create a STRUCT object, you must:

1. Create a Struct Descri pt or object (if one does not already exist) for the
given Oracle object type.

2. Usethe StructDescri ptor to construct the STRUCT object.

9-4 Oracle9i JIDBC Developer’s Guide and Reference

Using the Default STRUCT Class for Oracle Objects

A StructDescri ptor isan instance of the or acl e. sql . Struct Descri pt or
class and describes a type of Oracle object (SQL structured object). Only one
Struct Descri pt or is necessary for each Oracle object type. The driver caches
Struct Descri pt or objects to avoid recreating them if the type has already been
encountered.

Before you can construct a STRUCT object, a St r uct Descr i pt or must first exist
for the given Oracle object type. If a St r uct Descri pt or object does not exist, you
can create one by calling the static St r uct Descri pt or. creat eDescri ptor ()
method. This method requires you to pass in the SQL type name of the Oracle object
type and a connection object:

Struct Descriptor structdesc = StructDescriptor.createDescriptor
(sql _type_nane, connection);

Where sql _t ype_nane is a Java string containing the name of the Oracle object
type (such as EMPLOYEE) and connect i on is your connection object.

Once you have your St r uct Descri pt or object for the Oracle object type, you can
construct the STRUCT object. To do this, pass in the St r uct Descri pt or, your
connection object, and an array of Java objects containing the attributes you want
the STRUCT to contain.

STRUCT struct = new STRUCT(structdesc, connection, attributes);

Where st ruct desc is the St r uct Descri pt or created previously, connect i on
is your connection object, and at t r i but es is an array of type
java.lang. Object[].

Using StructDescriptor Methods

A Struct Descri pt or can be thought of as a "type object". This means that it
contains information about the object type, including the typecode, the type name,
and how to convert to and from the given type. Remember, there should be only
one St ruct Descri pt or object for any one Oracle object type. You can then use
that descriptor to create as many STRUCT objects as you need for that type.

The St ruct Descri pt or class includes the following methods:

= get Name() : Returns the fully qualified SQL type name of the Oracle object
(that is, in schenma. sql _t ype_nane format, such as CORPORATE. EMPLOYEE).

= get Lengt h() : Returns the number of fields in the object type.

= get Met aDat a() : Returns the meta data regarding this type (like the
get Met aDat a() method of a result set object). The returned

Working with Oracle Object Types 9-5

Using the Default STRUCT Class for Oracle Objects

Resul t Set Met aDat a object contains the attribute name, attribute typecode,
and attribute type precision information. The "column" index in the

Resul t Set Met aDat a object maps to the position of the attribute in the
STRUCT, with the first attribute being at index 1.

The get Met aDat a() method is further discussed in "Functionality for Getting
Object Meta Data" on page 9-49.

Serializable STRUCT Descriptors

As "Steps in Creating StructDescriptor and STRUCT Objects" on page 9-4 explains,
when you create a STRUCT object, you first must create a St r uct Descr i pt or
object. Do this by calling the St r uct Descri pt or. cr eat eDescri ptor ()
method. The or acl e. sql . Struct Descri ptor class is serializable, meaning that
you can write the complete state of a St r uct Descr i pt or object to an output
stream for later use. Recreate the St r uct Descri pt or object by reading its
serialized state from an input stream. This is referred to as deserializing. With the

St ruct Descri pt or object serialized, you do not need to call the

Struct Descri ptor. createDescri ptor() method—you simply deserialize
the St ruct Descri pt or object.

It is advisable to serialize a St r uct Descr i pt or object when the object type is
complex but not changed often.

If you create a St r uct Descri pt or object through deserialization, you must
supply the appropriate database connection instance for the St r uct Descri pt or
object, using the set Connecti on() method.

The following code provides the connection instance for a St r uct Descr i pt or
object:

public void setConnection (Connection conn) throws SQLException

Note: The JDBC driver does not verify that the connection object
from the set Connect i on() method connects to the same
database from which the type descriptor was initially derived.

Retrieving STRUCT Objects and Attributes

This section discusses how to retrieve and manipulate Oracle objects and their
attributes, using either Oracle-specific features or JDBC 2.0 standard features.

9-6 Oracle9i JIDBC Developer’s Guide and Reference

Using the Default STRUCT Class for Oracle Objects

Note: The JDBC driver seamlessly handles embedded objects
(STRUCT objects that are attributes of STRUCT objects) in the same
way that it normally handles objects. When the JDBC driver
retrieves an attribute that is an object, it follows the same rules of
conversion, using the type map if it is available, or using default
mapping if it is not.

Retrieving an Oracle Object as an oracle.sql.STRUCT Object

You can retrieve an Oracle object directly into an or acl e. sgl . STRUCT instance. In
the following example, get Obj ect () is used to get a NUMBER object from

column 1 (col 1) of the table st r uct _t abl e. Because get Obj ect () returns an
Cbj ect type, the return is cast to an or acl e. sql . STRUCT. This example assumes
that the St at ement object st nt has already been created.

String cnd,
cmd = "CREATE TYPE type_struct AS object (fieldl NUVBER field2 DATE)";
stnt. execute(cnd);

cmd = "CREATE TABLE struct _table (col 1 type_struct)";
stnt. execute(cnd);

cmd = "INSERT INTO struct_tabl e VALUES (type_struct(10,’ 01-apr-01'))";
stnt. execute(cnd);

cmd = "INSERT INTO struct_tabl e VALUES (type_struct(20,’ 02-nmy-02'))";
stnt. execute(cnd);

Resul t Set rs= stnt.executeQuery("SELECT * FROM struct_table");
oracl e.sql. STRUCT oracl eSTRUCT=(oracl e. sgl . STRUCT) rs. get Obj ect (1) ;

Another way to return the object as a STRUCT object is to cast the result set to an
Or acl eResul t Set object and use the Oracle extension get STRUCT() method:

oracl e.sql. STRUCT oracl eSTRUCT=((Oracl eResul t Set) rs) . get STRUCT(1);

Retrieving an Oracle Object as a java.sql.Struct Object

Alternatively, referring back to the previous example, you can use standard JDBC
functionality such as get Cbj ect () to retrieve an Oracle object from the database
as an instance of j ava. sql . Struct (oracl e.j dbc2. Struct under JDK 1.1.x).
Because get Cbj ect () returnsaj ava. | ang. Cbj ect, you must cast the output of
the method to a St r uct . For example:

Working with Oracle Object Types 9-7

Using the Default STRUCT Class for Oracle Objects

Resul t Set rs= stnt.executeQuery("SELECT * FROM struct_table");
java.sql.Struct jdbcStruct = (java.sqgl.Struct)rs. get Qoject(1);

Retrieving Attributes as oracle.sql Types

If you want to retrieve Oracle object attributes from a STRUCT or St r uct instance
asoracl e. sql types, use the get Or acl eAttri but es() method of the

oracl e. sql . STRUCT class (fora St r uct instance, you will have to cast to a
STRUCT instance):

Referring back to the previous examples:

oracle.sql.Datun{] attrs = oracl eSTRUCT. get Oracl eAttributes();

or:

oracle.sql.Datun|] attrs =
((oracle.sql.STRUCT)j dbcStruct).getOracl eAttributes();

Retrieving Attributes as Standard Java Types

If you want to retrieve Oracle object attributes as standard Java types from a
STRUCT or St r uct instance, use the standard get At t ri but es() method:

oj ect[] attrs = jdbcStruct.getAttributes();

Binding STRUCT Objects into Statements

To bind an or acl e. sql . STRUCT object to a prepared statement or callable
statement, you can either use the standard set Obj ect () method (specifying the
typecode), or cast the statement object to an Oracle statement object and use the
Oracle extension set Or acl eObj ect () method. For example:

Prepar edSt at ement ps= conn. prepar eSt at ement ("t ext _of _prepared_stat ement");
STRUCT nySTRUCT = new STRUCT (...);
ps. set bj ect (1, nySTRUCT, Types. STRUCT); //Oracl eTypes. STRUCT under JDK 1.1.x

or:

Prepar edSt at ement ps= conn. prepar eSt at ement ("t ext _of _prepared_statement");
STRUCT nySTRUCT = new STRUCT (...);
((Oracl ePreparedStatenent) ps). set Oracl etoj ect (1, nmySTRUCT);

9-8 Oracle9i JDBC Developer’s Guide and Reference

Using the Default STRUCT Class for Oracle Objects

STRUCT Automatic Attribute Buffering

The Oracle JDBC driver furnishes public methods to enable and disable buffering of
STRUCT attributes. (See "ARRAY Automatic Element Buffering” on page 11-9 for a
discussion of how to buffer ARRAY elements.)

The following methods are included with the or acl e. sql . STRUCT class:
« public void setAut oBuffering(bool ean enabl e)
=« public bool ean get Aut oBuf feri ng()

The set Aut oBuf f eri ng(bool ean) method enables or disables auto-buffering.
The get Aut oBuf f eri ng() method returns the current auto-buffering mode. By
default, auto-buffering is disabled.

It is advisable to enable auto-buffering in a JDBC application when the STRUCT
attributes will be accessed more than once by the get Attri but es() and

get Array() methods (presuming the ARRAY data is able to fit into the JVM
memory without overflow).

Important: Buffering the converted attributes may cause the JDBC
application to consume a significant amount of memory.

When you enable auto-buffering, the or acl e. sql . STRUCT object keeps a local
copy of all the converted attributes. This data is retained so that a second access of
this information does not require going through the data format conversion process.

Working with Oracle Object Types 9-9

Creating and Using Custom Object Classes for Oracle Objects

Creating and Using Custom Object Classes for Oracle Objects

If you want to create custom object classes for your Oracle objects, then you must
define entries in the type map that specify the custom object classes that the drivers
will instantiate for the corresponding Oracle objects.

You must also provide a way to create and populate instances of the custom object
class from the Oracle object and its attribute data. The driver must be able to read
from a custom object class and write to it. In addition, the custom object class can
provide get XXX() and set XXX() methods corresponding to the Oracle object’s
attributes, although this is not necessary. To create and populate the custom classes
and provide these read/write capabilities, you can choose between these two
interfaces:

« theJDBC standard SQLDat a interface
= the ORADat a and ORADat aFact ory interfaces provided by Oracle

The custom object class you create must implement one of these interfaces. The
ORADat a interface can also be used to implement the custom reference class
corresponding to the custom object class. If you are using the SQLDat a interface,
however, you can only use weak reference types in Java (j ava. sql . Ref or
oracl e. sql . REF). The SQLDat a interface is for mapping SQL objects only.

As an example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Nanme (which is type CHAR) and EnpNum(employee
number, which is type NUMBER). You use the type map to specify that the
EMPLOYEE object should map to a custom object class that you call JEnpl oyee.
You can implement either the SQLDat a or ORADat a interface in the JEnpl oyee
class.

You can create custom object classes yourself, but the most convenient way to create
them is to employ the Oracle JPublisher utility to create them for you. JPublisher
supports the standard SQLDat a interface as well as the Oracle-specific ORADat a
interface, and is able to generate classes that implement either one. See "Using
JPublisher to Create Custom Object Classes" on page 9-45 for more information.

Note: If you need to create a custom object class in order to have
object-type inheritance, then see "Object-Type Inheritance" on
page 9-29.

The following section compares ORADat a and SQLDat a functionality.

9-10 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

Relative Advantages of ORAData versus SQLData

In deciding which of these two interface implementations to use, consider the
following;:

Advantages of ORADat a:
= It does not require an entry in the type map for the Oracle object.
= It has awareness of Oracle extensions.

= You can construct a ORADat a from an or acl e. sql . STRUCT. This is more
efficient because it avoids unnecessary conversions to native Java types.

= You can obtain the corresponding Dat umobject (which is in or acl e. sql
format) from the ORADat a object, using the t oDat un() method.

= It provides better performance: ORADat a works directly with Dat umtypes,
which is the internal format used by the driver to hold Oracle objects.

Advantages of SQLDat a:
« ItisaJDBC standard, making your code more portable.

The SQLDat a interface is for mapping SQL objects only. The ORADat a interface is
more flexible, enabling you to map SQL objects as well as any other SQL type for
which you want to customize processing. You can create a ORADat a object from any
datatype found in an Oracle database. This could be useful, for example, for
serializing RAWdata in Java.

Understanding Type Maps for SQLData Implementations

If you use the SQLDat a interface in a custom object class, then you must create type
map entries that specify the custom object class to use in mapping the Oracle object
type (SQL object type) to Java. You can either use the default type map of the
connection object, or a type map that you specify when you retrieve the data from
the result set. The Resul t Set interface get Obj ect () method has a signature that
lets you specify a type map:

rs.get Qj ect(int col uml ndex);

or:

rs.get j ect(int columlndex, Map nmap);

For a description of how to create these custom object classes with SQLDat a, see
"Creating and Using Custom Object Classes for Oracle Objects" on page 9-10.

Working with Oracle Object Types 9-11

Creating and Using Custom Object Classes for Oracle Objects

When using a SQLData implementation, if you do not include a type map entry,
then the object will map to the or acl e. sql . STRUCT class by default. (ORADat a
implementations, by contrast, have their own mapping functionality so that a type
map entry is not required. When using a ORADat a implementation, use the Oracle
get ORADat a() method instead of the standard get Obj ect () method.)

The type map relates a Java class to the SQL type name of an Oracle object. This
one-to-one mapping is stored in a hash table as a keyword-value pair. When you
read data from an Oracle object, the JDBC driver considers the type map to
determine which Java class to use to materialize the data from the Oracle object type
(SQL object type). When you write data to an Oracle object, the JDBC driver gets the
SQL type name from the Java class by calling the get SQLTypeNane() method of
the SQLDat a interface. The actual conversion between SQL and Java is performed
by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either
Java native types or Oracle native types (instances of the or acl e. sql . * classes) to
store attributes.

Creating a Type Map Object and Defining Mappings for a SQLData Implementation

When using a SQLDat a implementation, the JDBC applications programmer is
responsible for providing a type map, which must be an instance of a class as
follows:

= under JDK 1.2.x, an instance of a class that implements the standard
java. util . Map interface

or:

» under JDK 1.1.x, an instance of a class that extends the standard
java.util.Dictionary class (or an instance of the Di ct i onary class itself)

You have the option of creating your own class to accomplish this, but under either
JDK 1.2.x or JDK 1.1.x, the standard class j ava. ut i | . Hasht abl e meets the
requirement.

Note: If you are migrating from JDK 1.1.x to JDK 1.2.x, you must
ensure that your code uses a class that implements the Map
interface. If you were using the j ava. uti | . Hasht abl e class
under 1.1.x, then no change is necessary.

9-12 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

Hasht abl e and other classes used for type maps implement a put () method that
takes keyword-value pairs as input, where each key is a fully qualified SQL type
name and the corresponding value is an instance of a specified Java class.

A type map is associated with a connection instance. The standard

j ava. sql . Connect i on interface and the Oracle-specific

oracl e. jdbc. Oracl eConnect i on interface include a get TypeMap() method.
Under JDK 1.2.x, both return a Map object; under JDK 1.1.x, both return a

Di cti onary object.

The remainder of this section covers the following topics:
= Adding Entries to an Existing Type Map
= Creating a New Type Map

Adding Entries to an Existing Type Map

When a connection instance is first established, the default type map is empty. You
must populate it to use any SQL-Java mapping functionality.

Follow these general steps to add entries to an existing type map.

1. Use the get TypeMap() method of your Or acl eConnect i on object to return
the connection’s type map object. The get TypeMap() method returns a
java.util.Mapobject (orjava. util.Dictionary under JDK 1.1.x). For
example, presuming an Or acl eConnect i on instance or aconn:

java.util.Map nyMap = oraconn. get TypeMap();

Note: If the type map in the Or acl eConnect i on instance has
not been initialized, then the first call to get TypeMap() returns an

empty map.

2. Use the type map’s put () method to add map entries. The put () method
takes two arguments: a SQL type name string and an instance of a specified
Java class that you want to map to.

myMap. put (sql TypeNane, cl assObject);
The sql TypeNane is a string that represents the fully qualified name of the
SQL type in the database. The cl assObj ect is the Java class object to which

you want to map the SQL type. Get the class object with the
Cl ass. f or Name() method, as follows:

Working with Oracle Object Types 9-13

Creating and Using Custom Object Classes for Oracle Objects

myMap. put (sql TypeNane, C ass. for Name(cl assNane));

For example, if you have a PERSON SQL datatype defined in the CORPORATE
database schema, then map it to a Per son Java class defined as Per son with
this statement:

myMap. put (" CORPORATE. PERSON', d ass. f or Name(" Person"));

The map has an entry that maps the PERSON SQL datatype in the CORPORATE
database to the Per son Java class.

Note: SQL type names in the type map must be all uppercase,
because that is how the Oracle database stores SQL names.

Creating a New Type Map

Follow these general steps to create a new type map. This example uses an instance
ofjava. util . Hasht abl e, which extends j ava. uti | . Di cti onary and, under
JDK 1.2.x, also implements j ava. uti | . Map.

1.

Create a new type map object.

Hasht abl e newMap = new Hashtabl e();

Use the put () method of the type map object to add entries to the map. For
more information on the put () method, see Step 2 under "Adding Entries to an
Existing Type Map" on page 9-13. For example, if you have an EMPLOYEE SQL
type defined in the CORPORATE database, then you can map it to an Enpl oyee
class object defined by Enpl oyee. j ava, with this statement:

newap. put (" CORPORATE. EMPLOYEE', cl ass. f or Name(" Enpl oyee"));
When you finish adding entries to the map, use the Or acl eConnect i on

object’s set TypeMap() method to overwrite the connection’s existing type
map. For example:

oraconn. set TypeMap(newMap) ;

In this example, set TypeMap() overwrites the or aconn connection’s original
map with newap.

9-14 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

Note: The default type map of a connection instance is used when
mapping is required but no map name is specified, such as for a
result set get Obj ect () call that does not specify the map as input.

Materializing Object Types not Specified in the Type File

If you do not provide a type map with an appropriate entry when using a

get bj ect () call, then the JDBC driver will materialize an Oracle object as an
instance of the or acl e. sql . STRUCT class. If the Oracle object type contains
embedded objects, and they are not present in the type map, the driver will
materialize the embedded objects as instances of or acl e. sql . STRUCT as well. If
the embedded objects are present in the type map, a call to the get At t ri but es()
method will return embedded objects as instances of the specified Java classes from
the type map.

Understanding the SQLData Interface

One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the SQLDat a
interface. Note that if you use this interface, you must supply a type map that
specifies the Oracle object types in the database and the names of the corresponding
custom object classes that you will create for them.

The SQLDat a interface defines methods that translate between SQL and Java for
Oracle database objects. Standard JDBC provides a SQLDat a interface and
companion SQLI nput and SQLQut put interfaces in the j ava. sql package

(or acl e. j dbc2 package under JDK 1.1.x).

If you create a custom object class that implements SQLDat a, then you must
provide ar eadSQL() method and awr i t eSQL() method, as specified by the
SQLDat a interface.

The JDBC driver calls your r eadSQL() method to read a stream of data values
from the database and populate an instance of your custom object class. Typically,
the driver would use this method as part of an Or acl eResul t Set object

get Obj ect () call.

Similarly, the JDBC driver calls your wr i t eSQL() method to write a sequence of
data values from an instance of your custom object class to a stream that can be
written to the database. Typically, the driver would use this method as part of an
Or acl ePrepar edSt at ement object set Cbj ect () call.

Working with Oracle Object Types 9-15

Creating and Using Custom Object Classes for Oracle Objects

Understanding the SQLInput and SQLOutput Interfaces

The JDBC driver includes classes that implement the SQLI nput and SQLQut put
interfaces. It is not necessary to implement the SQLQut put or SQLI nput
objects—the JDBC drivers will do this for you.

The SQLI nput implementation is an input stream class, an instance of which must
be passed in to the r eadSQL() method. SQLI nput includes a r eadXXX() method
for every possible Java type that attributes of an Oracle object might be converted
to, such asreadObj ect (), readl nt (), readLong(), readFl oat (),

readBl ob(), and so on. Each r eadXXX() method converts SQL data to Java data
and returns it into an output parameter of the corresponding Java type. For
example, r eadl nt () returns an integer.

The SQLQut put implementation is an output stream class, an instance of which
must be passed in to the wr i t eSQL() method. SQLQut put includes a

wr i t eXXX() method for each of these Java types. Each wr i t eXXX() method
converts Java data to SQL data, taking as input a parameter of the relevant Java
type. For example, wi t eSt ri ng() would take as input a string attribute from
your Java class.

Implementing readSQL() and writeSQL() Methods

When you create a custom object class that implements SQLDat a, you must
implement the r eadSQL() and wri t eSQL() methods, as described here.

You must implement r eadSQL() as follows:

public void readSQL(SQInput stream String sql_type_nane) throws SQLException

= ThereadSQL.() method takes as input a SQLI nput stream and a string that
indicates the SQL type name of the data (in other words, the name of the Oracle
object type, such as EMPLOYEE).

When your Java application calls get Obj ect (), the JDBC driver creates a
SQLI nput stream object and populates it with data from the database. The
driver can also determine the SQL type name of the data when it reads it from
the database. When the driver calls r eadSQL() , it passes in these parameters.

= For each Java datatype that maps to an attribute of the Oracle object,
readSQL() must call the appropriate r eadXXX() method of the SQLI nput
stream that is passed in.

For example, if you are reading EMPLOYEE objects that have an employee name
as a CHAR variable and an employee number as a NUMBER variable, you must
haveareadString() callandareadl nt () callin your r eadSQL() method.

9-16 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

JDBC calls these methods according to the order in which the attributes appear
in the SQL definition of the Oracle object type.

« ThereadSQL() method takes the data that the r ead XXX() methods read and
convert, and assigns them to the appropriate fields or elements of a custom
object class instance.

You must implement wri t eSQL() as follows:

public void witeSQL(SQLQut put stream) throws SQ.Exception

« ThewiteSQL() method takes as input a SQLQut put stream.

When your Java application calls set Obj ect (), the JDBC driver creates a
SQLQut put stream object and populates it with data from a custom object class
instance. When the driver calls wri t eSQL(), it passes in this stream parameter.

= For each Java datatype that maps to an attribute of the Oracle object,
wri t eSQL() must call the appropriate wr i t @eXXX() method of the
SQLQut put stream that is passed in.

For example, if you are writing to EMPLOYEE objects that have an employee
name as a CHAR variable and an employee number as a NUMBER variable, then
youmust haveawriteString() callandawritelnt() call in your

wr it eSQL() method. These methods must be called according to the order in
which attributes appear in the SQL definition of the Oracle object type.

= ThewiteSQ() method then writes the data converted by the wr i t e XXX()
methods to the SQLQuUt put stream so that it can be written to the database once
you execute the prepared statement.

Reading and Writing Data with a SQLData Implementation

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLDat a.

Reading SQLData Objects from a Result Set

This section summarizes the steps to read data from an Oracle object into your Java
application when you choose the SQLDat a implementation for your custom object
class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object st nt .

Working with Oracle Object Types 9-17

Creating and Using Custom Object Classes for Oracle Objects

1. Query the database to read the Oracle object into a JDBC result set.
Result Set rs = stnt.executeQuery("SELECT enp_col FROM personnel");

The PERSONNEL table contains one column, EMP_COL, of SQL type EMP_
OBJECT. This SQL type is defined in the type map to map to the Java class
Enpl oyee.

2. Use the get Obj ect () method of your result set to populate an instance of
your custom object class with data from one row of the result set. The
get bj ect () method returns the user-defined SQLDat a object because the
type map contains an entry for Enpl oyee.

if (rs.next())
Enpl oyee enp = (Enpl oyee)rs. get Chj ect (1);

Note that if the type map did not have an entry for the object, then

get vj ect () would return an or acl e. sql . STRUCT object. Cast the output
to type STRUCT, because the get Qbj ect () method signature returns the
generic j ava. | ang. Cbj ect type.

if (rs.next())
STRUCT enpstruct = (STRUCT)rs. get Chj ect (1);

The get Obj ect () call triggersr eadSQL() and r eadXXX() calls from the
SQLDat a interface, as described above.

Note: If you want to avoid using a type map, then use the
get STRUCT() method. This method always returns a STRUCT
object, even if there is a mapping entry in the type map.

3. If you have get methods in your custom object class, then use them to read
data from your object attributes. For example, if EMPLOYEE has an EnpNane
(employee name) of type CHAR, and an EnpNum(employee number) of type
NUMBER, then provide a get EnpNane() method that returns a Java St ri ng
and a get EnpNun() method that returns an integer (i nt). Then invoke them
in your Java application, as follows:

String enmpnane = enp. get EnpNane() ;
int enmpnunber = enp. get EnpNun();

9-18 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

Note: Alternatively, fetch data by using a callable statement
object, which also has a get Obj ect () method.

Retrieving SQLData Objects from a Callable Statement OUT Parameter

Suppose you have an Or acl eCal | abl eSt at enent ocs that calls a PL/SQL
function GETEMPLOYEE() . The program passes an employee number (enpnunber)
to the function; the function returns the corresponding Enpl oyee object.

1.

Prepare an Or acl eCal | abl eSt at ement to call the GETEMPLOYEE()
function.

Oracl eCal | abl eSt atement ocs =
(Oracl eCal | abl eSt at ement) conn. prepareCal | ("{ ? = call GETEMPLOYEE(?) }");

Declare the empnunber as the input parameter to GETEMPLOYEE() . Register
the SQLDat a object as the OUT parameter, with typecode
O acl eTypes. STRUCT. Then, execute the statement.

ocs.setlnt(2, enpnunber);
ocs. registerQutParanmeter (1, Oracl eTypes. STRUCT, "EMP_OBJECT");
ocs. execute();

Use the get bj ect () method to retrieve the employee object. The following
code assumes that there is a type map entry to map the Oracle object to Java

type Enpl oyee:
Enpl oyee enp = (Enpl oyee) ocs. get Obj ect (1) ;

If there is no type map entry, then get Cbj ect () would return an
or acl e. sql . STRUCT object. Cast the output to type STRUCT, because the
get Obj ect () method signature returns the genericj ava. | ang. Cbj ect

type:
STRUCT enp = (STRUCT) ocs. get Obj ect (1) ;

Passing SQLData Objects to a Callable Statement as an IN Parameter

Suppose you have a PL/SQL function addEnpl oyee(?) that takes an Enpl oyee
object as an | Nparameter and adds it to the PERSONNEL table. In this example, enp
is a valid Enpl oyee object.

1.

Prepare an Or acl eCal | abl eSt at ement to call the addEnpl oyee(?)
function.

Working with Oracle Object Types 9-19

Creating and Using Custom Object Classes for Oracle Objects

Oracl eCal | abl eSt atement ocs =
(OracleCal | abl eSt atement) conn. prepareCal |l ("{ call addEnpl oyee(?) }");

Use set Obj ect () to pass the enp object as an | N parameter to the callable
statement. Then, execute the statement.

ocs.setChject(l, enp);
ocs. execute();

Writing Data to an Oracle Object Using a SQLData Implementation

This section describes the steps in writing data to an Oracle object from your Java
application when you choose the SQLDat a implementation for your custom object
class.

This description assumes you have already defined the Oracle object type, created
the corresponding Java class, and updated the type map to define the mapping
between the Oracle object and the Java class.

1.

If you have set methods in your custom object class, then use them to write
data from Java variables in your application to attributes of your Java datatype
object.

enp. set EnpName(enpnane) ;

enp. set EnpNum(enpnunber) ;

This statement uses the enp object and the enpnane and enpnunber variables
assigned in "Reading SQLData Objects from a Result Set" on page 9-17.

Prepare a statement that updates an Oracle object in a row of a database table,
as appropriate, using the data provided in your Java datatype object.

Prepar edSt at ement pstnt = conn. pr epar eSt at enent
("1 NSERT | NTO PERSONNEL VALUES (?)");

This assumes conn is your connection object.

Use the set Cbj ect () method of the prepared statement to bind your Java
datatype object to the prepared statement.

pstnt.set Cbject(1, enp);

Execute the statement, which updates the database.

pstnt. execut eUpdate();

9-20 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

Understanding the ORAData Interface

One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the

oracl e. sql . ORADat a and or acl e. sql . ORADat aFact or y interfaces (or you
can implement ORADat aFact or y in a separate class). The ORADat a and

ORADat aFact or y interfaces are supplied by Oracle and are not a part of the JDBC
standard.

Note: The JPublisher utility supports the generation of classes that
implement the ORADat a and ORADat aFact or y interfaces. See
"Using JPublisher to Create Custom Object Classes" on page 9-45.

Understanding ORAData Features
The ORADat a interface has these advantages:

« It recognizes Oracle extensions to the JDBC; ORADat a uses
oracl e. sql . Dat umtypes directly.

= It does not require a type map to specify the names of the Java custom classes
you want to create.

= It provides better performance: ORADat a works directly with Dat umtypes, the
internal format the driver uses to hold Oracle objects.

The ORADat a and ORADat aFact or y interfaces do the following:

« Thet oDat un{) method of the ORADat a class transforms the data into an
or acl e. sql . * representation.

= ORADat aFact ory specifies a cr eat e() method equivalent to a constructor
for your custom object class. It creates and returns a ORADat a instance. The
JDBC driver uses the cr eat e() method to return an instance of the custom
object class to your Java application or applet. It takes as input an
or acl e. sqgl . Dat umobject and an integer indicating the corresponding SQL
typecode as specified in the Or acl eTypes class.

ORADat a and ORADat aFact or y have the following definitions:

public interface ORAData
{

}

Dat um t oDat um (Oracl eConnection conn) throws SQLException;

public interface ORADat aFactory

Working with Oracle Object Types 9-21

Creating and Using Custom Object Classes for Oracle Objects

{
}

ORADat a create (Datumd, int sgl _Type_Code) throws SQLException;

Where conn represents the Connection object, d represents an object of type
oracl e. sql . Dat umand sql _Type_Code represents the SQL typecode (from the
standard Types or Or acl eTypes class) of the Dat umobject.

Retrieving and Inserting Object Data

The JDBC drivers provide the following methods to retrieve and insert object data
as instances of ORADat a.

To retrieve object data:

= Use the Oracle-specific Or acl eResul t Set class get ORADat a() method
(assume an Or acl eResul t Set objector s):

ors.getORAData (int col _index, ORADataFactory factory);

This method takes as input the column index of the data in your result set, and
a ORADat aFact or y instance. For example, you can implement a

get ORAFact or y() method in your custom object class to produce the

ORADat aFact or y instance to input to get ORADat a() . The type map is not
required when using Java classes that implement ORADat a.

or:

= Use the standard get Qbj ect (i ndex, map) method specified by the
Resul t Set interface to retrieve data as instances of ORADat a. In this case, you
must have an entry in the type map that identifies the factory class to be used
for the given object type, and its corresponding SQL type name.

To insert object data:

= Use the Oracle-specific Or acl ePr epar edSt at enent class set ORADat a()
method (assume an Or acl ePr epar edSt at ement object ops):

ops. set ORADat a (int bind_i ndex, ORAData custom obj);

This method takes as input the parameter index of the bind variable and the
name of the object containing the variable.

or:

9-22 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

= Use the standard set Obj ect () method specified by the
Pr epar edSt at enent interface. You can also use this method, in its different
forms, to insert ORADat a instances without requiring a type map.

The following sections describe the get ORADat a() and set ORADat a() methods.

To continue the example of an Oracle object EMPLOYEE, you might have something
like the following in your Java application:

ORADat a datum = ors. get ORADat a(1, Enpl oyee. get ORAFactory());

In this example, or s is an Oracle result set, get ORADat a() is a method in the

Or acl eResul t Set class used to retrieve a ORADat a object, and the EMPLOYEE is
in column 1 of the result set. The static Enpl oyee. get ORAFact or y() method
will return a ORADat aFact ory to the JDBC driver. The JDBC driver will call

cr eat e() from this object, returning to your Java application an instance of the
Enpl oyee class populated with data from the result set.

Notes:

= ORADat a and ORADat aFact or y are defined as separate
interfaces so that different Java classes can implement them if
you wish (such as an Enpl oyee class and an
Enpl oyeeFact ory class).

= To use the ORADat a interface, your custom object classes must
import or acl e. sqgl . * (or at least ORADat a,
ORADat aFact ory, and Dat um.

Reading and Writing Data with a ORAData Implementation

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements ORADat a.

Reading Data from an Oracle Object Using a ORAData Implementation

This section summarizes the steps in reading data from an Oracle object into your
Java application. These steps apply whether you implement ORADat a manually or
use JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class or had JPublisher create it for you, and defined a
statement object st t .

Working with Oracle Object Types 9-23

Creating and Using Custom Object Classes for Oracle Objects

1. Query the database to read the Oracle object into a result set, casting to an
Oracle result set.

Oracl eResul tSet ors = (Oracl eResul t Set) st nt. execut eQuery
(" SELECT Enp_col FROM PERSONNEL");

Where PERSONNEL is a one-column table. The column name is Enp_col of
type Enpl oyee_obj ect.

2. Use the get ORADat a() method of your Oracle result set to populate an
instance of your custom object class with data from one row of the result set.

The get ORADat a() method returns an or acl e. sql . ORADat a object, which
you can cast to your specific custom object class.

if (ors.next())
Enpl oyee enp = (Enpl oyee)ors. get ORADat a(1, Enpl oyee. get ORAFactory());
or:
if (ors.next())
ORADat a datum = ors. get ORADat a(1, Enpl oyee. get ORAFact ory());
This example assumes that Enpl oyee is the name of your custom object class

and or s is the name of your O acl eResul t Set object.

In case you do not want to use get ORADat a() , the JDBC drivers let you use
the get Obj ect () method of a standard JDBC Resul t Set to retrieve
ORADat a data. However, you must have an entry in the type map that
identifies the factory class to be used for the given object type, and its
corresponding SQL type name.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Enpl oyee, which will implement ORADat a. The
corresponding Factory class is Enpl oyeeFact or y, which will implement
ORADat aFact ory.

Use this statement to declare the Enpl oyeeFact ory entry for your type map:
map. put ("EMPLOYEE", C ass.forNane ("EnployeeFactory"));

Then use the form of get Obj ect () where you specify the map object:
Enpl oyee enp = (Enpl oyee) rs.getObject (1, map);

If the connection’s default type map already has an entry that identifies the
factory class to be used for the given object type, and its corresponding SQL
type name, then you can use this form of get Cbj ect ():

9-24 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

Enpl oyee enp = (Enpl oyee) rs.getObject (1);

3. If you have get methods in your custom object class, use them to read data
from your object attributes into Java variables in your application. For example,
if EMPLOYEE has EnpNane of type CHAR and EnpNum(employee number) of
type NUMBER, provide a get EnpNanme() method that returns a Java string and
a get EnpNum() method that returns an integer. Then invoke them in your Java
application as follows:

String enmpnane = enp. get EnpNane() ;
int enmpnunber = enp. get EnpNun();

Note: Alternatively, you can fetch data into a callable statement
object. The Or acl eCal | abl eSt at enent class also has a
get ORADat a() method.

Writing Data to an Oracle Object Using a ORAData Implementation

This section summarizes the steps in writing data to an Oracle object from your Java
application. These steps apply whether you implement ORADat a manually or use
JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type and created the
corresponding custom object class (or had JPublisher create it for you).

Note: The type map is not used when you are performing
database | NSERT and UPDATE operations.

1. If you have set methods in your custom object class, then use them to write
data from Java variables in your application to attributes of your Java datatype
object.

enp. set EnpName(enpnane) ;
enp. set EnpNun(enpnunber) ;

This statement uses the enp object and the enpnane and enpnunber variables
defined in "Reading Data from an Oracle Object Using a ORAData
Implementation" on page 9-23.

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java datatype
object.

Working with Oracle Object Types 9-25

Creating and Using Custom Object Classes for Oracle Objects

Oracl ePreparedSt at ement opstnmt = conn. prepar eSt at enment
(" UPDATE PERSONNEL SET Enpl oyee = ? WHERE Enpl oyee. EnpNum = 28959) ;
This assumes conn is your Connect i on object.

3. Use the set ORADat a() method of the Oracle prepared statement to bind your
Java datatype object to the prepared statement.

opstnt.set ORADat a(1, enp);
The set ORADat a() method calls the t oDat un{) method of the custom object

class instance to retrieve an or acl e. sql . STRUCT object that can be written to
the database.

In this step you could also use the set Obj ect () method to bind the Java
datatype. For example:

opstnt.setoj ect (1, enp);

Note: You can use your Java datatype objects as either | Nor QUT
bind variables.

Additional Uses for ORAData

The ORADat a interface offers far more flexibility than the SQLDat a interface. The
SQLDat a interface is designed to let you customize the mapping of only Oracle
object types (SQL object types) to Java types of your choice. Implementing the
SQLDat a interface lets the JDBC driver populate fields of a custom Java class
instance from the original SQL object data, and the reverse, after performing the
appropriate conversions between Java and SQL types.

The ORADat a interface goes beyond supporting the customization of Oracle object
types to Java types. It lets you provide a mapping between Java object types and any
SQL type supported by the or acl e. sql package.

It might be useful to provide custom Java classes to wrap or acl e. sql . * types
and perhaps implement customized conversions or functionality as well. The
following are some possible scenarios:

= to perform encryption and decryption or validation of data
= to perform logging of values that have been read or are being written

« toparse character columns (such as character fields containing URL
information) into smaller components

9-26 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

= to map character strings into numeric constants

= to map data into more desirable Java formats (such as mapping a DATE field to
java. util . Dat e format)

= to customize data representation (for example, data in a table column is in feet
but you want it represented in meters after it is selected)

« toserialize and deserialize Java objects—into or out of RAWfields, for example

For example, use ORADat a to store instances of Java objects that do not correspond
to a particular SQL Oracle9 object type in the database in columns of SQL type RAW
The cr eat e() method in ORADat aFact or y would have to implement a
conversion from an object of type or acl e. sql . RAWto the desired Java object. The
t oDat um() method in ORADat a would have to implement a conversion from the
Java object to an or acl e. sql . RAWobject. This can be done, for example, by using
Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an or acl e. sgl . RAWand calls the ORADat aFact or y's cr eat e() method
to convert the or acl e. sql . RAWobject to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a
column of type RAWto store it. The driver transparently calls the

ORADat a.t oDat um() method to convert the Java object to an or acl e. sql . RAW
object. This object is then stored in a column of type RAWin the database.

Support for the ORADat a interfaces is also highly efficient because the conversions
are designed to work using or acl e. sql . * formats, which happen to be the
internal formats used by the JDBC drivers. Moreover, the type map, which is
necessary for the SQLDat a interface, is not required when using Java classes that
implement ORADat a. For more information on why classes that implement
ORADat a do not need a type map, see "Understanding the ORAData Interface" on
page 9-21.

The Deprecated CustomDatum Interface

As aresult of the or acl e. j dbc interfaces being introduced in Oracle9i as an
alternative to the or acl e. j dbc. dri ver classes, the or acl e. sql . Cust onDat um
and or acl e. sql . Cust onDat unfact ory interfaces, formerly used to access
customized objects, have been deprecated by the new

interfaces—or acl e. sql . ORADat a and or acl e. sqgl . ORADat aFact ory.

The following are the specifications for the Cust onDat umand
Cust onDat unfact or y interfaces:

Working with Oracle Object Types 9-27

Creating and Using Custom Object Classes for Oracle Objects

public interface CustonDatum
{
oracl e. sql . Dat um t oDat um(
oracle.jdbc.driver.Oracl eConnection ¢
) throws SQLException ;

/] The following is expected to be present in an
[l inplenentation:

11

[l - Definition of public static fields for

/1 _SQL_TYPECODE, _SQL_NAME and _SQ._BASETYPE.
Il (See Oracle Jdbc docunentation for details.)
I

[l - Definition of

[l public static CustonDatunfactory

Il get Factory();

11

}

public interface CustonDatunfactory
{

oracl e. sql . Cust onDat um cr eat e(
oracle.sql.Datumd, int sql Type
) throws SQLException;

9-28 Oracle9i JDBC Developer's Guide and Reference

Object-Type Inheritance

Object-Type Inheritance

Object-type inheritance is an Oracle9i feature which allows a new object type to be
created by extending another object type. (While Oracle9i does not yet support
JDBC 3.0, object-type inheritance is supported and documented.) The new object
type is then a subtype of the object type from which it extends. The subtype
automatically inherits all the attributes and methods defined in the supertype. The
subtype can add attributes and methods, and overload or override methods
inherited from the supertype.

Object-type inheritance introduces substitutability. Substitutability is the ability of a
slot declared to hold a value of type T to do so in addition to any subtype of type T.
Oracle9i JDBC drivers handle substitutability transparently.

A database object is returned with its most specific type without losing information.
For example, if the STUDENT _T object is stored in a PERSON_T slot, the Oracle JDBC
driver returns a Java object that represents the STUDENT_T object.

Creating Subtypes

Create custom object classes if you want to have Java classes that explicitly
correspond to the Oracle object types. (See "Creating and Using Custom Object
Classes for Oracle Objects" on page 9-10.) If you have a hierarchy of object types,
you may want a corresponding hierarchy of Java classes.

The most common way to create a database subtype in JDBC is to pass the extended
SQL CREATE TYPE command to the execut e() method of the

j ava. sql . St at enent interface. For example, to create a type inheritance
hierarchy for:

PERSON_T

|
STUDENT T

|
PARTTI MESTUDENT_T

the JDBC code can be:

statement s = conn.createStatenment();
s.execute ("CREATE TYPE Person_T (SSN NUMBER, name VARCHAR2(30),
address VARCHAR2(255))");
s.execute ("CREATE TYPE Student _T UNDER Person_t (deptid NUMBER,
maj or VARCHAR2(100))");
s.execute ("CREATE TYPE PartTi meStudent _t UNDER Student _t (numHours NUMBER)");

Working with Oracle Object Types 9-29

Object-Type Inheritance

In the following code, the " f 00" member procedure in type ST is overloaded and
the member procedure " pri nt " overwrites the copy it inherits from type T.

CREATE TYPE T AS OBJECT (...,
MEMBER PROCEDURE fo0o(x NUVBER),
MEMBER PROCEDURE Print (),

NOT FI NAL;

CREATE TYPE ST UNDER T (...,
MEMBER PROCEDURE foo(x DATE), <-- overload "foo"
OVERRI DI NG MEMBER PROCEDURE Print (), <-- override "print"
STATIC FUNCTION bar(...) ...

)

Once the subtypes have been created, they can be used as both columns of a base
table as well as attributes of a object type. For complete details on the syntax to
create subtypes, see the Oracle9i Application Developer’s Guide - Object-Relational
Features for details.

Implementing Customized Classes for Subtypes

In most cases, a customized Java class represents a database object type. When you
create a customized Java class for a subtype, the Java class can either mirror the
database object type hierarchy or not.

You can use either the ORADat a or SQLDat a solution in creating classes to map to
the hierarchy of object types.

Use of ORAData for Type Inheritance Hierarchy

Customized mapping where Java classes implement the or acl e. sql . ORADat a
interface is the recommended mapping. (See "Relative Advantages of ORAData
versus SQLData" on page 9-11.) ORADat a mapping requires the JDBC application to
implement the ORADat a and ORADat aFact ory interfaces. The class implementing
the ORADat aFact or y interface contains a factory method that produces objects.
Each object represents a database object.

The hierarchy of the class implementing the ORADat a interface can mirror the
database object type hierarchy. For example, the Java classes mapping to PERSON_T
and STUDENT _T are as follows:

9-30 Oracle9i JDBC Developer's Guide and Reference

Object-Type Inheritance

Person.java using ORAData Code for the Per son. j ava class which implements the
ORADat a and ORADat aFact or y interfaces:

class Person inplenents ORAData, ORADataFactory
{

static final Person _personFactory = new Person();
public NUMBER ssn;

public CHAR nane;

public CHAR address;

public static ORADataFactory get ORADataFactory()
{

}

return _personFactory;

public Person () {}

public Person(NUMBER ssn, CHAR name, CHAR address)

{

this.ssn = ssn;

this. nane = nane;

this. address = address;
}

public DatumtoDatun(CracleConnection c) throws SQLException
{
StructDescriptor sd =
Struct Descriptor. createDescriptor("SCOIT. PERSON T", c);
oject [] attributes = { ssn, name, address };
return new STRUCT(sd, c, attributes);

}

public ORAData create(Datumd, int sql Type) throws SQLException
{
if (d ==null) return null;
bject [] attributes = ((STRUCT) d).getCOracleAttributes();
return new Person((NUMBER) attributes[0],
(CHAR) attributes[1],
(CHAR) attributes[2]);

Working with Oracle Object Types 9-31

Object-Type Inheritance

Student.java extending Person.java Code for the St udent . j ava class which extends
the Per son. j ava class:

class Student extends Person

{

static final Student _studentFactory = new Student ();

public NUMBER depti d;
public CHAR mgjor;

public static ORADataFactory get ORADataFactory()
{

return _student Factory;

}

public Student () {}

public Student (NUMBER ssn, CHAR name, CHAR address,
NUMBER deptid, CHAR ngj or)
{
super (ssn, name, address);
this.deptid = deptid;
this.mpjor = major;

}

public DatumtoDatun(CracleConnection c) throws SQLException
{
Struct Descriptor sd =
Struct Descriptor. createDescriptor("SCOIT. STUDENT_T", c¢);
bject [] attributes = { ssn, name, address, deptid, mjor };
return new STRUCT(sd, c, attributes);
}

public CustonDatum create(Datumd, int sqgl Type) throws SQLException
{
if (d ==null) return null;
(bject [] attributes = ((STRUCT) d).getCOracleAttributes();
return new Student ((NUMBER) attributes[0],
(CHAR) attributes[1],
(CHAR) attributes[2],
(NUMBER) attributes[3],
(CHAR) attributes[4]);

9-32 Oracle9i JDBC Developer's Guide and Reference

Object-Type Inheritance

Customized classes that implement the ORADat a interface do not have to mirror the
database object type hierarchy. For example, you could have declared the above
class, St udent , without a superclass. In this case, St udent would contain fields to
hold the inherited attributes from PERSON_T as well as the attributes declared by
STUDENT _T.

ORADataFactory Implementation The JDBC application uses the factory class in
querying the database to return instances of Per son or its subclasses, as in the
following example:

Resul t Set rset = stnt.executeQuery ("select person fromtabl");
while (rset.next())

{
Cbj ect s = rset.getORAData (1, PersonFactory.get ORADat aFactory());

}...

A class implementing the ORADat aFact or y interface should be able to produce
instances of the associated custom object type, as well as instances of any subtype,
or at least all the types you expect to support.

In the following example, the Per sonFact ory. get ORADat aFact or y() method
returns a factory that can handle PERSON_T, STUDENT_T, and PARTTI MESTUDENT _
T objects (by returning per son, st udent , or partti mest udent Java instances).

cl ass PersonFactory inplenments ORADataFactory

{

static final PersonFactory _factory = new PersonFactory ();

public static ORADataFactory get ORADataFactory()
{

}

public ORAData create(Datumd, int sql Type) throws SQLException
{

return _factory;

STRUCT s = (STRUCT) d;
if (s.getSQTypeName ().equal s ("SCOTT. PERSON T"))
return Person. get ORADat aFactory ().create (d, sql Type);
else if (s.getSQTypeNane ().equals ("SCOTT. STUDENT_T"))
return Student.get ORADat aFactory ().create(d, sql Type);
else if (s.getSQTypeNane ().equals ("SCOTT. PARTTI MESTUDENT T"))
return ParttimeStudent. get ORADat aFactory ().create(d, sqgl Type);
el se
return nul l;

Working with Oracle Object Types 9-33

Object-Type Inheritance

}
}

The following example assumes a table t ab1, such as the following:

CREATE TABLE tabl (idx NUMBER, person PERSON T);

INSERT INTO tabl 1 VALUES (1, PERSON.T (1000, 'Scott', '100 Oracle Parkway'));
I NSERT INTO tabl 1 VALUES (2, STUDENT_T (1001, 'Peter', '200 Oracle Parkway',
101, 'CS));

INSERT INTO tabl 1 VALUES (3, PARTTI MESTUDENT_T (1002, 'David', '300 Oracle
Par kway', 102, 'EE));

Use of SQLData for Type Inheritance Hierarchy

The customized classes that implement the j ava. sql . SQLDat a interface can
mirror the database object type hierarchy. The r eadSQL() and wri t eSQL()
methods of a subclass cascade each call to the corresponding methods in the
superclass in order to read or write the superclass attributes before reading or
writing the subclass attributes. For example, the Java classes mapping to PERSON_T
and STUDENT _T are as follows:

Person.java using SQLData Code for the Per son. j ava class which implements the
SQLDat a interface:

inport java.sql.*;

public class Person inplenments SQLData
{

private String sql_type;

public int ssn;

public String nane;

public String address;

public Person () {}
public String get SQLTypeName() throws SQLException { return sql_type; }

public void readSQ(SQI nput stream String typeNane) throws SQLException
{

sql _type = typeNane;

ssn = streamreadint();

name = streamreadString();

address = streamreadString();

9-34 Oracle9i JDBC Developer's Guide and Reference

Object-Type Inheritance

}

public void witeSQ(SQCQutput stream throws SQLException
{

streamwitelnt (ssn);

streamwiteString (name);

streamwiteString (address);

}

Student.java extending Student.java Code for the St udent . j ava class which extends
the Per son. j ava class:

inport java.sql.*;

public class Student extends Person

{

}

private String sql_type;
public int deptid;
public String major;

public Student () { super(); }
public String get SQLTypeName() throws SQLException { return sqgl_type; }

public void readSQL(SQLI nput stream String typeNane) throws SQLException
{

super.readSQL (stream typeNane); /] read supertype attributes

sql _type = typeNane;

deptid = streamreadint();

maj or = streamreadString();

}
public void witeSQ(SQCQutput stream throws SQLException
{

super.witeSQ (stream; /] wite supertype

Il attributes
streamwitelnt (deptid);
streamwiteString (major);

}

Customized classes that implement the SQLDat a interface do not have to mirror the
database object type hierarchy. For example, you could have declared the above
class, St udent , without a superclass. In this case, St udent would contain fields to

Working with Oracle Object Types 9-35

Object-Type Inheritance

hold the inherited attributes from PERSON_T as well as the attributes declared by
STUDENT _T.

Student.java using SQLData Code for the St udent . j ava class which does not extend
the Per son. j ava class, but implements the SQLData interface directly:

inport java.sql.*;

public class Student inplenents SQ.Data

{
private String sql_type;

public int ssn;

public String nane;
public String address;
public int deptid;
public String major;

public Student () {}
public String get SQLTypeName() throws SQLException { return sql_type; }

public void readSQL(SQI nput stream String typeNane) throws SQLException
{

sql _type = typeNane;

ssn = streamreadint();

name = streamreadString();

address = streamreadString();

deptid = streamreadint();

maj or = streamreadString();

}

public void witeSQ(SQCQutput stream throws SQLException
{

streamwitelnt (ssn);

streamwiteString (nane);

streamwiteString (address);

streamwitelnt (deptid);

streamwiteString (major);

9-36 Oracle9i JDBC Developer's Guide and Reference

Object-Type Inheritance

JPublisher Utility

Even though you can manually create customized classes that implement the
SQLDat a, ORADat a, and ORADat aFact or y interfaces, it is recommended that you
use Oracle9i JPublisher to automatically generate these classes. The customized
classes generated by JPublisher that implement the SQLDat a, ORADat a, and
ORADat aFact ory interfaces, can mirror the inheritance hierarchy.

To learn more about JPublisher, see "Using JPublisher to Create Custom Object
Classes" on page 9-45 and the Oracle9i [Publisher User’s Guide.

Retrieving Subtype Objects
In a typical JDBC application, a subtype object is returned as one of the following;:

= A query result
= APL/SQL OUT parameter
= Atype attribute

You can use either the default (or acl e. sql . STRUCT), ORADat a, or SQLDat a
mapping to retrieve a subtype.

Using Default Mapping

By default, a database object is returned as an instance of the or acl e. sql . STRUCT
class. This instance may represent an object of either the declared type or subtype of
the declared type. If the STRUCT class represents a subtype object in the database,
then it contains the attributes of its supertype as well as those defined in the

subtype.

The Oracle JDBC driver returns database objects in their most specific type. The
JDBC application can use the get SQLTypeNane() method of the STRUCT class to
determine the SQL type of the STRUCT object. The following code shows this:

/] tabl.person colum can store PERSON_T, STUDENT_T and PARTI MESTUDENT_T obj ects
Resul t Set rset = stnt.executeQuery ("select person fromtabl");
while (rset.next())
{
oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getChject(1);
if (s !=null)
Systemout.println (s.get SQLTypeNane()); [/ print out the type name which
/1 may be SCOTT. PERSON T,
/1 SCOTT. STUDENT T or
/1 SCOTT. PARTTI MESTUDENT T

Working with Oracle Object Types 9-37

Object-Type Inheritance

Using SQLData Mapping

With SQLDat a mapping, the JDBC driver returns the database object as an instance
of the class implementing the SQLDat a interface.

To use SQLDat a mapping in retrieving database objects, do the following:

1. Implement the wrapper classes that implement the SQLDat a interface for the
desired object types.

2. Populate the connection type map with entries that specify what custom Java
type corresponds to each Oracle object type (SQL object type).

3. Use the get Obj ect () method to access the SQL object values.

The JDBC driver checks the type map for a entry match. If one exists, the driver
returns the database object as an instance of the class implementing the
SQLDat a interface.

The following code shows the whole SQLDat a customized mapping process:

/] The JDBC application devel oper inplenments Person.java for PERSON T,
/] Student.java for STUDENT_ T
/] and ParttimeStudent.java for PARTTI MESTUDEN_T.

Connection conn = ...; // make a JDBC connection

/] obtains the connection typemap
java.util.Map map = conn. get TypeMap ();

/] populate the type map

map. put (" SCOTT. PERSON T, O ass. forName ("Person"));

map. put (" SCOTT. STUDENT_T", Class.forNanme ("Student"));

map. put (" SCOTT. PARTTI MESTUDENT_T", C ass.forNane ("ParttineStudent"));

/] tabl.person colum can store PERSON T, STUDENT_T and PARTTI MESTUDENT_T
obj ect s

Resul t Set rset = stnt.executeQuery ("select person fromtabl");

while (rset.next())

{

/1 "s" is instance of Person, Student or Partti neStudent
Cbj ect s = rset.gethject(1);

if (s !=null)

{

9-38 Oracle9i JDBC Developer's Guide and Reference

Object-Type Inheritance

if (s instanceof Person)
Systemout.println ("This is a Person");
el se if (s instanceof Student)
Systemout.println ("This is a Student");
else if (s instanceof ParttimeStudent)
Systemout.pritnln ("This is a PartimeStudent");
el se
Systemout. println ("Unknown type");

}
}

The JDBC drivers check the connection type map for each call to the following:

=« get Obj ect () method of the j ava. sql . Resul t Set and
java. sql . Cal | abl eSt at ement interfaces

=« getAttribute() method of the j ava. sqgl . Struct interface
= getArray() method of the j ava. sql . Arr ay interface
= get Val ue() method of the or acl e. sql . REF interface

Using ORAData Mapping

With ORADat a mapping, the JDBC driver returns the database object as an instance
of the class implementing the ORADat a interface.

The Oracle JDBC driver needs to be informed of what Java class is mapped to the
Oracle object type. The following are the two ways to inform the Oracle JDBC
drivers:

« The JDBC application uses the
get ORADat a(i nt idx, ORADataFactory f) method to access database
objects. The second parameter of the get ORADat a() method specifies an
instance of the factory class that produces the customized class. The
get ORADat a() method is available in the Or acl eResul t Set and
Or acl eCal | abl eSt at ement classes.

« The JDBC application populates the connection type map with entries that
specify what custom Java type corresponds to each Oracle object type. The
get bj ect () method is used to access the Oracle object values.

The first approach avoids the type-map lookup and is therefore more efficient.
However, the second approach involves the use of the standard get Cbj ect ()
method. The following code example demonstrates the first approach:

/] tabl.person colum can store both PERSON T and STUDENT_T objects

Working with Oracle Object Types 9-39

Object-Type Inheritance

Resul t Set rset = stnt.executeQuery ("select person fromtabl");
while (rset.next())
{
Cbject s = rset.getORAData (1, PersonFactory.get ORADat aFactory());
if (s !=null)
{
if (s instanceof Person)
Systemout.println ("This is a Person");
el se if (s instanceof Student)
Systemout.println ("This is a Student");
else if (s instanceof ParttimeStudent)
Systemout.pritnln ("This is a PartimeStudent");
el se
Systemout. println ("Unknown type");

Creating Subtype Objects

There are cases where JDBC applications create database subtype objects with JDBC
drivers. These objects are sent either to the database as bind variables or are used to
exchange information within the JDBC application.

With customized mapping, the JDBC application creates either SQLDat a- or
ORADat a-based objects (depending on which approach you choose) to represent
database subtype objects. With default mapping, the JDBC application creates
STRUCT objects to represent database subtype objects. All the data fields inherited
from the supertype as well as all the fields defined in the subtype must have values.
The following code demonstrates this:

Connection conn = ... /1 make a JDBC connection
Struct Descriptor desc = StructDescriptor.createDescriptor
(" SCOTT. PARTTI MESTUDENT", conn);
oj ect[] attrs = {
new | nteger(1234), "Scott", "500 Oracle Parkway", // data fields defined in

/1 PERSON_T

new | nteger(102), "CS', /] data fields defined in
/1 STUDENT_T

new | nteger(4) /] data fields defined in

/1 PARTTI MESTUDENT T
h
STRUCT s = new STRUCT (desc, conn, attrs);

9-40 Oracle9i JDBC Developer's Guide and Reference

Object-Type Inheritance

s is initialized with data fields inherited from PERSON_T and STUDENT _T, and data
fields defined in PARTTI MESTUDENT _T.

Sending Subtype Objects

In a typical JDBC application, a Java object that represents a database object is sent
to the databases as one of the following;:

= A Data Manipulation Language (DML) bind variable
« APL/SQLI Nparameter
= An object type attribute value

The Java object can be an instance of the STRUCT class or an instance of the class
implementing either the SQLDat a or ORADat a interface. The Oracle JDBC driver
will convert the Java object into the linearized format acceptable to the database
SQL engine. Binding a subtype object is the same as binding a normal object.

Accessing Subtype Data Fields

While the logic to access subtype data fields is part of the customized class, this
logic for default mapping is defined in the JDBC application itself. The database
objects are returned as instances of the or acl e. sql . STRUCT class. The JDBC
application needs to call one of the following access methods in the STRUCT class to
access the data fields:

« Object[] getAttribute()
« oracle.sql.Datun[] getOracleAttribute()

Subtype Data Fields from the getAttribute() Method

The get At tri but e() method of the j ava. sql . St ruct interface is used in
JDBC 2.0 to access object data fields. This method returns a j ava. | ang. Qbj ect
array, where each array element represents an object attribute. You can determine
the individual element type by referencing the corresponding attribute type in the
JDBC conversion matrix, as listed in Table 6-1, "Oracle Datatype Classes". For
example, a SQL NUMBER attribute is converted to aj ava. mat h. Bi gDeci nal
object. The get At t ri but e() method returns all the data fields defined in the
supertype of the object type as well as data fields defined in the subtype. The
supertype data fields are listed first followed by the subtype data fields.

Working with Oracle Object Types 9-41

Object-Type Inheritance

Subtype Data Fields from the getOracleAttribute() Method

The get Or acl eAt t ri but e() method is an Oracle extension method and is more
efficient than the get At t ri but e() method. The get Or acl eAttri but e()
method returns an or acl e. sql . Dat umarray to hold the data fields. Each element
in the or acl e. sql . Dat umarray represents an attribute. You can determine the
individual element type by referencing the corresponding attribute type in the
Oracle conversion matrix, as listed in Table 6-1, "Oracle Datatype Classes". For
example, a SQL NUMBER attribute is converted to an or acl e. sql . NUMBER object.
The get Or acl eAtt ri but e() method returns all the attributes defined in the
supertype of the object type, as well as attributes defined in the subtype. The
supertype data fields are listed first followed by the subtype data fields.

The following code shows the use of the get At t ri but e() method:

/] tabl.person colum can store PERSON_T, STUDENT_T and PARTI MESTUDENT_T obj ects
Resul t Set rset = stnt.executeQuery ("select person fromtabl");
while (rset.next())
{

oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getChject(1);

if (s !=null)

{

String sql name = s. get SQLTypeName() ;

bject[] attrs = s.getAttribute();

if (sglnane.equals ("SCOTT. PERSON')

{
Systemout.println ("ssn="+((BigDecimal)attrs[0]).intValue());
Systemout.println ("name="+((String)attrs[1]));
Systemout.println ("address="+((String)attrs[2]));

}

el se if (sql name.equal s ("SCOTT. STUDENT"))

{
Systemout.println ("ssn="+((BigDecimal)attrs[0]).intValue());
Systemout.println ("name="+((String)attrs[1]));
Systemout.println ("address="+((String)attrs[2]));
Systemout.println ("deptid="+((BigDecimal)attrs[3]).intValue());
Systemout.println ("major="+((String)attrs[4]));

}

el se if (sql name.equal s ("SCOTT. PARTTI MESTUDENT"))

{

Systemout.println ("ssn="+((BigDecimal)attrs[0]).intValue());
Systemout.println ("name="+((String)attrs[1]));
Systemout.println ("address="+((String)attrs[2]));

9-42 Oracle9i JDBC Developer's Guide and Reference

Object-Type Inheritance

Systemout.println ("deptid="+((BigDecimal)attrs[3]).intValue());
Systemout.println ("major="+((String)attrs[4]));
Systemout. println ("numHours="+((Bi gDecimal)attrs[5]).intValue());

}

el se
throw new Exception ("Invalid type name: "+sql nane);

}
}

rset.close ();
stnt.close ();
conn. close ();

Inheritance Meta Data Methods

Oracle9i JDBC drivers provide a set of meta data methods to access inheritance
properties. The inheritance meta data methods are defined in the

oracl e.sqgl . StructDescriptor andoracl e.jdbc. Struct Met aDat a
classes.

The or acl e. sqgl . Struct Descri pt or class provides the following inheritance
meta data methods:

= String[] getSubtypeNames() :returns the SQL type names of the direct
subtypes

= bool ean i sFinal Type() : indicates whether the object type is a final type.
An object type is FI NAL if no subtypes can be created for this type; the default
is FI NAL, and a type declaration must have the NOT FI NAL keyword to be
"subtypable"

= bool ean i sSubTyp() :indicates whether the object type is a subtype.

= bool ean islnstantiabl e() :indicates whether the object type is
instantiable; an object type is NOT | NSTANTI ABLE if it is not possible to
construct instances of this type

= String getSupertypeNanme() :returns the SQL type names of the direct
supertype

=« int getlLocal AttributeCount () :returns the number of attributes defined
in the subtype

The St r uct Met aDat a class provides inheritance meta data methods for subtype
attributes; the get Met aDat a() method of the St r uct Descri pt or class returns

Working with Oracle Object Types 9-43

Object-Type Inheritance

an instance of St r uct Met aDat a of the type. The St r uct Met aDat a class contains
the following inheritance meta data methods:

« int getLocal Col umCount () : returns the number of attributes defined in
the subtype, which is similar to the get Local Attri but eCount () method of
the St ruct Descri pt or class

« bool ean islnherited(int colum) :indicates whether the attribute is
inherited; the column begins with 1

9-44 Oracle9i JDBC Developer's Guide and Reference

Using JPublisher to Create Custom Object Classes

Using JPublisher to Create Custom Object Classes

A convenient way to create custom object classes, as well as other kinds of custom
Java classes, is to use the Oracle JPublisher utility. It generates a full definition for a
custom Java class, which you can instantiate to hold the data from an Oracle object.
JPublisher-generated classes include methods to convert data from SQL to Java and
from Java to SQL, as well as getter and setter methods for the object attributes.

This section offers a brief overview. For more information, see the Oracle9i
JPublisher User’s Guide.

JPublisher Functionality

You can direct JPublisher to create custom object classes that implement either the
SQLDat a interface or the ORADat a interface, according to how you set the
JPublisher type mappings.

If you use the ORADat a interface, JPublisher will also create a custom reference
class to map to object references for the Oracle object type. If you use the SQLDat a
interface, JPublisher will not produce a custom reference class; you would use
standard j ava. sqgl . Ref instances instead.

If you want additional functionality, you can subclass the custom object class and
add features as desired. When you run JPublisher, there is a command-line option
for specifying both a generated class name and the name of the subclass you will
implement. For the SQL-Java mapping to work properly, JPublisher must know the
subclass name, which is incorporated into some of the functionality of the generated
class.

Note: Hand-editing the JPublisher-generated class, instead of
subclassing it, is not recommended. If you hand-edit this class and
later have to re-run JPublisher for some reason, you would have to
re-implement your changes.

JPublisher Type Mappings

JPublisher offers various choices for how to map user-defined types and their
attribute types between SQL and Java. The rest of this section lists categories of SQL
types and the mapping options available for each category.

For general information about SQL-Java type mappings, see "Datatype Mappings"
on page 3-16.

Working with Oracle Object Types 9-45

Using JPublisher to Create Custom Object Classes

For more information about JPublisher features or options, see the Oracle9i
JPublisher User’s Guide.

Categories of SQL Types

JPublisher categorizes SQL types into the following groups, with corresponding
JPublisher options as noted:

= user-defined types (UDT)—Oracle objects, references, and collections

Use the JPublisher - user t ypes option to specify the type-mapping
implementation for UDTs—either a standard SQLDat a implementation or an
Oracle-specific ORADat a implementation.

= numeric types—anything stored in the database as SQL type NUMBER

Use the JPublisher - nunber t ypes option to specify type-mapping for numeric
types.
=« LOB types—SQL types BLOB and CLOB

Use the JPublisher - | obt ypes option to specify type-mapping for LOB types.

= built-in types—anything stored in the database as a SQL type not covered by
the preceding categories; for example: CHAR, VARCHAR2, LONG, and RAW

Use the JPublisher - bui | ti nt ypes option to specify type-mapping for built-in
types.

Type-Mapping Modes
JPublisher defines the following type-mapping modes, two of which apply to
numeric types only:

« JDBC mapping (setting j dbc)—Uses standard default mappings between SQL
types and Java native types. For a custom object class, uses a SQLDat a
implementation.

= Oracle mapping (setting or acl e)—Uses corresponding or acl e. sqgl types to
map to SQL types. For a custom object, reference, or collection class, uses a
ORADat a implementation.

« object-JDBC mapping (for numeric types only) (setting obj ect j dbc)—This is
an extension of JDBC mapping. Where relevant, object-JDBC mapping uses
numeric object types from the standard j ava. | ang package (such as
java.l ang. I nt eger, Fl oat, and Doubl e), instead of primitive Java types
(suchasint,fl oat,and doubl e). The j ava. | ang types are nullable, while
the primitive types are not.

9-46 Oracle9i JDBC Developer's Guide and Reference

Using JPublisher to Create Custom Object Classes

Bi gDeci mal mapping (for numeric types only) (setting bi gdeci mal)—Uses
j ava. mat h. Bi gDeci mal to map to all numeric attributes; appropriate if you
are dealing with large numbers but do not want to map to the

oracl e. sgl . NUMBER class.

Note: Using Bi gDeci mal mapping can significantly degrade
performance.

Mapping the Oracle object type to Java

Use the JPublisher - user t ypes option to determine how JPublisher will
implement the custom Java class that corresponds to a Oracle object type:

A setting of - user t ypes=or acl e (the default setting) instructs JPublisher to
create a ORADat a implementation for the custom object class.

This will also result in JPublisher producing a ORADat a implementation for the
corresponding custom reference class.

A setting of - user t ypes=j dbc instructs JPublisher to create a SQLDat a
implementation for the custom object class. No custom reference class can be
created—you must use j ava. sql . Ref or or acl e. sql . REF for the reference

type.

The next section discusses type mapping options that you can use for object
attributes.

Note: You can also use JPublisher with a - usert ypes=or acl e
setting in creating ORADat a implementations to map SQL
collection types.

The - user t ypes=j dbc setting is not valid for mapping SQL
collection types. (The SQLDat a interface is intended only for
mapping Oracle object types.)

Mapping Attribute Types to Java

If you do not specify mappings for the attribute types of the Oracle object type,
JPublisher uses the following defaults:

For numeric attribute types, the default mapping is object-JDBC.
For LOB attribute types, the default mapping is Oracle.

Working with Oracle Object Types 9-47

Using JPublisher to Create Custom Object Classes

« For built-in type attribute types, the default mapping is JDBC.

If you want alternate mappings, use the - nunber t ypes, - | obt ypes, and
- bui | ti nt ypes options as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself an Oracle object type, it will be mapped according to the
- usertypes setting.

Important: Be especially aware that if you specify a SQLDat a
implementation for the custom object class and want the code to be
portable, you must be sure to use portable mappings for the
attribute types. The defaults for numeric types and built-in types
are portable, but for LOB types you must specify

-1 obt ypes=j dbc.

Summary of SQL Type Categories and Mapping Settings

Table 9-1 summarizes JPublisher categories for SQL types, the mapping settings
relevant for each category, and the default settings.

Table 9-1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type JPublisher

Category Mapping Option ~ Mapping Settings Default
UDT types -usertypes oracle, jdbc oracle
numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc
LOB types -lobtypes oracle, jdbc oracle
built-in types -builtintypes oracle, jdbc jdbc

Note: The JPublisher - mappi ng option used in previous releases
will be deprecated but is currently still supported. For information
about how JPublisher converts -mapping option settings to settings
for the new mapping options, see the Oracle9i [Publisher User’s
Guide.

9-48 Oracle9i JDBC Developer's Guide and Reference

Describing an Object Type

Describing an Object Type

Oracle JDBC includes functionality to retrieve information about a structured object
type regarding its attribute names and types. This is similar conceptually to
retrieving information from a result set about its column names and types, and in
fact uses an almost identical method.

Functionality for Getting Object Meta Data

The or acl e. sql . Struct Descri pt or class, discussed earlier in "STRUCT
Descriptors" on page 9-4 and "Steps in Creating StructDescriptor and STRUCT
Objects" on page 9-4, includes functionality to retrieve meta data about a structured
object type.

