
Oracle9 i

JDBC Developer’s Guide and Reference

Release 2 (9.2)

March 2002

Part No. A96654-01

Oracle9i JDBC Developer’s Guide and Reference, Release 2 (9.2)

Part No. A96654-01

Copyright © 1999, 2002 Oracle Corporation. All rights reserved.

Primary Author: Elizabeth Hanes Perry, Mike Sanko, Brian Wright, Thomas Pfaeffle

Contributors: Magdi Morsi, Ron Peterson, Ekkehard Rohwedder, Ashok Shivarudraiah, Catherine
Wong, Ed Shirk, Sunil Kunisetty, Joyce Yang, Mehul Bastawala, Luxi Chidambaran, Srinath
Krishnaswamy, Rajkumar Irudayaraj, Scott Urman, Jerry Schwarz, Steve Ding, Soulaiman Htite, Douglas
Surber, Anthony Lai, Paul Lo, Prabha Krishna, Ellen Barnes, Susan Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, Oracle7, PL/SQL, SQL*Plus, and
Oracle Store are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xvii

Preface .. xix

Intended Audience ... xx
Documentation Accessibility .. xx
Organization... xxi
Related Documentation ... xxii
Conventions.. xxvi

1 Overview

Introduction ... 1-2
What is JDBC? ... 1-2
JDBC versus SQLJ... 1-2

Overview of the Oracle JDBC Drivers.. 1-4
Common Features of Oracle JDBC Drivers .. 1-4
JDBC Thin Driver.. 1-5
JDBC OCI Driver .. 1-6
JDBC Server-Side Thin Driver .. 1-7
JDBC Server-Side Internal Driver .. 1-8
Choosing the Appropriate Driver .. 1-8

Overview of Application and Applet Functionality.. 1-10
Application Basics .. 1-10
Applet Basics ... 1-10
Oracle Extensions ... 1-11

iv

Package oracle.jdbc... 1-11
Server-Side Basics ... 1-13

Session and Transaction Context.. 1-13
Connecting to the Database... 1-13

Environments and Support ... 1-14
Supported JDK and JDBC Versions ... 1-14
JNI and Java Environments... 1-14
JDBC and IDEs .. 1-15

Changes At This Release ... 1-16

2 Getting Started

Requirements and Compatibilities for Oracle JDBC Drivers.. 2-2
Verifying a JDBC Client Installation .. 2-5

Check Installed Directories and Files... 2-5
Check the Environment Variables.. 2-6
Make Sure You Can Compile and Run Java... 2-8
Determine the Version of the JDBC Driver ... 2-8
Testing JDBC and the Database Connection: JdbcCheckup... 2-9

3 Basic Features

First Steps in JDBC ... 3-2
Import Packages.. 3-2
Register the JDBC Drivers ... 3-3
Open a Connection to a Database .. 3-3
Create a Statement Object.. 3-11
Execute a Query and Return a Result Set Object ... 3-11
Process the Result Set ... 3-11
Close the Result Set and Statement Objects .. 3-12
Make Changes to the Database... 3-12
Commit Changes .. 3-13
Close the Connection.. 3-14

Sample: Connecting, Querying, and Processing the Results ... 3-15
Datatype Mappings .. 3-16

Table of Mappings .. 3-16
Notes Regarding Mappings .. 3-18

v

Java Streams in JDBC... 3-20
Streaming LONG or LONG RAW Columns .. 3-20
Streaming CHAR, VARCHAR, or RAW Columns.. 3-25
Data Streaming and Multiple Columns .. 3-26
Streaming LOBs and External Files ... 3-27
Closing a Stream... 3-29
Notes and Precautions on Streams .. 3-29

Stored Procedure Calls in JDBC Programs .. 3-32
PL/SQL Stored Procedures... 3-32
Java Stored Procedures .. 3-33

Processing SQL Exceptions... 3-34
Retrieving Error Information.. 3-34
Printing the Stack Trace... 3-35

4 Overview of JDBC 2.0 Support

Introduction ... 4-2
JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x .. 4-3

Datatype Support ... 4-3
Standard Feature Support ... 4-4
Extended Feature Support .. 4-5
Standard versus Oracle Performance Enhancement APIs ... 4-5
Migration from JDK 1.1.x to JDK 1.2.x .. 4-5

Overview of JDBC 2.0 Features.. 4-7

5 Overview of Supported JDBC 3.0 Features

Introduction ... 5-2
JDBC 3.0 Support: JDK 1.4 and Previous Releases .. 5-3
Overview of Supported JDBC 3.0 Features ... 5-4
Transaction Savepoints .. 5-5

Creating a Savepoint .. 5-5
Rolling back to a Savepoint... 5-6
Releasing a Savepoint .. 5-6
Checking Savepoint Support .. 5-6
Savepoint Notes .. 5-6
Savepoint Interfaces ... 5-7

vi

Pre-JDK1.4 Savepoint Support.. 5-8

6 Overview of Oracle Extensions

Introduction to Oracle Extensions ... 6-2
Support Features of the Oracle Extensions .. 6-3

Support for Oracle Datatypes ... 6-3
Support for Oracle Objects .. 6-4
Support for Schema Naming... 6-5
OCI Extensions.. 6-6

Oracle JDBC Packages and Classes ... 6-7
Package oracle.sql ... 6-7
Package oracle.jdbc... 6-16
Package oracle.jdbc2 (for JDK 1.1.x only).. 6-27

Oracle Character Datatypes Support... 6-28
SQL CHAR Datatypes.. 6-28
SQL NCHAR Datatypes .. 6-28
Class oracle.sql.CHAR ... 6-29

Additional Oracle Type Extensions... 6-33
Oracle ROWID Type .. 6-33
Oracle REF CURSOR Type Category... 6-34
Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers... 6-36

7 Accessing and Manipulating Oracle Data

Data Conversion Considerations ... 7-2
Standard Types versus Oracle Types... 7-2
Converting SQL NULL Data... 7-2

Result Set and Statement Extensions .. 7-3
Comparison of Oracle get and set Methods to Standard JDBC ... 7-4

Standard getObject() Method.. 7-4
Oracle getOracleObject() Method... 7-4
Summary of getObject() and getOracleObject() Return Types .. 7-6
Other getXXX() Methods ... 7-7
Casting Your get Method Return Values .. 7-10
Standard setObject() and Oracle setOracleObject() Methods... 7-11
Other setXXX() Methods.. 7-12

vii

Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers .. 7-18
Using Result Set Meta Data Extensions ... 7-19

8 Working with LOBs and BFILEs

Oracle Extensions for LOBs and BFILEs .. 8-2
Working with BLOBs and CLOBs ... 8-3

Getting and Passing BLOB and CLOB Locators .. 8-3
Reading and Writing BLOB and CLOB Data ... 8-6
Creating and Populating a BLOB or CLOB Column... 8-10
Accessing and Manipulating BLOB and CLOB Data.. 8-12
Additional BLOB and CLOB Features... 8-13

Working With Temporary LOBs .. 8-18
Using Open and Close With LOBs .. 8-19
Working with BFILEs ... 8-20

Getting and Passing BFILE Locators ... 8-20
Reading BFILE Data ... 8-22
Creating and Populating a BFILE Column... 8-23
Accessing and Manipulating BFILE Data ... 8-25
Additional BFILE Features.. 8-26

9 Working with Oracle Object Types

Mapping Oracle Objects ... 9-2
Using the Default STRUCT Class for Oracle Objects ... 9-3

STRUCT Class Functionality .. 9-3
Creating STRUCT Objects and Descriptors .. 9-4
Retrieving STRUCT Objects and Attributes ... 9-6
Binding STRUCT Objects into Statements .. 9-8
STRUCT Automatic Attribute Buffering... 9-9

Creating and Using Custom Object Classes for Oracle Objects ... 9-10
Relative Advantages of ORAData versus SQLData .. 9-11
Understanding Type Maps for SQLData Implementations ... 9-11
Creating a Type Map Object and Defining Mappings for a SQLData Implementation .. 9-12
Understanding the SQLData Interface .. 9-15
Reading and Writing Data with a SQLData Implementation.. 9-17
Understanding the ORAData Interface... 9-21

viii

Reading and Writing Data with a ORAData Implementation... 9-23
Additional Uses for ORAData .. 9-26
The Deprecated CustomDatum Interface ... 9-27

Object-Type Inheritance .. 9-29
Creating Subtypes... 9-29
Implementing Customized Classes for Subtypes .. 9-30
Retrieving Subtype Objects ... 9-37
Creating Subtype Objects .. 9-40
Sending Subtype Objects ... 9-41
Accessing Subtype Data Fields ... 9-41
Inheritance Meta Data Methods ... 9-43

Using JPublisher to Create Custom Object Classes ... 9-45
JPublisher Functionality .. 9-45
JPublisher Type Mappings .. 9-45

Describing an Object Type.. 9-49
Functionality for Getting Object Meta Data.. 9-49
Steps for Retrieving Object Meta Data... 9-50

SQLJ Object Types.. 9-52
Creating a SQLJ Object Type in SQL Representation.. 9-53
Inserting an Instance of a SQLJ Object Type... 9-59
Retrieving Instances of a SQLJ Object Type.. 9-60
Meta Data Methods for SQLJ Object Types .. 9-61
SQLJ Object Types and Custom Object Types Compared.. 9-62

10 Working with Oracle Object References

Oracle Extensions for Object References ... 10-2
Overview of Object Reference Functionality .. 10-4

Object Reference Getter and Setter Methods .. 10-4
Key REF Class Methods... 10-4

Retrieving and Passing an Object Reference .. 10-6
Retrieving an Object Reference from a Result Set.. 10-6
Retrieving an Object Reference from a Callable Statement .. 10-7
Passing an Object Reference to a Prepared Statement .. 10-8

Accessing and Updating Object Values through an Object Reference 10-9
Custom Reference Classes with JPublisher... 10-10

ix

11 Working with Oracle Collections

Oracle Extensions for Collections (Arrays).. 11-2
Choices in Materializing Collections ... 11-2
Creating Collections ... 11-3
Creating Multi-Level Collection Types ... 11-4

Overview of Collection (Array) Functionality .. 11-5
Array Getter and Setter Methods ... 11-5
ARRAY Descriptors and ARRAY Class Functionality ... 11-6

ARRAY Performance Extension Methods .. 11-8
Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types 11-8
ARRAY Automatic Element Buffering.. 11-9
ARRAY Automatic Indexing .. 11-9

Creating and Using Arrays.. 11-11
Creating ARRAY Objects and Descriptors ... 11-11
Retrieving an Array and Its Elements ... 11-15
Passing Arrays to Statement Objects ... 11-22

Using a Type Map to Map Array Elements.. 11-25
Custom Collection Classes with JPublisher .. 11-27

12 Performance Extensions

Update Batching.. 12-2
Overview of Update Batching Models .. 12-2
Oracle Update Batching... 12-4
Standard Update Batching .. 12-10
Premature Batch Flush... 12-18

Additional Oracle Performance Extensions .. 12-20
Oracle Row Prefetching ... 12-20
Defining Column Types .. 12-23
DatabaseMetaData TABLE_REMARKS Reporting ... 12-26

13 Result Set Enhancements

Overview .. 13-2
Result Set Functionality and Result Set Categories Supported in JDBC 2.0 13-2
Oracle JDBC Implementation Overview for Result Set Enhancements 13-5

x

Creating Scrollable or Updatable Result Sets ... 13-8
Specifying Result Set Scrollability and Updatability... 13-8
Result Set Limitations and Downgrade Rules.. 13-10

Positioning and Processing in Scrollable Result Sets ... 13-13
Positioning in a Scrollable Result Set... 13-13
Processing a Scrollable Result Set... 13-15

Updating Result Sets .. 13-18
Performing a DELETE Operation in a Result Set... 13-18
Performing an UPDATE Operation in a Result Set ... 13-19
Performing an INSERT Operation in a Result Set ... 13-21
Update Conflicts ... 13-23

Fetch Size .. 13-24
Setting the Fetch Size.. 13-24
Use of Standard Fetch Size versus Oracle Row-Prefetch Setting....................................... 13-25

Refetching Rows ... 13-26
Seeing Database Changes Made Internally and Externally ... 13-27

Seeing Internal Changes .. 13-27
Seeing External Changes.. 13-28
Visibility versus Detection of External Changes.. 13-29
Summary of Visibility of Internal and External Changes... 13-30
Oracle Implementation of Scroll-Sensitive Result Sets ... 13-30

Summary of New Methods for Result Set Enhancements ... 13-32
Modified Connection Methods... 13-32
New Result Set Methods.. 13-32
Statement Methods... 13-35
Database Meta Data Methods ... 13-35

14 Statement Caching

About Statement Caching ... 14-2
Basics of Statement Caching.. 14-2
Implicit Statement Caching ... 14-2
Explicit Statement Caching ... 14-3

Using Statement Caching .. 14-5
Enabling and Disabling Statement Caching ... 14-5
Checking for Statement Creation Status.. 14-6

xi

Physically Closing a Cached Statement .. 14-7
Using Implicit Statement Caching ... 14-7
Using Explicit Statement Caching.. 14-9

15 Distributed Transactions

Overview .. 15-2
Distributed Transaction Components and Scenarios.. 15-3
Distributed Transaction Concepts.. 15-3
Switching Between Global and Local Transactions... 15-5
Oracle XA Packages ... 15-7

XA Components .. 15-8
XA Data Source Interface and Oracle Implementation... 15-8
XA Connection Interface and Oracle Implementation.. 15-9
XA Resource Interface and Oracle Implementation.. 15-10
XA Resource Method Functionality and Input Parameters ... 15-11
XA ID Interface and Oracle Implementation.. 15-16

Error Handling and Optimizations ... 15-18
XA Exception Classes and Methods .. 15-18
Mapping between Oracle Errors and XA Errors.. 15-19
XA Error Handling... 15-19
Oracle XA Optimizations .. 15-20

Implementing a Distributed Transaction... 15-21
Summary of Imports for Oracle XA... 15-21
Oracle XA Code Sample .. 15-21

16 Connection Pooling and Caching

Data Sources .. 16-2
A Brief Overview of Oracle Data Source Support for JNDI ... 16-2
Data Source Features and Properties... 16-3
Creating a Data Source Instance and Connecting (without JNDI)...................................... 16-7
Creating a Data Source Instance, Registering with JNDI, and Connecting 16-8
Logging and Tracing.. 16-10

Connection Pooling .. 16-11
Connection Pooling Concepts... 16-11
Connection Pool Data Source Interface and Oracle Implementation 16-12

xii

Pooled Connection Interface and Oracle Implementation ... 16-13
Creating a Connection Pool Data Source and Connecting ... 16-14

Connection Caching ... 16-16
Overview of Connection Caching .. 16-16
Typical Steps in Using a Connection Cache ... 16-20
Oracle Connection Cache Specification: OracleConnectionCache Interface.................... 16-23
Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class 16-24
Oracle Connection Event Listener: OracleConnectionEventListener Class..................... 16-28

17 JDBC OCI Extensions

OCI Driver Connection Pooling .. 17-2
OCI Driver Connection Pooling: Background.. 17-3
OCI Driver Connection Pooling and Shared Servers Compared .. 17-3
Stateless Sessions Compared to Stateful Sessions.. 17-4
Defining an OCI Connection Pool.. 17-4
Connecting to an OCI Connection Pool .. 17-8
Statement Handling and Caching .. 17-10
JNDI and the OCI Connection Pool ... 17-12

Middle-Tier Authentication Through Proxy Connections ... 17-13
OCI Driver Transparent Application Failover .. 17-16

Failover Type Events.. 17-16
TAF Callbacks ... 17-17
Java TAF Callback Interface .. 17-17

OCI HeteroRM XA.. 17-19
Configuration and Installation ... 17-19
Exception Handling.. 17-19
HeteroRM XA Code Example ... 17-19

Accessing PL/SQL Index-by Tables... 17-21
Overview.. 17-21
Binding IN Parameters... 17-22
Receiving OUT Parameters ... 17-24

18 Advanced Topics

JDBC and Globalization Support .. 18-2
How JDBC Drivers Perform Globalization Support Conversions 18-3

xiii

Globalization Support and Object Types .. 18-4
SQL CHAR Data Size Restrictions with the Thin Driver.. 18-6

JDBC Client-Side Security Features.. 18-8
JDBC Support for Oracle Advanced Security... 18-8
JDBC Support for Login Authentication... 18-9
JDBC Support for Data Encryption and Integrity.. 18-10

JDBC in Applets.. 18-15
Connecting to the Database through the Applet ... 18-15
Connecting to a Database on a Different Host Than the Web Server 18-17
Using Applets with Firewalls ... 18-20
Packaging Applets.. 18-23
Specifying an Applet in an HTML Page ... 18-24

JDBC in the Server: the Server-Side Internal Driver... 18-26
Connecting to the Database with the Server-Side Internal Driver.................................... 18-26
Exception-Handling Extensions for the Server-Side Internal Driver................................ 18-28
Session and Transaction Context for the Server-Side Internal Driver 18-30
Testing JDBC on the Server ... 18-30
Loading an Application into the Server .. 18-32
Server-Side Character Set Conversion of oracle.sql.CHAR Data 18-33

19 Coding Tips and Troubleshooting

JDBC and Multithreading... 19-2
Performance Optimization.. 19-6

Disabling Auto-Commit Mode... 19-6
Standard Fetch Size and Oracle Row Prefetching ... 19-7
Standard and Oracle Update Batching.. 19-7

Common Problems ... 19-8
Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables.................... 19-8
Memory Leaks and Running Out of Cursors ... 19-8
Boolean Parameters in PL/SQL Stored Procedures .. 19-9
Opening More Than 16 OCI Connections for a Process ... 19-9

Basic Debugging Procedures .. 19-11
Oracle Net Tracing to Trap Network Events.. 19-11
Third Party Debugging Tools ... 19-14

Transaction Isolation Levels and Access Modes... 19-15

xiv

20 Reference Information

Valid SQL-JDBC Datatype Mappings .. 20-2
Supported SQL and PL/SQL Datatypes ... 20-5
Embedded SQL92 Syntax .. 20-10

Time and Date Literals ... 20-10
Scalar Functions .. 20-12
LIKE Escape Characters... 20-13
Outer Joins ... 20-13
Function Call Syntax .. 20-14
SQL92 to SQL Syntax Example... 20-14

Oracle JDBC Notes and Limitations ... 20-16
CursorName .. 20-16
SQL92 Outer Join Escapes ... 20-16
PL/SQL TABLE, BOOLEAN, and RECORD Types .. 20-16
IEEE 754 Floating Point Compliance ... 20-17
Catalog Arguments to DatabaseMetaData Calls ... 20-17
SQLWarning Class.. 20-17
Bind by Name.. 20-17

Related Information ... 20-19
Oracle JDBC Drivers and SQLJ... 20-19
Java Technology.. 20-19

A Row Set

Introduction ... A-2
Row Set Setup and Configuration... A-4
Runtime Properties for Row Set .. A-5
Row Set Listener ... A-6
Traversing Through the Rows .. A-8
Cached Row Set... A-9

CachedRowSet Constraints ... A-13
JDBC Row Set.. A-15

B JDBC Error Messages

General Structure of JDBC Error Messages ... B-2

xv

General JDBC Messages.. B-3
JDBC Messages Sorted by ORA Number.. B-3
JDBC Messages Sorted Alphabetically .. B-9

HeteroRM XA Messages.. B-15
HeteroRM XA Messages Sorted by ORA Number.. B-15
HeteroRM XA Messages Sorted Alphabetically .. B-16

TTC Messages.. B-17
TTC Messages Sorted by ORA Number.. B-17
TTC Messages Sorted Alphabetically .. B-19

Index

xvi

xvii

Send Us Your Comments

Oracle9 i JDBC Developer’s Guide and Reference, Release 2 (9.2)

Part No. A96654-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: jpgcomment_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xviii

xix

Preface

This preface introduces you to the Oracle9i JDBC Developer’s Guide and Reference,
discussing the intended audience, structure, and conventions of this document. A
list of related Oracle documents is also provided.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

xx

Intended Audience
This manual is intended for anyone with an interest in JDBC programming but
assumes at least some prior knowledge of the following:

■ Java

■ SQL

■ Oracle PL/SQL

■ Oracle databases

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessib ility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessib ility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

xxi

Organization
This document contains the following chapters and appendices:

■ Chapter 1, "Overview"—Provides an overview of the Oracle implementation of
JDBC and the Oracle JDBC driver architecture.

■ Chapter 2, "Getting Started"—Introduces the Oracle JDBC drivers and some
scenarios of how you can use them. This chapter also guides you through the
basics of testing your installation and configuration.

■ Chapter 3, "Basic Features"—Covers the basic steps in creating any JDBC
application. It also discusses additional basic features of Java and JDBC
supported by the Oracle JDBC drivers.

■ Chapter 4, "Overview of JDBC 2.0 Support"—Presents an overview of JDBC 2.0
features and describes the differences in how these features are supported in the
JDK 1.2.x and JDK 1.1.x environments.

■ Chapter 6, "Overview of Oracle Extensions"—Provides an overview of the JDBC
extension classes supplied by Oracle.

■ Chapter 7, "Accessing and Manipulating Oracle Data"—Describes data access
using the Oracle datatype formats rather than Java formats.

■ Chapter 8, "Working with LOBs and BFILEs"—Covers the Oracle extensions to
the JDBC standard that let you access and manipulate LOBs and LOB data.

■ Chapter 9, "Working with Oracle Object Types"—Explains how to map Oracle
object types to Java classes by using either standard JDBC or Oracle extensions.

■ Chapter 10, "Working with Oracle Object References"—Describes the Oracle
extensions to standard JDBC that let you access and manipulate object
references.

■ Chapter 11, "Working with Oracle Collections"—Discusses the Oracle
extensions to standard JDBC that let you access and manipulate arrays and their
data.

■ Chapter 12, "Performance Extensions"—Describes Oracle extensions to the
JDBC standard that enhance the performance of your applications.

■ Chapter 13, "Result Set Enhancements"—This chapter discusses JDBC 2.0 result
set enhancements such as scrollable result sets and updatable result sets,
including support issues under JDK 1.1.x

■ Chapter 14, "Statement Caching"—Describes Oracle extension statements for
caching.

xxii

■ Chapter 15, "Distributed Transactions"—Covers distributed transactions,
otherwise known as global transactions, and standard XA functionality.
(Distributed transactions are sets of transactions, often to multiple databases,
that have to be committed in a coordinated manner.)

■ Chapter 16, "Connection Pooling and Caching"—Discusses JDBC 2.0 data
sources (and their usage of JNDI), connection pooling functionality (a
framework for connection caching implementations), and a sample connection
caching implementation provided by Oracle.

■ Chapter 17, "JDBC OCI Extensions"—Describes extensions specific to the OCI
driver.

■ Chapter 18, "Advanced Topics"—Describes advanced JDBC topics such as
globalization support, working with applets, the server-side driver, and
embedded SQL92 syntax.

■ Chapter 19, "Coding Tips and Troubleshooting"—Includes coding tips and
general guidelines for troubleshooting your JDBC applications.

■ Chapter 20, "Reference Information"—Contains detailed JDBC reference
information.

■ Appendix A, "Row Set"—Describes JDBC and cached row sets.

■ Appendix B, "JDBC Error Messages"—Lists JDBC error messages and the
corresponding ORA error numbers.

Related Documentation
Also available from the Oracle Java Platform group, for Oracle9i releases:

■ Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC or SQLJ) is in this book.

■ Oracle9i Support for JavaServer Pages Reference

This book covers the use of JavaServer Pages technology to embed Java code
and JavaBean invocations inside HTML pages. Both standard JSP features and
Oracle-specific features are described. Discussion covers considerations for the
Oracle9i release 2 Oracle HTTP Server JServ environment, but also covers

xxiii

features for servlet 2.2 environments and emulation of some of those features by
the Oracle JSP container for JServ.

■ Oracle9i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

■ Oracle9i JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing SQLJ
or JDBC applications that use object types, VARRAY types, nested table types,
or object reference types, then JPublisher can generate custom Java classes to
map to them.

■ Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle9i database. With stored procedures (functions, procedures, triggers, and
SQL methods), Java developers can implement business logic at the server
level, thereby improving application performance, scalability, and security.

The following OC4J documents, for Oracle9i Application Server releases, are also
available from the Oracle Java Platform group:

■ Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

■ Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4J.

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

xxiv

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J
configuration files.

■ Oracle9iAS Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4J,
such as JTA, JNDI, and the Oracle9i Application Server Java Object Cache.

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

The following documents are from the Oracle Server Technologies group:

■ Oracle9i XML Developer’s Kits Guide - XDK

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Supplied Java Packages Reference

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ PL/SQL User’s Guide and Reference

■ Oracle9i SQL Reference

■ Oracle9i Net Services Administrator’s Guide

■ Oracle Advanced Security Administrator’s Guide

■ Oracle9i Database Reference

■ Oracle9i Database Error Messages

The following documents from the Oracle9i Application Server group may also be
of some interest:

■ Oracle9i Application Server Administrator’s Guide

■ Oracle Enterprise Manager Administrator’s Guide

■ Oracle HTTP Server Administration Guide

■ Oracle9i Application Server Performance Guide

■ Oracle9i Application Server Globalization Support Guide

■ Oracle9iAS Web Cache Administration and Deployment Guide

■ Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x

xxv

The following are available from the JDeveloper group:

■ Oracle JDeveloper online help

■ Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

The following Oracle Technology Network (OTN) resources are available for further
information about JavaServer Pages:

■ OTN Web site for Java servlets and JavaServer Pages:

http://otn.oracle.com/tech/java/servlets/

■ OTN JSP discussion forums, accessible through the following address:

http://www.oracle.com/forums/forum.jsp?id=399160

The following resources are available from Sun Microsystems:

■ Web site for JavaServer Pages, including the latest specifications:

xxvi

http://java.sun.com/products/jsp/index.html

■ Web site for Java Servlet technology, including the latest specifications:

http://java.sun.com/products/servlet/index.html

■ jsp-interest discussion group for JavaServer Pages

To subscribe, send an e-mail to listserv@java.sun.com with the following
line in the body of the message:

subscribe jsp-interest yourlastname yourfirstname

It is recommended, however, that you request only the daily digest of the
posted e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

xxvii

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis, or terms that are defined in the
text.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents place holders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

xxviii

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates place holders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Overview 1-1

1
Overview

This chapter provides an overview of the Oracle implementation of JDBC, covering
the following topics:

■ Introduction

■ Overview of the Oracle JDBC Drivers

■ Overview of Application and Applet Functionality

■ Server-Side Basics

■ Environments and Support

■ Changes At This Release

Introduction

1-2 Oracle9i JDBC Developer’s Guide and Reference

Introduction
This section presents a brief introduction to Oracle JDBC, including a comparison to
SQLJ.

What is JDBC?
JDBC (Java Database Connectivity) is a standard Java interface for connecting from
Java to relational databases. The JDBC standard was defined by Sun Microsystems,
allowing individual providers to implement and extend the standard with their
own JDBC drivers.

JDBC is based on the X/Open SQL Call Level Interface and complies with the
SQL92 Entry Level standard.

In addition to supporting the standard JDBC API, Oracle drivers have extensions to
support Oracle-specific datatypes and to enhance performance.

JDBC versus SQLJ
Developers who are familiar with the Oracle Call Interface (OCI) layer of client-side
C code will recognize that JDBC provides the power and flexibility for the Java
programmer that OCI does for the C or C++ programmer. Just as with OCI, you can
use JDBC to query and update tables where, for example, the number and types of
the columns are not known until runtime. This capability is called dynamic SQL.
Therefore, JDBC is a way to use dynamic SQL statements in Java programs. Using
JDBC, a calling program can construct SQL statements at runtime. Your JDBC
program is compiled and run like any other Java program. No analysis or checking
of the SQL statements is performed. Any errors that are made in your SQL code
raise runtime errors. JDBC is designed as an API for dynamic SQL.

However, many applications do not need to construct SQL statements dynamically
because the SQL statements they use are fixed or static. In this case, you can use
SQLJ to embed static SQL in Java programs. In static SQL, all the SQL statements are
complete or "textually evident" in the Java program. That is, details of the database
object, such as the column names, number of columns in the table, and table name,
are known before runtime. SQLJ offers advantages for these applications because it
permits error checking at precompile time.

The precompile step of a SQLJ program performs syntax-checking of the embedded
SQL, type checking against the database to assure that the data exchanged between
Java and SQL have compatible types and proper type conversions, and schema
checking to assure congruence between SQL constructs and the database schema.
The result of the precompilation is Java source code with SQL runtime code which,

Introduction

Overview 1-3

in turn, can use JDBC calls. The generated Java code compiles and runs like any
other Java program.

Although SQLJ provides direct support for static SQL operations known at the time
the program is written, it can also interoperate with dynamic SQL through JDBC.
SQLJ allows you to create JDBC objects when they are needed for dynamic SQL
operations. In this way, SQLJ and JDBC can co-exist in the same program.
Convenient conversions are supported between JDBC connections and SQLJ
connection contexts, as well as between JDBC result sets and SQLJ iterators. For
more information on this, see the Oracle9i SQLJ Developer’s Guide and Reference.

The syntax and semantics of SQLJ and JDBC do not depend on the configuration
under which they are running, thus enabling implementation on the client or
database side or in the middle tier.

General Guidelines for Using JDBC and SQLJ
SQLJ is effective in the following circumstances:

■ You want to be able to check your program for errors at translation-time, rather
than at run-time.

■ You want to write an application that you can deploy to another database.
Using SQLJ, you can customize the static SQL for that database at
deployment-time.

■ You are working with a database that contains compiled SQL. You will want to
use SQLJ because you cannot compile SQL statements in a JDBC program.

JDBC is effective in the following circumstances:

■ Your program uses dynamic SQL. For example, you have a program that builds
queries in real-time or has an interactive query component.

■ You do not want to have a SQLJ layer during deployment or development. For
example, you might want to download only the JDBC Thin driver and not the
SQLJ runtime libraries to minimize download time over a slow link.

Note: You can intermix SQLJ code and JDBC code in the same
source. This is discussed in the Oracle9i SQLJ Developer’s Guide and
Reference.

Overview of the Oracle JDBC Drivers

1-4 Oracle9i JDBC Developer’s Guide and Reference

Overview of the Oracle JDBC Drivers
This section introduces the Oracle JDBC drivers, their basic architecture, and some
scenarios for their use. This information describes the core functionality of all JDBC
drivers. However, there is special functionality for the OCI driver, which is
described Chapter 17, "JDBC OCI Extensions".

Oracle provides the following JDBC drivers:

■ Thin driver, a 100% Java driver for client-side use without an Oracle
installation, particularly with applets

■ OCI driver for client-side use with an Oracle client installation

■ server-side Thin driver, which is functionally the same as the client-side Thin
driver, but is for code that runs inside an Oracle server and needs to access a
remote server, including middle-tier scenarios

■ server-side internal driver for code that runs inside the target server (that is,
inside the Oracle server that it must access)

Figure 1–1 illustrates the driver-database architecture for the JDBC Thin, OCI, and
server-side internal drivers.

The rest of this section describes common features of the Oracle drivers and then
discusses each one individually, concluding with a discussion of some of the
considerations in choosing the appropriate driver for your application.

Figure 1–1 Driver-Database Architecture

Common Features of Oracle JDBC Drivers
The server-side and client-side Oracle JDBC drivers provide the same basic
functionality. They all support the following standards and features:

■ either JDK 1.2.x / JDBC 2.0 or JDK 1.1.x / JDBC 1.22 (with Oracle extensions for
JDBC 2.0 functionality)

These two implementations use different sets of class files.

■ same syntax and APIs

■ same Oracle extensions

■ full support for multi-threaded applications

JDBC OCI Driver

OCI C Library

JDBC Thin Driver

Java Sockets

Oracle9i

Java Engine

KPRB C Library

SQL Engine
PL/SQL Engine

Oracle9i

Server-Side Thin Driver

JDBC Server-Side
Internal Driver

Overview of the Oracle JDBC Drivers

Overview 1-5

Oracle JDBC drivers implement standard Sun Microsystems java.sql interfaces.
Through the oracle.jdbc package, you can access the Oracle features in addition
to the Sun features. This package is equivalent to the oracle.jdbc.driver
package which is deprecated for Oracle9i.

Table 1–1 shows how the client-side drivers compare.

JDBC Thin Driver
The Oracle JDBC Thin driver is a 100% pure Java, Type IV driver. It is targeted for
Oracle JDBC applets but can be used for applications as well. Because it is written
entirely in Java, this driver is platform-independent. It does not require any
additional Oracle software on the client side. The Thin driver communicates with
the server using TTC, a protocol developed by Oracle to access the Oracle Relational
Database Management System (RDBMS).

For applets it can be downloaded into a browser along with the Java applet being
run. The HTTP protocol is stateless, but the Thin driver is not. The initial HTTP
request to download the applet and the Thin driver is stateless. Once the Thin
driver establishes the database connection, the communication between the browser
and the database is stateful and in a two-tier configuration.

The JDBC Thin driver allows a direct connection to the database by providing an
implementation of TCP/IP that emulates Oracle Net and TTC (the wire protocol
used by OCI) on top of Java sockets. Both of these protocols are lightweight
implementation versions of their counterparts on the server. The Oracle Net
protocol runs over TCP/IP only.

Table 1–1 JDBC Client-Side Drivers Compared at a Glance

Driver Type Size Protocol
100%
Java Use

External
Libraries
Needed

Platform-
dependent

Performan
ce

Completen
ess of
Features

Thin
IV Small TTC Yes Applet and

application
No No Better Better

OCI II Large TTC No Application Yes Yes Best Best

Note: Most JDBC 2.0 functionality, including that for objects,
arrays, and LOBs, is available in a JDK 1.1.x environment through
Oracle extensions.

Overview of the Oracle JDBC Drivers

1-6 Oracle9i JDBC Developer’s Guide and Reference

The driver supports only TCP/IP protocol and requires a TNS listener on the
TCP/IP sockets from the database server.

Using the Thin driver inside an Oracle server or middle tier is considered
separately, under "JDBC Server-Side Thin Driver" below.

JDBC OCI Driver
The JDBC OCI driver is a Type II driver for use with client-server Java applications.
This driver requires an Oracle client installation, and therefore is Oracle
platform-specific and not suitable for applets.

The JDBC OCI driver provides OCI connection pooling functionality, which can
either be part of the JDBC client or a JDBC stored procedure. OCI driver connection
pooling requires fewer physical connections than standard connection pooling, it
also provides a uniform interface, and allows you to dynamically configure the
attributes of the connection pool. For a complete description of OCI driver
connection pooling, see "OCI Driver Connection Pooling" on page 17-2.

The OCI driver supports Oracle7, Oracle8/8i, and Oracle9i with the highest
compatibility. It also supports all installed Oracle Net adapters, including IPC,
named pipes, TCP/IP, and IPX/SPX.

The OCI driver, written in a combination of Java and C, converts JDBC invocations
to calls to the Oracle Call Interface (OCI), using native methods to call C-entry
points. These calls are then sent over Oracle Net to the Oracle database server. The
OCI driver communicate with the server using the Oracle-developed TTC protocol.

The OCI driver uses the OCI libraries, C-entry points, Oracle Net, CORE libraries,
and other necessary files on the client machine on which it is installed.

Note: When the JDBC Thin driver is used with an applet, the
client browser must have the capability to support Java sockets.

Note: In Oracle9i, the OCI driver is a single OCI driver for use
with all database versions. It replaces the distinct OCI8 and OCI7
drivers of previous releases. While the OCI8 and OCI7 drivers are
deprecated for Oracle9i, they are still supported for backward
compatibility.

Overview of the Oracle JDBC Drivers

Overview 1-7

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows you to create applications that use the native procedures or function calls of
a third-generation language to access an Oracle database server and control all
phases of SQL statement execution. The OCI driver is designed to build scalable,
multi-threaded applications that can support large numbers of users securely.

The Oracle9i JDBC OCI driver has the following functionality:

■ Uses OCI

■ Connection Pooling

■ OCI optimized fetch

■ Prefetching

■ Fastest LOB access

■ Client-side object cache

■ Transparent Application Failover (TAF)

■ Middle-tier authentication

■ Advanced security

JDBC Server-Side Thin Driver
The Oracle JDBC server-side Thin driver offers the same functionality as the
client-side Thin driver, but runs inside an Oracle database and accesses a remote
database.

This is especially useful in two situations:

■ to access a remote Oracle server from an Oracle server acting as a middle tier

■ more generally, to access one Oracle server from inside another, such as from
any Java stored procedure or Enterprise JavaBean

There is no difference in your code between using the Thin driver from a client
application or from inside a server.

Note: Statement cancel() and setQueryTimeout() methods
are not supported by the server-side Thin driver.

Overview of the Oracle JDBC Drivers

1-8 Oracle9i JDBC Developer’s Guide and Reference

About Permission for the Server-Side Thin Driver The thin driver opens a socket to use
for its connection. Because the Oracle server is enforcing the Java security model,
this means that a check is performed for a SocketPermission object.

To use the JDBC server-side Thin driver, the connecting user must be granted with
the appropriate permission. This is an example of how the permission can be
granted for user SCOTT:

create role jdbcthin;
call dbms_java.grant_permission('JDBCTHIN',
'java.net.SocketPermission',
'*', 'connect');
grant jdbcthin to scott;

Note that JDBCTHIN in the grant_permission call must be in upper case. The '*'
is a pattern. It is possible to limit the permission to allow connecting to specific
machines or ports. See the Javadoc for complete details on the
java.net.SocketPermission class. Also, refer to the Oracle9i Java Developer’s
Guide for further discussion of Java security inside the Oracle server.

JDBC Server-Side Internal Driver
The Oracle JDBC server-side internal driver supports any Java code that runs inside
an Oracle database, such as in a Java stored procedures or Enterprise JavaBean, and
must access the same database. This driver allows the Java virtual machine (JVM) to
communicate directly with the SQL engine.

The server-side internal driver, the JVM, the database, KPRB (server-side) C library,
and the SQL engine all run within the same address space, so the issue of network
round trips is irrelevant. The programs access the SQL engine by using function
calls.

The server-side internal driver is fully consistent with the client-side drivers and
supports the same features and extensions. For more information on the server-side
internal driver, see "JDBC in the Server: the Server-Side Internal Driver" on
page 18-26.

Choosing the Appropriate Driver
Consider the following when choosing a JDBC driver to use for your application or
applet:

Note: The server-side internal driver supports only JDK 1.2.x.

Overview of the Oracle JDBC Drivers

Overview 1-9

■ If you are writing an applet, you must use the JDBC Thin driver. JDBC
OCI-based driver classes will not work inside a Web browser, because they call
native (C language) methods.

■ If you want maximum portability and performance, use the JDBC Thin driver.
You can connect to an Oracle server from either an application or an applet
using the JDBC Thin driver.

■ If you are writing a client application for an Oracle client environment and need
maximum performance, then choose the JDBC OCI driver.

■ For code that runs in an Oracle server acting as a middle tier, use the server-side
Thin driver.

■ If your code will run inside the target Oracle server, then use the JDBC
server-side internal driver to access that server. (You can also access remote
servers using the server-side Thin driver.)

■ If performance is critical to your application, you want maximum scalability of
the Oracle server, or you need the enhanced availability features like TAF or the
enhanced proxy features like middle-tier authentication

Overview of Application and Applet Functionality

1-10 Oracle9i JDBC Developer’s Guide and Reference

Overview of Application and Applet Functionality
This section compares and contrasts the basic functionality of JDBC applications
and applets, and introduces Oracle extensions that can be used by application and
applet programmers.

Application Basics
You can use either the Oracle JDBC Thin or OCI driver for a client application.
Because the JDBC OCI driver uses native methods, there can be significant
performance advantages in using this driver for your applications.

An application that can run on a client can also run in the Oracle server, using the
JDBC server-side internal driver.

If you are using a JDBC OCI driver in an application, then the application will
require an Oracle installation on its clients. For example, the application will require
the installation of Oracle Net and client libraries.

The JDBC Thin and OCI drivers offer support for data encryption and integrity
checksum features of the Oracle Advanced Security option (formerly known as
ANO or ASO). See "JDBC Client-Side Security Features" on page 18-8. Such security
is not necessary for the server-side internal driver.

Applet Basics
This section describes the issues you should take into consideration if you are
writing an applet that uses the JDBC Thin driver.

For more about applets and a discussion of relevant firewall, browser, and security
issues, see "JDBC in Applets" on page 18-15.

Applets and Security
Without special preparations, an applet can open network connections only to the
host machine from which it was downloaded. Therefore, an applet can connect to
databases only on the originating machine. If you want to connect to a database
running on a different machine, you have two options:

■ Use the Oracle Connection Manager on the host machine. The applet can
connect to Connection Manager, which in turn connects to a database on
another machine.

■ Use signed applets, which can request socket connection privileges to other
machines.

Overview of Application and Applet Functionality

Overview 1-11

Both of these topics are described in greater detail in "Connecting to the Database
through the Applet" on page 18-15.

The Thin driver offers support for data encryption and integrity checksum features
of the Oracle Advanced Security option. See "JDBC Client-Side Security Features"
on page 18-8.

Applets and Firewalls
An applet that uses the JDBC Thin driver can connect to a database through a
firewall. See "Using Applets with Firewalls" on page 18-20 for more information on
configuring the firewall and on writing connect strings for the applet.

Packaging and Deploying Applets
To package and deploy an applet, you must place the JDBC Thin driver classes and
the applet classes in the same zip file. This is described in detail in "Packaging
Applets" on page 18-23.

Oracle Extensions
A number of Oracle extensions are available to Oracle JDBC application and applet
programmers, in the following categories:

■ type extensions (such as ROWIDs and REF CURSOR types)

■ wrapper classes for SQL types (the oracle.sql package)

■ support for custom Java classes to map to user-defined types

■ extended LOB support

■ extended connection, statement, and result set functionality

■ performance enhancements

See Chapter 6, "Overview of Oracle Extensions" for an overview of type extensions
and extended functionality, and succeeding chapters for further detail. See
Chapter 12, "Performance Extensions" regarding Oracle performance enhancements.

Package oracle.jdbc
Beginning in Oracle9i, the Oracle extensions to JDBC are captured in the package
oracle.jdbc. This package contains classes and interfaces that specify the Oracle
extensions in a manner similar to the way the classes and interfaces in java.sql
specify the public JDBC API.

Overview of Application and Applet Functionality

1-12 Oracle9i JDBC Developer’s Guide and Reference

Your code should use the package oracle.jdbc instead of the package
oracle.jdbc.driver used in earlier versions of Oracle. Use of the package
oracle.jdbc.driver is now deprecated, but will continue to be supported for
backwards compatibility.

All that is required to convert your code is to replace "oracle.jdbc.driver"
with "oracle.jdbc" in the source and recompile. This cannot be done piece-wise.
You must convert all classes and interfaces that are referenced by an application.
Conversion is not required, but is highly recommended. Future releases of Oracle
may have features that are incompatible with use of the package
oracle.jdbc.driver.

The purpose of this change is to enable the Oracle JDBC drivers to have multiple
implementations. In all releases up to and including Oracle9i, all of the Oracle JDBC
drivers have used the same top level implementation classes, the classes in the
package oracle.jdbc.driver. By converting your code to use oracle.jdbc,
you will be able to take advantage of future enhancements that use different
implementation classes. There are no such enhancements in Oracle9i, but there are
plans for such enhancements in the future.

Additionally, these interfaces permit the use of some code patterns that are difficult
to use when your code uses the package oracle.jdbc.driver. For example, you
can more easily develop wrapper classes for the Oracle JDBC classes. If you wished
to wrap the OracleStatement class in order to log all SQL statements, you could
easily do so by creating a class that wraps OracleStatment. That class would
implement the interface oracle.jdbc.OracleStatement and hold an
oracle.jdbc.OracleStatement as an instance variable. This wrapping pattern
is much more difficult when your code uses the package oracle.jdbc.driver as
you cannot extend the class oracle.jdbc.driver.OracleStatement.

Once again, your code should use the new package oracle.jdbc instead of the
package oracle.jdbc.driver. Conversion is not required as
oracle.jdbc.driver will continue to be supported for backwards compatibility.
Conversion is highly recommended as there may in later releases be features that
are not supported if your code uses oracle.jdbc.driver.

Server-Side Basics

Overview 1-13

Server-Side Basics
By using the Oracle JDBC server-side internal driver, code that runs in an Oracle
database, such as in Java stored procedures or Enterprise JavaBeans, can access the
database in which it runs.

For a complete discussion of the server-side driver, see "JDBC in the Server: the
Server-Side Internal Driver" on page 18-26.

Session and Transaction Context
The server-side internal driver operates within a default session and default
transaction context. For more information on default session and transaction context
for the server-side driver, see "Session and Transaction Context for the Server-Side
Internal Driver" on page 18-30.

Connecting to the Database
The server-side internal driver uses a default connection to the database. You can
connect to the database with either the DriverManager.getConnection()
method or the Oracle-specific OracleDriver class defaultConnection()
method. For more information on connecting to the database with the server-side
driver, see "Connecting to the Database with the Server-Side Internal Driver" on
page 18-26.

Environments and Support

1-14 Oracle9i JDBC Developer’s Guide and Reference

Environments and Support
This section provides a brief discussion of platform, environment, and support
features of the Oracle JDBC drivers. The following topics are discussed:

■ Supported JDK and JDBC Versions

■ JNI and Java Environments

■ JDBC and IDEs

Supported JDK and JDBC Versions
Starting at Oracle8i release 8.1.6, Oracle has two versions of the Thin and OCI
drivers—one that is compatible with versions JDK 1.2.x and higher, and one that is
compatible with JDK 1.1.x. The JDK 1.2.x versions support standard JDBC 2.0. The
JDK 1.1.x versions support most JDBC 2.0 features, but must do so through Oracle
extensions because JDBC 2.0 features are not available in JDK 1.1.x versions.

Very little is required to migrate from a JDK 1.1.x environment to a JDK 1.2.x
environment. For information, see "Migration from JDK 1.1.x to JDK 1.2.x" on
page 4-5.

For information about supported combinations of driver versions, JDK versions,
and database versions, see "Requirements and Compatibilities for Oracle JDBC
Drivers" on page 2-2.

JNI and Java Environments
Beginning with Oracle8i release 8.1.6, the Oracle JDBC OCI driver uses the standard
JNI (Java Native Interface) to call Oracle OCI C libraries. Prior to 8.1.6, when the
OCI drivers supported JDK 1.0.2, they used NMI (Native Method Interface) for C
calls. NMI was an earlier specification by Sun Microsystems and was the only
native call interface supported by JDK 1.0.2.

Notes:

■ The server-side internal driver supports only JDK 1.2.x.

■ Each driver implementation uses its own JDBC classes ZIP
file—classes12.zip for JDK 1.4, 1.3.x, and1.2.x versions, and
classes111.zip for JDK 1.1.x versions.

Environments and Support

Overview 1-15

Because JNI is now supported by Oracle JDBC, you can use the OCI driver with
Java virtual machines other than that of Sun Microsystems—in particular, with
Microsoft and IBM JVMs. These JVMs support only JNI for native C calls.

JDBC and IDEs
The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for
the Oracle Internet platform. The Oracle JDeveloper environment contains
integrated support for JDBC and SQLJ, including the 100% pure JDBC Thin driver
and the native OCI drivers. The database component of Oracle JDeveloper uses the
JDBC drivers to manage the connection between the application running on the
client and the server. See your Oracle JDeveloper documentation for more
information.

Changes At This Release

1-16 Oracle9i JDBC Developer’s Guide and Reference

Changes At This Release
Release 2 (9.2) of Oracle JDBC provides the following enhancements:

■ Support for some JDBC 3.0 and JDK 1.4 features. See Chapter 5, "Overview of
Supported JDBC 3.0 Features".

■ A new statement cache API; the old API is now deprecated. See Chapter 14,
"Statement Caching".

■ Support for the Oracle datatypes TS, TSTZ, and TSLTZ .

Desupport Of J2EE In The Oracle Database
With the introduction of Oracle9i Application Server Containers for J2EE (OC4J)—a
new, lighter-weight, easier-to-use, faster, and certified J2EE container—Oracle will
desupport the Java 2 Enterprise Edition (J2EE) and CORBA stacks from the
database, starting with Oracle9i Database release 2. However, the
database-embedded Java VM (Oracle JVM) will still be present and will continue to
be enhanced to offer Java 2 Standard Edition (J2SE) features, Java stored procedures,
JDBC, and SQLJ in the database.

As of Oracle9iDB Release 2 (version 9.2.0), Oracle will no longer support the
following technologies in the database:

■ Enterprise Java Beans (EJB) container

■ JavaServer Pages (JSP) container

■ Oracle Servlet Engine (OSE)

■ the embedded Common Object Request Broker Architecture (CORBA)
framework based on Visibroker for Java

Customers will no longer be able to deploy servlets, JSP pages, EJBs and CORBA
objects in Oracle databases . Oracle9i Release 1 (version 9.0.1) will be the last
database release to support the J2EE and CORBA stack. Oracle is encouraging
customers to migrate existing J2EE applications running in the database to OC4J
now.

Getting Started 2-1

2
Getting Started

This chapter begins by discussing compatibilities between Oracle JDBC driver
versions, database versions, and JDK versions. It then guides you through the basics
of testing your installation and configuration, and running a simple application.
The following topics are discussed:

■ Requirements and Compatibilities for Oracle JDBC Drivers

■ Verifying a JDBC Client Installation

Requirements and Compatibilities for Oracle JDBC Drivers

2-2 Oracle9i JDBC Developer’s Guide and Reference

Requirements and Compatibilities for Oracle JDBC Drivers
Table 2–1 lists the compatibilities between Oracle JDBC driver versions and Oracle
database versions. The JDK versions supported by each JDBC driver version are
also listed.

Note: Notice that starting with Oracle8i release 8.1.6, the Oracle
JDBC drivers no longer support JDK 1.0.x versions.

Table 2–1 JDBC Driver-Database Compatibility

Driver
Versions

Database
Versions
Supported

JDK Versions
Supported Drivers Available Remarks

9.2.0 9.2.0, 9.0.1, 8.1.7,
8.1.6, 8.1.5, 8.0.6,
8.0.5, 8.0.4

1.4, 1.3.x,1.2.x,
1.1.x

JDBC Thin driver

JDBC OCI driver

JDBC server-side Thin driver

JDBC server-side internal driver
(supports 9.2.0 database and JDK
1.2.x only)

9.0.1 9.0.1, 8.1.7, 8.1.6,
8.1.5, 8.0.6, 8.0.5,
8.0.4, 7.3.4

1.2.x, 1.1.x JDBC Thin driver

JDBC OCI driver

JDBC server-side Thin driver

JDBC server-side internal driver
(supports 9.0.1 database and JDK
1.2.x only)

8.1.7 8.1.7, 8.1.6, 8.1.5,
8.0.6, 8.0.5, 8.0.4,
7.3.4

1.2.x, 1.1.x JDBC Thin driver

JDBC OCI driver

JDBC server-side Thin driver

JDBC server-side internal driver
(supports 8.1.7 database and JDK
1.2.x only)

Requirements and Compatibilities for Oracle JDBC Drivers

Getting Started 2-3

8.1.6 8.1.6, 8.1.5, 8.0.6,
8.0.5, 8.0.4, 7.3.4

1.2.x, 1.1.x JDBC Thin driver

JDBC OCI driver

JDBC server-side Thin driver

JDBC server-side internal driver
(supports 8.1.6 database and JDK
1.2.x only)

The Thin driver is also
available in the server with the
standard server installation.
This has the same usage and
functionality as the client-side
Thin driver, for accessing a
remote database from inside a
database.

8.1.5 8.1.5, 8.0.6, 8.0.5,
8.0.4, 7.3.4

1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

JDBC server-side internal driver
(supports 8.1.5 database and JDK
1.1.x only)

Both client- and server-side
drivers offer full support for
structured objects when run
against an 8.1.5 database.

8.0.6 8.0.6, 8.0.5, 8.0.4,
7.3.4

1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

.

8.0.5 8.0.5, 8.0.4, 7.3.4 1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

8.0.4 8.0.4, 7.3.4 1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

Table 2–1 JDBC Driver-Database Compatibility(Cont.)

Driver
Versions

Database
Versions
Supported

JDK Versions
Supported Drivers Available Remarks

Requirements and Compatibilities for Oracle JDBC Drivers

2-4 Oracle9i JDBC Developer’s Guide and Reference

Notes:

■ Different JDKs require different class files—classes in
classes12.zip, classes111.zip, respectively.

■ The JDBC drivers do not support structured objects when run
against an 8.0.x database. This is because JDBC depends on
PL/SQL functions that did not exist in those releases.

■ Any client-side driver might work with 7.x databases, but this
has not been tested and is not supported.

Verifying a JDBC Client Installation

Getting Started 2-5

Verifying a JDBC Client Installation
This section covers the following topics:

■ Check Installed Directories and Files

■ Check the Environment Variables

■ Make Sure You Can Compile and Run Java

■ Determine the Version of the JDBC Driver

■ Testing JDBC and the Database Connection: JdbcCheckup

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific
documentation.

This section describes the steps of verifying an Oracle client installation of the JDBC
drivers. It assumes that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, no further installation on the client
machine is necessary (the JDBC Thin driver requires a TCP/IP listener to be
running on the database machine).

If you have installed the JDBC OCI driver, you must also install the Oracle client
software. This includes Oracle Net and the OCI libraries.

Check Installed Directories and Files
This section assumes that you have already installed the Sun Microsystems Java
Developer’s Kit (JDK) on your system (although other forms of Java are also
supported). Oracle offers JDBC drivers compatible with the JDK1.4, 1.3.x, 1.2.x, and
1.1.x versions.

Installing the Oracle9 Java products creates, among other things, an
[ORACLE_HOME]/jdbc directory containing these subdirectories and files:

■ demo/samples: The samples subdirectory contains sample programs,
including examples of how to use SQL92 and Oracle SQL syntax, PL/SQL
blocks, streams, user-defined types, additional Oracle type extensions, and
Oracle performance extensions.

■ doc: The doc directory contains documentation about the JDBC drivers.

■ lib: The lib directory contains .zip files with these required Java classes:

Verifying a JDBC Client Installation

2-6 Oracle9i JDBC Developer’s Guide and Reference

– classes12.zip contains the classes for use with 1.2.x, 1.3.x, and 1.4—all
the JDBC driver classes except the classes necessary for globalization
support.

– nls_charset12.zip contains the classes necessary for globalization
support with JDK 1.2.x, 1.3.x, and 1.4.

– jta.zip and jndi.zip contain classes for the Java Transaction API and
the Java Naming and Directory Interface for JDK 1.2.x, 1.3.x, and 1.4. These
are only required if you will be using JTA features for distributed
transaction management or JNDI features for naming services. (These files
can also be obtained from the Sun Microsystems Web site, but it is advisable
to use the versions from Oracle, because those have been tested with the
Oracle drivers.)

– classes111.zip contains the classes for use with JDK 1.1.x—all the
JDBC driver classes except the classes necessary for globalization support.

classes111.zip also contains Oracle extensions that allow you to use
JDBC 2.0 functionality for objects, arrays, and LOBs under JDK 1.1.x.

– nls_charset11.zip contains the classes necessary for globalization
support with the JDK 1.1.x.

The nls_charset12.zip and nls_charset11.zip files provide support
for specific character sets. They have been separated out from the
classes*.zip files to give you the option of excluding character sets in
situations where complete globalization support is not needed. For more
information on nls_charset12.zip and nls_charset11.zip, see
"Globalization Support and Object Types" on page 18-4.

■ ojdbc14.jar contains classes for use with JDK 1.4. It contains the JDBC
driver classes except classes necessary for globalization support in Object
and Collection types.

■ readme.txt: The readme.txt file contains late-breaking and release-specific
information about the drivers that might not be in this manual.

Check that all these directories have been created and populated.

Check the Environment Variables
This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver, focusing on the Sun Microsystems Solaris and
Microsoft Windows NT platforms.

Verifying a JDBC Client Installation

Getting Started 2-7

You must set the CLASSPATH for your installed JDBC OCI or Thin driver.
Depending on which JDK version you use, you must set one of these values for the
CLASSPATH:

Ensure that there is only one classes*.zip file version and one
nls_charset*.zip file version in your CLASSPATH.

JDBC OCI Driver: If you are installing the JDBC OCI driver, you must also set the
following value for the library path environment variable

■ On Solaris, set LD_LIBRARY_PATH as follows:

[Oracle Home]/lib

This directory contains the libocijdbc9.so shared object library.

■ On Windows NT, set PATH as follows:

[Oracle Home]\lib

This directory contains the ocijdbc8.dll dynamic link library.

JDBC Thin Drivers: If you are installing the JDBC Thin driver, you do not have to set
any other environment variables.

JDK Version CLASSPATH

1.4, 1.3.x, 1.2.x [OracleHome]/jdbc/lib/classes12.zip
[OracleHome]/jdbc/lib/nls_charset12.zip for
full globalization support

1.1.x [OracleHome]/jdbc/lib/classes111.zip
[OracleHome]/jdbc/lib/nls_charset11.zip for
full globalization support

Note: If you will be using JTA features or JNDI features, both of
which are discussed in Chapter 16, "Connection Pooling and
Caching", then you will also need to have jta.zip and jndi.zip
in your CLASSPATH.

Verifying a JDBC Client Installation

2-8 Oracle9i JDBC Developer’s Guide and Reference

Make Sure You Can Compile and Run Java
To further ensure that Java is set up properly on your client system, go to the
samples directory (for example, C:\oracle\ora81\jdbc\demo\samples if
you are using the JDBC driver on a Windows NT machine), then see if javac (the
Java compiler) and java (the Java interpreter) will run without error. Enter:

javac

then enter:

java

Each should give you a list of options and parameters and then exit. Ideally, verify
that you can compile and run a simple test program.

Determine the Version of the JDBC Driver
If at any time you must determine the version of the JDBC driver that you installed,
you can invoke the getDriverVersion() method of the
OracleDatabaseMetaData class.

Here is sample code showing how to do it:

import java.sql.*;
import oracle.jdbc.driver.*;

class JDBCVersion
{
 public static void main (String args[])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver
 (new oracle.jdbc.driver.OracleDriver());
 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@host:port:sid","scott","tiger");

 // Create Oracle DatabaseMetaData object
 DatabaseMetaData meta = conn.getMetaData();

 // gets driver info:
 System.out.println("JDBC driver version is " + meta.getDriverVersion());
 }
}

Verifying a JDBC Client Installation

Getting Started 2-9

Testing JDBC and the Database Connection: JdbcCheckup
The samples directory contains sample programs for a particular Oracle JDBC
driver. One of the programs, JdbcCheckup.java, is designed to test JDBC and the
database connection. The program queries you for your user name, password, and
the name of a database to which you want to connect. The program connects to the
database, queries for the string "Hello World", and prints it to the screen.

Go to the samples directory and compile and run JdbcCheckup.java. If the
results of the query print without error, then your Java and JDBC installations are
correct.

Although JdbcCheckup.java is a simple program, it demonstrates several
important functions by executing the following:

■ imports the necessary Java classes, including JDBC classes

■ registers the JDBC driver

■ connects to the database

■ executes a simple query

■ outputs the query results to your screen

"First Steps in JDBC" on page 3-2, describes these functions in greater detail. A
listing of JdbcCheckup.java for the JDBC OCI driver appears below.

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
 public static void main(String args[])
 throws SQLException, IOException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

Verifying a JDBC Client Installation

2-10 Oracle9i JDBC Developer’s Guide and Reference

 // Prompt the user for connect information
 System.out.println("Please enter information to test connection to
 the database");
 String user;
 String password;
 String database;

 user = readEntry("user: ");
 int slash_index = user.indexOf('/');
 if (slash_index != -1)
 {
 password = user.substring(slash_index + 1);
 user = user.substring(0, slash_index);
 }
 else
 password = readEntry("password: ");
 database = readEntry("database(a TNSNAME entry): ");

 System.out.print("Connecting to the database...");
 System.out.flush();

 System.out.println("Connecting...");
 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@" + database, user, password);
 System.out.println("connected.");

 // Create a statement
 Statement stmt = conn.createStatement();

 // Do the SQL "Hello World" thing
 ResultSet rset = stmt.executeQuery("select 'Hello World'
 from dual");

 while (rset.next())
 System.out.println(rset.getString(1));
 // close the result set, the statement and connect
 rset.close();
 stmt.close();
 conn.close();
 System.out.println("Your JDBC installation is correct.");
 }

 // Utility function to read a line from standard input
 static String readEntry(String prompt)
 {

Verifying a JDBC Client Installation

Getting Started 2-11

 try
 {
 StringBuffer buffer = new StringBuffer();
 System.out.print(prompt);
 System.out.flush();
 int c = System.in.read();
 while (c != '\n' && c != -1)
 {
 buffer.append((char)c);
 c = System.in.read();
 }
 return buffer.toString().trim();
 }
 catch(IOException e)
 {
 return "";
 }
 }
}

Verifying a JDBC Client Installation

2-12 Oracle9i JDBC Developer’s Guide and Reference

Basic Features 3-1

3
Basic Features

This chapter covers the most basic steps taken in any JDBC application. It also
describes additional basic features of Java and JDBC supported by the Oracle JDBC
drivers.

The following topics are discussed:

■ First Steps in JDBC

■ Sample: Connecting, Querying, and Processing the Results

■ Datatype Mappings

■ Java Streams in JDBC

■ Stored Procedure Calls in JDBC Programs

■ Processing SQL Exceptions

First Steps in JDBC

3-2 Oracle9i JDBC Developer’s Guide and Reference

First Steps in JDBC
This section describes how to get up and running with the Oracle JDBC drivers.
When using the Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial,
where and how to add the information. The tutorial guides you through creating
code to connect to and query a database from the client.

To connect to and query a database from the client, you must provide code for these
tasks:

1. Import Packages

2. Register the JDBC Drivers

3. Open a Connection to a Database

4. Create a Statement Object

5. Execute a Query and Return a Result Set Object

6. Process the Result Set

7. Close the Result Set and Statement Objects

8. Make Changes to the Database

9. Commit Changes

10. Close the Connection

You must supply Oracle driver-specific information for the first three tasks, which
allow your program to use the JDBC API to access a database. For the other tasks,
you can use standard JDBC Java code as you would for any Java application.

Import Packages
Regardless of which Oracle JDBC driver you use, include the following import
statements at the beginning of your program (java.math only if needed):

Import the following Oracle packages when you want to access the extended
functionality provided by the Oracle drivers. However, they are not required for the
example presented in this section:

import java.sql.*; for standard JDBC packages

import java.math.*; for BigDecimal and BigInteger classes

First Steps in JDBC

Basic Features 3-3

For an overview of the Oracle extensions to the JDBC standard, see Chapter 6,
"Overview of Oracle Extensions".

Register the JDBC Drivers
You must provide the code to register your installed driver with your program. You
do this with the static registerDriver() method of the JDBC DriverManager
class. This class provides a basic service for managing a set of JDBC drivers.

Because you are using one of Oracle’s JDBC drivers, you declare a specific driver
name string to registerDriver(). You register the driver only once in your Java
application.

DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

Open a Connection to a Database
Open a connection to the database with the static getConnection() method of
the JDBC DriverManager class. This method returns an object of the JDBC
Connection class that needs as input a user name, password, connect string that
identifies the JDBC driver to use, and the name of the database to which you want
to connect.

Connecting to a database is a step where you must enter Oracle JDBC
driver-specific information in the getConnection() method. If you are not
familiar with this method, continue reading the "Understanding the Forms of
getConnection()" section below.

import oracle.jdbc.*;

import oracle.sql.*;

for Oracle extensions to JDBC

Note: Alternatively, you can use the forName() method of the
java.lang.Class class to load the JDBC drivers directly. For
example:

Class.forName ("oracle.jdbc.OracleDriver");

However, this method is valid only for JDK-compliant Java virtual
machines. It is not valid for Microsoft Java virtual machines.

First Steps in JDBC

3-4 Oracle9i JDBC Developer’s Guide and Reference

If you are already familiar with the getConnection() method, you can skip
ahead to either of these sections, depending on the driver you installed:

■ "Opening a Connection for the JDBC OCI Driver" on page 3-9

■ "Opening a Connection for the JDBC Thin Driver" on page 3-10

Understanding the Forms of getConnection()
The DriverManager class getConnection() method whose signatures and
functionality are described in the following sections:

■ "Specifying a Database URL, User Name, and Password" on page 3-5

■ "Specifying a Database URL That Includes User Name and Password" on
page 3-5

■ "Specifying a Database URL and Properties Object" on page 3-6

If you want to specify a database name in the connection, it must be in one of the
following formats:

■ a Oracle Net keyword-value pair

■ a string of the form <host_name>:<port_number>:<sid> (Thin driver only)

■ a TNSNAMES entry (OCI driver only)

For information on how to specify a keyword-value pair or a TNSNAMES entry, see
your Oracle Net Services Administrator’s Guide.

Notes:

■ With JDK 1.2, using JNDI (Java Naming and Directory
Interface) is becoming the recommended way to make
connections. See "A Brief Overview of Oracle Data Source
Support for JNDI" on page 16-2 and "Creating a Data Source
Instance, Registering with JNDI, and Connecting" on page 16-8.

■ If you are using the Thin driver, be aware that it does not
support OS authentication in making the connection. As a
result, special logins are not supported.

■ This discussion in this section does not apply to the server-side
internal driver, which uses an implicit connection. See
"Connecting to the Database with the Server-Side Internal
Driver" on page 18-26.

First Steps in JDBC

Basic Features 3-5

Specifying a Database URL, User Name, and Password
The following signature takes the URL, user name, and password as separate
parameters:

getConnection(String URL, String user, String password);

Where the URL is of the form:

jdbc:oracle:<drivertype>:@<database>

The following example connects user scott with password tiger to a database
with INSTANCE_NAME orcl through port 1521 of host myhost, using the Thin
driver.

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@myhost:1521:orcl", "scott", "tiger");

If you want to use the default connection for an OCI driver, specify either:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:scott/tiger@");

or:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@", "scott", "tiger");

For all JDBC drivers, you can also specify the database with a Oracle Net
keyword-value pair. The Oracle Net keyword-value pair substitutes for the
TNSNAMES entry. The following example uses the same parameters as the
preceding example, but in the keyword-value format:

Connection conn = DriverManager.getConnection
 (jdbc:oracle:oci:@MyHostString","scott","tiger");

or:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@(description=(address=(host= myhost)
 (protocol=tcp)(port=1521))(connect_data=(INSTANCE_NAME=orcl)))",
 "scott", "tiger");

Specifying a Database URL That Includes User Name and Password
The following signature takes the URL, user name, and password all as part of a
URL parameter:

getConnection(String URL);

First Steps in JDBC

3-6 Oracle9i JDBC Developer’s Guide and Reference

Where the URL is of the form:

jdbc:oracle:<drivertype>:<user>/<password>@<database>

The following example connects user scott with password tiger to a database on
host myhost using the OCI driver. In this case, however, the URL includes the
userid and password, and is the only input parameter.

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:scott/tiger@myhost);

If you want to connect with the Thin driver, you must specify the port number and
SID. For example, if you want to connect to the database on host myhost that has a
TCP/IP listener up on port 1521, and the SID (system identifier) is orcl:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:scott/tiger@myhost:1521:orcl);

Specifying a Database URL and Properties Object
The following signature takes a URL, together with a properties object that specifies
user name and password (perhaps among other things):

getConnection(String URL, Properties info);

Where the URL is of the form:

jdbc:oracle:<drivertype>:@<database>

In addition to the URL, use an object of the standard Java Properties class as
input. For example:

java.util.Properties info = new java.util.Properties();
info.put ("user", "scott");
info.put ("password","tiger");
info.put ("defaultRowPrefetch","15");
getConnection ("jdbc:oracle:oci:@",info);

Table 3–1 lists the connection properties that Oracle JDBC drivers support.

First Steps in JDBC

Basic Features 3-7

See Table 18–4, "OCI Driver Client Parameters for Encryption and Integrity" and
Table 18–5, "Thin Driver Client Parameters for Encryption and Integrity" for
descriptions of encryption and integrity drivers.

Table 3–1 Connection Properties Recognized by Oracle JDBC Drivers

Name
Short
Name Type Description

user n/a String the user name for logging into the
database

password n/a String the password for logging into the database

database server String the connect string for the database

internal_logon n/a String a role, such as sysdba or sysoper, that
allows you to log on as sys

defaultRowPrefetch prefetch String
(containing
integer
value)

the default number of rows to prefetch
from the server (default value is "10")

remarksReporting remarks String
(containing
boolean
value)

"true" if getTables() and
getColumns() should report
TABLE_REMARKS; equivalent to using
setRemarksReporting() (default
value is "false")

defaultBatchValue batchvalue String
(containing
integer
value)

the default batch value that triggers an
execution request (default value is "10")

includeSynonyms synonyms String
(containing
boolean
value)

"true" to include column information from
predefined "synonym" SQL entities when
you execute a DataBaseMetaData
getColumns() call; equivalent to
connection setIncludeSynonyms() call
(default value is "false")

processEscapes String
(containing
boolean
value)

"true" if escape processing is enabled for all
statements, "false" if escape processing is
disabled (default value is "false")

First Steps in JDBC

3-8 Oracle9i JDBC Developer’s Guide and Reference

Using Roles for Sys Logon
To specify the role (mode) for sys logon, use the internal_logon connection
property. (See Table 3–1, "Connection Properties Recognized by Oracle JDBC
Drivers", for a complete description of this connection property.) To logon as sys,
set the internal_logon connection property to sysdba or sysoper.

Example The following example illustrates how to use the internal_logon and
sysdba arguments to specify sys logon.

//import packages and register the driver
import java.sql.*;
import java.math.*;
DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

//specify the properties object
java.util.Properties info = new java.util.Properties();
info.put ("user", "sys");
info.put ("password", "change_on_install");
info.put ("internal_logon","sysdba");

//specify the connection object
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@database",info);
...

Properties for Oracle Performance Extensions Some of these properties are for use with
Oracle performance extensions. Setting these properties is equivalent to using
corresponding methods on the OracleConnection object, as follows:

■ Setting the defaultRowPrefetch property is equivalent to calling
setDefaultRowPrefetch().

See "Oracle Row Prefetching" on page 12-20.

■ Setting the remarksReporting property is equivalent to calling
setRemarksReporting().

See "DatabaseMetaData TABLE_REMARKS Reporting" on page 12-26.

Note: The ability to specify a role is supported only for sys user
name.

First Steps in JDBC

Basic Features 3-9

■ Setting the defaultBatchValue property is equivalent to calling
setDefaultExecuteBatch().

See "Oracle Update Batching" on page 12-4.

Example The following example shows how to use the put() method of the java.
util.Properties class, in this case to set Oracle performance extension
parameters.

//import packages and register the driver
import java.sql.*;
import java.math.*;
DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

//specify the properties object
java.util.Properties info = new java.util.Properties();
info.put ("user", "scott");
info.put ("password", "tiger");
info.put ("defaultRowPrefetch","20");
info.put ("defaultBatchValue", "5");

//specify the connection object
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@database",info);
...

Opening a Connection for the JDBC OCI Driver
For the JDBC OCI driver, you can specify the database by a TNSNAMES entry. You
can find the available TNSNAMES entries listed in the file tnsnames.ora on the
client computer from which you are connecting. On Windows NT, this file is located
in the [ORACLE_HOME]\NETWORK\ADMIN directory. On UNIX systems, you can
find it in the /var/opt/oracle directory.

For example, if you want to connect to the database on host myhost as user scott
with password tiger that has a TNSNAMES entry of MyHostString, enter:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@MyHostString", "scott", "tiger");

Note that both the ":" and "@" characters are necessary.

For the JDBC OCI and Thin drivers, you can also specify the database with a Oracle
Net keyword-value pair. This is less readable than a TNSNAMES entry but does not
depend on the accuracy of the TNSNAMES.ORA file. The Oracle Net keyword-value
pair also works with other JDBC drivers.

First Steps in JDBC

3-10 Oracle9i JDBC Developer’s Guide and Reference

For example, if you want to connect to the database on host myhost that has a
TCP/IP listener up on port 1521, and the SID (system identifier) is orcl, use a
statement such as:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@(description=(address=(host= myhost)
 (protocol=tcp)(port=1521))(connect_data=(INSTANCE_NAME=orcl)))",
 "scott", "tiger");

Opening a Connection for the JDBC Thin Driver
Because you can use the JDBC Thin driver in applets that do not depend on an
Oracle client installation, you cannot use a TNSNAMES entry to identify the database
to which you want to connect. You have to either:

■ Explicitly list the host name, TCP/IP port and Oracle SID of the database to
which you want to connect.

or:

■ Use a keyword-value pair list.

For example, use this string if you want to connect to the database on host myhost
that has a TCP/IP listener on port 1521 for the database SID (system identifier)
orcl. You can logon as user scott, with password tiger:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@myhost:1521:orcl", "scott", "tiger");

You can also specify the database with a Oracle Net keyword-value pair. This is less
readable than the first version, but also works with the other JDBC drivers.

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@(description=(address=(host=myhost)
 (protocol=tcp)(port=1521))(connect_data=(INSTANCE_NAME=orcl)))", "scott",
"tiger");

Note: Oracle JDBC does not support login timeouts. Calling the
static DriverManager.setLoginTimeout() method will have
no effect.

Note: The JDBC Thin driver supports only the TCP/IP protocol.

First Steps in JDBC

Basic Features 3-11

Create a Statement Object
Once you connect to the database and, in the process, create your Connection
object, the next step is to create a Statement object. The createStatement()
method of your JDBC Connection object returns an object of the JDBC
Statement class. To continue the example from the previous section where the
Connection object conn was created, here is an example of how to create the
Statement object:

Statement stmt = conn.createStatement();

Note that there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Execute a Query and Return a Result Set Object
To query the database, use the executeQuery() method of your Statement
object. This method takes a SQL statement as input and returns a JDBC ResultSet
object.

To continue the example, once you create the Statement object stmt, the next step
is to execute a query that populates a ResultSet object with the contents of the
ENAME (employee name) column of a table of employees named EMP:

ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp");

Again, there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Process the Result Set
Once you execute your query, use the next() method of your ResultSet object to
iterate through the results. This method steps through the result set row by row,
detecting the end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate
getXXX() methods of the ResultSet object, where XXX corresponds to a Java
datatype.

Notes: Oracle JDBC does not support login timeouts. Calling the
static DriverManager.setLoginTimeout() method will have
no effect.

First Steps in JDBC

3-12 Oracle9i JDBC Developer’s Guide and Reference

For example, the following code will iterate through the ResultSet object rset
from the previous section and will retrieve and print each employee name:

while (rset.next())
 System.out.println (rset.getString(1));

Once again, this is standard JDBC syntax. The next() method returns false when it
reaches the end of the result set. The employee names are materialized as Java
strings.

Close the Result Set and Statement Objects
You must explicitly close the ResultSet and Statement objects after you finish
using them. This applies to all ResultSet and Statement objects you create
when using the Oracle JDBC drivers. The drivers do not have finalizer methods;
cleanup routines are performed by the close() method of the ResultSet and
Statement classes. If you do not explicitly close your ResultSet and
Statement objects, serious memory leaks could occur. You could also run out of
cursors in the database. Closing a result set or statement releases the corresponding
cursor in the database.

For example, if your ResultSet object is rset and your Statement object is
stmt, close the result set and statement with these lines:

rset.close();
stmt.close();

When you close a Statement object that a given Connection object creates, the
connection itself remains open.

Make Changes to the Database
To write changes to the database, such as for INSERT or UPDATE operations, you
will typically create a PreparedStatement object. This allows you to execute a
statement with varying sets of input parameters. The prepareStatement()
method of your JDBC Connection object allows you to define a statement that
takes variable bind parameters, and returns a JDBC PreparedStatement object
with your statement definition.

Note: Typically, you should put close() statements in a
finally clause.

First Steps in JDBC

Basic Features 3-13

Use setXXX() methods on the PreparedStatement object to bind data into the
prepared statement to be sent to the database. The various setXXX() methods are
described in "Standard setObject() and Oracle setOracleObject() Methods" on
page 7-11 and "Other setXXX() Methods" on page 7-12.

Note that there is nothing Oracle-specific about the functionality described here; it
follows standard JDBC syntax.

The following example shows how to use a prepared statement to execute INSERT
operations that add two rows to the EMP table.

 // Prepare to insert new names in the EMP table
 PreparedStatement pstmt =
 conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (?, ?)");

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPNO
 pstmt.setString (2, "LESLIE"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 // Add MARSHA as employee number 507
 pstmt.setInt (1, 507); // The first ? is for EMPNO
 pstmt.setString (2, "MARSHA"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 // Close the statement
 pstmt.close();

Commit Changes
By default, DML operations (INSERT, UPDATE, DELETE) are committed
automatically as soon as they are executed. This is known as auto-commit mode. You
can, however, disable auto-commit mode with the following method call on the
Connection object:

conn.setAutoCommit(false);

(For further discussion of auto-commit mode and an example of disabling it, see
"Disabling Auto-Commit Mode" on page 19-6.)

If you disable auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connection object:

First Steps in JDBC

3-14 Oracle9i JDBC Developer’s Guide and Reference

conn.commit();

or:

conn.rollback();

A COMMIT or ROLLBACK operation affects all DML statements executed since the
last COMMIT or ROLLBACK.

Close the Connection
You must close your connection to the database once you finish your work. Use the
close() method of the Connection object to do this:

conn.close();

Important:

■ If auto-commit mode is disabled and you close the connection
without explicitly committing or rolling back your last changes,
then an implicit COMMIT operation is executed.

■ Any DDL operation, such as CREATE or ALTER, always
includes an implicit COMMIT. If auto-commit mode is disabled,
this implicit COMMIT will not only commit the DDL statement,
but also any pending DML operations that had not yet been
explicitly committed or rolled back.

Note: Typically, you should put close() statements in a
finally clause.

Sample: Connecting, Querying, and Processing the Results

Basic Features 3-15

Sample: Connecting, Querying, and Processing the Results
The steps in the preceding sections are illustrated in the following example, which
registers an Oracle JDBC Thin driver, connects to the database, creates a
Statement object, executes a query, and processes the result set.

Note that the code for creating the Statement object, executing the query,
returning and processing the ResultSet object, and closing the statement and
connection all follow standard JDBC syntax.

import java.sql.*;
import java.math.*;
import java.io.*;
import java.awt.*;

class JdbcTest {
 public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.OracleDriver());
 // Connect to the local database
 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@myhost:1521:ORCL","scott", "tiger");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp");
 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));

 //close the result set, statement, and the connection
 rset.close();
 stmt.close();
 conn.close();
 }
}

If you want to adapt the code for the OCI driver, replace the Connection
statement with the following:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@MyHostString", "scott", "tiger");

Where MyHostString is an entry in the TNSNAMES.ORA file.

Datatype Mappings

3-16 Oracle9i JDBC Developer’s Guide and Reference

Datatype Mappings
The Oracle JDBC drivers support standard JDBC 1.0 and 2.0 types as well as
Oracle-specific BFILE and ROWID datatypes and types of the REF CURSOR
category.

This section documents standard and Oracle-specific SQL-Java default type
mappings.

Table of Mappings
For reference, Table 3–2 shows the default mappings between SQL datatypes, JDBC
typecodes, standard Java types, and Oracle extended types.

The SQL Datatypes column lists the SQL types that exist in the database.

The JDBC Typecodes column lists data typecodes supported by the JDBC standard
and defined in the java.sql.Types class, or by Oracle in the oracle.jdbc.
OracleTypes class. For standard typecodes, the codes are identical in these two
classes.

The Standard Java Types column lists standard types defined in the Java language.

The Oracle Extension Java Types column lists the oracle.sql.* Java types that
correspond to each SQL datatype in the database. These are Oracle extensions that
let you retrieve all SQL data in the form of a oracle.sql.* Java type. Mapping
SQL datatypes into the oracle.sql datatypes lets you store and retrieve data
without losing information. Refer to "Package oracle.sql" on page 6-7 for more
information on the oracle.sql.* package.

Table 3–2 Default Mappings Between SQL Types and Java Types

SQL Datatypes JDBC Typecodes Standard Java Types
Oracle Extension Java
Types

STANDARD JDBC 1.0 TYPES:

CHAR java.sql.Types.CHAR java.lang.String oracle.sql.CHAR

VARCHAR2 java.sql.Types.VARCHAR java.lang.String oracle.sql.CHAR

LONG java.sql.Types.LONGVARCHAR java.lang.String oracle.sql.CHAR

NUMBER java.sql.Types.NUMERIC java.math.BigDecimal oracle.sql.NUMBER

NUMBER java.sql.Types.DECIMAL java.math.BigDecimal oracle.sql.NUMBER

NUMBER java.sql.Types.BIT boolean oracle.sql.NUMBER

Datatype Mappings

Basic Features 3-17

NUMBER java.sql.Types.TINYINT byte oracle.sql.NUMBER

NUMBER java.sql.Types.SMALLINT short oracle.sql.NUMBER

NUMBER java.sql.Types.INTEGER int oracle.sql.NUMBER

NUMBER java.sql.Types.BIGINT long oracle.sql.NUMBER

NUMBER java.sql.Types.REAL float oracle.sql.NUMBER

NUMBER java.sql.Types.FLOAT double oracle.sql.NUMBER

NUMBER java.sql.Types.DOUBLE double oracle.sql.NUMBER

RAW java.sql.Types.BINARY byte[] oracle.sql.RAW

RAW java.sql.Types.VARBINARY byte[] oracle.sql.RAW

LONGRAW java.sql.Types.LONGVARBINARY byte[] oracle.sql.RAW

DATE java.sql.Types.DATE java.sql.Date oracle.sql.DATE

DATE java.sql.Types.TIME java.sql.Time oracle.sql.DATE

DATE java.sql.Types.TIMESTAMP javal.sql.Timestamp oracle.sql.DATE

STANDARD JDBC 2.0 TYPES:

BLOB java.sql.Types.BLOB java.sql.Blob oracle.sql.BLOB

CLOB java.sql.Types.CLOB java.sql.Clob oracle.sql.CLOB

user-defined
object

java.sql.Types.STRUCT java.sql.Struct oracle.sql.STRUCT

user-defined
reference

java.sql.Types.REF java.sql.Ref oracle.sql.REF

user-defined
collection

java.sql.Types.ARRAY java.sql.Array oracle.sql.ARRAY

ORACLE EXTENSIONS:

BFILE oracle.jdbc.OracleTypes.BFILE n/a oracle.sql.BFILE

ROWID oracle.jdbc.OracleTypes.ROWID n/a oracle.sql.ROWID

REF CURSOR
type

oracle.jdbc.OracleTypes.CURSOR java.sql.ResultSet oracle.jdbc.OracleResultSet

Table 3–2 Default Mappings Between SQL Types and Java Types (Cont.)

SQL Datatypes JDBC Typecodes Standard Java Types
Oracle Extension Java
Types

Datatype Mappings

3-18 Oracle9i JDBC Developer’s Guide and Reference

For a list of all the Java datatypes to which you can validly map a SQL datatype, see
"Valid SQL-JDBC Datatype Mappings" on page 20-2.

See Chapter 6, "Overview of Oracle Extensions", for more information on type
mappings. In Chapter 6 you can also find more information on the following:

■ packages oracle.sql, oracle.jdbc, and oracle.jdbc2

■ type extensions for the Oracle BFILE and ROWID datatypes and user-defined
types of the REF CURSOR category

Notes Regarding Mappings
This section goes into further detail regarding mappings for NUMBER and
user-defined types.

Regarding User-Defined Types
User-defined types such as objects, object references, and collections map by default
to weak Java types (such as java.sql.Struct), but alternatively can map to
strongly typed custom Java classes. Custom Java classes can implement one of two
interfaces:

■ The standard java.sql.SQLData (for user-defined objects only)

TS oracle.jdbc.OracleTypes.
TIMESTAMP

n/a oracle.sql.TIMESTAMP

TSTZ oracle.jdbc.OracleTypes.
TIMESTAMPTZ

n/a oracle.sql.TIMESTAMPTZ

TSLTZ oracle.jdbc.OracleTypes.
TIMESTAMPLTZ

n/a oracle.sql.TIMESTAMPLTZ

Note: Under JDK 1.1.x, the Oracle package oracle.jdbc2 is
required to support JDBC 2.0 types. (Under JDK 1.2.x they are
supported by the standard java.sql package.)

Table 3–2 Default Mappings Between SQL Types and Java Types (Cont.)

SQL Datatypes JDBC Typecodes Standard Java Types
Oracle Extension Java
Types

Datatype Mappings

Basic Features 3-19

■ The Oracle-specific oracle.sql.ORAData (primarily for user-defined objects,
object references, and collections, but able to map from any SQL type where you
want customized processing of any kind)

For information about custom Java classes and the SQLData and ORAData
interfaces, see "Mapping Oracle Objects" on page 9-2 and "Creating and Using
Custom Object Classes for Oracle Objects" on page 9-10. (Although these sections
focus on custom Java classes for user-defined objects, there is some general
information about other kinds of custom Java classes as well.)

Regarding NUMBER Types
For the different typecodes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work
properly. For example, call getByte() to get a Java tinyint value, for an item x
where -128 < x < 128.

Java Streams in JDBC

3-20 Oracle9i JDBC Developer’s Guide and Reference

Java Streams in JDBC
This section covers the following topics:

■ Streaming LONG or LONG RAW Columns

■ Streaming CHAR, VARCHAR, or RAW Columns

■ Data Streaming and Multiple Columns

■ Streaming and Row Prefetching

■ Closing a Stream

■ Streaming LOBs and External Files

This section describes how the Oracle JDBC drivers handle Java streams for several
datatypes. Data streams allow you to read LONG column data of up to 2 gigabytes.
Methods associated with streams let you read the data incrementally.

Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary,
ASCII, and Unicode. Following is a brief description of each type of stream:

■ binary stream—Used for RAW bytes of data. This corresponds to the
getBinaryStream() method.

■ ASCII stream—Used for ASCII bytes in ISO-Latin-1 encoding. This corresponds
to the getAsciiStream() method.

■ Unicode stream—Used for Unicode bytes with the UTF-16 encoding. This
corresponds to the getUnicodeStream() method.

The methods getBinaryStream(), getAsciiStream(), and
getUnicodeStream() return the bytes of data in an InputStream object. These
methods are described in greater detail in Chapter 8, "Working with LOBs and
BFILEs".

Streaming LONG or LONG RAW Columns
When a query selects one or more LONG or LONG RAW columns, the JDBC driver
transfers these columns to the client in streaming mode. After a call to
executeQuery() or next(), the data of the LONG column is waiting to be read.

To access the data in a LONG column, you can get the column as a Java
InputStream and use the read() method of the InputStream object. As an
alternative, you can get the data as a string or byte array, in which case the driver
will do the streaming for you.

Java Streams in JDBC

Basic Features 3-21

You can get LONG and LONG RAW data with any of the three stream types. The driver
performs conversions for you, depending on the character set of your database and
the driver. For more information about globalization support, see "JDBC and
Globalization Support" on page 18-2.

LONG RAW Data Conversions
A call to getBinaryStream() returns RAW data "as-is". A call to
getAsciiStream() converts the RAW data to hexadecimal and returns the ASCII
representation. A call to getUnicodeStream() converts the RAW data to
hexadecimal and returns the Unicode bytes.

For example, if your LONG RAW column contains the bytes 20 21 22, you receive the
following bytes:

For example, the LONG RAW value 20 is represented in hexadecimal as 14 or "1" "4".
In ASCII, 1 is represented by "49" and "4" is represented by "52". In Unicode, a
padding of zeros is used to separate individual values. So, the hexadecimal value 14
is represented as 0 "1" 0 "4". The Unicode representation is 0 "49" 0 "52".

LONG Data Conversions
When you get LONG data with getAsciiStream(), the drivers assume that the
underlying data in the database uses an US7ASCII or WE8ISO8859P1 character
set. If the assumption is true, the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCII or WE8ISO8859P1 character
set, a call to getAsciiStream() returns meaningless information.

When you get LONG data with getUnicodeStream(), you get a stream of
Unicode characters in the UTF-16 encoding. This applies to all underlying database
character sets that Oracle supports.

When you get LONG data with getBinaryStream(), there are two possible cases:

■ If the driver is JDBC OCI and the client character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream() returns UTF-8. If the

LONG RAW BinaryStream ASCIIStream UnicodeStream

20 21 22 20 21 22 49 52 49 53 49 54

which is also

'1' '4' '1' '5' '1' '6'

 0049 0052 0049 0053 0049 0054

which is also:

'1' '4' '1' '5' '1' '6'

Java Streams in JDBC

3-22 Oracle9i JDBC Developer’s Guide and Reference

client character set is US7ASCII or WE8ISO8859P1, then the call returns a
US7ASCII stream of bytes.

■ If the driver is JDBC Thin and the database character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream() returns UTF-8. If the
server-side character set is US7ASCII or WE8ISO8859P1, then the call returns a
US7ASCII stream of bytes.

For more information on how the drivers return data based on character set, see
"JDBC and Globalization Support" on page 18-2.

Table 3–3 summarizes LONG and LONG RAW data conversions for each stream type.

Streaming Example for LONG RAW Data
One of the features of a getXXXStream() method is that it allows you to fetch data
incrementally. In contrast, getBytes() fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the
getBinaryStream() method to obtain LONG RAW data; the second version uses
the getBytes() method.

Note: Receiving LONG or LONG RAW columns as a stream (the
default case) requires you to pay special attention to the order in
which you receive data from the database. For more information,
see "Data Streaming and Multiple Columns" on page 3-26.

Table 3–3 LONG and LONG RAW Data Conversions

Datatype BinaryStream AsciiStream UnicodeStream

LONG bytes representing characters in
Unicode UTF-8. The bytes can
represent characters in US7ASCII or
WE8ISO8859P1 if:

■ the value of NLS_LANG on the
client is US7ASCII or
WE8ISO8859P1.

or:

■ the database character set is
US7ASCII or WE8ISO8859P1.

bytes representing
characters in ISO-Latin-1
(WE8ISO8859P1) encoding

bytes representing
characters in Unicode
UTF-16 encoding

LONG RAW as-is ASCII representation of
hexadecimal bytes

Unicode representation
of hexadecimal bytes

Java Streams in JDBC

Basic Features 3-23

Getting a LONG RAW Data Column with getBinaryStream() This Java example writes the
contents of a LONG RAW column to a file on the local file system. In this case, the
driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAW data
associated with the name LESLIE:

-- SQL code:
create table streamexample (NAME varchar2 (256), GIFDATA long raw);
insert into streamexample values ('LESLIE', '00010203040506070809');

The following Java code snippet writes the data from the LESLIE LONG RAW column
into a file called leslie.gif:

ResultSet rset = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// get first row
if (rset.next())
{
 // Get the GIF data as a stream from Oracle to the client
 InputStream gif_data = rset.getBinaryStream (1);
 try
 {
 FileOutputStream file = null;
 file = new FileOutputStream ("leslie.gif");
 int chunk;
 while ((chunk = gif_data.read()) != -1)
 file.write(chunk);
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 finally
 {
 if file != null()
 file.close();
 }
}

In this example the contents of the GIFDATA column are transferred incrementally
in chunk-sized pieces between the database and the client. The InputStream

Java Streams in JDBC

3-24 Oracle9i JDBC Developer’s Guide and Reference

object returned by the call to getBinaryStream() reads the data directly from the
database connection.

Getting a LONG RAW Data Column with getBytes() This version of the example gets the
content of the GIFDATA column with getBytes() instead of
getBinaryStream(). In this case, the driver fetches all the data in one call and
stores it in a byte array. The previous code snippet can be rewritten as:

ResultSet rset2 = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// get first row
if (rset2.next())
{
 // Get the GIF data as a stream from Oracle to the client
 byte[] bytes = rset2.getBytes(1);
 try
 {
 FileOutputStream file = null;
 file = new FileOutputStream ("leslie2.gif");
 file.write(bytes);
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 finally
 {
 if file != null()
 file.close();
 }
}

Because a LONG RAW column can contain up to 2 gigabytes of data, the getBytes()
example will probably use much more memory than the getBinaryStream()
example. Use streams if you do not know the maximum size of the data in your
LONG or LONG RAW columns.

Avoiding Streaming for LONG or LONG RAW
The JDBC driver automatically streams any LONG and LONG RAW columns.
However, there may be situations where you want to avoid data streaming. For

Java Streams in JDBC

Basic Features 3-25

example, if you have a very small LONG column, you might want to avoid returning
the data incrementally and instead, return the data in one call.

To avoid streaming, use the defineColumnType() method to redefine the type of
the LONG column. For example, if you redefine the LONG or LONG RAW column as
type VARCHAR or VARBINARY, then the driver will not automatically stream the
data.

If you redefine column types with defineColumnType(), you must declare the
types of all columns in the query. If you do not, executeQuery() will fail. In
addition, you must cast the Statement object to an oracle.jdbc.
OracleStatement object.

As an added benefit, using defineColumnType() saves the driver two round
trips to the database when executing the query. Without defineColumnType(),
the JDBC driver has to request the datatypes of the column types.

Using the example from the previous section, the Statement object stmt is cast to
the OracleStatement and the column containing LONG RAW data is redefined to
be of the type VARBINARAY. The data is not streamed—instead, it is returned in a
byte array.

//cast the statement stmt to an OracleStatement
oracle.jdbc.OracleStatement ostmt =
 (oracle.jdbc.OracleStatement)stmt;

//redefine the LONG column at index position 1 to VARBINARY
ostmt.defineColumnType(1, Types.VARBINARY);

// Do a query to get the images named 'LESLIE'
ResultSet rset = ostmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// The data is not streamed here
rset.next();
byte [] bytes = rset.getBytes(1);

Streaming CHAR, VARCHAR, or RAW Columns
If you use the defineColumnType() Oracle extension to redefine a CHAR,
VARCHAR, or RAW column as a LONGVARCHAR or LONGVARBINARY, then you can get
the column as a stream. The program will behave as if the column were actually of
type LONG or LONG RAW. Note that there is not much point to this, because these
columns are usually short.

Java Streams in JDBC

3-26 Oracle9i JDBC Developer’s Guide and Reference

If you try to get a CHAR, VARCHAR, or RAW column as a data stream without
redefining the column type, the JDBC driver will return a Java InputStream, but
no real streaming occurs. In the case of these datatypes, the JDBC driver fully
fetches the data into an in-memory buffer during a call to the executeQuery()
method or next() method. The getXXXStream() entry points return a stream
that reads data from this buffer.

Data Streaming and Multiple Columns
If your query selects multiple columns and one of the columns contains a data
stream, then the contents of the columns following the stream column are not
available until the stream has been read, and the stream column is no longer
available once any following column is read. Any attempt to read a column beyond
a streaming column closes the streaming column. See "Streaming Data Precautions"
on page 3-29 for more information.

Streaming Example with Multiple Columns
Consider the following query:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 //get the date data
 java.sql.Date date = rset.getDate(1);

 // get the streaming data
 InputStream is = rset.getAsciiStream(2);

 // Open a file to store the gif data
 FileOutputStream file = new FileOutputStream ("ascii.dat");

 // Loop, reading from the ascii stream and
 // write to the file
 int chunk;
 while ((chunk = is.read ()) != -1)
 file.write(chunk);
 // Close the file
 file.close();

 //get the number column data
 int n = rset.getInt(3);
}

Java Streams in JDBC

Basic Features 3-27

The incoming data for each row has the following shape:

<a date><the characters of the long column><a number>

As you process each row of the iterator, you must complete any processing of the
stream column before reading the number column.

An exception to this behavior is LOB data, which is also transferred between server
and client as a Java stream. For more information on how the driver treats LOB
data, see "Streaming LOBs and External Files" on page 3-27.

Bypassing Streaming Data Columns
There might be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read the data for the streaming column, then
call the close() method of the stream object. This method discards the stream data
and allows the driver to continue reading data for all the non-streaming columns
that follow the stream. Even though you are intentionally discarding the stream, it
is good programming practice to call the columns in SELECT-list order.

In the following example, the stream data in the LONG column is discarded and the
data from only the DATE and NUMBER column is recovered:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");

while rset.next()
{
 //get the date
 java.sql.Date date = rset.getDate(1);

 // access the stream data and discard it with close()
 InputStream is = rset.getAsciiStream(2);
 is.close();

 // get the number column data
 int n = rset.getInt(3);
}

Streaming LOBs and External Files
The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table and points to

Java Streams in JDBC

3-28 Oracle9i JDBC Developer’s Guide and Reference

the location of the actual data. External files (binary files, or BFILEs) are managed
similarly. The JDBC drivers can support these types through the use of streams:

■ BLOBs (unstructured binary data)

■ CLOBs (character data)

■ BFILEs (external files)

LOBs and BFILEs behave differently from the other types of streaming data
described in this chapter. The driver transfers data between server and client as a
Java stream. However, unlike most Java streams, a locator representing the data is
stored in the table. Thus, you can access the data at any time during the life of the
connection.

Streaming BLOBs and CLOBs
When a query selects one or more CLOB or BLOB columns, the JDBC driver transfers
to the client the data pointed to by the locator. The driver performs the transfer as a
Java stream. To manipulate CLOB or BLOB data from JDBC, use methods in the
Oracle extension classes oracle.sql.BLOB and oracle.sql.CLOB. These
classes provide functionality such as reading from the CLOB or BLOB into an input
stream, writing from an output stream into a CLOB or BLOB, determining the
length of a CLOB or BLOB, and closing a CLOB or BLOB.

For a complete discussion of how to use streaming CLOB and BLOB data, see
"Reading and Writing BLOB and CLOB Data" on page 8-6.

Important: The JDBC 2.0 specification states that
PreparedStatement methods setBinaryStream() and
setObject() can be used to input a stream value as a BLOB, and
that the PreparedStatement methods setAsciiStream(),
setUnicodeStream(), setCharacterStream(), and
setObject() can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 database and 8.
1.6 JDBC OCI driver. Do not use this functionality for any other
configuration, as data corruption can result.

Java Streams in JDBC

Basic Features 3-29

Streaming BFILEs
An external file, or BFILE, is used to store a locator to a file outside the database,
stored somewhere on the filesystem of the data server. The locator points to the
actual location of the file.

When a query selects one or more BFILE columns, the JDBC driver transfers to the
client the file pointed to by the locator. The transfer is performed in a Java stream.
To manipulate BFILE data from JDBC, use methods in the Oracle extension class
oracle.sql.BFILE. This class provides functionality such as reading from the
BFILE into an input stream, writing from an output stream into a BFILE,
determining the length of a BFILE, and closing a BFILE.

For a complete discussion of how to use streaming BFILE data, see "Reading BFILE
Data" on page 8-22.

