Oracle9i

Support for JavaServer Pages Reference

Release 2 (9.2)

March 2002
Part No. A96657-01

ORACLE

Oracle9i Support for JavaServer Pages Reference, Release 2 (9.2)
Part No. A96657-01

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.
Primary Author: Brian Wright

Contributing Author: Michael Freedman

Contributors: Julie Basu, Alex Yiu, Sunil Kunisetty, Gael Stevens, Ping Guo, YaQing Wang, Song Lin,
Hal Hildebrand, Jasen Minton, Matthieu Devin, Jose Alberto Fernandez, Olga Peschansky, Jerry
Schwarz, Clement Lai, Shinji Yoshida, Kenneth Tang, Robert Pang, Kannan Muthukkaruppan, Ralph
Gordon, Shiva Prasad, Sharon Malek, Jeremy Lizt, Kuassi Mensah, Susan Kraft, Sheryl Maring, Ellen
Barnes, Angie Long, Sanjay Singh, Olaf van der Geest

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, SQL*Plus, and Oracle Store are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

SeNd US YOUT COMMEBNTS ...ttt iX
P T AC .ottt ettt ettt ettt ettt ettt Xi
101 (T gL (=00 I AN U o [11 a1 TTSU TR Xii
Documentation ACCESSIDIITYcoiiiiiiiie e e Xii
OFQANIZATION ...ttt bbbttt b et b et e bbbt bt bt bbb bbb Xiii
Related DOCUMENTATIONooveieiiiiiieie ettt et e e st e e st e e s st e e sttt e e st ae s saseaesstbesesssbessanteeesrees Xiv
(O00] 0 \VZ=T o1 K10] o F-THURT TR XViii

1 General Overview

INtrodUCtioN tO JAVASEIVEr PAJES.c.coviiiiirieiirieiiie sttt e e 1-2
What @ JSP Page LOOKS LIKE........coiiiiiii ittt s s 1-2
Convenience of JSP Coding Versus Servliet Codingcoovviiriiniiniiiie e 1-3
Separation of Business Logic from Page Presentation: Calling JavaBeansc.c.cce.... 1-5
JSP Pages and Alternative Markup LANQUAGES.ccooeiiieiieiineee et 1-5

ISP EXECULTON ...ttt e e e b et s s s e bbb 1-7
JSP Containers in a NUTESHEll ..o 1-7
JSP Pages and On-Demand TransIationccoocoviiiiiinieie e e 1-7
REQUESTING @ JSP PAJE......e ittt st et et eb e eb e er e 1-8

Overview Of JSP Syntax EIEMENTS........ccooiiiiiiee e 1-10
DIFECLIVES ...ttt bbbttt b et e bt bbbt eb et er e 1-10
SCHIPLING EIBMENTScviieiiiiciie e s 1-12
N e @] o] (=T £ T o BTt] o =T TSRS 1-14
JSP Actions and the <jSp: = Tag Selociiiiiiiii e 1-18

LI o N T o =T 1SS 1-23

2 Overview of the Oracle JSP Implementation

Overview of JSP and Servlet Containers and Web Server with Oracle9i ..., 2-2
JSP Container and Servlet Environment Provided with Oracle9icccovvvvinicinicinenn, 2-2
Other Serviet ENVIFONMENTS. ..ot s 2-3
Role Of the Oracle HTTP SEIVE ..ottt 2-3

Portability and Functionality Across Servlet ENVIFONMENTS..........coviiriineinencne e 2-5
Oracle JSP POFTADTIITYcooieiiie it 2-5
Oracle JSP Extended Functionality for Servlet 2.0 Environments.........ccccocovvieiiiecieninnnnns 2-5

Oracle9i JDeveloper Support for the Oracle JSP CONAINET........ccccooiiiiieiiicce e 2-7

Support for the Oracle JSP Container in Non-Oracle ENVironments..........cccccocvvveevenecieenne, 2-8

Overview of Oracle JSP Programmatic EXtENSIONScccoeuiiiiiiniie e e 2-9
Overview of Oracle-Specific EXIENSIONS.oiiriiriireee s 2-9
Overview of JSP Tag Libraries and JavaBeans Provided with Oracle9i...........cc.ccocevvnenen. 2-11

JSP EXECULION IMOTEIS ...ttt e 2-14
On-Demand Translation MO ..o e 2-14
Pre-Translation MOEl ..o e 2-14

3 Basics

Application Root and Doc ROOt FUNCLIONAIILYcviiiiiiiiieiie e 3-2
Application Roots in Serviet 2.2 ENVIFONMENTSccooiiiiiiiniiiniiireeeine e s 3-2
Oracle Implementation of Application Root Functionality in Servlet 2.0 Environments.. 3-3

Overview of JSP Applications and SESSIONSccviiiiiriiiriie e 3-4
General Application and Session Support in the Oracle JSP Container..........ccocccvevnnne. 3-4
JSP Default SESSION REGUESTESc.coueiiieiirieieie sttt e e s e e e 3-4

JSP-SErVIEt INTEIACTIONc.oviiiieiie ettt ettt eb et b et bbbt eb e ben e 3-5
Invoking @ ServIet from @ JSP PAge ..o s 3-5
Passing Data to a Servlet Invoked from @ JSP PAge........cccveiiiiiiiiieie e 3-6
Invoking @ JSP Page from @ SErVIET........ .o e s 3-6
Passing Data Between a JSP Page and @ SErvIet..........ccocviiniincnicne e 3-8
JSP-Serviet INteraction SAMPIES ..ot e s 3-8

JSP RESOUICE MaNAGEIMENToiiiiiiit ettt 3-10
Standard Session Resource Management with HttpSessionBindingListener.................... 3-10
Overview of Oracle Extensions for Resource Management............cccccevevneieneee s 3-15

JSP RUNTIME EFTOr PrOCESSING ...ttt sttt sttt et s s e e e 3-16

USING JSP EFTOT PAGES ...ttt ettt ettt ettt ea et sae st s st e e sneenens 3-16
JSP EFror PAge EXAMPIE.. ..ottt ettt st e eneas 3-17
JSP Starter SAMpPIe FOr DAt ACCESS........coiirierire ettt ettt et e e 3-19

4 Key Considerations

General JSP Programming Strategies, Tips, and Trapsccocoevernieneienece et 4-2
JavaBeans Versus SCHIPLIETS.covi it 4-2
Use of IDBC Performance Enhancement FEAtUIES ... i 4-3
Static Includes Versus DYNamic INCIUAESccoeoiiiiiiniiicc e 4-6
When to Consider Creating and Using JSP Tag Libraries..........ccccoovvienieievencie e 4-8
Use of @ Central CheCKEr PAgE.........cciiiiiiiiiiiieiei et 4-9
Workarounds for Large Static Content in JSP Pages.........cccviiiiiniinniience e 4-10
Method Variable Declarations Versus Member Variable Declarations..............c.cccccoenene. 4-11
Page Directive CharaCteriStiCsciieiricirieiiiei ettt e 4-13
JSP Preservation of White Space and Use with Binary Data............ccocooviiiininniienenennns 4-14
Oracle XML SUPPOKT ..ottt ettt ettt ettt sb et sbe et se e ere s es e es 4-17

Key JSP CONTIGUIAtION ISSUEScuiiiiiiiiiirieisie sttt et e e s 4-19
Optimization Of JSP EXECULIONcoiiiiiiiiieiise ettt 4-19
Classpath and Class LOAAET ISSUBScc.uviieieriiriiieiiesisie ettt st st sneneanens 4-20

Oracle JSP Runtime Page and Class RelOading........ccccocvieriiiieniie et 4-24
Dynamic Page REraNSIAtIONccuieiiieiiieeiie ettt 4-24
Dynamic Page REIOAINGcovviuiriiiiiiciiiieiiietie ettt ettt ber e 4-25
Dynamic Class REIOAAINGccoiiciiiiiiiiiee et e e 4-25

5 Oracle-Specific Programming Extensions

Oracle JSP Event Handling with JSPSCOPELISIENEN ...t s 5-2
Oracle JSP Support for Oracle SQLUJ ... et 5-3
SQLJ JSP COdE EXAMPIE ..ottt e e e e 5-3
Triggering the SQLJ TranSIatorcccco i 5-5
Setting Oracle SQLI OPLIONSociiiiii it e s 5-6

6 JSP Translation and Deployment

Functionality of the Oracle JSP Translator ... 6-2

GeNErated COOE FEATUIESocveeieiicee ettt ettt et be e et eetbe e ste e tbe e srae et aesaeeeste e e 6-2

General Conventions for OULPUL NAMES ..o e 6-3
Generated Package and Class Names (On-Demand Translation)..........ccccoeoeneivniinicnennnne 6-5
Generated Files and Locations (On-Demand Translation)..........c.ccocveiieiieienennieceeinens 6-6
Sample Page Implementation Class SOUFCE ...t e 6-9
JSP Pre-Translation and the 0JSPC ULtyccooeiiiiii i 6-13
General Use of 0jspc fOr Pre-Translation...........c.coov i 6-13
Details of the ojspc Pre-Translation TOO!ccoooiiiiiiece e 6-14
Additional JSP Deployment CONSIAEratioNscccoi it 6-27
General JSP Pre-Translation WithoUt EXECULIONcc.cciiiiieiie i 6-27
Deployment of Binary FileS ONIY ... 6-27
Deployment of JSP Pages with Oracle9i JIDEVEIOPET ..ot 6-29
DOC ROOT FOF JSEIV ...ttt e b bbbt 6-29

7 JSP Tag Libraries

Standard Tag Library FrameWO Ko e s s 7-2
Overview of a Custom Tag Library Implementationccccooeoenieneincincnceeies 7-2
QLI o B =V g T 1= TSRS 7-4
Scripting Variables and Tag-Extra-1nfo Classes........cccoovieeeiiiiiie i 7-7
Access to Outer Tag Handler INSTANCES. ..ot 7-10
Tag Library DesCription FileS.........coi it 7-11
Use of web.Xml for Tag LiDraries ... e 7-12
THe taglib DIFECLIVE ..ot e 7-14
End-to-End Example: Defining and Using @ CUStOM TaJ.......cccuverriinienne e 7-15
COMPIIE-TIME TAGS ...ttt sttt b bbbttt eb et bt b sr e e 7-20
General Compile-Time Versus Runtime Considerationsc.cococeveeneinneeinne s 7-20
Oracle JML Library: Compile-Time Versus RUNTIME..........ccooooieininiene s 7-20

8 Oracle JSP Globalization Support

Content Type Settings in the page DIreCliVe ..o e 8-2
Dynamic CoNtent TYPE SETLINGSovveviiiiirectiiet ettt et et er e er e er e ber e ben e 8-4
Oracle JSP Extended Support for Multibyte Parameter ENCOAINGccocooviiiiniiinciineiinenene 8-5
The setReqCharacterEncoding() Methodccooi i 8-5
The translate_params Configuration Parameter ... 8-6

Vi

9 Oracle JSP in Apache JServ

A

B

Getting Started in aJSErv ENVIFONMENT. ...t 9-2
Required and Optional Files for Oracle JSP...........ociiiiiieie e 9-2
Adding Files to the JServ Web Server Classpath ... 9-4
Mapping JSP File Name EXtensions fOr JSEIV ..ot 9-6
Oracle JSP Configuration Parameters..........ccoveierierie e e 9-7
Setting JSP PArameters IN JSEIV ...ttt s e 9-18

Considerations for JServ Servlet ENVIFONMENTS..........cciieiieie et 9-20
Dynamic Includes and FOrwards iN JSEIV ... 9-20
Application FrameworK fOr JSEIV ... e 9-22
JSP and Serviet SESSION SNAFINGcooiiiiiiiii b 9-23
Directory Alias Translation ..o 9-23