The St ruct Descri pt or class has a get Met aDat a() method with the same
functionality as the standard get Met aDat a() method available in result set
objects. It returns a set of attribute information such as attribute names and types.
Call this method on a St ruct Descr i pt or object to get meta data about the Oracle
object type that the St ruct Descri pt or object describes. (Remember that each
structured object type must have an associated St r uct Descr i pt or object.)

The signature of the St r uct Descri pt or class get Met aDat a() method is the
same as the signature specified for get Met aDat a() in the standard Resul t Set
interface:

« Result Set Met aDat a get Met aData() throws SQ.LException

However, this method actually returns an instance of

oracl e. jdbc. Struct Met aDat a, a class that supports structured object meta
data in the same way that the standard j ava. sql . Resul t Set Met aDat a interface
specifies support for result set meta data.

The St r uct Met aDat a class includes the following standard methods that are also
specified by Resul t Set Met aDat a:

« String get Col umNarme(int colum) throws SQ.Exception

This returns a St r i ng that specifies the name of the specified attribute, such as
"salary".

« int getColumType(int colum) throws SQ.Exception

This returns an i nt that specifies the typecode of the specified attribute,
according to the j ava. sql . Types and or acl e. j dbc. Oracl eTypes classes.

« String get Col umTypeNane(int columm) throws SQ.Exception

Working with Oracle Object Types 9-49

Describing an Object Type

This returns a string that specifies the type of the specified attribute, such as
"BigDecimal".

i nt get Col umCount () throws SQLException

This returns the number of attributes in the object type.

As well as the following method, supported only by St r uct Met aDat a:

String get Oracl eCol unmCl assNanme(i nt col um)
t hrows SQLException

This returns the fully-qualified name of the or acl e. sql . Dat umsubclass
whose instances are manufactured if the Or acl eResul t Set class

get Or acl eCbj ect () method is called to retrieve the value of the specified
attribute. For example, "or acl e. sql . NUMBER".

To use the get Or acl eCol umCl assName() method, you must cast the
Resul t Set Met aDat a object (that was returned by the get Met aDat a()
method) to a St ruct Met aDat a object.

Note: In all the preceding method signatures, "column" is
something of a misnomer. Where you specify a "column" of 4, you
really refer to the fourth attribute of the object.

Steps for Retrieving Object Meta Data

Use the following steps to obtain meta data about a structured object type:

1.

Create or acquire a St r uct Descr i pt or instance that describes the relevant
structured object type.

Call the get Met aDat a() method on the St r uct Descr i pt or instance.

Call the meta data getter methods as desired—get Col utmNane(),
get Col umType(),and get Col umTypeNamne() .

Note: If one of the structured object attributes is itself a structured
object, repeat steps 1 through 3.

Example The following method shows how to retrieve information about the
attributes of a structured object type. This includes the initial step of creating a
St ruct Descri pt or instance.

9-50 Oracle9i JDBC Developer's Guide and Reference

Describing an Object Type

11

/] Print out the ADT's attribute names and types

I

voi d getAttributelnfo (Connection conn, String type_nane) throws SQLException
{

/] get the type descriptor
Struct Descriptor desc = StructDescriptor.createDescriptor (type_nane, conn);

/'l get type neta data
Resul t Set Met aData nd = desc. get Met abData ();

/] get # of attrs of this type
int numittrs = desc.length ();

/] tenporary buffers
String attr_nane;

int attr_type;
String attr_typeNane;

Systemout.printin ("Attributes of "+type_name+" :");
for (int i=0; i<numAttrs; i++)

{

attr_name = nd. get Col utmNane (i +1);
attr_type = nd. get Col uimType (i+1);
Systemout.printlin (" index"+(i+1)+" name="+attr_name+" type="+attr_type);

[l drill down nested object
if (attrType == Oracl eTypes. STRUCT)

attr_typeNane = nd. get Col umTypeNane (i+1);

/] recursive calls to print out nested object neta data
getAttributelnfo (conn, attr_typeName);
}
}
}

Working with Oracle Object Types 9-51

SQLJ Object Types

SQLJ Object Types

This section describes how to use Oracle9i JDBC drivers to access SQL]J object types,
SQL types for user-defined object types according to the Information Technology -
SQLJ - Part 2: SQL Types using the Java™ Programming Language document (ANSI
NCITS 331.2-2000).

Note: SQLJ object types can either be in serialized or SQL
representation. Because Oracle does not support SQL]J object types
in serialized representation, this manual describes only SQL]J object
types in SQL representation.

According to the Information Technology - SQL]J - Part 2 document, a SQL] object type
is a database object type designed for Java. A SQLJ object type maps to a Java class.
Once the mapping is "registered" through the extended SQL CREATE TYPE
command (a DDL statement), the Java application can insert or select the Java
objects directly into or from the database through an Oracle9i JDBC driver. The
database SQL engine can access the data fields of these Java objects, stored as SQL
attributes in the database, as well as invoke the methods defined in these Java
objects.

The extended SQL CREATE TYPE command is further discussed in "Creating a Java
Class Definition for a SQLJ Object Type" on page 9-53.

SQLJ object type functionality has the following features:

= Publishes pre-existing Java classes to SQL using the extended SQL CREATE
TYPE command, creating a mapping between the SQL type and the Java type;
no type map is necessary

= Provides a standard way to access Java objects in the database
= Provides a standard way to store Java objects persistently

= Accesses static fields in a Java class using SQL static functions and defines SQL
member functions having side effects, which is useful in UPDATE statements

9-52 Oracle9i JDBC Developer's Guide and Reference

SQLJ Object Types

Note: SQLJ object type functionality is similar to the use of custom
Java classes to map to Oracle object types (SQL object types). The
difference between SQLJ object type functionality and custom Java
class functionality is that with SQL]J object types, you start with a
Java class and then create a corresponding SQL type, instead of the
other way around. See "Creating and Using Custom Object Classes
for Oracle Objects" on page 9-10 and "SQLJ Object Types and
Custom Object Types Compared" on page 9-62.

You can obtain additional information on SQLJ object types at the ANSI Web site:

http://ww. ansi . org/

Creating a SQLJ Object Type in SQL Representation

There are three general steps involved in creating a SQLJ object type in a database:
1. Create the Java class whose instances will be accessed by the database.

See "Creating a Java Class Definition for a SQLJ Object Type" below.
2. Load the class definition into the database.

See "Loading the Java Class into the Database" on page 9-55.

3. Use the extended SQL CREATE TYPE command in Oracle9i to create a SQLJ
object type that represents the Java type.

See "Creating the SQL]J Object Type in the Database" on page 9-55.

Creating a Java Class Definition for a SQLJ Object Type

To use SQLJ object type functionality, the Java class must implement one of the
following Java interfaces:

« java.sqgl.SQ.Data
« oracle.sqgl.ORADat a (and or acl e. sql . ORADat aFact ory)

Working with Oracle Object Types 9-53

SQLJ Object Types

Note: The ORADat a interface has replaced the Cust onDat um
interface. While the latter interface is deprecated for Oracle9i, it is
still supported for backward compatibility. See "The Deprecated
CustomDatum Interface" on page 9-27 for complete details.

The Java class corresponding to a SQLJ object type implements the SQLDat a
interface or the ORADat a and ORADat aFact ory interfaces, as is the case for
custom Java classes that correspond to user-defined Oracle object types in previous
Oracle JDBC implementations. The Java class provides methods for moving data
between SQL and Java—either using the r eadSQL() and wri t eSQL() methods
for classes implementing the SQLDat a interface, or the t oDat un() method for
classes implementing the ORADat a interface.

The following code shows how the Per son class for the SQL]J object type, PERSON_
T, implements the SQLDat a interface:

inport java.sql.*;
inport java.io.*;

public class Person inplenents SQLData
{
private String sql _type = "SCOIT. PERSON_T";
private int ssn;
private String nane;
private Address address;
public String getNane() {return nane;}
public void setName(String nan) {name = nam};
public Address getAddress() {return address;}
public void setAddress(Address addr) {address = addr;}

public Person () {}
public String get SQLTypeName() throws SQLException { return sqgl_type; }
public void readSQ(SQI nput stream String typeNane) throws SQLException
{ sql _type = typeNane;

ssn = streamreadint();

name = streamreadString();
address = streamreadObject();

public void witeSQL(SQCQutput stream) throws SQLException

9-54 Oracle9i JDBC Developer's Guide and Reference

SQLJ Object Types

{

streamwitelnt (ssn);
streamwiteString (name);
streamwiteCbject (address);

}

/] other nethods
public int length () { ... }

}

Loading the Java Class into the Database

Once you create the Java class, the next step is to make it available to the database.
To do this, use the Oracle | oadj ava tool to load the Java class into the database.
See the Oracle9i Java Developer’s Guide for a complete description of the | oadj ava
tool.

Note: You can also invoke the | oadj ava tool by calling the
dbrms_j ava. | oadj ava (' ...’) procedure from SQL*Plus,
specifying the | oadj ava command line as the input string.

The following command shows the | oadj ava tool loading the Per son class into
the database:

% loadjava -u SCOTT/TIGER -r -f -v Person.class

Creating the SQLJ Object Type in the Database

The final step in creating a SQL]J object type is to use the extended SQL CREATE
TYPE command to create the type, specifying the corresponding Java class in the
EXTERNAL NAME clause.

The follow code shows that PERSON_T is the SQLJ object type and Per son is the
corresponding Java class:

CREATE TYPE person_t AS OBJECT EXTERNAL NAME ' Person' LANGUAGE JAVA
USI NG SQLDat a
(ss_no nunber (9) external nane 'ssn',
name VARCHAR2(200) external nanme 'name',
address Address_t external nane 'address',
menber function length return nunber external name 'length () returnint');

Working with Oracle Object Types 9-55

SQLJ Object Types

The extended SQL CREATE TYPE command performs the following functions:

= Itchecks to see if a Java class exists that corresponds to the SQLJ object type and
whether this class is public and implements the required interface as specified
in the USI NGclause (see the catalog book Magdi told you about).

« It populates the database catalog with the external names for attributes,
functions, and the Java class.

« If external attribute names are used, then the extended SQL CREATE TYPE
command checks for the existence of the Java fields (as specified in the
EXTERNAL NAME clause) and whether these fields are compatible with
corresponding SQL attributes.

« If external attribute names are used, then the extended SQL CREATE TYPE
command validates the SQL external function against the Java class methods.

« It generates internal classes to support constructors, external static variable
names, and external functions that return sel f as a result. The classes are
stored in the same schema as the SQLJ object type.

See the Oracle9i SQL Reference for a complete description of the extended SQL
CREATE TYPE command.

Once a SQL]J object type is created, it can be used for the column type of a database
table as well as for attributes of other object types. The database SQL engine can
access the attributes of the SQL]J object type as well as invoke methods. For
example, in SQL*Plus you can do the following:

SQ> select col2.ss_no fromtab2;

SQL> select col2.length() fromtab2;

External Attribute Names The extended SQL CREATE TYPE command validates the
compatibility between SQL]J object type attributes and corresponding Java fields by
comparing the external attribute names (ext er nal name variables) to the
corresponding Java fields. An external attribute name specifies a field in the Java
class. For example, in the following code, the ssn external name specifies the ss_
no field in the Per son Java class:

CREATE TYPE person_t AS OBJECT EXTERNAL NAME ' Person' LANGUAGE JAVA
USI NG SQLDat a

(ss_no nunber (9) external nane 'ssn',

name VARCHAR2(200) external name 'name',

address Address_t external nane 'address',

9-56 Oracle9i JDBC Developer's Guide and Reference

SQLJ Object Types

menber function length return nunber external name 'length () returnint');
/

Though optional, external attribute names are good to use when one-to-one
correspondences exists between the attributes of a SQLJ object type and the fields of
a corresponding Java class. If you choose to use this feature and a declared external
attribute name does not exist in the Java class or the SQL attribute is not compatible
with the external attribute type, then a SQL error occurs upon executing the
extended SQL CREATE TYPE command. Or if the provided SQLDat a or CRADat a
interface implementation does not support compatible mapping between a SQL
attribute and its corresponding Java field, then an exception may occur.

Note: A SQL attribute declared with an external attribute name
may refer to a private Java field.

External SQL Functions The extended SQL CREATE TYPE command validates the
compatibility between SQL]J object type functions and corresponding Java methods
by comparing the external SQL function (VEMBER FUNCTI ONor STATI C

FUNCTI ON) to the corresponding Java method. An external SQL function specifies a
method in the Java class.

Note: Unlike an external attribute name, an external SQL function
is mandatory.

Working with Oracle Object Types 9-57

SQLJ Object Types

When creating a SQLJ object type in the database, you can declare one or more
external SQL functions along with the attributes. Table 9-2 describes the possible
kinds of functions that you can use in the creation of a SQLJ object type:

Table 9-2 Kinds of External SQL Functions for a SQLJ Object Type

Function Kind Syntax

Static functions Oracle- STATIC FUNCTION foo (...) RETURN
specific NUMBER EXTERNAL NAME 'bar (...)
return doubl e’

Member function SQLJ Part2 MEMBER FUNCTION foo (...) RETURN
Standard NUMBER EXTERNAL NAME 'todo (...)
return doubl e’

Static function that returns Oracle- STATI C FUNCTI ON f oo RETURN NUMBER
the value of a static Java specific EXTERNAL VARI ABLE NAME 'mex_| engt h’
field, which can only be

public

Static function that callsa Oracle- STATIC FUNCTION foo (...) RETURN
constructor in Java specific person_t EXTERNAL NAME ' Person (...)

return Person’

Member function thathas SQLJ Part2 MEMBER FUNCTI ON foo (...) RETURN
a side effect (changes the =~ Standard SELF AS RESULT EXTERNAL NAME ' dunp
state of an object) (...) return Person’

Code Examples The following code shows some typical external SQL functions being
declared for a SQL]J object type:

CREATE TYPE person_t AS OBJECT EXTERNAL NAME ' Person' LANGUAGE JAVA
USI NG SQLDat a

(

num nunber external name 'foo’,

STATI C function construct (num nunber) return person_t
external name ' Person.Person (int) return Person’,
STATI C function maxval ue return nunber external variable name 'max_length’,
MEMBER function selfish (numnunmber) return self as result
external name 'Person.dunp (java.lang.lnteger) return Person’

)

The following code shows how to create the SQLJ object type PERSON_T to
represent the Java class Per son:

CREATE TYPE person_t AS OBJECT EXTERNAL NAME ' Person' LANGUAGE JAVA

9-58 Oracle9i JDBC Developer's Guide and Reference

SQLJ Object Types

USI NG SQLDat a
(
ss_no NUMBER(9) EXTERNAL NAME 'ssn',
nane VARCHAR2(100) EXTERNAL NAME 'nane',
address address_t EXTERNAL NAME 'address',
MEMBER FUNCTI ON | engt h RETURN i nt eger EXTERNAL NAME 'l ength() return int'

Creating SQLJ Object Types Using JDBC As an alternative to creating a SQLJ object type
directly in SQL, using a tool such as SQL*Plus, you can create a SQL]J object type
using JDBC code. The following code shows this:

Connection conn =
Statement stnt = conn.createStatenent();
String sql =
"CREATE TYPE person_t as object external name 'Person' |anguage java
" using SQLData "+
T
" ss_no nunber(9), "+
nane var char2(100), "+
address address_t "+

|l)|l;
stnt.execute(sql);
stnt.close(); /'l release the resource
conn. cl ose(); /] close the database connection

create table tabl (coll nunber, col2 person_t);

insert into tabl values (1, person_t(100, 'Scott', address_t('some street',
"sonme city', '"CA'", '12345"));

insert into tabl

Inserting an Instance of a SQLJ Object Type

To create a SQLJ object type instance, the JDBC application creates a corresponding
Java instance and then inserts it into the database using the | NSERT statement. The
Java instance can be inserted in one of the following ways:

= Abind variable
= APL/SQLI Nparameter
= An object attribute value

Working with Oracle Object Types 9-59

SQLJ Object Types

Before sending the Java object to the database, the Oracle JDBC driver converts it
into a format acceptable to the database SQL engine.

To create a SQL]J object type of per son_t , as described in previous sections, the
JDBC application creates a Per son object and then inserts it into the database. The
following code binds the per son_t SQLJ object type instance in a SQL insert
statement:

Person person = new Person();

person.ssn = 1000;

person. nane = "SCOTT";

person. address = new Address ("sonme street", "sone city", "CA', 12345);

/] insert a SQLJ Object "person_t"

Prepar edSt at ement pstmt = conn. prepareStatenent ("insert into tabl (1, ?)");
pstnt.set Cbject (1, person);

pstnt. execute ();

Binding a Java instance of a SQLJ object type is equivalent to binding a Java
instance of a regular Oracle object type.

Retrieving Instances of a SQLJ Object Type

In a typical JDBC application, Java instances of a SQL] object type are returned from
one of the following:

= Query results

= PL/SQL OUT parameters
= Object type attributes

= Collection elements

In each case, the Oracle JDBC driver materialize the database SQL] object type
instances as instances of the corresponding Java class.

See "Code Examples" on page 9-58, to learn how the SQL]J object type per son_t
and a database table are created.

Retrieving a SQLJ Object Type Instance Through Database Queries

When a JDBC application queries a column of SQL]J object types in a table, the
column values are returned as instances of the Java class that corresponds to the
SQL]J object type.

9-60 Oracle9i JDBC Developer's Guide and Reference

SQLJ Object Types

Assume that you have table t ab1 containing column col 1 of SQLJ object type
PERSON_T. If PERSON_T was created to map to the Java class Per son, then
querying col 1 through the Oracle JDBC driver will return the data as instances of
the Per son class. The following code shows this:

Resul t Set rset = stnt.executeQuery ("select coll fromtabl");
while (rset.next())
Person value = (Person) rset.gethject(1);

Notes:

« If the Java class does not exist on the client when the SQL]J
object type is returned, a run-time exception occurs.

« If the Java class exists on the client but has been modified, then
the SQLJ object type will only be read or written properly if the
readSQL() and wri t eSQL() methods for the SQLDat a
interface, or the cr eat e() and t oDat um() methods for the
ORADat a interface, remain compatible with the original set of
SQL attributes.

Retrieving a SQLJ Object Type Instance as an Output Parameter

Use the Or acl eTypes. JAVA_STRUCT typecode as input to the
regi st er Qut Par anet er () method to register a SQLJ object type as a PL/SQL
QUT parameter. The following code shows this:

Cal | abl eStatement cstnt = conn.prepareCall (...);
cstnt.registerCQutParaneter (1, O acl eTypes.JAVA STRUCT, "SCOIT.PERSON T");

cstnt. execute();
Person value = (Person) cstnt.getbject (1);

Meta Data Methods for SQLJ Object Types

Meta data methods are used to query the properties of a datatype. The meta data
methods for SQLJ object types are defined in the

oracl e. sqgl . Struct Descri pt or class and the

oracl e. j dbc. Struct Met aDat a interface.

To obtain the type descriptor, use the static cr eat eDescri pt or () factory method
of theoracl e. sql . Struct Descri pt or class as follows:

Working with Oracle Object Types 9-61

SQLJ Object Types

public static StructDescriptor createDescriptor(String name, Connection conn)
throws SQLException
Where nane is the SQLJ object type and conn is the connection to the database.

The or acl e. sql . Struct Descri ptor class defines the following meta data
(instance) methods:

= bool ean i sJavabj ect () :indicates whether the type descriptor points to a
SQL] object type

« String getJavaC assNane() :returns the name of the Java class
corresponding to the SQLJ object type

= String getLanguage() :returns the string JAVA for a SQL]J object type and
returns nul | for an Oracle object type (SQL object type)

=« Result Set Met aDat a get Met aDat a() : returns the meta data of the SQLJ
object type as a result set meta data type (see "Functionality for Getting Object
Meta Data" on page 9-49)

= getLocal AttributeCount () :returns the number of local attributes being
used, which does not include those used through inheritance

The or acl e. j dbc. St ruct Met aDat a interface provides the following method:

= String getAttributeJavaName(int i dx):returns the field name given
the relative position of the SQL attribute; the relative position starts at zero and
inherited attributes are included

SQLJ Object Types and Custom Object Types Compared

This section describes the differences between SQLJ object types and Oracle object
types (custom object types).

9-62 Oracle9i JDBC Developer's Guide and Reference

SQLJ Object Types

Table 9-3 SQLJ Object Type and Custom Object Type Features Compared

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Typecodes Use the Or acl eTypes. JAVA _STRUCT Use the Or acl eTypes. STRUCT typecode
typecode to register a SQLJ object typeasa to register a custom object type as a SQL OUT
SQL QUT parameter. The parameter. The Or acl eTypes. STRUCT
Or acl eTypes. JAVA_STRUCT typecode typecode is also used in the _ SQL_
is also used in the _SQL_TYPECCDE field =~ TYPECCDE field of a class implementing the
of a class implementing the ORADat a or ORADat a or SQLDat a interface.The
SQLDat a interface. This typecode is Or acl eTypes. STRUCT typecode is
reported in a Resul t Set Met aDat a reported in a Resul t Set Met aDat a
instance and meta data or stored procedure. instance and meta data or stored procedure.

Creation Create a Java class implementing the Issue the extended SQL CREATE TYPE
SQLDat a or ORADat a and command for a custom object type and then
ORADat aFact ory interfaces first and create the SQLDat a or ORADat a Java
then load the Java class into the database. wrapper class using JPublisher, or do this
Next, issue the extended SQL CREATE manually. See "Using JPublisher to Create
TYPE command to create the SQLJ object Custom Object Classes” on page 9-45 for
type. complete details.

Method Support Supports external names, constructor calls, There is no default class for implementing
and calls for member functions with side type methods as Java methods. Some methods
effects. See Table 9-2, "Kinds of External SQL may also be implemented in SQL.

Functions for a SQL]J Object Type" on
page 9-58 for a complete description.

Type Mapping Type mapping is automatically done by the =~ Register the correspondence between SQL and
extended SQL CREATE TYPE command. Javain a type map. Otherwise, the type is
However, the SQLJ object type musthavea materialized as or acl e. sql . STRUCT.
defining Java class on the client.

Corresponding If the corresponding Java class is missing If the corresponding Java class is missing

Java Class is when a SQLJ object type is returned to the when a custom object type is returned to the

Missing client, you will receive an exception. client, then or acl e. sql . STRUCT is used.

Inheritance There are rules for mapping SQL hierarchy =~ There are no mapping rules.

to a Java class hierarchy. See the Oracle9i
SQL Reference for a complete description of
these rules.

Working with Oracle Object Types 9-63

SQLJ Object Types

9-64 Oracle9i JDBC Developer's Guide and Reference

10

Working with Oracle Object References

This chapter describes Oracle extensions to standard JDBC that let you access and
manipulate object references. The following topics are discussed:

« Oracle Extensions for Object References

= Overview of Object Reference Functionality

« Retrieving and Passing an Object Reference

« Accessing and Updating Object Values through an Object Reference

» Custom Reference Classes with JPublisher

Working with Oracle Object References 10-1

Oracle Extensions for Object References

Oracle Extensions for Object References

Oracle supports the use of references (pointers) to Oracle database objects. Oracle
JDBC provides support for object references as:

= columns in a SELECT-list

=« | Nor QUT bind variables

= attributes in an Oracle object

= elements in a collection (array) type object

In SQL, an object reference (REF) is strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference in Oracle JDBC, be aware that you are
retrieving only a pointer to an object, not the object itself. You have the choice of
materializing the reference as a weakly typed or acl e. sql . REF instance (or a

j ava. sql . Ref instance for portability), or materializing it as an instance of a
custom Java class that you have created in advance, which is strongly typed.
Custom Java classes used for object references are referred to as custom reference
classes in this manual and must implement the or acl e. sql . ORADat a interface.

The or acl e. sql . REF class implements the standard j ava. sql . Ref interface
(oracl e. j dbc2. Ref under JDK 1.1.x).

You can retrieve a REF instance through a result set or callable statement object, and
pass an updated REF instance back to the database through a prepared statement or
callable statement object. The REF class includes functionality to get and set
underlying object attribute values, and get the SQL base type name of the
underlying object (for example, EMPLOYEE).

Custom reference classes include this same functionality, as well as having the
advantage of being strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until runtime.

For more information about custom reference classes, see "Custom Reference
Classes with JPublisher" on page 10-10.

10-2 Oracle9i JDBC Developer's Guide and Reference

Oracle Extensions for Object References

Notes:

If you are using the or acl e. sql . ORADat a interface for
custom object classes, you will presumably use ORADat a for
corresponding custom reference classes as well. If you are using
the standard j ava. sql . SQLDat a interface for custom object
classes, however, you can only use weak Java types for
references (j ava. sql . Ref ororacl e. sql . REF). The
SQLDat a interface is for mapping SQL object types only.

You cannot create REF objects in your JDBC application; you
can only retrieve existing REF objects from the database.

You cannot have a reference to an array, even though arrays,
like objects, are structured types.

Working with Oracle Object References 10-3

Overview of Object Reference Functionality

Overview of Object Reference Functionality

To access and update object data through an object reference, you must obtain the
reference instance through a result set or callable statement and then pass it back as
a bind variable in a prepared statement or callable statement. It is the reference
instance that contains the functionality to access and update object attributes.

This section summarizes the following:

= statement and result set getter and setter methods for passing REF instances
from and to the database

= REF class functionality to get and set object attributes

Remember that you can use custom reference classes instead of the ARRAY class. See
"Custom Reference Classes with JPublisher" on page 10-10.

Object Reference Getter and Setter Methods

Use the following result set, callable statement, and prepared statement methods to
retrieve and pass object references. Code examples are provided later in the chapter.

Result Set and Callable Statement Getter Methods The Or acl eResul t Set and

Or acl eCal | abl eSt at ement classes support get REF() and get Ref () methods
to retrieve REF objects as output parameters—either as or acl e. sql . REF instances
orj ava. sgl . Ref instances (or acl e. j dbc2. Ref under JDK 1.1.x). You can also
use the get Qbj ect () method. These methods take as input a St r i ng column
name or i nt column index.

Prepared and Callable Statement Setter Methods The Or acl ePr epar edSt at enent and
Or acl eCal | abl eSt at ement classes support set REF() and set Ref () methods
to take REF objects as bind variables and pass them to the database. You can also
use the set Qbj ect () method. These methods take as input a St r i ng parameter
name or i nt parameter index as well as, respectively, an or acl e. sql . REF
instance or a j ava. sqgl . Ref instance (or acl e. j dbc2. Ref under JDK 1.1.x).

Key REF Class Methods

Use the following or acl e. sql . REF class methods to retrieve the SQL object type
name and retrieve and pass the underlying object data.

= get BaseTypeNane() : Retrieves the fully-qualified SQL structured type name
of the referenced object (for example, EMPLOYEE).

This is a standard method specified by the j ava. sql . Ref interface.

10-4 Oracle9i JDBC Developer's Guide and Reference

Overview of Object Reference Functionality

get Val ue() : Retrieves the referenced object from the database, allowing you
to access its attribute values. It optionally takes a type map object, or else you
can use the default type map of the database connection object.

This method is an Oracle extension.

set Val ue() : Sets the referenced object in the database, allowing you to update
its attribute values. It takes an instance of the object type as input (either a
STRUCT instance or an instance of a custom object class).

This method is an Oracle extension.

Working with Oracle Object References 10-5

Retrieving and Passing an Object Reference

Retrieving and Passing an Object Reference

This section discusses JDBC functionality for retrieving and passing object
references.

Retrieving an Object Reference from a Result Set

To demonstrate how to retrieve object references, the following example first
defines an Oracle object type ADDRESS, which is then referenced in the PEOPLE
table:

create type ADDRESS as obj ect

(street _name VARCHAR2(30) ,

house_no NUMBER) ;

create table PEOPLE

(col 1 VARCHAR2(30),
col 2 NUMBER,
col 3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1.

Use a standard SQL SEL ECT statement to retrieve the reference from a database
table REF column.

Use get REF() to get the address reference from the result set into a REF object.

Let Addr ess be the Java custom class corresponding to the SQL object type
ADDRESS.

Add the correspondence between the Java class Addr ess and the SQL type
ADDRESS to your type map.

Use the get Val ue() method to retrieve the contents of the Addr ess reference.
Cast the output to a Java Addr ess object.

Here is the code for these steps (other than adding Addr ess to the type map),
where st nt is a previously defined statement object. The PEOPLE database table is
defined earlier in this section:

Result Set rs = stnt.executeQuery("SELECT col 3 FROM PECPLE");
while (rs.next())

{

10-6 Oracle9i JDBC Developer's Guide and Reference

Retrieving and Passing an Object Reference

}

REF ref = ((OracleResultSet)rs).get REF(1);
Address a = (Address)ref.getVal ue();

As with other SQL types, you could retrieve the reference with the get Obj ect ()
method of your result set. Note that this would require you to cast the output. For
example:

REF ref = (REF)rs.getOhject(1);

There are no performance advantages in using get Obj ect () instead of
get REF() ; however, using get REF() allows you to avoid casting the output.

Retrieving an Object Reference from a Callable Statement

To retrieve an object reference as an OUT parameter in PL/SQL blocks, you must
register the bind type for your OUT parameter.

1.

Cast your callable statement to an Or acl eCal | abl eSt at enent :

Oracl eCal | abl eSt atement ocs =
(Oracl eCal I abl eSt at ement) conn. prepareCal | ("{? = call func()}");

Register the OUT parameter with this form of the r egi st er Cut Par anet er ()
method:

ocs. regi st er Qut Par anet er
(int param.index, int sql_type, String sql_type_nane);

Where par am_i ndex is the parameter index and sql _t ype is the SQL
typecode (in this case, Or acl eTypes. REF). The sql _t ype_nane is the name
of the structured object type that this reference is used for. For example, if the
QUT parameter is a reference to an ADDRESS object (as in "Retrieving and
Passing an Object Reference" on page 10-6), then ADDRESS is the sql _t ype_
name that should be passed in.

Execute the call:

ocs. execute();

Working with Oracle Object References 10-7

Retrieving and Passing an Object Reference

Passing an Object Reference to a Prepared Statement

Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the set Obj ect () method or the set REF()
method of a prepared statement object.

Continuing the example in "Retrieving and Passing an Object Reference" on
page 10-6, use a prepared statement to update an address reference based on
ROW D, as follows:

Prepar edSt at ement pstnt =

conn. prepareSt at ement ("update PECPLE set ADDR REF = ? where ROND = ?");
((Oracl ePreparedStatenent) pstnt). set REF (1, addr_ref);
((Oracl ePreparedStatenent) pstnt).set ROND (2, row d);

10-8 Oracle9i JDBC Developer's Guide and Reference

Accessing and Updating Object Values through an Object Reference

Accessing and Updating Object Values through an Object Reference

You can use the REF object set Val ue() method to update the value of an object in
the database through an object reference. To do this, you must first retrieve the
reference to the database object and create a Java object (if one does not already
exist) that corresponds to the database object.

For example, you can use the code in the section "Retrieving and Passing an Object
Reference" on page 10-6 to retrieve the reference to a database ADDRESS object:

Result Set rs = stnt.executeQuery("SELECT col 3 FROM PECPLE");
if (rs.next())

{
REF ref = rs.get REF(1);
Address a = (Address)ref.getVal ue();

}

Then, you can create a Java Addr ess object (this example omits the content for the
constructor of the Addr ess class) that corresponds to the database ADDRESS object.
Use the set Val ue() method of the REF class to set the value of the database
object:

Address addr = new Address(...);
ref . setVal ue(addr);

Here, the set Val ue() method updates the database ADDRESS object immediately.

Working with Oracle Object References 10-9

Custom Reference Classes with JPublisher

Custom Reference Classes with JPublisher

This chapter primarily describes the functionality of the or acl e. sql . REF class,
but it is also possible to access Oracle object references through custom Java classes
or, more specifically, custom reference classes.

Custom reference classes offer all the functionality described earlier in this chapter,
as well as the advantage of being strongly typed. A custom reference class must
satisfy three requirements:

« It must implement the or acl e. sql . ORADat a interface described under
"Creating and Using Custom Object Classes for Oracle Objects" on page 9-10.
Note that the standard JDBC SQLDat a interface, which is an alternative for
custom object classes, is not intended for custom reference classes.

« It or a companion class, must implement the or acl e. sql . ORADat aFact ory
interface, for creating instances of the custom reference class.

= It must provide a way to refer to the object data. JPublisher accomplishes this by
using an or acl e. sql . REF attribute.

You can create custom reference classes yourself, but the most convenient way to
produce them is through the Oracle JPublisher utility. If you use JPublisher to
generate a custom object class to map to an Oracle object, and you specify that
JPublisher use a ORADat a implementation, then JPublisher will also generate a
custom reference class that implements ORADat a and ORADat aFact ory and
includes an or acl e. sql . REF attribute. (The ORADat a implementation will be
used if JPublisher’s - user t ypes mapping option is set to or acl e, which is the
default.)

Custom reference classes are strongly typed. For example, if you define an Oracle
object EMPLOYEE, then JPublisher can generate an Enpl oyee custom object class
and an Enpl oyeeRef custom reference class. Using Enpl oyeeRef instances
instead of generic or acl e. sql . REF instances makes it easier to catch errors
during compilation instead of at runtime—for example, if you accidentally assign
some other kind of object reference into an Enpl oyeeRef variable.

Be aware that the standard SQLDat a interface supports only SQL object mappings.
For this reason, if you instruct JPublisher to implement the standard SQLDat a
interface in creating a custom object class, then JPublisher will nof generate a
custom reference class. In this case your only option is to use standard

j ava. sql . Ref instances (or or acl e. sql . REF instances) to map to your object
references. (Specifying the SQLDat a implementation is accomplished by setting
JPublisher’s UDT attributes mapping option toj dbc.)

10-10 Oracle9i JDBC Developer's Guide and Reference

Custom Reference Classes with JPublisher

For more information about JPublisher, see "Using JPublisher to Create Custom
Object Classes" on page 9-45, or refer to the Oracle9i [Publisher User’s Guide.

Working with Oracle Object References 10-11

Custom Reference Classes with JPublisher

10-12 Oracle9i JDBC Developer's Guide and Reference

11

Working with Oracle Collections

This chapter describes Oracle extensions to standard JDBC that let you access and
manipulate Oracle collections, which map to Java arrays, and their data. The
following topics are discussed:

Oracle Extensions for Collections (Arrays)
Overview of Collection (Array) Functionality
Creating and Using Arrays

Using a Type Map to Map Array Elements

Custom Collection Classes with JPublisher

Working with Oracle Collections 11-1

Oracle Extensions for Collections (Arrays)

Oracle Extensions for Collections (Arrays)

An Oracle collection—either a variable array (VARRAY) or a nested table in the
database—maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle
collections in Java. The terms "collection" and "array" are sometimes used
interchangeably, although "collection" is more appropriate on the database side, and
"array" is more appropriate on the JDBC application side.

Oracle supports only named collections, where you specify a SQL type name to
describe a type of collection.

JDBC lets you use arrays as any of the following:

= columns in a SELECT-list

= | Nor QUT bind variables

= attributes in an Oracle object

« as elements of other arrays (Oracle9i only)

The rest of this section discusses creating and materializing collections.

The remainder of the chapter describes how to access and update collection data
through Java arrays.

Choices in Materializing Collections

In your application, you have the choice of materializing a collection as an instance
of the or acl e. sql . ARRAY class, which is weakly typed, or materializing it as an
instance of a custom Java class that you have created in advance, which is strongly
typed. Custom Java classes used for collections are referred to as custom collection
classes in this manual. A custom collection class must implement the Oracle

oracl e. sql . ORADat a interface. In addition, the custom class or a companion
class must implement or acl e. sql . ORADat aFact or y. (The standard

j ava. sql . SQLDat a interface is for mapping SQL object types only.)

The or acl e. sql . ARRAY class implements the standard j ava. sql . Arr ay
interface (or acl e. j dbc2. Arr ay under JDK 1.1.x).

The ARRAY class includes functionality to retrieve the array as a whole, retrieve a
subset of the array elements, and retrieve the SQL base type name of the array
elements. You cannot write to the array, however, as there are no setter methods.

Custom collection classes, as with the ARRAY class, allow you to retrieve all or part
of the array and get the SQL base type name. They also have the advantage of being

11-2 Oracle9i JDBC Developer's Guide and Reference

Oracle Extensions for Collections (Arrays)

strongly typed, which can help you find coding errors during compilation that
might not otherwise be discovered until runtime.

Furthermore, custom collection classes produced by JPublisher offer the feature of
being writable, with individually accessible elements. (This is also something you
could implement in a custom collection class yourself.)

Note: There is no difference in your code between accessing
VARRAYs and accessing nested tables. ARRAY class methods can
determine if they are being applied to a VARRAY or nested table,
and respond by taking the appropriate actions.

For more information about custom collection classes, see "Custom Collection
Classes with JPublisher" on page 11-27.

Creating Collections

This section presents background information about creating Oracle collections.

Because Oracle supports only named collections, you must declare a particular
VARRAY type name or nested table type name. "VARRAY" and "nested table" are not
types themselves, but categories of types.

A SQL type name is assigned to a collection when you create it, as in the following
SQL syntax:
CREATE TYPE <sql _type_nanme> AS <dat at ype>;

A VARRAY is an array of varying size. It has an ordered set of data elements, and
all the elements are of the same datatype. Each element has an index, which is a
number corresponding to the element's position in the VARRAY. The number of
elements in a VARRAY is the "size" of the VARRAY. You must specify a maximum
size when you declare the VARRAY type. For example:

CREATE TYPE myNunType AS VARRAY(10) OF NUMBER
This statement defines my NuniType as a SQL type name that describes a VARRAY of
NUMBER values that can contain no more than 10-elements.

A nested table is an unordered set of data elements, all of the same datatype. The
database stores a nested table in a separate table which has a single column, and the
type of that column is a built-in type or an object type. If the table is an object type,

Working with Oracle Collections 11-3

Oracle Extensions for Collections (Arrays)

it can also be viewed as a multi-column table, with a column for each attribute of
the object type. Create a nested table with this SQL syntax:

CREATE TYPE nyNunLi st AS TABLE OF integer;

This statement identifies myNunLi st as a SQL type name that defines the table type
used for the nested tables of the type | NTEGER.

Creating Multi-Level Collection Types

The most common way to create a new multi-level collection type in JDBC is to pass
the SQL CREATE TYPE statement to the execut e() method of the

j ava. sql . St at enent class. The following code creates a one-level, nested table
first_|l evel and a two levels nested table second_| evel using the execut e()

method:

Connection conn = /1 make a database
/] connection

Statement stnt = conn.createStatenent(); /'l open a database
/1 cursor

stnt. execut e("CREATE TYPE first_| evel AS TABLE OF NUMBER"); // create a nested
/1 table of nunber
stnt. execut e(" CREATE second_| evel AS TABLE OF first_level"); // create a two
/'l levels nested
/'l table
/] other operations
/'l here
stnt.close(); /'l release the
/'l resource
conn. cl ose(); /'l close the
/1 database
/'l connection

Once the multi-level collection types have been created, they can be used as both
columns of a base table as well as attributes of a object type.

See the Oracle9i Application Developer’s Guide - Object-Relational Features for the SQL
syntax to create multi-level collections types and how to specify the storage tables
for inner collections.

Note: Multi-level collection types are available only for Oracle9i.

11-4 Oracle9i JDBC Developer's Guide and Reference

Overview of Collection (Array) Functionality

Overview of Collection (Array) Functionality

You can obtain collection data in an array instance through a result set or callable
statement and pass it back as a bind variable in a prepared statement or callable
statement.

The or acl e. sql . ARRAY class, which implements the standard j ava. sql . Arr ay
interface (or acl e. j dbc2. Arr ay interface under JDK 1.1.x), provides the
necessary functionality to access and update the data of an Oracle collection (either
a VARRAY or nested table).

This section discusses the following:

= statement and result set getter and setter methods for passing collections to and
from the database as Java arrays

= ARRAY descriptors and ARRAY class methods

Remember that you can use custom collection classes instead of the ARRAY class.
See "Custom Collection Classes with JPublisher" on page 11-27.

Array Getter and Setter Methods

Use the following result set, callable statement, and prepared statement methods to
retrieve and pass collections as Java arrays. Code examples are provided later in the
chapter.

Result Set and Callable Statement Getter Methods The Or acl eResul t Set and

Or acl eCal | abl eSt at ement classes support get ARRAY() and get Array()
methods to retrieve ARRAY objects as output parameters—either as

oracl e. sgl . ARRAY instances or j ava. sqgl . Arr ay instances

(oracl e. jdbc2. Array under JDK 1.1.x). You can also use the get Obj ect ()
method. These methods take as input a St r i ng column name or i nt column
index.

Prepared and Callable Statement Setter Methods The Or acl ePr epar edSt at enent and
Or acl eCal | abl eSt at ement classes support set ARRAY() and set Array()
methods to take updated ARRAY objects as bind variables and pass them to the
database. You can also use the set bj ect () method. These methods take as input
a St ri ng parameter name or i nt parameter index as well as, respectively, an
oracl e. sgl . ARRAY instance or a j ava. sql . Ar r ay instance

(oracl e.jdbc2. Array under JDK 1.1.x).

Working with Oracle Collections 11-5

Overview of Collection (Array) Functionality

ARRAY Descriptors and ARRAY Class Functionality

The section introduces ARRAY descriptors and lists methods of the ARRAY class to
provide an overview of its functionality.

ARRAY Descriptors

Creating and using an ARRAY object requires the existence of a descriptor—an
instance of the or acl e. sql . ArrayDescri pt or class—to exist for the SQL type
of the collection being materialized in the array. You need only one

ArrayDescri pt or object for any number of ARRAY objects that correspond to the
same SQL type.

ARRAY descriptors are further discussed in "Creating ARRAY Objects and
Descriptors" on page 11-11.

ARRAY Class Methods
The or acl e. sql . ARRAY class includes the following methods:

= getDescriptor():Returns the ArrayDescri pt or object that describes the
array type.

= get Array():Retrieves the contents of the array in "default" JDBC types. If it
retrieves an array of objects, then get Arr ay() uses the default type map of the
database connection object to determine the types.

« getOracl eArray():Identical to get Array(), but retrieves the elements in
oracl e. sqgl . * format.

= get BaseType() : Returns the SQL typecode for the array elements (see "Class
oracle.jdbc.OracleTypes" on page 6-23 for information about typecodes).

= get BaseTypeNane() : Returns the SQL type name of the elements of this
array.

= get SQLTypeNane() (Oracle extension): Returns the fully qualified SQL type
name of the array as a whole.

= getResul t Set () : Materializes the array elements as a result set.

« getJavaSQ.Connecti on(): Returns the connection instance
(j ava. sqgl . Connect i on) associated with this array.

= | engt h() : Returns the number of elements in the array.

11-6 Oracle9i JDBC Developer's Guide and Reference

Overview of Collection (Array) Functionality

Note: As an example of the difference between

get BaseTypeNane() and get SQLTypeNane(), if you define
ARRAY_COF_PERSON as the array type for an array of PERSON
objects in the SCOTT schema, then get BaseTypeName() would
return "SCOTT.PERSON" and get SQLTypeNane() would return
"SCOTT.ARRAY_OF_PERSON".

Working with Oracle Collections 11-7

ARRAY Performance Extension Methods

ARRAY Performance Extension Methods
This section discusses the following topics:
« Accessing oracle.sql. ARRAY Elements as Arrays of Java Primitive Types
« ARRAY Automatic Element Buffering
= ARRAY Automatic Indexing

Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types

The or acl e. sgl . ARRAY class contains methods that return array elements as Java
primitive types. These methods allow you to access collection elements more
efficiently than accessing them as Dat uminstances and then converting each Dat um
instance to its Java primitive value.

Note: These specialized methods of the or acl e. sql . ARRAY
class are restricted to numeric collections.

Here are the methods:
« public int[] getintArray()throws SQLException

public int[] getlntArray(long index, int count)
t hrows SQLException

« public long[] getLongArray()throws SQ.Exception

public long[] getLongArray(long index, int count)
t hrows SQLException

« public float[] getFloatArray()throws SQ.Exception

public float[] getFloatArray(long index, int count)
t hrows SQLException

« public double[] getDoubl eArray()throws SQ.Exception

public doubl e[] getDoubl eArray(long index, int count)
t hrows SQLException

« public short[] getShortArray()throws SQ.Exception

public short[] getShortArray(long index, int count)
t hrows SQLException

11-8 Oracle9i JDBC Developer's Guide and Reference

ARRAY Performance Extension Methods

Each method using the first signature returns collection elements as an XXX[],
where XXX is a Java primitive type. Each method using the second signature returns
a slice of the collection containing the number of elements specified by count ,
starting at the i ndex location.

ARRAY Automatic Element Buffering

The Oracle JDBC driver provides public methods to enable and disable buffering of
ARRAY contents. (See "STRUCT Automatic Attribute Buffering" on page 9-9 for a
discussion of how to buffer STRUCT attributes.)

The following methods are included with the or acl e. sql . ARRAY class:
« public void setAut oBuffering(bool ean enabl e)
=« public bool ean get Aut oBuf fering()

The set Aut oBuf f eri ng() method enables or disables auto-buffering. The
get Aut oBuf f eri ng() method returns the current auto-buffering mode. By
default, auto-buffering is disabled.

It is advisable to enable auto-buffering in a JDBC application when the ARRAY
elements will be accessed more than once by the get At t ri but es() and

get Arr ay() methods (presuming the ARRAY data is able to fit into the JVM
memory without overflow).

Important: Buffering the converted elements may cause the JDBC
application to consume a significant amount of memory.

When you enable auto-buffering, the or acl e. sql . ARRAY object keeps a local
copy of all the converted elements. This data is retained so that a second access of
this information does not require going through the data format conversion process.

ARRAY Automatic Indexing

If an array is in auto-indexing mode, the array object maintains an index table to
hasten array element access.

The or acl e. sql . ARRAY class contains the following methods to support
automatic array-indexing:

Working with Oracle Collections 11-9

ARRAY Performance Extension Methods

« public synchronized void setAut ol ndexi ng
(bool ean enable, int direction)
t hrows SQLException

« public synchronized void setAut ol ndexi ng
(bool ean enabl e)
t hrows SQLException

The set Aut ol ndexi ng() method sets the auto-indexing mode for the

or acl e. sgl . ARRAY object. The di r ect i on parameter gives the array object a
hint: specify this parameter to help the JDBC driver determine the best indexing
scheme. The following are the values you can specify for the di recti on
parameter:

« ARRAY. ACCESS_FORWARD
« ARRAY. ACCESS_REVERSE
« ARRAY. ACCESS_UNKNOWN

The set Aut ol ndexi ng(bool ean) method signature sets the access direction as
ARRAY. ACCESS_UNKNOVWN by default.

By default, auto-indexing is not enabled. For a JDBC application, enable
auto-indexing for ARRAY objects if random access of array elements may occur
through the get Array() and get Resul t Set () methods.

11-10 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Arrays

Creating and Using Arrays

This section discusses how to create array objects and how to retrieve and pass
collections as array objects, including the following topics.

= Creating ARRAY Objects and Descriptors
= Retrieving an Array and Its Elements

= Passing Arrays to Statement Objects

Creating ARRAY Objects and Descriptors

This section describes how to create ARRAY objects and descriptors and lists useful
methods of the ArrayDescri pt or class.

Steps in Creating ArrayDescriptor and ARRAY Objects

This section describes how to construct an or acl e. sql . ARRAY object. To do this,
you must:

1. Create an ArrayDescri pt or object (if one does not already exist) for the
array.

2. Usethe ArrayDescri pt or object to construct the or acl e. sql . ARRAY object
for the array you want to pass.

An ArrayDescri pt or is an object of the or acl e. sql . ArrayDescri pt or class
and describes the SQL type of an array. Only one array descriptor is necessary for
any one SQL type. The driver caches Ar r ayDescr i pt or objects to avoid recreating
them if the SQL type has already been encountered. You can reuse the same
descriptor object to create multiple instances of an or acl e. sql . ARRAY object for
the same array type.

Collections are strongly typed. Oracle supports only named collections, that is, a
collection given a SQL type name. For example, when you create a collection with
the CREATE TYPE statement:

CREATE TYPE numvarray AS varray(22) OF NUMBER(5, 2);

Where NUM_VARRAY is the SQL type name for the collection type.

Working with Oracle Collections 11-11

Creating and Using Arrays

Note: The name of the collection type is not the same as the type
name of the elements. For example:

CREATE TYPE person AS object
(cl NUMBER(5), c2 VARCHAR2(30));
CREATE TYPE array_of persons AS varray(10)
CF person;

In the preceding statements, the SQL name of the collection type is
ARRAY_OF_PERSON. The SQL name of the collection elements is
PERSON.

Before you can construct an Ar r ay object, an Ar rayDescr i pt or must first exist
for the given SQL type of the array. If an Arr ayDescr i pt or does not exist, then
you must construct one by passing the SQL type name of the collection type and
your Connect i on object (which JDBC uses to go to the database to gather meta
data) to the constructor.

ArrayDescriptor arraydesc = ArrayDescriptor.createDescriptor

(sql _type_nane, connection);
Where sqgl _t ype_nane is the type name of the array and connect i on is your
Connect i on object.

Once you have your Ar r ayDescri pt or object for the SQL type of the array, you
can construct the ARRAY object. To do this, pass in the array descriptor, your
connection object, and a Java object containing the individual elements you want
the array to contain.

ARRAY array = new ARRAY(arraydesc, connection, elements);

Where ar r aydesc is the array descriptor created previously, connect i on is your
connection object, and el ement s is a Java array. The two possibilities for the
contents of el ement s are:

= anarray of Java primitives—for example, i nt []

= anarray of Java objects, such as Xxxx[] where xxX is the name of a Java
class—for example, | nt eger[]

11-12 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Arrays

Note: The set ARRAY(),set Array(), and set Cbj ect ()
methods of the Or acl ePr epar edSt at ement class take an object
of the type or acl e. sql . ARRAY as an argument, not an array of
objects.

Creating Multi-Level Collections

As with single-level collections, the JDBC application can create an

or acl e. sgl . ARRAY instance to represent a multi-level collection, and then send
the instance to the database. The or acl e. sql . ARRAY constructor is defined as
follows:

public ARRAY(ArrayDescriptor type, Connection conn, Cbject elenents)
throws SQLException

The first argument is an or acl e. sql . Arr ayDescri pt or object that describes the
multi-level collection type. The second argument is the current database connection.
And the third argument is aj ava. | ang. Obj ect that holds the multi-level
collection elements. This is the same constructor used to create single-level
collections, but in Oracle9i, this constructor is enhanced to create multi-level
collections as well. The elements parameter can now be either a one dimension
array or a nested Java array.

To create a single-level collection, the elements are a one dimensional Java array. To
create a multi-level collection, the elements can be either an array of
oracl e. sql . ARRAY[] elements or a nested Java array or the combinations.

The following code shows how to create collection types with a nested Java array:

Connection conn = ...; /1 make a JDBC connection

/] create the collection types
Statement stnt = conn.createStatement ();
stnt.execute ("CREATE TYPE varrayl AS VARRAY(10) OF NUMBER(12, 2)"); // one

Il |ayer
stnt.execute ("CREATE TYPE varray2 AS VARRAY(10) OF varrayl"); // two layers
stmt.execute ("CREATE TYPE varray3 AS VARRAY(10) OF varray2"); // three layers
stnt.execute ("CREATE TABLE tab2 (coll index, col 2 value)");
stnt.close ();

/] obtain a type descriptor of "SCOTT. VARRAY3"
ArrayDescriptor desc = ArrayDescriptor. createDescriptor("SCOTT. VARRAY3", conn);

/] prepare the nulti level collection elenments as a nested Java array

Working with Oracle Collections 11-13

Creating and Using Arrays

int[10]1(] efem = { {{1}, {1, 2}}, {{2}, {2 3}}, {{38}, {3 4}} 1

/] create the ARRAY by calling the constructor
ARRAY array3 = new ARRAY (desc, conn, elens);

/] some operations

/1 close the database connection
conn. cl ose();

In the above example, another implementation is to prepare the el ens as a Java
array of or acl e. sql . ARRAY[] elements, and each or acl e. sql . ARRAY[]
element represents a SCOTT. VARRAY3.

Using ArrayDescriptor Methods

An ARRAY descriptor can be referred to as a type object. It has information about the
SQL name of the underlying collection, the typecode of the array’s elements, and, if
it is an array of structured objects, the SQL name of the elements. The descriptor
also contains the information on about to convert to and from the given type. You
need only one descriptor object for any one type, then you can use that descriptor to
create as many arrays of that type as you want.

The ArrayDescri pt or class has the following methods for retrieving an element’s
typecode and type name:

= createDescriptor():Thisis afactory for Ar r ayDescri pt or instances;
looks up the name in the database and determine the characteristics of the
array.

= get BaseType() : Returns the integer typecode associated with this ARRAY
descriptor (according to integer constants defined in the Or acl eTypes class,
which "Package oracle.jdbc" on page 6-16 describes).

= get BaseNane() : Returns a string with the type name associated with this
array element if it is a STRUCT or REF.

= get ArrayType() : Returns an integer indicating whether the array is a
VARRAY or nested table. Arr ayDescri pt or . TYPE_VARRAY and
ArrayDescri ptor. TYPE_NESTED TABLE are the possible return values.

= get MaxLengt h() : Returns the maximum number of elements for this array

type.

11-14 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Arrays

« getJavaSQ.Connecti on(): Returns the connection instance
(j ava. sql . Connect i on) that was used in creating the ARRAY descriptor (a
new descriptor must be created for each connection instance).

Note: In releases prior to Oracle9i, you cannot use a collection
within a collection. You can, however, use a structured object with a
collection attribute, or a collection with structured object elements.
In Oracle9i, you can use a collection within a collection.

Serializable ARRAY Descriptors

As "Steps in Creating ArrayDescriptor and ARRAY Objects" on page 11-11
discusses, when you create an ARRAY object, you first must create an

ArrayDescri pt or object. Create the Arr ayDescr i pt or object by calling the
ArrayDescri ptor.createDescriptor () method. The

oracl e.sql . ArrayDescri ptor class is serializable, meaning that you can write
the state of an Arr ayDescr i pt or object to an output stream for later use. Recreate
the ArrayDescri pt or object by reading its serialized state from an input stream.
This is referred to as deserializing. With the Ar r ayDescri pt or object serialized,
you do not need to call the cr eat eDescr i pt or () method—simply deserialize the
ArrayDescri pt or object.

It is advisable to serialize an Ar r ayDescr i pt or object when the object type is
complex but not changed often.

If you create an Ar r ayDescr i pt or object through deserialization, you must
provide the appropriate database connection instance for the Ar r ayDescr i pt or
object using the set Connect i on() method.

The following code furnishes the connection instance for an Ar r ayDescr i pt or
object:

public void setConnection (Connection conn) throws SQLException

Note: The JDBC driver does not verify that the connection object
from the set Connect i on() method connects to the same
database from which the type descriptor was initially derived.

Retrieving an Array and Its Elements

This section first discusses how to retrieve an ARRAY instance as a whole from a
result set, and then how to retrieve the elements from the ARRAY instance.

Working with Oracle Collections 11-15

Creating and Using Arrays

Retrieving the Array

You can retrieve a SQL array from a result set by casting the result set to an

Or acl eResul t Set object and using the get ARRAY() method, which returns an
oracl e. sql . ARRAY object. If you want to avoid casting the result set, then you
can get the data with the standard get Cbj ect () method specified by the

j ava. sql . Resul t Set interface, and cast the output to an or acl e. sql . ARRAY
object.

Data Retrieval Methods

Once you have the array in an ARRAY object, you can retrieve the data using one of
these three overloaded methods of the or acl e. sql . ARRAY class:

« getArray()
« getOracl eArray()
« getResultSet()

Oracle also provides methods that enable you to retrieve all the elements of an
array, or a subset.

Note: In case you are working with an array of structured objects,
Oracle provides versions of these three methods that enable you to
specify a type map so that you can choose how to map the objects
to Java.

getOracleArray() The get Or acl eAr r ay() method is an Oracle-specific extension
that is not specified in the standard Ar r ay interface (j ava. sql . Arr ay under JDK
1.2xororacl e.jdbc2. Array under JDK 1.1.x). The get Or acl eArray()
method retrieves the element values of the array into a Dat un{] array. The
elements are of the or acl e. sql . * datatype corresponding to the SQL type of the
data in the original array.

For an array of structured objects, this method will use or acl e. sql . STRUCT
instances for the elements.

Oracle also provides a get Or acl eArray(i ndex, count) met hod to get a subset
of the array elements.

getResultSet() The get Resul t Set () method returns a result set that contains
elements of the array designated by the ARRAY object. The result set contains one
row for each array element, with two columns in each row. The first column stores

11-16 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Arrays

the index into the array for that element, and the second column stores the element
value. In the case of VARRAYs, the index represents the position of the element in
the array. In the case of nested tables, which are by definition unordered, the index
reflects only the return order of the elements in the particular query.

Oracle recommends using get Resul t Set () when getting data from nested tables.
Nested tables can have an unlimited number of elements. The Resul t Set object
returned by the method initially points at the first row of data. You get the contents
of the nested table by using the next () method and the appropriate get XXX()
method. In contrast, get Arr ay() returns the entire contents of the nested table at
one time.

The get Resul t Set () method uses the connection’s default type map to
determine the mapping between the SQL type of the Oracle object and its
corresponding Java datatype. If you do not want to use the connection’s default
type map, another version of the method, get Resul t Set (map) , enables you to
specify an alternate type map.

Oracle also provides the get Resul t Set (i ndex, count) and
get Resul t Set (i ndex, count , map) methods to retrieve a subset of the array
elements.

getArray() The get Array() method is a standard JDBC method that returns the
array elements into aj ava. | ang. Qbj ect instance that you can cast as
appropriate (see "Comparing the Data Retrieval Methods" on page 11-17). The
elements are converted to the Java types corresponding to the SQL type of the data
in the original array.

Oracle also provides a get Ar r ay (i ndex, count) method to retrieve a subset of
the array elements.

Comparing the Data Retrieval Methods

If you use get Or acl eArray() to return the array elements, the use by that
method of or acl e. sql . Dat uminstances avoids the expense of data conversion
from SQL to Java. The data inside a Dat um(or subclass) instance remains in raw
SQL format.

If you use get Resul t Set () to return an array of primitive datatypes, then the
JDBC driver returns a Resul t Set object that contains, for each element, the index
into the array for the element and the element value. For example:

Result Set rset = intArray. get ResultSet();

Working with Oracle Collections 11-17

Creating and Using Arrays

In this case, the result set contains one row for each array element, with two
columns in each row. The first column stores the index into the array; the second
column stores the element value.

If you use get Array() to retrieve an array of primitive datatypes, then a

j ava. |l ang. Obj ect that contains the element values is returned. The elements of
this array are of the Java type corresponding to the SQL type of the elements. For
example:

Bi gDeci mal [] values = (BigDecimal[]) intArray.getArray();

Where i nt Array is an or acl e. sql . ARRAY, corresponding to a VARRAY of type
NUMBER. The val ues array contains an array of elements of type

j ava. mat h. Bi gDeci mal , because the SQL NUMBER datatype maps to Java

Bi gDeci mal by default, according to the Oracle JDBC drivers.

Note: Using Bi gDeci mal is a resource-intensive operation in
Java. Because Oracle JDBC maps numeric SQL data to

Bi gDeci mal by default, using get Arr ay() may impact
performance, and is not recommended for numeric collections.

Retrieving Elements of a Structured Object Array According to a Type Map

By default, if you are working with an array whose elements are structured objects,
and you use get Array() or get Resul t Set (), then the Oracle objects in the
array will be mapped to their corresponding Java datatypes according to the default
mapping. This is because these methods use the connection’s default type map to
determine the mapping.

However, if you do not want default behavior, then you can use the

get Array(nmap) or get Resul t Set (map) method to specify a type map that
contains alternate mappings. If there are entries in the type map corresponding to
the Oracle objects in the array, then each object in the array is mapped to the
corresponding Java type specified in the type map. For example:

bj ect[] object = (Chject[])objArray. getArray(map);
Where obj Array is an or acl e. sql . ARRAY objectand map isaj ava. util. Map
object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an or acl e. sql . STRUCT object.

11-18 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Arrays

The get Resul t Set (map) method behaves similarly to the get Ar r ay (map)
method.

For more information on using type maps with arrays, see "Using a Type Map to
Map Array Elements" on page 11-25.

Retrieving a Subset of Array Elements

If you do not want to retrieve the entire contents of an array, then you can use
signatures of get Array(), get Resul t Set (), and get Or acl eArray() thatlet
you retrieve a subset. To retrieve a subset of the array, pass in an index and a count
to indicate where in the array you want to start and how many elements you want
to retrieve. As described above, you can specify a type map or use the default type
map for your connection to convert to Java types. For example:

Chj ect object = arr.get Array(index, count, map);

bj ect object = arr.getArray(index, count);

Similar examples using get Resul t Set () are:

Resul t Set rset = arr.getResultSet(index, count, map);
Result Set rset = arr.getResultSet(index, count);

A similar example using get Or acl eArray() is:
Datum arr = arr.get Oracl eArray(index, count);

Where arr isan or acl e. sql . ARRAY object, i ndex is type | ong, count is type
int,and mapisajava. util. Map object.

Note: There is no performance advantage in retrieving a subset of
an array, as opposed to the entire array.

Retrieving Array Elements into an oracle.sql.Datum Array

Useget Oracl eArray() toreturnanoracl e. sql . Dat uni] array. The elements
of the returned array will be of the or acl e. sqgl . * type that correspond to the SQL
datatype of the elements of the original array. For example:

Datum arraydata[] = arr.getOacleArray();

Where arr isan or acl e. sql . ARRAY object.

The following example assumes that a connection object conn and a statement
object st mt have already been created. In the example, an array with the SQL type

Working with Oracle Collections 11-19

Creating and Using Arrays

name NUM_ARRAY is created to store a VARRAY of NUMBER data. The NUM_ARRAY is
in turn stored in a table VARRAY_TABLE.

A query selects the contents of the VARRAY_TABLE. The result set is cast to an
Or acl eResul t Set object; get ARRAY() is applied to it to retrieve the array data
into my_ar r ay, which is an or acl e. sql . ARRAY object.

Because my_ar r ay is of type or acl e. sql . ARRAY, you can apply the methods
get SQLTypeNanme() and get BaseType() to it to return the name of the SQL type
of each element in the array and its integer code.

The program then prints the contents of the array. Because the contents of nmy _
ar r ay are of the SQL datatype NUMBER, it must first be cast to the Bi gDeci nal
datatype. In the f or loop, the individual values of the array are cast to

Bi gDeci mal and printed to standard output.

stnt.execute ("CREATE TYPE numvarray AS VARRAY(10) OF NUMBER(12, 2)");
stnt.execute ("CREATE TABLE varray_table (coll numvarray)");
stnt.execute ("INSERT I NTO varray_tabl e VALUES (numvarray(100, 200))");

Result Set rs = stnt.executeQuery("SELECT * FROM varray_tabl e");
ARRAY ny_array = ((Oacl eResult Set)rs). get ARRAY(1);

/] return the SQL type nanes, integer codes,

/] and lengths of the colums

Systemout.printin ("Array is of type " + array.get SQLTypeNane());
Systemout.printin ("Array element is of typecode " + array.getBaseType());
Systemout.printin ("Array is of length " + array.length());

/] get Array elenents
Bi gDeci mal [] values = (BigDecimal[]) my_array.getArray();

for (int i=0; i<values.length; i++)

{
Bi gDeci mal out_value = (BigDecimal) values[i];
Systemout.printIn(">> index " + i + + out _val ue.intVal ue());

}

Note that if you use get Resul t Set () to obtain the array, you would first get the
result set object, then use the next () method to iterate through it. Notice the use of
the parameter indexes in the get | nt () method to retrieve the element index and
the element value.

Result Set rset = ny_array. get Result Set();
while (rset.next())

{

11-20 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Arrays

/] The first colum contains the el ement index and the
/1 second colum contains the el enent val ue
Systemout.println(">> index " + rset.getInt(1)+" =" + rset.getlnt(2));

Accessing Multi-Level Collection Elements

The or acl e. sqgl . ARRAY class provides three methods (which can be overloaded)
to access collection elements. For Oracle9i JDBC drivers, these methods are
extended to support multi-level collections. The three methods are the following:

= getArray() method : JDBC standard
=« getOracl eArray() method : Oracle extension
= get Resul t Set () method : JDBC standard

The get Arr ay() method returns a Java array that holds the collection elements.
The array element type is determined by the collection element type and the JDBC
default conversion matrix.

For example, the get Arr ay() method returns aj ava. mat h. Bi gDeci mal array
for collection of SQL NUMBER. The get Or acl eArr ay() method returns a Datum
array that holds the collection elements in Datum format. For multi-level
collections, the get Array() and get Or acl eArray() methods both return a Java
array of or acl e. sql . ARRAY elements.

The get Resul t Set () method returns a Resul t Set object that wraps the
multi-level collection elements. For multi-level collections, the JDBC applications
use the get Obj ect (), get ARRAY(), or get Array() method of the Resul t Set
class to access the collection elements as instances of or acl e. sql . ARRAY.

The following code shows how to use the get Or acl eArray(),get Array(), and
get Resul t Set () methods:

Connection conn = ...; /1 make a JDBC connection
Statement stnt = conn.createStatenment ();
Resul t Set rset = stnt.executeQuery ("select col2 fromtab2 where idx=1");

while (rset.next())
{
ARRAY varray3 = (ARRAY) rset.getObject (
Cbj ect varrayEl enms = varray3.getArray (1
"varray3"
Datuni] varray3El enms = (Datun{]) varrayEl ens;

1);
)

/] access array elements of

for (int i=0; i<varray3Elens.|ength; i++)

Working with Oracle Collections 11-21

Creating and Using Arrays

}

ARRAY varray2 = (ARRAY) varray3El ens[i];
Datun{] varray2El ems = varray2.getOracleArray(); // access array elenents of
"varray2"

for (int j=0; j<varray2El ens.length; j++)
{
ARRAY varrayl = (ARRAY) varray2El ens[j];
Resul t Set varraylEl ens = varrayl.getResultSet(); // access array elements
of "varrayl"

whil e (varraylEl ens. next())
Systemout.println ("idx="+varraylEl ens. get!|nt(1)+"
val ue="+varraylEl ens. getInt(2));

}

rset.close ();
stnt.close ();
conn. close ();

Passing Arrays to Statement Objects

This section discusses how to pass arrays to prepared statement objects or callable
statement objects.

Passing an Array to a Prepared Statement

Pass an array to a prepared statement as follows (use similar steps to pass an array
to a callable statement). Note that you can use arrays as either | N or OQUT bind
variables.

1.

Construct an ArrayDescr i pt or object for the SQL type that the array will
contain (unless one has already been created for this SQL type). See "Steps in
Creating ArrayDescriptor and ARRAY Objects" on page 11-11 for information
about creating Arr ayDescr i pt or objects.

ArrayDescriptor descriptor = ArrayDescriptor.createDescriptor
(sql _type_nane, connection);

Where sql _t ype_nane is a Java string specifying the user-defined SQL type
name of the array, and connect i on is your Connect i on object. See "Oracle
Extensions for Collections (Arrays)" on page 11-2 for information about SQL
typenames.

11-22 Oracle9i JDBC Developer's Guide and Reference

Creating and Using Arrays

Define the array that you want to pass to the prepared statement as an
or acl e. sqgl . ARRAY object.

ARRAY array = new ARRAY(descriptor, connection, elenents);
Where descri pt or is the ArrayDescri pt or object previously constructed

and el enentsisaj ava. | ang. Obj ect containing a Java array of the
elements.

Create aj ava. sql . Prepar edSt at ement object containing the SQL
statement to execute.

Cast your prepared statement to an Or acl ePr epar edSt at ement and use the
set ARRAY() method of the Or acl ePr epar edSt at ement object to pass the
array to the prepared statement.

(Oracl ePrepar edSt at ement) st nt . set ARRAY(par anet er | ndex, array);

Where par anet er | ndex is the parameter index, and ar r ay is the
oracl e. sgl . ARRAY object you constructed previously.

Execute the prepared statement.

Passing an Array to a Callable Statement

To retrieve a collection as an QUT parameter in PL/SQL blocks, execute the
following to register the bind type for your QUT parameter.

1.

Cast your callable statement to an Or acl eCal | abl eSt at enent :
Oracl eCal | abl eSt atement ocs =
(Oracl eCal I abl eSt at ement) conn. prepareCal | ("{? = call func()}");
Register the OUT parameter with this form of the r egsi t er Qut Par anet er ()
method:
ocs. regi st er Qut Par anet er

(int param.index, int sql _type, string sql_type_nane);

Where par am i ndex is the parameter index, sql _t ype is the SQL typecode,
and sql _t ype_nane is the name of the array type. In this case, the sql _t ype
is Oracl eTypes. ARRAY.

Execute the call:

ocs. execute();

Working with Oracle Collections 11-23

Creating and Using Arrays

4. Get the value:
oracl e.sql.ARRAY array = ocs. get ARRAY(1);

11-24 Oracle9i JDBC Developer's Guide and Reference

Using a Type Map to Map Array Elements

Using a Type Map to Map Array Elements

If your array contains Oracle objects, then you can use a type map to associate the
objects in the array with the corresponding Java class. If you do not specify a type
map, or if the type map does not contain an entry for a particular Oracle object, then
each element is returned as an or acl e. sgl . STRUCT object.

If you want the type map to determine the mapping between the Oracle objects in
the array and their associated Java classes, then you must add an appropriate entry
to the map. For instructions on how to add entries to an existing type map or how
to create a new type map, see "Understanding Type Maps for SQLData
Implementations" on page 9-11.

The following example illustrates how you can use a type map to map the elements
of an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE_LI ST is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE is created to store the names of departments
within a corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LI ST
tables.

stnt. execut e(" CREATE TYPE EMPLOYEE AS OBJECT
(EnpName VARCHARZ(50) , EnpNo | NTEGER)) ") ;

stnt. execut e(" CREATE TYPE EMPLOYEE LI ST AS TABLE OF EMPLOYEE");

stnt. execut e(" CREATE TABLE EMPLOYEE TABLE (Dept Nane VARCHAR2(20),
Enpl oyees EMPLOYEE_LI ST) NESTED TABLE Enpl oyees STORE AS ntabl el");

stnt. execut e(" I NSERT | NTO EMPLOYEE TABLE VALUES ("SALES', EMPLOYEE LIST
(EMPLOYEE(’ Susan Snith’, 123), EMPLOYEE(’ Scott Tiger’, 124)))");

If you want to retrieve all the employees belonging to the SALES department into
an array of instances of the custom object class Enpl oyeeQbj , then you must add
an entry to the type map to specify mapping between the EMPLOYEE SQL type and
the Enpl oyeeCbj custom object class.