Closing a Stream
You can discard the data from a stream at any time by calling the stream’s close()
method. You can also close and discard the stream by closing its result set or
connection object. You can find more information about the close() method for
data streams in "Bypassing Streaming Data Columns" on page 3-27. For information
on how to avoid closing a stream and discarding its data by accident, see
"Streaming Data Precautions" on page 3-29.

Notes and Precautions on Streams
This section discusses several noteworthy and cautionary issues regarding the use
of streams:

■ Streaming Data Precautions

■ Using Streams to Avoid Limits on setBytes() and setString()

■ Streaming and Row Prefetching

Streaming Data Precautions
This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the
database, other than reading the current stream. Two common precautions are
described:

■ Use the stream data after you access it.

Java Streams in JDBC

3-30 Oracle9i JDBC Developer’s Guide and Reference

To recover the data from a column containing a data stream, it is not enough to
get the column; you must immediately process its contents. Otherwise, the
contents will be discarded when you get the next column.

■ Call the stream column in SELECT-list order.

If your query selects multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns
contains stream data, the database sends the entire data stream before
proceeding to the next column.

If you do not use the SELECT-list order to access data, then you can lose the
stream data. That is, if you bypass the stream data column and access data in a
column that follows it, the stream data will be lost. For example, if you try to
access the data for the NUMBER column before reading the data from the stream
data column, the JDBC driver first reads then discards the streaming data
automatically. This can be very inefficient if the LONG column contains a large
amount of data.

If you try to access the LONG column later in the program, the data will not be
available and the driver will return a "Stream Closed" error.

The second point is illustrated in the following example:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 int n = rset.getInt(3); // This discards the streaming data
 InputStream is = rset.getAsciiStream(2);
 // Raises an error: stream closed.
}

If you get the stream but do not use it before you get the NUMBER column, the stream
still closes automatically:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 InputStream is = rset.getAsciiStream(2); // Get the stream
 int n = rset.getInt(3);
 // Discards streaming data and closes the stream
}
int c = is.read(); // c is -1: no more characters to read-stream closed

Java Streams in JDBC

Basic Features 3-31

Using Streams to Avoid Limits on setBytes() and setString()
There is a limit on the maximum size of the array which can be bound using the
PreparedStatement class setBytes() method, and on the size of the string
which can be bound using the setString() method.

Above the limits, which depend on the version of the server you use, you should
use setBinaryStream() or setCharacterStream() instead.

The 8.1.6 Oracle JDBC drivers may not raise an error if you exceed the limit when
using setBytes() or setString(), but you may receive the following error:

ORA-17070: Data size bigger than max size for this type

Future versions of the Oracle drivers will raise an error if the length exceeds these
limits.

Streaming and Row Prefetching
If the JDBC driver encounters a column containing a data stream, row prefetching is
set back to 1.

Row prefetching is an Oracle performance enhancement that allows multiple rows
of data to be retrieved with each trip to the database. See "Oracle Row Prefetching"
on page 12-20.

Table 3–4 Bind-Size Limitations By Database

Database Version

maximum setBytes()
(equals maximum
RAW size)

maximum setString()
(equals maximum
VARCHAR2 size)

Oracle8 and later 2000 4000

Oracle7 255 2000

Note: This discussion applies to binds in SQL, not PL/SQL. If you
use setBinaryStream() in PL/SQL, the maximum array size is
32 Kbytes.

Stored Procedure Calls in JDBC Programs

3-32 Oracle9i JDBC Developer’s Guide and Reference

Stored Procedure Calls in JDBC Programs
This section describes how the Oracle JDBC drivers support the following kinds of
stored procedures:

■ PL/SQL Stored Procedures

■ Java Stored Procedures

PL/SQL Stored Procedures
Oracle JDBC drivers support execution of PL/SQL stored procedures and
anonymous blocks. They support both SQL92 escape syntax and Oracle PL/SQL
block syntax. The following PL/SQL calls would work with any Oracle JDBC
driver:

// SQL92 syntax
CallableStatement cs1 = conn.prepareCall
 ("{call proc (?,?)}") ; // stored proc
CallableStatement cs2 = conn.prepareCall
 ("{? = call func (?,?)}") ; // stored func
// Oracle PL/SQL block syntax
CallableStatement cs3 = conn.prepareCall
 ("begin proc (?,?); end;") ; // stored proc
CallableStatement cs4 = conn.prepareCall
 ("begin ? := func(?,?); end;") ; // stored func

As an example of using Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (val1 char)
return char as
begin
 return val1 || ’suffix’;
end;

Your invocation call in your JDBC program should look like:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@<hoststring>", "scott", "tiger");

CallableStatement cs = conn.prepareCall ("begin ? := foo(?); end;");
cs.registerOutParameter(1,Types.CHAR);
cs.setString(2, "aa");
cs.executeUpdate();

Stored Procedure Calls in JDBC Programs

Basic Features 3-33

String result = cs.getString(1);

Java Stored Procedures
You can use JDBC to invoke Java stored procedures through the SQL and PL/SQL
engines. The syntax for calling Java stored procedures is the same as the syntax for
calling PL/SQL stored procedures, presuming they have been properly "published"
(that is, have had call specifications written to publish them to the Oracle data
dictionary). See the Oracle9i Java Stored Procedures Developer’s Guide for more
information on writing, publishing, and using Java stored procedures.

Processing SQL Exceptions

3-34 Oracle9i JDBC Developer’s Guide and Reference

Processing SQL Exceptions
To handle error conditions, the Oracle JDBC drivers throws SQL exceptions,
producing instances of class java.sql.SQLException or a subclass. Errors can
originate either in the JDBC driver or in the database (RDBMS) itself. Resulting
messages describe the error and identify the method that threw the error.
Additional run-time information can also be appended.

Basic exception-handling can include retrieving the error message, retrieving the
error code, retrieving the SQL state, and printing the stack trace. The
SQLException class includes functionality to retrieve all of this information,
where available.

Errors originating in the JDBC driver are listed with their ORA numbers in
Appendix B, "JDBC Error Messages".

Errors originating in the RDBMS are documented in the Oracle9i Error Messages
reference.

Retrieving Error Information
You can retrieve basic error information with these SQLException methods:

■ getMessage()

For errors originating in the JDBC driver, this method returns the error message
with no prefix. For errors originating in the RDBMS, it returns the error
message prefixed with the corresponding ORA number.

■ getErrorCode()

For errors originating in either the JDBC driver or the RDBMS, this method
returns the five-digit ORA number.

■ getSQLState()

For errors originating in the JDBC driver, this returns no useful information. For
errors originating in the RDBMS, this method returns a five-digit code
indicating the SQL state. Your code should be prepared to handle null data.

The following example prints output from a getMessage() call.

catch(SQLException e)
{
 System.out.println("exception: " + e.getMessage());
}

Processing SQL Exceptions

Basic Features 3-35

This would print output such as the following for an error originating in the JDBC
driver:

exception: Invalid column type

(There is no ORA number message prefix for errors originating in the JDBC driver,
although you can get the ORA number with a getErrorCode() call.)

Printing the Stack Trace
The SQLException class provides the following method for printing a stack trace.

■ printStackTrace()

This method prints the stack trace of the throwable object to the standard error
stream. You can also specify a java.io.PrintStream object or java.io.
PrintWriter object for output.

The following code fragment illustrates how you can catch SQL exceptions and
print the stack trace.

try { <some code> }
catch(SQLException e) { e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

// Iterate through the result and print the employee names
// of the code

try {
 while (rset.next ())
 System.out.println (rset.getString (5)); // incorrect column index
}
catch(SQLException e) { e.printStackTrace (); }

Assuming the column index is incorrect, executing the program would produce the
following error text:

java.sql.SQLException: Invalid column index
at oracle.jdbc.dbaccess.DBError.check_error(DBError.java:235)
at oracle.jdbc.OracleStatement.prepare_for_new_get(OracleStatemen

Note: Error message text is available in alternative languages and
character sets supported by Oracle.

Processing SQL Exceptions

3-36 Oracle9i JDBC Developer’s Guide and Reference

t.java:1560)
at oracle.jdbc.OracleStatement.getStringValue(OracleStatement.jav
a:1653)
at oracle.jdbc.OracleResultSet.getString(OracleResultSet.java:175
)
at Employee.main(Employee.java:41)

Overview of JDBC 2.0 Support 4-1

4
Overview of JDBC 2.0 Support

Oracle JDBC supports JDBC 2.0 functionality and standardizes functionality that
was previously supported through Oracle extensions.

This chapter provides an overview of JDBC 2.0 support in the Oracle JDBC drivers,
focusing in particular on any differences in support between the JDK 1.2.x and JDK
1.1.x environments. The following topics are discussed:

■ Introduction

■ JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

■ Overview of JDBC 2.0 Features

Introduction

4-2 Oracle9i JDBC Developer’s Guide and Reference

Introduction
The Oracle JDBC drivers are compliant with the JDBC 2.0 specification. JDBC 2.0
functionality previously implemented through Oracle extensions in the
oracle.jdbc2 package—such as structured objects, object references, arrays, and
LOBs—is now implemented through the standard java.sql package in JDK 1.2.

In a JDK 1.1.x environment, you can continue to use the oracle.jdbc2 package.
You can also use JDBC 2.0 features in connection objects, statement objects, result
set objects, and database meta data objects under JDK 1.1.x by casting your objects
to the Oracle types.

Furthermore, you can use features of the JDBC 2.0 Optional Package (also known as
the JDBC 2.0 Standard Extension API) under either JDK 1.2.x or JDK 1.1.x. These
features, including connection pooling and distributed transactions, are supported
through the standard javax.sql package. This package and the classes that
implement its interfaces are now included with the JDBC classes ZIP file for either
JDK 1.2.x or JDK 1.1.x.

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

Overview of JDBC 2.0 Support 4-3

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
Support for standard JDBC 2.0 features differs depending on whether you are using
JDK 1.2.x or JDK 1.1.x. There are three areas to consider:

■ datatype support—such as for objects, arrays, and LOBs—which is handled
through the standard java.sql package under JDK 1.2.x and through the
Oracle extension oracle.jdbc2 package under JDK 1.1.x

■ standard feature support—such as result set enhancements and update
batching—which is handled through standard objects such as Connection,
ResultSet, and PreparedStatement under JDK 1.2.x, but requires
Oracle-specific functionality under JDK 1.1.x

■ extended feature support—features of the JDBC 2.0 Optional Package (also
known as the Standard Extension API), including data sources, connection
pooling, and distributed transactions—which has the same support and
functionality in either JDK 1.2.x or JDK 1.1.x

This section also discusses performance enhancements available under JDBC
2.0—update batching and fetch size—that are also still available as Oracle
extensions, then concludes with a brief discussion about migration from JDK 1.1.x
to JDK 1.2.x.

Datatype Support
Oracle JDBC fully supports JDK 1.2.x, which includes standard JDBC 2.0
functionality through implementation of interfaces in the standard java.sql
package. These interfaces are implemented as appropriate by classes in the
oracle.sql and oracle.jdbc packages.

For JDBC 2.0 functionality under JDK 1.2.x, where you are using classes12.zip,
no special imports are required. The following imports, both of which you will
likely need even if you are not using JDBC 2.0 features, will suffice:

import java.sql.*;
import oracle.sql.*;

JDBC 2.0 features are not supported by JDK 1.1.x; however, Oracle provides
extensions that allow you to use a significant subset of JDBC 2.0 datatypes under
JDK 1.1.x, where you are using classes111.zip. These extensions support
database objects, object references, arrays, and LOBs.

The package oracle.jdbc2 is included in classes111.zip. This package
provides interfaces that mimic JDBC 2.0-related interfaces that became standard

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

4-4 Oracle9i JDBC Developer’s Guide and Reference

with JDK 1.2.x for SQL3 and advanced datatypes. The interfaces in oracle.jdbc2
are implemented as appropriate by classes in the oracle.sql package for a JDK
1.1.x environment.

The following imports are required for JDBC 2.0 datatypes under JDK 1.1.x:

import java.sql.*;
import oracle.jdbc2.*;
import oracle.sql.*;

Standard Feature Support
In a JDK 1.2.x environment (using the JDBC classes in classes12.zip), JDBC 2.0
features such as scrollable result sets, updatable result sets, and update batching are
supported through methods specified by standard JDBC 2.0 interfaces. Therefore,
under JDK 1.2.x, you can use standard objects such as Connection,
DatabaseMetaData, ResultSetMetaData, Statement, PreparedStatement,
CallableStatement, and ResultSet to use these features.

In a JDK 1.1.x environment (using the JDBC classes in classes111.zip), Oracle
JDBC provides support for these JDBC 2.0 features as Oracle extensions. To use this
functionality, you must cast your objects to the Oracle types:

■ OracleConnection

■ OracleDatabaseMetaData

■ OracleResultSetMetaData

■ OracleStatement

■ OraclePreparedStatement

■ OracleCallableStatement

■ OracleResultSet

For example, to use JDBC 2.0 result set enhancements, you must do the following:

■ Explicitly type or cast scrollable or updatable result sets as type
OracleResultSet.

■ Explicitly type or cast connection objects as type OracleConnection
whenever the connection object will be required to produce a statement object
that will in turn produce a scrollable or updatable result set.

In addition, you might have to cast statement objects to OracleStatement,
OraclePreparedStatement, or OracleCallableStatement, and cast

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

Overview of JDBC 2.0 Support 4-5

database meta data objects to OracleDatabaseMetaData. This would be if you
want to use JDBC 2.0 statement or database meta data methods described under
"Summary of New Methods for Result Set Enhancements" on page 13-32.

Extended Feature Support
Features of the JDBC 2.0 Optional Package (also known as the Standard Extension
API), including data sources, connection pooling, and distributed transactions, are
supported equally in a JDK 1.2.x or 1.1.x environment.

The standard javax.sql package and classes that implement its interfaces are
included in the JDBC classes ZIP file for either environment.

Standard versus Oracle Performance Enhancement APIs
There are two performance enhancements available under JDBC 2.0, which had
previously been available as Oracle extensions:

■ update batching

■ fetch size / row prefetching

In each case, you have the option of using the standard model or the Oracle model.
Do not, however, try to mix usage of the standard model and Oracle model within a
single application for either of these features.

For more information, see the following sections:

■ "Update Batching" on page 12-2

■ "Fetch Size" on page 13-24

■ "Oracle Row Prefetching" on page 12-20

Migration from JDK 1.1.x to JDK 1.2.x
The only migration requirements in going from JDK 1.1.x to JDK 1.2.x are as
follows:

■ Remove your imports of the oracle.jdbc2 package, as discussed above
under "Datatype Support" on page 4-3.

■ Replace any direct references to oracle.jdbc2.* interfaces with references to
the standard java.sql.* interfaces.

■ Type map objects (for mapping SQL structured objects to Java types), which
must extend the java.util.Dictionary class under JDK 1.1.x, must

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

4-6 Oracle9i JDBC Developer’s Guide and Reference

implement the java.util.Map interface under JDK 1.2.x. Note, however, that
the class java.util.Hashtable satisfies either requirement. If you used
Hashtable objects for your type maps under JDK 1.1.x, then no change is
necessary. For more information, see "Creating a Type Map Object and Defining
Mappings for a SQLData Implementation" on page 9-12.

If these points do not apply to your code, then you do not need to make any code
changes or recompile to run under JDK 1.2.x.

Overview of JDBC 2.0 Features

Overview of JDBC 2.0 Support 4-7

Overview of JDBC 2.0 Features
Table 4–1 lists key areas of JDBC 2.0 functionality and points to where you can go in
this manual for more information about Oracle support.

Table 4–1 Key Areas of JDBC 2.0 Functionality

Feature Comments and References

update batching Also available previously as an Oracle extension. Under
either JDK 1.2.x or JDK 1.1.x you can use either the standard
update batching model or the Oracle model.

See "Update Batching" on page 12-2 for information.

result set enhancements
(scrollable and updatable
result sets)

This is also available under JDK 1.1.x as an Oracle extension.

See Chapter 13, "Result Set Enhancements" for information.

fetch size / row prefetching The JDBC 2.0 fetch size feature is also available under JDK
1.1.x as an Oracle extension.

Under either JDK 1.2.x or JDK 1.1.x, you can also use Oracle
row prefetching, which is largely equivalent to the JDBC 2.0
fetch size feature but predates JDBC 2.0.

See "Fetch Size" on page 13-24 and "Oracle Row Prefetching"
on page 12-20 for information.

use of JNDI (Java Naming
and Directory Interface) to
specify and obtain database
connections

This requires data sources, which are part of the JDBC 2.0
Optional Package (JDBC 2.0 Standard Extension API) in the
javax.sql package. This is available under either JDK 1.2.x
or JDK 1.1.x.

See "A Brief Overview of Oracle Data Source Support for
JNDI" on page 16-2 and "Creating a Data Source Instance,
Registering with JNDI, and Connecting" on page 16-8 for
information.

connection pooling
(framework for connection
caching)

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the javax.sql package. This is
available under either JDK 1.2.x or 1.1.x.

See "Connection Pooling" on page 16-11 for information.

connection caching (sample
Oracle implementation)

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the javax.sql package. This is
available under either JDK 1.2.x or 1.1.x.

See "Connection Caching" on page 16-16 for information..

Overview of JDBC 2.0 Features

4-8 Oracle9i JDBC Developer’s Guide and Reference

distributed transactions /
XA functionality

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the javax.sql package. This is
available under either JDK 1.2.x or 1.1.x.

See Chapter 15, "Distributed Transactions" for information.

miscellaneous getXXX()
methods

See "Other getXXX() Methods" on page 7-7 for information
about which getXXX() methods are Oracle extensions under
JDK 1.2.x and 1.1.x, and about any differences in functionality
with JDBC 2.0.

miscellaneous setXXX()
methods

See "Other setXXX() Methods" on page 7-12 for information
about which setXXX() methods are Oracle extensions under
JDK 1.2.x and 1.1.x, and about any differences in functionality
with JDBC 2.0.

Note: The Oracle JDBC drivers do not support the Calendar
datatype because it is not yet feasible to support java.sql.Date
timezone information. Calendar input to setXXX() or getXXX()
method calls for Date, Time, and Timestamp is ignored. The
Calendar type will be supported in a future Oracle release.

Table 4–1 Key Areas of JDBC 2.0 Functionality (Cont.)

Feature Comments and References

Overview of Supported JDBC 3.0 Features 5-1

5
Overview of Supported JDBC 3.0 Features

This chapter provides an overview of the JDBC 3.0 features supported in the Oracle
JDBC drivers, focusing in particular on any differences in support between the JDK
1.4 environment and previous JDK environments. The following topics are
discussed:

■ Introduction

■ JDBC 3.0 Support: JDK 1.4 and Previous Releases

■ Overview of Supported JDBC 3.0 Features

■ Transaction Savepoints

Introduction

5-2 Oracle9i JDBC Developer’s Guide and Reference

Introduction
The Oracle JDBC drivers support the following JDBC 3.0 features:

■ Using global and distributed transactions on the same connection (see "Oracle
XA Packages" on page 15-5)

■ Transaction savepoints (see "Transaction Savepoints" on page 5-5)

■ Re-use of prepared statements by connection pools (also known as statement
caching; see Chapter 14, "Statement Caching")

■ Full support for JDK1.4 (see "JDBC 3.0 Support: JDK 1.4 and Previous Releases"
in this chapter)

All of these features are provided in the package oracle.jdbc. This package
supports all JDK releases from 1.1.x through 1.4; JDBC 3.0 features that depend on
JDK1.4 are made available to earlier JDK versions through Oracle extensions.

JDBC 3.0 Support: JDK 1.4 and Previous Releases

Overview of Supported JDBC 3.0 Features 5-3

JDBC 3.0 Support: JDK 1.4 and Previous Releases
This release adds or extends the following interfaces and classes.

Table 5–1 JDBC 3.0 Feature Support

New feature JDK1.4 implementation Pre-JDK1.4 implementation

Savepoints (new
class)

java.sql.Savepoint oracle.jdbc.OracleSavepoint

Savepoints
(connection
extensions)

java.sql.connection oracle.jdbc.
 OracleConnection

Querying
parameter
capacities (new
class)

java.sql.ParameterMetaData oracle.jdbc.
 OracleParameterMetaData

Querying
parameter
capacities (interface
change)

Not applicable oracle.jdbc.
OraclePreparedStatement

Overview of Supported JDBC 3.0 Features

5-4 Oracle9i JDBC Developer’s Guide and Reference

Overview of Supported JDBC 3.0 Features
Table 5–2 lists the JDBC 3.0 features supported at this release and gives references to
a detailed discussion of each feature.

Table 5–2 Key Areas of JDBC 3.0 Functionality

Feature Comments and References

Transaction savepoints See "Transaction Savepoints" on page 5-5 for information.

Connection sharing Re-use of prepared statements by connection pools (see
Chapter 14, "Statement Caching".

Switching between local and
global transactions

See "Switching Between Global and Local Transactions" on
page 15-5 for information.

Transaction Savepoints

Overview of Supported JDBC 3.0 Features 5-5

Transaction Savepoints
The JDBC 3.0 specification supports savepoints, which offer finer demarcation
within transactions. Applications can set a savepoint within a transaction and then
roll back (but not commit) all work done after the savepoint. Savepoints relax the
atomicity property of transactions. A transaction with a savepoint is atomic in the
sense that it appears to be a single unit outside the context of the transaction, but
code operating within the transaction can preserve partial states.

JDK1.4 specifies a standard savepoint API. Oracle JDBC provides two different
savepoint interfaces: one (java.sql.Savepoint) for JDK1.4 and one
(oracle.jdbc.OracleSavepoint) that works across all supported JDK
versions. JDK1.4 adds savepoint-related APIs to java.sql.Connection; the
Oracle JDK version-independent interface oracle.jdbc.OracleConnection
provides equivalent functionality.

Creating a Savepoint
You create a savepoint using either Connection.setSavepoint(), which
returns a java.sql.Savepoint instance, or
OracleConnection.oracleSetSavepoint(), which returns an
oracle.jdbc.OracleSavepoint instance.

A savepoint is either named or unnamed. You specify a savepoint’s name by
supplying a string to the setSavepoint() method; if you do not specify a name,
the savepoint is assigned an integer ID. You retrieve a name using
getSavepointName(); you retrieve an ID using getSavepointId().

Note: Savepoints are supported for local transactions only.
Specifying a savepoint within a global transaction causes
SQLException to be thrown.

Transaction Savepoints

5-6 Oracle9i JDBC Developer’s Guide and Reference

Rolling back to a Savepoint
You roll back to a savepoint using Connection.rollback(Savepoint svpt)
or OracleConnection.oracleRollback(OracleSavepoint svpt). If you
try to roll back to a savepoint that has been released, SQLException is thrown.

Releasing a Savepoint
You remove a savepoint using Connection.releaseSavepoint(Savepoint
svpt) or
OracleConnection.oracleReleaseSavepoint(OracleSavepoint svpt).

Checking Savepoint Support
You find out whether savepoints are supported by your database by calling
oracle.jdbc.OracleDatabaseMetaData.supportsSavepoints(), which
returns True if savepoints are available.

Savepoint Notes
■ After a savepoint has been released, attempting to reference it in a rollback

operation will cause an SQLException to be thrown.

■ When a transaction is committed or rolled back, all savepoints created in that
transaction are automatically released and become invalid.

■ Rolling a transaction back to a savepoint automatically releases and makes
invalid any savepoints created after the savepoint in question.

Note: Attempting to retrieve a name from an unnamed savepoint
or attempting to retrieve an ID from a named savepoint throws an
SQLException.

Note: As of Release 2 (9.2), releaseSavepoint() and
oracleReleaseSavepoint() are not supported; if you invoke
either message, SQLException is thrown with the message
"Unsupported feature".

Transaction Savepoints

Overview of Supported JDBC 3.0 Features 5-7

Savepoint Interfaces
The following methods are used to get information from savepoints. These methods
are defined within both the java.sql.Connection and
oracle.jdbc.OracleSavepoint interfaces:

public int getSavepointId() throws SQLException;

Return the savepoint ID for an unnamed savepoint.

Exceptions:

■ SQLException: Thrown if self is a named savepoint.

public String getSavepointName() throws SQLException;

Return the name of a named savepoint.

Exceptions:

■ SQLException: Thrown if self is an unnamed savepoint.

 These methods are defined within the java.sql.Connection interface:

public Savepoint setSavepoint() throws SQLException;

Create an unnamed savepoint.

Exceptions:

■ SQLException: Thrown on database error, or if Connection is in
auto-commit mode or participating in a global transaction.

publicSavepoint setSavepoint(String name) throws SQLException;

Create a named savepoint. If a Savepoint by this name already exists, this
instance replaces it.

Exceptions:

■ SQLException: Thrown on database error or if Connection is in
auto-commit mode or participating in a global transaction.

public void rollback(Savepoint savepoint) throws SQLException;

Remove specified Savepoint from current transaction. Any references to the
savepoint after it is removed cause an SQLException to be thrown.

Exceptions:

■ SQLException: Thrown on database error or if Connection is in
auto-commit mode or participating in a global transaction.

Transaction Savepoints

5-8 Oracle9i JDBC Developer’s Guide and Reference

public void releaseSavepoint(Savepoint savepoint) throws SQLException;

Not supported at this release. Always throws SQLException.

Pre-JDK1.4 Savepoint Support
 These methods are defined within the oracle.jdbc.OracleConnection
interface; except for using OracleSavepoint in the signatures, they are identical
to the methods above.

public OracleSavepoint oracleSetSavepoint() throws SQLException;

public OracleSavepoint oracleSetSavepoint(String name) throws SQLException;

public void oracleRollback(OracleSavepoint savepoint) throws SQLException;

public void oracleReleaseSavepoint(OracleSavepoint savepoint) throws SQLException;

Overview of Oracle Extensions 6-1

6
Overview of Oracle Extensions

Oracle’s extensions to the JDBC standard include Java packages and interfaces that
let you access and manipulate Oracle datatypes and use Oracle performance
extensions. Compared to standard JDBC, the extensions offer you greater flexibility
in how you can manipulate the data. This chapter presents an overview of the
packages and classes included in Oracle’s extensions to standard JDBC. It also
describes some of the key support features of the extensions.

This chapter includes these topics:

■ Introduction to Oracle Extensions

■ Support Features of the Oracle Extensions

■ Oracle JDBC Packages and Classes

■ Oracle Character Datatypes Support

■ Additional Oracle Type Extensions

Note: This chapter focuses on type extensions, as opposed to
performance extensions, which are discussed in detail in
Chapter 12, "Performance Extensions".

Introduction to Oracle Extensions

6-2 Oracle9i JDBC Developer’s Guide and Reference

Introduction to Oracle Extensions
Oracle provides two implementations of its JDBC drivers—one that supports Sun
Microsystems JDK versions 1.2.x through 1.4 and complies with the Sun JDBC 2.0
standard, and one that supports JDK 1.1.x and complies with the Sun JDBC 1.22
standard.

Beyond standard features, Oracle JDBC drivers provide Oracle-specific type
extensions and performance extensions.

Both implementations include the following Java packages:

■ oracle.sql (classes to support all Oracle type extensions)

■ oracle.jdbc (interfaces to support database access and updates in Oracle
type formats)

In addition to these packages, the implementation for JDK 1.1.x includes the
following Java package. This package supports some JDBC 2.0 and JDBC 3.0
features by providing interfaces that mimic the new interfaces in the standard
java.sql package:

■ oracle.jdbc2 (interfaces equivalent to standard JDBC 2.0 interfaces)

(For example, oracle.jdbc2.Struct mimics java.sql.Struct, which exists
in JDK 1.2.)

"Oracle JDBC Packages and Classes" on page 6-7 further describes the preceding
packages and their classes.

Note: The JDBC OCI, Thin, and server-side internal drivers
support the same functionality and all Oracle extensions.

Support Features of the Oracle Extensions

Overview of Oracle Extensions 6-3

Support Features of the Oracle Extensions
The Oracle extensions to JDBC include a number of features that enhance your
ability to work with Oracle databases. Among these are support for Oracle
datatypes, Oracle objects, and specific schema naming.

Support for Oracle Datatypes
A key feature of the Oracle JDBC extensions is the type support in the oracle.sql
package. This package includes classes that map to all the Oracle SQL datatypes,
acting as wrappers for raw SQL data. This functionality provides two significant
advantages in manipulating SQL data:

■ Accessing data directly in SQL format is more efficient than first converting it to
Java format.

■ Performing mathematical manipulations of the data directly in SQL format
avoids the loss of precision that occurs in converting between SQL and Java
formats.

Once manipulations are complete and it is time to output the information, each of
the oracle.sql.* type support classes has all the necessary methods to convert
data to appropriate Java formats. For a more detailed description of these general
issues, see "Package oracle.sql" on page 6-7.

See the following for more information on specific oracle.sql.* datatype
classes:

■ "Oracle Character Datatypes Support" on page 6-28 for information on
oracle.sql.* character datatypes which includes the SQL CHAR and SQL
NCHAR datatypes

■ "Additional Oracle Type Extensions" on page 6-33 for information on the
oracle.sql.* datatype classes for ROWIDs and REF CURSOR types

■ Chapter 8, "Working with LOBs and BFILEs" for information on
oracle.sql.* datatype support for BLOBs, CLOBs, and BFILEs

■ Chapter 9, "Working with Oracle Object Types" for information on
oracle.sql.* datatype support for composite data structures (Oracle objects)
in the database

■ Chapter 10, "Working with Oracle Object References" for information on
oracle.sql.* datatype support for object references

Support Features of the Oracle Extensions

6-4 Oracle9i JDBC Developer’s Guide and Reference

■ Chapter 11, "Working with Oracle Collections" for information on
oracle.sql.* datatype support for collections (VARRAYs and nested tables)

Support for Oracle Objects
Oracle JDBC supports the use of structured objects in the database, where an object
datatype is a user-defined type with nested attributes. For example, a user
application could define an Employee object type, where each Employee object
has a firstname attribute (a character string), a lastname attribute (another
character string), and an employeenumber attribute (integer).

Oracle’s JDBC implementation supports Oracle object datatypes. When you work
with Oracle object datatypes in a Java application, you must consider the following:

■ how to map between Oracle object datatypes and Java classes

■ how to store Oracle object attributes in corresponding Java objects (they can be
stored in standard Java types or in oracle.sql.* types)

■ how to convert attribute data between SQL and Java formats

■ how to access data

Oracle objects can be mapped either to the weak java.sql.Struct or
oracle.sql.STRUCT types or to strongly typed customized classes. These strong
types are referred to as custom Java classes, which must implement either the
standard java.sql.SQLData interface or the Oracle extension
oracle.sql.ORAData interface. (Chapter 9, "Working with Oracle Object Types"
provides more detail regarding these interfaces.) Each interface specifies methods to
convert data between SQL and Java.

To create custom Java classes to correspond to your Oracle objects, Oracle
recommends that you use the Oracle9i JPublisher utility to create the classes. To do
this, you must define attributes according to how you want to store the data.
JPublisher performs this task seamlessly with command-line options and can
generate either SQLData or ORAData implementations.

For SQLData implementations, a type map defines the correspondence between
Oracle object datatypes and Java classes. Type maps are objects of a special Java
class that specify which Java class corresponds to each Oracle object datatype.

Note: The ORAData interface has replaced the CustomDatum
interface. While the latter interface is deprecated for Oracle9i, it is
still supported for backward compatibility.

Support Features of the Oracle Extensions

Overview of Oracle Extensions 6-5

Oracle JDBC uses these type maps to determine which Java class to instantiate and
populate when it retrieves Oracle object data from a result set.

JPublisher automatically defines getXXX() methods of the custom Java classes,
which retrieve data into your Java application. For more information on the
JPublisher utility, see the Oracle9i JPublisher User’s Guide.

Chapter 9, "Working with Oracle Object Types" describes Oracle JDBC support for
Oracle objects.

Support for Schema Naming
Oracle JDBC classes have the ability to accept and return fully qualified schema
names. A fully qualified schema name has this syntax:

{[schema_name].}[sql_type_name]

Where schema_name is the name of the schema and sql_type_name is the SQL
type name of the object. Notice that schema_name and sql_type_name are
separated by a dot (".").

To specify an object type in JDBC, you use its fully qualified name (that is, a schema
name and SQL type name). It is not necessary to enter a schema name if the type
name is in current naming space (that is, the current schema). Schema naming
follows these rules:

■ Both the schema name and the type name may or may not be quoted. However,
if the SQL type name has a dot in it, such as CORPORATE.EMPLOYEE, the type
name must be quoted.

■ The JDBC driver looks for the first unquoted dot in the object’s name and uses
the string before the dot as the schema name and the string following the dot as
the type name. If no dot is found, the JDBC driver takes the current schema as
default. That is, you can specify only the type name (without indicating a
schema) instead of specifying the fully qualified name if the object type name
belongs to the current schema. This also explains why you must quote the type
name if the type name has a dot in it.

Note: Oracle recommends using the ORAData interface, instead of
the SQLData interface, in situations where portability is not a
concern. ORAData works more easily and flexibly in conjunction
with other features of the Oracle Java platform offerings.

Support Features of the Oracle Extensions

6-6 Oracle9i JDBC Developer’s Guide and Reference

For example, assume that user Scott creates a type called person.address
and then wants to use it in his session. Scott might want to skip the schema
name and pass in person.address to the JDBC driver. In this case, if
person.address is not quoted, then the dot will be detected, and the JDBC
driver will mistakenly interpret person as the schema name and address as
the type name.

■ JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver will not change the character case even if it is quoted.

For example, if ScOtT.PersonType is passed to the JDBC driver as an object
type name, the JDBC driver will pass the string to the database unchanged. As
another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

OCI Extensions
See Chapter 17, "JDBC OCI Extensions" for the following OCI driver-specific
information:

■ OCI Driver Connection Pooling

■ Middle-Tier Authentication Through Proxy Connections

■ OCI Driver Transparent Application Failover

■ OCI HeteroRM XA

■ Accessing PL/SQL Index-by Tables

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-7

Oracle JDBC Packages and Classes
This section describes the Java packages that support the Oracle JDBC extensions
and the key classes that are included in these packages:

■ Package oracle.sql

■ Package oracle.jdbc

■ Package oracle.jdbc2 (for JDK 1.1.x only)

You can refer to the Oracle JDBC Javadoc for more information about all the classes
mentioned in this section.

Package oracle.sql
The oracle.sql package supports direct access to data in SQL format. This
package consists primarily of classes that provide Java mappings to SQL datatypes.

Essentially, the classes act as Java wrappers for the raw SQL data. Because data in
an oracle.sql.* object remains in SQL format, no information is lost. For SQL
primitive types, these classes simply wrap the SQL data. For SQL structured types
(objects and arrays), they provide additional information such as conversion
methods and details of structure.

Each of the oracle.sql.* datatype classes extends oracle.sql.Datum, a
superclass that encapsulates functionality common to all the datatypes. Some of the
classes are for JDBC 2.0-compliant datatypes. These classes, as Table 6–1 indicates,
implement standard JDBC 2.0 interfaces in the java.sql package (oracle.jdbc2
for JDK 1.1.x), as well as extending the oracle.sql.Datum class.

Oracle JDBC Packages and Classes

6-8 Oracle9i JDBC Developer’s Guide and Reference

Classes of the oracle.sql Package
Table 6–1 lists the oracle.sql datatype classes and their corresponding Oracle
SQL types.

You can find more detailed information about each of these classes later in this
chapter. Additional details about use of the Oracle extended types (STRUCT, REF,
ARRAY, BLOB, CLOB, BFILE, and ROWID) are described in the following locations:

■ "Oracle Character Datatypes Support" on page 6-28

Table 6–1 Oracle Datatype Classes

Java Class Oracle SQL Types and Interfaces Implemented

oracle.sql.STRUCT STRUCT (objects) implements java.sql.Struct
(oracle.jdbc2.Struct under JDK 1.1.x)

oracle.sql.REF REF (object references) implements java.sql.Ref
(oracle.jdbc2.Ref under JDK 1.1.x)

oracle.sql.ARRAY VARRAY or nested table (collections) implements
java.sql.Array (oracle.jdbc2.Array under
JDK 1.1.x)

oracle.sql.BLOB BLOB (binary large objects) implements java.sql.Blob
(oracle.jdbc2.Blob under JDK 1.1.x)

oracle.sql.CLOB SQL CLOB (character large objects) and globalization
support NCLOB datatypes both implement
java.sql.Clob (oracle.jdbc2.Clob under JDK
1.1.x)

oracle.sql.BFILE BFILE (external files)

oracle.sql.CHAR CHAR, NCHAR, VARCHAR2, NVARCHAR2

oracle.sql.DATE DATE

oracle.sql.TIMESTAMP TIMESTAMP

oracle.sql.TIMESTAMPTZ TIMESTAMPTZ (Timestamp with Time Zone)

oracle.sql.TIMESTAMPLTZ TIMESTAMPLTZ (Timestamp with Local Time Zone)

oracle.sql.NUMBER NUMBER

oracle.sql.RAW RAW

oracle.sql.ROWID ROWID (row identifiers)

oracle.sql.OPAQUE OPAQUE

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-9

■ "Additional Oracle Type Extensions" on page 6-33

■ Chapter 8, "Working with LOBs and BFILEs"

■ Chapter 9, "Working with Oracle Object Types"

■ Chapter 10, "Working with Oracle Object References"

■ Chapter 11, "Working with Oracle Collections"

In addition to the datatype classes, the oracle.sql package includes the
following support classes and interfaces, primarily for use with objects and
collections:

■ oracle.sql.ArrayDescriptor class: Used in constructing
oracle.sql.ARRAY objects; describes the SQL type of the array. (See
"Creating ARRAY Objects and Descriptors" on page 11-11.)

■ oracle.sql.StructDescriptor class: Used in constructing
oracle.sql.STRUCT objects, which you can use as a default mapping to
Oracle objects in the database. (See "Creating STRUCT Objects and Descriptors"
on page 9-4.)

■ oracle.sql.ORAData and oracle.sql.ORADataFactory interfaces: Used
in Java classes implementing the Oracle ORAData scenario of Oracle object
support. (The other possible scenario is the JDBC-standard SQLData
implementation.) See "Understanding the ORAData Interface" on page 9-21 for
more information on ORAData.

Notes:

■ For information about retrieving data from a result set or
callable statement object into oracle.sql.* types, as
opposed to Java types, see Chapter 7, "Accessing and
Manipulating Oracle Data".

■ The LONG and LONG RAW SQL types and REF CURSOR type
category have no oracle.sql.* classes. Use standard JDBC
functionality for these types. For example, retrieve LONG or
LONG RAW data as input streams using the standard JDBC result
set and callable statement methods getBinaryStream() and
getCharacterStream(). Use the getCursor() method for
REF CURSOR types.

Oracle JDBC Packages and Classes

6-10 Oracle9i JDBC Developer’s Guide and Reference

■ oracle.sql.OpaqueDescriptor class: Used to obtain the meta data for an
instance of the oracle.sql.OPAQUE class.

General oracle.sql.* Datatype Support
Each of the Oracle datatype classes provides, among other things, the following:

■ one or more constructors, typically with a constructor that uses raw bytes as
input and a constructor that takes a Java type as input

■ data storage as Java byte arrays for SQL data

■ a getBytes() method, which returns the SQL data as a byte array (in the raw
format in which JDBC received the data from the database)

■ a toJdbc() method that converts the data into an object of a corresponding
Java class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific datatypes that are not part of
the JDBC specification, such as ROWID; the driver returns the object in the
corresponding oracle.sql.* format. For example, it returns an Oracle
ROWID as an oracle.sql.ROWID.

■ appropriate xxxValue() methods to convert SQL data to Java typed—for
example: stringValue(), intValue(), booleanValue(), dateValue(),
bigDecimalValue()

■ additional conversion, getXXX() and setXXX() methods as appropriate for
the functionality of the datatype (such as methods in the LOB classes that get
the data as a stream, and methods in the REF class that get and set object data
through the object reference)

Refer to the Oracle JDBC Javadoc for additional information about these classes. See
"Class oracle.sql.CHAR" on page 6-29 to learn how the oracle.sql.CHAR class
supports character data.

Overview of Class oracle.sql.STRUCT
For any given Oracle object type, it is usually desirable to define a custom mapping
between SQL and Java. (If you use a SQLData custom Java class, the mapping must
be defined in a type map.)

If you choose not to define a mapping, however, then data from the object type will
be materialized in Java in an instance of the oracle.sql.STRUCT class.

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-11

The STRUCT class implements the standard JDBC 2.0 java.sql.Struct interface
(oracle.jdbc2.Struct under JDK 1.1.x) and extends the oracle.sql.Datum
class.

In the database, Oracle stores the raw bytes of object data in a linearized form. A
STRUCT object is a wrapper for the raw bytes of an Oracle object. It contains the
SQL type name of the Oracle object and a "values" array of oracle.sql.Datum
objects that hold the attribute values in SQL format.

You can materialize a STRUCT’s attributes as oracle.sql.Datum[] objects if you
use the getOracleAttributes() method, or as java.lang.Object[] objects
if you use the getAttributes() method. Materializing the attributes as
oracle.sql.* objects gives you all the advantages of the oracle.sql.* format:

■ Materializing oracle.sql.STRUCT data in oracle.sql.* format
completely preserves data by maintaining it in SQL format. No translation is
performed. This is useful if you want to access data but not necessarily display
it.

■ It allows complete flexibility in how your Java application unpacks data.

In some cases, you might want to manually create a STRUCT object and pass it to a
prepared statement or callable statement. To do this, you must also create a
StructDescriptor object.

For more information about working with Oracle objects using the
oracle.sql.STRUCT and StructDescriptor classes, see "Using the Default
STRUCT Class for Oracle Objects" on page 9-3.

Notes:

■ Elements of the values array, although of the generic Datum
type, actually contain data associated with the relevant
oracle.sql.* type appropriate for the given attribute. You
can cast the element to the appropriate oracle.sql.* type as
desired. For example, a CHAR data attribute within the STRUCT
is materialized as oracle.sql.Datum. To use it as CHAR data,
you must cast it to the oracle.sql.CHAR type.

■ Nested objects in the values array of a STRUCT object are
materialized by the JDBC driver as instances of STRUCT.

Oracle JDBC Packages and Classes

6-12 Oracle9i JDBC Developer’s Guide and Reference

Overview of Class oracle.sql.REF
The oracle.sql.REF class is the generic class that supports Oracle object
references. This class, as with all oracle.sql.* datatype classes, is a subclass of
the oracle.sql.Datum class. It implements the standard JDBC 2.0
java.sql.Ref interface (oracle.jdbc2.Ref under JDK 1.1.x).

The REF class has methods to retrieve and pass object references. Be aware,
however, that selecting an object reference retrieves only a pointer to an object. This
does not materialize the object itself. But the REF class also includes methods to
retrieve and pass the object data.

You cannot create REF objects in your JDBC application—you can only retrieve
existing REF objects from the database.

For more information about working with Oracle object references using the
oracle.sql.REF class, see Chapter 10, "Working with Oracle Object References".

Overview of Class oracle.sql.ARRAY
The oracle.sql.ARRAY class supports Oracle collections—either VARRAYs or
nested tables. If you select either a VARRAY or nested table from the database, then
the JDBC driver materializes it as an object of the ARRAY class; the structure of the
data is equivalent in either case. The oracle.sql.ARRAY class extends
oracle.sql.Datum and implements the standard JDBC 2.0 java.sql.Array
interface (oracle.jdbc2.Array under JDK 1.1.x).

You can use the setARRAY() method of the OraclePreparedStatement or
OracleCallableStatement class to pass an array as an input parameter to a
prepared statement. Similarly, you might want to manually create an ARRAY object
to pass it to a prepared statement or callable statement, perhaps to insert into the
database. This involves the use of ArrayDescriptor objects.

For more information about working with Oracle collections using the
oracle.sql.ARRAY and ArrayDescriptor classes, see "Overview of Collection
(Array) Functionality" on page 11-5.

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE
BLOBs and CLOBs (referred to collectively as "LOBs"), and BFILEs (for external
files) are for data items that are too large to store directly in a database table.
Instead, the database table stores a locator that points to the location of the actual
data.

The oracle.sql package supports these datatypes in several ways:

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-13

■ BLOBs point to large unstructured binary data items and are supported by the
oracle.sql.BLOB class.

■ CLOBs point to large fixed-width character data items (that is, characters that
require a fixed number of bytes per character) and are supported by the
oracle.sql.CLOB class.

■ BFILEs point to the content of external files (operating system files) and are
supported by the oracle.sql.BFILE class.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement, but bear in mind that you are receiving only the locator, not the
data itself. Additional steps are necessary to retrieve the data.

For information about how to access and manipulate locators and data for LOBs
and BFILEs, see Chapter 8, "Working with LOBs and BFILEs".

Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW
These classes map to primitive SQL datatypes, which are a part of standard JDBC,
and supply conversions to and from the corresponding JDBC Java types. For more
information, see the Javadoc.

Classes oracle.sql.TIMESTAMP, oracle.sql.TIMESTAMPTZ, and
oracle.sql.TIMESTAMPLTZ
The Oracle9i JDBC drivers support the following date/time datatypes:

■ Timestamp (TS)

■ Timestamp with Time Zone (TSTZ)

■ TIMESTAMP with Local Time Zone (TSLTZ)

Oracle9i JDBC drivers allow conversions among DATE and date/time datatypes.
For example, you can access a TIMESTAMPTZ column as a DATE value.

Oracle9i JDBC drivers support the most popular time zone names used in the
industry as well as most of the time zone names defined in the JDK from Sun
Microsystems. Time zones are specified by using the java.util.Calendar class.

Note: Do not use TimeZone.getTimeZone() to create timezone
objects; the Oracle timezone datatypes support more time zone
names than does the JDK.

Oracle JDBC Packages and Classes

6-14 Oracle9i JDBC Developer’s Guide and Reference

The following code shows how the TimeZone and Calendar objects are created
for US_PACIFIC, which is a time zone name not defined in the JDK:

TimeZone tz = TimeZone.getDefault();
tz.setID("US_PACIFIC");
GregorianCalendar gcal = new GregorianCalendar(tz);

The following Java classes represent the SQL date/time types:

■ oracle.sql.TIMESTAMP

■ oracle.sql.TIMESTAMPTZ

■ oracle.sql.TIMESTAMPLTZ

Use the following methods from the oracle.jdbc.OraclePreparedStatement
interface to set a date/time:

■ setTIMESTAMP(int paramIdx,TIMESTAMP x)

■ setTIMESTAMPTZ(int paramIdx,TIMESTAMPTZ x)

■ setTIMESTAMPLTZ(int paramIdx,TIMESTAMPLTZ x)

Use the following methods from the oracle.jdbc.OracleCallableStatement
interface to get a date/time:

■ TIMESTAMP getTIMESTAMP (int paramIdx)

■ TIMESTAMPTZ getTIMESTAMPTZ(int paramIdx)

■ TIMESTAMPLTZ getTIMESTAMPLTZ(int paramIdx)

Use the following methods from the oracle.jdbc.OracleResultSet interface
to get a date/time:

■ TIMESTAMP getTIMESTAMP(int paramIdx)

■ TIMESTAMP getTIMESTAMP(java.lang.String colName)

■ TIMESTAMPTZ getTIMESTAMPTZ(int paramIdx)

■ TIMESTAMPTZ getTIMESTAMPTZ(java.lang.String colName)

■ TIMESTAMPLTZ getTIMESTAMPLTZ(int paramIdx)

■ TIMESTAMPLTZ getTIMESTAMPLTZ(java.lang.String colName)

■ TIMESTAMPLTZ getTIMESTAMPLTZ(int paramIdx)

Use the following methods from the oracle.jdbc.OracleResultSet interface
to update a date/time:

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-15

■ updateTIMESTAMP(int paramIdx)

■ updateTIMESTAMPTZ(int paramIdx)

■ updateTIMESTAMPLTZ(int paramIdx)

Before accessing TIMESTAMPLTZ data, call the
OracleConnection.setSessionTime() method to set the session time zone.
When this method is called, the JDBC driver sets the session time zone of the
connection and saves the session time zone so that any TIMESTAMPLTZ data
accessed through JDBC can be adjusted using the session time zone.

Overview of Class oracle.sql.ROWID
This class supports Oracle ROWIDs, which are unique identifiers for rows in
database tables. You can select a ROWID as you would select any column of data
from the table. Note, however, that you cannot manually update ROWIDs—the
Oracle database updates them automatically as appropriate.

The oracle.sql.ROWID class does not implement any noteworthy functionality
beyond what is in the oracle.sql.Datum superclass. However, ROWID does
provide a stringValue() method that overrides the stringValue() method in
the oracle.sql.Datum class and returns the hexadecimal representation of the
ROWID bytes.

For information about accessing ROWID data, see "Oracle ROWID Type" on
page 6-33.

Class oracle.sql.OPAQUE
The oracle.sql.OPAQUE class gives you the name and characteristics of the
OPAQUE type and any attributes. OPAQUE types provide access only to the
uninterrupted bytes of the instance.

The following are the methods of the oracle.sql.OPAQUE class:

■ getBytesValue(): Returns a byte array that represents the value of the
OPAQUE object, in the format used in the database.

■ public boolean isConvertibleTo(Class jClass): Determines if a
Datum object can be converted to a particular class, where Class is any class

Note: For Oracle9i 9.0.1, there is minimal support for OPAQUE
types.

Oracle JDBC Packages and Classes

6-16 Oracle9i JDBC Developer’s Guide and Reference

and jClass is the class to convert. true is returned if conversion to jClass is
permitted and false if conversion to jClass is not permitted.

■ getDescriptor(): Returns the OpaqueDescriptor object that contains the
type information.

■ getJavaSqlConnection(): Returns the connection associated with the
receiver. Because methods that use the oracle.jdbc.driver package are
deprecated, the getConnection() method has been deprecated in favor of
the getJavaSqlConnection() method.

■ getSQLTypeName(): Implements the java.sql.Struct interface function
and retrieves the SQL type name of the SQL structured type that this Struct
object represents. This method returns the fully-qualified type name of the SQL
structured type which this STRUCT object represents.

■ getValue(): Returns a Java object that represents the value (raw bytes).

■ toJdbc(): Returns the JDBC representation of the Datum object.

Package oracle.jdbc
The interfaces of the oracle.jdbc package provide Oracle-specific extensions to
allow access to raw SQL format data by using oracle.sql.* objects.

For the oracle.jdbc package, Table 6–2 lists key interfaces and classes used for
connections, statements, and result sets.

Note: The interfaces of the oracle.jdbc package replace the
deprecated classes of the oracle.jdbc.driver package found in
previous releases. (See "Package oracle.jdbc" on page 1-11 for more
information.)

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-17

Table 6–2 Key Interfaces and Classes of the oracle.jdbc Package

Name
Interface
or Class Key Functionality

OracleDriver Class implements java.sql.Driver

OracleConnection Interface methods to return Oracle statement
objects; methods to set Oracle
performance extensions for any statement
executed in the current connection
(implements
java.sql.Connection)

OracleStatement Interface methods to set Oracle performance
extensions for individual statement;
superclass of
OraclePreparedStatement and
OracleCallableStatement
(implements java.sql.Statement)

OraclePreparedStatement Interface setXXX() methods to bind
oracle.sql.* types into a prepared
statement (implements
java.sql.PreparedStatement;
extends OracleStatement;
superclass of
OracleCallableStatement)

OracleCallableStatement Interface getXXX() methods to retrieve data in
oracle.sql format; setXXX()
methods to bind oracle.sql.* types
into a callable statement (implements
java.sql.CallableStatement;
extends
OraclePreparedStatement)

OracleResultSet Interface getXXX() methods to retrieve data in
oracle.sql format (implements
java.sql.ResultSet)

OracleResultSetMetaData Interface methods to get meta information about
Oracle result sets, such as column names
and datatypes (implements
java.sql.ResultSetMetaData)

Oracle JDBC Packages and Classes

6-18 Oracle9i JDBC Developer’s Guide and Reference

The remainder of this section describes the interfaces and classes of the
oracle.jdbc package. For more information about using these interfaces and
classes to access Oracle type extensions, see Chapter 7, "Accessing and
Manipulating Oracle Data".

Class oracle.jdbc.OracleDriver
Use this class to register the Oracle JDBC drivers for use by your application. You
can input a new instance of this class to the static registerDriver() method of
the java.sql.DriverManager class so that your application can access and use
the Oracle drivers. The registerDriver() method takes as input a "driver" class,
that is, a class that implements the java.sql.Driver interface, as is the case with
OracleDriver.

Once you register the Oracle JDBC drivers, you can create your connection using
the DriverManager class. For more information on registering drivers and writing
a connection string, see "First Steps in JDBC" on page 3-2.

Interface oracle.jdbc.OracleConnection
This interface extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
support type maps for Oracle objects, and support client identifiers.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including row prefetching, update batching, and metadata
TABLE_REMARKS reporting.

OracleDatabaseMetaData Class methods to get meta information about
the database, such as database product
name/version, table information, and
default transaction isolation level
(implements
java.sql.DatabaseMetaData)

OracleTypes Class defines integer constants used to identify
SQL types. For standard types, it uses the
same values as the standard
java.sql.Types class. In addition, it
adds constants for Oracle extended types.

Table 6–2 Key Interfaces and Classes of the oracle.jdbc Package (Cont.)

Name
Interface
or Class Key Functionality

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-19

Client Identifiers In a connection pooling environment, the client identifier can be
used to identify which light-weight user is currently using the database session. A
client identifier can also be used to share the Globally Accessed Application Context
between different database sessions. The client identifier set in a database session is
audited when database auditing is turned on.

Key methods include:

■ createStatement(): Allocates a new OracleStatement object.

■ prepareStatement(): Allocates a new OraclePreparedStatement object.

■ prepareCall(): Allocates a new OracleCallableStatement object.

■ getTypeMap(): Retrieves the type map for this connection (for use in mapping
Oracle object types to Java classes).

■ setTypeMap(): Initializes or updates the type map for this connection (for use
in mapping Oracle object types to Java classes).

■ getTransactionIsolation(): Gets this connection’s current isolation
mode.

■ setTransactionIsolation(): Changes the transaction isolation level using
one of the TRANSACTION_* values.

These oracle.jdbc.OracleConnection methods are Oracle-defined
extensions:

■ setClientIdentifier(): Sets the client identifier for this connection.

■ clearClientIdentifier(): Clears the client identifier for this connection.

■ getDefaultExecuteBatch(): Retrieves the default update-batching value
for this connection.

■ setDefaultExecuteBatch(): Sets the default update-batching value for this
connection.

■ getDefaultRowPrefetch(): Retrieves the default row-prefetch value for
this connection.

■ setDefaultRowPrefetch(): Sets the default row-prefetch value for this
connection.

Note: See the Oracle9i Application Developer’s Guide - Fundamentals
for a full discussion of Globally Accessed Contexts.

Oracle JDBC Packages and Classes

6-20 Oracle9i JDBC Developer’s Guide and Reference

■ getRemarksReporting(): Returns true if TABLE_REMARKS reporting is
enabled.

■ setRemarksReporting(): Enables or disables TABLE_REMARKS reporting.

Interface oracle.jdbc.OracleStatement
This interface extends standard JDBC statement functionality and is the
superinterface of the OraclePreparedStatement and
OracleCallableStatement classes. Extended functionality includes support for
setting flags and options for Oracle performance extensions on a
statement-by-statement basis, as opposed to the OracleConnection interface that
sets these on a connection-wide basis.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including row prefetching and column type definitions.

Key methods include:

■ executeQuery(): Executes a database query and returns an
OracleResultSet object.

■ getResultSet(): Retrieves an OracleResultSet object.

■ close(): Closes the current statement.

These oracle.jdbc.OracleStatement methods are Oracle-defined extensions:

■ defineColumnType(): Defines the type you will use to retrieve data from a
particular database table column.

■ getRowPrefetch(): Retrieves the row-prefetch value for this statement.

■ setRowPrefetch(): Sets the row-prefetch value for this statement.

Interface oracle.jdbc.OraclePreparedStatement
This interface extends the OracleStatement interface and extends standard JDBC
prepared statement functionality. Also, the
oracle.jdbc.OraclePreparedStatement interface is extended by the
OracleCallableStatement interface. Extended functionality consists of
setXXX() methods for binding oracle.sql.* types and objects into prepared
statements, and methods to support Oracle performance extensions on a
statement-by-statement basis.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including database update batching.

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-21

Key methods include:

■ getExecuteBatch(): Retrieves the update-batching value for this statement.

■ setExecuteBatch(): Sets the update-batching value for this statement.

■ setOracleObject(): This is a generic setXXX() method for binding
oracle.sql.* data into a prepared statement as an oracle.sql.Datum
object.

■ setXXX(): These methods, such as setBLOB(), are for binding specific
oracle.sql.* types into prepared statements.

■ setORAData(): Binds an ORAData object (for use in mapping Oracle object
types to Java) into a prepared statement.

■ setNull(): Sets the value of the object specified by its SQL type name to
NULL. For setNull(param_index, type_code, sql_type_name), if type_
code is REF, ARRAY, or STRUCT, then sql_type_name is the fully qualified
name (schema.sql_type_name) of the SQL type.

■ setFormOfUse(): Sets which form of use this method is going to use. There
are two constants that specify the form of use: FORM_CHAR and FORM_NCHAR,
where FORM_CHAR is the default. If the form of use is set to FORM_NCHAR, the
JDBC driver will represent the provided data in the national character set of the
server. The following code show how the FORM_NCHAR is used:

pstmt.setFormOfUse
 (parameter index,
 oracle.jdbc.OraclePreparedStatement.FORM_NCHAR)

■ close(): Closes the current statement.

Interface oracle.jdbc.OracleCallableStatement
This interface extends the OraclePreparedStatement interface (which extends
the OracleStatement interface) and incorporates standard JDBC callable
statement functionality.

Key methods include:

■ getOracleObject(): This is a generic getXXX() method for retrieving data
into an oracle.sql.Datum object, which can be cast to the specific
oracle.sql.* type as necessary.

■ getXXX(): These methods, such as getCLOB(), are for retrieving data into
specific oracle.sql.* objects.

Oracle JDBC Packages and Classes

6-22 Oracle9i JDBC Developer’s Guide and Reference

■ setOracleObject(): This is a generic setXXX() method for binding
oracle.sql.* data into a callable statement as an oracle.sql.Datum
object.

■ setXXX(): These methods, such as setBLOB(), are inherited from
OraclePreparedStatement for binding specific oracle.sql.* objects into
callable statements.

■ setNull(): Sets the value of the object specified by its SQL type name to
NULL. For setNull(param_index, type_code, sql_type_name), if type_
code is REF, ARRAY, or STRUCT, then sql_type_name is the fully qualified
(schema.type) name of the SQL type.

■ setFormOfUse(): Sets which form of use this method is going to use. There
are two constants that specify the form of use: FORM_CHAR and FORM_NCHAR,
where FORM_CHAR is the default. If the form of use is set to FORM_NCHAR, the
JDBC driver will represent the provided data in the national character set of the
server. The following code show how the FORM_NCHAR is used:

pstmt.setFormOfUse
 (parameter index,
 oracle.jdbc.OraclePreparedStatement.FORM_NCHAR)

■ registerOutParameter(): Registers the SQL typecode of the statement’s
output parameter. JDBC requires this for any callable statement with an OUT
parameter. It takes an integer parameter index (the position of the output
variable in the statement, relative to the other parameters) and an integer SQL
type (the type constant defined in oracle.jdbc.OracleTypes).

This is an overloaded method. One version of this method is for named types
only—when the SQL typecode is OracleTypes.REF, STRUCT, or ARRAY. In
this case, in addition to a parameter index and SQL type, the method also takes
a String SQL type name (the name of the Oracle user-defined type in the
database, such as EMPLOYEE).

■ close(): Closes the current result set, if any, and the current statement.

Interface oracle.jdbc.OracleResultSet
This interface extends standard JDBC result set functionality, implementing
getXXX() methods for retrieving data into oracle.sql.* objects.

Key methods include:

■ getOracleObject(): This is a generic getXXX() method for retrieving data
into an oracle.sql.Datum object. It can be cast to the specific
oracle.sql.* type as necessary.

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-23

■ getXXX(): These methods, such as getCLOB(), are for retrieving data into
oracle.sql.* objects.

Interface oracle.jdbc.OracleResultSetMetaData
This interface extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects. See "Using Result Set Meta Data
Extensions" on page 7-19 for information on the functionality of the
OracleResultSetMetadata interface.

Class oracle.jdbc.OracleTypes
The OracleTypes class defines constants that JDBC uses to identify SQL types.
Each variable in this class has a constant integer value. The
oracle.jdbc.OracleTypes class duplicates the typecode definitions of the
standard Java java.sql.Types class and contains these additional typecodes for
Oracle extensions:

■ OracleTypes.BFILE

■ OracleTypes.ROWID

■ OracleTypes.CURSOR (for REF CURSOR types)

As in java.sql.Types, all the variable names are in all-caps.

JDBC uses the SQL types identified by the elements of the OracleTypes class in
two main areas: registering output parameters, and in the setNull() method of
the PreparedStatement class.

OracleTypes and Registering Output Parameters The typecodes in java.sql.Types or
oracle.jdbc.OracleTypes identify the SQL types of the output parameters in
the registerOutParameter() method of the java.sql.CallableStatement
interface and oracle.jdbc.OracleCallableStatement interface.

These are the forms that registerOutputParameter() can take for
CallableStatement and OracleCallableStatement (assume a standard
callable statement object cs):

cs.registerOutParameter(int index, int sqlType);

cs.registerOutParameter(int index, int sqlType, String sql_name);

cs.registerOutParameter(int index, int sqlType, int scale);

Oracle JDBC Packages and Classes

6-24 Oracle9i JDBC Developer’s Guide and Reference

In these signatures, index represents the parameter index, sqlType is the
typecode for the SQL datatype, sql_name is the name given to the datatype (for
user-defined types, when sqlType is a STRUCT, REF, or ARRAY typecode), and
scale represents the number of digits to the right of the decimal point (when
sqlType is a NUMERIC or DECIMAL typecode).

The following example uses a CallableStatement to call a procedure named
charout, which returns a CHAR datatype. Note the use of the OracleTypes.CHAR
typecode in the registerOutParameter() method (although
java.sql.Types.CHAR could have been used as well).

CallableStatement cs = conn.prepareCall ("BEGIN charout (?); END;");
cs.registerOutParameter (1, OracleTypes.CHAR);
cs.execute ();
System.out.println ("Out argument is: " + cs.getString (1));

The next example uses a CallableStatement to call structout, which returns a
STRUCT datatype. The form of registerOutParameter() requires you to specify
the typecode (Types.STRUCT or OracleTypes.STRUCT), as well as the SQL
name (EMPLOYEE).

The example assumes that no type mapping has been declared for the EMPLOYEE
type, so it is retrieved into a STRUCT datatype. To retrieve the value of EMPLOYEE as
an oracle.sql.STRUCT object, the statement object cs is cast to an
OracleCallableStatement and the Oracle extension getSTRUCT() method is
invoked.

CallableStatement cs = conn.prepareCall ("BEGIN structout (?); END;");
cs.registerOutParameter (1, OracleTypes.STRUCT, "EMPLOYEE");
cs.execute ();

// get the value into a STRUCT because it
// is assumed that no type map has been defined
STRUCT emp = ((OracleCallableStatement)cs).getSTRUCT (1);

OracleTypes and the setNull() Method The typecodes in Types and OracleTypes
identify the SQL type of the data item, which the setNull() method sets to NULL.
The setNull() method can be found in the java.sql.PreparedStatement
interface and the oracle.jdbc.OraclePreparedStatement interface.

Note: The second signature is standard under JDBC 2.0 in a JDK
1.2.x environment, but is an Oracle extension under JDK 1.1.x.

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-25

These are the forms that setNull() can take for PreparedStatement and
OraclePreparedStatement objects (assume a standard prepared statement
object ps):

ps.setNull(int index, int sqlType);

ps.setNull(int index, int sqlType, String sql_name);

In these signatures, index represents the parameter index, sqlType is the
typecode for the SQL datatype, and sql_name is the name given to the datatype
(for user-defined types, when sqlType is a STRUCT, REF, or ARRAY typecode). If
you enter an invalid sqlType, a Parameter Type Conflict exception is
thrown.

The following example uses a PreparedStatement to insert a NULL numeric
value into the database. Note the use of OracleTypes.NUMERIC to identify the
numeric object set to NULL (although Types.NUMERIC could have been used as
well).

PreparedStatement pstmt =
 conn.prepareStatement ("INSERT INTO num_table VALUES (?)");

pstmt.setNull (1, OracleTypes.NUMERIC);
pstmt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type
EMPLOYEE into the database.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO employee_table VALUES (?)");

pstmt.setNull (1, OracleTypes.STRUCT, "EMPLOYEE");
pstmt.execute ();

Oracle Interfaces for Oracle-specific Features
The oracle.jdbc interfaces introduced in Oracle9i are recommended alternatives
to the classes by the same name in the oracle.jdbc.driver package in older

Note: The second signature is standard under JDBC 2.0 in a JDK
1.2.x environment, but is an Oracle extension under JDK 1.1.x.

Oracle JDBC Packages and Classes

6-26 Oracle9i JDBC Developer’s Guide and Reference

releases. These interfaces essentially duplicate the functionality in the
oracle.jdbc.driver package.

The following example shows how the oracle.jdbc package is used to cast
pstmt as an Oracle type:

java.sql.PreparedStatement pstmt
 = conn.prepareStatement(...);

((oracle.jdbc.OraclePreparedStatement) pstmt)
 .setExecuteBatch(10); // Oracle-specific method

Method getJavaSqlConnection()
The getJavaSqlConnection() method of the oracle.sql.* classes returns
java.sql.Connection while the getConnection() method returns
oracle.jdbc.driver.OracleConnection. Because the methods that use the
oracle.jdbc.driver package are deprecated, the getConnection() method
is also deprecated in favor of the getJavaSqlConnection() method.

For the following Oracle datatype classes, the getJavaSqlConnection() method
was added:

■ oracle.sql.ARRAY

■ oracle.sql.BFILE

■ oracle.sql.BLOB

■ oracle.sql.CLOB

■ oracle.sql.OPAQUE

■ oracle.sql.REF

■ oracle.sql.STRUCT

The following shows the getJavaSqlConnection() and the getConnection()
methods in the Array class:

public class ARRAY
{
 // New API
 //
 java.sql.Connection getJavaSqlConnection()
 throws SQLException;

 // Deprecated API.

Oracle JDBC Packages and Classes

Overview of Oracle Extensions 6-27

 //
 oracle.jdbc.driver.OracleConnection
 getConnection() throws SQLException;

 ...
}

Package oracle.jdbc2 (for JDK 1.1.x only)
The oracle.jdbc2 package is an Oracle implementation for use with JDK 1.1.x,
containing classes and interfaces that mimic a subset of standard JDBC 2.0 classes
and interfaces (which exist in the JDK 1.2 version of the standard java.sql
package).

The following interfaces are implemented by oracle.sql.* type classes for JDBC
2.0-compliant Oracle type extensions under JDK 1.1.x.

■ oracle.jdbc2.Array is implemented by oracle.sql.ARRAY

■ oracle.jdbc2.Struct is implemented by oracle.sql.STRUCT

■ oracle.jdbc2.Ref is implemented by oracle.sql.REF

■ oracle.jdbc2.Clob is implemented by oracle.sql.CLOB

■ oracle.jdbc2.Blob is implemented by oracle.sql.BLOB

In addition, the oracle.jdbc2 package includes the following interfaces for users
employing the JDBC-standard SQLData interface to create Java classes that map to
Oracle objects. Again, these interfaces mimic java.sql interfaces available with
JDK 1.2:

■ oracle.jdbc2.SQLData is implemented by classes that map to Oracle
objects; users must provide this implementation

■ oracle.jdbc2.SQLInput is implemented by classes that read object data;
Oracle provides a SQLInput class that the JDBC drivers use

■ oracle.jdbc2.SQLOutput is implemented by classes that write object data;
Oracle provides a SQLOutput class that the JDBC drivers use

The SQLData interface is one of the two facilities you can use to support Oracle
objects in Java. (The other choice is the Oracle ORAData interface, included in the
oracle.sql package.) See "Understanding the SQLData Interface" on page 9-15
for more information about SQLData, SQLInput, and SQLOutput.

Oracle Character Datatypes Support

6-28 Oracle9i JDBC Developer’s Guide and Reference

Oracle Character Datatypes Support
Oracle character datatypes include the SQL CHAR and SQL NCHAR datatypes.
The following sections describe how these datatypes can be accessed using the
Oracle JDBC drivers.

SQL CHAR Datatypes
The SQL CHAR datatypes include CHAR, VARCHAR2, and CLOB. These datatypes
allow you to store character data in the database character set encoding scheme. The
character set of the database is established when you create the database.

SQL NCHAR Datatypes
SQL NCHAR datatypes were created for Globalization Support (formerly NLS).
SQL NCHAR datatypes include NCHAR, NVARCHAR2, and NCLOB. These datatypes
allow you to store unicode data in the database NCHAR character set encoding. The
NCHAR character set, which never changes, is established when you create the
database. See the Oracle9i Database Globalization Support Guide for information on
SQL NCHAR datatypes.

The usage of SQL NCHAR datatypes is similar to that of the SQL CHAR (CHAR,
VARCHAR2, and CLOB) datatypes. JDBC uses the same classes and methods to access
SQL NCHAR datatypes that are used for the corresponding SQL CHAR datatypes.
Therefore, there are no separate, corresponding classes defined in the oracle.sql
package for SQL NCHAR datatypes. Likewise, there is no separate, corresponding
constant defined in the oracle.jdbc.OracleTypes class for SQL NCHAR
datatypes. The only difference in usage between the two datatypes occur in a data
bind situation: a JDBC program must call the setFormOfUse() method to specify
if the data is bound for a SQL NCHAR datatype.

Note: Because the UnicodeStream class is deprecated in favor of
the CharacterStream class, the setUnicodeStream() and
getUnicodeStream() methods are not supported for NCHAR
datatype access. Use the setCharacterStream() method and
the getCharacterStream() method if you want to use stream
access.

Oracle Character Datatypes Support

Overview of Oracle Extensions 6-29

The following code shows how to access SQL NCHAR data:

//
// Table TEST has the following columns:
// - NUMBER
// - NVARCHAR2
// - NCHAR
//
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
conn.prepareStatement("insert into TEST values(?, ?, ?)");

//
// oracle.jdbc.OraclePreparedStatement.FORM_NCHAR should be used for all NCHAR,
// NVARCHAR2 and NCLOB data types.
//
pstmt.setFormOfUse(2, Const.NCHAR);
pstmt.setFormOfUse(3, Const.NCHAR);

pstmt.setInt(1, 1); // NUMBER column
pstmt.setString(2, myUnicodeString1); // NVARCHAR2 column
pstmt.setString(3, myUnicodeString2); // NCHAR column
pstmt.execute();

Class oracle.sql.CHAR
The CHAR class is used by Oracle JDBC in handling and converting character data.
The JDBC driver constructs and populates oracle.sql.CHAR objects once
character data has been read from the database.

The CHAR objects constructed and returned by the JDBC driver can be in the
database character set, UTF-8, or ISO-Latin-1 (WE8ISO8859P1). The CHAR
objects that are Oracle object attributes are returned in the database character set.

Note: For Oracle9i 9.0.1, the setFormOfUse() method must be
called before the registerOutParameter() method is called in
order to avoid unpredictable results.

Note: The oracle.sql.CHAR class is used for both SQL CHAR
and SQL NCHAR datatypes.

Oracle Character Datatypes Support

6-30 Oracle9i JDBC Developer’s Guide and Reference

JDBC application code rarely needs to construct CHAR objects directly, since the
JDBC driver automatically creates CHAR objects as character data are obtained
from the database. There may be circumstances, however, where constructing CHAR
objects directly in application code is useful—for example, to repeatedly pass the
same character data to one or more prepared statements without the overhead of
converting from Java strings each time.

oracle.sql.CHAR Objects and Character Sets
The CHAR class provides Globalization Support functionality to convert character
data. This class has two key attributes: (1) Globalization Support character set and
(2) the character data. The Globalization Support character set defines the encoding
of the character data. It is a parameter that is always passed when a CHAR object is
constructed. Without the Globalization Support character set being know, the bytes
of data in the CHAR object are meaningless.

The oracle.sql.CharacterSet class is instantiated to represent character sets.
To construct a CHAR object, you must provide character set information to the CHAR
object by way of an instance of the CharacterSet class. Each instance of this class
represents one of the Globalization Support character sets that Oracle supports. A
CharacterSet instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets. You can
find a complete list of the character sets that Oracle supports in the Oracle9i Database
Globalization Support Guide.

Constructing an oracle.sql.CHAR Object
Follow these general steps to construct a CHAR object:

1. Create a CharacterSet object by calling the static CharacterSet.make()
method.

This method is a factory for the character set instance. The make() method
takes an integer as input, which corresponds to a character set ID that Oracle
supports. For example:

int oracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set ID,
 // 832
...
CharacterSet mycharset = CharacterSet.make(oracleId);

Each character set that Oracle supports has a unique, predefined Oracle ID.

For more information on character sets and character set IDs, see the Oracle9i
Database Globalization Support Guide.

Oracle Character Datatypes Support

Overview of Oracle Extensions 6-31

2. Construct a CHAR object.

Pass a string (or the bytes that represent the string) to the constructor along
with the CharacterSet object that indicates how to interpret the bytes based
on the character set. For example:

String mystring = "teststring";
...
CHAR mychar = new CHAR(teststring, mycharset);

The CHAR class has multiple constructors—they can take a string, a byte array,
or an object as input along with the CharacterSet object. In the case of a
string, the string is converted to the character set indicated by the
CharacterSet object before being placed into the CHAR object.

See the oracle.sql.CHAR class Javadoc for more information.

oracle.sql.CHAR Conversion Methods
The CHAR class provides the following methods for translating character data to
strings:

■ getString(): Converts the sequence of characters represented by the CHAR
object to a string, returning a Java String object. If you enter an invalid
OracleID, then the character set will not be recognized and the getString()
method throws a SQLException.

■ toString(): Identical to the getString() method. But if you enter an
invalid OracleID, then the character set will not be recognized and the
toString() method returns a hexadecimal representation of the CHAR data
and does not throw a SQLException.

Notes:

■ The CharacterSet object cannot be null.

■ The CharacterSet class is an abstract class, therefore it has
no constructor. The only way to create instances is to use the
make() method.

■ The server recognizes the special value
CharacterSet.DEFAULT_CHARSET as the database character
set. For the client, this value is not meaningful.

■ Oracle does not intend or recommend that users extend the
CharacterSet class.

Oracle Character Datatypes Support

6-32 Oracle9i JDBC Developer’s Guide and Reference

■ getStringWithReplacement(): Identical to getString(), except a
default replacement character replaces characters that have no unicode
representation in the CHAR object character set. This default character varies
from character set to character set, but is often a question mark ("?").

The server (a database) and the client, or application running on the client, can use
different character sets. When you use the methods of the CHAR class to transfer
data between the server and the client, the JDBC drivers must convert the data from
the server character set to the client character set or vice versa. To convert the data,
the drivers use Globalization Support. For more information on how the JDBC
drivers convert between character sets, see "JDBC and Globalization Support" on
page 18-2.

Additional Oracle Type Extensions

Overview of Oracle Extensions 6-33

Additional Oracle Type Extensions
See other chapters in this book for information about key Oracle type extensions:

■ Chapter 8, "Working with LOBs and BFILEs"

■ Chapter 9, "Working with Oracle Object Types"

■ Chapter 10, "Working with Oracle Object References"

■ Chapter 11, "Working with Oracle Collections"

This section covers additional Oracle type extensions and concludes with a
discussion of differences between the current Oracle JDBC drivers and the Oracle
8.0.x and 7.3.x drivers regarding support of Oracle extensions.

Oracle JDBC drivers support the Oracle-specific BFILE and ROWID datatypes and
REF CURSOR types, which were introduced in Oracle7 and are not part of the
standard JDBC specification. This section describes the ROWID and REF CURSOR
type extensions. See Chapter 8 for information about BFILEs.

ROWID is supported as a Java string, and REF CURSOR types are supported as JDBC
result sets.

Oracle ROWID Type
A ROWID is an identification tag unique for each row of an Oracle database table.
The ROWID can be thought of as a virtual column, containing the ID for each row.

The oracle.sql.ROWID class is supplied as a wrapper for type ROWID SQL data.

ROWIDs provide functionality similar to the getCursorName() method specified
in the java.sql.ResultSet interface, and the setCursorName() method
specified in the java.sql.Statement interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set getString() method (passing in either the column
index or the column name). You can also bind a ROWID to a PreparedStatement
parameter with the setString() method. This allows in-place updates, as in the
example that follows.

Additional Oracle Type Extensions

6-34 Oracle9i JDBC Developer’s Guide and Reference

Example: ROWID The following example shows how to access and manipulate ROWID
data.

Statement stmt = conn.createStatement();

// Query the employee names with "FOR UPDATE" to lock the rows.
// Select the ROWID to identify the rows to be updated.

ResultSet rset =
 stmt.executeQuery ("SELECT ename, rowid FROM emp FOR UPDATE");

// Prepare a statement to update the ENAME column at a given ROWID

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

// Loop through the results of the query
while (rset.next ())
{
 String ename = rset.getString (1);
 oracle.sql.ROWID rowid = rset.getROWID (2); // Get the ROWID as a String
 pstmt.setString (1, ename.toLowerCase ());
 pstmt.setROWID (2, rowid); // Pass ROWID to the update statement
 pstmt.executeUpdate (); // Do the update
}

Oracle REF CURSOR Type Category
A cursor variable holds the memory location (address) of a query work area, rather
than the contents of the area. Declaring a cursor variable creates a pointer. In SQL, a
pointer has the datatype REF x , where REF is short for REFERENCE and x
represents the entity being referenced. A REF CURSOR, then, identifies a reference
to a cursor variable. Because many cursor variables might exist to point to many
work areas, REF CURSOR can be thought of as a category or "datatype specifier" that
identifies many different types of cursor variables.

To create a cursor variable, begin by identifying a type that belongs to the REF
CURSOR category. For example:

Note: The oracle.sql.ROWID class replaces
oracle.jdbc.driver.ROWID, which was used in previous
releases of Oracle JDBC.

Additional Oracle Type Extensions

Overview of Oracle Extensions 6-35

DECLARE TYPE DeptCursorTyp IS REF CURSOR

Then create the cursor variable by declaring it to be of the type DeptCursorTyp:

dept_cv DeptCursorTyp - - declare cursor variable
...

REF CURSOR, then, is a category of datatypes, rather than a particular datatype.

Stored procedures can return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set. A REF CURSOR
essentially encapsulates the results of a query.

In JDBC, REF CURSORs are materialized as ResultSet objects and can be
accessed as follows:

1. Use a JDBC callable statement to call a stored procedure. It must be a callable
statement, as opposed to a prepared statement, because there is an output
parameter.

2. The stored procedure returns a REF CURSOR.

3. The Java application casts the callable statement to an Oracle callable statement
and uses the getCursor() method of the OracleCallableStatement class
to materialize the REF CURSOR as a JDBC ResultSet object.

4. The result set is processed as requested.

Example: Accessing REF CURSOR Data This example shows how to access REF
CURSOR data.

import oracle.jdbc.*;
...
CallableStatement cstmt;
ResultSet cursor;

// Use a PL/SQL block to open the cursor

Important: The cursor associated with a REF CURSOR is closed
whenever the statement object that produced the REF CURSOR is
closed.

Unlike in past releases, the cursor associated with a REF CURSOR
is not closed when the result set object in which the REF CURSOR
was materialized is closed.

Additional Oracle Type Extensions

6-36 Oracle9i JDBC Developer’s Guide and Reference

cstmt = conn.prepareCall
 ("begin open ? for select ename from emp; end;");

cstmt.registerOutParameter(1, OracleTypes.CURSOR);
cstmt.execute();
cursor = ((OracleCallableStatement)cstmt).getCursor(1);

// Use the cursor like a normal ResultSet
while (cursor.next ())
 {System.out.println (cursor.getString(1));}

In the preceding example:

■ A CallableStatement object is created by using the prepareCall()
method of the connection class.

■ The callable statement implements a PL/SQL procedure that returns a REF
CURSOR.

■ As always, the output parameter of the callable statement must be registered to
define its type. Use the typecode OracleTypes.CURSOR for a REF CURSOR.

■ The callable statement is executed, returning the REF CURSOR.

■ The CallableStatement object is cast to an OracleCallableStatement
object to use the getCursor() method, which is an Oracle extension to the
standard JDBC API, and returns the REF CURSOR into a ResultSet object.

Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers
Some of the Oracle type extensions supported by the current Oracle JDBC drivers
are either not supported or are supported differently by the Oracle 8.0.x and 7.3.x
JDBC drivers. The following are the key points:

■ The 8.0.x and 7.3.x drivers have no oracle.sql package, meaning there are no
wrapper types such as oracle.sql.NUMBER and oracle.sql.CHAR that
you can use to wrap raw SQL data.

■ The 8.0.x and 7.3.x drivers do not support Oracle object and collection types.

■ The 8.0.x and 7.3.x drivers support the Oracle ROWID datatype with the
OracleRowid class in the oracle.jdbc package.

■ The 8.0.x drivers support the Oracle BLOB, CLOB, and BFILE datatypes with the
OracleBlob, OracleClob, and OracleBfile classes in the oracle.jdbc
package. These classes do not include LOB and BFILE manipulation
methods—you must instead use the PL/SQL DBMS_LOB package.

Additional Oracle Type Extensions

Overview of Oracle Extensions 6-37

■ The 7.3.x drivers do not support BLOB, CLOB, and BFILE.

Table 6–3 summarizes these differences. "OracleTypes Definition" refers to static
typecode constants defined in the oracle.jdbc.OracleTypes class.

Table 6–3 Support for Oracle Type Extensions, 8.0.x and 7.3.x JDBC Drivers

Oracle Datatype OracleTypes Definition
Type Extension,
Current Drivers

Type Extension,
 8.0.x/7.3.x drivers

NUMBER OracleTypes.NUMBER oracle.sql.NUMBER no type extension for wrapper class

CHAR OracleTypes.CHAR oracle.sql.CHAR no type extension for wrapper class

RAW OracleTypes.RAW oracle.sql.RAW no type extension for wrapper class

DATE OracleTypes.DATE oracle.sql.DATE no type extension for wrapper class

ROWID OracleTypes.ROWID oracle.sql.ROWID oracle.jdbc.driver.OracleRowid

BLOB OracleTypes.BLOB oracle.sql.BLOB oracle.jdbc.driver.OracleBlob in 8.0.x;
not supported in 7.3.x

CLOB OracleTypes.CLOB oracle.sql.CLOB oracle.jdbc.driver.OracleClob in 8.0.x;
not supported in 7.3.x

BFILE n/a oracle.sql.BFILE oracle.jdbc.driver.OracleBfile in 8.0.x;
not supported in 7.3.x

structured object OracleTypes.STRUCT oracle.sql.STRUCT or
custom class

not supported

object reference OracleTypes.REF oracle.sql.REF or custom
class

not supported

collection (array) OracleTypes.ARRAY oracle.sql.ARRAY or
custom class

not supported

OPAQUE OracleTypes.OPAQUE oracle.sql.OPAQUE not supported

Additional Oracle Type Extensions

6-38 Oracle9i JDBC Developer’s Guide and Reference

Accessing and Manipulating Oracle Data 7-1

7
Accessing and Manipulating Oracle Data

This chapter describes data access in oracle.sql.* formats, as opposed to
standard Java formats. As described in the previous chapter, the oracle.sql.*
formats are a key factor of the Oracle JDBC extensions, offering significant
advantages in efficiency and precision in manipulating SQL data.

Using oracle.sql.* formats involves casting your result sets and statements to
OracleResultSet, OracleStatement, OraclePreparedStatement, and
OracleCallableStatement objects, as appropriate, and using the
getOracleObject(), setOracleObject(), getXXX(), and setXXX()
methods of these classes (where XXX corresponds to the types in the oracle.sql
package).

This chapter covers the following topics:

■ Data Conversion Considerations

■ Result Set and Statement Extensions

■ Comparison of Oracle get and set Methods to Standard JDBC

■ Using Result Set Meta Data Extensions

Data Conversion Considerations

7-2 Oracle9i JDBC Developer’s Guide and Reference

Data Conversion Considerations
When JDBC programs retrieve SQL data into Java, you can use standard Java types,
or you can use types of the oracle.sql package. The classes in this package
simply wrap the raw SQL data.

Standard Types versus Oracle Types
In processing speed and effort, the oracle.sql.* classes provide the most
efficient way of representing SQL data. These classes store the usual representations
of SQL data as byte arrays. They do not reformat the data or perform any
character-set conversions (aside from the usual network conversions) on it. The data
remains in SQL format, and therefore no information is lost. For SQL primitive
types (such as NUMBER, and CHAR), the oracle.sql.* classes simply wrap the
SQL data. For SQL structured types (such as objects and arrays), the classes provide
additional information such as conversion methods and structure details.

If you are moving data within the database, then you will probably want to keep
your data in oracle.sql.* format. If you are displaying the data or performing
calculations on it in a Java application running outside the database, then you will
probably want to materialize the data as instances of standard types such as
java.sql.* or java.lang.* types. Similarly, if you are using a parser that
expects the data to be in a standard Java format, then you must use one of the
standard formats instead of oracle.sql.* format.

Converting SQL NULL Data
Java represents a SQL NULL datum by the Java value null. Java datatypes fall into
two categories: primitive types (such as byte, int, float) and object types (class
instances). The primitive types cannot represent null. Instead, they store the null
as the value zero (as defined by the JDBC specification). This can lead to ambiguity
when you try to interpret your results.

In contrast, Java object types can represent null. The Java language defines an
object wrapper type corresponding to every primitive type (for example, Integer
for int, Float for float) that can represent null. The object wrapper types must
be used as the targets for SQL data to detect SQL NULL without ambiguity.

Result Set and Statement Extensions

Accessing and Manipulating Oracle Data 7-3

Result Set and Statement Extensions
The JDBC Statement object returns an OracleResultSet object, typed as a
java.sql.ResultSet. If you want to apply only standard JDBC methods to the
object, keep it as a ResultSet type. However, if you want to use the Oracle
extensions on the object, you must cast it to an OracleResultSet type. Although
the type by which the Java compiler will identify the object is changed, the object
itself is unchanged.

For example, assuming you have a standard Statement object stmt, do the
following if you want to use only standard JDBC ResultSet methods:

ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

If you need the extended functionality provided by the Oracle extensions to JDBC,
you can select the results into a standard ResultSet object, as above, and then cast
that object into an OracleResultSet object later.

Similarly, when you want to execute a stored procedure using a callable statement,
the JDBC drivers will return an OracleCallableStatement object typed as a
java.sql.CallableStatement. If you want to apply only standard JDBC
methods to the object, then keep it as a CallableStatement type. However, if
you want to use the Oracle extensions on the object, you must cast it to an
OracleCallableStatement type. Although the type by which the Java compiler
will identify the object is changed, the object itself is unchanged.

You use the standard JDBC java.sql.Connection.prepareStatement()
method to create a PreparedStatement object. If you want to apply only
standard JDBC methods to the object, keep it as a PreparedStatement type.
However, if you want to use the Oracle extensions on the object, you must cast it to
an OraclePreparedStatement type. While the type by which the Java compiler
will identify the object is changed, the object itself is unchanged.

Key extensions to the result set and statement classes include
getOracleObject() and setOracleObject() methods that you can use to
access and manipulate data in oracle.sql.* formats, instead of standard Java
formats. For more information, see the next section: "Comparison of Oracle get and
set Methods to Standard JDBC".

Comparison of Oracle get and set Methods to Standard JDBC

7-4 Oracle9i JDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC
This section describes get and set methods, particularly the JDBC standard
getObject() and setObject() methods and the Oracle-specific
getOracleObject() and setOracleObject() methods, and how to access
data in oracle.sql.* format compared with Java format.

Although there are specific getXXX() methods for all the Oracle SQL types (as
described in "Other getXXX() Methods" on page 7-7), you can use the general get
methods for convenience or simplicity, or if you are not certain in advance what
type of data you will receive.

Standard getObject() Method
The standard JDBC getObject() method of a result set or callable statement
returns data into a java.lang.Object object. The format of the data returned is
based on its original type, as follows:

■ For SQL datatypes that are not Oracle-specific, getObject() returns the
default Java type corresponding to the column's SQL type, following the
mapping specified in the JDBC specification.

■ For Oracle-specific datatypes (such as ROWID, discussed in "Oracle ROWID
Type" on page 6-33), getObject() returns an object of the appropriate
oracle.sql.* class (such as oracle.sql.ROWID).

■ For Oracle objects, getObject() returns an object of the Java class specified in
your type map. (Type maps specify the correlation between Java classes and
database SQL types and are discussed in "Understanding Type Maps for
SQLData Implementations" on page 9-11.) The getObject(parameter_
index) method uses the connection’s default type map. The
getObject(parameter_index, map) enables you to pass in a type map. If
the type map does not provide a mapping for a particular Oracle object, then
getObject() returns an oracle.sql.STRUCT object.

For more information on getObject() return types, see Table 7–1, "Summary of
getObject() and getOracleObject() Return Types" on page 7-6.

Oracle getOracleObject() Method
If you want to retrieve data from a result set or callable statement into an
oracle.sql.* object, then cast your result set to an OracleResultSet type or
your callable statement to an OracleCallableStatement type, and use the
getOracleObject() method.

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 7-5

When you use getOracleObject(), the data will be of the appropriate
oracle.sql.* type and is returned into an oracle.sql.Datum object (the
oracle.sql type classes extend Datum). The signature for the method is:

public oracle.sql.Datum getOracleObject(int parameter_index)

When you have retrieved data into a Datum object, you can use the standard Java
instanceof operator to determine which oracle.sql.* type it really is.

For more information on getOracleObject() return types, see Table 7–1,
"Summary of getObject() and getOracleObject() Return Types" on page 7-6.

Example: Using getOracleObject() with a ResultSet The following example creates a table
that contains a column of character data (in this case, a row number) and a column
containing a BFILE locator. A SELECT statement retrieves the contents of the table
into a result set. The getOracleObject() then retrieves the CHAR data into the
char_datum variable and the BFILE locator into the bfile_datum variable. Note
that because getOracleObject() returns a Datum object, the results must be cast
to CHAR and BFILE, respectively.

stmt.execute ("CREATE TABLE bfile_table (x varchar2 (30), b bfile)");
stmt.execute
 ("INSERT INTO bfile_table VALUES (’one’, bfilename (’TEST_DIR’, ’file1’))");

ResultSet rset = stmt.executeQuery ("SELECT * FROM bfile_table");
while (rset.next ())
{
 CHAR char_datum = (CHAR) ((OracleResultSet)rset).getOracleObject (1);
 BFILE bfile_datum = (BFILE) ((OracleResultSet)rset).getOracleObject (2);
 ...
}

Example: Using getOracleObject() in a Callable Statement The following example prepares
a call to the procedure myGetDate(), which associates a character string (in this
case a name) with a date. The program passes the string SCOTT to the prepared call
and registers the DATE type as an output parameter. After the call is executed,
getOracleObject() retrieves the date associated with the name SCOTT. Note
that because getOracleObject() returns a Datum object, the results are cast to a
DATE object.

OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
 ("begin myGetDate (?, ?); end;");

cstmt.setString (1, "SCOTT");
cstmt.registerOutParameter (2, Types.DATE);

Comparison of Oracle get and set Methods to Standard JDBC

7-6 Oracle9i JDBC Developer’s Guide and Reference

cstmt.execute ();

DATE date = (DATE) ((OracleCallableStatement)cstmt).getOracleObject (2);
...

Summary of getObject() and getOracleObject() Return Types
Table 7–1 summarizes the information in the preceding sections, "Standard
getObject() Method" and "Oracle getOracleObject() Method" on page 7-4.

This table lists the underlying return types for each method for each Oracle SQL
type, but keep in mind the signatures of the methods when you write your code:

■ getObject(): Always returns data into a java.lang.Object instance.

■ getOracleObject(): Always returns data into an oracle.sql.Datum
instance.

You must cast the returned object to use any special functionality (see "Casting Your
get Method Return Values" on page 7-10).

Table 7–1 Summary of getObject() and getOracleObject() Return Types

Oracle SQL Type
getObject()
Underlying Return Type

getOracleObject()
Underlying Return Type

CHAR String oracle.sql.CHAR

VARCHAR2 String oracle.sql.CHAR

LONG String oracle.sql.CHAR

NUMBER java.math.BigDecimal oracle.sql.NUMBER

RAW byte[] oracle.sql.RAW

LONGRAW byte[] oracle.sql.RAW

DATE java.sql.Timestamp oracle.sql.DATE

ROWID oracle.sql.ROWID oracle.sql.ROWID

REF CURSOR java.sql.ResultSet (not supported)

BLOB oracle.sql.BLOB oracle.sql.BLOB

CLOB oracle.sql.CLOB oracle.sql.CLOB

BFILE oracle.sql.BFILE oracle.sql.BFILE

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 7-7

For information on type compatibility between all SQL and Java types, see
Table 20–1, "Valid SQL Datatype-Java Class Mappings" on page 20-2.

Other getXXX() Methods
Standard JDBC provides a getXXX() for each standard Java type, such as
getByte(), getInt(), getFloat(), and so on. Each of these returns exactly
what the method name implies (a byte, an int, a float, and so on).

In addition, the OracleResultSet and OracleCallableStatement classes
provide a full complement of getXXX() methods corresponding to all the
oracle.sql.* types. Each getXXX() method returns an oracle.sql.XXX
object. For example, getROWID() returns an oracle.sql.ROWID object.

Some of these extensions are taken from the JDBC 2.0 specification. They return
objects of type java.sql.* (or oracle.jdbc2.* under JDK 1.1.x), instead of
oracle.sql.*. For example, compare the following method names and return
types:

java.sql.Blob getBlob(int parameter_index)

oracle.sql.BLOB getBLOB(int parameter_index)

Although there is no particular performance advantage in using the specific
getXXX() methods, they can save you the trouble of casting, because they return
specific object types.

Return Types and Input Parameter Types of getXXX() Methods
Table 7–2 summarizes the underlying return types and the input parameter types
for each getXXX() method, and notes which are Oracle extensions under JDK 1.2.x

Oracle object class specified in type map

or oracle.sql.STRUCT
(if no type map entry)

oracle.sql.STRUCT

Oracle object reference oracle.sql.REF oracle.sql.REF

collection (varray or
nested table)

oracle.sql.ARRAY oracle.sql.ARRAY

Table 7–1 Summary of getObject() and getOracleObject() Return Types (Cont.)

Oracle SQL Type
getObject()
Underlying Return Type

getOracleObject()
Underlying Return Type

Comparison of Oracle get and set Methods to Standard JDBC

7-8 Oracle9i JDBC Developer’s Guide and Reference

and JDK 1.1.x. You must cast to an OracleResultSet or
OracleCallableStatement to use methods that are Oracle extensions.

Table 7–2 Summary of getXXX() Return Types

Method
Underlying Return
Type Signature Type

Oracle
Ext for
JDK
1.2.x?

Oracle
Ext for
JDK
1.1.x?

getArray() oracle.sql.ARRAY java.sql.Array

(oracle.jdbc2.Array
under JDK 1.1.x)

No Yes

getARRAY() oracle.sql.ARRAY oracle.sql.ARRAY Yes Yes

getAsciiStream() java.io.InputStream java.io.InputStream No No

getBfile() oracle.sql.BFILE oracle.sql.BFILE Yes Yes

getBFILE() oracle.sql.BFILE oracle.sql.BFILE Yes Yes

getBigDecimal()
(see Notes section below)

java.math.BigDecimal java.math.BigDecimal No No

getBinaryStream() java.io.InputStream java.io.InputStream No No

getBlob() oracle.sql.BLOB java.sql.Blob

(oracle.jdbc2.Blob
under JDK 1.1.x)

No Yes

getBLOB oracle.sql.BLOB oracle.sql.BLOB Yes Yes

getBoolean() boolean boolean No No

getByte() byte byte No No

getBytes() byte[] byte[] No No

getCHAR() oracle.sql.CHAR oracle.sql.CHAR Yes Yes

getCharacterStream()
(new with 8.1.6)

java.io.Reader java.io.Reader No Yes

getClob() oracle.sql.CLOB java.sql.Clob

(oracle.jdbc2.Clob
under JDK 1.1.x)

No Yes

getCLOB() oracle.sql.CLOB oracle.sql.CLOB Yes Yes

getDate()
(see Notes section below)

java.sql.Date java.sql.Date No No

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 7-9

Special Notes about getXXX() Methods
This section provides additional details about some of the getXXX() methods.

getBigDecimal() Note

getDATE() oracle.sql.DATE oracle.sql.DATE Yes Yes

getDouble() double double No No

getFloat() float float No No

getInt() int int No No

getLong() long long No No

getNUMBER() oracle.sql.NUMBER oracle.sql.NUMBER Yes Yes

getOracleObject() subclasses of
oracle.sql.Datum

oracle.sql.Datum Yes Yes

getRAW() oracle.sql.RAW oracle.sql.RAW Yes Yes

getRef() oracle.sql.REF java.sql.Ref

(oracle.jdbc2.Ref
under JDK 1.1.x)

No Yes

getREF() oracle.sql.REF oracle.sql.REF Yes Yes

getROWID() oracle.sql.ROWID oracle.sql.ROWID Yes Yes

getShort() short short No No

getString() String String No No

getSTRUCT() oracle.sql.STRUCT. oracle.sql.STRUCT Yes Yes

getTime()
(see Notes section below)

java.sql.Time java.sql.Time No No

getTimestamp()
(see Notes section below)

java.sql.Timestamp java.sql.Timestamp No No

getUnicodeStream() java.io.InputStream java.io.InputStream No No

Table 7–2 Summary of getXXX() Return Types (Cont.)

Method
Underlying Return
Type Signature Type

Oracle
Ext for
JDK
1.2.x?

Oracle
Ext for
JDK
1.1.x?

Comparison of Oracle get and set Methods to Standard JDBC

7-10 Oracle9i JDBC Developer’s Guide and Reference

JDBC 2.0 supports a simplified method signature for the getBigDecimal()
method. The previous input signature was:

(int columnIndex, int scale) or (String columnName, int scale)

The new input signature is simply:

(int columnIndex) or (String columnName)

The scale parameter, used to specify the number of digits to the right of the
decimal, is no longer necessary. The Oracle JDBC drivers retrieve numeric values
with full precision.

getDate(), getTime(), and getTimestamp() Note

In JDBC 2.0, the getDate(), getTime(), and getTimestamp() methods have
the following input signatures:

(int columnIndex, Calendar cal)

or:

(String columnName, Calendar cal)

The Oracle JDBC drivers ignore the Calendar object input, because it is not
currently feasible to support java.sql.Date timezone information together with
the data. You should continue to use previous input signatures that take only the
column index or column name. Calendar input will be supported in a future Oracle
JDBC release.