Oracle JSP Application and Session SUPPOrt FOr JSEIVcocevievienience e 9-26
Overview of globals.jsa FUNCLIONAIILYccouiiiiiiicic e 9-26
Overview of globals.jsa Syntax and SEMaNTiCSccccoereirieiiiii i 9-28
The globals.jsa EVeNt HANAIETSccooiiiiiiie et 9-31
Global Declarations and DIFECLIVESccuieiiirieire ettt 9-36

Samples Using globals.jsa for Servlet 2.0 ENVIFONMENTSc.ccooviiiiiiiniinecineciseeesereseieeas 9-39
A globals.jsa Example for Application EVents: I0tt0.jSPccvrerernerninne e 9-39
A globals.jsa Example for Application and Session Events: iNdex1.jSPc.ceevrerenennene 9-42
A globals.jsa Example for Global Declarations: iNAeX2.JSPccccoereenieienieieneineeene e 9-45

Getting Started in Alternative Environments

Configuration of Web Server and Servlet Environment for Oracle JSPcccocvviiivineene A-2
Adding Oracle JSP-Related JAR and ZIP Files to Web Server Classpathc.ccceeiee. A-2
Mapping JSP File Name Extensions to Oracle JSPServiet..........ccoooviiieice e A-4

Oracle JSP Configuration Parameter SELtiNGS........ccouieiriire i et A-8
Setting Oracle JSP Parameters in JSWDK ... e A-8
Setting Oracle JSP Parameters in TOMICAL.........ccooiiierie e A-8

Third Party Licenses

APACNE HT TP SEIVET ..ottt bbb b s e s e b b B-2
The APache SOTIWAIE LICENSE ..ottt ettt se e ee B-2
AAPACIE JSEIV ..o bbbt bbb e B-4

vii

Index

viii

Apache JServ Public License

Send Us Your Comments

Oracle9i Support for JavaServer Pages Reference, Release 2 (9.2)
Part No. A96657-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgcomment_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Preface

This document introduces and explains the Oracle implementation of JavaServer
Pages (JSP) technology, specified by Sun Microsystems. It summarizes standard
features, as specified by Sun, but focuses primarily on Oracle implementation
details and value-added features.

The Oracle JSP container provided with Oracle9i release 2 is a complete
implementation of the Sun Microsystems JavaServer Pages Specification, Version 1.1.

This preface contains these topics:

Intended Audience
Documentation Accessibility
Organization

Related Documentation

Conventions

Important: \Version 1.1.2.4 of the Oracle JSP container is supplied
with Oracle9i release 2.

xi

Intended Audience

This document is intended for developers interested in creating Web applications
based on JavaServer Pages technology. It assumes that working Web and servlet
environments already exist, and that readers are already familiar with the
following:

= general Web technology

= general servlet technology

« how to configure their Web server and servlet environments

« HTML

« Java

« Oracle JDBC (for JSP applications accessing an Oracle database)
« Oracle SQLIJ (for JSP database applications using SQLJ)

While some information about standard JSP 1.1 technology and syntax is provided
in Chapter 1 and elsewhere, there is no attempt at completeness in this area. For
additional information about standard JSP 1.1 features, consult the Sun
Microsystems JavaServer Pages Specification, Version 1.1 or other appropriate
reference materials.

The JSP 1.1 specification relies on a servlet 2.2 environment, and servlet 2.2 features
are discussed in this document. However, the JSP container provided with Oracle9i
has special features for earlier servlet environments, and there is special discussion

of these features in Chapter 9 as they relate to servlet 2.0 environments, particularly
Apache JServ, which is also included with Oracle9i.

Documentation Accessibility

Xil

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //waw or acl e. comf accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

This document contains:

Chapter 1, "General Overview"

This chapter highlights standard JSP 1.1 technology. (It is not intended as a
complete reference.)

Chapter 2, "Overview of the Oracle JSP Implementation"

This chapter summarizes Oracle JSP features and extensions, and introduces the JSP
and servlet containers and the Web server provided with Oracle9i release 2.

Chapter 3, "Basics"

This chapter introduces basic JSP programming considerations and provides a
starter sample for database access.

Chapter 4, "Key Considerations"

This chapter discusses a variety of general programming and configuration issues
the developer should be aware of.

Chapter 5, "Oracle-Specific Programming Extensions"

This chapter covers Oracle-specific (non-portable) extensions supplied by the Oracle
JSP container with Oracle9i release 2.

xiii

Chapter 6, "JSP Translation and Deployment"

This chapter covers Oracle JSP translation and deployment features and issues, and
documents the oj spc pre-translation tool.

Chapter 7, "JSP Tag Libraries"
This chapter introduces the basic JSP 1.1 framework for custom tag libraries.

Chapter 8, "Oracle JSP Globalization Support"

This chapter discusses standard and Oracle-specific features for globalization
support.

Chapter 9, "Oracle JSP in Apache JServ"

This appendix provides details of how to use the Oracle JSP container in the JServ
servlet 2.0 environment, including required files, deployment, configuration, and
special programming considerations.

Appendix A, "Getting Started in Alternative Environments”

This appendix covers configuration steps for alternative environments—Tomcat,
from the Apache Software Foundation, and the Sun Microsystems JSWDK.

Appendix B, "Third Party Licenses"

This appendix includes the Third Party License for third party products included
with Oracle9i release 2 and discussed in this document.

Related Documentation
Also available from the Oracle Java Platform group, for Oracle9i releases:
« Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle database Java environment in general,
rather than to a particular product such as JDBC or SQLJ, is in this book.

» Oracle9i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of the Oracle
implementation of the JDBC standard (for Java Database Connectivity). This
includes an overview of the Oracle JDBC drivers, details of the Oracle

Xiv

implementation of JDBC 1.22, 2.0, and 3.0 features, and discussion of Oracle
JDBC type extensions and performance extensions.

Oracle9i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

Oracle9i JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing SQLJ
or JDBC applications that use object types, VARRAY types, nested table types,
or object reference types, then JPublisher can generate custom Java classes to
map to them.

Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle9i database. With stored procedures (functions, procedures, triggers, and
SQL methods), Java developers can implement business logic at the server
level, thereby improving application performance, scalability, and security.

The following OC4J documents, for Oracle9i Application Server releases, are also
available from the Oracle Java Platform group:

Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OCA4l.

XV

XVi

Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4)J
configuration files.

Oracle9iAS Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4J,
such as JTA, JNDI, and the Oracle9i Application Server Java Object Cache.

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

The following documents are from the Oracle Server Technologies group:

Oracle9i XML Developer’s Kits Guide - XDK

Oracle9i Application Developer’s Guide - Fundamentals
Oracle9i Supplied Java Packages Reference

Oracle9i Supplied PL/SQL Packages and Types Reference
PL/SQL User’s Guide and Reference

Oracle9i SQL Reference

Oracle9i Net Services Administrator’s Guide

Oracle Advanced Security Administrator’s Guide
Oracle9i Database Reference

Oracle9i Database Error Messages

Oracle9i Sample Schemas

The following documents from the Oracle9i Application Server group may also be
of some interest:

Oracle9i Application Server Administrator’s Guide
Oracle Enterprise Manager Administrator’s Guide
Oracle HTTP Server Administration Guide
Oracle9i Application Server Performance Guide

Oracle9i Application Server Globalization Support Guide

» Oracle9iAS Web Cache Administration and Deployment Guide

= Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x
The following are available from the Oracle9i JDeveloper group:

« JDeveloper online help

« JDeveloper documentation on the Oracle Technology Network:

http://otn.oracl e. con product s/ j dev/ cont ent . ht m

In North America, printed documentation is available for sale in the Oracle Store at
htt p://oracl est ore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

htt p: / / waw or acl ebookshop. cont

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. com adm n/ account / menber shi p. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracl e. com docs/ i ndex. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

The following Oracle Technology Network (OTN) resources are available for further
information about JavaServer Pages:

« OTN Web site for Java servlets and JavaServer Pages:

http://otn.oracl e. conitech/javal servl ets/

=« OTN JSP discussion forums, accessible through the following address:

htt p: //waw or acl e. cond f or uns/ f orum j sp?i d=399160

Xvii

The following resources are available from Sun Microsystems:
= Web site for JavaServer Pages, including the latest specifications:

http://java. sun. com product s/ j sp/ i ndex. ht n

= Web site for Java Servlet technology, including the latest specifications:

http://java. sun. com pr oduct s/ servl et/ i ndex. ht n

=] sp-interest discussion group for JavaServer Pages

To subscribe, send an e-mailto | i st ser v@ ava. sun. comwith the following
line in the body of the message:

subscribe jsp-interest yourl astname yourfirstnane
It is recommended, however, that you request only the daily digest of the
posted e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
fethphams, or terms that are defined in the Ensure that the recovery catalog and target

xviii

database do not reside on the same disk.

Convention

Meaning

Example

UPPERCASE
monospace
(fixed-width)
font

lowercase
monospace
(fixed-width)
font

| ower case
italic
nonospace

(fixed-width)

font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents place holders or variables.

You can specify this clause only fora NUMBER

column.

You can back up the database by using the
BACKURommand.

Query the TABLE_NAMEolumn in the
USER_TABLESIata dictionary view.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY _REWRITE_ENABLED
initialization parameter to true.

, department_name

Connect as oe user.

The JRepUtil
methods.

class implements these

You can specify the paral | el _cl ause.

Run ol d_r el ease.SQL where ol d_r el ease

refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT usemame FROMdba_users WHERE usemame ='MIGRATE,

The following table describes typographic conventions used in code examples and

provides examples of their use.

Xix

Convention

Meaning

Example

(]

Other notation

Italics

UPPERCASE

| ower case

Brackets enclose one or more optional
items. Do not enter the brackets.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates place holders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

DECI MAL (digits [, precision])

{ENABLE | DI SABLE}
[COMPRESS | NOCOVPRESS]

CREATE TABLE ... AS subquery;

SELECT col 1, col2, ... , coln FROM
enpl oyees;
acctbal NUMBER(11, 2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em password
DB _NAMVE = dat abase_nane
SELECT | ast _nane,
enpl oyees;

SELECT * FROM USER_TABLES;
DROP TABLE hr. enpl oyees;

enpl oyee_id FROM

SELECT | ast _nane,
enpl oyees;

enpl oyee_id FROM

sql plus hr/hr
CREATE USER nj ones | DENTI Fl ED BY t y3MB;

XX

1

General Overview

This chapter reviews standard features and functionality of JavaServer Pages
technology. For further information, consult the Sun Microsystems JavaServer Pages
Specification, Version 1.1.

(For an overview of Oracle-specific JSP features, see Chapter 2, "Overview of the
Oracle JSP Implementation".)

The following topics are covered here:
« Introduction to JavaServer Pages
« JSP Execution

« Overview of JSP Syntax Elements

General Overview 1-1

Introduction to JavaServer Pages

Introduction to JavaServer Pages

JavaServer Pages(TM) is a technology specified by Sun Microsystems as a
convenient way of generating dynamic content in pages that are output by a Web
application (an application running on a Web server).

This technology, which is closely coupled with Java servlet technology, allows you
to include Java code snippets and calls to external Java components within the
HTML code (or other markup code, such as XML) of your Web pages. JavaServer
Pages (JSP) technology works nicely as a front-end for business logic and dynamic
functionality in JavaBeans and Enterprise JavaBeans (EJBS).

JSP code is distinct from other Web scripting code, such as JavaScript, in a Web
page. Anything that you can include in a normal HTML page can be included in a
JSP page as well.

In a typical scenario for a database application, a JSP page will call a component
such as a JavaBean or Enterprise JavaBean, and the bean will directly or indirectly
access the database, generally through JDBC or perhaps SQLJ.