To do this, first create your statement and result set objects, then select the
EMPLOYEE_LI ST associated with the SALES department into the result set. Cast the
result set to Or acl eResul t Set so you can use the get ARRAY() method to
retrieve the EMPLOYEE_LI ST into an ARRAY object (enpl oyeeAr r ay in the
example below).

Working with Oracle Collections 11-25

Using a Type Map to Map Array Elements

The Enpl oyeeObj custom object class in this example implements the SQLDat a
interface.

Statement s = conn. createStatenent();
Oracl eResultSet rs = (Oracl eResul t Set)s. execut eQuery
(" SELECT Enpl oyees FROM enpl oyee_t abl e WHERE Dept Name = ' SALES'");

/] get the array object
ARRAY enpl oyeeArray = ((Oracl eResult Set)rs). get ARRAY(1);

Now that you have the EMPLOYEE_LI| ST object, get the existing type map and add
an entry that maps the EMPLOYEE SQL type to the Enpl oyeeQbj Java type.

/] add type map entry to map SQ type

/] "EMPLOYEE' to Java type "Enpl oyeehj"

Map map = conn. get TypeMap();

map. put ("EMPLOYEE", d ass. for Name(" Enpl oyeeChj"));

Next, retrieve the SQL EMPLOYEE objects from the EMPLOYEE_LI ST. To do this,
invoke the get Arr ay() method of the enpl oyeeAr r ay array object. This method
returns an array of objects. The get Ar r ay() method returns the EMPLOYEE objects
into the enpl oyees object array.

/] Retrieve array el ements
bj ect[] enpl oyees = (Object[]) enpl oyeeArray. get Array();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the
Enpl oyeeCbj Java object enp.

/] Each array elenent is mapped to Enpl oyeeChj object.

for (int i=0; i<enployees.length; i++)

{
Enpl oyeeChj enp = (Enpl oyeehj) enpl oyees[i];

11-26 Oracle9i JDBC Developer's Guide and Reference

Custom Collection Classes with JPublisher

Custom Collection Classes with JPublisher

This chapter primarily describes the functionality of the or acl e. sql . ARRAY class,
but it is also possible to access Oracle collections through custom Java classes or,
more specifically, custom collection classes.

You can create custom collection classes yourself, but the most convenient way is to
use the Oracle JPublisher utility. Custom collection classes generated by JPublisher
offer all the functionality described earlier in this chapter, as well as the following
advantages (it is also possible to implement such functionality yourself):

= They are strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until runtime.

« They can be changeable, or mutable. Custom collection classes produced by
JPublisher, unlike the ARRAY class, allow you to get and set individual elements
using the get El ement () and set El ement () methods. (This is also
something you could implement in a custom collection class yourself.)

A custom collection class must satisfy three requirements:

« It must implement the or acl e. sql . ORADat a interface described under
"Creating and Using Custom Object Classes for Oracle Objects" on page 9-10.
Note that the standard JDBC SQLDat a interface, which is an alternative for
custom object classes, is not intended for custom collection classes.

= It or a companion class, must implement the or acl e. sql . ORADat aFact ory
interface, for creating instances of the custom collection class.

« It must have a means of storing the collection data. Typically it will directly or
indirectly include an or acl e. sgl . ARRAY attribute for this purpose (this is the
case with a JPublisher-produced custom collection class).

A JPublisher-generated custom collection class implements ORADat a and

ORADat aFact or y and indirectly includes an or acl e. sql . ARRAY attribute. The
custom collection class will have an or acl e. j pub. runti ne. Mut abl eArr ay
attribute. The Mut abl eAr r ay class has an or acl e. sql . ARRAY attribute.

Working with Oracle Collections 11-27

Custom Collection Classes with JPublisher

Note: When you use JPublisher to create a custom collection class,
you must use the ORADat a implementation. This will be true if
JPublisher’s - user t ypes mapping option is set to or acl e, which
is the default.

You cannot use a SQLDat a implementation for a custom collection
class (that implementation is for custom object classes only). Setting
the - user t ypes mapping option to j dbc is invalid.

As an example of custom collection classes being strongly typed, if you define an
Oracle collection MYVARRAY, then JPublisher can generate a MyVar r ay custom
collection class. Using My Var r ay instances, instead of generic

or acl e. sql . ARRAY instances, makes it easier to catch errors during compilation
instead of at runtime—for example, if you accidentally assign some other kind of
array into a MyVar r ay variable.

If you do not use custom collection classes, then you would use standard
j ava. sql . Array instances (or or acl e. sgl . ARRAY instances) to map to your
collections.

For more information about JPublisher, see "Using JPublisher to Create Custom
Object Classes" on page 9-45, or refer to the Oracle9i [Publisher User’s Guide.

11-28 Oracle9i JDBC Developer's Guide and Reference

12

Performance Extensions

This chapter describes the Oracle performance extensions to the JDBC standard.

In the course of discussing update batching, it also includes a discussion of the
standard update-batching model provided with JDBC 2.0.

This chapter covers the following topics:
= Update Batching

« Additional Oracle Performance Extensions

Note: For a general overview of Oracle extensions and detailed
discussion of Oracle packages and type extensions, see Chapter 6,
"Overview of Oracle Extensions".

Performance Extensions 12-1

Update Batching

Update Batching

You can reduce the number of round trips to the database, thereby improving
application performance, by grouping multiple UPDATE, DELETE, or | NSERT
statements into a single "batch" and having the whole batch sent to the database and
processed in one trip. This is referred to in this manual as update batching and in the
Sun Microsystems JDBC 2.0 specification as batch updates.

This is especially useful with prepared statements, when you are repeating the same
statement with different bind variables.

With Oracle8i release 8.1.6 and higher, Oracle JDBC supports two distinct models
for update batching;:

= the standard model, supported since Oracle8i release 8.1.6 and implementing
the Sun Microsystems JDBC 2.0 Specification, which is referred to as standard
update batching

= the Oracle-specific model, supported since release 8.1.5 and independent of the
Sun Microsystems JDBC 2.0 Specification, which is referred to as Oracle update
batching

Note: It is important to be aware that you cannot mix theses
models. In any single application, you can use the syntax of one
model or the other, but not both. The Oracle JDBC driver will throw
exceptions when you mix these syntaxes.

Overview of Update Batching Models

This section compares and contrasts the general models and types of statements
supported for standard update batching and Oracle update batching.

Oracle Model versus Standard Model

Oracle update batching uses a batch value that typically results in implicit processing
of a batch. The batch value is the number of operations you want to batch
(accumulate) for each trip to the database. As soon as that many operations have
been added to the batch, the batch is executed. Note the following:

« You can set a default batch for the connection object, which applies to any
prepared statement executed in that connection.

= For any individual prepared statement object, you can set a statement batch
value that overrides the connection batch value.

12-2 Oracle9i JDBC Developer's Guide and Reference

Update Batching

= You can choose to explicitly execute a batch at any time, overriding both the
connection batch value and the statement batch value.

Standard update batching is a manual, explicit model. There is no batch value. You
manually add operations to the batch and then explicitly choose when to execute
the batch.

Oracle update batching is a more efficient model because the driver knows ahead of
time how many operations will be batched. In this sense, the Oracle model is more
static and predictable. With the standard model, the driver has no way of knowing
in advance how many operations will be batched. In this sense, the standard model
is more dynamic in nature.

If you want to use update batching, here is how to choose between the two models:

= Use Oracle update batching if portability is not critical. This will probably result
in the greatest performance improvement.

« Use standard update batching if portability is a higher priority than
performance.

Types of Statements Supported

As implemented by Oracle, update batching is intended for use with prepared
statements, when you are repeating the same statement with different bind
variables. Be aware of the following;:

= Oracle update batching supports only Oracle prepared statement objects. In an
Oracle callable statement, both the connection default batch value and the
statement batch value are overridden with a value of 1. In an Oracle generic
statement, there is no statement batch value, and the connection default batch
value is overridden with a value of 1.

Note that because Oracle update batching is vendor-specific, you must actually
use (or cast to) Or acl ePr epar edSt at ement objects, not general
Pr epar edSt at enent objects.

= To adhere to the JDBC 2.0 standard, Oracle’s implementation of standard
update batching supports callable statements and generic statements, as well as
prepared statements. You can migrate standard update batching syntax into an
Oracle JDBC application without difficulty.

= You can batch only UPDATE, | NSERT, or DELETE operations. Executing a batch
that includes an operation that attempts to return a result set will cause an
exception.

Performance Extensions 12-3

Update Batching

Note: The Oracle implementation of standard update batching
does not implement true batching for generic statements and
callable statements. Although Oracle JDBC supports the use of
standard batching syntax for St at ement and

Cal | abl eSt at enment objects, you will see performance
improvement for only Pr epar edSt at enent objects.

Note that with standard update batching, you can use either standard

Pr epar edSt at enment , Cal | abl eSt at enent , and St at enent objects, or
Oracle-specific Or acl ePr epar edSt at ement, Or acl eCal | abl eSt at ement,
and Or acl eSt at ement objects.

Oracle Update Batching

The Oracle update batching feature associates a batch value (limit) with each
prepared statement object. With Oracle update batching, instead of the JDBC driver
executing a prepared statement each time its execut eUpdat e() method is called,
the driver adds the statement to a batch of accumulated execution requests. The
driver will pass all the operations to the database for execution once the batch value
is reached. For example, if the batch value is 10, then each batch of 10 operations
will be sent to the database and processed in one trip.

A method in the Or acl eConnecti on class allows you to set a default batch value
for the Oracle connection as a whole, and this batch value is relevant to any Oracle
prepared statement in the connection. For any particular Oracle prepared statement,
amethod in the Or acl ePr epar edSt at enent class allows you to set a statement
batch value that overrides the connection batch value. You can also override both
batch values by choosing to manually execute the pending batch.

Notes:

= Do not mix standard update batching syntax with Oracle
update batching syntax in the same application. The JDBC
driver will throw an exception when you mix these syntaxes.

= Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are executing a batch,
this allows you the option of committing or rolling back the
operations that executed successfully prior to the error.

12-4 Oracle9i JDBC Developer's Guide and Reference

Update Batching

Oracle Update Batching Characteristics and Limitations

Note the following limitations and implementation details regarding Oracle update
batching:

= By default, there is no statement batch value, and the connection (default) batch
value is 1.

« Batch values between 5 and 30 tend to be the most effective. Setting a very high
value might even have a negative effect. It is worth trying different values to
verify the effectiveness for your particular application.

= Regardless of the batch value in effect, if any of the bind variables of an Oracle
prepared statement is (or becomes) a stream type, then the Oracle JDBC driver
sets the batch value to 1 and sends any queued requests to the database for
execution.

= The Oracle JDBC driver automatically executes the sendBat ch() method of an
Oracle prepared statement in any of the following circumstances: 1) the
connection receives a COVMM T request, either as a result of invoking the
conmi t () method or as a result of auto-commit mode; 2) the statement
receives a cl ose() request; or 3) the connection receives a cl ose() request.

Note: A connection COMM T request, statement close, or
connection close has no effect on a pending batch if you use
standard update batching—only if you use Oracle update batching.

Setting the Connection Batch Value

You can specify a default batch value for any Oracle prepared statement in your
Oracle connection. To do this, use the set Def aul t Execut eBat ch() method of
the Or acl eConnect i on object. For example, the following code sets the default
batch value to 20 for all prepared statement objects associated with the conn
connection object:

((Oracl eConnecti on) conn) . set Def aul t Execut eBat ch(20);
Even though this sets the default batch value for all the prepared statements of the

connection, you can override it by calling set Def aul t Bat ch() on individual
Oracle prepared statements.

The connection batch value will apply to statement objects created after this batch
value was set.

Performance Extensions 12-5

Update Batching

Note that instead of calling set Def aul t Execut eBat ch(), you can set the

def aul t Bat chVal ue Java property if you use a Java Pr oper t i es object in
establishing the connection. See "Specifying a Database URL and Properties Object"
on page 3-6.

Setting the Statement Batch Value

Use the following steps to set the statement batch value for a particular Oracle
prepared statement. This will override any connection batch value set using the
set Def aul t Execut eBat ch() method of the Or acl eConnect i on instance for
the connection in which the statement executes.

1. Write your prepared statement and specify input values for the first row:

Prepar edSt at ement ps = conn. prepar eSt at enent
("I NSERT I NTO dept VALUES (?,?7,7)");
ps.setlnt (1,12);
ps.setString (2,"Oracle");
ps.setString (3,"USA");

2. Cast your prepared statement to an Or acl ePr epar edSt at ement object, and
apply the set Execut eBat ch() method. In this example, the batch size of the
statement is set to 2.

((Oracl ePreparedSt atement) ps) . set Execut eBat ch(2) ;

If you wish, insert the get Execut eBat ch() method at any point in the
program to check the default batch value for the statement:

Systemout.printlin (" Statement Execute Batch Value " +
((Oracl ePrepar edSt at ement) ps) . get Execut eBat ch()) ;

3. If you send an execute-update call to the database at this point, then no data
will be sent to the database, and the call will return 0.

/] No data is sent to the database by this call to executeUpdate
Systemout.printin ("Number of rows updated so far: "
+ ps. executeUpdate ());

4. If you enter a set of input values for a second row and an execute-update, then
the number of batch calls to execut eUpdat e() will be equal to the batch
value of 2. The data will be sent to the database, and both rows will be inserted
in a single round trip.

ps.setlnt (1, 11);
ps.setString (2, "Applications");

12-6 Oracle9i JDBC Developer's Guide and Reference

Update Batching

ps.setString (3, "Indonesia");

int rows = ps.executeUpdate ();
Systemout.printin ("Nunber of rows updated now

+ rows);

ps.close ();

Checking the Batch Value

To check the overall connection batch value of an Oracle connection instance, use
the Or acl eConnect i on class get Def aul t Execut eBat ch() method:

Integer batch_val = ((Oracl eConnecti on)conn). get Def aul t Execut eBat ch();

To check the particular statement batch value of an Oracle prepared statement, use
the Or acl ePr epar edSt at ement class get Execut eBat ch() method:

I nteger batch_val = ((Oracl ePreparedSt atement) ps). get Execut eBatch();

Note: If no statement batch value has been set, then
get Execut eBat ch() will return the connection batch value.

Overriding the Batch Value

If you want to execute accumulated operations before the batch value in effect is
reached, then use the sendBat ch() method of the Or acl ePr epar edSt at enent
object.

For this example, presume you set the connection batch value to 20. (This sets the
default batch value for all prepared statement objects associated with the
connection to 20.) You could accomplish this by casting your connection to an

Or acl eConnect i on object and applying the set Def aul t Execut eBat ch()
method for the connection, as follows:

((Oracl eConnecti on) conn). set Def aul t Execut eBat ch (20);

Override the batch value as follows:

1. Write your prepared statement and specify input values for the first row as
usual, then execute the statement:

Prepar edSt at ement ps =
conn. prepareStatement ("insert into dept values (?, ?, ?2)");

Performance Extensions 12-7

Update Batching

ps.setlnt (1, 32);
ps.setString (2, "Oracle");
ps.setString (3, "USA");

Systemout.println (ps.executeUpdate ());

The batch is not executed at this point. The ps. execut eUpdat e() method
returns "0".

If you enter a set of input values for a second operation and call

execut eUpdat e() again, the data will still not be sent to the database,
because the batch value in effect for the statement is the connection batch value:
20.

ps.setlnt (1, 33);
ps.setString (2, "Applications");
ps.setString (3, "lndonesia");

/] this batch is still not executed at this point
int rows = ps.executeUpdate ();

Systemout.printin ("Nunmber of rows updated before calling sendBatch:
+ rows);

Note that the value of r ows in the pri nt | n statement is "0".

If you apply the sendBat ch() method at this point, then the two previously
batched operations will be sent to the database in a single round trip. The
sendBat ch() method also returns the total number of updated rows. This
property of sendBat ch() is used by pri nt | n to print the number of updated
rows.

/] Execution of both previously batched executes will happen

/] at this point. The nunber of rows updated will be

/] returned by sendBatch.

rows = ((Oracl ePreparedStatenent)ps).sendBatch ();

Systemout.printlin ("Number of rows updated by calling sendBatch: "
+ rows);

ps.close ();

Committing the Changes in Oracle Batching

After you execute the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

12-8 Oracle9i JDBC Developer's Guide and Reference

Update Batching

Calling conmi t () on the connection object in Oracle batching not only commits
operations in batches that have been executed, but also issues an implicit
sendBat ch() call to execute all pending batches. So conmmi t () effectively
commits changes for all operations that have been added to a batch.

Update Counts in Oracle Batching

In a non-batching situation, the execut eUpdat e() method of an
Oracl ePr epar edSt at ement object will return the number of database rows
affected by the operation.

In an Oracle batching situation, this method returns the number of rows affected at
the time the method is invoked, as follows:

= Ifanexecut eUpdat e() call results in the operation being added to the batch,
then the method returns a value of 0, because nothing was written to the
database yet.

= Ifanexecut eUpdat e() call results in the batch value being reached and the
batch being executed, then the method will return the total number of rows
affected by all operations in the batch.

Similarly, the sendBat ch() method of an Or acl ePr epar edSt at ement object
returns the total number of rows affected by all operations in the batch.

Example: Oracle Update Batching

The following example illustrates how you use the Oracle update batching feature.
It assumes you have imported the or acl e. dri ver. * interfaces.

Connection conn =
Dri ver Manager . get Connection("j dbc: oracl e: oci :

,'scott","tiger");
conn. set Aut oCommi t (fal se);

Prepar edSt at ement ps =
conn. prepareStatenent ("insert into dept values (?, ?, ?2)");

/] Change batch size for this statement to 3
((Oracl ePreparedStatenment) ps) . set Execut eBatch (3);

ps.setlnt(1, 23);

ps.setString(2, "Sales");

ps.set String(3, "USA");

ps. execut eUpdate(); //JDBC queues this for later execution

Performance Extensions 12-9

Update Batching

ps.setlnt(1, 24);

ps.set String(2, "Blue Sky");

ps.set String(3, "Mntana");

ps. execut eUpdate(); //JDBC queues this for later execution

ps.setlnt(1, 25);

ps.set String(2, "Applications");

ps.setString(3, "India");

ps. executeUpdate(); //The queue size equal s the batch value of 3
/1 JDBC sends the requests to the database

ps.setlnt(1, 26);

ps.setString(2, "HR');

ps.set String(3, "Mngolia");

ps. execut eUpdate(); //JDBC queues this for later execution

((Oracl ePreparedStatenent) ps) . sendBatch(); // JDBC sends the queued request
conn.comit();

ps. close();

Note: Updates deferred through batching can affect the results of
other queries. In the following example, if the first query is deferred
due to batching, then the second will return unexpected results:

UPDATE enmp SET nane = "Sue" WHERE name = "Bob";
SELECT name FROM enp WHERE nane = "Sue";

Standard Update Batching

Oracle implements the standard update batching model according to the Sun
Microsystems JDBC 2.0 Specification. Because it is a JDBC 2.0 feature, it is intended
for use in a JDK 1.2.x environment. To use standard update batching in a JDK 1.1.x
environment, you must cast to Oracle statement objects.

This model, unlike the Oracle update batching model, depends on explicitly adding
statements to the batch using an addBat ch() method and explicitly executing the
batch using an execut eBat ch() method. (In the Oracle model, you invoke
execut eUpdat e() as in a non-batching situation, but whether an operation is
added to the batch or the whole batch is executed is typically determined implicitly,
depending on whether a pre-determined batch value is reached.)

12-10 Oracle9i JDBC Developer's Guide and Reference

Update Batching

Notes:

= Do not mix standard update batching syntax with Oracle
update batching syntax in the same application. The Oracle
JDBC driver will throw exceptions when these syntaxes are
mixed.

= Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are executing a batch,
this allows you the option of committing or rolling back the
operations that executed successfully prior to the error.

Limitations in the Oracle Implementation of Standard Batching

Note the following limitations and implementation details regarding Oracle’s
implementation of standard update batching:

= InOracle JDBC applications, update batching is intended for use with prepared
statements that are being executed repeatedly with different sets of bind values.

The Oracle implementation of standard update batching does not implement
true batching for generic statements and callable statements. Even though
Oracle JDBC supports the use of standard batching syntax for St at ement and
Cal | abl eSt at ement objects, you are unlikely to see performance
improvement.

= Oracle’s implementation of standard update batching does not support stream
types as bind values. (This is also true of Oracle update batching.) Any attempt
to use stream types will result in an exception.

Adding Operations to the Batch

When any statement object is first created, its statement batch is empty. Use the
standard addBat ch() method to add an operation to the statement batch. This
method is specified in the standard j ava. sql . St at ement,

Pr epar edSt at ement , and Cal | abl eSt at ement interfaces, which are
implemented by interfaces or acl e. j dbc. Or acl eSt at enent ,

Or acl ePr epar edSt at ement , and Or acl eCal | abl eSt at enent , respectively.

For a St at ement object (or Or acl eSt at ement), the addBat ch() method takes a
Java string with a SQL operation as input. For example (assume a Connect i on
instance conn):

Performance Extensions 12-11

Update Batching

Statement stnt = conn.createStatenent();

stmt. addBat ch("1 NSERT | NTO enp VALUES(1000, 'Joe Jones')");
stnt.addBat ch("1 NSERT | NTO dept VALUES(260, 'Sales’)");
stnt.addBat ch("1 NSERT | NTO enp_dept VALUES(1000, 260)");

At this point, three operations are in the batch.

(Remember, however, that in the Oracle implementation of standard update
batching, you will probably see no performance improvement in batching generic
statements.)

For prepared statements, update batching is used to batch multiple executions of
the same statement with different sets of bind parameters. For a

Pr epar edSt at ement or Or acl ePr epar edSt at ement object, the addBat ch()
method takes no input—it simply adds the operation to the batch using the bind
parameters last set by the appropriate set XXX() methods. (This is also true for
Cal | abl eSt at ement or Or acl eCal | abl eSt at ement objects, but remember
that in the Oracle implementation of standard update batching, you will probably
see no performance improvement in batching callable statements.)

For example (again assuming a Connect i on instance conn):

Prepar edSt at ement pstnt =
conn. prepareSt at ement ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setlnt(1, 2000);
pstnt.setString(2, "Mlo Munford");
pstnt. addBat ch();

pstnt.setlnt(1, 3000);
pstnt.setString(2, "Sulu Sinpson");
pstnt. addBat ch() ;

At this point, two operations are in the batch.

Because a batch is associated with a single prepared statement object, you can batch
only repeated executions of a single prepared statement, as in this example.

Executing the Batch

To execute the current batch of operations, use the execut eBat ch() method of the
statement object. This method is specified in the standard St at ement interface,

12-12 Oracle9i JDBC Developer's Guide and Reference

Update Batching

which is extended by the standard Pr epar edSt at ement and
Cal | abl eSt at ement interfaces.

Following is an example that repeats the prepared statement addBat ch() calls
shown previously and then executes the batch:

Prepar edSt at ement pstnt =
conn. prepareSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setlnt(1, 2000);
pstnt.setString(2, "Mlo Munford");
pstnt. addBat ch();

pstnt.setlnt(1, 3000);
pstnt.setString(2, "Sulu Sinpson");
pstnt. addBat ch();

int[] updateCounts = pstnt.executeBatch();

The execut eBat ch() method returns ani nt array, typically one element per
batched operation, indicating success or failure in executing the batch and
sometimes containing information about the number of rows affected. This is
discussed in "Update Counts in the Oracle Implementation of Standard Batching"
on page 12-15.

Notes:

« After calling addBat ch() , you must call either
execut eBat ch() orcl ear Bat ch() before a call to
execut eUpdat e() , otherwise there will be a SQL exception.

= When a batch is executed, operations are performed in the
order in which they were batched.

« The statement batch is reset to empty once execut eBat ch()
has returned.

= AnexecuteBat ch() call closes the statement object’s current
result set, if one exists.

Performance Extensions 12-13

Update Batching

Committing the Changes in the Oracle Implementation of Standard Batching

After you execute the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Calling conmi t () commits non-batched operations and commits batched
operations for statement batches that have been executed, but for the Oracle
implementation of standard batching, has no effect on pending statement batches
that have not been executed.

Clearing the Batch

To clear the current batch of operations instead of executing it, use the

cl ear Bat ch() method of the statement object. This method is specified in the
standard St at ement interface, which is extended by the standard

Prepar edSt at enment and Cal | abl eSt at enent interfaces.

Following is an example that repeats the prepared statement addBat ch() calls
shown previously but then clears the batch under certain circumstances:

Prepar edSt at ement pstnt =
conn. prepareSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setlnt(1, 2000);
pstnt.setString(2, "Mlo Munford");
pstnt. addBat ch();

pstnt.setlnt(1, 3000);
pstnt.setString(2, "Sulu Sinpson");
pstnt. addBat ch();

if (...condition...)

int[] updateCounts = pstnt.executeBatch();

}
el se
{
pstnt.clearBatch();
}

12-14 Oracle9i JDBC Developer's Guide and Reference

Update Batching

Notes:

« After calling addBat ch() , you must call either
execut eBat ch() orcl ear Bat ch() before a call to
execut eUpdat e() , otherwise there will be a SQL exception.

« AclearBatch() call resets the statement batch to empty.

= Nothing is returned by the cl ear Bat ch() method.

Update Counts in the Oracle Implementation of Standard Batching

If a statement batch is executed successfully (no batch exception is thrown), then the
integer array—or update counts array—returned by the statement

execut eBat ch() call will always have one element for each operation in the
batch. In the Oracle implementation of standard update batching, the values of the
array elements are as follows:

= For a prepared statement batch, it is not possible to know the number of rows
affected in the database by each individual statement in the batch. Therefore, all
array elements have a value of -2. According to the JDBC 2.0 specification, a
value of -2 indicates that the operation was successful but the number of rows
affected is unknown.

= For a generic statement batch or callable statement batch, the array contains the
actual update counts indicating the number of rows affected by each operation.
The actual update counts can be provided because Oracle JDBC cannot use true
batching for generic and callable statements in the Oracle implementation of
standard update batching.

In your code, upon successful execution of a batch, you should be prepared to
handle either -2’s or true update counts in the array elements. For a successful batch
execution, the array contains either all -2’s or all positive integers.

Note: For information about possible values in the update counts
array for an unsuccessful batch execution, see "Error Handling in the
Oracle Implementation of Standard Batching" on page 12-16.

Example: Standard Update Batching

This example combines the sample fragments in the previous sections,
accomplishing the following steps:

Performance Extensions 12-15

Update Batching

« disabling auto-commit mode (which you should always do when using either
update batching model)

= creating a prepared statement object

= adding operations to the batch associated with the prepared statement object
= executing the batch

= committing the operations from the batch

Assume a Connect i on instance conn:

conn. set Aut oCommi t (fal se);

Prepar edSt at enent pstnt =
conn. prepareSt at ement ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setlnt(1, 2000);
pstnt.setString(2, "Mlo Munford");
pstnt. addBat ch();

pstnt.setlnt(1, 3000);
pstnt.setString(2, "Sulu Sinpson");
pstnt. addBat ch();

int[] updateCounts = pstnt.executeBatch();
conn.comit();

pstnt.close();

You can process the update counts array to determine if the batch executed
successfully. This is discussed in the next section ("Error Handling in the Oracle
Implementation of Standard Batching").

Error Handling in the Oracle Implementation of Standard Batching

If any one of the batched operations fails to complete successfully (or attempts to
return a result set) during an execut eBat ch() call, then execution stops and a
j ava. sql . Bat chUpdat eExcept i on is generated (a subclass of

j ava. sqgl . SQLExcept i on).

After a batch exception, the update counts array can be retrieved using the
get Updat eCount s() method of the Bat chUpdat eExcept i on object. This
returns an i nt array of update counts, just as the execut eBat ch() method does.

12-16 Oracle9i JDBC Developer's Guide and Reference

Update Batching

In the Oracle implementation of standard update batching, contents of the update
counts array are as follows after a batch exception:

« For a prepared statement batch, it is not possible to know which operation
failed. The array has one element for each operation in the batch, and each
element has a value of -3. According to the JDBC 2.0 specification, a value of -3
indicates that an operation did not complete successfully. In this case, it was
presumably just one operation that actually failed, but because the JDBC driver
does not know which operation that was, it labels all the batched operations as
failures.

You should always perform a ROLLBACK operation in this situation.

« For a generic statement batch or callable statement batch, the update counts
array is only a partial array containing the actual update counts up to the point
of the error. The actual update counts can be provided because Oracle JDBC
cannot use true batching for generic and callable statements in the Oracle
implementation of standard update batching.

For example, if there were 20 operations in the batch, the first 13 succeeded, and
the 14th generated an exception, then the update counts array will have 13
elements, containing actual update counts of the successful operations.

You can either commit or roll back the successful operations in this situation, as
you prefer.

In your code, upon failed execution of a batch, you should be prepared to handle
either -3’s or true update counts in the array elements when an exception occurs.
For a failed batch execution, you will have either a full array of -3’s or a partial
array of positive integers.

Intermixing Batched Statements and Non-Batched Statements

You cannot call execut eUpdat e() for regular, non-batched execution of an
operation if the statement object has a pending batch of operations (essentially, if
the batch associated with that statement object is non-empty).

You can, however, intermix batched operations and non-batched operations in a
single statement object if you execute non-batched operations either prior to adding
any operations to the statement batch or after executing the batch. Essentially, you
can call execut eUpdat e() for a statement object only when its update batch is
empty. If the batch is non-empty, then an exception will be generated.

For example, it is legal to have a sequence such as the following:

Performance Extensions 12-17

Update Batching

Prepar edSt at ement pstnt =
conn. prepareSt at ement ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setlnt(1, 2000);
pstnt.setString(2, "Mlo Munford");

int scount = pstnt.executeUpdate(); /1 OK no operations in pstnt batch

pstnt.setlnt(1, 3000);
pstnt.setString(2, "Sulu Sinpson");
pstnt. addBat ch() ; /] Now start a batch

pstnt.setlnt(1, 4000);
pstnt.setString(2, "Stan Leland");
pst nt. addBat ch() ;

int[] bcounts = pstnt.executeBatch();

pstnt.setlnt(1, 5000);
pstnt.setString(2, "Any Feiner");

int scount = pstnt.executeUpdate(); // OK pstnt batch was executed

Intermixing non-batched operations on one statement object and batched
operations on another statement object within your code is permissible. Different
statement objects are independent of each other with regards to update batching
operations. A COWMWM T request will affect all non-batched operations and all
successful operations in executed batches, but will not affect any pending batches.

Premature Batch Flush

Premature batch flush happens due to a change in cached meta data. Cached meta
data can be changed due to various reasons, such as the following;:

= The initial bind was null and the following bind is not null

= A scalar type is initially bound as string and then bound as scalar type or the
reverse

The premature batch flush count is summed to the return value of the next
execut eUpdat e() or sendBat ch() method.

12-18 Oracle9i JDBC Developer's Guide and Reference

Update Batching

The old functionality lost all these batch flush values which can be obtained now. To
switch back to the old functionality, you can set the Accunul at eBat chResul t

property to f al se, as shown below:

HashTabl e info = new HashTabl e ();
info.put ("user", "SCOIT");
info.put ("passwd", "TIGER");

/] other properties

/] property: batch flush type
info.put ("Accumul ateBatchResult", "fal se");

Connection con = DriverManager. get Connection ("jdbc:oracle:oci:@, info);

Note: The Accurul at eBat chResul t property is set tot r ue by
default, in Oracle9i.

Example:
((Oracl ePreparedStatenent) pstnt). set Execut eBatch (2);

pstnt.setNull (1, Oracl eTypes. NUMBER);
pstnt.setString (2, "test1l");
int count = pstnt.executeUpdate (); // returns 0

/*

* Premature batch flush happens here.

*|

pstnt.setlnt (1, 22);

pstnt.setString (2, "test22");

int count = pstnt.executeUpdate (); // returns 0

pstnt.setlnt (1, 33);

pstnt.setString (2, "test33");

/*

* returns 3 with the new batching schene where as,
* returns 2 with the old batching schene.

*|

int count = pstnt.executeUpdate ();

Performance Extensions

12-19

Additional Oracle Performance Extensions

Additional Oracle Performance Extensions

In addition to update batching, discussed previously, Oracle JDBC drivers support
the following extensions that improve performance by reducing round trips to the
database:

« prefetching rows

This reduces round trips to the database by fetching multiple rows of data each
time data is fetched—the extra data is stored in client-side buffers for later
access by the client. The number of rows to prefetch can be set as desired.

« specifying column types

This avoids an inefficiency in the normal JDBC protocol for performing and
returning the results of queries.

= suppressing database metadata TABLE_REMARKS columns
This avoids an expensive outer join operation.

Oracle provides several extensions to connection properties objects to support these
performance extensions. These extensions enable you to set the

r emar ksRepor t i ng flag and default values for row prefetching and update
batching. For more information, see "Specifying a Database URL and Properties
Object” on page 3-6.

Oracle Row Prefetching

Oracle JDBC drivers include extensions that allow you to set the number of rows to
prefetch into the client while a result set is being populated during a query. This
feature reduces the number of round trips to the server.

Note: With JDBC 2.0, the ability to preset the fetch size has
become standard functionality. For information about the standard
implementation of this feature, see "Fetch Size" on page 13-24.

Setting the Oracle Prefetch Value

Standard JDBC receives the result set one row at a time, and each row requires a
round trip to the database. The row-prefetching feature associates an integer
row-prefetch setting with a given statement object. JDBC fetches that number of
rows at a time from the database during the query. That is, JDBC will fetch N rows
that match the query criteria and bring them all back to the client at once, where N

12-20 Oracle9i JDBC Developer's Guide and Reference

Additional Oracle Performance Extensions

is the prefetch setting. Then, once your next () calls have run through those N
rows, JDBC will go back to fetch the next N rows that match the criteria.

You can set the number of rows to prefetch for a particular Oracle statement (any
type of statement). You can also reset the default number of rows that will be
prefetched for all statements in your connection. The default number of rows to
prefetch to the client is 10.

Set the number of rows to prefetch for a particular statement as follows:

1.

Cast your statement object to an Or acl eSt at emrent,
Or acl ePrepar edSt at enent , or Or acl eCal | abl eSt at ement object, as
applicable, if it is not already one of these.

Use the set RowPr ef et ch() method of the statement object to specify the
number of rows to prefetch, passing in the number as an integer. If you want to
check the current prefetch number, use the get RowPr ef et ch() method of the
Statement object, which returns an integer.

Set the default number of rows to prefetch for all statements in a connection, as
follows:

1.
2.

Cast your Connect i on object to an Or acl eConnect i on object.

Use the set Def aul t RowPr ef et ch() method of your Or acl eConnecti on
object to set the default number of rows to prefetch, passing in an integer that
specifies the desired default. If you want to check the current setting of the
default, then use the get Def aul t RowPr ef et ch() method of the

Or acl eConnect i on object. This method returns an integer.

Equivalently, instead of calling set Def aul t RowPr ef et ch(), you can set the
def aul t RowPr ef et ch Java property if you use a Java Pr opert i es object in
establishing the connection. See "Specifying a Database URL and Properties
Object" on page 3-6.

Performance Extensions 12-21

Additional Oracle Performance Extensions

Notes:

« Do not mix the JDBC 2.0 fetch size API and the Oracle
row-prefetching API in your application. You can use one or
the other, but not both.

= Be aware that setting the Oracle row-prefetch value can affect
not only queries, but also: 1) explicitly refetching rows in a
result set through the result set r ef r eshRow() method
available with JDBC 2.0 (relevant for scroll-sensitive/read-only,
scroll-sensitive /updatable, and scroll-insensitive/updatable
result sets); and 2) the "window" size of a scroll-sensitive result
set, affecting how often automatic refetches are performed. The
Oracle row-prefetch value will be overridden, however, by any
setting of the fetch size. See "Fetch Size" on page 13-24 for more
information.

Example: Row Prefetching The following example illustrates the row-prefetching
feature. It assumes you have imported the or acl e. j dbc. * interfaces.

Connection conn =
Dri ver Manager . get Connection("jdbc: oracl e:oci:","scott", "tiger");

//Set the default rowprefetch setting for this connection
((Oracl eConnecti on) conn). set Def aul t RowPr ef et ch(7);

/* The following statement gets the default rowprefetch value for
the connection, that is, 7.

*|

Statement stnt = conn.createStatenent();

/* Subsequent statements | ook the sane, regardless of the row
prefetch value. Only execution tinme changes.

*|

Resul t Set rset = stnt.executeQuery("SELECT ename FROM enp");

Systemout.printin(rset.next ());

while(rset.next ())
Systemout.printin(rset.getString (1));

/I Override the default rowprefetch setting for this statement
((OracleStatenent)stnt).setRowPrefetch (2);

12-22 Oracle9i JDBC Developer's Guide and Reference

Additional Oracle Performance Extensions

Resul t Set rset = stnt.executeQuery("SELECT ename FROM enmp");
Systemout.printin(rset.next ());

while(rset.next())
Systemout.printin(rset.getString (1));

stnt.close();

Oracle Row-Prefetching Limitations

There is no maximum prefetch setting, but empirical evidence suggests that 10 is
effective. Oracle does not recommend exceeding this value in most situations. If you
do not set the default row-prefetch value for a connection, 10 is the default.

A statement object receives the default row-prefetch setting from the associated
connection at the time the statement object is created. Subsequent changes to the
connection’s default row-prefetch setting have no effect on the statement’s
row-prefetch setting.

If a column of a result set is of datatype LONGor LONG RAW(that is, the streaming
types), JDBC changes the statement’s row-prefetch setting to 1, even if you never
actually read a value of either of those types.

If you use the form of the Dr i ver Manager class get Connect i on() method that
takes a Properti es object as an argument, then you can set the connection’s
default row-prefetch value that way. See "Specifying a Database URL and Properties
Object” on page 3-6.

Defining Column Types

Oracle JDBC drivers enable you to inform the driver of the types of the columns in
an upcoming query, saving a round trip to the database that would otherwise be
necessary to describe the table.

When standard JDBC performs a query, it first uses a round trip to the database to
determine the types that it should use for the columns of the result set. Then, when
JDBC receives data from the query, it converts the data, as necessary, as it populates
the result set.

When you specify column types for a query, you avoid the first round trip to the
database. The server, which is optimized to do so, performs any necessary type
conversions.

Following these general steps to define column types for a query:

Performance Extensions 12-23

Additional Oracle Performance Extensions

1. Cast your statement object to an Or acl eSt at enent,
Or acl ePrepar edSt at enent , or Or acl eCal | abl eSt at ement object, as
applicable, if it is not already one of these.

2. Ifnecessary, use the cl ear Def i nes() method of your St at ement object to
clear any previous column definitions for this St at ement object.

3. For each column of the expected result set, invoke the def i neCol umType()
method of your St at ement object, passing it these parameters:

= column index (integer)
= typecode (integer)

Use the static constants of the j ava. sql . Types class or

oracl e. jdbc. Oracl eTypes class (such as Types. | NTEGER,

Types. FLOAT, Types. VARCHAR, Or acl eTypes. VARCHAR, and

Or acl eTypes. ROW D). Typecodes for standard types are identical in these
two classes.

= type name (string) (structured objects, object references, and arrays only)

For structured objects, object references, and arrays, you must also specify
the type name (for example, Enpl oyee, Enpl oyeeRef , or
Enpl oyeeArr ay).

= (optionally) maximum field size (integer)
Optionally specify a maximum data length for this column.

You cannot specify a maximum field size parameter if you are defining the
column type for a structured object, object reference, or array. If you try to
include this parameter, it will be ignored.

For example, assuming st nt is an Oracle statement, use this syntax:

stnt. defi neCol umType(col uim_i ndex, typeCode);

or (recommended if the column is VARCHAR or equivalent and you know the
length limit):

stnt. defineCol umType(col um_i ndex, typeCode, max_si ze);

or (for structured object, object reference, and array columns):

stnt. defi neCol umType(col um_i ndex, typeCode, typeNane);

Set a maximum field size if you do not want to receive the full default length of
the data. Calling the set MaxFi el dSi ze() method of the standard JDBC

12-24 Oracle9i JDBC Developer's Guide and Reference

Additional Oracle Performance Extensions

St at ement class sets a restriction on the amount of data returned. Specifically,
the size of the data returned will be the minimum of:

» the maximum field size set in def i neCol umType()
or:

» the maximum field size set in set MaxFi el dSi ze()
or:

= the natural maximum size of the datatype

Once you complete these steps, use the statement’s execut eQuer y() method to
perform the query.

Note: You must define the datatype for every column of the
expected result set. If the number of columns for which you specify
types does not match the number of columns in the result set, the
process fails with a SQL exception.

Example: Defining Column Types The following example illustrates the use of this
feature. It assumes you have imported the or acl e. j dbc. * interfaces.

Connection conn =
Dri ver Manager . get Connecti on("jdbc: oracle:oci:", "scott","tiger");

Statement stnt = conn.createStatenent();

[*Ask for the colum as a string:

*Avoid a round trip to get the colum type.

*Convert fromnunber to string on the server.

*|

((Oracl eStatenent)stnt).defineCol umType(1, Types.VARCHAR);

Resul t Set rset = stnt.executeQuery("select enpno fromenp");

while (rset.next())
Systemout.printin(rset.getString(1));

stnt.close();
As this example shows, you must cast the statement (St nt) to type

Or acl eSt at enment in the invocation of the def i neCol umType() method. The
connection’s cr eat eSt at ement () method returns an object of type

Performance Extensions 12-25

Additional Oracle Performance Extensions

j ava. sgl . St at ement , which does not have the def i neCol umType() and
cl ear Def i nes() methods. These methods are provided only in the
Oracl eSt at ement implementation.

The define-extensions use JDBC types to specify the desired types. The allowed
define types for columns depend on the internal Oracle type of the column.

All columns can be defined to their "natural” JDBC types; in most cases, they can be
defined to the Types. CHAR or Types. VARCHAR typecode.

Table 12-1 lists the valid column definition arguments you can use in the
def i neCol umType() method.

Table 12-1 Valid Column Type Specifications

If the column has Oracle You can use defineColumnType()

SQL type: to define it as:

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR?2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBINARY, VARBINARY, BINARY

RAW VARBINARY, BINARY

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR

ROWID ROWID

DatabaseMetaData TABLE_REMARKS Reporting

The get Col uims(), get Procedur eCol utms(), get Procedur es(), and

get Tabl es() methods of the database metadata classes are slow if they must
report TABLE_REMARKS columns, because this necessitates an expensive outer join.
For this reason, the JDBC driver does not report TABLE_REMARKS columns by
default.

You can enable TABLE _REMARKS reporting by passing a t r ue argument to the
set Remar ksRepor ti ng() method of an Or acl eConnect i on object.

Equivalently, instead of calling set Remar ksReporti ng(), you can set the

remar ksRepor t i ng Java property if you use a Java Pr oper ti es object in
establishing the connection. See "Specifying a Database URL and Properties Object"
on page 3-6.

12-26 Oracle9i JDBC Developer's Guide and Reference

Additional Oracle Performance Extensions

If you are using a standard j ava. sql . Connect i on object, you must cast it to
Or acl eConnecti on to use set Remar ksReporting().

Example: TABLE_REMARKS Reporting

Assuming conn is the name of your standard Connect i on object, the following
statement enables TABLE _REMARKS reporting.

((oracle.jdbc. Oracl eConnection)conn). set RemarksReporting(true);

Considerations for getProcedures() and getProcedureColumns() Methods

According to JDBC versions 1.1 and 1.2, the methods get Pr ocedur es() and
get Procedur eCol unims() treat the cat al og, schermaPat t ern,

col uimNanePat t er n, and pr ocedur eNanmePat t er n parameters in the same
way. In the Oracle definition of these methods, the parameters are treated
differently:

= cat al 0g: Oracle does not have multiple catalogs, but it does have packages.
Consequently, the cat al og parameter is treated as the package name. This
applies both on input (the cat al 0og parameter) and output (the cat al og
column in the returned Resul t Set). On input, the construct" " (the empty
string) retrieves procedures and arguments without a package, that is,
standalone objects. A nul | value means to drop from the selection criteria, that
is, return information about both stand-alone and packaged objects (same as
passing in "%). Otherwise the cat al og parameter should be a package name
pattern (with SQL wild cards, if desired).

= schemaPat t er n: All objects within Oracle must have a schema, so it does not
make sense to return information for those objects without one. Thus, the
construct " " (the empty string) is interpreted on input to mean the objects in
the current schema (that is, the one to which you are currently connected). To be
consistent with the behavior of the cat al og parameter, nul | is interpreted to
drop the schema from the selection criteria (same as passing in "%). It can also
be used as a pattern with SQL wild cards.

= procedureNamePatt er n and col utmNanePat t er n: The empty string (" ")
does not make sense for either parameter, because all procedures and
arguments must have names. Thus, the construct " " will raise an exception. To
be consistent with the behavior of other parameters, nul | has the same effect as
passing in "%.

Performance Extensions 12-27

Additional Oracle Performance Extensions

12-28 Oracle9i JDBC Developer's Guide and Reference

13

Result Set Enhancements

Standard JDBC 2.0 features in JDK 1.2.x include enhancements to result set
functionality—processing forward or backward, positioning relatively or absolutely,
seeing changes to the database made internally or externally, and updating result
set data and then copying the changes to the database.

This chapter discusses these features, including the following topics:

Overview

Creating Scrollable or Updatable Result Sets

Positioning and Processing in Scrollable Result Sets
Updating Result Sets

Fetch Size

Refetching Rows

Seeing Database Changes Made Internally and Externally

Summary of New Methods for Result Set Enhancements

The Oracle JDBC drivers also include extensions to support these features in a JDK
1.1.x environment.

For more general and conceptual information about JDBC 2.0 result set
enhancements, refer to the Sun Microsystems JDBC 2.0 API specification.

Result Set Enhancements 13-1

Overview

Overview

This section provides an overview of JDBC 2.0 result set functionality and
categories, and some discussion of implementation requirements for the Oracle
JDBC drivers.

Result Set Functionality and Result Set Categories Supported in JDBC 2.0
Result set functionality in JDBC 2.0 includes enhancements for scrollability and
positioning, sensitivity to changes by others, and updatability.
= Scrollability, positioning, and sensitivity are determined by the result set type.

= Updatability is determined by the concurrency type.

Specify the desired result set type and concurrency type when you create the
statement object that will produce the result set.

Together, the various result set types and concurrency types provide for six different
categories of result set.

This section provides an overview of these enhancements, types, and categories.

Scrollability, Positioning, and Sensitivity

Scrollability refers to the ability to move backward as well as forward through a
result set. Associated with scrollability is the ability to move to any particular
position in the result set, through either relative positioning or absolute positioning.

Relative positioning allows you to move a specified number of rows forward or
backward from the current row. Absolute positioning allows you to move to a
specified row number, counting from either the beginning or the end of the result
set.

Under JDBC 1.0 (in JDK 1.1.x) you can scroll only forward, using the next ()
method as described in "Process the Result Set" on page 3-11, and there is no
positioning functionality. You can start only at the beginning and iterate
row-by-row until the end.

Under JDBC 2.0 (in JDK 1.2.x), scrollable/positionable result sets are also available.

When creating a scrollable/positionable result set, you must also specify sensitivity.
This refers to the ability of a result set to detect and reveal changes made to the
underlying database from outside the result set.

13-2 Oracle9i JDBC Developer's Guide and Reference

Overview

A sensitive result set can see changes made to the database while the result set is
open, providing a dynamic view of the underlying data. Changes made to the
underlying columns values of rows in the result set are visible.

An insensitive result set is not sensitive to changes made to the database while the
result set is open, providing a static view of the underlying data. You would need to
retrieve a new result set to see changes made to the database.

Sensitivity is not an option in a JDBC 1.0/non-scrollable result set.

Result Set Types for Scrollability and Sensitivity

When you create a result set under JDBC 2.0 functionality, you must choose a
particular result set type to specify whether the result set is scrollable/positional
and sensitive to underlying database changes.

If the JDBC 1.0 functionality is all you desire, JDBC 2.0 continues to support this
through the forward-only result set type. A forward-only result set cannot be
sensitive.

If you want a scrollable result set, you must also specify sensitivity. Specify the
scroll-sensitive type for the result set to be scrollable and sensitive to underlying
changes. Specify the scroll-insensitive type for the result set to be scrollable but not
sensitive to underlying changes.

To summarize, the following three result set types are available with JDBC 2.0:

= forward-only (JDBC 1.0 functionality—not scrollable, not positionable, and not
sensitive)

= scroll-sensitive (scrollable and positionable; also sensitive to underlying
database changes)

= scroll-insensitive (scrollable and positionable but not sensitive to underlying
database changes)

Note: The sensitivity of a scroll-sensitive result set (how often it is
updated to see external changes) is affected by fetch size. See Fetch
Size on page 13-24 and "Oracle Implementation of Scroll-Sensitive
Result Sets" on page 13-30.

Result Set Enhancements 13-3

Overview

Updatability

Updatability refers to the ability to update data in a result set and then (presumably)
copy the changes to the database. This includes inserting new rows into the result
set or deleting existing rows.

Updatability might also require database write locks to mediate access to the
underlying database. Because you cannot have multiple write locks concurrently,
updatability in a result set is associated with concurrency in database access.

Result sets can optionally be updatable under JDBC 2.0, but not under JDBC 1.0.

Note: Updatability is independent of scrollability and sensitivity,
although it is typical for an updatable result set to also be scrollable
so that you can position it to particular rows that you want to
update or delete.

Concurrency Types for Updatability

The concurrency type of a result set determines whether it is updatable. Under
JDBC 2.0, the following concurrency types are available:

= updatable (updates, inserts, and deletes can be performed on the result set and
copied to the database)

= read-only (the result set cannot be modified in any way)

Summary of Result Set Categories

Because scrollability and sensitivity are independent of updatability, the three result
set types and two concurrency types combine for a total of six result set categories:

« forward-only/read-only

= forward-only/updatable

« scroll-sensitive /read-only

= scroll-sensitive/updatable

= scroll-insensitive /read-only

« scroll-insensitive/updatable

13-4 Oracle9i JDBC Developer's Guide and Reference

Overview

Note: A forward-only updatable result set has no positioning
functionality. You can only update rows as you iterate through
them with the next () method.

Oracle JDBC Implementation Overview for Result Set Enhancements

This section discusses key aspects of the Oracle JDBC implementation of result set
enhancements for scrollability—through use of a client-side cache—and for
updatability—through use of ROWIDs.

It is permissible for customers to implement their own client-side caching
mechanism, and Oracle provides an interface to use in doing so.

Oracle JDBC Implementation for Result Set Scrollability
Because the underlying server does not support scrollable cursors, Oracle JDBC
must implement scrollability in a separate layer.

It is important to be aware that this is accomplished by using a client-side memory
cache to store rows of a scrollable result set.

Important: Because all rows of any scrollable result set are stored
in the client-side cache, a situation where the result set contains
many rows, many columns, or very large columns might cause the
client-side Java virtual machine to fail. Do not specify scrollability for
a large result set.

Scrollable cursors in the Oracle server, and therefore a server-side cache, will be
supported in a future Oracle release.

Oracle JDBC Implementation for Result Set Updatability

To support updatability, Oracle JDBC uses ROWIDs to uniquely identify database
rows that appear in a result set. For every query into an updatable result set, the
Oracle JDBC driver automatically retrieves the ROWID along with the columns you
select.

Note: Client-side caching is not required by updatability in and of
itself. In particular, a forward-only updatable result set will not
require a client-side cache.

Result Set Enhancements 13-5

Overview

Implementing a Custom Client-Side Cache for Scrollability

There is some flexibility in how to implement client-side caching in support of JDBC
2.0 scrollable result sets.

Although Oracle JDBC provides a complete implementation, it also supplies an
interface, Or acl eResul t Set Cache, that you can implement as desired:

public interface O acleResultSetCache
{

/**

* Save the data in the i-th rowand j-th colum.

*|

public void put (int i, int j, Cbject value) throws | OException;

/**

* Return the data stored inthe i-th rowand j-th col um.
*|

public Object get (int i, int j) throws |CException;

/**

* Remove the i-th row

*|

public void remove (int i) throws |CException;

/**
* Renove the data stored ini-th rowand j-th col um
*|
public void remove (int i, int j) throws |CException;

/**

* Renove all data fromthe cache.

*|

public void clear () throws |CException;

/**

* Close the cache.

*|

public void close () throws |CException;

}

If you implement this interface with your own class, your application code must
instantiate your class and then use the set Resul t Set Cache() method of an
Oracl eSt at erent , Or acl ePr epar edSt at enent, or

Oracl eCal | abl eSt at ement object to set the caching mechanism to use your
implementation. Following is the method signature:

13-6 Oracle9i JDBC Developer's Guide and Reference

Overview

« Vvoid setResultSetCache(O acl eResul t Set Cache cache)
t hrows SQLException

Call this method prior to executing a query. The result set produced by the query
will then use your specified caching mechanism.

Result Set Enhancements 13-7

Creating Scrollable or Updatable Result Sets

Creating Scrollable or Updatable Result Sets

Under JDBC 1.0, no special attention is required in creating and using a result set. A
result set is produced automatically to store the results of a query, and no result set
types or categories must be specified, because there is only one kind of result set
available—forward-only /read-only. For example (given a connection object conn):

Statement stnt = conn.createStatenment();
Result Set rs = stnt.executeQuery("SELECT enmpno, sal FROM enmp");

In using JDBC 2.0 result set enhancements, however, you may specify the result set
type (for scrollability and sensitivity) and the concurrency type (for updatability)
when you create a generic statement or prepare a prepared statement or callable
statement that will execute a query.

(Note, however, that callable statements are intended to execute stored procedures
and functions and rarely return a result set. Still, the callable statement class is a
subclass of the prepared statement class and so inherits this functionality.)

This section discusses the creation of result sets to use JDBC 2.0 enhancements.

Specifying Result Set Scrollability and Updatability

Under JDBC 2.0, Connect i on classes have cr eat eSt at enent (),
pr epar eSt at ement (), and pr epar eCal | () method signatures that take a result
set type and a concurrency type as input:

« Statenent createStatenent
(int resultSetType, int resultSetConcurrency)

« PreparedStatement prepareStatenent
(String sqgl, int resultSetType, int resultSetConcurrency)

« Call abl eSt at enent preparecCal |
(String sql, int resultSetType, int resultSetConcurrency)

The statement objects created will have the intelligence to produce the appropriate
kind of result sets.

You can specify one of the following static constant values for result set type:
« ResultSet. TYPE FORWARD ONLY

= ResultSet. TYPE_SCROLL_I NSENSI TI VE

= ResultSet. TYPE_SCROLL_SENSI TI VE

13-8 Oracle9i JDBC Developer's Guide and Reference

Creating Scrollable or Updatable Result Sets

Note: See "Oracle Implementation of Scroll-Sensitive Result Sets"
on page 13-30 for information about possible performance impact.

And you can specify one of the following static constant values for concurrency
type:
« ResultSet. CONCUR_READ ONLY

» Resul t Set. CONCUR_UPDATABLE

Note: If you are using the Oracle JDBC drivers in a JDK 1.1.x
environment , the static constants discussed here are part of the
Oracle extensions, belonging only to the Or acl eResul t Set class,
which you must specify. For example:

O acl eResul t Set. TYPE_SCROLL_SENSI Tl VE
instead of:

Resul t Set . TYPE_SCROLL_SENSI TI VE

After creating a St at ement , Pr epar edSt at ement , or Cal | abl eSt at ement
object, you can verify its result set type and concurrency type by calling the
following methods on the statement object:

« int getResultSetType() throws SQ.Exception
« int getResultSetConcurrency() throws SQ.Exception
Example Following is an example of a prepared statement object that specifies a

scroll-sensitive and updatable result set for queries executed through that statement
(where conn is a connection object):

Prepar edSt at ement pstnt = conn. pr epar eSt at enent
(" SELECT enpno, sal FROM enp WHERE enpno = ?",
Resul t Set. TYPE_SCROLL_SENSI TI VE, Resul t Set. CONCUR_UPDATABLE) ;

pstnt.setString(1l, "28959");
Result Set rs = pstnt.executeQuery();

Result Set Enhancements 13-9

Creating Scrollable or Updatable Result Sets

Result Set Limitations and Downgrade Rules

Some types of result sets are not feasible for certain kinds of queries. If you specify
an unfeasible result set type or concurrency type for the query you execute, the
JDBC driver follows a set of rules to determine the best feasible types to use instead.

The actual result set type and concurrency type are determined when the statement
is executed, with the driver issuing a SQLWAr ni ng on the statement object if the
desired result set type or concurrency type is not feasible. The SQLWr ni ng object
will contain the reason why the requested type was not feasible. Check for warnings
to verify whether you received the type of result set that you requested, or call the
methods described in "Verifying Result Set Type and Concurrency Type" on

page 13-11.

FOR UPDATE Clause Limitation in an Updatable Result Set

A query cannot have the FOR UPDATE clause in the SELECT statement if you are
using an updatable result set. If you use the FOR UPDATE clause and try to update a
result set, an SQLException will be thrown.

Result Set Limitations

The following limitations are placed on queries for enhanced result sets. Failure to
follow these guidelines will result in the JDBC driver choosing an alternative result
set type or concurrency type.

To produce an updatable result set:

= A query can select from only a single table and cannot contain any join
operations.

In addition, for inserts to be feasible, the query must select all non-nullable
columns and all columns that do not have a default value.

= A query cannot use "SELECT * ". (But see the workaround below.)

= A query must select table columns only. It cannot select derived columns or
aggregates such as the SUMor MAX of a set of columns.

To produce a scroll-sensitive result set:
= A query cannot use "SELECT * ". (But see the workaround below.)
« A query can select from only a single table.

(See "Summary of New Methods for Result Set Enhancements" on page 13-32 for
general information about refetching.)

13-10 Oracle9i JDBC Developer's Guide and Reference

Creating Scrollable or Updatable Result Sets

Workaround As a workaround for the "SELECT *" limitation, you can use table
aliases as in the following example:

SELECT t.* FROM TABLE t ...

Hint: There is a simple way to determine if your query will
probably produce a scroll-sensitive or updatable result set: If you
can legally add a ROWID column to the query list, then the query is
probably suitable for either a scroll-sensitive or an updatable result
set. (You can try this out using SQL*Plus, for example.)

Result Set Downgrade Rules

If the specified result set type or concurrency type is not feasible, the Oracle JDBC
driver uses the following rules in choosing alternate types:

= If the specified result set type is TYPE_SCROLL_SENSI Tl VE, but the JDBC
driver cannot fulfill that request, then the driver attempts a downgrade to
TYPE_SCROLL_I NSENSI Tl VE.

= If the specified (or downgraded) result set type is TYPE_SCROLL _
I NSENSI TI VE, but the JDBC driver cannot fulfill that request, then the driver
attempts a downgrade to TYPE_FORWARD_ONLY.

Furthermore:

« If the specified concurrency type is CONCUR_UPDATABLE, but the JDBC driver
cannot fulfill that request, then the JDBC driver attempts a downgrade to
CONCUR_READ ONLY.

Notes:

= Criteria that would prevent the JDBC driver from fulfilling the
result set type specifications are listed in "Result Set
Limitations" on page 13-10.

= Any manipulations of the result set type and concurrency type
by the JDBC driver are independent of each other.

Verifying Result Set Type and Concurrency Type

After a query has been executed, you can verify the result set type and concurrency
type that the JDBC driver actually used, by calling methods on the result set object.

Result Set Enhancements 13-11

Creating Scrollable or Updatable Result Sets

« int getType() throws SQLException

This method returns an i nt value for the result set type used for the query.
Resul t Set. TYPE_FORWARD ONLY, Resul t Set. TYPE_SCROLL _
SENSI Tl VE, or Resul t Set . TYPE_SCROLL_I NSENSI Tl VE are the possible

values.
« int getConcurrency() throws SQLException

This method returns an i nt value for the concurrency type used for the query.
Resul t Set . CONCUR_READ ONLY or Resul t Set . CONCUR_UPDATABLE are

the possible values.

13-12 Oracle9i JDBC Developer's Guide and Reference

Positioning and Processing in Scrollable Result Sets

Positioning and Processing in Scrollable Result Sets

Scrollable result sets (result set type TYPE_SCROLL_SENSI Tl VE or TYPE_SCROLL _
| NSENSI TI VE) allow you to iterate through, them either forward or backward, and
to position the result set to any desired row.

This section discusses positioning within a scrollable result set and how to process a
scrollable result set backward, instead of forward.

Positioning in a Scrollable Result Set

In a scrollable result set, you can use several result set methods to move to a desired
position and to check the current position.

Methods for Moving to a New Position

The following result set methods are available for moving to a new position in a
scrollable result set:

« void beforeFirst() throws SQ.Exception

« void afterLast() throws SQ.Exception

« boolean first() throws SQLException

« boolean last() throws SQ.Exception

« bool ean absolute(int row) throws SQLException

« boolean relative(int row) throws SQLException

Note: You cannot position a forward-only result set. Any attempt
to position it or to determine the current position will result in a
SQL exception.

beforeFirst() Method Positions to before the first row of the result set, or has no effect
if there are no rows in the result set.

This is where you would typically start iterating through a result set to process it
going forward, and is the default initial position for any kind of result set.

You are outside the result set bounds after a bef or eFi r st () call. There is no valid
current row, and you cannot position relatively from this point.

Result Set Enhancements 13-13

Positioning and Processing in Scrollable Result Sets

afterLast() Method Positions to after the last row of the result set, or has no effect if
there are no rows in the result set.

This is where you would typically start iterating through a result set to process it
going backward.

You are outside the result set bounds after an af t er Last () call. There is no valid
current row, and you cannot position relatively from this point.

first() Method Positions to the first row of the result set, or returns f al se if there are
no rows in the result set.

last() Method Positions to the last row of the result set, or returns f al se if there are
no rows in the result set.

absolute() Method Positions to an absolute row from either the beginning or end of
the result set. If you input a positive number, it positions from the beginning; if you
input a negative number, it positions from the end. This method returns f al se if
there are no rows in the result set.

Attempting to move forward beyond the last row, such as an absol ut e(11) call if
there are 10 rows, will position to after the last row, having the same effect as an
afterlLast () call

Attempting to move backward beyond the first row, such as an absol ut e(- 11)
call if there are 10 rows, will position to before the first row, having the same effect
asabeforeFirst() call

Note: Calling absol ut e(1) is equivalent to calling fi rst();
calling absol ut e(- 1) is equivalent to calling | ast ().

relative() Method Moves to a position relative to the current row, either forward if you
input a positive number or backward if you input a negative number, or returns
f al se if there are no rows in the result set.

The result set must be at a valid current row for use of ther el ati ve() method.

Attempting to move forward beyond the last row will position to after the last row,
having the same effect as an af t er Last () call.

Attempting to move backward beyond the first row will position to before the first
row, having the same effect as a bef or eFi r st () call.

Arelative(0) callis valid but has no effect.

13-14 Oracle9i JDBC Developer's Guide and Reference

Positioning and Processing in Scrollable Result Sets

Important: You cannot position relatively from before the first row
(which is the default initial position) or after the last row.
Attempting relative positioning from either of these positions
would result in a SQL exception.

Methods for Checking the Current Position

The following result set methods are available for checking the current position in a
scrollable result set:

bool ean i sBeforeFirst() throws SQ.Exception
Returns t r ue if the position is before the first row.

bool ean i sAfterLast() throws SQ.Exception
Returns t r ue if the position is after the last row.

bool ean isFirst() throws SQ.Exception
Returns t r ue if the position is at the first row.

bool ean isLast() throws SQLException

Returns t r ue if the position is at the last row.

int getRow) throws SQException

Returns the row number of the current row, or returns 0 if there is no valid
current row.

Note: The boolean methods—i sFirst (),i sLast(),
i sAfterFirst(),andi sAfterLast()—allreturnf al se (and
do not throw an exception) if there are no rows in the result set.

Processing a Scrollable Result Set

In a scrollable result set you can iterate backward instead of forward as you process
the result set. The following methods are available:

bool ean next() throws SQLException

bool ean previous() throws SQ.Exception

Result Set Enhancements 13-15

Positioning and Processing in Scrollable Result Sets

The pr evi ous() method works similarly to the next () method, in that it returns
t r ue as long as the new current row is valid, and f al se as soon as it runs out of
rows (has passed the first row).

Backward versus Forward Processing

You can process the entire result set going forward, using the next () method as in
JDBC 1.0. This is documented in "Process the Result Set" on page 3-11. The default
initial position in the result set is before the first row, appropriately, but you can call
the bef or eFi r st () method if you have moved elsewhere since the result set was
created.

To process the entire result set going backward, call af t er Last (), then use the
previ ous() method. For example (where conn is a connection object):

/* NOTE: The specified concurrency type, CONCUR UPDATABLE, is not relevant to
this exanple. */

Statenent stnmt = conn.createStatenent
(Resul t Set. TYPE_SCROLL_SENSI Tl VE, Result Set . CONCUR_UPDATABLE) ;

Result Set rs = stnt.executeQuery("SELECT enmpno, sal FROM enmp");

rs.afterlast();
while (rs.previous())

{
Systemout.printin(rs.getString("enmpno") +

}

+ rs.getFloat("sal"));

Unlike relative positioning, you can (and typically do) use next () from before the
first row and pr evi ous() from after the last row. You do not have to be at a valid
current row to use these methods.

Note: In a non-scrollable result set, you can process only with the
next () method. Attempting to use the pr evi ous() method will
cause a SQL exception.

13-16 Oracle9i JDBC Developer's Guide and Reference

Positioning and Processing in Scrollable Result Sets

Presetting the Fetch Direction

The JDBC 2.0 standard allows the ability to pre-specify the direction, known as the
fetch direction, for use in processing a result set. This allows the JDBC driver to
optimize its processing. The following result set methods are specified:

« void setFetchDirection(int direction) throws SQ.Exception
« int getFetchDirection() throws SQ.Exception

The Oracle JDBC drivers support only the forward preset value, which you can
specify by inputting the Resul t Set . FETCH_FORWARD static constant value.

The values Resul t Set . FETCH_REVERSE and Resul t Set . FETCH_UNKNOWN are
not supported—attempting to specify them causes a SQL warning, and the settings
are ignored.

Result Set Enhancements 13-17

Updating Result Sets

Updating Result Sets

A concurrency type of CONCUR_UPDATABLE allows you to update rows in the result
set, delete rows from the result set, or insert rows into the result set.

After you perform an UPDATE or | NSERT operation in a result set, you propagate
the changes to the database in a separate step that you can skip if you want to
cancel the changes.

A DELETE operation in a result set, however, is immediately executed (but not
necessarily committed) in the database as well.

Note: When using an updatable result set, it is typical to also
make it scrollable. This allows you to position to any row that you
want to change. With a forward-only updatable result set, you can
change rows only as you iterate through them with the next ()
method.

Performing a DELETE Operation in a Result Set

The result set del et eRow() method will delete the current row. Following is the
method signature:

voi d del eteRow() throws SQLException

Important: Unlike UPDATE and | NSERT operations in a result set,
which require a separate step to propagate the changes to the
database, a DELETE operation in a result set is immediately
executed in the corresponding row in the database as well.

Once you call del et eRow() , the changes will be made permanent
with the next transaction COMM T operation. Remember also that
by default, the auto-commit flag is set to t r ue. Therefore, unless
you override this default, any del et eRow() operation will be
executed and committed immediately.

Presuming the result set is also scrollable, you can position to a row using any of the
available positioning methods (except bef or eFi r st () and af t er Last (), which
do not go to a valid current row), and then delete that row, as in the following
example (presuming a result setr s):

13-18 Oracle9i JDBC Developer's Guide and Reference

Updating Result Sets

rs. absol ute(5);
rs. del eteRow();

See "Positioning in a Scrollable Result Set" on page 13-13 for information about the
positioning methods.

Important: The deleted row remains in the result set object even
after it has been deleted from the database.

In a scrollable result set, by contrast, a DELETE operation is evident
in the local result set object—the row would no longer be in the
result set after the DELETE. The row preceding the deleted row
becomes the current row, and row numbers of subsequent rows are
changed accordingly.

Refer to "Seeing Internal Changes" on page 13-27 for more
information.

Performing an UPDATE Operation in a Result Set

Performing a result set UPDATE operation requires two separate steps to first update
the data in the result set and then copy the changes to the database.

Presuming the result set is also scrollable, you can position to a row using any of the
available positioning methods (except bef or eFi r st () and af t er Last (), which
do not go to a valid current row), and then update that row as desired.

See "Positioning in a Scrollable Result Set" on page 13-13 for information about the
positioning methods.

Here are the steps for updating a row in the result set and database:

1. Call the appropriate updat eXXX() methods to update the data in the columns
you want to change.

With JDBC 2.0, a result set object has an updat eXXX() method for each
datatype, as with the set XXX() methods previously available for updating the
database directly.

Each of these methods takes an i nt for the column number or a string for the
column name and then an item of the appropriate datatype to set the new
value. Following are a couple of examples for a result set r s:

rs.updateString(1, "nystring");

Result Set Enhancements 13-19

Updating Result Sets

rs. updat eFl oat (2, 10000. 0f);

Call the updat eRow() method to copy the changes to the database (or the
cancel RowUpdat es() method to cancel the changes).

Once you call updat eRow() , the changes are executed and will be made
permanent with the next transaction COMM T operation. Be aware that by
default, the auto-commit flag is set to t r ue so that any executed operation is
committed immediately.

If you choose to cancel the changes before copying them to the database, call the
cancel RowUpdat es() method instead. This will also revert to the original
values for that row in the local result set object. Note that once you call the
updat eRow() method, the changes are written to the transaction and cannot
be canceled unless you roll back the transaction (auto-commit must be disabled
to allow a ROLLBACK operation).

Positioning to a different row before calling updat eRow() also cancels the
changes and reverts to the original values in the result set.