Casting Your get Method Return Values
As described in "Standard getObject() Method" on page 7-4, Oracle’s
implementation of getObject() always returns a java.lang.Object instance,
and getOracleObject() always returns an oracle.sql.Datum instance.
Usually, you would cast the returned object to the appropriate class so that you
could use particular methods and functionality of that class.

In addition, you have the option of using a specific getXXX() method instead of
the generic getObject() or getOracleObject() methods. The getXXX()
methods enable you to avoid casting, because the return type of getXXX()
corresponds to the type of object returned. For example, getCLOB() returns an
oracle.sql.CLOB instance, as opposed to a java.lang.Object instance.

Example: Casting Return Values This example assumes that you have fetched data of
type CHAR into a result set (where it is in column 1). Because you want to

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 7-11

manipulate the CHAR data without losing precision, cast your result set to an
OracleResultSet, and use getOracleObject() to return the CHAR data in
oracle.sql.* format. If you do not cast your result set, you have to use
getObject(), which returns your character data into a Java String and loses
some of the precision of your SQL data.

The getOracleObject() method returns an oracle.sql.CHAR object into an
oracle.sql.Datum return variable unless you cast the output. Cast the
getOracleObject() output to oracle.sql.CHAR if you want to use a CHAR
return variable and any of the special functionality of that class (such as the
getCharacterSet() method that returns the character set used to represent the
characters).

CHAR char = (CHAR)ors.getOracleObject(1);
CharacterSet cs = char.getCharacterSet();

Alternatively, you can return the object into a generic oracle.sql.Datum return
variable and cast it later when you must use the CHAR getCharacterSet()
method.

Datum rawdatum = ors.getOracleObject(1);
...
CharacterSet cs = ((CHAR)rawdatum).getCharacterSet();

This uses the getCharacterSet() method of oracle.sql.CHAR. The
getCharacterSet() method is not defined on oracle.sql.Datum and would
not be reachable without the cast.

Standard setObject() and Oracle setOracleObject() Methods
Just as there is a standard getObject() and Oracle-specific
getOracleObject() in result sets and callable statements for retrieving data,
there is also a standard setObject() and an Oracle-specific
setOracleObject() in Oracle prepared statements and callable statements for
updating data. The setOracleObject() methods take oracle.sql.* input
parameters.

To bind standard Java types to a prepared statement or callable statement, use the
setObject() method, which takes a java.lang.Object as input. The
setObject() method does support a few of the oracle.sql.* types—it has
been implemented so that you can also input instances of the oracle.sql.*
classes that correspond to JDBC 2.0-compliant Oracle extensions: BLOB, CLOB,
BFILE, STRUCT, REF, and ARRAY.

Comparison of Oracle get and set Methods to Standard JDBC

7-12 Oracle9i JDBC Developer’s Guide and Reference

To bind oracle.sql.* types to a prepared statement or callable statement, use the
setOracleObject() method, which takes an oracle.sql.Datum (or any
subclass) as input. To use setOracleObject(), you must cast your prepared
statement or callable statement to an OraclePreparedStatement or
OracleCallableStatement object.

Example: Using setObject() and setOracleObject() in a Prepared Statement This example
assumes that you have fetched character data into a standard result set (where it is
in column 1), and you want to cast the results to an OracleResultSet so that you
can use Oracle-specific formats and methods. Because you want to use the data as
oracle.sql.CHAR format, cast the results of the getOracleObject() (which
returns type oracle.sql.Datum) to CHAR. Similarly, because you want to
manipulate the data in column 2 as strings, cast the data to a Java String type
(because getObject() returns data of type Object). In this example, rs
represents the result set, charVal represents the data from column 1 in
oracle.sql.CHAR format, and strVal represents the data from column 2 in Java
String format.

CHAR charVal=(CHAR)((OracleResultSet)rs).getOracleObject(1);
String strVal=(String)rs.getObject(2);
...

For a prepared statement object ps, the setOracleObject() method binds the
oracle.sql.CHAR data represented by the charVal variable to the prepared
statement. To bind the oracle.sql.* data, the prepared statement must be cast to
an OraclePreparedStatement. Similarly, the setObject() method binds the
Java String data represented by the variable strVal.

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
((OraclePreparedStatement)ps).setOracleObject(1,charVal);
ps.setObject(2,strVal);

Other setXXX() Methods
As with getXXX() methods, there are several specific setXXX() methods.
Standard setXXX() methods are provided for binding standard Java types, and
Oracle-specific setXXX() methods are provided for binding Oracle-specific types.

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 7-13

Similarly, there are two forms of the setNull() method:

■ void setNull(int parameterIndex, int sqlType)

This is specified in the standard java.sql.PreparedStatement interface.
This signature takes a parameter index and a SQL typecode defined by the
java.sql.Types or oracle.jdbc.OracleTypes class. Use this signature
to set an object other than a REF, ARRAY, or STRUCT to NULL.

■ void setNull(int parameterIndex, int sqlType, String sql_type_name)

With JDBC 2.0, this signature is also specified in the standard
java.sql.PreparedStatement interface. Under JDK 1.1.x, it is available as
an Oracle extension. It takes a SQL type name in addition to a parameter index
and a SQL type code. Use this method when the SQL typecode is
java.sql.Types.REF, ARRAY, or STRUCT. (If the typecode is other than REF,
ARRAY, or STRUCT, then the given SQL type name is ignored.)

Similarly, the registerOutParameter() method has a signature for use with
REF, ARRAY, or STRUCT data:

void registerOutParameter
 (int parameterIndex, int sqlType, String sql_type_name)

For binding Oracle-specific types, using the appropriate specific setXXX()
methods instead of methods for binding standard Java types may offer some
performance advantage.

Input Parameter Types of setXXX() Methods
Table 7–3 summarizes the input types for all the setXXX() methods and notes
which are Oracle extensions under JDK 1.2.x and JDK 1.1.x. To use methods that are
Oracle extensions, you must cast your statement to an
OraclePreparedStatement or OracleCallableStatement.

Note: Under JDK 1.1.x, for compatibility with the JDBC 2.0
standard, OraclePreparedStatement and
OracleCallableStatement classes provide setXXX() methods
that take oracle.jdbc2 input parameters for BLOBs, CLOBs,
object references, and arrays. For example, a setBlob() method
takes an oracle.jdbc2.Blob input parameter, where it would
take a java.sql.Blob input parameter under JDK 1.2.x.

Comparison of Oracle get and set Methods to Standard JDBC

7-14 Oracle9i JDBC Developer’s Guide and Reference

Table 7–3 Summary of setXXX() Input Parameter Types

Method Input Parameter Type

Oracle Ext
for JDK
1.2.x?

Oracle Ext
for JDK
1.1.x?

setArray() java.sql.Array

(oracle.jdbc2.Array under
JDK 1.1.x)

No Yes

setARRAY() oracle.sql.ARRAY Yes Yes

setAsciiStream()
(see Notes section below)

java.io.InputStream No No

setBfile() oracle.sql.BFILE Yes Yes

setBFILE() oracle.sql.BFILE Yes Yes

setBigDecimal() BigDecimal No No

setBinaryStream()
(see Notes section below)

java.io.InputStream No No

setBlob() java.sql.Blob

(oracle.jdbc2.Blob under
JDK 1.1.x)

No Yes

setBLOB() oracle.sql.BLOB Yes Yes

setBoolean() boolean No No

setByte() byte No No

setBytes() byte[] No No

setCHAR()
(also see setFixedCHAR() method)

oracle.sql.CHAR Yes Yes

setCharacterStream()
(see Notes section below)

java.io.Reader No Yes

setClob() java.sql.Clob

(oracle.jdbc2.Clob under
JDK 1.1.x)

No Yes

setCLOB() oracle.sql.CLOB Yes Yes

setDate()
(see Notes section below)

java.sql.Date No No

setDATE() oracle.sql.DATE Yes Yes

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 7-15

For information on all supported type mappings between SQL and Java, see
Table 20–1, "Valid SQL Datatype-Java Class Mappings" on page 20-2.

Setter Method Size Limitations
Table 7–4 lists size limitations for the setBytes() and setString() methods for
SQL binds to different Oracle databases. (These limitations do not apply to PL/SQL

setDouble() double No No

setFixedCHAR()
(see setFixedCHAR() section below)

java.lang.String Yes Yes

setFloat() float No No

setInt() int No No

setLong() long No No

setNUMBER() oracle.sql.NUMBER Yes Yes

setRAW() oracle.sql.RAW Yes Yes

setRef() java.sql.Ref

(oracle.jdbc2.Ref under
JDK 1.1.x)

No Yes

setREF() oracle.sql.REF Yes Yes

setROWID() oracle.sql.ROWID Yes Yes

setShort() short No No

setString() String No No

setSTRUCT() oracle.sql.STRUCT Yes Yes

setTime()
(see note below)

java.sql.Time No No

setTimestamp()
(see note below)

java.sql.Timestamp No No

setUnicodeStream()
(see note below)

java.io.InputStream No No

Table 7–3 Summary of setXXX() Input Parameter Types (Cont.)

Method Input Parameter Type

Oracle Ext
for JDK
1.2.x?

Oracle Ext
for JDK
1.1.x?

Comparison of Oracle get and set Methods to Standard JDBC

7-16 Oracle9i JDBC Developer’s Guide and Reference

binds.) For information about how to work around these limits using the stream
API, see "Using Streams to Avoid Limits on setBytes() and setString()" on page 3-31.

Setter Methods That Take Additional Input
The following setXXX() methods take an additional input parameter other than
the parameter index and the data item itself:

■ setAsciiStream(int paramIndex, InputStream istream,
 int length)

Takes the length of the stream, in bytes.

■ setBinaryStream(int paramIndex, InputStream istream,
 int length)

Takes the length of the stream, in bytes.

■ setCharacterStream(int paramIndex, Reader reader,
 int length)

Takes the length of the stream, in characters.

■ setUnicodeStream(int paramIndex, InputStream istream,
 int length)

Takes the length of the stream, in bytes.

The particular usefulness of the setCharacterStream() method is that when a
very large Unicode value is input to a LONGVARCHAR parameter, it can be more
practical to send it through a java.io.Reader object. JDBC will read the data
from the stream as needed, until it reaches the end-of-file mark. The JDBC driver
will do any necessary conversion from Unicode to the database character format.

■ setDate(int paramIndex, Date x, Calendar cal)

Table 7–4 Size Limitations for setByes() and setString() Methods

Oracle8 and Later Oracle7

setBytes() size limitation 2000 bytes 255 bytes

setString() size limitation 4000 bytes 2000 bytes

Important: The preceding stream methods can also be used for
LOBs. See "Reading and Writing BLOB and CLOB Data" on
page 8-6 for more information.

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 7-17

■ setTime(int paramIndex, Time x, Calendar cal)

■ setTimestamp(int paramIndex, Timestamp x, Calendar cal)

The JDBC 2.0 signatures for setDate(), setTime(), and setTimestamp()
include a Calendar object, but in Oracle8i release 8.1.6 and higher the Oracle
JDBC drivers ignore this input because it is not yet feasible to support
java.sql.Date timezone information together with the data. You should
continue to use the previous signatures that take only the parameter index and
data item. Calendar input will be supported in a future release.

Method setFixedCHAR() for Binding CHAR Data into WHERE Clauses
CHAR data in the database is padded to the column width. This leads to a limitation
in using the setCHAR() method to bind character data into the WHERE clause of a
SELECT statement—the character data in the WHERE clause must also be padded to
the column width to produce a match in the SELECT statement. This is especially
troublesome if you do not know the column width.

To remedy this, Oracle has added the setFixedCHAR() method to the
OraclePreparedStatement class. This method executes a non-padded
comparison.

Example The following example demonstrates the difference between the
setCHAR() and setFixedCHAR() methods.

/* Schema is :
 create table my_table (col1 char(10));
 insert into my_table values ('JDBC');
*/
 PreparedStatement pstmt = conn.prepareStatement
 ("select count(*) from my_table where col1 = ?");

 pstmt.setString (1, "JDBC"); // Set the Bind Value

Note:

■ Remember to cast your prepared statement object to
OraclePreparedStatement to use the setFixedCHAR()
method.

■ There is no need to use setFixedCHAR() for an INSERT
statement. The database always automatically pads the data to
the column width as it inserts it.

Comparison of Oracle get and set Methods to Standard JDBC

7-18 Oracle9i JDBC Developer’s Guide and Reference

 runQuery (pstmt); // This will print " No of rows are 0"

 CHAR ch = new CHAR("JDBC ", null);
 ((OraclePreparedStatement)pstmt).setCHAR(1, ch); // Pad it to 10 bytes
 runQuery (pstmt); // This will print "No of rows are 1"

 ((OraclePreparedStatement)pstmt).setFixedCHAR(1, "JDBC");
 runQuery (pstmt); // This will print "No of rows are 1"

 void runQuery (PreparedStatement ps)
 {
 // Run the Query
 ResultSet rs = pstmt.executeQuery ();

 while (rs.next())
 System.out.println("No of rows are " + rs.getInt(1));

 rs.close();
 rs = null;
 }

Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers
The Oracle 8.0.x JDBC drivers use the same protocol as the Oracle 7.3.x JDBC
drivers. In both cases, Oracle datatypes are as defined for an Oracle 7.3.x database,
and data items longer than 2K bytes must be LONG.

As with any LONG data, use the stream APIs to read and write data between your
application and the database. Essentially, this means that you cannot use the normal
getString() and setString() methods to read or write data longer than 2K
bytes when using the 8.0.x and 7.3.x drivers.

The stream APIs include methods such as getBinaryStream(),
setBinaryStream(), getAsciiStream(), and setAsciiStream(). These
methods are discussed under "Java Streams in JDBC" on page 3-20.

Using Result Set Meta Data Extensions

Accessing and Manipulating Oracle Data 7-19

Using Result Set Meta Data Extensions
The oracle.jdbc.OracleResultSetMetaData interface is JDBC 2.0-compliant
but does not implement the getSchemaName() and getTableName() methods
because underlying protocol does not make this feasible. Oracle does implement
many methods to retrieve information about an Oracle result set, however.

Key methods include the following:

■ int getColumnCount(): Returns the number of columns in an Oracle result
set.

■ String getColumnName(int column): Returns the name of a specified
column in an Oracle result set.

■ int getColumnType(int column): Returns the SQL type of a specified
column in an Oracle result set. If the column stores an Oracle object or
collection, then this method returns OracleTypes.STRUCT or
OracleTypes.ARRAY respectively.

■ String getColumnTypeName(int column): Returns the SQL type name
for a specified column of type REF, STRUCT, or ARRAY. If the column stores an
array or collection, then this method returns its SQL type name. If the column
stores REF data, then this method returns the SQL type name of the objects to
which the object reference points.

The following example uses several of the methods in the
OracleResultSetMetadata interface to retrieve the number of columns from the
EMP table, and each column’s numerical type and SQL type name.

DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rset = dbmd.getTables("", "SCOTT", "EMP", null);

 while (rset.next())
 {
 OracleResultSetMetaData orsmd = ((OracleResultSet)rset).getMetaData();
 int numColumns = orsmd.getColumnCount();
 System.out.println("Num of columns = " + numColumns);

 for (int i=0; i<numColumns; i++)
 {
 System.out.print ("Column Name=" + orsmd.getColumnName (i+1));
 System.out.print (" Type=" + orsmd.getColumnType (i + 1));
 System.out.println (" Type Name=" + orsmd.getColumnTypeName (i + 1));
 }
}

Using Result Set Meta Data Extensions

7-20 Oracle9i JDBC Developer’s Guide and Reference

The program returns the following output:

Num of columns = 5
Column Name=TABLE_CAT Type=12 Type Name=VARCHAR2
Column Name=TABLE_SCHEM Type=12 Type Name=VARCHAR2
Column Name=TABLE_NAME Type=12 Type Name=VARCHAR2
Column Name=TABLE_TYPE Type=12 Type Name=VARCHAR2
Column Name=TABLE_REMARKS Type=12 Type Name=VARCHAR2

Working with LOBs and BFILEs 8-1

8
Working with LOBs and BFILEs

This chapter describes how you use JDBC and the oracle.sql.* classes to access
and manipulate LOB and BFILE locators and data, covering the following topics:

■ Oracle Extensions for LOBs and BFILEs

■ Working with BLOBs and CLOBs

■ Working with BFILEs

Oracle Extensions for LOBs and BFILEs

8-2 Oracle9i JDBC Developer’s Guide and Reference

Oracle Extensions for LOBs and BFILEs
LOBs ("large objects") are stored in a way that optimizes space and provides
efficient access. The JDBC drivers provide support for two types of LOBs: BLOBs
(unstructured binary data) and CLOBs (character data). BLOB and CLOB data is
accessed and referenced by using a locator, which is stored in the database table and
points to the BLOB or CLOB data, which is outside the table.

BFILEs are large binary data objects stored in operating system files outside of
database tablespaces. These files use reference semantics. They can also be located
on tertiary storage devices such as hard disks, CD-ROMs, PhotoCDs and DVDs. As
with BLOBs and CLOBs, a BFILE is accessed and referenced by a locator which is
stored in the database table and points to the BFILE data.

To work with LOB data, you must first obtain a LOB locator. Then you can read or
write LOB data and perform data manipulation. The following sections also
describe how to create and populate a LOB column in a table.

The JDBC drivers support these oracle.sql.* classes for BLOBs, CLOBs, and
BFILEs:

■ oracle.sql.BLOB

■ oracle.sql.CLOB

■ oracle.sql.BFILE

The oracle.sql.BLOB and CLOB classes implement the java.sql.Blob and
Clob interfaces, respectively (oracle.jdbc2.Blob and Clob interfaces under
JDK 1.1.x). By contrast, BFILE is an Oracle extension, without a corresponding
java.sql (or oracle.jdbc2) interface.

Instances of these classes contain only the locators for these datatypes, not the data.
After accessing the locators, you must perform some additional steps to access the
data. These steps are described in "Reading and Writing BLOB and CLOB Data" on
page 8-6 and "Reading BFILE Data" on page 8-22.

Note: You cannot construct BLOB, CLOB, or BFILE objects in your
JDBC application—you can only retrieve existing BLOBs, CLOBs,
or BFILEs from the database or create them using the
createTemporary() and empty_lob() methods.

Working with BLOBs and CLOBs

Working with LOBs and BFILEs 8-3

Working with BLOBs and CLOBs
This section describes how to read and write data to and from binary large objects
(BLOBs) and character large objects (CLOBs) in an Oracle database, using LOB
locators.

For general information about Oracle9i LOBs and how to use them, see the Oracle9i
Application Developer’s Guide—Large Objects (LOBs).

Getting and Passing BLOB and CLOB Locators
Standard as well as Oracle-specific getter and setter methods are available for
retrieving or passing LOB locators from or to the database.

Retrieving BLOB and CLOB Locators
Given a standard JDBC result set (java.sql.ResultSet) or callable statement
(java.sql.CallableStatement) that includes BLOB or CLOB locators, you can
access the locators by using standard getter methods, as follows. All the standard
and Oracle-specific getter methods discussed here take either an int column index
or a String column name as input.

■ Under JDK 1.2.x and higher, you can use the standard getBlob() and
getClob() methods, which return java.sql.Blob and Clob objects,
respectively.

■ Under JDK 1.1.x, there is no standard BLOB or CLOB functionality, but you can
use the generic getObject() method, which returns java.lang.Object,
and cast the output as desired.

If you retrieve or cast the result set or callable statement to an OracleResultSet
or OracleCallableStatement object, then you can use Oracle extensions as
follows:

■ Under JDK 1.1.x and higher, you can use getBLOB() and getCLOB(), which
return oracle.sql.BLOB and CLOB objects, respectively.

■ Under JDK 1.1.x and higher, you can also use the getOracleObject()
method, which returns an oracle.sql.Datum object, and cast the output
appropriately.

■ Under JDK 1.1.x, you also have the option of using the Oracle extensions
getBlob() and getClob(), which return oracle.jdbc2.Blob and Clob
objects, respectively. (These Blob and Clob interfaces mimic the standard
interfaces available in JDK 1.2.x.)

Working with BLOBs and CLOBs

8-4 Oracle9i JDBC Developer’s Guide and Reference

Example: Getting BLOB and CLOB Locators from a Result Set Assume the database has a
table called lob_table with a column for a BLOB locator, blob_col, and a
column for a CLOB locator, clob_col. This example assumes that you have
already created the Statement object, stmt.

First, select the LOB locators into a standard result set, then get the LOB data into
appropriate Java classes:

// Select LOB locator into standard result set.
ResultSet rs =
 stmt.executeQuery ("SELECT blob_col, clob_col FROM lob_table");
while (rs.next())
{
 // Get LOB locators into Java wrapper classes.
 java.sql.Blob blob = (java.sql.Blob)rs.getObject(1);
 java.sql.Clob clob = (java.sql.Clob)rs.getObject(2);
 (...process...)
}

The output is cast to java.sql.Blob and Clob. As an alternative, you can cast the
output to oracle.sql.BLOB and CLOB to take advantage of extended
functionality offered by the oracle.sql.* classes. For example, you can rewrite
the above code to get the LOB locators as:

 // Get LOB locators into Java wrapper classes.
 oracle.sql.BLOB blob = (BLOB)rs.getObject(1);
 oracle.sql.CLOB clob = (CLOB)rs.getObject(2);
 (...process...)

Example: Getting a CLOB Locator from a Callable Statement The callable statement
methods for retrieving LOBs are identical to the result set methods.

For example, if you have an OracleCallableStatement ocs that calls a
function func that has a CLOB output parameter, then set up the callable statement
as in the following example.

This example registers OracleTypes.CLOB as the typecode of the output
parameter.

Note: If using getObject() or getOracleObject(), then
remember to cast the output, as necessary. For more information,
see "Casting Your get Method Return Values" on page 7-10.

Working with BLOBs and CLOBs

Working with LOBs and BFILEs 8-5

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");
ocs.registerOutParameter(1, OracleTypes.CLOB);
ocs.execute();
oracle.sql.CLOB clob = ocs.getCLOB(1);

Passing BLOB and CLOB Locators
Given a standard JDBC prepared statement (java.sql.PreparedStatement) or
callable statement (java.sql.CallableStatement), you can use standard setter
methods to pass LOB locators, as follows. All the standard and Oracle-specific setter
methods discussed here take an int parameter index and the LOB locator as input.

■ Under JDK 1.2.x and higher, you can use the standard setBlob() and
setClob() methods, which take java.sql.Blob and Clob locators as input.

■ Under JDK 1.1.x, there is no standard BLOB or CLOB functionality, but you can
use the generic setObject() method, which simply specifies a
java.lang.Object input.

Given an Oracle-specific OraclePreparedStatement or
OracleCallableStatement, then you can use Oracle extensions as follows:

■ Under JDK 1.1.x and higher, you can use setBLOB() and setCLOB(), which
take oracle.sql.BLOB and CLOB locators as input, respectively.

■ Under JDK 1.1.x and higher, you can also use the setOracleObject()
method, which simply specifies an oracle.sql.Datum input.

■ Under JDK 1.1.x, you also have the option of using the Oracle extensions
setBlob() and setClob(), which take oracle.jdbc2.Blob and Clob
locators as input, respectively. (These Blob and Clob interfaces mimic the
standard interfaces available in JDK 1.2.x.)

Example: Passing a BLOB Locator to a Prepared Statement If you have an
OraclePreparedStatement object ops and a BLOB named my_blob, then write
the BLOB to the database as follows:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
 ("INSERT INTO blob_table VALUES(?)");
ops.setBLOB(1, my_blob);
ops.execute();

Example: Passing a CLOB Locator to a Callable Statement If you have an
OracleCallableStatement object ocs and a CLOB named my_clob, then input
the CLOB to the stored procedure proc as follows:

Working with BLOBs and CLOBs

8-6 Oracle9i JDBC Developer’s Guide and Reference

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{call proc(?))}");
ocs.setClob(1, my_clob);
ocs.execute();

Reading and Writing BLOB and CLOB Data
Once you have a LOB locator, you can use JDBC methods to read and write the LOB
data. LOB data is materialized as a Java array or stream. However, unlike most Java
streams, a locator representing the LOB data is stored in the table. Thus, you can
access the LOB data at any time during the life of the connection.

To read and write the LOB data, use the methods in the oracle.sql.BLOB or
oracle.sql.CLOB class, as appropriate. These classes provide functionality such
as reading from the LOB into an input stream, writing from an output stream into a
LOB, determining the length of a LOB, and closing a LOB.

To read and write LOB data, you can use these methods:

■ To read from a BLOB, use the getBinaryStream() method of an
oracle.sql.BLOB object to retrieve the entire BLOB as an input stream. This
returns a java.io.InputStream object.

As with any InputStream object, use one of the overloaded read() methods
to read the LOB data, and use the close() method when you finish.

Notes:

■ To write LOB data, the application must acquire a write lock on
the LOB object. One way to accomplish this is through a
SELECT FOR UPDATE. Also, disable auto-commit mode.

■ The implementation of the data access API uses direct native
calls in the JDBC OCI and server-side internal drivers, thereby
providing better performance. You can use the same API on the
LOB classes in all Oracle JDBC drivers.

■ In the case of the JDBC Thin driver only, the implementation of
the data access API uses the PL/SQL DBMS_LOB package
internally. You never have to use DBMS_LOB directly. This is in
contrast to the 8.0.x drivers. For more information on the
DBMS_LOB package, see the Oracle9i Supplied PL/SQL Packages
Reference.

Working with BLOBs and CLOBs

Working with LOBs and BFILEs 8-7

■ To write to a BLOB, use the getBinaryOutputStream() method of an
oracle.sql.BLOB object to retrieve the BLOB as an output stream. This
returns a java.io.OutputStream object to be written back to the BLOB.

As with any OutputStream object, use one of the overloaded write()
methods to update the LOB data, and use the close() method when you
finish.

■ To read from a CLOB, use the getAsciiStream() or
getCharacterStream() method of an oracle.sql.CLOB object to retrieve
the entire CLOB as an input stream. The getAsciiStream() method returns
an ASCII input stream in a java.io.InputStream object. The
getCharacterStream() method returns a Unicode input stream in a
java.io.Reader object.

As with any InputStream or Reader object, use one of the overloaded
read() methods to read the LOB data, and use the close() method when
you finish.

You can also use the getSubString() method of oracle.sql.CLOB object
to retrieve a subset of the CLOB as a character string of type
java.lang.String.

■ To write to a CLOB, use the getAsciiOutputStream() or
getCharacterOutputStream() method of an oracle.sql.CLOB object to
retrieve the CLOB as an output stream to be written back to the CLOB. The
getAsciiOutputStream() method returns an ASCII output stream in a
java.io.OutputStream object. The getCharacterOutputStream()
method returns a Unicode output stream in a java.io.Writer object.

As with any OutputStream or Writer object, use one of the overloaded
write() methods to update the LOB data, and use the flush() and close()
methods when you finish.

Working with BLOBs and CLOBs

8-8 Oracle9i JDBC Developer’s Guide and Reference

Example: Reading BLOB Data Use the getBinaryStream() method of the
oracle.sql.BLOB class to read BLOB data. The getBinaryStream() method
reads the BLOB data into a binary stream.

The following example uses the getBinaryStream() method to read BLOB data
into a byte stream and then reads the byte stream into a byte array (returning the
number of bytes read, as well).

// Read BLOB data from BLOB locator.
InputStream byte_stream = my_blob.getBinaryStream();
byte [] byte_array = new byte [10];
int bytes_read = byte_stream.read(byte_array);

Notes:

■ The stream "write" methods described in this section write
directly to the database when you write to the output stream.
You do not need to execute an UPDATE to write the data. CLOBs
and BLOBs are transaction controlled. After writing to either,
you must commit the transaction for the changes to be
permanent. BFILEs are not transaction controlled. Once you
write to them the changes are permanent, even if the
transaction is rolled back, unless the external file system does
something else.

■ When writing to or reading from a CLOB, the JDBC drivers
perform all character set conversions for you.

Important: The JDBC 2.0 specification states that
PreparedStatement methods setBinaryStream() and
setObject() can be used to input a stream value as a BLOB, and
that the PreparedStatement methods setAsciiStream(),
setUnicodeStream(), setCharacterStream(), and
setObject() can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 and higher
database and 8.1.6 and higher JDBC OCI driver. Do not use this
functionality for any other configuration, as data corruption may
result.

Working with BLOBs and CLOBs

Working with LOBs and BFILEs 8-9

...

Example: Reading CLOB Data The following example uses the
getCharacterStream() method to read CLOB data into a Unicode character
stream. It then reads the character stream into a character array (returning the
number of characters read, as well).

// Read CLOB data from CLOB locator into Reader char stream.
Reader char_stream = my_clob.getCharacterStream();
char [] char_array = new char [10];
int chars_read = char_stream.read (char_array, 0, 10);
...

The next example uses the getAsciiStream() method of the oracle.sql.CLOB
class to read CLOB data into an ASCII character stream. It then reads the ASCII
stream into a byte array (returning the number of bytes read, as well).

// Read CLOB data from CLOB locator into Input ASCII character stream
Inputstream asciiChar_stream = my_clob.getAsciiStream();
byte[] asciiChar_array = new byte[10];
int asciiChar_read = asciiChar_stream.read(asciiChar_array,0,10);

Example: Writing BLOB Data Use the getBinaryOutputStream() method of an
oracle.sql.BLOB object to write BLOB data.

The following example reads a vector of data into a byte array, then uses the
getBinaryOutputStream() method to write an array of character data to a
BLOB.

java.io.OutputStream outstream;

// read data into a byte array
byte[] data = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

// write the array of binary data to a BLOB
outstream = ((BLOB)my_blob).getBinaryOutputStream();
outstream.write(data);
...

Example: Writing CLOB Data Use the getCharacterOutputStream() method or
the getAsciiOutputStream() method to write data to a CLOB. The
getCharacterOutputStream() method returns a Unicode output stream; the
getAsciiOutputStream() method returns an ASCII output stream.

Working with BLOBs and CLOBs

8-10 Oracle9i JDBC Developer’s Guide and Reference

The following example reads a vector of data into a character array, then uses the
getCharacterOutputStream() method to write the array of character data to a
CLOB. The getCharacterOutputStream() method returns a
java.io.Writer instance in an oracle.sql.CLOB object, not a
java.sql.Clob object.

java.io.Writer writer;

// read data into a character array
char[] data = {'0','1','2','3','4','5','6','7','8','9'};

// write the array of character data to a CLOB
writer = ((CLOB)my_clob).getCharacterOutputStream();
writer.write(data);
writer.flush();
writer.close();
...

The next example reads a vector of data into a byte array, then uses the
getAsciiOutputStream() method to write the array of ASCII data to a CLOB.
Because getAsciiOutputStream() returns an ASCII output stream, you must
cast the output to a oracle.sql.CLOB datatype.

java.io.OutputStream out;

// read data into a byte array
byte[] data = {'0','1','2','3','4','5','6','7','8','9'};

// write the array of ascii data to a CLOB
out = ((CLOB)clob).getAsciiOutputStream();
out.write(data);
out.flush();
out.close();

Creating and Populating a BLOB or CLOB Column
Create and populate a BLOB or CLOB column in a table by using SQL statements.

Working with BLOBs and CLOBs

Working with LOBs and BFILEs 8-11

Create a BLOB or CLOB column in a table with the SQL CREATE TABLE statement,
then populate the LOB. This includes creating the LOB entry in the table, obtaining
the LOB locator, creating a file handler for the data (if you are reading the data from
a file), and then copying the data into the LOB.

Creating a BLOB or CLOB Column in a New Table
To create a BLOB or CLOB column in a new table, execute the SQL CREATE TABLE
statement. The following example code creates a BLOB column in a new table. This
example assumes that you have already created your Connection object conn and
Statement object stmt:

String cmd = "CREATE TABLE my_blob_table (x varchar2 (30), c blob)";
stmt.execute (cmd);

In this example, the VARCHAR2 column designates a row number, such as 1 or 2,
and the BLOB column stores the locator of the BLOB data.

Populating a BLOB or CLOB Column in a New Table
This example demonstrates how to populate a BLOB or CLOB column by reading
data from a stream. These steps assume that you have already created your
Connection object conn and Statement object stmt. The table my_blob_table
is the table that was created in the previous section.

The following example writes the GIF file john.gif to a BLOB.

1. Begin by using SQL statements to create the BLOB entry in the table. Use the
empty_blob syntax to create the BLOB locator.

stmt.execute ("INSERT INTO my_blob_table VALUES (’row1’, empty_blob())");

2. Get the BLOB locator from the table.

BLOB blob;
cmd = "SELECT * FROM my_blob_table WHERE X=’row1’";
ResultSet rset = stmt.executeQuery(cmd);
rset.next();
BLOB blob = ((OracleResultSet)rset).getBLOB(2);

Note: You cannot construct a new BLOB or CLOB locator in your
application with a Java new statement. You must create the locator
through a SQL operation, and then select it into your application or
with the createTemporary() or empty_lob() methods.

Working with BLOBs and CLOBs

8-12 Oracle9i JDBC Developer’s Guide and Reference

3. Declare a file handler for the john.gif file, then print the length of the file.
This value will be used later to ensure that the entire file is read into the BLOB.
Next, create a FileInputStream object to read the contents of the GIF file,
and an OutputStream object to retrieve the BLOB as a stream.

File binaryFile = new File("john.gif");
System.out.println("john.gif length = " + binaryFile.length());
FileInputStream instream = new FileInputStream(binaryFile);
OutputStream outstream = blob.getBinaryOutputStream();

4. Call getBufferSize() to retrieve the ideal buffer size (according to
calculations by the JDBC driver) to use in writing to the BLOB, then create the
buffer byte array.

int size = blob.getBufferSize();
byte[] buffer = new byte[size];
int length = -1;

5. Use the read() method to read the GIF file to the byte array buffer, then use
the write() method to write it to the BLOB. When you finish, close the input
and output streams.

while ((length = instream.read(buffer)) != -1)
 outstream.write(buffer, 0, length);
instream.close();
outstream.close();

Once your data is in the BLOB or CLOB, you can manipulate the data. This is
described in the next section, "Accessing and Manipulating BLOB and CLOB Data".

Accessing and Manipulating BLOB and CLOB Data
Once you have your BLOB or CLOB locator in a table, you can access and
manipulate the data to which it points. To access and manipulate the data, you first
must select their locators from a result set or from a callable statement. "Getting and
Passing BLOB and CLOB Locators" on page 8-3 describes these techniques in detail.

After you select the locators, you can retrieve the BLOB or CLOB data. You will
usually want to cast the result set to the OracleResultSet datatype so that you
can retrieve the data in oracle.sql.* format. After retrieving the BLOB or CLOB
data, you can manipulate it however you want.

This example is a continuation of the example in the previous section. It uses the
SQL SELECT statement to select the BLOB locator from the table my_blob_table

Working with BLOBs and CLOBs

Working with LOBs and BFILEs 8-13

into a result set. The result of the data manipulation is to print the length of the
BLOB in bytes.

// Select the blob - what we are really doing here
// is getting the blob locator into a result set
BLOB blob;
cmd = "SELECT * FROM my_blob_table";
ResultSet rset = stmt.executeQuery (cmd);

// Get the blob data - cast to OracleResult set to
// retrieve the data in oracle.sql format
String index = ((OracleResultSet)rset).getString(1);
blob = ((OracleResultSet)rset).getBLOB(2);

// get the length of the blob
int length = blob.length();

// print the length of the blob
System.out.println("blob length" + length);

// read the blob into a byte array
// then print the blob from the array
byte bytes[] = blob.getBytes(1, length);
printBytes(bytes, length);

Additional BLOB and CLOB Features
In addition to what has already been discussed in this chapter, the
oracle.sql.BLOB and CLOB classes have a number of methods for further
functionality.

Additional BLOB Methods
The oracle.sql.BLOB class includes the following methods:

■ close(): Closes the BLOB associated with the locator. (See "Using Open and
Close With LOBs" on page 8-19 for more information.)

■ freeTemporary(): Frees the storage used by a temporary BLOB. (See
"Working With Temporary LOBs" on page 8-18 for more information.)

Note: The oracle.sql.CLOB class supports all the character sets
that the Oracle data server supports for CLOB types.

Working with BLOBs and CLOBs

8-14 Oracle9i JDBC Developer’s Guide and Reference

■ getBinaryOutputStream(): Returns a java.io.OutputStream to write
data to the BLOB as a stream.

■ getBinaryOutputStream(long): Returns a java.io.OutputStream to
write data to the BLOB as a stream. The data is written beginning at the position
in the BLOB specified in the argument.

■ getBinaryStream(): Returns the BLOB data for this Blob instance as a
stream of bytes.

■ getBinaryStream(long): Returns the BLOB data for this Blob instance as a
stream of bytes beginning at the position in the BLOB specified in the argument.

■ getBufferSize(): Returns the ideal buffer size, according to calculations by
the JDBC driver, to use in reading and writing BLOB data. This value is a
multiple of the chunk size (see getChunkSize() below) and is close to 32K.

■ getBytes(): Reads from the BLOB data, starting at a specified point, into a
supplied buffer.

■ getChunkSize(): Returns the Oracle chunking size, which can be specified by
the database administrator when the LOB column is first created. This value, in
Oracle blocks, determines the size of the chunks of data read or written by the
LOB data layer in accessing or modifying the BLOB value. Part of each chunk
stores system-related information, and the rest stores LOB data. Performance is
enhanced if read and write requests use some multiple of the chunk size.

■ isOpen(): Returns true if the BLOB was opened by calling the open()
method; otherwise, it returns false. (See "Using Open and Close With LOBs"
on page 8-19 for more information.)

■ isTemporary(): Returns true if the BLOB is a temporary BLOB. (See
"Working With Temporary LOBs" on page 8-18 for more information.)

■ length(): Returns the length of the BLOB in bytes.

■ open(): Opens the BLOB associated with the locator. (See "Using Open and
Close With LOBs" on page 8-19 for more information.)

■ open(int): Opens the BLOB associated with the locator in the mode specified
by the argument. (See "Using Open and Close With LOBs" on page 8-19 for
more information.)

■ position(): Determines the byte position in the BLOB where a given pattern
begins.

■ putBytes(): Writes BLOB data, starting at a specified point, from a supplied
buffer.

Working with BLOBs and CLOBs

Working with LOBs and BFILEs 8-15

■ trim(long): Trims the value of the BLOB to the length specified by the
argument.

Additional CLOB Methods
The oracle.sql.CLOB class includes the following methods:

■ close(): Closes the CLOB associated with the locator. (See "Using Open and
Close With LOBs" on page 8-19 for more information.)

■ freeTemporary(): Frees the storage used by a temporary CLOB. (See
"Working With Temporary LOBs" on page 8-18 for more information.)

■ getAsciiOutputStream(): Returns a java.io.OutputStream to write
data to the CLOB as a stream.

■ getAsciiOutputStream(long): Returns a java.io.OutputStream object
to write data to the CLOB as a stream. The data is written beginning at the
position in the CLOB specified by the argument.

■ getAsciiStream(): Returns the CLOB value designated by the Clob object
as a stream of ASCII bytes.

■ getAsciiStream(long): Returns the CLOB value designated by the CLOB
object as a stream of ASCII bytes, beginning at the position in the CLOB
specified by the argument.

■ getBufferSize(): Returns the ideal buffer size, according to calculations by
the JDBC driver, to use in reading and writing CLOB data. This value is a
multiple of the chunk size (see getChunkSize() below) and is close to 32K.

■ getCharacterOutputStream(): Returns a java.io.Writer to write data
to the CLOB as a stream.

■ getCharacterOutputStream(long): Returns a java.io.Writer object to
write data to the CLOB as a stream. The data is written beginning at the
position in the CLOB specified by the argument.

■ getCharacterStream(): Returns the CLOB data as a stream of Unicode
characters.

■ getCharacterStream(long): Returns the CLOB data as a stream of
Unicode characters beginning at the position in the CLOB specified by the
argument.

■ getChars(): Retrieves characters from a specified point in the CLOB data into
a character array.

Working with BLOBs and CLOBs

8-16 Oracle9i JDBC Developer’s Guide and Reference

■ getChunkSize(): Returns the Oracle chunking size, which can be specified by
the database administrator when the LOB column is first created. This value, in
Oracle blocks, determines the size of the chunks of data read or written by the
LOB data layer in accessing or modifying the CLOB value. Part of each chunk
stores system-related information and the rest stores LOB data. Performance is
enhanced if you make read and write requests using some multiple of the
chunk size.

■ isOpen(): Returns true if the CLOB was opened by calling the open()
method; otherwise, it returns false. (See "Using Open and Close With LOBs"
on page 8-19 for more information.)

■ isTemporary(): Returns true if and only if the CLOB is a temporary CLOB.
(See "Working With Temporary LOBs" on page 8-18 for more information.)

■ length(): Returns the length of the CLOB in characters.

■ open(): Opens the CLOB associated with the locator. (See "Using Open and
Close With LOBs" on page 8-19 for more information.)

■ open(int): Opens the CLOB associated with the locator in the mode specified
by the argument. (See "Using Open and Close With LOBs" on page 8-19 for
more information.)

■ position(): Determines the character position in the CLOB at which a given
substring begins.

■ putChars(): Writes characters from a character array to a specified point in
the CLOB data.

■ getSubString(): Retrieves a substring from a specified point in the CLOB
data.

■ putString(): Writes a string to a specified point in the CLOB data.

■ trim(long): Trims the value of the CLOB to the length specified by the
argument.

Creating Empty LOBs
Before writing data to an internal LOB, you must make sure the LOB
column/attribute is not null: it must contain a locator. You can accomplish this by
initializing the internal LOB as an empty LOB in an INSERT or UPDATE statement,
using the empty_lob() method defined in the oracle.sql.BLOB and
oracle.sql.CLOB classes:

■ public static BLOB empty_lob() throws SQLException

Working with BLOBs and CLOBs

Working with LOBs and BFILEs 8-17

■ public static CLOB empty_lob() throws SQLException

A JDBC driver creates an empty LOB instance without making database round trips.
You can use empty LOBs in the following:

■ setXXX() methods of the OraclePreparedStatement class

■ updateXXX() methods of updatable result sets

■ attributes of STRUCT objects

■ elements of ARRAY objects

Note: Because an empty_lob() method creates a special marker
that does not contain a locator, a JDBC application cannot read or
write to it. The JDBC driver throws the exception ORA-17098
Invalid empty LOB operation if a JDBC application attempts
to read or write to an empty LOB before it is stored in the database.

Working With Temporary LOBs

8-18 Oracle9i JDBC Developer’s Guide and Reference

Working With Temporary LOBs
You can use temporary LOBs to transient data. The data is stored in temporary table
space rather than regular table space. You should free temporary LOBs after you no
longer need them. If you do not, the space the LOB consumes in temporary table
space will not be reclaimed.

You create a temporary LOB with the static method,
createTemporary(Connection, boolean, int), defined in the
oracle.sql.BLOB and oracle.sql.CLOB classes. You free a temporary LOB
with the freeTemporary() method.

public static BLOB createTemporary(Connection conn, boolean isCached, int
duration);
public static CLOB createTemporary(Connection conn, boolean isCached, int
duration);

The duration must be either DURATION_SESSION or DURATION_CALL as defined
in the oracle.sql.BLOB or oracle.sql.CLOB class. In client applications
DURATION_SESSION is appropriate. In Java stored procedures you can use either
DURATION_SESSION or DURATION_CALL, which ever is appropriate.

You can test whether a LOB is temporary by calling the isTemporary() method.
If the LOB was created by calling the createTemporary()method, the
isTemporary() method returns true; otherwise, it returns false.

You can free a temporary LOB by calling the freeTemporary() method. Free any
temporary LOBs before ending the session or call. Otherwise, the storage used by
the temporary LOB will not be reclaimed.

Note: Failure to free a temporary LOB will result in the storage
used by that LOB being unavailable. Frequent failure to free
temporary LOBs will result in filling up temporary table space with
unavailable LOB storage.

Using Open and Close With LOBs

Working with LOBs and BFILEs 8-19

Using Open and Close With LOBs
You do not have to open and close your LOBs. You might choose to open and close
them for performance reasons.

If you do not wrap LOB operations inside an Open/Close call operation: Each
modification to the LOB will implicitly open and close the LOB thereby firing any
triggers on an domain index. Note that in this case, any domain indexes on the LOB
will become updated as soon as LOB modifications are made. Therefore, domain
LOB indexes are always valid and may be used at any time.

If you wrap your LOB operations inside the Open/Close operation, triggers will not
be fired for each LOB modification. Instead, the trigger on domain indexes will be
fired at the Close call. For example, you might design your application so that
domain indexes are not be updated until you call the close() method. However,
this means that any domain indexes on the LOB will not be valid in-between the
Open/Close calls.

You open a LOB by calling the open() or open(int) method. You may then read
and write the LOB without any triggers associated with that LOB firing. When you
are done accessing the LOB, close the LOB by calling the close() method. When
you close the LOB, any triggers associated with the LOB will fire. You can see if a
LOB is open or closed by calling the isOpen() method. If you open the LOB by
calling the open(int) method, the value of the argument must be either MODE_
READONLY or MODE_READWRITE, as defined in the oracle.sql.BLOB and
oracle.sql.CLOB classes. If you open the LOB with MODE_READONLY, any
attempt to write to the LOB will result in a SQL exception.

Note: An error occurs if you commit the transaction before closing
all opened LOBs that were opened by the transaction. The openness
of the open LOBs is discarded, but the transaction is successfully
committed. Hence, all the changes made to the LOB and non-LOB
data in the transaction are committed but the triggers for domain
indexing are not fixed.

Working with BFILEs

8-20 Oracle9i JDBC Developer’s Guide and Reference

Working with BFILEs
This section describes how to read and write data to and from external binary files
(BFILEs), using file locators.

Getting and Passing BFILE Locators
Getter and setter methods are available for retrieving or passing BFILE locators
from or to the database.

Retrieving BFILE Locators
Given a standard JDBC result set or callable statement object that includes BFILE
locators, you can access the locators by using the standard result set getObject()
method. This method returns an oracle.sql.BFILE object.

You can also access the locators by casting your result set to OracleResultSet or
your callable statement to OracleCallableStatement and using the
getOracleObject() or getBFILE() method.

Example: Getting a BFILE locator from a Result Set Assume that the database has a table
called bfile_table with a single column for the BFILE locator bfile_col. This
example assumes that you have already created your Statement object stmt.

Select the BFILE locator into a standard result set. If you cast the result set to an
OracleResultSet, you can use getBFILE() to get the BFILE locator:

// Select the BFILE locator into a result set
ResultSet rs = stmt.executeQuery("SELECT bfile_col FROM bfile_table");
while (rs.next())
{
 oracle.sql.BFILE my_bfile = ((OracleResultSet)rs).getBFILE(1);
}

Notes:

■ In the OracleResultSet and OracleCallableStatement
classes, getBFILE() and getBfile() both return
oracle.sql.BFILE. There is no java.sql interface (or
oracle.jdbc2 interface) for BFILEs.

■ If using getObject() or getOracleObject(), remember to
cast the output, as necessary. For more information, see
"Casting Your get Method Return Values" on page 7-10.

Working with BFILEs

Working with LOBs and BFILEs 8-21

Note that as an alternative, you can use getObject() to return the BFILE locator.
In this case, because getObject() returns a java.lang.Object, cast the results
to BFILE. For example:

oracle.sql.BFILE my_bfile = (BFILE)rs.getObject(1);

Example: Getting a BFILE Locator from a Callable Statement Assume you have an
OracleCallableStatement object ocs that calls a function func that has a
BFILE output parameter. The following code example sets up the callable
statement, registers the output parameter as OracleTypes.BFILE, executes the
statement, and retrieves the BFILE locator:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");
ocs.registerOutParameter(1, OracleTypes.BFILE);
ocs.execute();
oracle.sql.BFILE bfile = ocs.getBFILE(1);

Passing BFILE Locators
To pass a BFILE locator to a prepared statement or callable statement (to update a
BFILE locator, for example), you can do one of the following:

■ Use the standard setObject() method.

or:

■ Cast the statement to OraclePreparedStatement or
OracleCallableStatement, and use the setOracleObject() or
setBFILE() method.

These methods take the parameter index and an oracle.sql.BFILE object as
input.

Example: Passing a BFILE Locator to a Prepared Statement Assume you want to insert a
BFILE locator into a table, and you have an OraclePreparedStatement object
ops to insert data into a table. The first column is a string (to designate a row
number), the second column is a BFILE, and you have a valid oracle.sql.BFILE
object (bfile). Write the BFILE to the database as follows:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
 ("INSERT INTO my_bfile_table VALUES (?,?)");
ops.setString(1,"one");
ops.setBFILE(2, bfile);
ops.execute();

Working with BFILEs

8-22 Oracle9i JDBC Developer’s Guide and Reference

Example: Passing a BFILE Locator to a Callable Statement Passing a BFILE locator to a
callable statement is similar to passing it to a prepared statement. In this case, the
BFILE locator is passed to the myGetFileLength() procedure, which returns the
BFILE length as a numeric value.

OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
 ("begin ? := myGetFileLength (?); end;");
try
{
 cstmt.registerOutParameter (1, Types.NUMERIC);
 cstmt.setBFILE (2, bfile);
 cstmt.execute ();
 return cstmt.getLong (1);
}

Reading BFILE Data
To read BFILE data, you must first get the BFILE locator. You can get the locator
from either a callable statement or a result set. "Getting and Passing BFILE Locators"
on page 8-20 describes this.

Once you obtain the locator, you can invoke a number of methods on the BFILE
without opening it. For example, you can use the oracle.sql.BFILE methods
fileExists() and isFileOpen() to determine whether the BFILE exists and if
it is open. If you want to read and manipulate the data, however, you must open
and close the BFILE, as follows:

■ Use the openFile() method of the oracle.sql.BFILE class to open a
BFILE.

■ When you are done, use the closeFile() method of the BFILE class.

BFILE data is materialized as a Java stream. To read from a BFILE, use the
getBinaryStream() method of an oracle.sql.BFILE object to retrieve the
entire file as an input stream. This returns a java.io.InputStream object.

As with any InputStream object, use one of the overloaded read() methods to
read the file data, and use the close() method when you finish.

Working with BFILEs

Working with LOBs and BFILEs 8-23

Example: Reading BFILE Data The following example uses the getBinaryStream()
method of an oracle.sql.BFILE object to read BFILE data into a byte stream and
then read the byte stream into a byte array. The example assumes that the BFILE has
already been opened.

// Read BFILE data from a BFILE locator
Inputstream in = bfile.getBinaryStream();
byte[] byte_array = new byte{10};
int byte_read = in.read(byte_array);

Creating and Populating a BFILE Column
This section discusses how to create a BFILE column in a table with SQL operations
and specify the location where the BFILE resides. The examples below assume that
you have already created your Connection object conn and Statement object
stmt.

Creating a BFILE Column in a New Table
To work with BFILE data, create a BFILE column in a table, and specify the location
of the BFILE. To specify the location of the BFILE, use the SQL CREATE
DIRECTORY...AS statement to specify an alias for the directory where the BFILE
resides. Then execute the statement. In this example, the directory alias is test_
dir, and the BFILE resides in the /home/work directory.

String cmd;
cmd = "CREATE DIRECTORY test_dir AS '/home/work'";
stmt.execute (cmd);

Use the SQL CREATE TABLE statement to create a table containing a BFILE column,
then execute the statement. In this example, the name of the table is my_bfile_
table.

// Create a table containing a BFILE field
cmd = "CREATE TABLE my_bfile_table (x varchar2 (30), b bfile)";

Notes:

■ BFILEs are read-only. You cannot insert data or otherwise write
to a BFILE.

■ You cannot use JDBC to create a new BFILE. They are created
only externally.

Working with BFILEs

8-24 Oracle9i JDBC Developer’s Guide and Reference

stmt.execute (cmd);

In this example, the VARCHAR2 column designates a row number, and the BFILE
column stores the locator of the BFILE data.

Populating a BFILE Column
Use the SQL INSERT INTO...VALUES statement to populate the VARCHAR2 and
BFILE fields, then execute the statement. The BFILE column is populated with the
locator to the BFILE data. To populate the BFILE column, use the bfilename
function to specify the directory alias and the name of the BFILE file.

cmd ="INSERT INTO my_bfile_table VALUES ('one', bfilename(test_dir,
 'file1.data'))";
stmt.execute (cmd);
cmd ="INSERT INTO my_bfile_table VALUES ('two', bfilename(test_dir,
 'jdbcTest.data'))";
stmt.execute (cmd);

In this example, the name of the directory alias is test_dir. The locator of the
BFILE file1.data is loaded into the BFILE column on row one, and the locator
of the BFILE jdbcTest.data is loaded into the bfile column on row two.

As an alternative, you might want to create the row for the row number and BFILE
locator now, but wait until later to insert the locator. In this case, insert the row
number into the table, and null as a place holder for the BFILE locator.

cmd ="INSERT INTO my_bfile_table VALUES ('three', null)";
stmt.execute(cmd);

Here, three is inserted into the row number column, and null is inserted as the
place holder. Later in your program, insert the BFILE locator into the table by using
a prepared statement.

First get a valid BFILE locator into the bfile object:

rs = stmt.executeQuery("SELECT b FROM my_bfile_table WHERE x=’two’");
rs.next();
oracle.sql.BFILE bfile = ((OracleResultSet)rs).getBFILE(1);

Working with BFILEs

Working with LOBs and BFILEs 8-25

Then, create your prepared statement. Note that because this example uses the
setBFILE() method to identify the BFILE, the prepared statement must be cast to
an OraclePreparedStatement:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
 (UPDATE my_bfile_table SET b=? WHERE x = ’three’);
ops.setBFILE(1, bfile);
ops.execute();

Now row two and row three contain the same BFILE.

Once you have the BFILE locators available in a table, you can access and
manipulate the BFILE data. The next section, "Accessing and Manipulating BFILE
Data", describes this.

Accessing and Manipulating BFILE Data
Once you have the BFILE locator in a table, you can access and manipulate the data
to which it points. To access and manipulate the data, you must first select its
locator from a result set or a callable statement.

The following code continues the example from "Populating a BFILE Column" on
page 8-24, getting the locator of the BFILE from row two of a table into a result set.
The result set is cast to an OracleResultSet so that oracle.sql.* methods can
be used on it. Several of the methods applied to the BFILE, such as
getDirAlias() and getName(), do not require you to open the BFILE. Methods
that manipulate the BFILE data, such as reading, getting the length, and displaying,
do require you to open the BFILE.

When you finish manipulating the BFILE data, you must close the BFILE.

// select the bfile locator
cmd = "SELECT * FROM my_bfile_table WHERE x = 'two'";
rset = stmt.executeQuery (cmd);

if (rset.next ())
 BFILE bfile = ((OracleResultSet)rset).getBFILE (2);

// for these methods, you do not have to open the bfile
println("getDirAlias() = " + bfile.getDirAlias());
println("getName() = " + bfile.getName());
println("fileExists() = " + bfile.fileExists());
println("isFileOpen() = " + bfile.isFileOpen());

// now open the bfile to get the data

Working with BFILEs

8-26 Oracle9i JDBC Developer’s Guide and Reference

bfile.openFile();

// get the BFILE data as a binary stream
InputStream in = bfile.getBinaryStream();
int length ;

// read the bfile data in 6-byte chunks
byte[] buf = new byte[6];

while ((length = in.read(buf)) != -1)
{
 // append and display the bfile data in 6-byte chunks
 StringBuffer sb = new StringBuffer(length);
 for (int i=0; i<length; i++)
 sb.append((char)buf[i]);
 System.out.println(sb.toString());
}

// we are done working with the input stream. Close it.
in.close();

// we are done working with the BFILE. Close it.
bfile.closeFile();

Additional BFILE Features
In addition to the features already discussed in this chapter, the
oracle.sql.BFILE class has a number of methods for further functionality,
including the following:

■ openFile(): Opens the external file for read-only access.

■ closeFile(): Closes the external file.

■ getBinaryStream(): Returns the contents of the external file as a stream of
bytes.

■ getBinaryStream(long): Returns the contents of the external file as a
stream of bytes beginning at the position in the external file specified by the
argument.

■ getBytes(): Reads from the external file, starting at a specified point, into a
supplied buffer.

■ getName(): Gets the name of the external file.

Working with BFILEs

Working with LOBs and BFILEs 8-27

■ getDirAlias(): Gets the directory alias of the external file.

■ length(): Returns the length of the BFILE in bytes.

■ position(): Determines the byte position at which the given byte pattern
begins.

■ isFileOpen(): Determines whether the BFILE is open (for read-only access).

Working with BFILEs

8-28 Oracle9i JDBC Developer’s Guide and Reference

Working with Oracle Object Types 9-1

9
Working with Oracle Object Types

This chapter describes JDBC support for user-defined object types. It discusses
functionality of the generic, weakly typed oracle.sql.STRUCT class, as well as
how to map to custom Java classes that implement either the JDBC standard
SQLData interface or the Oracle ORAData interface. This chapter also describes
how JDBC drivers access SQLJ object types in SQL representation.

The following topics are covered:

■ Mapping Oracle Objects

■ Using the Default STRUCT Class for Oracle Objects

■ Creating and Using Custom Object Classes for Oracle Objects

■ Object-Type Inheritance

■ Using JPublisher to Create Custom Object Classes

■ Describing an Object Type

■ SQLJ Object Types

Note: For general information about Oracle object features and
functionality, see the Oracle9i Application Developer's Guide -
Object-Relational Features.

Mapping Oracle Objects

9-2 Oracle9i JDBC Developer’s Guide and Reference

Mapping Oracle Objects
Oracle object types provide support for composite data structures in the database.
For example, you can define a type Person that has attributes such as name (type
CHAR), phone number (type CHAR), and employee number (type NUMBER).

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can use a standard, generic JDBC type to map to Oracle objects, or
you can customize the mapping by creating custom Java type definition classes. In
this book, Java classes that you create to map to Oracle objects will be referred to as
custom Java classes or, more specifically, custom object classes. This is as opposed to
custom references classes to map to object references, and custom collection classes to
map to Oracle collections. Custom object classes can implement either a standard
JDBC interface or an Oracle extension interface to read and write data.

JDBC materializes Oracle objects as instances of particular Java classes. Two main
steps in using JDBC to access Oracle objects are: 1) creating the Java classes for the
Oracle objects, and 2) populating these classes. You have two options:

■ Let JDBC materialize the object as a STRUCT. This is described in "Using the
Default STRUCT Class for Oracle Objects" on page 9-3.

or:

■ Explicitly specify the mappings between Oracle objects and Java classes. This
includes customizing your Java classes for object data. The driver then must be
able to populate instances of the custom object classes that you specify. This
imposes a set of constraints on the Java classes. To satisfy these constraints, you
can define your classes to implement either the JDBC standard
java.sql.SQLData interface or the Oracle extension oracle.sql.ORAData
interface. This is described in "Creating and Using Custom Object Classes for
Oracle Objects" on page 9-10.

You can use the Oracle JPublisher utility to generate custom Java classes.

Note: When you use the SQLData interface, you must use a Java
type map to specify your SQL-Java mapping, unless weakly typed
java.sql.Struct objects will suffice. See "Understanding Type
Maps for SQLData Implementations" on page 9-11.

Using the Default STRUCT Class for Oracle Objects

Working with Oracle Object Types 9-3

Using the Default STRUCT Class for Oracle Objects
If you choose not to supply a custom Java class for your SQL-Java mapping for an
Oracle object, then Oracle JDBC will materialize the object as an instance of the
oracle.sql.STRUCT class.

You would typically want to use STRUCT objects, instead of custom Java objects, in
situations where you are manipulating SQL data. For example, your Java
application might be a tool to manipulate arbitrary object data within the database,
as opposed to being an end-user application. You can select data from the database
into STRUCT objects and create STRUCT objects for inserting data into the database.
STRUCT objects completely preserve data, because they maintain the data in SQL
format. Using STRUCT objects is more efficient and more precise in these situations
where you don’t need the information in a convenient form.

STRUCT Class Functionality
This section discusses standard versus Oracle-specific features of the
oracle.sql.STRUCT class, introduces STRUCT descriptors, and lists methods of
the STRUCT class to give an overview of its functionality.

Standard java.sql.Struct Methods
If your code must comply with standard JDBC 2.0, then use a java.sql.Struct
instance (oracle.jdbc2.Struct under JDK 1.1.x), and use the following
standard methods:

■ getAttributes(map): Retrieves the values of the attributes, using entries in
the specified type map to determine the Java classes to use in materializing any
attribute that is a structured object type. The Java types for other attribute
values would be the same as for a getObject() call on data of the underlying
SQL type (the default JDBC types).

■ getAttributes(): This is the same as the preceding getAttributes(map)
method, except it uses the default type map for the connection.

■ getSQLTypeName(): Returns a Java String that represents the fully qualified
name (schema.sql_type_name) of the Oracle object type that this Struct
represents (such as SCOTT.EMPLOYEE).

Oracle oracle.sql.STRUCT Class Methods
If you want to take advantage of the extended functionality offered by
Oracle-defined methods, then use an oracle.sql.STRUCT instance.

Using the Default STRUCT Class for Oracle Objects

9-4 Oracle9i JDBC Developer’s Guide and Reference

The oracle.sql.STRUCT class implements the java.sql.Struct interface
(oracle.jdbc2.Struct interface under JDK 1.1.x) and provides extended
functionality beyond the JDBC 2.0 standard.

The STRUCT class includes the following methods in addition to standard Struct
functionality:

■ getOracleAttributes(): Retrieves the values of the values array as
oracle.sql.* objects.

■ getDescriptor(): Returns the StructDescriptor object for the SQL type
that corresponds to this STRUCT object.

■ getJavaSQLConnection(): Returns the current connection instance
(java.sql.Connection).

■ toJdbc(): Consults the default type map of the connection, to determine what
class to map to, and then uses toClass().

■ toJdbc(map): Consults the specified type map to determine what class to map
to, and then uses toClass().

STRUCT Descriptors
Creating and using a STRUCT object requires a descriptor—an instance of the
oracle.sql.StructDescriptor class—to exist for the SQL type (such as
EMPLOYEE) that will correspond to the STRUCT object. You need only one
StructDescriptor object for any number of STRUCT objects that correspond to
the same SQL type.

STRUCT descriptors are further discussed in "Creating STRUCT Objects and
Descriptors" on page 9-4.

Creating STRUCT Objects and Descriptors
This section describes how to create STRUCT objects and descriptors and lists useful
methods of the StructDescriptor class.

Steps in Creating StructDescriptor and STRUCT Objects
This section describes how to construct an oracle.sql.STRUCT object for a given
Oracle object type. To create a STRUCT object, you must:

1. Create a StructDescriptor object (if one does not already exist) for the
given Oracle object type.

2. Use the StructDescriptor to construct the STRUCT object.

Using the Default STRUCT Class for Oracle Objects

Working with Oracle Object Types 9-5

A StructDescriptor is an instance of the oracle.sql.StructDescriptor
class and describes a type of Oracle object (SQL structured object). Only one
StructDescriptor is necessary for each Oracle object type. The driver caches
StructDescriptor objects to avoid recreating them if the type has already been
encountered.

Before you can construct a STRUCT object, a StructDescriptor must first exist
for the given Oracle object type. If a StructDescriptor object does not exist, you
can create one by calling the static StructDescriptor.createDescriptor()
method. This method requires you to pass in the SQL type name of the Oracle object
type and a connection object:

StructDescriptor structdesc = StructDescriptor.createDescriptor
 (sql_type_name, connection);

Where sql_type_name is a Java string containing the name of the Oracle object
type (such as EMPLOYEE) and connection is your connection object.

Once you have your StructDescriptor object for the Oracle object type, you can
construct the STRUCT object. To do this, pass in the StructDescriptor, your
connection object, and an array of Java objects containing the attributes you want
the STRUCT to contain.

STRUCT struct = new STRUCT(structdesc, connection, attributes);

Where structdesc is the StructDescriptor created previously, connection
is your connection object, and attributes is an array of type
java.lang.Object[].

Using StructDescriptor Methods
A StructDescriptor can be thought of as a "type object". This means that it
contains information about the object type, including the typecode, the type name,
and how to convert to and from the given type. Remember, there should be only
one StructDescriptor object for any one Oracle object type. You can then use
that descriptor to create as many STRUCT objects as you need for that type.

The StructDescriptor class includes the following methods:

■ getName(): Returns the fully qualified SQL type name of the Oracle object
(that is, in schema.sql_type_name format, such as CORPORATE.EMPLOYEE).

■ getLength(): Returns the number of fields in the object type.

■ getMetaData(): Returns the meta data regarding this type (like the
getMetaData() method of a result set object). The returned

Using the Default STRUCT Class for Oracle Objects

9-6 Oracle9i JDBC Developer’s Guide and Reference

ResultSetMetaData object contains the attribute name, attribute typecode,
and attribute type precision information. The "column" index in the
ResultSetMetaData object maps to the position of the attribute in the
STRUCT, with the first attribute being at index 1.

The getMetaData() method is further discussed in "Functionality for Getting
Object Meta Data" on page 9-49.

Serializable STRUCT Descriptors
As "Steps in Creating StructDescriptor and STRUCT Objects" on page 9-4 explains,
when you create a STRUCT object, you first must create a StructDescriptor
object. Do this by calling the StructDescriptor.createDescriptor()
method. The oracle.sql.StructDescriptor class is serializable, meaning that
you can write the complete state of a StructDescriptor object to an output
stream for later use. Recreate the StructDescriptor object by reading its
serialized state from an input stream. This is referred to as deserializing. With the
StructDescriptor object serialized, you do not need to call the
StructDescriptor.createDescriptor() method—you simply deserialize
the StructDescriptor object.

It is advisable to serialize a StructDescriptor object when the object type is
complex but not changed often.

If you create a StructDescriptor object through deserialization, you must
supply the appropriate database connection instance for the StructDescriptor
object, using the setConnection() method.

The following code provides the connection instance for a StructDescriptor
object:

public void setConnection (Connection conn) throws SQLException

Retrieving STRUCT Objects and Attributes
This section discusses how to retrieve and manipulate Oracle objects and their
attributes, using either Oracle-specific features or JDBC 2.0 standard features.

Note: The JDBC driver does not verify that the connection object
from the setConnection() method connects to the same
database from which the type descriptor was initially derived.

Using the Default STRUCT Class for Oracle Objects

Working with Oracle Object Types 9-7

Retrieving an Oracle Object as an oracle.sql.STRUCT Object
You can retrieve an Oracle object directly into an oracle.sql.STRUCT instance. In
the following example, getObject() is used to get a NUMBER object from
column 1 (col1) of the table struct_table. Because getObject() returns an
Object type, the return is cast to an oracle.sql.STRUCT. This example assumes
that the Statement object stmt has already been created.

String cmd;
cmd = "CREATE TYPE type_struct AS object (field1 NUMBER,field2 DATE)";
stmt.execute(cmd);

cmd = "CREATE TABLE struct_table (col1 type_struct)";
stmt.execute(cmd);

cmd = "INSERT INTO struct_table VALUES (type_struct(10,’01-apr-01’))";
stmt.execute(cmd);

cmd = "INSERT INTO struct_table VALUES (type_struct(20,’02-may-02’))";
stmt.execute(cmd);

ResultSet rs= stmt.executeQuery("SELECT * FROM struct_table");
oracle.sql.STRUCT oracleSTRUCT=(oracle.sql.STRUCT)rs.getObject(1);

Another way to return the object as a STRUCT object is to cast the result set to an
OracleResultSet object and use the Oracle extension getSTRUCT() method:

oracle.sql.STRUCT oracleSTRUCT=((OracleResultSet)rs).getSTRUCT(1);

Retrieving an Oracle Object as a java.sql.Struct Object
Alternatively, referring back to the previous example, you can use standard JDBC
functionality such as getObject() to retrieve an Oracle object from the database
as an instance of java.sql.Struct (oracle.jdbc2.Struct under JDK 1.1.x).
Because getObject() returns a java.lang.Object, you must cast the output of
the method to a Struct. For example:

Note: The JDBC driver seamlessly handles embedded objects
(STRUCT objects that are attributes of STRUCT objects) in the same
way that it normally handles objects. When the JDBC driver
retrieves an attribute that is an object, it follows the same rules of
conversion, using the type map if it is available, or using default
mapping if it is not.

Using the Default STRUCT Class for Oracle Objects

9-8 Oracle9i JDBC Developer’s Guide and Reference

ResultSet rs= stmt.executeQuery("SELECT * FROM struct_table");
java.sql.Struct jdbcStruct = (java.sql.Struct)rs.getObject(1);

Retrieving Attributes as oracle.sql Types
If you want to retrieve Oracle object attributes from a STRUCT or Struct instance
as oracle.sql types, use the getOracleAttributes() method of the
oracle.sql.STRUCT class (for a Struct instance, you will have to cast to a
STRUCT instance):

Referring back to the previous examples:

oracle.sql.Datum[] attrs = oracleSTRUCT.getOracleAttributes();

or:

oracle.sql.Datum[] attrs =
 ((oracle.sql.STRUCT)jdbcStruct).getOracleAttributes();

Retrieving Attributes as Standard Java Types
If you want to retrieve Oracle object attributes as standard Java types from a
STRUCT or Struct instance, use the standard getAttributes() method:

Object[] attrs = jdbcStruct.getAttributes();

Binding STRUCT Objects into Statements
To bind an oracle.sql.STRUCT object to a prepared statement or callable
statement, you can either use the standard setObject() method (specifying the
typecode), or cast the statement object to an Oracle statement object and use the
Oracle extension setOracleObject() method. For example:

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
STRUCT mySTRUCT = new STRUCT (...);
ps.setObject(1, mySTRUCT, Types.STRUCT); //OracleTypes.STRUCT under JDK 1.1.x

or:

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
STRUCT mySTRUCT = new STRUCT (...);
((OraclePreparedStatement)ps).setOracleObject(1, mySTRUCT);

Using the Default STRUCT Class for Oracle Objects

Working with Oracle Object Types 9-9

STRUCT Automatic Attribute Buffering
The Oracle JDBC driver furnishes public methods to enable and disable buffering of
STRUCT attributes. (See "ARRAY Automatic Element Buffering" on page 11-9 for a
discussion of how to buffer ARRAY elements.)

The following methods are included with the oracle.sql.STRUCT class:

■ public void setAutoBuffering(boolean enable)

■ public boolean getAutoBuffering()

The setAutoBuffering(boolean) method enables or disables auto-buffering.
The getAutoBuffering() method returns the current auto-buffering mode. By
default, auto-buffering is disabled.

It is advisable to enable auto-buffering in a JDBC application when the STRUCT
attributes will be accessed more than once by the getAttributes() and
getArray() methods (presuming the ARRAY data is able to fit into the JVM
memory without overflow).

When you enable auto-buffering, the oracle.sql.STRUCT object keeps a local
copy of all the converted attributes. This data is retained so that a second access of
this information does not require going through the data format conversion process.

Important: Buffering the converted attributes may cause the JDBC
application to consume a significant amount of memory.

Creating and Using Custom Object Classes for Oracle Objects

9-10 Oracle9i JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
If you want to create custom object classes for your Oracle objects, then you must
define entries in the type map that specify the custom object classes that the drivers
will instantiate for the corresponding Oracle objects.

You must also provide a way to create and populate instances of the custom object
class from the Oracle object and its attribute data. The driver must be able to read
from a custom object class and write to it. In addition, the custom object class can
provide getXXX() and setXXX() methods corresponding to the Oracle object’s
attributes, although this is not necessary. To create and populate the custom classes
and provide these read/write capabilities, you can choose between these two
interfaces:

■ the JDBC standard SQLData interface

■ the ORAData and ORADataFactory interfaces provided by Oracle

The custom object class you create must implement one of these interfaces. The
ORAData interface can also be used to implement the custom reference class
corresponding to the custom object class. If you are using the SQLData interface,
however, you can only use weak reference types in Java (java.sql.Ref or
oracle.sql.REF). The SQLData interface is for mapping SQL objects only.

As an example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Name (which is type CHAR) and EmpNum (employee
number, which is type NUMBER). You use the type map to specify that the
EMPLOYEE object should map to a custom object class that you call JEmployee.
You can implement either the SQLData or ORAData interface in the JEmployee
class.

You can create custom object classes yourself, but the most convenient way to create
them is to employ the Oracle JPublisher utility to create them for you. JPublisher
supports the standard SQLData interface as well as the Oracle-specific ORAData
interface, and is able to generate classes that implement either one. See "Using
JPublisher to Create Custom Object Classes" on page 9-45 for more information.

The following section compares ORAData and SQLData functionality.

Note: If you need to create a custom object class in order to have
object-type inheritance, then see "Object-Type Inheritance" on
page 9-29.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-11

Relative Advantages of ORAData versus SQLData
In deciding which of these two interface implementations to use, consider the
following:

Advantages of ORAData:

■ It does not require an entry in the type map for the Oracle object.

■ It has awareness of Oracle extensions.

■ You can construct a ORAData from an oracle.sql.STRUCT. This is more
efficient because it avoids unnecessary conversions to native Java types.

■ You can obtain the corresponding Datum object (which is in oracle.sql
format) from the ORAData object, using the toDatum() method.

■ It provides better performance: ORAData works directly with Datum types,
which is the internal format used by the driver to hold Oracle objects.

Advantages of SQLData:

■ It is a JDBC standard, making your code more portable.

The SQLData interface is for mapping SQL objects only. The ORAData interface is
more flexible, enabling you to map SQL objects as well as any other SQL type for
which you want to customize processing. You can create a ORAData object from any
datatype found in an Oracle database. This could be useful, for example, for
serializing RAW data in Java.

Understanding Type Maps for SQLData Implementations
If you use the SQLData interface in a custom object class, then you must create type
map entries that specify the custom object class to use in mapping the Oracle object
type (SQL object type) to Java. You can either use the default type map of the
connection object, or a type map that you specify when you retrieve the data from
the result set. The ResultSet interface getObject() method has a signature that
lets you specify a type map:

rs.getObject(int columnIndex);

or:

rs.getObject(int columnIndex, Map map);

For a description of how to create these custom object classes with SQLData, see
"Creating and Using Custom Object Classes for Oracle Objects" on page 9-10.

Creating and Using Custom Object Classes for Oracle Objects

9-12 Oracle9i JDBC Developer’s Guide and Reference

When using a SQLData implementation, if you do not include a type map entry,
then the object will map to the oracle.sql.STRUCT class by default. (ORAData
implementations, by contrast, have their own mapping functionality so that a type
map entry is not required. When using a ORAData implementation, use the Oracle
getORAData() method instead of the standard getObject() method.)

The type map relates a Java class to the SQL type name of an Oracle object. This
one-to-one mapping is stored in a hash table as a keyword-value pair. When you
read data from an Oracle object, the JDBC driver considers the type map to
determine which Java class to use to materialize the data from the Oracle object type
(SQL object type). When you write data to an Oracle object, the JDBC driver gets the
SQL type name from the Java class by calling the getSQLTypeName() method of
the SQLData interface. The actual conversion between SQL and Java is performed
by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either
Java native types or Oracle native types (instances of the oracle.sql.* classes) to
store attributes.

Creating a Type Map Object and Defining Mappings for a SQLData Implementation
When using a SQLData implementation, the JDBC applications programmer is
responsible for providing a type map, which must be an instance of a class as
follows:

■ under JDK 1.2.x, an instance of a class that implements the standard
java.util.Map interface

or:

■ under JDK 1.1.x, an instance of a class that extends the standard
java.util.Dictionary class (or an instance of the Dictionary class itself)

You have the option of creating your own class to accomplish this, but under either
JDK 1.2.x or JDK 1.1.x, the standard class java.util.Hashtable meets the
requirement.

Note: If you are migrating from JDK 1.1.x to JDK 1.2.x, you must
ensure that your code uses a class that implements the Map
interface. If you were using the java.util.Hashtable class
under 1.1.x, then no change is necessary.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-13

Hashtable and other classes used for type maps implement a put() method that
takes keyword-value pairs as input, where each key is a fully qualified SQL type
name and the corresponding value is an instance of a specified Java class.

A type map is associated with a connection instance. The standard
java.sql.Connection interface and the Oracle-specific
oracle.jdbc.OracleConnection interface include a getTypeMap() method.
Under JDK 1.2.x, both return a Map object; under JDK 1.1.x, both return a
Dictionary object.

The remainder of this section covers the following topics:

■ Adding Entries to an Existing Type Map

■ Creating a New Type Map

Adding Entries to an Existing Type Map
When a connection instance is first established, the default type map is empty. You
must populate it to use any SQL-Java mapping functionality.

Follow these general steps to add entries to an existing type map.

1. Use the getTypeMap() method of your OracleConnection object to return
the connection’s type map object. The getTypeMap() method returns a
java.util.Map object (or java.util.Dictionary under JDK 1.1.x). For
example, presuming an OracleConnection instance oraconn:

java.util.Map myMap = oraconn.getTypeMap();

2. Use the type map’s put() method to add map entries. The put() method
takes two arguments: a SQL type name string and an instance of a specified
Java class that you want to map to.

myMap.put(sqlTypeName, classObject);

The sqlTypeName is a string that represents the fully qualified name of the
SQL type in the database. The classObject is the Java class object to which
you want to map the SQL type. Get the class object with the
Class.forName() method, as follows:

Note: If the type map in the OracleConnection instance has
not been initialized, then the first call to getTypeMap() returns an
empty map.

Creating and Using Custom Object Classes for Oracle Objects

9-14 Oracle9i JDBC Developer’s Guide and Reference

myMap.put(sqlTypeName, Class.forName(className));

For example, if you have a PERSON SQL datatype defined in the CORPORATE
database schema, then map it to a Person Java class defined as Person with
this statement:

myMap.put("CORPORATE.PERSON", Class.forName("Person"));

The map has an entry that maps the PERSON SQL datatype in the CORPORATE
database to the Person Java class.

Creating a New Type Map
Follow these general steps to create a new type map. This example uses an instance
of java.util.Hashtable, which extends java.util.Dictionary and, under
JDK 1.2.x, also implements java.util.Map.

1. Create a new type map object.

Hashtable newMap = new Hashtable();

2. Use the put() method of the type map object to add entries to the map. For
more information on the put() method, see Step 2 under "Adding Entries to an
Existing Type Map" on page 9-13. For example, if you have an EMPLOYEE SQL
type defined in the CORPORATE database, then you can map it to an Employee
class object defined by Employee.java, with this statement:

newMap.put("CORPORATE.EMPLOYEE", class.forName("Employee"));

3. When you finish adding entries to the map, use the OracleConnection
object’s setTypeMap() method to overwrite the connection’s existing type
map. For example:

oraconn.setTypeMap(newMap);

In this example, setTypeMap() overwrites the oraconn connection’s original
map with newMap.

Note: SQL type names in the type map must be all uppercase,
because that is how the Oracle database stores SQL names.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-15

Materializing Object Types not Specified in the Type File
If you do not provide a type map with an appropriate entry when using a
getObject() call, then the JDBC driver will materialize an Oracle object as an
instance of the oracle.sql.STRUCT class. If the Oracle object type contains
embedded objects, and they are not present in the type map, the driver will
materialize the embedded objects as instances of oracle.sql.STRUCT as well. If
the embedded objects are present in the type map, a call to the getAttributes()
method will return embedded objects as instances of the specified Java classes from
the type map.

Understanding the SQLData Interface
One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the SQLData
interface. Note that if you use this interface, you must supply a type map that
specifies the Oracle object types in the database and the names of the corresponding
custom object classes that you will create for them.

The SQLData interface defines methods that translate between SQL and Java for
Oracle database objects. Standard JDBC provides a SQLData interface and
companion SQLInput and SQLOutput interfaces in the java.sql package
(oracle.jdbc2 package under JDK 1.1.x).

If you create a custom object class that implements SQLData, then you must
provide a readSQL() method and a writeSQL() method, as specified by the
SQLData interface.

The JDBC driver calls your readSQL() method to read a stream of data values
from the database and populate an instance of your custom object class. Typically,
the driver would use this method as part of an OracleResultSet object
getObject() call.

Similarly, the JDBC driver calls your writeSQL() method to write a sequence of
data values from an instance of your custom object class to a stream that can be
written to the database. Typically, the driver would use this method as part of an
OraclePreparedStatement object setObject() call.

Note: The default type map of a connection instance is used when
mapping is required but no map name is specified, such as for a
result set getObject() call that does not specify the map as input.

Creating and Using Custom Object Classes for Oracle Objects

9-16 Oracle9i JDBC Developer’s Guide and Reference

Understanding the SQLInput and SQLOutput Interfaces
The JDBC driver includes classes that implement the SQLInput and SQLOutput
interfaces. It is not necessary to implement the SQLOutput or SQLInput
objects—the JDBC drivers will do this for you.

The SQLInput implementation is an input stream class, an instance of which must
be passed in to the readSQL() method. SQLInput includes a readXXX() method
for every possible Java type that attributes of an Oracle object might be converted
to, such as readObject(), readInt(), readLong(), readFloat(),
readBlob(), and so on. Each readXXX() method converts SQL data to Java data
and returns it into an output parameter of the corresponding Java type. For
example, readInt() returns an integer.

The SQLOutput implementation is an output stream class, an instance of which
must be passed in to the writeSQL() method. SQLOutput includes a
writeXXX() method for each of these Java types. Each writeXXX() method
converts Java data to SQL data, taking as input a parameter of the relevant Java
type. For example, writeString() would take as input a string attribute from
your Java class.

Implementing readSQL() and writeSQL() Methods
When you create a custom object class that implements SQLData, you must
implement the readSQL() and writeSQL() methods, as described here.

You must implement readSQL() as follows:

public void readSQL(SQLInput stream, String sql_type_name) throws SQLException

■ The readSQL() method takes as input a SQLInput stream and a string that
indicates the SQL type name of the data (in other words, the name of the Oracle
object type, such as EMPLOYEE).

When your Java application calls getObject(), the JDBC driver creates a
SQLInput stream object and populates it with data from the database. The
driver can also determine the SQL type name of the data when it reads it from
the database. When the driver calls readSQL(), it passes in these parameters.

■ For each Java datatype that maps to an attribute of the Oracle object,
readSQL() must call the appropriate readXXX() method of the SQLInput
stream that is passed in.

For example, if you are reading EMPLOYEE objects that have an employee name
as a CHAR variable and an employee number as a NUMBER variable, you must
have a readString() call and a readInt() call in your readSQL() method.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-17

JDBC calls these methods according to the order in which the attributes appear
in the SQL definition of the Oracle object type.

■ The readSQL() method takes the data that the readXXX() methods read and
convert, and assigns them to the appropriate fields or elements of a custom
object class instance.

You must implement writeSQL() as follows:

public void writeSQL(SQLOutput stream) throws SQLException

■ The writeSQL() method takes as input a SQLOutput stream.

When your Java application calls setObject(), the JDBC driver creates a
SQLOutput stream object and populates it with data from a custom object class
instance. When the driver calls writeSQL(), it passes in this stream parameter.

■ For each Java datatype that maps to an attribute of the Oracle object,
writeSQL() must call the appropriate writeXXX() method of the
SQLOutput stream that is passed in.

For example, if you are writing to EMPLOYEE objects that have an employee
name as a CHAR variable and an employee number as a NUMBER variable, then
you must have a writeString() call and a writeInt() call in your
writeSQL() method. These methods must be called according to the order in
which attributes appear in the SQL definition of the Oracle object type.

■ The writeSQL() method then writes the data converted by the writeXXX()
methods to the SQLOutput stream so that it can be written to the database once
you execute the prepared statement.

Reading and Writing Data with a SQLData Implementation
This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLData.

Reading SQLData Objects from a Result Set
This section summarizes the steps to read data from an Oracle object into your Java
application when you choose the SQLData implementation for your custom object
class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object stmt.

Creating and Using Custom Object Classes for Oracle Objects

9-18 Oracle9i JDBC Developer’s Guide and Reference

1. Query the database to read the Oracle object into a JDBC result set.

ResultSet rs = stmt.executeQuery("SELECT emp_col FROM personnel");

The PERSONNEL table contains one column, EMP_COL, of SQL type EMP_
OBJECT. This SQL type is defined in the type map to map to the Java class
Employee.

2. Use the getObject() method of your result set to populate an instance of
your custom object class with data from one row of the result set. The
getObject() method returns the user-defined SQLData object because the
type map contains an entry for Employee.

if (rs.next())
 Employee emp = (Employee)rs.getObject(1);

Note that if the type map did not have an entry for the object, then
getObject() would return an oracle.sql.STRUCT object. Cast the output
to type STRUCT, because the getObject() method signature returns the
generic java.lang.Object type.

if (rs.next())
 STRUCT empstruct = (STRUCT)rs.getObject(1);

The getObject() call triggers readSQL() and readXXX() calls from the
SQLData interface, as described above.

3. If you have get methods in your custom object class, then use them to read
data from your object attributes. For example, if EMPLOYEE has an EmpName
(employee name) of type CHAR, and an EmpNum (employee number) of type
NUMBER, then provide a getEmpName() method that returns a Java String
and a getEmpNum() method that returns an integer (int). Then invoke them
in your Java application, as follows:

String empname = emp.getEmpName();
int empnumber = emp.getEmpNum();

Note: If you want to avoid using a type map, then use the
getSTRUCT() method. This method always returns a STRUCT
object, even if there is a mapping entry in the type map.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-19

Retrieving SQLData Objects from a Callable Statement OUT Parameter
Suppose you have an OracleCallableStatement ocs that calls a PL/SQL
function GETEMPLOYEE(). The program passes an employee number (empnumber)
to the function; the function returns the corresponding Employee object.

1. Prepare an OracleCallableStatement to call the GETEMPLOYEE()
function.

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{ ? = call GETEMPLOYEE(?) }");

2. Declare the empnumber as the input parameter to GETEMPLOYEE(). Register
the SQLData object as the OUT parameter, with typecode
OracleTypes.STRUCT. Then, execute the statement.

ocs.setInt(2, empnumber);
ocs.registerOutParameter(1, OracleTypes.STRUCT, "EMP_OBJECT");
ocs.execute();

3. Use the getObject() method to retrieve the employee object. The following
code assumes that there is a type map entry to map the Oracle object to Java
type Employee:

Employee emp = (Employee)ocs.getObject(1);

If there is no type map entry, then getObject() would return an
oracle.sql.STRUCT object. Cast the output to type STRUCT, because the
getObject() method signature returns the generic java.lang.Object
type:

STRUCT emp = (STRUCT)ocs.getObject(1);

Passing SQLData Objects to a Callable Statement as an IN Parameter
Suppose you have a PL/SQL function addEmployee(?) that takes an Employee
object as an IN parameter and adds it to the PERSONNEL table. In this example, emp
is a valid Employee object.

1. Prepare an OracleCallableStatement to call the addEmployee(?)
function.

Note: Alternatively, fetch data by using a callable statement
object, which also has a getObject() method.

Creating and Using Custom Object Classes for Oracle Objects

9-20 Oracle9i JDBC Developer’s Guide and Reference

OracleCallableStatement ocs =
 (OracleCallableStatement) conn.prepareCall("{ call addEmployee(?) }");

2. Use setObject() to pass the emp object as an IN parameter to the callable
statement. Then, execute the statement.

ocs.setObject(1, emp);
ocs.execute();

Writing Data to an Oracle Object Using a SQLData Implementation
This section describes the steps in writing data to an Oracle object from your Java
application when you choose the SQLData implementation for your custom object
class.

This description assumes you have already defined the Oracle object type, created
the corresponding Java class, and updated the type map to define the mapping
between the Oracle object and the Java class.

1. If you have set methods in your custom object class, then use them to write
data from Java variables in your application to attributes of your Java datatype
object.

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

This statement uses the emp object and the empname and empnumber variables
assigned in "Reading SQLData Objects from a Result Set" on page 9-17.

2. Prepare a statement that updates an Oracle object in a row of a database table,
as appropriate, using the data provided in your Java datatype object.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO PERSONNEL VALUES (?)");

This assumes conn is your connection object.

3. Use the setObject() method of the prepared statement to bind your Java
datatype object to the prepared statement.

pstmt.setObject(1, emp);

4. Execute the statement, which updates the database.

pstmt.executeUpdate();

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-21

Understanding the ORAData Interface
One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the
oracle.sql.ORAData and oracle.sql.ORADataFactory interfaces (or you
can implement ORADataFactory in a separate class). The ORAData and
ORADataFactory interfaces are supplied by Oracle and are not a part of the JDBC
standard.

Understanding ORAData Features
The ORAData interface has these advantages:

■ It recognizes Oracle extensions to the JDBC; ORAData uses
oracle.sql.Datum types directly.

■ It does not require a type map to specify the names of the Java custom classes
you want to create.

■ It provides better performance: ORAData works directly with Datum types, the
internal format the driver uses to hold Oracle objects.

The ORAData and ORADataFactory interfaces do the following:

■ The toDatum() method of the ORAData class transforms the data into an
oracle.sql.* representation.

■ ORADataFactory specifies a create() method equivalent to a constructor
for your custom object class. It creates and returns a ORAData instance. The
JDBC driver uses the create() method to return an instance of the custom
object class to your Java application or applet. It takes as input an
oracle.sql.Datum object and an integer indicating the corresponding SQL
typecode as specified in the OracleTypes class.

ORAData and ORADataFactory have the following definitions:

public interface ORAData
{
 Datum toDatum (OracleConnection conn) throws SQLException;
}

public interface ORADataFactory

Note: The JPublisher utility supports the generation of classes that
implement the ORAData and ORADataFactory interfaces. See
"Using JPublisher to Create Custom Object Classes" on page 9-45.

Creating and Using Custom Object Classes for Oracle Objects

9-22 Oracle9i JDBC Developer’s Guide and Reference

{
 ORAData create (Datum d, int sql_Type_Code) throws SQLException;
}

Where conn represents the Connection object, d represents an object of type
oracle.sql.Datum, and sql_Type_Code represents the SQL typecode (from the
standard Types or OracleTypes class) of the Datum object.

Retrieving and Inserting Object Data
The JDBC drivers provide the following methods to retrieve and insert object data
as instances of ORAData.

To retrieve object data:

■ Use the Oracle-specific OracleResultSet class getORAData() method
(assume an OracleResultSet object ors):

ors.getORAData (int col_index, ORADataFactory factory);

This method takes as input the column index of the data in your result set, and
a ORADataFactory instance. For example, you can implement a
getORAFactory() method in your custom object class to produce the
ORADataFactory instance to input to getORAData(). The type map is not
required when using Java classes that implement ORAData.

or:

■ Use the standard getObject(index, map) method specified by the
ResultSet interface to retrieve data as instances of ORAData. In this case, you
must have an entry in the type map that identifies the factory class to be used
for the given object type, and its corresponding SQL type name.

To insert object data:

■ Use the Oracle-specific OraclePreparedStatement class setORAData()
method (assume an OraclePreparedStatement object ops):

ops.setORAData (int bind_index, ORAData custom_obj);

This method takes as input the parameter index of the bind variable and the
name of the object containing the variable.

or:

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-23

■ Use the standard setObject() method specified by the
PreparedStatement interface. You can also use this method, in its different
forms, to insert ORAData instances without requiring a type map.

The following sections describe the getORAData() and setORAData() methods.

To continue the example of an Oracle object EMPLOYEE, you might have something
like the following in your Java application:

ORAData datum = ors.getORAData(1, Employee.getORAFactory());

In this example, ors is an Oracle result set, getORAData() is a method in the
OracleResultSet class used to retrieve a ORAData object, and the EMPLOYEE is
in column 1 of the result set. The static Employee.getORAFactory() method
will return a ORADataFactory to the JDBC driver. The JDBC driver will call
create() from this object, returning to your Java application an instance of the
Employee class populated with data from the result set.

Reading and Writing Data with a ORAData Implementation
This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements ORAData.

Reading Data from an Oracle Object Using a ORAData Implementation
This section summarizes the steps in reading data from an Oracle object into your
Java application. These steps apply whether you implement ORAData manually or
use JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class or had JPublisher create it for you, and defined a
statement object stmt.

Notes:

■ ORAData and ORADataFactory are defined as separate
interfaces so that different Java classes can implement them if
you wish (such as an Employee class and an
EmployeeFactory class).

■ To use the ORAData interface, your custom object classes must
import oracle.sql.* (or at least ORAData,
ORADataFactory, and Datum).

Creating and Using Custom Object Classes for Oracle Objects

9-24 Oracle9i JDBC Developer’s Guide and Reference

1. Query the database to read the Oracle object into a result set, casting to an
Oracle result set.

OracleResultSet ors = (OracleResultSet)stmt.executeQuery
 ("SELECT Emp_col FROM PERSONNEL");

Where PERSONNEL is a one-column table. The column name is Emp_col of
type Employee_object.

2. Use the getORAData() method of your Oracle result set to populate an
instance of your custom object class with data from one row of the result set.
The getORAData() method returns an oracle.sql.ORAData object, which
you can cast to your specific custom object class.

if (ors.next())
 Employee emp = (Employee)ors.getORAData(1, Employee.getORAFactory());

or:

if (ors.next())
 ORAData datum = ors.getORAData(1, Employee.getORAFactory());

This example assumes that Employee is the name of your custom object class
and ors is the name of your OracleResultSet object.

In case you do not want to use getORAData(), the JDBC drivers let you use
the getObject() method of a standard JDBC ResultSet to retrieve
ORAData data. However, you must have an entry in the type map that
identifies the factory class to be used for the given object type, and its
corresponding SQL type name.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Employee, which will implement ORAData. The
corresponding Factory class is EmployeeFactory, which will implement
ORADataFactory.

Use this statement to declare the EmployeeFactory entry for your type map:

map.put ("EMPLOYEE", Class.forName ("EmployeeFactory"));

Then use the form of getObject() where you specify the map object:

Employee emp = (Employee) rs.getObject (1, map);

If the connection’s default type map already has an entry that identifies the
factory class to be used for the given object type, and its corresponding SQL
type name, then you can use this form of getObject():

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-25

Employee emp = (Employee) rs.getObject (1);

3. If you have get methods in your custom object class, use them to read data
from your object attributes into Java variables in your application. For example,
if EMPLOYEE has EmpName of type CHAR and EmpNum (employee number) of
type NUMBER, provide a getEmpName() method that returns a Java string and
a getEmpNum() method that returns an integer. Then invoke them in your Java
application as follows:

String empname = emp.getEmpName();
int empnumber = emp.getEmpNum();

Writing Data to an Oracle Object Using a ORAData Implementation
This section summarizes the steps in writing data to an Oracle object from your Java
application. These steps apply whether you implement ORAData manually or use
JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type and created the
corresponding custom object class (or had JPublisher create it for you).

1. If you have set methods in your custom object class, then use them to write
data from Java variables in your application to attributes of your Java datatype
object.

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

This statement uses the emp object and the empname and empnumber variables
defined in "Reading Data from an Oracle Object Using a ORAData
Implementation" on page 9-23.

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java datatype
object.

Note: Alternatively, you can fetch data into a callable statement
object. The OracleCallableStatement class also has a
getORAData() method.

Note: The type map is not used when you are performing
database INSERT and UPDATE operations.

Creating and Using Custom Object Classes for Oracle Objects

9-26 Oracle9i JDBC Developer’s Guide and Reference

OraclePreparedStatement opstmt = conn.prepareStatement
 ("UPDATE PERSONNEL SET Employee = ? WHERE Employee.EmpNum = 28959);

This assumes conn is your Connection object.

3. Use the setORAData() method of the Oracle prepared statement to bind your
Java datatype object to the prepared statement.

opstmt.setORAData(1, emp);

The setORAData() method calls the toDatum() method of the custom object
class instance to retrieve an oracle.sql.STRUCT object that can be written to
the database.

In this step you could also use the setObject() method to bind the Java
datatype. For example:

opstmt.setObject(1,emp);

Additional Uses for ORAData
The ORAData interface offers far more flexibility than the SQLData interface. The
SQLData interface is designed to let you customize the mapping of only Oracle
object types (SQL object types) to Java types of your choice. Implementing the
SQLData interface lets the JDBC driver populate fields of a custom Java class
instance from the original SQL object data, and the reverse, after performing the
appropriate conversions between Java and SQL types.

The ORAData interface goes beyond supporting the customization of Oracle object
types to Java types. It lets you provide a mapping between Java object types and any
SQL type supported by the oracle.sql package.

It might be useful to provide custom Java classes to wrap oracle.sql.* types
and perhaps implement customized conversions or functionality as well. The
following are some possible scenarios:

■ to perform encryption and decryption or validation of data

■ to perform logging of values that have been read or are being written

■ to parse character columns (such as character fields containing URL
information) into smaller components

Note: You can use your Java datatype objects as either IN or OUT
bind variables.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 9-27

■ to map character strings into numeric constants

■ to map data into more desirable Java formats (such as mapping a DATE field to
java.util.Date format)

■ to customize data representation (for example, data in a table column is in feet
but you want it represented in meters after it is selected)

■ to serialize and deserialize Java objects—into or out of RAW fields, for example

For example, use ORAData to store instances of Java objects that do not correspond
to a particular SQL Oracle9 object type in the database in columns of SQL type RAW.
The create() method in ORADataFactory would have to implement a
conversion from an object of type oracle.sql.RAW to the desired Java object. The
toDatum() method in ORAData would have to implement a conversion from the
Java object to an oracle.sql.RAW object. This can be done, for example, by using
Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an oracle.sql.RAW and calls the ORADataFactory's create() method
to convert the oracle.sql.RAW object to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a
column of type RAW to store it. The driver transparently calls the
ORAData.toDatum() method to convert the Java object to an oracle.sql.RAW
object. This object is then stored in a column of type RAW in the database.

Support for the ORAData interfaces is also highly efficient because the conversions
are designed to work using oracle.sql.* formats, which happen to be the
internal formats used by the JDBC drivers. Moreover, the type map, which is
necessary for the SQLData interface, is not required when using Java classes that
implement ORAData. For more information on why classes that implement
ORAData do not need a type map, see "Understanding the ORAData Interface" on
page 9-21.

The Deprecated CustomDatum Interface
As a result of the oracle.jdbc interfaces being introduced in Oracle9i as an
alternative to the oracle.jdbc.driver classes, the oracle.sql.CustomDatum
and oracle.sql.CustomDatumFactory interfaces, formerly used to access
customized objects, have been deprecated by the new
interfaces—oracle.sql.ORAData and oracle.sql.ORADataFactory.