A JSP page is translated into a Java servlet before being executed (typically on
demand, but sometimes in advance), and it processes HTTP requests and generates
responses similarly to any other servlet. JSP technology offers a more convenient
way to code the servlet.

Furthermore, JSP pages are fully interoperable with servlets—JSP pages can include
output from a servlet or forward to a servlet, and servlets can include output from a
JSP page or forward to a JSP page.

What a JSP Page Looks Like

Here is an example of a simple JSP page. (For an explanation of JSP syntax elements
used here, see "Overview of JSP Syntax Elements" on page 1-10.)

<HTM_>

<HEAD><TI TLE>The V¢l cone UWser JSP</ Tl TLE></ HEAD>
<BCDY>

<% Sring user=request.getParaneter("user"); %
<H3>\W¢| cone <% (user==null) ? "" : user %! </H3>
<P> Today is <% newjava.util.Date() %. Have a nice day! :-)</B</P>
Enter nane: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>

<INPUT TYPE="subnit" VALUE="Subnit nane">

</ FCRW>

1-2 Oracle9i Support for JavaServer Pages Reference

Introduction to JavaServer Pages

</ BCDY>
</ HTM.>

In a JSP page, Java elements are set off by tags such as <%and %, as in the
preceding example. In this example, Java snippets get the user name from an HTTP
request object, print the user name, and get the current date.

This JSP page will produce the following output if the user inputs the name "Amy":

- The Welcome User JSP - Netscape

Eile Edit Yiew Go Communicator Help

'{@i\aﬁad@%

Back Forward Reload Hame Search Metzcape Frint SecLrity Stam

Wt " Bookmarks \,_& Lu:u:atiu:un:l j ﬁ' Yhat's Related
Welcome Amy!

Today is Wed Jun 21 13:42:23 PDT 2000. Have a nice day! :-)

Enter name:

I Submit name

=5 | Dacument; Done

Convenience of JSP Coding Versus Servlet Coding

Combining Java code and Java calls into an HTML page is more convenient than
using straight Java code in a servlet. JSP syntax gives you a shortcut for coding
dynamic Web pages, typically requiring much less code than Java servlet syntax.
Following is an example contrasting servlet code and JSP code.

Servlet Code

inport javax.servlet.*;
inport javax.servlet.http.*;

General Overview 1-3

Introduction to JavaServer Pages

inport java.io.*;

public class Hello extends HtpServl et

{
public void doGet (HtpServl et Request rg, HtpServl et Response rsp)

{
rsp. set @ntent Type("text/htm");

try {
PrintWiter out = rsp.getWiter();
out.println("<HTM>");
out . print | n(" <HEAD><TI TLE>VéI cone</ Tl TLE></ HEAD>") ;
out. println("<BDY>");
out . printl n("<H3>\l cone! </ H3>");
out.println("<P>Today is "+hewjava.util.Date()+".</P>");
out.println("</BDY>");
out.println("</HM>");

} catch (1 CException ioe)

{

/1 (error processing)

}

JSP Code

<HTM_>

<HEAD><TI TLE>V¢I cone</ Tl TLE></ HEAD>

<BCDY>

<H3>V¢l cone! </ H3>

<P>Today is <% new java.util.Date() %. </ P>
</ BCDY>

</ HTM>

Note how much simpler JSP syntax is. Among other things, it saves Java overhead
such as package importsand try. . . cat ch blocks.

Additionally, the JSP translator automatically handles a significant amount of
servlet coding overhead for you in the . j ava file that it outputs, such as directly or
indirectly implementing the standard j avax. servl et . j sp. Ht t pJspPage
interface and adding code to acquire an HTTP session.

Also note that because the HTML of a JSP page is not embedded within Java print
statements as is the case in servlet code, you can use HTML authoring tools to
create JSP pages.

1-4 Oracle9i Support for JavaServer Pages Reference

Introduction to JavaServer Pages

Separation of Business Logic from Page Presentation: Calling JavaBeans

JSP technology allows separating the development efforts between the HTML code
that determines static page presentation, and the Java code that processes business
logic and presents dynamic content. It therefore becomes much easier to split
maintenance responsibilities between presentation and layout specialists who may
be proficient in HTML but not Java, and code specialists who may be proficient in
Java but not HTML.

In a typical JSP page, most Java code and business logic will not be within snippets
embedded in the JSP page—instead, it will be in JavaBeans or Enterprise JavaBeans
that are invoked from the JSP page.

JSP technology offers the following syntax for defining and creating an instance of a
JavaBeans class:

<j sp: useBean i d="pageBean" cl ass="nybeans. NaneBean" scope="page" />

This example creates an instance, pageBean, of the mybeans. NanmeBean class (the
scope parameter will be explained later in this chapter).

Later in the page, you can use this bean instance, as in the following example:
Hel | o <% pageBean. get NewhNarre() % !

(This prints "Hello Julie !", for example, if the name "Julie" is in the newNane
attribute of pageBean, which might occur through user input.)

The separation of business logic from page presentation allows convenient division
of responsibilities between the Java expert who is responsible for the business logic
and dynamic content—this developer owns and maintains the code for the
NanmeBean class—and the HTML expert who is responsible for the static
presentation and layout of the Web page that the application user sees—this
developer owns and maintains the code in the . j sp file for this JSP page.

Tags used with JavaBeans—useBean to declare the JavaBean instance and
get Property and set Property to access bean properties—are further discussed
in "JSP Actions and the <jsp: > Tag Set" on page 1-18.

JSP Pages and Alternative Markup Languages

JavaServer Pages technology is typically used for dynamic HTML output, but the
Sun Microsystems JavaServer Pages Specification, Version 1.1 also supports additional
types of structured, text-based document output. A JSP translator does not process

General Overview 1-5

Introduction to JavaServer Pages

text outside of JSP elements, so any text that is appropriate for Web pages in general
is typically appropriate for a JSP page as well.

A JSP page takes information from an HTTP request and accesses information from
a data server (such as through a SQL database query). It combines and processes
this information and incorporates it as appropriate into an HTTP response with
dynamic content. The content can be formatted as HTML, DHTML, XHTML, or
XML, for example.

For information about XML support, see "XML-Alternative Syntax" on page 4-17.
You can also refer to the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference for information about the IML t r ansf or mtag.

1-6 Oracle9i Support for JavaServer Pages Reference

JSP Execution

JSP Execution

This section provides a top-level look at how a JSP is run, including on-demand
translation (the first time a JSP page is run), the role of the JSP container and the
servlet container, and error processing.

Note: The term JSP container is used in the Sun Microsystems
JavaServer Pages Specification, Version 1.1, replacing the term JSP
engine that was used in earlier specifications. The two terms are
synonymous.

JSP Containers in a Nutshell

A JSP container is an entity that translates, executes, and processes JSP pages and
delivers requests to them.

The exact make-up of a JSP container varies from implementation to
implementation, but it will consist of a servlet or collection of servlets. The JSP
container, therefore, is executed by a servlet container.

A JSP container may be incorporated into a Web server if the Web server is written
in Java, or the container may be otherwise associated with and used by the Web
server.

JSP Pages and On-Demand Translation

Presuming the typical on-demand translation scenario, a JSP page is usually
executed as follows:

1. The user requests the JSP page through a URL ending with a. j sp file name.

2. Upon noting the . j sp file name extension in the URL, the servlet container of
the Web server invokes the JSP container.

3. TheJSP container locates the JSP page and translates it if this is the first time it
has been requested. Translation includes producing servlet code ina . j ava file
and then compiling the . j ava file to produce a servlet. cl ass file.

The servlet class generated by the JSP translator subclasses a class (provided by
the JSP container) that implements the j avax. servl et . j sp. Ht t pJspPage
interface. The servlet class is referred to as the page implementation class. This
document will refer to instances of page implementation classes as JSP page
instances.

General Overview 1-7

JSP Execution

Translating a JSP page into a servlet automatically incorporates standard servlet
programming overhead into the generated servlet code, such as implementing
the Ht t pJspPage interface and generating code for its service method.

4. The JSP container triggers instantiation and execution of the page
implementation class.

The servlet (JSP page instance) will then process the HTTP request, generate an
HTTP response, and pass the response back to the client.

Note: The preceding steps are loosely described for purposes of
this discussion. As mentioned earlier, each vendor decides how to
implement its JSP container, but it will consist of a servlet or
collection of servlets. For example, there may be a front-end servlet
that locates the JSP page, a translation servlet that handles
translation and compilation, and a wrapper servlet class that is
subclassed by each page implementation class (because a translated
page is not a pure servlet and cannot be run directly by the servlet
container). A servlet container is required to run each of these
components.

Requesting a JSP Page

A JSP page can be requested either directly—through a URL—or
indirectly—through another Web page or servlet.

Directly Request a JSP Page

As with a servlet or HTML page, the end-user can request a JSP page directly by
URL. For example, assume you have a Hel | oWor | d JSP page that is located under
the myapp application root directory in the Web server, as follows:

nyapp/ di r 1/ Hel | oVér 1 d. j sp

If it uses port 8080 of the Web server, you can request it with the following URL:
htt p: / / host nare: 8080/ nyapp/ di r 1/ Hel | oVér | d. j sp

(The application root directory is specified in the servlet context of the application.)

The first time the end-user requests Hel | oWor | d. j sp, the JSP container triggers
both translation and execution of the page. With subsequent requests, the JSP
container triggers page execution only; the translation step is no longer necessary.

1-8 Oracle9i Support for JavaServer Pages Reference

JSP Execution

Indirectly Requesting a JSP Page

JSP pages, like servlets, can also be executed indirectly—linked from a regular
HTML page or referenced from another JSP page or from a servlet.

When invoking one JSP page from a JSP statement in another JSP page, the path can
be either relative to the application root—known as context-relative or
application-relative—or relative to the invoking page—known as page-relative. An
application-relative path starts with "/"; a page-relative path does not.

Be aware that, typically, neither of these paths is the same path as used in a URL or
HTML link. Continuing the example in the preceding section, the path in an HTML
link is the same as in the direct URL request, as follows:

The application-relative path in a JSP statement is:

<j sp:include page="/dir1/ Hel | oWrl d.jsp" flush="true" />

The page-relative path to invoke Hel | oWor | d. j sp from a JSP page in the same
directory is:

<j sp:forward page="Hel | oWorl d.jsp" />

("JSP Actions and the <jsp: > Tag Set" on page 1-18 discusses the j sp: i ncl ude and
j sp: f orwar d statements.)

General Overview 1-9

Overview of JSP Syntax Elements

Overview of JSP Syntax Elements

Directives

You have seen a simple example of JSP syntax in "What a JSP Page Looks Like" on
page 1-2; now here is a top-level list of syntax categories and topics:

« directives—These convey information regarding the JSP page as a whole.

« scripting elements—These are Java coding elements such as declarations,
expressions, scriptlets, and comments.

= objects and scopes—ISP objects can be created either explicitly or implicitly and
are accessible within a given scope, such as from anywhere in the JSP page or
the session.

« actions—These create objects or affect the output stream in the JSP response (or
both).

This section introduces each category, including basic syntax and a few examples.
For more information, see the Sun Microsystems JavaServer Pages Specification,
Version 1.1.

Notes: There are XML-compatible alternatives to the syntax for
JSP directives, declarations, expressions, and scriptlets. See
"XML-Alternative Syntax" on page 4-17.

Directives provide instruction to the JSP container regarding the entire JSP page.
This information is used in translating or executing the page. The basic syntax is as
follows:

<Y@directive attributel="val uel" attribute2="value2'... %

The JSP 1.1 specification supports the following directives:

« page—Use this directive to specify any of a number of page-dependent
attributes, such as the scripting language to use, a class to extend, a package to
import, an error page to use, or the JSP page output buffer size. For example:

<Y@page | anguage="j ava" i nport ="packages. nypackage" error Page="boof . j sp" %

or, to set the JSP page output buffer size to 20kb (the default is 8kb):
<Y@page buf fer="20kb" %

1-10 Oracle9i Support for JavaServer Pages Reference

Overview of JSP Syntax Elements

or, to unbuffer the page:
<Y@page buf fer="none" %

Notes:

« A ISP page using an error page must be buffered. Forwarding
to an error page clears the buffer (not outputting it to the
browser).