Before calling updat eRow() , you can call the usual get XXX() methods to
verify that the values have been updated correctly. These methods take an i nt
column index or string column name as input. For example:

float nyfloat = rs.getFloat(2);
...process nyfloat to see if it’'s appropriate...

Note: Result set UPDATE operations are visible in the local result
set object for all result set types (forward-only, scroll-sensitive, and
scroll-insensitive).

Refer to "Seeing Internal Changes" on page 13-27 for more
information.

Example Following is an example of a result set UPDATE operation that is also
copied to the database. The tenth row is updated. (The column number is used to
specify column 1, and the column name—sal — is used to specify column 2.)

Statenent stnmt = conn.createStatenent

(Resul t Set . TYPE_SCROLL_SENSI TI VE, Resul t Set . CONCUR_UPDATABLE) ;

Result Set rs = stnt.executeQuery("SELECT enmpno, sal FROM emp");

13-20 Oracle9i JDBC Developer's Guide and Reference

Updating Result Sets

if (rs.absolute(10)) Il (returns false if row does not exist)

{
rs.updateString(1, "28959");

rs. updat eFl oat ("sal ", 100000. 0f);
rs. updat eRow();

}

/] Changes wi |l be made permanent with the next COMWM T operati on.

Performing an INSERT Operation in a Result Set

Result set | NSERT operations use what is called the result set insert-row, which is a
staging area that holds the data for the inserted row until it is copied to the
database. You must explicitly move to this row to write the data that will be
inserted.

As with UPDATE operations, result set | NSERT operations require separate steps to
first write the data to the insert-row and then copy it to the database .

Following are the steps in executing a result set | NSERT operation.

1. Move to the insert-row by calling the result set noveTol nsert Row() method.

Note: The result set will remember the current position prior to
the moveTol nsert Row() call. Afterward, you can go back to it
with a moveToCur r ent Row() call.

2. As with UPDATE operations, use the appropriate updat eXXX() methods to
write data to the columns. For example:

rs.updateString(1, "nystring");
rs. updat eFl oat (2, 10000. 0f);

(Note that you can specify a string for column name, instead of an integer for
column number.)

Result Set Enhancements 13-21

Updating Result Sets

Important: Each column value in the insert-row is undefined until
you call the updat eXXX() method for that column. You must call
this method and specify a non-null value for all non-nullable
columns, or else attempting to copy the row into the database will
result in a SQL exception.

It is permissible, however, to not call updat eXXX() for a nullable
column. This will result in a value of nul | .

Copy the changes to the database by calling the result seti nser t Row()
method.

Once you call i nsert Row(), the insert is executed and will be made
permanent with the next transaction COMM T operation.

Positioning to a different row before calling i nsert Row() cancels the insert
and clears the insert-row.

Before calling i nsert Row() you can call the usual get XXX() methods to
verify that the values have been set correctly in the insert-row. These methods
take ani nt column index or string column name as input. For example:

float nyfloat = rs.getFloat(2);
...process nyfloat to see if it’'s appropriate...

Note: No result set type (neither scroll-sensitive, scroll-insensitive,
nor forward-only) can see a row inserted by a result set | NSERT
operation.

Refer to "Seeing Internal Changes" on page 13-27 for more
information.

Example The following example performs a result set | NSERT operation, moving to
the insert-row, writing the data, copying the data into the database, and then
returning to what was the current row prior to going to the insert-row. (The column
number is used to specify column 1, and the column name—sal — is used to
specify column 2.)

Statenent stnmt = conn.createStatenent

(Resul t Set . TYPE_SCROLL_SENSI TI VE, Resul t Set . CONCUR_UPDATABLE) ;

13-22 Oracle9i JDBC Developer's Guide and Reference

Updating Result Sets

Result Set rs = stnt.execut eQuery("SELECT enmpno, sal FROM enmp");

rs. moveTol nsert Row();

rs.updateString(1, "28959");

rs. updat eFl oat ("sal ", 100000. 0f);

rs.insertRow);

/] Changes wi |l be made permanent with the next COMWM T operati on.
rs.noveToCurrent Row(); // Go back to where we canme from..

Update Conflicts

It is important to be aware of the following facts regarding updatable result sets
with the JDBC drivers:

= The drivers do not enforce write locks for an updatable result set.

» The drivers do not check for conflicts with a result set DELETE or UPDATE
operation.

A conflict will occur if you try to perform a DELETE or UPDATE operation on a row
updated by another committed transaction.

The Oracle JDBC drivers use the ROWID to uniquely identify a row in a database
table. As long as the ROWID is still valid when a driver tries to send an UPDATE or
DELETE operation to the database, the operation will be executed.

The driver will not report any changes made by another committed transaction.
Any conflicts are silently ignored and your changes will overwrite the previous
changes.

To avoid such conflicts, use the Oracle FOR UPDATE feature when executing the
query that produces the result set. This will avoid conflicts, but will also prevent
simultaneous access to the data. Only a single write lock can be held concurrently
on a data item.

Result Set Enhancements 13-23

Fetch Size

Fetch Size

By default, when Oracle JDBC executes a query, it receives the result set 10 rows at a
time from the database cursor. This is the default Oracle row-prefetch value. You can
change the number of rows retrieved with each trip to the database cursor by
changing the row-prefetch value (see "Oracle Row Prefetching" on page 12-20 for
more information).

JDBC 2.0 also allows you to specify the number of rows fetched with each database
round trip for a query, and this number is referred to as the fetch size. In Oracle
JDBC, the row-prefetch value is used as the default fetch size in a statement object.
Setting the fetch size overrides the row-prefetch setting and affects subsequent
queries executed through that statement object.

Fetch size is also used in a result set. When the statement object executes a query,
the fetch size of the statement object is passed to the result set object produced by
the query. However, you can also set the fetch size in the result set object to override
the statement fetch size that was passed to it. (Also note that changes made to a
statement object’s fetch size after a result set is produced will have no affect on that
result set.)

The result set fetch size, either set explicitly, or by default equal to the statement
fetch size that was passed to it, determines the number of rows that are retrieved in
any subsequent trips to the database for that result set. This includes any trips that
are still required to complete the original query, as well as any refetching of data into
the result set. (Data can be refetched, either explicitly or implicitly, to update a
scroll-sensitive or scroll-insensitive /updatable result set. See "Refetching Rows" on
page 13-26.)

Setting the Fetch Size

The following methods are available in all St at ement , Pr epar edSt at enent,
Cal | abl eSt at ement , and Resul t Set objects for setting and getting the fetch
size:

« Vvoid setFetchSize(int rows) throws SQ.Exception
« int getFetchSize() throws SQ.Exception

To set the fetch size for a query, call set Fet chSi ze() on the statement object prior
to executing the query. If you set the fetch size to N, then N rows are fetched with
each trip to the database.

After you have executed the query, you can call set Fet chSi ze() on the result set
object to override the statement object fetch size that was passed to it. This will

13-24 Oracle9i JDBC Developer's Guide and Reference

Fetch Size

affect any subsequent trips to the database to get more rows for the original query,
as well as affecting any later refetching of rows. (See "Refetching Rows" on
page 13-26.)

Use of Standard Fetch Size versus Oracle Row-Prefetch Setting

Using the JDBC 2.0 fetch size is fundamentally similar to using the Oracle
row-prefetch value, except that with the row-prefetch value you do not have the
flexibility of distinct values in the statement object and result set object. The row
prefetch value would be used everywhere.

Furthermore, JDBC 2.0 fetch size usage is portable and can be used with other JDBC
drivers. Oracle row-prefetch usage is vendor-specific.

See "Oracle Row Prefetching” on page 12-20 for a general discussion of this Oracle
feature.

Note: Do not mix the JDBC 2.0 fetch size API and the Oracle row
prefetching API in your application. You can use one or the other,
but not both.

Result Set Enhancements 13-25

Refetching Rows

Refetching Rows

The result set r ef r eshRow() method is supported for some types of result sets for
refetching data. This consists of going back to the database to re-obtain the database
rows that correspond to N rows in the result set, starting with the current row,
where N is the fetch size (described above in "Fetch Size" on page 13-24). This lets
you see the latest updates to the database that were made outside of your result set,
subject to the isolation level of the enclosing transaction.

Because refetching re-obtains only rows that correspond to rows already in your
result set, it does nothing about rows that have been inserted or deleted in the
database since the original query. It ignores rows that have been inserted, and rows
will remain in your result set even after the corresponding rows have been deleted
from the database. When there is an attempt to refetch a row that has been deleted
in the database, the corresponding row in the result set will maintain its original
values.

Following is the r ef r eshRow() method signature:
« void refreshRow() throws SQLException

You must be at a valid current row when you call this method, not outside the row
bounds and not at the insert-row.

With the 8.1.6 release, the r ef r eshRow() method is supported for the following
result set categories:

= scroll-sensitive/read-only
= scroll-sensitive/updatable
« scroll-insensitive/updatable

Oracle JDBC might support additional result set categories in future releases.

Note: Scroll-sensitive result set functionality is implemented
through implicit calls to r ef r eshRow() . See "Oracle
Implementation of Scroll-Sensitive Result Sets" on page 13-30 for
details.

13-26 Oracle9i JDBC Developer's Guide and Reference

Seeing Database Changes Made Internally and Externally

Seeing Database Changes Made Internally and Externally

This section discusses the ability of a result set to see the following:

= its own changes (DELETE, UPDATE, or | NSERT operations within the result set),
referred to as internal changes

= changes made from elsewhere (either from your own transaction outside the
result set, or from other committed transactions), referred to as external changes

Near the end of the section is a summary table.

Note: External changes are referred to as "other’s changes" in the
Sun Microsystems JDBC 2.0 specification.

Seeing Internal Changes

The ability of an updatable result set to see its own changes depends on both the
result set type and the kind of change (UPDATE, DELETE, or | NSERT). This is
discussed at various points throughout the "Updating Result Sets" section
beginning on on page 13-18, and is summarized as follows:

« Internal DELETE operations are visible for scrollable result sets (scroll-sensitive
or scroll-insensitive), but are not visible for forward-only result sets.

After you delete a row in a scrollable result set, the preceding row becomes the
new current row, and subsequent row numbers are updated accordingly.

= Internal UPDATE operations are always visible, regardless of the result set type
(forward-only, scroll-sensitive, or scroll-insensitive).

= Internal | NSERT operations are never visible, regardless of the result set type
(neither forward-only, scroll-sensitive, nor scroll-insensitive).

An internal change being "visible" essentially means that a subsequent get XXX()
call will see the data changed by a preceding updat e XXX() call on the same data
item.

JDBC 2.0 Dat abaseMet aDat a objects include the following methods to verify this.
Each takes a result set type as input (Resul t Set . TYPE_FORWARD_ONLY,

Resul t Set. TYPE_SCROLL_SENSI Tl VE, or Resul t Set . TYPE_SCROLL _

| NSENSI TI VE).

« bool ean ownDel et esAreVi si bl e(int) throws SQLException
« bool ean ownUpdat esAreVi si bl e(int) throws SQLException

Result Set Enhancements 13-27

Seeing Database Changes Made Internally and Externally

« bool ean ownl nsertsAreVisible(int) throws SQLException

Note: When you make an internal change that causes a trigger to
execute, the trigger changes are effectively external changes.
However, if the trigger affects data in the row you are updating,
you will see those changes for any scrollable/updatable result set,
because an implicit row refetch occurs after the update.

Seeing External Changes

Only a scroll-sensitive result set can see external changes to the underlying
database, and it can only see the changes from external UPDATE operations.
Changes from external DELETE or | NSERT operations are never visible.

Note: Any discussion of seeing changes from outside the
enclosing transaction presumes the transaction itself has an
isolation level setting that allows the changes to be visible.

For implementation details of scroll-sensitive result sets, including exactly how and
how soon external updates become visible, see "Oracle Implementation of
Scroll-Sensitive Result Sets" on page 13-30.

JDBC 2.0 Dat abaseMet aDat a objects include the following methods to verify this.
Each takes a result set type as input (Resul t Set . TYPE_FORWARD_ONLY,

Resul t Set. TYPE_SCROLL_SENSI Tl VE, or Resul t Set . TYPE_SCROLL _

| NSENSI TI VE).

« bool ean othersDel etesAreVisible(int) throws SQ.Exception
« bool ean ot hersUpdat esAreVisible(int) throws SQ.Exception

« boolean otherslnsertsAreVisible(int) throws SQ.Exception

13-28 Oracle9i JDBC Developer's Guide and Reference

Seeing Database Changes Made Internally and Externally

Note: Explicit use of the r ef r eshRow() method, described in
"Refetching Rows" on page 13-26, is distinct from this discussion of
visibility. For example, even though external updates are "invisible"
to a scroll-insensitive result set, you can explicitly refetch rows in a
scroll-insensitive /updatable result set and retrieve external changes
that have been made. "Visibility" refers only to the fact that the
scroll-insensitive /updatable result set would not see such changes
automatically and implicitly.

Visibility versus Detection of External Changes

Regarding changes made to the underlying database by external sources, there are
two similar but distinct concepts with respect to visibility of the changes from your
local result set:

« visibility of changes
= detection of changes

A change being "visible" means that when you look at a row in the result set, you
can see new data values from changes made by external sources to the
corresponding row in the database.

A change being "detected", however, means that the result set is aware that this is a
new value since the result set was first populated.

Even when an Oracle result set sees new data (as with an external UPDATE in a
scroll-sensitive result set), it has no awareness that this data has changed since the
result set was populated. Such changes are not "detected".

JDBC 2.0 Dat abaseMet aDat a objects include the following methods to verify this.
Each takes a result set type as input (Resul t Set . TYPE_FORWARD_ONLY,

Resul t Set. TYPE_SCROLL_SENSI Tl VE, or Resul t Set . TYPE_SCROLL _

| NSENSI TI VE).

« bool ean del etesAreDetected(int) throws SQ.Exception
« bool ean updat esAreDetected(int) throws SQ.Exception
« boolean insertsAreDetected(int) throws SQ.Exception

It follows, then, that result set methods specified by JDBC 2.0 to detect
changes—r owDel et ed() , r owUpdat ed() , and r owl nsert ed() —will always
return false with the 8.1.6 Oracle JDBC drivers. There is no use in calling them.

Result Set Enhancements 13-29

Seeing Database Changes Made Internally and Externally

Summary of Visibility of Internal and External Changes

Table 13-1 summarizes the discussion in the preceding sections regarding whether a
result set object in the Oracle JDBC implementation can see changes made internally
through the result set itself, and changes made externally to the underlying
database from elsewhere in your transaction or from other committed transactions.

Table 13-1 Visibility of Internal and External Changes for Oracle JDBC

CanSee CanSee CanSee CanSee Can See Can See
Internal Internal Internal External External External
Result Set Type DELETE? UPDATE? INSERT? DELETE? UPDATE? INSERT?

forward-only no yes no no no no
scroll-sensitive yes yes no no yes no
scroll-insensitive yes yes no no no no

For implementation details of scroll-sensitive result sets, including exactly how and
how soon external updates become visible, see "Oracle Implementation of
Scroll-Sensitive Result Sets" on page 13-30.

Notes:

= Remember that explicit use of the r ef r eshRow() method,
described in "Refetching Rows" on page 13-26, is distinct from
the concept of "visibility" of external changes. This is discussed
in "Seeing External Changes" on page 13-28.

= Remember that even when external changes are "visible", as
with UPDATE operations underlying a scroll-sensitive result set,
they are not "detected". The result set r owDel et ed(),
rowlpdat ed() ,and r om nsert ed() methods always return
f al se. This is further discussed in "Visibility versus Detection
of External Changes" on page 13-29.

Oracle Implementation of Scroll-Sensitive Result Sets

The Oracle implementation of scroll-sensitive result sets involves the concept of a
window, with a window size that is based on the fetch size. The window size affects
how often rows are updated in the result set.

Once you establish a current row by moving to a specified row (as described in
"Positioning in a Scrollable Result Set" on page 13-13), the window consists of the N

13-30 Oracle9i JDBC Developer's Guide and Reference

Seeing Database Changes Made Internally and Externally

rows in the result set starting with that row, where N is the fetch size being used by
the result set (see "Fetch Size" on page 13-24). Note that there is no current row, and
therefore no window, when a result set is first created. The default position is before
the first row, which is not a valid current row.

As you move from row to row, the window remains unchanged as long as the
current row stays within that window. However, once you move to a new current
row outside the window, you redefine the window to be the N rows starting with
the new current row.

Whenever the window is redefined, the N rows in the database corresponding to
the rows in the new window are automatically refetched through an implicit call to
the r ef r eshRow() method (described in "Refetching Rows" on page 13-26),
thereby updating the data throughout the new window.

So external updates are not instantaneously visible in a scroll-sensitive result set;
they are only visible after the automatic refetches just described.

Note: Because this kind of refetching is not a highly efficient or
optimized methodology, there are significant performance
concerns. Consider carefully before using scroll-sensitive result sets
as currently implemented. There is also a significant tradeoff
between sensitivity and performance. The most sensitive result set
is one with a fetch size of 1, which would result in the new current
row being refetched every time you move between rows. However,
this would have a significant impact on the performance of your
application.

Result Set Enhancements 13-31

Summary of New Methods for Result Set Enhancements

Summary of New Methods for Result Set Enhancements

This section summarizes all the new connection, result set, statement, and database
meta data methods added for JDBC 2.0 result set enhancements. These methods are
more fully discussed throughout this chapter.

Modified Connection Methods

Following is an alphabetical summary of modified connection methods that allow
you to specify result set and concurrency types when you create statement objects.

St at ement creat eSt at enent
(int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a generic St at ement object.

Cal | abl eSt at ement prepareCal |
(String sqgl, int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a Pr epar edSt at ement object.

Pr epar edSt at enent pr epar eSt at enent
(String sqgl, int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a Cal | abl eSt at ement object.

New Result Set Methods

Following is an alphabetical summary of new result set methods for JDBC 2.0 result
set enhancements.

13-32

bool ean absol ute(int row) throws SQ.LException
Move to an absolute row position in the result set.
void afterLast() throws SQLException

Move to after the last row in the result set (you will not be at a valid current row
after this call).

voi d beforeFirst() throws SQLException

Move to before the first row in the result set (you will not be at a valid current
row after this call).

Oracle9i JDBC Developer's Guide and Reference

Summary of New Methods for Result Set Enhancements

voi d cancel RowUpdat es() throws SQLException

Cancel an UPDATE operation on the current row. (Call this after the
updat eXXX() calls but before the updat eRow() call.)

void del eteRow() throws SQ.Exception
Delete the current row.

bool ean first() throws SQ.LException
Move to the first row in the result set.

i nt getConcurrency() throws SQLException

Returns an i nt value for the concurrency type used for the query (either
Resul t Set . CONCUR_READ ONLY or Resul t Set . CONCUR_UPDATABLE).

int getFetchSize() throws SQ.Exception

Check the fetch size to determine how many rows are fetched in each database
round trip (also available in statement objects).

int getRow() throws SQException

Returns the row number of the current row. Returns 0 if there is no valid current
TOW.

int getType() throws SQ.Exception

Returns an i nt value for the result set type used for the query (either
Resul t Set. TYPE_FORWARD ONLY, Resul t Set. TYPE_SCROLL _
SENSI TI VE, or Resul t Set . TYPE_SCROLL_| NSENSI Tl VE).

void insertRow() throws SQ.Exception

Write a result set | NSERT operation to the database. Call this after calling
updat eXXX() methods to set the data values.

bool ean i sAfterLast () throws SQ.Exception
Returns t r ue if the position is after the last row.

bool ean i sBeforeFirst() throws SQ.Exception
Returns t r ue if the position is before the first row.

bool ean isFirst() throws SQ.Exception
Returns t r ue if the position is at the first row.

bool ean isLast() throws SQLException

Result Set Enhancements 13-33

Summary of New Methods for Result Set Enhancements

Returns t r ue if the position is at the last row.
« boolean last() throws SQ.Exception
Move to the last row in the result set.
« void nmoveToCurrent Rowm() throws SQLException

Move from the insert-row staging area back to what had been the current row
prior to the noveTol nsert Row() call.

« Vvoid noveTol nsert Row() throws SQ.Exception
Move to the insert-row staging area to set up a row to be inserted.
« bool ean next () throws SQ.Exception
Iterate forward through the result set.
« bool ean previous() throws SQ.Exception
Iterate backward through the result set.
« void refreshRow() throws SQLException

Refetch the database rows corresponding to the current window in the result
set, to update the data. This method is called implicitly for scroll-sensitive result
sets.

« boolean relative(int row) throws SQLException

Move to a relative row position, either forward or backward from the current
TOW.

« Vvoid setFetchSize(int rows) throws SQ.Exception

Set the fetch size to determine how many rows are fetched in each database
round trip when refetching (also available in statement objects).

« Vvoid updateRow() throws SQ.Exception

Write an UPDATE operation to the database after using updat eXXX() methods
to update the data values.

« Vvoid updateXXX() throws SQ.Exception

Set or update data values in a row to be updated or inserted. There is an
updat eXXX() method for each datatype. After calling all the appropriate
updat eXXX() methods for the columns to be updated or inserted, call
updat eRow() for an UPDATE operation ori nsert Row() for an | NSERT
operation.

13-34 Oracle9i JDBC Developer's Guide and Reference

Summary of New Methods for Result Set Enhancements

Statement Methods

Following is an alphabetical summary of statement methods for JDBC 2.0 result set
enhancements. These methods are available in generic statement, prepared
statement, and callable statement objects.

int getFetchSize() throws SQ.Exception

Check the fetch size to determine how many rows are fetched in each database
round trip when executing a query (also available in result set objects).

voi d setFetchSize(int rows) throws SQLException

Set the fetch size to determine how many rows are fetched in each database
round trip when executing a query (also available in result set objects).

voi d set Resul t Set Cache(Oracl eResul t Set Cache cache)
t hrows SQLException

Use your own client-side cache implementation for scrollable result sets. Create
your own class that implements the Or acl eResul t Set Cache interface, then
use the set Resul t Set Cache() method to input an instance of this class to
the statement object that will create the result set.

i nt getResultSetType() throws SQLException

Check the result set type of result sets produced by this statement object (which
was specified when the statement object was created).

i nt getResultSetConcurrency() throws SQLException

Check the concurrency type of result sets produced by this statement object
(which was specified when the statement object was created).

Database Meta Data Methods

Following is an alphabetical summary of database meta data methods for JDBC 2.0
result set enhancements.

bool ean ownDel et esAreVisible(int) throws SQ.LException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of its own internal DELETE operations.

bool ean ownUpdat esAreVisi bl e(int) throws SQLException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of its own internal UPDATE operations.

Result Set Enhancements 13-35

Summary of New Methods for Result Set Enhancements

« bool ean ownl nsertsAreVisible(int) throws SQLException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of its own internal | NSERT operations.

« bool ean ot hersDel etesAreVisible(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of an external DELETE operation in the database.

« bool ean ot hersUpdat esAreVisible(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of an external UPDATE operation in the database.

« boolean otherslnsertsAreVisible(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of an external | NSERT operation in the database.

« bool ean del etesAreDetected(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
detect when an external DELETE operation occurs in the database. This method
always returns f al se in Oracle8i release 8.1.6 and higher.

« bool ean updat esAreDetected(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
detect when an external UPDATE operation occurs in the database. This method
always returns f al se in Oracle8i release 8.1.6 and higher.

« boolean insertsAreDetected(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
detect when an external | NSERT operation occurs in the database. This method
always returns f al se in Oracle8i release 8.1.6 and higher.

13-36 Oracle9i JDBC Developer's Guide and Reference

14

Statement Caching

This chapter describes the benefits and use of statement caching, an Oracle JDBC
extension.

This following topics are discussed:
= About Statement Caching
= Using Statement Caching

Note: Release 2 (9.2) of JDBC provides a new statement cache
interface and implementation, replacing the API supported at
Release 9.1 0. The previous API is now deprecated.

Statement Caching 14-1

About Statement Caching

About Statement Caching

Statement caching improves performance by caching executable statements that are
used repeatedly, such as in a loop or in a method that is called repeatedly. JDBC 3.0
defines a statement-caching interface.

Statement caching can:
= Prevent the overhead of repeated cursor creation

= Prevent repeated statement parsing and creation

Basics of Statement Caching

Use a statement cache to cache statements associated with a particular physical
connection. For a simple connection, the cache is associated with an

Or acl eConnect i on object. For a pooled connection, the cache is associated with
an Or acl ePool edConnect i on or Pool edConnect i on object. The

Or acl eConnecti on and Or acl ePool edConnect i on objects include methods to
enable statement caching. When you enable statement caching, a statement object is
cached when you call the "close” methods.

Because each physical connection has its own cache, multiple caches can exist if you
enable statement caching for multiple physical connections. When you enable
statement caching on a pooled connection, all the logical connections will use the
same cache. If you try to enable statement caching on a logical connection of a
pooled connection, this will throw an exception.

There are two types of statement caching: implicit and explicit. Each type of
statement cache can be enabled or disabled independent of the other: you can have
either, neither, or both in effect. Both types of statement caching share a cache.

Implicit Statement Caching

When you enable implicit statement caching, JDBC automatically caches the prepared
or callable statement when you call the cl ose() method of this statement object.
The prepared and callable statements are cached and retrieved using standard
connection object and statement object methods.

Plain statements are not implicitly cached, because implicit statement caching uses a
SQL string as a key, and plain statements are created without a SQL string.
Therefore, implicit statement caching applies only to the

Or acl ePr epar edSt at ement and Or acl eCal | abl eSt at enent objects, which
are created with a SQL string. When one of these statements is created, the JDBC

14-2 Oracle9i JDBC Developer's Guide and Reference

About Statement Caching

driver automatically searches the cache for a matching statement. The match criteria
are the following:

= The SQL string in the statement must be identical (case-sensitive) to one in the
cache.

= The statement type must be the same (prepared or callable).

= The scrollable type of result sets produced by the statement must be the same
(forward-only or scrollable). You can determine the scrollability when you
create the statement. (See "Specifying Result Set Scrollability and Updatability"
on page 13-8 for complete details.)

If a match is found during the cache search, the cached statement is returned. If a
match is not found, then a new statement is created and returned. The new
statement, along with its cursor and state, are cached when you call the cl ose()
method of the statement object.

When a cached Or acl ePr epar edSt at enent or Or acl eCal | abl eSt at ement
object is retrieved, the state and data information are automatically re-initialized
and reset to default values, while metadata is saved. The Least Recently Used (LRU)
scheme performs the statement cache operation.

Note: The JDBC driver does not clear metadata. However,
although metadata is saved for performance reasons, it has no
semantic impact. A statement that comes from the implicit cache
appears as if it were newly created.

You can prevent a particular statement from being implicitly cached; see "Disabling
Implicit Statement Caching for a Particular Statement" on page 14-8.

Explicit Statement Caching

Explicit statement caching enables you to cache and retrieve selected prepared,
callable, and plain statements. Explicit statement caching relies on a key, an arbitrary
Java string that you provide.

Because explicit statement caching retains statement data and state as well as
metadata, it has a performance edge over implicit statement caching, which retains
only metadata. However, because explicit statement caching saves all three types of
information for re-use, you must be cautious when using this type of caching—you
may not be aware of what was retained for data and state in the previous statement.

Statement Caching 14-3

About Statement Caching

With implicit statement caching, you take no special action to retrieve statements
from a cache. Instead, whenever you call pr epar eSt at ement () or
prepareCal | (),JDBC automatically checks the cache for a matching statement
and returns it if found.

With explicit statement caching, you use specialized Oracle "WithKey" methods to
cache and retrieve statement objects.

Implicit statement caching uses the SQL string of a prepared or callable statement as
the key, requiring no action on your part. Explicit statement caching requires you to
provide a Java string, which it uses as the key.

During implicit statement caching, if the JDBC driver cannot find a statement in
cache, it will automatically create one. During explicit statement caching, if the
JDBC driver cannot find a matching statement in cache, it will return a nul | value.

Table 14-1 compares the different methods employed in implicit and explicit
statement caching.

Table 14-1 Comparing Methods Used in Statement Caching

Allocate Insert Into Cache Retrieve From Cache

pr epar eSt at ement () cl ose() pr epar eSt at ement ()
Implicit |prepareCal |l () prepareCall ()

createStatenent () cl oseW t hKey() get St at ement W t hKey()

pr epar eSt at ement () get Cal | Wt hKey()
Explicit |prepareCall ()

14-4 Oracle9i JDBC Developer's Guide and Reference

Using Statement Caching

Using Statement Caching
This section discusses the following topics:
= Enabling and Disabling Statement Caching
= Checking for Statement Creation Status
= Physically Closing a Cached Statement
= Using Implicit Statement Caching
= Using Explicit Statement Caching

Enabling and Disabling Statement Caching

Implicit and explicit statement caching can be enabled or disabled independent of
one other: you can have either, neither, or both in effect.

Enabling and Disabling Implicit Statement Caching

Enable implicit statement caching in one of two ways:
= Invoking set | nplicit Statenent Cachi ng(true) on the connection

= Invoking Oracl eDat aSour ce. get Connecti on () with the
I mpl i ci t St at ement Cachi ngEnabl ed property set tot r ue; you set
I mpl i ci t St at ement Cachi ngEnabl ed by calling
Or acl eDat aSour ce. set | npl i ci t St at enent Cachi ngEnabl ed(t r ue)

Disable implicit statement caching by invoking
setl mplicitStatement Cachi ng(fal se) on the connection or by setting the
I mpl i ci t St at ement Cachi ngEnabl ed property to f al se.

To determine whether implicit caching is enabled, call
get I npl i ci t St at ement Cachi ngEnabl ed() , which returns t r ue if implicit
caching is enabled, f al se otherwise.

Enabling and Disabling Explicit Statement Caching

To enable explicit statement caching you must first set the application cache size.
You set the cache size in one of two ways:

= invoking Or acl eConnect i on. set St at ement CacheSi ze() on the physical
connection

« invoking Or acl eDat asour ce. set MaxSt at ement s()

Statement Caching 14-5

Using Statement Caching

In either case, the argument you supply is the maximum number of statements in
the cache; an argument of 0 specifies no caching. To check the cache size, use the
get St at enent CacheSi ze() method.

Systemout.printin("Stm Cache size is " +
((Oracl eConnecti on)conn). get St at enent CacheSi ze());

Enable explicit statement caching by invoking
set Expl i ci t St at ement Cachi ng(true) on the connection.

To determine whether explicit caching is enabled, call
get Expl i ci t St at ement Cachi ngEnabl ed() , which returns t r ue if implicit
caching is enabled, f al se otherwise.

Notes:

« You enable implicit and explicit caching for a particular
physical connection independently. Therefore, it is possible to
do statement caching both implicitly and explicitly during the
same session.

« Implicit and explicit statement caching share the same cache.
Remember this when you set the statement cache size.

The following code specifies a cache size of ten statements:
((Oracl eConnecti on) conn). set St at ement CacheSi ze(10);
Disable explicit statement caching by calling

set Expl i cit St at ement Cachi ng(fal se). Disabling caching or closing the
cache purges the cache.

The following code disables explicit statement caching.

((Oracl eConnection) conn). set Expl i cit St at ement Cachi ng(fal se);

Checking for Statement Creation Status

By calling the cr eat i onSt at e() method of a statement object, you can determine
if a statement was newly created or if it was retrieved from cache on an implicit or
explicit lookup. The cr eat i onSt at e() method returns the following integer
values for plain, prepared, and callable statements:

= NEW- The statement was newly created.

14-6 Oracle9i JDBC Developer's Guide and Reference

Using Statement Caching

= | MPLI CI T - The statement was retrieved on an implicit statement lookup.
« EXPLICIT - The statement was retrieved on an explicit statement lookup.

For example, the JDBC driver returns Or acl eSt at ement . EXPLI CI T for an
explicitly cached statement. The following code checks the statement creation status
forstnt:

int state = ((OracleStatenment)stnt).creationState()
...(process state)

Physically Closing a Cached Statement

With implicit statement caching enabled, you cannot truly physically close
statements manually. The cl ose() method of a statement object caches the
statement instead of closing it. The statement is physically closed automatically
under one of three conditions: (1) when the associated connection is closed, (2)
when the cache reaches its size limit and the least recently used statement object is
preempted from cache by the LRU scheme, or (3) if you call the cl ose() method
on a statement for which statement caching is disabled. (See "Disabling Implicit
Statement Caching for a Particular Statement" on page 14-8 for more details.)

Using Implicit Statement Caching

Once you enable implicit statement caching, by default all prepared and callable
statements are automatically cached. Implicit statement caching includes the
following steps:

1. Enable implicit statement caching as described in "Enabling and Disabling
Implicit Statement Caching" on page 14-5.

2. Allocate a statement using one of the standard methods.

3. (Optional) Disable implicit statement caching for any particular statement you
do not want to cache.

4. Cache the statement using the cl ose() method.

5. Retrieve the implicitly cached statement by calling the appropriate standard
"prepare"” method.

The following sections explain the implicit statement caching steps in more detail.

Statement Caching 14-7

Using Statement Caching

Allocating a Statement for Implicit Caching

To allocate a statement for implicit statement caching, use either the
pr epar eSt at ement () or prepar eCal | () method as you would normally.
(These are methods of the connection object.)

The following code allocates a new statement object called pst nt :

Prepar edSt at ement pstnt = conn. pr epar eSt at enent
("UPDATE enp SET ename = ? WHERE rowid = ?");

Disabling Implicit Statement Caching for a Particular Statement

With implicit statement caching enabled for a connection, by default all callable and
prepared statements of that connection are automatically cached. To prevent a
particular callable or prepared statement from being implicitly cached, use the

set Di sabl eSt at ement Cachi ng() method of the statement object. To help you
manage cache space, you can call the set Di sabl eSt at enent Cachi ng() method
on any infrequently used statement.

The following code disables implicit statement caching for pst nt :

Prepar edSt at enent pstnt = conn. prepareStatenent ("SELECT 1 from DUAL");
((Oracl ePreparedStatenent) pstnt). set Di sabl eSt at ement Caching (true);
pstnt.close ();

Implicitly Caching a Statement

To cache an allocated statement, call the cl ose() method of the statement object.
When you call the cl ose() method on an Or acl ePr epar edSt at ement or

Or acl eCal | abl eSt at ement object, the JDBC driver automatically puts this
statement in cache, unless you have disabled caching for this statement.

The following code caches the pst nt statement:

((Oracl ePreparedStatement)pstnt).close ();

Retrieving an Implicitly Cached Statement

To retrieve an implicitly cached statement, call either the pr epar eSt at enent () or
pr epar eCal | () method, depending on the statement type.

The following code retrieves pst mt from cache using the pr epar eSt at ement ()
method:

pstnt = conn. prepareStatenment ("UPDATE enp SET enane = ? WHERE rowid = ?");

14-8 Oracle9i JDBC Developer's Guide and Reference

Using Statement Caching

If you call the cr eat i onSt at e() method on the pst mt statement object, the
method returns | MPLI Cl T. If the pst mt statement object was not in cache, then the
creationSt at e() method returns NEWto indicate a new statement was recently
created by the JDBC driver.

Table 14-2 describes the methods used to allocate statements and retrieve implicitly
cached statements.

Table 14-2 Methods Used in Statement Allocation and Implicit Statement Caching

Method Functionality for Implicit Statement Caching

prepareSt at ement () Triggers a cache search that either finds and returns the

desired cached Or acl ePr epar edSt at ement object or
allocates a new Or acl ePr epar edSt at ement object if a
match is not found

prepareCall () Triggers a cache search that either finds and returns the

desired cached Or acl eCal | abl eSt at ement object or
allocates a new Or acl eCal | abl eSt at ement objectif a
match is not found

Using Explicit Statement Caching

A plain, prepared, or callable statement can be explicitly cached when you enable
explicit statement caching. Explicit statement caching includes the following steps:

1.

Enable explicit statement caching as described in "Enabling and Disabling
Explicit Statement Caching" on page 14-5.

Allocate a statement using one of the standard methods.

Explicitly cache the statement by closing it with a key, using the
cl oseWt hKey() method.

Retrieve the explicitly cached statement by calling the appropriate Oracle
"WithKey" method, specifying the appropriate key.

Re-cache an open, explicitly cached statement by closing it again with the
cl oseW t hKey() method. Each time a cached statement is closed, it is
re-cached with its key.

The following sections explain the explicit statement caching steps in more detail.

Statement Caching 14-9

Using Statement Caching

Allocating a Statement for Explicit Caching

To allocate a statement for explicit statement caching, use either the
createStatenent (), prepareStatenent(),orprepareCall () method as
you would normally. (These are methods of the connection object.)

The following code allocates a new statement object called pst nt :

Prepar edSt at enent pstnt =
conn. prepareSt at ement (" UPDATE enp SET enane = ? WHERE rowid = ?");

Explicitly Caching a Statement

To explicitly cache an allocated statement, call the cl oseW t hKey() method of the
statement object, specifying a key. The key is an arbitrary Java string that you
provide. The cl oseW t hKey() method caches a statement as is. This means the
data, state, and metadata are retained and not cleared.

The following code caches the pst nt statement with the key " mykey" :
((Oracl ePreparedStatement) pstnt). cl oseWthKey ("nykey");

Retrieving an Explicitly Cached Statement

To recall an explicitly cached statement, call either the get St at ement W t hKey ()
or get Cal | Wt hKey() methods depending on the statement type.

If you retrieve a statement with a specified key, the JDBC driver searches the cache
for the statement, based on the specified key. If a match is found, the matching
statement is returned, along with its state, data, and metadata. This information is
returned as it was when last closed. If a match is not found, the JDBC driver returns
nul | .

The following code recalls pst nt from cache using the " mykey" key with the
gett at ement Wt hKey() method. Recall that the pst nt statement object was
cached with the " mykey" key.

pstnmt = ((OracleConnection)conn). get Statement WthKey ("nykey");

If you call the cr eat i onSt at e() method on the pst nt statement object, the
method returns EXPLI CI T.

14-10 Oracle9i JDBC Developer's Guide and Reference

Using Statement Caching

Important: ~ When you retrieve an explicitly cached statement, be
sure to use the method that is appropriate for your statement type
when specifying the key. For example, if you used the

prepar eSt at enent () method to allocate a statement, then use
the get St at ement W t hKey () method to retrieve that statement
from cache. The JDBC driver cannot verify the type of statement it
is returning.

Table 14-3 describes the methods used to retrieve explicitly cached statements.

Table 14-3 Methods Used to Retrieve Explicitly Cached Statements

Method Functionality for Explicit Statement Caching

creat eSt at enent Wt hKey() specifies the key needed to retrieve a plain
statement from cache

get St at ement W t hKey/() specifies the key needed to retrieve a prepared
statement from cache

get Cal | Wt hKey() specifies the key needed to retrieve a callable
statement from cache

Statement Caching 14-11

Using Statement Caching

14-12 Oracle9i JDBC Developer's Guide and Reference

15

Distributed Transactions

This chapter discusses the Oracle JDBC implementation of distributed transactions.
These are multi-phased transactions, often using multiple databases, that must be
committed in a coordinated way. There is also related discussion of XA, which is a
general standard (not specific to Java) for distributed transactions.

The following topics are discussed:

= Overview

=« XA Components

« Error Handling and Optimizations

= Implementing a Distributed Transaction

Note: This chapter discusses features of the JDBC 2.0 Optional
Package, formerly known as the JDBC 2.0 Standard Extension API,
which is available through the j avax packages from Sun
Microsystems. The Optional Package is not part of the standard
JDK, but relevant packages are included with the Oracle JDBC

cl asses111. zi pand cl asses12. zi p files.

For further introductory and general information about distributed transactions,
refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package and
the Java Transaction API (JTA).

For information on the OClI-specific HeteroRM XA feature, see "OCI HeteroRM XA"
on page 17-19.

Distributed Transactions 15-1

Overview

Overview

A distributed transaction, sometimes referred to as a global transaction, is a set of two
or more related transactions that must be managed in a coordinated way. The
transactions that constitute a distributed transaction might be in the same database,
but more typically are in different databases and often in different locations. Each
individual transaction of a distributed transaction is referred to as a transaction
branch.

For example, a distributed transaction might consist of money being transferred
from an account in one bank to an account in another bank. You would not want
either transaction committed without assurance that both will complete
successfully.

In the JDBC 2.0 extension API, distributed transaction functionality is built on top of
connection pooling functionality, described under "Connection Pooling" on

page 16-11. This distributed transaction functionality is also built upon the open XA
standard for distributed transactions. (XA is part of the X/Open standard and is not
specific to Java.)

JDBC is used to connect to database resources. However, to include all changes to
multiple databases within a transaction, you must use the JDBC connections within
a JTA global transaction. The process of including database SQL updates within a
transaction is referred to as enlisting a database resource.

The remainder of this overview covers the following topics:
= Distributed Transaction Components and Scenarios

« Distributed Transaction Concepts

= Switching Between Global and Local Transactions

= Oracle XA Packages

For further introductory and general information about distributed transactions and
XA, refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package
and the Java Transaction APL

Note: Distributed transaction (XA) features require Oracle8i 8.1.6
or later.

15-2 Oracle9i JDBC Developer's Guide and Reference

Overview

Distributed Transaction Components and Scenarios

In reading the remainder of the distributed transactions section, it will be helpful to
keep the following points in mind:

A distributed transaction system typically relies on an external transaction
manager—such as a software component that implements standard Java
Transaction API functionality—to coordinate the individual transactions.

Many vendors will offer XA-compliant JTA modules. This includes Oracle,
which is developing a JTA module based on the Oracle implementation of XA
discussed below.

XA functionality is usually isolated from a client application, being
implemented instead in a middle-tier environment such as an application
server.

In many scenarios, the application server and transaction manager will be
together on the middle tier, possibly together with some of the application code
as well.

Discussion throughout this section is intended mostly for middle-tier
developers.

The term resource manager is often used in discussing distributed transactions. A
resource manager is simply an entity that manages data or some other kind of
resource. Wherever the term is used in this chapter, it refers to a database.

Note: Using JTA functionality requires file j t a. j ar to be in the
CLASSPATH. (This file is located at $ORACLE_HOVE/ j | i b.) Oracle
includes this file with the JDBC product. (You can also obtain it
from the Sun Microsystems Web site, but it is advisable to use the
version from Oracle, because that has been tested with the Oracle
drivers.)

Distributed Transaction Concepts

When you use XA functionality, the transaction manager uses XA resource instances
to prepare and coordinate each transaction branch and then to commit or roll back
all transaction branches appropriately.

XA functionality includes the following key components:

XA data sources—These are extensions of connection pool data sources and
other data sources, and similar in concept and functionality.

Distributed Transactions 15-3

Overview

There will be one XA data source instance for each resource manager (database)
that will be used in the distributed transaction. You will typically create XA
data source instances (using the class constructor) in your middle-tier software.

XA data sources produce XA connections.

XA connections—These are extensions of pooled connections, and similar in
concept and functionality. An XA connection encapsulates a physical database
connection; individual connection instances are temporary handles to these
physical connections.

An XA connection instance corresponds to a single Oracle session, although the
session can be used in sequence by multiple logical connection instances (one at
a time), as with pooled connection instances.

You will typically get an XA connection instance from an XA data source
instance (using a get method) in your middle-tier software. You can get
multiple XA connection instances from a single XA data source instance if the
distributed transaction will involve multiple sessions (multiple physical
connections) in the same database.

XA connections produce XA resource instances and JDBC connection instances.

XA resources—These are used by a transaction manager in coordinating the
transaction branches of a distributed transaction.

You will get one XA resource instance from each XA connection instance (using
a get method), typically in your middle-tier software. There is a one-to-one
correlation between XA resource instances and XA connection instances;
equivalently, there is a one-to-one correlation between XA resource instances
and Oracle sessions (physical connections).

In a typical scenario, the middle-tier component will hand off XA resource
instances to the transaction manager, for use in coordinating distributed
transactions.

Because each XA resource instance corresponds to a single Oracle session, there
can be only a single active transaction branch associated with an XA resource
instance at any given time. There can be additional suspended transaction
branches, however—see "XA Resource Method Functionality and Input
Parameters" on page 15-11.

Each XA resource instance has the functionality to start, end, prepare, commit,
or roll back the operations of the transaction branch running in the session with
which the XA resource instance is associated.

15-4 Oracle9i JDBC Developer's Guide and Reference

Overview

The "prepare" step is the first step of a two-phase COMM T operation. The
transaction manager will issue a pr epar e to each XA resource instance. Once
the transaction manager sees that the operations of each transaction branch
have prepared successfully (essentially, that the databases can be accessed
without error), it will issue a COMM T to each XA resource instance to commit
all the changes.

Transaction IDs—These are used to identify transaction branches. Each ID
includes a transaction branch ID component and a distributed transaction ID
component—this is how a branch is associated with a distributed transaction.
All XA resource instances associated with a given distributed transaction would
have a transaction ID that includes the same distributed transaction ID
component.

Switching Between Global and Local Transactions

As of JDBC 3.0, applications can switch connections between local transactions and
global transactions.

A connection is always in one of three modes: NO_TXN, LOCAL_TXN, or
GLOBAL_TXN.

NO_TXN-—no transaction is actively using this connection.

LOCAL_TXN—a local transaction with auto-commit turned off or disabled is
actively using this connection.

GLOBAL_TXN—a global transaction is actively using this connection.

Each connection switches automatically between these modes depending on the
operations executed on the connection. A connection is always in NO_TXNmode
when it is instantiated.

Distributed Transactions 15-5

Overview

Table 15-1 Connection Mode Transitions

Switches To Switches to Switches To
Current Mode NO_TXN When LOCAL_TXN When GLOBAL_TXN When
NO_TXN Auto-commitmode start() isinvoked on
is false and an Oracle an XAResour ce
DML (SELECT, obtained from the
| NSERT, UPDATE) XAconnect i on that
statement is executed provided this
connection
LOCAL_TXN Any of the following NEVER
happens:
An Oracle DDL
statement (CREATE,

DROP, RENAME, ALTER)
is executed.

conmi t () isinvoked.

rol | back() is
invoked (parameterless
version only).

GLOBAL_TXN Within a global
transaction open on
this connection, end()
is invoked on an
XAResour ce obtained
from the
XAconnect i on that
provided this
connection.

NEVER

If none of the rules above is applicable, the mode does not change.

Mode Restrictions On Operations

The current connection mode restricts which operations are valid within a

transaction.

« In LOCAL_TXNmode, applications must not invoke pr epar e(),commit (),
rol I back(),forget(),orend() onan XAResour ce. Doing so causes an

XAExcept i on to be thrown.

« In GLOBAL_TXNmode, applications must not invoke conmi t () ,r ol | back()
(both versions), set Aut oCommi t (), or set Savepoint() on a
j ava. sgl . Connect i on, and must not invoke Or acl eSet Savepoi nt () or

15-6 Oracle9i JDBC Developer's Guide and Reference

Overview

or acl eRol | back() onanoracl e.jdbc. Oracl eConnecti on. Doing so
causes an SQLExcept i on to be thrown.

Note: This mode-restriction error checking is in addition to the
standard error checking on the transaction and savepoint APIs,
documented in this chapter and in "Transaction Savepoints" on
page 5-5.

Oracle XA Packages

Oracle supplies the following three packages that have classes to implement
distributed transaction functionality according to the XA standard:

« oracle.jdbc.xa(Oracl eXi dand Or acl eXAExcept i on classes)
« oracle.jdbc.xa.client
« oracle.jdbc. xa. server

Classes for XA data sources, XA connections, and XA resources are in both the

cli ent package and the ser ver package. (An abstract class for each is in the
top-level package.) The Or acl eXi d and Or acl eXAExcept i on classes are in the
top-level or acl e. j dbc. xa package, because their functionality does not depend
on where the code is running.

In middle-tier scenarios, you will import Or acl eXi d, Or acl eXAExcept i on, and
the or acl e. j dbc. xa. cl i ent package.

If you intend your XA code to run in the target Oracle database, however, you will
import the or acl e. j dbc. xa. ser ver package instead of the cl i ent package.

If code that will run inside a target database must also access remote databases,
then do not import either package—instead, you must fully qualify the names of
any classes that you use from the cl i ent package (to access a remote database) or
from the ser ver package (to access the local database). Class names are duplicated
between these packages.

Distributed Transactions 15-7

XA Components

XA Components

This section discusses the XA components—standard XA interfaces specified in the
JDBC 2.0 Optional Package, and the Oracle classes that implement them. The
following topics are covered:

= XA Data Source Interface and Oracle Implementation

= XA Connection Interface and Oracle Implementation

= XA Resource Interface and Oracle Implementation

= XA Resource Method Functionality and Input Parameters

= XAID Interface and Oracle Implementation

XA Data Source Interface and Oracle Implementation

The j avax. sql . XADat aSour ce interface outlines standard functionality of XA
data sources, which are factories for XA connections. The overloaded

get XAConnect i on() method returns an XA connection instance and optionally
takes a user name and password as input:

public interface XADataSource

{
XAConnecti on get XAConnection() throws SQLException;
XAConnecti on get XAConnection(String user, String password)
throws SQLExcepti on;
}

Oracle JDBC implements the XADat aSour ce interface with the
Or acl eXADat aSour ce class, located both in the or acl e. j dbc. xa. cl i ent
package and the or acl e. j dbc. xa. ser ver package.

The Or acl eXADat aSour ce classes also extend the

Or acl eConnect i onPool Dat aSour ce class (which extends the

Or acl eDat aSour ce class), so include all the connection properties described in
"Data Source Properties" on page 16-4.

The Or acl eXADat aSour ce class get XAConnect i on() methods return the
Oracle implementation of XA connection instances, which are
Or acl eXAConnect i on instances (as the next section discusses).

15-8 Oracle9i JDBC Developer's Guide and Reference

XA Components

Note: You can register XA data sources in JNDI using the same
naming conventions as discussed previously for non-pooling data
sources in "Register the Data Source" on page 16-9.

XA Connection Interface and Oracle Implementation

An XA connection instance, as with a pooled connection instance, encapsulates a
physical connection to a database. This would be the database specified in the
connection properties of the XA data source instance that produced the XA
connection instance.

Each XA connection instance also has the facility to produce the XA resource
instance that will correspond to it for use in coordinating the distributed
transaction.

An XA connection instance is an instance of a class that implements the standard
j avax. sql . XAConnect i on interface:

public interface XAConnection extends Pool edConnection

{

javax.jta.xa. XAResource get XAResource() throws SQLException;

}

As you see, the XAConnect i on interface extends the

j avax. sql . Pool edConnect i on interface, so it also includes the

get Connection(),cl ose(),addConnecti onEventLi stener (), and
renoveConnect i onEvent Li st ener () methods listed in "Pooled Connection
Interface and Oracle Implementation” on page 16-13.

Oracle JDBC implements the XAConnect i on interface with the
Or acl eXAConnect i on class, located both in the or acl e. j dbc. xa. cl i ent
package and the or acl e. j dbc. xa. ser ver package.

The Or acl eXAConnect i on classes also extend the Or acl ePool edConnecti on
class.

The Or acl eXAConnect i on class get XAResour ce() method returns the Oracle
implementation of an XA resource instance, which is an Or acl eXAResour ce
instance (as the next section discusses). The get Connect i on() method returns an
Or acl eConnect i on instance.

A JDBC connection instance returned by an XA connection instance acts as a
temporary handle to the physical connection, as opposed to encapsulating the

Distributed Transactions 15-9

XA Components

physical connection. The physical connection is encapsulated by the XA connection
instance.

Each time an XA connection instance get Connect i on() method is called, it
returns a new connection instance that exhibits the default behavior, and closes any
previous connection instance that still exists and had been returned by the same XA
connection instance. It is advisable to explicitly close any previous connection
instance before opening a new one, however.

Calling the cl ose() method of an XA connection instance closes the physical
connection to the database. This is typically performed in the middle tier.

XA Resource Interface and Oracle Implementation

The transaction manager uses XA resource instances to coordinate all the
transaction branches that constitute a distributed transaction.

Each XA resource instance provides the following key functionality, typically
invoked by the transaction manager:

« Itassociates and disassociates distributed transactions with the transaction
branch operating in the XA connection instance that produced this XA resource
instance. (Essentially, associates distributed transactions with the physical
connection or session encapsulated by the XA connection instance.) This is done
through use of transaction IDs.

« It performs the two-phase COMM T functionality of a distributed transaction to
ensure that changes are not committed in one transaction branch before there is
assurance that the changes will succeed in all transaction branches.

"XA Resource Method Functionality and Input Parameters" on page 15-11
further discusses this.

Notes:

= Because there must always be a one-to-one correlation between
XA connection instances and XA resource instances, an XA
resource instance is implicitly closed when the associated XA
connection instance is closed.

= Ifatransaction is opened by a given XA resource instance, it
must also be closed by the same XA resource instance.

15-10 Oracle9i JDBC Developer's Guide and Reference

XA Components

An XA resource instance is an instance of a class that implements the standard
javax. transacti on. xa. XAResour ce interface:

public interface XAResource

{

voi d commit(Xid xid, boolean onePhase) throws XAException;
void end(Xid xid, int flags) throws XAException;

voi d forget(Xid xid) throws XAException;

int prepare(Xid xid) throws XAException;

Xid[] recover(int flag) throws XAException;

voi d roll back(Xi d xid) throws XAExcepti on;

void start(Xid xid, int flags) throws XAException;

bool ean i sSameRM XAResour ce xares) throws XAException;

}

Oracle JDBC implements the XAResour ce interface with the Or acl eXAResour ce
class, located both in the or acl e. j dbc. xa. cl i ent package and the
oracl e. j dbc. xa. server package.

The Oracle JDBC driver creates and returns an Or acl eXAResour ce instance
whenever the Or acl eXAConnect i on class get XAResour ce() method is called,
and it is the Oracle JDBC driver that associates an XA resource instance with a
connection instance and the transaction branch being executed through that
connection.

This method is how an Or acl eXAResour ce instance is associated with a particular
connection and with the transaction branch being executed in that connection.

XA Resource Method Functionality and Input Parameters

The Or acl eXAResour ce class has several methods to coordinate a transaction
branch with the distributed transaction with which it is associated. This
functionality usually involves two-phase COVWM T operations.

A transaction manager, receiving Or acl eXAResour ce instances from a middle-tier
component such as an application server, typically invokes this functionality.

Each of these methods takes a transaction ID as input, in the form of an Xi d
instance, which includes a transaction branch ID component and a distributed
transaction ID component. Every transaction branch has a unique transaction 1D,
but transaction branches belonging to the same global transaction have the same
global transaction component as part of their transaction IDs.

Distributed Transactions 15-11

XA Components

"XA ID Interface and Oracle Implementation” on page 15-16 discusses the
Or acl eXi d class and the standard interface upon which it is based.

Following is a description of key XA resource functionality, the methods used, and
additional input parameters. Each of these methods throws an XA exception if an
error is encountered. See "XA Exception Classes and Methods" on page 15-18.

Start Start work on behalf of a transaction branch, associating the transaction branch
with a distributed transaction.

void start(Xid xid, int flags)

The f | ags parameter must be one of the following values:

« XAResour ce. TMNOFLAGS (no special flag)—Flag the start of a new transaction
branch for subsequent operations in the session associated with this XA
resource instance. This branch will have the transaction ID Xi d, which is an
Or acl eXi d instance created by the transaction manager. This will map the
transaction branch to the appropriate distributed transaction.

« XAResour ce. TMJIO N—Join subsequent operations in the session associated
with this XA resource instance to the existing transaction branch specified by
xid.

= XAResour ce. TVRESUME—Resume the transaction branch specified by xi d. (It
must first have been suspended.)

« XAResour ce. ORATMSERI ALI ZABLE—Start a serializable transaction with
transaction ID xi d.

= XAResour ce. ORATMREADONL Y—Start a read-only transaction with transaction
ID xi d.

« XAResour ce. ORATMREADWRI TE—Start a read /write transaction with
transaction ID xi d.

TMNOFLAGS, TMIO N, TMRESUME, ORATVSERI ALI ZABLE, ORATMREADONLY, and
ORATMREADWRI TE are defined as static members of the XAResour ce interface and
Or acl eXAResour ce class. ORATMSERI ALI ZABLE, ORATVREADONLY, and
ORATMREADWRI TE are the isolation-mode flags. The default isolation behavior is
READ COWM TTED.

15-12 Oracle9i JDBC Developer's Guide and Reference

XA Components

Notes: aInstead of using the st art () method with TMRESUME,
the transaction manager can cast to an Or acl eXAResour ce
instance and use the resume(Xi d xi d) method, an Oracle
extension.

. If you use TMRESUME, you must also use TMNOM GRATE, as in
end(xi d, XAResource. TMRESUME |
O acl eXAResour ce. TMNOM GRATE) ; . This prevents the application’s
receiving the error ORA 1002: fetch out of sequence.

= If you use the isolation-mode flags incorrectly, an exception
with code XAER_INVAL is raised. Furthermore, you cannot
use isolation-mode flags when resuming a global transaction,
because you cannot set the isolation level of an existing
transaction. If you try to use the isolation-mode flags when
resuming a transaction, an external Oracle exception with code
ORA-24790 is raised.

Note that to create an appropriate transaction ID in starting a transaction branch,
the transaction manager must know which distributed transaction the transaction
branch should belong to. The mechanics of this are handled between the middle tier
and transaction manager and are beyond the scope of this document. Refer to the
Sun Microsystems specifications for the JDBC 2.0 Optional Package and the Java
Transaction APL

End End work on behalf of the transaction branch specified by xi d, disassociating
the transaction branch from its distributed transaction.

void end(Xid xid, int flags)

The f | ags parameter can have one of the following values:

« XAResour ce. TMSUCCESS—This is to indicate that this transaction branch is
known to have succeeded.

« XAResour ce. TMFAI L—This is to indicate that this transaction branch is
known to have failed.

« XAResour ce. TM—This is to suspend the transaction branch specified by xi d.
(By suspending transaction branches, you can have multiple transaction
branches in a single session. Only one can be active at any given time, however.
Also, this tends to be more expensive in terms of resources than having two
sessions.)

Distributed Transactions 15-13

XA Components

TMSUCCESS, TMFAI L, and TMSUSPEND are defined as static members of the
XAResour ce interface and Or acl eXAResour ce class.

Notes:

Instead of using the end() method with TMSUSPEND, the
transaction manager can cast to an Or acl eXAResour ce
instance and use the suspend(Xi d xi d) method, an Oracle
extension.

This XA functionality to suspend a transaction provides a way
to switch between various transactions within a single JDBC
connection. You can use the XA classes to accomplish this, even
if you are not in a distributed transaction environment and
would otherwise have no need for the XA classes.

If you use TMSUSPEND, you must also use TMNOM GRATE, as in
end(xi d, XAResource. TMSUSPEND |

O acl eXAResour ce. TMNOM GRATE) ; . This prevents the application’s
receiving the error ORA 1002: fetch out of sequence.

Prepare Prepare the changes performed in the transaction branch specified by xi d.
This is the first phase of a two-phase COVM T operation, to ensure that the database
is accessible and that the changes can be committed successfully.

int prepare(Xid xid)

This method returns an integer value as follows:

XAResour ce. XA RDONLY—This is returned if the transaction branch executes
only read-only operations such as SELECT statements.

XAResour ce. XA_OK—This is returned if the transaction branch executes
updates that are all prepared without error.

n/a (no value returned)—No value is returned if the transaction branch
executes updates and any of them encounter errors during preparation. In this
case, an XA exception is thrown.

XA _RDONLY and XA_OK are defined as static members of the XAResour ce interface
and Or acl eXAResour ce class.

15-14 Oracle9i JDBC Developer's Guide and Reference

XA Components

Notes:

= Always call the end() method on a branch before calling the
prepar e() method.

« If there is only one transaction branch in a distributed
transaction, then there is no need to call the pr epar e()
method. You can call the XA resource commi t () method
without preparing first.

Commit Commit prepared changes in the transaction branch specified by xi d. This
is the second phase of a two-phase COMM T and is performed only after all
transaction branches have been successfully prepared.

voi d comm t(Xid xid, bool ean onePhase)

Set the onePhase parameter as follows:

= true—This is to use one-phase instead of two-phase protocol in committing
the transaction branch. This is appropriate if there is only one transaction
branch in the distributed transaction; the pr epar e step would be skipped.

« fal se—This is to use two-phase protocol in committing the transaction branch
(typical).

Roll back Rolls back prepared changes in the transaction branch specified by xi d.

voi d roll back(Xi d xid)

Forget Tells the resource manager to forget about a heuristically completed

transaction branch.

public void forget(Xid xid)

Recover The transaction manager calls this method during recovery to obtain the list

of transaction branches that are currently in prepared or heuristically completed
states.

public Xid[] recover(int flag)

Distributed Transactions 15-15

XA Components

Note: Thef | ag parameter is ignored and therefore not
implemented for Oracle8i 8.1.7 since the scan option (flag
parameter) is not meaningful without a count parameter. See the
Sun Microsystems Java Transaction API (JTA) Specification for more
detail.

The resource manager returns zero or more Xi ds for the transaction branches that
are currently in a prepared or heuristically completed state. If an error occurs
during the operation, the resource manager throws the appropriate XAExcept i on.

Check for same RM To determine if two XA resource instances correspond to the
same resource manager (database), call the i sSameRM) method from one XA
resource instance, specifying the other XA resource instance as input. In the
following example, presume xar es1 and xar es2 are Or acl eXAResour ce
instances:

bool ean sameRM = xaresl.i sSameRM xar es2);

A transaction manager can use this method regarding certain Oracle optimizations,
as "Oracle XA Optimizations" on page 15-20 explains.

XA ID Interface and Oracle Implementation

The transaction manager creates transaction ID instances and uses them in
coordinating the branches of a distributed transaction. Each transaction branch is
assigned a unique transaction ID, which includes the following information:

= format identifier (4 bytes)

A format identifier specifies a Java transaction manager—for example, there
could be a format identifier ORCL. This field cannot be null.

= global transaction identifier (64 bytes) (or "distributed transaction ID
component", as discussed earlier)

= branch qualifier (64 bytes) (or "transaction branch ID component”, as discussed
earlier)

The 64-byte global transaction identifier value will be identical in the transaction
IDs of all transaction branches belonging to the same distributed transaction. The
overall transaction ID, however, is unique for every transaction branch.

15-16 Oracle9i JDBC Developer's Guide and Reference

XA Components

An XA transaction ID instance is an instance of a class that implements the standard
javax.transaction. xa. Xi d interface, which is a Java mapping of the X/Open
transaction identifier XID structure.

Oracle implements this interface with the Or acl eXi d class in the
oracl e. j dbc. xa package. Or acl eXi d instances are employed only in a
transaction manager, transparent to application programs or an application server.

Note: Oracle8i 8.1.7 does not require the use of Or acl eXi d for
Oracle XA resource calls. Instead, use any class that implements
javax. transacti on. xa. Xi d interface.

A transaction manager may use the following in creating an Or acl eXi d instance:

public OracleXid(int fid, byte gld[], byte bld[]) throws XAException

Where f | d is an integer value for the format identifier, gl d[] is a byte array for the
global transaction identifier, and bl d[] is a byte array for the branch qualifier.

The Xi d interface specifies the following getter methods:
« public int getFormatld()

« public byte[] getd obal Transacti onl d()

« public type[] getBranchQualifier()

Distributed Transactions 15-17

Error Handling and Optimizations

Error Handling and Optimizations

This section has two focuses: 1) the functionality of XA exceptions and error
handling; and 2) Oracle optimizations in its XA implementation. The following
topics are covered:

= XA Exception Classes and Methods

= Mapping between Oracle Errors and XA Errors
= XA Error Handling

= Oracle XA Optimizations

The exception and error-handling discussion includes the standard XA exception
class and the Oracle-specific XA exception class, as well as particular XA error codes
and error-handling techniques.

XA Exception Classes and Methods

XA methods throw XA exceptions, as opposed to general exceptions or SQL
exceptions. An XA exception is an instance of the standard class

javax. transacti on. xa. XAExcept i on or a subclass. Oracle subclasses
XAExcept i on with the or acl e. j dbc. xa. Or acl eXAExcept i on class.

An Or acl eXAExcept i on instance consists of an Oracle error portion and an XA
error portion and is constructed as follows by the Oracle JDBC driver:

public Oracl eXAException()

or:
public Oracl eXAException(int error)
The error value is an error code that combines an Oracle SQL error value and an XA

error value. (The JDBC driver determines exactly how to combine the Oracle and
XA error values.)

The Or acl eXAExcept i on class has the following methods:
« public int getOracl eError()

This method returns the Oracle SQL error code pertaining to the exception—a
standard ORA error number (or 0 if there is no Oracle SQL error).

« public int getXAError()

15-18 Oracle9i JDBC Developer's Guide and Reference

Error Handling and Optimizations

This method returns the XA error code pertaining to the exception. XA error
values are defined in the j avax. t ransact i on. xa. XAExcept i on class; refer
to its Javadoc at the Sun Microsystems Web site for more information.

Mapping between Oracle Errors and XA Errors

Oracle errors correspond to XA errors in Or acl eXAExcept i on instances as
documented in Table 15-2.

Table 15-2 Oracle-XA Error Mapping

Oracle Error Code

XA Error Code

ORA
ORA
ORA

ORA
ORA

all other ORA errors

3113

3114

24756
24764
24765
24766
24767
25351

XAExcept i
XAExcept i
XAExcept i
XAExcept i
XAExcept i
XAExcept i
XAExcept i
XAExcept i
XAExcept i

on

on

on.

on.

on.

on.

on.

on.

on.

. XAER_RVFAI L
. XAER_RVFAI L
XAER_NOTA
XA_HEURCOM
XA_HEURRB
XA_HEURM X
XA_RDONLY
XA RETRY
XAER_RVERR

XA Error Handling

The following example uses the Or acl eXAExcept i on class to process an XA
exception:

try {

... Perform XA operations...

} catch(Oracl eXAExcepti on oxae) {
int oraerr = oxae.getOracleError();
Systemout.printin("Error " + oraerr);

}

cat ch(XAException xae)

{...Process generic XA exception...}

Distributed Transactions 15-19

Error Handling and Optimizations

In case the XA operations did not throw an Oracle-specific XA exception, the code
drops through to process a generic XA exception.

Oracle XA Optimizations

Oracle JDBC has functionality to improve performance if two or more branches of a
distributed transaction use the same database instance—meaning that the XA
resource instances associated with these branches are associated with the same
resource manager.

In such a circumstance, the pr epar e() method of only one of these XA resource
instances will return XA_OK (or failure); the rest will return XA_RDONLY, even if
updates are made. This allows the transaction manager to implicitly join all the
transaction branches and commit (or roll back, if failure) the joined transaction
through the XA resource instance that returned XA_OK (or failure).

The transaction manager can use the Or acl eXAResour ce class i sSaneRM)
method to determine if two XA resource instances are using the same resource
manager. This way it can interpret the meaning of XA_RDONLY return values.

15-20 Oracle9i JDBC Developer's Guide and Reference

Implementing a Distributed Transaction

Implementing a Distributed Transaction

This section provides an example of how to implement a distributed transaction
using Oracle XA functionality.

Summary of Imports for Oracle XA
You must import the following for Oracle XA functionality:

inport oracle.jdbc. xa. Oracl eXid;

inport oracle.jdbc. xa. Oracl eXAExcept i on;
inport oracle.jdbc. pool . *;

inport oracle.jdbc.xa.client.*;

inport javax.transaction.xa.*;

The or acl e. j dbc. pool package has classes for connection pooling functionality,
some of which are subclassed by XA-related classes.

In addition, if the code will run inside an Oracle database and access that database
for SQL operations, you must import the following:

inport oracle.jdbc. xa.server.*;

(And if you intend to access only the database in which the code runs, you would
not need the or acl e. j dbc. xa. cl i ent classes.)

Thecl i ent and ser ver packages each have versions of the

Or acl eXADat aSour ce, Or acl eXAConnect i on,and Or acl eXAResour ce
classes. Abstract versions of these three classes are in the top-level

oracl e. j dbc. xa package.

Oracle XA Code Sample

This example uses a two-phase distributed transaction with two transaction
branches, each to a separate database.

Note that for simplicity, this example combines code that would typically be in a
middle tier with code that would typically be in a transaction manager (such as the
XA resource method invocations and the creation of transaction IDs).

For brevity, the specifics of creating transaction IDs (in the cr eat el D() method)
and performing SQL operations (in the doSomeWor k1() and doSomeWor k2()
methods) are not shown here. The complete example is shipped with the product.

This example executes the following sequence:

Distributed Transactions 15-21

Implementing a Distributed Transaction

© © N o g > w N PR

Start transaction branch #1.

Start transaction branch #2.

Execute DML operations on branch #1.
Execute DML operations on branch #2.
End transaction branch #1.

End transaction branch #2.

Prepare branch #1.

Prepare branch #2.

Commit branch #1.