The following are the specifications for the CustomDatum and
CustomDatumFactory interfaces:

Creating and Using Custom Object Classes for Oracle Objects

9-28 Oracle9i JDBC Developer’s Guide and Reference

public interface CustomDatum
{
 oracle.sql.Datum toDatum(
 oracle.jdbc.driver.OracleConnection c
) throws SQLException ;

// The following is expected to be present in an
// implementation:
//
// - Definition of public static fields for
// _SQL_TYPECODE, _SQL_NAME and _SQL_BASETYPE.
// (See Oracle Jdbc documentation for details.)
//
// - Definition of
// public static CustomDatumFactory
// getFactory();
//
}

public interface CustomDatumFactory
{
 oracle.sql.CustomDatum create(
 oracle.sql.Datum d, int sqlType
) throws SQLException;
}

Object-Type Inheritance

Working with Oracle Object Types 9-29

Object-Type Inheritance
Object-type inheritance is an Oracle9i feature which allows a new object type to be
created by extending another object type. (While Oracle9i does not yet support
JDBC 3.0, object-type inheritance is supported and documented.) The new object
type is then a subtype of the object type from which it extends. The subtype
automatically inherits all the attributes and methods defined in the supertype. The
subtype can add attributes and methods, and overload or override methods
inherited from the supertype.

Object-type inheritance introduces substitutability. Substitutability is the ability of a
slot declared to hold a value of type T to do so in addition to any subtype of type T.
Oracle9i JDBC drivers handle substitutability transparently.

A database object is returned with its most specific type without losing information.
For example, if the STUDENT_T object is stored in a PERSON_T slot, the Oracle JDBC
driver returns a Java object that represents the STUDENT_T object.

Creating Subtypes
Create custom object classes if you want to have Java classes that explicitly
correspond to the Oracle object types. (See "Creating and Using Custom Object
Classes for Oracle Objects" on page 9-10.) If you have a hierarchy of object types,
you may want a corresponding hierarchy of Java classes.

The most common way to create a database subtype in JDBC is to pass the extended
SQL CREATE TYPE command to the execute() method of the
java.sql.Statement interface. For example, to create a type inheritance
hierarchy for:

PERSON_T
|
STUDENT_T
|
PARTTIMESTUDENT_T

the JDBC code can be:

statement s = conn.createStatement();
s.execute ("CREATE TYPE Person_T (SSN NUMBER, name VARCHAR2(30),
 address VARCHAR2(255))");
s.execute ("CREATE TYPE Student_T UNDER Person_t (deptid NUMBER,
 major VARCHAR2(100))");
s.execute ("CREATE TYPE PartTimeStudent_t UNDER Student_t (numHours NUMBER)");

Object-Type Inheritance

9-30 Oracle9i JDBC Developer’s Guide and Reference

In the following code, the "foo" member procedure in type ST is overloaded and
the member procedure "print" overwrites the copy it inherits from type T.

CREATE TYPE T AS OBJECT (...,
 MEMBER PROCEDURE foo(x NUMBER),
 MEMBER PROCEDURE Print(),
 ...
 NOT FINAL;

CREATE TYPE ST UNDER T (...,
 MEMBER PROCEDURE foo(x DATE), <-- overload "foo"
 OVERRIDING MEMBER PROCEDURE Print(), <-- override "print"
 STATIC FUNCTION bar(...) ...
 ...
);

Once the subtypes have been created, they can be used as both columns of a base
table as well as attributes of a object type. For complete details on the syntax to
create subtypes, see the Oracle9i Application Developer’s Guide - Object-Relational
Features for details.

Implementing Customized Classes for Subtypes
In most cases, a customized Java class represents a database object type. When you
create a customized Java class for a subtype, the Java class can either mirror the
database object type hierarchy or not.

You can use either the ORAData or SQLData solution in creating classes to map to
the hierarchy of object types.

Use of ORAData for Type Inheritance Hierarchy
Customized mapping where Java classes implement the oracle.sql.ORAData
interface is the recommended mapping. (See "Relative Advantages of ORAData
versus SQLData" on page 9-11.) ORAData mapping requires the JDBC application to
implement the ORAData and ORADataFactory interfaces. The class implementing
the ORADataFactory interface contains a factory method that produces objects.
Each object represents a database object.

The hierarchy of the class implementing the ORAData interface can mirror the
database object type hierarchy. For example, the Java classes mapping to PERSON_T
and STUDENT_T are as follows:

Object-Type Inheritance

Working with Oracle Object Types 9-31

Person.java using ORAData Code for the Person.java class which implements the
ORAData and ORADataFactory interfaces:

class Person implements ORAData, ORADataFactory
{
 static final Person _personFactory = new Person();

 public NUMBER ssn;
 public CHAR name;
 public CHAR address;

 public static ORADataFactory getORADataFactory()
 {
 return _personFactory;
 }

 public Person () {}

 public Person(NUMBER ssn, CHAR name, CHAR address)
 {
 this.ssn = ssn;
 this.name = name;
 this.address = address;
 }

 public Datum toDatum(OracleConnection c) throws SQLException
 {
 StructDescriptor sd =
 StructDescriptor.createDescriptor("SCOTT.PERSON_T", c);
 Object [] attributes = { ssn, name, address };
 return new STRUCT(sd, c, attributes);
 }

 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Object [] attributes = ((STRUCT) d).getOracleAttributes();
 return new Person((NUMBER) attributes[0],
 (CHAR) attributes[1],
 (CHAR) attributes[2]);
 }
}

Object-Type Inheritance

9-32 Oracle9i JDBC Developer’s Guide and Reference

Student.java extending Person.java Code for the Student.java class which extends
the Person.java class:

class Student extends Person
{
 static final Student _studentFactory = new Student ();

 public NUMBER deptid;
 public CHAR major;

 public static ORADataFactory getORADataFactory()
 {
 return _studentFactory;
 }

 public Student () {}

 public Student (NUMBER ssn, CHAR name, CHAR address,
 NUMBER deptid, CHAR major)
 {
 super (ssn, name, address);
 this.deptid = deptid;
 this.major = major;
 }

 public Datum toDatum(OracleConnection c) throws SQLException
 {
 StructDescriptor sd =
 StructDescriptor.createDescriptor("SCOTT.STUDENT_T", c);
 Object [] attributes = { ssn, name, address, deptid, major };
 return new STRUCT(sd, c, attributes);
 }

 public CustomDatum create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Object [] attributes = ((STRUCT) d).getOracleAttributes();
 return new Student((NUMBER) attributes[0],
 (CHAR) attributes[1],
 (CHAR) attributes[2],
 (NUMBER) attributes[3],
 (CHAR) attributes[4]);
 }
}

Object-Type Inheritance

Working with Oracle Object Types 9-33

Customized classes that implement the ORAData interface do not have to mirror the
database object type hierarchy. For example, you could have declared the above
class, Student, without a superclass. In this case, Student would contain fields to
hold the inherited attributes from PERSON_T as well as the attributes declared by
STUDENT_T.

ORADataFactory Implementation The JDBC application uses the factory class in
querying the database to return instances of Person or its subclasses, as in the
following example:

ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 Object s = rset.getORAData (1, PersonFactory.getORADataFactory());
 ...
}

A class implementing the ORADataFactory interface should be able to produce
instances of the associated custom object type, as well as instances of any subtype,
or at least all the types you expect to support.

In the following example, the PersonFactory.getORADataFactory() method
returns a factory that can handle PERSON_T, STUDENT_T, and PARTTIMESTUDENT_
T objects (by returning person, student, or parttimestudent Java instances).

class PersonFactory implements ORADataFactory
{
 static final PersonFactory _factory = new PersonFactory ();

 public static ORADataFactory getORADataFactory()
 {
 return _factory;
 }

 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 STRUCT s = (STRUCT) d;
 if (s.getSQLTypeName ().equals ("SCOTT.PERSON_T"))
 return Person.getORADataFactory ().create (d, sqlType);
 else if (s.getSQLTypeName ().equals ("SCOTT.STUDENT_T"))
 return Student.getORADataFactory ().create(d, sqlType);
 else if (s.getSQLTypeName ().equals ("SCOTT.PARTTIMESTUDENT_T"))
 return ParttimeStudent.getORADataFactory ().create(d, sqlType);
 else
 return null;

Object-Type Inheritance

9-34 Oracle9i JDBC Developer’s Guide and Reference

 }
}

The following example assumes a table tab1, such as the following:

CREATE TABLE tab1 (idx NUMBER, person PERSON_T);
INSERT INTO tabl1 VALUES (1, PERSON_T (1000, 'Scott', '100 Oracle Parkway'));
INSERT INTO tabl1 VALUES (2, STUDENT_T (1001, 'Peter', '200 Oracle Parkway',
101, 'CS'));
INSERT INTO tabl1 VALUES (3, PARTTIMESTUDENT_T (1002, 'David', '300 Oracle
Parkway', 102, 'EE'));

Use of SQLData for Type Inheritance Hierarchy
The customized classes that implement the java.sql.SQLData interface can
mirror the database object type hierarchy. The readSQL() and writeSQL()
methods of a subclass cascade each call to the corresponding methods in the
superclass in order to read or write the superclass attributes before reading or
writing the subclass attributes. For example, the Java classes mapping to PERSON_T
and STUDENT_T are as follows:

Person.java using SQLData Code for the Person.java class which implements the
SQLData interface:

import java.sql.*;

public class Person implements SQLData
{
 private String sql_type;
 public int ssn;
 public String name;
 public String address;

 public Person () {}

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 ssn = stream.readInt();
 name = stream.readString();
 address = stream.readString();
 }

Object-Type Inheritance

Working with Oracle Object Types 9-35

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeInt (ssn);
 stream.writeString (name);
 stream.writeString (address);
 }
}

Student.java extending Student.java Code for the Student.java class which extends
the Person.java class:

import java.sql.*;

public class Student extends Person
{
 private String sql_type;
 public int deptid;
 public String major;

 public Student () { super(); }

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 super.readSQL (stream, typeName); // read supertype attributes
 sql_type = typeName;
 deptid = stream.readInt();
 major = stream.readString();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 super.writeSQL (stream); // write supertype
 // attributes
 stream.writeInt (deptid);
 stream.writeString (major);
 }
}

Customized classes that implement the SQLData interface do not have to mirror the
database object type hierarchy. For example, you could have declared the above
class, Student, without a superclass. In this case, Student would contain fields to

Object-Type Inheritance

9-36 Oracle9i JDBC Developer’s Guide and Reference

hold the inherited attributes from PERSON_T as well as the attributes declared by
STUDENT_T.

Student.java using SQLData Code for the Student.java class which does not extend
the Person.java class, but implements the SQLData interface directly:

import java.sql.*;

public class Student implements SQLData
{
 private String sql_type;

 public int ssn;
 public String name;
 public String address;
 public int deptid;
 public String major;

 public Student () {}

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 ssn = stream.readInt();
 name = stream.readString();
 address = stream.readString();
 deptid = stream.readInt();
 major = stream.readString();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeInt (ssn);
 stream.writeString (name);
 stream.writeString (address);
 stream.writeInt (deptid);
 stream.writeString (major);
 }
}

Object-Type Inheritance

Working with Oracle Object Types 9-37

JPublisher Utility
Even though you can manually create customized classes that implement the
SQLData, ORAData, and ORADataFactory interfaces, it is recommended that you
use Oracle9i JPublisher to automatically generate these classes. The customized
classes generated by JPublisher that implement the SQLData, ORAData, and
ORADataFactory interfaces, can mirror the inheritance hierarchy.

To learn more about JPublisher, see "Using JPublisher to Create Custom Object
Classes" on page 9-45 and the Oracle9i JPublisher User’s Guide.

Retrieving Subtype Objects
In a typical JDBC application, a subtype object is returned as one of the following:

■ A query result

■ A PL/SQL OUT parameter

■ A type attribute

You can use either the default (oracle.sql.STRUCT), ORAData, or SQLData
mapping to retrieve a subtype.

Using Default Mapping
By default, a database object is returned as an instance of the oracle.sql.STRUCT
class. This instance may represent an object of either the declared type or subtype of
the declared type. If the STRUCT class represents a subtype object in the database,
then it contains the attributes of its supertype as well as those defined in the
subtype.

The Oracle JDBC driver returns database objects in their most specific type. The
JDBC application can use the getSQLTypeName() method of the STRUCT class to
determine the SQL type of the STRUCT object. The following code shows this:

// tab1.person column can store PERSON_T, STUDENT_T and PARTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getObject(1);
 if (s != null)
 System.out.println (s.getSQLTypeName()); // print out the type name which
 // may be SCOTT.PERSON_T,
 // SCOTT.STUDENT_T or
 // SCOTT.PARTTIMESTUDENT_T
}

Object-Type Inheritance

9-38 Oracle9i JDBC Developer’s Guide and Reference

Using SQLData Mapping
With SQLData mapping, the JDBC driver returns the database object as an instance
of the class implementing the SQLData interface.

To use SQLData mapping in retrieving database objects, do the following:

1. Implement the wrapper classes that implement the SQLData interface for the
desired object types.

2. Populate the connection type map with entries that specify what custom Java
type corresponds to each Oracle object type (SQL object type).

3. Use the getObject() method to access the SQL object values.

The JDBC driver checks the type map for a entry match. If one exists, the driver
returns the database object as an instance of the class implementing the
SQLData interface.

The following code shows the whole SQLData customized mapping process:

// The JDBC application developer implements Person.java for PERSON_T,
// Student.java for STUDENT_T
// and ParttimeStudent.java for PARTTIMESTUDEN_T.

Connection conn = ...; // make a JDBC connection

// obtains the connection typemap
java.util.Map map = conn.getTypeMap ();

// populate the type map
map.put ("SCOTT.PERSON_T", Class.forName ("Person"));
map.put ("SCOTT.STUDENT_T", Class.forName ("Student"));
map.put ("SCOTT.PARTTIMESTUDENT_T", Class.forName ("ParttimeStudent"));

// tab1.person column can store PERSON_T, STUDENT_T and PARTTIMESTUDENT_T
objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 // "s" is instance of Person, Student or ParttimeStudent
 Object s = rset.getObject(1);

 if (s != null)
 {

Object-Type Inheritance

Working with Oracle Object Types 9-39

 if (s instanceof Person)
 System.out.println ("This is a Person");
 else if (s instanceof Student)
 System.out.println ("This is a Student");
 else if (s instanceof ParttimeStudent)
 System.out.pritnln ("This is a PartimeStudent");
 else
 System.out.println ("Unknown type");
 }
}

The JDBC drivers check the connection type map for each call to the following:

■ getObject() method of the java.sql.ResultSet and
java.sql.CallableStatement interfaces

■ getAttribute() method of the java.sql.Struct interface

■ getArray() method of the java.sql.Array interface

■ getValue() method of the oracle.sql.REF interface

Using ORAData Mapping
With ORAData mapping, the JDBC driver returns the database object as an instance
of the class implementing the ORAData interface.

The Oracle JDBC driver needs to be informed of what Java class is mapped to the
Oracle object type. The following are the two ways to inform the Oracle JDBC
drivers:

■ The JDBC application uses the
getORAData(int idx, ORADataFactory f) method to access database
objects. The second parameter of the getORAData() method specifies an
instance of the factory class that produces the customized class. The
getORAData() method is available in the OracleResultSet and
OracleCallableStatement classes.

■ The JDBC application populates the connection type map with entries that
specify what custom Java type corresponds to each Oracle object type. The
getObject() method is used to access the Oracle object values.

The first approach avoids the type-map lookup and is therefore more efficient.
However, the second approach involves the use of the standard getObject()
method. The following code example demonstrates the first approach:

// tab1.person column can store both PERSON_T and STUDENT_T objects

Object-Type Inheritance

9-40 Oracle9i JDBC Developer’s Guide and Reference

ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 Object s = rset.getORAData (1, PersonFactory.getORADataFactory());
 if (s != null)
 {
 if (s instanceof Person)
 System.out.println ("This is a Person");
 else if (s instanceof Student)
 System.out.println ("This is a Student");
 else if (s instanceof ParttimeStudent)
 System.out.pritnln ("This is a PartimeStudent");
 else
 System.out.println ("Unknown type");
 }
}

Creating Subtype Objects
There are cases where JDBC applications create database subtype objects with JDBC
drivers. These objects are sent either to the database as bind variables or are used to
exchange information within the JDBC application.

With customized mapping, the JDBC application creates either SQLData- or
ORAData-based objects (depending on which approach you choose) to represent
database subtype objects. With default mapping, the JDBC application creates
STRUCT objects to represent database subtype objects. All the data fields inherited
from the supertype as well as all the fields defined in the subtype must have values.
The following code demonstrates this:

Connection conn = ... // make a JDBC connection
StructDescriptor desc = StructDescriptor.createDescriptor
("SCOTT.PARTTIMESTUDENT", conn);
Object[] attrs = {
 new Integer(1234), "Scott", "500 Oracle Parkway", // data fields defined in
 // PERSON_T
 new Integer(102), "CS", // data fields defined in
 // STUDENT_T
 new Integer(4) // data fields defined in
 // PARTTIMESTUDENT_T
};
STRUCT s = new STRUCT (desc, conn, attrs);

Object-Type Inheritance

Working with Oracle Object Types 9-41

s is initialized with data fields inherited from PERSON_T and STUDENT_T, and data
fields defined in PARTTIMESTUDENT_T.

Sending Subtype Objects
In a typical JDBC application, a Java object that represents a database object is sent
to the databases as one of the following:

■ A Data Manipulation Language (DML) bind variable

■ A PL/SQL IN parameter

■ An object type attribute value

The Java object can be an instance of the STRUCT class or an instance of the class
implementing either the SQLData or ORAData interface. The Oracle JDBC driver
will convert the Java object into the linearized format acceptable to the database
SQL engine. Binding a subtype object is the same as binding a normal object.

Accessing Subtype Data Fields
While the logic to access subtype data fields is part of the customized class, this
logic for default mapping is defined in the JDBC application itself. The database
objects are returned as instances of the oracle.sql.STRUCT class. The JDBC
application needs to call one of the following access methods in the STRUCT class to
access the data fields:

■ Object[] getAttribute()

■ oracle.sql.Datum[] getOracleAttribute()

Subtype Data Fields from the getAttribute() Method
The getAttribute() method of the java.sql.Struct interface is used in
JDBC 2.0 to access object data fields. This method returns a java.lang.Object
array, where each array element represents an object attribute. You can determine
the individual element type by referencing the corresponding attribute type in the
JDBC conversion matrix, as listed in Table 6–1, "Oracle Datatype Classes". For
example, a SQL NUMBER attribute is converted to a java.math.BigDecimal
object. The getAttribute() method returns all the data fields defined in the
supertype of the object type as well as data fields defined in the subtype. The
supertype data fields are listed first followed by the subtype data fields.

Object-Type Inheritance

9-42 Oracle9i JDBC Developer’s Guide and Reference

Subtype Data Fields from the getOracleAttribute() Method
The getOracleAttribute() method is an Oracle extension method and is more
efficient than the getAttribute() method. The getOracleAttribute()
method returns an oracle.sql.Datum array to hold the data fields. Each element
in the oracle.sql.Datum array represents an attribute. You can determine the
individual element type by referencing the corresponding attribute type in the
Oracle conversion matrix, as listed in Table 6–1, "Oracle Datatype Classes". For
example, a SQL NUMBER attribute is converted to an oracle.sql.NUMBER object.
The getOracleAttribute() method returns all the attributes defined in the
supertype of the object type, as well as attributes defined in the subtype. The
supertype data fields are listed first followed by the subtype data fields.

The following code shows the use of the getAttribute() method:

// tab1.person column can store PERSON_T, STUDENT_T and PARTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getObject(1);
 if (s != null)
 {
 String sqlname = s.getSQLTypeName();

 Object[] attrs = s.getAttribute();

 if (sqlname.equals ("SCOTT.PERSON")
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));
 }
 else if (sqlname.equals ("SCOTT.STUDENT"))
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));
 System.out.println ("deptid="+((BigDecimal)attrs[3]).intValue());
 System.out.println ("major="+((String)attrs[4]));
 }
 else if (sqlname.equals ("SCOTT.PARTTIMESTUDENT"))
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));

Object-Type Inheritance

Working with Oracle Object Types 9-43

 System.out.println ("deptid="+((BigDecimal)attrs[3]).intValue());
 System.out.println ("major="+((String)attrs[4]));
 System.out.println ("numHours="+((BigDecimal)attrs[5]).intValue());
 }
 else
 throw new Exception ("Invalid type name: "+sqlname);
 }
}
rset.close ();
stmt.close ();
conn.close ();

Inheritance Meta Data Methods
Oracle9i JDBC drivers provide a set of meta data methods to access inheritance
properties. The inheritance meta data methods are defined in the
oracle.sql.StructDescriptor and oracle.jdbc.StructMetaData
classes.

The oracle.sql.StructDescriptor class provides the following inheritance
meta data methods:

■ String[] getSubtypeNames() : returns the SQL type names of the direct
subtypes

■ boolean isFinalType() : indicates whether the object type is a final type.
An object type is FINAL if no subtypes can be created for this type; the default
is FINAL, and a type declaration must have the NOT FINAL keyword to be
"subtypable"

■ boolean isSubTyp() : indicates whether the object type is a subtype.

■ boolean isInstantiable() : indicates whether the object type is
instantiable; an object type is NOT INSTANTIABLE if it is not possible to
construct instances of this type

■ String getSupertypeName() : returns the SQL type names of the direct
supertype

■ int getLocalAttributeCount() : returns the number of attributes defined
in the subtype

The StructMetaData class provides inheritance meta data methods for subtype
attributes; the getMetaData() method of the StructDescriptor class returns

Object-Type Inheritance

9-44 Oracle9i JDBC Developer’s Guide and Reference

an instance of StructMetaData of the type. The StructMetaData class contains
the following inheritance meta data methods:

■ int getLocalColumnCount() : returns the number of attributes defined in
the subtype, which is similar to the getLocalAttributeCount() method of
the StructDescriptor class

■ boolean isInherited(int column) : indicates whether the attribute is
inherited; the column begins with 1

Using JPublisher to Create Custom Object Classes

Working with Oracle Object Types 9-45

Using JPublisher to Create Custom Object Classes
A convenient way to create custom object classes, as well as other kinds of custom
Java classes, is to use the Oracle JPublisher utility. It generates a full definition for a
custom Java class, which you can instantiate to hold the data from an Oracle object.
JPublisher-generated classes include methods to convert data from SQL to Java and
from Java to SQL, as well as getter and setter methods for the object attributes.

This section offers a brief overview. For more information, see the Oracle9i
JPublisher User’s Guide.

JPublisher Functionality
You can direct JPublisher to create custom object classes that implement either the
SQLData interface or the ORAData interface, according to how you set the
JPublisher type mappings.

If you use the ORAData interface, JPublisher will also create a custom reference
class to map to object references for the Oracle object type. If you use the SQLData
interface, JPublisher will not produce a custom reference class; you would use
standard java.sql.Ref instances instead.

If you want additional functionality, you can subclass the custom object class and
add features as desired. When you run JPublisher, there is a command-line option
for specifying both a generated class name and the name of the subclass you will
implement. For the SQL-Java mapping to work properly, JPublisher must know the
subclass name, which is incorporated into some of the functionality of the generated
class.

JPublisher Type Mappings
JPublisher offers various choices for how to map user-defined types and their
attribute types between SQL and Java. The rest of this section lists categories of SQL
types and the mapping options available for each category.

For general information about SQL-Java type mappings, see "Datatype Mappings"
on page 3-16.

Note: Hand-editing the JPublisher-generated class, instead of
subclassing it, is not recommended. If you hand-edit this class and
later have to re-run JPublisher for some reason, you would have to
re-implement your changes.

Using JPublisher to Create Custom Object Classes

9-46 Oracle9i JDBC Developer’s Guide and Reference

For more information about JPublisher features or options, see the Oracle9i
JPublisher User’s Guide.

Categories of SQL Types
JPublisher categorizes SQL types into the following groups, with corresponding
JPublisher options as noted:

■ user-defined types (UDT)—Oracle objects, references, and collections

Use the JPublisher -usertypes option to specify the type-mapping
implementation for UDTs—either a standard SQLData implementation or an
Oracle-specific ORAData implementation.

■ numeric types—anything stored in the database as SQL type NUMBER

Use the JPublisher -numbertypes option to specify type-mapping for numeric
types.

■ LOB types—SQL types BLOB and CLOB

Use the JPublisher -lobtypes option to specify type-mapping for LOB types.

■ built-in types—anything stored in the database as a SQL type not covered by
the preceding categories; for example: CHAR, VARCHAR2, LONG, and RAW

Use the JPublisher -builtintypes option to specify type-mapping for built-in
types.

Type-Mapping Modes
JPublisher defines the following type-mapping modes, two of which apply to
numeric types only:

■ JDBC mapping (setting jdbc)—Uses standard default mappings between SQL
types and Java native types. For a custom object class, uses a SQLData
implementation.

■ Oracle mapping (setting oracle)—Uses corresponding oracle.sql types to
map to SQL types. For a custom object, reference, or collection class, uses a
ORAData implementation.

■ object-JDBC mapping (for numeric types only) (setting objectjdbc)—This is
an extension of JDBC mapping. Where relevant, object-JDBC mapping uses
numeric object types from the standard java.lang package (such as
java.lang.Integer, Float, and Double), instead of primitive Java types
(such as int, float, and double). The java.lang types are nullable, while
the primitive types are not.

Using JPublisher to Create Custom Object Classes

Working with Oracle Object Types 9-47

■ BigDecimal mapping (for numeric types only) (setting bigdecimal)—Uses
java.math.BigDecimal to map to all numeric attributes; appropriate if you
are dealing with large numbers but do not want to map to the
oracle.sql.NUMBER class.

Mapping the Oracle object type to Java
Use the JPublisher -usertypes option to determine how JPublisher will
implement the custom Java class that corresponds to a Oracle object type:

■ A setting of -usertypes=oracle (the default setting) instructs JPublisher to
create a ORAData implementation for the custom object class.

This will also result in JPublisher producing a ORAData implementation for the
corresponding custom reference class.

■ A setting of -usertypes=jdbc instructs JPublisher to create a SQLData
implementation for the custom object class. No custom reference class can be
created—you must use java.sql.Ref or oracle.sql.REF for the reference
type.

The next section discusses type mapping options that you can use for object
attributes.

Mapping Attribute Types to Java
If you do not specify mappings for the attribute types of the Oracle object type,
JPublisher uses the following defaults:

■ For numeric attribute types, the default mapping is object-JDBC.

■ For LOB attribute types, the default mapping is Oracle.

Note: Using BigDecimal mapping can significantly degrade
performance.

Note: You can also use JPublisher with a -usertypes=oracle
setting in creating ORAData implementations to map SQL
collection types.

The -usertypes=jdbc setting is not valid for mapping SQL
collection types. (The SQLData interface is intended only for
mapping Oracle object types.)

Using JPublisher to Create Custom Object Classes

9-48 Oracle9i JDBC Developer’s Guide and Reference

■ For built-in type attribute types, the default mapping is JDBC.

If you want alternate mappings, use the -numbertypes, -lobtypes, and
-builtintypes options as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself an Oracle object type, it will be mapped according to the
-usertypes setting.

Summary of SQL Type Categories and Mapping Settings
Table 9–1 summarizes JPublisher categories for SQL types, the mapping settings
relevant for each category, and the default settings.

Important: Be especially aware that if you specify a SQLData
implementation for the custom object class and want the code to be
portable, you must be sure to use portable mappings for the
attribute types. The defaults for numeric types and built-in types
are portable, but for LOB types you must specify
-lobtypes=jdbc.

Table 9–1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type
Category

JPublisher
Mapping Option Mapping Settings Default

UDT types -usertypes oracle, jdbc oracle

numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc

LOB types -lobtypes oracle, jdbc oracle

built-in types -builtintypes oracle, jdbc jdbc

Note: The JPublisher -mapping option used in previous releases
will be deprecated but is currently still supported. For information
about how JPublisher converts -mapping option settings to settings
for the new mapping options, see the Oracle9i JPublisher User’s
Guide.

Describing an Object Type

Working with Oracle Object Types 9-49

Describing an Object Type
Oracle JDBC includes functionality to retrieve information about a structured object
type regarding its attribute names and types. This is similar conceptually to
retrieving information from a result set about its column names and types, and in
fact uses an almost identical method.

Functionality for Getting Object Meta Data
The oracle.sql.StructDescriptor class, discussed earlier in "STRUCT
Descriptors" on page 9-4 and "Steps in Creating StructDescriptor and STRUCT
Objects" on page 9-4, includes functionality to retrieve meta data about a structured
object type.

The StructDescriptor class has a getMetaData() method with the same
functionality as the standard getMetaData() method available in result set
objects. It returns a set of attribute information such as attribute names and types.
Call this method on a StructDescriptor object to get meta data about the Oracle
object type that the StructDescriptor object describes. (Remember that each
structured object type must have an associated StructDescriptor object.)

The signature of the StructDescriptor class getMetaData() method is the
same as the signature specified for getMetaData() in the standard ResultSet
interface:

■ ResultSetMetaData getMetaData() throws SQLException

However, this method actually returns an instance of
oracle.jdbc.StructMetaData, a class that supports structured object meta
data in the same way that the standard java.sql.ResultSetMetaData interface
specifies support for result set meta data.

The StructMetaData class includes the following standard methods that are also
specified by ResultSetMetaData:

■ String getColumnName(int column) throws SQLException

This returns a String that specifies the name of the specified attribute, such as
"salary".

■ int getColumnType(int column) throws SQLException

This returns an int that specifies the typecode of the specified attribute,
according to the java.sql.Types and oracle.jdbc.OracleTypes classes.

■ String getColumnTypeName(int column) throws SQLException

Describing an Object Type

9-50 Oracle9i JDBC Developer’s Guide and Reference

This returns a string that specifies the type of the specified attribute, such as
"BigDecimal".

■ int getColumnCount() throws SQLException

This returns the number of attributes in the object type.

As well as the following method, supported only by StructMetaData:

■ String getOracleColumnClassName(int column)
 throws SQLException

This returns the fully-qualified name of the oracle.sql.Datum subclass
whose instances are manufactured if the OracleResultSet class
getOracleObject() method is called to retrieve the value of the specified
attribute. For example, "oracle.sql.NUMBER".

To use the getOracleColumnClassName() method, you must cast the
ResultSetMetaData object (that was returned by the getMetaData()
method) to a StructMetaData object.

Steps for Retrieving Object Meta Data
Use the following steps to obtain meta data about a structured object type:

1. Create or acquire a StructDescriptor instance that describes the relevant
structured object type.

2. Call the getMetaData() method on the StructDescriptor instance.

3. Call the meta data getter methods as desired—getColumnName(),
getColumnType(), and getColumnTypeName().

Example The following method shows how to retrieve information about the
attributes of a structured object type. This includes the initial step of creating a
StructDescriptor instance.

Note: In all the preceding method signatures, "column" is
something of a misnomer. Where you specify a "column" of 4, you
really refer to the fourth attribute of the object.

Note: If one of the structured object attributes is itself a structured
object, repeat steps 1 through 3.

Describing an Object Type

Working with Oracle Object Types 9-51

//
// Print out the ADT's attribute names and types
//
void getAttributeInfo (Connection conn, String type_name) throws SQLException
{
 // get the type descriptor
 StructDescriptor desc = StructDescriptor.createDescriptor (type_name, conn);

 // get type meta data
 ResultSetMetaData md = desc.getMetaData ();

 // get # of attrs of this type
 int numAttrs = desc.length ();

 // temporary buffers
 String attr_name;
 int attr_type;
 String attr_typeName;

 System.out.println ("Attributes of "+type_name+" :");
 for (int i=0; i<numAttrs; i++)
 {
 attr_name = md.getColumnName (i+1);
 attr_type = md.getColumnType (i+1);
 System.out.println (" index"+(i+1)+" name="+attr_name+" type="+attr_type);

 // drill down nested object
 if (attrType == OracleTypes.STRUCT)
 {
 attr_typeName = md.getColumnTypeName (i+1);

 // recursive calls to print out nested object meta data
 getAttributeInfo (conn, attr_typeName);
 }
 }
}

SQLJ Object Types

9-52 Oracle9i JDBC Developer’s Guide and Reference

SQLJ Object Types
This section describes how to use Oracle9i JDBC drivers to access SQLJ object types,
SQL types for user-defined object types according to the Information Technology -
SQLJ - Part 2: SQL Types using the JavaTM Programming Language document (ANSI
NCITS 331.2-2000).

According to the Information Technology - SQLJ - Part 2 document, a SQLJ object type
is a database object type designed for Java. A SQLJ object type maps to a Java class.
Once the mapping is "registered" through the extended SQL CREATE TYPE
command (a DDL statement), the Java application can insert or select the Java
objects directly into or from the database through an Oracle9i JDBC driver. The
database SQL engine can access the data fields of these Java objects, stored as SQL
attributes in the database, as well as invoke the methods defined in these Java
objects.

The extended SQL CREATE TYPE command is further discussed in "Creating a Java
Class Definition for a SQLJ Object Type" on page 9-53.

SQLJ object type functionality has the following features:

■ Publishes pre-existing Java classes to SQL using the extended SQL CREATE
TYPE command, creating a mapping between the SQL type and the Java type;
no type map is necessary

■ Provides a standard way to access Java objects in the database

■ Provides a standard way to store Java objects persistently

■ Accesses static fields in a Java class using SQL static functions and defines SQL
member functions having side effects, which is useful in UPDATE statements

Note: SQLJ object types can either be in serialized or SQL
representation. Because Oracle does not support SQLJ object types
in serialized representation, this manual describes only SQLJ object
types in SQL representation.

SQLJ Object Types

Working with Oracle Object Types 9-53

You can obtain additional information on SQLJ object types at the ANSI Web site:

http://www.ansi.org/

Creating a SQLJ Object Type in SQL Representation
There are three general steps involved in creating a SQLJ object type in a database:

1. Create the Java class whose instances will be accessed by the database.

See "Creating a Java Class Definition for a SQLJ Object Type" below.

2. Load the class definition into the database.

See "Loading the Java Class into the Database" on page 9-55.

3. Use the extended SQL CREATE TYPE command in Oracle9i to create a SQLJ
object type that represents the Java type.

See "Creating the SQLJ Object Type in the Database" on page 9-55.

Creating a Java Class Definition for a SQLJ Object Type
To use SQLJ object type functionality, the Java class must implement one of the
following Java interfaces:

■ java.sql.SQLData

■ oracle.sql.ORAData (and oracle.sql.ORADataFactory)

Note: SQLJ object type functionality is similar to the use of custom
Java classes to map to Oracle object types (SQL object types). The
difference between SQLJ object type functionality and custom Java
class functionality is that with SQLJ object types, you start with a
Java class and then create a corresponding SQL type, instead of the
other way around. See "Creating and Using Custom Object Classes
for Oracle Objects" on page 9-10 and "SQLJ Object Types and
Custom Object Types Compared" on page 9-62.

SQLJ Object Types

9-54 Oracle9i JDBC Developer’s Guide and Reference

The Java class corresponding to a SQLJ object type implements the SQLData
interface or the ORAData and ORADataFactory interfaces, as is the case for
custom Java classes that correspond to user-defined Oracle object types in previous
Oracle JDBC implementations. The Java class provides methods for moving data
between SQL and Java—either using the readSQL() and writeSQL() methods
for classes implementing the SQLData interface, or the toDatum() method for
classes implementing the ORAData interface.

The following code shows how the Person class for the SQLJ object type, PERSON_
T, implements the SQLData interface:

import java.sql.*;
import java.io.*;

public class Person implements SQLData
{
 private String sql_type = "SCOTT.PERSON_T";
 private int ssn;
 private String name;
 private Address address;
 public String getName() {return name;}
 public void setName(String nam) {name = nam;};
 public Address getAddress() {return address;}
 public void setAddress(Address addr) {address = addr;}

 public Person () {}

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 ssn = stream.readInt();
 name = stream.readString();
 address = stream.readObject();
 }

 public void writeSQL(SQLOutput stream) throws SQLException

Note: The ORAData interface has replaced the CustomDatum
interface. While the latter interface is deprecated for Oracle9i, it is
still supported for backward compatibility. See "The Deprecated
CustomDatum Interface" on page 9-27 for complete details.

SQLJ Object Types

Working with Oracle Object Types 9-55

 {
 stream.writeInt (ssn);
 stream.writeString (name);
 stream.writeObject (address);
 }

 // other methods
 public int length () { ... }
}

Loading the Java Class into the Database
Once you create the Java class, the next step is to make it available to the database.
To do this, use the Oracle loadjava tool to load the Java class into the database.
See the Oracle9i Java Developer’s Guide for a complete description of the loadjava
tool.

The following command shows the loadjava tool loading the Person class into
the database:

% loadjava -u SCOTT/TIGER -r -f -v Person.class

Creating the SQLJ Object Type in the Database
The final step in creating a SQLJ object type is to use the extended SQL CREATE
TYPE command to create the type, specifying the corresponding Java class in the
EXTERNAL NAME clause.

The follow code shows that PERSON_T is the SQLJ object type and Person is the
corresponding Java class:

CREATE TYPE person_t AS OBJECT EXTERNAL NAME 'Person' LANGUAGE JAVA
USING SQLData
 (ss_no number (9) external name 'ssn',
 name VARCHAR2(200) external name 'name',
 address Address_t external name 'address',
 member function length return number external name 'length () return int');
/

Note: You can also invoke the loadjava tool by calling the
dbms_java.loadjava (’...’) procedure from SQL*Plus,
specifying the loadjava command line as the input string.

SQLJ Object Types

9-56 Oracle9i JDBC Developer’s Guide and Reference

The extended SQL CREATE TYPE command performs the following functions:

■ It checks to see if a Java class exists that corresponds to the SQLJ object type and
whether this class is public and implements the required interface as specified
in the USING clause (see the catalog book Magdi told you about).

■ It populates the database catalog with the external names for attributes,
functions, and the Java class.

■ If external attribute names are used, then the extended SQL CREATE TYPE
command checks for the existence of the Java fields (as specified in the
EXTERNAL NAME clause) and whether these fields are compatible with
corresponding SQL attributes.

■ If external attribute names are used, then the extended SQL CREATE TYPE
command validates the SQL external function against the Java class methods.

■ It generates internal classes to support constructors, external static variable
names, and external functions that return self as a result. The classes are
stored in the same schema as the SQLJ object type.

See the Oracle9i SQL Reference for a complete description of the extended SQL
CREATE TYPE command.

Once a SQLJ object type is created, it can be used for the column type of a database
table as well as for attributes of other object types. The database SQL engine can
access the attributes of the SQLJ object type as well as invoke methods. For
example, in SQL*Plus you can do the following:

SQL> select col2.ss_no from tab2;
...
SQL> select col2.length() from tab2;
...

External Attribute Names The extended SQL CREATE TYPE command validates the
compatibility between SQLJ object type attributes and corresponding Java fields by
comparing the external attribute names (external name variables) to the
corresponding Java fields. An external attribute name specifies a field in the Java
class. For example, in the following code, the ssn external name specifies the ss_
no field in the Person Java class:

CREATE TYPE person_t AS OBJECT EXTERNAL NAME 'Person' LANGUAGE JAVA
USING SQLData
 (ss_no number (9) external name 'ssn',
 name VARCHAR2(200) external name 'name',
 address Address_t external name 'address',

SQLJ Object Types

Working with Oracle Object Types 9-57

 member function length return number external name 'length () return int');
/

Though optional, external attribute names are good to use when one-to-one
correspondences exists between the attributes of a SQLJ object type and the fields of
a corresponding Java class. If you choose to use this feature and a declared external
attribute name does not exist in the Java class or the SQL attribute is not compatible
with the external attribute type, then a SQL error occurs upon executing the
extended SQL CREATE TYPE command. Or if the provided SQLData or ORAData
interface implementation does not support compatible mapping between a SQL
attribute and its corresponding Java field, then an exception may occur.

External SQL Functions The extended SQL CREATE TYPE command validates the
compatibility between SQLJ object type functions and corresponding Java methods
by comparing the external SQL function (MEMBER FUNCTION or STATIC
FUNCTION) to the corresponding Java method. An external SQL function specifies a
method in the Java class.

Note: A SQL attribute declared with an external attribute name
may refer to a private Java field.

Note: Unlike an external attribute name, an external SQL function
is mandatory.

SQLJ Object Types

9-58 Oracle9i JDBC Developer’s Guide and Reference

When creating a SQLJ object type in the database, you can declare one or more
external SQL functions along with the attributes. Table 9–2 describes the possible
kinds of functions that you can use in the creation of a SQLJ object type:

Code Examples The following code shows some typical external SQL functions being
declared for a SQLJ object type:

CREATE TYPE person_t AS OBJECT EXTERNAL NAME 'Person' LANGUAGE JAVA
USING SQLData
(
 num number external name ’foo’,

 STATIC function construct (num number) return person_t
 external name ’Person.Person (int) return Person’,
 STATIC function maxvalue return number external variable name ’max_length’,
 MEMBER function selfish (num number) return self as result
 external name ’Person.dump (java.lang.Integer) return Person’
)

The following code shows how to create the SQLJ object type PERSON_T to
represent the Java class Person:

CREATE TYPE person_t AS OBJECT EXTERNAL NAME 'Person' LANGUAGE JAVA

Table 9–2 Kinds of External SQL Functions for a SQLJ Object Type

Function Kind Syntax

Static functions Oracle-
specific

STATIC FUNCTION foo (...) RETURN
NUMBER EXTERNAL NAME ’bar (...)
return double’

Member function SQLJ Part2
Standard

MEMBER FUNCTION foo (...) RETURN
NUMBER EXTERNAL NAME ’todo (...)
return double’

Static function that returns
the value of a static Java
field, which can only be
public

Oracle-
specific

STATIC FUNCTION foo RETURN NUMBER
EXTERNAL VARIABLE NAME ’max_length’

Static function that calls a
constructor in Java

Oracle-
specific

STATIC FUNCTION foo (...) RETURN
person_t EXTERNAL NAME ’Person (...)
return Person’

Member function that has
a side effect (changes the
state of an object)

SQLJ Part2
Standard

MEMBER FUNCTION foo (...) RETURN
SELF AS RESULT EXTERNAL NAME ’dump
(...) return Person’

SQLJ Object Types

Working with Oracle Object Types 9-59

USING SQLData
(
 ss_no NUMBER(9) EXTERNAL NAME 'ssn',
 name VARCHAR2(100) EXTERNAL NAME 'name',
 address address_t EXTERNAL NAME 'address',
 MEMBER FUNCTION length RETURN integer EXTERNAL NAME 'length() return int'
);

Creating SQLJ Object Types Using JDBC As an alternative to creating a SQLJ object type
directly in SQL, using a tool such as SQL*Plus, you can create a SQLJ object type
using JDBC code. The following code shows this:

Connection conn =
Statement stmt = conn.createStatement();
String sql =
 "CREATE TYPE person_t as object external name 'Person' language java
 " using SQLData "+
 "("+
 " ss_no number(9), "+
 " name varchar2(100), "+
 " address address_t "+
 ")";
stmt.execute(sql);
stmt.close(); // release the resource
conn.close(); // close the database connection

create table tab1 (col1 number, col2 person_t);
insert into tabl values (1, person_t(100, 'Scott', address_t('some street',
'some city', 'CA', '12345'));
insert into tabl ...
...

Inserting an Instance of a SQLJ Object Type
To create a SQLJ object type instance, the JDBC application creates a corresponding
Java instance and then inserts it into the database using the INSERT statement. The
Java instance can be inserted in one of the following ways:

■ A bind variable

■ A PL/SQL IN parameter

■ An object attribute value

SQLJ Object Types

9-60 Oracle9i JDBC Developer’s Guide and Reference

Before sending the Java object to the database, the Oracle JDBC driver converts it
into a format acceptable to the database SQL engine.

To create a SQLJ object type of person_t, as described in previous sections, the
JDBC application creates a Person object and then inserts it into the database. The
following code binds the person_t SQLJ object type instance in a SQL insert
statement:

Person person = new Person();
person.ssn = 1000;
person.name = "SCOTT";
person.address = new Address ("some street", "some city", "CA", 12345);

// insert a SQLJ Object "person_t"
PreparedStatement pstmt = conn.prepareStatement ("insert into tab1 (1, ?)");
pstmt.setObject (1, person);
pstmt.execute ();

Binding a Java instance of a SQLJ object type is equivalent to binding a Java
instance of a regular Oracle object type.

Retrieving Instances of a SQLJ Object Type
In a typical JDBC application, Java instances of a SQLJ object type are returned from
one of the following:

■ Query results

■ PL/SQL OUT parameters

■ Object type attributes

■ Collection elements

In each case, the Oracle JDBC driver materialize the database SQLJ object type
instances as instances of the corresponding Java class.

See "Code Examples" on page 9-58, to learn how the SQLJ object type person_t
and a database table are created.

Retrieving a SQLJ Object Type Instance Through Database Queries
When a JDBC application queries a column of SQLJ object types in a table, the
column values are returned as instances of the Java class that corresponds to the
SQLJ object type.

SQLJ Object Types

Working with Oracle Object Types 9-61

Assume that you have table tab1 containing column col1 of SQLJ object type
PERSON_T. If PERSON_T was created to map to the Java class Person, then
querying col1 through the Oracle JDBC driver will return the data as instances of
the Person class. The following code shows this:

ResultSet rset = stmt.executeQuery ("select col1 from tab1");
while (rset.next())
 Person value = (Person) rset.getObject(1);

Retrieving a SQLJ Object Type Instance as an Output Parameter
Use the OracleTypes.JAVA_STRUCT typecode as input to the
registerOutParameter() method to register a SQLJ object type as a PL/SQL
OUT parameter. The following code shows this:

CallableStatement cstmt = conn.prepareCall (...);
cstmt.registerOutParameter (1, OracleTypes.JAVA_STRUCT, "SCOTT.PERSON_T");
...
cstmt.execute();
Person value = (Person) cstmt.getObject (1);

Meta Data Methods for SQLJ Object Types
Meta data methods are used to query the properties of a datatype. The meta data
methods for SQLJ object types are defined in the
oracle.sql.StructDescriptor class and the
oracle.jdbc.StructMetaData interface.

To obtain the type descriptor, use the static createDescriptor() factory method
of the oracle.sql.StructDescriptor class as follows:

Notes:

■ If the Java class does not exist on the client when the SQLJ
object type is returned, a run-time exception occurs.

■ If the Java class exists on the client but has been modified, then
the SQLJ object type will only be read or written properly if the
readSQL() and writeSQL() methods for the SQLData
interface, or the create() and toDatum() methods for the
ORAData interface, remain compatible with the original set of
SQL attributes.

SQLJ Object Types

9-62 Oracle9i JDBC Developer’s Guide and Reference

public static StructDescriptor createDescriptor(String name, Connection conn)
 throws SQLException

Where name is the SQLJ object type and conn is the connection to the database.

The oracle.sql.StructDescriptor class defines the following meta data
(instance) methods:

■ boolean isJavaObject() : indicates whether the type descriptor points to a
SQLJ object type

■ String getJavaClassName() : returns the name of the Java class
corresponding to the SQLJ object type

■ String getLanguage() : returns the string JAVA for a SQLJ object type and
returns null for an Oracle object type (SQL object type)

■ ResultSetMetaData getMetaData() : returns the meta data of the SQLJ
object type as a result set meta data type (see "Functionality for Getting Object
Meta Data" on page 9-49)

■ getLocalAttributeCount() : returns the number of local attributes being
used, which does not include those used through inheritance

The oracle.jdbc.StructMetaData interface provides the following method:

■ String getAttributeJavaName(int idx): returns the field name given
the relative position of the SQL attribute; the relative position starts at zero and
inherited attributes are included

SQLJ Object Types and Custom Object Types Compared
This section describes the differences between SQLJ object types and Oracle object
types (custom object types).

SQLJ Object Types

Working with Oracle Object Types 9-63

Table 9–3 SQLJ Object Type and Custom Object Type Features Compared

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Typecodes Use the OracleTypes.JAVA_STRUCT
typecode to register a SQLJ object type as a
SQL OUT parameter. The
OracleTypes.JAVA_STRUCT typecode
is also used in the _SQL_TYPECODE field
of a class implementing the ORAData or
SQLData interface. This typecode is
reported in a ResultSetMetaData
instance and meta data or stored procedure.

Use the OracleTypes.STRUCT typecode
to register a custom object type as a SQL OUT
parameter. The OracleTypes.STRUCT
typecode is also used in the _SQL_
TYPECODE field of a class implementing the
ORAData or SQLData interface.The
OracleTypes.STRUCT typecode is
reported in a ResultSetMetaData
instance and meta data or stored procedure.

Creation Create a Java class implementing the
SQLData or ORAData and
ORADataFactory interfaces first and
then load the Java class into the database.
Next, issue the extended SQL CREATE
TYPE command to create the SQLJ object
type.

Issue the extended SQL CREATE TYPE
command for a custom object type and then
create the SQLData or ORAData Java
wrapper class using JPublisher, or do this
manually. See "Using JPublisher to Create
Custom Object Classes" on page 9-45 for
complete details.

Method Support Supports external names, constructor calls,
and calls for member functions with side
effects. See Table 9–2, "Kinds of External SQL
Functions for a SQLJ Object Type" on
page 9-58 for a complete description.

There is no default class for implementing
type methods as Java methods. Some methods
may also be implemented in SQL.

Type Mapping Type mapping is automatically done by the
extended SQL CREATE TYPE command.
However, the SQLJ object type must have a
defining Java class on the client.

Register the correspondence between SQL and
Java in a type map. Otherwise, the type is
materialized as oracle.sql.STRUCT.

Corresponding
Java Class is
Missing

If the corresponding Java class is missing
when a SQLJ object type is returned to the
client, you will receive an exception.

If the corresponding Java class is missing
when a custom object type is returned to the
client, then oracle.sql.STRUCT is used.

Inheritance There are rules for mapping SQL hierarchy
to a Java class hierarchy. See the Oracle9i
SQL Reference for a complete description of
these rules.

There are no mapping rules.

SQLJ Object Types

9-64 Oracle9i JDBC Developer’s Guide and Reference

Working with Oracle Object References 10-1

10
 Working with Oracle Object References

This chapter describes Oracle extensions to standard JDBC that let you access and
manipulate object references. The following topics are discussed:

■ Oracle Extensions for Object References

■ Overview of Object Reference Functionality

■ Retrieving and Passing an Object Reference

■ Accessing and Updating Object Values through an Object Reference

■ Custom Reference Classes with JPublisher

Oracle Extensions for Object References

10-2 Oracle9i JDBC Developer’s Guide and Reference

Oracle Extensions for Object References
Oracle supports the use of references (pointers) to Oracle database objects. Oracle
JDBC provides support for object references as:

■ columns in a SELECT-list

■ IN or OUT bind variables

■ attributes in an Oracle object

■ elements in a collection (array) type object

In SQL, an object reference (REF) is strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference in Oracle JDBC, be aware that you are
retrieving only a pointer to an object, not the object itself. You have the choice of
materializing the reference as a weakly typed oracle.sql.REF instance (or a
java.sql.Ref instance for portability), or materializing it as an instance of a
custom Java class that you have created in advance, which is strongly typed.
Custom Java classes used for object references are referred to as custom reference
classes in this manual and must implement the oracle.sql.ORAData interface.

The oracle.sql.REF class implements the standard java.sql.Ref interface
(oracle.jdbc2.Ref under JDK 1.1.x).

You can retrieve a REF instance through a result set or callable statement object, and
pass an updated REF instance back to the database through a prepared statement or
callable statement object. The REF class includes functionality to get and set
underlying object attribute values, and get the SQL base type name of the
underlying object (for example, EMPLOYEE).

Custom reference classes include this same functionality, as well as having the
advantage of being strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until runtime.

For more information about custom reference classes, see "Custom Reference
Classes with JPublisher" on page 10-10.

Oracle Extensions for Object References

Working with Oracle Object References 10-3

Notes:

■ If you are using the oracle.sql.ORAData interface for
custom object classes, you will presumably use ORAData for
corresponding custom reference classes as well. If you are using
the standard java.sql.SQLData interface for custom object
classes, however, you can only use weak Java types for
references (java.sql.Ref or oracle.sql.REF). The
SQLData interface is for mapping SQL object types only.

■ You cannot create REF objects in your JDBC application; you
can only retrieve existing REF objects from the database.

■ You cannot have a reference to an array, even though arrays,
like objects, are structured types.

Overview of Object Reference Functionality

10-4 Oracle9i JDBC Developer’s Guide and Reference

Overview of Object Reference Functionality
To access and update object data through an object reference, you must obtain the
reference instance through a result set or callable statement and then pass it back as
a bind variable in a prepared statement or callable statement. It is the reference
instance that contains the functionality to access and update object attributes.

This section summarizes the following:

■ statement and result set getter and setter methods for passing REF instances
from and to the database

■ REF class functionality to get and set object attributes

Remember that you can use custom reference classes instead of the ARRAY class. See
"Custom Reference Classes with JPublisher" on page 10-10.

Object Reference Getter and Setter Methods
Use the following result set, callable statement, and prepared statement methods to
retrieve and pass object references. Code examples are provided later in the chapter.

Result Set and Callable Statement Getter Methods The OracleResultSet and
OracleCallableStatement classes support getREF() and getRef() methods
to retrieve REF objects as output parameters—either as oracle.sql.REF instances
or java.sql.Ref instances (oracle.jdbc2.Ref under JDK 1.1.x). You can also
use the getObject() method. These methods take as input a String column
name or int column index.

Prepared and Callable Statement Setter Methods The OraclePreparedStatement and
OracleCallableStatement classes support setREF() and setRef() methods
to take REF objects as bind variables and pass them to the database. You can also
use the setObject() method. These methods take as input a String parameter
name or int parameter index as well as, respectively, an oracle.sql.REF
instance or a java.sql.Ref instance (oracle.jdbc2.Ref under JDK 1.1.x).

Key REF Class Methods
Use the following oracle.sql.REF class methods to retrieve the SQL object type
name and retrieve and pass the underlying object data.

■ getBaseTypeName(): Retrieves the fully-qualified SQL structured type name
of the referenced object (for example, EMPLOYEE).

This is a standard method specified by the java.sql.Ref interface.

Overview of Object Reference Functionality

Working with Oracle Object References 10-5

■ getValue(): Retrieves the referenced object from the database, allowing you
to access its attribute values. It optionally takes a type map object, or else you
can use the default type map of the database connection object.

This method is an Oracle extension.

■ setValue(): Sets the referenced object in the database, allowing you to update
its attribute values. It takes an instance of the object type as input (either a
STRUCT instance or an instance of a custom object class).

This method is an Oracle extension.

Retrieving and Passing an Object Reference

10-6 Oracle9i JDBC Developer’s Guide and Reference

Retrieving and Passing an Object Reference
This section discusses JDBC functionality for retrieving and passing object
references.

Retrieving an Object Reference from a Result Set
To demonstrate how to retrieve object references, the following example first
defines an Oracle object type ADDRESS, which is then referenced in the PEOPLE
table:

create type ADDRESS as object
 (street_name VARCHAR2(30),
 house_no NUMBER);

create table PEOPLE
 (col1 VARCHAR2(30),
 col2 NUMBER,
 col3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1. Use a standard SQL SELECT statement to retrieve the reference from a database
table REF column.

2. Use getREF() to get the address reference from the result set into a REF object.

3. Let Address be the Java custom class corresponding to the SQL object type
ADDRESS.

4. Add the correspondence between the Java class Address and the SQL type
ADDRESS to your type map.

5. Use the getValue() method to retrieve the contents of the Address reference.
Cast the output to a Java Address object.

Here is the code for these steps (other than adding Address to the type map),
where stmt is a previously defined statement object. The PEOPLE database table is
defined earlier in this section:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
while (rs.next())
{

Retrieving and Passing an Object Reference

Working with Oracle Object References 10-7

 REF ref = ((OracleResultSet)rs).getREF(1);
 Address a = (Address)ref.getValue();
}

As with other SQL types, you could retrieve the reference with the getObject()
method of your result set. Note that this would require you to cast the output. For
example:

REF ref = (REF)rs.getObject(1);

There are no performance advantages in using getObject() instead of
getREF(); however, using getREF() allows you to avoid casting the output.

Retrieving an Object Reference from a Callable Statement
To retrieve an object reference as an OUT parameter in PL/SQL blocks, you must
register the bind type for your OUT parameter.

1. Cast your callable statement to an OracleCallableStatement:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");

2. Register the OUT parameter with this form of the registerOutParameter()
method:

ocs.registerOutParameter
 (int param_index, int sql_type, String sql_type_name);

Where param_index is the parameter index and sql_type is the SQL
typecode (in this case, OracleTypes.REF). The sql_type_name is the name
of the structured object type that this reference is used for. For example, if the
OUT parameter is a reference to an ADDRESS object (as in "Retrieving and
Passing an Object Reference" on page 10-6), then ADDRESS is the sql_type_
name that should be passed in.

3. Execute the call:

ocs.execute();

Retrieving and Passing an Object Reference

10-8 Oracle9i JDBC Developer’s Guide and Reference

Passing an Object Reference to a Prepared Statement
Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the setObject() method or the setREF()
method of a prepared statement object.

Continuing the example in "Retrieving and Passing an Object Reference" on
page 10-6, use a prepared statement to update an address reference based on
ROWID, as follows:

PreparedStatement pstmt =
 conn.prepareStatement ("update PEOPLE set ADDR_REF = ? where ROWID = ?");
((OraclePreparedStatement)pstmt).setREF (1, addr_ref);
((OraclePreparedStatement)pstmt).setROWID (2, rowid);

Accessing and Updating Object Values through an Object Reference

Working with Oracle Object References 10-9

Accessing and Updating Object Values through an Object Reference
You can use the REF object setValue() method to update the value of an object in
the database through an object reference. To do this, you must first retrieve the
reference to the database object and create a Java object (if one does not already
exist) that corresponds to the database object.

For example, you can use the code in the section "Retrieving and Passing an Object
Reference" on page 10-6 to retrieve the reference to a database ADDRESS object:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
if (rs.next())
{
 REF ref = rs.getREF(1);
 Address a = (Address)ref.getValue();
}

Then, you can create a Java Address object (this example omits the content for the
constructor of the Address class) that corresponds to the database ADDRESS object.
Use the setValue() method of the REF class to set the value of the database
object:

Address addr = new Address(...);
ref.setValue(addr);

Here, the setValue() method updates the database ADDRESS object immediately.

Custom Reference Classes with JPublisher

10-10 Oracle9i JDBC Developer’s Guide and Reference

Custom Reference Classes with JPublisher
This chapter primarily describes the functionality of the oracle.sql.REF class,
but it is also possible to access Oracle object references through custom Java classes
or, more specifically, custom reference classes.

Custom reference classes offer all the functionality described earlier in this chapter,
as well as the advantage of being strongly typed. A custom reference class must
satisfy three requirements:

■ It must implement the oracle.sql.ORAData interface described under
"Creating and Using Custom Object Classes for Oracle Objects" on page 9-10.
Note that the standard JDBC SQLData interface, which is an alternative for
custom object classes, is not intended for custom reference classes.

■ It, or a companion class, must implement the oracle.sql.ORADataFactory
interface, for creating instances of the custom reference class.

■ It must provide a way to refer to the object data. JPublisher accomplishes this by
using an oracle.sql.REF attribute.

You can create custom reference classes yourself, but the most convenient way to
produce them is through the Oracle JPublisher utility. If you use JPublisher to
generate a custom object class to map to an Oracle object, and you specify that
JPublisher use a ORAData implementation, then JPublisher will also generate a
custom reference class that implements ORAData and ORADataFactory and
includes an oracle.sql.REF attribute. (The ORAData implementation will be
used if JPublisher’s -usertypes mapping option is set to oracle, which is the
default.)

Custom reference classes are strongly typed. For example, if you define an Oracle
object EMPLOYEE, then JPublisher can generate an Employee custom object class
and an EmployeeRef custom reference class. Using EmployeeRef instances
instead of generic oracle.sql.REF instances makes it easier to catch errors
during compilation instead of at runtime—for example, if you accidentally assign
some other kind of object reference into an EmployeeRef variable.

Be aware that the standard SQLData interface supports only SQL object mappings.
For this reason, if you instruct JPublisher to implement the standard SQLData
interface in creating a custom object class, then JPublisher will not generate a
custom reference class. In this case your only option is to use standard
java.sql.Ref instances (or oracle.sql.REF instances) to map to your object
references. (Specifying the SQLData implementation is accomplished by setting
JPublisher’s UDT attributes mapping option to jdbc.)

Custom Reference Classes with JPublisher

Working with Oracle Object References 10-11

For more information about JPublisher, see "Using JPublisher to Create Custom
Object Classes" on page 9-45, or refer to the Oracle9i JPublisher User’s Guide.

Custom Reference Classes with JPublisher

10-12 Oracle9i JDBC Developer’s Guide and Reference

Working with Oracle Collections 11-1

11
Working with Oracle Collections

This chapter describes Oracle extensions to standard JDBC that let you access and
manipulate Oracle collections, which map to Java arrays, and their data. The
following topics are discussed:

■ Oracle Extensions for Collections (Arrays)

■ Overview of Collection (Array) Functionality

■ Creating and Using Arrays

■ Using a Type Map to Map Array Elements

■ Custom Collection Classes with JPublisher

Oracle Extensions for Collections (Arrays)

11-2 Oracle9i JDBC Developer’s Guide and Reference

Oracle Extensions for Collections (Arrays)
An Oracle collection—either a variable array (VARRAY) or a nested table in the
database—maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle
collections in Java. The terms "collection" and "array" are sometimes used
interchangeably, although "collection" is more appropriate on the database side, and
"array" is more appropriate on the JDBC application side.

Oracle supports only named collections, where you specify a SQL type name to
describe a type of collection.

JDBC lets you use arrays as any of the following:

■ columns in a SELECT-list

■ IN or OUT bind variables

■ attributes in an Oracle object

■ as elements of other arrays (Oracle9i only)

The rest of this section discusses creating and materializing collections.

The remainder of the chapter describes how to access and update collection data
through Java arrays.

Choices in Materializing Collections
In your application, you have the choice of materializing a collection as an instance
of the oracle.sql.ARRAY class, which is weakly typed, or materializing it as an
instance of a custom Java class that you have created in advance, which is strongly
typed. Custom Java classes used for collections are referred to as custom collection
classes in this manual. A custom collection class must implement the Oracle
oracle.sql.ORAData interface. In addition, the custom class or a companion
class must implement oracle.sql.ORADataFactory. (The standard
java.sql.SQLData interface is for mapping SQL object types only.)

The oracle.sql.ARRAY class implements the standard java.sql.Array
interface (oracle.jdbc2.Array under JDK 1.1.x).

The ARRAY class includes functionality to retrieve the array as a whole, retrieve a
subset of the array elements, and retrieve the SQL base type name of the array
elements. You cannot write to the array, however, as there are no setter methods.

Custom collection classes, as with the ARRAY class, allow you to retrieve all or part
of the array and get the SQL base type name. They also have the advantage of being

Oracle Extensions for Collections (Arrays)

Working with Oracle Collections 11-3

strongly typed, which can help you find coding errors during compilation that
might not otherwise be discovered until runtime.

Furthermore, custom collection classes produced by JPublisher offer the feature of
being writable, with individually accessible elements. (This is also something you
could implement in a custom collection class yourself.)

For more information about custom collection classes, see "Custom Collection
Classes with JPublisher" on page 11-27.

Creating Collections
This section presents background information about creating Oracle collections.

Because Oracle supports only named collections, you must declare a particular
VARRAY type name or nested table type name. "VARRAY" and "nested table" are not
types themselves, but categories of types.

A SQL type name is assigned to a collection when you create it, as in the following
SQL syntax:

CREATE TYPE <sql_type_name> AS <datatype>;

A VARRAY is an array of varying size. It has an ordered set of data elements, and
all the elements are of the same datatype. Each element has an index, which is a
number corresponding to the element's position in the VARRAY. The number of
elements in a VARRAY is the "size" of the VARRAY. You must specify a maximum
size when you declare the VARRAY type. For example:

CREATE TYPE myNumType AS VARRAY(10) OF NUMBER;

This statement defines myNumType as a SQL type name that describes a VARRAY of
NUMBER values that can contain no more than 10-elements.

A nested table is an unordered set of data elements, all of the same datatype. The
database stores a nested table in a separate table which has a single column, and the
type of that column is a built-in type or an object type. If the table is an object type,

Note: There is no difference in your code between accessing
VARRAYs and accessing nested tables. ARRAY class methods can
determine if they are being applied to a VARRAY or nested table,
and respond by taking the appropriate actions.

Oracle Extensions for Collections (Arrays)

11-4 Oracle9i JDBC Developer’s Guide and Reference

it can also be viewed as a multi-column table, with a column for each attribute of
the object type. Create a nested table with this SQL syntax:

CREATE TYPE myNumList AS TABLE OF integer;

This statement identifies myNumList as a SQL type name that defines the table type
used for the nested tables of the type INTEGER.

Creating Multi-Level Collection Types
The most common way to create a new multi-level collection type in JDBC is to pass
the SQL CREATE TYPE statement to the execute() method of the
java.sql.Statement class. The following code creates a one-level, nested table
first_level and a two levels nested table second_level using the execute()
method:

Connection conn = // make a database
 // connection
Statement stmt = conn.createStatement(); // open a database
 // cursor
stmt.execute("CREATE TYPE first_level AS TABLE OF NUMBER"); // create a nested
 // table of number
stmt.execute("CREATE second_level AS TABLE OF first_level"); // create a two
 // levels nested
 // table
... // other operations
 // here
stmt.close(); // release the
 // resource
conn.close(); // close the
 // database
 // connection

Once the multi-level collection types have been created, they can be used as both
columns of a base table as well as attributes of a object type.

See the Oracle9i Application Developer’s Guide - Object-Relational Features for the SQL
syntax to create multi-level collections types and how to specify the storage tables
for inner collections.

Note: Multi-level collection types are available only for Oracle9i.

Overview of Collection (Array) Functionality

Working with Oracle Collections 11-5

Overview of Collection (Array) Functionality
You can obtain collection data in an array instance through a result set or callable
statement and pass it back as a bind variable in a prepared statement or callable
statement.

The oracle.sql.ARRAY class, which implements the standard java.sql.Array
interface (oracle.jdbc2.Array interface under JDK 1.1.x), provides the
necessary functionality to access and update the data of an Oracle collection (either
a VARRAY or nested table).

This section discusses the following:

■ statement and result set getter and setter methods for passing collections to and
from the database as Java arrays

■ ARRAY descriptors and ARRAY class methods

Remember that you can use custom collection classes instead of the ARRAY class.
See "Custom Collection Classes with JPublisher" on page 11-27.

Array Getter and Setter Methods
Use the following result set, callable statement, and prepared statement methods to
retrieve and pass collections as Java arrays. Code examples are provided later in the
chapter.

Result Set and Callable Statement Getter Methods The OracleResultSet and
OracleCallableStatement classes support getARRAY() and getArray()
methods to retrieve ARRAY objects as output parameters—either as
oracle.sql.ARRAY instances or java.sql.Array instances
(oracle.jdbc2.Array under JDK 1.1.x). You can also use the getObject()
method. These methods take as input a String column name or int column
index.

Prepared and Callable Statement Setter Methods The OraclePreparedStatement and
OracleCallableStatement classes support setARRAY() and setArray()
methods to take updated ARRAY objects as bind variables and pass them to the
database. You can also use the setObject() method. These methods take as input
a String parameter name or int parameter index as well as, respectively, an
oracle.sql.ARRAY instance or a java.sql.Array instance
(oracle.jdbc2.Array under JDK 1.1.x).

Overview of Collection (Array) Functionality

11-6 Oracle9i JDBC Developer’s Guide and Reference

ARRAY Descriptors and ARRAY Class Functionality
The section introduces ARRAY descriptors and lists methods of the ARRAY class to
provide an overview of its functionality.

ARRAY Descriptors
Creating and using an ARRAY object requires the existence of a descriptor—an
instance of the oracle.sql.ArrayDescriptor class—to exist for the SQL type
of the collection being materialized in the array. You need only one
ArrayDescriptor object for any number of ARRAY objects that correspond to the
same SQL type.

ARRAY descriptors are further discussed in "Creating ARRAY Objects and
Descriptors" on page 11-11.

ARRAY Class Methods
The oracle.sql.ARRAY class includes the following methods:

■ getDescriptor(): Returns the ArrayDescriptor object that describes the
array type.

■ getArray(): Retrieves the contents of the array in "default" JDBC types. If it
retrieves an array of objects, then getArray() uses the default type map of the
database connection object to determine the types.

■ getOracleArray(): Identical to getArray(), but retrieves the elements in
oracle.sql.* format.

■ getBaseType(): Returns the SQL typecode for the array elements (see "Class
oracle.jdbc.OracleTypes" on page 6-23 for information about typecodes).

■ getBaseTypeName(): Returns the SQL type name of the elements of this
array.

■ getSQLTypeName() (Oracle extension): Returns the fully qualified SQL type
name of the array as a whole.

■ getResultSet(): Materializes the array elements as a result set.

■ getJavaSQLConnection(): Returns the connection instance
(java.sql.Connection) associated with this array.

■ length(): Returns the number of elements in the array.

Overview of Collection (Array) Functionality

Working with Oracle Collections 11-7

Note: As an example of the difference between
getBaseTypeName() and getSQLTypeName(), if you define
ARRAY_OF_PERSON as the array type for an array of PERSON
objects in the SCOTT schema, then getBaseTypeName() would
return "SCOTT.PERSON" and getSQLTypeName() would return
"SCOTT.ARRAY_OF_PERSON".

ARRAY Performance Extension Methods

11-8 Oracle9i JDBC Developer’s Guide and Reference

ARRAY Performance Extension Methods
This section discusses the following topics:

■ Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types

■ ARRAY Automatic Element Buffering

■ ARRAY Automatic Indexing

Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types
The oracle.sql.ARRAY class contains methods that return array elements as Java
primitive types. These methods allow you to access collection elements more
efficiently than accessing them as Datum instances and then converting each Datum
instance to its Java primitive value.

Here are the methods:

■ public int[] getIntArray()throws SQLException

public int[] getIntArray(long index, int count)
 throws SQLException

■ public long[] getLongArray()throws SQLException

public long[] getLongArray(long index, int count)
 throws SQLException

■ public float[] getFloatArray()throws SQLException

public float[] getFloatArray(long index, int count)
 throws SQLException

■ public double[] getDoubleArray()throws SQLException

public double[] getDoubleArray(long index, int count)
 throws SQLException

■ public short[] getShortArray()throws SQLException

public short[] getShortArray(long index, int count)
 throws SQLException

Note: These specialized methods of the oracle.sql.ARRAY
class are restricted to numeric collections.

ARRAY Performance Extension Methods

Working with Oracle Collections 11-9

Each method using the first signature returns collection elements as an XXX[],
where XXX is a Java primitive type. Each method using the second signature returns
a slice of the collection containing the number of elements specified by count,
starting at the index location.

ARRAY Automatic Element Buffering
The Oracle JDBC driver provides public methods to enable and disable buffering of
ARRAY contents. (See "STRUCT Automatic Attribute Buffering" on page 9-9 for a
discussion of how to buffer STRUCT attributes.)

The following methods are included with the oracle.sql.ARRAY class:

■ public void setAutoBuffering(boolean enable)

■ public boolean getAutoBuffering()

The setAutoBuffering() method enables or disables auto-buffering. The
getAutoBuffering() method returns the current auto-buffering mode. By
default, auto-buffering is disabled.

It is advisable to enable auto-buffering in a JDBC application when the ARRAY
elements will be accessed more than once by the getAttributes() and
getArray() methods (presuming the ARRAY data is able to fit into the JVM
memory without overflow).

When you enable auto-buffering, the oracle.sql.ARRAY object keeps a local
copy of all the converted elements. This data is retained so that a second access of
this information does not require going through the data format conversion process.

ARRAY Automatic Indexing
If an array is in auto-indexing mode, the array object maintains an index table to
hasten array element access.

The oracle.sql.ARRAY class contains the following methods to support
automatic array-indexing:

Important: Buffering the converted elements may cause the JDBC
application to consume a significant amount of memory.

ARRAY Performance Extension Methods

11-10 Oracle9i JDBC Developer’s Guide and Reference

■ public synchronized void setAutoIndexing
 (boolean enable, int direction)
 throws SQLException

■ public synchronized void setAutoIndexing
 (boolean enable)
 throws SQLException

The setAutoIndexing() method sets the auto-indexing mode for the
oracle.sql.ARRAY object. The direction parameter gives the array object a
hint: specify this parameter to help the JDBC driver determine the best indexing
scheme. The following are the values you can specify for the direction
parameter:

■ ARRAY.ACCESS_FORWARD

■ ARRAY.ACCESS_REVERSE

■ ARRAY.ACCESS_UNKNOWN

The setAutoIndexing(boolean) method signature sets the access direction as
ARRAY.ACCESS_UNKNOWN by default.

By default, auto-indexing is not enabled. For a JDBC application, enable
auto-indexing for ARRAY objects if random access of array elements may occur
through the getArray() and getResultSet() methods.

Creating and Using Arrays

Working with Oracle Collections 11-11

Creating and Using Arrays
This section discusses how to create array objects and how to retrieve and pass
collections as array objects, including the following topics.

■ Creating ARRAY Objects and Descriptors

■ Retrieving an Array and Its Elements

■ Passing Arrays to Statement Objects

Creating ARRAY Objects and Descriptors
This section describes how to create ARRAY objects and descriptors and lists useful
methods of the ArrayDescriptor class.

Steps in Creating ArrayDescriptor and ARRAY Objects
This section describes how to construct an oracle.sql.ARRAY object. To do this,
you must:

1. Create an ArrayDescriptor object (if one does not already exist) for the
array.

2. Use the ArrayDescriptor object to construct the oracle.sql.ARRAY object
for the array you want to pass.

An ArrayDescriptor is an object of the oracle.sql.ArrayDescriptor class
and describes the SQL type of an array. Only one array descriptor is necessary for
any one SQL type. The driver caches ArrayDescriptor objects to avoid recreating
them if the SQL type has already been encountered. You can reuse the same
descriptor object to create multiple instances of an oracle.sql.ARRAY object for
the same array type.

Collections are strongly typed. Oracle supports only named collections, that is, a
collection given a SQL type name. For example, when you create a collection with
the CREATE TYPE statement:

CREATE TYPE num_varray AS varray(22) OF NUMBER(5,2);

Where NUM_VARRAY is the SQL type name for the collection type.

Creating and Using Arrays

11-12 Oracle9i JDBC Developer’s Guide and Reference

Before you can construct an Array object, an ArrayDescriptor must first exist
for the given SQL type of the array. If an ArrayDescriptor does not exist, then
you must construct one by passing the SQL type name of the collection type and
your Connection object (which JDBC uses to go to the database to gather meta
data) to the constructor.

ArrayDescriptor arraydesc = ArrayDescriptor.createDescriptor
 (sql_type_name, connection);

Where sql_type_name is the type name of the array and connection is your
Connection object.

Once you have your ArrayDescriptor object for the SQL type of the array, you
can construct the ARRAY object. To do this, pass in the array descriptor, your
connection object, and a Java object containing the individual elements you want
the array to contain.

ARRAY array = new ARRAY(arraydesc, connection, elements);

Where arraydesc is the array descriptor created previously, connection is your
connection object, and elements is a Java array. The two possibilities for the
contents of elements are:

■ an array of Java primitives—for example, int[]

■ an array of Java objects, such as xxx[] where xxx is the name of a Java
class—for example, Integer[]

Note: The name of the collection type is not the same as the type
name of the elements. For example:

CREATE TYPE person AS object
 (c1 NUMBER(5), c2 VARCHAR2(30));
CREATE TYPE array_of_persons AS varray(10)

 OF person;

In the preceding statements, the SQL name of the collection type is
ARRAY_OF_PERSON. The SQL name of the collection elements is
PERSON.

Creating and Using Arrays

Working with Oracle Collections 11-13

Creating Multi-Level Collections
As with single-level collections, the JDBC application can create an
oracle.sql.ARRAY instance to represent a multi-level collection, and then send
the instance to the database. The oracle.sql.ARRAY constructor is defined as
follows:

public ARRAY(ArrayDescriptor type, Connection conn, Object elements)
throws SQLException

The first argument is an oracle.sql.ArrayDescriptor object that describes the
multi-level collection type. The second argument is the current database connection.
And the third argument is a java.lang.Object that holds the multi-level
collection elements. This is the same constructor used to create single-level
collections, but in Oracle9i, this constructor is enhanced to create multi-level
collections as well. The elements parameter can now be either a one dimension
array or a nested Java array.

To create a single-level collection, the elements are a one dimensional Java array. To
create a multi-level collection, the elements can be either an array of
oracle.sql.ARRAY[] elements or a nested Java array or the combinations.

The following code shows how to create collection types with a nested Java array:

Connection conn = ...; // make a JDBC connection

// create the collection types
Statement stmt = conn.createStatement ();
stmt.execute ("CREATE TYPE varray1 AS VARRAY(10) OF NUMBER(12, 2)"); // one
 // layer
stmt.execute ("CREATE TYPE varray2 AS VARRAY(10) OF varray1"); // two layers
stmt.execute ("CREATE TYPE varray3 AS VARRAY(10) OF varray2"); // three layers
stmt.execute ("CREATE TABLE tab2 (col1 index, col2 value)");
stmt.close ();

// obtain a type descriptor of "SCOTT.VARRAY3"
ArrayDescriptor desc = ArrayDescriptor.createDescriptor("SCOTT.VARRAY3", conn);

// prepare the multi level collection elements as a nested Java array

Note: The setARRAY(), setArray(), and setObject()
methods of the OraclePreparedStatement class take an object
of the type oracle.sql.ARRAY as an argument, not an array of
objects.

Creating and Using Arrays

11-14 Oracle9i JDBC Developer’s Guide and Reference

int[][][] elems = { {{1}, {1, 2}}, {{2}, {2, 3}}, {{3}, {3, 4}} };

// create the ARRAY by calling the constructor
ARRAY array3 = new ARRAY (desc, conn, elems);

// some operations
...

// close the database connection
conn.close();

In the above example, another implementation is to prepare the elems as a Java
array of oracle.sql.ARRAY[] elements, and each oracle.sql.ARRAY[]
element represents a SCOTT.VARRAY3.

Using ArrayDescriptor Methods
An ARRAY descriptor can be referred to as a type object. It has information about the
SQL name of the underlying collection, the typecode of the array’s elements, and, if
it is an array of structured objects, the SQL name of the elements. The descriptor
also contains the information on about to convert to and from the given type. You
need only one descriptor object for any one type, then you can use that descriptor to
create as many arrays of that type as you want.

The ArrayDescriptor class has the following methods for retrieving an element’s
typecode and type name:

■ createDescriptor(): This is a factory for ArrayDescriptor instances;
looks up the name in the database and determine the characteristics of the
array.

■ getBaseType(): Returns the integer typecode associated with this ARRAY
descriptor (according to integer constants defined in the OracleTypes class,
which "Package oracle.jdbc" on page 6-16 describes).

■ getBaseName(): Returns a string with the type name associated with this
array element if it is a STRUCT or REF.

■ getArrayType(): Returns an integer indicating whether the array is a
VARRAY or nested table. ArrayDescriptor.TYPE_VARRAY and
ArrayDescriptor.TYPE_NESTED_TABLE are the possible return values.

■ getMaxLength(): Returns the maximum number of elements for this array
type.

Creating and Using Arrays

Working with Oracle Collections 11-15

■ getJavaSQLConnection(): Returns the connection instance
(java.sql.Connection) that was used in creating the ARRAY descriptor (a
new descriptor must be created for each connection instance).

Serializable ARRAY Descriptors
As "Steps in Creating ArrayDescriptor and ARRAY Objects" on page 11-11
discusses, when you create an ARRAY object, you first must create an
ArrayDescriptor object. Create the ArrayDescriptor object by calling the
ArrayDescriptor.createDescriptor() method. The
oracle.sql.ArrayDescriptor class is serializable, meaning that you can write
the state of an ArrayDescriptor object to an output stream for later use. Recreate
the ArrayDescriptor object by reading its serialized state from an input stream.
This is referred to as deserializing. With the ArrayDescriptor object serialized,
you do not need to call the createDescriptor() method—simply deserialize the
ArrayDescriptor object.

It is advisable to serialize an ArrayDescriptor object when the object type is
complex but not changed often.

If you create an ArrayDescriptor object through deserialization, you must
provide the appropriate database connection instance for the ArrayDescriptor
object using the setConnection() method.

The following code furnishes the connection instance for an ArrayDescriptor
object:

public void setConnection (Connection conn) throws SQLException

Retrieving an Array and Its Elements
This section first discusses how to retrieve an ARRAY instance as a whole from a
result set, and then how to retrieve the elements from the ARRAY instance.

Note: In releases prior to Oracle9i, you cannot use a collection
within a collection. You can, however, use a structured object with a
collection attribute, or a collection with structured object elements.
In Oracle9i, you can use a collection within a collection.

Note: The JDBC driver does not verify that the connection object
from the setConnection() method connects to the same
database from which the type descriptor was initially derived.

Creating and Using Arrays

11-16 Oracle9i JDBC Developer’s Guide and Reference

Retrieving the Array
You can retrieve a SQL array from a result set by casting the result set to an
OracleResultSet object and using the getARRAY() method, which returns an
oracle.sql.ARRAY object. If you want to avoid casting the result set, then you
can get the data with the standard getObject() method specified by the
java.sql.ResultSet interface, and cast the output to an oracle.sql.ARRAY
object.

Data Retrieval Methods
Once you have the array in an ARRAY object, you can retrieve the data using one of
these three overloaded methods of the oracle.sql.ARRAY class:

■ getArray()

■ getOracleArray()

■ getResultSet()

Oracle also provides methods that enable you to retrieve all the elements of an
array, or a subset.

getOracleArray() The getOracleArray() method is an Oracle-specific extension
that is not specified in the standard Array interface (java.sql.Array under JDK
1.2.x or oracle.jdbc2.Array under JDK 1.1.x). The getOracleArray()
method retrieves the element values of the array into a Datum[] array. The
elements are of the oracle.sql.* datatype corresponding to the SQL type of the
data in the original array.

For an array of structured objects, this method will use oracle.sql.STRUCT
instances for the elements.

Oracle also provides a getOracleArray(index,count) method to get a subset
of the array elements.

getResultSet() The getResultSet() method returns a result set that contains
elements of the array designated by the ARRAY object. The result set contains one
row for each array element, with two columns in each row. The first column stores

Note: In case you are working with an array of structured objects,
Oracle provides versions of these three methods that enable you to
specify a type map so that you can choose how to map the objects
to Java.

Creating and Using Arrays

Working with Oracle Collections 11-17

the index into the array for that element, and the second column stores the element
value. In the case of VARRAYs, the index represents the position of the element in
the array. In the case of nested tables, which are by definition unordered, the index
reflects only the return order of the elements in the particular query.

Oracle recommends using getResultSet() when getting data from nested tables.
Nested tables can have an unlimited number of elements. The ResultSet object
returned by the method initially points at the first row of data. You get the contents
of the nested table by using the next() method and the appropriate getXXX()
method. In contrast, getArray() returns the entire contents of the nested table at
one time.

The getResultSet() method uses the connection’s default type map to
determine the mapping between the SQL type of the Oracle object and its
corresponding Java datatype. If you do not want to use the connection’s default
type map, another version of the method, getResultSet(map), enables you to
specify an alternate type map.

Oracle also provides the getResultSet(index,count) and
getResultSet(index,count,map) methods to retrieve a subset of the array
elements.

getArray() The getArray() method is a standard JDBC method that returns the
array elements into a java.lang.Object instance that you can cast as
appropriate (see "Comparing the Data Retrieval Methods" on page 11-17). The
elements are converted to the Java types corresponding to the SQL type of the data
in the original array.

Oracle also provides a getArray(index,count) method to retrieve a subset of
the array elements.

Comparing the Data Retrieval Methods
If you use getOracleArray() to return the array elements, the use by that
method of oracle.sql.Datum instances avoids the expense of data conversion
from SQL to Java. The data inside a Datum (or subclass) instance remains in raw
SQL format.

If you use getResultSet() to return an array of primitive datatypes, then the
JDBC driver returns a ResultSet object that contains, for each element, the index
into the array for the element and the element value. For example:

ResultSet rset = intArray.getResultSet();

Creating and Using Arrays

11-18 Oracle9i JDBC Developer’s Guide and Reference

In this case, the result set contains one row for each array element, with two
columns in each row. The first column stores the index into the array; the second
column stores the element value.

If you use getArray() to retrieve an array of primitive datatypes, then a
java.lang.Object that contains the element values is returned. The elements of
this array are of the Java type corresponding to the SQL type of the elements. For
example:

BigDecimal[] values = (BigDecimal[]) intArray.getArray();

Where intArray is an oracle.sql.ARRAY, corresponding to a VARRAY of type
NUMBER. The values array contains an array of elements of type
java.math.BigDecimal, because the SQL NUMBER datatype maps to Java
BigDecimal by default, according to the Oracle JDBC drivers.

Retrieving Elements of a Structured Object Array According to a Type Map
By default, if you are working with an array whose elements are structured objects,
and you use getArray() or getResultSet(), then the Oracle objects in the
array will be mapped to their corresponding Java datatypes according to the default
mapping. This is because these methods use the connection’s default type map to
determine the mapping.

However, if you do not want default behavior, then you can use the
getArray(map) or getResultSet(map) method to specify a type map that
contains alternate mappings. If there are entries in the type map corresponding to
the Oracle objects in the array, then each object in the array is mapped to the
corresponding Java type specified in the type map. For example:

Object[] object = (Object[])objArray.getArray(map);

Where objArray is an oracle.sql.ARRAY object and map is a java.util.Map
object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an oracle.sql.STRUCT object.

Note: Using BigDecimal is a resource-intensive operation in
Java. Because Oracle JDBC maps numeric SQL data to
BigDecimal by default, using getArray() may impact
performance, and is not recommended for numeric collections.

Creating and Using Arrays

Working with Oracle Collections 11-19

The getResultSet(map) method behaves similarly to the getArray(map)
method.

For more information on using type maps with arrays, see "Using a Type Map to
Map Array Elements" on page 11-25.

Retrieving a Subset of Array Elements
If you do not want to retrieve the entire contents of an array, then you can use
signatures of getArray(), getResultSet(), and getOracleArray() that let
you retrieve a subset. To retrieve a subset of the array, pass in an index and a count
to indicate where in the array you want to start and how many elements you want
to retrieve. As described above, you can specify a type map or use the default type
map for your connection to convert to Java types. For example:

Object object = arr.getArray(index, count, map);
Object object = arr.getArray(index, count);

Similar examples using getResultSet() are:

ResultSet rset = arr.getResultSet(index, count, map);
ResultSet rset = arr.getResultSet(index, count);

A similar example using getOracleArray() is:

Datum arr = arr.getOracleArray(index, count);

Where arr is an oracle.sql.ARRAY object, index is type long, count is type
int, and map is a java.util.Map object.

Retrieving Array Elements into an oracle.sql.Datum Array
Use getOracleArray() to return an oracle.sql.Datum[] array. The elements
of the returned array will be of the oracle.sql.* type that correspond to the SQL
datatype of the elements of the original array. For example:

Datum arraydata[] = arr.getOracleArray();

Where arr is an oracle.sql.ARRAY object.

The following example assumes that a connection object conn and a statement
object stmt have already been created. In the example, an array with the SQL type

Note: There is no performance advantage in retrieving a subset of
an array, as opposed to the entire array.

Creating and Using Arrays

11-20 Oracle9i JDBC Developer’s Guide and Reference

name NUM_ARRAY is created to store a VARRAY of NUMBER data. The NUM_ARRAY is
in turn stored in a table VARRAY_TABLE.

A query selects the contents of the VARRAY_TABLE. The result set is cast to an
OracleResultSet object; getARRAY() is applied to it to retrieve the array data
into my_array, which is an oracle.sql.ARRAY object.

Because my_array is of type oracle.sql.ARRAY, you can apply the methods
getSQLTypeName() and getBaseType() to it to return the name of the SQL type
of each element in the array and its integer code.

The program then prints the contents of the array. Because the contents of my_
array are of the SQL datatype NUMBER, it must first be cast to the BigDecimal
datatype. In the for loop, the individual values of the array are cast to
BigDecimal and printed to standard output.

stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");
stmt.execute ("CREATE TABLE varray_table (col1 num_varray)");
stmt.execute ("INSERT INTO varray_table VALUES (num_varray(100, 200))");

ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table");
ARRAY my_array = ((OracleResultSet)rs).getARRAY(1);

// return the SQL type names, integer codes,
// and lengths of the columns
System.out.println ("Array is of type " + array.getSQLTypeName());
System.out.println ("Array element is of typecode " + array.getBaseType());
System.out.println ("Array is of length " + array.length());

// get Array elements
BigDecimal[] values = (BigDecimal[]) my_array.getArray();

for (int i=0; i<values.length; i++)
{
 BigDecimal out_value = (BigDecimal) values[i];
 System.out.println(">> index " + i + " = " + out_value.intValue());
}

Note that if you use getResultSet() to obtain the array, you would first get the
result set object, then use the next() method to iterate through it. Notice the use of
the parameter indexes in the getInt() method to retrieve the element index and
the element value.

ResultSet rset = my_array.getResultSet();
while (rset.next())
{

Creating and Using Arrays

Working with Oracle Collections 11-21

 // The first column contains the element index and the
 // second column contains the element value
 System.out.println(">> index " + rset.getInt(1)+" = " + rset.getInt(2));
}

Accessing Multi-Level Collection Elements
The oracle.sql.ARRAY class provides three methods (which can be overloaded)
to access collection elements. For Oracle9i JDBC drivers, these methods are
extended to support multi-level collections. The three methods are the following:

■ getArray() method : JDBC standard

■ getOracleArray() method : Oracle extension

■ getResultSet() method : JDBC standard

The getArray() method returns a Java array that holds the collection elements.
The array element type is determined by the collection element type and the JDBC
default conversion matrix.

For example, the getArray() method returns a java.math.BigDecimal array
for collection of SQL NUMBER. The getOracleArray() method returns a Datum
array that holds the collection elements in Datum format. For multi-level
collections, the getArray() and getOracleArray() methods both return a Java
array of oracle.sql.ARRAY elements.

The getResultSet() method returns a ResultSet object that wraps the
multi-level collection elements. For multi-level collections, the JDBC applications
use the getObject(), getARRAY(), or getArray() method of the ResultSet
class to access the collection elements as instances of oracle.sql.ARRAY.

The following code shows how to use the getOracleArray(), getArray(), and
getResultSet() methods:

Connection conn = ...; // make a JDBC connection
Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery ("select col2 from tab2 where idx=1");

while (rset.next())
{
 ARRAY varray3 = (ARRAY) rset.getObject (1);
 Object varrayElems = varray3.getArray (1); // access array elements of
 "varray3"
 Datum[] varray3Elems = (Datum[]) varrayElems;

 for (int i=0; i<varray3Elems.length; i++)

Creating and Using Arrays

11-22 Oracle9i JDBC Developer’s Guide and Reference

 {
 ARRAY varray2 = (ARRAY) varray3Elems[i];
 Datum[] varray2Elems = varray2.getOracleArray(); // access array elements of
 "varray2"

 for (int j=0; j<varray2Elems.length; j++)
 {
 ARRAY varray1 = (ARRAY) varray2Elems[j];
 ResultSet varray1Elems = varray1.getResultSet(); // access array elements
 of "varray1"

 while (varray1Elems.next())
 System.out.println ("idx="+varray1Elems.getInt(1)+"
 value="+varray1Elems.getInt(2));
 }
 }
}
rset.close ();
stmt.close ();
conn.close ();

Passing Arrays to Statement Objects
This section discusses how to pass arrays to prepared statement objects or callable
statement objects.

Passing an Array to a Prepared Statement
Pass an array to a prepared statement as follows (use similar steps to pass an array
to a callable statement). Note that you can use arrays as either IN or OUT bind
variables.

1. Construct an ArrayDescriptor object for the SQL type that the array will
contain (unless one has already been created for this SQL type). See "Steps in
Creating ArrayDescriptor and ARRAY Objects" on page 11-11 for information
about creating ArrayDescriptor objects.

ArrayDescriptor descriptor = ArrayDescriptor.createDescriptor
 (sql_type_name, connection);

Where sql_type_name is a Java string specifying the user-defined SQL type
name of the array, and connection is your Connection object. See "Oracle
Extensions for Collections (Arrays)" on page 11-2 for information about SQL
typenames.

Creating and Using Arrays

Working with Oracle Collections 11-23

2. Define the array that you want to pass to the prepared statement as an
oracle.sql.ARRAY object.

ARRAY array = new ARRAY(descriptor, connection, elements);

Where descriptor is the ArrayDescriptor object previously constructed
and elements is a java.lang.Object containing a Java array of the
elements.

3. Create a java.sql.PreparedStatement object containing the SQL
statement to execute.

4. Cast your prepared statement to an OraclePreparedStatement and use the
setARRAY() method of the OraclePreparedStatement object to pass the
array to the prepared statement.

(OraclePreparedStatement)stmt.setARRAY(parameterIndex, array);

Where parameterIndex is the parameter index, and array is the
oracle.sql.ARRAY object you constructed previously.

5. Execute the prepared statement.

Passing an Array to a Callable Statement
To retrieve a collection as an OUT parameter in PL/SQL blocks, execute the
following to register the bind type for your OUT parameter.

1. Cast your callable statement to an OracleCallableStatement:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");

2. Register the OUT parameter with this form of the regsiterOutParameter()
method:

ocs.registerOutParameter
 (int param_index, int sql_type, string sql_type_name);

Where param_index is the parameter index, sql_type is the SQL typecode,
and sql_type_name is the name of the array type. In this case, the sql_type
is OracleTypes.ARRAY.

3. Execute the call:

ocs.execute();

Creating and Using Arrays

11-24 Oracle9i JDBC Developer’s Guide and Reference

4. Get the value:

oracle.sql.ARRAY array = ocs.getARRAY(1);

Using a Type Map to Map Array Elements

Working with Oracle Collections 11-25

Using a Type Map to Map Array Elements
If your array contains Oracle objects, then you can use a type map to associate the
objects in the array with the corresponding Java class. If you do not specify a type
map, or if the type map does not contain an entry for a particular Oracle object, then
each element is returned as an oracle.sql.STRUCT object.

If you want the type map to determine the mapping between the Oracle objects in
the array and their associated Java classes, then you must add an appropriate entry
to the map. For instructions on how to add entries to an existing type map or how
to create a new type map, see "Understanding Type Maps for SQLData
Implementations" on page 9-11.

The following example illustrates how you can use a type map to map the elements
of an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE_LIST is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE is created to store the names of departments
within a corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LIST
tables.

stmt.execute("CREATE TYPE EMPLOYEE AS OBJECT
 (EmpName VARCHAR2(50),EmpNo INTEGER))");

stmt.execute("CREATE TYPE EMPLOYEE_LIST AS TABLE OF EMPLOYEE");

stmt.execute("CREATE TABLE EMPLOYEE_TABLE (DeptName VARCHAR2(20),
 Employees EMPLOYEE_LIST) NESTED TABLE Employees STORE AS ntable1");

stmt.execute("INSERT INTO EMPLOYEE_TABLE VALUES ("SALES", EMPLOYEE_LIST
 (EMPLOYEE(’Susan Smith’, 123), EMPLOYEE(’Scott Tiger’, 124)))");

If you want to retrieve all the employees belonging to the SALES department into
an array of instances of the custom object class EmployeeObj, then you must add
an entry to the type map to specify mapping between the EMPLOYEE SQL type and
the EmployeeObj custom object class.

To do this, first create your statement and result set objects, then select the
EMPLOYEE_LIST associated with the SALES department into the result set. Cast the
result set to OracleResultSet so you can use the getARRAY() method to
retrieve the EMPLOYEE_LIST into an ARRAY object (employeeArray in the
example below).

Using a Type Map to Map Array Elements

11-26 Oracle9i JDBC Developer’s Guide and Reference

The EmployeeObj custom object class in this example implements the SQLData
interface.

Statement s = conn.createStatement();
OracleResultSet rs = (OracleResultSet)s.executeQuery
 ("SELECT Employees FROM employee_table WHERE DeptName = ’SALES’");

// get the array object
ARRAY employeeArray = ((OracleResultSet)rs).getARRAY(1);

Now that you have the EMPLOYEE_LIST object, get the existing type map and add
an entry that maps the EMPLOYEE SQL type to the EmployeeObj Java type.

// add type map entry to map SQL type
// "EMPLOYEE" to Java type "EmployeeObj"
Map map = conn.getTypeMap();
map.put("EMPLOYEE", Class.forName("EmployeeObj"));

Next, retrieve the SQL EMPLOYEE objects from the EMPLOYEE_LIST. To do this,
invoke the getArray() method of the employeeArray array object. This method
returns an array of objects. The getArray() method returns the EMPLOYEE objects
into the employees object array.

// Retrieve array elements
Object[] employees = (Object[]) employeeArray.getArray();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the
EmployeeObj Java object emp.

// Each array element is mapped to EmployeeObj object.
for (int i=0; i<employees.length; i++)
{
 EmployeeObj emp = (EmployeeObj) employees[i];
 ...
}

Custom Collection Classes with JPublisher

Working with Oracle Collections 11-27

Custom Collection Classes with JPublisher
This chapter primarily describes the functionality of the oracle.sql.ARRAY class,
but it is also possible to access Oracle collections through custom Java classes or,
more specifically, custom collection classes.

You can create custom collection classes yourself, but the most convenient way is to
use the Oracle JPublisher utility. Custom collection classes generated by JPublisher
offer all the functionality described earlier in this chapter, as well as the following
advantages (it is also possible to implement such functionality yourself):

■ They are strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until runtime.

■ They can be changeable, or mutable. Custom collection classes produced by
JPublisher, unlike the ARRAY class, allow you to get and set individual elements
using the getElement() and setElement() methods. (This is also
something you could implement in a custom collection class yourself.)

A custom collection class must satisfy three requirements:

■ It must implement the oracle.sql.ORAData interface described under
"Creating and Using Custom Object Classes for Oracle Objects" on page 9-10.
Note that the standard JDBC SQLData interface, which is an alternative for
custom object classes, is not intended for custom collection classes.

■ It, or a companion class, must implement the oracle.sql.ORADataFactory
interface, for creating instances of the custom collection class.

■ It must have a means of storing the collection data. Typically it will directly or
indirectly include an oracle.sql.ARRAY attribute for this purpose (this is the
case with a JPublisher-produced custom collection class).

A JPublisher-generated custom collection class implements ORAData and
ORADataFactory and indirectly includes an oracle.sql.ARRAY attribute. The
custom collection class will have an oracle.jpub.runtime.MutableArray
attribute. The MutableArray class has an oracle.sql.ARRAY attribute.

Custom Collection Classes with JPublisher

11-28 Oracle9i JDBC Developer’s Guide and Reference

As an example of custom collection classes being strongly typed, if you define an
Oracle collection MYVARRAY, then JPublisher can generate a MyVarray custom
collection class. Using MyVarray instances, instead of generic
oracle.sql.ARRAY instances, makes it easier to catch errors during compilation
instead of at runtime—for example, if you accidentally assign some other kind of
array into a MyVarray variable.