« For the Oracle JSP container, j ava is the default language
setting. It is good programming practice to set it explicitly,
however.

i ncl ude—Use this directive to specify a resource that contains text or code to
be inserted into the JSP page when it is translated. Specify the path of the
resource relative to the URL specification of the JSP page.

Example:
<Y@i nclude fil e="/jsp/userinfopage.jsp" %

The i ncl ude directive can specify either a page-relative or context-relative
location. (See "Requesting a JSP Page" on page 1-8 for related discussion.)

Notes:

« Thei ncl ude directive, referred to as a "static include", is
comparable in nature to thej sp: i ncl ude action discussed
later in this chapter, but takes effect at JSP translation time
instead of request time. See "Static Includes Versus Dynamic
Includes" on page 4-6.

« Thei ncl ude directive can be used only between pages in the
same servlet context.

t agl i b—Use this directive to specify a library of custom JSP tags that will be
used in the JSP page. VVendors can extend JSP functionality with their own sets
of tags. This directive indicates the location of a tag library description file and a
prefix to distinguish use of tags from that library.

General Overview 1-11

Overview of JSP Syntax Elements

Example:

<YU@taglib uri="/oracustontags" prefix="oracust" %

Later in the page, use the or acust prefix whenever you want to use one of the
tags in the library (presume this library includes a tag dbaseAccess):

<or acust : dbaseAccess ... >
</ oracust : dbaseAccess>

As you can see, this example uses XML-style start-tag and end-tag syntax.

JSP tag libraries and tag library description files are introduced later in this
chapter, in "Tag Libraries" on page 1-23, and discussed in detail in Chapter 7,
"JSP Tag Libraries".

Scripting Elements

JSP scripting elements include the following categories of Java code snippets that
can appear in a JSP page:

declarations—These are statements declaring methods or member variables that
will be used in the JSP page.

A JSP declaration uses standard Java syntax within the <% . . . % declaration
tags to declare a member variable or method. This will result in a corresponding
declaration in the generated servlet code. For example:

<% doubl e f1=0.0; %

This example declares a member variable, f 1. In the servlet class code
generated by the JSP translator, f 1 will be declared at the class top level.

Note: Method variables, as opposed to member variables, are
declared within JSP scriptlets as described below. See "Method

Variable Declarations Versus Member Variable Declarations” on
page 4-11 for more information.

expressions—These are Java expressions that are evaluated, converted into string
values as appropriate, and displayed where they are encountered on the page.

A JSP expression does not end in a semi-colon, and is contained within
<%...% tags.

1-12 Oracle9i Support for JavaServer Pages Reference

Overview of JSP Syntax Elements

Example:
<P> Today is <% newjava.util.Date() %. Have a nice day! < B></P>

Note: A JSP expression in a request-time attribute, such as in a
j sp: set Property statement, need not be converted to a string
value.

scriptlets—These are portions of Java code intermixed within the markup
language of the page.

A scriptlet, or code fragment, may consist of anything from a partial line to
multiple lines of Java code. You can use them within the HTML code of a JSP
page to set up conditional branches or a loop, for example.

A JSP scriptlet is contained within <% . . %> scriptlet tags, using normal Java
syntax.

Example 1:

<%if (pageBean. get NewhNarre(). equal s("")) { %
| don't know you.

<% }else { %>
Hello <%= pageBean.getNewName() %>.

<%}%>

Three one-line JSP scriptlets are intermixed with two lines of HTML (one of
which includes a JSP expression, which does not require a semi-colon). Note
that JSP syntax allows HTML code to be the code that is conditionally executed
within the i f and el se branches (inside the Java brackets set out in the
scriptlets).

The preceding example assumes the use of a JavaBean instance, pageBean.
Example 2:

<% if (pageBean.getNewName().equals(™)) { %>
| don't know you.
<% empmgr.unknownemployee();
}else { %>
Hello <%= pageBean.getNewName() %>.
<% empmgrknownemployee();
}%>

General Overview 1-13

Overview of JSP Syntax Elements

This example adds more Java code to the scriptlets. It assumes the use of a
JavaBean instance, pageBean, and assumes that some object, enpngr, was
previously instantiated and has methods to execute appropriate functionality
for a known employee or an unknown employee.

Note: Use a JSP scriptlet to declare method variables, as opposed
to member variables, as in the following example:

<%doubl e f2=0.0; %

This scriptlet declares a method variable, f 2. In the servlet class
code generated by the JSP translator, f 2 will be declared as a
variable within the service method of the servlet.

Member variables are declared in JSP declarations as described
above.

For a comparative discussion, see "Method Variable Declarations
Versus Member Variable Declarations" on page 4-11.

comments—These are developer comments embedded within the JSP code,
similar to comments embedded within any Java code.

Comments are contained within <% - . . . - - % tags.
Example:

<%- Execute the follow ng branch if no user nane is entered. --%

JSP Objects and Scopes

In this document, the term JSP object refers to a Java class instance declared within
or accessible to a JSP page. JSP objects can be either:

or:

explicit—Explicit objects are declared and created within the code of your JSP
page, accessible to that page and other pages according to the scope setting
you choose.

implicit—Implicit objects are created by the underlying JSP mechanism and
accessible to Java scriptlets or expressions in JSP pages according to the inherent
scope setting of the particular object type.

Scopes are discussed below, in "Object Scopes".

1-14 Oracle9i Support for JavaServer Pages Reference

Overview of JSP Syntax Elements

Explicit Objects

Explicit objects are typically JavaBean instances declared and created in

j sp: useBean action statements. The j sp: useBean statement and other action
statements are described in "JSP Actions and the <jsp: > Tag Set" on page 1-18, but
an example is also shown here:

<j sp: useBean i d="pageBean" cl ass="nybeans. NaneBean" scope="page" />

This statement defines an instance, pageBean, of the NameBean class that is in the
nmybeans package. The scope parameter is discussed in "Object Scopes" below.

You can also create objects within Java scriptlets or declarations, just as you would
create Java class instances in any Java program.

Object Scopes

Objects in a JSP page, whether explicit or implicit, are accessible within a particular
scope. In the case of explicit objects, such as a JavaBean instance created in a

j sp: useBean action statement, you can explicitly set the scope with the following
syntax (as in the example in the preceding section, "Explicit Objects"):

scope="scopeval ue'

There are four possible scopes:

=« Scope="page" —The object is accessible only from within the JSP page where
it was created.

Note that when the user refreshes the page while executing a JSP page, new
instances will be created of all page-scope objects.

=« scope="request" —The object is accessible from any JSP page servicing the
same HTTP request that is serviced by the JSP page that created the object.

« Sscope="sessi on"—The object is accessible from any JSP page sharing the
same HTTP session as the JSP page that created the object.

=« scope="application"—The object is accessible from any JSP page used in
the same Web application (within any single Java virtual machine) as the JSP
page that created the object.

Implicit Objects

JSP technology makes available to any JSP page a set of implicit objects. These are
Java class instances that are created automatically by the JSP mechanism and that
allow interaction with the underlying servlet environment.

General Overview 1-15

Overview of JSP Syntax Elements

The following implicit objects are available. For information about methods
available with these objects, refer to the Sun Microsystems Javadoc for the noted
classes and interfaces at the following location:

http://java. sun. com product s/ servl et/ 2. 2/ j avadoc/ i ndex. ht n

. page

This is an instance of the JSP page implementation class that was created when
the page was translated, and that implements the interface

javax.servl et.jsp. HtpJspPage; page is synonymous with t hi s within
a JSP page.

. request

This represents an HTTP request and is an instance of a class that implements
thej avax. servlet. http. H t pSer vl et Request interface, which extends
thej avax. servl et. Servl et Request interface.

. response

This represents an HTTP response and is an instance of a class that implements
thej avax. servl et. http. Ht t pSer vl et Response interface, which extends
thej avax. servl et. Ser vl et Response interface.

Theresponse and r equest objects for a particular request are associated
with each other.

« pageCont ext

This represents the page context of a JSP page, which is provided for storage and
access of all page scope objects of a JSP page instance. A pageCont ext object
is an instance of the j avax. servl et . j sp. PageCont ext class.

The pageCont ext object has page scope, making it accessible only to the JSP
page instance with which it is associated.

« Session

This represents an HTTP session and is an instance of the
javax. servlet. http. Ht t pSessi on class.

« application

This represents the servlet context for the Web application and is an instance of
thej avax. servl et. Servl et Cont ext class.

1-16 Oracle9i Support for JavaServer Pages Reference

Overview of JSP Syntax Elements

The appl i cat i on object is accessible from any JSP page instance running as
part of any instance of the application within a single JVM. (The programmer
should be aware of the server architecture regarding use of JVMs.)

L] Out

This is an object that is used to write content to the output stream of a JSP page
instance. It is an instance of the j avax. servl et.jsp. JspWi t er class,
which extends the j ava. i 0. Wit er class.

The out object is associated with the r esponse object for a particular request.
« config

This represents the servlet configuration for a JSP page and is an instance of a
class that implements the j avax. ser vl et . Ser vl et Confi g interface.
Generally speaking, servlet containers use Ser vl et Conf i g instances to
provide information to servlets during initialization. Part of this information is
the appropriate Ser vl et Cont ext instance.

« exception (JSP error pages only)

This implicit object applies only to JSP error pages—these are pages to which
processing is forwarded when an exception is thrown from another JSP page;
they must have the page directive i SEr r or Page attribute settot r ue.

The implicit except i on objectisaj ava. | ang. Except i on instance that
represents the uncaught exception that was thrown from another JSP page and
that resulted in the current error page being invoked.

The except i on object is accessible only from the JSP error page instance to
which processing was forwarded when the exception was encountered.

For an example of JSP error processing and use of the except i on object, see
"JSP Runtime Error Processing" on page 3-16.

Using an Implicit Object
Any of the implicit objects discussed in the preceding section might be useful. The

following example uses the r equest object to retrieve and display the value of the
user name parameter from the HTTP request:

<H3> Wl cone <% request. get Par anet er ("user nane") % ! <H3>

General Overview 1-17

Overview of JSP Syntax Elements

JSP Actions and the <jsp: > Tag Set

JSP action elements result in some sort of action occurring while the JSP page is
being executed, such as instantiating a Java object and making it available to the
page. Such actions may include the following:

« Creating a JavaBean instance and accessing its properties
« forwarding execution to another HTML page, JSP page, or servlet
« including an external resource in the JSP page

Action elements use a set of standard JSP tags that begin with "<j sp: " syntax.
Although the tags described earlier in this chapter that begin with "<% syntax are
sufficient to code a JSP page, the "<j sp: " tags provide additional functionality and
convenience.

Action elements also use syntax similar to that of XML statements, with similar
"begin" and "end" tags such as in the following example:

<jsp:sanpl etag attri="val uel" attr2="value2' ... attrN"val ueN >

... body. ..

</j sp: sanpl et ag>

or, where there is no body, the action statement is terminated with an empty tag:
<jsp:sanpl etag attri="valuel", ..., attrN"valueN |[>

The JSP specification includes the following standard action tags, which are
introduced and briefly discussed here:

= jsp:useBean

The j sp: useBean action creates an instance of a specified JavaBean class,
gives the instance a specified name, and defines the scope within which it is
accessible (such as from anywhere within the current JSP page instance).