10. Commit branch #2.

/] You need to inport the java.sql package to use JDBC
inport java.sql.*;
inport javax.sql.*;
inport oracle.jdbc.*;
inport oracle.jdbc. pool .*;
inport oracle.jdbc. xa. Oracl eXid;
inport oracle.jdbc. xa. Oracl eXAExcept i on;
inport oracle.jdbc.xa.client.*;
inport javax.transaction.xa.*;
class XA4
{
public static void main (String args [])
throws SQLException
{
try
{

String URLL = "jdbc:oracle:oci: @;
String URL2 ="jdbc: oracle:thin: @description=(address=(host=dl sun991)
(protocol =tcp) (port=5521)) (connect _dat a=(si d=rdbns2)))";

DriverManager.regi sterDriver(new Oracl eDriver());
/] You can put a database nane after the @sign in the connection URL.
Connection conna =

Dri ver Manager . get Connection (URL1, "scott", "tiger");

/] Prepare a statenment to create the table

15-22 Oracle9i JDBC Developer's Guide and Reference

Implementing a Distributed Transaction

Statenent stnta = conna.createStatenment ();

Connection connb =
Dri ver Manager . get Connection (URL2, "scott", "tiger");

/] Prepare a statement to create the table
Statenment stntb = connb.createStatenment ();

try

/] Drop the test table

stnta. execute ("drop table ny_table");
}
catch (SQLException e)

{

/] Ignore an error here

}

try
{
/] Create a test table

stnta. execute ("create table my_table (coll int)");
}
catch (SQLException e)
{

/] Ignore an error here too

}

try
{
/] Drop the test table

stntb. execute ("drop table nmy_tab");

}
catch (SQLException e)

{

/] Ignore an error here

}

try
{
/]l Create a test table

stmtb. execute ("create table ny_tab (coll char(30))");

}
catch (SQLException e)

{

Distributed Transactions 15-23

Implementing a Distributed Transaction

/] Ignore an error here too

}

/] Create XADat aSource instances and set properties.
O acl eXADat aSour ce oxdsl = new Oracl eXADat aSource();
oxdsl.set URL("j dbc:oracle:oci:@);

oxdsl. setUser("scott");

oxdsl. set Password("tiger");

O acl eXADat aSour ce oxds2 = new Oracl eXADat aSour ce() ;

oxds2. set URL("j dbc: oracl e:thin: @description=(address=(host=dl sun991)
(protocol =tcp) (port=5521)) (connect _dat a=(si d=rdbns2)))");

oxds2. set User ("scott");

oxds2. set Password("ti ger");

/] Get XA connections to the underlying data sources
XAConnection pcl = oxdsl.get XAConnection();
XAConnection pc2 = oxds2.get XAConnection();

/] Get the physical connections
Connection connl = pcl. get Connection();
Connection conn2 = pc2. get Connection();

Il CGet the XA resources
XAResour ce oxar1l = pcl. get XAResour ce();
XAResour ce oxar?2 = pc2. get XAResour ce();

/] Create the Xids Wth the Same G obal Ids
Xid xidl = createXid(1);
Xid xid2 = createXid(2);

/] Start the Resources
oxarl.start (xidl, XAResource. TMNOFLAGS);
oxar2.start (xid2, XAResource. TMNOFLAGS);

/] Execute SQL operations w th connl and conn2
doSomeWor k1 (connl);

doSomeWor k2 (conn2);

/] END both the branches -- | MPORTANT

oxar 1. end(xi d1, XAResource. TMSUCCESS);

oxar 2. end(xi d2, XAResour ce. TMSUCCESS) ;

/] Prepare the R\Vs

15-24 Oracle9i JDBC Developer's Guide and Reference

Implementing a Distributed Transaction

int prpl

Systemout. printlin("Return value of prepare 1is
Systemout. println("Return value of prepare 2 is

bool ean do_commit = true;

if (!((prpl == XAResource.XA_K) || (prpl

do_commit = fal se;

if (I((prp2 == XAResource. XA OK) || (prp2

do_commit = fal se;

Systemout.printin("do_comit is

oxarl. prepare (xidl);
int prp2 = oxar2.prepare (xid2);

+ prpl);
+prp2);

== XAResour ce. XA_RDONLY)))

== XAResour ce. XA_RDONLY)))

+ do_commi t);

Systemout.printin("ls oxarl sane as oxar2 ? " + oxarl.isSameRM oxar2));

if (prpl == XAResource. XA OX)
if (do_commt)
oxarl.commt (xidl, false);
el se
oxarl.rol | back (xidl);

if (prp2 == XAResource. XA OX)
if (do_commt)
oxar2.commit (xid2, false);
el se
oxar2.rol | back (xid2);

/1 Close connections
connl. cl ose();
connl = null;
conn2. cl ose();
conn2 = null;

pcl.close();
pcl = null;
pc2.close();
pc2 = null;

Resul t Set rset = stnta.executeQuery ("select coll fromny_table");

while (rset.next())

Systemout.printin("Collis " + rset.getlnt(1));

rset.close();

Distributed Transactions 15-25

Implementing a Distributed Transaction

rset =

rset =

null;

stnth. executeQuery ("select coll fromny_tab");
while (rset.next())
Systemout.printin("Collis " + rset.getString(1));

rset.close();

rset =

stnta.
stna
stntbh.
stntbh

conna.
conna
connb
connb

C

C

o 1o

null;

| ose();
nul | ;
| ose();
nul | ;

| ose();
nul | ;
| ose();
nul | ;

} catch (SQLException sqe)

sge. printStackTrace();
} catch (XAException xae)

if (xae instanceof OracleXAException) {
Systemout. printin("XA Error is " +

((Oracl eXAExcepti on) xae)

Systemout.printin("SQ Error is " +
((Oracl eXAExcepti on) xae) . getOracl eError());

}
}
}

static Xid createXid(int bids)
throws XAException
{...Create transaction IDs...}

.getXAError());

private static void doSomeWorkl (Connection conn)
throws SQLException
{...Execute SQL operations...}

private static void doSomeWork2 (Connection conn)
throws SQLException
{...Execute SQL operations...}

}

15-26 Oracle9i JDBC Developer's Guide and Reference

16

Connection Pooling and Caching

This chapter covers the Oracle JDBC implementations of (1) data sources, a
standard facility for specifying resources to use, including databases; (2) connection
pooling, which is a framework for caches of database connections; and (3)
connection caching, including documentation of a sample Oracle implementation.
You will also find related discussion of Oracle JDBC support for the standard Java
Naming and Directory Interface (JNDI).

The following topics, which apply to all Oracle JDBC drivers, are described in this
chapter:

=« Data Sources
= Connection Pooling

= Connection Caching

Notes: This chapter describes features of the Sun Microsystems
JDBC 2.0 Standard Extension API, which are available through the
j avax packages from Sun Microsystems. These packages are not
part of the standard JDK, but relevant packages are included with
thecl asses111. zi p and cl asses12. zi p files.

For further information on listed topics, refer to the Sun Microsystems specification
for the JDBC 2.0 Standard Extension API. For information about additional
connection pooling functionality specific to the OCI driver, see "OCI Driver
Connection Pooling" on page 17-2.

Connection Pooling and Caching 16-1

Data Sources

Data Sources

The JDBC 2.0 extension API introduced the concept of data sources, which are
standard, general-use objects for specifying databases or other resources to use.
Data sources can optionally be bound to Java Naming and Directory Interface
(JNDI) entities so that you can access databases by logical names, for convenience
and portability.

This functionality is a more standard and versatile alternative to the connection
functionality described under "Open a Connection to a Database" on page 3-3. The
data source facility provides a complete replacement for the previous JDBC

Dri ver Manager facility.

You can use both facilities in the same application, but ultimately developers will be
encouraged to use data sources for their connections, regardless of whether
connection pooling or distributed transactions are required. Eventually, Sun
Microsystems will probably deprecate Dri ver Manager and related classes and
functionality.

For further introductory and general information about data sources and JNDI,
refer to the Sun Microsystems specification for the JDBC 2.0 Optional Package.

A Brief Overview of Oracle Data Source Support for JNDI

The standard Java Naming and Directory Interface, or JNDI, provides a way for
applications to find and access remote services and resources. These services can be
any enterprise services, but for a JDBC application would include database
connections and services.

JNDI allows an application to use logical names in accessing these services,
removing vendor-specific syntax from application code. JNDI has the functionality
to associate a logical name with a particular source for a desired service.

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required
to use this functionality, but accessing databases through JNDI logical names makes
the code more portable.

16-2 Oracle9i JDBC Developer's Guide and Reference

Data Sources

Note: Using JNDI functionality requires the file j ndi . j ar to be
in the CLASSPATH. This file is included with the Java products on
the Oracle9i CD, but is not included in the cl asses12. zi p and
cl asses111. zi p files. You must add it to the CLASSPATH
separately. (You can also obtain it from the Sun Microsystems Web
site, but it is advisable to use the version from Oracle, because that
has been tested with the Oracle drivers.)

Data Source Features and Properties

"First Steps in JDBC" on page 3-2 includes sections on how to use the JDBC

Dri ver Manager class to register driver classes and open database connections.
The problem with this model is that it requires your code to include vendor-specific
class names, database URLs, and possibly other properties, such as machine names
and port numbers.

With data source functionality, using JNDI, you do not need to register the
vendor-specific JDBC driver class name, and you can use logical names for URLs
and other properties. This allows your application code for opening database
connections to be portable to other environments.

Data Source Interface and Oracle Implementation

A JDBC data source is an instance of a class that implements the standard
j avax. sql . Dat aSour ce interface:

public interface DataSource

{
Connection get Connection() throws SQLException;
Connection get Connection(String username, String password)
throws SQLExcepti on;
}

Oracle implements this interface with the Or acl eDat aSour ce class in the
oracl e. j dbc. pool package. The overloaded get Connecti on() method
returns an Or acl eConnect i on instance, optionally taking a user name and
password as input.

To use other values, you can set properties using appropriate setter methods
discussed in the next section. For alternative user names and passwords, you can
also use the get Connecti on() signature that takes these as input—this would
take priority over the property settings.

Connection Pooling and Caching 16-3

Data Sources

Note: The Or acl eDat aSour ce class and all subclasses
implement the j ava. i 0. Seri al i zabl e and
j avax. nam ng. Ref er enceabl e interfaces.

Data Source Properties

The Or acl eDat aSour ce class, as with any class that implements the
Dat aSour ce interface, provides a set of properties that can be used to specify a
database to connect to. These properties follow the JavaBeans design pattern.

Table 16-1 and Table 16-2 document O acl eDat aSour ce properties. The
properties in Table 16-1 are standard properties according to the Sun Microsystems
specification. (Be aware, however, that Oracle does not implement the standard

r ol eNane property.) The properties in Table 16-2 are Oracle extensions.

Table 16-1 Standard Data Source Properties

Name Type Description

dat abaseNane String name of the particular database on the server; also
known as the "SID" in Oracle terminology

dat aSour ceName String name of the underlying data source class (for connection
pooling, this is an underlying pooled connection data
source class; for distributed transactions, this is an
underlying XA data source class)

description String description of the data source

net wor kPr ot ocol String network protocol for communicating with the server; for
Oracle, this applies only to the OCI drivers and defaults
totcp
(Other possible settings include i pc. See the Oracle Net
Services Administrator’s Guide for more information.)

password String login password for the user name

por t Nunber int number of the port where the server listens for requests

server Name String name of the database server

user String name for the login account

16-4 Oracle9i JDBC Developer's Guide and Reference

Data Sources

The Or acl eDat aSour ce class implements the following setter and getter methods
for the standard properties:

public synchronized voi d set Dat abaseNane(String dbnane)

public synchronized

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

c

c

c

c

c

synchr oni
synchr oni
synchr oni
synchr oni
synchr oni
synchr oni
synchr oni
synchr oni
synchr oni
synchr oni
synchr oni

synchr oni

zed
zed
zed
zed
zed
zed
zed
zed
zed
zed
zed

zed

public synchronized

String get Dat abaseNane()

voi d set Dat aSour ceNane(String dsnamne)
String get Dat aSour ceNane()

voi d setDescription(String desc)
String getDescription()

voi d set Net wor kPr ot ocol (String np)
String get Net wor kProt ocol ()

voi d set Password(String pwd)

voi d set Port Number (i nt pn)

i nt get Port Nunmber ()

voi d set Server Name(String sn)
String get Server Nane()

voi d set User(String user)

String getUser ()

Note that there is no get Passwor d() method, for security reasons.

Connection Pooling and Caching 16-5

Data Sources

Table 16—2 Oracle Extended Data Source Properties

Name

Type

Description

driver Type

tnsEntry

url

nativeXA

String

String

String

boolean

This designates the Oracle JDBC driver type as either OCi ,
t hi n, or kpr b (server-side internal).

This is the TNS entry name, relevant only for the OCI driver.
It assumes an Oracle client installation with a TNS_ADM N
environment variable that is set appropriately.

Enable this Or acl eXADat aSour ce property when using
the HeteroRM feature with the OCI driver, to access Oracle
pre-8.1.6 databases and higher. The HeteroRM XA feature is
described in "OCI HeteroRM XA" on page 17-19. If the
tnsEntry property is not set when using the HeteroRM XA
feature, an SQLException with error code ORA-17207 is
thrown.

This is the URL of the database connect string. Provided as a
convenience, it can help you migrate from an older Oracle
database. You can use this property in place of the Oracle
tnsEntry and dri ver Type properties and the standard
port Number, net wor kPr ot ocol ,ser ver Nanme, and
dat abaseNane properties.

Enable this Or acl eXADat aSour ce property when using
the HeteroRM feature with the OCI driver, to access Oracle
pre-8.1.6 databases and higher. The HeteroRM XA feature is
described in "OCI HeteroRM XA" on page 17-19. If the
nativeXA property is enabled, be sure to set the tnsEntry
property as well.

This Dat aSour ce property defaults to f al se.

Note:

Since nativeXA performs better than JavaXA, use nativeXA
whenever possible.

The Or acl eDat aSour ce class implements the following set XXX() and
get XXX() methods for the Oracle extended properties:

public synchronized void setDriverType(String dt)

public synchronized String getDriverType()
public synchronized void setURL(String url)
public synchronized String get URL()

16-6 Oracle9i JDBC Developer's Guide and Reference

Data Sources

public synchronized voi d set TNSEntryName(String tns)
public synchronized String get TNSEntryName()
public synchronized voi d set Nati veXA(bool ean nati veXA)

public synchroni zed bool ean get Nati veXA()

If you are using the server-side internal driver—dr i ver Type property is set to
kpr b—then any other property settings are ignored.

If you are using a Thin or OCI driver, note the following:

A URL setting can include settings for user and passwor d, as in the following
example, in which case this takes precedence over individual user and
passwor d property settings:

jdbc:oracle:thin:scott/tiger@ocal host: 1521: orcl

Settings for user and passwor d are required, either directly, through the URL
setting, or through the get Connecti on() call. The user and passwor d
settings in a get Connect i on() call take precedence over any property
settings.

If the ur | property is set, then any t nsEnt ry, dr i ver Type, por t Nunber,
net wor kPr ot ocol , ser ver Nane, and dat abaseNane property settings are
ignored.

If the t nSENt r y property is set (which presumes the ur | property is not set),
then any dat abaseName, ser ver Naneg, por t Nunber, and
net wor kPr ot ocol settings are ignored.

If you are using an OCI driver (which presumes the dr i ver Type property is
set to oci) and the net wor kPr ot ocol isset toi pc, then any other property
settings are ignored.

Creating a Data Source Instance and Connecting (without JNDI)

This section shows an example of the most basic use of a data source to connect to a
database, without using JNDI functionality. Note that this requires vendor-specific,
hard-coded property settings.

Create an Or acl eDat aSour ce instance, initialize its connection properties as
appropriate, and get a connection instance as in the following example:

Oracl eDat aSource ods = new O acl eDat aSource();

Connection Pooling and Caching 16-7

Data Sources

ods. set Dri ver Type("oci ");

ods. set Ser ver Name(" dl sun999") ;
ods. set Net wor kPr ot ocol ("tcp");
ods. set Dat abaseNane("816") ;
ods. set Por t Nunber (1521) ;

ods. set User ("scott");

ods. set Password("tiger");

Connection conn = ods. get Connection();

Or optionally override the user name and password:

Connection conn = ods. get Connection("bill", "lion");

Creating a Data Source Instance, Registering with JNDI, and Connecting

This section exhibits JNDI functionality in using data sources to connect to a
database. Vendor-specific, hard-coded property settings are required only in the
portion of code that binds a data source instance to a JNDI logical name. From that
point onward, you can create portable code by using the logical name in creating
data sources from which you will get your connection instances.

Note: Creating and registering data sources is typically handled
by a JNDI administrator, not in a JDBC application.

Initialize Connection Properties

Create an Or acl eDat aSour ce instance, and then initialize its connection
properties as appropriate, as in the following example:

Oracl eDat aSource ods = new O acl eDat aSource();

ods. set Dri ver Type("oci");

ods. set Ser ver Name(" dl sun999") ;
ods. set Net wor kPr ot ocol ("tcp");
ods. set Dat abaseNane("816") ;
ods. set Por t Nunber (1521) ;

16-8 Oracle9i JDBC Developer's Guide and Reference

Data Sources

ods. set User ("scott");
ods. set Password("tiger");

Register the Data Source

Once you have initialized the connection properties of the Or acl eDat aSour ce
instance 0ods, as shown in the preceding example, you can register this data source
instance with JNDJ, as in the following example:

Context ctx = new I nitial Context();
ctx. bi nd("j dbc/ sanpl edb", ods);

Calling the JNDI I ni ti al Cont ext () constructor creates a Java object that
references the initial JNDI naming context. System properties that are not shown
instruct JNDI which service provider to use.

The ct x. bi nd() call binds the Or acl eDat aSour ce instance to a logical JNDI
name. This means that anytime after the ct x. bi nd() call, you can use the logical
name j dbc/ sanpl edb in opening a connection to the database described by the
properties of the Or acl eDat aSour ce instance ods. The logical name

j dbc/ sanpl edb is logically bound to this database.

The JNDI name space has a hierarchy similar to that of a file system. In this
example, the JNDI name specifies the subcontext j dbc under the root naming
context and specifies the logical name sanpl edb within the j dbc subcontext.

The Cont ext interface and | ni ti al Cont ext class are in the standard
j avax. nam ng package.

Notes: The JDBC 2.0 Specification requires that all JDBC data
sources be registered in the j dbc naming subcontext of a JNDI
namespace or in a child subcontext of the j dbc subcontext.

Open a Connection

To perform a lookup and open a connection to the database logically bound to the
JNDI name, use the logical JNDI name. Doing this requires casting the lookup result
(which is otherwise simply a Java Cbj ect) to anew Or acl eDat aSour ce instance
and then using its get Connect i on() method to open the connection.

Connection Pooling and Caching 16-9

Data Sources

Here is an example:

O acl eDat aSour ce odsconn = (Oracl eDat aSour ce) ct x. | ookup("j dbc/ sanpl edb") ;
Connection conn = odsconn. get Connection();

Logging and Tracing

The data source facility offers a way to register a character stream for JDBC to use as
output for error logging and tracing information. This facility allows tracing specific
to a particular data source instance. If you want all data source instances to use the
same character stream, then you must register the stream with each data source
instance individually.

The Or acl eDat aSour ce class implements the following standard data source
methods for logging and tracing;:

« public synchronized void setLogWiter(PrintWiter pw)
« public synchronized PrintWiter getLogWiter()

The Print Wi ter classis in the standard j ava. i 0 package.

Notes:

= When a data source instance is created, logging is disabled by
default (the log stream name is initially null).

= Messages written to a log stream registered to a data source
instance are not written to the log stream normally maintained
by Dri ver Manager.

« An Oracl eDat aSour ce instance obtained from a JNDI name
lookup will not have its Pri nter Wi t er set, even if the
Print Witer was set when a data source instance was first
bound to this JNDI name.

16-10 Oracle9i JDBC Developer's Guide and Reference

Connection Pooling

Connection Pooling

Connection pooling in the JDBC 2.0 extension API is a framework for caching
database connections. This allows reuse of physical connections and reduced
overhead for your application. Connection pooling functionality minimizes
expensive operations in the creation and closing of sessions.

The following are central concepts:

« Connection pool data sources—similar in concept and functionality to the data
sources described previously, but with methods to return pooled connection
instances, instead of normal connection instances.

= Pooled connections—a pooled connection instance represents a single physical
connection to a database, remaining open during use by a series of logical
connection instances.

A logical connection instance is a simple connection instance (such as a
standard Connect i on instance or an Or acl eConnect i on instance) returned
by a pooled connection instance. Each logical connection instance acts as a
temporary handle to the physical connection represented by the pooled
connection instance.

For connection pooling information specific to OCI drivers, see "OCI Driver
Connection Pooling" on page 17-2. For further introductory and general information
about connection pooling, refer to the Sun Microsystems specification for the JDBC
2.0 Optional Package.

Note: The concept of connection pooling is not relevant to the
server-side internal driver, where you are simply using the default
connection, and is only relevant to the server-side Thin driver
within a single session.

Connection Pooling Concepts

If you do not use connection pooling, each connection instance

(j ava. sqgl . Connection ororacl e.jdbc. O acl eConnect i on instance)
encapsulates its own physical database connection. When you call the cl ose()
method of the connection instance, the physical connection itself is closed. This is
true whether you obtain the connection instance through the JDBC 2.0 data source
facility described under "Data Sources" on page 16-2, or through the

Dri ver Manager facility described under "Open a Connection to a Database" on
page 3-3.

Connection Pooling and Caching 16-11

Connection Pooling

With connection pooling, an additional step allows physical database connections to
be reused by multiple logical connection instances, which are temporary handles to
the physical connection. Use a connection pool data source to return a pooled
connection, which is what encapsulates the physical database connection. Then use
the pooled connection to return JDBC connection instances (one at a time) that each
act as a temporary handle.

Closing a connection instance that was obtained from a pooled connection does not
close the physical database connection. It does, however, free the resources of the
connection instance, clear the state, close statement objects created from the
connection instance, and restore the defaults for the next connection instance that
will be created.

To actually close the physical connection, you must invoke the cl ose() method of
the pooled connection. This would typically be performed in the middle tier.

Connection Pool Data Source Interface and Oracle Implementation

The j avax. sql . Connect i onPool Dat aSour ce interface outlines standard
functionality of connection pool data sources, which are factories for pooled
connections. The overloaded get Pool edConnect i on() method returns a pooled
connection instance and optionally takes a user name and password as input:

public interface ConnectionPool Dat aSour ce

{
Pool edConnect i on get Pool edConnection() throws SQ.Excepti on;

Pool edConnect i on get Pool edConnection(String user, String password)
throws SQLExcepti on;

}

Oracle JDBC implements the Connect i onPool Dat aSour ce interface with the
oracl e. jdbc. pool . Oracl eConnect i onPool Dat aSour ce class. This class
also extends the Or acl eDat aSour ce class, so it includes all the connection
properties and getter and setter methods described in "Data Source Properties" on
page 16-4.

The Or acl eConnect i onPool Dat aSour ce class get Pool edConnecti on()
methods return the Oracle implementation of pooled connection instances, which
are Or acl ePool edConnect i on instances (as discussed in the next section).

16-12 Oracle9i JDBC Developer's Guide and Reference

Connection Pooling

Note: You can register connection pool data sources in JNDI using
the same naming conventions as discussed for non-pooling data
sources in "Register the Data Source" on page 16-9.

Pooled Connection Interface and Oracle Implementation

A pooled connection instance encapsulates a physical connection to a database. This
database would be the one specified in the connection properties of the connection
pool data source instance used to produce the pooled connection instance.

A pooled connection instance is an instance of a class that implements the standard
j avax. sqgl . Pool edConnect i on interface. The get Connect i on() method
specified by this interface returns a logical connection instance that acts as a
temporary handle to the physical connection, as opposed to encapsulating the
physical connection, as does a non-pooling connection instance:

public interface Pool edConnection

{
Connection get Connection() throws SQLException;

voi d close() throws SQLException;

voi d addConnecti onEvent Li st ener (Connect i onEvent Li stener listener) ... ;
voi d renoveConnecti onEvent Li st ener (Connecti onEvent Li stener |istener);
voi d set Stnt CacheSi ze(int size);

voi d set Stnt CacheSize(int size, bool ean clearMetaData);

int getStntCacheSize();

}

(Event listeners are used in connection caching and are discussed in "Typical Steps
in Using a Connection Cache" on page 16-20.)

Oracle JDBC implements the Pool edConnect i on interface with the
oracl e. j dbc. pool . O acl ePool edConnect i on class. The get Connecti on()
method returns an Or acl eConnect i on instance.

A pooled connection instance will typically be asked to produce a series of
connection instances during its existence, but only one of these connection instances
can be open at any particular time.

Each time a pooled connection instance get Connect i on() method is called, it
returns a new connection instance that exhibits the default behavior, and it closes
any previous connection instance that still exists and has been returned by the same
pooled connection instance. You should explicitly close any previous connection
instance before opening a new one, however.

Connection Pooling and Caching 16-13

Connection Pooling

Calling the cl ose() method of a pooled connection instance closes the physical
connection to the database. The middle-tier layer typically performs this.

The Or acl ePool edConnect i on class includes methods to enable statement
caching for a pooled connection. The cache for statements is maintained for the
pooled connection as a whole, and all logical connections obtained from the pooled
connection share it. Therefore, when statement caching is enabled, a statement you
create on one logical connection can be re-used on another logical connection. For
the same reason, you cannot enable or disable statement caching on individual
logical connections. This function applies to both implicit and explicit statement
caching.

The following are Or acl ePool edConnect i on method definitions for statement
caching:
public void setStnt CacheSize (int size)

throws SQLException

public void setStnt CacheSi ze (int size, bool ean clearMet aDat a)
throws SQLException

public int getStntCacheSize()

See Chapter 14, "Statement Caching", for more details on statement caching.

Creating a Connection Pool Data Source and Connecting

This section contains an example of the most basic use of a connection pool data
source to connect to a database without using JNDI functionality. You could
optionally use JNDI, binding the connection pool data source instance to a JNDI
logical name, in the same way that you would for a generic data source instance (as
"Register the Data Source" on page 16-9 illustrates).

Summary of Imports for Oracle Connection Pooling
You must import the following for Oracle connection pooling functionality:

inport oracle.jdbc. pool . *;
This package contains the Or acl eDat aSour ce,
Or acl eConnect i onPool Dat aSour ce, and Or acl ePool edConnect i on classes,

in addition to classes for connection caching and event-handling, which
"Connection Caching" on page 16-16 discusses.

16-14 Oracle9i JDBC Developer's Guide and Reference

Connection Pooling

Oracle Connection Pooling Code Sample

This example first creates an Or acl eConnect i onPool Dat aSour ce instance, next
initializes its connection properties, then gets a pooled connection instance from the
connection pool data source instance, and finally gets a connection instance from
the pooled connection instance. (The get Pool edConnect i on() method actually
returns an Or acl ePool edConnect i on instance, but in this case only generic

Pool edConnect i on functionality is required.)

O acl eConnect i onPool Dat aSource ocpds = new Oracl eConnect i onPool Dat aSour ce() ;

ocpds. set Driver Type("oci");
ocpds. set Server Name("dl sun999");
ocpds. set Net wor kProt ocol ("tcp");
ocpds. set Dat abaseNane(" 816");
ocpds. set Port Number (1521);

ocpds. set User ("scott");

ocpds. set Password("tiger");

Pool edConnection pc = ocpds. get Pool edConnection();

Connection conn = pc. get Connection();

Connection Pooling and Caching 16-15

Connection Caching

Connection Caching

Connection caching, generally implemented in a middle tier, is a means of keeping
and using caches of physical database connections.

Connection caching uses the connection pooling framework—such as connection
pool data sources and pooled connections—in much of its operations. "Connection
Pooling", starting on page 16-11, describes this framework.

The JDBC 2.0 specification does not mandate a connection caching implementation,
but Oracle provides a simple implementation to serve at least as an example.

This section is divided into the following topics:

« Overview of Connection Caching

= Typical Steps in Using a Connection Cache

= Oracle Connection Cache Specification: OracleConnectionCache Interface

= Oracle Connection Cache Implementation: OracleConnectionCachelmpl Class

« Oracle Connection Event Listener: OracleConnectionEventListener Class

Note: The concept of connection caching is not relevant to the
server-side internal driver, where you are simply using the default
connection, and is only relevant to the server-side Thin driver
within a single session.

Overview of Connection Caching

Each connection cache is represented by an instance of a connection cache class and
has an associated group of pooled connection instances. For a single connection
cache instance, the associated pooled connection instances must all represent
physical connections to the same database and schema. Pooled connection instances
are created as needed, which is whenever a connection is requested and the
connection cache does not have any free pooled connection instances. A "free"
pooled connection instance is one that currently has no logical connection instance
associated with it; in other words, a pooled connection instance whose physical
connection is not being used.

Basics of Setting Up a Connection Cache

The middle tier, in setting up a connection cache, will create an instance of a
connection cache class and set its data source connection properties as

16-16 Oracle9i JDBC Developer's Guide and Reference

Connection Caching

appropriate—for example, ser ver Name, dat abaseName, or URL. Recall that a
connection cache class extends a data source class. For information about data
source properties, see "Data Source Properties" on page 16-4.

An example of a connection cache class is Or acl eConnect i onCachel npl . How
to instantiate this class and set its connection properties is described in
"Instantiating OracleConnectionCachelmpl and Setting Properties" on page 16-24.
This class extends the Or acl eDat aSour ce class and so includes the setter
methods to set connection properties to specify the database to connect to. All the
pooled connection instances in the cache would represent physical connections to
this same database, and in fact to the same schema.

Once the middle tier has created a connection cache instance, it can optionally bind
this instance to JNDI as with any data source instance, which is described in
"Register the Data Source" on page 16-9.

Basics of Accessing the Connection Cache

A JDBC application must retrieve a connection cache instance to use the cache. This
is typically accomplished through the middle tier, often using a JNDI lookup. In a
connection caching scenario, a JNDI lookup would return a connection cache
instance instead of a generic data source instance. Because a connection cache class
extends a data source class, connection cache instances include data source
functionality.

Executing a JNDI lookup is described in "Open a Connection" on page 16-9.

If INDI is not used, the middle tier will typically have some vendor-specific API
through which a connection cache instance is retrieved for the application.

Basics of Opening Connections

A connection cache class, as with a pooled connection class, has a

get Connecti on() method. The get Connecti on() method of a connection
cache instance returns a logical connection to the database and schema associated
with the cache. This association is through the connection properties of the
connection cache instance, as typically set by the middle tier.

Whenever a JDBC application wants a connection to a database in a connection
caching scenario, it will call the get Connect i on() method of the connection
cache instance associated with the database.

This get Connect i on() method checks if there are any free pooled connection
instances in the cache. If not, one is created. Then a logical connection instance will

Connection Pooling and Caching 16-17

Connection Caching

be retrieved from a previously existing or newly created pooled connection
instance, and this logical connection instance will be supplied to the application.

Basics of Closing Connections: Use of Connection Events

JDBC uses JavaBeans-style events to keep track of when a physical connection
(pooled connection instance) can be returned to the cache or when it should be
closed due to a fatal error. When a JDBC application calls the cl ose() method of a
logical connection instance, an event is triggered and communicated to the event
listener or listeners associated with the pooled connection instance that produced
the logical connection instance. This triggers a connection-closed event and informs
the pooled connection instance that its physical connection can be reused.
Essentially, this puts the pooled connection instance and its physical connection
back into the cache.

The point at which a connection event listener is created and registered with a
pooled connection instance is implementation-specific. This could happen, for
example, when the pooled connection instance is first created or each time the
logical connection associated with it is closed.

It is also possible for the cache class to implement the connection event listener
class. In this case, the connection event listener is part of the connection cache
instance. (This is not the case in the Oracle sample implementation.) Even in this
case, however, an explicit association must be made between the connection event
listener and each pooled connection instance.

Basics of Connection Timeout

Some application developers prefer to have connections released automatically after
a certain timespan has passed. This prevents slow resource leaks when an
application fails to close connections.

An application can specify any of the following timeout periods for a connection:

= Wait timeout (FI XED_WAI T_SCHEME only) — the maximum period that a
connection will wait for a physical connection to be returned to the cache. This
wait occurs only when all connections are in use and a new connection is
requested. When the timeout expires, a timeout exception, EQJ_FI XED_WAI T_
TI MEQUT, is thrown.

= Inactivity timeout (physical connections only) —the maximum period a
physical connection can be unused. When the period expires, the connection is
closed and its resources are freed.

16-18 Oracle9i JDBC Developer's Guide and Reference

Connection Caching

= Time-to-Live timeout (logical connections only)—the maximum period a
logical connection can be active. After this time expires, whether or not the
connection is still in use, the connection is closed and its resources are freed.

Note: Under the FI XED_WAI T_SCHEME, if every connection in the
cache is in use, additional connection requests may wait forever.
You can avoid this problem by using the

CacheFi xedWai t | dl eTi me property. This property specifies how
long a connection request will wait before it times out. The

Thr eadWakeUpl nt er val property controls how often the cache
thread checks whether a physical connection has become available.
Thr eadWakeUpl nt er val defaults to 30 seconds.

To set or unset a timeout, you use the Or acl eConnect i onCachel npl properties
Cachel nacti vityTi neout , CacheFi xedWai t Ti meout , and
CacheTi meToLi veTi neout, each of which has public get and set methods.

Implementation Scenarios
Middle-tier developers have the option of implementing their own connection
cache class and connection event listener class.

For convenience, however, Oracle provides the following, all in the
oracl e. j dbc. pool package:

« aconnection cache interface: Or acl eConnecti onCache
« aconnection cache class: Or acl eConnect i onCachel npl
=« aconnection event listener class: Or acl eConnecti onEvent Li st ener

The Or acl eConnecti onCachel npl class is a simple connection cache class
implementation that Oracle supplies as an example, providing sufficient but
minimal functionality. It implements the Or acl eConnect i onCache interface and
uses instances of the Or acl eConnect i onEvent Li st ener class for connection
events.

If you want more functionality than Or acl eConnect i onCachel npl has to offer
but still want to use Or acl eConnect i onEvent Li st ener for connection events,
then you can create your own class that implements Or acl eConnect i onCache.

Or you can create your own connection cache class and connection event listener
class from scratch.

Connection Pooling and Caching 16-19

Connection Caching

Typical Steps in Using a Connection Cache

This section lists the general steps in how a JDBC application and middle-tier will
use a connection cache in opening and closing a logical connection.

Preliminary Steps in Connection Caching
Presume the following has already been accomplished:

1.

The middle tier has created a connection cache instance, as described in "Basics
of Setting Up a Connection Cache" on page 16-16.

The middle tier has provided connection information to the connection cache
instance for the database and schema that will be used. This can be
accomplished when constructing the connection cache instance.

The application has retrieved the connection cache instance, as described in
"Basics of Accessing the Connection Cache" on page 16-17.

General Steps in Opening a Connection

Once the JDBC application has access to the connection cache instance, the
application and middle tier perform the following steps to produce a logical
connection instance for use by the application:

1.

The application requests a connection through the get Connect i on() method
of the connection cache instance. No input is necessary, because a connection
cache instance is already associated with a particular database and schema.

The connection cache instance examines its cache as follows: a) to see if there
are any pooled connection instances in the cache yet; and b) if so, if any are
free—that is, to see if there is at least one pooled connection instance that
currently has no logical connection instance associated with it.

The connection cache instance chooses an available pooled connection instance
or, if none is available, might create a new one (this is implementation-specific).
In creating a pooled connection instance, the connection cache instance can
specify connection properties according to its own connection properties,
because the pooled connection instance will be associated with the same
database and schema.

16-20 Oracle9i JDBC Developer's Guide and Reference

Connection Caching

Note: Exactly what happens in a situation where no pooled
connection instances are available depends on the implementation
schemes and whether the cache is limited to a maximum number of
pooled connections. For the Oracle sample implementation, this is
discussed in "Schemes for Creating New Pooled Connections in the
Oracle Implementation" on page 16-26.

4. Depending on the situation and implementation, the connection cache instance
creates a connection event listener (a process that associates the listener with the
connection cache instance) and associates the listener with the chosen or newly
created pooled connection instance. The association with the pooled connection
instance is accomplished by calling the standard
addConnect i onEvent Li st ener () method specified by the
Pool edConnect i on interface. This method takes the connection event listener
instance as input. If the connection cache class implements the connection event
listener class, then the argument to the addConnect i onEvent Li st ener ()
method would be the t hi s object.

In some implementations, the creation and association of the connection event
listener can occur only when the pooled connection instance is first created. In
the Oracle sample implementation, this also occurs each time a pooled
connection instance is reused.

Note that in being associated with both the connection cache instance and a
pooled connection instance, the connection event listener becomes the bridge
between the two.

5. The connection cache instance gets a logical connection instance from the
chosen or newly created pooled connection instance, using the pooled
connection get Connecti on() method.

No input is necessary to get Connect i on(), because a pooled connection
instance is already associated with a particular database and schema.

6. The connection cache instance passes the logical connection instance to the
application.

The JDBC application uses this logical connection instance as it would any other
connection instance.

Connection Pooling and Caching 16-21

Connection Caching

General Steps in Closing a Connection

Once the JDBC application has finished using the logical connection instance, its
associated pooled connection instance can be returned to the connection cache (or
closed, as appropriate, if a fatal error occurred). The application and middle tier
perform the following steps to accomplish this:

1.

The application calls the cl ose() method on the logical connection instance
(as it would with any connection instance).

The pooled connection instance that produced the logical connection instance
triggers an event to the connection event listener or listeners associated with it
(associated with it through previous calls by the connection cache instance to
the pooled connection instance addConnect i onEvent Li st ener () method).

The connection event listener performs one of the following:

« It puts the pooled connection instance back into the cache and flags it as
available (typical).

or:

« It closes the pooled connection instance (if a fatal error occurred during use
of its physical connection).

The connection event listener will typically perform these steps by calling
methods of the connection cache instance, which is implementation-specific. For
the Oracle sample implementation, these functions are performed by methods
specified in the Or acl eConnect i onCache interface, as discussed in"Oracle
Connection Cache Specification: OracleConnectionCache Interface" on

page 16-23.

Depending on the situation and implementation, the connection cache instance
disassociates the connection event listener from the pooled connection instance.
This is accomplished by calling the standard

removeConnect i onEvent Li st ener () method specified by the

Pool edConnect i on interface.

In some implementations, this step can be performed only when a pooled
connection instance is closed, either because of a fatal error or because the
application is finished with the physical connection. In the Oracle sample
implementation, however, the connection event listener is disassociated with
the pooled connection instance each time the pooled connection is returned to
the available cache (because in the Oracle implementation, a connection event
listener is associated with the pooled connection instance whenever it is
reused).

16-22 Oracle9i JDBC Developer's Guide and Reference

Connection Caching

Oracle Connection Cache Specification: OracleConnectionCache Interface

Middle-tier developers are free to implement their own connection caching scheme
as desired, but Oracle offers the Or acl eConnect i onCache interface, which you
can implement in a connection cache class and which uses instances of the

Or acl eConnecti onEvent Li st ener class for its listener functionality.

In addition, Oracle offers a class that implements this interface,

Or acl eConnect i onCachel npl , which can be used as is. This class also extends
the Or acl eDat aSour ce class and, therefore, includes a get Connect i on()
method. For more information about this class, see "Oracle Connection Cache
Implementation: OracleConnectionCachelmpl Class" on page 16-24.

These Oracle classes and interfaces are all in the or acl e. j dbc. pool package.

The Or acl eConnect i onCache interface specifies the following methods (in
addition to data source methods that it inherits), to be implemented in a connection
cache class:

= reusePool edConnecti on() : Takes a pooled connection instance as input
and returns it to the cache of available pooled connections (essentially, the
available physical connections).

This method would be invoked by a connection event listener after a JDBC
application has finished using the logical connection instance provided by the
pooled connection instance (through previous use of the pooled connection
get Connecti on() method).

= cl osePool edConnecti on() : Takes a pooled connection instance as input
and closes it.

A connection event listener would invoke this method after a fatal error has
occurred through the logical connection instance provided by the pooled
connection instance. The listener would call cl osePool edConnecti on(), for
example, if it notices a server crash.

= close():Closes the connection cache instance, after the application has
finished using connection caching with the associated database.

The functionality of the r eusePool edConnect i on() and
cl osePool edConnect i on() methods is an implementation of some of the steps
described generally in "General Steps in Closing a Connection” on page 16-22.

Connection Pooling and Caching 16-23

Connection Caching

Oracle Connection Cache Implementation: OracleConnectionCachelmpl Class

Oracle offers a sample implementation of connection caching and connection event
listeners, providing the Or acl eConnect i onCachel npl class. This class
implements the Or acl eConnect i onCache interface (which you can optionally
implement yourself in some other connection cache class) and uses instances of the
Or acl eConnecti onEvent Li st ener class for listener functionality.

These Oracle classes and interfaces are all in the or acl e. j dbc. pool package.

If you use the Or acl eConnect i onCachel npl class for your connection caching
functionality, you should be familiar with the following topics, discussed
immediately below:

« Instantiating OracleConnectionCachelmpl and Setting Properties

= Setting a Maximum Number of Pooled Connections

= Setting a Minimum Number of Pooled Connections

« Schemes for Creating New Pooled Connections in the Oracle Implementation

= Additional OracleConnectionCachelmpl Methods

Instantiating OracleConnectionCachelmpl and Setting Properties

A middle tier that uses the Oracle implementation of connection caching can
construct an Or acl eConnect i onCachel npl instance and set its connection
properties in one of three ways:

» It can use the Or acl eConnecti onCachel npl constructor that takes an
existing connection pool data source as input. This is convenient if the middle
tier has already created a connection pool data source instance and set its
connection properties. For example, where cpds is a connection pool data
source instance:

O acl eConnectionCachel npl ocachei mpl = new Oracl eConnect i onCachel npl (cpds);

or:

« It can use the default Or acl eConnect i onCachel npl constructor (which
takes no input) and then the set Connect i onPool Dat aSour ce() method,
which takes an existing connection pool data source instance as input. Again,
this is convenient if the middle tier already has a connection pool data source
instance with its connection properties set. For example, where cpds is a
connection pool data source instance:

Oracl eConnectionCachel nmpl ocachei npl = new O acl eConnect i onCachel npl ();

16-24 Oracle9i JDBC Developer's Guide and Reference

Connection Caching

ocachei npl . set Connect i onPool Dat aSour ce(cpds) ;

Notes:

= You can also use the set Connect i onPool Dat aSour ce()
method to override a previously set pooled connection data
source or previously set connection properties.

= Ifyoucall set Connecti onPool Dat aSour ce() when there
is already a connection pool data source with associated logical
connections in use, then an exception will be thrown if the new
connection pool data source specifies a different database
schema than the old connection pool data source.

or:

« It can use the default Or acl eConnect i onCachel npl constructor and then set
the properties individually, using setter methods. For example:

O acl eConnectionCachel npl ocachei npl = new O acl eConnect i onCachel npl ();

ocachei npl . set Dri ver Type("oci");
ocachei npl . set Server Name(" dl sun999") ;
ocachei mpl . set Net wor kPr ot ocol ("tcp");
ocachei npl . set Dat abaseNane("816");
ocachei npl . set Port Nunber (1521) ;
ocachei npl . set User ("scott");

ocachei npl . set Password("ti ger");

This is equivalent to setting properties in any generic data source or connection
pool data source, as discussed in "Initialize Connection Properties” on
page 16-8.

Setting a Maximum Number of Pooled Connections

In any connection caching implementation, the middle-tier developer must decide
whether there should be a maximum number of pooled connections in the cache,
and how to handle situations where no pooled connections are available and the
maximum number has been reached.

Connection Pooling and Caching 16-25

Connection Caching

The Or acl eConnecti onCachel mpl class includes a maximum cache size that
you can set using the set MaxLi mi t () method (taking ani nt as input). The
default value is 1.

The following is an example that presumes ocachei npl is an
Or acl eConnecti onCachel npl instance:

ocachei npl . set MaxLi m t (10);

This example limits the cache to a maximum size of ten pooled-connection
instances.

Setting a Minimum Number of Pooled Connections

Just as the middle-tier developer can set the maximum number of pooled
connections, you can also determine if there should be a minimum number of
pre-spawned pooled connections in the cache. The minimum number is passed as
an argument to the set M nLi mi t () method. If the cache doesn't have the specified
number of pooled connections instances, the cache will create the new
spooled-connection instances, not exceeding the specified minimum limit. The
cache always keeps the minimum number of pooled connections open whether the
connections are active or idle.

The following is an example that presumes ocachei npl is an
Or acl eConnecti onCachel npl instance:

ocacheinmpl .setMnLimt(3);

The cache, in this example, always has a minimum of three pooled-connection
instances.

Schemes for Creating New Pooled Connections in the Oracle Implementation

The Or acl eConnect i onCachel npl class supports three connection cache schemes.
Use these schemes in situations where (1) the application has requested a
connection, (2) all existing pooled connections are in use, and (3) the maximum
number of pooled connections in the cache have been reached.

= dynamic

In this default scheme, you can create new pooled connections above and
beyond the maximum limit, but each one is automatically closed and freed as
soon as the logical connection instance that it provided is no longer in use. (As
opposed to the normal scenario when a pooled connection instance is finished
being used, where it is returned to the available cache.)

16-26 Oracle9i JDBC Developer's Guide and Reference

Connection Caching

« fixed with no wait

In this scheme, the maximum limit cannot be exceeded. Requests for
connections when the maximum has already been reached will return nul | .

« fixed wait

Same as the "fixed with no wait" scheme except that a request for a new
connection will wait if the limit for the number of connections has been
reached. In this case, the connection request waits until another client releases a
connection.

Set the cache scheme by invoking the set CacheScheme() method of the
Or acl eConnecti onCachel npl instance.

There are two versions of set CacheSchene(), one that takes a string and one that
takes an integer.

= The string version is case-insensitive and accepts "dynani c_schene”, "f i xed_
return_null _schene", or"fi xed_wait_schene".

= The integer version accepts the class static constants DYNAM C_SCHEME,
FI XED_RETURN_NULL_SCHEME, or FI XED_WAI T_SCHEME.

For example, if ocachei npl is an Or acl eConnect i onCachel npl instance, you
could set the cached scheme to fixed with no wait using either the integer version of
set CacheSchene():

ocachei npl . set CacheSchene(Or acl eConnect i onCachel npl . FI XED_RETURN_NULL_SCHEME) ;

or the string version:

set CacheScheme("fixed_return_null _scheme")

Additional OracleConnectionCachelmpl Methods

In addition to the key methods already discussed in "Oracle Connection Cache
Specification: OracleConnectionCache Interface" on page 16-23, the following
Oracl eConnect i onCachel npl methods may be useful:

= getActiveSize():Returns the number of currently active pooled
connections in the cache (pooled connection instances with an associated logical
connection instance being used by the JDBC application).

= get CacheSi ze() : Returns the total number of pooled connections in the
cache, both active and inactive.

Connection Pooling and Caching 16-27

Connection Caching

Oracle Connection Event Listener: OracleConnectionEventListener Class

This section discusses Or acl eConnect i onEvent Li st ener functionality by
summarizing its constructors and methods.

Instantiating an Oracle Connection Event Listener

In the Oracle implementation of connection caching, an

O acl eConnecti onCachel npl instance constructs an Oracle connection event
listener, specifying the connection cache instance itself (its t hi s instance) as the
constructor argument. This instance associates the connection event listener with
the connection cache instance.

In general, however, the Or acl eConnect i onEvent Li st ener constructor can
take any data source instance as input. For example, where ds is a generic data
source:

Oracl eConnect i onEvent Li stener ocel = new Oracl eConnecti onEvent Li st ener (ds);
There is also a default constructor that takes no input and can be used in

conjunction with the Or acl eConnect i onEvent Li st ener class
set Dat aSour ce() method:

O acl eConnect i onEvent Li stener ocel = new Oracl eConnecti onEvent Li st ener();
ocel . set Dat aSour ce(ds);

The input can be any kind of data source, including an
O acl eConnecti onCachel npl instance (because that class extends
Or acl eDat aSour ce).

Oracle Connection Event Listener Methods
This section summarizes the methods of the Or acl eConnect i onEvent Li st ener
class:

= setDataSource() (previously discussed): Used to input a data source to the
connection event listener, in case one was not provided when constructing the
listener. This can take any type of data source as input.

« connectionC osed() : Invoked when the JDBC application calls cl ose() on
its representation of the connection.

= connectionErrorCccurred():Invoked when a fatal connection error
occurs, just before a SQLExcept i on is issued to the application.

16-28 Oracle9i JDBC Developer's Guide and Reference

1/

JDBC OCI Extensions

This chapter describes the following OCI driver-specific features:

OCI Driver Connection Pooling

Middle-Tier Authentication Through Proxy Connections
OCI Driver Transparent Application Failover

OCI HeteroRM XA

Accessing PL/SQL Index-by Tables

JDBC OCI Extensions 17-1

OCI Driver Connection Pooling

OCI Driver Connection Pooling

OCI driver connection pooling functionality, provided by the
Oracl eOCl Connect i onPool class, is part of the JDBC client. Enhanced
connection pooling provides the following benefits:

= Improved scalability - The pooling granularity is superior to that provided by
the Or acl ePool edConnect i on class, since fewer physical connections are
needed to support a large number of non-current, logical connections. This is
valuable since physical connections are expensive. The physical connection of
the Or acl ePool edConnect i on object is available for reuse after the
application is done using it. Also, since the user session is not closed on the
server-side once the Or acl ePool edConnect i on object is returned to the pool
of available connection objects, every new call to the get Connect i on()
method of the Or acl eConnect i onCachel npl class requires that the user
remain the same. For a dedicated server instance, this results in the number of
backend Oracle processes being reduced as the number of in-coming
connections are also reduced. To boost performance, a physical connection is
locked only for the duration of a call.

= Uniform interface - A single, uniform interface of connection pooling reduces
overall code maintenance.

= Flexible schemas - Each Or acl eOCl Connect i on object can have a different
user ID and therefore point to different schemas.

= Dynamic configuration - Ability to dynamically configure the connection pool.

Note: The existing connection support of mapping one JDBC user
session to one physical connection, and the reuse of physical
connection objects using the Or acl ePool edConnect i on class, is
still supported. (See "Connection Pooling" on page 16-11 for
details.) However, it is recommended that you use the improved
functionality of the Or acl eOCl Connect i onPool class instead.

A JDBC application can have multiple pools at the same time. Multiple pools can
correspond to multiple application servers, or pools to different data sources. The
connection pooling provided by OCI in Oracle9i allows applications to have many
logical connections, all using a small set of physical connections. Each call on this
logical connection will be routed on the physical connection that is available at that
time. Call-duration based pooling of connections is a more scalable connection
pooling solution.

17-2 Oracle9i JDBC Developer's Guide and Reference

OCI Driver Connection Pooling

For information about Oracle JDBC connection pooling and caching features that
apply to all Oracle JDBC drivers, see Chapter 16, "Connection Pooling and
Caching".

OCI Driver Connection Pooling: Background

With the Oracle9i JDBC OCI driver, there are several transaction monitor
capabilities such as the fine-grained management of Oracle sessions and
connections. It is possible for a high-end application server or transaction monitor
to multiplex several sessions over fewer physical connections on a call-level basis,
thereby achieving a high degree of scalability by pooling of connections and
backend Oracle server processes.

The connection pooling provided by the Or acl eOCl Connect i onPool interface
simplifies the Session/Connection separation interface hiding the management of
the physical connection pool. The Oracle sessions are the Or acl eOCl Connect i on
connection objects obtained from the Or acl eOCl Connect i onPool . The
connection pool itself is normally configured with a much smaller shared pool of
physical connections, translating to a backend server pool containing an identical
number of dedicated server processes. Note that many more Oracle sessions can be
multiplexed over this pool of fewer shared connections and backend Oracle
processes.

OCI Driver Connection Pooling and Shared Servers Compared

In some ways, what OCI driver connection pooling offers on the middle tier is
similar to what shared server processes offeron the backend. OCI driver connection
pooling makes a dedicated server instance behave as an shared instance by
managing the session multiplexing logic on the middle tier. Therefore, the pooling
of dedicated server processes and incoming connections into the dedicated server
processes is controlled by the OCI connection pool on the middle tier.

The main difference between OCI connection pooling and shared servers is that in
case of shared servers, the connection from the client is normally to a dispatcher in
the database instance. The dispatcher is responsible for directing the client request
to an appropriate shared server. On the other hand, the physical connection from
the OCI connection pool is established directly from the middle tier to the Oracle
dedicated server process in the backend server pool.

Note that OCI connection pool is mainly beneficial only if the middle tier is
multi-threaded. Each thread could maintain a session to the database. The actual
connections to the database are maintained by the Or acl eCI Connect i onPool

JDBC OCI Extensions 17-3

OCI Driver Connection Pooling

and these connections (including the pool of dedicated database server processes)
are shared among all the threads in the middle tier.

Stateless Sessions Compared to Stateful Sessions

OCI connection pooling offers stateless physical connections and stateful sessions. If
you need to work with a stateless session behavior, you can use the
Or acl eConnecti onCachel npl interface.

Defining an OCI Connection Pool

An OCI connection pool is created at the beginning of the application. Creating
connections from a pool is quite similar to creating connections using the
Or acl eDat aSour ce class.

The or acl e. j dbc. pool . Oracl eOCl Connect i onPool class, which extends the
Or acl eDat aSour ce class, is used to create OCI connection pools. From an

Or acl eOCl Connect i onPool class instance, you can obtain logical connection
objects. These connection objects are of the Or acl eOCl Connect i on class type.
This class implements the Or acl eConnect i on interface. The St at ement objects
you create from the Or acl eOCl Connect i on class have the same fields and
methods as Or acl eSt at ement objects you create from Or acl eConnect i on
instances.

The following code shows header information for the
Oracl eOCl Connect i onPool class:

/*
* @aramus ConnectionPool user-id.
* @aramp ConnectionPool password
* @aramnane |ogical name of the pool. This needs to be one in the
* tnsnanes. ora configuration file.

@aramconfig (optional) Properties of the pool, if the default does not
suffice. Default connection configurationis mn =1, max=1,
incr=0

Pl ease refer setPool Config for property nanes.

Since this is optional, pass null if the default configuration
suffices.

@eturn

Not es: Choose a userid and password that can act as proxy for the users
in the getProxyConnection() method.

17-4 Oracle9i JDBC Developer's Guide and Reference

OCI Driver Connection Pooling

If configis null, then the follow ng default values will take
ef fect

CONNPCOL_ M N LIMT =1
CONNPCOL_MAX_LIMT =1
CONNPCOL_I NCREMENT = 0

*/

public synchroni zed Oracl eOCl Connect i onPool
(String user, String password, String nane, Properties config)
throws SQLException

/*
* This will use the user-id, password and connection pool nane val ues set
LATER using the methods setUser, setPassword, setConnectionPool Name.

* @eturn
* Not es:

No Oracl eCCl Connecti on objects can be created on
this class unless the nethods setUser, setPassword, setPool Config
are invoked.
When invoking the setUser, setPassword |ater, choose a userid and
password that can act as proxy for the users

* in the getProxyConnection() method.

*|

public synchronized Oracl eCCl Connecti onPool ()
throws SQLException

Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages

Before you create an OCI connection pool, import the following to have Oracle OCI
connection pooling functionality:

inport oracle.jdbc. pool.*;
inport oracle.jdbc.oci.*;

The or acl e. j dbc. pool . * package contains the Or acl eDat aSour ce,

Or acl eConnect i onPool Dat aSour ce, and Or acl eOCl Connect i onPool
classes, in addition to classes for connection caching and event-handling. The
oracl e.jdbc. oci . * package contains the Or acl eOCl Connect i on class and
the Or acl eCOCl Fai | over interface.

JDBC OCI Extensions 17-5

OCI Driver Connection Pooling

Creating an OCI Connection Pool

The following code show how you create an instance of the
Or acl eQCl Connect i onPool class called cpool :

Oracl eOCl Connect i onPool cpool = new Oracl eOCl Connect i onPool
("ScorT", "TIGER', "jdbc:oracle:oci:@description=(address=(host=
myhost) (prot ocol =t cp) (port=1521)) (connect _dat a=(| NSTANCE_NAME=orcl)))",
pool Confi g);

pool Confi g is a set of properties which specify the connection pool. If
pool Confi gisnull, then the default values are used. For example, consider the

following;:

« pool Config. put (Oracl eOCl Connecti onPool . CONNPOOL_M N LIM T,
"4y,

« pool Config. put (Oracl eOCl Connecti onPool . CONNPOOL_MAX LIM T,
"10");

« pool Config. put (Oracl eOCl Connecti onPool . CONNPOOL_ | NCREMENT,
"2");

As an alternative to the above constructor call, you can create an instance of the
Or acl eCCl Connect i onPool class using individual methods to specify the user,
password, and connection string.

Oracl eOCl Connect i onPool cpool = new Oracl eOCl ConnectionPool ();

cpool . set User (" SCOTT");

cpool . set Passwor d(" Tl GER") ;

cpool . set URL("j dbc: oracl e: oci : @descri ption=(addr ess=(host =

myhost) (prot ocol =t cp) (port=1521)) (connect _dat a=(| NSTANCE_NAME=orcl)))");

cpool . set Pool Confi g(pool Config); // In case you want to specify a different
/] configuration other than the default
/'l val ues.

Setting the OCI Connection Pool Parameters

The connection pool configuration is determined by the following
Or acl eOCl Connect i onPool class attributes:

= CONNPOOL_M N_LI M T : Specifies the minimum number of physical
connections that can be maintained by the pool.

= CONNPOOL_MAX_LI M T : Specifies the maximum number of physical
connections that can be maintained by the pool.

17-6 Oracle9i JDBC Developer's Guide and Reference

OCI Driver Connection Pooling

= CONNPOOL_I NCREMENT : Specifies the incremental number of physical
connections to be opened when all the existing ones are busy and a call needs
one more connection; the increment is done only when the total number of open
physical connections is less than the maximum number that can be opened in
that pool.

« CONNPOOL_TI MEQUT : Specifies how much time must pass before an idle
physical connection is disconnected; this does not affect a logical connection.

= CONNPOOL_NOWAI T : When enabled, this attributes specifies that an error is
returned if a call needs a physical connection while the maximum number of
connections in the pool are busy; if disabled, a call waits until a connection is
available. Once this attribute is set to "t r ue", it cannot be reset to "f al se".

You can configure all of these attributes dynamically. Therefore, an application has
the flexibility of reading the current load (number of open connections and number
of busy connections) and adjusting these attributes appropriately, using the

set Pool Confi g() method.

Note: The default values for the CONNPOOL_M N LI M T,
CONNPOOL_MAX_LI M T, and CONNPOOL _I NCREMENT parameters
are 1, 1, and O, respectively.

The set Pool Confi g() method is used to configure OCI connection pool
properties. The following is a typical example of how the
Or acl eCCl Connect i onPool class attributes can be set:

java.util.Properties p = newjava.util.Properties();
p. put (Oracl eOCl ConnectionPool . CONNPOOL_M N LIMT, "1");

p. put (Oracl eOCl Connect i onPool . CONNPOOL_MAX_LIM T, "5");
p. put (Oracl eOCl Connect i onPool . CONNPOOL_| NCREMENT, "2");
p. put (Oracl eOCl Connect i onPool . CONNPOOL_TI MEQUT, "10");
p. put (Oracl eOCl Connect i onPool . CONNPOOL_NOWAI T, "true");
cpool . set Pool Config(p);

Observe the following rules when setting the above attributes:

. CONNPOOL_M N_LI M T, CONNPOOL_MAX_LI M T, and CONNPOOL_| NCREMENT
are mandatory.

= CONNPCOL_M N_LI M T must be a value greater than zero.

JDBC OCI Extensions 17-7

OCI Driver Connection Pooling

= CONNPOOL_MAX_LI M T must be a value greater than or equal to CONNPOOL _
M N_LI M T plus CONNPOOL _| NCREMENT.

= CONNPOOL_| NCREMENT must be a value greater than or equal to zero
= CONNPOOL_TI MEQUT must be a value greater than zero.
« CONNPOOL_NOWAI T must be "t rue" or "f al se" (case insensitive).

Checking the OCI Connection Pool Status

To check the status of the connection pool, use the following methods from the
Or acl eOCl Connect i onPool class:

= int getMnLimt() :Retrieves the minimum number of physical
connections that can be maintained by the pool.

= int getMaxLimt() :Retrieves the maximum number of physical
connections that can be maintained by the pool.

= int getConnectionlncrenent() :Retrieves the incremental number of
physical connections to be opened when all the existing ones are busy and a call
needs a connection.

= int getTinmeout() : Retrieves the specified time (in seconds) that a physical
connection in a pool can remain idle before it is disconnected; the age of a
connection is based on the Least Recently Used (LRU) scheme.

= String get NoWAit () : Retrieves whether the NOMAI T property is enabled. It
returns a string of "t rue" or "f al se".

= int getPool Size() :Retrieves the number of physical connections that are
open. This should be used only as estimate and for statistical analysis.

= int getActiveSize() :Retrieves the number of physical connections that
are open and busy. This should be used only as estimate and for statistical
analysis.

= bool ean i sPool Creat ed() : Retrieves whether the pool has been created.
The pool is actually created when Or acl eOCl Connecti on (user,
password, url, pool Config) is called or when set User, set Passwor d,
and set URL has been done after calling Or acl eOCl Connection().

Connecting to an OCI Connection Pool

The Or acl eOCl Connect i onPool class, through a get Connect i on() method
call, creates an instance of the Or acl eOCl Connect i on class. This instance

17-8 Oracle9i JDBC Developer's Guide and Reference

OCI Driver Connection Pooling

represents a connection. See "Data Sources" on page 16-2 for database connection
descriptions that apply to all JDBC drivers.

Since the Or acl eOCl Connect i on class extends Or acl eConnect i on class, it has
the funtionality of this class too. Close the Or acl eOCl Connect i on objects once
the user session is over, otherwise, they are closed when the pool instance is closed.

There are two ways of calling get Connecti on():

« Oracl eConnection get Connection(String user, String
passwor d) : Get a logical connection identified with the specified user and
password, which can be different from that used for pool creation.

= Oracl eConnection get Connection() :If you do not supply the user
name and password, then the default user name and password used for the
creation of the connection pool are used while creating the connection objects.

As an enhancement to Or acl eConnect i on, the following new method is added
into Or acl eOCl Connect i on as a way to change password for the user:

voi d passwordChange (String user, String ol dPassword, String newPassword)

The following code shows how an application uses connection pool with
re-configuration:

inport oracle.jdbc.oci.*;
inport oracle.jdbc. pool . *;

public class cpool Test
{
public static void main (String args [])
throws SQLException
{
/* pass the URL and "inst1" as the database |ink name fromtnsnanes.ora */
O acl eOCl ConnectionPool cpool = new Oracl eOCl Connect i onPool
("scott", "tiger", "jdbc:oracle:oci@nstl", null);

/* create virtual connection objects fromthe connection pool "cpool." The
pool Confi g can be null when using default values of min =1 mx =1, and
increment = 0, otherwise needs to set the properties mentioned earlier */

O acl eOCl Connection connl = (Oracl eOCl Connection) cpool . get Connecti on
("userl", passwordl");

/* create few Statement objects and work on this connection, connl */
Statement stmt = connl.createStatement();

O acl eOCl Connection conn90 = (O acl eCCl Connection) cpool . get Connecti on

JDBC OCI Extensions 17-9

OCI Driver Connection Pooling

("user90", "password90") /* work on statement object fromvirtual
connection "conn90" */

[* if the throughput is less, increase the pool size */
string newnin = String.valueXf (cpool.getMnLinit);
string newmax = String.val ueOf (2*cpool.getMaxLimt());
string newincr = String.valued (1 + cpool.getConnectionlncrement());
Properties newproperties = newProperties();
newproperties. put (OracleOC ConnectionPool . CONNPOOL_M N_LIM T, newnin);
newproperties. put (OracleOC ConnectionPool . CONNPOOL_MAX_LIM T, newnrax);
newproper ties. put (OracleOC ConnectionPool . CONNPOOL_| NCREMENT, newi ncr);
cpool . set Pool Config (newproperties);
} /* end of main */

} /* end of cpool Test */

Statement Handling and Caching

Statement caching is supported with Or acl eOCl Connect i onPool . The caching
improves performance by not having to open, parse and close cursors. When

Or acl eOCl Connect i on. prepar eSt at ement ("SQL query") is done, the
statement cache is searched for a statement that matches the SQL query. If a match
is found, we can reuse the St at ement object instead of incurring the cost of
creating another St at enment object. The cache size can be dynamically increased or
decreased. The default cache size is zero.

Note: The Or acl eSt at ement object created from
Or acl eCCl Connect i on has the same behavior as one that is
created from Or acl eConnect i on.

Statement caching in Or acl eCCl Connect i onPool is a little different from the
standard functionality in Or acl eConnect i onCachel npl . The

set St nt CacheSi ze() method sets the statement cache sizes of all the

Or acl eCCl Connect i on objects retrieved from this pool. But unlike logical

(Or acl eConnect i on) connection objects obtained from

Or acl eConnect i onCachel npl , the individual cache sizes of the logical

(Or acl eOCl Connect i on) connection objects can also be changed if desired. (The
default cache size is zero.)

The following code shows the signatures of the get Connecti on() method:

public synchroni zed Oracl eConnection get Connection()

17-10 Oracle9i JDBC Developer's Guide and Reference

OCI Driver Connection Pooling

throws SQLException

/*

* For getting a connection to the database.
*

* @aramus Connection user-id

* @aramp Connection password

* @eturn connecti on obj ect

*|

public synchroni zed Oracl eConnection getConnection(String us, String p)
throws SQLException

Types of Statement Caching used with the OCI Connection Pool

There are two forms of statement caching: implicit and explicit. (See Chapter 14,
"Statement Caching" for a complete description of implicit and explicit statement
caching.) Both forms of statement caching use the set St nt CacheSi ze() method.
Explicit statement caching requires the JDBC application to provide a key while
opening and closing St at ement objects. Implicit statement caching does not
require the JDBC application to provide the key; the caching is transparent to the
application. Also in explicit statement caching, the fetch state of the result set is not
cleared. So after doing a St at enent . cl ose(key="abc"),

Connecti on. prepar edSt at enent (key="abc") will return the St at emrent
object and fetches will continue with the fetch state when the previous

St at ement . cl ose(key="abc") is done.

For implicit statement caching, the fetch state is cleared and the cursor is
re-executed, but the cursor meta data is cached to improve performance. In some
cases, the client may also need to clear the meta data (through the cl ear Met aDat a
parameter).

The following header information documents method signatures:

synchroni zed public void setStntCacheSize (int size)

/**
*
* @aramsize Size of the Cache
* @aram cl ear Met aData Whether the state has to be cleared or not
* @xception SQLException
*|
public synchronized void setStnt CacheSize (int size, bool ean cl earMetaDat a)

/**

JDBC OCI Extensions 17-11

OCI Driver Connection Pooling

* Return the size of Statenent Cache.
* @eturn int Size of Statement Cache.

If not set ie if statement caching is not enabled ,
* the default 0 is returned.
x|
public synchronized int getStntCacheSize()

/*
* Check whether Statenent
* Caching is enabled for this pool or Not.
*|
public synchroni zed bool ean isSt nmt CacheEnabl ed ()

JNDI and the OCI Connection Pool

The Java Naming and Directory Interface (JNDI) feature makes persistent the
properties of Java object so these properties can be used to construct a new instance
of the object (such as cloning the object). The benefit is that the old object can be
freed, and at a later time a new object with exactly the same properties can be
created. The I ni ti al Cont ext . bi nd() method makes persistent the properties,
either on file or in a database, while the | ni ti al Cont ext . | ookup() method
retrieves the properties from the persistent store and creates a new object with these
properties.

Or acl eOCl Connect i onPool objects can be bound and looked up using the JNDI
feature. No new interface calls in Or acl eOCl Connect i onPool are necessary.

17-12 Oracle9i JDBC Developer's Guide and Reference

Middle-Tier Authentication Through Proxy Connections

Middle-Tier Authentication Through Proxy Connections

Middle-tier authentication allows one JDBC connection (session) to act as proxy for
other JDBC connections. A proxy session could be required for one of the following;:

If the middle tier does not know the password of the proxy user. This is done by
first authenticating using:

alter user jeff grant connect through scott with roles rolel, role2;

Then the method allows you to connect as "j ef f " using the already
authenticated credentials of "scot t ". It is sometimes a security concern for the
middle tier to know the passwords of all the database users. Though the created
session will behave much like "j ef f " was connected normally (using

" ef f"/"] ef f - passwor d"),"j ef f " will not have to divulge its password to
the middle tier. The schema which this proxy session has access to is schema of
"j ef f " plus what is indicated in the list of roles. Therefore, if "scot t " wants

"] ef f " to access its table EMP, the following code can be used:

create role rolel;
grant select on EMP to rol el

The role clause can also be thought as limiting "j ef f ’s" access to only those
database objects of "scot t " mentioned in the list of the roles. The list of roles
can be empty.

For accounting purposes. The transactions made via proxy sessions can be
better accounted by proxying the user ("] ef f "), under different users such as
"scott"”,"scott 2" assuming "scott "and "scot t 2" are authenticated.
Transactions made under these different proxy sessions by "j ef f " can be

logged separately.

There are three ways to create proxy sessions in the OCI driver. Roles can be
associated with any of the following options:

USER NAME: This is done by supplying the user name and/or the password.
The reason why the "password" option exists is so that database operations
made by the user ("] ef f "), can be accounted. The SQL clause is:

alter user jeff grant connect through scott authenticated using password;
Having no authenticated clause implies the default—authenticated using the
user-name without the password requirement.

DI STI NGUI SHED NAME : This is a global name in lieu of the password of the
user being proxied for. So you could say "create user jeff identified globally as:

JDBC OCI Extensions 17-13

Middle-Tier Authentication Through Proxy Connections

' CN=j ef f, QU=aner i cas, O=or acl e, L=r edwoodshor es, ST=ca, C=us';

The string after the "globally as" clause is the distinguished name. It is then
necessary to authenticate as:

alter user jeff grant connect through scott authenticated using
di stingui shed nane;

CERTI FI CATE : This is a more encrypted way of passing the credentials of the
user (to be proxied) to the database. The certificate contains the distinguished
encoded name. One way of generating it is by creating a wallet (using "r unut |
mkwal | et "), then decoding the wallet to get the certificate. It is then necessary
to authenticate as:

alter user jeff grant connect through scott authenticated using certificate;

The following code shows signatures of the get Pr oxyConnect i on() method
with information about the proxy type process:

/*

For creating a proxy connection. All nmacros are defined
in O acl eCCl ConnectionPool . j ava

@aram proxyType Can be one of following types
PROXYTYPE_USER_NAME
- This will be the normal node of specifying the user
name in proxyUser as in O acle8i

PROXYTYPE_DI STI NGUI SHED_NAME
- This will specify the distinguished name of the user
in proxyUser

PROXYTYPE_CERTI FI CATE
- This will specify the proxy certificate

The Properties (ie prop) should be set as follows.

I f PROXYTYPE_USER_NAME
PROXY_USER_NAME and/ or PROXY_USER_PASSWORD dependi ng
on how t he connection-pool owner was authenticated
to act as proxy for this proxy user
PROXY_USER NAME (String) = user to be proxied for
PROXY_PASSWORD (String) = password of the user to be proxied for

el se i f PROXYTYPE_DI STI NGU SHED_NAME
PROXY_DI STI NGUI SHED NAME (String) = (global) distinguished nane of the

17-14 Oracle9i JDBC Developer's Guide and Reference

Middle-Tier Authentication Through Proxy Connections

user to be proxied for
el se i f PROXYTYPE_CERTI FI CATE (byte[])
PROXY_CERTI FI CATE = certficate containing the encoded
di sti ngui shed nane

PROXY_ROLES (String[]) Set of roles which this proxy connection can use.
Rol es can be null, and can be associ at ed
with any of the above proxy nethods.