If you do not use custom collection classes, then you would use standard
java.sql.Array instances (or oracle.sql.ARRAY instances) to map to your
collections.

For more information about JPublisher, see "Using JPublisher to Create Custom
Object Classes" on page 9-45, or refer to the Oracle9i JPublisher User’s Guide.

Note: When you use JPublisher to create a custom collection class,
you must use the ORAData implementation. This will be true if
JPublisher’s -usertypes mapping option is set to oracle, which
is the default.

You cannot use a SQLData implementation for a custom collection
class (that implementation is for custom object classes only). Setting
the -usertypes mapping option to jdbc is invalid.

Performance Extensions 12-1

12
Performance Extensions

This chapter describes the Oracle performance extensions to the JDBC standard.

In the course of discussing update batching, it also includes a discussion of the
standard update-batching model provided with JDBC 2.0.

This chapter covers the following topics:

■ Update Batching

■ Additional Oracle Performance Extensions

Note: For a general overview of Oracle extensions and detailed
discussion of Oracle packages and type extensions, see Chapter 6,
"Overview of Oracle Extensions".

Update Batching

12-2 Oracle9i JDBC Developer’s Guide and Reference

Update Batching
You can reduce the number of round trips to the database, thereby improving
application performance, by grouping multiple UPDATE, DELETE, or INSERT
statements into a single "batch" and having the whole batch sent to the database and
processed in one trip. This is referred to in this manual as update batching and in the
Sun Microsystems JDBC 2.0 specification as batch updates.

This is especially useful with prepared statements, when you are repeating the same
statement with different bind variables.

With Oracle8i release 8.1.6 and higher, Oracle JDBC supports two distinct models
for update batching:

■ the standard model, supported since Oracle8i release 8.1.6 and implementing
the Sun Microsystems JDBC 2.0 Specification, which is referred to as standard
update batching

■ the Oracle-specific model, supported since release 8.1.5 and independent of the
Sun Microsystems JDBC 2.0 Specification, which is referred to as Oracle update
batching

Overview of Update Batching Models
This section compares and contrasts the general models and types of statements
supported for standard update batching and Oracle update batching.

Oracle Model versus Standard Model
Oracle update batching uses a batch value that typically results in implicit processing
of a batch. The batch value is the number of operations you want to batch
(accumulate) for each trip to the database. As soon as that many operations have
been added to the batch, the batch is executed. Note the following:

■ You can set a default batch for the connection object, which applies to any
prepared statement executed in that connection.

■ For any individual prepared statement object, you can set a statement batch
value that overrides the connection batch value.

Note: It is important to be aware that you cannot mix theses
models. In any single application, you can use the syntax of one
model or the other, but not both. The Oracle JDBC driver will throw
exceptions when you mix these syntaxes.

Update Batching

Performance Extensions 12-3

■ You can choose to explicitly execute a batch at any time, overriding both the
connection batch value and the statement batch value.

Standard update batching is a manual, explicit model. There is no batch value. You
manually add operations to the batch and then explicitly choose when to execute
the batch.

Oracle update batching is a more efficient model because the driver knows ahead of
time how many operations will be batched. In this sense, the Oracle model is more
static and predictable. With the standard model, the driver has no way of knowing
in advance how many operations will be batched. In this sense, the standard model
is more dynamic in nature.

If you want to use update batching, here is how to choose between the two models:

■ Use Oracle update batching if portability is not critical. This will probably result
in the greatest performance improvement.

■ Use standard update batching if portability is a higher priority than
performance.

Types of Statements Supported
As implemented by Oracle, update batching is intended for use with prepared
statements, when you are repeating the same statement with different bind
variables. Be aware of the following:

■ Oracle update batching supports only Oracle prepared statement objects. In an
Oracle callable statement, both the connection default batch value and the
statement batch value are overridden with a value of 1. In an Oracle generic
statement, there is no statement batch value, and the connection default batch
value is overridden with a value of 1.

Note that because Oracle update batching is vendor-specific, you must actually
use (or cast to) OraclePreparedStatement objects, not general
PreparedStatement objects.

■ To adhere to the JDBC 2.0 standard, Oracle’s implementation of standard
update batching supports callable statements and generic statements, as well as
prepared statements. You can migrate standard update batching syntax into an
Oracle JDBC application without difficulty.

■ You can batch only UPDATE, INSERT, or DELETE operations. Executing a batch
that includes an operation that attempts to return a result set will cause an
exception.

Update Batching

12-4 Oracle9i JDBC Developer’s Guide and Reference

Note that with standard update batching, you can use either standard
PreparedStatement, CallableStatement, and Statement objects, or
Oracle-specific OraclePreparedStatement, OracleCallableStatement,
and OracleStatement objects.

Oracle Update Batching
The Oracle update batching feature associates a batch value (limit) with each
prepared statement object. With Oracle update batching, instead of the JDBC driver
executing a prepared statement each time its executeUpdate() method is called,
the driver adds the statement to a batch of accumulated execution requests. The
driver will pass all the operations to the database for execution once the batch value
is reached. For example, if the batch value is 10, then each batch of 10 operations
will be sent to the database and processed in one trip.

A method in the OracleConnection class allows you to set a default batch value
for the Oracle connection as a whole, and this batch value is relevant to any Oracle
prepared statement in the connection. For any particular Oracle prepared statement,
a method in the OraclePreparedStatement class allows you to set a statement
batch value that overrides the connection batch value. You can also override both
batch values by choosing to manually execute the pending batch.

Note: The Oracle implementation of standard update batching
does not implement true batching for generic statements and
callable statements. Although Oracle JDBC supports the use of
standard batching syntax for Statement and
CallableStatement objects, you will see performance
improvement for only PreparedStatement objects.

Notes:

■ Do not mix standard update batching syntax with Oracle
update batching syntax in the same application. The JDBC
driver will throw an exception when you mix these syntaxes.

■ Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are executing a batch,
this allows you the option of committing or rolling back the
operations that executed successfully prior to the error.

Update Batching

Performance Extensions 12-5

Oracle Update Batching Characteristics and Limitations
Note the following limitations and implementation details regarding Oracle update
batching:

■ By default, there is no statement batch value, and the connection (default) batch
value is 1.

■ Batch values between 5 and 30 tend to be the most effective. Setting a very high
value might even have a negative effect. It is worth trying different values to
verify the effectiveness for your particular application.

■ Regardless of the batch value in effect, if any of the bind variables of an Oracle
prepared statement is (or becomes) a stream type, then the Oracle JDBC driver
sets the batch value to 1 and sends any queued requests to the database for
execution.

■ The Oracle JDBC driver automatically executes the sendBatch() method of an
Oracle prepared statement in any of the following circumstances: 1) the
connection receives a COMMIT request, either as a result of invoking the
commit() method or as a result of auto-commit mode; 2) the statement
receives a close() request; or 3) the connection receives a close() request.

Setting the Connection Batch Value
You can specify a default batch value for any Oracle prepared statement in your
Oracle connection. To do this, use the setDefaultExecuteBatch() method of
the OracleConnection object. For example, the following code sets the default
batch value to 20 for all prepared statement objects associated with the conn
connection object:

((OracleConnection)conn).setDefaultExecuteBatch(20);

Even though this sets the default batch value for all the prepared statements of the
connection, you can override it by calling setDefaultBatch() on individual
Oracle prepared statements.

The connection batch value will apply to statement objects created after this batch
value was set.

Note: A connection COMMIT request, statement close, or
connection close has no effect on a pending batch if you use
standard update batching—only if you use Oracle update batching.

Update Batching

12-6 Oracle9i JDBC Developer’s Guide and Reference

Note that instead of calling setDefaultExecuteBatch(), you can set the
defaultBatchValue Java property if you use a Java Properties object in
establishing the connection. See "Specifying a Database URL and Properties Object"
on page 3-6.

Setting the Statement Batch Value
Use the following steps to set the statement batch value for a particular Oracle
prepared statement. This will override any connection batch value set using the
setDefaultExecuteBatch() method of the OracleConnection instance for
the connection in which the statement executes.

1. Write your prepared statement and specify input values for the first row:

PreparedStatement ps = conn.prepareStatement
 ("INSERT INTO dept VALUES (?,?,?)");
ps.setInt (1,12);
ps.setString (2,"Oracle");
ps.setString (3,"USA");

2. Cast your prepared statement to an OraclePreparedStatement object, and
apply the setExecuteBatch() method. In this example, the batch size of the
statement is set to 2.

((OraclePreparedStatement)ps).setExecuteBatch(2);

If you wish, insert the getExecuteBatch() method at any point in the
program to check the default batch value for the statement:

System.out.println (" Statement Execute Batch Value " +
 ((OraclePreparedStatement)ps).getExecuteBatch());

3. If you send an execute-update call to the database at this point, then no data
will be sent to the database, and the call will return 0.

// No data is sent to the database by this call to executeUpdate
System.out.println ("Number of rows updated so far: "
 + ps.executeUpdate ());

4. If you enter a set of input values for a second row and an execute-update, then
the number of batch calls to executeUpdate() will be equal to the batch
value of 2. The data will be sent to the database, and both rows will be inserted
in a single round trip.

ps.setInt (1, 11);
ps.setString (2, "Applications");

Update Batching

Performance Extensions 12-7

ps.setString (3, "Indonesia");

int rows = ps.executeUpdate ();
System.out.println ("Number of rows updated now: " + rows);

ps.close ();

Checking the Batch Value
To check the overall connection batch value of an Oracle connection instance, use
the OracleConnection class getDefaultExecuteBatch() method:

Integer batch_val = ((OracleConnection)conn).getDefaultExecuteBatch();

To check the particular statement batch value of an Oracle prepared statement, use
the OraclePreparedStatement class getExecuteBatch() method:

Integer batch_val = ((OraclePreparedStatement)ps).getExecuteBatch();

Overriding the Batch Value
If you want to execute accumulated operations before the batch value in effect is
reached, then use the sendBatch() method of the OraclePreparedStatement
object.

For this example, presume you set the connection batch value to 20. (This sets the
default batch value for all prepared statement objects associated with the
connection to 20.) You could accomplish this by casting your connection to an
OracleConnection object and applying the setDefaultExecuteBatch()
method for the connection, as follows:

((OracleConnection)conn).setDefaultExecuteBatch (20);

Override the batch value as follows:

1. Write your prepared statement and specify input values for the first row as
usual, then execute the statement:

PreparedStatement ps =
 conn.prepareStatement ("insert into dept values (?, ?, ?)");

Note: If no statement batch value has been set, then
getExecuteBatch() will return the connection batch value.

Update Batching

12-8 Oracle9i JDBC Developer’s Guide and Reference

ps.setInt (1, 32);
ps.setString (2, "Oracle");
ps.setString (3, "USA");

System.out.println (ps.executeUpdate ());

The batch is not executed at this point. The ps.executeUpdate() method
returns "0".

2. If you enter a set of input values for a second operation and call
executeUpdate() again, the data will still not be sent to the database,
because the batch value in effect for the statement is the connection batch value:
20.

ps.setInt (1, 33);
ps.setString (2, "Applications");
ps.setString (3, "Indonesia");

// this batch is still not executed at this point
int rows = ps.executeUpdate ();

System.out.println ("Number of rows updated before calling sendBatch: "
 + rows);

Note that the value of rows in the println statement is "0".

3. If you apply the sendBatch() method at this point, then the two previously
batched operations will be sent to the database in a single round trip. The
sendBatch() method also returns the total number of updated rows. This
property of sendBatch() is used by println to print the number of updated
rows.

// Execution of both previously batched executes will happen
// at this point. The number of rows updated will be
// returned by sendBatch.
rows = ((OraclePreparedStatement)ps).sendBatch ();

System.out.println ("Number of rows updated by calling sendBatch: "
 + rows);
ps.close ();

Committing the Changes in Oracle Batching
After you execute the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Update Batching

Performance Extensions 12-9

Calling commit() on the connection object in Oracle batching not only commits
operations in batches that have been executed, but also issues an implicit
sendBatch() call to execute all pending batches. So commit() effectively
commits changes for all operations that have been added to a batch.

Update Counts in Oracle Batching
In a non-batching situation, the executeUpdate() method of an
OraclePreparedStatement object will return the number of database rows
affected by the operation.

In an Oracle batching situation, this method returns the number of rows affected at
the time the method is invoked, as follows:

■ If an executeUpdate() call results in the operation being added to the batch,
then the method returns a value of 0, because nothing was written to the
database yet.

■ If an executeUpdate() call results in the batch value being reached and the
batch being executed, then the method will return the total number of rows
affected by all operations in the batch.

Similarly, the sendBatch() method of an OraclePreparedStatement object
returns the total number of rows affected by all operations in the batch.

Example: Oracle Update Batching
The following example illustrates how you use the Oracle update batching feature.
It assumes you have imported the oracle.driver.* interfaces.

...
Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:","scott","tiger");

conn.setAutoCommit(false);

PreparedStatement ps =
 conn.prepareStatement("insert into dept values (?, ?, ?)");

//Change batch size for this statement to 3
((OraclePreparedStatement)ps).setExecuteBatch (3);

ps.setInt(1, 23);
ps.setString(2, "Sales");
ps.setString(3, "USA");
ps.executeUpdate(); //JDBC queues this for later execution

Update Batching

12-10 Oracle9i JDBC Developer’s Guide and Reference

ps.setInt(1, 24);
ps.setString(2, "Blue Sky");
ps.setString(3, "Montana");
ps.executeUpdate(); //JDBC queues this for later execution

ps.setInt(1, 25);
ps.setString(2, "Applications");
ps.setString(3, "India");
ps.executeUpdate(); //The queue size equals the batch value of 3
 //JDBC sends the requests to the database

ps.setInt(1, 26);
ps.setString(2, "HR");
ps.setString(3, "Mongolia");
ps.executeUpdate(); //JDBC queues this for later execution

((OraclePreparedStatement)ps).sendBatch(); // JDBC sends the queued request
conn.commit();

ps.close();
...

Standard Update Batching
Oracle implements the standard update batching model according to the Sun
Microsystems JDBC 2.0 Specification. Because it is a JDBC 2.0 feature, it is intended
for use in a JDK 1.2.x environment. To use standard update batching in a JDK 1.1.x
environment, you must cast to Oracle statement objects.

This model, unlike the Oracle update batching model, depends on explicitly adding
statements to the batch using an addBatch() method and explicitly executing the
batch using an executeBatch() method. (In the Oracle model, you invoke
executeUpdate() as in a non-batching situation, but whether an operation is
added to the batch or the whole batch is executed is typically determined implicitly,
depending on whether a pre-determined batch value is reached.)

Note: Updates deferred through batching can affect the results of
other queries. In the following example, if the first query is deferred
due to batching, then the second will return unexpected results:

UPDATE emp SET name = "Sue" WHERE name = "Bob";
SELECT name FROM emp WHERE name = "Sue";

Update Batching

Performance Extensions 12-11

Limitations in the Oracle Implementation of Standard Batching
Note the following limitations and implementation details regarding Oracle’s
implementation of standard update batching:

■ In Oracle JDBC applications, update batching is intended for use with prepared
statements that are being executed repeatedly with different sets of bind values.

The Oracle implementation of standard update batching does not implement
true batching for generic statements and callable statements. Even though
Oracle JDBC supports the use of standard batching syntax for Statement and
CallableStatement objects, you are unlikely to see performance
improvement.

■ Oracle’s implementation of standard update batching does not support stream
types as bind values. (This is also true of Oracle update batching.) Any attempt
to use stream types will result in an exception.

Adding Operations to the Batch
When any statement object is first created, its statement batch is empty. Use the
standard addBatch() method to add an operation to the statement batch. This
method is specified in the standard java.sql.Statement,
PreparedStatement, and CallableStatement interfaces, which are
implemented by interfaces oracle.jdbc.OracleStatement,
OraclePreparedStatement, and OracleCallableStatement, respectively.

For a Statement object (or OracleStatement), the addBatch() method takes a
Java string with a SQL operation as input. For example (assume a Connection
instance conn):

...

Notes:

■ Do not mix standard update batching syntax with Oracle
update batching syntax in the same application. The Oracle
JDBC driver will throw exceptions when these syntaxes are
mixed.

■ Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are executing a batch,
this allows you the option of committing or rolling back the
operations that executed successfully prior to the error.

Update Batching

12-12 Oracle9i JDBC Developer’s Guide and Reference

Statement stmt = conn.createStatement();

stmt.addBatch("INSERT INTO emp VALUES(1000, ’Joe Jones’)");
stmt.addBatch("INSERT INTO dept VALUES(260, ’Sales’)");
stmt.addBatch("INSERT INTO emp_dept VALUES(1000, 260)");
...

At this point, three operations are in the batch.

(Remember, however, that in the Oracle implementation of standard update
batching, you will probably see no performance improvement in batching generic
statements.)

For prepared statements, update batching is used to batch multiple executions of
the same statement with different sets of bind parameters. For a
PreparedStatement or OraclePreparedStatement object, the addBatch()
method takes no input—it simply adds the operation to the batch using the bind
parameters last set by the appropriate setXXX() methods. (This is also true for
CallableStatement or OracleCallableStatement objects, but remember
that in the Oracle implementation of standard update batching, you will probably
see no performance improvement in batching callable statements.)

For example (again assuming a Connection instance conn):

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();
...

At this point, two operations are in the batch.

Because a batch is associated with a single prepared statement object, you can batch
only repeated executions of a single prepared statement, as in this example.

Executing the Batch
To execute the current batch of operations, use the executeBatch() method of the
statement object. This method is specified in the standard Statement interface,

Update Batching

Performance Extensions 12-13

which is extended by the standard PreparedStatement and
CallableStatement interfaces.

Following is an example that repeats the prepared statement addBatch() calls
shown previously and then executes the batch:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();
...

The executeBatch() method returns an int array, typically one element per
batched operation, indicating success or failure in executing the batch and
sometimes containing information about the number of rows affected. This is
discussed in "Update Counts in the Oracle Implementation of Standard Batching"
on page 12-15.

Notes:

■ After calling addBatch(), you must call either
executeBatch() or clearBatch() before a call to
executeUpdate(), otherwise there will be a SQL exception.

■ When a batch is executed, operations are performed in the
order in which they were batched.

■ The statement batch is reset to empty once executeBatch()
has returned.

■ An executeBatch() call closes the statement object’s current
result set, if one exists.

Update Batching

12-14 Oracle9i JDBC Developer’s Guide and Reference

Committing the Changes in the Oracle Implementation of Standard Batching
After you execute the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Calling commit() commits non-batched operations and commits batched
operations for statement batches that have been executed, but for the Oracle
implementation of standard batching, has no effect on pending statement batches
that have not been executed.

Clearing the Batch
To clear the current batch of operations instead of executing it, use the
clearBatch() method of the statement object. This method is specified in the
standard Statement interface, which is extended by the standard
PreparedStatement and CallableStatement interfaces.

Following is an example that repeats the prepared statement addBatch() calls
shown previously but then clears the batch under certain circumstances:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

if (...condition...)
{
 int[] updateCounts = pstmt.executeBatch();
 ...
}
else
{
 pstmt.clearBatch();
 ...
}

Update Batching

Performance Extensions 12-15

Update Counts in the Oracle Implementation of Standard Batching
If a statement batch is executed successfully (no batch exception is thrown), then the
integer array—or update counts array—returned by the statement
executeBatch() call will always have one element for each operation in the
batch. In the Oracle implementation of standard update batching, the values of the
array elements are as follows:

■ For a prepared statement batch, it is not possible to know the number of rows
affected in the database by each individual statement in the batch. Therefore, all
array elements have a value of -2. According to the JDBC 2.0 specification, a
value of -2 indicates that the operation was successful but the number of rows
affected is unknown.

■ For a generic statement batch or callable statement batch, the array contains the
actual update counts indicating the number of rows affected by each operation.
The actual update counts can be provided because Oracle JDBC cannot use true
batching for generic and callable statements in the Oracle implementation of
standard update batching.

In your code, upon successful execution of a batch, you should be prepared to
handle either -2’s or true update counts in the array elements. For a successful batch
execution, the array contains either all -2’s or all positive integers.

Example: Standard Update Batching
This example combines the sample fragments in the previous sections,
accomplishing the following steps:

Notes:

■ After calling addBatch(), you must call either
executeBatch() or clearBatch() before a call to
executeUpdate(), otherwise there will be a SQL exception.

■ A clearBatch() call resets the statement batch to empty.

■ Nothing is returned by the clearBatch() method.

Note: For information about possible values in the update counts
array for an unsuccessful batch execution, see "Error Handling in the
Oracle Implementation of Standard Batching" on page 12-16.

Update Batching

12-16 Oracle9i JDBC Developer’s Guide and Reference

■ disabling auto-commit mode (which you should always do when using either
update batching model)

■ creating a prepared statement object

■ adding operations to the batch associated with the prepared statement object

■ executing the batch

■ committing the operations from the batch

Assume a Connection instance conn:

conn.setAutoCommit(false);

PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();

conn.commit();

pstmt.close();
...

You can process the update counts array to determine if the batch executed
successfully. This is discussed in the next section ("Error Handling in the Oracle
Implementation of Standard Batching").

Error Handling in the Oracle Implementation of Standard Batching
If any one of the batched operations fails to complete successfully (or attempts to
return a result set) during an executeBatch() call, then execution stops and a
java.sql.BatchUpdateException is generated (a subclass of
java.sql.SQLException).

After a batch exception, the update counts array can be retrieved using the
getUpdateCounts() method of the BatchUpdateException object. This
returns an int array of update counts, just as the executeBatch() method does.

Update Batching

Performance Extensions 12-17

In the Oracle implementation of standard update batching, contents of the update
counts array are as follows after a batch exception:

■ For a prepared statement batch, it is not possible to know which operation
failed. The array has one element for each operation in the batch, and each
element has a value of -3. According to the JDBC 2.0 specification, a value of -3
indicates that an operation did not complete successfully. In this case, it was
presumably just one operation that actually failed, but because the JDBC driver
does not know which operation that was, it labels all the batched operations as
failures.

You should always perform a ROLLBACK operation in this situation.

■ For a generic statement batch or callable statement batch, the update counts
array is only a partial array containing the actual update counts up to the point
of the error. The actual update counts can be provided because Oracle JDBC
cannot use true batching for generic and callable statements in the Oracle
implementation of standard update batching.

For example, if there were 20 operations in the batch, the first 13 succeeded, and
the 14th generated an exception, then the update counts array will have 13
elements, containing actual update counts of the successful operations.

You can either commit or roll back the successful operations in this situation, as
you prefer.

In your code, upon failed execution of a batch, you should be prepared to handle
either -3’s or true update counts in the array elements when an exception occurs.
For a failed batch execution, you will have either a full array of -3’s or a partial
array of positive integers.

Intermixing Batched Statements and Non-Batched Statements
You cannot call executeUpdate() for regular, non-batched execution of an
operation if the statement object has a pending batch of operations (essentially, if
the batch associated with that statement object is non-empty).

You can, however, intermix batched operations and non-batched operations in a
single statement object if you execute non-batched operations either prior to adding
any operations to the statement batch or after executing the batch. Essentially, you
can call executeUpdate() for a statement object only when its update batch is
empty. If the batch is non-empty, then an exception will be generated.

For example, it is legal to have a sequence such as the following:

...

Update Batching

12-18 Oracle9i JDBC Developer’s Guide and Reference

PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");

int scount = pstmt.executeUpdate(); // OK; no operations in pstmt batch

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch(); // Now start a batch

pstmt.setInt(1, 4000);
pstmt.setString(2, "Stan Leland");
pstmt.addBatch();

int[] bcounts = pstmt.executeBatch();

pstmt.setInt(1, 5000);
pstmt.setString(2, "Amy Feiner");

int scount = pstmt.executeUpdate(); // OK; pstmt batch was executed
...

Intermixing non-batched operations on one statement object and batched
operations on another statement object within your code is permissible. Different
statement objects are independent of each other with regards to update batching
operations. A COMMIT request will affect all non-batched operations and all
successful operations in executed batches, but will not affect any pending batches.

Premature Batch Flush
Premature batch flush happens due to a change in cached meta data. Cached meta
data can be changed due to various reasons, such as the following:

■ The initial bind was null and the following bind is not null

■ A scalar type is initially bound as string and then bound as scalar type or the
reverse

The premature batch flush count is summed to the return value of the next
executeUpdate() or sendBatch() method.

Update Batching

Performance Extensions 12-19

The old functionality lost all these batch flush values which can be obtained now. To
switch back to the old functionality, you can set the AccumulateBatchResult
property to false, as shown below:

HashTable info = new HashTable ();
info.put ("user", "SCOTT");
info.put ("passwd", "TIGER");
// other properties
...

// property: batch flush type
info.put ("AccumulateBatchResult", "false");

Connection con = DriverManager.getConnection ("jdbc:oracle:oci:@", info);

Example:

((OraclePreparedStatement)pstmt).setExecuteBatch (2);

pstmt.setNull (1, OracleTypes.NUMBER);
pstmt.setString (2, "test11");
int count = pstmt.executeUpdate (); // returns 0

/*
* Premature batch flush happens here.
*/
pstmt.setInt (1, 22);
pstmt.setString (2, "test22");
int count = pstmt.executeUpdate (); // returns 0

pstmt.setInt (1, 33);
pstmt.setString (2, "test33");
/*
* returns 3 with the new batching scheme where as,
* returns 2 with the old batching scheme.
*/
int count = pstmt.executeUpdate ();

Note: The AccumulateBatchResult property is set to true by
default, in Oracle9i.

Additional Oracle Performance Extensions

12-20 Oracle9i JDBC Developer’s Guide and Reference

Additional Oracle Performance Extensions
In addition to update batching, discussed previously, Oracle JDBC drivers support
the following extensions that improve performance by reducing round trips to the
database:

■ prefetching rows

This reduces round trips to the database by fetching multiple rows of data each
time data is fetched—the extra data is stored in client-side buffers for later
access by the client. The number of rows to prefetch can be set as desired.

■ specifying column types

This avoids an inefficiency in the normal JDBC protocol for performing and
returning the results of queries.

■ suppressing database metadata TABLE_REMARKS columns

This avoids an expensive outer join operation.

Oracle provides several extensions to connection properties objects to support these
performance extensions. These extensions enable you to set the
remarksReporting flag and default values for row prefetching and update
batching. For more information, see "Specifying a Database URL and Properties
Object" on page 3-6.

Oracle Row Prefetching
Oracle JDBC drivers include extensions that allow you to set the number of rows to
prefetch into the client while a result set is being populated during a query. This
feature reduces the number of round trips to the server.

Setting the Oracle Prefetch Value
Standard JDBC receives the result set one row at a time, and each row requires a
round trip to the database. The row-prefetching feature associates an integer
row-prefetch setting with a given statement object. JDBC fetches that number of
rows at a time from the database during the query. That is, JDBC will fetch N rows
that match the query criteria and bring them all back to the client at once, where N

Note: With JDBC 2.0, the ability to preset the fetch size has
become standard functionality. For information about the standard
implementation of this feature, see "Fetch Size" on page 13-24.

Additional Oracle Performance Extensions

Performance Extensions 12-21

is the prefetch setting. Then, once your next() calls have run through those N
rows, JDBC will go back to fetch the next N rows that match the criteria.

You can set the number of rows to prefetch for a particular Oracle statement (any
type of statement). You can also reset the default number of rows that will be
prefetched for all statements in your connection. The default number of rows to
prefetch to the client is 10.

Set the number of rows to prefetch for a particular statement as follows:

1. Cast your statement object to an OracleStatement,
OraclePreparedStatement, or OracleCallableStatement object, as
applicable, if it is not already one of these.

2. Use the setRowPrefetch() method of the statement object to specify the
number of rows to prefetch, passing in the number as an integer. If you want to
check the current prefetch number, use the getRowPrefetch() method of the
Statement object, which returns an integer.

Set the default number of rows to prefetch for all statements in a connection, as
follows:

1. Cast your Connection object to an OracleConnection object.

2. Use the setDefaultRowPrefetch() method of your OracleConnection
object to set the default number of rows to prefetch, passing in an integer that
specifies the desired default. If you want to check the current setting of the
default, then use the getDefaultRowPrefetch() method of the
OracleConnection object. This method returns an integer.

Equivalently, instead of calling setDefaultRowPrefetch(), you can set the
defaultRowPrefetch Java property if you use a Java Properties object in
establishing the connection. See "Specifying a Database URL and Properties
Object" on page 3-6.

Additional Oracle Performance Extensions

12-22 Oracle9i JDBC Developer’s Guide and Reference

Example: Row Prefetching The following example illustrates the row-prefetching
feature. It assumes you have imported the oracle.jdbc.* interfaces.

Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:","scott","tiger");

//Set the default row-prefetch setting for this connection
((OracleConnection)conn).setDefaultRowPrefetch(7);

/* The following statement gets the default row-prefetch value for
 the connection, that is, 7.
 */
Statement stmt = conn.createStatement();

/* Subsequent statements look the same, regardless of the row
 prefetch value. Only execution time changes.
 */
ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
System.out.println(rset.next ());

while(rset.next ())
 System.out.println(rset.getString (1));

//Override the default row-prefetch setting for this statement
((OracleStatement)stmt).setRowPrefetch (2);

Notes:

■ Do not mix the JDBC 2.0 fetch size API and the Oracle
row-prefetching API in your application. You can use one or
the other, but not both.

■ Be aware that setting the Oracle row-prefetch value can affect
not only queries, but also: 1) explicitly refetching rows in a
result set through the result set refreshRow() method
available with JDBC 2.0 (relevant for scroll-sensitive/read-only,
scroll-sensitive/updatable, and scroll-insensitive/updatable
result sets); and 2) the "window" size of a scroll-sensitive result
set, affecting how often automatic refetches are performed. The
Oracle row-prefetch value will be overridden, however, by any
setting of the fetch size. See "Fetch Size" on page 13-24 for more
information.

Additional Oracle Performance Extensions

Performance Extensions 12-23

ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
System.out.println(rset.next ());

while(rset.next())
 System.out.println(rset.getString (1));

stmt.close();

Oracle Row-Prefetching Limitations
There is no maximum prefetch setting, but empirical evidence suggests that 10 is
effective. Oracle does not recommend exceeding this value in most situations. If you
do not set the default row-prefetch value for a connection, 10 is the default.

A statement object receives the default row-prefetch setting from the associated
connection at the time the statement object is created. Subsequent changes to the
connection’s default row-prefetch setting have no effect on the statement’s
row-prefetch setting.

If a column of a result set is of datatype LONG or LONG RAW (that is, the streaming
types), JDBC changes the statement’s row-prefetch setting to 1, even if you never
actually read a value of either of those types.

If you use the form of the DriverManager class getConnection() method that
takes a Properties object as an argument, then you can set the connection’s
default row-prefetch value that way. See "Specifying a Database URL and Properties
Object" on page 3-6.

Defining Column Types
Oracle JDBC drivers enable you to inform the driver of the types of the columns in
an upcoming query, saving a round trip to the database that would otherwise be
necessary to describe the table.

When standard JDBC performs a query, it first uses a round trip to the database to
determine the types that it should use for the columns of the result set. Then, when
JDBC receives data from the query, it converts the data, as necessary, as it populates
the result set.

When you specify column types for a query, you avoid the first round trip to the
database. The server, which is optimized to do so, performs any necessary type
conversions.

Following these general steps to define column types for a query:

Additional Oracle Performance Extensions

12-24 Oracle9i JDBC Developer’s Guide and Reference

1. Cast your statement object to an OracleStatement,
OraclePreparedStatement, or OracleCallableStatement object, as
applicable, if it is not already one of these.

2. If necessary, use the clearDefines() method of your Statement object to
clear any previous column definitions for this Statement object.

3. For each column of the expected result set, invoke the defineColumnType()
method of your Statement object, passing it these parameters:

■ column index (integer)

■ typecode (integer)

Use the static constants of the java.sql.Types class or
oracle.jdbc.OracleTypes class (such as Types.INTEGER,
Types.FLOAT, Types.VARCHAR, OracleTypes.VARCHAR, and
OracleTypes.ROWID). Typecodes for standard types are identical in these
two classes.

■ type name (string) (structured objects, object references, and arrays only)

For structured objects, object references, and arrays, you must also specify
the type name (for example, Employee, EmployeeRef, or
EmployeeArray).

■ (optionally) maximum field size (integer)

Optionally specify a maximum data length for this column.

You cannot specify a maximum field size parameter if you are defining the
column type for a structured object, object reference, or array. If you try to
include this parameter, it will be ignored.

For example, assuming stmt is an Oracle statement, use this syntax:

stmt.defineColumnType(column_index, typeCode);

or (recommended if the column is VARCHAR or equivalent and you know the
length limit):

stmt.defineColumnType(column_index, typeCode, max_size);

or (for structured object, object reference, and array columns):

stmt.defineColumnType(column_index, typeCode, typeName);

Set a maximum field size if you do not want to receive the full default length of
the data. Calling the setMaxFieldSize() method of the standard JDBC

Additional Oracle Performance Extensions

Performance Extensions 12-25

Statement class sets a restriction on the amount of data returned. Specifically,
the size of the data returned will be the minimum of:

■ the maximum field size set in defineColumnType()

or:

■ the maximum field size set in setMaxFieldSize()

or:

■ the natural maximum size of the datatype

Once you complete these steps, use the statement’s executeQuery() method to
perform the query.

Example: Defining Column Types The following example illustrates the use of this
feature. It assumes you have imported the oracle.jdbc.* interfaces.

Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:","scott","tiger");

Statement stmt = conn.createStatement();

/*Ask for the column as a string:
 *Avoid a round trip to get the column type.
 *Convert from number to string on the server.
 */
((OracleStatement)stmt).defineColumnType(1, Types.VARCHAR);

ResultSet rset = stmt.executeQuery("select empno from emp");

while (rset.next())
 System.out.println(rset.getString(1));

stmt.close();

As this example shows, you must cast the statement (stmt) to type
OracleStatement in the invocation of the defineColumnType() method. The
connection’s createStatement() method returns an object of type

Note: You must define the datatype for every column of the
expected result set. If the number of columns for which you specify
types does not match the number of columns in the result set, the
process fails with a SQL exception.

Additional Oracle Performance Extensions

12-26 Oracle9i JDBC Developer’s Guide and Reference

java.sql.Statement, which does not have the defineColumnType() and
clearDefines() methods. These methods are provided only in the
OracleStatement implementation.

The define-extensions use JDBC types to specify the desired types. The allowed
define types for columns depend on the internal Oracle type of the column.

All columns can be defined to their "natural" JDBC types; in most cases, they can be
defined to the Types.CHAR or Types.VARCHAR typecode.

Table 12–1 lists the valid column definition arguments you can use in the
defineColumnType() method.

DatabaseMetaData TABLE_REMARKS Reporting
The getColumns(), getProcedureColumns(), getProcedures(), and
getTables() methods of the database metadata classes are slow if they must
report TABLE_REMARKS columns, because this necessitates an expensive outer join.
For this reason, the JDBC driver does not report TABLE_REMARKS columns by
default.

You can enable TABLE_REMARKS reporting by passing a true argument to the
setRemarksReporting() method of an OracleConnection object.

Equivalently, instead of calling setRemarksReporting(), you can set the
remarksReporting Java property if you use a Java Properties object in
establishing the connection. See "Specifying a Database URL and Properties Object"
on page 3-6.

Table 12–1 Valid Column Type Specifications

If the column has Oracle
SQL type:

You can use defineColumnType()
to define it as:

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBINARY, VARBINARY, BINARY

RAW VARBINARY, BINARY

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR

ROWID ROWID

Additional Oracle Performance Extensions

Performance Extensions 12-27

If you are using a standard java.sql.Connection object, you must cast it to
OracleConnection to use setRemarksReporting().

Example: TABLE_REMARKS Reporting
Assuming conn is the name of your standard Connection object, the following
statement enables TABLE_REMARKS reporting.

((oracle.jdbc.OracleConnection)conn).setRemarksReporting(true);

Considerations for getProcedures() and getProcedureColumns() Methods
According to JDBC versions 1.1 and 1.2, the methods getProcedures() and
getProcedureColumns() treat the catalog, schemaPattern,
columnNamePattern, and procedureNamePattern parameters in the same
way. In the Oracle definition of these methods, the parameters are treated
differently:

■ catalog: Oracle does not have multiple catalogs, but it does have packages.
Consequently, the catalog parameter is treated as the package name. This
applies both on input (the catalog parameter) and output (the catalog
column in the returned ResultSet). On input, the construct " " (the empty
string) retrieves procedures and arguments without a package, that is,
standalone objects. A null value means to drop from the selection criteria, that
is, return information about both stand-alone and packaged objects (same as
passing in "%"). Otherwise the catalog parameter should be a package name
pattern (with SQL wild cards, if desired).

■ schemaPattern: All objects within Oracle must have a schema, so it does not
make sense to return information for those objects without one. Thus, the
construct " " (the empty string) is interpreted on input to mean the objects in
the current schema (that is, the one to which you are currently connected). To be
consistent with the behavior of the catalog parameter, null is interpreted to
drop the schema from the selection criteria (same as passing in "%"). It can also
be used as a pattern with SQL wild cards.

■ procedureNamePattern and columnNamePattern: The empty string (" ")
does not make sense for either parameter, because all procedures and
arguments must have names. Thus, the construct " " will raise an exception. To
be consistent with the behavior of other parameters, null has the same effect as
passing in "%".

Additional Oracle Performance Extensions

12-28 Oracle9i JDBC Developer’s Guide and Reference

Result Set Enhancements 13-1

13
Result Set Enhancements

Standard JDBC 2.0 features in JDK 1.2.x include enhancements to result set
functionality—processing forward or backward, positioning relatively or absolutely,
seeing changes to the database made internally or externally, and updating result
set data and then copying the changes to the database.

This chapter discusses these features, including the following topics:

■ Overview

■ Creating Scrollable or Updatable Result Sets

■ Positioning and Processing in Scrollable Result Sets

■ Updating Result Sets

■ Fetch Size

■ Refetching Rows

■ Seeing Database Changes Made Internally and Externally

■ Summary of New Methods for Result Set Enhancements

The Oracle JDBC drivers also include extensions to support these features in a JDK
1.1.x environment.

For more general and conceptual information about JDBC 2.0 result set
enhancements, refer to the Sun Microsystems JDBC 2.0 API specification.

Overview

13-2 Oracle9i JDBC Developer’s Guide and Reference

Overview
This section provides an overview of JDBC 2.0 result set functionality and
categories, and some discussion of implementation requirements for the Oracle
JDBC drivers.

Result Set Functionality and Result Set Categories Supported in JDBC 2.0
Result set functionality in JDBC 2.0 includes enhancements for scrollability and
positioning, sensitivity to changes by others, and updatability.

■ Scrollability, positioning, and sensitivity are determined by the result set type.

■ Updatability is determined by the concurrency type.

Specify the desired result set type and concurrency type when you create the
statement object that will produce the result set.

Together, the various result set types and concurrency types provide for six different
categories of result set.

This section provides an overview of these enhancements, types, and categories.

Scrollability, Positioning, and Sensitivity
Scrollability refers to the ability to move backward as well as forward through a
result set. Associated with scrollability is the ability to move to any particular
position in the result set, through either relative positioning or absolute positioning.

Relative positioning allows you to move a specified number of rows forward or
backward from the current row. Absolute positioning allows you to move to a
specified row number, counting from either the beginning or the end of the result
set.

Under JDBC 1.0 (in JDK 1.1.x) you can scroll only forward, using the next()
method as described in "Process the Result Set" on page 3-11, and there is no
positioning functionality. You can start only at the beginning and iterate
row-by-row until the end.

Under JDBC 2.0 (in JDK 1.2.x), scrollable/positionable result sets are also available.

When creating a scrollable/positionable result set, you must also specify sensitivity.
This refers to the ability of a result set to detect and reveal changes made to the
underlying database from outside the result set.

Overview

Result Set Enhancements 13-3

A sensitive result set can see changes made to the database while the result set is
open, providing a dynamic view of the underlying data. Changes made to the
underlying columns values of rows in the result set are visible.

An insensitive result set is not sensitive to changes made to the database while the
result set is open, providing a static view of the underlying data. You would need to
retrieve a new result set to see changes made to the database.

Sensitivity is not an option in a JDBC 1.0/non-scrollable result set.

Result Set Types for Scrollability and Sensitivity
When you create a result set under JDBC 2.0 functionality, you must choose a
particular result set type to specify whether the result set is scrollable/positional
and sensitive to underlying database changes.

If the JDBC 1.0 functionality is all you desire, JDBC 2.0 continues to support this
through the forward-only result set type. A forward-only result set cannot be
sensitive.

If you want a scrollable result set, you must also specify sensitivity. Specify the
scroll-sensitive type for the result set to be scrollable and sensitive to underlying
changes. Specify the scroll-insensitive type for the result set to be scrollable but not
sensitive to underlying changes.

To summarize, the following three result set types are available with JDBC 2.0:

■ forward-only (JDBC 1.0 functionality—not scrollable, not positionable, and not
sensitive)

■ scroll-sensitive (scrollable and positionable; also sensitive to underlying
database changes)

■ scroll-insensitive (scrollable and positionable but not sensitive to underlying
database changes)

Note: The sensitivity of a scroll-sensitive result set (how often it is
updated to see external changes) is affected by fetch size. See Fetch
Size on page 13-24 and "Oracle Implementation of Scroll-Sensitive
Result Sets" on page 13-30.

Overview

13-4 Oracle9i JDBC Developer’s Guide and Reference

Updatability
Updatability refers to the ability to update data in a result set and then (presumably)
copy the changes to the database. This includes inserting new rows into the result
set or deleting existing rows.

Updatability might also require database write locks to mediate access to the
underlying database. Because you cannot have multiple write locks concurrently,
updatability in a result set is associated with concurrency in database access.

Result sets can optionally be updatable under JDBC 2.0, but not under JDBC 1.0.

Concurrency Types for Updatability
The concurrency type of a result set determines whether it is updatable. Under
JDBC 2.0, the following concurrency types are available:

■ updatable (updates, inserts, and deletes can be performed on the result set and
copied to the database)

■ read-only (the result set cannot be modified in any way)

Summary of Result Set Categories
Because scrollability and sensitivity are independent of updatability, the three result
set types and two concurrency types combine for a total of six result set categories:

■ forward-only/read-only

■ forward-only/updatable

■ scroll-sensitive/read-only

■ scroll-sensitive/updatable

■ scroll-insensitive/read-only

■ scroll-insensitive/updatable

Note: Updatability is independent of scrollability and sensitivity,
although it is typical for an updatable result set to also be scrollable
so that you can position it to particular rows that you want to
update or delete.

Overview

Result Set Enhancements 13-5

Oracle JDBC Implementation Overview for Result Set Enhancements
This section discusses key aspects of the Oracle JDBC implementation of result set
enhancements for scrollability—through use of a client-side cache—and for
updatability—through use of ROWIDs.

It is permissible for customers to implement their own client-side caching
mechanism, and Oracle provides an interface to use in doing so.

Oracle JDBC Implementation for Result Set Scrollability
Because the underlying server does not support scrollable cursors, Oracle JDBC
must implement scrollability in a separate layer.

It is important to be aware that this is accomplished by using a client-side memory
cache to store rows of a scrollable result set.

Scrollable cursors in the Oracle server, and therefore a server-side cache, will be
supported in a future Oracle release.

Oracle JDBC Implementation for Result Set Updatability
To support updatability, Oracle JDBC uses ROWIDs to uniquely identify database
rows that appear in a result set. For every query into an updatable result set, the
Oracle JDBC driver automatically retrieves the ROWID along with the columns you
select.

Note: A forward-only updatable result set has no positioning
functionality. You can only update rows as you iterate through
them with the next() method.

Important: Because all rows of any scrollable result set are stored
in the client-side cache, a situation where the result set contains
many rows, many columns, or very large columns might cause the
client-side Java virtual machine to fail. Do not specify scrollability for
a large result set.

Note: Client-side caching is not required by updatability in and of
itself. In particular, a forward-only updatable result set will not
require a client-side cache.

Overview

13-6 Oracle9i JDBC Developer’s Guide and Reference

Implementing a Custom Client-Side Cache for Scrollability
There is some flexibility in how to implement client-side caching in support of JDBC
2.0 scrollable result sets.

Although Oracle JDBC provides a complete implementation, it also supplies an
interface, OracleResultSetCache, that you can implement as desired:

public interface OracleResultSetCache
{
 /**
 * Save the data in the i-th row and j-th column.
 */
 public void put (int i, int j, Object value) throws IOException;

 /**
 * Return the data stored in the i-th row and j-th column.
 */
 public Object get (int i, int j) throws IOException;

 /**
 * Remove the i-th row.
 */
 public void remove (int i) throws IOException;

 /**
 * Remove the data stored in i-th row and j-th column
 */
 public void remove (int i, int j) throws IOException;

 /**
 * Remove all data from the cache.
 */
 public void clear () throws IOException;

 /**
 * Close the cache.
 */
 public void close () throws IOException;
}

If you implement this interface with your own class, your application code must
instantiate your class and then use the setResultSetCache() method of an
OracleStatement, OraclePreparedStatement, or
OracleCallableStatement object to set the caching mechanism to use your
implementation. Following is the method signature:

Overview

Result Set Enhancements 13-7

■ void setResultSetCache(OracleResultSetCache cache)
 throws SQLException

Call this method prior to executing a query. The result set produced by the query
will then use your specified caching mechanism.

Creating Scrollable or Updatable Result Sets

13-8 Oracle9i JDBC Developer’s Guide and Reference

Creating Scrollable or Updatable Result Sets
Under JDBC 1.0, no special attention is required in creating and using a result set. A
result set is produced automatically to store the results of a query, and no result set
types or categories must be specified, because there is only one kind of result set
available—forward-only/read-only. For example (given a connection object conn):

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT empno, sal FROM emp");

In using JDBC 2.0 result set enhancements, however, you may specify the result set
type (for scrollability and sensitivity) and the concurrency type (for updatability)
when you create a generic statement or prepare a prepared statement or callable
statement that will execute a query.

(Note, however, that callable statements are intended to execute stored procedures
and functions and rarely return a result set. Still, the callable statement class is a
subclass of the prepared statement class and so inherits this functionality.)

This section discusses the creation of result sets to use JDBC 2.0 enhancements.

Specifying Result Set Scrollability and Updatability
Under JDBC 2.0, Connection classes have createStatement(),
prepareStatement(), and prepareCall() method signatures that take a result
set type and a concurrency type as input:

■ Statement createStatement
 (int resultSetType, int resultSetConcurrency)

■ PreparedStatement prepareStatement
 (String sql, int resultSetType, int resultSetConcurrency)

■ CallableStatement prepareCall
 (String sql, int resultSetType, int resultSetConcurrency)

The statement objects created will have the intelligence to produce the appropriate
kind of result sets.

You can specify one of the following static constant values for result set type:

■ ResultSet.TYPE_FORWARD_ONLY

■ ResultSet.TYPE_SCROLL_INSENSITIVE

■ ResultSet.TYPE_SCROLL_SENSITIVE

Creating Scrollable or Updatable Result Sets

Result Set Enhancements 13-9

And you can specify one of the following static constant values for concurrency
type:

■ ResultSet.CONCUR_READ_ONLY

■ ResultSet.CONCUR_UPDATABLE

After creating a Statement, PreparedStatement, or CallableStatement
object, you can verify its result set type and concurrency type by calling the
following methods on the statement object:

■ int getResultSetType() throws SQLException

■ int getResultSetConcurrency() throws SQLException

Example Following is an example of a prepared statement object that specifies a
scroll-sensitive and updatable result set for queries executed through that statement
(where conn is a connection object):

...
PreparedStatement pstmt = conn.prepareStatement
 ("SELECT empno, sal FROM emp WHERE empno = ?",
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

pstmt.setString(1, "28959");
ResultSet rs = pstmt.executeQuery();
...

Note: See "Oracle Implementation of Scroll-Sensitive Result Sets"
on page 13-30 for information about possible performance impact.

Note: If you are using the Oracle JDBC drivers in a JDK 1.1.x
environment , the static constants discussed here are part of the
Oracle extensions, belonging only to the OracleResultSet class,
which you must specify. For example:

OracleResultSet.TYPE_SCROLL_SENSITIVE

instead of:

ResultSet.TYPE_SCROLL_SENSITIVE

Creating Scrollable or Updatable Result Sets

13-10 Oracle9i JDBC Developer’s Guide and Reference

Result Set Limitations and Downgrade Rules
Some types of result sets are not feasible for certain kinds of queries. If you specify
an unfeasible result set type or concurrency type for the query you execute, the
JDBC driver follows a set of rules to determine the best feasible types to use instead.

The actual result set type and concurrency type are determined when the statement
is executed, with the driver issuing a SQLWarning on the statement object if the
desired result set type or concurrency type is not feasible. The SQLWarning object
will contain the reason why the requested type was not feasible. Check for warnings
to verify whether you received the type of result set that you requested, or call the
methods described in "Verifying Result Set Type and Concurrency Type" on
page 13-11.

FOR UPDATE Clause Limitation in an Updatable Result Set
A query cannot have the FOR UPDATE clause in the SELECT statement if you are
using an updatable result set. If you use the FOR UPDATE clause and try to update a
result set, an SQLException will be thrown.

Result Set Limitations
The following limitations are placed on queries for enhanced result sets. Failure to
follow these guidelines will result in the JDBC driver choosing an alternative result
set type or concurrency type.

To produce an updatable result set:

■ A query can select from only a single table and cannot contain any join
operations.

In addition, for inserts to be feasible, the query must select all non-nullable
columns and all columns that do not have a default value.

■ A query cannot use "SELECT * ". (But see the workaround below.)

■ A query must select table columns only. It cannot select derived columns or
aggregates such as the SUM or MAX of a set of columns.

To produce a scroll-sensitive result set:

■ A query cannot use "SELECT * ". (But see the workaround below.)

■ A query can select from only a single table.

(See "Summary of New Methods for Result Set Enhancements" on page 13-32 for
general information about refetching.)

Creating Scrollable or Updatable Result Sets

Result Set Enhancements 13-11

Workaround As a workaround for the "SELECT *" limitation, you can use table
aliases as in the following example:

SELECT t.* FROM TABLE t ...

Result Set Downgrade Rules
If the specified result set type or concurrency type is not feasible, the Oracle JDBC
driver uses the following rules in choosing alternate types:

■ If the specified result set type is TYPE_SCROLL_SENSITIVE, but the JDBC
driver cannot fulfill that request, then the driver attempts a downgrade to
TYPE_SCROLL_INSENSITIVE.

■ If the specified (or downgraded) result set type is TYPE_SCROLL_
INSENSITIVE, but the JDBC driver cannot fulfill that request, then the driver
attempts a downgrade to TYPE_FORWARD_ONLY.

Furthermore:

■ If the specified concurrency type is CONCUR_UPDATABLE, but the JDBC driver
cannot fulfill that request, then the JDBC driver attempts a downgrade to
CONCUR_READ_ONLY.

Verifying Result Set Type and Concurrency Type
After a query has been executed, you can verify the result set type and concurrency
type that the JDBC driver actually used, by calling methods on the result set object.

Hint: There is a simple way to determine if your query will
probably produce a scroll-sensitive or updatable result set: If you
can legally add a ROWID column to the query list, then the query is
probably suitable for either a scroll-sensitive or an updatable result
set. (You can try this out using SQL*Plus, for example.)

Notes:

■ Criteria that would prevent the JDBC driver from fulfilling the
result set type specifications are listed in "Result Set
Limitations" on page 13-10.

■ Any manipulations of the result set type and concurrency type
by the JDBC driver are independent of each other.

Creating Scrollable or Updatable Result Sets

13-12 Oracle9i JDBC Developer’s Guide and Reference

■ int getType() throws SQLException

This method returns an int value for the result set type used for the query.
ResultSet.TYPE_FORWARD_ONLY, ResultSet.TYPE_SCROLL_
SENSITIVE, or ResultSet.TYPE_SCROLL_INSENSITIVE are the possible
values.

■ int getConcurrency() throws SQLException

This method returns an int value for the concurrency type used for the query.
ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE are
the possible values.

Positioning and Processing in Scrollable Result Sets

Result Set Enhancements 13-13

Positioning and Processing in Scrollable Result Sets
Scrollable result sets (result set type TYPE_SCROLL_SENSITIVE or TYPE_SCROLL_
INSENSITIVE) allow you to iterate through, them either forward or backward, and
to position the result set to any desired row.

This section discusses positioning within a scrollable result set and how to process a
scrollable result set backward, instead of forward.

Positioning in a Scrollable Result Set
In a scrollable result set, you can use several result set methods to move to a desired
position and to check the current position.

Methods for Moving to a New Position
The following result set methods are available for moving to a new position in a
scrollable result set:

■ void beforeFirst() throws SQLException

■ void afterLast() throws SQLException

■ boolean first() throws SQLException

■ boolean last() throws SQLException

■ boolean absolute(int row) throws SQLException

■ boolean relative(int row) throws SQLException

beforeFirst() Method Positions to before the first row of the result set, or has no effect
if there are no rows in the result set.

This is where you would typically start iterating through a result set to process it
going forward, and is the default initial position for any kind of result set.

You are outside the result set bounds after a beforeFirst() call. There is no valid
current row, and you cannot position relatively from this point.

Note: You cannot position a forward-only result set. Any attempt
to position it or to determine the current position will result in a
SQL exception.

Positioning and Processing in Scrollable Result Sets

13-14 Oracle9i JDBC Developer’s Guide and Reference

afterLast() Method Positions to after the last row of the result set, or has no effect if
there are no rows in the result set.

This is where you would typically start iterating through a result set to process it
going backward.

You are outside the result set bounds after an afterLast() call. There is no valid
current row, and you cannot position relatively from this point.

first() Method Positions to the first row of the result set, or returns false if there are
no rows in the result set.

last() Method Positions to the last row of the result set, or returns false if there are
no rows in the result set.

absolute() Method Positions to an absolute row from either the beginning or end of
the result set. If you input a positive number, it positions from the beginning; if you
input a negative number, it positions from the end. This method returns false if
there are no rows in the result set.

Attempting to move forward beyond the last row, such as an absolute(11) call if
there are 10 rows, will position to after the last row, having the same effect as an
afterLast() call.

Attempting to move backward beyond the first row, such as an absolute(-11)
call if there are 10 rows, will position to before the first row, having the same effect
as a beforeFirst() call.

relative() Method Moves to a position relative to the current row, either forward if you
input a positive number or backward if you input a negative number, or returns
false if there are no rows in the result set.

The result set must be at a valid current row for use of the relative() method.

Attempting to move forward beyond the last row will position to after the last row,
having the same effect as an afterLast() call.

Attempting to move backward beyond the first row will position to before the first
row, having the same effect as a beforeFirst() call.

A relative(0) call is valid but has no effect.

Note: Calling absolute(1) is equivalent to calling first();
calling absolute(-1) is equivalent to calling last().

Positioning and Processing in Scrollable Result Sets

Result Set Enhancements 13-15

Methods for Checking the Current Position
The following result set methods are available for checking the current position in a
scrollable result set:

■ boolean isBeforeFirst() throws SQLException

Returns true if the position is before the first row.

■ boolean isAfterLast() throws SQLException

Returns true if the position is after the last row.

■ boolean isFirst() throws SQLException

Returns true if the position is at the first row.

■ boolean isLast() throws SQLException

Returns true if the position is at the last row.

■ int getRow() throws SQLException

Returns the row number of the current row, or returns 0 if there is no valid
current row.

Processing a Scrollable Result Set
In a scrollable result set you can iterate backward instead of forward as you process
the result set. The following methods are available:

■ boolean next() throws SQLException

■ boolean previous() throws SQLException

Important: You cannot position relatively from before the first row
(which is the default initial position) or after the last row.
Attempting relative positioning from either of these positions
would result in a SQL exception.

Note: The boolean methods—isFirst(), isLast(),
isAfterFirst(), and isAfterLast()—all return false (and
do not throw an exception) if there are no rows in the result set.

Positioning and Processing in Scrollable Result Sets

13-16 Oracle9i JDBC Developer’s Guide and Reference

The previous() method works similarly to the next() method, in that it returns
true as long as the new current row is valid, and false as soon as it runs out of
rows (has passed the first row).

Backward versus Forward Processing
You can process the entire result set going forward, using the next() method as in
JDBC 1.0. This is documented in "Process the Result Set" on page 3-11. The default
initial position in the result set is before the first row, appropriately, but you can call
the beforeFirst() method if you have moved elsewhere since the result set was
created.

To process the entire result set going backward, call afterLast(), then use the
previous() method. For example (where conn is a connection object):

...
/* NOTE: The specified concurrency type, CONCUR_UPDATABLE, is not relevant to
this example. */

Statement stmt = conn.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT empno, sal FROM emp");

rs.afterLast();
while (rs.previous())
{
 System.out.println(rs.getString("empno") + " " + rs.getFloat("sal"));
}
...

Unlike relative positioning, you can (and typically do) use next() from before the
first row and previous() from after the last row. You do not have to be at a valid
current row to use these methods.

Note: In a non-scrollable result set, you can process only with the
next() method. Attempting to use the previous() method will
cause a SQL exception.

Positioning and Processing in Scrollable Result Sets

Result Set Enhancements 13-17

Presetting the Fetch Direction
The JDBC 2.0 standard allows the ability to pre-specify the direction, known as the
fetch direction, for use in processing a result set. This allows the JDBC driver to
optimize its processing. The following result set methods are specified:

■ void setFetchDirection(int direction) throws SQLException

■ int getFetchDirection() throws SQLException

The Oracle JDBC drivers support only the forward preset value, which you can
specify by inputting the ResultSet.FETCH_FORWARD static constant value.

The values ResultSet.FETCH_REVERSE and ResultSet.FETCH_UNKNOWN are
not supported—attempting to specify them causes a SQL warning, and the settings
are ignored.

Updating Result Sets

13-18 Oracle9i JDBC Developer’s Guide and Reference

Updating Result Sets
A concurrency type of CONCUR_UPDATABLE allows you to update rows in the result
set, delete rows from the result set, or insert rows into the result set.

After you perform an UPDATE or INSERT operation in a result set, you propagate
the changes to the database in a separate step that you can skip if you want to
cancel the changes.

A DELETE operation in a result set, however, is immediately executed (but not
necessarily committed) in the database as well.

Performing a DELETE Operation in a Result Set
The result set deleteRow() method will delete the current row. Following is the
method signature:

■ void deleteRow() throws SQLException

Presuming the result set is also scrollable, you can position to a row using any of the
available positioning methods (except beforeFirst() and afterLast(), which
do not go to a valid current row), and then delete that row, as in the following
example (presuming a result set rs):

...

Note: When using an updatable result set, it is typical to also
make it scrollable. This allows you to position to any row that you
want to change. With a forward-only updatable result set, you can
change rows only as you iterate through them with the next()
method.

Important: Unlike UPDATE and INSERT operations in a result set,
which require a separate step to propagate the changes to the
database, a DELETE operation in a result set is immediately
executed in the corresponding row in the database as well.

Once you call deleteRow(), the changes will be made permanent
with the next transaction COMMIT operation. Remember also that
by default, the auto-commit flag is set to true. Therefore, unless
you override this default, any deleteRow() operation will be
executed and committed immediately.

Updating Result Sets

Result Set Enhancements 13-19

rs.absolute(5);
rs.deleteRow();
...

See "Positioning in a Scrollable Result Set" on page 13-13 for information about the
positioning methods.

Performing an UPDATE Operation in a Result Set
Performing a result set UPDATE operation requires two separate steps to first update
the data in the result set and then copy the changes to the database.

Presuming the result set is also scrollable, you can position to a row using any of the
available positioning methods (except beforeFirst() and afterLast(), which
do not go to a valid current row), and then update that row as desired.

See "Positioning in a Scrollable Result Set" on page 13-13 for information about the
positioning methods.

Here are the steps for updating a row in the result set and database:

1. Call the appropriate updateXXX() methods to update the data in the columns
you want to change.

With JDBC 2.0, a result set object has an updateXXX() method for each
datatype, as with the setXXX() methods previously available for updating the
database directly.

Each of these methods takes an int for the column number or a string for the
column name and then an item of the appropriate datatype to set the new
value. Following are a couple of examples for a result set rs:

rs.updateString(1, "mystring");

Important: The deleted row remains in the result set object even
after it has been deleted from the database.

In a scrollable result set, by contrast, a DELETE operation is evident
in the local result set object—the row would no longer be in the
result set after the DELETE. The row preceding the deleted row
becomes the current row, and row numbers of subsequent rows are
changed accordingly.

Refer to "Seeing Internal Changes" on page 13-27 for more
information.

Updating Result Sets

13-20 Oracle9i JDBC Developer’s Guide and Reference

rs.updateFloat(2, 10000.0f);

2. Call the updateRow() method to copy the changes to the database (or the
cancelRowUpdates() method to cancel the changes).

Once you call updateRow(), the changes are executed and will be made
permanent with the next transaction COMMIT operation. Be aware that by
default, the auto-commit flag is set to true so that any executed operation is
committed immediately.

If you choose to cancel the changes before copying them to the database, call the
cancelRowUpdates() method instead. This will also revert to the original
values for that row in the local result set object. Note that once you call the
updateRow() method, the changes are written to the transaction and cannot
be canceled unless you roll back the transaction (auto-commit must be disabled
to allow a ROLLBACK operation).

Positioning to a different row before calling updateRow() also cancels the
changes and reverts to the original values in the result set.

Before calling updateRow(), you can call the usual getXXX() methods to
verify that the values have been updated correctly. These methods take an int
column index or string column name as input. For example:

float myfloat = rs.getFloat(2);
...process myfloat to see if it’s appropriate...

Example Following is an example of a result set UPDATE operation that is also
copied to the database. The tenth row is updated. (The column number is used to
specify column 1, and the column name—sal— is used to specify column 2.)

...
Statement stmt = conn.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT empno, sal FROM emp");

Note: Result set UPDATE operations are visible in the local result
set object for all result set types (forward-only, scroll-sensitive, and
scroll-insensitive).

Refer to "Seeing Internal Changes" on page 13-27 for more
information.

Updating Result Sets

Result Set Enhancements 13-21

if (rs.absolute(10)) // (returns false if row does not exist)
{
 rs.updateString(1, "28959");
 rs.updateFloat("sal", 100000.0f);
 rs.updateRow();
}
// Changes will be made permanent with the next COMMIT operation.
...

Performing an INSERT Operation in a Result Set
Result set INSERT operations use what is called the result set insert-row, which is a
staging area that holds the data for the inserted row until it is copied to the
database. You must explicitly move to this row to write the data that will be
inserted.

As with UPDATE operations, result set INSERT operations require separate steps to
first write the data to the insert-row and then copy it to the database .

Following are the steps in executing a result set INSERT operation.

1. Move to the insert-row by calling the result set moveToInsertRow() method.

2. As with UPDATE operations, use the appropriate updateXXX() methods to
write data to the columns. For example:

rs.updateString(1, "mystring");
rs.updateFloat(2, 10000.0f);

(Note that you can specify a string for column name, instead of an integer for
column number.)

Note: The result set will remember the current position prior to
the moveToInsertRow() call. Afterward, you can go back to it
with a moveToCurrentRow() call.

Updating Result Sets

13-22 Oracle9i JDBC Developer’s Guide and Reference

3. Copy the changes to the database by calling the result set insertRow()
method.

Once you call insertRow(), the insert is executed and will be made
permanent with the next transaction COMMIT operation.

Positioning to a different row before calling insertRow() cancels the insert
and clears the insert-row.

Before calling insertRow() you can call the usual getXXX() methods to
verify that the values have been set correctly in the insert-row. These methods
take an int column index or string column name as input. For example:

float myfloat = rs.getFloat(2);
...process myfloat to see if it’s appropriate...

Example The following example performs a result set INSERT operation, moving to
the insert-row, writing the data, copying the data into the database, and then
returning to what was the current row prior to going to the insert-row. (The column
number is used to specify column 1, and the column name—sal— is used to
specify column 2.)

...
Statement stmt = conn.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

Important: Each column value in the insert-row is undefined until
you call the updateXXX() method for that column. You must call
this method and specify a non-null value for all non-nullable
columns, or else attempting to copy the row into the database will
result in a SQL exception.

It is permissible, however, to not call updateXXX() for a nullable
column. This will result in a value of null.

Note: No result set type (neither scroll-sensitive, scroll-insensitive,
nor forward-only) can see a row inserted by a result set INSERT
operation.

Refer to "Seeing Internal Changes" on page 13-27 for more
information.

Updating Result Sets

Result Set Enhancements 13-23

ResultSet rs = stmt.executeQuery("SELECT empno, sal FROM emp");

rs.moveToInsertRow();
rs.updateString(1, "28959");
rs.updateFloat("sal", 100000.0f);
rs.insertRow();
// Changes will be made permanent with the next COMMIT operation.
rs.moveToCurrentRow(); // Go back to where we came from...
...

Update Conflicts
It is important to be aware of the following facts regarding updatable result sets
with the JDBC drivers:

■ The drivers do not enforce write locks for an updatable result set.

■ The drivers do not check for conflicts with a result set DELETE or UPDATE
operation.

A conflict will occur if you try to perform a DELETE or UPDATE operation on a row
updated by another committed transaction.

The Oracle JDBC drivers use the ROWID to uniquely identify a row in a database
table. As long as the ROWID is still valid when a driver tries to send an UPDATE or
DELETE operation to the database, the operation will be executed.

The driver will not report any changes made by another committed transaction.
Any conflicts are silently ignored and your changes will overwrite the previous
changes.

To avoid such conflicts, use the Oracle FOR UPDATE feature when executing the
query that produces the result set. This will avoid conflicts, but will also prevent
simultaneous access to the data. Only a single write lock can be held concurrently
on a data item.

Fetch Size

13-24 Oracle9i JDBC Developer’s Guide and Reference

Fetch Size
By default, when Oracle JDBC executes a query, it receives the result set 10 rows at a
time from the database cursor. This is the default Oracle row-prefetch value. You can
change the number of rows retrieved with each trip to the database cursor by
changing the row-prefetch value (see "Oracle Row Prefetching" on page 12-20 for
more information).

JDBC 2.0 also allows you to specify the number of rows fetched with each database
round trip for a query, and this number is referred to as the fetch size. In Oracle
JDBC, the row-prefetch value is used as the default fetch size in a statement object.
Setting the fetch size overrides the row-prefetch setting and affects subsequent
queries executed through that statement object.

Fetch size is also used in a result set. When the statement object executes a query,
the fetch size of the statement object is passed to the result set object produced by
the query. However, you can also set the fetch size in the result set object to override
the statement fetch size that was passed to it. (Also note that changes made to a
statement object’s fetch size after a result set is produced will have no affect on that
result set.)

The result set fetch size, either set explicitly, or by default equal to the statement
fetch size that was passed to it, determines the number of rows that are retrieved in
any subsequent trips to the database for that result set. This includes any trips that
are still required to complete the original query, as well as any refetching of data into
the result set. (Data can be refetched, either explicitly or implicitly, to update a
scroll-sensitive or scroll-insensitive/updatable result set. See "Refetching Rows" on
page 13-26.)

Setting the Fetch Size
The following methods are available in all Statement, PreparedStatement,
CallableStatement, and ResultSet objects for setting and getting the fetch
size:

■ void setFetchSize(int rows) throws SQLException

■ int getFetchSize() throws SQLException

To set the fetch size for a query, call setFetchSize() on the statement object prior
to executing the query. If you set the fetch size to N, then N rows are fetched with
each trip to the database.

After you have executed the query, you can call setFetchSize() on the result set
object to override the statement object fetch size that was passed to it. This will

Fetch Size

Result Set Enhancements 13-25

affect any subsequent trips to the database to get more rows for the original query,
as well as affecting any later refetching of rows. (See "Refetching Rows" on
page 13-26.)

Use of Standard Fetch Size versus Oracle Row-Prefetch Setting
Using the JDBC 2.0 fetch size is fundamentally similar to using the Oracle
row-prefetch value, except that with the row-prefetch value you do not have the
flexibility of distinct values in the statement object and result set object. The row
prefetch value would be used everywhere.

Furthermore, JDBC 2.0 fetch size usage is portable and can be used with other JDBC
drivers. Oracle row-prefetch usage is vendor-specific.

See "Oracle Row Prefetching" on page 12-20 for a general discussion of this Oracle
feature.

Note: Do not mix the JDBC 2.0 fetch size API and the Oracle row
prefetching API in your application. You can use one or the other,
but not both.

Refetching Rows

13-26 Oracle9i JDBC Developer’s Guide and Reference

Refetching Rows
The result set refreshRow() method is supported for some types of result sets for
refetching data. This consists of going back to the database to re-obtain the database
rows that correspond to N rows in the result set, starting with the current row,
where N is the fetch size (described above in "Fetch Size" on page 13-24). This lets
you see the latest updates to the database that were made outside of your result set,
subject to the isolation level of the enclosing transaction.

Because refetching re-obtains only rows that correspond to rows already in your
result set, it does nothing about rows that have been inserted or deleted in the
database since the original query. It ignores rows that have been inserted, and rows
will remain in your result set even after the corresponding rows have been deleted
from the database. When there is an attempt to refetch a row that has been deleted
in the database, the corresponding row in the result set will maintain its original
values.

Following is the refreshRow() method signature:

■ void refreshRow() throws SQLException

You must be at a valid current row when you call this method, not outside the row
bounds and not at the insert-row.

With the 8.1.6 release, the refreshRow() method is supported for the following
result set categories:

■ scroll-sensitive/read-only

■ scroll-sensitive/updatable

■ scroll-insensitive/updatable

Oracle JDBC might support additional result set categories in future releases.

Note: Scroll-sensitive result set functionality is implemented
through implicit calls to refreshRow(). See "Oracle
Implementation of Scroll-Sensitive Result Sets" on page 13-30 for
details.

Seeing Database Changes Made Internally and Externally

Result Set Enhancements 13-27

Seeing Database Changes Made Internally and Externally
This section discusses the ability of a result set to see the following:

■ its own changes (DELETE, UPDATE, or INSERT operations within the result set),
referred to as internal changes

■ changes made from elsewhere (either from your own transaction outside the
result set, or from other committed transactions), referred to as external changes

Near the end of the section is a summary table.

Seeing Internal Changes
The ability of an updatable result set to see its own changes depends on both the
result set type and the kind of change (UPDATE, DELETE, or INSERT). This is
discussed at various points throughout the "Updating Result Sets" section
beginning on on page 13-18, and is summarized as follows:

■ Internal DELETE operations are visible for scrollable result sets (scroll-sensitive
or scroll-insensitive), but are not visible for forward-only result sets.

After you delete a row in a scrollable result set, the preceding row becomes the
new current row, and subsequent row numbers are updated accordingly.

■ Internal UPDATE operations are always visible, regardless of the result set type
(forward-only, scroll-sensitive, or scroll-insensitive).

■ Internal INSERT operations are never visible, regardless of the result set type
(neither forward-only, scroll-sensitive, nor scroll-insensitive).

An internal change being "visible" essentially means that a subsequent getXXX()
call will see the data changed by a preceding updateXXX() call on the same data
item.

JDBC 2.0 DatabaseMetaData objects include the following methods to verify this.
Each takes a result set type as input (ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_SENSITIVE, or ResultSet.TYPE_SCROLL_
INSENSITIVE).

■ boolean ownDeletesAreVisible(int) throws SQLException

■ boolean ownUpdatesAreVisible(int) throws SQLException

Note: External changes are referred to as "other’s changes" in the
Sun Microsystems JDBC 2.0 specification.

Seeing Database Changes Made Internally and Externally

13-28 Oracle9i JDBC Developer’s Guide and Reference

■ boolean ownInsertsAreVisible(int) throws SQLException

Seeing External Changes
Only a scroll-sensitive result set can see external changes to the underlying
database, and it can only see the changes from external UPDATE operations.
Changes from external DELETE or INSERT operations are never visible.

For implementation details of scroll-sensitive result sets, including exactly how and
how soon external updates become visible, see "Oracle Implementation of
Scroll-Sensitive Result Sets" on page 13-30.

JDBC 2.0 DatabaseMetaData objects include the following methods to verify this.
Each takes a result set type as input (ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_SENSITIVE, or ResultSet.TYPE_SCROLL_
INSENSITIVE).

■ boolean othersDeletesAreVisible(int) throws SQLException

■ boolean othersUpdatesAreVisible(int) throws SQLException

■ boolean othersInsertsAreVisible(int) throws SQLException

Note: When you make an internal change that causes a trigger to
execute, the trigger changes are effectively external changes.
However, if the trigger affects data in the row you are updating,
you will see those changes for any scrollable/updatable result set,
because an implicit row refetch occurs after the update.

Note: Any discussion of seeing changes from outside the
enclosing transaction presumes the transaction itself has an
isolation level setting that allows the changes to be visible.

Seeing Database Changes Made Internally and Externally

Result Set Enhancements 13-29

Visibility versus Detection of External Changes
Regarding changes made to the underlying database by external sources, there are
two similar but distinct concepts with respect to visibility of the changes from your
local result set:

■ visibility of changes

■ detection of changes

A change being "visible" means that when you look at a row in the result set, you
can see new data values from changes made by external sources to the
corresponding row in the database.

A change being "detected", however, means that the result set is aware that this is a
new value since the result set was first populated.

Even when an Oracle result set sees new data (as with an external UPDATE in a
scroll-sensitive result set), it has no awareness that this data has changed since the
result set was populated. Such changes are not "detected".

JDBC 2.0 DatabaseMetaData objects include the following methods to verify this.
Each takes a result set type as input (ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_SENSITIVE, or ResultSet.TYPE_SCROLL_
INSENSITIVE).

■ boolean deletesAreDetected(int) throws SQLException

■ boolean updatesAreDetected(int) throws SQLException

■ boolean insertsAreDetected(int) throws SQLException

It follows, then, that result set methods specified by JDBC 2.0 to detect
changes—rowDeleted(), rowUpdated(), and rowInserted()—will always
return false with the 8.1.6 Oracle JDBC drivers. There is no use in calling them.

Note: Explicit use of the refreshRow() method, described in
"Refetching Rows" on page 13-26, is distinct from this discussion of
visibility. For example, even though external updates are "invisible"
to a scroll-insensitive result set, you can explicitly refetch rows in a
scroll-insensitive/updatable result set and retrieve external changes
that have been made. "Visibility" refers only to the fact that the
scroll-insensitive/updatable result set would not see such changes
automatically and implicitly.

Seeing Database Changes Made Internally and Externally

13-30 Oracle9i JDBC Developer’s Guide and Reference

Summary of Visibility of Internal and External Changes
Table 13–1 summarizes the discussion in the preceding sections regarding whether a
result set object in the Oracle JDBC implementation can see changes made internally
through the result set itself, and changes made externally to the underlying
database from elsewhere in your transaction or from other committed transactions.

For implementation details of scroll-sensitive result sets, including exactly how and
how soon external updates become visible, see "Oracle Implementation of
Scroll-Sensitive Result Sets" on page 13-30.

Oracle Implementation of Scroll-Sensitive Result Sets
The Oracle implementation of scroll-sensitive result sets involves the concept of a
window, with a window size that is based on the fetch size. The window size affects
how often rows are updated in the result set.

Once you establish a current row by moving to a specified row (as described in
"Positioning in a Scrollable Result Set" on page 13-13), the window consists of the N

Table 13–1 Visibility of Internal and External Changes for Oracle JDBC

Result Set Type

Can See
Internal
DELETE?

Can See
Internal
UPDATE?

Can See
Internal
INSERT?

Can See
External
DELETE?

Can See
External
UPDATE?

Can See
External
INSERT?

forward-only no yes no no no no

scroll-sensitive yes yes no no yes no

scroll-insensitive yes yes no no no no

Notes:

■ Remember that explicit use of the refreshRow() method,
described in "Refetching Rows" on page 13-26, is distinct from
the concept of "visibility" of external changes. This is discussed
in "Seeing External Changes" on page 13-28.

■ Remember that even when external changes are "visible", as
with UPDATE operations underlying a scroll-sensitive result set,
they are not "detected". The result set rowDeleted(),
rowUpdated(), and rowInserted() methods always return
false. This is further discussed in "Visibility versus Detection
of External Changes" on page 13-29.

Seeing Database Changes Made Internally and Externally

Result Set Enhancements 13-31

rows in the result set starting with that row, where N is the fetch size being used by
the result set (see "Fetch Size" on page 13-24). Note that there is no current row, and
therefore no window, when a result set is first created. The default position is before
the first row, which is not a valid current row.

As you move from row to row, the window remains unchanged as long as the
current row stays within that window. However, once you move to a new current
row outside the window, you redefine the window to be the N rows starting with
the new current row.

Whenever the window is redefined, the N rows in the database corresponding to
the rows in the new window are automatically refetched through an implicit call to
the refreshRow() method (described in "Refetching Rows" on page 13-26),
thereby updating the data throughout the new window.

So external updates are not instantaneously visible in a scroll-sensitive result set;
they are only visible after the automatic refetches just described.

Note: Because this kind of refetching is not a highly efficient or
optimized methodology, there are significant performance
concerns. Consider carefully before using scroll-sensitive result sets
as currently implemented. There is also a significant tradeoff
between sensitivity and performance. The most sensitive result set
is one with a fetch size of 1, which would result in the new current
row being refetched every time you move between rows. However,
this would have a significant impact on the performance of your
application.

Summary of New Methods for Result Set Enhancements

13-32 Oracle9i JDBC Developer’s Guide and Reference

Summary of New Methods for Result Set Enhancements
This section summarizes all the new connection, result set, statement, and database
meta data methods added for JDBC 2.0 result set enhancements. These methods are
more fully discussed throughout this chapter.

Modified Connection Methods
Following is an alphabetical summary of modified connection methods that allow
you to specify result set and concurrency types when you create statement objects.

■ Statement createStatement
 (int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a generic Statement object.

■ CallableStatement prepareCall
 (String sql, int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a PreparedStatement object.

■ PreparedStatement prepareStatement
 (String sql, int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a CallableStatement object.

New Result Set Methods
Following is an alphabetical summary of new result set methods for JDBC 2.0 result
set enhancements.

■ boolean absolute(int row) throws SQLException

Move to an absolute row position in the result set.

■ void afterLast() throws SQLException

Move to after the last row in the result set (you will not be at a valid current row
after this call).

■ void beforeFirst() throws SQLException

Move to before the first row in the result set (you will not be at a valid current
row after this call).

Summary of New Methods for Result Set Enhancements

Result Set Enhancements 13-33

■ void cancelRowUpdates() throws SQLException

Cancel an UPDATE operation on the current row. (Call this after the
updateXXX() calls but before the updateRow() call.)

■ void deleteRow() throws SQLException

Delete the current row.

■ boolean first() throws SQLException

Move to the first row in the result set.

■ int getConcurrency() throws SQLException

Returns an int value for the concurrency type used for the query (either
ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE).

■ int getFetchSize() throws SQLException

Check the fetch size to determine how many rows are fetched in each database
round trip (also available in statement objects).

■ int getRow() throws SQLException

Returns the row number of the current row. Returns 0 if there is no valid current
row.

■ int getType() throws SQLException

Returns an int value for the result set type used for the query (either
ResultSet.TYPE_FORWARD_ONLY, ResultSet.TYPE_SCROLL_
SENSITIVE, or ResultSet.TYPE_SCROLL_INSENSITIVE).

■ void insertRow() throws SQLException

Write a result set INSERT operation to the database. Call this after calling
updateXXX() methods to set the data values.

■ boolean isAfterLast() throws SQLException

Returns true if the position is after the last row.

■ boolean isBeforeFirst() throws SQLException

Returns true if the position is before the first row.

■ boolean isFirst() throws SQLException

Returns true if the position is at the first row.

■ boolean isLast() throws SQLException

Summary of New Methods for Result Set Enhancements

13-34 Oracle9i JDBC Developer’s Guide and Reference

Returns true if the position is at the last row.

■ boolean last() throws SQLException

Move to the last row in the result set.

■ void moveToCurrentRow() throws SQLException

Move from the insert-row staging area back to what had been the current row
prior to the moveToInsertRow() call.

■ void moveToInsertRow() throws SQLException

Move to the insert-row staging area to set up a row to be inserted.

■ boolean next() throws SQLException

Iterate forward through the result set.

■ boolean previous() throws SQLException

Iterate backward through the result set.

■ void refreshRow() throws SQLException

Refetch the database rows corresponding to the current window in the result
set, to update the data. This method is called implicitly for scroll-sensitive result
sets.

■ boolean relative(int row) throws SQLException

Move to a relative row position, either forward or backward from the current
row.

■ void setFetchSize(int rows) throws SQLException

Set the fetch size to determine how many rows are fetched in each database
round trip when refetching (also available in statement objects).

■ void updateRow() throws SQLException

Write an UPDATE operation to the database after using updateXXX() methods
to update the data values.

■ void updateXXX() throws SQLException

Set or update data values in a row to be updated or inserted. There is an
updateXXX() method for each datatype. After calling all the appropriate
updateXXX() methods for the columns to be updated or inserted, call
updateRow() for an UPDATE operation or insertRow() for an INSERT
operation.

Summary of New Methods for Result Set Enhancements

Result Set Enhancements 13-35

Statement Methods
Following is an alphabetical summary of statement methods for JDBC 2.0 result set
enhancements. These methods are available in generic statement, prepared
statement, and callable statement objects.

■ int getFetchSize() throws SQLException

Check the fetch size to determine how many rows are fetched in each database
round trip when executing a query (also available in result set objects).

■ void setFetchSize(int rows) throws SQLException

Set the fetch size to determine how many rows are fetched in each database
round trip when executing a query (also available in result set objects).

■ void setResultSetCache(OracleResultSetCache cache)
 throws SQLException

Use your own client-side cache implementation for scrollable result sets. Create
your own class that implements the OracleResultSetCache interface, then
use the setResultSetCache() method to input an instance of this class to
the statement object that will create the result set.

■ int getResultSetType() throws SQLException

Check the result set type of result sets produced by this statement object (which
was specified when the statement object was created).

■ int getResultSetConcurrency() throws SQLException

Check the concurrency type of result sets produced by this statement object
(which was specified when the statement object was created).

Database Meta Data Methods
Following is an alphabetical summary of database meta data methods for JDBC 2.0
result set enhancements.

■ boolean ownDeletesAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of its own internal DELETE operations.

■ boolean ownUpdatesAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of its own internal UPDATE operations.

Summary of New Methods for Result Set Enhancements

13-36 Oracle9i JDBC Developer’s Guide and Reference

■ boolean ownInsertsAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of its own internal INSERT operations.

■ boolean othersDeletesAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of an external DELETE operation in the database.

■ boolean othersUpdatesAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of an external UPDATE operation in the database.

■ boolean othersInsertsAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of an external INSERT operation in the database.

■ boolean deletesAreDetected(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
detect when an external DELETE operation occurs in the database. This method
always returns false in Oracle8i release 8.1.6 and higher.

■ boolean updatesAreDetected(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
detect when an external UPDATE operation occurs in the database. This method
always returns false in Oracle8i release 8.1.6 and higher.

■ boolean insertsAreDetected(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
detect when an external INSERT operation occurs in the database. This method
always returns false in Oracle8i release 8.1.6 and higher.

Statement Caching 14-1

14
Statement Caching

This chapter describes the benefits and use of statement caching, an Oracle JDBC
extension.

This following topics are discussed:

■ About Statement Caching

■ Using Statement Caching

Note: Release 2 (9.2) of JDBC provides a new statement cache
interface and implementation, replacing the API supported at
Release 9.1 0. The previous API is now deprecated.

About Statement Caching

14-2 Oracle9i JDBC Developer’s Guide and Reference

About Statement Caching
Statement caching improves performance by caching executable statements that are
used repeatedly, such as in a loop or in a method that is called repeatedly. JDBC 3.0
defines a statement-caching interface.

Statement caching can:

■ Prevent the overhead of repeated cursor creation

■ Prevent repeated statement parsing and creation

Basics of Statement Caching
Use a statement cache to cache statements associated with a particular physical
connection. For a simple connection, the cache is associated with an
OracleConnection object. For a pooled connection, the cache is associated with
an OraclePooledConnection or PooledConnection object. The
OracleConnection and OraclePooledConnection objects include methods to
enable statement caching. When you enable statement caching, a statement object is
cached when you call the "close" methods.

Because each physical connection has its own cache, multiple caches can exist if you
enable statement caching for multiple physical connections. When you enable
statement caching on a pooled connection, all the logical connections will use the
same cache. If you try to enable statement caching on a logical connection of a
pooled connection, this will throw an exception.

There are two types of statement caching: implicit and explicit. Each type of
statement cache can be enabled or disabled independent of the other: you can have
either, neither, or both in effect. Both types of statement caching share a cache.

Implicit Statement Caching
When you enable implicit statement caching, JDBC automatically caches the prepared
or callable statement when you call the close() method of this statement object.
The prepared and callable statements are cached and retrieved using standard
connection object and statement object methods.

Plain statements are not implicitly cached, because implicit statement caching uses a
SQL string as a key, and plain statements are created without a SQL string.
Therefore, implicit statement caching applies only to the
OraclePreparedStatement and OracleCallableStatement objects, which
are created with a SQL string. When one of these statements is created, the JDBC

About Statement Caching

Statement Caching 14-3

driver automatically searches the cache for a matching statement. The match criteria
are the following:

■ The SQL string in the statement must be identical (case-sensitive) to one in the
cache.

■ The statement type must be the same (prepared or callable).

■ The scrollable type of result sets produced by the statement must be the same
(forward-only or scrollable). You can determine the scrollability when you
create the statement. (See "Specifying Result Set Scrollability and Updatability"
on page 13-8 for complete details.)

If a match is found during the cache search, the cached statement is returned. If a
match is not found, then a new statement is created and returned. The new
statement, along with its cursor and state, are cached when you call the close()
method of the statement object.

When a cached OraclePreparedStatement or OracleCallableStatement
object is retrieved, the state and data information are automatically re-initialized
and reset to default values, while metadata is saved. The Least Recently Used (LRU)
scheme performs the statement cache operation.

You can prevent a particular statement from being implicitly cached; see "Disabling
Implicit Statement Caching for a Particular Statement" on page 14-8.

Explicit Statement Caching
Explicit statement caching enables you to cache and retrieve selected prepared,
callable, and plain statements. Explicit statement caching relies on a key, an arbitrary
Java string that you provide.

Because explicit statement caching retains statement data and state as well as
metadata, it has a performance edge over implicit statement caching, which retains
only metadata. However, because explicit statement caching saves all three types of
information for re-use, you must be cautious when using this type of caching—you
may not be aware of what was retained for data and state in the previous statement.

Note: The JDBC driver does not clear metadata. However,
although metadata is saved for performance reasons, it has no
semantic impact. A statement that comes from the implicit cache
appears as if it were newly created.

About Statement Caching

14-4 Oracle9i JDBC Developer’s Guide and Reference

With implicit statement caching, you take no special action to retrieve statements
from a cache. Instead, whenever you call prepareStatement() or
prepareCall(), JDBC automatically checks the cache for a matching statement
and returns it if found.

With explicit statement caching, you use specialized Oracle "WithKey" methods to
cache and retrieve statement objects.

Implicit statement caching uses the SQL string of a prepared or callable statement as
the key, requiring no action on your part. Explicit statement caching requires you to
provide a Java string, which it uses as the key.

During implicit statement caching, if the JDBC driver cannot find a statement in
cache, it will automatically create one. During explicit statement caching, if the
JDBC driver cannot find a matching statement in cache, it will return a null value.

Table 14–1 compares the different methods employed in implicit and explicit
statement caching.

Table 14–1 Comparing Methods Used in Statement Caching

Allocate Insert Into Cache Retrieve From Cache

Implicit
prepareStatement()
prepareCall()

close() prepareStatement()
prepareCall()

Explicit

createStatement()
prepareStatement()
prepareCall()

closeWithKey() getStatementWithKey()
getCallWithKey()

Using Statement Caching

Statement Caching 14-5

Using Statement Caching
This section discusses the following topics:

■ Enabling and Disabling Statement Caching

■ Checking for Statement Creation Status

■ Physically Closing a Cached Statement

■ Using Implicit Statement Caching

■ Using Explicit Statement Caching

Enabling and Disabling Statement Caching
Implicit and explicit statement caching can be enabled or disabled independent of
one other: you can have either, neither, or both in effect.

Enabling and Disabling Implicit Statement Caching
Enable implicit statement caching in one of two ways:

■ Invoking setImplicitStatementCaching(true) on the connection

■ Invoking OracleDataSource.getConnection () with the
ImplicitStatementCachingEnabled property set to true; you set
ImplicitStatementCachingEnabled by calling
OracleDataSource.setImplicitStatementCachingEnabled(true)

Disable implicit statement caching by invoking
setImplicitStatementCaching(false) on the connection or by setting the
ImplicitStatementCachingEnabled property to false.

To determine whether implicit caching is enabled, call
getImplicitStatementCachingEnabled(), which returns true if implicit
caching is enabled, false otherwise.

Enabling and Disabling Explicit Statement Caching
To enable explicit statement caching you must first set the application cache size.
You set the cache size in one of two ways:

■ invoking OracleConnection.setStatementCacheSize() on the physical
connection

■ invoking OracleDatasource.setMaxStatements()

Using Statement Caching

14-6 Oracle9i JDBC Developer’s Guide and Reference

In either case, the argument you supply is the maximum number of statements in
the cache; an argument of 0 specifies no caching. To check the cache size, use the
getStatementCacheSize() method.

System.out.println("Stmt Cache size is " +
 ((OracleConnection)conn).getStatementCacheSize());

Enable explicit statement caching by invoking
setExplicitStatementCaching(true) on the connection.

To determine whether explicit caching is enabled, call
getExplicitStatementCachingEnabled(), which returns true if implicit
caching is enabled, false otherwise.

The following code specifies a cache size of ten statements:

((OracleConnection)conn).setStatementCacheSize(10);

Disable explicit statement caching by calling
setExplicitStatementCaching(false). Disabling caching or closing the
cache purges the cache.

The following code disables explicit statement caching.

((OracleConnection)conn).setExplicitStatementCaching(false);

Checking for Statement Creation Status
By calling the creationState() method of a statement object, you can determine
if a statement was newly created or if it was retrieved from cache on an implicit or
explicit lookup. The creationState() method returns the following integer
values for plain, prepared, and callable statements:

■ NEW - The statement was newly created.

Notes:

■ You enable implicit and explicit caching for a particular
physical connection independently. Therefore, it is possible to
do statement caching both implicitly and explicitly during the
same session.

■ Implicit and explicit statement caching share the same cache.
Remember this when you set the statement cache size.

Using Statement Caching

Statement Caching 14-7

■ IMPLICIT - The statement was retrieved on an implicit statement lookup.

■ EXPLICIT - The statement was retrieved on an explicit statement lookup.

For example, the JDBC driver returns OracleStatement.EXPLICIT for an
explicitly cached statement. The following code checks the statement creation status
for stmt:

int state = ((OracleStatement)stmt).creationState()
 ...(process state)

Physically Closing a Cached Statement
With implicit statement caching enabled, you cannot truly physically close
statements manually. The close() method of a statement object caches the
statement instead of closing it. The statement is physically closed automatically
under one of three conditions: (1) when the associated connection is closed, (2)
when the cache reaches its size limit and the least recently used statement object is
preempted from cache by the LRU scheme, or (3) if you call the close() method
on a statement for which statement caching is disabled. (See "Disabling Implicit
Statement Caching for a Particular Statement" on page 14-8 for more details.)

Using Implicit Statement Caching
Once you enable implicit statement caching, by default all prepared and callable
statements are automatically cached. Implicit statement caching includes the
following steps:

1. Enable implicit statement caching as described in "Enabling and Disabling
Implicit Statement Caching" on page 14-5.

2. Allocate a statement using one of the standard methods.

3. (Optional) Disable implicit statement caching for any particular statement you
do not want to cache.

4. Cache the statement using the close() method.

5. Retrieve the implicitly cached statement by calling the appropriate standard
"prepare" method.

The following sections explain the implicit statement caching steps in more detail.

Using Statement Caching

14-8 Oracle9i JDBC Developer’s Guide and Reference

Allocating a Statement for Implicit Caching
To allocate a statement for implicit statement caching, use either the
prepareStatement() or prepareCall()method as you would normally.
(These are methods of the connection object.)

The following code allocates a new statement object called pstmt:

PreparedStatement pstmt = conn.prepareStatement
 ("UPDATE emp SET ename = ? WHERE rowid = ?");

Disabling Implicit Statement Caching for a Particular Statement
With implicit statement caching enabled for a connection, by default all callable and
prepared statements of that connection are automatically cached. To prevent a
particular callable or prepared statement from being implicitly cached, use the
setDisableStatementCaching() method of the statement object. To help you
manage cache space, you can call the setDisableStatementCaching() method
on any infrequently used statement.

The following code disables implicit statement caching for pstmt:

PreparedStatement pstmt = conn.prepareStatement ("SELECT 1 from DUAL");
((OraclePreparedStatement)pstmt).setDisableStatementCaching (true);
pstmt.close ();

Implicitly Caching a Statement
To cache an allocated statement, call the close() method of the statement object.
When you call the close() method on an OraclePreparedStatement or
OracleCallableStatement object, the JDBC driver automatically puts this
statement in cache, unless you have disabled caching for this statement.

The following code caches the pstmt statement:

((OraclePreparedStatement)pstmt).close ();

Retrieving an Implicitly Cached Statement
To retrieve an implicitly cached statement, call either the prepareStatement() or
prepareCall()method, depending on the statement type.

The following code retrieves pstmt from cache using the prepareStatement()
method:

pstmt = conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

Using Statement Caching

Statement Caching 14-9

If you call the creationState() method on the pstmt statement object, the
method returns IMPLICIT. If the pstmt statement object was not in cache, then the
creationState() method returns NEW to indicate a new statement was recently
created by the JDBC driver.

Table 14–2 describes the methods used to allocate statements and retrieve implicitly
cached statements.

Using Explicit Statement Caching
A plain, prepared, or callable statement can be explicitly cached when you enable
explicit statement caching. Explicit statement caching includes the following steps:

1. Enable explicit statement caching as described in "Enabling and Disabling
Explicit Statement Caching" on page 14-5.

2. Allocate a statement using one of the standard methods.

3. Explicitly cache the statement by closing it with a key, using the
closeWithKey() method.

4. Retrieve the explicitly cached statement by calling the appropriate Oracle
"WithKey" method, specifying the appropriate key.

5. Re-cache an open, explicitly cached statement by closing it again with the
closeWithKey() method. Each time a cached statement is closed, it is
re-cached with its key.

The following sections explain the explicit statement caching steps in more detail.

Table 14–2 Methods Used in Statement Allocation and Implicit Statement Caching

Method Functionality for Implicit Statement Caching

prepareStatement() Triggers a cache search that either finds and returns the
desired cached OraclePreparedStatement object or
allocates a new OraclePreparedStatement object if a
match is not found

prepareCall() Triggers a cache search that either finds and returns the
desired cached OracleCallableStatement object or
allocates a new OracleCallableStatement object if a
match is not found

Using Statement Caching

14-10 Oracle9i JDBC Developer’s Guide and Reference

Allocating a Statement for Explicit Caching
To allocate a statement for explicit statement caching, use either the
createStatement(), prepareStatement(), or prepareCall() method as
you would normally. (These are methods of the connection object.)

The following code allocates a new statement object called pstmt:

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

Explicitly Caching a Statement
To explicitly cache an allocated statement, call the closeWithKey() method of the
statement object, specifying a key. The key is an arbitrary Java string that you
provide. The closeWithKey() method caches a statement as is. This means the
data, state, and metadata are retained and not cleared.

The following code caches the pstmt statement with the key "mykey":

((OraclePreparedStatement)pstmt).closeWithKey ("mykey");

Retrieving an Explicitly Cached Statement
To recall an explicitly cached statement, call either the getStatementWithKey()
or getCallWithKey() methods depending on the statement type.

If you retrieve a statement with a specified key, the JDBC driver searches the cache
for the statement, based on the specified key. If a match is found, the matching
statement is returned, along with its state, data, and metadata. This information is
returned as it was when last closed. If a match is not found, the JDBC driver returns
null.

The following code recalls pstmt from cache using the "mykey" key with the
gettatementWithKey() method. Recall that the pstmt statement object was
cached with the "mykey" key.

pstmt = ((OracleConnection)conn).getStatementWithKey ("mykey");

If you call the creationState() method on the pstmt statement object, the
method returns EXPLICIT.

Using Statement Caching

Statement Caching 14-11

Table 14–3 describes the methods used to retrieve explicitly cached statements.

Important: When you retrieve an explicitly cached statement, be
sure to use the method that is appropriate for your statement type
when specifying the key. For example, if you used the
prepareStatement() method to allocate a statement, then use
the getStatementWithKey() method to retrieve that statement
from cache. The JDBC driver cannot verify the type of statement it
is returning.

Table 14–3 Methods Used to Retrieve Explicitly Cached Statements

Method Functionality for Explicit Statement Caching

createStatementWithKey() specifies the key needed to retrieve a plain
statement from cache

getStatementWithKey() specifies the key needed to retrieve a prepared
statement from cache

getCallWithKey() specifies the key needed to retrieve a callable
statement from cache

Using Statement Caching

14-12 Oracle9i JDBC Developer’s Guide and Reference

Distributed Transactions 15-1

15
Distributed Transactions

This chapter discusses the Oracle JDBC implementation of distributed transactions.
These are multi-phased transactions, often using multiple databases, that must be
committed in a coordinated way. There is also related discussion of XA, which is a
general standard (not specific to Java) for distributed transactions.

The following topics are discussed:

■ Overview

■ XA Components

■ Error Handling and Optimizations

■ Implementing a Distributed Transaction

For further introductory and general information about distributed transactions,
refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package and
the Java Transaction API (JTA).

For information on the OCI-specific HeteroRM XA feature, see "OCI HeteroRM XA"
on page 17-19.

Note: This chapter discusses features of the JDBC 2.0 Optional
Package, formerly known as the JDBC 2.0 Standard Extension API,
which is available through the javax packages from Sun
Microsystems. The Optional Package is not part of the standard
JDK, but relevant packages are included with the Oracle JDBC
classes111.zip and classes12.zip files.

Overview

15-2 Oracle9i JDBC Developer’s Guide and Reference

Overview
A distributed transaction, sometimes referred to as a global transaction, is a set of two
or more related transactions that must be managed in a coordinated way. The
transactions that constitute a distributed transaction might be in the same database,
but more typically are in different databases and often in different locations. Each
individual transaction of a distributed transaction is referred to as a transaction
branch.

For example, a distributed transaction might consist of money being transferred
from an account in one bank to an account in another bank. You would not want
either transaction committed without assurance that both will complete
successfully.