Example:
<j sp: useBean i d="pageBean" cl ass="nybeans. NaneBean" scope="page" />
This example creates a page-scoped instance pageBean of the

nybeans. NaneBean class. This instance is accessible only from the JSP page
instance that creates it.

« jSp:setProperty

Thej sp: set Pr oper ty action sets one or more bean properties. The bean
must have been previously specified in a useBean action. You can directly

1-18 Oracle9i Support for JavaServer Pages Reference

Overview of JSP Syntax Elements

specify a value for a specified property, or take the value for a specified
property from an associated HTTP request parameter, or iterate through a series
of properties and values from the HTTP request parameters.

The following example sets the user property of the pageBean instance
(defined in the preceding useBean example) to a value of "Smith":

<j sp: set Property nanme="pageBean" property="user" value="Smth" />
The following example sets the user property of the pageBean instance

according to the value set for a parameter called user name in the HTTP
request:

<j sp: set Property nanme="pageBean" property="user" paran¥"usernange" />

If the bean property and request parameter have the same name (user), you
can simply set the property as follows:

<j sp: set Property nane="pageBean" property="user" />

The following example results in iteration over the HTTP request parameters,

matching bean property names with request parameter names and setting bean
property values according to the corresponding request parameter values:

<j sp: set Property nanme="pageBean" property="*" />

Important: For property="*", the JSP 1.1 specification does not
stipulate the order in which properties are set. If order matters, and
if you want to ensure that your JSP page is portable, you should use
aseparate j sp: set Property statement for each property.

Also, if you use separate j sp: set Pr oper t y statements, then the
Oracle JSP translator can generate the corresponding set XXX()
methods directly. In this case, introspection only occurs during
translation. There will be no need to introspect the bean during
runtime, which would be somewhat more costly.

j sp:getProperty

Thej sp: get Property action reads a bean property value, converts it to a
Java string, and places the string value into the implicit out object so that it can
be displayed as output. The bean must have been previously specified in a

j sp: useBean action. For the string conversion, primitive types are converted

General Overview 1-19

Overview of JSP Syntax Elements

directly and object types are converted using thet oSt ri ng() method
specified in the j ava. | ang. Obj ect class.

The following example puts the value of the user property of the pageBean
bean into the out object:

<j sp: get Property nanme="pageBean" property="user" />

=] Sp:param
You can use the j sp: par amaction in conjunction with j sp: i ncl ude,
j sp: forward,orjsp: pl ugi n actions (described below).

Forj sp: forward andj sp: i ncl ude statements, aj sp: par amaction
optionally provides key/value pairs for parameter values in the HTTP request
object. New parameters and values specified with this action are added to the
request object, with new values taking precedence over old.

The following example sets the request object parameter user namne to a value
of Smi t h:

<j sp: par am nane="user nane" val ue="Smth" />

Note: Thej sp: par amtag is not supported forj sp: i ncl ude or
j sp: forward in the JSP 1.0 specification.

= jsp:include

Thej sp: i ncl ude action inserts additional static or dynamic resources into the
page at request time as the page is displayed. Specify the resource with a
relative URL (either page-relative or application-relative).

As of the Sun Microsystems JavaServer Pages Specification, Version 1.1, you must
setfl ush totr ue, which results in the buffer being flushed to the browser
when aj sp: i ncl ude action is executed. (The f | ush attribute is mandatory,
but a setting of f al se is currently invalid.)

You can also have an action body with j sp: par amsettings, as shown in the
second example.

Examples:

<j sp:incl ude page="/tenpl at es/ userinf opage. j sp" flush="true" />

1-20 Oracle9i Support for JavaServer Pages Reference

Overview of JSP Syntax Elements

or:

<j sp:incl ude page="/tenpl at es/ useri nf opage. j sp" flush="true" >
<j sp: par am nane="user nane" val ue="Snth" />
<j sp: par am nane="user enpno" val ue="9876" />

</j sp:incl ude>

Note that the following syntax would work as an alternative to the preceding:

<j sp:incl ude page="/tenpl at es/ useri nf opage. j sp?user name=Sni t h&user enpno=9876" flush="true" />

Notes:

« Thejsp:include action, known as a "dynamic include", is
similar in nature to the i ncl ude directive discussed earlier in
this chapter, but takes effect at request time instead of
translation time. See "Static Includes Versus Dynamic Includes"
on page 4-6.

« Thej sp:incl ude action can be used only between pages in
the same servlet context.

« jsp:forward

Thej sp: f or war d action effectively terminates execution of the current page,
discards its output, and dispatches a new page—either an HTML page, a JSP
page, or a servlet.

The JSP page must be buffered to use aj sp: f or war d action; you cannot set
buf f er =" none" . The action will clear the buffer, not outputting contents to the
browser.

As withj sp:incl ude, you can also have an action body with j sp: par am
settings, as shown in the second example.

Examples:

<j sp:forward page="/tenpl at es/ useri nf opage. j sp" />

or:

<j sp:forward page="/tenpl at es/ useri nf opage. j sp" >
<j sp: par am nane="user nane" val ue="Snth" />
<j sp: par am nane="user enpno" val ue="9876" />
</j sp: f or war d>

General Overview 1-21

Overview of JSP Syntax Elements

Notes:

« The difference between the j sp: f or war d examples here and
thej sp: i ncl ude examples earlier is that the j sp: i ncl ude
examples insert user i nf opage. j sp within the output of the
current page; the j sp: f or war d examples stop executing the
current page and display user i nf opage. j sp instead.

« Thej sp: forward action can be used only between pages in
the same servlet context.

« Thej sp: forward action results in the original r equest
object being forwarded to the target page. As an alternative, if
you do not want the r equest object forwarded, you can use
the sendRedi r ect (St ri ng) method specified in the
standard j avax. servl et. http. Ht t pSer vl et Response
interface. This sends a temporary redirect response to the client
using the specified redirect-location URL. You can specify a
relative URL; the servlet container will convert the relative URL
to an absolute URL.

« jsp:plugin

The j sp: pl ugi n action results in the execution of a specified applet or
JavaBean in the client browser, preceded by a download of Java plugin software
if necessary.

Specify configuration information, such as the applet to run and the codebase,
using j sp: pl ugi n attributes. The JSP container might provide a default URL
for the download, but you can also specify attribute nspl ugi nur | =" ur /" (for
a Netscape browser) or i epl ugi nurl =" ur/" (for an Internet Explorer
browser).

Use nested j sp: par amactions within <j sp: par ans>and </ j sp: par ans>
start and end tags to specify parameters to the applet or JavaBean. (Note that
these j sp: par ans start and end tags are not necessary when using

j sp: paraminaj sp:incl udeorjsp: forward action.)

Use <j sp: fal | back>and </ sp: f al | back> start and end tags to delimit
alternative text to execute if the plugin cannot run.

1-22 Oracle9i Support for JavaServer Pages Reference

Overview of JSP Syntax Elements

Tag Libraries

The following example, from the Sun Microsystems JavaServer Pages Specification,
Version 1.1, shows the use of an applet plugin:

<j sp: pl ugi n type=appl et code="Mol ecul e. cl ass" codebase="/htnm" >
<j sp: par ans>
<j sp: par am nanme="nol ecul " val ue="nol ecul es/ benzene. nol " />
</j sp: par ans>
<j sp: fal | back>
<p> lLhabl e to start the plugin. </ p>
</j sp: fal | back>
</j sp: pl ugi n>

Many additional parameters—such as ARCHI VE, HEI GHT, NAME, Tl TLE, and
W DTH—are allowed in the j sp: pl ugi n action statement as well. Use of these
parameters is according to the general HTML specification.

In addition to the standard JSP tags discussed previously in this section, the JSP 1.1
specification lets vendors define their own tag libraries and also lets vendors
implement a framework allowing customers to define their own tag libraries.

A tag library defines a collection of custom tags and can be thought of as a JSP
sub-language. Developers can use tag libraries directly, in manually coding a JSP
page, but they might also be used automatically by Java development tools. A
standard tag library must be portable between different JSP container
implementations.

Import a tag library into a JSP page using the t agl i b directive, introduced in
"Directives" on page 1-10.

Key concepts of standard JavaServer Pages support for JSP tag libraries include the
following topics:

« tag handlers

A tag handler describes the semantics of the action that results from use of a
custom tag. A tag handler is an instance of a Java class that implements either
the Tag or BodyTag interface (depending on whether the tag uses a body
between a start tag and an end tag) in the standard

javax. servl et.jsp.tagext package.

General Overview 1-23

Overview of JSP Syntax Elements

« scripting variables

Custom tag actions can create server-side objects available for use by the tag
itself or by other scripting elements such as scriptlets. This is accomplished by
creating or updating scripting variables.

Details regarding scripting variables that a custom tag defines must be specified
in a subclass of the standard j avax. servl et . j sp. t agext. TagExtral nfo
abstract class. This document refers to such a subclass as a tag-extra-info class.
The JSP container uses instances of these classes during translation.

« tag library description files

A tag library description (TLD) file is an XML document that contains
information about a tag library and about individual tags of the library. The file
name of a TLD has the . t | d extension.

A JSP container uses the TLD file in determining what action to take when it
encounters a tag from the library.

« useofweb. xm for tag libraries

The Sun Microsystems Java Servlet Specification, Version 2.2 describes a standard
deployment descriptor for servlets—the web. xm file. JSP applications can use
this file in specifying the location of a JSP tag library description file.

For JSP tag libraries, the web. xm file can include at agl i b element and two
subelements: t agl i b-uri andtaglib-1ocation.

For information about these topics, see "Standard Tag Library Framework" on
page 7-2. For further information, see the Sun Microsystems JavaServer Pages
Specification, Version 1.1.

For information about tag libraries provided by Oracle, see the Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference.

1-24 Oracle9i Support for JavaServer Pages Reference

2

Overview of the Oracle JSP Implementation

Oracle JSP 1.1.x.x releases are complete implementations of the Sun Microsystems
JavaServer Pages Specification, Version 1.1.

This chapter provides an overview of the Oracle JSP implementation, including
programmatic extensions, and support in both Oracle and non-Oracle
environments.

The following topics are covered here:

=« Overview of JSP and Servlet Containers and Web Server with Oracle9i
« Portability and Functionality Across Servlet Environments

« Oracle9i JDeveloper Support for the Oracle JSP Container

« Support for the Oracle JSP Container in Non-Oracle Environments

« Overview of Oracle JSP Programmatic Extensions

=« JSP Execution Models

Important: Version 1.1.2.4 of the Oracle JSP container is supplied
with Oracle9i release 2.

Overview of the Oracle JSP Implementation 2-1

Overview of JSP and Servlet Containers and Web Server with Oracle9i

Overview of JSP and Servlet Containers and Web Server with Oracle9i

This section introduces the Oracle JSP container and servlet environment supplied
with Oracle9i release 2, and also discusses the role of the Oracle HTTP Server and
nod_j ser v component in running database-access Web applications.

Note Regarding Desupport of J2EE in the Oracle9/ Database:

With the introduction of Oracle9i Application Server Containers for
J2EE (OC4J)—a new, lighter-weight, easier-to-use, faster, and
certified J2EE container—Oracle will desupport the Java 2
Enterprise Edition (J2EE) and CORBA stacks from the database,
starting with Oracle9i database release 2. However, the
database-embedded Java VM (Oracle JVM) will still be present and
will continue to be enhanced to offer Java 2 Standard Edition (J2SE)
features, Java stored procedures, JDBC, and SQLJ in the database.
As of Oracle9i database release 2 (9.2.0), Oracle will no longer
support the following technologies in the database:

« the J2EE stack, consisting of:
Enterprise Beans (EJB) container
JavaServer Pages (JSP) container
Oracle9i Servlet Engine (OSE)

« the embedded Common Object Request Broker Architecture
(CORBA) framework, based on Visibroker for Java

Customers will no longer be able to deploy servlets, JSP pages,
EJBs, and CORBA objects in Oracle databases. Oracle9i database
release 1 (9.0.1) is the last database release to support the J2EE and
CORBA stack. Oracle is encouraging customers to migrate existing
J2EE applications running in the database to OC4J.