*

* @eturn connection object

*

* Notes: The user and password used to create Oracl eOCl Connecti onPool ()
* must be allowed to act as proxy for user 'us'.

*|

public synchroni zed Oracl eConnection get ProxyConnection(String proxyType,
Properties prop)
throws SQLException

JDBC OCI Extensions 17-15

OCI Driver Transparent Application Failover

OCI Driver Transparent Application Failover

Transparent Application Failover (TAF) or simply Application Failover is a feature of the
OCI driver. It enables you to automatically reconnect to a database if the database
instance to which the connection is made goes down. In this case, the active
transactions roll back. (A transaction rollback restores the last committed
transaction.) The new database connection, though created by a different node, is
identical to the original. This is true regardless of how the connection was lost.

TAF is always active and does not have to be set.

For additional details regarding OCI and TAF, see the Programmer’s Guide to the
Oracle Call Interface.

Failover Type Events

The following are possible failover events in the Or acl eCOCl Fai | over interface:

FO_SESSI ON: Is equivalent to FAI LOVER_MODE=SESSI ONin the

t nsnanes. or a file CONNECT_DATA flags. This means that only the user
session is re-authenticated on the server-side while open cursors in the OCI
application need to be re-executed.

FO_SELECT : Is equivalent to FAI LOVER_MODE=SELECT int nsnamnes. or a
file CONNECT_DATA flags. This means that not only the user session is
re-authenticated on the server-side, but open cursors in the OCI can continue
fetching. This implies that the client-side logic maintains fetch-state of each
open cursor.

FO_NONE: Is equivalent to FAl LOVER_MODE=NONE in the t nsnanes. or a file
CONNECT_DATA flags. This is the default, in which no failover functionality is
used. This can also be explicitly specified to prevent failover from happening.
Additionally, FO_TYPE_UNKNOWN implies that a bad failover type was returned
from the OCI driver.

FO_BEGQ N: Indicates that failover has detected a lost connection and failover is
starting.

FO_END: Indicates successful completion of failover.

FO_ABORT : Indicates that failover was unsuccessful and there is no option of
retrying.

FO_REAUTH: indicates that a user handle has been re-authenticated.

17-16 Oracle9i JDBC Developer's Guide and Reference

OCI Driver Transparent Application Failover

= FO_ERROR: indicates that failover was temporarily un-successful, but it gives
the application the opportunity to handle the error and retry failover. The usual
method of error handling is to issue the sl eep() method and retry by
returning the value FO_RETRY.

« FO_RETRY: See above.
« FO_EVENT_UNKNOWN: A bad failover event.

TAF Callbacks

TAF callbacks are used in the event of the failure of one database connection, and
failover to another database connection. TAF callbacks are callbacks that are
registered in case of failover. The callback is called during the failover to notify the
JDBC application of events generated. The application also has some control of
failover.

Note: The callback setting is optional.

Java TAF Callback Interface

The Or acl eQCl Fai | over interface includes the callbackFn() method, supporting
the following types and events:

public interface OracleOC Fail over{

/| Possible Failover Types

public static final int FO SESSION
public static final int FO SELECT
public static final int FONONE =
public static final int;

1
2;

w o

/] Possible Failover events registered with callback

public static final int FOBEAN = 1;
public static final int FO END = 2;
public static final int FOABORT = 3;
public static final int FO REAUTH = 4;

public static final int FO ERROR = 5;
public static final int FO RETRY = 6;
public static final int FO EVENT_UNKNOM = 7,

public int callbackFn (Connection conn,
bj ect ctxt, // ANy thing the user wants to save

JDBC OCI Extensions 17-17

OCI Driver Transparent Application Failover

int type, // One of the above possible Fail over Types
int event); // One of the above possible Failover Events

Handling the FO_ERROR Event

In case of an error while failing-over to a new connection, the JDBC application is
able to retry failover. Typically, the application sleeps for a while and then it retries,
either indefinitely or for a limited amount of time, by having the callback return
FO RETRY.

Handling the FO_ABORT Event

Callback registered should return the FO_ABORT event if the FO_ERROR event is
passed to it.

17-18 Oracle9i JDBC Developer's Guide and Reference

OCI HeteroRM XA

OCI HeteroRM XA

Unlike the regular JDBC XA feature which works only with Oracle8i 8.1.6 and later
databases, JDBC HeteroRM XA also allows you to do XA operations in Oracle8i
releases prior to 8.1.6. In general, the HeteroRM XA is recommended for use
whenever possible.

HeteroRM XA is enabled through the use of the t nsEnt ry and nat i veXA
properties of the Or acl eXADat aSour ce class. Table 16-2, "Oracle Extended Data
Source Properties” on page 16-6 explains these properties in detail.

For a complete discussion of XA, see Chapter 15, "Distributed Transactions".

Configuration and Installation

The Solaris shared libraries, | i bhet er oxa9. soand | i bhet eroxa9_g. so,
enable the HeteroRM XA feature to support access to Oracle8i releases prior to
release 8.1.6. The NT version of these libraries are het er oxa9. dl | and

het eroxa9_g. dl | . In order for the HeteroRM XA feature to work properly, these
libraries need to be installed and available in either the Solaris search path or the
NT DLL path, depending on your system.

Note: Libraries with the _g suffix are debug libraries.

Exception Handling

When using the HeteroRM XA feature in distributed transactions, it is
recommended that the application simply check for XAExcept i on or
SQLExcept i on, rather than Or acl eXAExcept i on or Or acl eSQLExcepti on.

See "HeteroRM XA Messages" on page B-15 for a listing of HeteroRM XA messages.

Note: The mapping from SQL error codes to standard XA error
codes does not apply to the HeteroRM XA feature.

HeteroRM XA Code Example

The following portion of code shows how to enable the HeteroRM XA feature.

/| Create a XADataSource instance
O acl eXADat aSour ce oxds = new Oracl eXADat aSour ce();
oxds. set URL(url);

JDBC OCI Extensions 17-19

OCI HeteroRM XA

/] Set the nativeXA property to use HeteroRM XA feature
oxds. set NativeXA(true);

/] Set the tnsEntry property to an ol der DB as required
oxds. set TNSEnt r yNane(" ora805");

17-20 Oracle9i JDBC Developer's Guide and Reference

Accessing PL/SQL Index-by Tables

Accessing PL/SQL Index-by Tables

Overview

The Oracle JDBC OCI driver enables JDBC applications to make PL/SQL calls with
index-by table parameters.

Important: Index-by tables of PL/SQL records are not supported.

The Oracle JDBC OCI driver supports PL/SQL index-by tables of scalar datatypes.
Table 17-1 displays the supported scalar types and the corresponding JDBC
typecodes.

Table 17-1 PL/SQL Types and Corresponding JDBC Types

PL/SQL Types JDBC Types
Bl NARY_| NTECER NUVMERI C
NATURAL NUVERI C
NATURALN NUVERI C
PLS | NTECER NUVMERI C
PCSI Tl VE NUVERI C
POSI Tl VEN NUVERI C
SI GNTYPE NUVERI C
STRI NG VARCHAR

Note: Oracle JDBC does not support RAWDATE, and PL/SQL
RECORD as element types.

Typical Oracle JDBC input binding, output registration, and data-access methods do
not support PL/SQL index-by tables. This chapter introduces additional methods to
support these types.

The Or acl ePr epar edSt at ement and Or acl eCal | abl eSt at enent classes
define the additional methods. These methods include the following;:

« setPlsqgllndexTabl e()

JDBC OCI Extensions 17-21

Accessing PL/SQL Index-by Tables

« registerlndexTabl eCut Paraneter ()
« getOracl ePl sgl I ndexTabl e()
« getPlsqgllndexTabl e()

These methods handle PL/SQL index-by tables as | N, OUT (including function
return values), or | N OUT parameters. For general information about PL/SQL
syntax, see the PL/SQL User’s Guide and Reference.

The following sections describe the methods used to bind and register PL/SQL
index-by tables.

Binding IN Parameters

To bind a PL/SQL index-by table parameter in the | N parameter mode, use the
set Pl sgl | ndexTabl e() method defined in the Or acl ePr epar edSt at emrent
and Or acl eCal | abl eSt at ement classes.

synchroni zed public void setPlsqgllndexTabl e
(int param ndex, Cbject arrayData, int maxLen, int curlen, int el enfSgl Type,
int elemvaxLen) throws SQLException

Table 17-2 describes the arguments of the set Pl sql | ndexTabl e() method.

Table 17-2 Arguments of the setPIsglindexTable () Method

Argument Description
int param ndex This argument indicates the parameter position within the
statement.

Obj ect arrayData This argument is an array of values to be bound to the PL/SQL
index-by table parameter. The value is of type
j ava. | ang. Obj ect, and the value can be a Java primitive
type array such asi nt [] or aJava object array such as
Bi gDeci mal [].

int maxLen This argument specifies the maximum table length of the
index-by table bind value which defines the maximum possible
cur Len for batch updates. For standalone binds, maxLen
should use the same value as cur Len. This argument is
required.

17-22 Oracle9i JDBC Developer's Guide and Reference

Accessing PL/SQL Index-by Tables

Table 17-2 Arguments of the setPIsglindexTable () Method (Cont.)

Argument Description

int curlLen This argument specifies the actual size of the index-by table bind
value in ar r ayDat a. If the cur Len value is smaller than the
size of ar r ayDat a, only the cur Len number of table
elements is passed to the database. If the cur Len value is larger
than the size of ar r ayDat a, the entire ar r ayDat a is sent to
the database.

int el enSgl Type This argument specifies the index-by table element type based
on the values defined in the Or acl eTypes class.

int el emVaxLen This argument specifies the index-table element maximum
length in case the element type is CHAR, VARCHAR, or RAW
This value is ignored for other types.

The following code example uses the set Pl sql | ndexTabl e() method to bind an
index-by table as an | N parameter:

/] Prepare the statenent
Oracl eCal | abl eSt at ement procin = (O acl eCal | abl eSt at enent)
conn. prepareCall ("begin procin (?); end;");

/] index-by table bind val ue
int[] values ={ 1, 2, 3 };

/1 maximum | ength of the index-by table bind value. This

/] val ue defines the maxi mum possible "currentLen" for batch
/] updates. For standal one binds, "maxLen" should be the

/] same as "currentlLen".

int maxLen = val ues. | ength;

/] actual size of the index-by table bind value
int currentlLen = val ues.length;

/] index-by table elenment type
int el enSql Type = Oracl eTypes. NUMBER;

/] index-by table element length in case the element type
/] is CHAR, VARCHAR or RAW This value is ignored for other
Il types.

int el emvaxLen = 0;

/] set the value

JDBC OCI Extensions 17-23

Accessing PL/SQL Index-by Tables

procin. set Pl sqgl I ndexTabl e (1, val ues,
maxLen, currentLlen,
el enBql Type, el emvaxLen);

/] execute the call
procin. execute ();

Receiving OUT Parameters

This section describes how to register a PL/SQL index-by table as an OUT
parameter. In addition, it describes how to access the OUT bind values in various
mapping styles.

Note: The methods this section describes apply to function return
values and the | N OUT parameter mode as well.

Registering the OUT Parameters

To register a PL/SQL index-by table as an OUT parameter, use the
regi st erl ndexTabl eCQut Par aret er () method defined in the
Or acl eCal | abl eSt at ement class.

synchroni zed regi st erl ndexTabl eCut Par anet er
(int param ndex, int maxLen, int elenSql Type, int el emvhxLen)
throws SQLException

Table 17-3 describes the arguments of the
regi st erl ndexTabl eCut Par anet er () method.

Table 17-3 Arguments of the registerindexTableOutParameter () Method

Argument Description

int param ndex This argument indicates the parameter position within the
statement.

int maxLen This argument specifies the maximum table length of the index-by

table bind value to be returned.

int el enSgl Type This argument specifies the index-by table element type based on
the values defined in the Or acl eTypes class.

int el emVaxLen This argument specifies the index-by table element maximum
length in case the element type is CHAR, VARCHAR, or RAWThis
value is ignored for other types.

17-24 Oracle9i JDBC Developer's Guide and Reference

Accessing PL/SQL Index-by Tables

The following code example uses the r egi st er | ndexTabl eQut Par anet er ()
method to register an index-by table as an OUT parameter:

/] maximum | ength of the index-by table value. This
/1 value defines the maximumtable size to be returned.
int maxLen = 10;

/] index-by table el ement type
int el enSql Type = Oracl eTypes. NUMBER;

/] index-by table element length in case the element type
/] is CHAR, VARCHAR or RAW This value is ignored for other
Il types

int el emvaxLen = 0;

/] register the return val ue
funcnone. regi st erl ndexTabl eQut Par anet er
(1, maxLen, elenSqgl Type, el emvaxLen);

Accessing the OUT Parameter Values

To access the QUT bind value, the Or acl eCal | abl eSt at ement class defines
multiple methods that return the index-by table values in different mapping styles.
There are three mapping choices available in JDBC drivers:

Mappings Methods to Use
JDBC default mappings get Pl sqgl I ndexTabl e(i nt)
Oracle mappings get Oracl ePl sql | ndexTabl e(i nt)

Java primitive type mappings get Pl sql | ndexTabl e(int, Class)

JDBC Default Mappings The get Pl sqgl | ndexTabl e() method with the (i nt)
signature returns index-by table elements using JDBC default mappings.

public Chject getPlsqgllndexTable (int parani ndex)
throws SQLException

Table 17-4 describes the argument of the get Pl sql | ndexTabl e() method.

JDBC OCI Extensions 17-25

Accessing PL/SQL Index-by Tables

Table 17-4 Argument of the getPlIsglindexTable () Method

Argument Description
int param ndex This argument indicates the parameter position within the
statement.

The return value is a Java array. The elements of this array are of the default Java
type corresponding to the SQL type of the elements. For example, for an index-by
table with elements of NUMERI C typecode, the element values are mapped to

Bi gDeci mal by the Oracle JDBC driver, and the get Pl sql | ndexTabl e()
method returns a Bi gDeci mal [] array. For a JDBC application, you must cast the
return value to a Bi gDeci mal [] array to access the table element values. (See
"Datatype Mappings" on page 3-16 for a list of default mappings.)

The following code example uses the get Pl sql | ndexTabl e() method to return
index-by table elements with JDBC default mapping:

/] access the value using JDBC default mapping
Bi gDeci mal [] val ues =
(Bi gDecimal []) procout. get Pl sqllndexTable (1);

[l print the elenents
for (int i=0; i<values.length; i++)
Systemout.printin (values[i].intValue());

Oracle Mappings The get Or acl ePl sql | ndexTabl e() method returns index-by
table elements using Oracle mapping.

public Datun{] getOracl ePl sql | ndexTabl e (int paranl ndex)
throws SQLException

Table 17-5 describes the argument of the get Or acl ePl sql | ndexTabl e()
method.

Table 17-5 Argument of the getOraclePIsglindexTable () Method

Argument Description
int param ndex This argument indicates the parameter position within the
statement.

The return value is an or acl e. sgl . Dat umarray and the elements in the Dat um
array will be the default Dat umtype corresponding to the SQL type of the element.

17-26 Oracle9i JDBC Developer’s Guide and Reference

Accessing PL/SQL Index-by Tables

For example, the element values of an index-by table of numeric elements are
mapped to the or acl e. sql . NUMBER type in Oracle mapping, and the

get Or acl ePl sqgl | ndexTabl e() method returns an or acl e. sql . Dat umarray
that contains or acl e. sql . NUMBER elements.

The following code example uses the get Or acl ePl sqgl | ndexTabl e() method to
access the elements of a PL/SQL index-by table OUT parameter, using Oracle
mapping. (The code for registration is omitted.)

/] Prepare the statenent
Oracl eCal | abl eSt at ement procout = (Oracl eCal | abl eSt at ement)
conn. prepareCal | ("begin procout (?); end;");

/] execute the call
procout . execute ();

/] access the value using Oracle JDBC mapping
Datun{] outval ues = procout.get Oracl ePl sqgl I ndexTable (1);

[l print the elenents
for (int i=0; i<outvalues.length; i++)
Systemout.println (outval ues[i].intValue());

Java Primitive Type Mappings The get Pl sql | ndexTabl e() method with the (i nt,
d ass) signature returns index-by table elements in Java primitive types. The
return value is a Java array.

synchroni zed public Object getPlsqgllndexTable
(int param ndex, Cass primtiveType) throws SQLException

JDBC OCI Extensions 17-27

Accessing PL/SQL Index-by Tables

Table 17-6 describes the arguments of the get Pl sql | ndexTabl e() method.

Table 17-6 Arguments of the getPlIsglindexTable () Method

Argument Description

int param ndex This argument indicates the parameter position within the
statement.

Class primtiveType This argument specifies a Java primitive type to which the

index-by table elements are to be converted. For example, if
you specify j ava. | ang. | nt eger . TYPE, the return
valueisani nt array.

The following are the possible values of this parameter:
java. l ang. I nteger. TYPE

j ava. |l ang. Long. TYPE

j ava. |l ang. Fl oat . TYPE

j ava. | ang. Doubl e. TYPE

j ava. |l ang. Short. TYPE

The following code example uses the get Pl sgl | ndexTabl e() method to access
the elements of a PL/SQL index-by table of numbers. In the example, the second
parameter specifies j ava. | ang. | nt eger . TYPE, so the return value of the

get Pl sgl | ndexTabl e() method is ani nt array.

Oracl eCal | abl eSt at ement funcnone = (Oracl eCal | abl eSt at enent)
conn. prepareCall ("begin ? := funcnone; end;");

/] maximum | ength of the index-by table value. This
/1 val ue defines the maximumtable size to be returned.
int maxLen = 10;

/] index-by table elenment type
int el enSql Type = Oracl eTypes. NUMBER;

/] index-by table element length in case the element type
/] is CHAR, VARCHAR or RAW This value is ignored for other
Il types

int el emvhxLen = 0;

/] register the return val ue
funcnone. regi sterl ndexTabl eQut Par ameter (1, maxLen,

el enB5ql Type, el emvaxLen);
/] execute the call

17-28 Oracle9i JDBC Developer's Guide and Reference

Accessing PL/SQL Index-by Tables

funcnone. execute ();

/] access the value as a Java prinitive array.
int[] values = (int[])
funcnone. get Pl sql I ndexTabl e (1, java.lang.Integer.TYPE);

[l print the elenents

for (int i=0; i<values.length; i++)
Systemout.printlin (values[i]);

JDBC OCI Extensions 17-29

Accessing PL/SQL Index-by Tables

17-30 Oracle9i JDBC Developer's Guide and Reference

13

Advanced Topics

This chapter describes the following advanced JDBC topics:

JDBC and Globalization Support

JDBC Client-Side Security Features

JDBC in Applets

JDBC in the Server: the Server-Side Internal Driver

Advanced Topics 18-1

JDBC and Globalization Support

JDBC and Globalization Support

After a brief overview, this section covers the following topics:

= How JDBC Drivers Perform Globalization Support Conversions
= Globalization Support and Object Types

« SQL CHAR Data Size Restrictions with the Thin Driver

Oracle’s JDBC drivers support Globalization Support (formerly NLS). Globalization
Support allows you retrieve data or insert data into a database in any character set
that Oracle supports. If the clients and the server use different character sets, then
the driver provides the support to perform the conversions between the database
character set and the client character set.

For more information on Globalization Support, Globalization Support
environment variables, and the character sets that Oracle supports, see "Oracle
Character Datatypes Support" on page 6-28 and the Oracle9i Database Globalization
Support Guide. See the Oracle9i Reference for more information on the database
character set and how it is created.

Here are a few examples of commonly used Java methods for JDBC that rely heavily
on character set conversion:

« Thejava. sqgl . Resul t Set methods get Stri ng() and
get Uni codeSt r ean() return values from the database as Java strings and as
a stream of Unicode characters, respectively.

« Theoracle.sqgl.CLOBmethod get Char act er Strean() returns the
contents of a CLOB as a Unicode stream.

« Theoracle.sqgl.CHARmethods get String(),toString(),and
get StringW t hRepl acenent () convert the following data to strings:

- get String(): This converts the sequence of characters represented by the
CHAR object to a string and returns a Java St r i ng object.

— toString():Thisisidentical to get St ri ng(), but if the character set is
not recognized, thent oSt ri ng() returns a hexadecimal representation of
the CHAR data.

— getStringWthRepl acenment () : This is identical to get Stri ng(),
except characters that have no Unicode representation in the character set of
this CHAR object are replaced by a default replacement character.

18-2 Oracle9i JDBC Developer's Guide and Reference

JDBC and Globalization Support

How JDBC Drivers Perform Globalization Support Conversions

The techniques that the Oracle JDBC drivers use to perform character set conversion
for Java applications depend on the character set the database uses. The simplest
case is where the database uses the US7ASCI | or VVE8| SO8859P1 character set. In
this case, the driver converts the data directly from the database character set to
UTF- 16, which is used in Java applications, and vice versa.

If you are working with databases that employ a non-US7ASCI | or

non-WE8| SOB8859P1 character set (for example, JA16SJ1 S or KOL6KSC5601), then
the driver converts the data first to UTF- 8 (this step does not apply to the
server-side internal driver), then to UTF- 16. For example, the driver always
converts CHAR and VARCHAR? data in a non-US7ASCI | , non-WE8I SC8859P1
character set. It does not convert RAWdata.

Note: The JDBC drivers perform all character set conversions
transparently. No user intervention is necessary for the conversions
to occur.

JDBC OCI Driver and Globalization Support

For the JDBC OCI driver, the client character set is in the NLS_LANGenvironment
variable, which is set at client-installation time. The language and territory settings,
by default, are set to the Java VM locale settings.

Note that there are also server-side settings for these parameters, determined
during database creation. So, when performing character set conversion, the JDBC
OCI driver considers the following;:

= database character set and language
= client character set and language
= Javaapplication’s character set

The JDBC OCI driver transfers the data from the server to the client in the character
set of the database. Depending on the value of the NLS_LANGenvironment variable,
the driver handles character set conversions in one of two ways:

« IfNLS_LANGIis not specified, or specifies the US7ASCI | or WE8I SC8859P1
character set, then the JDBC OCI driver uses Java to convert the character set
from US7ASCI | or WE8I SO8859P1 directly to UTF- 16, or the reverse.

or:

Advanced Topics 18-3

JDBC and Globalization Support

= If NLS_LANGspecifies a character set other than US7ASCI | or VE8I SC8859P1,
the driver uses UTF- 8 as the client character set. This happens automatically
and does not require any user intervention. OCI converts the data from the
database character set to UTF- 8. The JDBC OCI driver then passes the UTF- 8
data to the JDBC Class Library, where the UTF- 8 data is converted to UTF- 16.

Notes:

« The driver uses UTF- 8 as the character set to minimize the
number of conversions it performs in Java.

« The change to UTF- 8 is for the JDBC application process only.

JDBC Thin Driver and Globalization Support

If you are using the JDBC Thin driver, then there will presumably be no Oracle
client installation. Globalization Support conversions must be handled differently.

Language and Territory The Thin driver obtains language and territory settings (NLS_
LANGUAGE and NLS_TERRI TORY) from the Java locale in the JVM user . | anguage
property. The date format (NLS_DATE_FORMAT) is set according to the territory
setting.

Character Set If the database character set is US7ASCI | or WE8I SO8859P1, then the
data is transferred to the client without any conversion. The driver then converts
the character set to UTF- 16 in Java.

If the database character set is something other than US7ASCI | or WE8| SO8859P1,
then the server first translates the data to UTF- 8 before transferring it to the client.
On the client, the JDBC Thin driver converts the data to UTF- 16 in Java.

Server-Side Internal Driver and Globalization Support

If your JDBC code running in the server accesses the database, then the JDBC
server-side internal driver performs a character set conversion based on the
database character set. The target character set of all Java programs is UTF- 16.

Globalization Support and Object Types

The Oracle JDBC class files, cl asses12. zi p and cl asses111. zi p, provide
Globalization Support for the Thin and OCI drivers. The files contain all the
necessary classes to provide complete Globalization Support for all Oracle character
sets for CHAR and NCHAR datatypes not retrieved or inserted as part of an Oracle

18-4 Oracle9i JDBC Developer's Guide and Reference

JDBC and Globalization Support

object or collection type. See "Oracle Character Datatypes Support" on page 6-28 for
a description of CHAR and NCHAR datatypes.

However, in the case of the CHAR and VARCHAR data portion of Oracle objects and
collections, the JDBC class files provide support for only the following commonly
used character sets:

« US7ASCI |

« VESDEC

« |SO LATIN-1
« UTF-8

To provide support for all character sets, the Oracle JDBC driver installation
includes two additional files: nl s_char set 12. zi p for JDK 1.2xand nl s_
charset 11. zi p for JDK 1.1.x. The OCI and Thin drivers require these files to
support all Oracle characters sets for CHAR and VARCHAR data in Oracle object types
and collections. To obtain this support, you must add the appropriate nl s_
charset *. zi p file to your CLASSPATH.

It is important to note that the nl s_char set *. zi p files are very large, because
they must support a large number of character sets. To save space, you might want
to keep only the classes you need from the nl s_char set *. zi p file. If you want to
do this, follow these steps:

1. Unzip the appropriate nl s_char set *. zi p file.

2. Add only the needed character set classes to the CLASSPATH.

3. Remove the unneeded character set files from your system.

The character set extension class files are named in the following format:

Charact er Convert er<Oracl eChar act er Set 1 d>. cl ass

where <Or acl eChar act er Set | d> is the hexadecimal representation of the Oracle
character set ID that corresponds to a character set name.

Note: The preceding discussion is not relevant in using the
server-side internal driver, which provides complete Globalization
Support and does not require the character set classes.

Advanced Topics 18-5

JDBC and Globalization Support

SQL CHAR Data Size Restrictions with the Thin Driver

If the database character set is neither ASCl | (US7ASCI |) nor | SO LATI N- 1
(VE8I SCB859P1), then the Thin driver must impose size restrictions for CHAR and
VARCHAR? bind parameters that are more restrictive than normal database size
limitations. This is necessary to allow for data expansion during conversion.

The Thin driver checks CHARbind sizes when the set XXX() method is called. If the
data size exceeds the size restriction, then the driver throws a SQL exception ("Data
size bigger than max size for this type") from the set XXX() call. This limitation is
necessary to avoid the chance of data corruption whenever a conversion occurs and
increases the length of the data. This limitation is enforced when you are doing all
the following;:

= using the Thin driver
= using binds (not defines)
= using CHAR, VARCHAR2, or LONG datatypes

= connecting to a database whose character set is neither ASCI | (US7ASCI |) nor
| SO Lati n- 1 (WE8I SOB859P1)

Role of the Expansion Factor

As previously discussed, when the database character set is neither US7ASCI | nor
VE8| SOB8859P1, the Thin driver converts Java UTF- 16 characters to UTF- 8
encoding bytes for CHAR or VARCHAR2 binds. The UTF- 8 encoding bytes are then
transferred to the database, and the database converts the UTF- 8 encoding bytes to
the database character set encoding.

This conversion to the character set encoding can result in an increase in the number
of bytes required to store the data. The expansion factor for a database character set
indicates the maximum possible expansion in converting a character from UTF- 8 to
the character set: If the database character set is either UTF- 8 or AL32UTF8, the
expansion factor (exp_f act or) is 1. Otherwise, the expansion factor is equal to
the maximum character size in the database character set.

Size Restriction Formulas

Table 18-1 shows the database size limitations for CHAR data and the Thin driver
size restriction formulas for CHAR binds. Database limits are in bytes. Formulas
determine the maximum size of the UTF- 8 encoding in bytes.

18-6 Oracle9i JDBC Developer's Guide and Reference

JDBC and Globalization Support

Table 18-1 Maximum CHAR and NCHAR Bind Sizes, Thin Driver

Max Size Allowed by Formula for Thin Driver Max

Oracle Version Datatype Database (bytes) Bind Size (UTF-8 bytes)
Oracle8 and later CHAR 2000 4000/exp_f act or
Oracle8 and later VARCHAR2 4000 4000/exp_f act or
Oracle8 and later LONG 2811 23 -1)/exp_f act or
Oracle7 CHAR 255 255

Oracle7 VARCHAR2 2000 2000/exp_f act or

The formulas guarantee that after the data is converted from UTF- 8 to the database
character set, the size will not exceed the database maximum size.

The number of UTF- 16 characters that can be supported is determined by the
number of bytes per character in the data. All ASCI | characters are one byte long in
UTF- 8 encoding. Other character types can be two or three bytes long.

Expansion Factors and Calculated Size Restrictions for Common Character Sets

Table 18-2 lists the expansion factors of some common server character sets, then
shows the Thin driver maximum bind sizes for SQL CHAR data for each character
set, as determined by using the expansion factor in the appropriate formula.

Again, maximum bind sizes are for UTF- 8 encoding, in bytes.

Table 18-2 Expansion Factors and Size Limits, Oracle8, Common Character Sets

Thin Driver Max

Expansion SQL CHAR Bind
Server Character Set Factor Size (UTF-8 bytes)
WESDEC 1 4000
JA16SJI S 2 2000
VE8| SO8859P1 3 1333
AL32UTF8 1 4000

Advanced Topics 18-7

JDBC Client-Side Security Features

JDBC Client-Side Security Features

This section discusses support in the Oracle JDBC OCI and Thin drivers for login
authentication, data encryption, and data integrity—particularly with respect to
features of the Oracle Advanced Security option.

Oracle Advanced Security, previously known as the "Advanced Networking
Option" (ANO) or "Advanced Security Option" (ASO), includes features to support
data encryption, data integrity, third-party authentication, and authorizations.
Oracle JDBC supports most of these features; however, the JDBC Thin driver must
be considered separately from the JDBC OCI driver.

Note: This discussion is not relevant to the server-side internal
driver, given that all communication through that driver is
completely internal to the server.

JDBC Support for Oracle Advanced Security

Both the JDBC OCI drivers and the JDBC Thin driver support at least some of the
features of Oracle Advanced Security. If you are using one of the OCI drivers, you
can set relevant parameters in the same way that you would in any thick-client
setting. The Thin driver supports Advanced Security features through a set of Java
classes included with the JDBC classes ZIP file, and supports security parameter
settings through Java properties objects.

Included in your Oracle JDBC cl asses111. zi p orcl asses12. zi p fileare aJAR
file containing classes that incorporate features of Oracle Advance Security, and a
JAR file containing classes whose function is to interface between the JDBC classes
and the Advanced Security classes for use with the JDBC Thin driver.

OCI Driver Support for Oracle Advanced Security

If you are using one of the JDBC OCI drivers, which presumes you are running
from a thick-client machine with an Oracle client installation, then support for
Oracle Advanced Security and incorporated third-party features is, for the most
part, no different from any Oracle thick-client situation. Your use of Advanced
Security features is determined by related settings in the SQLNET. ORA file on the
client machine, as discussed in the Oracle Advanced Security Administrator’s Guide.
Refer to that manual for information.

18-8 Oracle9i JDBC Developer's Guide and Reference

JDBC Client-Side Security Features

Important: The one key exception to the preceding, with respect to
Java, is that SSL—Sun Microsystem’s standard Secure Socket Layer
protocol—is supported by the Oracle JDBC OCI drivers only if you
use native threads in your application. This requires special
attention, because green threads are generally the default.

Thin Driver Support for Oracle Advanced Security

Because the Thin driver was designed to be downloadable with applets, one
obviously cannot assume that there is an Oracle client installation and a
SQLNET. ORA file where the Thin driver is used. This necessitated the design of a
new, 100% Java approach to Oracle Advanced Security support.

Java classes that implement Oracle Advanced Security are included in your JDBC
cl assesl12. zi porcl asses111. zi p file. Security parameters for encryption and
integrity, normally set in SQLNET. ORA, are set in a Java properties file instead.

For information about parameter settings, see "Thin Driver Support for Encryption
and Integrity" on page 18-12.

JDBC Support for Login Authentication

Basic login authentication through JDBC consists of user names and passwords, as
with any other means of logging in to an Oracle server. Specify the user name and
password through a Java properties object or directly through the

get Connect i on() method call, as discussed in "Open a Connection to a
Database" on page 3-3.

This applies regardless of which client-side Oracle JDBC driver you are using, but is
irrelevant if you are using the server-side internal driver, which uses a special direct
connection and does not require a user name or password.

The Oracle JDBC Thin driver implements Oracle O3LOGON challenge-response
protocol to authenticate the user.

Note: Third-party authentication features supported by Oracle
Advanced Security—such as those provided by RADIUS, Kerberos,
or SecurID—are not supported by the Oracle JDBC Thin driver. For
the Oracle JDBC OCI driver, support is the same as in any
thick-client situation—refer to the Oracle Advanced Security
Administrator’s Guide.

Advanced Topics 18-9

JDBC Client-Side Security Features

JDBC Support for Data Encryption and Integrity

You can use Oracle Advanced Security data encryption and integrity features in
your Java database applications, depending on related settings in the server.

When using an OCI driver in a thick-client setting, set parameters as you would in
any Oracle client situation. When using the Thin driver, set parameters through a
Java properties file.

Encryption is enabled or disabled based on a combination of the client-side
encryption-level setting and the server-side encryption-level setting.

Similarly, integrity is enabled or disabled based on a combination of the client-side
integrity-level setting and the server-side integrity-level setting.

Encryption and integrity support the same setting levels—REJECTED, ACCEPTED,
REQUESTED, and REQUI RED. Table 18-3 shows how these possible settings on the
client-side and server-side combine to either enable or disable the feature.

Table 18-3 Client/Server Negotiations for Encryption or Integrity

Client

Client Accepted Client Client

Rejected (default) Requested Required
Server OFF OFF OFF connection
Rejected fails
Server OFF OFF ON ON
Accepted
(default)
Server OFF ON ON ON
Requested
Server connection ON ON ON

Required fails

This table shows, for example, that if encryption is requested by the client, but
rejected by the server, it is disabled. The same is true for integrity. As another
example, if encryption is accepted by the client and requested by the server, it is
enabled. And, again, the same is true for integrity.

The general settings are further discussed in the Oracle Advanced Security
Administrator’s Guide. How to set them for a JDBC application is described in the
following subsections.

18-10 Oracle9i JDBC Developer's Guide and Reference

JDBC Client-Side Security Features

Note: The term "checksum" still appears in integrity parameter
names, as you will see in the following subsections, but is no longer
used otherwise. For all intents and purposes, "checksum" and
"integrity" are synonymous.

OCI Driver Support for Encryption and Integrity

If you are using one of the Oracle JDBC OCI drivers, which presumes a thick-client
setting with an Oracle client installation, you can enable or disable data encryption
or integrity and set related parameters as you would in any Oracle client situation,
through settings in the SQLNET. ORA file on the client machine.

To summarize, the client parameters are shown in Table 18—4:

Table 18-4 OCI Driver Client Parameters for Encryption and Integrity

Parameter Description Parameter Name Possible Settings

Client encryption level SQLNET. ENCRYPTI ON_CLI ENT REJECTED
ACCEPTED
REQUESTED
REQUI RED

Client encryption selected SQLNET. ENCRYPTI ON_TYPES_CLI ENT RC4_40

list RC4_56
DES
DES40

(see note below)

Client integrity level SQLNET. CRYPTO_CHECKSUM CLI ENT REJECTED
ACCEPTED
REQUESTED
REQUI RED

Client integrity selected list SQLNET. CRYPTO_CHECKSUM TYPES_CLI ENT VD5

Note: For the Oracle Advanced Security domestic edition only, a
setting of RCA_128 is also possible.

These settings, and corresponding settings in the server, are further discussed in
Appendix A of the Oracle Advanced Security Administrator’s Guide.

Advanced Topics 18-11

JDBC Client-Side Security Features

Thin Driver Support for Encryption and Integrity

Thin driver support for data encryption and integrity parameter settings parallels
the thick-client support discussed in the preceding section. Corresponding
parameters exist under the or acl e. net package and can be set through a Java
properties object that you would then use in opening your database connection.

If you replace "SQLNET" in the parameter names in Table 18—4 with "oracle.net",
you will get the parameter names supported by the Thin driver (but note that in
Java, the parameter names are all-lowercase).

Table 18-5 lists the parameter information for the Thin driver. See the next section

for examples of how to set these parameters in Java.

Table 18-5 Thin Driver Client Parameters for Encryption and Integrity

Parameter
Parameter Name Type

Parameter

Class

Possible Settings

oracl e.net.encryption_client string

oracl e.net. encryption_types_client string

oracl e.net. crypto_checksum cli ent string

oracle.net.crypto_checksumtypes_client string

static

static

static

static

REJECTED
ACCEPTED
REQUESTED
REQUI RED

RCA_40
RCA_56
DES40C
DES56C

REJECTED
ACCEPTED
REQUESTED
REQUI RED

VD5

Notes:

« Because Oracle Advanced Security support for the Thin driver
is incorporated directly into the JDBC classes ZIP file, there is
only one version, not separate domestic and export editions.
Only parameter settings that would be suitable for an export

edition are possible.

« The"C"in DES40C and DES56Crefers to CBC (cipher block

chaining) mode.

18-12 Oracle9i JDBC Developer's Guide and Reference

JDBC Client-Side Security Features

Setting Encryption and Integrity Parameters in Java

Use a Java properties object (j ava. uti |l . Properti es) to set the data encryption
and integrity parameters supported by the Oracle JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the
parameters in Table 18-5, and then uses the properties object in opening a
connection to the database:

Properties prop = new Properties();

prop. put ("oracle.net.encryption_client", "REQJ RED");

prop. put ("oracle.net.encryption_types_client", "(DES40)");

prop. put ("oracle.net.crypto_checksumclient", "REQUESTED");

prop. put ("oracle.net.crypto_checksumtypes_client", "(MXb)");

Connection conn = DriverManager. get Connection
("jdbc:oracle:thin: @ocal host: 1521: mai n", prop);

The parentheses around the parameter values in the encrypti on_t ypes_cl i ent
and crypt o_checksum types_cl i ent settings allow for lists of values.
Currently, the Thin driver supports only one possible value in each case; however,
in the future, when multiple values are supported, specifying a list will result in a
negotiation between the server and the client that determines which value is
actually used.

Complete example Following is a complete example of a class that sets data
encryption and integrity parameters before connecting to a database to perform a

query.
Note that in this example, the string "REQUIRED" is retrieved dynamically through
functionality of the AnoSer vi ces and Ser vi ce classes. You have the option of
retrieving the strings in this manner or hardcoding them as in the previous
examples.

inport java.sql.*;
inport java.sql.*;
inport java.io.*;

inport java.util.*;
inport oracle.net.ns.*;
i nport oracle.net.ano.*;

class Enpl oyee

{

public static void main (String args [])

Advanced Topics 18-13

JDBC Client-Side Security Features

throws Exception

/] Register the Oracle JDBC driver
Systemout.printin("Registring the driver...");
Driver Manager. regi sterDriver(new oracl e.jdbc. OacleDriver());

Properties props = new Properties();

try {
Fil el nput Stream defaul t Stream = new Fil el nput Strean(args[0]);

props. | oad(defaul t Strean;

int level = AnoServices. REQU RED;
props. put ("oracl e.net.encryption_client", Service.getLevel String(level));
props. put ("oracl e.net.encryption_types_client", "(DES40)");
props. put ("oracl e. net.crypto_checksumclient",
Service. get Level String(level));
props. put ("oracl e. net.crypto_checksumtypes_client", "(M5)");
} catch (Exception e) { e.printStackTrace(); }

/] You can put a database nane after the @sign in the connection URL.
Connection conn = DriverManager. get Connecti on
("jdbc:oracl e: thin: @l sun608. us. oracl e.com 1521: mai n*, props);

I/ Create a Statement
Statement stmt = conn.createStatenment ();

/1 Select the ENAME colum fromthe EMP table
Resul t Set rset = stnt.executeQuery ("select ENAME from EMP");

/] Iterate through the result and print the enpl oyee names
while (rset.next ())
Systemout.printin (rset.getString (1));

conn. cl ose();

18-14 Oracle9i JDBC Developer's Guide and Reference

JDBC in Applets

JDBC in Applets

This section describes some of the basics of working with Oracle JDBC applets,
which must use the JDBC Thin driver so that an Oracle installation is not required
on the client. The Thin driver connects to the database with TCP/IP protocol.

Aside from having to use the Thin driver, and being mindful of applet connection
and security issues, there is essentially no difference between coding a JDBC applet
and a JDBC application. There is also no difference between coding for a JDK 1.2.x
browser or a JDK 1.1.x browser, other than general JDK 1.1.x to 1.2.x migration
issues discussed in "Migration from JDK 1.1.x to JDK 1.2.x" on page 4-5.

This section describes what you must do for the applet to connect to a database,
including how to use the Oracle Connection Manager or signed applets if you are
connecting to a database not running on the same host as the Web server. It also
describes how your applet can connect to a database through a firewall. The section
concludes with how to package and deploy the applet.

The following topics are covered:

= Connecting to the Database through the Applet

= Connecting to a Database on a Different Host Than the Web Server
= Using Applets with Firewalls

= Packaging Applets

« Specifying an Applet in an HTML Page

For general information about connecting to the database, see "Open a Connection
to a Database" on page 3-3.

Note: Beginning with release 8.1.6, Oracle JDBC no longer
supports JDK 1.0.x versions. This also applies to applets running in
browsers that incorporate JDK 1.0.x versions. The user must
upgrade to a browser with an environment of JDK 1.1.x or higher.

Connecting to the Database through the Applet

The most common task of an applet using the JDBC driver is to connect to and
query a database. Because of applet security restrictions, unless particular steps are
taken an applet can open TCP/IP sockets only to the host from which it was
downloaded (this is the host on which the Web server is running). This means that

Advanced Topics 18-15

JDBC in Applets

without these steps, your applet can connect only to a database that is running on
the same host as the Web server.

If your database and Web server are running on the same host, then there is no issue
and no special steps are required. You can connect to the database as you would
from an application.

As with connecting from an application, there are two ways in which you can
specify the connection information to the driver. You can provide it in the form of
host : port: si d or in the form of a TNS keyword-value syntax.

For example, if the database to which you want to connect resides on host
pr odHost , at port 1521, and SID ORCL, and you want to connect with user name
scot t with password t i ger, then use either of the two following connect strings:

using host : port: si d syntax:

String connString="jdbc:oracl e:thin: @rodHost: 1521: ORCL";
conn = DriverManager. get Connecti on(connString, “scott", "tiger");

using TNS keyword-value syntax:

String connString = "jdbc: oracl e:thin: @description=(address_list=
(address=(protocol =t cp) (port=1521) (host =prodHost)))
(connect _dat a=(| NSTANCE_NAME=ORCL))) ";

conn = DriverManager. get Connecti on(connString, “scott", "tiger");

If you use the TNS keyword-value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

However, a Web server and an Oracle database server both require many resources;
you seldom find both servers running on the same machine. Usually, your applet
connects to a database on a host other than the one on which the Web server runs.
There are two possible ways in which you can work around the security restriction:

= You can connect to the database by using the Oracle Connection Manager.
or:
= You can use a signed applet to connect to the database directly.

These options are discussed in the next section, "Connecting to a Database on a
Different Host Than the Web Server".

18-16 Oracle9i JDBC Developer's Guide and Reference

JDBC in Applets

Connecting to a Database on a Different Host Than the Web Server

If you are connecting to a database on a host other than the one on which the Web
server is running, then you must overcome applet security restrictions. You can do
this by using either the Oracle Connection Manager or signed applets.

Using the Oracle Connection Manager

The Oracle Connection Manager is a lightweight, highly-scalable program that can
receive Oracle Net packets and re-transmit them to a different server. To a client
running Oracle Net, the Connection Manager looks exactly like a database server.
An applet that uses the JDBC Thin driver can connect to a Connection Manager
running on the Web server host and have the Connection Manager redirect the
Oracle Net packets to an Oracle server running on a different host.

Figure 181 illustrates the relationship between the applet, the Oracle Connection
Manager, and the database.

Figure 18-1 Applet, Connection Manager, and Database Relationship

Oracle Net Listener
CMAN
applet W/
in browser any
TCP/IP web server Oracle Net
(only) protocol
T
/ webHost oraHost

Using the Oracle Connection Manager requires two steps:

= Install and run the Connection Manager.

= Write the connection string that targets the Connection Manager.

There is also discussion of how to connect using multiple connection managers.
Installing and Running the Oracle Connection Manager You must install the Connection
Manager, available on the Oracle9i distribution media, onto the Web server host.

You can find the installation instructions in the Oracle Net Services Administrator’s
Guide.

Advanced Topics 18-17

JDBC in Applets

On the Web server host, create a CMAN. ORA file in the [ORACLE_
HOME] / NET8/ ADM Ndirectory. The options you can declare in a CMAN. ORA file
include firewall and connection pooling support.

Here is an example of a very simple CMAN. ORA file. Replace <web-server-host> with
the name of your Web server host. The fourth line in the file indicates that the
Connection Manager is listening on port 1610. You must use this port number in
your connect string for JDBC.

cman = (ADDRESS LI ST =
ADDRESS = (PROTOCOL=TCP)
HOST=<web- ser ver - host >)

PORT=1610)))

— o~ —~ —

cman_profile = (paranmeter_list =
(MAXI MUM_RELAYS=512)
(LOG _LEVEL=1)

(TRACI NG=YES)

(RELAY_STATI STI CS=YES)
(SHOW TNS_I NFO=YES)
(USE_ASYNC_CALL=YES)
(AUTHENTI CATI ON_LEVEL=0)
)

Note that the Java Oracle Net version inside the JDBC Thin driver does not have
authentication service support. This means that the AUTHENTI CATI ON_LEVEL
configuration parameter in the CMAN. ORA file must be set to 0.

After you create the file, start the Connection Manager at the operating system
prompt with this command:

crectl start
To use your applet, you must now write the connect string for it.

Writing the Connect String that Targets the Connection Manager This section describes
how to write the connect string in your applet so that the applet connects to the
Connection Manager, and the Connection Manager connects with the database. In
the connect string, you specify an address list that lists the protocol, port, and name
of the Web server host on which the Connection Manager is running, followed by
the protocol, port, and name of the host on which the database is running.

The following example describes the configuration illustrated in Figure 18-1. The
Web server on which the Connection Manager is running is on host webHost and is
listening on port 1610. The database to which you want to connect is running on

18-18 Oracle9i JDBC Developer's Guide and Reference

JDBC in Applets

host or aHost , listening on port 1521, and SID ORCL. You write the connect string
in TNS keyword-value format:

Connection conn =
Dri ver Manager . get Connection ("jdbc:oracle:thin:" +
"@description=(address_list=" +
"(addr ess=(protocol =t cp) (host =webHost) (port=1610))" +
"(addr ess=(protocol =t cp) (host =oraHost) (port=1521)))" +
"(source_route=yes)" +
"(connect _dat a=(| NSTANCE_NAME=orcl)))", "scott", "tiger");

The first element in the addr ess_I i st entry represents the connection to the
Connection Manager. The second element represents the database to which you
want to connect. The order in which you list the addresses is important.

Notice that you can also write the same connect string in this format:

String connString =
"jdbc:oracle:thin: @description=(address_|ist=
(address=(protocol =t cp) (port=1610) (host =webHost))
(address=(protocol =t cp) (port=1521) (host =oraHost)))
(connect _dat a=(| NSTANCE_NAME=or cl))
(source_route=yes))";
Connection conn = DriverManager. get Connection(connString, "scott", "tiger");

When your applet uses a connect string such as the one above, it will behave exactly
as if it were connected directly to the database on the host or aHost .

For more information on the parameters that you specify in the connect string, see
the Oracle Net Services Administrator’s Guide.

Connecting through Multiple Connection Managers Your applet can reach its target
database even if it first has to go through multiple Connection Managers (for
example, if the Connection Managers form a "proxy chain"). To do this, add the
addresses of the Connection Managers to the address list, in the order that you plan
to access them. The database listener should be the last address on this list. See the
Oracle Net Services Administrator’s Guide for more information about sour ce_

rout e addressing.

Using Signed Applets

In either a JDK 1.2.x-based browser or a JDK 1.1.x-based browser, an applet can
request socket connection privileges and connect to a database running on a
different host than the Web server host. In Netscape 4.0, you perform this by signing
your applet (that is, writing a signed applet). You must follow these steps:

Advanced Topics 18-19

JDBC in Applets

1. Sign the applet. For information on the steps you must follow to sign an applet,
see Sun Microsystem’s Signed Applet Example at:

http://java. sun. com security/ si gnExanpl e/ i ndex. ht m

2. Include applet code that asks for appropriate permission before opening a
socket.
If you are using Netscape, then your code would include a statement like this:

net scape. security. PrivilegeManager. enabl ePrivi | ege(" Uni versal Connect");
connection = Driver Manager . get Connection
("jdbc:oracle:thin:scott/tiger@l sun511:1721: orcl");

3. You must obtain an object-signing certificate. See Netscape’s Object-Signing
Resources page at:

http://devel oper. net scape. com sof t war e/ si gnedobj / i ndex. ht n

This site provides information on obtaining and installing a certificate.

For more information on writing applet code that asks for permissions, see
Netscape’s Introduction to Capabilities Classes at:

http://devel oper. net scape. com docs/ manual s/ si gnedobj / capabi | i ties/contents. htm
For information about the Java Security AP, including signed applet examples
under JDK 1.2.x and 1.1.x, see the following Sun Microsystems site:

http://java. sun. com security

Using Applets with Firewalls

Under normal circumstances, an applet that uses the JDBC Thin driver cannot
access the database through a firewall. In general, the purpose of a firewall is to
prevent unauthorized clients from reaching the server. In the case of applets trying
to connect to the database, the firewall prevents the opening of a TCP/IP socket to
the database.

Firewalls are rule-based. They have a list of rules that define which clients can
connect, and which cannot. Firewalls compare the client's hostname with the rules,
and based on this comparison, either grant the client access, or not. If the hostname
lookup fails, the firewall tries again. This time, the firewall extracts the IP address of
the client and compares it to the rules. The firewall is designed to do this so that
users can specify rules that include hostnames as well as IP addresses.

18-20 Oracle9i JDBC Developer's Guide and Reference

JDBC in Applets

You can solve the firewall issue by using an Oracle Net-compliant firewall and
connection strings that comply with the firewall configuration. Oracle
Net-compliant firewalls are available from many leading vendors; a more detailed
discussion of these firewalls is beyond the scope of this manual.

An unsigned applet can access only the same host from which it was downloaded.
In this case, the Oracle Net-compliant firewall must be installed on that host. In
contrast, a signed applet can connect to any host. In this case, the firewall on the
target host controls the access.

Connecting through a firewall requires two steps, described in the following
sections:

« Configuring a Firewall for Applets that use the JDBC Thin Driver

= Writing a Connect String to Connect through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver

The instructions in this section assume that you are running an Oracle
Net-compliant firewall.

Java applets do not have access to the local system—that is, they cannot get the
hostname or environment variables locally—because of security limitations. As a
result, the JDBC Thin driver cannot access the hostname on which it is running. The
firewall cannot be provided with the hostname. To allow requests from JDBC Thin
clients to go through the firewall, you must do the following two things to the
firewall’s list of rules:

= Add the IP address (not the hostname) of the host on which the JDBC applet is
running.

= Ensure that the hostname "__j dbc__" never appears in the firewall’s rules.
This hostname has been hard-coded as a false hostname inside the driver to
force an IP address lookup. If you do enter this hostname in the list of rules,
then every applet using Oracle's JDBC Thin driver will be able to go through
your firewall.

By not including the Thin driver’s hostname, the firewall is forced to do an IP
address lookup and base its access decision on the IP address, instead of the
hostname.

Advanced Topics 18-21

JDBC in Applets

Writing a Connect String to Connect through a Firewall

To write a connect string that allows you to connect through a firewall, you must
specify the name of the firewall host and the name of the database host to which
you want to connect.

For example, if you want to connect to a database on host or aHost , listening on
port 1521, with SID ORCL, and you are going though a firewall on host
firewal | Host, listening on port 1610, then use the following connect string:

Connection conn =
Driver Manager . get Connection ("jdbc:oracle:thin:" +
"@description=(address_list=" +
(address=(protocol =t cp) (host=<firewal|-host>)(port=1610))" +
"(address=(protocol =t cp) (host =oraHost) (port=1521)))" +
"(source_route=yes)" +
"(connect _dat a=(| NSTANCE_NAME=orcl)))", "scott", "tiger");

Note: To connect through a firewall, you cannot specify the
connection string in host : port : si d syntax. For example, a
connection string specified as follows will not work:

String connString =
"jdbc:oracle:thin: @xta.us.oracle.com1521:orcl";
conn = DriverManager. get Connection (connString, "scott",
"tiger");

The first element in the addr ess_| i st represents the connection to the firewall.
The second element represents the database to which you want to connect. Note
that the order in which you specify the addresses is important.

Notice that you can also write the preceding connect string in this format:

String connString =
"jdbc:oracle:thin: @description=(address_|ist=
(address=(protocol =t cp) (port=1600) (host =fireWal | Host))
(address=(protocol =t cp) (port=1521) (host=oraHost)))
(connect _dat a=(| NSTANCE_NAME=or cl))
(source_route=yes))";
Connection conn = DriverManager. get Connection(connString, "scott", "tiger");

When your applet uses a connect string similar to the one above, it will behave as if
it were connected to the database on host or aHost .

18-22 Oracle9i JDBC Developer's Guide and Reference

JDBC in Applets

Note: All the parameters shown in the preceding example are
required. In the addr ess_| i st the firewall address must precede
the database server address.

For more information on the parameters used in the above example, see the Oracle
Net Services Administrator’s Guide. For more information on how to configure a
firewall, please see your firewall’s documentation or contact your firewall vendor.

Packaging Applets

After you have coded your applet, you must package it and make it available to
users. To package an applet, you will need your applet class files and the JDBC
driver class files (these will be contained in either cl asses12. zi p, if you are
targeting a browser that incorporates a JDK 1.2.x version, or cl asses111. zi p, for
a browser incorporating a JDK 1.1.x version).

Follow these steps:

1. Move the JDBC driver classes file cl asses12. zi p (orcl asses111. zi p) to
an empty directory.

If your applet will connect to a database with a non-US7ASCI | and
non-VE8| SOB859P1 character set, then also move the nl s_char set 12. zi p
ornls_charset11. zi p file to the same directory.

2. Unzip the JDBC driver classes ZIP file (and character set ZIP file, if applicable).

3. Add your applet classes files to the directory, and any other files the applet
might require.

4. Zip the applet classes and driver classes together into a single ZIP or JAR file.
The single zip file should contain the following;:

= class files from cl asses12. zi p orcl asses11l. zi p (and required class
files from nl s_char set 12. zi p or nl s_char set 11. zi p if the applet
requires Globalization Support)

= your applet classes

Additionally, if you are using Dat abaseMet aDat a entry points in your applet,
include the or acl e/ j dbc/ dri ver/ Or acl eDat abaseMet aDat a. cl ass file.
Note that this file is very large and might have a negative impact on
performance. If you do not use Dat abaseMet aDat a methods, omit this file.

5. Ensure that the ZIP or JAR file is not compressed.

Advanced Topics 18-23

JDBC in Applets

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

<APPLET W DTH=500 HEI GHT=200 CODE=JdbcAppl et ARCHI VE=JdbcAppl et. zi p
CODEBASE=Appl et _Sanpl es
</ APPLET>

You can find a description of the APPLET, CODE, ARCHI VE, CODEBASE, W DTH, and
HEI GHT parameters in the next section.

Specifying an Applet in an HTML Page

The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have these parameters: CODE, ARCHI VE, CODEBASE, W DTH, and
HEI GHT to specify the name of the applet and its location, and the height and width
of the applet display area. These parameters are described in the following sections.

CODE, HEIGHT, and WIDTH

The HTML page that runs the applet must have an APPLET tag with an initial
width and height to specify the size of the applet display area. You use the HEl GHT
and W DTH parameters to specify the size, measured in pixels. This size should not
count any windows or dialogs that the applet opens.

The APPLET tag must also specify the name of the file that contains the applet’s
compiled Applet subclass—specify the file name with the CODE parameter. Any
path must be relative to the base URL of the applet—the path cannot be absolute.

In the following example, JdbcAppl et . cl ass is the name of the Applet’s
compiled applet subclass:

<APPLET CODE="JdbcAppl et" W DTH=500 HElI GHT=200>
</ APPLET>

If you use this form of the CODE tag, then the classes for the applet and the classes
for the JDBC Thin driver must be in the same directory as the HTML page.

Notice that in the CODE specification, you do not include the file name extension
".class".

CODEBASE

The CODEBASE parameter is optional and specifies the base URL of the applet; that
is, the name of the directory that contains the applet’s code. If it is not specified,
then the document’s URL is used. This means that the classes for the applet and the

18-24 Oracle9i JDBC Developer's Guide and Reference

JDBC in Applets

JDBC Thin driver must be in the same directory as the HTML page. For example, if
the current directory is my_Di r :

<APPLET W DTH=500 HEl GHT=200 CODE=JdbcAppl et CODEBASE="."
</ APPLET>

The entry GIDEBASE=". " indicates that the applet resides in the current directory
(my_Di r). If the value of codebase was set to Appl et _Sanpl es, for example:

CODEBASE="Appl et _Sanpl es"

This would indicate that the applet resides in the ny_Di r /Appl et _Sanpl es
directory.

ARCHIVE

The ARCHI VE parameter is optional and specifies the name of the archive file (either
a.zipor.jar file), if applicable, that contains the applet classes and resources the
applet needs. Oracle recommends using a . zi p file or . j ar file, which saves many
extra roundtrips to the server.

The . zi p (or . j ar) file will be preloaded. If you have more than one archive in the
list, separate them with commas. In the following example, the class files are stored
in the archive file JdbcAppl et . zi p:

<APPLET CODE="JdbcAppl et" ARCH VE="JdbcAppl et. zi p* W DTH=500 HEI GHT=200>
</ APPLET>

Note: Version 3.0 browsers do not support the ARCHI VE
parameter.

Advanced Topics 18-25

JDBC in the Server: the Server-Side Internal Driver

JDBC in the Server: the Server-Side Internal Driver
This section covers the following topics:
= Connecting to the Database with the Server-Side Internal Driver
= Exception-Handling Extensions for the Server-Side Internal Driver
= Session and Transaction Context for the Server-Side Internal Driver
= Testing JDBC on the Server
« Server-Side Character Set Conversion of oracle.sq. CHAR Data

This driver is intrinsically tied to the Oracle database and to the Java virtual
machine (JVM). The driver runs as part of the same process as the database. It also
runs within the default session—the same session in which the JVM was invoked.

The server-side internal driver is optimized to run within the database server and
provide direct access to SQL data and PL/SQL subprograms on the local database.
The entire JVM operates in the same address space as the database and the SQL
engine. Access to the SQL engine is a function call; there is no network. This
enhances the performance of your JDBC programs and is much faster than
executing a remote Oracle Net call to access the SQL engine.

The server-side internal driver supports the same features, APIs, and Oracle
extensions as the client-side drivers. This makes application partitioning very
straightforward. For example, if you have a Java application that is data-intensive,
you can easily move it into the database server for better performance, without
having to modify the application-specific calls.

For general information about the Oracle Java platform server-side configuration or
functionality, see the Oracle9i Java Developer’s Guide.

Connecting to the Database with the Server-Side Internal Driver

As described in the preceding section, the server-side internal driver runs within a
default session. You are already "connected". There are two methods you can use to
access the default connection:

« Use the static Dri ver Manager . get Connect i on() method, with either
jdbc:oracl e: kprborjdbc: defaul t:connection asthe URL string.

= Use the Oracle-specific def aul t Connect i on() method of the
Oracl eDri ver class.

Using def aul t Connect i on() is generally recommended.

18-26 Oracle9i JDBC Developer's Guide and Reference

JDBC in the Server: the Server-Side Internal Driver

Note: You are no longer required to register the Or acl eDr i ver
class for connecting with the server-side internal driver, although
there is no harm in doing so. This is true whether you are using
get Connecti on() ordef aul t Connecti on() tomake the
connection.

Connecting with the OracleDriver Class defaultConnection() Method

The oracl e. j dbc. Oracl eDri ver class def aul t Connecti on() method is an
Oracle extension and always returns the same connection object. Even if you invoke
this method multiple times, assigning the resulting connection object to different
variable names, just a single connection object is reused.

You do not need to include a connect string in the def aul t Connecti on() call
For example:

inport java.sql.*;
inport oracle.jdbc.*;

cl ass JDBCConnection

{

public static Connection connect() throws SQLException

{

Connection conn = null;

try {
/] connect with the server-side internal driver

OracleDriver ora = new Oracl eDriver();
conn = ora. defaul t Connection();

}

} catch (SQLException e) {...}
return conn;

}
}

Note that there isno conn. cl ose() call in the example. When JDBC code is
running inside the target server, the connection is an implicit data channel, not an
explicit connection instance as from a client. It should typically not be closed.

If you do call the cl ose() method, be aware of the following:

= All connection instances obtained through the def aul t Connect i on()
method, which actually all reference the same connection object, will be closed
and unavailable for further use, with state and resource cleanup as appropriate.

Advanced Topics 18-27

JDBC in the Server: the Server-Side Internal Driver

Executing def aul t Connect i on() afterward would result in a new
connection object.

= Even though the connection object is closed, the implicit connection to the
database will not be closed.

Connecting with the DriverManager.getConnection() Method

To connect to the internal server connection from code that is running within the
target server, you can use the static Dr i ver Manager . get Connect i on() method
with either of the following connect strings:

Dri ver Manager . get Connection("j dbc: oracl e:kprb:");

or:

Dri ver Manager . get Connecti on("j dbc: defaul t: connection:");

Any user name or password you include in the URL string is ignored in connecting
to the server default connection.

The Dri ver Manager . get Connect i on() method returns a new Java

Connect i on object every time you call it. Note that although the method is not
creating a new physical connection (only a single implicit connection is used), it is
returning a new object.

The fact that Dri ver Manager . get Connecti on() returns a new connection
object every time you call it is significant if you are working with object maps (or
"type maps"). A type map is associated with a specific Connect i on object and with
any state that is part of the object. If you want to use multiple type maps as part of
your program, then you can call get Connecti on() to create anew Connecti on
object for each type map.

Exception-Handling Extensions for the Server-Side Internal Driver

The server-side internal driver, in addition to having standard exception-handling
capabilities such as get Message(), get Err or Code(), and get SQLSt at e() (as
described in "Processing SQL Exceptions” on page 3-34), offers extended features
through the or acl e. j dbc. dri ver. Oracl eSQLExcepti on class. This class is a
subclass of the standard j ava. sql . SQLExcept i on class and is not available to
the client-side JDBC drivers or the server-side Thin driver.

When an error condition occurs in the server, it often results in a series of related
errors being placed in an internal error stack. The JDBC server-side internal driver

18-28 Oracle9i JDBC Developer's Guide and Reference

JDBC in the Server: the Server-Side Internal Driver

retrieves errors from the stack and places them in a chain of
Or acl eSQLExcept i on objects.

You can use the following methods in processing these exceptions:

SQ.Excepti on get Next Exception() (standard method)

This method returns the next exception in the chain (or nul | if no further
exceptions). You can start with the first exception you receive and work through
the chain.

i nt get NunPar anet er s() (Oracle extension)

Errors from the server usually include parameters, or variables, that are part of
the error message. These may indicate what type of error occurred, what kind
of operation was being attempted, or the invalid or affected values.

This method returns the number of parameters included with this error.
Obj ect[] get Paramet er s() (Oracle extension)

This method returns a Java Obj ect [] array containing the parameters
included with this error.

Example Following is an example of server-side error processing:

try

{

}

/] should get "ORA-942: table or view does not exist"
stnt.execute("drop table no_such_table");

catch (Oracl eSQLException e)

{

System out . println(e.getMessage());
[l prints "ORA-942: table or view does not exist"

System out . println(e.getNunParaneters());
[l prints "1"

bj ect[] parans = e.getParameters();

System out . println(paranms[0]);
/1 prints "NO _SUCH TABLE"

Advanced Topics 18-29

JDBC in the Server: the Server-Side Internal Driver

Session and Transaction Context for the Server-Side Internal Driver

The server-side driver operates within a default session and default transaction
context. The default session is the session in which the JVM was invoked. In effect,
you are already connected to the database on the server. This is different from the
client side where there is no default session: you must explicitly connect to the
database.

Auto-commit mode is disabled in the server. You must manage transaction COVM T
and ROLLBACK operations explicitly by using the appropriate methods on the
connection object:

conn.comit();

or:

conn. rol | back();

Testing JDBC on the Server

Almost any JDBC program that can run on a client can also run on the server. All
the programs in the sanpl es directory can be run on the server with only minor
modifications. Usually, these modifications concern only the connection statement.

For example, consider the test program JdbcCheckup. j ava described in "Testing
JDBC and the Database Connection: JdbcCheckup" on page 2-9. If you want to run
this program on the server and connect with the

Dri ver Manager . get Connect i on() method, then open the file in your favorite
text editor and change the driver name in the connection string from "oci " to

"kpr b". For example:

Connection conn = DriverManager. get Connection
("jdbc:oracl e: kprb: @ + database, user, password);

The advantage of using this method is that you must change only a short string in
your original program. The disadvantage is that you still must provide the user,
password, and database information, even though the driver will discard it. In
addition, if you issue the get Connect i on() method again, the driver will create
another new (and unnecessary) connection object.

However, if you connect with def aul t Connect i on(), the preferred method of
connecting to the database from the server-side internal driver, you do not have to
enter any uset, password, or database information. You can delete these statements
from your program.

18-30 Oracle9i JDBC Developer's Guide and Reference

JDBC in the Server: the Server-Side Internal Driver

For the connection statement, use:

Connection conn = new oracle.jdbc. Oracl eDriver().defaul t Connection();

The following example is a rewrite of the JdbcCheckup. j ava program which
uses the def aul t Connecti on() connection statement. The connection statement
is printed in bold. The unnecessary user, password, and database information
statements, along with the utility function to read from standard input, have been
deleted.

/*

* This sanpl e can be used to check the JDBC installation.

* Just run it and provide the connect information. It will select
* "Hello Wrld" fromthe database.

*|

/] You need to inport the java.sql package to use JDBC

inport java.sql.*;

/] W inport java.io to be able to read fromthe command |ine
inport java.io.*;

class JdbcCheckup

{
public static void main (String args []) throws SQ.Exception, | CException
{
/1 Load the Oracle JDBC driver
Driver Manager . registerDriver(new oracle.jdbc. Oracl eDriver());
Connection conn =
new oracle.jdbc. OracleDriver ().defaultConnection ();
Il Create a statement
Statement stnmt = conn.createStatenment ();
/] Do the SQL "Hello World" thing
Resul t Set rset = stnt.executeQuery ("SELECT 'Hello World FROM dual");
while (rset.next ())
Systemout.printin (rset.getString (1));
Systemout.printlin ("Your JDBCinstallationis correct.");
}
}

Advanced Topics 18-31

JDBC in the Server: the Server-Side Internal Driver

Loading an Application into the Server

When loading an application into the server, you can load . cl ass files that you
have already compiled on the client, or you can load . j ava source files and have
them compiled automatically in the server.

In either case, use the Oracle | oadj ava client-side utility to load your files. You can
either specify source file names on the command line (note that the command line
understands wildcards), or put the files into a JAR file and specify the JAR file name
on the command line. The | oadj ava utility is discussed in detail in the Oracle9i
Java Developer’s Guide.

The | oadj ava script, which runs the actual utility, is in the bi n subdirectory under
your [Or acl e Hone] directory. This directory should already be in your path once
Oracle has been installed.

Note: As of release 8.1.6, the | oadj ava utility does support
compressed files.

Loading Class Files into the Server

Consider a case where you have three class files in your application: Fool. cl ass,
Foo2. cl ass, and Foo3. cl ass. The following three examples demonstrate: 1)
specifying the individual class file names; 2) specifying the class file names using a
wildcard; and 3) specifying a JAR file that contains the class files.

Each class is written into its own class schema object in the server.
These three examples use the default OCI driver in loading the files:

| oadj ava -user scott/tiger Fool.class Foo2.class Foo3.cl ass

or:

| oadj ava -user scott/tiger Foo*.class

or:

| oadj ava -user scott/tiger Foo.jar

Or use the following command to load with the Thin driver (specifying the - t hi n
option and an appropriate URL):

| oadjava -thin -user scott/tiger@ ocal host:1521: ORCL Foo.jar

18-32 Oracle9i JDBC Developer's Guide and Reference

JDBC in the Server: the Server-Side Internal Driver

(Whether to use an OCI driver or the Thin driver to load classes depends on your
particular environment and which performs better for you.)

Note: Because the server-side embedded JVM uses JDK 1.2.x, it is
advisable to compile classes under JDK 1.2.x if they will be loaded
into the server. This will catch incompatibilities during compilation,
instead of at runtime (for example, JDK 1.1.x artifacts such as
leftover use of the or acl e. j dbc2 package).

Loading Source Files into the Server

If you enable the | oadj ava -resol ve option in loading a . j ava source file, then
the server-side compiler will compile your application as it is loaded, resulting in
both a source schema object for the original source code, and one or more class
schema objects for the compiled output.

If you do not specify - r esol ve, then the source is loaded into a source schema
object without any compilation. In this case, however, the source is implicitly
compiled the first time an attempt is made to use a class defined in the source.

For example, run | oadj ava as follows to load and compile Foo. j ava, using the
default OCI driver:

| oadj ava -user scott/tiger -resolve Foo.java

Or use the following command to load with the Thin driver (specifying the - t hi n
option and an appropriate URL):
| oadjava -thin -user scott/tiger@ ocal host:1521: ORCL -resol ve Foo.java

Either of these will result in appropriate class schema objects being created in
addition to the source schema object.

Note: Oracle generally recommends compiling source on the
client whenever possible, and loading the . cl ass files instead of
the source files into the server.