In the JDBC 2.0 extension API, distributed transaction functionality is built on top of
connection pooling functionality, described under "Connection Pooling" on
page 16-11. This distributed transaction functionality is also built upon the open XA
standard for distributed transactions. (XA is part of the X/Open standard and is not
specific to Java.)

JDBC is used to connect to database resources. However, to include all changes to
multiple databases within a transaction, you must use the JDBC connections within
a JTA global transaction. The process of including database SQL updates within a
transaction is referred to as enlisting a database resource.

The remainder of this overview covers the following topics:

■ Distributed Transaction Components and Scenarios

■ Distributed Transaction Concepts

■ Switching Between Global and Local Transactions

■ Oracle XA Packages

For further introductory and general information about distributed transactions and
XA, refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package
and the Java Transaction API.

Note: Distributed transaction (XA) features require Oracle8i 8.1.6
or later.

Overview

Distributed Transactions 15-3

Distributed Transaction Components and Scenarios
In reading the remainder of the distributed transactions section, it will be helpful to
keep the following points in mind:

■ A distributed transaction system typically relies on an external transaction
manager—such as a software component that implements standard Java
Transaction API functionality—to coordinate the individual transactions.

Many vendors will offer XA-compliant JTA modules. This includes Oracle,
which is developing a JTA module based on the Oracle implementation of XA
discussed below.

■ XA functionality is usually isolated from a client application, being
implemented instead in a middle-tier environment such as an application
server.

In many scenarios, the application server and transaction manager will be
together on the middle tier, possibly together with some of the application code
as well.

■ Discussion throughout this section is intended mostly for middle-tier
developers.

■ The term resource manager is often used in discussing distributed transactions. A
resource manager is simply an entity that manages data or some other kind of
resource. Wherever the term is used in this chapter, it refers to a database.

Distributed Transaction Concepts
When you use XA functionality, the transaction manager uses XA resource instances
to prepare and coordinate each transaction branch and then to commit or roll back
all transaction branches appropriately.

XA functionality includes the following key components:

■ XA data sources—These are extensions of connection pool data sources and
other data sources, and similar in concept and functionality.

Note: Using JTA functionality requires file jta.jar to be in the
CLASSPATH. (This file is located at $ORACLE_HOME/jlib.) Oracle
includes this file with the JDBC product. (You can also obtain it
from the Sun Microsystems Web site, but it is advisable to use the
version from Oracle, because that has been tested with the Oracle
drivers.)

Overview

15-4 Oracle9i JDBC Developer’s Guide and Reference

There will be one XA data source instance for each resource manager (database)
that will be used in the distributed transaction. You will typically create XA
data source instances (using the class constructor) in your middle-tier software.

XA data sources produce XA connections.

■ XA connections—These are extensions of pooled connections, and similar in
concept and functionality. An XA connection encapsulates a physical database
connection; individual connection instances are temporary handles to these
physical connections.

An XA connection instance corresponds to a single Oracle session, although the
session can be used in sequence by multiple logical connection instances (one at
a time), as with pooled connection instances.

You will typically get an XA connection instance from an XA data source
instance (using a get method) in your middle-tier software. You can get
multiple XA connection instances from a single XA data source instance if the
distributed transaction will involve multiple sessions (multiple physical
connections) in the same database.

XA connections produce XA resource instances and JDBC connection instances.

■ XA resources—These are used by a transaction manager in coordinating the
transaction branches of a distributed transaction.

You will get one XA resource instance from each XA connection instance (using
a get method), typically in your middle-tier software. There is a one-to-one
correlation between XA resource instances and XA connection instances;
equivalently, there is a one-to-one correlation between XA resource instances
and Oracle sessions (physical connections).

In a typical scenario, the middle-tier component will hand off XA resource
instances to the transaction manager, for use in coordinating distributed
transactions.

Because each XA resource instance corresponds to a single Oracle session, there
can be only a single active transaction branch associated with an XA resource
instance at any given time. There can be additional suspended transaction
branches, however—see "XA Resource Method Functionality and Input
Parameters" on page 15-11.

Each XA resource instance has the functionality to start, end, prepare, commit,
or roll back the operations of the transaction branch running in the session with
which the XA resource instance is associated.

Overview

Distributed Transactions 15-5

The "prepare" step is the first step of a two-phase COMMIT operation. The
transaction manager will issue a prepare to each XA resource instance. Once
the transaction manager sees that the operations of each transaction branch
have prepared successfully (essentially, that the databases can be accessed
without error), it will issue a COMMIT to each XA resource instance to commit
all the changes.

■ Transaction IDs—These are used to identify transaction branches. Each ID
includes a transaction branch ID component and a distributed transaction ID
component—this is how a branch is associated with a distributed transaction.
All XA resource instances associated with a given distributed transaction would
have a transaction ID that includes the same distributed transaction ID
component.

Switching Between Global and Local Transactions
As of JDBC 3.0, applications can switch connections between local transactions and
global transactions.

A connection is always in one of three modes: NO_TXN, LOCAL_TXN, or
GLOBAL_TXN.

■ NO_TXN —no transaction is actively using this connection.

■ LOCAL_TXN—a local transaction with auto-commit turned off or disabled is
actively using this connection.

■ GLOBAL_TXN—a global transaction is actively using this connection.

Each connection switches automatically between these modes depending on the
operations executed on the connection. A connection is always in NO_TXN mode
when it is instantiated.

Overview

15-6 Oracle9i JDBC Developer’s Guide and Reference

If none of the rules above is applicable, the mode does not change.

Mode Restrictions On Operations
The current connection mode restricts which operations are valid within a
transaction.

■ In LOCAL_TXN mode, applications must not invoke prepare(), commit(),
rollback(), forget(), or end() on an XAResource. Doing so causes an
XAException to be thrown.

■ In GLOBAL_TXN mode, applications must not invoke commit(), rollback()
(both versions), setAutoCommit(), or setSavepoint() on a
java.sql.Connection, and must not invoke OracleSetSavepoint() or

Table 15–1 Connection Mode Transitions

Current Mode
Switches To
 NO_TXN When

Switches to
LOCAL_TXN When

Switches To
GLOBAL_TXN When

 NO_TXN Auto-commit mode
is false and an Oracle
DML (SELECT,
INSERT, UPDATE)
statement is executed

start() is invoked on
an XAResource
obtained from the
XAconnection that
provided this
connection

 LOCAL_TXN Any of the following
happens:

An Oracle DDL
statement (CREATE,
DROP, RENAME, ALTER)
is executed.

commit() is invoked.

rollback() is
invoked (parameterless
version only).

NEVER

 GLOBAL_TXN Within a global
transaction open on
this connection, end()
is invoked on an
XAResource obtained
from the
XAconnection that
provided this
connection.

NEVER

Overview

Distributed Transactions 15-7

oracleRollback() on an oracle.jdbc.OracleConnection. Doing so
causes an SQLException to be thrown.

Oracle XA Packages
Oracle supplies the following three packages that have classes to implement
distributed transaction functionality according to the XA standard:

■ oracle.jdbc.xa (OracleXid and OracleXAException classes)

■ oracle.jdbc.xa.client

■ oracle.jdbc.xa.server

Classes for XA data sources, XA connections, and XA resources are in both the
client package and the server package. (An abstract class for each is in the
top-level package.) The OracleXid and OracleXAException classes are in the
top-level oracle.jdbc.xa package, because their functionality does not depend
on where the code is running.

In middle-tier scenarios, you will import OracleXid, OracleXAException, and
the oracle.jdbc.xa.client package.

If you intend your XA code to run in the target Oracle database, however, you will
import the oracle.jdbc.xa.server package instead of the client package.

If code that will run inside a target database must also access remote databases,
then do not import either package—instead, you must fully qualify the names of
any classes that you use from the client package (to access a remote database) or
from the server package (to access the local database). Class names are duplicated
between these packages.

Note: This mode-restriction error checking is in addition to the
standard error checking on the transaction and savepoint APIs,
documented in this chapter and in "Transaction Savepoints" on
page 5-5.

XA Components

15-8 Oracle9i JDBC Developer’s Guide and Reference

XA Components
This section discusses the XA components—standard XA interfaces specified in the
JDBC 2.0 Optional Package, and the Oracle classes that implement them. The
following topics are covered:

■ XA Data Source Interface and Oracle Implementation

■ XA Connection Interface and Oracle Implementation

■ XA Resource Interface and Oracle Implementation

■ XA Resource Method Functionality and Input Parameters

■ XA ID Interface and Oracle Implementation

XA Data Source Interface and Oracle Implementation
The javax.sql.XADataSource interface outlines standard functionality of XA
data sources, which are factories for XA connections. The overloaded
getXAConnection() method returns an XA connection instance and optionally
takes a user name and password as input:

public interface XADataSource
{
 XAConnection getXAConnection() throws SQLException;
 XAConnection getXAConnection(String user, String password)
 throws SQLException;
 ...
}

Oracle JDBC implements the XADataSource interface with the
OracleXADataSource class, located both in the oracle.jdbc.xa.client
package and the oracle.jdbc.xa.server package.

The OracleXADataSource classes also extend the
OracleConnectionPoolDataSource class (which extends the
OracleDataSource class), so include all the connection properties described in
"Data Source Properties" on page 16-4.

The OracleXADataSource class getXAConnection() methods return the
Oracle implementation of XA connection instances, which are
OracleXAConnection instances (as the next section discusses).

XA Components

Distributed Transactions 15-9

XA Connection Interface and Oracle Implementation
An XA connection instance, as with a pooled connection instance, encapsulates a
physical connection to a database. This would be the database specified in the
connection properties of the XA data source instance that produced the XA
connection instance.

Each XA connection instance also has the facility to produce the XA resource
instance that will correspond to it for use in coordinating the distributed
transaction.

An XA connection instance is an instance of a class that implements the standard
javax.sql.XAConnection interface:

public interface XAConnection extends PooledConnection
{
 javax.jta.xa.XAResource getXAResource() throws SQLException;
}

As you see, the XAConnection interface extends the
javax.sql.PooledConnection interface, so it also includes the
getConnection(), close(), addConnectionEventListener(), and
removeConnectionEventListener() methods listed in "Pooled Connection
Interface and Oracle Implementation" on page 16-13.

Oracle JDBC implements the XAConnection interface with the
OracleXAConnection class, located both in the oracle.jdbc.xa.client
package and the oracle.jdbc.xa.server package.

The OracleXAConnection classes also extend the OraclePooledConnection
class.

The OracleXAConnection class getXAResource() method returns the Oracle
implementation of an XA resource instance, which is an OracleXAResource
instance (as the next section discusses). The getConnection() method returns an
OracleConnection instance.

A JDBC connection instance returned by an XA connection instance acts as a
temporary handle to the physical connection, as opposed to encapsulating the

Note: You can register XA data sources in JNDI using the same
naming conventions as discussed previously for non-pooling data
sources in "Register the Data Source" on page 16-9.

XA Components

15-10 Oracle9i JDBC Developer’s Guide and Reference

physical connection. The physical connection is encapsulated by the XA connection
instance.

Each time an XA connection instance getConnection() method is called, it
returns a new connection instance that exhibits the default behavior, and closes any
previous connection instance that still exists and had been returned by the same XA
connection instance. It is advisable to explicitly close any previous connection
instance before opening a new one, however.

Calling the close() method of an XA connection instance closes the physical
connection to the database. This is typically performed in the middle tier.

XA Resource Interface and Oracle Implementation
The transaction manager uses XA resource instances to coordinate all the
transaction branches that constitute a distributed transaction.

Each XA resource instance provides the following key functionality, typically
invoked by the transaction manager:

■ It associates and disassociates distributed transactions with the transaction
branch operating in the XA connection instance that produced this XA resource
instance. (Essentially, associates distributed transactions with the physical
connection or session encapsulated by the XA connection instance.) This is done
through use of transaction IDs.

■ It performs the two-phase COMMIT functionality of a distributed transaction to
ensure that changes are not committed in one transaction branch before there is
assurance that the changes will succeed in all transaction branches.

"XA Resource Method Functionality and Input Parameters" on page 15-11
further discusses this.

Notes:

■ Because there must always be a one-to-one correlation between
XA connection instances and XA resource instances, an XA
resource instance is implicitly closed when the associated XA
connection instance is closed.

■ If a transaction is opened by a given XA resource instance, it
must also be closed by the same XA resource instance.

XA Components

Distributed Transactions 15-11

An XA resource instance is an instance of a class that implements the standard
javax.transaction.xa.XAResource interface:

public interface XAResource
{
 void commit(Xid xid, boolean onePhase) throws XAException;
 void end(Xid xid, int flags) throws XAException;
 void forget(Xid xid) throws XAException;
 int prepare(Xid xid) throws XAException;
 Xid[] recover(int flag) throws XAException;
 void rollback(Xid xid) throws XAException;
 void start(Xid xid, int flags) throws XAException;
 boolean isSameRM(XAResource xares) throws XAException;
}

Oracle JDBC implements the XAResource interface with the OracleXAResource
class, located both in the oracle.jdbc.xa.client package and the
oracle.jdbc.xa.server package.

The Oracle JDBC driver creates and returns an OracleXAResource instance
whenever the OracleXAConnection class getXAResource() method is called,
and it is the Oracle JDBC driver that associates an XA resource instance with a
connection instance and the transaction branch being executed through that
connection.

This method is how an OracleXAResource instance is associated with a particular
connection and with the transaction branch being executed in that connection.

XA Resource Method Functionality and Input Parameters
The OracleXAResource class has several methods to coordinate a transaction
branch with the distributed transaction with which it is associated. This
functionality usually involves two-phase COMMIT operations.

A transaction manager, receiving OracleXAResource instances from a middle-tier
component such as an application server, typically invokes this functionality.

Each of these methods takes a transaction ID as input, in the form of an Xid
instance, which includes a transaction branch ID component and a distributed
transaction ID component. Every transaction branch has a unique transaction ID,
but transaction branches belonging to the same global transaction have the same
global transaction component as part of their transaction IDs.

XA Components

15-12 Oracle9i JDBC Developer’s Guide and Reference

"XA ID Interface and Oracle Implementation" on page 15-16 discusses the
OracleXid class and the standard interface upon which it is based.

Following is a description of key XA resource functionality, the methods used, and
additional input parameters. Each of these methods throws an XA exception if an
error is encountered. See "XA Exception Classes and Methods" on page 15-18.

Start Start work on behalf of a transaction branch, associating the transaction branch
with a distributed transaction.

void start(Xid xid, int flags)

The flags parameter must be one of the following values:

■ XAResource.TMNOFLAGS (no special flag)—Flag the start of a new transaction
branch for subsequent operations in the session associated with this XA
resource instance. This branch will have the transaction ID xid, which is an
OracleXid instance created by the transaction manager. This will map the
transaction branch to the appropriate distributed transaction.

■ XAResource.TMJOIN—Join subsequent operations in the session associated
with this XA resource instance to the existing transaction branch specified by
xid.

■ XAResource.TMRESUME—Resume the transaction branch specified by xid. (It
must first have been suspended.)

■ XAResource.ORATMSERIALIZABLE—Start a serializable transaction with
transaction ID xid.

■ XAResource.ORATMREADONLY—Start a read-only transaction with transaction
ID xid.

■ XAResource.ORATMREADWRITE—Start a read/write transaction with
transaction ID xid.

TMNOFLAGS, TMJOIN, TMRESUME, ORATMSERIALIZABLE, ORATMREADONLY, and
ORATMREADWRITE are defined as static members of the XAResource interface and
OracleXAResource class. ORATMSERIALIZABLE, ORATMREADONLY, and
ORATMREADWRITE are the isolation-mode flags. The default isolation behavior is
READ COMMITTED.

XA Components

Distributed Transactions 15-13

Note that to create an appropriate transaction ID in starting a transaction branch,
the transaction manager must know which distributed transaction the transaction
branch should belong to. The mechanics of this are handled between the middle tier
and transaction manager and are beyond the scope of this document. Refer to the
Sun Microsystems specifications for the JDBC 2.0 Optional Package and the Java
Transaction API.

End End work on behalf of the transaction branch specified by xid, disassociating
the transaction branch from its distributed transaction.

void end(Xid xid, int flags)

The flags parameter can have one of the following values:

■ XAResource.TMSUCCESS—This is to indicate that this transaction branch is
known to have succeeded.

■ XAResource.TMFAIL—This is to indicate that this transaction branch is
known to have failed.

■ XAResource.TM—This is to suspend the transaction branch specified by xid.
(By suspending transaction branches, you can have multiple transaction
branches in a single session. Only one can be active at any given time, however.
Also, this tends to be more expensive in terms of resources than having two
sessions.)

Notes: ■Instead of using the start() method with TMRESUME,
the transaction manager can cast to an OracleXAResource
instance and use the resume(Xid xid) method, an Oracle
extension.

■ If you use TMRESUME, you must also use TMNOMIGRATE, as in
end(xid, XAResource.TMRESUME |

OracleXAResource.TMNOMIGRATE);. This prevents the application’s
receiving the error ORA 1002: fetch out of sequence.

■ If you use the isolation-mode flags incorrectly, an exception
with code XAER_INVAL is raised. Furthermore, you cannot
use isolation-mode flags when resuming a global transaction,
because you cannot set the isolation level of an existing
transaction. If you try to use the isolation-mode flags when
resuming a transaction, an external Oracle exception with code
ORA-24790 is raised.

XA Components

15-14 Oracle9i JDBC Developer’s Guide and Reference

TMSUCCESS, TMFAIL, and TMSUSPEND are defined as static members of the
XAResource interface and OracleXAResource class.

Prepare Prepare the changes performed in the transaction branch specified by xid.
This is the first phase of a two-phase COMMIT operation, to ensure that the database
is accessible and that the changes can be committed successfully.

int prepare(Xid xid)

This method returns an integer value as follows:

■ XAResource.XA_RDONLY—This is returned if the transaction branch executes
only read-only operations such as SELECT statements.

■ XAResource.XA_OK—This is returned if the transaction branch executes
updates that are all prepared without error.

■ n/a (no value returned)—No value is returned if the transaction branch
executes updates and any of them encounter errors during preparation. In this
case, an XA exception is thrown.

XA_RDONLY and XA_OK are defined as static members of the XAResource interface
and OracleXAResource class.

Notes:

■ Instead of using the end() method with TMSUSPEND, the
transaction manager can cast to an OracleXAResource
instance and use the suspend(Xid xid) method, an Oracle
extension.

■ This XA functionality to suspend a transaction provides a way
to switch between various transactions within a single JDBC
connection. You can use the XA classes to accomplish this, even
if you are not in a distributed transaction environment and
would otherwise have no need for the XA classes.

■ If you use TMSUSPEND, you must also use TMNOMIGRATE, as in
end(xid, XAResource.TMSUSPEND |

OracleXAResource.TMNOMIGRATE);. This prevents the application’s
receiving the error ORA 1002: fetch out of sequence.

XA Components

Distributed Transactions 15-15

Commit Commit prepared changes in the transaction branch specified by xid. This
is the second phase of a two-phase COMMIT and is performed only after all
transaction branches have been successfully prepared.

void commit(Xid xid, boolean onePhase)

Set the onePhase parameter as follows:

■ true—This is to use one-phase instead of two-phase protocol in committing
the transaction branch. This is appropriate if there is only one transaction
branch in the distributed transaction; the prepare step would be skipped.

■ false—This is to use two-phase protocol in committing the transaction branch
(typical).

Roll back Rolls back prepared changes in the transaction branch specified by xid.

void rollback(Xid xid)

Forget Tells the resource manager to forget about a heuristically completed
transaction branch.

public void forget(Xid xid)

Recover The transaction manager calls this method during recovery to obtain the list
of transaction branches that are currently in prepared or heuristically completed
states.

public Xid[] recover(int flag)

Notes:

■ Always call the end() method on a branch before calling the
prepare() method.

■ If there is only one transaction branch in a distributed
transaction, then there is no need to call the prepare()
method. You can call the XA resource commit() method
without preparing first.

XA Components

15-16 Oracle9i JDBC Developer’s Guide and Reference

The resource manager returns zero or more Xids for the transaction branches that
are currently in a prepared or heuristically completed state. If an error occurs
during the operation, the resource manager throws the appropriate XAException.

Check for same RM To determine if two XA resource instances correspond to the
same resource manager (database), call the isSameRM() method from one XA
resource instance, specifying the other XA resource instance as input. In the
following example, presume xares1 and xares2 are OracleXAResource
instances:

boolean sameRM = xares1.isSameRM(xares2);

A transaction manager can use this method regarding certain Oracle optimizations,
as "Oracle XA Optimizations" on page 15-20 explains.

XA ID Interface and Oracle Implementation
The transaction manager creates transaction ID instances and uses them in
coordinating the branches of a distributed transaction. Each transaction branch is
assigned a unique transaction ID, which includes the following information:

■ format identifier (4 bytes)

A format identifier specifies a Java transaction manager—for example, there
could be a format identifier ORCL. This field cannot be null.

■ global transaction identifier (64 bytes) (or "distributed transaction ID
component", as discussed earlier)

■ branch qualifier (64 bytes) (or "transaction branch ID component", as discussed
earlier)

The 64-byte global transaction identifier value will be identical in the transaction
IDs of all transaction branches belonging to the same distributed transaction. The
overall transaction ID, however, is unique for every transaction branch.

Note: The flag parameter is ignored and therefore not
implemented for Oracle8i 8.1.7 since the scan option (flag
parameter) is not meaningful without a count parameter. See the
Sun Microsystems Java Transaction API (JTA) Specification for more
detail.

XA Components

Distributed Transactions 15-17

An XA transaction ID instance is an instance of a class that implements the standard
javax.transaction.xa.Xid interface, which is a Java mapping of the X/Open
transaction identifier XID structure.

Oracle implements this interface with the OracleXid class in the
oracle.jdbc.xa package. OracleXid instances are employed only in a
transaction manager, transparent to application programs or an application server.

A transaction manager may use the following in creating an OracleXid instance:

public OracleXid(int fId, byte gId[], byte bId[]) throws XAException

Where fId is an integer value for the format identifier, gId[] is a byte array for the
global transaction identifier, and bId[] is a byte array for the branch qualifier.

The Xid interface specifies the following getter methods:

■ public int getFormatId()

■ public byte[] getGlobalTransactionId()

■ public type[] getBranchQualifier()

Note: Oracle8i 8.1.7 does not require the use of OracleXid for
Oracle XA resource calls. Instead, use any class that implements
javax.transaction.xa.Xid interface.

Error Handling and Optimizations

15-18 Oracle9i JDBC Developer’s Guide and Reference

Error Handling and Optimizations
This section has two focuses: 1) the functionality of XA exceptions and error
handling; and 2) Oracle optimizations in its XA implementation. The following
topics are covered:

■ XA Exception Classes and Methods

■ Mapping between Oracle Errors and XA Errors

■ XA Error Handling

■ Oracle XA Optimizations

The exception and error-handling discussion includes the standard XA exception
class and the Oracle-specific XA exception class, as well as particular XA error codes
and error-handling techniques.

XA Exception Classes and Methods
XA methods throw XA exceptions, as opposed to general exceptions or SQL
exceptions. An XA exception is an instance of the standard class
javax.transaction.xa.XAException or a subclass. Oracle subclasses
XAException with the oracle.jdbc.xa.OracleXAException class.

An OracleXAException instance consists of an Oracle error portion and an XA
error portion and is constructed as follows by the Oracle JDBC driver:

public OracleXAException()

or:

public OracleXAException(int error)

The error value is an error code that combines an Oracle SQL error value and an XA
error value. (The JDBC driver determines exactly how to combine the Oracle and
XA error values.)

The OracleXAException class has the following methods:

■ public int getOracleError()

This method returns the Oracle SQL error code pertaining to the exception—a
standard ORA error number (or 0 if there is no Oracle SQL error).

■ public int getXAError()

Error Handling and Optimizations

Distributed Transactions 15-19

This method returns the XA error code pertaining to the exception. XA error
values are defined in the javax.transaction.xa.XAException class; refer
to its Javadoc at the Sun Microsystems Web site for more information.

Mapping between Oracle Errors and XA Errors
Oracle errors correspond to XA errors in OracleXAException instances as
documented in Table 15–2.

XA Error Handling
The following example uses the OracleXAException class to process an XA
exception:

try {
 ...
 ...Perform XA operations...
 ...
} catch(OracleXAException oxae) {
 int oraerr = oxae.getOracleError();
 System.out.println("Error " + oraerr);
}
 catch(XAException xae)
{...Process generic XA exception...}

Table 15–2 Oracle-XA Error Mapping

Oracle Error Code XA Error Code

ORA 3113 XAException.XAER_RMFAIL

ORA 3114 XAException.XAER_RMFAIL

ORA 24756 XAException.XAER_NOTA

ORA 24764 XAException.XA_HEURCOM

ORA 24765 XAException.XA_HEURRB

ORA 24766 XAException.XA_HEURMIX

ORA 24767 XAException.XA_RDONLY

ORA 25351 XAException.XA_RETRY

all other ORA errors XAException.XAER_RMERR

Error Handling and Optimizations

15-20 Oracle9i JDBC Developer’s Guide and Reference

In case the XA operations did not throw an Oracle-specific XA exception, the code
drops through to process a generic XA exception.

Oracle XA Optimizations
Oracle JDBC has functionality to improve performance if two or more branches of a
distributed transaction use the same database instance—meaning that the XA
resource instances associated with these branches are associated with the same
resource manager.

In such a circumstance, the prepare() method of only one of these XA resource
instances will return XA_OK (or failure); the rest will return XA_RDONLY, even if
updates are made. This allows the transaction manager to implicitly join all the
transaction branches and commit (or roll back, if failure) the joined transaction
through the XA resource instance that returned XA_OK (or failure).

The transaction manager can use the OracleXAResource class isSameRM()
method to determine if two XA resource instances are using the same resource
manager. This way it can interpret the meaning of XA_RDONLY return values.

Implementing a Distributed Transaction

Distributed Transactions 15-21

Implementing a Distributed Transaction
This section provides an example of how to implement a distributed transaction
using Oracle XA functionality.

Summary of Imports for Oracle XA
You must import the following for Oracle XA functionality:

import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

The oracle.jdbc.pool package has classes for connection pooling functionality,
some of which are subclassed by XA-related classes.

In addition, if the code will run inside an Oracle database and access that database
for SQL operations, you must import the following:

import oracle.jdbc.xa.server.*;

(And if you intend to access only the database in which the code runs, you would
not need the oracle.jdbc.xa.client classes.)

The client and server packages each have versions of the
OracleXADataSource, OracleXAConnection, and OracleXAResource
classes. Abstract versions of these three classes are in the top-level
oracle.jdbc.xa package.

Oracle XA Code Sample
This example uses a two-phase distributed transaction with two transaction
branches, each to a separate database.

Note that for simplicity, this example combines code that would typically be in a
middle tier with code that would typically be in a transaction manager (such as the
XA resource method invocations and the creation of transaction IDs).

For brevity, the specifics of creating transaction IDs (in the createID() method)
and performing SQL operations (in the doSomeWork1() and doSomeWork2()
methods) are not shown here. The complete example is shipped with the product.

This example executes the following sequence:

Implementing a Distributed Transaction

15-22 Oracle9i JDBC Developer’s Guide and Reference

1. Start transaction branch #1.

2. Start transaction branch #2.

3. Execute DML operations on branch #1.

4. Execute DML operations on branch #2.

5. End transaction branch #1.

6. End transaction branch #2.

7. Prepare branch #1.

8. Prepare branch #2.

9. Commit branch #1.

10. Commit branch #2.

// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

class XA4
{
 public static void main (String args [])
 throws SQLException
 {

 try
 {
 String URL1 = "jdbc:oracle:oci:@";
 String URL2 ="jdbc:oracle:thin:@(description=(address=(host=dlsun991)
 (protocol=tcp)(port=5521))(connect_data=(sid=rdbms2)))";

 DriverManager.registerDriver(new OracleDriver());

 // You can put a database name after the @ sign in the connection URL.
 Connection conna =
 DriverManager.getConnection (URL1, "scott", "tiger");

 // Prepare a statement to create the table

Implementing a Distributed Transaction

Distributed Transactions 15-23

 Statement stmta = conna.createStatement ();

 Connection connb =
 DriverManager.getConnection (URL2, "scott", "tiger");

 // Prepare a statement to create the table
 Statement stmtb = connb.createStatement ();

 try
 {
 // Drop the test table
 stmta.execute ("drop table my_table");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmta.execute ("create table my_table (col1 int)");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 try
 {
 // Drop the test table
 stmtb.execute ("drop table my_tab");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmtb.execute ("create table my_tab (col1 char(30))");
 }
 catch (SQLException e)
 {

Implementing a Distributed Transaction

15-24 Oracle9i JDBC Developer’s Guide and Reference

 // Ignore an error here too
 }

 // Create XADataSource instances and set properties.
 OracleXADataSource oxds1 = new OracleXADataSource();
 oxds1.setURL("jdbc:oracle:oci:@");
 oxds1.setUser("scott");
 oxds1.setPassword("tiger");

 OracleXADataSource oxds2 = new OracleXADataSource();

 oxds2.setURL("jdbc:oracle:thin:@(description=(address=(host=dlsun991)
 (protocol=tcp)(port=5521))(connect_data=(sid=rdbms2)))");
 oxds2.setUser("scott");
 oxds2.setPassword("tiger");

 // Get XA connections to the underlying data sources
 XAConnection pc1 = oxds1.getXAConnection();
 XAConnection pc2 = oxds2.getXAConnection();

 // Get the physical connections
 Connection conn1 = pc1.getConnection();
 Connection conn2 = pc2.getConnection();

 // Get the XA resources
 XAResource oxar1 = pc1.getXAResource();
 XAResource oxar2 = pc2.getXAResource();

 // Create the Xids With the Same Global Ids
 Xid xid1 = createXid(1);
 Xid xid2 = createXid(2);

 // Start the Resources
 oxar1.start (xid1, XAResource.TMNOFLAGS);
 oxar2.start (xid2, XAResource.TMNOFLAGS);

 // Execute SQL operations with conn1 and conn2
 doSomeWork1 (conn1);
 doSomeWork2 (conn2);

 // END both the branches -- IMPORTANT
 oxar1.end(xid1, XAResource.TMSUCCESS);
 oxar2.end(xid2, XAResource.TMSUCCESS);

 // Prepare the RMs

Implementing a Distributed Transaction

Distributed Transactions 15-25

 int prp1 = oxar1.prepare (xid1);
 int prp2 = oxar2.prepare (xid2);

 System.out.println("Return value of prepare 1 is " + prp1);
 System.out.println("Return value of prepare 2 is " + prp2);

 boolean do_commit = true;

 if (!((prp1 == XAResource.XA_OK) || (prp1 == XAResource.XA_RDONLY)))
 do_commit = false;

 if (!((prp2 == XAResource.XA_OK) || (prp2 == XAResource.XA_RDONLY)))
 do_commit = false;

 System.out.println("do_commit is " + do_commit);
 System.out.println("Is oxar1 same as oxar2 ? " + oxar1.isSameRM(oxar2));

 if (prp1 == XAResource.XA_OK)
 if (do_commit)
 oxar1.commit (xid1, false);
 else
 oxar1.rollback (xid1);

 if (prp2 == XAResource.XA_OK)
 if (do_commit)
 oxar2.commit (xid2, false);
 else
 oxar2.rollback (xid2);

 // Close connections
 conn1.close();
 conn1 = null;
 conn2.close();
 conn2 = null;

 pc1.close();
 pc1 = null;
 pc2.close();
 pc2 = null;

 ResultSet rset = stmta.executeQuery ("select col1 from my_table");
 while (rset.next())
 System.out.println("Col1 is " + rset.getInt(1));

 rset.close();

Implementing a Distributed Transaction

15-26 Oracle9i JDBC Developer’s Guide and Reference

 rset = null;

 rset = stmtb.executeQuery ("select col1 from my_tab");
 while (rset.next())
 System.out.println("Col1 is " + rset.getString(1));

 rset.close();
 rset = null;

 stmta.close();
 stmta = null;
 stmtb.close();
 stmtb = null;

 conna.close();
 conna = null;
 connb.close();
 connb = null;

 } catch (SQLException sqe)
 {
 sqe.printStackTrace();
 } catch (XAException xae)
 {
 if (xae instanceof OracleXAException) {
 System.out.println("XA Error is " +
 ((OracleXAException)xae).getXAError());
 System.out.println("SQL Error is " +
 ((OracleXAException)xae).getOracleError());
 }
 }
 }

 static Xid createXid(int bids)
 throws XAException
 {...Create transaction IDs...}

 private static void doSomeWork1 (Connection conn)
 throws SQLException
 {...Execute SQL operations...}

 private static void doSomeWork2 (Connection conn)
 throws SQLException
 {...Execute SQL operations...}
}

Connection Pooling and Caching 16-1

16
Connection Pooling and Caching

This chapter covers the Oracle JDBC implementations of (1) data sources, a
standard facility for specifying resources to use, including databases; (2) connection
pooling, which is a framework for caches of database connections; and (3)
connection caching, including documentation of a sample Oracle implementation.
You will also find related discussion of Oracle JDBC support for the standard Java
Naming and Directory Interface (JNDI).

The following topics, which apply to all Oracle JDBC drivers, are described in this
chapter:

■ Data Sources

■ Connection Pooling

■ Connection Caching

For further information on listed topics, refer to the Sun Microsystems specification
for the JDBC 2.0 Standard Extension API. For information about additional
connection pooling functionality specific to the OCI driver, see "OCI Driver
Connection Pooling" on page 17-2.

Notes: This chapter describes features of the Sun Microsystems
JDBC 2.0 Standard Extension API, which are available through the
javax packages from Sun Microsystems. These packages are not
part of the standard JDK, but relevant packages are included with
the classes111.zip and classes12.zip files.

Data Sources

16-2 Oracle9i JDBC Developer’s Guide and Reference

Data Sources
The JDBC 2.0 extension API introduced the concept of data sources, which are
standard, general-use objects for specifying databases or other resources to use.
Data sources can optionally be bound to Java Naming and Directory Interface
(JNDI) entities so that you can access databases by logical names, for convenience
and portability.

This functionality is a more standard and versatile alternative to the connection
functionality described under "Open a Connection to a Database" on page 3-3. The
data source facility provides a complete replacement for the previous JDBC
DriverManager facility.

You can use both facilities in the same application, but ultimately developers will be
encouraged to use data sources for their connections, regardless of whether
connection pooling or distributed transactions are required. Eventually, Sun
Microsystems will probably deprecate DriverManager and related classes and
functionality.

For further introductory and general information about data sources and JNDI,
refer to the Sun Microsystems specification for the JDBC 2.0 Optional Package.

A Brief Overview of Oracle Data Source Support for JNDI
The standard Java Naming and Directory Interface, or JNDI, provides a way for
applications to find and access remote services and resources. These services can be
any enterprise services, but for a JDBC application would include database
connections and services.

JNDI allows an application to use logical names in accessing these services,
removing vendor-specific syntax from application code. JNDI has the functionality
to associate a logical name with a particular source for a desired service.

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required
to use this functionality, but accessing databases through JNDI logical names makes
the code more portable.

Data Sources

Connection Pooling and Caching 16-3

Data Source Features and Properties
"First Steps in JDBC" on page 3-2 includes sections on how to use the JDBC
DriverManager class to register driver classes and open database connections.
The problem with this model is that it requires your code to include vendor-specific
class names, database URLs, and possibly other properties, such as machine names
and port numbers.

With data source functionality, using JNDI, you do not need to register the
vendor-specific JDBC driver class name, and you can use logical names for URLs
and other properties. This allows your application code for opening database
connections to be portable to other environments.

Data Source Interface and Oracle Implementation
A JDBC data source is an instance of a class that implements the standard
javax.sql.DataSource interface:

public interface DataSource
{
 Connection getConnection() throws SQLException;
 Connection getConnection(String username, String password)
 throws SQLException;
 ...
}

Oracle implements this interface with the OracleDataSource class in the
oracle.jdbc.pool package. The overloaded getConnection() method
returns an OracleConnection instance, optionally taking a user name and
password as input.

To use other values, you can set properties using appropriate setter methods
discussed in the next section. For alternative user names and passwords, you can
also use the getConnection() signature that takes these as input—this would
take priority over the property settings.

Note: Using JNDI functionality requires the file jndi.jar to be
in the CLASSPATH. This file is included with the Java products on
the Oracle9i CD, but is not included in the classes12.zip and
classes111.zip files. You must add it to the CLASSPATH
separately. (You can also obtain it from the Sun Microsystems Web
site, but it is advisable to use the version from Oracle, because that
has been tested with the Oracle drivers.)

Data Sources

16-4 Oracle9i JDBC Developer’s Guide and Reference

Data Source Properties
The OracleDataSource class, as with any class that implements the
DataSource interface, provides a set of properties that can be used to specify a
database to connect to. These properties follow the JavaBeans design pattern.

Table 16–1 and Table 16–2 document OracleDataSource properties. The
properties in Table 16–1 are standard properties according to the Sun Microsystems
specification. (Be aware, however, that Oracle does not implement the standard
roleName property.) The properties in Table 16–2 are Oracle extensions.

Note: The OracleDataSource class and all subclasses
implement the java.io.Serializable and
javax.naming.Referenceable interfaces.

Table 16–1 Standard Data Source Properties

Name Type Description

databaseName String name of the particular database on the server; also
known as the "SID" in Oracle terminology

dataSourceName String name of the underlying data source class (for connection
pooling, this is an underlying pooled connection data
source class; for distributed transactions, this is an
underlying XA data source class)

description String description of the data source

networkProtocol String network protocol for communicating with the server; for
Oracle, this applies only to the OCI drivers and defaults
to tcp

(Other possible settings include ipc. See the Oracle Net
Services Administrator’s Guide for more information.)

password String login password for the user name

portNumber int number of the port where the server listens for requests

serverName String name of the database server

user String name for the login account

Data Sources

Connection Pooling and Caching 16-5

The OracleDataSource class implements the following setter and getter methods
for the standard properties:

■ public synchronized void setDatabaseName(String dbname)

■ public synchronized String getDatabaseName()

■ public synchronized void setDataSourceName(String dsname)

■ public synchronized String getDataSourceName()

■ public synchronized void setDescription(String desc)

■ public synchronized String getDescription()

■ public synchronized void setNetworkProtocol(String np)

■ public synchronized String getNetworkProtocol()

■ public synchronized void setPassword(String pwd)

■ public synchronized void setPortNumber(int pn)

■ public synchronized int getPortNumber()

■ public synchronized void setServerName(String sn)

■ public synchronized String getServerName()

■ public synchronized void setUser(String user)

■ public synchronized String getUser()

Note that there is no getPassword() method, for security reasons.

Data Sources

16-6 Oracle9i JDBC Developer’s Guide and Reference

The OracleDataSource class implements the following setXXX() and
getXXX() methods for the Oracle extended properties:

■ public synchronized void setDriverType(String dt)

■ public synchronized String getDriverType()

■ public synchronized void setURL(String url)

■ public synchronized String getURL()

Table 16–2 Oracle Extended Data Source Properties

Name Type Description

driverType String This designates the Oracle JDBC driver type as either oci,
thin, or kprb (server-side internal).

tnsEntry String This is the TNS entry name, relevant only for the OCI driver.
It assumes an Oracle client installation with a TNS_ADMIN
environment variable that is set appropriately.

Enable this OracleXADataSource property when using
the HeteroRM feature with the OCI driver, to access Oracle
pre-8.1.6 databases and higher. The HeteroRM XA feature is
described in "OCI HeteroRM XA" on page 17-19. If the
tnsEntry property is not set when using the HeteroRM XA
feature, an SQLException with error code ORA-17207 is
thrown.

url String This is the URL of the database connect string. Provided as a
convenience, it can help you migrate from an older Oracle
database. You can use this property in place of the Oracle
tnsEntry and driverType properties and the standard
portNumber, networkProtocol, serverName, and
databaseName properties.

nativeXA boolean Enable this OracleXADataSource property when using
the HeteroRM feature with the OCI driver, to access Oracle
pre-8.1.6 databases and higher. The HeteroRM XA feature is
described in "OCI HeteroRM XA" on page 17-19. If the
nativeXA property is enabled, be sure to set the tnsEntry
property as well.

This DataSource property defaults to false.

Note: Since nativeXA performs better than JavaXA, use nativeXA
whenever possible.

Data Sources

Connection Pooling and Caching 16-7

■ public synchronized void setTNSEntryName(String tns)

■ public synchronized String getTNSEntryName()

■ public synchronized void setNativeXA(boolean nativeXA)

■ public synchronized boolean getNativeXA()

If you are using the server-side internal driver—driverType property is set to
kprb—then any other property settings are ignored.

If you are using a Thin or OCI driver, note the following:

■ A URL setting can include settings for user and password, as in the following
example, in which case this takes precedence over individual user and
password property settings:

jdbc:oracle:thin:scott/tiger@localhost:1521:orcl

■ Settings for user and password are required, either directly, through the URL
setting, or through the getConnection() call. The user and password
settings in a getConnection() call take precedence over any property
settings.

■ If the url property is set, then any tnsEntry, driverType, portNumber,
networkProtocol, serverName, and databaseName property settings are
ignored.

■ If the tnsEntry property is set (which presumes the url property is not set),
then any databaseName, serverName, portNumber, and
networkProtocol settings are ignored.

■ If you are using an OCI driver (which presumes the driverType property is
set to oci) and the networkProtocol is set to ipc, then any other property
settings are ignored.

Creating a Data Source Instance and Connecting (without JNDI)
This section shows an example of the most basic use of a data source to connect to a
database, without using JNDI functionality. Note that this requires vendor-specific,
hard-coded property settings.

Create an OracleDataSource instance, initialize its connection properties as
appropriate, and get a connection instance as in the following example:

...
OracleDataSource ods = new OracleDataSource();

Data Sources

16-8 Oracle9i JDBC Developer’s Guide and Reference

ods.setDriverType("oci");
ods.setServerName("dlsun999");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(1521);
ods.setUser("scott");
ods.setPassword("tiger");

Connection conn = ods.getConnection();
...

Or optionally override the user name and password:

...
Connection conn = ods.getConnection("bill", "lion");
...

Creating a Data Source Instance, Registering with JNDI, and Connecting
This section exhibits JNDI functionality in using data sources to connect to a
database. Vendor-specific, hard-coded property settings are required only in the
portion of code that binds a data source instance to a JNDI logical name. From that
point onward, you can create portable code by using the logical name in creating
data sources from which you will get your connection instances.

Initialize Connection Properties
Create an OracleDataSource instance, and then initialize its connection
properties as appropriate, as in the following example:

...
OracleDataSource ods = new OracleDataSource();

ods.setDriverType("oci");
ods.setServerName("dlsun999");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(1521);

Note: Creating and registering data sources is typically handled
by a JNDI administrator, not in a JDBC application.

Data Sources

Connection Pooling and Caching 16-9

ods.setUser("scott");
ods.setPassword("tiger");
...

Register the Data Source
Once you have initialized the connection properties of the OracleDataSource
instance ods, as shown in the preceding example, you can register this data source
instance with JNDI, as in the following example:

...
Context ctx = new InitialContext();
ctx.bind("jdbc/sampledb", ods);
...

Calling the JNDI InitialContext() constructor creates a Java object that
references the initial JNDI naming context. System properties that are not shown
instruct JNDI which service provider to use.

The ctx.bind() call binds the OracleDataSource instance to a logical JNDI
name. This means that anytime after the ctx.bind() call, you can use the logical
name jdbc/sampledb in opening a connection to the database described by the
properties of the OracleDataSource instance ods. The logical name
jdbc/sampledb is logically bound to this database.

The JNDI name space has a hierarchy similar to that of a file system. In this
example, the JNDI name specifies the subcontext jdbc under the root naming
context and specifies the logical name sampledb within the jdbc subcontext.

The Context interface and InitialContext class are in the standard
javax.naming package.

Open a Connection
To perform a lookup and open a connection to the database logically bound to the
JNDI name, use the logical JNDI name. Doing this requires casting the lookup result
(which is otherwise simply a Java Object) to a new OracleDataSource instance
and then using its getConnection() method to open the connection.

Notes: The JDBC 2.0 Specification requires that all JDBC data
sources be registered in the jdbc naming subcontext of a JNDI
namespace or in a child subcontext of the jdbc subcontext.

Data Sources

16-10 Oracle9i JDBC Developer’s Guide and Reference

Here is an example:

...
OracleDataSource odsconn = (OracleDataSource)ctx.lookup("jdbc/sampledb");
Connection conn = odsconn.getConnection();
...

Logging and Tracing
The data source facility offers a way to register a character stream for JDBC to use as
output for error logging and tracing information. This facility allows tracing specific
to a particular data source instance. If you want all data source instances to use the
same character stream, then you must register the stream with each data source
instance individually.

The OracleDataSource class implements the following standard data source
methods for logging and tracing:

■ public synchronized void setLogWriter(PrintWriter pw)

■ public synchronized PrintWriter getLogWriter()

The PrintWriter class is in the standard java.io package.

Notes:

■ When a data source instance is created, logging is disabled by
default (the log stream name is initially null).

■ Messages written to a log stream registered to a data source
instance are not written to the log stream normally maintained
by DriverManager.

■ An OracleDataSource instance obtained from a JNDI name
lookup will not have its PrinterWriter set, even if the
PrintWriter was set when a data source instance was first
bound to this JNDI name.

Connection Pooling

Connection Pooling and Caching 16-11

Connection Pooling
Connection pooling in the JDBC 2.0 extension API is a framework for caching
database connections. This allows reuse of physical connections and reduced
overhead for your application. Connection pooling functionality minimizes
expensive operations in the creation and closing of sessions.

The following are central concepts:

■ Connection pool data sources—similar in concept and functionality to the data
sources described previously, but with methods to return pooled connection
instances, instead of normal connection instances.

■ Pooled connections—a pooled connection instance represents a single physical
connection to a database, remaining open during use by a series of logical
connection instances.

A logical connection instance is a simple connection instance (such as a
standard Connection instance or an OracleConnection instance) returned
by a pooled connection instance. Each logical connection instance acts as a
temporary handle to the physical connection represented by the pooled
connection instance.

For connection pooling information specific to OCI drivers, see "OCI Driver
Connection Pooling" on page 17-2. For further introductory and general information
about connection pooling, refer to the Sun Microsystems specification for the JDBC
2.0 Optional Package.

Connection Pooling Concepts
If you do not use connection pooling, each connection instance
(java.sql.Connection or oracle.jdbc.OracleConnection instance)
encapsulates its own physical database connection. When you call the close()
method of the connection instance, the physical connection itself is closed. This is
true whether you obtain the connection instance through the JDBC 2.0 data source
facility described under "Data Sources" on page 16-2, or through the
DriverManager facility described under "Open a Connection to a Database" on
page 3-3.

Note: The concept of connection pooling is not relevant to the
server-side internal driver, where you are simply using the default
connection, and is only relevant to the server-side Thin driver
within a single session.

Connection Pooling

16-12 Oracle9i JDBC Developer’s Guide and Reference

With connection pooling, an additional step allows physical database connections to
be reused by multiple logical connection instances, which are temporary handles to
the physical connection. Use a connection pool data source to return a pooled
connection, which is what encapsulates the physical database connection. Then use
the pooled connection to return JDBC connection instances (one at a time) that each
act as a temporary handle.

Closing a connection instance that was obtained from a pooled connection does not
close the physical database connection. It does, however, free the resources of the
connection instance, clear the state, close statement objects created from the
connection instance, and restore the defaults for the next connection instance that
will be created.

To actually close the physical connection, you must invoke the close() method of
the pooled connection. This would typically be performed in the middle tier.

Connection Pool Data Source Interface and Oracle Implementation
The javax.sql.ConnectionPoolDataSource interface outlines standard
functionality of connection pool data sources, which are factories for pooled
connections. The overloaded getPooledConnection() method returns a pooled
connection instance and optionally takes a user name and password as input:

public interface ConnectionPoolDataSource
{
 PooledConnection getPooledConnection() throws SQLException;
 PooledConnection getPooledConnection(String user, String password)
 throws SQLException;
 ...
}

Oracle JDBC implements the ConnectionPoolDataSource interface with the
oracle.jdbc.pool.OracleConnectionPoolDataSource class. This class
also extends the OracleDataSource class, so it includes all the connection
properties and getter and setter methods described in "Data Source Properties" on
page 16-4.

The OracleConnectionPoolDataSource class getPooledConnection()
methods return the Oracle implementation of pooled connection instances, which
are OraclePooledConnection instances (as discussed in the next section).

Connection Pooling

Connection Pooling and Caching 16-13

Pooled Connection Interface and Oracle Implementation
A pooled connection instance encapsulates a physical connection to a database. This
database would be the one specified in the connection properties of the connection
pool data source instance used to produce the pooled connection instance.

A pooled connection instance is an instance of a class that implements the standard
javax.sql.PooledConnection interface. The getConnection() method
specified by this interface returns a logical connection instance that acts as a
temporary handle to the physical connection, as opposed to encapsulating the
physical connection, as does a non-pooling connection instance:

public interface PooledConnection
{
 Connection getConnection() throws SQLException;
 void close() throws SQLException;
 void addConnectionEventListener(ConnectionEventListener listener) ... ;
 void removeConnectionEventListener(ConnectionEventListener listener);
 void setStmtCacheSize(int size);
 void setStmtCacheSize(int size, boolean clearMetaData);
 int getStmtCacheSize();
}

(Event listeners are used in connection caching and are discussed in "Typical Steps
in Using a Connection Cache" on page 16-20.)

Oracle JDBC implements the PooledConnection interface with the
oracle.jdbc.pool.OraclePooledConnection class. The getConnection()
method returns an OracleConnection instance.

A pooled connection instance will typically be asked to produce a series of
connection instances during its existence, but only one of these connection instances
can be open at any particular time.

Each time a pooled connection instance getConnection() method is called, it
returns a new connection instance that exhibits the default behavior, and it closes
any previous connection instance that still exists and has been returned by the same
pooled connection instance. You should explicitly close any previous connection
instance before opening a new one, however.

Note: You can register connection pool data sources in JNDI using
the same naming conventions as discussed for non-pooling data
sources in "Register the Data Source" on page 16-9.

Connection Pooling

16-14 Oracle9i JDBC Developer’s Guide and Reference

Calling the close() method of a pooled connection instance closes the physical
connection to the database. The middle-tier layer typically performs this.

The OraclePooledConnection class includes methods to enable statement
caching for a pooled connection. The cache for statements is maintained for the
pooled connection as a whole, and all logical connections obtained from the pooled
connection share it. Therefore, when statement caching is enabled, a statement you
create on one logical connection can be re-used on another logical connection. For
the same reason, you cannot enable or disable statement caching on individual
logical connections. This function applies to both implicit and explicit statement
caching.

The following are OraclePooledConnection method definitions for statement
caching:

public void setStmtCacheSize (int size)
 throws SQLException

public void setStmtCacheSize (int size, boolean clearMetaData)
 throws SQLException

public int getStmtCacheSize()

See Chapter 14, "Statement Caching", for more details on statement caching.

Creating a Connection Pool Data Source and Connecting
This section contains an example of the most basic use of a connection pool data
source to connect to a database without using JNDI functionality. You could
optionally use JNDI, binding the connection pool data source instance to a JNDI
logical name, in the same way that you would for a generic data source instance (as
"Register the Data Source" on page 16-9 illustrates).

Summary of Imports for Oracle Connection Pooling
You must import the following for Oracle connection pooling functionality:

import oracle.jdbc.pool.*;

This package contains the OracleDataSource,
OracleConnectionPoolDataSource, and OraclePooledConnection classes,
in addition to classes for connection caching and event-handling, which
"Connection Caching" on page 16-16 discusses.

Connection Pooling

Connection Pooling and Caching 16-15

Oracle Connection Pooling Code Sample
This example first creates an OracleConnectionPoolDataSource instance, next
initializes its connection properties, then gets a pooled connection instance from the
connection pool data source instance, and finally gets a connection instance from
the pooled connection instance. (The getPooledConnection() method actually
returns an OraclePooledConnection instance, but in this case only generic
PooledConnection functionality is required.)

...
OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource();

ocpds.setDriverType("oci");
ocpds.setServerName("dlsun999");
ocpds.setNetworkProtocol("tcp");
ocpds.setDatabaseName("816");
ocpds.setPortNumber(1521);
ocpds.setUser("scott");
ocpds.setPassword("tiger");

PooledConnection pc = ocpds.getPooledConnection();

Connection conn = pc.getConnection();
...

Connection Caching

16-16 Oracle9i JDBC Developer’s Guide and Reference

Connection Caching
Connection caching, generally implemented in a middle tier, is a means of keeping
and using caches of physical database connections.

Connection caching uses the connection pooling framework—such as connection
pool data sources and pooled connections—in much of its operations. "Connection
Pooling", starting on page 16-11, describes this framework.

The JDBC 2.0 specification does not mandate a connection caching implementation,
but Oracle provides a simple implementation to serve at least as an example.

This section is divided into the following topics:

■ Overview of Connection Caching

■ Typical Steps in Using a Connection Cache

■ Oracle Connection Cache Specification: OracleConnectionCache Interface

■ Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class

■ Oracle Connection Event Listener: OracleConnectionEventListener Class

Overview of Connection Caching
Each connection cache is represented by an instance of a connection cache class and
has an associated group of pooled connection instances. For a single connection
cache instance, the associated pooled connection instances must all represent
physical connections to the same database and schema. Pooled connection instances
are created as needed, which is whenever a connection is requested and the
connection cache does not have any free pooled connection instances. A "free"
pooled connection instance is one that currently has no logical connection instance
associated with it; in other words, a pooled connection instance whose physical
connection is not being used.

Basics of Setting Up a Connection Cache
The middle tier, in setting up a connection cache, will create an instance of a
connection cache class and set its data source connection properties as

Note: The concept of connection caching is not relevant to the
server-side internal driver, where you are simply using the default
connection, and is only relevant to the server-side Thin driver
within a single session.

Connection Caching

Connection Pooling and Caching 16-17

appropriate—for example, serverName, databaseName, or URL. Recall that a
connection cache class extends a data source class. For information about data
source properties, see "Data Source Properties" on page 16-4.

An example of a connection cache class is OracleConnectionCacheImpl. How
to instantiate this class and set its connection properties is described in
"Instantiating OracleConnectionCacheImpl and Setting Properties" on page 16-24.
This class extends the OracleDataSource class and so includes the setter
methods to set connection properties to specify the database to connect to. All the
pooled connection instances in the cache would represent physical connections to
this same database, and in fact to the same schema.

Once the middle tier has created a connection cache instance, it can optionally bind
this instance to JNDI as with any data source instance, which is described in
"Register the Data Source" on page 16-9.

Basics of Accessing the Connection Cache
A JDBC application must retrieve a connection cache instance to use the cache. This
is typically accomplished through the middle tier, often using a JNDI lookup. In a
connection caching scenario, a JNDI lookup would return a connection cache
instance instead of a generic data source instance. Because a connection cache class
extends a data source class, connection cache instances include data source
functionality.

Executing a JNDI lookup is described in "Open a Connection" on page 16-9.

If JNDI is not used, the middle tier will typically have some vendor-specific API
through which a connection cache instance is retrieved for the application.

Basics of Opening Connections
A connection cache class, as with a pooled connection class, has a
getConnection() method. The getConnection() method of a connection
cache instance returns a logical connection to the database and schema associated
with the cache. This association is through the connection properties of the
connection cache instance, as typically set by the middle tier.

Whenever a JDBC application wants a connection to a database in a connection
caching scenario, it will call the getConnection() method of the connection
cache instance associated with the database.

This getConnection() method checks if there are any free pooled connection
instances in the cache. If not, one is created. Then a logical connection instance will

Connection Caching

16-18 Oracle9i JDBC Developer’s Guide and Reference

be retrieved from a previously existing or newly created pooled connection
instance, and this logical connection instance will be supplied to the application.

Basics of Closing Connections: Use of Connection Events
JDBC uses JavaBeans-style events to keep track of when a physical connection
(pooled connection instance) can be returned to the cache or when it should be
closed due to a fatal error. When a JDBC application calls the close() method of a
logical connection instance, an event is triggered and communicated to the event
listener or listeners associated with the pooled connection instance that produced
the logical connection instance. This triggers a connection-closed event and informs
the pooled connection instance that its physical connection can be reused.
Essentially, this puts the pooled connection instance and its physical connection
back into the cache.

The point at which a connection event listener is created and registered with a
pooled connection instance is implementation-specific. This could happen, for
example, when the pooled connection instance is first created or each time the
logical connection associated with it is closed.

It is also possible for the cache class to implement the connection event listener
class. In this case, the connection event listener is part of the connection cache
instance. (This is not the case in the Oracle sample implementation.) Even in this
case, however, an explicit association must be made between the connection event
listener and each pooled connection instance.

Basics of Connection Timeout
Some application developers prefer to have connections released automatically after
a certain timespan has passed. This prevents slow resource leaks when an
application fails to close connections.

An application can specify any of the following timeout periods for a connection:

■ Wait timeout (FIXED_WAIT_SCHEME only) — the maximum period that a
connection will wait for a physical connection to be returned to the cache. This
wait occurs only when all connections are in use and a new connection is
requested. When the timeout expires, a timeout exception, EOJ_FIXED_WAIT_
TIMEOUT, is thrown.

■ Inactivity timeout (physical connections only) —the maximum period a
physical connection can be unused. When the period expires, the connection is
closed and its resources are freed.

Connection Caching

Connection Pooling and Caching 16-19

■ Time-to-Live timeout (logical connections only)—the maximum period a
logical connection can be active. After this time expires, whether or not the
connection is still in use, the connection is closed and its resources are freed.

To set or unset a timeout, you use the OracleConnectionCacheImpl properties
CacheInactivityTimeout, CacheFixedWaitTimeout, and
CacheTimeToLiveTimeout, each of which has public get and set methods.

Implementation Scenarios
Middle-tier developers have the option of implementing their own connection
cache class and connection event listener class.

For convenience, however, Oracle provides the following, all in the
oracle.jdbc.pool package:

■ a connection cache interface: OracleConnectionCache

■ a connection cache class: OracleConnectionCacheImpl

■ a connection event listener class: OracleConnectionEventListener

The OracleConnectionCacheImpl class is a simple connection cache class
implementation that Oracle supplies as an example, providing sufficient but
minimal functionality. It implements the OracleConnectionCache interface and
uses instances of the OracleConnectionEventListener class for connection
events.

If you want more functionality than OracleConnectionCacheImpl has to offer
but still want to use OracleConnectionEventListener for connection events,
then you can create your own class that implements OracleConnectionCache.

Or you can create your own connection cache class and connection event listener
class from scratch.

Note: Under the FIXED_WAIT_SCHEME, if every connection in the
cache is in use, additional connection requests may wait forever.
You can avoid this problem by using the
CacheFixedWaitIdleTime property. This property specifies how
long a connection request will wait before it times out. The
ThreadWakeUpInterval property controls how often the cache
thread checks whether a physical connection has become available.
ThreadWakeUpInterval defaults to 30 seconds.

Connection Caching

16-20 Oracle9i JDBC Developer’s Guide and Reference

Typical Steps in Using a Connection Cache
This section lists the general steps in how a JDBC application and middle-tier will
use a connection cache in opening and closing a logical connection.

Preliminary Steps in Connection Caching
Presume the following has already been accomplished:

1. The middle tier has created a connection cache instance, as described in "Basics
of Setting Up a Connection Cache" on page 16-16.

2. The middle tier has provided connection information to the connection cache
instance for the database and schema that will be used. This can be
accomplished when constructing the connection cache instance.

3. The application has retrieved the connection cache instance, as described in
"Basics of Accessing the Connection Cache" on page 16-17.

General Steps in Opening a Connection
Once the JDBC application has access to the connection cache instance, the
application and middle tier perform the following steps to produce a logical
connection instance for use by the application:

1. The application requests a connection through the getConnection() method
of the connection cache instance. No input is necessary, because a connection
cache instance is already associated with a particular database and schema.

2. The connection cache instance examines its cache as follows: a) to see if there
are any pooled connection instances in the cache yet; and b) if so, if any are
free—that is, to see if there is at least one pooled connection instance that
currently has no logical connection instance associated with it.

3. The connection cache instance chooses an available pooled connection instance
or, if none is available, might create a new one (this is implementation-specific).
In creating a pooled connection instance, the connection cache instance can
specify connection properties according to its own connection properties,
because the pooled connection instance will be associated with the same
database and schema.

Connection Caching

Connection Pooling and Caching 16-21

4. Depending on the situation and implementation, the connection cache instance
creates a connection event listener (a process that associates the listener with the
connection cache instance) and associates the listener with the chosen or newly
created pooled connection instance. The association with the pooled connection
instance is accomplished by calling the standard
addConnectionEventListener() method specified by the
PooledConnection interface. This method takes the connection event listener
instance as input. If the connection cache class implements the connection event
listener class, then the argument to the addConnectionEventListener()
method would be the this object.

In some implementations, the creation and association of the connection event
listener can occur only when the pooled connection instance is first created. In
the Oracle sample implementation, this also occurs each time a pooled
connection instance is reused.

Note that in being associated with both the connection cache instance and a
pooled connection instance, the connection event listener becomes the bridge
between the two.

5. The connection cache instance gets a logical connection instance from the
chosen or newly created pooled connection instance, using the pooled
connection getConnection() method.

No input is necessary to getConnection(), because a pooled connection
instance is already associated with a particular database and schema.

6. The connection cache instance passes the logical connection instance to the
application.

The JDBC application uses this logical connection instance as it would any other
connection instance.

Note: Exactly what happens in a situation where no pooled
connection instances are available depends on the implementation
schemes and whether the cache is limited to a maximum number of
pooled connections. For the Oracle sample implementation, this is
discussed in "Schemes for Creating New Pooled Connections in the
Oracle Implementation" on page 16-26.

Connection Caching

16-22 Oracle9i JDBC Developer’s Guide and Reference

General Steps in Closing a Connection
Once the JDBC application has finished using the logical connection instance, its
associated pooled connection instance can be returned to the connection cache (or
closed, as appropriate, if a fatal error occurred). The application and middle tier
perform the following steps to accomplish this:

1. The application calls the close() method on the logical connection instance
(as it would with any connection instance).

2. The pooled connection instance that produced the logical connection instance
triggers an event to the connection event listener or listeners associated with it
(associated with it through previous calls by the connection cache instance to
the pooled connection instance addConnectionEventListener() method).

3. The connection event listener performs one of the following:

■ It puts the pooled connection instance back into the cache and flags it as
available (typical).

or:

■ It closes the pooled connection instance (if a fatal error occurred during use
of its physical connection).

The connection event listener will typically perform these steps by calling
methods of the connection cache instance, which is implementation-specific. For
the Oracle sample implementation, these functions are performed by methods
specified in the OracleConnectionCache interface, as discussed in"Oracle
Connection Cache Specification: OracleConnectionCache Interface" on
page 16-23.

4. Depending on the situation and implementation, the connection cache instance
disassociates the connection event listener from the pooled connection instance.
This is accomplished by calling the standard
removeConnectionEventListener() method specified by the
PooledConnection interface.

In some implementations, this step can be performed only when a pooled
connection instance is closed, either because of a fatal error or because the
application is finished with the physical connection. In the Oracle sample
implementation, however, the connection event listener is disassociated with
the pooled connection instance each time the pooled connection is returned to
the available cache (because in the Oracle implementation, a connection event
listener is associated with the pooled connection instance whenever it is
reused).

Connection Caching

Connection Pooling and Caching 16-23

Oracle Connection Cache Specification: OracleConnectionCache Interface
Middle-tier developers are free to implement their own connection caching scheme
as desired, but Oracle offers the OracleConnectionCache interface, which you
can implement in a connection cache class and which uses instances of the
OracleConnectionEventListener class for its listener functionality.

In addition, Oracle offers a class that implements this interface,
OracleConnectionCacheImpl, which can be used as is. This class also extends
the OracleDataSource class and, therefore, includes a getConnection()
method. For more information about this class, see "Oracle Connection Cache
Implementation: OracleConnectionCacheImpl Class" on page 16-24.

These Oracle classes and interfaces are all in the oracle.jdbc.pool package.

The OracleConnectionCache interface specifies the following methods (in
addition to data source methods that it inherits), to be implemented in a connection
cache class:

■ reusePooledConnection(): Takes a pooled connection instance as input
and returns it to the cache of available pooled connections (essentially, the
available physical connections).

This method would be invoked by a connection event listener after a JDBC
application has finished using the logical connection instance provided by the
pooled connection instance (through previous use of the pooled connection
getConnection() method).

■ closePooledConnection(): Takes a pooled connection instance as input
and closes it.

A connection event listener would invoke this method after a fatal error has
occurred through the logical connection instance provided by the pooled
connection instance. The listener would call closePooledConnection(), for
example, if it notices a server crash.

■ close(): Closes the connection cache instance, after the application has
finished using connection caching with the associated database.

The functionality of the reusePooledConnection() and
closePooledConnection() methods is an implementation of some of the steps
described generally in "General Steps in Closing a Connection" on page 16-22.

Connection Caching

16-24 Oracle9i JDBC Developer’s Guide and Reference

Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class
Oracle offers a sample implementation of connection caching and connection event
listeners, providing the OracleConnectionCacheImpl class. This class
implements the OracleConnectionCache interface (which you can optionally
implement yourself in some other connection cache class) and uses instances of the
OracleConnectionEventListener class for listener functionality.

These Oracle classes and interfaces are all in the oracle.jdbc.pool package.

If you use the OracleConnectionCacheImpl class for your connection caching
functionality, you should be familiar with the following topics, discussed
immediately below:

■ Instantiating OracleConnectionCacheImpl and Setting Properties

■ Setting a Maximum Number of Pooled Connections

■ Setting a Minimum Number of Pooled Connections

■ Schemes for Creating New Pooled Connections in the Oracle Implementation

■ Additional OracleConnectionCacheImpl Methods

Instantiating OracleConnectionCacheImpl and Setting Properties
A middle tier that uses the Oracle implementation of connection caching can
construct an OracleConnectionCacheImpl instance and set its connection
properties in one of three ways:

■ It can use the OracleConnectionCacheImpl constructor that takes an
existing connection pool data source as input. This is convenient if the middle
tier has already created a connection pool data source instance and set its
connection properties. For example, where cpds is a connection pool data
source instance:

OracleConnectionCacheImpl ocacheimpl = new OracleConnectionCacheImpl(cpds);

or:

■ It can use the default OracleConnectionCacheImpl constructor (which
takes no input) and then the setConnectionPoolDataSource() method,
which takes an existing connection pool data source instance as input. Again,
this is convenient if the middle tier already has a connection pool data source
instance with its connection properties set. For example, where cpds is a
connection pool data source instance:

OracleConnectionCacheImpl ocacheimpl = new OracleConnectionCacheImpl();

Connection Caching

Connection Pooling and Caching 16-25

ocacheimpl.setConnectionPoolDataSource(cpds);

or:

■ It can use the default OracleConnectionCacheImpl constructor and then set
the properties individually, using setter methods. For example:

OracleConnectionCacheImpl ocacheimpl = new OracleConnectionCacheImpl();

ocacheimpl.setDriverType("oci");
ocacheimpl.setServerName("dlsun999");
ocacheimpl.setNetworkProtocol("tcp");
ocacheimpl.setDatabaseName("816");
ocacheimpl.setPortNumber(1521);
ocacheimpl.setUser("scott");
ocacheimpl.setPassword("tiger");

This is equivalent to setting properties in any generic data source or connection
pool data source, as discussed in "Initialize Connection Properties" on
page 16-8.

Setting a Maximum Number of Pooled Connections
In any connection caching implementation, the middle-tier developer must decide
whether there should be a maximum number of pooled connections in the cache,
and how to handle situations where no pooled connections are available and the
maximum number has been reached.

Notes:

■ You can also use the setConnectionPoolDataSource()
method to override a previously set pooled connection data
source or previously set connection properties.

■ If you call setConnectionPoolDataSource() when there
is already a connection pool data source with associated logical
connections in use, then an exception will be thrown if the new
connection pool data source specifies a different database
schema than the old connection pool data source.

Connection Caching

16-26 Oracle9i JDBC Developer’s Guide and Reference

The OracleConnectionCacheImpl class includes a maximum cache size that
you can set using the setMaxLimit() method (taking an int as input). The
default value is 1.

The following is an example that presumes ocacheimpl is an
OracleConnectionCacheImpl instance:

ocacheimpl.setMaxLimit(10);

This example limits the cache to a maximum size of ten pooled-connection
instances.

Setting a Minimum Number of Pooled Connections
Just as the middle-tier developer can set the maximum number of pooled
connections, you can also determine if there should be a minimum number of
pre-spawned pooled connections in the cache. The minimum number is passed as
an argument to the setMinLimit()method. If the cache doesn't have the specified
number of pooled connections instances, the cache will create the new
spooled-connection instances, not exceeding the specified minimum limit. The
cache always keeps the minimum number of pooled connections open whether the
connections are active or idle.

The following is an example that presumes ocacheimpl is an
OracleConnectionCacheImpl instance:

ocacheimpl.setMinLimit(3);

The cache, in this example, always has a minimum of three pooled-connection
instances.

Schemes for Creating New Pooled Connections in the Oracle Implementation
The OracleConnectionCacheImpl class supports three connection cache schemes.
Use these schemes in situations where (1) the application has requested a
connection, (2) all existing pooled connections are in use, and (3) the maximum
number of pooled connections in the cache have been reached.

■ dynamic

In this default scheme, you can create new pooled connections above and
beyond the maximum limit, but each one is automatically closed and freed as
soon as the logical connection instance that it provided is no longer in use. (As
opposed to the normal scenario when a pooled connection instance is finished
being used, where it is returned to the available cache.)

Connection Caching

Connection Pooling and Caching 16-27

■ fixed with no wait

In this scheme, the maximum limit cannot be exceeded. Requests for
connections when the maximum has already been reached will return null.

■ fixed wait

Same as the "fixed with no wait" scheme except that a request for a new
connection will wait if the limit for the number of connections has been
reached. In this case, the connection request waits until another client releases a
connection.

Set the cache scheme by invoking the setCacheScheme() method of the
OracleConnectionCacheImpl instance.

There are two versions of setCacheScheme(), one that takes a string and one that
takes an integer.

■ The string version is case-insensitive and accepts "dynamic_scheme", "fixed_
return_null_scheme", or "fixed_wait_scheme" .

■ The integer version accepts the class static constants DYNAMIC_SCHEME,
FIXED_RETURN_NULL_SCHEME, or FIXED_WAIT_SCHEME.

For example, if ocacheimpl is an OracleConnectionCacheImpl instance, you
could set the cached scheme to fixed with no wait using either the integer version of
setCacheScheme():

ocacheimpl.setCacheScheme(OracleConnectionCacheImpl.FIXED_RETURN_NULL_SCHEME);

or the string version:

setCacheScheme("fixed_return_null_scheme")

Additional OracleConnectionCacheImpl Methods
In addition to the key methods already discussed in "Oracle Connection Cache
Specification: OracleConnectionCache Interface" on page 16-23, the following
OracleConnectionCacheImpl methods may be useful:

■ getActiveSize(): Returns the number of currently active pooled
connections in the cache (pooled connection instances with an associated logical
connection instance being used by the JDBC application).

■ getCacheSize(): Returns the total number of pooled connections in the
cache, both active and inactive.

Connection Caching

16-28 Oracle9i JDBC Developer’s Guide and Reference

Oracle Connection Event Listener: OracleConnectionEventListener Class
This section discusses OracleConnectionEventListener functionality by
summarizing its constructors and methods.

Instantiating an Oracle Connection Event Listener
In the Oracle implementation of connection caching, an
OracleConnectionCacheImpl instance constructs an Oracle connection event
listener, specifying the connection cache instance itself (its this instance) as the
constructor argument. This instance associates the connection event listener with
the connection cache instance.

In general, however, the OracleConnectionEventListener constructor can
take any data source instance as input. For example, where ds is a generic data
source:

OracleConnectionEventListener ocel = new OracleConnectionEventListener(ds);

There is also a default constructor that takes no input and can be used in
conjunction with the OracleConnectionEventListener class
setDataSource() method:

OracleConnectionEventListener ocel = new OracleConnectionEventListener();
...
ocel.setDataSource(ds);

The input can be any kind of data source, including an
OracleConnectionCacheImpl instance (because that class extends
OracleDataSource).

Oracle Connection Event Listener Methods
This section summarizes the methods of the OracleConnectionEventListener
class:

■ setDataSource() (previously discussed): Used to input a data source to the
connection event listener, in case one was not provided when constructing the
listener. This can take any type of data source as input.

■ connectionClosed(): Invoked when the JDBC application calls close() on
its representation of the connection.

■ connectionErrorOccurred(): Invoked when a fatal connection error
occurs, just before a SQLException is issued to the application.

JDBC OCI Extensions 17-1

17
JDBC OCI Extensions

This chapter describes the following OCI driver-specific features:

■ OCI Driver Connection Pooling

■ Middle-Tier Authentication Through Proxy Connections

■ OCI Driver Transparent Application Failover

■ OCI HeteroRM XA

■ Accessing PL/SQL Index-by Tables

OCI Driver Connection Pooling

17-2 Oracle9i JDBC Developer’s Guide and Reference

OCI Driver Connection Pooling
OCI driver connection pooling functionality, provided by the
OracleOCIConnectionPool class, is part of the JDBC client. Enhanced
connection pooling provides the following benefits:

■ Improved scalability - The pooling granularity is superior to that provided by
the OraclePooledConnection class, since fewer physical connections are
needed to support a large number of non-current, logical connections. This is
valuable since physical connections are expensive. The physical connection of
the OraclePooledConnection object is available for reuse after the
application is done using it. Also, since the user session is not closed on the
server-side once the OraclePooledConnection object is returned to the pool
of available connection objects, every new call to the getConnection()
method of the OracleConnectionCacheImpl class requires that the user
remain the same. For a dedicated server instance, this results in the number of
backend Oracle processes being reduced as the number of in-coming
connections are also reduced. To boost performance, a physical connection is
locked only for the duration of a call.

■ Uniform interface - A single, uniform interface of connection pooling reduces
overall code maintenance.

■ Flexible schemas - Each OracleOCIConnection object can have a different
user ID and therefore point to different schemas.

■ Dynamic configuration - Ability to dynamically configure the connection pool.

A JDBC application can have multiple pools at the same time. Multiple pools can
correspond to multiple application servers, or pools to different data sources. The
connection pooling provided by OCI in Oracle9i allows applications to have many
logical connections, all using a small set of physical connections. Each call on this
logical connection will be routed on the physical connection that is available at that
time. Call-duration based pooling of connections is a more scalable connection
pooling solution.

Note: The existing connection support of mapping one JDBC user
session to one physical connection, and the reuse of physical
connection objects using the OraclePooledConnection class, is
still supported. (See "Connection Pooling" on page 16-11 for
details.) However, it is recommended that you use the improved
functionality of the OracleOCIConnectionPool class instead.

OCI Driver Connection Pooling

JDBC OCI Extensions 17-3

For information about Oracle JDBC connection pooling and caching features that
apply to all Oracle JDBC drivers, see Chapter 16, "Connection Pooling and
Caching".

OCI Driver Connection Pooling: Background
With the Oracle9i JDBC OCI driver, there are several transaction monitor
capabilities such as the fine-grained management of Oracle sessions and
connections. It is possible for a high-end application server or transaction monitor
to multiplex several sessions over fewer physical connections on a call-level basis,
thereby achieving a high degree of scalability by pooling of connections and
backend Oracle server processes.

The connection pooling provided by the OracleOCIConnectionPool interface
simplifies the Session/Connection separation interface hiding the management of
the physical connection pool. The Oracle sessions are the OracleOCIConnection
connection objects obtained from the OracleOCIConnectionPool. The
connection pool itself is normally configured with a much smaller shared pool of
physical connections, translating to a backend server pool containing an identical
number of dedicated server processes. Note that many more Oracle sessions can be
multiplexed over this pool of fewer shared connections and backend Oracle
processes.

OCI Driver Connection Pooling and Shared Servers Compared
In some ways, what OCI driver connection pooling offers on the middle tier is
similar to what shared server processes offeron the backend. OCI driver connection
pooling makes a dedicated server instance behave as an shared instance by
managing the session multiplexing logic on the middle tier. Therefore, the pooling
of dedicated server processes and incoming connections into the dedicated server
processes is controlled by the OCI connection pool on the middle tier.

The main difference between OCI connection pooling and shared servers is that in
case of shared servers, the connection from the client is normally to a dispatcher in
the database instance. The dispatcher is responsible for directing the client request
to an appropriate shared server. On the other hand, the physical connection from
the OCI connection pool is established directly from the middle tier to the Oracle
dedicated server process in the backend server pool.

Note that OCI connection pool is mainly beneficial only if the middle tier is
multi-threaded. Each thread could maintain a session to the database. The actual
connections to the database are maintained by the OracleOCIConnectionPool

OCI Driver Connection Pooling

17-4 Oracle9i JDBC Developer’s Guide and Reference

and these connections (including the pool of dedicated database server processes)
are shared among all the threads in the middle tier.

Stateless Sessions Compared to Stateful Sessions
OCI connection pooling offers stateless physical connections and stateful sessions. If
you need to work with a stateless session behavior, you can use the
OracleConnectionCacheImpl interface.

Defining an OCI Connection Pool
An OCI connection pool is created at the beginning of the application. Creating
connections from a pool is quite similar to creating connections using the
OracleDataSource class.

The oracle.jdbc.pool.OracleOCIConnectionPool class, which extends the
OracleDataSource class, is used to create OCI connection pools. From an
OracleOCIConnectionPool class instance, you can obtain logical connection
objects. These connection objects are of the OracleOCIConnection class type.
This class implements the OracleConnection interface. The Statement objects
you create from the OracleOCIConnection class have the same fields and
methods as OracleStatement objects you create from OracleConnection
instances.

The following code shows header information for the
OracleOCIConnectionPool class:

/*
 * @param us ConnectionPool user-id.
 * @param p ConnectionPool password
 * @param name logical name of the pool. This needs to be one in the
 * tnsnames.ora configuration file.
 @param config (optional) Properties of the pool, if the default does not
 suffice. Default connection configuration is min =1, max=1,
 incr=0
 Please refer setPoolConfig for property names.

 Since this is optional, pass null if the default configuration
 suffices.

 * @return
 *
 * Notes: Choose a userid and password that can act as proxy for the users
 * in the getProxyConnection() method.

OCI Driver Connection Pooling

JDBC OCI Extensions 17-5

 If config is null, then the following default values will take
 effect
 CONNPOOL_MIN_LIMIT = 1
 CONNPOOL_MAX_LIMIT = 1
 CONNPOOL_INCREMENT = 0

*/

public synchronized OracleOCIConnectionPool
 (String user, String password, String name, Properties config)
 throws SQLException

/*
 * This will use the user-id, password and connection pool name values set
 LATER using the methods setUser, setPassword, setConnectionPoolName.

 * @return
 *
 * Notes:

 No OracleOCIConnection objects can be created on
 this class unless the methods setUser, setPassword, setPoolConfig
 are invoked.
 When invoking the setUser, setPassword later, choose a userid and
 password that can act as proxy for the users
 * in the getProxyConnection() method.
 */
 public synchronized OracleOCIConnectionPool ()
 throws SQLException

Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages
Before you create an OCI connection pool, import the following to have Oracle OCI
connection pooling functionality:

import oracle.jdbc.pool.*;
import oracle.jdbc.oci.*;

The oracle.jdbc.pool.* package contains the OracleDataSource,
OracleConnectionPoolDataSource, and OracleOCIConnectionPool
classes, in addition to classes for connection caching and event-handling. The
oracle.jdbc.oci.* package contains the OracleOCIConnection class and
the OracleOCIFailover interface.

OCI Driver Connection Pooling

17-6 Oracle9i JDBC Developer’s Guide and Reference

Creating an OCI Connection Pool
The following code show how you create an instance of the
OracleOCIConnectionPool class called cpool:

OracleOCIConnectionPool cpool = new OracleOCIConnectionPool
 ("SCOTT", "TIGER", "jdbc:oracle:oci:@(description=(address=(host=
 myhost)(protocol=tcp)(port=1521))(connect_data=(INSTANCE_NAME=orcl)))",
 poolConfig);

poolConfig is a set of properties which specify the connection pool. If
poolConfig is null, then the default values are used. For example, consider the
following:

■ poolConfig.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT,
"4");

■ poolConfig.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT,
"10");

■ poolConfig.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT,
"2");

As an alternative to the above constructor call, you can create an instance of the
OracleOCIConnectionPool class using individual methods to specify the user,
password, and connection string.

OracleOCIConnectionPool cpool = new OracleOCIConnectionPool ();
cpool.setUser("SCOTT");
cpool.setPassword("TIGER");
cpool.setURL("jdbc:oracle:oci:@(description=(address=(host=
 myhost)(protocol=tcp)(port=1521))(connect_data=(INSTANCE_NAME=orcl)))");
cpool.setPoolConfig(poolConfig); // In case you want to specify a different
 // configuration other than the default
 // values.

Setting the OCI Connection Pool Parameters
The connection pool configuration is determined by the following
OracleOCIConnectionPool class attributes:

■ CONNPOOL_MIN_LIMIT : Specifies the minimum number of physical
connections that can be maintained by the pool.

■ CONNPOOL_MAX_LIMIT : Specifies the maximum number of physical
connections that can be maintained by the pool.

OCI Driver Connection Pooling

JDBC OCI Extensions 17-7

■ CONNPOOL_INCREMENT : Specifies the incremental number of physical
connections to be opened when all the existing ones are busy and a call needs
one more connection; the increment is done only when the total number of open
physical connections is less than the maximum number that can be opened in
that pool.

■ CONNPOOL_TIMEOUT : Specifies how much time must pass before an idle
physical connection is disconnected; this does not affect a logical connection.

■ CONNPOOL_NOWAIT : When enabled, this attributes specifies that an error is
returned if a call needs a physical connection while the maximum number of
connections in the pool are busy; if disabled, a call waits until a connection is
available. Once this attribute is set to "true", it cannot be reset to "false".

You can configure all of these attributes dynamically. Therefore, an application has
the flexibility of reading the current load (number of open connections and number
of busy connections) and adjusting these attributes appropriately, using the
setPoolConfig() method.

The setPoolConfig() method is used to configure OCI connection pool
properties. The following is a typical example of how the
OracleOCIConnectionPool class attributes can be set:

...
java.util.Properties p = new java.util.Properties();
p.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, "1");
p.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, "5");
p.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT, "2");
p.put (OracleOCIConnectionPool.CONNPOOL_TIMEOUT, "10");
p.put (OracleOCIConnectionPool.CONNPOOL_NOWAIT, "true");
cpool.setPoolConfig(p);
...

Observe the following rules when setting the above attributes:

■ CONNPOOL_MIN_LIMIT, CONNPOOL_MAX_LIMIT, and CONNPOOL_INCREMENT
are mandatory.

■ CONNPOOL_MIN_LIMIT must be a value greater than zero.

Note: The default values for the CONNPOOL_MIN_LIMIT,
CONNPOOL_MAX_LIMIT, and CONNPOOL_INCREMENT parameters
are 1, 1, and 0, respectively.

OCI Driver Connection Pooling

17-8 Oracle9i JDBC Developer’s Guide and Reference

■ CONNPOOL_MAX_LIMIT must be a value greater than or equal to CONNPOOL_
MIN_LIMIT plus CONNPOOL_INCREMENT.

■ CONNPOOL_INCREMENT must be a value greater than or equal to zero

■ CONNPOOL_TIMEOUT must be a value greater than zero.

■ CONNPOOL_NOWAIT must be "true" or "false" (case insensitive).

Checking the OCI Connection Pool Status
To check the status of the connection pool, use the following methods from the
OracleOCIConnectionPool class:

■ int getMinLimit() : Retrieves the minimum number of physical
connections that can be maintained by the pool.

■ int getMaxLimit() : Retrieves the maximum number of physical
connections that can be maintained by the pool.

■ int getConnectionIncrement() : Retrieves the incremental number of
physical connections to be opened when all the existing ones are busy and a call
needs a connection.

■ int getTimeout() : Retrieves the specified time (in seconds) that a physical
connection in a pool can remain idle before it is disconnected; the age of a
connection is based on the Least Recently Used (LRU) scheme.

■ String getNoWait() : Retrieves whether the NOWAIT property is enabled. It
returns a string of "true" or "false".

■ int getPoolSize() : Retrieves the number of physical connections that are
open. This should be used only as estimate and for statistical analysis.

■ int getActiveSize() : Retrieves the number of physical connections that
are open and busy. This should be used only as estimate and for statistical
analysis.

■ boolean isPoolCreated() : Retrieves whether the pool has been created.
The pool is actually created when OracleOCIConnection (user,
password, url, poolConfig) is called or when setUser, setPassword,
and setURL has been done after calling OracleOCIConnection().

Connecting to an OCI Connection Pool
The OracleOCIConnectionPool class, through a getConnection() method
call, creates an instance of the OracleOCIConnection class. This instance

OCI Driver Connection Pooling

JDBC OCI Extensions 17-9

represents a connection. See "Data Sources" on page 16-2 for database connection
descriptions that apply to all JDBC drivers.

Since the OracleOCIConnection class extends OracleConnection class, it has
the funtionality of this class too. Close the OracleOCIConnection objects once
the user session is over, otherwise, they are closed when the pool instance is closed.

There are two ways of calling getConnection():

■ OracleConnection getConnection(String user, String
password) : Get a logical connection identified with the specified user and
password, which can be different from that used for pool creation.

■ OracleConnection getConnection() : If you do not supply the user
name and password, then the default user name and password used for the
creation of the connection pool are used while creating the connection objects.

As an enhancement to OracleConnection, the following new method is added
into OracleOCIConnection as a way to change password for the user:

void passwordChange (String user, String oldPassword, String newPassword)

The following code shows how an application uses connection pool with
re-configuration:

import oracle.jdbc.oci.*;
import oracle.jdbc.pool.*;

public class cpoolTest
{
 public static void main (String args [])
 throws SQLException
 {
 /* pass the URL and "inst1" as the database link name from tnsnames.ora */
 OracleOCIConnectionPool cpool = new OracleOCIConnectionPool
 ("scott", "tiger", "jdbc:oracle:oci@inst1", null);

 /* create virtual connection objects from the connection pool "cpool." The
 poolConfig can be null when using default values of min = 1, max = 1, and
 increment = 0, otherwise needs to set the properties mentioned earlier */
 OracleOCIConnection conn1 = (OracleOCIConnection) cpool.getConnection
 ("user1", password1");

 /* create few Statement objects and work on this connection, conn1 */
 Statement stmt = conn1.createStatement();
 ...
 OracleOCIConnection conn90 = (OracleOCIConnection) cpool.getConnection

OCI Driver Connection Pooling

17-10 Oracle9i JDBC Developer’s Guide and Reference

 ("user90", "password90") /* work on statement object from virtual
 connection "conn90" */
 ...
 /* if the throughput is less, increase the pool size */
 string newmin = String.valueOf (cpool.getMinLimit);
 string newmax = String.valueOf (2*cpool.getMaxLimit());
 string newincr = String.valueOf (1 + cpool.getConnectionIncrement());
 Properties newproperties = newProperties();
 newproperties.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, newmin);
 newproperties.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, newmax);
 newproperties.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT, newincr);
 cpool.setPoolConfig (newproperties);
 } /* end of main */
} /* end of cpoolTest */

Statement Handling and Caching
Statement caching is supported with OracleOCIConnectionPool. The caching
improves performance by not having to open, parse and close cursors. When
OracleOCIConnection.prepareStatement ("SQL query") is done, the
statement cache is searched for a statement that matches the SQL query. If a match
is found, we can reuse the Statement object instead of incurring the cost of
creating another Statement object. The cache size can be dynamically increased or
decreased. The default cache size is zero.

Statement caching in OracleOCIConnectionPool is a little different from the
standard functionality in OracleConnectionCacheImpl. The
setStmtCacheSize() method sets the statement cache sizes of all the
OracleOCIConnection objects retrieved from this pool. But unlike logical
(OracleConnection) connection objects obtained from
OracleConnectionCacheImpl, the individual cache sizes of the logical
(OracleOCIConnection) connection objects can also be changed if desired. (The
default cache size is zero.)

The following code shows the signatures of the getConnection() method:

public synchronized OracleConnection getConnection()

Note: The OracleStatement object created from
OracleOCIConnection has the same behavior as one that is
created from OracleConnection.

OCI Driver Connection Pooling

JDBC OCI Extensions 17-11

 throws SQLException

/*
 * For getting a connection to the database.
 *
 * @param us Connection user-id
 * @param p Connection password
 * @return connection object
 */
public synchronized OracleConnection getConnection(String us, String p)
throws SQLException

Types of Statement Caching used with the OCI Connection Pool
There are two forms of statement caching: implicit and explicit. (See Chapter 14,
"Statement Caching" for a complete description of implicit and explicit statement
caching.) Both forms of statement caching use the setStmtCacheSize() method.
Explicit statement caching requires the JDBC application to provide a key while
opening and closing Statement objects. Implicit statement caching does not
require the JDBC application to provide the key; the caching is transparent to the
application. Also in explicit statement caching, the fetch state of the result set is not
cleared. So after doing a Statement.close(key="abc"),
Connection.preparedStatement(key="abc") will return the Statement
object and fetches will continue with the fetch state when the previous
Statement.close(key="abc") is done.

For implicit statement caching, the fetch state is cleared and the cursor is
re-executed, but the cursor meta data is cached to improve performance. In some
cases, the client may also need to clear the meta data (through the clearMetaData
parameter).

The following header information documents method signatures:

synchronized public void setStmtCacheSize (int size)

 /**
 *
 * @param size Size of the Cache
 * @param clearMetaData Whether the state has to be cleared or not
 * @exception SQLException
 */
 public synchronized void setStmtCacheSize (int size, boolean clearMetaData)

 /**

OCI Driver Connection Pooling

17-12 Oracle9i JDBC Developer’s Guide and Reference

 * Return the size of Statement Cache.
 * @return int Size of Statement Cache.

 If not set ie if statement caching is not enabled ,
 * the default 0 is returned.
 */
 public synchronized int getStmtCacheSize()

 /*
 * Check whether Statement
 * Caching is enabled for this pool or Not.
 */
 public synchronized boolean isStmtCacheEnabled ()

JNDI and the OCI Connection Pool
The Java Naming and Directory Interface (JNDI) feature makes persistent the
properties of Java object so these properties can be used to construct a new instance
of the object (such as cloning the object). The benefit is that the old object can be
freed, and at a later time a new object with exactly the same properties can be
created. The InitialContext.bind() method makes persistent the properties,
either on file or in a database, while the InitialContext.lookup() method
retrieves the properties from the persistent store and creates a new object with these
properties.

OracleOCIConnectionPool objects can be bound and looked up using the JNDI
feature. No new interface calls in OracleOCIConnectionPool are necessary.

Middle-Tier Authentication Through Proxy Connections

JDBC OCI Extensions 17-13

Middle-Tier Authentication Through Proxy Connections
Middle-tier authentication allows one JDBC connection (session) to act as proxy for
other JDBC connections. A proxy session could be required for one of the following:

■ If the middle tier does not know the password of the proxy user. This is done by
first authenticating using:

alter user jeff grant connect through scott with roles role1, role2;

Then the method allows you to connect as "jeff" using the already
authenticated credentials of "scott". It is sometimes a security concern for the
middle tier to know the passwords of all the database users. Though the created
session will behave much like "jeff" was connected normally (using
"jeff"/"jeff-password"), "jeff" will not have to divulge its password to
the middle tier. The schema which this proxy session has access to is schema of
"jeff" plus what is indicated in the list of roles. Therefore, if "scott" wants
"jeff" to access its table EMP, the following code can be used:

create role role1;
grant select on EMP to role1;

The role clause can also be thought as limiting "jeff’s" access to only those
database objects of "scott" mentioned in the list of the roles. The list of roles
can be empty.

■ For accounting purposes. The transactions made via proxy sessions can be
better accounted by proxying the user ("jeff"), under different users such as
"scott", "scott2" assuming "scott"and "scott2" are authenticated.
Transactions made under these different proxy sessions by "jeff" can be
logged separately.

There are three ways to create proxy sessions in the OCI driver. Roles can be
associated with any of the following options:

■ USER NAME : This is done by supplying the user name and/or the password.
The reason why the "password" option exists is so that database operations
made by the user ("jeff"), can be accounted. The SQL clause is:

alter user jeff grant connect through scott authenticated using password;

Having no authenticated clause implies the default—authenticated using the
user-name without the password requirement.

■ DISTINGUISHED NAME : This is a global name in lieu of the password of the
user being proxied for. So you could say "create user jeff identified globally as:

Middle-Tier Authentication Through Proxy Connections

17-14 Oracle9i JDBC Developer’s Guide and Reference

’CN=jeff,OU=americas,O=oracle,L=redwoodshores,ST=ca,C=us';

The string after the "globally as" clause is the distinguished name. It is then
necessary to authenticate as:

alter user jeff grant connect through scott authenticated using
distinguished name;

■ CERTIFICATE : This is a more encrypted way of passing the credentials of the
user (to be proxied) to the database. The certificate contains the distinguished
encoded name. One way of generating it is by creating a wallet (using "runutl
mkwallet"), then decoding the wallet to get the certificate. It is then necessary
to authenticate as:

alter user jeff grant connect through scott authenticated using certificate;

The following code shows signatures of the getProxyConnection() method
with information about the proxy type process:

/*
 * For creating a proxy connection. All macros are defined
 * in OracleOCIConnectionPool.java
 *
 * @param proxyType Can be one of following types
 PROXYTYPE_USER_NAME
 - This will be the normal mode of specifying the user
 name in proxyUser as in Oracle8i

 PROXYTYPE_DISTINGUISHED_NAME
 - This will specify the distinguished name of the user
 in proxyUser

 PROXYTYPE_CERTIFICATE
 - This will specify the proxy certificate

 The Properties (ie prop) should be set as follows.

 If PROXYTYPE_USER_NAME
 PROXY_USER_NAME and/or PROXY_USER_PASSWORD depending
 on how the connection-pool owner was authenticated
 to act as proxy for this proxy user
 PROXY_USER_NAME (String) = user to be proxied for
 PROXY_PASSWORD (String) = password of the user to be proxied for

 else if PROXYTYPE_DISTINGUISHED_NAME
 PROXY_DISTINGUISHED_NAME (String) = (global) distinguished name of the

Middle-Tier Authentication Through Proxy Connections

JDBC OCI Extensions 17-15

user to be proxied for
 else if PROXYTYPE_CERTIFICATE (byte[])
 PROXY_CERTIFICATE = certficate containing the encoded
 distinguished name

 PROXY_ROLES (String[]) Set of roles which this proxy connection can use.
Roles can be null, and can be associated
with any of the above proxy methods.

 *
 * @return connection object
 *
 * Notes: The user and password used to create OracleOCIConnectionPool()
 * must be allowed to act as proxy for user 'us'.
 */
 public synchronized OracleConnection getProxyConnection(String proxyType,
 Properties prop)
 throws SQLException

OCI Driver Transparent Application Failover

17-16 Oracle9i JDBC Developer’s Guide and Reference

OCI Driver Transparent Application Failover
Transparent Application Failover (TAF) or simply Application Failover is a feature of the
OCI driver. It enables you to automatically reconnect to a database if the database
instance to which the connection is made goes down. In this case, the active
transactions roll back. (A transaction rollback restores the last committed
transaction.) The new database connection, though created by a different node, is
identical to the original. This is true regardless of how the connection was lost.

TAF is always active and does not have to be set.

For additional details regarding OCI and TAF, see the Programmer’s Guide to the
Oracle Call Interface.

Failover Type Events
The following are possible failover events in the OracleOCIFailover interface:

■ FO_SESSION : Is equivalent to FAILOVER_MODE=SESSION in the
tnsnames.ora file CONNECT_DATA flags. This means that only the user
session is re-authenticated on the server-side while open cursors in the OCI
application need to be re-executed.

■ FO_SELECT : Is equivalent to FAILOVER_MODE=SELECT in tnsnames.ora
file CONNECT_DATA flags. This means that not only the user session is
re-authenticated on the server-side, but open cursors in the OCI can continue
fetching. This implies that the client-side logic maintains fetch-state of each
open cursor.

■ FO_NONE : Is equivalent to FAILOVER_MODE=NONE in the tnsnames.ora file
CONNECT_DATA flags. This is the default, in which no failover functionality is
used. This can also be explicitly specified to prevent failover from happening.
Additionally, FO_TYPE_UNKNOWN implies that a bad failover type was returned
from the OCI driver.

■ FO_BEGIN : Indicates that failover has detected a lost connection and failover is
starting.

■ FO_END : Indicates successful completion of failover.

■ FO_ABORT : Indicates that failover was unsuccessful and there is no option of
retrying.

■ FO_REAUTH : indicates that a user handle has been re-authenticated.

OCI Driver Transparent Application Failover

JDBC OCI Extensions 17-17

■ FO_ERROR : indicates that failover was temporarily un-successful, but it gives
the application the opportunity to handle the error and retry failover. The usual
method of error handling is to issue the sleep() method and retry by
returning the value FO_RETRY.

■ FO_RETRY : See above.

■ FO_EVENT_UNKNOWN : A bad failover event.

TAF Callbacks
TAF callbacks are used in the event of the failure of one database connection, and
failover to another database connection. TAF callbacks are callbacks that are
registered in case of failover. The callback is called during the failover to notify the
JDBC application of events generated. The application also has some control of
failover.

Java TAF Callback Interface
The OracleOCIFailover interface includes the callbackFn() method, supporting
the following types and events:

public interface OracleOCIFailover{

// Possible Failover Types
public static final int FO_SESSION = 1;
public static final int FO_SELECT = 2;
public static final int FO_NONE = 3;
public static final int;

// Possible Failover events registered with callback
public static final int FO_BEGIN = 1;
public static final int FO_END = 2;
public static final int FO_ABORT = 3;
public static final int FO_REAUTH = 4;
public static final int FO_ERROR = 5;
public static final int FO_RETRY = 6;
public static final int FO_EVENT_UNKNOWN = 7;

public int callbackFn (Connection conn,
 Object ctxt, // ANy thing the user wants to save

Note: The callback setting is optional.

OCI Driver Transparent Application Failover

17-18 Oracle9i JDBC Developer’s Guide and Reference

 int type, // One of the above possible Failover Types
 int event); // One of the above possible Failover Events

Handling the FO_ERROR Event
In case of an error while failing-over to a new connection, the JDBC application is
able to retry failover. Typically, the application sleeps for a while and then it retries,
either indefinitely or for a limited amount of time, by having the callback return
FO_RETRY.

Handling the FO_ABORT Event
Callback registered should return the FO_ABORT event if the FO_ERROR event is
passed to it.