JSP Container and Servlet Environment Provided with Oracle9i

Version 1.1.2.4 of the Oracle JSP container is supplied with Oracle9i release 2. This
version is fully compliant with the Sun Microsystems JavaServer Pages Specification,
Version 1.1.

The supplied servilet environment with Oracle9i release 2 is Apache JServ, a servlet
2.0 environment. The JSP 1.1 specification calls for a servlet 2.1(b) or later
environment, but you can use the Oracle JSP version 1.1.2.4 container with any
servlet 2.0 or later environment—extensions have been built in to the JSP container

2-2 Oracle9i Support for JavaServer Pages Reference

Overview of JSP and Servlet Containers and Web Server with Oracle9i

to emulate some servlet 2.2 functionality. This is further discussed in "Portability
and Functionality Across Servlet Environments" on page 2-5.

Special considerations in using the Oracle JSP container with a servlet 2.0
environment are discussed in Chapter 9, "Oracle JSP in Apache JServ". This chapter
also documents JSP and JServ configuration.

Other Servlet Environments

Instead of using JServ, you can acquire any of several other servlet environments.
Options include the following, in particular:

= Oracle9iAS Containers for J2EE (OC4J)

OC4J is supplied with the Oracle9i Application Server and is also available in a
standalone version from the Oracle Technology Network
(http://otn.oracl e. com.

« Tomcat

Tomcat, from the Apache Software Foundation, includes a serviet 2.2
environment. It also includes a JSP 1.1 reference implementation, but you can
use the Oracle JSP container on top of it.

Because you can use a servlet 2.2 environment with the Oracle JSP container, and
because the JSP container itself emulates some servlet 2.2 functionality, many servlet
2.2 features are discussed in this document, even though the environment supplied
with Oracle9i release 2 is servlet 2.0.

OC4J documentation is available with Oracle9i Application Server releases and
from the Oracle Technology Network.

For configuration information for Tomcat, as well as for the Sun Microsystems
JavaServer Web Developer’s Kit (JSWDK), refer to Appendix A, "Getting Started in
Alternative Environments".

Role of the Oracle HTTP Server

Oracle HTTP Server, powered by the Apache Web server, is included with the
Oracle9i database as the HTTP entry point for Web applications accessing the
database. Database access is through Apache add-on modules.

The remainder of this section covers the following topics:
« Use of Apache Mods

« More About mod_jserv

Overview of the Oracle JSP Implementation 2-3

Overview of JSP and Servlet Containers and Web Server with Oracle9i

Use of Apache Mods

In using the Oracle HTTP Server, dynamic content is delivered through various
Apache mod components provided either by Apache or by other vendors such as
Oracle. (Static content is usually delivered from the file system.) An Apache mod is
typically a module of C code, running in the Apache address space, that passes
requests to a particular mod-specific processor. The mod software will have been
written specifically for use with the particular processor.

To access Oracle9i data from JSP pages or servlets running in the JServ servlet
environment that is provided with Oracle9i, use nod_j ser v. This mod was
developed by Apache and is provided with Oracle9i.

Note: Many additional Apache "mod" components are available
for use in an Apache environment, provided by Apache for general
use or by Oracle for Oracle-specific use, but they are not relevant
for JSP applications.

More About mod_jserv

The nod_j ser v component delegates HTTP requests to JSP pages or servlets
running in the JServ servlet container in a middle-tier JVM. Oracle9i release 2
supplies the JServ servlet container, which supports the servlet 2.0 specification. The
middle-tier environment may or may not be on the same physical host as the
back-end Oracle9i database.

Communication between nod_j ser v and middle-tier JVMs uses a proprietary
Apache JServ protocol over TCP/IP. The nod_j ser v component can delegate
requests to multiple JVMs in a pool for load balancing.

JSP applications running in middle-tier J)VMs use the Oracle JDBC OCI driver or
Thin driver to access the database.

Servlet 2.0 environments (as opposed to servlet 2.1 or 2.2 environments) have issues
that require special consideration. See "Considerations for JServ Servlet
Environments" on page 9-20.

Refer to Apache documentation for nod_j ser v configuration information. (This
documentation is provided with Oracle9i.)

2-4 Oracle9i Support for JavaServer Pages Reference

Portability and Functionality Across Servlet Environments

Portability and Functionality Across Servlet Environments

The Oracle JavaServer Pages implementation is highly portable across server
platforms and servlet environments. It also supplies a framework for Web
applications in older servlet environments, where servlet context behavior was not
yet sufficiently defined.

Oracle JSP Portability

The Oracle JSP container can run on any servlet environment that complies with
version 2.0 or higher of the Sun Microsystems Java Servlet Specification. This is in
contrast to most JSP implementations, which require a servlet 2.1(b) or higher
implementation. The Oracle JSP container provides functionality equivalent to what
is lacking in older servlet environments.

Furthermore, the Oracle JSP container is independent of the server environment
and its servlet implementation. This is in contrast to vendors who deliver their JSP
implementation as part of their servlet implementation instead of as a standalone
product.

This portability makes it much easier to run JSP pages in both your development
environment and the target environment, as opposed to having to use a different
JSP implementation on your development system because of any server or servlet
platform limitations. There are usually benefits to developing on a system with the
same JSP container as the target server; but realistically speaking, there is usually
some variation between environments.

Oracle JSP Extended Functionality for Servlet 2.0 Environments

Because of interdependence between servlet specifications and JSP functionality,
Sun Microsystems has tied versions of the JavaServer Pages Specification to particular
versions of the Java Servlet Specification. According to Sun, JSP 1.0 requires a servlet
2.1(b) implementation, and JSP 1.1 requires a servlet 2.2 implementation.

The servlet 2.0 specification was limited in that it provided only a single servlet
context per Java virtual machine, instead of a servlet context for each application.
The servlet 2.1 specification allowed, but did not mandate, a separate servlet context
for each application. The servlet 2.1(b) and servlet 2.2 specifications mandated
separate servlet contexts.

The Oracle JSP container, however, offers functionality that emulates the application
support provided with the servlet 2.1(b) specification. This allows a full application

Overview of the Oracle JSP Implementation 2-5

Portability and Functionality Across Servlet Environments

framework in a servlet 2.0 environment such as JServ. This includes providing
applications with distinct Ser vl et Cont ext and Ht t pSessi on objects.

This extended support is provided through a file, gl obal s. j sa, that acts as a JSP
application marker, application and session event handler, and centralized location
for application-global declarations and directives. (For information, see "Oracle JSP
Application and Session Support for JServ" on page 9-26.)

Because of this extended functionality, the Oracle JSP container is not limited by the
underlying servlet environment.

2-6 Oracle9i Support for JavaServer Pages Reference

Oracle9i JDeveloper Support for the Oracle JSP Container

Oracle9i JDeveloper Support for the Oracle JSP Container

Some visual Java programming tools now support JSP coding. In particular,
Oracle9i JDeveloper supports the Oracle JSP container and includes the following
features:

« integration of the Oracle JSP container to support the full application
development cycle—editing, debugging, and running JSP pages

« debugging of deployed JSP pages

« an extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

« the JSP Element Wizard, which offers a convenient way to add predefined Web
beans to a page

= support for incorporating custom JavaBeans

« adeployment option for JSP applications that rely on the JDeveloper Business
Components for Java (BC4J)

See "Deployment of JSP Pages with Oracle9i JDeveloper" on page 6-29 for more
information about JSP deployment support.

For debugging, JDeveloper can set breakpoints within JSP page source and can
follow calls from JSP pages into JavaBeans. This is much more convenient than
manual debugging techniques, such as adding print statements within the JSP page
to output state into the response stream (for viewing in your browser) or to the
server log (through the | og() method of the implicit appl i cat i on object).

For information about JDeveloper, refer to their online help, or to the following Web
site:

http://otn.oracl e. con product s/ j dev/ cont ent . ht m

Overview of the Oracle JSP Implementation 2-7

Support for the Oracle JSP Container in Non-Oracle Environments

Support for the Oracle JSP Container in Non-Oracle Environments

You should be able to install and run the Oracle JSP container on any server
environment supporting servlet specification 2.0 or higher. In particular, it has been
tested in the following environments as of release 1.1.2.4:

« Apache Software Foundation Apache JServ 1.1 (also provided with Oracle9i)

This is a Web server and servlet 2.0 environment without a JSP environment. To
run JSP pages, you must install a JSP environment on top of it.

= Sun Microsystems JSWDK 1.0 (JavaServer Web Developer’s Kit)

This is a Web server with the servlet 2.1 and JavaServer Pages 1.0 reference
implementations. You can, however, install the Oracle JSP container on top of
the JSWDK servlet environment to replace the original JSP environment.

= Apache Software Foundation Tomcat 3.1

This cooperative effort between Sun Microsystems and the Apache Software
Foundation is a Web server with the servlet 2.2 and JavaServer Pages 1.1
reference implementations. You can, however, install the Oracle JSP container
on top of the Tomcat servlet environment to replace the original JSP
environment. You can also run Tomcat in conjunction with the Apache Web
server instead of using the Tomcat Web server.

2-8 Oracle9i Support for JavaServer Pages Reference

Overview of Oracle JSP Programmatic Extensions

Overview of Oracle JSP Programmatic Extensions

This section provides an overview of the following Oracle-specific programming
extensions supported by the Oracle JSP container:

« support for SQLJ, a standard syntax for embedding SQL statements directly
into Java code

« extended globalization support
« JspScopeli st ener for event handling
« gl obal s. j safile for application support in servlet 2.0 environments

The Oracle JSP container also provides the following extended functionality,
documented in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference, through custom tag libraries and custom JavaBeans that are generally
portable to other JSP environments:

« extended types implemented as JavaBeans that can have a specified scope
« integration with XML and XSL
« data-access JavaBeans

« the Oracle JSP Markup Language (JML) custom tag library, which reduces the
level of Java proficiency required for JSP development

« acustom tag library for SQL functionality

All these features are introduced in the following subsections.

Overview of Oracle-Specific Extensions

The Oracle JSP extensions listed in this section, documented later in this manual, are
not portable to other JSP environments.

SQLJ Support in the Oracle JSP Container

Dynamic server pages commonly include data extracted from databases; however,
JavaServer Pages technology does not offer built-in support to facilitate database
access. JSP developers typically must rely on the standard Java Database
Connectivity (JDBC) API or a custom set of database JavaBeans.

SQLJ is a standard syntax for embedding static SQL instructions directly in Java
code, greatly simplifying database-access programming. The Oracle JSP container
and its translator support SQLJ programming in JSP scriptlets.

Overview of the Oracle JSP Implementation 2-9

Overview of Oracle JSP Programmatic Extensions

SQLJ statements are indicated by the #sqgl token. You can trigger the Oracle JSP
translator to invoke the Oracle SQLJ translator by using the file name extension
. sql j sp for the JSP source code file.

For more information, see "Oracle JSP Support for Oracle SQLJ" on page 5-3.

Extended Globalization Support in the Oracle JSP Container

Oracle9i release 2 provides extended globalization support for servlet environments
that cannot encode multibyte request parameters and bean property settings.

For such environments, the Oracle JSP container supports the t r ansl at e_par ans
configuration parameter, which can be enabled to direct the JSP container to
override the servlet container and do the encoding itself.

For more information, see "Oracle JSP Extended Support for Multibyte Parameter
Encoding" on page 8-5.

JspScopeListener for Event Handling

Oracle9i release 2 provides the JspScopeli st ener interface for lifecycle
management of Java objects of various scopes within a JSP application.