Server-Side Character Set Conversion of oracle.sql.CHAR Data

The server-side internal driver performs character set conversions for
oracl e. sql . CHARin C. This is a different implementation than for the client-side
drivers, which perform character set conversions for or acl e. sql . CHARin Java,

Advanced Topics 18-33

JDBC in the Server: the Server-Side Internal Driver

and offers better performance. For more information on the or acl e. sql . CHAR
class, see "Class oracle.sql. CHAR" on page 6-29.

18-34 Oracle9i JDBC Developer's Guide and Reference

19

Coding Tips and Troubleshooting

This chapter describes how to optimize and troubleshoot a JDBC application or
applet, including the following topics:

JDBC and Multithreading
Performance Optimization
Common Problems

Basic Debugging Procedures

Transaction Isolation Levels and Access Modes

Coding Tips and Troubleshooting 19-1

JDBC and Multithreading

JDBC and Multithreading

The Oracle JDBC drivers provide full support for programs that use Java
multithreading. The following example creates a specified number of threads and
lets you determine whether or not the threads will share a connection. If you choose
to share the connection, then the same JDBC connection object will be used by all
threads (each thread will have its own statement object, however).

Because all Oracle JDBC API methods are synchronized, if two threads try to use
the connection object simultaneously, then one will be forced to wait until the other
one finishes its use.

The program displays each thread ID and the employee name and employee ID
associated with that thread.

Execute the program by entering:

java JdbcMrSanpl e [nunber_of _threads] [share]

Where nunber _of _t hr eads is the number of threads that you want to create, and
shar e specifies that you want the threads to share the connection. If you do not
specify the number of threads, then the program creates 10 by default.
/ *

* This sanple is a mlti-threaded JDBC program

*|

inport java.sql.*;
inport oracle.jdbc. Oracl eStat enent;

public class JdbcMrSanpl e extends Thread

{
/| Default no of threads to 10

private static int NUM OF_THREADS = 10;
int mnyld,

static int c_nextld = 1;

static Connection s_conn = null;

static boolean share _connection = fal se;

synchroni zed static int getNextld()
{

}

return c_nextld++;

19-2 Oracle9i JDBC Developer's Guide and Reference

JDBC and Multithreading

public static void main (String args [])
{
try
{
/* Load the JDBC driver */

Driver Manager . registerDriver(new oracle.jdbc. OracleDriver());

/1 1f NoOf Threads is specified, then read it
if ((args.length > 2) ||
((args.length > 1) && !(args[1].equal s("share"))))

{
Systemout.printIn("Error: Invalid Syntax. ");
Systemout. println("java JdbcMISanpl e [NoOf Threads] [share]");
System exit (0);
}
if (args.length > 1)
{
share_connection = true;
Systemout. println
("All threads will be sharing the same connection");
}

/] get the no of threads if given
if (args.length > 0)
NUM OF_THREADS = I nteger.parselnt (args[0]);

/] get a shared connection
i f (share_connection)
s_conn = DriverManager. get Connection
("jdbc:oracle:" +args[1], "scott","tiger");
I/ Create the threads
Thread[] threadLi st = new Thread[NUM OF THREADS] ;

/] spawn threads
for (int i =0; i < NUM OF _THREADS; i++)
{
threadList[i] = new JdbcMISanpl e();
threadList[i].start();

}

/] Start everyone at the same time
set G eenLight ();

Coding Tips and Troubleshooting 19-3

JDBC and Multithreading

}

/!l wait for all threads to end
for (int i =0; i < NUM OF_THREADS; i++)

threadList[i].join();

}
i f (share_connection)
{
s_conn.close();
s _conn = null;
}
}
catch (Exception e)
{

e.printStackTrace();
}

public JdbcMrSanpl e()

{

}

super () ;
/] Assign an Id to the thread
mnyld = getNextld();

public void run()

{

Connection conn = null;
Resul t Set rs =null;
Statement stnt = null;
try

{

/] Get the connection

i f (share_connection)
stmt = s_conn.createStatement (); // Create a Statenent
el se

{
conn = DriverMnager. get Connection("jdbc: oracle:oci: @,
"scott","tiger");
stnmt = conn.createStatement (); // Create a Statenent
}

19-4 Oracle9i JDBC Developer's Guide and Reference

JDBC and Multithreading

while (!get GreenLight())
yield();

/] Execute the Query
rs = stn.executeQuery ("select * fromEM");

/1 Loop through the results
while (rs.next())
{
Systemout.printin("Thread " + mnyld +
" Enployee Id : " + rs.getlnt(1l) +
" Name : " + rs.getString(2));
yield(); // Yield To other threads
}

/1 Cose all the resources
rs.close();
rs = null;

/l Close the statenent
stnt.close();
stmt = null;

/1 Cose the [ocal connection
if ((!share_connection) & (conn != null))
{
conn. cl ose();
conn = null;
}
Systemout.println("Thread " + mnyld + " is finished. ");
}
catch (Exception e)
{
Systemout.println("Thread " + mnyld + " got Exception: " + e);
e.printStackTrace();
return;
}
}

static bool ean greenLight = fal se;
static synchronized void setGeenLight () { greenLight = true; }
synchroni zed bool ean get GreenLight () { return greenLight; }

Coding Tips and Troubleshooting 19-5

Performance Optimization

Performance Optimization

You can significantly enhance the performance of your JDBC programs by using
any of these features:

= Disabling Auto-Commit Mode
« Standard Fetch Size and Oracle Row Prefetching
= Standard and Oracle Update Batching

Disabling Auto-Commit Mode

Auto-commit mode indicates to the database whether to issue an automatic COVMM T
operation after every SQL operation. Being in auto-commit mode can be expensive
in terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the set Aut oConmi t () method of the connection
object (either j ava. sql . Conecti onororacl e. jdbc. O acl eConnecti on).

In auto-commit mode, the COMM T operation occurs either when the statement
completes or the next execute occurs, whichever comes first. In the case of
statements returning a Resul t Set , the statement completes when the last row of
the Resul t Set has been retrieved or when the Resul t Set has been closed. In
more complex cases, a single statement can return multiple results as well as output
parameter values. Here, the COMM T occurs when all results and output parameter
values have been retrieved.

If you disable auto-commit mode with a set Aut oConmi t (f al se) call, then you
must manually commit or roll back groups of operations using the conmmi t () or
rol | back() method of the connection object.

Example: Disabling AutoCommit The following example illustrates loading the driver
and connecting to the database. Because new connections are in auto-commit mode
by default, this example shows how to disable auto-commit. In the example, conn
represents the Connect i on object, and st nt represents the St at ement object.

/1 Load the Oracle JDBC driver
Driver Manager . registerDriver(new oracle.jdbc. Oracl eDriver());

/1 Connect to the database
/] You can put a database hostname after the @sign in the connection URL.
Connection conn =

Driver Manager . get Connection ("jdbc:oracle:oci: @, "scott", "tiger");

19-6 Oracle9i JDBC Developer's Guide and Reference

Performance Optimization

/]l It's faster when auto commt is off
conn. set Aut oCommi t (fal se);

I/ Create a Statement
Statement stnt = conn.createStatenment ();

Standard Fetch Size and Oracle Row Prefetching

Oracle JDBC connection and statement objects allow you to specify the number of
rows to prefetch into the client with each trip to the database while a result set is
being populated during a query. You can set a value in a connection object that
affects each statement produced through that connection, and you can override that
value in any particular statement object. The default value in a connection object is
10. Prefetching data into the client reduces the number of round trips to the server.

Similarly, and with more flexibility, JDBC 2.0 allows you to specify the number of
rows to fetch with each trip, both for statement objects (affecting subsequent
queries) and for result set objects (affecting row refetches). By default, a result set
uses the value for the statement object that produced it. If you do not set the JDBC
2.0 fetch size, then the Oracle connection row-prefetch value is used by default.

For more information, see "Oracle Row Prefetching" on page 12-20 and "Fetch Size"
on page 13-24.

Standard and Oracle Update Batching

The Oracle JDBC drivers allow you to accumulate | NSERT, DELETE, and UPDATE
operations of prepared statements at the client and send them to the server in
batches. This feature reduces round trips to the server. You can either use Oracle
update batching, which typically executes a batch implicitly once a pre-set batch
value is reached, or standard update batching, where the batch is executed
explicitly.

For a description of the update batching models and how to use them, see "Update
Batching" on page 12-2.

Coding Tips and Troubleshooting 19-7

Common Problems

Common Problems

This section describes some common problems that you might encounter while
using the Oracle JDBC drivers. These problems include:

= Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
« Memory Leaks and Running Out of Cursors
« Boolean Parameters in PL/SQL Stored Procedures

= Opening More Than 16 OCI Connections for a Process

Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables

In PL/SQL, CHAR columns defined as OUT or | N/QUT variables are returned to a
length of 32767 bytes, padded with spaces as needed. Note that VARCHAR2 columns
do not exhibit this behavior.

To avoid this problem, use the set MaxFi el dSi ze() method on the St at errent
object to set a maximum limit on the length of the data that can be returned for any
column. The length of the data will be the value you specify for

set MaxFi el dSi ze(), padded with spaces as needed. You must select the value
for set MaxFi el dSi ze() carefully, because this method is statement-specific and
affects the length of all CHAR, RAWLONG, LONG RAWand VARCHAR2 columns.

To be effective, you must invoke the set MaxFi el dSi ze() method before you
register your OUT variables.

Memory Leaks and Running Out of Cursors

If you receive messages that you are running out of cursors or that you are running
out of memory, make sure that all your St at ement and Resul t Set objects are
explicitly closed. The Oracle JDBC drivers do not have finalizer methods. They
perform cleanup routines by using the cl ose() method of the Resul t Set and

St at ement classes. If you do not explicitly close your result set and statement
objects, significant memory leaks can occur. You could also run out of cursors in the
database. Closing a result set or statement releases the corresponding cursor in the
database.

Similarly, you must explicitly close Connect i on objects to avoid leaking and
running out of cursors on the server side. When you close the connection, the JDBC
driver closes any open statement objects associated with it, thus releasing the cursor
objects on the server side.

19-8 Oracle9i JDBC Developer's Guide and Reference

Common Problems

Boolean Parameters in PL/SQL Stored Procedures

Due to a restriction in the OCI layer, the JDBC drivers do not support the passing of
BOOLEAN parameters to PL/SQL stored procedures. If a PL/SQL procedure
contains BOOLEAN values, you can work around the restriction by wrapping the
PL/SQL procedure with a second PL/SQL procedure that accepts the argument as
an | NT and passes it to the first stored procedure. When the second procedure is
called, the server performs the conversion from | NT to BOOLEAN.

The following is an example of a stored procedure, BOOLPROC, that attempts to pass
a BOOLEAN parameter, and a second procedure, BOOLWRAP, that performs the
substitution of an | NT value for the BOOLEAN.

CREATE OR REPLACE PROCEDURE bool proc(x bool ean)
AS
BEG N
[...]
END;
CREATE OR REPLACE PROCEDURE bool wrap(x int)
AS
BEG N
IF (x=1) THEN
bool proc(TRUE) ;
ELSE
bool proc(FALSE);
END | F;
END;

I/ Create the database connection
Connection conn = DriverManager. get Connection

("jdbc:oracle:oci: @...hoststring...>", "scott", "tiger");
Cal I abl eStatenent cs = conn. prepareCall ("begin boolwap(?); end;");
cs.setint(1, 1);
cs. execute ();

Opening More Than 16 OCI Connections for a Process

You might find that you are not able to open more than approximately 16 JDBC-OCI
connections for a process at any given time. The most likely reasons for this would
be either that the number of processes on the server exceeded the limit specified in
the initialization file, or that the per-process file descriptors limit was exceeded. It is

Coding Tips and Troubleshooting 19-9

Common Problems

important to note that one JDBC-OCI connection can use more than one file
descriptor (it might use anywhere between 3 and 4 file descriptors).

If the server allows more than 16 processes, then the problem could be with the
per-process file descriptor limit. The possible solution would be to increase this
limit.

19-10 Oracle9i JDBC Developer's Guide and Reference

Basic Debugging Procedures

Basic Debugging Procedures
This section describes strategies for debugging a JDBC program:
= Oracle Net Tracing to Trap Network Events
= Third Party Debugging Tools

For information about processing SQL exceptions, including printing stack traces to
aid in debugging, see "Processing SQL Exceptions" on page 3-34.

Oracle Net Tracing to Trap Network Events

You can enable client and server Oracle-Net trace to trap the packets sent over
Oracle Net. You can use client-side tracing only for the JDBC OCI driver; it is not
supported for the JDBC Thin driver. You can find more information on tracing and
reading trace files in the Oracle Net Services Administrator’s Guide.

The trace facility produces a detailed sequence of statements that describe network
events as they execute. "Tracing" an operation lets you obtain more information on
the internal operations of the event. This information is output to a readable file that
identifies the events that led to the error. Several Oracle Net parameters in the
SQLNET. ORA file control the gathering of trace information. After setting the
parameters in SQLNET. ORA, you must make a new connection for tracing to be
performed.

The higher the trace level, the more detail is captured in the trace file. Because the
trace file can be hard to understand, start with a trace level of 4 when enabling
tracing. The first part of the trace file contains connection handshake information,
so look beyond this for the SQL statements and error messages related to your JDBC
program.

Note: The trace facility uses a large amount of disk space and
might have significant impact upon system performance. Therefore,
enable tracing only when necessary.

Coding Tips and Troubleshooting 19-11

Basic Debugging Procedures

Client-Side Tracing
Set the following parameters in the SQLNET. ORA file on the client system.

TRACE_LEVEL_CLIENT

Purpose: Turns tracing on/off to a certain specified level.
Default Value: 0 or OFF

Available = 0or OFF - No trace output

Values:

« 4 orUSER - User trace information

« 10 or ADMIN - Administration trace information

= 16 or SUPPORT - WorldWide Customer Support trace information
Example: TRACE_LEVEL_CLIENT=10

TRACE_DIRECTORY_CLIENT

Purpose: Specifies the destination directory of the trace file.
Default Value: $ORACLE_HOME/network/trace
Example: on UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces

on Windows NT: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES

TRACE_FILE_CLIENT

Purpose: Specifies the name of the client trace file.
Default Value: SQLNET.TRC
Example: TRACE_FILE_CLIENT=cli_Connectionl.trc

Note: Ensure that the name you choose for the TRACE_FI LE_
CLI ENT file is different from the name you choose for the TRACE _
FI LE_SERVERfile.

TRACE_UNIQUE_CLIENT

Purpose: Gives each client-side trace a unique name to prevent each trace file from
being overwritten with the next occurrence of a client trace. The PID is
attached to the end of the file name.

Default Value: OFF

19-12 Oracle9i JDBC Developer's Guide and Reference

Basic Debugging Procedures

Purpose: Gives each client-side trace a unique name to prevent each trace file from
being overwritten with the next occurrence of a client trace. The PID is
attached to the end of the file name.

Example: TRACE_UNIQUE_CLIENT = ON

Server-Side Tracing

Set the following parameters in the SQLNET. ORA file on the server system. Each
connection will generate a separate file with a unique file name.

TRACE_LEVEL_SERVER

Purpose: Turns tracing on/off to a certain specified level.
Default Value: 0 or OFF

Available = 0or OFF - No trace output

Values:

« 4 orUSER - User trace information

« 10 or ADMIN - Administration trace information

= 16 or SUPPORT - WorldWide Customer Support trace information
Example: TRACE_LEVEL_SERVER=10

TRACE_DIRECTORY_SERVER

Purpose: Specifies the destination directory of the trace file.
Default Value: $ORACLE_HOME/network/trace
Example: TRACE_DIRECTORY_SERVER=/oracle/traces

TRACE_FILE_SERVER

Purpose: Specifies the name of the server trace file.
Default Value: SERVER.TRC
Example: TRACE_FILE_SERVER= svr_Connectionl.trc

Coding Tips and Troubleshooting 19-13

Basic Debugging Procedures

Note: Ensure that the name you choose for the TRACE_FI LE_
SERVERfile is different from the name you choose for the TRACE _
FI LE_CLI ENT file.

Third Party Debugging Tools

You can use tools such as JDBCSpy and JDBCTest from Intersolv to troubleshoot at
the JDBC API level. These tools are similar to ODBCSpy and ODBCTest.

19-14 Oracle9i JDBC Developer's Guide and Reference

Transaction Isolation Levels and Access Modes

Transaction Isolation Levels and Access Modes

Read-only connections are supported by the Oracle server, but not by the Oracle
JDBC drivers.

For transactions, the Oracle server supports only the TRANSACTI ON_READ_
COWM TTED and TRANSACTI ON_SERI ALI ZABLE transaction isolation levels. The
default is TRANSACTI ON_READ_COWM TTED. Use the following methods of the
oracl e.jdbc. Oracl eConnect i on interface to get and set the level:

« getTransactionlsol ati on() : Gets this connection’s current transaction
isolation level.

= setTransactionl sol ati on() : Changes the transaction isolation level,
using one of the TRANSACTI ON_* values.

Coding Tips and Troubleshooting 19-15

Transaction Isolation Levels and Access Modes

19-16 Oracle9i JDBC Developer's Guide and Reference

20

Reference Information

This chapter contains detailed JDBC reference information, including the following
topics:

= Valid SQL-JDBC Datatype Mappings

= Supported SQL and PL/SQL Datatypes
« Embedded SQL92 Syntax

« Oracle JDBC Notes and Limitations

« Related Information

Reference Information 20-1

Valid SQL-JDBC Datatype Mappings

Valid SQL-JDBC Datatype Mappings

Table 3-2 in Chapter 3 describes the default mappings between Java classes and
SQL datatypes supported by the Oracle JDBC drivers. Compare the contents of the
JDBC Datatypes, Standard Java Types and SQL Datatypes columns in Table 3-2
with the contents of Table 20-1 below.

Table 20-1 lists all the possible Java types to which a given SQL datatype can be
validly mapped. The Oracle JDBC drivers will support these "non-default"
mappings. For example, to materialize SQL CHAR data in an or acl e. sql . CHAR
object use the get CHAR() method. To materialize it asaj ava. mat h. Bi gDeci nal
object, use the get Bi gDeci mal () method.

Notes:

= For the following SQL datatypes, or acl e. sql . ORADat a or
or acl e. sqgl . Dat umcan be materialized as java types.

= For classes where or acl e. sql . ORADat a appears in italic,
these can be generated by JPublisher.

Table 20-1 Valid SQL Datatype-Java Class Mappings

These SQL datatypes: Can be materialized as these Java types:

CHAR, VARCHAR?2, LONG oracle.sql. CHAR
java.lang.String
java.sql.Date
java.sql.Time
java.sql. Timestamp
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal

byte, short, int, long, float, double

20-2 Oracle9i JDBC Developer's Guide and Reference

Valid SQL-JDBC Datatype Mappings

Table 20-1 Valid SQL Datatype-Java Class Mappings (Cont.)

These SQL datatypes:

Can be materialized as these Java types:

DATE

oracle.sqL. DATE
java.sql.Date
java.sql.Time
java.sql. Timestamp

java.lang.String

NUMBER

oracle.sq. NUMBER
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal

byte, short, int, long, float, double

OPAQUE

oracle.sql. OPAQUE

RAW, LONG RAW

oracle.sqLRAW
byte([]

ROWID

oracle.sqL.CHAR
oracle.sqLROWID

java.lang.String

BFILE

oracle.sqL.BFILE

BLOB

oracle.sql. BLOB
java.sql.Blob (oracle.jdbc2.Blob under JDK 1.1.x)

CLOB

oracle.sql. CLOB
java.sql.Clob (oracle.jdbc2.Clob under JDK 1.1.x)

Object types and SQLJ types
TS

oracle.sql. STRUCT
oracle.sql. TIMESTAMP

Reference Information 20-3

Valid SQL-JDBC Datatype Mappings

Table 20-1 Valid SQL Datatype-Java Class Mappings (Cont.)

These SQL datatypes: Can be materialized as these Java types:

TSTZ oracle.sql. TIMESTAMPTZ

TSLTZ oracle.sql. TIMESTAMPLTZ
java.sql.Struct (oracle.jdbc2.Struct under JDK 1.1.x)
java.sql.SqlData
oracle.sql. ORAData

Reference types oracle.sql.REF
java.sql.Ref (oracle.jdbc2.Ref under JDK 1.1.x)
oracle.sql. ORAData

Nested table types and oracle.sql. ARRAY

VARRAY types
java.sql.Array (oracle.jdbc2.Array under JDK 1.1.x)
oracle.sql. ORAData

Notes:

= The type UROW Dis not supported.

« Theoracl e. sgl . Dat umclass is abstract. The value passed to
a parameter of type or acl e. sql . Dat ummust be of the Java
type corresponding to the underlying SQL type. Likewise, the
value returned by a method with return type
oracl e. sql . Dat ummust be of the Java type corresponding
to the underlying SQL type.

« Themappings to or acl e. sql classes are optimal if no
conversion from SQL format to Java format is necessary.

20-4 Oracle9i JDBC Developer's Guide and Reference

Supported SQL and PL/SQL Datatypes

Supported SQL and PL/SQL Datatypes

The tables in this section list SQL and PL/SQL datatypes, and whether the Oracle
JDBC drivers and SQL]J support them. Table 20-2 describes Oracle JDBC driver and
SQLJ support for SQL datatypes.

Table 20-2 Support for SQL Datatypes

SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
BFILE yes yes
BLOB yes yes
CHAR yes yes
CLOB yes yes
DATE yes yes
NCHAR no no
NCHAR VARYING no no
NUMBER yes yes
NVARCHAR2 no no
RAW yes yes
REF yes yes
ROWID yes yes
UROWID no no
VARCHAR2 yes yes

Table 20-3 describes Oracle JDBC driver and SQLJ support for the ANSI-supported
SQL datatypes.

Table 20-3 Support for ANSI-92 SQL Datatypes
ANSI-Supported SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

CHARACTER yes yes
DEC yes yes
DECIMAL yes yes
DOUBLE PRECISION yes yes

Reference Information 20-5

Supported SQL and PL/SQL Datatypes

Table 20-3 Support for ANSI-92 SQL Datatypes (Cont.)

ANSI-Supported SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

FLOAT yes yes
INT yes yes
INTEGER yes yes
NATIONAL CHARACTER no no
NATIONAL CHARACTER no no
VARYING

NATIONAL CHAR yes yes
NATIONAL CHAR VARYING no no
NCHAR yes yes
NCHAR VARYING no no
NUMERIC yes yes
REAL yes yes
SMALLINT yes yes
VARCHAR yes yes

Table 20-4 describes Oracle JDBC driver and SQLJ support for SQL User-Defined

types.

Table 20—4 Support for SQL User-Defined Types

SQL User-Defined type Supported by JDBC Drivers? Supported by SQLJ?
OPAQUE yes no

Reference types yes yes

SQLJ types (JAVA_STRUCT) yes no

Object types (JAVA_OBJECT) yes yes

Nested table types and VARRAY yes yes

types

20-6 Oracle9i JDBC Developer's Guide and Reference

Supported SQL and PL/SQL Datatypes

Note: SQL]J types are described in the Information Technology -
SQLJ - Part 2: SQL Types using the JAVATM Programming Language
document (ANSI NCITS 331.2-2000).

Table 20-5 describes Oracle JDBC driver and SQLJ support for PL/SQL datatypes.
Note that PL/SQL datatypes include these categories:

scalar types

scalar character types (includes boolean and date datatypes)
composite types

reference types

LOB types

Table 20-5 Support for PL/SQL Datatypes

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
Scalar Types:

BINARY INTEGER yes yes
DEC yes yes
DECIMAL yes yes
DOUBLE PRECISION yes yes
FLOAT yes yes
INT yes yes
INTEGER yes yes
NATURAL yes yes
NATURALn no no
NUMBER yes yes
NUMERIC yes yes
PLS_INTEGER yes yes
POSITIVE yes yes
POSITIVEn no no

Reference Information 20-7

Supported SQL and PL/SQL Datatypes

Table 20-5 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
REAL yes yes
SIGNTYPE yes yes
SMALLINT yes yes
Scalar Character Types:

CHAR yes yes
CHARACTER yes yes
LONG yes yes
LONG RAW yes yes
NCHAR no no
NVARCHAR2 no no
RAW yes yes
ROWID yes yes
STRING yes yes
UROWID no no
VARCHAR yes yes
VARCHAR2 yes yes
BOOLEAN yes yes
DATE yes yes
Composite Types:

RECORD no no
TABLE no no
VARRAY yes yes
Reference Types:

REF CURSOR types yes yes
object reference types yes yes
LOB Types:

BFILE yes yes

20-8 Oracle9i JDBC Developer's Guide and Reference

Supported SQL and PL/SQL Datatypes

Table 20-5 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
BLOB yes yes
CLOB yes yes
NCLOB yes yes
Notes:

= The types NATURAL, NATURALN, PCSI Tl VE, PCSI Tl VEn, and
SI GNTYPE are subtypes of Bl NARY | NTEGER.

« The types DEC, DECI MAL, DOUBLE PRECI SI ON, FLOAT, | NT,
| NTEGER, NUMERI C, REAL, and SMALLI NT are subtypes of
NUVBER.

Reference Information 20-9

Embedded SQL92 Syntax

Embedded SQL92 Syntax

Oracle's JDBC drivers support some embedded SQL92 syntax. This is the syntax
that you specify between curly braces. The current support is basic. This section
describes the support offered by the drivers for the following SQL92 constructs:

= Time and Date Literals

= Scalar Functions

= LIKE Escape Characters

« Outer Joins

= Function Call Syntax

Where driver support is limited, these sections also describe possible workarounds.
Disabling Escape Processing Escape processing for SQL92 syntax is enabled by
default, which results in the JDBC driver performing escape substitution before
sending the SQL code to the database. If you want the driver to use regular Oracle

SQL syntax, which is more efficient than SQL92 syntax and escape processing, then
use this statement:

stmt. set EscapePr ocessing(fal se);

Note: Because prepared statements have usually been parsed
prior to a call to set EscapePr ocessi ng(), disabling escape
processing for prepared statements will probably have no affect.

Time and Date Literals

Databases differ in the syntax they use for date, time, and timestamp literals. JDBC
supports dates and times written only in a specific format. This section describes the
formats you must use for date, time, and timestamp literals in SQL statements.

Date Literals
The JDBC drivers support date literals in SQL statements written in the format:

{d "yyyy-mmdd’}

Where yyyy- nm dd represents the year, month, and day—for example:
{d ’1995-10-22'}

20-10 Oracle9i JDBC Developer's Guide and Reference

Embedded SQL92 Syntax

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "22 OCT 1995".

This code snippet contains an example of using a date literal in a SQL statement.

/1 Connect to the database
/] You can put a database nane after the @sign in the connection URL.
Connection conn = DriverManager. get Connection

("jdbc:oracle:oci: @, "scott", "tiger");

I/ Create a Statement
Statement stnt = conn.createStatenment ();

/] Select the ename colum fromthe enp table where the hiredate i s Jan-23-1982
Resul t Set rset = stnt.executeQuery
(" SELECT enanme FROM enp WHERE hiredate = {d '1982-01-23'}");

/] Iterate through the result and print the enployee names
while (rset.next ())
Systemout.printin (rset.getString (1));

Time Literals
The JDBC drivers support time literals in SQL statements written in the format:

{t "hh:mmss’}

where hh: mm ss represents the hours, minutes, and seconds—for example:

{t ' 05:10: 45}

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "05:10:45".

If the time is specified as:

{t "14:20:50'}

Then the equivalent Oracle representation would be "14:20:50", assuming the server
is using a 24-hour clock.

This code snippet contains an example of using a time literal in a SQL statement.

Resul t Set rset = stnt.executeQuery
(" SELECT enanme FROM enp WHERE hiredate = {t '12:00:00'}");

Reference Information 20-11

Embedded SQL92 Syntax

Timestamp Literals

The JDBC drivers support timestamp literals in SQL statements written in the
format:

{ts "yyyy-mmdd hh:mmss.f..."}

where yyyy- mm dd hh: mm ss. f... represents the year, month, day, hours,
minutes, and seconds. The fractional seconds portion ("f...") is optional and can be
omitted. For example: {ts ' 1997-11-01 13: 22: 45’ } represents, in Oracle
format, NOV 01 1997 13:22:45.

This code snippet contains an example of using a timestamp literal in a SQL
statement.

Resul t Set rset = stnt.executeQuery
(" SELECT ename FROM enp WHERE hiredate = {ts '1982-01-23 12:00:00'}");

Scalar Functions

The Oracle JDBC drivers do not support all scalar functions. To find out which
functions the drivers support, use the following methods supported by the
Oracle-specific or acl e. j dbc. Or acl eDat abaseMet aDat a class and the
standard Java j ava. sql . Dat abaseMet adat a interface:

= getNumericFunctions(): Returns a comma-separated list of math functions
supported by the driver. For example, ABS(nurnber), COS(f | oat),
SQRT(f | oat).

= getStringFunctions():Returns a comma-separated list of string functions
supported by the driver. For example, ASCl | (st ri ng), LOCATE(st ri ngl,
string2,start).

= get Systenfunctions() : Returns a comma-separated list of system functions
supported by the driver. For example, DATABASE(), | FNULL(expr essi on,
val ue), USER().

= get Ti meDat eFunct i ons() : Returns a comma-separated list of time and date
functions supported by the driver. For example, CURDATE(),
DAYOFYEAR(dat e), HOUR(t i ne) .

Oracle's JDBC drivers do not support the function keyword, 'f n'. If you try to use
this keyword, for example:

{fn concat ("Oracle", "8i") }

20-12 Oracle9i JDBC Developer's Guide and Reference

Embedded SQL92 Syntax

Then you will get the error "Non supported SQL92 token at position xx:
f n" when you run your Java application. The workaround is to use Oracle SQL
syntax.

For example, instead of using the f n keyword in embedded SQL92 syntax:

Statement stnt = conn.createStatenment ();
stnt . execut eUpdat e(" UPDATE enp SET ename = {fn CONCAT('My', 'Name')}");

Use Oracle SQL syntax:
stnt. execut eUpdat e(" UPDATE enp SET ename = CONCAT('My', 'Name')");

LIKE Escape Characters

Outer Joins

The characters "% and "_" have special meaning in SQL LI KE clauses (you use "%
to match zero or more characters,"_" to match exactly one character). If you want to
interpret these characters literally in strings, you precede them with a special escape
character. For example, if you want to use the ampersand "&" as the escape
character, you identify it in the SQL statement as {escape '&'}:

Statement stnt = conn.createStatenment ();

/] Select the enpno colum fromthe enp table where the enane starts with ' '
Resul t Set rset = stnt.executeQuery
(" SELECT enpno FROM enp WHERE enane LIKE '& % {ESCAPE '&'}");

/] Iterate through the result and print the enpl oyee numbers
while (rset.next ())
Systemout.printin (rset.getString (1));

Note: If you want to use the backslash character (\) as an escape
character, you must enter it twice (that is, \\). For example:

Resul t Set rset = stnt.executeQuery("SELECT enpno FROM enp
VWHERE ename LIKE "_% {escape '\\'}");

Oracle's JDBC drivers do not support outer join syntax: {oj outer-join}. The
workaround is to use Oracle outer join syntax:

Instead of:

Statement stnt = conn.createStatement ();

Reference Information 20-13

Embedded SQL92 Syntax

Resul t Set rset = stnt.executeQuery
(" SELECT enane, dnane
FROM {QJ dept LEFT QUTER JO N enp ON dept.deptno = enp. dept no}
ORDER BY enane");
Use Oracle SQL syntax:

Statement stnt = conn.createStatenment ();
Resul t Set rset = stnt.executeQuery
(" SELECT enane, dnane
FROM enp a, dept b WHERE a.deptno = b.deptno(+)
ORDER BY enane");

Function Call Syntax
Oracle's JDBC drivers support the following procedure and function call syntax:
Procedure calls (without a return value):

{ call procedure_name (argumentl, argunent2,...) }

Function calls (with a return value):

{ ? = call procedure_nane (argunentl, argument2,...) }

SQL92 to SQL Syntax Example

You can write a simple program to translate SQL92 syntax to standard SQL syntax.
The following program prints the comparable SQL syntax for SQL92 statements for
function calls, date literals, time literals, and timestamp literals. In the program, the
oracl e. jdbc. O acl eSql class par se() method performs the conversions.

inport oracle.jdbc. OracleSql;

public class Foo

{
public static void main (String args[]) throws Exception
{
show ("{call foo(?, ?2)}");
show ("{? = call bar (?, ?)}");
show ("{d '1998-10-22'}");
show ("{t '16:22:34'}");
show ("{ts '1998-10-22 16:22:34'}");

20-14 Oracle9i JDBC Developer's Guide and Reference

Embedded SQL92 Syntax

public static void show (String s) throws Exception

{

}
}

Systemout.println (s +" =>" + new OacleSqgl ().parse (s));

The following code is the output that prints the comparable SQL syntax.

{call foo(?, ?)} => BEGN foo(:1, :2); END;

{? =call bar (?, ?)} => BEGAN:1 :=bar (:2, :3); END

{d "1998-10-22'} => TO DATE ('1998-10-22", 'YYYY-MHADD)

{t "16:22:34"} => TO DATE ('16:22:34', 'HH24:M:SS'")

{ts "1998-10-22 16:22:34'} => TO DATE ('1998-10-22 16:22:34', 'YYYY-M\ DD
HH24: M : SS')

Reference Information 20-15

Oracle JDBC Notes and Limitations

Oracle JDBC Notes and Limitations

CursorName

The following limitations exist in the Oracle JDBC implementation, but all of them
are either insignificant or have easy workarounds.

Oracle JDBC drivers do not support the get get Cur sor Narme() and

set Cur sor Name() methods, because there is no convenient way to map them to
Oracle constructs. Oracle recommends using RON Dinstead. For more information
on how to use and manipulate ROWIDs, see "Oracle ROWID Type" on page 6-33.

SQL92 Outer Join Escapes

Oracle JDBC drivers do not support SQL92 outer join escapes. Use Oracle SQL
syntax with "(+)" instead. For more information on SQL92 syntax, see "Embedded
SQL92 Syntax" on page 20-10.

PL/SQL TABLE, BOOLEAN, and RECORD Types

It is not feasible for Oracle JDBC drivers to support calling arguments or return
values of the PL/SQL RECORD, BOOLEAN, or table with non-scalar element types.
However, Oracle JDBC drivers support PL/SQL index-by table of scalar element
types. For a complete description of this, see "Accessing PL/SQL Index-by Tables"
on page 17-21.

As a workaround to PL/SQL RECORD, BOOLEAN, or non-scalar table types, create
wrapper procedures that handle the data as types supported by JDBC. For example,
to wrap a stored procedure that uses PL/SQL booleans, create a stored procedure
that takes a character or number from JDBC and passes it to the original procedure
as BOOLEAN or, for an output parameter, accepts a BOOLEAN argument from the
original procedure and passes it as a CHAR or NUMBER to JDBC. Similarly, to wrap a
stored procedure that uses PL/SQL records, create a stored procedure that handles
a record in its individual components (such as CHAR and NUMBER) or in a structured
object type. To wrap a stored procedure that uses PL/SQL tables, break the data
into components or perhaps use Oracle collection types.

For an example of a workaround for BOOLEAN, see "Boolean Parameters in PL/SQL
Stored Procedures” on page 19-9.

20-16 Oracle9i JDBC Developer's Guide and Reference

Oracle JDBC Notes and Limitations

IEEE 754 Floating Point Compliance

The arithmetic for the Oracle NUMBER type does not comply with the IEEE 754
standard for floating-point arithmetic. Therefore, there can be small disagreements
between the results of computations performed by Oracle and the same
computations performed by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and
guarantees 38 decimal digits of precision. It represents zero, minus infinity, and plus
infinity exactly. For each positive number it represents, it represents a negative
number of the same absolute value.

It represents every positive number between 10°° and (1 - 10°®) * 10'% to full
38-digit precision.

Catalog Arguments to DatabaseMetaData Calls

Certain Dat abaseMet aDat a methods define a cat al og parameter. This
parameter is one of the selection criteria for the method. Oracle does not have
multiple catalogs, but it does have packages. For more information on how the
Oracle JDBC drivers treat the cat al og argument, see "DatabaseMetaData TABLE _
REMARKS Reporting" on page 12-26.

SQLWarning Class

The j ava. sql . SQLVr ni ng class provides information on a database access
warning. Warnings typically contain a description of the warning and a code that
identifies the warning. Warnings are silently chained to the object whose method
caused it to be reported. The Oracle JDBC drivers generally do not support
SQLVr ni ng. (As an exception to this, scrollable result set operations do generate
SQL warnings, but the SQLWAr ni ng instance is created on the client, not in the
database.)

For information on how the Oracle JDBC drivers handle errors, see "Processing SQL
Exceptions" on page 3-34.

Bind by Name

Binding by name is not supported. Under certain circumstances, previous versions
of the Oracle JDBC drivers have allowed binding statement variables by name. In
the following statement, the named variable Enpl d would be bound to the integer
314159.

Prepar edSt at ement p = conn. prepar eSt at ement

Reference Information 20-17

Oracle JDBC Notes and Limitations

(" SELECT name FROM enp WHERE id = : Enpld");
p.setInt(1, 314159);

This capability to bind by name is not part of the JDBC specification, either 1.0 or
2.0, and Oracle does not support it. The JDBC drivers can throw a SQLExcept i on
or produce unexpected results.

Prior releases of the Oracle JDBC drivers did not retain bound values from one call
of execute to the next as specified in JDBC 1.0. Bound values are now retained. For
example:

Prepar edSt at ement p = conn. prepar eSt at ement
(" SELECT name FROM enp WHERE id = :? AND dept = :?");
p.setInt(1, 314159);
p.setString(2, "SALES');
ResultSet rl = p.execute();
p.setint(1, 425260);
Result Set r2 = p.execute();

Previously, a SQLExcept i on would be thrown by the second execut e() call
because no value was bound to the second argument. In this release, the second
execute will return the correct value, retaining the binding of the second argument
to the string "SALES".

If the retained bound value is a stream, then the Oracle JDBC drivers will not reset
the stream. Unless the application code resets, repositions, or otherwise modifies
the stream, the subsequent execute calls will send NULL as the value of the
argument.

20-18 Oracle9i JDBC Developer's Guide and Reference

Related Information

Related Information

This section lists Web sites that contain useful information for JDBC programmers.
Many of the sites are referenced in other sections of this manual. In this list you can
find references to the Oracle JDBC drivers, Oracle SQL], Java technology, the Java
Developer’s Kit APIs (for versions 1.2.x and 1.1.x), the Java Security API, and
resources to help you write signed applets.

Oracle JDBC Drivers and SQLJ
Oracle JDBC Driver Home Page (Oracle Corporation)

http://ww. oracl e. com j ava/j dbc

Oracle SQL] Home Page (Oracle Corporation)

http://ww. oracl e. conl j ava/ sql

Java Technology
Java Technology Home Page (Sun Microsystems, Inc.):

http://ww.javasoft.com

Java Development Kit (JDK1.2.x and 1.1.x) (Sun Microsystems, Inc.):
http://java. sun. com products/jdk

Reference Information 20-19

Related Information

20-20 Oracle9i IDBC Developer's Guide and Reference

A

This appendix describes the following topics:

Row Set Setup and Configuration
Runtime Properties for Row Set
Row Set Listener

Traversing Through the Rows
Cached Row Set

JDBC Row Set

Row Set

Row Set

A-1

Introduction

Introduction

A row set is an object which encapsulates a set of rows. These rows are accessible
though the j avax. sql . RowSet interface. This interface supports component
models of development, like JavaBeans, and is part of JDBC optional package by
JavaSoft.

Three kinds of row set are supported by JavaSoft:
= Cached row set
« JDBC row set

« Web row set

Note: Oracle implements cached row set and JDBC row set, but
not Web row set.

All the row set implementation is in the or acl e. j dbc. r owset package. Web row
set is a semi-connected row set. It has a servlet which has a connection open and the
WebRowSet interface translates the user calls to appropriate request to the servlet
over HTTP. This is targeted at Thin clients which have only HTTP implementation
in them.

Note: The row set feature is available only in JDK 1.2 or later.

The RowSet interface provides a set of properties which can be altered to access the
data in the database through a single interface. It supports properties and events
which forms the core of JavaBeans. It has various properties like connect string, user
name, password, type of connection, the query string itself, and also the parameters
passed to the query. The following code executes a simple query:

rowset.setUrl ("jdbc:oracle:oci:@);
rowset . set Usernane ("SCOTT");
rowset . set Password ("TlI GER");
rowset . set Command (
"SELECT enpno, enane, sal FROM enp WHERE enpno = ?");

/] enpno of enployee nane "KI NG'
rowset.setlnt (1, 7839);

A-2 Oracle9i JIDBC Developer’s Guide and Reference

Introduction

In the above example, the URL, user name, password, SQL query, and bind
parameter required for the query are set as the command properties to retrieve the
employee name and salary. Also, the row set would contain enpno, enare, and
sal for the employee with the enpno as 7839 and whose name is KI NG

Row Set A-3

Row Set Setup and Configuration

Row Set Setup and Configuration

The classes for the row set feature are found in a separate archive, ocr s12. zi p.
This file is located in the $ORACLE_HOWE/ j dbc directory. To use row set, you
need to include this archive in your CLASSPATH.

For Unix (sh), the command is:

CLASSPATH=$CLASSPATH: $ORACLE_HOVE/ j dbc/ |'i b/ ocrs12. zi p
export CLASSPATH

For Windows 2000/NT /98/95, the command is:
set CLASSPATH=%CLASSPATHY% %ORACLE_HOME% j dbc\ | i b\ ocrs12. zi p

This might also be set in the project properties in case you are using an IDE like
Jdeveloper.

Oracle row set interfaces are implemented in the or acl e. j dbc. r owset package.
Import this package to use any of the Oracle row set implementations.

The Or acl eCachedRowSet and Or acl eJDBCRowSet classes implement the

j avax. sql . RowSet interface, which extends j ava. sql . Resul t Set . Row set
not only provides the interfaces of result set, but also some of the properties of the
java. sqgl . Connectionandj ava. sql . Prepar edSt at enent interfaces.
Connections and prepared statements are totally abstracted by this interface.
CachedRowSet is serializable. This class implements the

java.io. Serializabl e interface. This enables the Or acl eCachedRowSet class
to be moved over the network or other JVM sessions.

Also available is the or acl e. j dbc. rowset . Or acl eRowSet Li st ener Adapt er
class.

A-4 Oracle9i JDBC Developer’s Guide and Reference

Runtime Properties for Row Set

Runtime Properties for Row Set

Typically, static properties for the applications can be set for a row set at the
development time and the rest of the properties which are dynamic (are dependent
on runtime) can be set at the runtime. The static properties may include the
connection URL, username, password, connection type, concurrency type of the
row set, or the query itself. The runtime properties, like the bind parameters for the
query, could be bound at runtime. Scenarios where the query itself is a dynamic
property is also common.

Row Set A-5

Row Set Listener

Row Set Listener

The row set feature supports multiple listeners to be registered with the RowSet
object. Listeners can be registered using the addRowSet Li st ener () method and
unregistered through the r enbveRowSet Li st ener () method. A listener should
implement the j avax. sql . RowSet Li st ener interface to register itself as the row
set listener. Three types of events are supported by the RowSet interface:

1. cursor Moved event : Generated whenever there is a cursor movement, which
occurs when the next () or previ ous() methods are called

2. rowChanged event : Generated when a new row is inserted, updated, or
deleted from the row set

3. rowset Changed event : Generated when the whole row set is created or
changed

The following code shows the registration of a row set listener:

M/RowSet Li st ener rowset Li stener =
new MyRowSet Li stener ();
/] adding a rowset |istener.
rowset . addRowSet Li st ener (rowsetListener);

[l inplementation of a rowset |istener
public class M/RowSetLi stener inplenents RowSetListener

{
public void cursorMved(RowSet Event event)
{
[/ action on cursor novenent
}
public void rowChanged(RowSet Event event)
{
/] action on change of row
}
public void rowSet Changed(RowSet Event event)
{
/] action on changi ng of rowset
}

}/1 end of class MyRowSetListener

A-6 Oracle9i JDBC Developer’s Guide and Reference

Row Set Listener

Applications which handle only a few events can implement only the required
events by using the Or acl eRowSet Adapt er class, which is an abstract class with
empty implementation for all the event handling methods.

In the following code, only the r owSet Changed event is handled. The remaining
events are not handled by the application.

rowset . addRowSet Li st ener (new Oracl eRowSet Adapter ()

{
public voi d rowSet Changed(RowSet Event event)
{
/] your action for rowsetChanged
}
}

)

Row Set A-7

Traversing Through the Rows

Traversing Through the Rows

Various methods to traverse through the rows are provided by the RowSet
interface. These properties are inherited directly from the j ava. sql . Resul t Set
interface. The RowSet interface could be used as a Resul t Set interface for
retrieval and updating of data. The RowSet interface provides an optional way to
implement a scrolling and updatable result set if they are not provided by the result
set implementation.

Note: The scrollable properties of the j ava. sql . Resul t Set
interface are also provided by the Oracle implementation of
Resul t Set .

A-8 Oracle9i JIDBC Developer’s Guide and Reference

Cached Row Set

Cached Row Set

A cached row set is a row set implementation where the rows are cached and the row
set does not have a live connection to the database (disconnected) and it is a
serializable object, which provides the standard interface as of the

j avax. sql . RowSet interface. Or acl eCachedRowSet is the implementation of
CachedRowSet by Oracle, and the Or acl eCachedRowSet is used
interchangeably with CachedRowSet .

In the following code, an Or acl eCachedRowSet object is created and the
connection URL, username, password, and the SQL query for the row set is set as
properties. The RowSet object is populated through the execut e method. After the
execut e call, the RowSet object can be used asaj ava. sqgl . Resul t Set object to
retrieve, scroll, insert, delete, or update data.

RowSet rowset = new Oracl eCachedRowSet ();

rowset.setUrl ("jdbc:oracle:oci:@);

rowset . set Usernane ("SCOTT");

rowset . set Password ("TlI GER");

rowset . set Command ("SELECT enpno, enane, sal FROM emp");

rowset . execute ();

while (rowset.next ())

{
Systemout. println ("enpno:
Systemout. println ("enane:
Systemout.println ("sal: "

}

+rowset.getint (1));
+rowset.getString (2));
+rowset.getint (3));

To populate a CachedRowSet object with a query, complete the following steps:
1. Instantiate Or acl eCachedRowSet .

2. Set connection Ur | , User nare, Passwor d, connection type (optional), and the
query string as properties for the RowSet object.

3. Invoke the execut e() method to populate the RowSet object.

CachedRowSet can be populated with the existing Resul t Set object, using the
popul at e() method, as shown in the following code:

/] Executing a query to get the ResultSet object.
Resul t Set rset = pstnt.executeQuery ();

O acl eCachedRowSet rowset = new Oracl eCachedRowSet ();

Row Set A-9

Cached Row Set

/] the obtained ResultSet object is passed to the
/] populate method to populate the data in the

/'] rowset object.

rowset . popul ate (rset);

In the above example, a Resul t Set object is obtained by executing a query and the
retrieved Resul t Set object is passed to the popul at e() method of the cached
row set to populate the contents of the result set into cached row set.

To populate a CachedRowSet object with an already available result set, complete
the following steps:

1. Instantiate Or acl eCachedRowSet .

2. DPass the already available Resul t Set object to the popul at e() method to
populate the RowSet object.

All the interfaces provided by the Resul t Set interface are implemented in
RowSet . The following code shows how to scroll through a row set:
/**

* Scrolling forward, and printing the enpno in

* the order in which it was fetched.

*|
/] going to the first row of the rowset
rowset . beforeFirst ();
while (rowset.next ())

Systemout.println ("enpno: " +rowset.getlnt (1));

Note: Connection properties like transaction isolation or the
concurrency mode of the result set and the bind properties cannot
be set in the case where a pre-existent Resul t Set object is used to
populate the CachedRowSet object, since the connection or result
set on which the property applies would have already been created.

In the example above, the cursor position is initialized to the position before the first
row of the row set by the bef or eFi r st () method. The rows are retrieved in
forward direction using the next () method.
/ * %

* Scrolling backward, and printing the enpno in

* the reverse order as it was fetched.

*/
//going to the last row of the rowset

A-10 Oracle9i JDBC Developer’s Guide and Reference

Cached Row Set

rowset.afterLast ();
while (rowset.previous ())
Systemout.println ("enpno: " +rowset.getint (1));

In the above example, the cursor position is initialized to the position after the last
row of the RowSet . The rows are retrieved in reverse direction using the
previ ous() method of RowSet .

Inserting, updating, and deleting rows are supported by the row set feature as they
are in the result set feature. The following code illustrates the insertion of a row at
the fifth position of a row set:
/ * %

* Inserting arowin the 5th position of the rowset.

x|
/] moving the cursor to the 5th position in the rowset
if (rowset.absol ute(5))

{

rowset. moveTol nsert Row ();
rowset.updatelnt (1, 193);
rowset. updateString (2, "Ashok");
rowset. updatelnt (3, 7200);

/] inserting a rowin the rowset
rowset.insertRow ();

/'l Synchroni zing the data in RowSet with that in the
/'l dat abase.
rowset . accept Changes ();

}

In the above example, a call to the absol ut e() method with a parameter 5 takes
the cursor to the fifth position of the r ow set and a call to the

moveTol nsert Row() method creates a place for the insertion of a new row into
the row set. The updat eXXX() methods are used to update the newly created row.
When all the columns of the row are updated, the i nsert Row() is called to update
the row set. The changes are committed through accept Changes() method.

The following code shows how an Or acl eCachedRowSet object is serialized to a
file and then retrieved:

Il witing the serialized Oracl eCachedRowSet object

{
FileQut put Stream fil eQut put Stream =

new Fi | eQut put Stream ("enp_t ab. dnp");

Row Set A-11

Cached Row Set

Cbj ect Qut put St ream ostream = new
bj ect Qut put Stream (fileQutputStrean;
ostream writeCbject (rowset);
ostream close ();
fileQutputStreamclose ();

}

/] reading the serialized Oracl eCachedRowSet object
{

Filelnput Streamfil el nput Stream = new
Fil el nput Stream ("enp_tab. dnp");
Cbj ect I nput Streamistream = new
Cbj ect I nput Stream (filel nput Streanm;
RowSet rowsetl = (RowSet) istreamreadObject ();
i streamclose ();
filelnputStreamclose ();

}

In the above example, a Fi | eQut put St r eamobject is opened for a enp_t ab. dnp
file, and the populated Or acl eCachedRowSet object is written to the file using
Cbj ect Qut put St r eam This is retrieved using Fi | el nput St r eamand the

Obj ect | nput St r eamobjects.

Or acl eCachedRowSet takes care of the serialization of non-serializable form of
data like | nput St r eam Qut put St r eam BLOBS and CLOBS.

Or acl eCachedRowSet s also implements meta data of its own, which could be
obtained without any extra server roundtrip. The following code shows how you
can obtain meta data for the row set:

Resul t Set Met aDat a metaData = rowset. get MetaData ();
int maxCol = metaData. get Col umCount ();
for (int i =1; i <= maxCol; ++i)
Systemout.printin ("Colum (" + i +") "
+net aDat a. get Col umNane (i));

The above example illustrates how to retrieve a Resul t Set Met aDat a object and
print the column names in the RowSet .

Since the Or acl eCachedRowSet class is serializable, it can be passed across a
network or between JVMs, as done in Remote Method Invocation (RMI). Once the
Oracl eCachedRowSet class is populated, it can move around any JVM, or any
environment which does not have JDBC drivers. Committing the data in the row set
(through the accept Changes() method) requires the presence of JDBC drivers.

A-12 Oracle9i JDBC Developer's Guide and Reference

Cached Row Set

The complete process of retrieving the data and populating it in the

Or acl eCachedRowSet class is performed on the server and the populated row set
is passed on to the client using suitable architectures like RMI or Enterprise Java
Beans (EJB). The client would be able to perform all the operations like retrieving,
scrolling, inserting, updating, and deleting on the row set without any connection to
the database. Whenever data is committed to the database, the accept Changes()
method is called which synchronizes the data in the row set to that in the database.
This method makes use of JDBC drivers which require the JVM environment to
contain JDBC implementation. This architecture would be suitable for systems
involving a Thin client like a Personal Digital Assistant (PDA) or a Network
Computer (NC).

After populating the CachedRowSet object, it can be used as a Resul t Set object
or any other object which can be passed over the network using RMI or any other
suitable architecture.

Some of the other key-features of cached row set are the following;:
= Cloning a row set
= Creating a copy of a row set

= Creating a shared copy of a row set

CachedRowSet Constraints

All the constraints which apply to updatable result set are applicable here, except
serialization, since Or acl eCachedRowSet is serializable. The SQL query has the
following constraints:

« References only a single table in the database
= Contain no join operations
= Selects the primary key of the table it references

In addition, a SQL query should also satisfy the conditions below if inserts are to be
performed:

« Selects all of the non-nullable columns in the underlying table

« Selects all columns that do not have a default value

Note: The CachedRowSet cannot hold a large quantity of data
since all the data is cached in memory.

Row Set A-13

Cached Row Set

Properties which apply to the connection cannot be set after populating the row set
since the properties cannot be applied to the connection after retrieving the data
from the same like, transaction isolation and concurrency mode of the result set.

A-14 Oracle9i JDBC Developer's Guide and Reference

JDBC Row Set

JDBC Row Set

A JDBC row set is another row set implementation. It is a simple, non-serializable
connected row set which provides JDBC interfaces in the form of a Bean interface.
Any call to JDBCRowSet percolates directly to the JDBC interface. The usage of the
JDBC interface is the same as any other row set implementation.

Table A-1 shows how the JDBCRowSet interface differs from CachedRowSet
interface.

Table A-1 The JDBC and Cached Row Sets Compared

Connected Movable Synchronization Presence

to Across of data to of JDBC
RowSet Type Serializable Database JVMs database Drivers
JDBC No Yes No No Yes
Cached Yes No Yes Yes No

The JDBC row set is a connected row set which has a live connection to the database
and all the calls on the JDBC row set are percolated to the mapping call in JDBC
connection, statement, or result set. A cached row set does not have any connection
to the database open.

JDBC row set requires the presence of JDBC drivers where a cached row set does
not require JDBC drivers during manipulation, but during population of the row set
and the committing the changes of the row set.

The following code shows how a JDBC row set is used:

RowSet rowset = new Oracl eJDBCRowSet ();
rowset.setUrl ("java:oracle:oci:@);
rowset . set Usernane ("SCOTT");
rowset . set Password ("TlI GER");
rowset . set Command (
" SELECT enpno, enane, sal FROM enp");
rowset . execute ();
while (rowset.next ())
{
Systemout. println ("enpno:
Systemout. println ("enane:
+ rowset.getString (2));
Systemout.println ("sal:

}

+ rowset.getint (1));

+ rowset.getint (3));

Row Set A-15

JDBC Row Set

In the above example, the connection URL, username, password, and the SQL
query is set as the connection properties to the row set and the query is executed
through the execut e() method and the rows are retrieved and printed.

A-16 Oracle9i JIDBC Developer's Guide and Reference

B

JDBC Error Messages

This appendix briefly discusses the general structure of JDBC error messages, then
lists general JDBC error messages and TTC error messages that the Oracle JDBC
drivers can return. The appendix is organized as follows:

= General Structure of JDBC Error Messages

= General JDBC Messages

« TTC Messages

Each of the two message lists is first sorted by ORA number, and then alphabetically.

For general information about processing JDBC exceptions, see "Processing SQL
Exceptions" on page 3-34.

JDBC Error Messages B-1

General Structure of JDBC Error Messages

General Structure of JDBC Error Messages

The general JDBC error message structure allows runtime information to be
appended to the end of a message, following a colon, as follows:

<error_message>: <extra_i nf o>

For example, a "closed statement" error might be output as follows:

O osed Statenent: next

This indicates that the exception was thrown during a call to the next () method
(of a result set object).

In some cases, the user can find the same information in a stack trace.

B-2 Oracle9i JDBC Developer’s Guide and Reference

General JDBC Messages

General JDBC Messages

This section lists general JDBC error messages, first sorted by ORA number, and then
alphabetically.

JDBC Messages Sorted by ORA Number

ORA Number Message

ORA- 17001 Internal Error

ORA- 17002 | o exception

ORA- 17003 I nvalid col um index

ORA- 17004 Invalid colum type

ORA- 17005 Unsupported col unm type
ORA- 17006 I nvalid col um nane

ORA- 17007 Invalid dynam c col um
ORA- 17008 Cl osed Connection

ORA- 17009 Cl osed St atement
ORA-17010 Cl osed Resul tset

ORA- 17011 Exhaust ed Resul t set

ORA- 17012 Par amet er Type Confli ct
ORA-17014 Resul t Set . next was not call ed
ORA- 17015 St at ement was cancel | ed
ORA-17016 Statenment timed out

ORA- 17017 Cursor already initialized
ORA- 17018 I nvalid cursor

ORA- 17019 Can only describe a query
ORA- 17020 Invalid row prefetch

ORA- 17021 M ssi ng defines

ORA- 17022 M ssing defines at index

JDBC Error Messages B-3

General JDBC Messages

ORA Number Message

ORA- 17023 Unsupported feature

ORA- 17024 No data read

ORA- 17025 Error in defines.isNull ()

ORA- 17026 Nureri c Overfl ow

ORA- 17027 Stream has al ready been cl osed

ORA- 17028 Can not do new defines until the current
ResultSet is closed

ORA- 17029 set ReadOnl y: Read-only connections not
support ed

ORA- 17030 READ COW TTED and SERI ALl ZABLE are the only
valid transaction levels

ORA- 17031 set Aut oCl ose: Only support auto cl ose node on

ORA- 17032 cannot set row prefetch to zero

ORA- 17033 Mal formed SQ.92 string at position

ORA- 17034 Non supported SQ.92 token at position

ORA- 17035 Character Set Not Supported !

ORA- 17036 exception in O acl eNunber

ORA- 17037 Fail to convert between UTF8 and UCS2

ORA- 17038 Byte array not |ong enough

ORA- 17039 Char array not |ong enough

ORA- 17040 Sub Protocol mnmust be specified in connection
URL

ORA- 17041 M ssing IN or OUT paraneter at index:

ORA- 17042 Invalid Batch Val ue

ORA-17043 I nvalid stream maxi mum si ze

ORA- 17044 Internal error: Data array not allocated

ORA- 17045 Internal error: Attenpt to access bind val ues

beyond the batch val ue

B-4 Oracle9i JDBC Developer’s Guide and Reference

General JDBC Messages

ORA Number Message

ORA- 17046 Internal error: Invalid index for data access
ORA- 17047 Error in Type Descriptor parse

ORA- 17048 Undefi ned type

ORA- 17049 I nconsi stent java and sqgl object types

ORA- 17050 no such el enent in vector

ORA- 17051 This APl cannot be be used for non-UDT types
ORA- 17052 This ref is not valid

ORA- 17053 The size is not valid

ORA- 17054 The LOB |l ocator is not valid

ORA- 17055 I nvalid character encountered in

ORA- 17056 Non supported character set

ORA- 17057 Cl osed LOB

ORA- 17058 Internal error: Invalid NLS Conversion ratio
ORA- 17059 Fail to convert to internal representation
ORA- 17060 Fail to construct descriptor

ORA- 17061 M ssi ng descri ptor

ORA- 17062 Ref cursor is invalid

ORA- 17063 Not in a transaction

ORA- 17064 Invalid Sytnax or Database nane is null

ORA- 17065 Conversion class is null

ORA- 17066 Access | ayer specific inplenentation needed
ORA- 17067 Invalid Oracle URL specified

ORA- 17068 Invalid argunment(s) in call

ORA- 17069 Use explicit XA call

ORA- 17070 Data size bigger than max size for this type
ORA- 17071 Exceeded maxi mum VARRAY |init

JDBC Error Messages B-5

General JDBC Messages

ORA Number Message

ORA- 17072 Inserted value too large for colum

ORA- 17073 Logi cal handl e no | onger valid

ORA- 17074 i nvalid nane pattern

ORA- 17075 Invalid operation for forward only resultset

ORA- 17076 Invalid operation for read only resultset

ORA- 17077 Fail to set REF val ue

ORA- 17078 Cannot do the operation as connections are
al ready opened

ORA- 17079 User credentials doesn't match the existing
ones

ORA- 17080 invalid batch conmand

ORA- 17081 error occurred during batching

ORA- 17082 No current row

ORA- 17083 Not on the insert row

ORA- 17084 Cal l ed on the insert row

ORA- 17085 Val ue conflicts occurs

ORA- 17086 Undefined col utm val ue on the insert row

ORA- 17087 | gnored performance hint: setFetchDirection()

ORA- 17088 Unsupported syntax for requested resultset
type and concurrency |eve

ORA- 17089 internal error

ORA- 17090 operation not allowed

ORA- 17091 Unable to create resultset at the requested
type and/or concurrency |eve

ORA- 17092 JDBC statenents cannot be created or executed
at end of call processing

ORA-17093 OCl operation returned OClI _SUCCESS W TH_| NFO

ORA- 17094 Obj ect type version m smatched

B-6 Oracle9i JDBC Developer’s Guide and Reference

General JDBC Messages

ORA Number Message

ORA- 17095 Statement Caching is not enabled for this
Connecti on obj ect

ORA- 17096 St at ement Cachi ng cannot be enabled for this
| ogi cal connection

ORA- 17097 Invalid PL/SQ | ndex Table el enent type

ORA- 17098 Invalid enpty | ob operation

ORA- 17099 Invalid PL/SQL I ndex Table array | ength

ORA- 17100 Invalid database Java Obj ect

ORA- 17101 Invalid properties in OCl Connection Poo
hj ect

ORA- 17102 Bfile is read only

ORA- 17103 i nvalid connection type to return via
get Connecti on. Use getJavaSgl Connecti on
i nst ead

ORA- 17104 SQL statenent to execute cannot be enpty or
nul |

ORA- 17105 connection session time zone was not set

ORA- 17106 i nval id conbi nati on of connections specified

ORA- 17107 i nvalid proxy type specified

ORA- 17108 No max | ength specified in defineColumType

ORA- 17109 standard Java character encodi ng not found

ORA- 17110 execution conpleted with warning

ORA- 17111 Invalid connection cache TTL timeout specified

ORA- 17112 Invalid thread interval specified

ORA- 17113 Thread interval value is nore than the cache
ti meout val ue

ORA- 17114 coul d not use local transaction comit in a

gl obal transaction

JDBC Error Messages B-7

General JDBC Messages

ORA Number Message

ORA- 17115 could not use local transaction rollback in a
gl obal transaction

ORA- 17116 could not turn on auto-comit in an active
gl obal transaction

ORA- 17117 could not set savepoint in an active gl oba
transaction

ORA- 17118 could not obtain ID for a named Savepoi nt

ORA- 17119 could not obtain name for an un-named
Savepoi nt

ORA- 17120 could not set a Savepoint with auto-comit on

ORA- 17121 could not rollback to a Savepoint wth
auto-conmit on

ORA- 17122 could not rollback to a local txn Savepoint in
a gl obal transaction

ORA- 17123 Invalid statenent cache size specified

ORA- 17124 Invalid connection cache Inactivity tinmeout
speci fied

ORA- 17125 | mproper statement type returned by explicit
cache

ORA- 17126 Fi xed Wait tineout el apsed

ORA- 17127 Invalid Fixed Wait tineout specified

B-8 Oracle9i JDBC Developer’s Guide and Reference

General JDBC Messages

JDBC Messages Sorted Alphabetically

ORA Number Message

ORA- 17066 Access | ayer specific inplenentation needed

ORA- 17102 Bfile is read only

ORA- 17038 Byte array not |ong enough

ORA- 17084 Cal l ed on the insert row

ORA- 17028 Can not do new defines until the current
ResultSet is closed

ORA- 17019 Can only describe a query

ORA- 17078 Cannot do the operation as connections are
al ready opened

ORA- 17032 cannot set row prefetch to zero

ORA- 17039 Char array not |ong enough

ORA- 17035 Character Set Not Supported !!

ORA- 17008 Cl osed Connection

ORA- 17057 Cl osed LOB

ORA- 17010 Cl osed Resul tset

ORA- 17009 Cl osed St atement

ORA- 17105 connection session time zone was not set

ORA- 17065 Conversion class is null

ORA- 17118 could not obtain ID for a named Savepoi nt

ORA-17119 coul d not obtain nane for an un-named
Savepoi nt

ORA- 17122 could not rollback to a local txn Savepoint in
a gl obal transaction

ORA- 17121 could not rollback to a Savepoint wth
auto-commit on

ORA- 17120 could not set a Savepoint with auto-comit on

JDBC Error Messages B-9

General JDBC Messages

ORA Number Message

ORA- 17117 coul d not set savepoint in an active gl oba
transaction

ORA- 17116 could not turn on auto-commit in an active
gl obal transaction

ORA-17114 coul d not use local transaction comit in a
gl obal transaction

ORA- 17115 coul d not use local transaction rollback in a
gl obal transaction

ORA- 17017 Cursor already initialized

ORA- 17070 Data size bigger than max size for this type

ORA- 17025 Error in defines.isNull ()

ORA- 17047 Error in Type Descriptor parse

ORA- 17081 error occurred during batching

ORA- 17071 Exceeded maxi mum VARRAY |init

ORA- 17036 exception in O acl eNunber

ORA- 17110 execution conpleted with warning

ORA- 17011 Exhaust ed Resul t set

ORA- 17060 Fail to construct descriptor

ORA- 17037 Fail to convert between UTF8 and UCS2

ORA- 17059 Fail to convert to internal representation

ORA- 17077 Fail to set REF val ue

ORA- 17126 Fi xed Wait tineout el apsed

ORA- 17087 | gnored performance hint: setFetchDirection()

ORA- 17125 | mproper statement type returned by explicit
cache

ORA- 17049 I nconsi stent java and sqgl object types

ORA- 17072 Inserted value too large for colum

ORA- 17089 internal error

B-10 Oracle9i JDBC Developer’s Guide and Reference

General JDBC Messages

ORA Number Message

ORA- 17001 Internal Error

ORA- 17045 Internal error: Attenpt to access bind val ues
beyond the batch val ue

ORA- 17044 Internal error: Data array not allocated

ORA- 17046 Internal error: Invalid index for data access

ORA- 17058 Internal error: Invalid NLS Conversion ratio

ORA- 17068 Invalid argunment(s) in call

ORA- 17080 i nval id batch comrand

ORA- 17042 Invalid Batch Val ue

ORA- 17055 Invalid character encountered in

ORA- 17003 Invalid col um index

ORA- 17006 Invalid col uim nane

ORA- 17004 Invalid colum type

ORA- 17106 i nval i d conbi nati on of connections specified

ORA- 17124 Invalid connection cache Inactivity tinmeout
speci fied

ORA- 17111 Invalid connection cache TTL ti meout specified

ORA- 17103 i nvalid connection type to return via
get Connecti on. Use getJavaSgl Connecti on
i nst ead

ORA- 17018 Invalid cursor

ORA- 17100 Invalid database Java Obj ect

ORA- 17007 Invalid dynam c col um

ORA- 17098 Invalid enpty | ob operation

ORA- 17127 Invalid Fixed Wait tineout specified

ORA- 17074 i nvalid nane pattern

ORA- 17075 Invalid operation for forward only resultset

JDBC Error Messages B-11

General JDBC Messages

ORA Number Message

ORA- 17076 Invalid operation for read only resultset

ORA- 17067 Invalid Oracle URL specified

ORA- 17099 Invalid PL/SQL I ndex Table array | ength

ORA- 17097 Invalid PL/SQ | ndex Table el enent type

ORA- 17101 Invalid properties in OCl Connection Pool
oj ect

ORA- 17107 i nvalid proxy type specified

ORA- 17020 Invalid row prefetch

ORA- 17123 Invalid statenent cache size specified

ORA-17043 I nval id stream maxi mum si ze

ORA- 17064 Invalid Sytnax or Database nane is null

ORA- 17112 Invalid thread interval specified

ORA- 17002 | o exception

ORA- 17092 JDBC statenents cannot be created or executed
at end of call processing

ORA- 17073 Logi cal handl e no | onger valid

ORA- 17033 Mal formed SQ.92 string at position

ORA- 17021 M ssi ng defines

ORA- 17022 M ssing defines at index

ORA- 17061 M ssi ng descri ptor

ORA- 17041 M ssing IN or OUT paraneter at index:

ORA- 17082 No current row

ORA- 17024 No data read

ORA- 17108 No max | ength specified in defineColumType

ORA- 17050 no such el enent in vector

ORA- 17056 Non supported character set

ORA- 17034 Non supported SQ.92 token at position

B-12 Oracle9i JDBC Developer's Guide and Reference

General JDBC Messages

ORA Number Message

ORA- 17063 Not in a transaction

ORA- 17083 Not on the insert row

ORA- 17026 Nuneric Overfl ow

ORA- 17094 Ohj ect type version m smatched

ORA-17093 OCl operation returned OCl _SUCCESS W TH_| NFO

ORA- 17090 operation not allowed

ORA- 17012 Par amet er Type Confli ct

ORA- 17030 READ COW TTED and SERI ALl ZABLE are the only
valid transaction levels

ORA- 17062 Ref cursor is invalid

ORA- 17014 Resul t Set . next was not call ed

ORA- 17031 set Aut oCl ose: Only support auto cl ose node on

ORA- 17029 set ReadOnl y: Read-only connections not
support ed

ORA- 17104 SQL statenent to execute cannot be enpty or
nul |

ORA- 17109 standard Java character encodi ng not found

ORA- 17096 St at ement Cachi ng cannot be enabled for this
| ogi cal connection

ORA- 17095 St atement Caching is not enabled for this
Connecti on obj ect

ORA- 17016 Statement tined out

ORA- 17015 St at ement was cancel | ed

ORA- 17027 Stream has al ready been cl osed

ORA- 17040 Sub Protocol mnmust be specified in connection
URL

ORA- 17054 The LOB locator is not valid

ORA- 17053 The size is not valid

JDBC Error Messages B-13

General JDBC Messages

ORA Number Message

ORA- 17051 This APl cannot be be used for non-UDT types

ORA- 17052 This ref is not valid

ORA- 17113 Thread interval value is nore than the cache
ti meout val ue

ORA- 17091 Unable to create resultset at the requested
type and/or concurrency |eve

ORA- 17086 Undefined col utm val ue on the insert row

ORA- 17048 Undefi ned type

ORA- 17005 Unsupported col unm type

ORA- 17023 Unsupported feature

ORA- 17088 Unsupported syntax for requested resultset
type and concurrency |eve

ORA- 17069 Use explicit XA cal

ORA- 17079 User credentials doesn't match the existing
ones

ORA- 17085 Val ue conflicts occurs

B-14 Oracle9i JDBC Developer’s Guide and Reference

HeteroRM XA Messages

HeteroRM XA Messages

The following are the JDBC error messages that are specific to the HeteroRM XA
feature.