OCI HeteroRM XA

JDBC OCI Extensions 17-19

OCI HeteroRM XA
Unlike the regular JDBC XA feature which works only with Oracle8i 8.1.6 and later
databases, JDBC HeteroRM XA also allows you to do XA operations in Oracle8i
releases prior to 8.1.6. In general, the HeteroRM XA is recommended for use
whenever possible.

HeteroRM XA is enabled through the use of the tnsEntry and nativeXA
properties of the OracleXADataSource class. Table 16–2, "Oracle Extended Data
Source Properties" on page 16-6 explains these properties in detail.

For a complete discussion of XA, see Chapter 15, "Distributed Transactions".

Configuration and Installation
The Solaris shared libraries, libheteroxa9.so and libheteroxa9_g.so,
enable the HeteroRM XA feature to support access to Oracle8i releases prior to
release 8.1.6. The NT version of these libraries are heteroxa9.dll and
heteroxa9_g.dll. In order for the HeteroRM XA feature to work properly, these
libraries need to be installed and available in either the Solaris search path or the
NT DLL path, depending on your system.

Exception Handling
When using the HeteroRM XA feature in distributed transactions, it is
recommended that the application simply check for XAException or
SQLException, rather than OracleXAException or OracleSQLException.

See "HeteroRM XA Messages" on page B-15 for a listing of HeteroRM XA messages.

HeteroRM XA Code Example
The following portion of code shows how to enable the HeteroRM XA feature.

// Create a XADataSource instance
OracleXADataSource oxds = new OracleXADataSource();
oxds.setURL(url);

Note: Libraries with the _g suffix are debug libraries.

Note: The mapping from SQL error codes to standard XA error
codes does not apply to the HeteroRM XA feature.

OCI HeteroRM XA

17-20 Oracle9i JDBC Developer’s Guide and Reference

// Set the nativeXA property to use HeteroRM XA feature
oxds.setNativeXA(true);

// Set the tnsEntry property to an older DB as required
oxds.setTNSEntryName("ora805");

Accessing PL/SQL Index-by Tables

JDBC OCI Extensions 17-21

Accessing PL/SQL Index-by Tables
The Oracle JDBC OCI driver enables JDBC applications to make PL/SQL calls with
index-by table parameters.

Overview
The Oracle JDBC OCI driver supports PL/SQL index-by tables of scalar datatypes.
Table 17–1 displays the supported scalar types and the corresponding JDBC
typecodes.

Typical Oracle JDBC input binding, output registration, and data-access methods do
not support PL/SQL index-by tables. This chapter introduces additional methods to
support these types.

The OraclePreparedStatement and OracleCallableStatement classes
define the additional methods. These methods include the following:

■ setPlsqlIndexTable()

Important: Index-by tables of PL/SQL records are not supported.

Table 17–1 PL/SQL Types and Corresponding JDBC Types

PL/SQL Types JDBC Types

BINARY_INTEGER NUMERIC

NATURAL NUMERIC

NATURALN NUMERIC

PLS_INTEGER NUMERIC

POSITIVE NUMERIC

POSITIVEN NUMERIC

SIGNTYPE NUMERIC

STRING VARCHAR

Note: Oracle JDBC does not support RAW, DATE, and PL/SQL
RECORD as element types.

Accessing PL/SQL Index-by Tables

17-22 Oracle9i JDBC Developer’s Guide and Reference

■ registerIndexTableOutParameter()

■ getOraclePlsqlIndexTable()

■ getPlsqlIndexTable()

These methods handle PL/SQL index-by tables as IN, OUT (including function
return values), or IN OUT parameters. For general information about PL/SQL
syntax, see the PL/SQL User’s Guide and Reference.

The following sections describe the methods used to bind and register PL/SQL
index-by tables.

Binding IN Parameters
To bind a PL/SQL index-by table parameter in the IN parameter mode, use the
setPlsqlIndexTable() method defined in the OraclePreparedStatement
and OracleCallableStatement classes.

synchronized public void setPlsqlIndexTable
 (int paramIndex, Object arrayData, int maxLen, int curLen, int elemSqlType,
 int elemMaxLen) throws SQLException

Table 17–2 describes the arguments of the setPlsqlIndexTable() method.

Table 17–2 Arguments of the setPlsqlIndexTable () Method

Argument Description

int paramIndex This argument indicates the parameter position within the
statement.

Object arrayData This argument is an array of values to be bound to the PL/SQL
index-by table parameter. The value is of type
java.lang.Object, and the value can be a Java primitive
type array such as int[] or a Java object array such as
BigDecimal[].

int maxLen This argument specifies the maximum table length of the
index-by table bind value which defines the maximum possible
curLen for batch updates. For standalone binds, maxLen
should use the same value as curLen. This argument is
required.

Accessing PL/SQL Index-by Tables

JDBC OCI Extensions 17-23

The following code example uses the setPlsqlIndexTable() method to bind an
index-by table as an IN parameter:

// Prepare the statement
OracleCallableStatement procin = (OracleCallableStatement)
 conn.prepareCall ("begin procin (?); end;");

// index-by table bind value
int[] values = { 1, 2, 3 };

// maximum length of the index-by table bind value. This
// value defines the maximum possible "currentLen" for batch
// updates. For standalone binds, "maxLen" should be the
// same as "currentLen".
int maxLen = values.length;

// actual size of the index-by table bind value
int currentLen = values.length;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types.
int elemMaxLen = 0;

// set the value

int curLen This argument specifies the actual size of the index-by table bind
value in arrayData. If the curLen value is smaller than the
size of arrayData, only the curLen number of table
elements is passed to the database. If the curLen value is larger
than the size of arrayData, the entire arrayData is sent to
the database.

int elemSqlType This argument specifies the index-by table element type based
on the values defined in the OracleTypes class.

int elemMaxLen This argument specifies the index-table element maximum
length in case the element type is CHAR, VARCHAR, or RAW.
This value is ignored for other types.

Table 17–2 Arguments of the setPlsqlIndexTable () Method (Cont.)

Argument Description

Accessing PL/SQL Index-by Tables

17-24 Oracle9i JDBC Developer’s Guide and Reference

procin.setPlsqlIndexTable (1, values,
 maxLen, currentLen,
 elemSqlType, elemMaxLen);

// execute the call
procin.execute ();

Receiving OUT Parameters
This section describes how to register a PL/SQL index-by table as an OUT
parameter. In addition, it describes how to access the OUT bind values in various
mapping styles.

Registering the OUT Parameters
To register a PL/SQL index-by table as an OUT parameter, use the
registerIndexTableOutParameter() method defined in the
OracleCallableStatement class.

synchronized registerIndexTableOutParameter
 (int paramIndex, int maxLen, int elemSqlType, int elemMaxLen)
 throws SQLException

Table 17–3 describes the arguments of the
registerIndexTableOutParameter() method.

Note: The methods this section describes apply to function return
values and the IN OUT parameter mode as well.

Table 17–3 Arguments of the registerIndexTableOutParameter () Method

Argument Description

int paramIndex This argument indicates the parameter position within the
statement.

int maxLen This argument specifies the maximum table length of the index-by
table bind value to be returned.

int elemSqlType This argument specifies the index-by table element type based on
the values defined in the OracleTypes class.

int elemMaxLen This argument specifies the index-by table element maximum
length in case the element type is CHAR, VARCHAR, or RAW. This
value is ignored for other types.

Accessing PL/SQL Index-by Tables

JDBC OCI Extensions 17-25

The following code example uses the registerIndexTableOutParameter()
method to register an index-by table as an OUT parameter:

// maximum length of the index-by table value. This
// value defines the maximum table size to be returned.
int maxLen = 10;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types
int elemMaxLen = 0;

// register the return value
funcnone.registerIndexTableOutParameter
 (1, maxLen, elemSqlType, elemMaxLen);

Accessing the OUT Parameter Values
To access the OUT bind value, the OracleCallableStatement class defines
multiple methods that return the index-by table values in different mapping styles.
There are three mapping choices available in JDBC drivers:

JDBC Default Mappings The getPlsqlIndexTable() method with the (int)
signature returns index-by table elements using JDBC default mappings.

public Object getPlsqlIndexTable (int paramIndex)
 throws SQLException

Table 17–4 describes the argument of the getPlsqlIndexTable() method.

Mappings Methods to Use

JDBC default mappings getPlsqlIndexTable(int)

Oracle mappings getOraclePlsqlIndexTable(int)

Java primitive type mappings getPlsqlIndexTable(int, Class)

Accessing PL/SQL Index-by Tables

17-26 Oracle9i JDBC Developer’s Guide and Reference

The return value is a Java array. The elements of this array are of the default Java
type corresponding to the SQL type of the elements. For example, for an index-by
table with elements of NUMERIC typecode, the element values are mapped to
BigDecimal by the Oracle JDBC driver, and the getPlsqlIndexTable()
method returns a BigDecimal[] array. For a JDBC application, you must cast the
return value to a BigDecimal[] array to access the table element values. (See
"Datatype Mappings" on page 3-16 for a list of default mappings.)

The following code example uses the getPlsqlIndexTable() method to return
index-by table elements with JDBC default mapping:

// access the value using JDBC default mapping
BigDecimal[] values =
 (BigDecimal[]) procout.getPlsqlIndexTable (1);

// print the elements
for (int i=0; i<values.length; i++)
 System.out.println (values[i].intValue());

Oracle Mappings The getOraclePlsqlIndexTable() method returns index-by
table elements using Oracle mapping.

public Datum[] getOraclePlsqlIndexTable (int paramIndex)
 throws SQLException

Table 17–5 describes the argument of the getOraclePlsqlIndexTable()
method.

The return value is an oracle.sql.Datum array and the elements in the Datum
array will be the default Datum type corresponding to the SQL type of the element.

Table 17–4 Argument of the getPlsqlIndexTable () Method

Argument Description

int paramIndex This argument indicates the parameter position within the
statement.

Table 17–5 Argument of the getOraclePlsqlIndexTable () Method

Argument Description

int paramIndex This argument indicates the parameter position within the
statement.

Accessing PL/SQL Index-by Tables

JDBC OCI Extensions 17-27

For example, the element values of an index-by table of numeric elements are
mapped to the oracle.sql.NUMBER type in Oracle mapping, and the
getOraclePlsqlIndexTable() method returns an oracle.sql.Datum array
that contains oracle.sql.NUMBER elements.

The following code example uses the getOraclePlsqlIndexTable() method to
access the elements of a PL/SQL index-by table OUT parameter, using Oracle
mapping. (The code for registration is omitted.)

// Prepare the statement
OracleCallableStatement procout = (OracleCallableStatement)
 conn.prepareCall ("begin procout (?); end;");

...

// execute the call
procout.execute ();

// access the value using Oracle JDBC mapping
Datum[] outvalues = procout.getOraclePlsqlIndexTable (1);

// print the elements
for (int i=0; i<outvalues.length; i++)
 System.out.println (outvalues[i].intValue());

Java Primitive Type Mappings The getPlsqlIndexTable() method with the (int,
Class) signature returns index-by table elements in Java primitive types. The
return value is a Java array.

synchronized public Object getPlsqlIndexTable
 (int paramIndex, Class primitiveType) throws SQLException

Accessing PL/SQL Index-by Tables

17-28 Oracle9i JDBC Developer’s Guide and Reference

Table 17–6 describes the arguments of the getPlsqlIndexTable() method.

The following code example uses the getPlsqlIndexTable() method to access
the elements of a PL/SQL index-by table of numbers. In the example, the second
parameter specifies java.lang.Integer.TYPE, so the return value of the
getPlsqlIndexTable() method is an int array.

OracleCallableStatement funcnone = (OracleCallableStatement)
 conn.prepareCall ("begin ? := funcnone; end;");

// maximum length of the index-by table value. This
// value defines the maximum table size to be returned.
int maxLen = 10;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types
int elemMaxLen = 0;

// register the return value
funcnone.registerIndexTableOutParameter (1, maxLen,
 elemSqlType, elemMaxLen);
// execute the call

Table 17–6 Arguments of the getPlsqlIndexTable () Method

Argument Description

int paramIndex This argument indicates the parameter position within the
statement.

Class primitiveType This argument specifies a Java primitive type to which the
index-by table elements are to be converted. For example, if
you specify java.lang.Integer.TYPE, the return
value is an int array.

The following are the possible values of this parameter:

java.lang.Integer.TYPE

java.lang.Long.TYPE

java.lang.Float.TYPE

java.lang.Double.TYPE

java.lang.Short.TYPE

Accessing PL/SQL Index-by Tables

JDBC OCI Extensions 17-29

funcnone.execute ();

// access the value as a Java primitive array.
int[] values = (int[])
 funcnone.getPlsqlIndexTable (1, java.lang.Integer.TYPE);

// print the elements
for (int i=0; i<values.length; i++)
 System.out.println (values[i]);

Accessing PL/SQL Index-by Tables

17-30 Oracle9i JDBC Developer’s Guide and Reference

Advanced Topics 18-1

18
Advanced Topics

This chapter describes the following advanced JDBC topics:

■ JDBC and Globalization Support

■ JDBC Client-Side Security Features

■ JDBC in Applets

■ JDBC in the Server: the Server-Side Internal Driver

JDBC and Globalization Support

18-2 Oracle9i JDBC Developer’s Guide and Reference

JDBC and Globalization Support
After a brief overview, this section covers the following topics:

■ How JDBC Drivers Perform Globalization Support Conversions

■ Globalization Support and Object Types

■ SQL CHAR Data Size Restrictions with the Thin Driver

Oracle’s JDBC drivers support Globalization Support (formerly NLS). Globalization
Support allows you retrieve data or insert data into a database in any character set
that Oracle supports. If the clients and the server use different character sets, then
the driver provides the support to perform the conversions between the database
character set and the client character set.

For more information on Globalization Support, Globalization Support
environment variables, and the character sets that Oracle supports, see "Oracle
Character Datatypes Support" on page 6-28 and the Oracle9i Database Globalization
Support Guide. See the Oracle9i Reference for more information on the database
character set and how it is created.

Here are a few examples of commonly used Java methods for JDBC that rely heavily
on character set conversion:

■ The java.sql.ResultSet methods getString() and
getUnicodeStream() return values from the database as Java strings and as
a stream of Unicode characters, respectively.

■ The oracle.sql.CLOB method getCharacterStream() returns the
contents of a CLOB as a Unicode stream.

■ The oracle.sql.CHAR methods getString(), toString(), and
getStringWithReplacement() convert the following data to strings:

– getString(): This converts the sequence of characters represented by the
CHAR object to a string and returns a Java String object.

– toString(): This is identical to getString(), but if the character set is
not recognized, then toString() returns a hexadecimal representation of
the CHAR data.

– getStringWithReplacement(): This is identical to getString(),
except characters that have no Unicode representation in the character set of
this CHAR object are replaced by a default replacement character.

JDBC and Globalization Support

Advanced Topics 18-3

How JDBC Drivers Perform Globalization Support Conversions
The techniques that the Oracle JDBC drivers use to perform character set conversion
for Java applications depend on the character set the database uses. The simplest
case is where the database uses the US7ASCII or WE8ISO8859P1 character set. In
this case, the driver converts the data directly from the database character set to
UTF-16, which is used in Java applications, and vice versa.

If you are working with databases that employ a non-US7ASCII or
non-WE8ISO8859P1 character set (for example, JA16SJIS or KO16KSC5601), then
the driver converts the data first to UTF-8 (this step does not apply to the
server-side internal driver), then to UTF-16. For example, the driver always
converts CHAR and VARCHAR2 data in a non-US7ASCII, non-WE8ISO8859P1
character set. It does not convert RAW data.

JDBC OCI Driver and Globalization Support
For the JDBC OCI driver, the client character set is in the NLS_LANG environment
variable, which is set at client-installation time. The language and territory settings,
by default, are set to the Java VM locale settings.

Note that there are also server-side settings for these parameters, determined
during database creation. So, when performing character set conversion, the JDBC
OCI driver considers the following:

■ database character set and language

■ client character set and language

■ Java application’s character set

The JDBC OCI driver transfers the data from the server to the client in the character
set of the database. Depending on the value of the NLS_LANG environment variable,
the driver handles character set conversions in one of two ways:

■ If NLS_LANG is not specified, or specifies the US7ASCII or WE8ISO8859P1
character set, then the JDBC OCI driver uses Java to convert the character set
from US7ASCII or WE8ISO8859P1 directly to UTF-16, or the reverse.

or:

Note: The JDBC drivers perform all character set conversions
transparently. No user intervention is necessary for the conversions
to occur.

JDBC and Globalization Support

18-4 Oracle9i JDBC Developer’s Guide and Reference

■ If NLS_LANG specifies a character set other than US7ASCII or WE8ISO8859P1,
the driver uses UTF-8 as the client character set. This happens automatically
and does not require any user intervention. OCI converts the data from the
database character set to UTF-8. The JDBC OCI driver then passes the UTF-8
data to the JDBC Class Library, where the UTF-8 data is converted to UTF-16.

JDBC Thin Driver and Globalization Support
If you are using the JDBC Thin driver, then there will presumably be no Oracle
client installation. Globalization Support conversions must be handled differently.

Language and Territory The Thin driver obtains language and territory settings (NLS_
LANGUAGE and NLS_TERRITORY) from the Java locale in the JVM user.language
property. The date format (NLS_DATE_FORMAT) is set according to the territory
setting.

Character Set If the database character set is US7ASCII or WE8ISO8859P1, then the
data is transferred to the client without any conversion. The driver then converts
the character set to UTF-16 in Java.

If the database character set is something other than US7ASCII or WE8ISO8859P1,
then the server first translates the data to UTF-8 before transferring it to the client.
On the client, the JDBC Thin driver converts the data to UTF-16 in Java.

Server-Side Internal Driver and Globalization Support
If your JDBC code running in the server accesses the database, then the JDBC
server-side internal driver performs a character set conversion based on the
database character set. The target character set of all Java programs is UTF-16.

Globalization Support and Object Types
The Oracle JDBC class files, classes12.zip and classes111.zip, provide
Globalization Support for the Thin and OCI drivers. The files contain all the
necessary classes to provide complete Globalization Support for all Oracle character
sets for CHAR and NCHAR datatypes not retrieved or inserted as part of an Oracle

Notes:

■ The driver uses UTF-8 as the character set to minimize the
number of conversions it performs in Java.

■ The change to UTF-8 is for the JDBC application process only.

JDBC and Globalization Support

Advanced Topics 18-5

object or collection type. See "Oracle Character Datatypes Support" on page 6-28 for
a description of CHAR and NCHAR datatypes.

However, in the case of the CHAR and VARCHAR data portion of Oracle objects and
collections, the JDBC class files provide support for only the following commonly
used character sets:

■ US7ASCII

■ WE8DEC

■ ISO-LATIN-1

■ UTF-8

To provide support for all character sets, the Oracle JDBC driver installation
includes two additional files: nls_charset12.zip for JDK 1.2.x and nls_
charset11.zip for JDK 1.1.x. The OCI and Thin drivers require these files to
support all Oracle characters sets for CHAR and VARCHAR data in Oracle object types
and collections. To obtain this support, you must add the appropriate nls_
charset*.zip file to your CLASSPATH.

It is important to note that the nls_charset*.zip files are very large, because
they must support a large number of character sets. To save space, you might want
to keep only the classes you need from the nls_charset*.zip file. If you want to
do this, follow these steps:

1. Unzip the appropriate nls_charset*.zip file.

2. Add only the needed character set classes to the CLASSPATH.

3. Remove the unneeded character set files from your system.

The character set extension class files are named in the following format:

CharacterConverter<OracleCharacterSetId>.class

where <OracleCharacterSetId> is the hexadecimal representation of the Oracle
character set ID that corresponds to a character set name.

Note: The preceding discussion is not relevant in using the
server-side internal driver, which provides complete Globalization
Support and does not require the character set classes.

JDBC and Globalization Support

18-6 Oracle9i JDBC Developer’s Guide and Reference

SQL CHAR Data Size Restrictions with the Thin Driver
If the database character set is neither ASCII (US7ASCII) nor ISO-LATIN-1
(WE8ISO8859P1), then the Thin driver must impose size restrictions for CHAR and
VARCHAR2 bind parameters that are more restrictive than normal database size
limitations. This is necessary to allow for data expansion during conversion.

The Thin driver checks CHAR bind sizes when the setXXX() method is called. If the
data size exceeds the size restriction, then the driver throws a SQL exception ("Data
size bigger than max size for this type") from the setXXX() call. This limitation is
necessary to avoid the chance of data corruption whenever a conversion occurs and
increases the length of the data. This limitation is enforced when you are doing all
the following:

■ using the Thin driver

■ using binds (not defines)

■ using CHAR, VARCHAR2, or LONG datatypes

■ connecting to a database whose character set is neither ASCII (US7ASCII) nor
ISO-Latin-1 (WE8ISO8859P1)

Role of the Expansion Factor
As previously discussed, when the database character set is neither US7ASCII nor
WE8ISO8859P1, the Thin driver converts Java UTF-16 characters to UTF-8
encoding bytes for CHAR or VARCHAR2 binds. The UTF-8 encoding bytes are then
transferred to the database, and the database converts the UTF-8 encoding bytes to
the database character set encoding.

This conversion to the character set encoding can result in an increase in the number
of bytes required to store the data. The expansion factor for a database character set
indicates the maximum possible expansion in converting a character from UTF-8 to
the character set: If the database character set is either UTF-8 or AL32UTF8, the
expansion factor (exp_factor) is 1. Otherwise, the expansion factor is equal to
the maximum character size in the database character set.

Size Restriction Formulas
Table 18–1 shows the database size limitations for CHAR data and the Thin driver
size restriction formulas for CHAR binds. Database limits are in bytes. Formulas
determine the maximum size of the UTF-8 encoding in bytes.

JDBC and Globalization Support

Advanced Topics 18-7

The formulas guarantee that after the data is converted from UTF-8 to the database
character set, the size will not exceed the database maximum size.

The number of UTF-16 characters that can be supported is determined by the
number of bytes per character in the data. All ASCII characters are one byte long in
UTF-8 encoding. Other character types can be two or three bytes long.

Expansion Factors and Calculated Size Restrictions for Common Character Sets
Table 18–2 lists the expansion factors of some common server character sets, then
shows the Thin driver maximum bind sizes for SQL CHAR data for each character
set, as determined by using the expansion factor in the appropriate formula.

Again, maximum bind sizes are for UTF-8 encoding, in bytes.

Table 18–1 Maximum CHAR and NCHAR Bind Sizes, Thin Driver

Oracle Version Datatype
Max Size Allowed by
Database (bytes)

Formula for Thin Driver Max
Bind Size (UTF-8 bytes)

Oracle8 and later CHAR 2000 4000/exp_factor

Oracle8 and later VARCHAR2 4000 4000/exp_factor

Oracle8 and later LONG 231 - 1 (231 - 1)/exp_factor

Oracle7 CHAR 255 255

Oracle7 VARCHAR2 2000 2000/exp_factor

Table 18–2 Expansion Factors and Size Limits, Oracle8, Common Character Sets

Server Character Set
Expansion
Factor

Thin Driver Max
SQL CHAR Bind
Size (UTF-8 bytes)

WE8DEC 1 4000

JA16SJIS 2 2000

WE8ISO8859P1 3 1333

AL32UTF8 1 4000

JDBC Client-Side Security Features

18-8 Oracle9i JDBC Developer’s Guide and Reference

JDBC Client-Side Security Features
This section discusses support in the Oracle JDBC OCI and Thin drivers for login
authentication, data encryption, and data integrity—particularly with respect to
features of the Oracle Advanced Security option.

Oracle Advanced Security, previously known as the "Advanced Networking
Option" (ANO) or "Advanced Security Option" (ASO), includes features to support
data encryption, data integrity, third-party authentication, and authorizations.
Oracle JDBC supports most of these features; however, the JDBC Thin driver must
be considered separately from the JDBC OCI driver.

JDBC Support for Oracle Advanced Security
Both the JDBC OCI drivers and the JDBC Thin driver support at least some of the
features of Oracle Advanced Security. If you are using one of the OCI drivers, you
can set relevant parameters in the same way that you would in any thick-client
setting. The Thin driver supports Advanced Security features through a set of Java
classes included with the JDBC classes ZIP file, and supports security parameter
settings through Java properties objects.

Included in your Oracle JDBC classes111.zip or classes12.zip file are a JAR
file containing classes that incorporate features of Oracle Advance Security, and a
JAR file containing classes whose function is to interface between the JDBC classes
and the Advanced Security classes for use with the JDBC Thin driver.

OCI Driver Support for Oracle Advanced Security
If you are using one of the JDBC OCI drivers, which presumes you are running
from a thick-client machine with an Oracle client installation, then support for
Oracle Advanced Security and incorporated third-party features is, for the most
part, no different from any Oracle thick-client situation. Your use of Advanced
Security features is determined by related settings in the SQLNET.ORA file on the
client machine, as discussed in the Oracle Advanced Security Administrator’s Guide.
Refer to that manual for information.

Note: This discussion is not relevant to the server-side internal
driver, given that all communication through that driver is
completely internal to the server.

JDBC Client-Side Security Features

Advanced Topics 18-9

Thin Driver Support for Oracle Advanced Security
Because the Thin driver was designed to be downloadable with applets, one
obviously cannot assume that there is an Oracle client installation and a
SQLNET.ORA file where the Thin driver is used. This necessitated the design of a
new, 100% Java approach to Oracle Advanced Security support.

Java classes that implement Oracle Advanced Security are included in your JDBC
classes12.zip or classes111.zip file. Security parameters for encryption and
integrity, normally set in SQLNET.ORA, are set in a Java properties file instead.

For information about parameter settings, see "Thin Driver Support for Encryption
and Integrity" on page 18-12.

JDBC Support for Login Authentication
Basic login authentication through JDBC consists of user names and passwords, as
with any other means of logging in to an Oracle server. Specify the user name and
password through a Java properties object or directly through the
getConnection() method call, as discussed in "Open a Connection to a
Database" on page 3-3.

This applies regardless of which client-side Oracle JDBC driver you are using, but is
irrelevant if you are using the server-side internal driver, which uses a special direct
connection and does not require a user name or password.

The Oracle JDBC Thin driver implements Oracle O3LOGON challenge-response
protocol to authenticate the user.

Important: The one key exception to the preceding, with respect to
Java, is that SSL—Sun Microsystem’s standard Secure Socket Layer
protocol—is supported by the Oracle JDBC OCI drivers only if you
use native threads in your application. This requires special
attention, because green threads are generally the default.

Note: Third-party authentication features supported by Oracle
Advanced Security—such as those provided by RADIUS, Kerberos,
or SecurID—are not supported by the Oracle JDBC Thin driver. For
the Oracle JDBC OCI driver, support is the same as in any
thick-client situation—refer to the Oracle Advanced Security
Administrator’s Guide.

JDBC Client-Side Security Features

18-10 Oracle9i JDBC Developer’s Guide and Reference

JDBC Support for Data Encryption and Integrity
You can use Oracle Advanced Security data encryption and integrity features in
your Java database applications, depending on related settings in the server.

When using an OCI driver in a thick-client setting, set parameters as you would in
any Oracle client situation. When using the Thin driver, set parameters through a
Java properties file.

Encryption is enabled or disabled based on a combination of the client-side
encryption-level setting and the server-side encryption-level setting.

Similarly, integrity is enabled or disabled based on a combination of the client-side
integrity-level setting and the server-side integrity-level setting.

Encryption and integrity support the same setting levels—REJECTED, ACCEPTED,
REQUESTED, and REQUIRED. Table 18–3 shows how these possible settings on the
client-side and server-side combine to either enable or disable the feature.

This table shows, for example, that if encryption is requested by the client, but
rejected by the server, it is disabled. The same is true for integrity. As another
example, if encryption is accepted by the client and requested by the server, it is
enabled. And, again, the same is true for integrity.

The general settings are further discussed in the Oracle Advanced Security
Administrator’s Guide. How to set them for a JDBC application is described in the
following subsections.

Table 18–3 Client/Server Negotiations for Encryption or Integrity

Client
Rejected

Client
Accepted
(default)

Client
Requested

Client
Required

Server
Rejected

OFF OFF OFF connection
fails

Server
Accepted
(default)

OFF OFF ON ON

Server
Requested

OFF ON ON ON

Server
Required

connection
fails

ON ON ON

JDBC Client-Side Security Features

Advanced Topics 18-11

OCI Driver Support for Encryption and Integrity
If you are using one of the Oracle JDBC OCI drivers, which presumes a thick-client
setting with an Oracle client installation, you can enable or disable data encryption
or integrity and set related parameters as you would in any Oracle client situation,
through settings in the SQLNET.ORA file on the client machine.

To summarize, the client parameters are shown in Table 18–4:

These settings, and corresponding settings in the server, are further discussed in
Appendix A of the Oracle Advanced Security Administrator’s Guide.

Note: The term "checksum" still appears in integrity parameter
names, as you will see in the following subsections, but is no longer
used otherwise. For all intents and purposes, "checksum" and
"integrity" are synonymous.

Table 18–4 OCI Driver Client Parameters for Encryption and Integrity

Parameter Description Parameter Name Possible Settings

Client encryption level SQLNET.ENCRYPTION_CLIENT REJECTED
ACCEPTED
REQUESTED
REQUIRED

Client encryption selected
list

SQLNET.ENCRYPTION_TYPES_CLIENT RC4_40
RC4_56
DES
DES40

(see note below)

Client integrity level SQLNET.CRYPTO_CHECKSUM_CLIENT REJECTED
ACCEPTED
REQUESTED
REQUIRED

Client integrity selected list SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT MD5

Note: For the Oracle Advanced Security domestic edition only, a
setting of RC4_128 is also possible.

JDBC Client-Side Security Features

18-12 Oracle9i JDBC Developer’s Guide and Reference

Thin Driver Support for Encryption and Integrity
Thin driver support for data encryption and integrity parameter settings parallels
the thick-client support discussed in the preceding section. Corresponding
parameters exist under the oracle.net package and can be set through a Java
properties object that you would then use in opening your database connection.

If you replace "SQLNET" in the parameter names in Table 18–4 with "oracle.net",
you will get the parameter names supported by the Thin driver (but note that in
Java, the parameter names are all-lowercase).

Table 18–5 lists the parameter information for the Thin driver. See the next section
for examples of how to set these parameters in Java.

Table 18–5 Thin Driver Client Parameters for Encryption and Integrity

Parameter Name
Parameter
Type

Parameter
Class Possible Settings

oracle.net.encryption_client string static REJECTED
ACCEPTED
REQUESTED
REQUIRED

oracle.net.encryption_types_client string static RC4_40
RC4_56
DES40C
DES56C

oracle.net.crypto_checksum_client string static REJECTED
ACCEPTED
REQUESTED
REQUIRED

oracle.net.crypto_checksum_types_client string static MD5

Notes:

■ Because Oracle Advanced Security support for the Thin driver
is incorporated directly into the JDBC classes ZIP file, there is
only one version, not separate domestic and export editions.
Only parameter settings that would be suitable for an export
edition are possible.

■ The "C" in DES40C and DES56C refers to CBC (cipher block
chaining) mode.

JDBC Client-Side Security Features

Advanced Topics 18-13

Setting Encryption and Integrity Parameters in Java
Use a Java properties object (java.util.Properties) to set the data encryption
and integrity parameters supported by the Oracle JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the
parameters in Table 18–5, and then uses the properties object in opening a
connection to the database:

...
Properties prop = new Properties();
prop.put("oracle.net.encryption_client", "REQUIRED");
prop.put("oracle.net.encryption_types_client", "(DES40)");
prop.put("oracle.net.crypto_checksum_client", "REQUESTED");
prop.put("oracle.net.crypto_checksum_types_client", "(MD5)");
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@localhost:1521:main", prop);
...

The parentheses around the parameter values in the encryption_types_client
and crypto_checksum_types_client settings allow for lists of values.
Currently, the Thin driver supports only one possible value in each case; however,
in the future, when multiple values are supported, specifying a list will result in a
negotiation between the server and the client that determines which value is
actually used.

Complete example Following is a complete example of a class that sets data
encryption and integrity parameters before connecting to a database to perform a
query.

Note that in this example, the string "REQUIRED" is retrieved dynamically through
functionality of the AnoServices and Service classes. You have the option of
retrieving the strings in this manner or hardcoding them as in the previous
examples.

import java.sql.*;
import java.sql.*;
import java.io.*;
import java.util.*;
import oracle.net.ns.*;
import oracle.net.ano.*;

class Employee
{
 public static void main (String args [])

JDBC Client-Side Security Features

18-14 Oracle9i JDBC Developer’s Guide and Reference

 throws Exception
 {

 // Register the Oracle JDBC driver
 System.out.println("Registring the driver...");
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

 Properties props = new Properties();

 try {
 FileInputStream defaultStream = new FileInputStream(args[0]);
 props.load(defaultStream);

 int level = AnoServices.REQUIRED;
 props.put("oracle.net.encryption_client", Service.getLevelString(level));
 props.put("oracle.net.encryption_types_client", "(DES40)");
 props.put("oracle.net.crypto_checksum_client",
 Service.getLevelString(level));
 props.put("oracle.net.crypto_checksum_types_client", "(MD5)");
 } catch (Exception e) { e.printStackTrace(); }

 // You can put a database name after the @ sign in the connection URL.
 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@dlsun608.us.oracle.com:1521:main", props);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 // Select the ENAME column from the EMP table
 ResultSet rset = stmt.executeQuery ("select ENAME from EMP");

 // Iterate through the result and print the employee names
 while (rset.next ())
 System.out.println (rset.getString (1));

 conn.close();
 }

}

JDBC in Applets

Advanced Topics 18-15

JDBC in Applets
This section describes some of the basics of working with Oracle JDBC applets,
which must use the JDBC Thin driver so that an Oracle installation is not required
on the client. The Thin driver connects to the database with TCP/IP protocol.

Aside from having to use the Thin driver, and being mindful of applet connection
and security issues, there is essentially no difference between coding a JDBC applet
and a JDBC application. There is also no difference between coding for a JDK 1.2.x
browser or a JDK 1.1.x browser, other than general JDK 1.1.x to 1.2.x migration
issues discussed in "Migration from JDK 1.1.x to JDK 1.2.x" on page 4-5.

This section describes what you must do for the applet to connect to a database,
including how to use the Oracle Connection Manager or signed applets if you are
connecting to a database not running on the same host as the Web server. It also
describes how your applet can connect to a database through a firewall. The section
concludes with how to package and deploy the applet.

The following topics are covered:

■ Connecting to the Database through the Applet

■ Connecting to a Database on a Different Host Than the Web Server

■ Using Applets with Firewalls

■ Packaging Applets

■ Specifying an Applet in an HTML Page

For general information about connecting to the database, see "Open a Connection
to a Database" on page 3-3.

Connecting to the Database through the Applet
The most common task of an applet using the JDBC driver is to connect to and
query a database. Because of applet security restrictions, unless particular steps are
taken an applet can open TCP/IP sockets only to the host from which it was
downloaded (this is the host on which the Web server is running). This means that

Note: Beginning with release 8.1.6, Oracle JDBC no longer
supports JDK 1.0.x versions. This also applies to applets running in
browsers that incorporate JDK 1.0.x versions. The user must
upgrade to a browser with an environment of JDK 1.1.x or higher.

JDBC in Applets

18-16 Oracle9i JDBC Developer’s Guide and Reference

without these steps, your applet can connect only to a database that is running on
the same host as the Web server.

If your database and Web server are running on the same host, then there is no issue
and no special steps are required. You can connect to the database as you would
from an application.

As with connecting from an application, there are two ways in which you can
specify the connection information to the driver. You can provide it in the form of
host:port:sid or in the form of a TNS keyword-value syntax.

For example, if the database to which you want to connect resides on host
prodHost, at port 1521, and SID ORCL, and you want to connect with user name
scott with password tiger, then use either of the two following connect strings:

using host:port:sid syntax:

String connString="jdbc:oracle:thin:@prodHost:1521:ORCL";
conn = DriverManager.getConnection(connString, "scott", "tiger");

using TNS keyword-value syntax:

String connString = "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1521)(host=prodHost)))
 (connect_data=(INSTANCE_NAME=ORCL)))";
conn = DriverManager.getConnection(connString, "scott", "tiger");

If you use the TNS keyword-value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

However, a Web server and an Oracle database server both require many resources;
you seldom find both servers running on the same machine. Usually, your applet
connects to a database on a host other than the one on which the Web server runs.
There are two possible ways in which you can work around the security restriction:

■ You can connect to the database by using the Oracle Connection Manager.

or:

■ You can use a signed applet to connect to the database directly.

These options are discussed in the next section, "Connecting to a Database on a
Different Host Than the Web Server".

JDBC in Applets

Advanced Topics 18-17

Connecting to a Database on a Different Host Than the Web Server
If you are connecting to a database on a host other than the one on which the Web
server is running, then you must overcome applet security restrictions. You can do
this by using either the Oracle Connection Manager or signed applets.

Using the Oracle Connection Manager
The Oracle Connection Manager is a lightweight, highly-scalable program that can
receive Oracle Net packets and re-transmit them to a different server. To a client
running Oracle Net, the Connection Manager looks exactly like a database server.
An applet that uses the JDBC Thin driver can connect to a Connection Manager
running on the Web server host and have the Connection Manager redirect the
Oracle Net packets to an Oracle server running on a different host.

Figure 18–1 illustrates the relationship between the applet, the Oracle Connection
Manager, and the database.

Figure 18–1 Applet, Connection Manager, and Database Relationship

Using the Oracle Connection Manager requires two steps:

■ Install and run the Connection Manager.

■ Write the connection string that targets the Connection Manager.

There is also discussion of how to connect using multiple connection managers.

Installing and Running the Oracle Connection Manager You must install the Connection
Manager, available on the Oracle9i distribution media, onto the Web server host.
You can find the installation instructions in the Oracle Net Services Administrator’s
Guide.

applet
in browser

oraHostwebHost

any
Oracle Net
protocol

TCP/IP
(only)

Oracle Net Listener
CMAN

web server

JDBC in Applets

18-18 Oracle9i JDBC Developer’s Guide and Reference

On the Web server host, create a CMAN.ORA file in the [ORACLE_
HOME]/NET8/ADMIN directory. The options you can declare in a CMAN.ORA file
include firewall and connection pooling support.

Here is an example of a very simple CMAN.ORA file. Replace <web-server-host> with
the name of your Web server host. The fourth line in the file indicates that the
Connection Manager is listening on port 1610. You must use this port number in
your connect string for JDBC.

cman = (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL=TCP)
 (HOST=<web-server-host>)
 (PORT=1610)))

cman_profile = (parameter_list =
 (MAXIMUM_RELAYS=512)
 (LOG_LEVEL=1)
 (TRACING=YES)
 (RELAY_STATISTICS=YES)
 (SHOW_TNS_INFO=YES)
 (USE_ASYNC_CALL=YES)
 (AUTHENTICATION_LEVEL=0)
)

Note that the Java Oracle Net version inside the JDBC Thin driver does not have
authentication service support. This means that the AUTHENTICATION_LEVEL
configuration parameter in the CMAN.ORA file must be set to 0.

After you create the file, start the Connection Manager at the operating system
prompt with this command:

cmctl start

To use your applet, you must now write the connect string for it.

Writing the Connect String that Targets the Connection Manager This section describes
how to write the connect string in your applet so that the applet connects to the
Connection Manager, and the Connection Manager connects with the database. In
the connect string, you specify an address list that lists the protocol, port, and name
of the Web server host on which the Connection Manager is running, followed by
the protocol, port, and name of the host on which the database is running.

The following example describes the configuration illustrated in Figure 18–1. The
Web server on which the Connection Manager is running is on host webHost and is
listening on port 1610. The database to which you want to connect is running on

JDBC in Applets

Advanced Topics 18-19

host oraHost, listening on port 1521, and SID ORCL. You write the connect string
in TNS keyword-value format:

Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:" +
 "@(description=(address_list=" +
 "(address=(protocol=tcp)(host=webHost)(port=1610))" +
 "(address=(protocol=tcp)(host=oraHost)(port=1521)))" +
 "(source_route=yes)" +
 "(connect_data=(INSTANCE_NAME=orcl)))", "scott", "tiger");

The first element in the address_list entry represents the connection to the
Connection Manager. The second element represents the database to which you
want to connect. The order in which you list the addresses is important.

Notice that you can also write the same connect string in this format:

String connString =
 "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1610)(host=webHost))
 (address=(protocol=tcp)(port=1521)(host=oraHost)))
 (connect_data=(INSTANCE_NAME=orcl))
 (source_route=yes))";
Connection conn = DriverManager.getConnection(connString, "scott", "tiger");

When your applet uses a connect string such as the one above, it will behave exactly
as if it were connected directly to the database on the host oraHost.

For more information on the parameters that you specify in the connect string, see
the Oracle Net Services Administrator’s Guide.

Connecting through Multiple Connection Managers Your applet can reach its target
database even if it first has to go through multiple Connection Managers (for
example, if the Connection Managers form a "proxy chain"). To do this, add the
addresses of the Connection Managers to the address list, in the order that you plan
to access them. The database listener should be the last address on this list. See the
Oracle Net Services Administrator’s Guide for more information about source_
route addressing.

Using Signed Applets
In either a JDK 1.2.x-based browser or a JDK 1.1.x-based browser, an applet can
request socket connection privileges and connect to a database running on a
different host than the Web server host. In Netscape 4.0, you perform this by signing
your applet (that is, writing a signed applet). You must follow these steps:

JDBC in Applets

18-20 Oracle9i JDBC Developer’s Guide and Reference

1. Sign the applet. For information on the steps you must follow to sign an applet,
see Sun Microsystem’s Signed Applet Example at:

http://java.sun.com/security/signExample/index.html

2. Include applet code that asks for appropriate permission before opening a
socket.

If you are using Netscape, then your code would include a statement like this:

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");
connection = DriverManager.getConnection
 ("jdbc:oracle:thin:scott/tiger@dlsun511:1721:orcl");

3. You must obtain an object-signing certificate. See Netscape’s Object-Signing
Resources page at:

http://developer.netscape.com/software/signedobj/index.html

This site provides information on obtaining and installing a certificate.

For more information on writing applet code that asks for permissions, see
Netscape’s Introduction to Capabilities Classes at:

http://developer.netscape.com/docs/manuals/signedobj/capabilities/contents.htm

For information about the Java Security API, including signed applet examples
under JDK 1.2.x and 1.1.x, see the following Sun Microsystems site:

http://java.sun.com/security

Using Applets with Firewalls
Under normal circumstances, an applet that uses the JDBC Thin driver cannot
access the database through a firewall. In general, the purpose of a firewall is to
prevent unauthorized clients from reaching the server. In the case of applets trying
to connect to the database, the firewall prevents the opening of a TCP/IP socket to
the database.

Firewalls are rule-based. They have a list of rules that define which clients can
connect, and which cannot. Firewalls compare the client's hostname with the rules,
and based on this comparison, either grant the client access, or not. If the hostname
lookup fails, the firewall tries again. This time, the firewall extracts the IP address of
the client and compares it to the rules. The firewall is designed to do this so that
users can specify rules that include hostnames as well as IP addresses.

JDBC in Applets

Advanced Topics 18-21

You can solve the firewall issue by using an Oracle Net-compliant firewall and
connection strings that comply with the firewall configuration. Oracle
Net-compliant firewalls are available from many leading vendors; a more detailed
discussion of these firewalls is beyond the scope of this manual.

An unsigned applet can access only the same host from which it was downloaded.
In this case, the Oracle Net-compliant firewall must be installed on that host. In
contrast, a signed applet can connect to any host. In this case, the firewall on the
target host controls the access.

Connecting through a firewall requires two steps, described in the following
sections:

■ Configuring a Firewall for Applets that use the JDBC Thin Driver

■ Writing a Connect String to Connect through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver
The instructions in this section assume that you are running an Oracle
Net-compliant firewall.

Java applets do not have access to the local system—that is, they cannot get the
hostname or environment variables locally—because of security limitations. As a
result, the JDBC Thin driver cannot access the hostname on which it is running. The
firewall cannot be provided with the hostname. To allow requests from JDBC Thin
clients to go through the firewall, you must do the following two things to the
firewall’s list of rules:

■ Add the IP address (not the hostname) of the host on which the JDBC applet is
running.

■ Ensure that the hostname "__jdbc__" never appears in the firewall’s rules.
This hostname has been hard-coded as a false hostname inside the driver to
force an IP address lookup. If you do enter this hostname in the list of rules,
then every applet using Oracle's JDBC Thin driver will be able to go through
your firewall.

By not including the Thin driver’s hostname, the firewall is forced to do an IP
address lookup and base its access decision on the IP address, instead of the
hostname.

JDBC in Applets

18-22 Oracle9i JDBC Developer’s Guide and Reference

Writing a Connect String to Connect through a Firewall
To write a connect string that allows you to connect through a firewall, you must
specify the name of the firewall host and the name of the database host to which
you want to connect.

For example, if you want to connect to a database on host oraHost, listening on
port 1521, with SID ORCL, and you are going though a firewall on host
fireWallHost, listening on port 1610, then use the following connect string:

Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:" +
 "@(description=(address_list=" +
 (address=(protocol=tcp)(host=<firewall-host>)(port=1610))" +
 "(address=(protocol=tcp)(host=oraHost)(port=1521)))" +
 "(source_route=yes)" +
 "(connect_data=(INSTANCE_NAME=orcl)))", "scott", "tiger");

The first element in the address_list represents the connection to the firewall.
The second element represents the database to which you want to connect. Note
that the order in which you specify the addresses is important.

Notice that you can also write the preceding connect string in this format:

String connString =
 "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1600)(host=fireWallHost))
 (address=(protocol=tcp)(port=1521)(host=oraHost)))
 (connect_data=(INSTANCE_NAME=orcl))
 (source_route=yes))";
Connection conn = DriverManager.getConnection(connString, "scott", "tiger");

When your applet uses a connect string similar to the one above, it will behave as if
it were connected to the database on host oraHost.

Note: To connect through a firewall, you cannot specify the
connection string in host:port:sid syntax. For example, a
connection string specified as follows will not work:

String connString =
 "jdbc:oracle:thin:@ixta.us.oracle.com:1521:orcl";
conn = DriverManager.getConnection (connString, "scott",
 "tiger");

JDBC in Applets

Advanced Topics 18-23

For more information on the parameters used in the above example, see the Oracle
Net Services Administrator’s Guide. For more information on how to configure a
firewall, please see your firewall’s documentation or contact your firewall vendor.

Packaging Applets
After you have coded your applet, you must package it and make it available to
users. To package an applet, you will need your applet class files and the JDBC
driver class files (these will be contained in either classes12.zip, if you are
targeting a browser that incorporates a JDK 1.2.x version, or classes111.zip, for
a browser incorporating a JDK 1.1.x version).

Follow these steps:

1. Move the JDBC driver classes file classes12.zip (or classes111.zip) to
an empty directory.

If your applet will connect to a database with a non-US7ASCII and
non-WE8ISO8859P1 character set, then also move the nls_charset12.zip
or nls_charset11.zip file to the same directory.

2. Unzip the JDBC driver classes ZIP file (and character set ZIP file, if applicable).

3. Add your applet classes files to the directory, and any other files the applet
might require.

4. Zip the applet classes and driver classes together into a single ZIP or JAR file.
The single zip file should contain the following:

■ class files from classes12.zip or classes111.zip (and required class
files from nls_charset12.zip or nls_charset11.zip if the applet
requires Globalization Support)

■ your applet classes

Additionally, if you are using DatabaseMetaData entry points in your applet,
include the oracle/jdbc/driver/OracleDatabaseMetaData.class file.
Note that this file is very large and might have a negative impact on
performance. If you do not use DatabaseMetaData methods, omit this file.

5. Ensure that the ZIP or JAR file is not compressed.

Note: All the parameters shown in the preceding example are
required. In the address_list, the firewall address must precede
the database server address.

JDBC in Applets

18-24 Oracle9i JDBC Developer’s Guide and Reference

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet ARCHIVE=JdbcApplet.zip
 CODEBASE=Applet_Samples
</APPLET>

You can find a description of the APPLET, CODE, ARCHIVE, CODEBASE, WIDTH, and
HEIGHT parameters in the next section.

Specifying an Applet in an HTML Page
The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have these parameters: CODE, ARCHIVE, CODEBASE, WIDTH, and
HEIGHT to specify the name of the applet and its location, and the height and width
of the applet display area. These parameters are described in the following sections.

CODE, HEIGHT, and WIDTH
The HTML page that runs the applet must have an APPLET tag with an initial
width and height to specify the size of the applet display area. You use the HEIGHT
and WIDTH parameters to specify the size, measured in pixels. This size should not
count any windows or dialogs that the applet opens.

The APPLET tag must also specify the name of the file that contains the applet’s
compiled Applet subclass—specify the file name with the CODE parameter. Any
path must be relative to the base URL of the applet—the path cannot be absolute.

In the following example, JdbcApplet.class is the name of the Applet’s
compiled applet subclass:

<APPLET CODE="JdbcApplet" WIDTH=500 HEIGHT=200>
</APPLET>

If you use this form of the CODE tag, then the classes for the applet and the classes
for the JDBC Thin driver must be in the same directory as the HTML page.

Notice that in the CODE specification, you do not include the file name extension
".class".

CODEBASE
The CODEBASE parameter is optional and specifies the base URL of the applet; that
is, the name of the directory that contains the applet’s code. If it is not specified,
then the document’s URL is used. This means that the classes for the applet and the

JDBC in Applets

Advanced Topics 18-25

JDBC Thin driver must be in the same directory as the HTML page. For example, if
the current directory is my_Dir:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="."
</APPLET>

The entry CODEBASE="." indicates that the applet resides in the current directory
(my_Dir). If the value of codebase was set to Applet_Samples, for example:

CODEBASE="Applet_Samples"

This would indicate that the applet resides in the my_Dir/Applet_Samples
directory.

ARCHIVE
The ARCHIVE parameter is optional and specifies the name of the archive file (either
a .zip or .jar file), if applicable, that contains the applet classes and resources the
applet needs. Oracle recommends using a .zip file or .jar file, which saves many
extra roundtrips to the server.

The .zip (or .jar) file will be preloaded. If you have more than one archive in the
list, separate them with commas. In the following example, the class files are stored
in the archive file JdbcApplet.zip:

<APPLET CODE="JdbcApplet" ARCHIVE="JdbcApplet.zip" WIDTH=500 HEIGHT=200>
</APPLET>

Note: Version 3.0 browsers do not support the ARCHIVE
parameter.

JDBC in the Server: the Server-Side Internal Driver

18-26 Oracle9i JDBC Developer’s Guide and Reference

JDBC in the Server: the Server-Side Internal Driver
This section covers the following topics:

■ Connecting to the Database with the Server-Side Internal Driver

■ Exception-Handling Extensions for the Server-Side Internal Driver

■ Session and Transaction Context for the Server-Side Internal Driver

■ Testing JDBC on the Server

■ Server-Side Character Set Conversion of oracle.sql.CHAR Data

This driver is intrinsically tied to the Oracle database and to the Java virtual
machine (JVM). The driver runs as part of the same process as the database. It also
runs within the default session—the same session in which the JVM was invoked.

The server-side internal driver is optimized to run within the database server and
provide direct access to SQL data and PL/SQL subprograms on the local database.
The entire JVM operates in the same address space as the database and the SQL
engine. Access to the SQL engine is a function call; there is no network. This
enhances the performance of your JDBC programs and is much faster than
executing a remote Oracle Net call to access the SQL engine.

The server-side internal driver supports the same features, APIs, and Oracle
extensions as the client-side drivers. This makes application partitioning very
straightforward. For example, if you have a Java application that is data-intensive,
you can easily move it into the database server for better performance, without
having to modify the application-specific calls.

For general information about the Oracle Java platform server-side configuration or
functionality, see the Oracle9i Java Developer’s Guide.

Connecting to the Database with the Server-Side Internal Driver
As described in the preceding section, the server-side internal driver runs within a
default session. You are already "connected". There are two methods you can use to
access the default connection:

■ Use the static DriverManager.getConnection() method, with either
jdbc:oracle:kprb or jdbc:default:connection as the URL string.

■ Use the Oracle-specific defaultConnection() method of the
OracleDriver class.

Using defaultConnection() is generally recommended.

JDBC in the Server: the Server-Side Internal Driver

Advanced Topics 18-27

Connecting with the OracleDriver Class defaultConnection() Method
The oracle.jdbc.OracleDriver class defaultConnection() method is an
Oracle extension and always returns the same connection object. Even if you invoke
this method multiple times, assigning the resulting connection object to different
variable names, just a single connection object is reused.

You do not need to include a connect string in the defaultConnection() call.
For example:

import java.sql.*;
import oracle.jdbc.*;

class JDBCConnection
{
 public static Connection connect() throws SQLException
 {
 Connection conn = null;
 try {
 // connect with the server-side internal driver
 OracleDriver ora = new OracleDriver();
 conn = ora.defaultConnection();
 }

 } catch (SQLException e) {...}
 return conn;
 }
}

Note that there is no conn.close() call in the example. When JDBC code is
running inside the target server, the connection is an implicit data channel, not an
explicit connection instance as from a client. It should typically not be closed.

If you do call the close() method, be aware of the following:

■ All connection instances obtained through the defaultConnection()
method, which actually all reference the same connection object, will be closed
and unavailable for further use, with state and resource cleanup as appropriate.

Note: You are no longer required to register the OracleDriver
class for connecting with the server-side internal driver, although
there is no harm in doing so. This is true whether you are using
getConnection() or defaultConnection() to make the
connection.

JDBC in the Server: the Server-Side Internal Driver

18-28 Oracle9i JDBC Developer’s Guide and Reference

Executing defaultConnection() afterward would result in a new
connection object.

■ Even though the connection object is closed, the implicit connection to the
database will not be closed.

Connecting with the DriverManager.getConnection() Method
To connect to the internal server connection from code that is running within the
target server, you can use the static DriverManager.getConnection() method
with either of the following connect strings:

DriverManager.getConnection("jdbc:oracle:kprb:");

or:

DriverManager.getConnection("jdbc:default:connection:");

Any user name or password you include in the URL string is ignored in connecting
to the server default connection.

The DriverManager.getConnection() method returns a new Java
Connection object every time you call it. Note that although the method is not
creating a new physical connection (only a single implicit connection is used), it is
returning a new object.

The fact that DriverManager.getConnection() returns a new connection
object every time you call it is significant if you are working with object maps (or
"type maps"). A type map is associated with a specific Connection object and with
any state that is part of the object. If you want to use multiple type maps as part of
your program, then you can call getConnection() to create a new Connection
object for each type map.

Exception-Handling Extensions for the Server-Side Internal Driver
The server-side internal driver, in addition to having standard exception-handling
capabilities such as getMessage(), getErrorCode(), and getSQLState() (as
described in "Processing SQL Exceptions" on page 3-34), offers extended features
through the oracle.jdbc.driver.OracleSQLException class. This class is a
subclass of the standard java.sql.SQLException class and is not available to
the client-side JDBC drivers or the server-side Thin driver.

When an error condition occurs in the server, it often results in a series of related
errors being placed in an internal error stack. The JDBC server-side internal driver

JDBC in the Server: the Server-Side Internal Driver

Advanced Topics 18-29

retrieves errors from the stack and places them in a chain of
OracleSQLException objects.

You can use the following methods in processing these exceptions:

■ SQLException getNextException() (standard method)

This method returns the next exception in the chain (or null if no further
exceptions). You can start with the first exception you receive and work through
the chain.

■ int getNumParameters() (Oracle extension)

Errors from the server usually include parameters, or variables, that are part of
the error message. These may indicate what type of error occurred, what kind
of operation was being attempted, or the invalid or affected values.

This method returns the number of parameters included with this error.

■ Object[] getParameters() (Oracle extension)

This method returns a Java Object[] array containing the parameters
included with this error.

Example Following is an example of server-side error processing:

try
{
 // should get "ORA-942: table or view does not exist"
 stmt.execute("drop table no_such_table");
}
catch (OracleSQLException e)
{
 System.out.println(e.getMessage());
 // prints "ORA-942: table or view does not exist"

 System.out.println(e.getNumParameters());
 // prints "1"

 Object[] params = e.getParameters();
 System.out.println(params[0]);
 // prints "NO_SUCH_TABLE"
}

JDBC in the Server: the Server-Side Internal Driver

18-30 Oracle9i JDBC Developer’s Guide and Reference

Session and Transaction Context for the Server-Side Internal Driver
The server-side driver operates within a default session and default transaction
context. The default session is the session in which the JVM was invoked. In effect,
you are already connected to the database on the server. This is different from the
client side where there is no default session: you must explicitly connect to the
database.

Auto-commit mode is disabled in the server. You must manage transaction COMMIT
and ROLLBACK operations explicitly by using the appropriate methods on the
connection object:

conn.commit();

or:

conn.rollback();

Testing JDBC on the Server
Almost any JDBC program that can run on a client can also run on the server. All
the programs in the samples directory can be run on the server with only minor
modifications. Usually, these modifications concern only the connection statement.

For example, consider the test program JdbcCheckup.java described in "Testing
JDBC and the Database Connection: JdbcCheckup" on page 2-9. If you want to run
this program on the server and connect with the
DriverManager.getConnection() method, then open the file in your favorite
text editor and change the driver name in the connection string from "oci" to
"kprb". For example:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:kprb:@" + database, user, password);

The advantage of using this method is that you must change only a short string in
your original program. The disadvantage is that you still must provide the user,
password, and database information, even though the driver will discard it. In
addition, if you issue the getConnection() method again, the driver will create
another new (and unnecessary) connection object.

However, if you connect with defaultConnection(), the preferred method of
connecting to the database from the server-side internal driver, you do not have to
enter any user, password, or database information. You can delete these statements
from your program.

JDBC in the Server: the Server-Side Internal Driver

Advanced Topics 18-31

For the connection statement, use:

Connection conn = new oracle.jdbc.OracleDriver().defaultConnection();

The following example is a rewrite of the JdbcCheckup.java program which
uses the defaultConnection() connection statement. The connection statement
is printed in bold. The unnecessary user, password, and database information
statements, along with the utility function to read from standard input, have been
deleted.

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */
// You need to import the java.sql package to use JDBC
import java.sql.*;
// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
 public static void main (String args []) throws SQLException, IOException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

 Connection conn =
 new oracle.jdbc.OracleDriver ().defaultConnection ();

 // Create a statement
 Statement stmt = conn.createStatement ();

 // Do the SQL "Hello World" thing
 ResultSet rset = stmt.executeQuery ("SELECT 'Hello World' FROM dual");

 while (rset.next ())
 System.out.println (rset.getString (1));
 System.out.println ("Your JDBC installation is correct.");
 }
}

JDBC in the Server: the Server-Side Internal Driver

18-32 Oracle9i JDBC Developer’s Guide and Reference

Loading an Application into the Server
When loading an application into the server, you can load .class files that you
have already compiled on the client, or you can load .java source files and have
them compiled automatically in the server.

In either case, use the Oracle loadjava client-side utility to load your files. You can
either specify source file names on the command line (note that the command line
understands wildcards), or put the files into a JAR file and specify the JAR file name
on the command line. The loadjava utility is discussed in detail in the Oracle9i
Java Developer’s Guide.

The loadjava script, which runs the actual utility, is in the bin subdirectory under
your [Oracle Home] directory. This directory should already be in your path once
Oracle has been installed.

Loading Class Files into the Server
Consider a case where you have three class files in your application: Foo1.class,
Foo2.class, and Foo3.class. The following three examples demonstrate: 1)
specifying the individual class file names; 2) specifying the class file names using a
wildcard; and 3) specifying a JAR file that contains the class files.

Each class is written into its own class schema object in the server.

These three examples use the default OCI driver in loading the files:

loadjava -user scott/tiger Foo1.class Foo2.class Foo3.class

or:

loadjava -user scott/tiger Foo*.class

or:

loadjava -user scott/tiger Foo.jar

Or use the following command to load with the Thin driver (specifying the -thin
option and an appropriate URL):

loadjava -thin -user scott/tiger@localhost:1521:ORCL Foo.jar

Note: As of release 8.1.6, the loadjava utility does support
compressed files.

JDBC in the Server: the Server-Side Internal Driver

Advanced Topics 18-33

(Whether to use an OCI driver or the Thin driver to load classes depends on your
particular environment and which performs better for you.)

Loading Source Files into the Server
If you enable the loadjava -resolve option in loading a .java source file, then
the server-side compiler will compile your application as it is loaded, resulting in
both a source schema object for the original source code, and one or more class
schema objects for the compiled output.

If you do not specify -resolve, then the source is loaded into a source schema
object without any compilation. In this case, however, the source is implicitly
compiled the first time an attempt is made to use a class defined in the source.

For example, run loadjava as follows to load and compile Foo.java, using the
default OCI driver:

loadjava -user scott/tiger -resolve Foo.java

Or use the following command to load with the Thin driver (specifying the -thin
option and an appropriate URL):

loadjava -thin -user scott/tiger@localhost:1521:ORCL -resolve Foo.java

Either of these will result in appropriate class schema objects being created in
addition to the source schema object.

Server-Side Character Set Conversion of oracle.sql.CHAR Data
The server-side internal driver performs character set conversions for
oracle.sql.CHAR in C. This is a different implementation than for the client-side
drivers, which perform character set conversions for oracle.sql.CHAR in Java,

Note: Because the server-side embedded JVM uses JDK 1.2.x, it is
advisable to compile classes under JDK 1.2.x if they will be loaded
into the server. This will catch incompatibilities during compilation,
instead of at runtime (for example, JDK 1.1.x artifacts such as
leftover use of the oracle.jdbc2 package).

Note: Oracle generally recommends compiling source on the
client whenever possible, and loading the .class files instead of
the source files into the server.

JDBC in the Server: the Server-Side Internal Driver

18-34 Oracle9i JDBC Developer’s Guide and Reference

and offers better performance. For more information on the oracle.sql.CHAR
class, see "Class oracle.sql.CHAR" on page 6-29.

Coding Tips and Troubleshooting 19-1

19
Coding Tips and Troubleshooting

This chapter describes how to optimize and troubleshoot a JDBC application or
applet, including the following topics:

■ JDBC and Multithreading

■ Performance Optimization

■ Common Problems

■ Basic Debugging Procedures

■ Transaction Isolation Levels and Access Modes

JDBC and Multithreading

19-2 Oracle9i JDBC Developer’s Guide and Reference

JDBC and Multithreading
The Oracle JDBC drivers provide full support for programs that use Java
multithreading. The following example creates a specified number of threads and
lets you determine whether or not the threads will share a connection. If you choose
to share the connection, then the same JDBC connection object will be used by all
threads (each thread will have its own statement object, however).

Because all Oracle JDBC API methods are synchronized, if two threads try to use
the connection object simultaneously, then one will be forced to wait until the other
one finishes its use.

The program displays each thread ID and the employee name and employee ID
associated with that thread.

Execute the program by entering:

java JdbcMTSample [number_of_threads] [share]

Where number_of_threads is the number of threads that you want to create, and
share specifies that you want the threads to share the connection. If you do not
specify the number of threads, then the program creates 10 by default.

/*
 * This sample is a multi-threaded JDBC program.
 */

import java.sql.*;
import oracle.jdbc.OracleStatement;

public class JdbcMTSample extends Thread
{
 // Default no of threads to 10
 private static int NUM_OF_THREADS = 10;

 int m_myId;

 static int c_nextId = 1;
 static Connection s_conn = null;
 static boolean share_connection = false;

 synchronized static int getNextId()
 {
 return c_nextId++;
 }

JDBC and Multithreading

Coding Tips and Troubleshooting 19-3

 public static void main (String args [])
 {
 try
 {
 /* Load the JDBC driver */
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

 // If NoOfThreads is specified, then read it
 if ((args.length > 2) ||
 ((args.length > 1) && !(args[1].equals("share"))))
 {
 System.out.println("Error: Invalid Syntax. ");
 System.out.println("java JdbcMTSample [NoOfThreads] [share]");
 System.exit(0);
 }

 if (args.length > 1)
 {
 share_connection = true;
 System.out.println
 ("All threads will be sharing the same connection");
 }

 // get the no of threads if given
 if (args.length > 0)
 NUM_OF_THREADS = Integer.parseInt (args[0]);

 // get a shared connection
 if (share_connection)
 s_conn = DriverManager.getConnection
 ("jdbc:oracle:" +args[1], "scott","tiger");

 // Create the threads
 Thread[] threadList = new Thread[NUM_OF_THREADS];

 // spawn threads
 for (int i = 0; i < NUM_OF_THREADS; i++)
 {
 threadList[i] = new JdbcMTSample();
 threadList[i].start();
 }

 // Start everyone at the same time
 setGreenLight ();

JDBC and Multithreading

19-4 Oracle9i JDBC Developer’s Guide and Reference

 // wait for all threads to end
 for (int i = 0; i < NUM_OF_THREADS; i++)
 {
 threadList[i].join();
 }

 if (share_connection)
 {
 s_conn.close();
 s_conn = null;
 }

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 public JdbcMTSample()
 {
 super();
 // Assign an Id to the thread
 m_myId = getNextId();
 }

 public void run()
 {
 Connection conn = null;
 ResultSet rs = null;
 Statement stmt = null;

 try
 {
 // Get the connection

 if (share_connection)
 stmt = s_conn.createStatement (); // Create a Statement
 else
 {
 conn = DriverManager.getConnection("jdbc:oracle:oci:@",
 "scott","tiger");
 stmt = conn.createStatement (); // Create a Statement
 }

JDBC and Multithreading

Coding Tips and Troubleshooting 19-5

 while (!getGreenLight())
 yield();

 // Execute the Query
 rs = stmt.executeQuery ("select * from EMP");

 // Loop through the results
 while (rs.next())
 {
 System.out.println("Thread " + m_myId +
 " Employee Id : " + rs.getInt(1) +
 " Name : " + rs.getString(2));
 yield(); // Yield To other threads
 }

 // Close all the resources
 rs.close();
 rs = null;

 // Close the statement
 stmt.close();
 stmt = null;

 // Close the local connection
 if ((!share_connection) && (conn != null))
 {
 conn.close();
 conn = null;
 }
 System.out.println("Thread " + m_myId + " is finished. ");
 }
 catch (Exception e)
 {
 System.out.println("Thread " + m_myId + " got Exception: " + e);
 e.printStackTrace();
 return;
 }
 }

 static boolean greenLight = false;
 static synchronized void setGreenLight () { greenLight = true; }
 synchronized boolean getGreenLight () { return greenLight; }

}

Performance Optimization

19-6 Oracle9i JDBC Developer’s Guide and Reference

Performance Optimization
You can significantly enhance the performance of your JDBC programs by using
any of these features:

■ Disabling Auto-Commit Mode

■ Standard Fetch Size and Oracle Row Prefetching

■ Standard and Oracle Update Batching

Disabling Auto-Commit Mode
Auto-commit mode indicates to the database whether to issue an automatic COMMIT
operation after every SQL operation. Being in auto-commit mode can be expensive
in terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the setAutoCommit() method of the connection
object (either java.sql.Conection or oracle.jdbc.OracleConnection).

In auto-commit mode, the COMMIT operation occurs either when the statement
completes or the next execute occurs, whichever comes first. In the case of
statements returning a ResultSet, the statement completes when the last row of
the ResultSet has been retrieved or when the ResultSet has been closed. In
more complex cases, a single statement can return multiple results as well as output
parameter values. Here, the COMMIT occurs when all results and output parameter
values have been retrieved.

If you disable auto-commit mode with a setAutoCommit(false) call, then you
must manually commit or roll back groups of operations using the commit() or
rollback() method of the connection object.

Example: Disabling AutoCommit The following example illustrates loading the driver
and connecting to the database. Because new connections are in auto-commit mode
by default, this example shows how to disable auto-commit. In the example, conn
represents the Connection object, and stmt represents the Statement object.

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

// Connect to the database
// You can put a database hostname after the @ sign in the connection URL.
Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci:@", "scott", "tiger");

Performance Optimization

Coding Tips and Troubleshooting 19-7

// It's faster when auto commit is off
conn.setAutoCommit (false);

// Create a Statement
Statement stmt = conn.createStatement ();
...

Standard Fetch Size and Oracle Row Prefetching
Oracle JDBC connection and statement objects allow you to specify the number of
rows to prefetch into the client with each trip to the database while a result set is
being populated during a query. You can set a value in a connection object that
affects each statement produced through that connection, and you can override that
value in any particular statement object. The default value in a connection object is
10. Prefetching data into the client reduces the number of round trips to the server.

Similarly, and with more flexibility, JDBC 2.0 allows you to specify the number of
rows to fetch with each trip, both for statement objects (affecting subsequent
queries) and for result set objects (affecting row refetches). By default, a result set
uses the value for the statement object that produced it. If you do not set the JDBC
2.0 fetch size, then the Oracle connection row-prefetch value is used by default.

For more information, see "Oracle Row Prefetching" on page 12-20 and "Fetch Size"
on page 13-24.

Standard and Oracle Update Batching
The Oracle JDBC drivers allow you to accumulate INSERT, DELETE, and UPDATE
operations of prepared statements at the client and send them to the server in
batches. This feature reduces round trips to the server. You can either use Oracle
update batching, which typically executes a batch implicitly once a pre-set batch
value is reached, or standard update batching, where the batch is executed
explicitly.

For a description of the update batching models and how to use them, see "Update
Batching" on page 12-2.

Common Problems

19-8 Oracle9i JDBC Developer’s Guide and Reference

Common Problems
This section describes some common problems that you might encounter while
using the Oracle JDBC drivers. These problems include:

■ Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables

■ Memory Leaks and Running Out of Cursors

■ Boolean Parameters in PL/SQL Stored Procedures

■ Opening More Than 16 OCI Connections for a Process

Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
In PL/SQL, CHAR columns defined as OUT or IN/OUT variables are returned to a
length of 32767 bytes, padded with spaces as needed. Note that VARCHAR2 columns
do not exhibit this behavior.

To avoid this problem, use the setMaxFieldSize() method on the Statement
object to set a maximum limit on the length of the data that can be returned for any
column. The length of the data will be the value you specify for
setMaxFieldSize(), padded with spaces as needed. You must select the value
for setMaxFieldSize() carefully, because this method is statement-specific and
affects the length of all CHAR, RAW, LONG, LONG RAW, and VARCHAR2 columns.

To be effective, you must invoke the setMaxFieldSize() method before you
register your OUT variables.

Memory Leaks and Running Out of Cursors
If you receive messages that you are running out of cursors or that you are running
out of memory, make sure that all your Statement and ResultSet objects are
explicitly closed. The Oracle JDBC drivers do not have finalizer methods. They
perform cleanup routines by using the close() method of the ResultSet and
Statement classes. If you do not explicitly close your result set and statement
objects, significant memory leaks can occur. You could also run out of cursors in the
database. Closing a result set or statement releases the corresponding cursor in the
database.

Similarly, you must explicitly close Connection objects to avoid leaking and
running out of cursors on the server side. When you close the connection, the JDBC
driver closes any open statement objects associated with it, thus releasing the cursor
objects on the server side.

Common Problems

Coding Tips and Troubleshooting 19-9

Boolean Parameters in PL/SQL Stored Procedures
Due to a restriction in the OCI layer, the JDBC drivers do not support the passing of
BOOLEAN parameters to PL/SQL stored procedures. If a PL/SQL procedure
contains BOOLEAN values, you can work around the restriction by wrapping the
PL/SQL procedure with a second PL/SQL procedure that accepts the argument as
an INT and passes it to the first stored procedure. When the second procedure is
called, the server performs the conversion from INT to BOOLEAN.

The following is an example of a stored procedure, BOOLPROC, that attempts to pass
a BOOLEAN parameter, and a second procedure, BOOLWRAP, that performs the
substitution of an INT value for the BOOLEAN.

CREATE OR REPLACE PROCEDURE boolproc(x boolean)
AS
BEGIN
[...]
END;

CREATE OR REPLACE PROCEDURE boolwrap(x int)
AS
BEGIN
IF (x=1) THEN
 boolproc(TRUE);
ELSE
 boolproc(FALSE);
END IF;
END;

// Create the database connection
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@<...hoststring...>", "scott", "tiger");
CallableStatement cs = conn.prepareCall ("begin boolwrap(?); end;");
cs.setInt(1, 1);
cs.execute ();

Opening More Than 16 OCI Connections for a Process
You might find that you are not able to open more than approximately 16 JDBC-OCI
connections for a process at any given time. The most likely reasons for this would
be either that the number of processes on the server exceeded the limit specified in
the initialization file, or that the per-process file descriptors limit was exceeded. It is

Common Problems

19-10 Oracle9i JDBC Developer’s Guide and Reference

important to note that one JDBC-OCI connection can use more than one file
descriptor (it might use anywhere between 3 and 4 file descriptors).

If the server allows more than 16 processes, then the problem could be with the
per-process file descriptor limit. The possible solution would be to increase this
limit.

Basic Debugging Procedures

Coding Tips and Troubleshooting 19-11

Basic Debugging Procedures
This section describes strategies for debugging a JDBC program:

■ Oracle Net Tracing to Trap Network Events

■ Third Party Debugging Tools

For information about processing SQL exceptions, including printing stack traces to
aid in debugging, see "Processing SQL Exceptions" on page 3-34.

Oracle Net Tracing to Trap Network Events
You can enable client and server Oracle-Net trace to trap the packets sent over
Oracle Net. You can use client-side tracing only for the JDBC OCI driver; it is not
supported for the JDBC Thin driver. You can find more information on tracing and
reading trace files in the Oracle Net Services Administrator’s Guide.

The trace facility produces a detailed sequence of statements that describe network
events as they execute. "Tracing" an operation lets you obtain more information on
the internal operations of the event. This information is output to a readable file that
identifies the events that led to the error. Several Oracle Net parameters in the
SQLNET.ORA file control the gathering of trace information. After setting the
parameters in SQLNET.ORA, you must make a new connection for tracing to be
performed.

The higher the trace level, the more detail is captured in the trace file. Because the
trace file can be hard to understand, start with a trace level of 4 when enabling
tracing. The first part of the trace file contains connection handshake information,
so look beyond this for the SQL statements and error messages related to your JDBC
program.

Note: The trace facility uses a large amount of disk space and
might have significant impact upon system performance. Therefore,
enable tracing only when necessary.

Basic Debugging Procedures

19-12 Oracle9i JDBC Developer’s Guide and Reference

Client-Side Tracing
 Set the following parameters in the SQLNET.ORA file on the client system.

TRACE_LEVEL_CLIENT

TRACE_DIRECTORY_CLIENT

TRACE_FILE_CLIENT

TRACE_UNIQUE_CLIENT

Purpose: Turns tracing on/off to a certain specified level.

Default Value: 0 or OFF

Available
Values:

■ 0 or OFF - No trace output

■ 4 or USER - User trace information

■ 10 or ADMIN - Administration trace information

■ 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_CLIENT=10

Purpose: Specifies the destination directory of the trace file.

Default Value: $ORACLE_HOME/network/trace

Example: on UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces

on Windows NT: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES

Purpose: Specifies the name of the client trace file.

Default Value: SQLNET.TRC

Example: TRACE_FILE_CLIENT=cli_Connection1.trc

Note: Ensure that the name you choose for the TRACE_FILE_
CLIENT file is different from the name you choose for the TRACE_
FILE_SERVER file.

Purpose: Gives each client-side trace a unique name to prevent each trace file from
being overwritten with the next occurrence of a client trace. The PID is
attached to the end of the file name.

Default Value: OFF

Basic Debugging Procedures

Coding Tips and Troubleshooting 19-13

Server-Side Tracing
Set the following parameters in the SQLNET.ORA file on the server system. Each
connection will generate a separate file with a unique file name.

TRACE_LEVEL_SERVER

TRACE_DIRECTORY_SERVER

TRACE_FILE_SERVER

Example: TRACE_UNIQUE_CLIENT = ON

Purpose: Turns tracing on/off to a certain specified level.

Default Value: 0 or OFF

Available
Values:

■ 0 or OFF - No trace output

■ 4 or USER - User trace information

■ 10 or ADMIN - Administration trace information

■ 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_SERVER=10

Purpose: Specifies the destination directory of the trace file.

Default Value: $ORACLE_HOME/network/trace

Example: TRACE_DIRECTORY_SERVER=/oracle/traces

Purpose: Specifies the name of the server trace file.

Default Value: SERVER.TRC

Example: TRACE_FILE_SERVER= svr_Connection1.trc

Purpose: Gives each client-side trace a unique name to prevent each trace file from
being overwritten with the next occurrence of a client trace. The PID is
attached to the end of the file name.

Basic Debugging Procedures

19-14 Oracle9i JDBC Developer’s Guide and Reference

Third Party Debugging Tools
You can use tools such as JDBCSpy and JDBCTest from Intersolv to troubleshoot at
the JDBC API level. These tools are similar to ODBCSpy and ODBCTest.

Note: Ensure that the name you choose for the TRACE_FILE_
SERVER file is different from the name you choose for the TRACE_
FILE_CLIENT file.

Transaction Isolation Levels and Access Modes

Coding Tips and Troubleshooting 19-15

Transaction Isolation Levels and Access Modes
Read-only connections are supported by the Oracle server, but not by the Oracle
JDBC drivers.

For transactions, the Oracle server supports only the TRANSACTION_READ_
COMMITTED and TRANSACTION_SERIALIZABLE transaction isolation levels. The
default is TRANSACTION_READ_COMMITTED. Use the following methods of the
oracle.jdbc.OracleConnection interface to get and set the level:

■ getTransactionIsolation(): Gets this connection’s current transaction
isolation level.

■ setTransactionIsolation(): Changes the transaction isolation level,
using one of the TRANSACTION_* values.

Transaction Isolation Levels and Access Modes

19-16 Oracle9i JDBC Developer’s Guide and Reference

Reference Information 20-1

20
Reference Information

This chapter contains detailed JDBC reference information, including the following
topics:

■ Valid SQL-JDBC Datatype Mappings

■ Supported SQL and PL/SQL Datatypes

■ Embedded SQL92 Syntax

■ Oracle JDBC Notes and Limitations

■ Related Information

Valid SQL-JDBC Datatype Mappings

20-2 Oracle9i JDBC Developer’s Guide and Reference

Valid SQL-JDBC Datatype Mappings
Table 3–2 in Chapter 3 describes the default mappings between Java classes and
SQL datatypes supported by the Oracle JDBC drivers. Compare the contents of the
JDBC Datatypes, Standard Java Types and SQL Datatypes columns in Table 3–2
with the contents of Table 20–1 below.

Table 20–1 lists all the possible Java types to which a given SQL datatype can be
validly mapped. The Oracle JDBC drivers will support these "non-default"
mappings. For example, to materialize SQL CHAR data in an oracle.sql.CHAR
object use the getCHAR() method. To materialize it as a java.math.BigDecimal
object, use the getBigDecimal() method.

Notes:

■ For the following SQL datatypes, oracle.sql.ORAData or
oracle.sql.Datum can be materialized as java types.

■ For classes where oracle.sql.ORAData appears in italic,
these can be generated by JPublisher.

Table 20–1 Valid SQL Datatype-Java Class Mappings

These SQL datatypes: Can be materialized as these Java types:

CHAR, VARCHAR2, LONG oracle.sql.CHAR

java.lang.String

 java.sql.Date

 java.sql.Time

 java.sql.Timestamp

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

Valid SQL-JDBC Datatype Mappings

Reference Information 20-3

DATE oracle.sql.DATE

java.sql.Date

java.sql.Time

java.sql.Timestamp

java.lang.String

NUMBER oracle.sql.NUMBER

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

OPAQUE oracle.sql.OPAQUE

RAW, LONG RAW oracle.sql.RAW

 byte[]

ROWID oracle.sql.CHAR

oracle.sql.ROWID

java.lang.String

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB

java.sql.Blob (oracle.jdbc2.Blob under JDK 1.1.x)

CLOB oracle.sql.CLOB

 java.sql.Clob (oracle.jdbc2.Clob under JDK 1.1.x)

Object types and SQLJ types oracle.sql.STRUCT

TS oracle.sql.TIMESTAMP

Table 20–1 Valid SQL Datatype-Java Class Mappings (Cont.)

These SQL datatypes: Can be materialized as these Java types:

Valid SQL-JDBC Datatype Mappings

20-4 Oracle9i JDBC Developer’s Guide and Reference

TSTZ oracle.sql.TIMESTAMPTZ

TSLTZ oracle.sql.TIMESTAMPLTZ

java.sql.Struct (oracle.jdbc2.Struct under JDK 1.1.x)

java.sql.SqlData

oracle.sql.ORAData

Reference types oracle.sql.REF

java.sql.Ref (oracle.jdbc2.Ref under JDK 1.1.x)

oracle.sql.ORAData

Nested table types and
VARRAY types

oracle.sql.ARRAY

 java.sql.Array (oracle.jdbc2.Array under JDK 1.1.x)

oracle.sql.ORAData

Notes:

■ The type UROWID is not supported.

■ The oracle.sql.Datum class is abstract. The value passed to
a parameter of type oracle.sql.Datum must be of the Java
type corresponding to the underlying SQL type. Likewise, the
value returned by a method with return type
oracle.sql.Datum must be of the Java type corresponding
to the underlying SQL type.

■ The mappings to oracle.sql classes are optimal if no
conversion from SQL format to Java format is necessary.

Table 20–1 Valid SQL Datatype-Java Class Mappings (Cont.)

These SQL datatypes: Can be materialized as these Java types:

Supported SQL and PL/SQL Datatypes

Reference Information 20-5

Supported SQL and PL/SQL Datatypes
The tables in this section list SQL and PL/SQL datatypes, and whether the Oracle
JDBC drivers and SQLJ support them. Table 20–2 describes Oracle JDBC driver and
SQLJ support for SQL datatypes.

Table 20–3 describes Oracle JDBC driver and SQLJ support for the ANSI-supported
SQL datatypes.

Table 20–2 Support for SQL Datatypes

SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

BFILE yes yes

BLOB yes yes

CHAR yes yes

CLOB yes yes

DATE yes yes

NCHAR no no

NCHAR VARYING no no

NUMBER yes yes

NVARCHAR2 no no

RAW yes yes

REF yes yes

ROWID yes yes

UROWID no no

VARCHAR2 yes yes

Table 20–3 Support for ANSI-92 SQL Datatypes

ANSI-Supported SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

CHARACTER yes yes

DEC yes yes

DECIMAL yes yes

DOUBLE PRECISION yes yes

Supported SQL and PL/SQL Datatypes

20-6 Oracle9i JDBC Developer’s Guide and Reference

Table 20–4 describes Oracle JDBC driver and SQLJ support for SQL User-Defined
types.

FLOAT yes yes

INT yes yes

INTEGER yes yes

NATIONAL CHARACTER no no

NATIONAL CHARACTER
VARYING

no no

NATIONAL CHAR yes yes

NATIONAL CHAR VARYING no no

NCHAR yes yes

NCHAR VARYING no no

NUMERIC yes yes

REAL yes yes

SMALLINT yes yes

VARCHAR yes yes

Table 20–4 Support for SQL User-Defined Types

SQL User-Defined type Supported by JDBC Drivers? Supported by SQLJ?

OPAQUE yes no

Reference types yes yes

SQLJ types (JAVA_STRUCT) yes no

Object types (JAVA_OBJECT) yes yes

Nested table types and VARRAY
types

yes yes

Table 20–3 Support for ANSI-92 SQL Datatypes (Cont.)

ANSI-Supported SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

Supported SQL and PL/SQL Datatypes

Reference Information 20-7

Table 20–5 describes Oracle JDBC driver and SQLJ support for PL/SQL datatypes.
Note that PL/SQL datatypes include these categories:

■ scalar types

■ scalar character types (includes boolean and date datatypes)

■ composite types

■ reference types

■ LOB types

Note: SQLJ types are described in the Information Technology -
SQLJ - Part 2: SQL Types using the JAVATM Programming Language
document (ANSI NCITS 331.2-2000).

Table 20–5 Support for PL/SQL Datatypes

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

Scalar Types:

BINARY INTEGER yes yes

DEC yes yes

DECIMAL yes yes

DOUBLE PRECISION yes yes

FLOAT yes yes

INT yes yes

INTEGER yes yes

NATURAL yes yes

NATURALn no no

NUMBER yes yes

NUMERIC yes yes

PLS_INTEGER yes yes

POSITIVE yes yes

POSITIVEn no no

Supported SQL and PL/SQL Datatypes

20-8 Oracle9i JDBC Developer’s Guide and Reference

REAL yes yes

SIGNTYPE yes yes

SMALLINT yes yes

Scalar Character Types:

CHAR yes yes

CHARACTER yes yes

LONG yes yes

LONG RAW yes yes

NCHAR no no

NVARCHAR2 no no

RAW yes yes

ROWID yes yes

STRING yes yes

UROWID no no

VARCHAR yes yes

VARCHAR2 yes yes

BOOLEAN yes yes

DATE yes yes

Composite Types:

RECORD no no

TABLE no no

VARRAY yes yes

Reference Types:

REF CURSOR types yes yes

object reference types yes yes

LOB Types:

BFILE yes yes

Table 20–5 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

Supported SQL and PL/SQL Datatypes

Reference Information 20-9

BLOB yes yes

CLOB yes yes

NCLOB yes yes

Notes:

■ The types NATURAL, NATURALn, POSITIVE, POSITIVEn, and
SIGNTYPE are subtypes of BINARY INTEGER.

■ The types DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INT,
INTEGER, NUMERIC, REAL, and SMALLINT are subtypes of
NUMBER.

Table 20–5 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

Embedded SQL92 Syntax

20-10 Oracle9i JDBC Developer’s Guide and Reference

Embedded SQL92 Syntax
Oracle's JDBC drivers support some embedded SQL92 syntax. This is the syntax
that you specify between curly braces. The current support is basic. This section
describes the support offered by the drivers for the following SQL92 constructs:

■ Time and Date Literals

■ Scalar Functions

■ LIKE Escape Characters

■ Outer Joins

■ Function Call Syntax

Where driver support is limited, these sections also describe possible workarounds.

Disabling Escape Processing Escape processing for SQL92 syntax is enabled by
default, which results in the JDBC driver performing escape substitution before
sending the SQL code to the database. If you want the driver to use regular Oracle
SQL syntax, which is more efficient than SQL92 syntax and escape processing, then
use this statement:

stmt.setEscapeProcessing(false);

Time and Date Literals
Databases differ in the syntax they use for date, time, and timestamp literals. JDBC
supports dates and times written only in a specific format. This section describes the
formats you must use for date, time, and timestamp literals in SQL statements.

Date Literals
The JDBC drivers support date literals in SQL statements written in the format:

{d ’yyyy-mm-dd’}

Where yyyy-mm-dd represents the year, month, and day—for example:

{d ’1995-10-22’}

Note: Because prepared statements have usually been parsed
prior to a call to setEscapeProcessing(), disabling escape
processing for prepared statements will probably have no affect.

Embedded SQL92 Syntax

Reference Information 20-11

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "22 OCT 1995".

This code snippet contains an example of using a date literal in a SQL statement.

// Connect to the database
// You can put a database name after the @ sign in the connection URL.
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci:@", "scott", "tiger");

// Create a Statement
Statement stmt = conn.createStatement ();

// Select the ename column from the emp table where the hiredate is Jan-23-1982
ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {d '1982-01-23'}");

// Iterate through the result and print the employee names
while (rset.next ())
 System.out.println (rset.getString (1));

Time Literals
The JDBC drivers support time literals in SQL statements written in the format:

{t ’hh:mm:ss’}

where hh:mm:ss represents the hours, minutes, and seconds—for example:

{t ’05:10:45’}

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "05:10:45".

If the time is specified as:

{t ’14:20:50’}

Then the equivalent Oracle representation would be "14:20:50", assuming the server
is using a 24-hour clock.

This code snippet contains an example of using a time literal in a SQL statement.

ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {t '12:00:00'}");

Embedded SQL92 Syntax

20-12 Oracle9i JDBC Developer’s Guide and Reference

Timestamp Literals
The JDBC drivers support timestamp literals in SQL statements written in the
format:

{ts 'yyyy-mm-dd hh:mm:ss.f...'}

where yyyy-mm-dd hh:mm:ss.f... represents the year, month, day, hours,
minutes, and seconds. The fractional seconds portion (".f...") is optional and can be
omitted. For example: {ts ’1997-11-01 13:22:45’} represents, in Oracle
format, NOV 01 1997 13:22:45.

This code snippet contains an example of using a timestamp literal in a SQL
statement.

ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {ts '1982-01-23 12:00:00'}");

Scalar Functions
The Oracle JDBC drivers do not support all scalar functions. To find out which
functions the drivers support, use the following methods supported by the
Oracle-specific oracle.jdbc.OracleDatabaseMetaData class and the
standard Java java.sql.DatabaseMetadata interface:

■ getNumericFunctions(): Returns a comma-separated list of math functions
supported by the driver. For example, ABS(number), COS(float),
SQRT(float).

■ getStringFunctions(): Returns a comma-separated list of string functions
supported by the driver. For example, ASCII(string), LOCATE(string1,
string2, start).

■ getSystemFunctions(): Returns a comma-separated list of system functions
supported by the driver. For example, DATABASE(), IFNULL(expression,
value), USER().

■ getTimeDateFunctions(): Returns a comma-separated list of time and date
functions supported by the driver. For example, CURDATE(),
DAYOFYEAR(date), HOUR(time).

Oracle's JDBC drivers do not support the function keyword, 'fn'. If you try to use
this keyword, for example:

{fn concat ("Oracle", "8i") }

Embedded SQL92 Syntax

Reference Information 20-13

Then you will get the error "Non supported SQL92 token at position xx:
fn" when you run your Java application. The workaround is to use Oracle SQL
syntax.

For example, instead of using the fn keyword in embedded SQL92 syntax:

Statement stmt = conn.createStatement ();
stmt.executeUpdate("UPDATE emp SET ename = {fn CONCAT('My', 'Name')}");

Use Oracle SQL syntax:

stmt.executeUpdate("UPDATE emp SET ename = CONCAT('My', 'Name')");

LIKE Escape Characters
The characters "%" and "_" have special meaning in SQL LIKE clauses (you use "%"
to match zero or more characters, "_" to match exactly one character). If you want to
interpret these characters literally in strings, you precede them with a special escape
character. For example, if you want to use the ampersand "&" as the escape
character, you identify it in the SQL statement as {escape '&'}:

Statement stmt = conn.createStatement ();

// Select the empno column from the emp table where the ename starts with '_'
ResultSet rset = stmt.executeQuery
 ("SELECT empno FROM emp WHERE ename LIKE '&_%' {ESCAPE '&'}");

// Iterate through the result and print the employee numbers
while (rset.next ())
 System.out.println (rset.getString (1));

Outer Joins
Oracle's JDBC drivers do not support outer join syntax: {oj outer-join}. The
workaround is to use Oracle outer join syntax:

Instead of:

Statement stmt = conn.createStatement ();

Note: If you want to use the backslash character (\) as an escape
character, you must enter it twice (that is, \\). For example:

ResultSet rset = stmt.executeQuery("SELECT empno FROM emp
 WHERE ename LIKE '_%' {escape '\\'}");

Embedded SQL92 Syntax

20-14 Oracle9i JDBC Developer’s Guide and Reference

ResultSet rset = stmt.executeQuery
 ("SELECT ename, dname
 FROM {OJ dept LEFT OUTER JOIN emp ON dept.deptno = emp.deptno}
 ORDER BY ename");

Use Oracle SQL syntax:

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery
 ("SELECT ename, dname
 FROM emp a, dept b WHERE a.deptno = b.deptno(+)
 ORDER BY ename");

Function Call Syntax
Oracle's JDBC drivers support the following procedure and function call syntax:

Procedure calls (without a return value):

{ call procedure_name (argument1, argument2,...) }

Function calls (with a return value):

{ ? = call procedure_name (argument1, argument2,...) }

SQL92 to SQL Syntax Example
You can write a simple program to translate SQL92 syntax to standard SQL syntax.
The following program prints the comparable SQL syntax for SQL92 statements for
function calls, date literals, time literals, and timestamp literals. In the program, the
oracle.jdbc.OracleSql class parse() method performs the conversions.

import oracle.jdbc.OracleSql;

public class Foo
{
 public static void main (String args[]) throws Exception
 {
 show ("{call foo(?, ?)}");
 show ("{? = call bar (?, ?)}");
 show ("{d '1998-10-22'}");
 show ("{t '16:22:34'}");
 show ("{ts '1998-10-22 16:22:34'}");
 }

Embedded SQL92 Syntax

Reference Information 20-15

 public static void show (String s) throws Exception
 {
 System.out.println (s + " => " + new OracleSql().parse (s));
 }
}

The following code is the output that prints the comparable SQL syntax.

{call foo(?, ?)} => BEGIN foo(:1, :2); END;
{? = call bar (?, ?)} => BEGIN :1 := bar (:2, :3); END;
{d '1998-10-22'} => TO_DATE ('1998-10-22', 'YYYY-MM-DD')
{t '16:22:34'} => TO_DATE ('16:22:34', 'HH24:MI:SS')
{ts '1998-10-22 16:22:34'} => TO_DATE ('1998-10-22 16:22:34', 'YYYY-MM-DD
HH24:MI:SS')

Oracle JDBC Notes and Limitations

20-16 Oracle9i JDBC Developer’s Guide and Reference

Oracle JDBC Notes and Limitations
The following limitations exist in the Oracle JDBC implementation, but all of them
are either insignificant or have easy workarounds.

CursorName
Oracle JDBC drivers do not support the get getCursorName() and
setCursorName() methods, because there is no convenient way to map them to
Oracle constructs. Oracle recommends using ROWID instead. For more information
on how to use and manipulate ROWIDs, see "Oracle ROWID Type" on page 6-33.

SQL92 Outer Join Escapes
Oracle JDBC drivers do not support SQL92 outer join escapes. Use Oracle SQL
syntax with "(+)" instead. For more information on SQL92 syntax, see "Embedded
SQL92 Syntax" on page 20-10.

PL/SQL TABLE, BOOLEAN, and RECORD Types
It is not feasible for Oracle JDBC drivers to support calling arguments or return
values of the PL/SQL RECORD, BOOLEAN, or table with non-scalar element types.
However, Oracle JDBC drivers support PL/SQL index-by table of scalar element
types. For a complete description of this, see "Accessing PL/SQL Index-by Tables"
on page 17-21.

As a workaround to PL/SQL RECORD, BOOLEAN, or non-scalar table types, create
wrapper procedures that handle the data as types supported by JDBC. For example,
to wrap a stored procedure that uses PL/SQL booleans, create a stored procedure
that takes a character or number from JDBC and passes it to the original procedure
as BOOLEAN or, for an output parameter, accepts a BOOLEAN argument from the
original procedure and passes it as a CHAR or NUMBER to JDBC. Similarly, to wrap a
stored procedure that uses PL/SQL records, create a stored procedure that handles
a record in its individual components (such as CHAR and NUMBER) or in a structured
object type. To wrap a stored procedure that uses PL/SQL tables, break the data
into components or perhaps use Oracle collection types.

For an example of a workaround for BOOLEAN, see "Boolean Parameters in PL/SQL
Stored Procedures" on page 19-9.

Oracle JDBC Notes and Limitations

Reference Information 20-17

IEEE 754 Floating Point Compliance
The arithmetic for the Oracle NUMBER type does not comply with the IEEE 754
standard for floating-point arithmetic. Therefore, there can be small disagreements
between the results of computations performed by Oracle and the same
computations performed by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and
guarantees 38 decimal digits of precision. It represents zero, minus infinity, and plus
infinity exactly. For each positive number it represents, it represents a negative
number of the same absolute value.

It represents every positive number between 10-30 and (1 – 10-38) * 10126 to full
38-digit precision.

Catalog Arguments to DatabaseMetaData Calls
Certain DatabaseMetaData methods define a catalog parameter. This
parameter is one of the selection criteria for the method. Oracle does not have
multiple catalogs, but it does have packages. For more information on how the
Oracle JDBC drivers treat the catalog argument, see "DatabaseMetaData TABLE_
REMARKS Reporting" on page 12-26.

SQLWarning Class
The java.sql.SQLWarning class provides information on a database access
warning. Warnings typically contain a description of the warning and a code that
identifies the warning. Warnings are silently chained to the object whose method
caused it to be reported. The Oracle JDBC drivers generally do not support
SQLWarning. (As an exception to this, scrollable result set operations do generate
SQL warnings, but the SQLWarning instance is created on the client, not in the
database.)

For information on how the Oracle JDBC drivers handle errors, see "Processing SQL
Exceptions" on page 3-34.

Bind by Name
Binding by name is not supported. Under certain circumstances, previous versions
of the Oracle JDBC drivers have allowed binding statement variables by name. In
the following statement, the named variable EmpId would be bound to the integer
314159.

PreparedStatement p = conn.prepareStatement

Oracle JDBC Notes and Limitations

20-18 Oracle9i JDBC Developer’s Guide and Reference

 ("SELECT name FROM emp WHERE id = :EmpId");
p.setInt(1, 314159);

This capability to bind by name is not part of the JDBC specification, either 1.0 or
2.0, and Oracle does not support it. The JDBC drivers can throw a SQLException
or produce unexpected results.

Prior releases of the Oracle JDBC drivers did not retain bound values from one call
of execute to the next as specified in JDBC 1.0. Bound values are now retained. For
example:

PreparedStatement p = conn.prepareStatement
 ("SELECT name FROM emp WHERE id = :? AND dept = :?");
p.setInt(1, 314159);
p.setString(2, "SALES");
ResultSet r1 = p.execute();
p.setInt(1, 425260);
ResultSet r2 = p.execute();

Previously, a SQLException would be thrown by the second execute() call
because no value was bound to the second argument. In this release, the second
execute will return the correct value, retaining the binding of the second argument
to the string "SALES".

If the retained bound value is a stream, then the Oracle JDBC drivers will not reset
the stream. Unless the application code resets, repositions, or otherwise modifies
the stream, the subsequent execute calls will send NULL as the value of the
argument.

Related Information

Reference Information 20-19

Related Information
This section lists Web sites that contain useful information for JDBC programmers.
Many of the sites are referenced in other sections of this manual. In this list you can
find references to the Oracle JDBC drivers, Oracle SQLJ, Java technology, the Java
Developer’s Kit APIs (for versions 1.2.x and 1.1.x), the Java Security API, and
resources to help you write signed applets.