Standard servlet and JSP event-handling is provided through the
javax.servlet. http. H t pSessi onBi ndi ngLi st ener interface, but this
handles session-based events only. The Oracle JspScopeli st ener can handle
page-based, request-based, and application-based events as well.

For more information, see "Oracle JSP Event Handling with JspScopeListener" on
page 5-2.

globals.jsa File for Application Support (Servlet 2.0)

For servlet 2.0 environments, where servlet contexts are not fully defined, the
Oracle JSP container defines afile, gl obal s. j sa, to extend servlet application
support.

Within any single Java virtual machine, there can be a gl obal s. j sa file for each
application (or, equivalently, for each servlet context). This file supports the concept
of Web applications through use as an application location marker. Based on

gl obal s. j sa functionality, the Oracle JSP container can also mimic servlet context
and HTTP session behavior for servlet environments, where such behavior is not
sufficiently defined.

The gl obal s. j sa file also provides a vehicle for global Java declarations and JSP
directives across all JSP pages of an application.

2-10 Oracle9i Support for JavaServer Pages Reference

Overview of Oracle JSP Programmatic Extensions

For more information, see "Oracle JSP Application and Session Support for JServ"
on page 9-26.

Overview of JSP Tag Libraries and JavaBeans Provided with Oracle9i

The Oracle extensions discussed in this section are implemented through standard
tag libraries or custom JavaBeans and are generally portable to other JSP
environments.

These features are documented in the Oracle9iAS Containers for J2EE JSP Tag Libraries
and Utilities Reference.

Extended Type JavaBeans

JSP pages generally rely on core Java types in representing scalar values. However,
neither of the following type categories is fully suitable for use in JSP pages:

= primitive typessuch asi nt,fl oat,and doubl e

Values of these types cannot have a specified scope—they cannot be stored in a
JSP scope object (for page, r equest , sessi on, or appl i cat i on scope),
because only objects can be stored in a scope object.

= wrapper classes in the standard j ava. | ang package, such as | nt eger, Fl oat,
and Doubl e

Values of these types are objects, so they can theoretically be stored in a JSP
scope object. However, they cannot be declared ina j sp: useBean action,
because the wrapper classes do not follow the JavaBean model and do not
provide a zero-argument constructor.

Additionally, instances of the wrapper classes are immutable. To change a
value, you must create a new instance and assign it appropriately.

To work around these limitations, Oracle9i release 2 provides the Jim Bool ean,
Jm Number, Jm FPNunber, and Jnl St ri ng JavaBean classes in package
oracl e.jsp.jm towrap the most common Java types.

Integration with XML and XSL

You can use JSP syntax to generate any text-based MIME type, not just HTML code.
In particular, you can dynamically create XML output. When you use JSP pages to
generate an XML document, however, you often want a stylesheet applied to the
XML data before it is sent to the client. This is difficult in JavaServer Pages

Overview of the Oracle JSP Implementation 2-11

Overview of Oracle JSP Programmatic Extensions

technology, because the standard output stream used for a JSP page is written
directly back through the server.

Oracle9i release 2 provides special tags in its sample JML tag library to specify that
all or part of a JSP page should be transformed through an XSL stylesheet before it
is output. You can use this JML tag multiple times in a single JSP page if you want
to specify different style sheets for different portions of the page.

In addition, the Oracle JSP translator supports XML-alternative syntax as specified
in the Sun Microsystems JavaServer Pages Specification, Version 1.1. For information,
see "XML-Alternative Syntax" on page 4-17.

Custom Data-Access JavaBeans

Oracle9i release 2 supplies a set of custom JavaBeans for use in database access. The
following beans are provided in the or acl e. j sp. dbut i | package:

« ConnBean—Open a simple database connection.

« ConnCacheBean—Use the Oracle connection caching implementation for
database connections.

«» DBBean—Execute a database query.

« Cur sor Bean—Provide general DML support for queries and for UPDATE,
| NSERT, and DELETE statements.

SQL Custom Tag Library

Oracle9i release 2 provides a custom tag library for SQL functionality. The following
tags are provided:

« dbOpen—Open a database connection.

« dbC ose—Close a database connection.

« dbQuer y—Execute a query.

« dbCl oseQuer y—Close the cursor for a query.

« dbNext Row—Move to the next row of the result set.

« dbExecut e—Execute any SQL DML or DDL statement.

Oracle JSP Markup Language (JML) Custom Tag Library

Although the Sun Microsystems JavaServer Pages Specification, Version 1.1 supports
scripting languages other than Java, Java is the primary language used. Even
though JavaServer Pages technology is designed to separate the dynamic/Java

2-12 Oracle9i Support for JavaServer Pages Reference

Overview of Oracle JSP Programmatic Extensions

development effort from the static/HTML development effort, it is no doubt still a
hindrance if the Web developer does not know any Java, especially in small
development groups where no Java experts are available.

Oracle9i release 2 provides custom tags as an alternative—the JSP Markup
Language (JML). The Oracle JML sample tag library provides an additional set of
JSP tags so that you can script your JSP pages without using Java statements. JML
provides tags for variable declarations, control flow, conditional branches, iterative
loops, parameter settings, and calls to objects. The JML tag library also supports
XML functionality, as noted previously.

The following example shows use of the j ml : f or tag, repeatedly printing "Hello
World" in progressively smaller headings (H1, H2, H3, H4, H5):

m:ifor id="i" fron¥'<0& 1 %" to="<% 5 %" >
<H<9%i %>
Hello Wrl d!
</ H<%i %>
<jm:for>

Note: Oracle JSP versions preceding the JSP 1.1 specification used
an Oracle-specific compile-time implementation of the JML tag
library. This implementation is still supported as an alternative to
the standard runtime implementation.

Overview of the Oracle JSP Implementation 2-13

JSP Execution Models

JSP Execution Models

As mentioned earlier, you can use the Oracle JSP framework in a variety of server
environments. The Oracle JSP container offers two distinct execution models:

= TheJSP container typically translates pages on demand before triggering their
execution, as is also true with the JSP implementations of most other vendors.

« Insome scenarios, however, the developer translates the pages in advance and
deploys the translated and compiled results. The 0j spc command-line tool is
available to translate the pages. Then, when the end-user requests the JSP page,
it is executed directly, with no translation necessary.

On-Demand Translation Model

JSP pages usually run in an on-demand translation model. This includes typical
usage with the JServ servlet environment.

When a JSP page is requested from a Web server that incorporates the Oracle JSP
container, the servlet or acl e. j sp. JspSer vl et is instantiated and invoked
(assuming proper Web server configuration). This servlet can be thought of as the
front-end of the Oracle JSP container.

JspSer vl et locates the JSP page, translates and compiles it if necessary (if the
page implementation class does not exist or has an earlier timestamp than the JSP
page source), and triggers its execution.

Note that the Web server must be properly configured to map the *. j sp file name
extension (in a URL) to JspSer vl et . The steps to accomplish this for JServ are
discussed in detail in "Mapping JSP File Name Extensions for JServ" on page 9-6.

Pre-Translation Model

Developers may want to pre-translate their JSP pages before deploying them, for
reasons such as the following:

« Itcan save time for the end-users when they request a JSP page, because
translation at execution time is not necessary.

« ltisalso useful if you want to deploy binary files only, perhaps because the
software is proprietary and you do not want to expose the code.

For more information, see "General Use of ojspc for Pre-Translation" on page 6-13
and "Deployment of Binary Files Only" on page 6-27.

2-14 Oracle9/ Support for JavaServer Pages Reference

JSP Execution Models

Oracle9i release 2 supplies the oj spc command-line utility for pre-translating JSP
pages. This utility has options that allow you to set an appropriate base directory
for the output files, depending on how you want to deploy the application. The

oj spc utility is documented in "Details of the ojspc Pre-Translation Tool" on

page 6-14.

Overview of the Oracle JSP Implementation 2-15

JSP Execution Models

2-16 Oracle9/ Support for JavaServer Pages Reference

3

Basics

This chapter discusses key basic issues for JSP development, followed by a JSP
"starter sample" for data access.

The following topics are included:

Application Root and Doc Root Functionality
Overview of JSP Applications and Sessions
JSP-Servlet Interaction

JSP Resource Management

JSP Runtime Error Processing

JSP Starter Sample for Data Access

Notes:

« JSP configuration, including specifics for a JServ environment,

are covered in "Getting Started in a JServ Environment" on
page 9-2.

= JSP pages will run with any standard browser supporting

HTTP 1.0 or higher. The JDK or other Java environment in the
end-user’s Web browser is irrelevant, because all the Java code

in a JSP page is executed in the Web server or data server.

Basics 3-1

Application Root and Doc Root Functionality

Application Root and Doc Root Functionality

This section provides an overview of application roots and doc roots, distinguishing
between servlet 2.2 functionality and servlet 2.0 functionality.

Application Roots in Servlet 2.2 Environments

As mentioned earlier, the servlet 2.2 specification provides for each application to
have its own servlet context. Each servlet context is associated with a directory path
in the server file system, which is the base path for modules of the application. This
is the application root. Each application has its own application root.

This is similar to how a Web server uses a doc root as the root location for HTML
pages and other files belonging to a Web application.

For an application in a servlet 2.2 environment, there is a one-to-one mapping
between the application root (for servlets and JSP pages) and the doc root (for static
files, such as HTML files)—they are essentially the same thing.

Note that a servlet URL has the following general form:

http:// host[: port] I cont ext pat hl servl et pat h

When a servlet context is created, a mapping is specified between the application
root and the context path portion of a URL.

For example, consider an application with the application root

[home/ di r/ mybankappdi r, which is mapped to the context path nybank.
Further assume the application includes a servlet whose servlet path is

| ogi nser vl et . This servlet can be invoked as follows:

http:// host[: port]/ nybank/| ogi nser vl et

(The application root directory name itself is not visible to the end-user.)

To continue this example for an HTML page in this application, the following URL
points to the file / hone/ di r / nybankappdi r/ di r 1/ abc. ht m :

http:// host[: port]/nybank/dir1/ abc. ht n
For each servlet environment there is also a default servlet context. For this context,

the context path is simply "/", which is mapped to the default servlet context
application root.

For example, assume the application root for the default context is
/ home/ mydef aul t di r, and a servlet with the servlet path nyser vl et uses the

3-2 Oracle9i Support for JavaServer Pages Reference

Application Root and Doc Root Functionality

default context. Its URL would be as follows (again, the application root directory
name itself is not visible to the user):

http:// host[: port]/nyservl et
(The default context is also used if there is no match for the context path specified in
aURL.)

Continuing this example for an HTML file, the following URL points to the file
[honme/ nydefaul tdir/dir2/def.htnm:

http:// host[: port]/dir2/def.htm

Oracle Implementation of Application Root Functionality in Servlet 2.0 Environments

Apache JServ and other servlet 2.0 environments have no concept of application
roots, because there is only a single application environment. The Web server doc
root is effectively the application root.

For Apache, the doc root is typically some . . . / ht docs directory. In addition, it is
possible to specify "virtual" doc roots through al i as settings in the ht t pd. conf
configuration file.

In a servlet 2.0 environment, the Oracle JSP container offers the following
functionality regarding doc roots and application roots:

« By default, the Oracle JSP container uses the doc root as an application root.

« Through the Oracle gl obal s. j sa mechanism, you can designate a directory
under the doc root to serve as an application root for any given application.
This is accomplished by placing a gl obal s. j sa file as a marker in the desired
directory. (See "Overview of globals.jsa Functionality" on page 9-26.)

Basics 3-3

Overview of JSP Applications and Sessions

Overview of JSP Applications and Sessions

This section provides a brief overview of how JSP applications and sessions are
supported by the Oracle JSP container.