HeteroRM XA Messages Sorted by ORA Number

ORA Number Message

ORA- 17200 Unabl e to properly convert XA open string from
Java to C

ORA- 17201 Unabl e to properly convert XA close string
fromJava to C

ORA- 17202 Unabl e to properly convert RM nane from Java
to C

ORA- 17203 Coul d not cast pointer type to jlong

ORA- 17204 I nput array too short to hold OClI handl es

ORA- 17205 Failed to obtain OCl SveCt x handl e from C XA
usi ng xaoSvcCt x

ORA- 17206 Fail ed to obtain OCl Env handl e from C XA using
xaoEnv

ORA- 17207 The tnsEntry property was not set in
Dat aSour ce

ORA- 17213 C- XA returned XAER RMERR during xa_open

ORA- 17215 C- XA returned XAER | NVAL during xa_open

ORA- 17216 C- XA returned XAER PROTO during xa_open

ORA-17233 C- XA returned XAER RMERR during xa_cl ose

ORA- 17235 C- XA returned XAER I NVAL during xa_cl ose

ORA-17236 C- XA returned XAER PROTO during xa_cl ose

JDBC Error Messages B-15

HeteroRM XA Messages

HeteroRM XA Messages Sorted Alphabetically

ORA Number Message

ORA- 17203 Coul d not cast pointer type to jlong

ORA-17235 C- XA returned XAER I NVAL during xa_cl ose

ORA- 17215 C- XA returned XAER | NVAL during xa_open

ORA-17236 C- XA returned XAER PROTO during xa_cl ose

ORA- 17216 C- XA returned XAER PROTO during xa_open

ORA-17233 C- XA returned XAER RMERR during xa_cl ose

ORA- 17213 C- XA returned XAER RMERR during xa_open

ORA- 17206 Fail ed to obtain OCl Env handl e from C XA using
xaoEnv

ORA- 17205 Failed to obtain OCl SvceCtx handle from C XA
usi ng xaoSvcCt x

ORA- 17204 I nput array too short to hold OCI handl es

ORA- 17207 The tnsEntry property was not set in
Dat aSour ce

ORA- 17202 Unabl e to properly convert RM nane from Java
to C

ORA- 17201 Unabl e to properly convert XA close string
fromJava to C

ORA- 17200 Unabl e to properly convert XA open string from
Java to C

B-16 Oracle9i JDBC Developer’s Guide and Reference

TTC Messages

TTC Messages

This section lists TTC error messages, first sorted by ORA number, and then
alphabetically.

TTC Messages Sorted by ORA Number

ORA Number Message

ORA- 17401 Protocol violation

ORA- 17402 Only one RPA nessage is expected

ORA- 17403 Only one RXH nessage is expected

ORA- 17404 Recei ved nore RXDs than expected

ORA- 17405 UAC length is not zero

ORA- 17406 Exceedi ng maxi mum buffer |ength

ORA- 17407 i nvalid Type Representation(setRep)

ORA- 17408 i nvalid Type Representation(getRep)

ORA- 17409 invalid buffer length

ORA-17410 No nore data to read from socket

ORA- 17411 Data Type representations m smatch

ORA- 17412 Bi gger type length than Maxi mum

ORA- 17413 Excedi ng key size

ORA- 17414 I nsufficient Buffer size to store Col umms
Names

ORA- 17415 This type hasn't been handl ed

ORA-17416 FATAL

ORA- 17417 NLS Problem failed to decode col utm nanes

ORA- 17418 Internal structure's field length error

ORA-17419 I nval i d number of columms returned

ORA- 17420 Oracl e Version not defined

JDBC Error Messages B-17

TTC Messages

ORA Number Message

ORA- 17421 Types or Connection not defined

ORA- 17422 Invalid class in factory

ORA- 17423 Using a PLSQ. bl ock without an | OV defined

ORA- 17424 Attenpting different marshaling operation

ORA- 17425 Returning a streamin PLSQ bl ock

ORA- 17426 Both I N and OUT binds are NULL

ORA- 17427 Using Uninitialized OAC

ORA- 17428 Logon must be called after connect

ORA- 17429 Must be at |east connected to server

ORA- 17430 Must be | ogged on to server

ORA- 17431 SQL Statenent to parse is nul

ORA- 17432 invalid options in all7?

ORA- 17433 i nvalid arguments in cal

ORA- 17434 not in stream ng node

ORA- 17435 invalid nunber of in_out binds in | OV

ORA- 17436 i nval i d nunber of outbinds

ORA- 17437 Error in PLSQL bl ock I N QUT argunent(s)

ORA- 17438 Internal - Unexpected val ue

ORA- 17439 Invalid SQ type

ORA- 17440 DBI t en DBType i s nul

ORA- 17441 Oracl e Version not supported. M ninum
supported version is 7.2.3.

ORA- 17442 Ref cursor value is invalid

ORA- 17443 Nul | user or password not supported in TH N
driver

ORA- 17444 TTC Protocol version received from server

support ed

B-18 Oracle9i JDBC Developer’s Guide and Reference

TTC Messages

TTC Messages Sorted Alphabetically

ORA Number Message

ORA- 17424 Attenpting different nmarshaling operation

ORA- 17412 Bi gger type length than Maxi mum

ORA- 17426 Both I N and OUT binds are NULL

ORA- 17411 Data Type representations m smatch

ORA- 17440 DBl t em DBType is null

ORA- 17437 Error in PLSQL bl ock I N QUT argunent(s)

ORA- 17413 Excedi ng key size

ORA- 17406 Exceedi ng maxi mum buffer |ength

ORA-17416 FATAL

ORA- 17414 I nsufficient Buffer size to store Col umms
Names

ORA- 17438 Internal - Unexpected val ue

ORA- 17418 Internal structure's field length error

ORA- 17433 invalid arguments in call

ORA- 17409 invalid buffer length

ORA- 17422 Invalid class in factory

ORA-17419 I nval id number of columms returned

ORA- 17435 invalid nunber of in_out _binds in IOV

ORA- 17436 i nval i d nunber of outbinds

ORA- 17432 invalid options in all7?

ORA- 17439 Invalid SQ type

ORA- 17408 i nvalid Type Representation(getRep)

ORA- 17407 i nvalid Type Representation(setRep)

ORA- 17428 Logon must be called after connect

ORA- 17429 Must be at |east connected to server

JDBC Error Messages B-19

TTC Messages

ORA Number Message

ORA- 17430 Must be | ogged on to server

ORA- 17417 NLS Problem failed to decode col utm nanes

ORA-17410 No nore data to read from socket

ORA- 17434 not in stream ng node

ORA- 17443 Nul | user or password not supported in THN
driver

ORA- 17402 Only one RPA nmessage is expected

ORA- 17403 Only one RXH nessage is expected

ORA-17420 Oracl e Version not defined

ORA- 17441 Oracl e Version not supported. M nimum
supported version is 7.2.3.

ORA- 17401 Protocol violation

ORA- 17404 Recei ved nore RXDs than expected

ORA- 17442 Ref cursor value is invalid

ORA- 17425 Returning a streamin PLSQ bl ock

ORA- 17431 SQL Statenent to parse is null

ORA- 17415 This type hasn't been handl ed

ORA- 17444 TTC Protocol version received from server not
support ed

ORA- 17421 Types or Connection not defined

ORA- 17405 UAC length is not zero

ORA- 17423 Using a PLSQ. bl ock without an | OV defined

ORA- 17427 Using Uninitialized OAC

B-20 Oracle9i JDBC Developer’s Guide and Reference

Symbols

%, 9-55

A

absolute positioning in result sets, 13-2
absolute() method (result set), 13-14
acceptChanges() method, A-13
addBatch() method, 12-11

addConnectionEventListener() method (connection

cache), 16-21
addRowSetListener() method, A-6
afterLast() method (result sets), 13-14

ANO (Oracle Advanced Security), 18-8

ANSI Web site, 9-53

APPLET HTML tag, 18-24

applets
connecting to a database, 18-15
deploying in an HTML page, 18-24
packaging, 18-23

for JDK 1.2.x or 1.1.x browser, 18-

packaging and deploying, 1-11
signed applets
browser security, 18-19
object-signing certificate, 18-20
using signed applets, 18-19
using with firewalls, 18-20
working with, 18-15
ARCHIVE, parameter for APPLET tag,
ARRAY
class, 6-12
descriptors, 6-12
objects, creating, 6-12, 11-12

23

18-25

Index

array descriptor
creating, 11-22
ArrayDescriptor object, 11-11, 11-22
creating, 11-12
deserialization, 11-15
get methods, 11-14
serialization, 11-15
setConnection() method, 11-15
arrays
defined, 11-2
getting, 11-19
named, 11-2
passing to callable statement, 11-23
retrieving from a result set, 11-16
retrieving partial arrays, 11-19
using type maps, 11-25
working with, 11-2
ASO (Oracle Advanced Security), 18-8
authentication (security), 18-9
AUTHENTICATION_LEVEL parameter,
auto-commit mode
disabling, 19-6
result set behavior, 19-6

B

18-18

batch updates--see update batching
batch value
checking value, 12-7
connection batch value, setting, 12-5
connection vs. statement value, 12-4
default value, 12-5
overriding value, 12-7
statement batch value, setting, 12-6

Index-1

BatchUpdateException, 12-16
beforeFirst() method, A-10
beforeFirst() method (result sets), 13-13
BFILE
accessing data, 8-25
class, 6-12
creating and populating columns, 8-23
defined, 3-29
introduction, 8-2
locators, 8-20
getting from a result set, 8-20
getting from callable statement, 8-21
passing to callable statements, 8-21
passing to prepared statements, 8-21
manipulating data, 8-25
reading data, 8-22
BFILE locator, selecting, 6-13
BigDecimal mapping (for attributes), 9-47
BLOB, 85
class, 6-12
creating and populating, 8-10
creating columns, 8-11
getting locators, 8-3
introduction, 8-2
locators
getting from result set, 8-4
selecting, 6-13
manipulating data, 8-12
populating columns, 8-11
reading data, 8-6,8-8
writing data, 89
Boolean parameters, restrictions, 19-9
branch qualifier (distributed transactions), 15-16

C

cache schemes (connection cache), 16-26
CachedRowSet, A-9
caching, client-side
custom use for scrollable result sets, 13-6
Oracle use for scrollable result sets, 13-5
callable statement
getting a BFILE locator, 8-21
getting LOB locators, 8-4
passing BFILE locator, 8-21

Index-2

passing LOB locators, 8-5
using getOracleObject() method, 7-5
cancelRowUpdates() method (result set), 13-20
casting return values, 7-10
catalog arguments (DatabaseMetaData), 20-17
CHAR class
conversions with KPRB driver, 18-33
CHAR columns
globalization size restrictions, Thin, 18-6
space padding, 19-8
using setFixedCHAR() to match in
WHERE, 7-17
character sets, 6-32
conversions with KPRB driver, 18-33
checksums
code example, 18-13
setting parameters in Java, 18-13
support by OCI drivers, 18-11
support by Thin driver, 18-12
Class.forName method, 3-3
CLASSPATH, specifying, 2-7
clearBatch() method, 12-14
clearClientldentifier() method, 6-19
clearDefines() method, 12-24
clearMetaData parameter, 17-11
client installation, 1-10
CLOB
class, 6-12
creating and populating, 8-10
creating columns, 8-11
introduction, 8-2
locators, 8-3
getting from result set, 8-4
passing to callable statements, 8-5
passing to prepared statement, 8-5
locators, selecting, 6-13
manipulating data, 8-12
populating columns, 8-11
reading data, 8-6,8-9
writing data, 89
close(), 14-4
close() method, 6-20, 6-21, 6-22, 19-8
for caching statements, 14-7, 14-8
for OracleConnectionCache interface, 16-23
closeFile() method, 8-26

closePooledConnection() method, 16-23
closeWithKey(), 14-4
closeWithKey() method, 14-9, 14-10
CMAN.ORA file, creating, 18-18
CODE, parameter for APPLET tag, 18-24
CODEBASE, parameter for APPLET tag, 18-24
collections
defined, 11-2
collections (nested tables and arrays), 11-11
column types
defining, 12-23
redefining, 12-20
commit a distributed transaction branch, 15-15
commit changes to database, 3-13
CONCUR_READ_ONLY resultsets, 13-9
CONCUR_UPDATABLE result sets, 13-9
concurrency types in result sets, 13-4
connect string
Connection Manager, 18-18
for KPRB driver, 18-28
connection
closing, 3-14
from KPRB driver, 1-13
opening, 3-3
opening for JDBC OCI driver, 3-9
opening for JDBC Thin driver, 3-10
Properties object, 3-6
connection caching
adding connection event listener, 16-21
basics, accessing the cache, 16-17
basics, closing connections, 16-18
basics, opening connections, 16-17
basics, setting up a cache, 16-16
cache instance getConnection() method, 16-17
connection events, 16-18
creating connection event listener, 16-21
implementation scenarios, 16-19
OracleConnectionCache interface, 16-23
OracleConnectionCachelmpl class, 16-24
OracleConnectionEventListener class, 16-28
overview, 16-16
preliminary steps, 16-20
removing connection event listener, 16-22
steps in closing a connection, 16-22
steps in opening a connection, 16-20

connection event listener, 16-21
Connection Manager, 18-16
installing, 18-17
starting, 18-18
using, 18-17
using multiple managers, 18-19
writing the connect string, 18-18
connection methods, JDBC 2.0 result sets, 13-32
connection pooling
concepts, 16-11
creating data source and connecting, 16-14
introduction, 16-11
Oracle data source implementation, 16-12
pooled connections, 16-13
standard data source interface, 16-12
connection properties
database, 3-7
defaultBatchValue, 3-7
defaultRowPrefetch, 3-7
includeSynonyms, 3-7
internal_logon, 3-7
sysdba, 3-8
sysoper, 3-8
password, 3-7
put() method, 3-9
remarksReporting, 3-7
user, 3-7
connectionClosed() method (connection event
listener), 16-28
connectionErrorOccurred() method (connection
event listener), 16-28
connections
read-only, 19-15
constants for SQL types, 6-23
CREATE DIRECTORY statement
for BFILEs, 8-23
CREATE TABLE statement
to create BFILE columns, 8-23
to create BLOB, CLOB columns, 8-11
CREATE TYPE command, 9-53, 9-55, 9-63
CREATE TYPE statement, 9-29, 9-52
create() method
for ORADataFactory interface, 9-21
createDescriptor() method, 9-5, 9-61, 11-14
createStatement(), 14-4

Index-3

createStatement() method, 6-19, 14-10
createStatementWithKey() method, 14-11
createTemporary() method, 8-18
creationState() method, 14-6
code example, 14-7
CursorName
limitations, 20-16
cursors, 19-8
custom collection classes
and JPublisher, 11-27
defined, 11-2,11-27
custom Java classes, 6-4
defined, 9-2
custom object classes
creating, 9-10
defined, 9-2
custom reference classes
and JPublisher, 10-10
defined, 10-2,10-10

D

data conversions, 7-2
LONG, 3-21
LONG RAW, 3-21
data sources
creating and connecting (with JNDI), 16-8
creating and connecting (without JNDI), 16-7
logging and tracing, 16-10
Oracle implementation, 16-3
PrintWriter, 16-10
properties, 16-4
standard interface, 16-3
data streaming
avoiding, 3-24
database
connecting
from an applet, 18-15
via multiple Connection Managers, 18-19
with server-side internal driver, 18-26
connection testing, 2-9
database connection
connection property, 3-7
database meta data methods, JDBC 2.0 result
sets, 13-35

Index-4

database URL
including userid and password, 3-5
database URL, specifying, 3-5
DatabaseMetaData calls, 20-17
DatabaseMetaData class, 20-12
entry points for applets, 18-23
datatype classes, 6-8
datatype mappings, 3-16
datatypes
Java, 3-16
Java native, 3-16
JDBC, 3-16
Oracle SQL, 3-16
DATE class, 6-13
DBMS_LOB package, 8-6
debugging JDBC programs, 19-11
DEFAULT_CHARSET character set value, 6-31
defaultBatchValue connection property, 3-7
defaultConnection() method, 18-26
defaultRowPrefetch connection property, 3-7
defineColumnType() method, 3-25, 6-20, 12-24
DELETE in a result set, 13-18
deleteRow() method (result set), 13-18
deletesAreDetected() method (database meta
data), 13-29
deserialization
ArrayDescriptor object, 11-15
creating a StructDescriptor object, 9-6
creating an ArrayDescriptor object, 11-15
definition of, 9-6, 11-15
StructDescriptor object, 9-6
disabling
escape processing, 3-7
distributed transaction ID component, 15-16
distributed transactions
branch qualifier, 15-16
check for same resource manager, 15-16
commit a transaction branch, 15-15
components and scenarios, 15-3
concepts, 15-3
distributed transaction ID component, 15-16
end a transaction branch, 15-13
example of implementation, 15-21
global transaction identifier, 15-16
ID format identifier, 15-16

introduction, 15-2 retrieving SQL state, 3-34

Oracle XA connection implementation, 15-9 execute() method, A-16
Oracle XA data source implementation, 15-8 executeBatch() method, 12-12
Oracle XA ID implementation, 15-16 executeQuery() method, 6-20
Oracle XA optimizations, 15-20 executeUpdate() method, 12-9
Oracle XA resource implementation, 15-10 expansion factor
prepare a transaction branch, 15-14 and globalization, 18-6
roll back a transaction branch, 15-15 explicit statement caching
start a transaction branch, 15-12 definition of, 14-3
transaction branch ID component, 15-16 null data, 14-10
XA connection interface, 15-9 extensions to JDBC, Oracle, 6-1,7-1,9-1,10-1, 11-1,
XA data source interface, 15-8 12-1
XA error handling, 15-19 external changes (result set)
XA exception classes, 15-18 defined, 13-27
XA ID interface, 15-16 seeing, 13-28
XA resource functionality, 15-11 visibility vs. detection, 13-29
XA resource interface, 15-10 external file
DriverManager class, 3-3 defined, 3-29
driverType, 16-6 EXTERNAL NAME clause, 9-55
dynamic SQL, 1-2
DYNAMIC_SCHEME (connection cache), 16-27 F
E fetch direction in result sets, 13-17
fetch size, result sets, 13-24
encryption finalizer methods, 19-8
code example, 18-13 firewalls
overview, 18-10 configuring for applets, 18-21
setting parameters in Java, 18-13 connect string, 18-22
support by OCI drivers, 18-11 described, 18-20
support by Thin driver, 18-12 required rule list items, 18-21
end a distributed transaction branch, 15-13 using with applets, 1-11, 18-20
Enterprise Java Beans (E]B), A-13 first() method (result sets), 13-14
environment variables FIXED_RETURN_NULL_SCHEME (connection
specifying, 2-6 cache), 16-27
errors floating-point compliance, 20-17
general JDBC message structure, B-2 format identifier, transaction ID, 15-16
general JDBC messages, listed, B-3 forward-only result sets, 13-3
processing exceptions, 3-34 freeTemporary() method, 8-18
TTC messages, listed, B-17 function call syntax, SQL92 syntax, 20-14
escape processing
disabling, 3-7 G
exceptions
printing stack trace, 3-35 getActiveSize() method (connection cache), 16-27
retrieving error code, 3-34 getARRAY() method, 11-16
retrieving message, 3-34 getArray() method, 11-6, 11-10, 11-16

Index-5

using type maps, 11-18
getArrayType() method, 11-14
getAsciiOutputStream() method, 8-15

for writing CLOB data, 8-7
getAsciiStream() method, 8-15

for reading CLOB data, 8-7
getAttributes() method, 9-3

used by Structs, 9-15
getAutoBuffering() method

of the oracle.sql. ARRAY class, 11-9

of the oracle.sql. STRUCT class, 9-9
getBaseName() method, 11-14
getBaseType() method, 11-6, 11-14, 11-20
getBaseTypeName() method, 10-4, 11-6
getBinaryOutputStream() method, 8-14

for writing BLOB data, 8-7
getBinaryStream() method, 3-23, 8-14, 8-26

for reading BFILE data, 8-22

for reading BLOB data, 8-6
getBufferSize() method, 8-14, 8-15
getBytes() method, 3-24, 6-10, 8-14, 8-26
getCacheSize() method (connection cache), 16-27
getCallWithKey(), 14-4
getCallWithKey() method, 14-10, 14-11
getCharacterOutputStream() method, 8-15

for writing CLOB data, 8-7
getCharacterStream() method, 8-15

for reading CLOB data, 8-7
getChars() method, 8-15
getChunkSize() method, 8-14, 8-16
getColumnCount() method, 7-19
getColumnName() method, 7-19
getColumns() method, 12-26
getColumnType() method, 7-19
getColumnTypeName() method, 7-19
getConcurrency() method (result set), 13-12
getConnection() method, 3-4, 11-15, 17-10, 18-26
getCursor() method, 6-35, 6-36
getCursorName() method

limitations, 20-16
getDefaultExecuteBatch() method, 6-19, 12-7
getDefaultRowPrefetch() method, 6-19, 12-21
getDescriptor() method, 9-4,11-6
getDirAlias() method, 8-25, 8-27
getErrorCode() method (SQLException), 3-34

Index-6

getExecuteBatch() method, 6-21, 12-6, 12-7
getFetchSize() method, 13-24
getJavaSQLConnection() method, 9-4, 11-6
getJavaSqlConnection() method, 6-26
getLanguage() method, 9-62
getMaxLength() method, 11-14
getMessage() method (SQLException), 3-34
getMetaData() method, 9-62
getName() method, 8-25, 8-26
getNumericFunctions() method, 20-12
getObject() method
casting return values, 7-10
for object references, 10-6
for ORAData objects, 9-22
for SQLInput streams, 9-16
for SQLOutput streams, 9-17
for Struct objects, 9-7
return types, 7-4,7-6
to get BFILE locators, 8-20
to get Oracle objects, 9-7
used with ORAData interface, 9-24
getOracleArray() method, 11-6,11-16, 11-19
getOracleAttributes() method, 9-4, 9-8
getOracleObject() method, 6-21, 6-22
casting return values, 7-10
return types, 7-4,7-6
using in callable statement, 7-5
using in result set, 7-5
getOraclePlsqlindexTable() method, 17-22,17-25,
17-26
argument
int paramIndex, 17-26
code example, 17-27
getORAData() method, 9-22,9-24
getPassword() method, 16-5
getPlsglindexTable() method, 17-22,17-25,17-27
arguments
Class primitiveType, 17-28
int paramIndex, 17-28
code example, 17-26,17-28
getProcedureColumns() method, 12-26
getProcedures() method, 12-26
getREF() method, 10-7
getRemarksReporting() method, 6-20
getResultSet() method, 6-20,11-6

getRow() method (result set), 13-15
getRowPrefetch() method, 6-20, 12-21
getSQLState() method (SQLException), 3-34
getSQLTypeName() method, 9-3, 11-6, 11-20
getStatementCacheSize() method
code example, 14-6
getStatementWithKey(), 14-4
getStatementWithKey() method, 14-10, 14-11
getString() method, 6-31
to get ROWIDs, 6-33
getStringFunctions() method, 20-12
getStringWithReplacement() method, 6-32
getSTRUCT() method, 9-7
getSubString() method, 8-16
for reading CLOB data, 8-7
getSystemFunctions() method, 20-12
getTimeDateFunctions() method, 20-12
getTransactionlsolation() method, 6-19, 19-15
getType() method (result set), 13-12
getTypeMap() method, 6-19, 9-13
getUpdateCounts() method
(BatchUpdateException), 12-16
getValue() method, 10-5
for object references, 10-6
getXXX() methods
casting return values, 7-10
for specific datatypes, 7-7
Oracle extended properties, 16-6
global transaction identifier (distributed
transactions), 15-16
global transactions, 15-2
globalization
and JDBC drivers, 18-3
conversions, 18-3
for JDBC OCI drivers, 18-3
for JDBC Thin drivers, 18-4
for KPRB driver, 18-4
expansion factor, 18-6
Java methods that employ, 18-2
Thin driver CHAR/VARCHAR? size
restrictions, 18-6
using, 18-2

H

HEIGHT, parameter for APPLET tag, 18-24
HeteroRM XA, 17-19
HTML tags, to deploy applets, 18-24
http
//www.ansi.org/, 9-53
HTTP protocol, 1-5

IEEE 754 floating-point compliance, 20-17
implicit statement caching

definition of, 14-2

Least Recently Used (LRU) scheme, 14-3
IN OUT parameter mode, 17-24
IN parameter mode, 17-22
includeSynonyms connection property, 3-7
INSERT in a result set, 13-21
INSERT INTO statement

for creating BFILE columns, 8-24
insertRow() method (result set), 13-22
insertsAreDetected() method (database meta

data), 13-29

installation

client, 1-10

directories and files, 2-5

verifying on the client, 2-5
integrity

code example, 18-13

overview, 18-10

setting parameters in Java, 18-13

support by OCI drivers, 18-11

support by Thin driver, 18-12
internal changes (result set)

defined, 13-27

seeing, 13-27
internal_logon connection property, 3-7

sysdba, 3-8

sysoper, 3-8
isAfterLast() method (result set), 13-15
isBeforeFirst() method (result set), 13-15
isFileOpen() method, 8-27
isFirst() method (result set), 13-15
isLast() method (result set), 13-15

Index-7

isSameRM() (distributed transactions),
isTemporary() method, 8-18

J

15-16

Java
compiling and running, 2-8
datatypes, 3-16
native datatypes, 3-16
stored procedures, 3-33
stream data, 3-20
Java Naming and Directory Interface (JNDI),
Java Sockets, 1-5
Java virtual machine (JVM),
JavaBeans, A-2
java.math, Java math packages, 3-2
JavaSoft, A-2
java.sql, JDBC packages, 3-2
ava.sql.5QLData, 9-53
ava.sql.SQLException() method, 3-34
ava.sql.Types class, 12-24
ava.util.Dictionary class
used by type maps, 9-12
java.util.Map class, 11-19
java.util.Properties, 17-7
JDBC
and IDEs, 1-15
basic program, 3-2
datatypes, 3-16
defined, 1-2
guidelines for using, 1-3
importing packages, 3-2
limitations of Oracle extensions,
sample files, 2-8
testing, 2-9
JDBC 2.0 support
datatype support, 4-3
extended feature support, 4-5
introduction, 4-2,5-2
JDK1.2xvs.JDK1.1.x, 4-3,5-3
overview of features, 4-7,5-4
standard feature support, 4-4
JDBC drivers
and globalization, 18-3
applets, 1-10

1-8,18-26

J
J
J
j

20-16

Index-8

16-2

applications, 1-10
choosing a driver for your needs, 1-8
common features, 1-4
common problems, 19-8
compatibilities, 2-2
determining driver version, 2-8
introduction, 1-4
registering, 3-3
requirements, 2-2
restrictions, 19-9
SQL92 syntax, 20-10
JDBC mapping (for attributes), 9-46
JdbcCheckup program, 2-9
JDBCSpy, 19-14
JDBCTest, 19-14
JDeveloper, 1-15
Jdeveloper, A-4
JDK
migration from 1.1.x to 1.2.x, 4-5
versions supported, 1-14
JNDI
looking up data source, 16-9
overview of Oracle support, 16-2
registering data source, 16-9

JPublisher, 6-4,9-25,9-45

JPublisher utility, 6-4, 9-10
creating custom collection classes, 11-27
creating custom Java classes, 9-45
creating custom reference classes, 10-10

SQL type categories and mapping options,
type mapping modes and settings, 9-46
type mappings, 9-45

9-46

JVM, 1-8,18-26
K
KPRB driver

connection string for, 18-28
described, 1-8

globalization considerations, 18-4
relation to the SQL engine, 18-26
session context, 18-30

testing, 18-30

transaction context, 18-30

L

last() method (result set), 13-14
LD_LIBRARY_PATH variable, specifying, 2-7
Least Recently Used (LRU) scheme, 14-3,17-8
length() method, 8-14, 8-16, 8-27, 11-6
libheteroxa9_g.so Solaris shared library, 17-19
libheteroxa9.so Solaris shared library, 17-19
LIKE escape characters, SQL92 syntax, 20-13
limitations on setBytes() and setString(), use of
streams to avoid, 3-31

loadjava tool, 9-55
LOB

defined, 3-27

introduction, 8-2

locators, 8-2

reading data, 8-6
LOB locators

getting from callable statements, 8-4

passing, 8-5
LOBs

empty, 8-17
locators

getting for BFILEs, 8-20

getting for BLOBs, 8-3

getting for CLOBs, 8-3

LOB, 8-2

passing to callable statements, 8-5

passing to prepared statement, 8-5
logging with a data source, 16-10
logical connection instance, 16-11
LONG

data conversions, 3-21
LONG RAW

data conversions, 3-21
LRU scheme, 14-3,17-8

M

make() method, 6-30

memory leaks, 19-8

migration from JDK 1.1.x to 1.2.x, 4-5
moveToCurrentRow() method (result set), 13-21
moveTolnsertRow() method (result set), 13-21
mutable arrays, 11-27

N

named arrays, 11-2

defined, 11-11
Native Method Interface, 1-14
nativeXA, 16-6,17-19
NC, A-13
Network Computer (NC), A-13
network events, trapping, 19-11
next() method, A-10
next() method (result set), 13-15
NLS_LANG environment variable, 18-3
NMI (Native Method Interface), 1-14
NULL data

converting, 7-2
null data

explicit statement caching, 14-10
NUMBER class, 6-13

O

object references
accessing object values, 10-7,10-9
described, 10-2
passing to prepared statements, 10-8
retrieving, 10-6
retrieving from callable statement, 10-7
updating object values, 10-7, 10-9
object-J]DBC mapping (for attributes), 9-46
OCI driver
applications, 1-10
described, 1-6
globalization considerations, 18-3
ODBCsSpy, 19-14
ODBCTest, 19-14
openFile() method, 8-26
optimization, performance, 19-6
Oracle Advanced Security, 1-10
support by JDBC, 18-8
support by OCI drivers, 18-8
support by Thin driver, 18-9
Oracle Connection Manager, 1-10, 18-16
Oracle datatypes
using, 7-1
Oracle extensions

Index-9

datatype support, 6-3
limitations, 20-16
catalog arguments to DatabaseMetaData
calls, 20-17
CursorName, 20-16
IEEE 754 floating-point compliance, 20-17
PL/SQL TABLE, BOOLEAN, RECORD
types, 20-16
read-only connection, 19-15
SQL92 outer join escapes, 20-16
SQLWarning class, 20-17
object support, 6-4
packages, 6-2
result sets, 7-3
schema naming support, 6-5
statements, 7-3
support under 8.0.x/7.3.x drivers, 6-36
toJDBC, 6-1,7-1,9-1,10-1,11-1,12-1
Oracle mapping (for attributes), 9-46
Oracle Net
name-value pair, 3-4
protocol, 1-5
Oracle objects
and JDBC, 9-2
converting with ORAData interface, 9-21
converting with SQLData interface, 9-15
getting with getObject() method, 9-7
Java classes which support, 9-3
mapping to custom object classes, 9-10

reading data by using SQLData interface, 9-17

working with, 9-2

writing data by using SQLData interface, 9-20

Oracle SQL datatypes, 3-16

OracleCallableStatement interface, 6-21
getOraclePlsqlindexTable() method, 17-22
getPlsglindexTable() method, 17-22
getTIMESTAMP(), 6-14
getTIMESTAMPLTZ(), 6-14
getTIMESTAMPTZ(), 6-14
getXXX() methods, 7-7
registerIndexTableOutParameter()

method, 17-22,17-24

registerOutParameter() method, 7-13
setPlsqlindexTable() method, 17-21, 17-22

OracleCallableStatement object, 14-2, 14-3

Index-10

OracleConnection class, 6-18
OracleConnection interface, 17-4
OracleConnection object, 14-2
OracleConnectionCache interface, 16-23
close() method, 16-23
closePooledConnection() method, 16-23
reusePooledConnection() method, 16-23

OracleConnectionCachelmpl class, 16-24, 16-26

getActiveSize() method, 16-27
getCacheSize() method, 16-27
instantiating and setting properties, 16-24
schemes for new pooled connections, 16-26
setCacheScheme() method, 16-27

setConnectionPoolDataSource() method, 16-25

setMaxLimit() method
setMaxLimit() method (connection
cache), 16-26
setMinLimit() method
setMinLimit() method (connection
cache), 16-26

setting maximum pooled connections, 16-25
setting minimum pooled connections, 16-26

OracleConnectionCachelmpl interface, 17-4
OracleConnectionEventListener
connectionClosed() method, 16-28
OracleConnectionEventListener class, 16-28
connectionErrorOccurred() method, 16-28
instantiating, 16-28
setDataSource() method, 16-28

OracleConnectionPoolDataSouorce class, 16-12

OracleDatabaseMetaData class, 20-12
and applets, 18-23

OracleDataSource class, 16-3,17-4

OracleDriver class, 6-18

oracle.jdbc. package, 6-16

oracle.jdbc., Oracle JDBC extensions, 3-3

oracle.jdbc2 package, described, 6-27

oracle.jdbc2.Struct class, 6-11
getAttributes() method, 9-3
getSQLTypeName() method, 9-3

oracle.jdbc.OracleCallableStatement interface,
close() method, 6-22
getOracleObject() method, 6-21
getXXX() methods, 6-21, 6-23
registerOutParameter() method, 6-22

6-21

setNull() method, 6-22
setOracleObject() methods, 6-22
setXXX() methods, 6-22

oracle. jdbc.OracleConnection interface, 6-18
clearClientldentifier() method, 6-19
createStatement() method, 6-19
getDefaultExecuteBatch() method, 6-19
getDefaultRowPrefetch() method, 6-19
getRemarksReporting() method, 6-20
getTransactionlsolation() method, 6-19, 19-15
getTypeMap() method, 6-19
prepareCall() method, 6-19
prepareStatement() method, 6-19
setClientldentifier() method, 6-19
setDefaultExecuteBatch() method, 6-19
setDefaultRowPrefetch() method, 6-19
setRemarksReporting() method, 6-20
setTransactionlIsolation() method, 6-19, 19-15
setTypeMap() method, 6-19

oracle.jdbc.OracleDriver class, 6-18

oracle.jdbc.OraclePreparedStatement
interface, 6-20
close() method, 6-21
getExecuteBatch() method, 6-21
setExecuteBatch() method, 6-21
setNull() method, 6-21
setOracleObject() method, 6-21
setORAData() method, 6-21
setXXX() methods, 6-21

oracle. jdbc.OracleResultSet interface, 6-22
getOracleObject() method, 6-22

oracle.jdbc.OracleResultSetMetaData
interface, 6-23,7-19
getColumnCount() method, 7-19
getColumnName() method, 7-19
getColumnType() method, 7-19
getColumnTypeName() method, 7-19
using, 7-19

oracle.jdbc.OracleSql class, 20-14

oracle. jdbc.OracleStatement interface, 6-20
close() method, 6-20
defineColumnType(), 6-20
executeQuery() method, 6-20
getResultSet() method, 6-20
getRowPrefetch() method, 6-20

setRowPrefetch() method, 6-20
oracle.jdbc.OracleTypes class, 6-23, 12-24
oracle.jdbc.pool package, 16-14, 17-5
oracle jdbc.StructMetaData, 9-62
oracle jdbc.StructMetaData interface, 9-61
oracle.jdbc.xa package and subpackages, 15-7
OracleOCIConnection class, 17-4
OracleOCIConnectionPool class, 17-2,17-4
OracleOClIFailover interface, 17-5
OraclePooledConnection class, 16-13,16-14,17-2
OraclePooledConnection method

definitions, 16-14
OraclePooledConnection object, 14-2
OraclePreparedStatement interface, 6-20

getOraclePlsqlindexTable() method, 17-22

getPlsglindexTable() method, 17-22

registerIndexTableOutParameter()

method, 17-22

setPlsqlindexTable() method, 17-21,17-22

setTIMESTAMP(), 6-14

setTIMESTAMPLTZ(), 6-14

setTIMESTAMPTZ(), 6-14
OraclePreparedStatement object, 14-2, 14-3
OracleResultSet interface, 6-22

getXXX() methods, 7-7
OracleResultSetCache interface, 13-6
OracleResultSetMetaData interface, 6-23
OracleServerDriver class

defaultConnection() method, 18-27
oracle.sql datatype classes, 6-8
oracle.sql package

data conversions, 7-2

described, 6-7
oracle.sql. ARRAY class, 11-2

and nested tables, 6-12

and VARRAYs, 6-12

createDescriptor() method, 11-14

getArray() method, 11-6

getArrayType() method, 11-14

getAutoBuffering() method, 11-9

getBaseType() method, 11-6

getBaseTypeName() method, 11-6

getDescriptor() method, 11-6

getJavaSQLConnection() method, 11-6, 11-15

getMaxLength() method, 11-14

Index-11

getOracleArray() method, 11-6
getResultSet() method, 11-6
getSQLTypeName() method, 11-6
length() method, 11-6
methods for Java primitive types, 11-8
setAutoBuffering() method, 11-9
setAutoIndexing() method, 11-10
oracle.sql. ArrayDescriptor class
getBaseName() method, 11-14
getBaseType() method, 11-14
oracle.sql. BFILE class, 6-12
closeFile() method, 8-26
getBinaryStream() method, 8-26
getBytes() method, 8-26
getDirAlias() method, 8-27
getName() method, 8-26
isFileOpen() method, 8-27
length() method, 8-27
openFile() method, 8-26
position() method, 8-27
oracle.sql. BLOB class, 6-12
getBinaryOutputStream() method, 8-14
getBinaryStream() method, 8-14
getBufferSize() method, 8-14
getBytes() method, 8-14
getChunkSize() method, 8-14
length() method, 8-14
position() method, 8-14
putBytes() method, 8-14
oracle.sql. CHAR class, 18-33
getString() method, 6-31

getStringWithReplacement() method, 6-32

toString() method, 6-31
oracle.sql.CharacterSet class, 6-30
oracle.sql. CLOB class, 6-12

getAsciiOutputStream() method, 8-15

getAsciiStream() method, 8-15

getBufferSize() method, 8-15

getCharacterOutputStream() method, 8-15

getCharacterStream() method, 8-15
getChars() method, 8-15
getChunkSize() method, 8-16
getSubString() method, 8-16
length() method, 8-16

position() method, 8-16

Index-12

putChars() method, 8-16

putString() method, 8-16

supported character sets, 8-13
oracle.sql.datatypes

support, 6-10
oracle.sql. DATE class, 6-13
oracle.sql.Datum array, 17-26
oracle.sql.Datum class, described, 6-7
oracle.sq. NUMBER class, 6-13
oracle.sql.ORAData, 9-53
oracle.sql. ORAData interface, 9-21
oracle.sql. ORADataFactory, 9-53
oracle.sql. ORADataFactory interface, 9-21
OracleSql.parse() method, 20-14
oracle.sqL. RAW class, 6-13
oracle.sql.REF class, 6-12,10-2

getBaseTypeName() method, 10-4

getValue() method, 10-5

setValue() method, 10-5
oracle.sql. ROWID class, 6-10, 6-15, 6-33
oracle.sql.STRUCT class, 6-10, 9-3

getAutoBuffering() method, 9-9

getDescriptor() method, 9-4

getJavaSQLConnection() method, 9-4

getOracleAttributes() method, 9-4

setAutoBuffering() method, 9-9

toJDBC() method, 9-4
oracle.sql.StructDescriptor class, 9-61

createDescriptor() method, 9-5
OracleStatement interface, 6-20
OracleTypes class, 6-23
OracleTypes class for typecodes, 6-23
OracleTypes.CURSOR variable, 6-36
OracleXAConnection class, 15-9
OracleXADataSource class, 15-8
OracleXAResource class, 15-10, 15-11
OracleXid class, 15-16
ORAData interface, 6-4

additional uses, 9-26

advantages, 9-11

Oracle object types, 9-1

reading data, 9-23

writing data, 9-25

othersDeletesAreVisible() method (database meta

data), 13-28

othersInsertsAreVisible() method (database meta
data), 13-28

othersUpdatesAreVisible() method (database meta
data), 13-28

OUT parameter mode, 17-24, 17-25

outer joins, SQLI92 syntax, 20-13

ownDeletesAreVisible() method (database meta
deta), 13-27

ownlnsertsAreVisible() method (database meta
data), 13-28

ownUpdatesAreVisible() method (database meta
data), 13-27

P

parameter modes
IN, 17-22
IN OUT, 17-24
OUT, 17-24,17-25
password connection property, 3-7
password, specifying, 3-5
PATH variable, specifying, 2-7
PDA, A-13
performance enhancements, standard vs.
Oracle, 4-5
performance extensions
defining column types, 12-23
prefetching rows, 12-20
TABLE_REMARKS reporting, 12-26
performance optimization, 19-6
Personal Digital Assistant (PDA), A-13
PL/SQL
IN parameter, 9-59
OUT parameters, 9-60
restrictions, 19-9
space padding, 19-8
stored procedures, 3-32
PL/SQL index-by tables
mapping, 17-25
scalar datatypes, 17-21
PL/SQL types
corresponding JDBC types, 17-21
limitations, 20-16
PoolConfig() method, 17-7
pooled connections

Oracle implementation, 16-13

standard interface, 16-13
populate() method, A-10
position() method, 8-14, 8-16, 8-27
positioning in result sets, 13-2
prefetching rows, 12-20

suggested default, 12-23
prepare a distributed transaction branch, 15-14
prepareCall(), 14-4
prepareCall() method, 6-19, 14-8, 14-9, 14-10
prepared statement

passing BFILE locator, 8-21

passing LOB locators, 8-5

using setObject() method, 7-12

using setOracleObject() method, 7-12
PreparedStatement object

creating, 3-12
prepareStatement(), 14-4
prepareStatement() method, 6-19, 14-8, 14-9, 14-10

code example, 14-8
previous() method (result set), 13-15
printStackTrace() method (SQLException), 3-35
PrintWriter for a data source, 16-10
processEscapes

connection property, 3-7
put() method

for Properties object, 3-9

for type maps, 9-13
putBytes() method, 8-14
putChars() method, 8-16
putString() method, 8-16

Q

query, executing, 3-11

R
RAW class, 6-13
RDBMS, 1-5

read-only result set concurrency type, 13-4

readSQL() method, 9-15,9-16, 9-54, 9-61
implementing, 9-16

REF class, 6-12

REF CURSORs, 6-35

Index-13

materialized as result set objects, 6-35
refetching rows into a result set, 13-26, 13-29
refreshRow() method (result set), 13-26
registerDriver() method, 6-18

registerIndexTableOutParameter() method, 17-22,

17-24
arguments
int elemMaxLen, 17-24
int elemSqlType, 17-24
int maxLen, 17-24
int paramIndex, 17-24
code example, 17-25
registering Oracle JDBC drivers, class for, 6-18
registerOutParameter() method, 6-22, 7-13,9-61
Relational Database Management System
(RDBMS), 1-5
relative positioning in result sets, 13-2
relative() method (result set), 13-14
remarksReporting connection property, 3-7
remarksReporting flag, 12-20
Remote Method Invocation (RMI), A-12
removeConnectionEventListener method
(connection cache), 16-22
resource managers, 15-3
result set
auto-commit mode, 19-6
getting BFILE locators, 8-20
getting LOB locators, 8-4
metadata, 6-23
Oracle extensions, 7-3
using getOracleObject() method, 7-5
result set enhancemennts
positioning result sets, 13-13
result set enhancements
concurrency types, 13-4
downgrade rules, 13-11
fetch size, 13-24
limitations, 13-10
Oracle scrollability requirements, 13-5
Oracle updatability requirements, 13-5
positioning, 13-2
processing result sets, 13-16
refetching rows, 13-26, 13-29
result set types, 13-3
scrollability, 13-2

Index-14

seeing external changes, 13-28
seeing internal changes, 13-27
sensitivity to database changes, 13-2
specifying scrollability, updatability, 13-8
summary of methods, 13-32
summary of visibility of changes, 13-30
updatability, 13-4
updating result sets, 13-18
visibility vs. detection of external
changes, 13-29
result set fetch size, 13-24
result set methods, JDBC 2.0, 13-32
result set object
closing, 3-12
result set types for scrollability and
sensitivity, 13-3
result set, processing, 3-11
ResultSet class, 3-11
ResultSet() method, 11-10
ResultSetMetaData class, 9-62
return types
for getXXX() methods, 7-7
getObject() method, 7-6
getOracleObject() method, 7-6
return values
casting, 7-10
reusePooledConnection() method, 16-23
RMI, A-12
roll back a distributed transaction branch, 15-15
roll back changes to database, 3-13
row prefetching, 12-20
and data streams, 3-31
ROWID class, 6-15
CursorName methods, 20-16
defined, 6-33
ROWID, use for result set updates, 13-5

S

scalar functions, SQL92 syntax, 20-12
schema naming conventions, 6-5
scrollability in result sets, 13-2
scrollable result sets

creating, 13-8

fetch direction, 13-17

implementation of scroll-sensitivity, 13-30
positioning, 13-13
processing backward /forward, 13-16
refetching rows, 13-26, 13-29
scroll-insensitive result sets, 13-3
scroll-sensitive result sets, 13-3
seeing external changes, 13-28
visibility vs. detection of external
changes, 13-29
scroll-sensitive result sets
limitations, 13-10
security
authentication, 18-9
encryption, 18-10
integrity, 18-10
Oracle Advanced Security support, 18-8
overview, 18-8
SELECT statement
to retrieve object references, 10-6
to select LOB locator, 8-12
sendBatch() method, 12-7,12-9
sensitivity in result sets to database changes, 13-2
serialization
ArrayDescriptor object, 11-15
definition of, 9-6, 11-15
StructDescriptor object, 9-6
server-side internal driver
connection to database, 18-26
server-side Thin driver, described, 1-7
session context, 1-13
for KPRB driver, 18-30
setAsciiStream() method, 7-16
setAutoBuffering() method
of the oracle.sql. ARRAY class, 11-9
of the oracle.sq. STRUCT class, 9-9
setAutoCommit() method, 19-6
setAutoIndexing() method, 11-10
direction parameter values
ARRAY.ACCESS_FORWARD, 11-10
ARRAY.ACCESS_REVERSE, 11-10
ARRAY.ACCESS_UNKNOWN, 11-10
setBFILE() method, 8-21
setBinaryStream() method, 7-16
setBLOB() method, 8-5
setBlob() method, JDK 1.1.x, 8-5

setBlob() method, JDK 1.2.x, 8-5
setBytes() limitations, using streams to avoid, 3-31
setCacheScheme() method (connection
cache), 16-27
setCharacterStream() method, 7-16
setClientldentifier() method, 6-19
setCLOB() method, 8-5
setClob() method, 1.1.x, 8-5
setClob() method, JDK 1.2.x, 8-5
setConnection() method
ArrayDescriptor object, 11-15
StructDescriptor object, 9-6
setConnectionPoolDataSource method (connection
cache), 16-25
setCursorName() method, 20-16
setDataSource() method (connection event
listener), 16-28
setDate() method, 7-16
setDefaultExecuteBatch() method, 6-19, 12-5
setDefaultRowPrefetch() method, 6-19, 12-21
setDisableStatementCaching() method, 14-8
setEscapeProcessing() method, 20-10
setExecuteBatch() method, 6-21, 12-6
setFetchSize() method, 13-24
setFixedCHAR() method, 7-17
setFormOfUse() method, 6-28
setMaxFieldSize() method, 12-24,19-8
setNull() method, 6-21, 6-22,7-13
setObejct() method, 7-11
setObject() method
for BFILES, 8-21
for BLOBs and CLOBs, 8-5
for CustomDatum objects, 9-23
for object references, 10-8
for STRUCT objects, 9-8
to write object data, 9-26
using in prepared statements, 7-12
setOracleObject() method, 6-21, 6-22,7-11
for BFILES, 8-21
for BLOBs and CLOBs, 8-5
using in prepared statements, 7-12
setORAData() method, 6-21, 9-22,9-26
setPlsqlindexTable() method, 17-21,17-22
arguments
int curLen, 17-23

Index-15

int elemMaxLen, 17-23

int elemSqlType, 17-23

int maxLen, 17-22

int paramIndex, 17-22,17-26

Object arrayData, 17-22

code example, 17-23

setPoolConfig() method, 17-7
setREF() method, 10-8

setRemarksReporting() method, 6-20, 12-26

setResultSetCache() method, 13-6
setRowPrefetch() method, 6-20, 12-21
setStmtCacheSize() method, 17-10

setString() limitations, using streams to avoid, 3-31

setString() method

to bind ROWIDs, 6-33
setTime() method, 7-17
setTimestamp() method, 7-17

setTransactionlIsolation() method, 6-19, 19-15

setTypeMap() method, 6-19
setUnicodeStream() method, 7-16
setValue() method, 10-5
setXXX() methods

Oracle extended properties, 16-6

setXXX() methods, for empty LOBs, 8-17
setXXX() methods, for specific datatypes,

signed applets, 1-10
Solaris

shared libraries

libheteroxa9_g.so,
libheteroxa9.so,

SQL

data converting to Java datatypes,

primitive types, 6-7

structured types, 6-7

types, constants for, 6-23
SQL engine

relation to the KPRB driver,
SQL syntax (Oracle), 20-10
SQL*Plus, 9-55, 9-56, 9-59
SQL92 syntax, 20-10

function call syntax, 20-14

LIKE escape characters, 20-13

outer joins, 20-13

scalar functions, 20-12

time and date literals, 20-10

17-19
17-19

18-26

Index-16

7-2

7-12

translating to SQL example, 20-14
SQLData interface, 6-4

advantages, 9-11

described, 9-15

Oracle implementation, 6-27

Oracle object types, 9-1

reading data from Oracle objects, 9-17

using with type map, 9-15

writing data from Oracle objects, 9-20
SQLInput interface, 9-15

described, 9-16
SQLInput streams, 9-16
SQLJ

guidelines for using, 1-3
SQLJ object type, 9-52
SQLNET.ORA

parameters for tracing,
SQLOutput interface, 9-15

described, 9-16
SQLOutput streams, 9-17
SQLWarning class, limitations, 20-17
start a distributed transaction branch,
statement caching

19-11

15-12

explicit
definition of, 14-3
null data, 14-10
implicit

definition of, 14-2
Least Recently Used (LRU) scheme, 14-3
statement methods, JDBC 2.0 result sets, 13-35
Statement object
closing, 3-12
creating, 3-11
statements
Oracle extensions, 7-3
static SQL, 1-2
stored procedures
Java, 3-33
PL/SQL, 3-32
stream data, 3-20, 8-6
CHAR columns, 3-25
closing, 3-29
example, 3-22
external files, 3-28
LOBs, 3-28

LONG columns, 3-20
LONG RAW columns, 3-20
multiple columns, 3-26
precautions, 3-29
RAW columns, 3-25
row prefetching, 3-31
UPDATE/COMMIT statements, 8-8
use to avoid setBytes() and setString()
limitations, 3-31
VARCHAR columns, 3-25
stream data column
bypassing, 3-27
STRUCT class, 6-10
STRUCT descriptor, 9-4,9-5
STRUCT object, 6-11
attributes, 6-11
creating, 9-4,9-5
embedded object, 9-7
nested objects, 6-11
retrieving, 9-6
retrieving attributes as oracle.sql types, 9-8
StructDescriptor object
creating, 9-5
deserialization, 9-6
get methods, 9-5
serialization, 9-6
setConnection() method, 9-6
StructMetaData interface, 9-62

T

TABLE_REMARKS columns, 12-20
TABLE_REMARKS reporting
restrictions on, 12-26
TAF, definition of, 17-16
TCP/IP protocol, 1-5,3-10
Thin driver
applets, 1-10,18-15
applications, 1-10
CHAR/VARCHAR? globalization size
restrictions, 18-6
described, 1-5
globalization considerations, 18-4
server-side, described, 1-7
time and date literals, SQL92 syntax, 20-10

tnsEntry, 16-6,17-19
TNSNAMES entries, 3-4
toDatum() method, 9-54
applied to CustomDatum objects, 9-11, 9-21
called by setORAData() method, 9-26
toJDBC() method, 9-4
toJdbc() method, 6-10
toString() method, 6-31
trace facility, 19-11
trace parameters
client-side, 19-12
server-side, 19-13
tracing with a data source, 16-10
transaction branch, 15-2
transaction branch ID component, 15-16
transaction context, 1-13
for KPRB driver, 18-30
transaction IDs (distributed transactions), 15-5
transaction managers, 15-3
transactions
switching between local and global, 15-5 to 15-7
Transparent Application Failover (TAF), definition
of, 17-16
TTC error messages, listed, B-17
TTC protocol, 1-5,1-6
type map, 6-4,7-4
adding entries, 9-13
and STRUCTs, 9-15
creating a new map, 9-14
used with arrays, 11-18
used with SQLData interface, 9-15
using with arrays, 11-25
type map (SQL to Java), 9-10
type mapping
BigDecimal mapping, 9-47
JDBC mapping, 9-46
object JDBC mapping, 9-46
Oracle mapping, 9-46
type mappings
JPublisher options, 9-45
type maps
relationship to database connection, 18-28
TYPE_FORWARD_ONLY result sets, 13-8
TYPE_SCROLL_INSENSITIVE result sets, 13-8
TYPE_SCROLL_SENSITIVE result sets, 13-8

Index-17

typecodes, Oracle extensions, 6-23

U

unicode data, 6-28
updatability in result sets, 13-4
updatable result set concurrency type, 13-4
updatable result sets
creating, 13-8
DELETE operations, 13-18
INSERT operations, 13-21
limitations, 13-10
refetching rows, 13-26, 13-29
seeing internal changes, 13-27
update conflicts, 13-23
UPDATE operations, 13-19
update batching
overview, Oracle vs. standard model, 12-2
overview, statements supported, 12-3
update batching (Oracle model)
batch value, checking, 12-7
batch value, overriding, 12-7
committing changes, 12-8
connection batch value, setting, 12-5
connection vs. statement batch value, 12-4
default batch value, 12-5
disable auto-commit, 12-4
example, 12-9
limitations and characteristics, 12-5
overview, 12-4
statement batch value, setting, 12-6
stream types not allowed, 12-5
update counts, 12-9
update batching (standard model)
adding to batch, 12-11
clearing the batch, 12-14
committing changes, 12-14
error handling, 12-16
example, 12-15
executing the batch, 12-12
intermixing batched and non-batched, 12-17
overview, 12-10
stream types not allowed, 12-11
update counts, 12-15
update counts upon error, 12-17

Index-18

update conflicts in result sets, 13-23
update counts

Oracle update batching, 12-9

standard update batching, 12-15

upon error (standard batching), 12-17
UPDATE in a result set, 13-19
updateRow() method (result set), 13-20
updatesAreDetected() method (database meta

data), 13-29

updateXXX() methods (result set), 13-19, 13-21
updateXXX() methods for empty LOBs, 8-17
updating result sets, 13-18
url, 16-6
user connection property, 3-7
userid, specifying, 3-5

Vv

VARCHAR? columns, 19-8
globalization size restrictions, Thin, 18-6

W

WIDTH, parameter for APPLET tag, 18-24

window, scroll-sensitive result sets, 13-30

writeSQL() method, 9-15,9-17, 9-54, 9-61
implementing, 9-16

XA
connection implementation, 15-9
connections (definition), 15-4
data source implementation, 15-8
data sources (definition), 15-3
definition, 15-2
error handling, 15-19
example of implementation, 15-21
exception classes, 15-18
Oracle optimizations, 15-20
Oracle transaction ID implementation, 15-16
resource implementation, 15-10
resources (definition), 15-4
transaction ID interface, 15-16

XAException, 15-16

Xids, 15-16

Index-19

Index-20

	Contents
	Send Us Your Comments
	Preface
	1 Overview
	Introduction
	What is JDBC?
	JDBC versus SQLJ

	Overview of the Oracle JDBC Drivers
	Common Features of Oracle JDBC Drivers
	JDBC Thin Driver
	JDBC OCI Driver
	JDBC Server-Side Thin Driver
	JDBC Server-Side Internal Driver
	Choosing the Appropriate Driver

	Overview of Application and Applet Functionality
	Application Basics
	Applet Basics
	Oracle Extensions
	Package oracle.jdbc

	Server-Side Basics
	Session and Transaction Context
	Connecting to the Database

	Environments and Support
	Supported JDK and JDBC Versions
	JNI and Java Environments
	JDBC and IDEs

	Changes At This Release

	2 Getting Started
	Requirements and Compatibilities for Oracle JDBC Drivers
	Verifying a JDBC Client Installation
	Check Installed Directories and Files
	Check the Environment Variables
	Make Sure You Can Compile and Run Java
	Determine the Version of the JDBC Driver
	Testing JDBC and the Database Connection: JdbcCheckup

	3 Basic Features
	First Steps in JDBC
	Import Packages
	Register the JDBC Drivers
	Open a Connection to a Database
	Create a Statement Object
	Execute a Query and Return a Result Set Object
	Process the Result Set
	Close the Result Set and Statement Objects
	Make Changes to the Database
	Commit Changes
	Close the Connection

	Sample: Connecting, Querying, and Processing the Results
	Datatype Mappings
	Table of Mappings
	Notes Regarding Mappings

	Java Streams in JDBC
	Streaming LONG or LONG RAW Columns
	Streaming CHAR, VARCHAR, or RAW Columns
	Data Streaming and Multiple Columns
	Streaming LOBs and External Files
	Closing a Stream
	Notes and Precautions on Streams

	Stored Procedure Calls in JDBC Programs
	PL/SQL Stored Procedures
	Java Stored Procedures

	Processing SQL Exceptions
	Retrieving Error Information
	Printing the Stack Trace

	4 Overview of JDBC 2.0 Support
	Introduction
	JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
	Datatype Support
	Standard Feature Support
	Extended Feature Support
	Standard versus Oracle Performance Enhancement APIs
	Migration from JDK 1.1.x to JDK 1.2.x

	Overview of JDBC 2.0 Features

	5 Overview of Supported JDBC 3.0 Features
	Introduction
	JDBC 3.0 Support: JDK 1.4 and Previous Releases
	Overview of Supported JDBC 3.0 Features
	Transaction Savepoints
	Creating a Savepoint
	Rolling back to a Savepoint
	Releasing a Savepoint
	Checking Savepoint Support
	Savepoint Notes
	Savepoint Interfaces
	Pre-JDK1.4 Savepoint Support

	6 Overview of Oracle Extensions
	Introduction to Oracle Extensions
	Support Features of the Oracle Extensions
	Support for Oracle Datatypes
	Support for Oracle Objects
	Support for Schema Naming
	OCI Extensions

	Oracle JDBC Packages and Classes
	Package oracle.sql
	Package oracle.jdbc
	Package oracle.jdbc2 (for JDK 1.1.x only)

	Oracle Character Datatypes Support
	SQL CHAR Datatypes
	SQL NCHAR Datatypes
	Class oracle.sql.CHAR

	Additional Oracle Type Extensions
	Oracle ROWID Type
	Oracle REF CURSOR Type Category
	Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers

	7 Accessing and Manipulating Oracle Data
	Data Conversion Considerations
	Standard Types versus Oracle Types
	Converting SQL NULL Data

	Result Set and Statement Extensions
	Comparison of Oracle get and set Methods to Standard JDBC
	Standard getObject() Method
	Oracle getOracleObject() Method
	Summary of getObject() and getOracleObject() Return Types
	Other getXXX() Methods
	Casting Your get Method Return Values
	Standard setObject() and Oracle setOracleObject() Methods
	Other setXXX() Methods
	Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers

	Using Result Set Meta Data Extensions

	8 Working with LOBs and BFILEs
	Oracle Extensions for LOBs and BFILEs
	Working with BLOBs and CLOBs
	Getting and Passing BLOB and CLOB Locators
	Reading and Writing BLOB and CLOB Data
	Creating and Populating a BLOB or CLOB Column
	Accessing and Manipulating BLOB and CLOB Data
	Additional BLOB and CLOB Features

	Working With Temporary LOBs
	Using Open and Close With LOBs
	Working with BFILEs
	Getting and Passing BFILE Locators
	Reading BFILE Data
	Creating and Populating a BFILE Column
	Accessing and Manipulating BFILE Data
	Additional BFILE Features

	9 Working with Oracle Object Types
	Mapping Oracle Objects
	Using the Default STRUCT Class for Oracle Objects
	STRUCT Class Functionality
	Creating STRUCT Objects and Descriptors
	Retrieving STRUCT Objects and Attributes
	Binding STRUCT Objects into Statements
	STRUCT Automatic Attribute Buffering

	Creating and Using Custom Object Classes for Oracle Objects
	Relative Advantages of ORAData versus SQLData
	Understanding Type Maps for SQLData Implementations
	Creating a Type Map Object and Defining Mappings for a SQLData Implementation
	Understanding the SQLData Interface
	Reading and Writing Data with a SQLData Implementation
	Understanding the ORAData Interface
	Reading and Writing Data with a ORAData Implementation
	Additional Uses for ORAData
	The Deprecated CustomDatum Interface

	Object-Type Inheritance
	Creating Subtypes
	Implementing Customized Classes for Subtypes
	Retrieving Subtype Objects
	Creating Subtype Objects
	Sending Subtype Objects
	Accessing Subtype Data Fields
	Inheritance Meta Data Methods

	Using JPublisher to Create Custom Object Classes
	JPublisher Functionality
	JPublisher Type Mappings

	Describing an Object Type
	Functionality for Getting Object Meta Data
	Steps for Retrieving Object Meta Data

	SQLJ Object Types
	Creating a SQLJ Object Type in SQL Representation
	Inserting an Instance of a SQLJ Object Type
	Retrieving Instances of a SQLJ Object Type
	Meta Data Methods for SQLJ Object Types
	SQLJ Object Types and Custom Object Types Compared

	10 Working with Oracle Object References
	Oracle Extensions for Object References
	Overview of Object Reference Functionality
	Object Reference Getter and Setter Methods
	Key REF Class Methods

	Retrieving and Passing an Object Reference
	Retrieving an Object Reference from a Result Set
	Retrieving an Object Reference from a Callable Statement
	Passing an Object Reference to a Prepared Statement

	Accessing and Updating Object Values through an Object Reference
	Custom Reference Classes with JPublisher

	11 Working with Oracle Collections
	Oracle Extensions for Collections (Arrays)
	Choices in Materializing Collections
	Creating Collections
	Creating Multi-Level Collection Types

	Overview of Collection (Array) Functionality
	Array Getter and Setter Methods
	ARRAY Descriptors and ARRAY Class Functionality

	ARRAY Performance Extension Methods
	Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types
	ARRAY Automatic Element Buffering
	ARRAY Automatic Indexing

	Creating and Using Arrays
	Creating ARRAY Objects and Descriptors
	Retrieving an Array and Its Elements
	Passing Arrays to Statement Objects

	Using a Type Map to Map Array Elements
	Custom Collection Classes with JPublisher

	12 Performance Extensions
	Update Batching
	Overview of Update Batching Models
	Oracle Update Batching
	Standard Update Batching
	Premature Batch Flush

	Additional Oracle Performance Extensions
	Oracle Row Prefetching
	Defining Column Types
	DatabaseMetaData TABLE_REMARKS Reporting

	13 Result Set Enhancements
	Overview
	Result Set Functionality and Result Set Categories Supported in JDBC 2.0
	Oracle JDBC Implementation Overview for Result Set Enhancements

	Creating Scrollable or Updatable Result Sets
	Specifying Result Set Scrollability and Updatability
	Result Set Limitations and Downgrade Rules

	Positioning and Processing in Scrollable Result Sets
	Positioning in a Scrollable Result Set
	Processing a Scrollable Result Set

	Updating Result Sets
	Performing a DELETE Operation in a Result Set
	Performing an UPDATE Operation in a Result Set
	Performing an INSERT Operation in a Result Set
	Update Conflicts

	Fetch Size
	Setting the Fetch Size
	Use of Standard Fetch Size versus Oracle Row-Prefetch Setting

	Refetching Rows
	Seeing Database Changes Made Internally and Externally
	Seeing Internal Changes
	Seeing External Changes
	Visibility versus Detection of External Changes
	Summary of Visibility of Internal and External Changes
	Oracle Implementation of Scroll-Sensitive Result Sets

	Summary of New Methods for Result Set Enhancements
	Modified Connection Methods
	New Result Set Methods
	Statement Methods
	Database Meta Data Methods

	14 Statement Caching
	About Statement Caching
	Basics of Statement Caching
	Implicit Statement Caching
	Explicit Statement Caching

	Using Statement Caching
	Enabling and Disabling Statement Caching
	Checking for Statement Creation Status
	Physically Closing a Cached Statement
	Using Implicit Statement Caching
	Using Explicit Statement Caching

	15 Distributed Transactions
	Overview
	Distributed Transaction Components and Scenarios
	Distributed Transaction Concepts
	Switching Between Global and Local Transactions
	Oracle XA Packages

	XA Components
	XA Data Source Interface and Oracle Implementation
	XA Connection Interface and Oracle Implementation
	XA Resource Interface and Oracle Implementation
	XA Resource Method Functionality and Input Parameters
	XA ID Interface and Oracle Implementation

	Error Handling and Optimizations
	XA Exception Classes and Methods
	Mapping between Oracle Errors and XA Errors
	XA Error Handling
	Oracle XA Optimizations

	Implementing a Distributed Transaction
	Summary of Imports for Oracle XA
	Oracle XA Code Sample

	16 Connection Pooling and Caching
	Data Sources
	A Brief Overview of Oracle Data Source Support for JNDI
	Data Source Features and Properties
	Creating a Data Source Instance and Connecting (without JNDI)
	Creating a Data Source Instance, Registering with JNDI, and Connecting
	Logging and Tracing

	Connection Pooling
	Connection Pooling Concepts
	Connection Pool Data Source Interface and Oracle Implementation
	Pooled Connection Interface and Oracle Implementation
	Creating a Connection Pool Data Source and Connecting

	Connection Caching
	Overview of Connection Caching
	Typical Steps in Using a Connection Cache
	Oracle Connection Cache Specification: OracleConnectionCache Interface
	Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class
	Oracle Connection Event Listener: OracleConnectionEventListener Class

	17 JDBC OCI Extensions
	OCI Driver Connection Pooling
	OCI Driver Connection Pooling: Background
	OCI Driver Connection Pooling and Shared Servers Compared
	Stateless Sessions Compared to Stateful Sessions
	Defining an OCI Connection Pool
	Connecting to an OCI Connection Pool
	Statement Handling and Caching
	JNDI and the OCI Connection Pool

	Middle-Tier Authentication Through Proxy Connections
	OCI Driver Transparent Application Failover
	Failover Type Events
	TAF Callbacks
	Java TAF Callback Interface

	OCI HeteroRM XA
	Configuration and Installation
	Exception Handling
	HeteroRM XA Code Example

	Accessing PL/SQL Index-by Tables
	Overview
	Binding IN Parameters
	Receiving OUT Parameters

	18 Advanced Topics
	JDBC and Globalization Support
	How JDBC Drivers Perform Globalization Support Conversions
	Globalization Support and Object Types
	SQL CHAR Data Size Restrictions with the Thin Driver

	JDBC Client-Side Security Features
	JDBC Support for Oracle Advanced Security
	JDBC Support for Login Authentication
	JDBC Support for Data Encryption and Integrity

	JDBC in Applets
	Connecting to the Database through the Applet
	Connecting to a Database on a Different Host Than the Web Server
	Using Applets with Firewalls
	Packaging Applets
	Specifying an Applet in an HTML Page

	JDBC in the Server: the Server-Side Internal Driver
	Connecting to the Database with the Server-Side Internal Driver
	Exception-Handling Extensions for the Server-Side Internal Driver
	Session and Transaction Context for the Server-Side Internal Driver
	Testing JDBC on the Server
	Loading an Application into the Server
	Server-Side Character Set Conversion of oracle.sql.CHAR Data

	19 Coding Tips and Troubleshooting
	JDBC and Multithreading
	Performance Optimization
	Disabling Auto-Commit Mode
	Standard Fetch Size and Oracle Row Prefetching
	Standard and Oracle Update Batching

	Common Problems
	Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
	Memory Leaks and Running Out of Cursors
	Boolean Parameters in PL/SQL Stored Procedures
	Opening More Than 16 OCI Connections for a Process

	Basic Debugging Procedures
	Oracle Net Tracing to Trap Network Events
	Third Party Debugging Tools

	Transaction Isolation Levels and Access Modes

	20 Reference Information
	Valid SQL-JDBC Datatype Mappings
	Supported SQL and PL/SQL Datatypes
	Embedded SQL92 Syntax
	Time and Date Literals
	Scalar Functions
	LIKE Escape Characters
	Outer Joins
	Function Call Syntax
	SQL92 to SQL Syntax Example

	Oracle JDBC Notes and Limitations
	CursorName
	SQL92 Outer Join Escapes
	PL/SQL TABLE, BOOLEAN, and RECORD Types
	IEEE 754 Floating Point Compliance
	Catalog Arguments to DatabaseMetaData Calls
	SQLWarning Class
	Bind by Name

	Related Information
	Oracle JDBC Drivers and SQLJ
	Java Technology

	A Row Set
	Introduction
	Row Set Setup and Configuration
	Runtime Properties for Row Set
	Row Set Listener
	Traversing Through the Rows
	Cached Row Set
	CachedRowSet Constraints

	JDBC Row Set

	B JDBC Error Messages
	General Structure of JDBC Error Messages
	General JDBC Messages
	JDBC Messages Sorted by ORA Number
	JDBC Messages Sorted Alphabetically

	HeteroRM XA Messages
	HeteroRM XA Messages Sorted by ORA Number
	HeteroRM XA Messages Sorted Alphabetically

	TTC Messages
	TTC Messages Sorted by ORA Number
	TTC Messages Sorted Alphabetically

	Index