Oracle JDBC Drivers and SQLJ
Oracle JDBC Driver Home Page (Oracle Corporation)

http://www.oracle.com/java/jdbc

Oracle SQLJ Home Page (Oracle Corporation)

http://www.oracle.com/java/sqlj

Java Technology
Java Technology Home Page (Sun Microsystems, Inc.):

http://www.javasoft.com

Java Development Kit (JDK1.2.x and 1.1.x) (Sun Microsystems, Inc.):

http://java.sun.com/products/jdk

Related Information

20-20 Oracle9i JDBC Developer’s Guide and Reference

Row Set A-1

A
Row Set

This appendix describes the following topics:

■ Row Set Setup and Configuration

■ Runtime Properties for Row Set

■ Row Set Listener

■ Traversing Through the Rows

■ Cached Row Set

■ JDBC Row Set

Introduction

A-2 Oracle9i JDBC Developer’s Guide and Reference

Introduction
A row set is an object which encapsulates a set of rows. These rows are accessible
though the javax.sql.RowSet interface. This interface supports component
models of development, like JavaBeans, and is part of JDBC optional package by
JavaSoft.

Three kinds of row set are supported by JavaSoft:

■ Cached row set

■ JDBC row set

■ Web row set

All the row set implementation is in the oracle.jdbc.rowset package. Web row
set is a semi-connected row set. It has a servlet which has a connection open and the
WebRowSet interface translates the user calls to appropriate request to the servlet
over HTTP. This is targeted at Thin clients which have only HTTP implementation
in them.

The RowSet interface provides a set of properties which can be altered to access the
data in the database through a single interface. It supports properties and events
which forms the core of JavaBeans. It has various properties like connect string, user
name, password, type of connection, the query string itself, and also the parameters
passed to the query. The following code executes a simple query:

...
rowset.setUrl ("jdbc:oracle:oci:@");
rowset.setUsername ("SCOTT");
rowset.setPassword ("TIGER");
rowset.setCommand (
 "SELECT empno, ename, sal FROM emp WHERE empno = ?");

// empno of employee name "KING"
rowset.setInt (1, 7839);
...

Note: Oracle implements cached row set and JDBC row set, but
not Web row set.

Note: The row set feature is available only in JDK 1.2 or later.

Introduction

Row Set A-3

In the above example, the URL, user name, password, SQL query, and bind
parameter required for the query are set as the command properties to retrieve the
employee name and salary. Also, the row set would contain empno, ename, and
sal for the employee with the empno as 7839 and whose name is KING.

Row Set Setup and Configuration

A-4 Oracle9i JDBC Developer’s Guide and Reference

Row Set Setup and Configuration
The classes for the row set feature are found in a separate archive, ocrs12.zip.
This file is located in the $ORACLE_HOME/jdbc directory. To use row set, you
need to include this archive in your CLASSPATH.

For Unix (sh), the command is:

CLASSPATH=$CLASSPATH:$ORACLE_HOME/jdbc/lib/ocrs12.zip
export CLASSPATH

For Windows 2000/NT/98/95, the command is:

set CLASSPATH=%CLASSPATH%;%ORACLE_HOME%\jdbc\lib\ocrs12.zip

This might also be set in the project properties in case you are using an IDE like
Jdeveloper.

Oracle row set interfaces are implemented in the oracle.jdbc.rowset package.
Import this package to use any of the Oracle row set implementations.

The OracleCachedRowSet and OracleJDBCRowSet classes implement the
javax.sql.RowSet interface, which extends java.sql.ResultSet. Row set
not only provides the interfaces of result set, but also some of the properties of the
java.sql.Connection and java.sql.PreparedStatement interfaces.
Connections and prepared statements are totally abstracted by this interface.
CachedRowSet is serializable. This class implements the
java.io.Serializable interface. This enables the OracleCachedRowSet class
to be moved over the network or other JVM sessions.

Also available is the oracle.jdbc.rowset.OracleRowSetListenerAdapter
class.

Runtime Properties for Row Set

Row Set A-5

Runtime Properties for Row Set
Typically, static properties for the applications can be set for a row set at the
development time and the rest of the properties which are dynamic (are dependent
on runtime) can be set at the runtime. The static properties may include the
connection URL, username, password, connection type, concurrency type of the
row set, or the query itself. The runtime properties, like the bind parameters for the
query, could be bound at runtime. Scenarios where the query itself is a dynamic
property is also common.

Row Set Listener

A-6 Oracle9i JDBC Developer’s Guide and Reference

Row Set Listener
The row set feature supports multiple listeners to be registered with the RowSet
object. Listeners can be registered using the addRowSetListener() method and
unregistered through the removeRowSetListener() method. A listener should
implement the javax.sql.RowSetListener interface to register itself as the row
set listener. Three types of events are supported by the RowSet interface:

1. cursorMoved event : Generated whenever there is a cursor movement, which
occurs when the next() or previous() methods are called

2. rowChanged event : Generated when a new row is inserted, updated, or
deleted from the row set

3. rowsetChanged event : Generated when the whole row set is created or
changed

The following code shows the registration of a row set listener:

MyRowSetListener rowsetListener =
 new MyRowSetListener ();
// adding a rowset listener.
rowset.addRowSetListener (rowsetListener);

// implementation of a rowset listener
public class MyRowSetListener implements RowSetListener
{
 public void cursorMoved(RowSetEvent event)
 {
 // action on cursor movement
 }

 public void rowChanged(RowSetEvent event)
 {
 // action on change of row
 }

 public void rowSetChanged(RowSetEvent event)
 {
 // action on changing of rowset
 }
}// end of class MyRowSetListener

Row Set Listener

Row Set A-7

Applications which handle only a few events can implement only the required
events by using the OracleRowSetAdapter class, which is an abstract class with
empty implementation for all the event handling methods.

In the following code, only the rowSetChanged event is handled. The remaining
events are not handled by the application.

rowset.addRowSetListener (new OracleRowSetAdapter ()
 {
 public void rowSetChanged(RowSetEvent event)
 {
 // your action for rowsetChanged
 }
 }
);

Traversing Through the Rows

A-8 Oracle9i JDBC Developer’s Guide and Reference

Traversing Through the Rows
Various methods to traverse through the rows are provided by the RowSet
interface. These properties are inherited directly from the java.sql.ResultSet
interface. The RowSet interface could be used as a ResultSet interface for
retrieval and updating of data. The RowSet interface provides an optional way to
implement a scrolling and updatable result set if they are not provided by the result
set implementation.

Note: The scrollable properties of the java.sql.ResultSet
interface are also provided by the Oracle implementation of
ResultSet.

Cached Row Set

Row Set A-9

Cached Row Set
A cached row set is a row set implementation where the rows are cached and the row
set does not have a live connection to the database (disconnected) and it is a
serializable object, which provides the standard interface as of the
javax.sql.RowSet interface. OracleCachedRowSet is the implementation of
CachedRowSet by Oracle, and the OracleCachedRowSet is used
interchangeably with CachedRowSet.

In the following code, an OracleCachedRowSet object is created and the
connection URL, username, password, and the SQL query for the row set is set as
properties. The RowSet object is populated through the execute method. After the
execute call, the RowSet object can be used as a java.sql.ResultSet object to
retrieve, scroll, insert, delete, or update data.

...
RowSet rowset = new OracleCachedRowSet ();
rowset.setUrl ("jdbc:oracle:oci:@");
rowset.setUsername ("SCOTT");
rowset.setPassword ("TIGER");
rowset.setCommand ("SELECT empno, ename, sal FROM emp");
rowset.execute ();
while (rowset.next ())
{
 System.out.println ("empno: " +rowset.getInt (1));
 System.out.println ("ename: " +rowset.getString (2));
 System.out.println ("sal: " +rowset.getInt (3));
}
...

To populate a CachedRowSet object with a query, complete the following steps:

1. Instantiate OracleCachedRowSet.

2. Set connection Url, Username, Password, connection type (optional), and the
query string as properties for the RowSet object.

3. Invoke the execute() method to populate the RowSet object.

CachedRowSet can be populated with the existing ResultSet object, using the
populate() method, as shown in the following code:

// Executing a query to get the ResultSet object.
ResultSet rset = pstmt.executeQuery ();

OracleCachedRowSet rowset = new OracleCachedRowSet ();

Cached Row Set

A-10 Oracle9i JDBC Developer’s Guide and Reference

// the obtained ResultSet object is passed to the
// populate method to populate the data in the
// rowset object.
rowset.populate (rset);

In the above example, a ResultSet object is obtained by executing a query and the
retrieved ResultSet object is passed to the populate() method of the cached
row set to populate the contents of the result set into cached row set.

To populate a CachedRowSet object with an already available result set, complete
the following steps:

1. Instantiate OracleCachedRowSet.

2. Pass the already available ResultSet object to the populate() method to
populate the RowSet object.

All the interfaces provided by the ResultSet interface are implemented in
RowSet. The following code shows how to scroll through a row set:

/**
 * Scrolling forward, and printing the empno in
 * the order in which it was fetched.
 */
// going to the first row of the rowset
rowset.beforeFirst ();
while (rowset.next ())
 System.out.println ("empno: " +rowset.getInt (1));

In the example above, the cursor position is initialized to the position before the first
row of the row set by the beforeFirst() method. The rows are retrieved in
forward direction using the next() method.

/**
 * Scrolling backward, and printing the empno in
 * the reverse order as it was fetched.
 */
//going to the last row of the rowset

Note: Connection properties like transaction isolation or the
concurrency mode of the result set and the bind properties cannot
be set in the case where a pre-existent ResultSet object is used to
populate the CachedRowSet object, since the connection or result
set on which the property applies would have already been created.

Cached Row Set

Row Set A-11

rowset.afterLast ();
while (rowset.previous ())
 System.out.println ("empno: " +rowset.getInt (1));

In the above example, the cursor position is initialized to the position after the last
row of the RowSet. The rows are retrieved in reverse direction using the
previous() method of RowSet.

Inserting, updating, and deleting rows are supported by the row set feature as they
are in the result set feature. The following code illustrates the insertion of a row at
the fifth position of a row set:

/**
 * Inserting a row in the 5th position of the rowset.
 */
// moving the cursor to the 5th position in the rowset
if (rowset.absolute(5))
{
 rowset.moveToInsertRow ();
 rowset.updateInt (1, 193);
 rowset.updateString (2, "Ashok");
 rowset.updateInt (3, 7200);

 // inserting a row in the rowset
 rowset.insertRow ();

 // Synchronizing the data in RowSet with that in the
 // database.
 rowset.acceptChanges ();
}

In the above example, a call to the absolute() method with a parameter 5 takes
the cursor to the fifth position of the row set and a call to the
moveToInsertRow() method creates a place for the insertion of a new row into
the row set. The updateXXX() methods are used to update the newly created row.
When all the columns of the row are updated, the insertRow() is called to update
the row set. The changes are committed through acceptChanges() method.

The following code shows how an OracleCachedRowSet object is serialized to a
file and then retrieved:

// writing the serialized OracleCachedRowSet object
{
 FileOutputStream fileOutputStream =
 new FileOutputStream ("emp_tab.dmp");

Cached Row Set

A-12 Oracle9i JDBC Developer’s Guide and Reference

 ObjectOutputStream ostream = new
 ObjectOutputStream (fileOutputStream);
 ostream.writeObject (rowset);
 ostream.close ();
 fileOutputStream.close ();
}

// reading the serialized OracleCachedRowSet object
{
 FileInputStream fileInputStream = new
 FileInputStream ("emp_tab.dmp");
 ObjectInputStream istream = new
 ObjectInputStream (fileInputStream);
 RowSet rowset1 = (RowSet) istream.readObject ();
 istream.close ();
 fileInputStream.close ();
}

In the above example, a FileOutputStream object is opened for a emp_tab.dmp
file, and the populated OracleCachedRowSet object is written to the file using
ObjectOutputStream. This is retrieved using FileInputStream and the
ObjectInputStream objects.

OracleCachedRowSet takes care of the serialization of non-serializable form of
data like InputStream, OutputStream, BLOBS and CLOBS.
OracleCachedRowSets also implements meta data of its own, which could be
obtained without any extra server roundtrip. The following code shows how you
can obtain meta data for the row set:

ResultSetMetaData metaData = rowset.getMetaData ();
int maxCol = metaData.getColumnCount ();
for (int i = 1; i <= maxCol; ++i)
 System.out.println ("Column (" + i +") "
 +metaData.getColumnName (i));

The above example illustrates how to retrieve a ResultSetMetaData object and
print the column names in the RowSet.

Since the OracleCachedRowSet class is serializable, it can be passed across a
network or between JVMs, as done in Remote Method Invocation (RMI). Once the
OracleCachedRowSet class is populated, it can move around any JVM, or any
environment which does not have JDBC drivers. Committing the data in the row set
(through the acceptChanges() method) requires the presence of JDBC drivers.

Cached Row Set

Row Set A-13

The complete process of retrieving the data and populating it in the
OracleCachedRowSet class is performed on the server and the populated row set
is passed on to the client using suitable architectures like RMI or Enterprise Java
Beans (EJB). The client would be able to perform all the operations like retrieving,
scrolling, inserting, updating, and deleting on the row set without any connection to
the database. Whenever data is committed to the database, the acceptChanges()
method is called which synchronizes the data in the row set to that in the database.
This method makes use of JDBC drivers which require the JVM environment to
contain JDBC implementation. This architecture would be suitable for systems
involving a Thin client like a Personal Digital Assistant (PDA) or a Network
Computer (NC).

After populating the CachedRowSet object, it can be used as a ResultSet object
or any other object which can be passed over the network using RMI or any other
suitable architecture.

Some of the other key-features of cached row set are the following:

■ Cloning a row set

■ Creating a copy of a row set

■ Creating a shared copy of a row set

CachedRowSet Constraints
All the constraints which apply to updatable result set are applicable here, except
serialization, since OracleCachedRowSet is serializable. The SQL query has the
following constraints:

■ References only a single table in the database

■ Contain no join operations

■ Selects the primary key of the table it references

In addition, a SQL query should also satisfy the conditions below if inserts are to be
performed:

■ Selects all of the non-nullable columns in the underlying table

■ Selects all columns that do not have a default value

Note: The CachedRowSet cannot hold a large quantity of data
since all the data is cached in memory.

Cached Row Set

A-14 Oracle9i JDBC Developer’s Guide and Reference

Properties which apply to the connection cannot be set after populating the row set
since the properties cannot be applied to the connection after retrieving the data
from the same like, transaction isolation and concurrency mode of the result set.

JDBC Row Set

Row Set A-15

JDBC Row Set
A JDBC row set is another row set implementation. It is a simple, non-serializable
connected row set which provides JDBC interfaces in the form of a Bean interface.
Any call to JDBCRowSet percolates directly to the JDBC interface. The usage of the
JDBC interface is the same as any other row set implementation.

Table A–1 shows how the JDBCRowSet interface differs from CachedRowSet
interface.

The JDBC row set is a connected row set which has a live connection to the database
and all the calls on the JDBC row set are percolated to the mapping call in JDBC
connection, statement, or result set. A cached row set does not have any connection
to the database open.

JDBC row set requires the presence of JDBC drivers where a cached row set does
not require JDBC drivers during manipulation, but during population of the row set
and the committing the changes of the row set.

The following code shows how a JDBC row set is used:

RowSet rowset = new OracleJDBCRowSet ();
rowset.setUrl ("java:oracle:oci:@");
rowset.setUsername ("SCOTT");
rowset.setPassword ("TIGER");
rowset.setCommand (
 "SELECT empno, ename, sal FROM emp");
rowset.execute ();
while (rowset.next ())
{
 System.out.println ("empno: " + rowset.getInt (1));
 System.out.println ("ename: "
 + rowset.getString (2));
 System.out.println ("sal: " + rowset.getInt (3));
}

Table A–1 The JDBC and Cached Row Sets Compared

RowSet Type Serializable

Connected
to
Database

Movable
Across
JVMs

Synchronization
of data to
database

Presence
of JDBC
Drivers

JDBC No Yes No No Yes

Cached Yes No Yes Yes No

JDBC Row Set

A-16 Oracle9i JDBC Developer’s Guide and Reference

In the above example, the connection URL, username, password, and the SQL
query is set as the connection properties to the row set and the query is executed
through the execute() method and the rows are retrieved and printed.

JDBC Error Messages B-1

B
JDBC Error Messages

This appendix briefly discusses the general structure of JDBC error messages, then
lists general JDBC error messages and TTC error messages that the Oracle JDBC
drivers can return. The appendix is organized as follows:

■ General Structure of JDBC Error Messages

■ General JDBC Messages

■ TTC Messages

Each of the two message lists is first sorted by ORA number, and then alphabetically.

For general information about processing JDBC exceptions, see "Processing SQL
Exceptions" on page 3-34.

General Structure of JDBC Error Messages

B-2 Oracle9i JDBC Developer’s Guide and Reference

General Structure of JDBC Error Messages
The general JDBC error message structure allows runtime information to be
appended to the end of a message, following a colon, as follows:

<error_message>:<extra_info>

For example, a "closed statement" error might be output as follows:

Closed Statement:next

This indicates that the exception was thrown during a call to the next() method
(of a result set object).

In some cases, the user can find the same information in a stack trace.

General JDBC Messages

JDBC Error Messages B-3

General JDBC Messages
This section lists general JDBC error messages, first sorted by ORA number, and then
alphabetically.

JDBC Messages Sorted by ORA Number

ORA Number Message

ORA-17001 Internal Error

ORA-17002 Io exception

ORA-17003 Invalid column index

ORA-17004 Invalid column type

ORA-17005 Unsupported column type

ORA-17006 Invalid column name

ORA-17007 Invalid dynamic column

ORA-17008 Closed Connection

ORA-17009 Closed Statement

ORA-17010 Closed Resultset

ORA-17011 Exhausted Resultset

ORA-17012 Parameter Type Conflict

ORA-17014 ResultSet.next was not called

ORA-17015 Statement was cancelled

ORA-17016 Statement timed out

ORA-17017 Cursor already initialized

ORA-17018 Invalid cursor

ORA-17019 Can only describe a query

ORA-17020 Invalid row prefetch

ORA-17021 Missing defines

ORA-17022 Missing defines at index

General JDBC Messages

B-4 Oracle9i JDBC Developer’s Guide and Reference

ORA-17023 Unsupported feature

ORA-17024 No data read

ORA-17025 Error in defines.isNull ()

ORA-17026 Numeric Overflow

ORA-17027 Stream has already been closed

ORA-17028 Can not do new defines until the current
ResultSet is closed

ORA-17029 setReadOnly: Read-only connections not
supported

ORA-17030 READ_COMMITTED and SERIALIZABLE are the only
valid transaction levels

ORA-17031 setAutoClose: Only support auto close mode on

ORA-17032 cannot set row prefetch to zero

ORA-17033 Malformed SQL92 string at position

ORA-17034 Non supported SQL92 token at position

ORA-17035 Character Set Not Supported !!

ORA-17036 exception in OracleNumber

ORA-17037 Fail to convert between UTF8 and UCS2

ORA-17038 Byte array not long enough

ORA-17039 Char array not long enough

ORA-17040 Sub Protocol must be specified in connection
URL

ORA-17041 Missing IN or OUT parameter at index:

ORA-17042 Invalid Batch Value

ORA-17043 Invalid stream maximum size

ORA-17044 Internal error: Data array not allocated

ORA-17045 Internal error: Attempt to access bind values
beyond the batch value

ORA Number Message

General JDBC Messages

JDBC Error Messages B-5

ORA-17046 Internal error: Invalid index for data access

ORA-17047 Error in Type Descriptor parse

ORA-17048 Undefined type

ORA-17049 Inconsistent java and sql object types

ORA-17050 no such element in vector

ORA-17051 This API cannot be be used for non-UDT types

ORA-17052 This ref is not valid

ORA-17053 The size is not valid

ORA-17054 The LOB locator is not valid

ORA-17055 Invalid character encountered in

ORA-17056 Non supported character set

ORA-17057 Closed LOB

ORA-17058 Internal error: Invalid NLS Conversion ratio

ORA-17059 Fail to convert to internal representation

ORA-17060 Fail to construct descriptor

ORA-17061 Missing descriptor

ORA-17062 Ref cursor is invalid

ORA-17063 Not in a transaction

ORA-17064 Invalid Sytnax or Database name is null

ORA-17065 Conversion class is null

ORA-17066 Access layer specific implementation needed

ORA-17067 Invalid Oracle URL specified

ORA-17068 Invalid argument(s) in call

ORA-17069 Use explicit XA call

ORA-17070 Data size bigger than max size for this type

ORA-17071 Exceeded maximum VARRAY limit

ORA Number Message

General JDBC Messages

B-6 Oracle9i JDBC Developer’s Guide and Reference

ORA-17072 Inserted value too large for column

ORA-17073 Logical handle no longer valid

ORA-17074 invalid name pattern

ORA-17075 Invalid operation for forward only resultset

ORA-17076 Invalid operation for read only resultset

ORA-17077 Fail to set REF value

ORA-17078 Cannot do the operation as connections are
already opened

ORA-17079 User credentials doesn't match the existing
ones

ORA-17080 invalid batch command

ORA-17081 error occurred during batching

ORA-17082 No current row

ORA-17083 Not on the insert row

ORA-17084 Called on the insert row

ORA-17085 Value conflicts occurs

ORA-17086 Undefined column value on the insert row

ORA-17087 Ignored performance hint: setFetchDirection()

ORA-17088 Unsupported syntax for requested resultset
type and concurrency level

ORA-17089 internal error

ORA-17090 operation not allowed

ORA-17091 Unable to create resultset at the requested
type and/or concurrency level

ORA-17092 JDBC statements cannot be created or executed
at end of call processing

ORA-17093 OCI operation returned OCI_SUCCESS_WITH_INFO

ORA-17094 Object type version mismatched

ORA Number Message

General JDBC Messages

JDBC Error Messages B-7

ORA-17095 Statement Caching is not enabled for this
Connection object

ORA-17096 Statement Caching cannot be enabled for this
logical connection

ORA-17097 Invalid PL/SQL Index Table element type

ORA-17098 Invalid empty lob operation

ORA-17099 Invalid PL/SQL Index Table array length

ORA-17100 Invalid database Java Object

ORA-17101 Invalid properties in OCI Connection Pool
Object

ORA-17102 Bfile is read only

ORA-17103 invalid connection type to return via
getConnection. Use getJavaSqlConnection
instead

ORA-17104 SQL statement to execute cannot be empty or
null

ORA-17105 connection session time zone was not set

ORA-17106 invalid combination of connections specified

ORA-17107 invalid proxy type specified

ORA-17108 No max length specified in defineColumnType

ORA-17109 standard Java character encoding not found

ORA-17110 execution completed with warning

ORA-17111 Invalid connection cache TTL timeout specified

ORA-17112 Invalid thread interval specified

ORA-17113 Thread interval value is more than the cache
timeout value

ORA-17114 could not use local transaction commit in a
global transaction

ORA Number Message

General JDBC Messages

B-8 Oracle9i JDBC Developer’s Guide and Reference

ORA-17115 could not use local transaction rollback in a
global transaction

ORA-17116 could not turn on auto-commit in an active
global transaction

ORA-17117 could not set savepoint in an active global
transaction

ORA-17118 could not obtain ID for a named Savepoint

ORA-17119 could not obtain name for an un-named
Savepoint

ORA-17120 could not set a Savepoint with auto-commit on

ORA-17121 could not rollback to a Savepoint with
auto-commit on

ORA-17122 could not rollback to a local txn Savepoint in
a global transaction

ORA-17123 Invalid statement cache size specified

ORA-17124 Invalid connection cache Inactivity timeout
specified

ORA-17125 Improper statement type returned by explicit
cache

ORA-17126 Fixed Wait timeout elapsed

ORA-17127 Invalid Fixed Wait timeout specified

ORA Number Message

General JDBC Messages

JDBC Error Messages B-9

JDBC Messages Sorted Alphabetically

ORA Number Message

ORA-17066 Access layer specific implementation needed

ORA-17102 Bfile is read only

ORA-17038 Byte array not long enough

ORA-17084 Called on the insert row

ORA-17028 Can not do new defines until the current
ResultSet is closed

ORA-17019 Can only describe a query

ORA-17078 Cannot do the operation as connections are
already opened

ORA-17032 cannot set row prefetch to zero

ORA-17039 Char array not long enough

ORA-17035 Character Set Not Supported !!

ORA-17008 Closed Connection

ORA-17057 Closed LOB

ORA-17010 Closed Resultset

ORA-17009 Closed Statement

ORA-17105 connection session time zone was not set

ORA-17065 Conversion class is null

ORA-17118 could not obtain ID for a named Savepoint

ORA-17119 could not obtain name for an un-named
Savepoint

ORA-17122 could not rollback to a local txn Savepoint in
a global transaction

ORA-17121 could not rollback to a Savepoint with
auto-commit on

ORA-17120 could not set a Savepoint with auto-commit on

General JDBC Messages

B-10 Oracle9i JDBC Developer’s Guide and Reference

ORA-17117 could not set savepoint in an active global
transaction

ORA-17116 could not turn on auto-commit in an active
global transaction

ORA-17114 could not use local transaction commit in a
global transaction

ORA-17115 could not use local transaction rollback in a
global transaction

ORA-17017 Cursor already initialized

ORA-17070 Data size bigger than max size for this type

ORA-17025 Error in defines.isNull ()

ORA-17047 Error in Type Descriptor parse

ORA-17081 error occurred during batching

ORA-17071 Exceeded maximum VARRAY limit

ORA-17036 exception in OracleNumber

ORA-17110 execution completed with warning

ORA-17011 Exhausted Resultset

ORA-17060 Fail to construct descriptor

ORA-17037 Fail to convert between UTF8 and UCS2

ORA-17059 Fail to convert to internal representation

ORA-17077 Fail to set REF value

ORA-17126 Fixed Wait timeout elapsed

ORA-17087 Ignored performance hint: setFetchDirection()

ORA-17125 Improper statement type returned by explicit
cache

ORA-17049 Inconsistent java and sql object types

ORA-17072 Inserted value too large for column

ORA-17089 internal error

ORA Number Message

General JDBC Messages

JDBC Error Messages B-11

ORA-17001 Internal Error

ORA-17045 Internal error: Attempt to access bind values
beyond the batch value

ORA-17044 Internal error: Data array not allocated

ORA-17046 Internal error: Invalid index for data access

ORA-17058 Internal error: Invalid NLS Conversion ratio

ORA-17068 Invalid argument(s) in call

ORA-17080 invalid batch command

ORA-17042 Invalid Batch Value

ORA-17055 Invalid character encountered in

ORA-17003 Invalid column index

ORA-17006 Invalid column name

ORA-17004 Invalid column type

ORA-17106 invalid combination of connections specified

ORA-17124 Invalid connection cache Inactivity timeout
specified

ORA-17111 Invalid connection cache TTL timeout specified

ORA-17103 invalid connection type to return via
getConnection. Use getJavaSqlConnection
instead

ORA-17018 Invalid cursor

ORA-17100 Invalid database Java Object

ORA-17007 Invalid dynamic column

ORA-17098 Invalid empty lob operation

ORA-17127 Invalid Fixed Wait timeout specified

ORA-17074 invalid name pattern

ORA-17075 Invalid operation for forward only resultset

ORA Number Message

General JDBC Messages

B-12 Oracle9i JDBC Developer’s Guide and Reference

ORA-17076 Invalid operation for read only resultset

ORA-17067 Invalid Oracle URL specified

ORA-17099 Invalid PL/SQL Index Table array length

ORA-17097 Invalid PL/SQL Index Table element type

ORA-17101 Invalid properties in OCI Connection Pool
Object

ORA-17107 invalid proxy type specified

ORA-17020 Invalid row prefetch

ORA-17123 Invalid statement cache size specified

ORA-17043 Invalid stream maximum size

ORA-17064 Invalid Sytnax or Database name is null

ORA-17112 Invalid thread interval specified

ORA-17002 Io exception

ORA-17092 JDBC statements cannot be created or executed
at end of call processing

ORA-17073 Logical handle no longer valid

ORA-17033 Malformed SQL92 string at position

ORA-17021 Missing defines

ORA-17022 Missing defines at index

ORA-17061 Missing descriptor

ORA-17041 Missing IN or OUT parameter at index:

ORA-17082 No current row

ORA-17024 No data read

ORA-17108 No max length specified in defineColumnType

ORA-17050 no such element in vector

ORA-17056 Non supported character set

ORA-17034 Non supported SQL92 token at position

ORA Number Message

General JDBC Messages

JDBC Error Messages B-13

ORA-17063 Not in a transaction

ORA-17083 Not on the insert row

ORA-17026 Numeric Overflow

ORA-17094 Object type version mismatched

ORA-17093 OCI operation returned OCI_SUCCESS_WITH_INFO

ORA-17090 operation not allowed

ORA-17012 Parameter Type Conflict

ORA-17030 READ_COMMITTED and SERIALIZABLE are the only
valid transaction levels

ORA-17062 Ref cursor is invalid

ORA-17014 ResultSet.next was not called

ORA-17031 setAutoClose: Only support auto close mode on

ORA-17029 setReadOnly: Read-only connections not
supported

ORA-17104 SQL statement to execute cannot be empty or
null

ORA-17109 standard Java character encoding not found

ORA-17096 Statement Caching cannot be enabled for this
logical connection

ORA-17095 Statement Caching is not enabled for this
Connection object

ORA-17016 Statement timed out

ORA-17015 Statement was cancelled

ORA-17027 Stream has already been closed

ORA-17040 Sub Protocol must be specified in connection
URL

ORA-17054 The LOB locator is not valid

ORA-17053 The size is not valid

ORA Number Message

General JDBC Messages

B-14 Oracle9i JDBC Developer’s Guide and Reference

ORA-17051 This API cannot be be used for non-UDT types

ORA-17052 This ref is not valid

ORA-17113 Thread interval value is more than the cache
timeout value

ORA-17091 Unable to create resultset at the requested
type and/or concurrency level

ORA-17086 Undefined column value on the insert row

ORA-17048 Undefined type

ORA-17005 Unsupported column type

ORA-17023 Unsupported feature

ORA-17088 Unsupported syntax for requested resultset
type and concurrency level

ORA-17069 Use explicit XA call

ORA-17079 User credentials doesn't match the existing
ones

ORA-17085 Value conflicts occurs

ORA Number Message

HeteroRM XA Messages

JDBC Error Messages B-15

HeteroRM XA Messages
The following are the JDBC error messages that are specific to the HeteroRM XA
feature.

HeteroRM XA Messages Sorted by ORA Number

ORA Number Message

ORA-17200 Unable to properly convert XA open string from
Java to C

ORA-17201 Unable to properly convert XA close string
from Java to C

ORA-17202 Unable to properly convert RM name from Java
to C

ORA-17203 Could not cast pointer type to jlong

ORA-17204 Input array too short to hold OCI handles

ORA-17205 Failed to obtain OCISvcCtx handle from C-XA
using xaoSvcCtx

ORA-17206 Failed to obtain OCIEnv handle from C-XA using
xaoEnv

ORA-17207 The tnsEntry property was not set in
DataSource

ORA-17213 C-XA returned XAER_RMERR during xa_open

ORA-17215 C-XA returned XAER_INVAL during xa_open

ORA-17216 C-XA returned XAER_PROTO during xa_open

ORA-17233 C-XA returned XAER_RMERR during xa_close

ORA-17235 C-XA returned XAER_INVAL during xa_close

ORA-17236 C-XA returned XAER_PROTO during xa_close

HeteroRM XA Messages

B-16 Oracle9i JDBC Developer’s Guide and Reference

HeteroRM XA Messages Sorted Alphabetically

ORA Number Message

ORA-17203 Could not cast pointer type to jlong

ORA-17235 C-XA returned XAER_INVAL during xa_close

ORA-17215 C-XA returned XAER_INVAL during xa_open

ORA-17236 C-XA returned XAER_PROTO during xa_close

ORA-17216 C-XA returned XAER_PROTO during xa_open

ORA-17233 C-XA returned XAER_RMERR during xa_close

ORA-17213 C-XA returned XAER_RMERR during xa_open

ORA-17206 Failed to obtain OCIEnv handle from C-XA using
xaoEnv

ORA-17205 Failed to obtain OCISvcCtx handle from C-XA
using xaoSvcCtx

ORA-17204 Input array too short to hold OCI handles

ORA-17207 The tnsEntry property was not set in
DataSource

ORA-17202 Unable to properly convert RM name from Java
to C

ORA-17201 Unable to properly convert XA close string
from Java to C

ORA-17200 Unable to properly convert XA open string from
Java to C

TTC Messages

JDBC Error Messages B-17

TTC Messages
This section lists TTC error messages, first sorted by ORA number, and then
alphabetically.

TTC Messages Sorted by ORA Number

ORA Number Message

ORA-17401 Protocol violation

ORA-17402 Only one RPA message is expected

ORA-17403 Only one RXH message is expected

ORA-17404 Received more RXDs than expected

ORA-17405 UAC length is not zero

ORA-17406 Exceeding maximum buffer length

ORA-17407 invalid Type Representation(setRep)

ORA-17408 invalid Type Representation(getRep)

ORA-17409 invalid buffer length

ORA-17410 No more data to read from socket

ORA-17411 Data Type representations mismatch

ORA-17412 Bigger type length than Maximum

ORA-17413 Exceding key size

ORA-17414 Insufficient Buffer size to store Columns
Names

ORA-17415 This type hasn't been handled

ORA-17416 FATAL

ORA-17417 NLS Problem, failed to decode column names

ORA-17418 Internal structure's field length error

ORA-17419 Invalid number of columns returned

ORA-17420 Oracle Version not defined

TTC Messages

B-18 Oracle9i JDBC Developer’s Guide and Reference

ORA-17421 Types or Connection not defined

ORA-17422 Invalid class in factory

ORA-17423 Using a PLSQL block without an IOV defined

ORA-17424 Attempting different marshaling operation

ORA-17425 Returning a stream in PLSQL block

ORA-17426 Both IN and OUT binds are NULL

ORA-17427 Using Uninitialized OAC

ORA-17428 Logon must be called after connect

ORA-17429 Must be at least connected to server

ORA-17430 Must be logged on to server

ORA-17431 SQL Statement to parse is null

ORA-17432 invalid options in all7

ORA-17433 invalid arguments in call

ORA-17434 not in streaming mode

ORA-17435 invalid number of in_out_binds in IOV

ORA-17436 invalid number of outbinds

ORA-17437 Error in PLSQL block IN/OUT argument(s)

ORA-17438 Internal - Unexpected value

ORA-17439 Invalid SQL type

ORA-17440 DBItem/DBType is null

ORA-17441 Oracle Version not supported. Minimum
supported version is 7.2.3.

ORA-17442 Refcursor value is invalid

ORA-17443 Null user or password not supported in THIN
driver

ORA-17444 TTC Protocol version received from server not
supported

ORA Number Message

TTC Messages

JDBC Error Messages B-19

TTC Messages Sorted Alphabetically

ORA Number Message

ORA-17424 Attempting different marshaling operation

ORA-17412 Bigger type length than Maximum

ORA-17426 Both IN and OUT binds are NULL

ORA-17411 Data Type representations mismatch

ORA-17440 DBItem/DBType is null

ORA-17437 Error in PLSQL block IN/OUT argument(s)

ORA-17413 Exceding key size

ORA-17406 Exceeding maximum buffer length

ORA-17416 FATAL

ORA-17414 Insufficient Buffer size to store Columns
Names

ORA-17438 Internal - Unexpected value

ORA-17418 Internal structure's field length error

ORA-17433 invalid arguments in call

ORA-17409 invalid buffer length

ORA-17422 Invalid class in factory

ORA-17419 Invalid number of columns returned

ORA-17435 invalid number of in_out_binds in IOV

ORA-17436 invalid number of outbinds

ORA-17432 invalid options in all7

ORA-17439 Invalid SQL type

ORA-17408 invalid Type Representation(getRep)

ORA-17407 invalid Type Representation(setRep)

ORA-17428 Logon must be called after connect

ORA-17429 Must be at least connected to server

TTC Messages

B-20 Oracle9i JDBC Developer’s Guide and Reference

ORA-17430 Must be logged on to server

ORA-17417 NLS Problem, failed to decode column names

ORA-17410 No more data to read from socket

ORA-17434 not in streaming mode

ORA-17443 Null user or password not supported in THIN
driver

ORA-17402 Only one RPA message is expected

ORA-17403 Only one RXH message is expected

ORA-17420 Oracle Version not defined

ORA-17441 Oracle Version not supported. Minimum
supported version is 7.2.3.

ORA-17401 Protocol violation

ORA-17404 Received more RXDs than expected

ORA-17442 Refcursor value is invalid

ORA-17425 Returning a stream in PLSQL block

ORA-17431 SQL Statement to parse is null

ORA-17415 This type hasn't been handled

ORA-17444 TTC Protocol version received from server not
supported

ORA-17421 Types or Connection not defined

ORA-17405 UAC length is not zero

ORA-17423 Using a PLSQL block without an IOV defined

ORA-17427 Using Uninitialized OAC

ORA Number Message

Index-1

Index
Symbols
%, 9-55

A
absolute positioning in result sets, 13-2
absolute() method (result set), 13-14
acceptChanges() method, A-13
addBatch() method, 12-11
addConnectionEventListener() method (connection

cache), 16-21
addRowSetListener() method, A-6
afterLast() method (result sets), 13-14
ANO (Oracle Advanced Security), 18-8
ANSI Web site, 9-53
APPLET HTML tag, 18-24
applets

connecting to a database, 18-15
deploying in an HTML page, 18-24
packaging, 18-23

for JDK 1.2.x or 1.1.x browser, 18-23
packaging and deploying, 1-11
signed applets

browser security, 18-19
object-signing certificate, 18-20

using signed applets, 18-19
using with firewalls, 18-20
working with, 18-15

ARCHIVE, parameter for APPLET tag, 18-25
ARRAY

class, 6-12
descriptors, 6-12
objects, creating, 6-12, 11-12

array descriptor
creating, 11-22

ArrayDescriptor object, 11-11, 11-22
creating, 11-12
deserialization, 11-15
get methods, 11-14
serialization, 11-15
setConnection() method, 11-15

arrays
defined, 11-2
getting, 11-19
named, 11-2
passing to callable statement, 11-23
retrieving from a result set, 11-16
retrieving partial arrays, 11-19
using type maps, 11-25
working with, 11-2

ASO (Oracle Advanced Security), 18-8
authentication (security), 18-9
AUTHENTICATION_LEVEL parameter, 18-18
auto-commit mode

disabling, 19-6
result set behavior, 19-6

B
batch updates--see update batching
batch value

checking value, 12-7
connection batch value, setting, 12-5
connection vs. statement value, 12-4
default value, 12-5
overriding value, 12-7
statement batch value, setting, 12-6

Index-2

BatchUpdateException, 12-16
beforeFirst() method, A-10
beforeFirst() method (result sets), 13-13
BFILE

accessing data, 8-25
class, 6-12
creating and populating columns, 8-23
defined, 3-29
introduction, 8-2
locators, 8-20

getting from a result set, 8-20
getting from callable statement, 8-21
passing to callable statements, 8-21
passing to prepared statements, 8-21

manipulating data, 8-25
reading data, 8-22

BFILE locator, selecting, 6-13
BigDecimal mapping (for attributes), 9-47
BLOB, 8-5

class, 6-12
creating and populating, 8-10
creating columns, 8-11
getting locators, 8-3
introduction, 8-2
locators

getting from result set, 8-4
selecting, 6-13

manipulating data, 8-12
populating columns, 8-11
reading data, 8-6, 8-8
writing data, 8-9

Boolean parameters, restrictions, 19-9
branch qualifier (distributed transactions), 15-16

C
cache schemes (connection cache), 16-26
CachedRowSet, A-9
caching, client-side

custom use for scrollable result sets, 13-6
Oracle use for scrollable result sets, 13-5

callable statement
getting a BFILE locator, 8-21
getting LOB locators, 8-4
passing BFILE locator, 8-21

passing LOB locators, 8-5
using getOracleObject() method, 7-5

cancelRowUpdates() method (result set), 13-20
casting return values, 7-10
catalog arguments (DatabaseMetaData), 20-17
CHAR class

conversions with KPRB driver, 18-33
CHAR columns

globalization size restrictions, Thin, 18-6
space padding, 19-8
using setFixedCHAR() to match in

WHERE, 7-17
character sets, 6-32

conversions with KPRB driver, 18-33
checksums

code example, 18-13
setting parameters in Java, 18-13
support by OCI drivers, 18-11
support by Thin driver, 18-12

Class.forName method, 3-3
CLASSPATH, specifying, 2-7
clearBatch() method, 12-14
clearClientIdentifier() method, 6-19
clearDefines() method, 12-24
clearMetaData parameter, 17-11
client installation, 1-10
CLOB

class, 6-12
creating and populating, 8-10
creating columns, 8-11
introduction, 8-2
locators, 8-3

getting from result set, 8-4
passing to callable statements, 8-5
passing to prepared statement, 8-5

locators, selecting, 6-13
manipulating data, 8-12
populating columns, 8-11
reading data, 8-6, 8-9
writing data, 8-9

close(), 14-4
close() method, 6-20, 6-21, 6-22, 19-8

for caching statements, 14-7, 14-8
for OracleConnectionCache interface, 16-23

closeFile() method, 8-26

Index-3

closePooledConnection() method, 16-23
closeWithKey(), 14-4
closeWithKey() method, 14-9, 14-10
CMAN.ORA file, creating, 18-18
CODE, parameter for APPLET tag, 18-24
CODEBASE, parameter for APPLET tag, 18-24
collections

defined, 11-2
collections (nested tables and arrays), 11-11
column types

defining, 12-23
redefining, 12-20

commit a distributed transaction branch, 15-15
commit changes to database, 3-13
CONCUR_READ_ONLY result sets, 13-9
CONCUR_UPDATABLE result sets, 13-9
concurrency types in result sets, 13-4
connect string

Connection Manager, 18-18
for KPRB driver, 18-28

connection
closing, 3-14
from KPRB driver, 1-13
opening, 3-3
opening for JDBC OCI driver, 3-9
opening for JDBC Thin driver, 3-10
Properties object, 3-6

connection caching
adding connection event listener, 16-21
basics, accessing the cache, 16-17
basics, closing connections, 16-18
basics, opening connections, 16-17
basics, setting up a cache, 16-16
cache instance getConnection() method, 16-17
connection events, 16-18
creating connection event listener, 16-21
implementation scenarios, 16-19
OracleConnectionCache interface, 16-23
OracleConnectionCacheImpl class, 16-24
OracleConnectionEventListener class, 16-28
overview, 16-16
preliminary steps, 16-20
removing connection event listener, 16-22
steps in closing a connection, 16-22
steps in opening a connection, 16-20

connection event listener, 16-21
Connection Manager, 18-16

installing, 18-17
starting, 18-18
using, 18-17
using multiple managers, 18-19
writing the connect string, 18-18

connection methods, JDBC 2.0 result sets, 13-32
connection pooling

concepts, 16-11
creating data source and connecting, 16-14
introduction, 16-11
Oracle data source implementation, 16-12
pooled connections, 16-13
standard data source interface, 16-12

connection properties
database, 3-7
defaultBatchValue, 3-7
defaultRowPrefetch, 3-7
includeSynonyms, 3-7
internal_logon, 3-7

sysdba, 3-8
sysoper, 3-8

password, 3-7
put() method, 3-9
remarksReporting, 3-7
user, 3-7

connectionClosed() method (connection event
listener), 16-28

connectionErrorOccurred() method (connection
event listener), 16-28

connections
read-only, 19-15

constants for SQL types, 6-23
CREATE DIRECTORY statement

for BFILEs, 8-23
CREATE TABLE statement

to create BFILE columns, 8-23
to create BLOB, CLOB columns, 8-11

CREATE TYPE command, 9-53, 9-55, 9-63
CREATE TYPE statement, 9-29, 9-52
create() method

for ORADataFactory interface, 9-21
createDescriptor() method, 9-5, 9-61, 11-14
createStatement(), 14-4

Index-4

createStatement() method, 6-19, 14-10
createStatementWithKey() method, 14-11
createTemporary() method, 8-18
creationState() method, 14-6

code example, 14-7
CursorName

limitations, 20-16
cursors, 19-8
custom collection classes

and JPublisher, 11-27
defined, 11-2, 11-27

custom Java classes, 6-4
defined, 9-2

custom object classes
creating, 9-10
defined, 9-2

custom reference classes
and JPublisher, 10-10
defined, 10-2, 10-10

D
data conversions, 7-2

LONG, 3-21
LONG RAW, 3-21

data sources
creating and connecting (with JNDI), 16-8
creating and connecting (without JNDI), 16-7
logging and tracing, 16-10
Oracle implementation, 16-3
PrintWriter, 16-10
properties, 16-4
standard interface, 16-3

data streaming
avoiding, 3-24

database
connecting

from an applet, 18-15
via multiple Connection Managers, 18-19
with server-side internal driver, 18-26

connection testing, 2-9
database connection

connection property, 3-7
database meta data methods, JDBC 2.0 result

sets, 13-35

database URL
including userid and password, 3-5

database URL, specifying, 3-5
DatabaseMetaData calls, 20-17
DatabaseMetaData class, 20-12

entry points for applets, 18-23
datatype classes, 6-8
datatype mappings, 3-16
datatypes

Java, 3-16
Java native, 3-16
JDBC, 3-16
Oracle SQL, 3-16

DATE class, 6-13
DBMS_LOB package, 8-6
debugging JDBC programs, 19-11
DEFAULT_CHARSET character set value, 6-31
defaultBatchValue connection property, 3-7
defaultConnection() method, 18-26
defaultRowPrefetch connection property, 3-7
defineColumnType() method, 3-25, 6-20, 12-24
DELETE in a result set, 13-18
deleteRow() method (result set), 13-18
deletesAreDetected() method (database meta

data), 13-29
deserialization

ArrayDescriptor object, 11-15
creating a StructDescriptor object, 9-6
creating an ArrayDescriptor object, 11-15
definition of, 9-6, 11-15
StructDescriptor object, 9-6

disabling
escape processing, 3-7

distributed transaction ID component, 15-16
distributed transactions

branch qualifier, 15-16
check for same resource manager, 15-16
commit a transaction branch, 15-15
components and scenarios, 15-3
concepts, 15-3
distributed transaction ID component, 15-16
end a transaction branch, 15-13
example of implementation, 15-21
global transaction identifier, 15-16
ID format identifier, 15-16

Index-5

introduction, 15-2
Oracle XA connection implementation, 15-9
Oracle XA data source implementation, 15-8
Oracle XA ID implementation, 15-16
Oracle XA optimizations, 15-20
Oracle XA resource implementation, 15-10
prepare a transaction branch, 15-14
roll back a transaction branch, 15-15
start a transaction branch, 15-12
transaction branch ID component, 15-16
XA connection interface, 15-9
XA data source interface, 15-8
XA error handling, 15-19
XA exception classes, 15-18
XA ID interface, 15-16
XA resource functionality, 15-11
XA resource interface, 15-10

DriverManager class, 3-3
driverType, 16-6
dynamic SQL, 1-2
DYNAMIC_SCHEME (connection cache), 16-27

E
encryption

code example, 18-13
overview, 18-10
setting parameters in Java, 18-13
support by OCI drivers, 18-11
support by Thin driver, 18-12

end a distributed transaction branch, 15-13
Enterprise Java Beans (EJB), A-13
environment variables

specifying, 2-6
errors

general JDBC message structure, B-2
general JDBC messages, listed, B-3
processing exceptions, 3-34
TTC messages, listed, B-17

escape processing
disabling, 3-7

exceptions
printing stack trace, 3-35
retrieving error code, 3-34
retrieving message, 3-34

retrieving SQL state, 3-34
execute() method, A-16
executeBatch() method, 12-12
executeQuery() method, 6-20
executeUpdate() method, 12-9
expansion factor

and globalization, 18-6
explicit statement caching

definition of, 14-3
null data, 14-10

extensions to JDBC, Oracle, 6-1, 7-1, 9-1, 10-1, 11-1,
12-1

external changes (result set)
defined, 13-27
seeing, 13-28
visibility vs. detection, 13-29

external file
defined, 3-29

EXTERNAL NAME clause, 9-55

F
fetch direction in result sets, 13-17
fetch size, result sets, 13-24
finalizer methods, 19-8
firewalls

configuring for applets, 18-21
connect string, 18-22
described, 18-20
required rule list items, 18-21
using with applets, 1-11, 18-20

first() method (result sets), 13-14
FIXED_RETURN_NULL_SCHEME (connection

cache), 16-27
floating-point compliance, 20-17
format identifier, transaction ID, 15-16
forward-only result sets, 13-3
freeTemporary() method, 8-18
function call syntax, SQL92 syntax, 20-14

G
getActiveSize() method (connection cache), 16-27
getARRAY() method, 11-16
getArray() method, 11-6, 11-10, 11-16

Index-6

using type maps, 11-18
getArrayType() method, 11-14
getAsciiOutputStream() method, 8-15

for writing CLOB data, 8-7
getAsciiStream() method, 8-15

for reading CLOB data, 8-7
getAttributes() method, 9-3

used by Structs, 9-15
getAutoBuffering() method

of the oracle.sql.ARRAY class, 11-9
of the oracle.sql.STRUCT class, 9-9

getBaseName() method, 11-14
getBaseType() method, 11-6, 11-14, 11-20
getBaseTypeName() method, 10-4, 11-6
getBinaryOutputStream() method, 8-14

for writing BLOB data, 8-7
getBinaryStream() method, 3-23, 8-14, 8-26

for reading BFILE data, 8-22
for reading BLOB data, 8-6

getBufferSize() method, 8-14, 8-15
getBytes() method, 3-24, 6-10, 8-14, 8-26
getCacheSize() method (connection cache), 16-27
getCallWithKey(), 14-4
getCallWithKey() method, 14-10, 14-11
getCharacterOutputStream() method, 8-15

for writing CLOB data, 8-7
getCharacterStream() method, 8-15

for reading CLOB data, 8-7
getChars() method, 8-15
getChunkSize() method, 8-14, 8-16
getColumnCount() method, 7-19
getColumnName() method, 7-19
getColumns() method, 12-26
getColumnType() method, 7-19
getColumnTypeName() method, 7-19
getConcurrency() method (result set), 13-12
getConnection() method, 3-4, 11-15, 17-10, 18-26
getCursor() method, 6-35, 6-36
getCursorName() method

limitations, 20-16
getDefaultExecuteBatch() method, 6-19, 12-7
getDefaultRowPrefetch() method, 6-19, 12-21
getDescriptor() method, 9-4, 11-6
getDirAlias() method, 8-25, 8-27
getErrorCode() method (SQLException), 3-34

getExecuteBatch() method, 6-21, 12-6, 12-7
getFetchSize() method, 13-24
getJavaSQLConnection() method, 9-4, 11-6
getJavaSqlConnection() method, 6-26
getLanguage() method, 9-62
getMaxLength() method, 11-14
getMessage() method (SQLException), 3-34
getMetaData() method, 9-62
getName() method, 8-25, 8-26
getNumericFunctions() method, 20-12
getObject() method

casting return values, 7-10
for object references, 10-6
for ORAData objects, 9-22
for SQLInput streams, 9-16
for SQLOutput streams, 9-17
for Struct objects, 9-7
return types, 7-4, 7-6
to get BFILE locators, 8-20
to get Oracle objects, 9-7
used with ORAData interface, 9-24

getOracleArray() method, 11-6, 11-16, 11-19
getOracleAttributes() method, 9-4, 9-8
getOracleObject() method, 6-21, 6-22

casting return values, 7-10
return types, 7-4, 7-6
using in callable statement, 7-5
using in result set, 7-5

getOraclePlsqlIndexTable() method, 17-22, 17-25,
17-26

argument
int paramIndex, 17-26

code example, 17-27
getORAData() method, 9-22, 9-24
getPassword() method, 16-5
getPlsqlIndexTable() method, 17-22, 17-25, 17-27

arguments
Class primitiveType, 17-28
int paramIndex, 17-28

code example, 17-26, 17-28
getProcedureColumns() method, 12-26
getProcedures() method, 12-26
getREF() method, 10-7
getRemarksReporting() method, 6-20
getResultSet() method, 6-20, 11-6

Index-7

getRow() method (result set), 13-15
getRowPrefetch() method, 6-20, 12-21
getSQLState() method (SQLException), 3-34
getSQLTypeName() method, 9-3, 11-6, 11-20
getStatementCacheSize() method

code example, 14-6
getStatementWithKey(), 14-4
getStatementWithKey() method, 14-10, 14-11
getString() method, 6-31

to get ROWIDs, 6-33
getStringFunctions() method, 20-12
getStringWithReplacement() method, 6-32
getSTRUCT() method, 9-7
getSubString() method, 8-16

for reading CLOB data, 8-7
getSystemFunctions() method, 20-12
getTimeDateFunctions() method, 20-12
getTransactionIsolation() method, 6-19, 19-15
getType() method (result set), 13-12
getTypeMap() method, 6-19, 9-13
getUpdateCounts() method

(BatchUpdateException), 12-16
getValue() method, 10-5

for object references, 10-6
getXXX() methods

casting return values, 7-10
for specific datatypes, 7-7
Oracle extended properties, 16-6

global transaction identifier (distributed
transactions), 15-16

global transactions, 15-2
globalization

and JDBC drivers, 18-3
conversions, 18-3

for JDBC OCI drivers, 18-3
for JDBC Thin drivers, 18-4
for KPRB driver, 18-4

expansion factor, 18-6
Java methods that employ, 18-2
Thin driver CHAR/VARCHAR2 size

restrictions, 18-6
using, 18-2

H
HEIGHT, parameter for APPLET tag, 18-24
HeteroRM XA, 17-19
HTML tags, to deploy applets, 18-24
http

//www.ansi.org/, 9-53
HTTP protocol, 1-5

I
IEEE 754 floating-point compliance, 20-17
implicit statement caching

definition of, 14-2
Least Recently Used (LRU) scheme, 14-3

IN OUT parameter mode, 17-24
IN parameter mode, 17-22
includeSynonyms connection property, 3-7
INSERT in a result set, 13-21
INSERT INTO statement

for creating BFILE columns, 8-24
insertRow() method (result set), 13-22
insertsAreDetected() method (database meta

data), 13-29
installation

client, 1-10
directories and files, 2-5
verifying on the client, 2-5

integrity
code example, 18-13
overview, 18-10
setting parameters in Java, 18-13
support by OCI drivers, 18-11
support by Thin driver, 18-12

internal changes (result set)
defined, 13-27
seeing, 13-27

internal_logon connection property, 3-7
sysdba, 3-8
sysoper, 3-8

isAfterLast() method (result set), 13-15
isBeforeFirst() method (result set), 13-15
isFileOpen() method, 8-27
isFirst() method (result set), 13-15
isLast() method (result set), 13-15

Index-8

isSameRM() (distributed transactions), 15-16
isTemporary() method, 8-18

J
Java

compiling and running, 2-8
datatypes, 3-16
native datatypes, 3-16
stored procedures, 3-33
stream data, 3-20

Java Naming and Directory Interface (JNDI), 16-2
Java Sockets, 1-5
Java virtual machine (JVM), 1-8, 18-26
JavaBeans, A-2
java.math, Java math packages, 3-2
JavaSoft, A-2
java.sql, JDBC packages, 3-2
java.sql.SQLData, 9-53
java.sql.SQLException() method, 3-34
java.sql.Types class, 12-24
java.util.Dictionary class

used by type maps, 9-12
java.util.Map class, 11-19
java.util.Properties, 17-7
JDBC

and IDEs, 1-15
basic program, 3-2
datatypes, 3-16
defined, 1-2
guidelines for using, 1-3
importing packages, 3-2
limitations of Oracle extensions, 20-16
sample files, 2-8
testing, 2-9

JDBC 2.0 support
datatype support, 4-3
extended feature support, 4-5
introduction, 4-2, 5-2
JDK 1.2.x vs. JDK 1.1.x, 4-3, 5-3
overview of features, 4-7, 5-4
standard feature support, 4-4

JDBC drivers
and globalization, 18-3
applets, 1-10

applications, 1-10
choosing a driver for your needs, 1-8
common features, 1-4
common problems, 19-8
compatibilities, 2-2
determining driver version, 2-8
introduction, 1-4
registering, 3-3
requirements, 2-2
restrictions, 19-9
SQL92 syntax, 20-10

JDBC mapping (for attributes), 9-46
JdbcCheckup program, 2-9
JDBCSpy, 19-14
JDBCTest, 19-14
JDeveloper, 1-15
Jdeveloper, A-4
JDK

migration from 1.1.x to 1.2.x, 4-5
versions supported, 1-14

JNDI
looking up data source, 16-9
overview of Oracle support, 16-2
registering data source, 16-9

JPublisher, 6-4, 9-25, 9-45
JPublisher utility, 6-4, 9-10

creating custom collection classes, 11-27
creating custom Java classes, 9-45
creating custom reference classes, 10-10
SQL type categories and mapping options, 9-46
type mapping modes and settings, 9-46
type mappings, 9-45

JVM, 1-8, 18-26

K
KPRB driver

connection string for, 18-28
described, 1-8
globalization considerations, 18-4
relation to the SQL engine, 18-26
session context, 18-30
testing, 18-30
transaction context, 18-30

Index-9

L
last() method (result set), 13-14
LD_LIBRARY_PATH variable, specifying, 2-7
Least Recently Used (LRU) scheme, 14-3, 17-8
length() method, 8-14, 8-16, 8-27, 11-6
libheteroxa9_g.so Solaris shared library, 17-19
libheteroxa9.so Solaris shared library, 17-19
LIKE escape characters, SQL92 syntax, 20-13
limitations on setBytes() and setString(), use of

streams to avoid, 3-31
loadjava tool, 9-55
LOB

defined, 3-27
introduction, 8-2
locators, 8-2
reading data, 8-6

LOB locators
getting from callable statements, 8-4
passing, 8-5

LOBs
empty, 8-17

locators
getting for BFILEs, 8-20
getting for BLOBs, 8-3
getting for CLOBs, 8-3
LOB, 8-2
passing to callable statements, 8-5
passing to prepared statement, 8-5

logging with a data source, 16-10
logical connection instance, 16-11
LONG

data conversions, 3-21
LONG RAW

data conversions, 3-21
LRU scheme, 14-3, 17-8

M
make() method, 6-30
memory leaks, 19-8
migration from JDK 1.1.x to 1.2.x, 4-5
moveToCurrentRow() method (result set), 13-21
moveToInsertRow() method (result set), 13-21
mutable arrays, 11-27

N
named arrays, 11-2

defined, 11-11
Native Method Interface, 1-14
nativeXA, 16-6, 17-19
NC, A-13
Network Computer (NC), A-13
network events, trapping, 19-11
next() method, A-10
next() method (result set), 13-15
NLS_LANG environment variable, 18-3
NMI (Native Method Interface), 1-14
NULL data

converting, 7-2
null data

explicit statement caching, 14-10
NUMBER class, 6-13

O
object references

accessing object values, 10-7, 10-9
described, 10-2
passing to prepared statements, 10-8
retrieving, 10-6
retrieving from callable statement, 10-7
updating object values, 10-7, 10-9

object-JDBC mapping (for attributes), 9-46
OCI driver

applications, 1-10
described, 1-6
globalization considerations, 18-3

ODBCSpy, 19-14
ODBCTest, 19-14
openFile() method, 8-26
optimization, performance, 19-6
Oracle Advanced Security, 1-10

support by JDBC, 18-8
support by OCI drivers, 18-8
support by Thin driver, 18-9

Oracle Connection Manager, 1-10, 18-16
Oracle datatypes

using, 7-1
Oracle extensions

Index-10

datatype support, 6-3
limitations, 20-16

catalog arguments to DatabaseMetaData
calls, 20-17

CursorName, 20-16
IEEE 754 floating-point compliance, 20-17
PL/SQL TABLE, BOOLEAN, RECORD

types, 20-16
read-only connection, 19-15
SQL92 outer join escapes, 20-16
SQLWarning class, 20-17

object support, 6-4
packages, 6-2
result sets, 7-3
schema naming support, 6-5
statements, 7-3
support under 8.0.x/7.3.x drivers, 6-36
to JDBC, 6-1, 7-1, 9-1, 10-1, 11-1, 12-1

Oracle mapping (for attributes), 9-46
Oracle Net

name-value pair, 3-4
protocol, 1-5

Oracle objects
and JDBC, 9-2
converting with ORAData interface, 9-21
converting with SQLData interface, 9-15
getting with getObject() method, 9-7
Java classes which support, 9-3
mapping to custom object classes, 9-10
reading data by using SQLData interface, 9-17
working with, 9-2
writing data by using SQLData interface, 9-20

Oracle SQL datatypes, 3-16
OracleCallableStatement interface, 6-21

getOraclePlsqlIndexTable() method, 17-22
getPlsqlIndexTable() method, 17-22
getTIMESTAMP(), 6-14
getTIMESTAMPLTZ(), 6-14
getTIMESTAMPTZ(), 6-14
getXXX() methods, 7-7
registerIndexTableOutParameter()

method, 17-22, 17-24
registerOutParameter() method, 7-13
setPlsqlIndexTable() method, 17-21, 17-22

OracleCallableStatement object, 14-2, 14-3

OracleConnection class, 6-18
OracleConnection interface, 17-4
OracleConnection object, 14-2
OracleConnectionCache interface, 16-23

close() method, 16-23
closePooledConnection() method, 16-23
reusePooledConnection() method, 16-23

OracleConnectionCacheImpl class, 16-24, 16-26
getActiveSize() method, 16-27
getCacheSize() method, 16-27
instantiating and setting properties, 16-24
schemes for new pooled connections, 16-26
setCacheScheme() method, 16-27
setConnectionPoolDataSource() method, 16-25
setMaxLimit() method

setMaxLimit() method (connection
cache), 16-26

setMinLimit() method
setMinLimit() method (connection

cache), 16-26
setting maximum pooled connections, 16-25
setting minimum pooled connections, 16-26

OracleConnectionCacheImpl interface, 17-4
OracleConnectionEventListener

connectionClosed() method, 16-28
OracleConnectionEventListener class, 16-28

connectionErrorOccurred() method, 16-28
instantiating, 16-28
setDataSource() method, 16-28

OracleConnectionPoolDataSouorce class, 16-12
OracleDatabaseMetaData class, 20-12

and applets, 18-23
OracleDataSource class, 16-3, 17-4
OracleDriver class, 6-18
oracle.jdbc. package, 6-16
oracle.jdbc., Oracle JDBC extensions, 3-3
oracle.jdbc2 package, described, 6-27
oracle.jdbc2.Struct class, 6-11

getAttributes() method, 9-3
getSQLTypeName() method, 9-3

oracle.jdbc.OracleCallableStatement interface, 6-21
close() method, 6-22
getOracleObject() method, 6-21
getXXX() methods, 6-21, 6-23
registerOutParameter() method, 6-22

Index-11

setNull() method, 6-22
setOracleObject() methods, 6-22
setXXX() methods, 6-22

oracle.jdbc.OracleConnection interface, 6-18
clearClientIdentifier() method, 6-19
createStatement() method, 6-19
getDefaultExecuteBatch() method, 6-19
getDefaultRowPrefetch() method, 6-19
getRemarksReporting() method, 6-20
getTransactionIsolation() method, 6-19, 19-15
getTypeMap() method, 6-19
prepareCall() method, 6-19
prepareStatement() method, 6-19
setClientIdentifier() method, 6-19
setDefaultExecuteBatch() method, 6-19
setDefaultRowPrefetch() method, 6-19
setRemarksReporting() method, 6-20
setTransactionIsolation() method, 6-19, 19-15
setTypeMap() method, 6-19

oracle.jdbc.OracleDriver class, 6-18
oracle.jdbc.OraclePreparedStatement

interface, 6-20
close() method, 6-21
getExecuteBatch() method, 6-21
setExecuteBatch() method, 6-21
setNull() method, 6-21
setOracleObject() method, 6-21
setORAData() method, 6-21
setXXX() methods, 6-21

oracle.jdbc.OracleResultSet interface, 6-22
getOracleObject() method, 6-22

oracle.jdbc.OracleResultSetMetaData
interface, 6-23, 7-19

getColumnCount() method, 7-19
getColumnName() method, 7-19
getColumnType() method, 7-19
getColumnTypeName() method, 7-19
using, 7-19

oracle.jdbc.OracleSql class, 20-14
oracle.jdbc.OracleStatement interface, 6-20

close() method, 6-20
defineColumnType(), 6-20
executeQuery() method, 6-20
getResultSet() method, 6-20
getRowPrefetch() method, 6-20

setRowPrefetch() method, 6-20
oracle.jdbc.OracleTypes class, 6-23, 12-24
oracle.jdbc.pool package, 16-14, 17-5
oracle.jdbc.StructMetaData, 9-62
oracle.jdbc.StructMetaData interface, 9-61
oracle.jdbc.xa package and subpackages, 15-7
OracleOCIConnection class, 17-4
OracleOCIConnectionPool class, 17-2, 17-4
OracleOCIFailover interface, 17-5
OraclePooledConnection class, 16-13, 16-14, 17-2
OraclePooledConnection method

definitions, 16-14
OraclePooledConnection object, 14-2
OraclePreparedStatement interface, 6-20

getOraclePlsqlIndexTable() method, 17-22
getPlsqlIndexTable() method, 17-22
registerIndexTableOutParameter()

method, 17-22
setPlsqlIndexTable() method, 17-21, 17-22
setTIMESTAMP(), 6-14
setTIMESTAMPLTZ(), 6-14
setTIMESTAMPTZ(), 6-14

OraclePreparedStatement object, 14-2, 14-3
OracleResultSet interface, 6-22

getXXX() methods, 7-7
OracleResultSetCache interface, 13-6
OracleResultSetMetaData interface, 6-23
OracleServerDriver class

defaultConnection() method, 18-27
oracle.sql datatype classes, 6-8
oracle.sql package

data conversions, 7-2
described, 6-7

oracle.sql.ARRAY class, 11-2
and nested tables, 6-12
and VARRAYs, 6-12
createDescriptor() method, 11-14
getArray() method, 11-6
getArrayType() method, 11-14
getAutoBuffering() method, 11-9
getBaseType() method, 11-6
getBaseTypeName() method, 11-6
getDescriptor() method, 11-6
getJavaSQLConnection() method, 11-6, 11-15
getMaxLength() method, 11-14

Index-12

getOracleArray() method, 11-6
getResultSet() method, 11-6
getSQLTypeName() method, 11-6
length() method, 11-6
methods for Java primitive types, 11-8
setAutoBuffering() method, 11-9
setAutoIndexing() method, 11-10

oracle.sql.ArrayDescriptor class
getBaseName() method, 11-14
getBaseType() method, 11-14

oracle.sql.BFILE class, 6-12
closeFile() method, 8-26
getBinaryStream() method, 8-26
getBytes() method, 8-26
getDirAlias() method, 8-27
getName() method, 8-26
isFileOpen() method, 8-27
length() method, 8-27
openFile() method, 8-26
position() method, 8-27

oracle.sql.BLOB class, 6-12
getBinaryOutputStream() method, 8-14
getBinaryStream() method, 8-14
getBufferSize() method, 8-14
getBytes() method, 8-14
getChunkSize() method, 8-14
length() method, 8-14
position() method, 8-14
putBytes() method, 8-14

oracle.sql.CHAR class, 18-33
getString() method, 6-31
getStringWithReplacement() method, 6-32
toString() method, 6-31

oracle.sql.CharacterSet class, 6-30
oracle.sql.CLOB class, 6-12

getAsciiOutputStream() method, 8-15
getAsciiStream() method, 8-15
getBufferSize() method, 8-15
getCharacterOutputStream() method, 8-15
getCharacterStream() method, 8-15
getChars() method, 8-15
getChunkSize() method, 8-16
getSubString() method, 8-16
length() method, 8-16
position() method, 8-16

putChars() method, 8-16
putString() method, 8-16
supported character sets, 8-13

oracle.sql.datatypes
support, 6-10

oracle.sql.DATE class, 6-13
oracle.sql.Datum array, 17-26
oracle.sql.Datum class, described, 6-7
oracle.sql.NUMBER class, 6-13
oracle.sql.ORAData, 9-53
oracle.sql.ORAData interface, 9-21
oracle.sql.ORADataFactory, 9-53
oracle.sql.ORADataFactory interface, 9-21
OracleSql.parse() method, 20-14
oracle.sql.RAW class, 6-13
oracle.sql.REF class, 6-12, 10-2

getBaseTypeName() method, 10-4
getValue() method, 10-5
setValue() method, 10-5

oracle.sql.ROWID class, 6-10, 6-15, 6-33
oracle.sql.STRUCT class, 6-10, 9-3

getAutoBuffering() method, 9-9
getDescriptor() method, 9-4
getJavaSQLConnection() method, 9-4
getOracleAttributes() method, 9-4
setAutoBuffering() method, 9-9
toJDBC() method, 9-4

oracle.sql.StructDescriptor class, 9-61
createDescriptor() method, 9-5

OracleStatement interface, 6-20
OracleTypes class, 6-23
OracleTypes class for typecodes, 6-23
OracleTypes.CURSOR variable, 6-36
OracleXAConnection class, 15-9
OracleXADataSource class, 15-8
OracleXAResource class, 15-10, 15-11
OracleXid class, 15-16
ORAData interface, 6-4

additional uses, 9-26
advantages, 9-11
Oracle object types, 9-1
reading data, 9-23
writing data, 9-25

othersDeletesAreVisible() method (database meta
data), 13-28

Index-13

othersInsertsAreVisible() method (database meta
data), 13-28

othersUpdatesAreVisible() method (database meta
data), 13-28

OUT parameter mode, 17-24, 17-25
outer joins, SQL92 syntax, 20-13
ownDeletesAreVisible() method (database meta

deta), 13-27
ownInsertsAreVisible() method (database meta

data), 13-28
ownUpdatesAreVisible() method (database meta

data), 13-27

P
parameter modes

IN, 17-22
IN OUT, 17-24
OUT, 17-24, 17-25

password connection property, 3-7
password, specifying, 3-5
PATH variable, specifying, 2-7
PDA, A-13
performance enhancements, standard vs.

Oracle, 4-5
performance extensions

defining column types, 12-23
prefetching rows, 12-20
TABLE_REMARKS reporting, 12-26

performance optimization, 19-6
Personal Digital Assistant (PDA), A-13
PL/SQL

IN parameter, 9-59
OUT parameters, 9-60
restrictions, 19-9
space padding, 19-8
stored procedures, 3-32

PL/SQL index-by tables
mapping, 17-25
scalar datatypes, 17-21

PL/SQL types
corresponding JDBC types, 17-21
limitations, 20-16

PoolConfig() method, 17-7
pooled connections

Oracle implementation, 16-13
standard interface, 16-13

populate() method, A-10
position() method, 8-14, 8-16, 8-27
positioning in result sets, 13-2
prefetching rows, 12-20

suggested default, 12-23
prepare a distributed transaction branch, 15-14
prepareCall(), 14-4
prepareCall() method, 6-19, 14-8, 14-9, 14-10
prepared statement

passing BFILE locator, 8-21
passing LOB locators, 8-5
using setObject() method, 7-12
using setOracleObject() method, 7-12

PreparedStatement object
creating, 3-12

prepareStatement(), 14-4
prepareStatement() method, 6-19, 14-8, 14-9, 14-10

code example, 14-8
previous() method (result set), 13-15
printStackTrace() method (SQLException), 3-35
PrintWriter for a data source, 16-10
processEscapes

connection property, 3-7
put() method

for Properties object, 3-9
for type maps, 9-13

putBytes() method, 8-14
putChars() method, 8-16
putString() method, 8-16

Q
query, executing, 3-11

R
RAW class, 6-13
RDBMS, 1-5
read-only result set concurrency type, 13-4
readSQL() method, 9-15, 9-16, 9-54, 9-61

implementing, 9-16
REF class, 6-12
REF CURSORs, 6-35

Index-14

materialized as result set objects, 6-35
refetching rows into a result set, 13-26, 13-29
refreshRow() method (result set), 13-26
registerDriver() method, 6-18
registerIndexTableOutParameter() method, 17-22,

17-24
arguments

int elemMaxLen, 17-24
int elemSqlType, 17-24
int maxLen, 17-24
int paramIndex, 17-24

code example, 17-25
registering Oracle JDBC drivers, class for, 6-18
registerOutParameter() method, 6-22, 7-13, 9-61
Relational Database Management System

(RDBMS), 1-5
relative positioning in result sets, 13-2
relative() method (result set), 13-14
remarksReporting connection property, 3-7
remarksReporting flag, 12-20
Remote Method Invocation (RMI), A-12
removeConnectionEventListener method

(connection cache), 16-22
resource managers, 15-3
result set

auto-commit mode, 19-6
getting BFILE locators, 8-20
getting LOB locators, 8-4
metadata, 6-23
Oracle extensions, 7-3
using getOracleObject() method, 7-5

result set enhancemennts
positioning result sets, 13-13

result set enhancements
concurrency types, 13-4
downgrade rules, 13-11
fetch size, 13-24
limitations, 13-10
Oracle scrollability requirements, 13-5
Oracle updatability requirements, 13-5
positioning, 13-2
processing result sets, 13-16
refetching rows, 13-26, 13-29
result set types, 13-3
scrollability, 13-2

seeing external changes, 13-28
seeing internal changes, 13-27
sensitivity to database changes, 13-2
specifying scrollability, updatability, 13-8
summary of methods, 13-32
summary of visibility of changes, 13-30
updatability, 13-4
updating result sets, 13-18
visibility vs. detection of external

changes, 13-29
result set fetch size, 13-24
result set methods, JDBC 2.0, 13-32
result set object

closing, 3-12
result set types for scrollability and

sensitivity, 13-3
result set, processing, 3-11
ResultSet class, 3-11
ResultSet() method, 11-10
ResultSetMetaData class, 9-62
return types

for getXXX() methods, 7-7
getObject() method, 7-6
getOracleObject() method, 7-6

return values
casting, 7-10

reusePooledConnection() method, 16-23
RMI, A-12
roll back a distributed transaction branch, 15-15
roll back changes to database, 3-13
row prefetching, 12-20

and data streams, 3-31
ROWID class, 6-15

CursorName methods, 20-16
defined, 6-33

ROWID, use for result set updates, 13-5

S
scalar functions, SQL92 syntax, 20-12
schema naming conventions, 6-5
scrollability in result sets, 13-2
scrollable result sets

creating, 13-8
fetch direction, 13-17

Index-15

implementation of scroll-sensitivity, 13-30
positioning, 13-13
processing backward/forward, 13-16
refetching rows, 13-26, 13-29
scroll-insensitive result sets, 13-3
scroll-sensitive result sets, 13-3
seeing external changes, 13-28
visibility vs. detection of external

changes, 13-29
scroll-sensitive result sets

limitations, 13-10
security

authentication, 18-9
encryption, 18-10
integrity, 18-10
Oracle Advanced Security support, 18-8
overview, 18-8

SELECT statement
to retrieve object references, 10-6
to select LOB locator, 8-12

sendBatch() method, 12-7, 12-9
sensitivity in result sets to database changes, 13-2
serialization

ArrayDescriptor object, 11-15
definition of, 9-6, 11-15
StructDescriptor object, 9-6

server-side internal driver
connection to database, 18-26

server-side Thin driver, described, 1-7
session context, 1-13

for KPRB driver, 18-30
setAsciiStream() method, 7-16
setAutoBuffering() method

of the oracle.sql.ARRAY class, 11-9
of the oracle.sql.STRUCT class, 9-9

setAutoCommit() method, 19-6
setAutoIndexing() method, 11-10

direction parameter values
ARRAY.ACCESS_FORWARD, 11-10
ARRAY.ACCESS_REVERSE, 11-10
ARRAY.ACCESS_UNKNOWN, 11-10

setBFILE() method, 8-21
setBinaryStream() method, 7-16
setBLOB() method, 8-5
setBlob() method, JDK 1.1.x, 8-5

setBlob() method, JDK 1.2.x, 8-5
setBytes() limitations, using streams to avoid, 3-31
setCacheScheme() method (connection

cache), 16-27
setCharacterStream() method, 7-16
setClientIdentifier() method, 6-19
setCLOB() method, 8-5
setClob() method, 1.1.x, 8-5
setClob() method, JDK 1.2.x, 8-5
setConnection() method

ArrayDescriptor object, 11-15
StructDescriptor object, 9-6

setConnectionPoolDataSource method (connection
cache), 16-25

setCursorName() method, 20-16
setDataSource() method (connection event

listener), 16-28
setDate() method, 7-16
setDefaultExecuteBatch() method, 6-19, 12-5
setDefaultRowPrefetch() method, 6-19, 12-21
setDisableStatementCaching() method, 14-8
setEscapeProcessing() method, 20-10
setExecuteBatch() method, 6-21, 12-6
setFetchSize() method, 13-24
setFixedCHAR() method, 7-17
setFormOfUse() method, 6-28
setMaxFieldSize() method, 12-24, 19-8
setNull() method, 6-21, 6-22, 7-13
setObejct() method, 7-11
setObject() method

for BFILES, 8-21
for BLOBs and CLOBs, 8-5
for CustomDatum objects, 9-23
for object references, 10-8
for STRUCT objects, 9-8
to write object data, 9-26
using in prepared statements, 7-12

setOracleObject() method, 6-21, 6-22, 7-11
for BFILES, 8-21
for BLOBs and CLOBs, 8-5
using in prepared statements, 7-12

setORAData() method, 6-21, 9-22, 9-26
setPlsqlIndexTable() method, 17-21, 17-22

arguments
int curLen, 17-23

Index-16

int elemMaxLen, 17-23
int elemSqlType, 17-23
int maxLen, 17-22
int paramIndex, 17-22, 17-26
Object arrayData, 17-22

code example, 17-23
setPoolConfig() method, 17-7
setREF() method, 10-8
setRemarksReporting() method, 6-20, 12-26
setResultSetCache() method, 13-6
setRowPrefetch() method, 6-20, 12-21
setStmtCacheSize() method, 17-10
setString() limitations, using streams to avoid, 3-31
setString() method

to bind ROWIDs, 6-33
setTime() method, 7-17
setTimestamp() method, 7-17
setTransactionIsolation() method, 6-19, 19-15
setTypeMap() method, 6-19
setUnicodeStream() method, 7-16
setValue() method, 10-5
setXXX() methods

Oracle extended properties, 16-6
setXXX() methods, for empty LOBs, 8-17
setXXX() methods, for specific datatypes, 7-12
signed applets, 1-10
Solaris

shared libraries
libheteroxa9_g.so, 17-19
libheteroxa9.so, 17-19

SQL
data converting to Java datatypes, 7-2
primitive types, 6-7
structured types, 6-7
types, constants for, 6-23

SQL engine
relation to the KPRB driver, 18-26

SQL syntax (Oracle), 20-10
SQL*Plus, 9-55, 9-56, 9-59
SQL92 syntax, 20-10

function call syntax, 20-14
LIKE escape characters, 20-13
outer joins, 20-13
scalar functions, 20-12
time and date literals, 20-10

translating to SQL example, 20-14
SQLData interface, 6-4

advantages, 9-11
described, 9-15
Oracle implementation, 6-27
Oracle object types, 9-1
reading data from Oracle objects, 9-17
using with type map, 9-15
writing data from Oracle objects, 9-20

SQLInput interface, 9-15
described, 9-16

SQLInput streams, 9-16
SQLJ

guidelines for using, 1-3
SQLJ object type, 9-52
SQLNET.ORA

parameters for tracing, 19-11
SQLOutput interface, 9-15

described, 9-16
SQLOutput streams, 9-17
SQLWarning class, limitations, 20-17
start a distributed transaction branch, 15-12
statement caching

explicit
definition of, 14-3
null data, 14-10

implicit
definition of, 14-2
Least Recently Used (LRU) scheme, 14-3

statement methods, JDBC 2.0 result sets, 13-35
Statement object

closing, 3-12
creating, 3-11

statements
Oracle extensions, 7-3

static SQL, 1-2
stored procedures

Java, 3-33
PL/SQL, 3-32

stream data, 3-20, 8-6
CHAR columns, 3-25
closing, 3-29
example, 3-22
external files, 3-28
LOBs, 3-28

Index-17

LONG columns, 3-20
LONG RAW columns, 3-20
multiple columns, 3-26
precautions, 3-29
RAW columns, 3-25
row prefetching, 3-31
UPDATE/COMMIT statements, 8-8
use to avoid setBytes() and setString()

limitations, 3-31
VARCHAR columns, 3-25

stream data column
bypassing, 3-27

STRUCT class, 6-10
STRUCT descriptor, 9-4, 9-5
STRUCT object, 6-11

attributes, 6-11
creating, 9-4, 9-5
embedded object, 9-7
nested objects, 6-11
retrieving, 9-6
retrieving attributes as oracle.sql types, 9-8

StructDescriptor object
creating, 9-5
deserialization, 9-6
get methods, 9-5
serialization, 9-6
setConnection() method, 9-6

StructMetaData interface, 9-62

T
TABLE_REMARKS columns, 12-20
TABLE_REMARKS reporting

restrictions on, 12-26
TAF, definition of, 17-16
TCP/IP protocol, 1-5, 3-10
Thin driver

applets, 1-10, 18-15
applications, 1-10
CHAR/VARCHAR2 globalization size

restrictions, 18-6
described, 1-5
globalization considerations, 18-4
server-side, described, 1-7

time and date literals, SQL92 syntax, 20-10

tnsEntry, 16-6, 17-19
TNSNAMES entries, 3-4
toDatum() method, 9-54

applied to CustomDatum objects, 9-11, 9-21
called by setORAData() method, 9-26

toJDBC() method, 9-4
toJdbc() method, 6-10
toString() method, 6-31
trace facility, 19-11
trace parameters

client-side, 19-12
server-side, 19-13

tracing with a data source, 16-10
transaction branch, 15-2
transaction branch ID component, 15-16
transaction context, 1-13

for KPRB driver, 18-30
transaction IDs (distributed transactions), 15-5
transaction managers, 15-3
transactions

switching between local and global, 15-5 to 15-7
Transparent Application Failover (TAF), definition

of, 17-16
TTC error messages, listed, B-17
TTC protocol, 1-5, 1-6
type map, 6-4, 7-4

adding entries, 9-13
and STRUCTs, 9-15
creating a new map, 9-14
used with arrays, 11-18
used with SQLData interface, 9-15
using with arrays, 11-25

type map (SQL to Java), 9-10
type mapping

BigDecimal mapping, 9-47
JDBC mapping, 9-46
object JDBC mapping, 9-46
Oracle mapping, 9-46

type mappings
JPublisher options, 9-45

type maps
relationship to database connection, 18-28

TYPE_FORWARD_ONLY result sets, 13-8
TYPE_SCROLL_INSENSITIVE result sets, 13-8
TYPE_SCROLL_SENSITIVE result sets, 13-8

Index-18

typecodes, Oracle extensions, 6-23

U
unicode data, 6-28
updatability in result sets, 13-4
updatable result set concurrency type, 13-4
updatable result sets

creating, 13-8
DELETE operations, 13-18
INSERT operations, 13-21
limitations, 13-10
refetching rows, 13-26, 13-29
seeing internal changes, 13-27
update conflicts, 13-23
UPDATE operations, 13-19

update batching
overview, Oracle vs. standard model, 12-2
overview, statements supported, 12-3

update batching (Oracle model)
batch value, checking, 12-7
batch value, overriding, 12-7
committing changes, 12-8
connection batch value, setting, 12-5
connection vs. statement batch value, 12-4
default batch value, 12-5
disable auto-commit, 12-4
example, 12-9
limitations and characteristics, 12-5
overview, 12-4
statement batch value, setting, 12-6
stream types not allowed, 12-5
update counts, 12-9

update batching (standard model)
adding to batch, 12-11
clearing the batch, 12-14
committing changes, 12-14
error handling, 12-16
example, 12-15
executing the batch, 12-12
intermixing batched and non-batched, 12-17
overview, 12-10
stream types not allowed, 12-11
update counts, 12-15
update counts upon error, 12-17

update conflicts in result sets, 13-23
update counts

Oracle update batching, 12-9
standard update batching, 12-15
upon error (standard batching), 12-17

UPDATE in a result set, 13-19
updateRow() method (result set), 13-20
updatesAreDetected() method (database meta

data), 13-29
updateXXX() methods (result set), 13-19, 13-21
updateXXX() methods for empty LOBs, 8-17
updating result sets, 13-18
url, 16-6
user connection property, 3-7
userid, specifying, 3-5

V
VARCHAR2 columns, 19-8

globalization size restrictions, Thin, 18-6

W
WIDTH, parameter for APPLET tag, 18-24
window, scroll-sensitive result sets, 13-30
writeSQL() method, 9-15, 9-17, 9-54, 9-61

implementing, 9-16

Index-19

X
XA

connection implementation, 15-9
connections (definition), 15-4
data source implementation, 15-8
data sources (definition), 15-3
definition, 15-2
error handling, 15-19
example of implementation, 15-21
exception classes, 15-18
Oracle optimizations, 15-20
Oracle transaction ID implementation, 15-16
resource implementation, 15-10
resources (definition), 15-4
transaction ID interface, 15-16

XAException, 15-16
Xids, 15-16

Index-20

	Contents
	Send Us Your Comments
	Preface
	1 Overview
	Introduction
	What is JDBC?
	JDBC versus SQLJ

	Overview of the Oracle JDBC Drivers
	Common Features of Oracle JDBC Drivers
	JDBC Thin Driver
	JDBC OCI Driver
	JDBC Server-Side Thin Driver
	JDBC Server-Side Internal Driver
	Choosing the Appropriate Driver

	Overview of Application and Applet Functionality
	Application Basics
	Applet Basics
	Oracle Extensions
	Package oracle.jdbc

	Server-Side Basics
	Session and Transaction Context
	Connecting to the Database

	Environments and Support
	Supported JDK and JDBC Versions
	JNI and Java Environments
	JDBC and IDEs

	Changes At This Release

	2 Getting Started
	Requirements and Compatibilities for Oracle JDBC Drivers
	Verifying a JDBC Client Installation
	Check Installed Directories and Files
	Check the Environment Variables
	Make Sure You Can Compile and Run Java
	Determine the Version of the JDBC Driver
	Testing JDBC and the Database Connection: JdbcCheckup

	3 Basic Features
	First Steps in JDBC
	Import Packages
	Register the JDBC Drivers
	Open a Connection to a Database
	Create a Statement Object
	Execute a Query and Return a Result Set Object
	Process the Result Set
	Close the Result Set and Statement Objects
	Make Changes to the Database
	Commit Changes
	Close the Connection

	Sample: Connecting, Querying, and Processing the Results
	Datatype Mappings
	Table of Mappings
	Notes Regarding Mappings

	Java Streams in JDBC
	Streaming LONG or LONG RAW Columns
	Streaming CHAR, VARCHAR, or RAW Columns
	Data Streaming and Multiple Columns
	Streaming LOBs and External Files
	Closing a Stream
	Notes and Precautions on Streams

	Stored Procedure Calls in JDBC Programs
	PL/SQL Stored Procedures
	Java Stored Procedures

	Processing SQL Exceptions
	Retrieving Error Information
	Printing the Stack Trace

	4 Overview of JDBC 2.0 Support
	Introduction
	JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
	Datatype Support
	Standard Feature Support
	Extended Feature Support
	Standard versus Oracle Performance Enhancement APIs
	Migration from JDK 1.1.x to JDK 1.2.x

	Overview of JDBC 2.0 Features

	5 Overview of Supported JDBC 3.0 Features
	Introduction
	JDBC 3.0 Support: JDK 1.4 and Previous Releases
	Overview of Supported JDBC 3.0 Features
	Transaction Savepoints
	Creating a Savepoint
	Rolling back to a Savepoint
	Releasing a Savepoint
	Checking Savepoint Support
	Savepoint Notes
	Savepoint Interfaces
	Pre-JDK1.4 Savepoint Support

	6 Overview of Oracle Extensions
	Introduction to Oracle Extensions
	Support Features of the Oracle Extensions
	Support for Oracle Datatypes
	Support for Oracle Objects
	Support for Schema Naming
	OCI Extensions

	Oracle JDBC Packages and Classes
	Package oracle.sql
	Package oracle.jdbc
	Package oracle.jdbc2 (for JDK 1.1.x only)

	Oracle Character Datatypes Support
	SQL CHAR Datatypes
	SQL NCHAR Datatypes
	Class oracle.sql.CHAR

	Additional Oracle Type Extensions
	Oracle ROWID Type
	Oracle REF CURSOR Type Category
	Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers

	7 Accessing and Manipulating Oracle Data
	Data Conversion Considerations
	Standard Types versus Oracle Types
	Converting SQL NULL Data

	Result Set and Statement Extensions
	Comparison of Oracle get and set Methods to Standard JDBC
	Standard getObject() Method
	Oracle getOracleObject() Method
	Summary of getObject() and getOracleObject() Return Types
	Other getXXX() Methods
	Casting Your get Method Return Values
	Standard setObject() and Oracle setOracleObject() Methods
	Other setXXX() Methods
	Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers

	Using Result Set Meta Data Extensions

	8 Working with LOBs and BFILEs
	Oracle Extensions for LOBs and BFILEs
	Working with BLOBs and CLOBs
	Getting and Passing BLOB and CLOB Locators
	Reading and Writing BLOB and CLOB Data
	Creating and Populating a BLOB or CLOB Column
	Accessing and Manipulating BLOB and CLOB Data
	Additional BLOB and CLOB Features

	Working With Temporary LOBs
	Using Open and Close With LOBs
	Working with BFILEs
	Getting and Passing BFILE Locators
	Reading BFILE Data
	Creating and Populating a BFILE Column
	Accessing and Manipulating BFILE Data
	Additional BFILE Features

	9 Working with Oracle Object Types
	Mapping Oracle Objects
	Using the Default STRUCT Class for Oracle Objects
	STRUCT Class Functionality
	Creating STRUCT Objects and Descriptors
	Retrieving STRUCT Objects and Attributes
	Binding STRUCT Objects into Statements
	STRUCT Automatic Attribute Buffering

	Creating and Using Custom Object Classes for Oracle Objects
	Relative Advantages of ORAData versus SQLData
	Understanding Type Maps for SQLData Implementations
	Creating a Type Map Object and Defining Mappings for a SQLData Implementation
	Understanding the SQLData Interface
	Reading and Writing Data with a SQLData Implementation
	Understanding the ORAData Interface
	Reading and Writing Data with a ORAData Implementation
	Additional Uses for ORAData
	The Deprecated CustomDatum Interface

	Object-Type Inheritance
	Creating Subtypes
	Implementing Customized Classes for Subtypes
	Retrieving Subtype Objects
	Creating Subtype Objects
	Sending Subtype Objects
	Accessing Subtype Data Fields
	Inheritance Meta Data Methods

	Using JPublisher to Create Custom Object Classes
	JPublisher Functionality
	JPublisher Type Mappings

	Describing an Object Type
	Functionality for Getting Object Meta Data
	Steps for Retrieving Object Meta Data

	SQLJ Object Types
	Creating a SQLJ Object Type in SQL Representation
	Inserting an Instance of a SQLJ Object Type
	Retrieving Instances of a SQLJ Object Type
	Meta Data Methods for SQLJ Object Types
	SQLJ Object Types and Custom Object Types Compared

	10 Working with Oracle Object References
	Oracle Extensions for Object References
	Overview of Object Reference Functionality
	Object Reference Getter and Setter Methods
	Key REF Class Methods

	Retrieving and Passing an Object Reference
	Retrieving an Object Reference from a Result Set
	Retrieving an Object Reference from a Callable Statement
	Passing an Object Reference to a Prepared Statement

	Accessing and Updating Object Values through an Object Reference
	Custom Reference Classes with JPublisher

	11 Working with Oracle Collections
	Oracle Extensions for Collections (Arrays)
	Choices in Materializing Collections
	Creating Collections
	Creating Multi-Level Collection Types

	Overview of Collection (Array) Functionality
	Array Getter and Setter Methods
	ARRAY Descriptors and ARRAY Class Functionality

	ARRAY Performance Extension Methods
	Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types
	ARRAY Automatic Element Buffering
	ARRAY Automatic Indexing

	Creating and Using Arrays
	Creating ARRAY Objects and Descriptors
	Retrieving an Array and Its Elements
	Passing Arrays to Statement Objects

	Using a Type Map to Map Array Elements
	Custom Collection Classes with JPublisher

	12 Performance Extensions
	Update Batching
	Overview of Update Batching Models
	Oracle Update Batching
	Standard Update Batching
	Premature Batch Flush

	Additional Oracle Performance Extensions
	Oracle Row Prefetching
	Defining Column Types
	DatabaseMetaData TABLE_REMARKS Reporting

	13 Result Set Enhancements
	Overview
	Result Set Functionality and Result Set Categories Supported in JDBC 2.0
	Oracle JDBC Implementation Overview for Result Set Enhancements

	Creating Scrollable or Updatable Result Sets
	Specifying Result Set Scrollability and Updatability
	Result Set Limitations and Downgrade Rules

	Positioning and Processing in Scrollable Result Sets
	Positioning in a Scrollable Result Set
	Processing a Scrollable Result Set

	Updating Result Sets
	Performing a DELETE Operation in a Result Set
	Performing an UPDATE Operation in a Result Set
	Performing an INSERT Operation in a Result Set
	Update Conflicts

	Fetch Size
	Setting the Fetch Size
	Use of Standard Fetch Size versus Oracle Row-Prefetch Setting

	Refetching Rows
	Seeing Database Changes Made Internally and Externally
	Seeing Internal Changes
	Seeing External Changes
	Visibility versus Detection of External Changes
	Summary of Visibility of Internal and External Changes
	Oracle Implementation of Scroll-Sensitive Result Sets

	Summary of New Methods for Result Set Enhancements
	Modified Connection Methods
	New Result Set Methods
	Statement Methods
	Database Meta Data Methods

	14 Statement Caching
	About Statement Caching
	Basics of Statement Caching
	Implicit Statement Caching
	Explicit Statement Caching

	Using Statement Caching
	Enabling and Disabling Statement Caching
	Checking for Statement Creation Status
	Physically Closing a Cached Statement
	Using Implicit Statement Caching
	Using Explicit Statement Caching

	15 Distributed Transactions
	Overview
	Distributed Transaction Components and Scenarios
	Distributed Transaction Concepts
	Switching Between Global and Local Transactions
	Oracle XA Packages

	XA Components
	XA Data Source Interface and Oracle Implementation
	XA Connection Interface and Oracle Implementation
	XA Resource Interface and Oracle Implementation
	XA Resource Method Functionality and Input Parameters
	XA ID Interface and Oracle Implementation

	Error Handling and Optimizations
	XA Exception Classes and Methods
	Mapping between Oracle Errors and XA Errors
	XA Error Handling
	Oracle XA Optimizations

	Implementing a Distributed Transaction
	Summary of Imports for Oracle XA
	Oracle XA Code Sample

	16 Connection Pooling and Caching
	Data Sources
	A Brief Overview of Oracle Data Source Support for JNDI
	Data Source Features and Properties
	Creating a Data Source Instance and Connecting (without JNDI)
	Creating a Data Source Instance, Registering with JNDI, and Connecting
	Logging and Tracing

	Connection Pooling
	Connection Pooling Concepts
	Connection Pool Data Source Interface and Oracle Implementation
	Pooled Connection Interface and Oracle Implementation
	Creating a Connection Pool Data Source and Connecting

	Connection Caching
	Overview of Connection Caching
	Typical Steps in Using a Connection Cache
	Oracle Connection Cache Specification: OracleConnectionCache Interface
	Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class
	Oracle Connection Event Listener: OracleConnectionEventListener Class

	17 JDBC OCI Extensions
	OCI Driver Connection Pooling
	OCI Driver Connection Pooling: Background
	OCI Driver Connection Pooling and Shared Servers Compared
	Stateless Sessions Compared to Stateful Sessions
	Defining an OCI Connection Pool
	Connecting to an OCI Connection Pool
	Statement Handling and Caching
	JNDI and the OCI Connection Pool

	Middle-Tier Authentication Through Proxy Connections
	OCI Driver Transparent Application Failover
	Failover Type Events
	TAF Callbacks
	Java TAF Callback Interface

	OCI HeteroRM XA
	Configuration and Installation
	Exception Handling
	HeteroRM XA Code Example

	Accessing PL/SQL Index-by Tables
	Overview
	Binding IN Parameters
	Receiving OUT Parameters

	18 Advanced Topics
	JDBC and Globalization Support
	How JDBC Drivers Perform Globalization Support Conversions
	Globalization Support and Object Types
	SQL CHAR Data Size Restrictions with the Thin Driver

	JDBC Client-Side Security Features
	JDBC Support for Oracle Advanced Security
	JDBC Support for Login Authentication
	JDBC Support for Data Encryption and Integrity

	JDBC in Applets
	Connecting to the Database through the Applet
	Connecting to a Database on a Different Host Than the Web Server
	Using Applets with Firewalls
	Packaging Applets
	Specifying an Applet in an HTML Page

	JDBC in the Server: the Server-Side Internal Driver
	Connecting to the Database with the Server-Side Internal Driver
	Exception-Handling Extensions for the Server-Side Internal Driver
	Session and Transaction Context for the Server-Side Internal Driver
	Testing JDBC on the Server
	Loading an Application into the Server
	Server-Side Character Set Conversion of oracle.sql.CHAR Data

	19 Coding Tips and Troubleshooting
	JDBC and Multithreading
	Performance Optimization
	Disabling Auto-Commit Mode
	Standard Fetch Size and Oracle Row Prefetching
	Standard and Oracle Update Batching

	Common Problems
	Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
	Memory Leaks and Running Out of Cursors
	Boolean Parameters in PL/SQL Stored Procedures
	Opening More Than 16 OCI Connections for a Process

	Basic Debugging Procedures
	Oracle Net Tracing to Trap Network Events
	Third Party Debugging Tools

	Transaction Isolation Levels and Access Modes

	20 Reference Information
	Valid SQL-JDBC Datatype Mappings
	Supported SQL and PL/SQL Datatypes
	Embedded SQL92 Syntax
	Time and Date Literals
	Scalar Functions
	LIKE Escape Characters
	Outer Joins
	Function Call Syntax
	SQL92 to SQL Syntax Example

	Oracle JDBC Notes and Limitations
	CursorName
	SQL92 Outer Join Escapes
	PL/SQL TABLE, BOOLEAN, and RECORD Types
	IEEE 754 Floating Point Compliance
	Catalog Arguments to DatabaseMetaData Calls
	SQLWarning Class
	Bind by Name

	Related Information
	Oracle JDBC Drivers and SQLJ
	Java Technology

	A Row Set
	Introduction
	Row Set Setup and Configuration
	Runtime Properties for Row Set
	Row Set Listener
	Traversing Through the Rows
	Cached Row Set
	CachedRowSet Constraints

	JDBC Row Set

	B JDBC Error Messages
	General Structure of JDBC Error Messages
	General JDBC Messages
	JDBC Messages Sorted by ORA Number
	JDBC Messages Sorted Alphabetically

	HeteroRM XA Messages
	HeteroRM XA Messages Sorted by ORA Number
	HeteroRM XA Messages Sorted Alphabetically

	TTC Messages
	TTC Messages Sorted by ORA Number
	TTC Messages Sorted Alphabetically

	Index