General Application and Session Support in the Oracle JSP Container

The Oracle JSP container uses underlying servlet mechanisms for managing
applications and sessions. For servlet 2.1 and servlet 2.2 environments, these
underlying mechanisms are sufficient, providing a distinct servlet context and
session object for each JSP application.

Using the servlet mechanisms becomes problematic, however, in a servlet 2.0
environment such as JServ. The concept of a Web application was not well defined
in the servlet 2.0 specification, so in a servlet 2.0 environment there is only one
servlet context per servlet container. Additionally, there is one session object only
per servlet container. However, for JServ and other servlet 2.0 environments, Oracle
provides extensions to optionally allow distinct servlet contexts and session objects
for each application. (This is unnecessary for Web servers hosting just a single
application.)

Note: For additional information relevant to JServ and other
servlet 2.0 environments, see "Considerations for JServ Servlet
Environments" on page 9-20 and "Overview of globals.jsa
Functionality" on page 9-26.

JSP Default Session Requests

Generally speaking, servlets do not request an HTTP session by default. However,
JSP page implementation classes do request an HTTP session by default. You can
override this by setting the sessi on parameter to f al se in a JSP page directive,
as follows:

<Y@page ... session="fal se" %

3-4 Oracle9i Support for JavaServer Pages Reference

JSP-Servlet Interaction

JSP-Servlet Interaction

Although coding JSP pages is convenient in many ways, some situations call for
servlets. One example is when you are outputting binary data, as discussed in
"Reasons to Avoid Binary Data in JSP Pages" on page 4-16.

Therefore, it is sometimes necessary to go back and forth between servlets and JSP
pages in an application. This section discusses how to accomplish this, covering the
following topics:

« Invoking a Servlet from a JSP Page

« Passing Data to a Servlet Invoked from a JSP Page
« Invoking a JSP Page from a Servlet

« Passing Data Between a JSP Page and a Servlet

« JSP-Servlet Interaction Samples

Important: This discussion assumes a servlet 2.2 environment.
Appropriate reference is made to other sections of this document
for related considerations for JServ and other servlet 2.0
environments.

Invoking a Servlet from a JSP Page

As when invoking one JSP page from another, you can invoke a servlet from a JSP
page through the j sp: i ncl ude and j sp: f or war d action tags. (See "JSP Actions
and the <jsp: > Tag Set" on page 1-18.) Following is an example:

<j sp:include page="/servl et/ MServlet" flush="true" />

When this statement is encountered during page execution, the page buffer is
output to the browser and the servlet is executed. When the servlet has finished
executing, control is transferred back to the JSP page and the page continues
executing. This is the same functionality as for j sp: i ncl ude actions from one JSP
page to another.

And as with j sp: f or war d actions from one JSP page to another, the following
statement would clear the page buffer, terminate the execution of the JSP page, and
execute the servlet:

<j sp:forward page="/servl et/ MServliet" />

Basics 3-5

JSP-Servlet Interaction

Important: You cannot include or forward to a servlet in JServ or
other servlet 2.0 environments; you would have to write a JSP
wrapper page instead. For information, see "Dynamic Includes and
Forwards in JServ" on page 9-20.

Passing Data to a Servlet Invoked from a JSP Page

When dynamically including or forwarding to a servlet from a JSP page, you can
use aj sp: par amtag to pass data to the servlet (the same as when including or
forwarding to another JSP page).

Aj sp: par amtag is used within aj sp: i ncl ude orj sp: f or war d tag. Consider
the following example:

<j sp:include page="/servl et/ MServliet" flush="true" >
<j sp: par am nane="user nane" val ue="Snth" />
<j sp: par am nane="user enpno" val ue="9876" />

</j sp:incl ude>

For more information about the j sp: par amtag, see "JSP Actions and the <jsp: >
Tag Set" on page 1-18.

Alternatively, you can pass data between a JSP page and a servlet through an
appropriately scoped JavaBean or through attributes of the HTTP request object.
Using attributes of the request object is discussed later, in "Passing Data Between a
JSP Page and a Servlet" on page 3-8.

Note: Thej sp: par amtag was introduced in the JSP 1.1
specification.

Invoking a JSP Page from a Servlet

3-6

You can invoke a JSP page from a servlet through functionality of the standard
j avax. servl et . Request Di spat cher interface. Complete the following steps
in your code to use this mechanism.

1. Get a servlet context instance from the servlet instance:

Servl et ontext sc =this.getServlet@ntext();

Oracle9i Support for JavaServer Pages Reference

JSP-Servlet Interaction

Get a request dispatcher from the servlet context instance, specifying the
page-relative or application-relative path of the target JSP page as input to the
get Request Di spat cher () method:

Request D spat cher rd = sc. get Request Di spat cher ("/ sp/ nypage. j sp");

Prior to or during this step, you can optionally make data available to the JSP
page through attributes of the HTTP request object. See "Passing Data Between
a JSP Page and a Servlet" below for information.

Invoke the i ncl ude() orf orwar d() method of the request dispatcher,
specifying the HTTP request and response objects as arguments. For example:

rd. i ncl ude(request, response);

or:

rd. forward(request, response);

The functionality of these methods is similar to that of j sp: i ncl ude and
j sp: forward actions. The i ncl ude() method only temporarily transfers
control; execution returns to the invoking servlet afterward.

Note that the f or war d() method clears the output buffer.

Notes:

« The request and response objects would have been obtained
earlier using standard servlet functionality, such as the
doGet () method specified in the
javax.servlet.http. HtpServl et class.

= This functionality was introduced in the serviet 2.1
specification.

Basics 3-7

JSP-Servlet Interaction

Passing Data Between a JSP Page and a Servlet

The preceding section, "Invoking a JSP Page from a Servlet", notes that when you
invoke a JSP page from a servlet through the request dispatcher, you can optionally
pass data through the HTTP request object.

You can accomplish this using either of the following approaches.

You can append a query string to the URL when you obtain the request
dispatcher, using "?" syntax with nane=val ue pairs. For example:

Request D spatcher rd =
sc. get Request O spat cher ("/] sp/ nypage. j sp?user nane=Snth");

In the target JSP page (or servlet), you can use the get Par anmet er () method of
the implicit r equest object to obtain the value of a parameter set in this way.

You can use the set Att ri but e() method of the HTTP request object. For
example:

request.set Attribute("usernane", "Smth");
Request D spat cher rd = sc. get Request Di spat cher ("/] sp/ nypage. j sp");

In the target JSP page (or servlet), you can use the get Att ri but e() method of
the implicit r equest object to obtain the value of a parameter set in this way.

Notes:

= This functionality was introduced in the serviet 2.1
specification. Be aware that the semantics are different between
the servlet 2.1 specification and the servlet 2.2 specification—in
aservlet 2.1 environment a given attribute can be set only once.

» Mechanisms discussed in this section can be used instead of the
j sp: par amtag to pass data from a JSP page to a servlet.

JSP-Servlet Interaction Samples

This section provides a JSP page and a servlet that use functionality described in the
preceding sections. The JSP page Jsp2Ser vl et . j sp includes the servlet
My Ser vl et , which includes another JSP page, wel cone. j sp.

3-8 Oracle9i Support for JavaServer Pages Reference

JSP-Servlet Interaction

Code for Jsp2Servlet.jsp

<HTM_>
<HEAD> <TITLE> JSP Gal ling Servlet Deno </ Tl TLE> </ HEAD>
<BCDY>

<I-- Forward processing to a servlet -->
<%request.setAttribute("enpi d', "1234"); %
<j sp:include page="/servl et/ M/Servl et 2user=Smth" flush="true"/>

</ BCDY>
</ HTM.>

Code for MyServlet.java

inport javax.servlet.*;

inport javax.servlet.http.*;
inport java.io.PrintWiter;
inport java.io.|CException;

public class MServlet extends HtpServl et {
public void doGet (HtpServlet Request request,
H t pSer vl et Response response)

throws | CException, ServletException {

PrintWiter out= response.getWiter();

out.println("
User:" + request. get Paraneter("user"));

out.println

(", Enpl oyee nunber:" + request.getAttribute("enpid') + "</ B");
thi s. get Servl et Cont ext () . get Request D spat cher (" /] sp/ wel cone. j sp").
i ncl ude(request, response);

Code for welcome.jsp

<HTM_>
<HEAD> <TI TLE> The V¢l cone JSP </ TI TLE </ HEAD>
<BCDY>

<H3> V¢l cone! </ H3>

<P> Today is <% newjava.util.Date() %. Have a nice day! </ B</P>
</ BCDY>

</ HTM.>

Basics 3-9

JSP Resource Management

JSP Resource Management

The j avax. servl et . htt p package offers a standard mechanism for managing
session resources. Additionally, Oracle provides extensions for managing
application, session, page, and request resources.

Standard Session Resource Management with HttpSessionBindingListener

A JSP page must appropriately manage resources acquired during its execution,
such as JDBC connection, statement, and result set objects. The standard

j avax. servl et . htt p package provides the Ht t pSessi onBi ndi ngLi st ener
interface and Ht t pSessi onBi ndi ngEvent class to manage session-scoped
resources. Through this mechanism, a session-scoped query bean could, for
example, acquire a database cursor when the bean is instantiated and close it when
the HTTP session is terminated. (The example in "JSP Starter Sample for Data
Access" on page 3-19 opens and closes the connection for each query, which adds
overhead.)

This section describes use of the Ht t pSessi onBi ndi ngLi st ener
val ueBound() and val ueUnbound() methods.

Note: The bean instance must register itself in the event
notification list of the HTTP session object, but the j sp: useBean
statement takes care of this automatically.

The valueBound() and valueUnbound() Methods

An object that implements the Ht t pSessi onBi ndi ngLi st ener interface can
implement aval ueBound() method and a val ueUnbound() method, each of
which takes an Ht t pSessi onBi ndi ngEvent instance as input. These methods are
called by the servlet container—the val ueBound() method when the object is
stored in the session; the val ueUnbound() method when the object is removed
from the session or when the session times-out or becomes invalid. Usually, a
developer will use val ueUnbound() to release resources held by the object (in the
example below, to release the database connection).

3-10 Oracle9i Support for JavaServer Pages Reference

JSP Resource Management

Note: Oracle9i release 2 provides extensions for additional
resource management, allowing you to program JavaBeans to
manage page-scoped, request-scoped, or application-scoped
resources as well as session-scoped resources. See "Oracle JSP Event
Handling with JspScopeListener" on page 5-2.

"JDBCQueryBean JavaBean Code" below provides a sample JavaBean that
implements Ht t pSessi onBi ndi ngLi st ener and a sample JSP page that calls the
bean.

JDBCQueryBean JavaBean Code

Following is the sample code for JDBCQuer yBean, a JavaBean that implements the
Ht t pSessi onBi ndi ngLi st ener interface. (It uses the JDBC OCI driver for its
database connection; use an appropriate JDBC driver and connection string if you
want to run this example yourself.)

JDBCQuer yBean gets a search condition through the HTML request (as described
in "The UseJDBCQueryBean JSP Page" on page 3-13), executes a dynamic query
based on the search condition, and outputs the result.

This class also implements a val ueUnbound() method (as specified in the
Ht t pSessi onBi ndi ngLi st ener interface) that results in the database connection
being closed at the end of the session.

package nybeans;

inport java.sql.*;
inport javax.servlet.http.*;

public class JDBOQuUeryBean i npl enents H t pSessi onBi ndi nglLi st ener

{
String searchCond = "";

String result = null;

publ i c voi d JDBOQuer yBean() {
}

publ i c synchroni zed Sring getResult() {
if (result !'=null) return result;
el se return runQuery();

}

Basics 3-11

JSP Resource Management

publ i ¢ synchroni zed voi d set Sear chCond(String cond) {
result = null;
t hi s. searchCond = cond;

}

private Gonnection conn = nul |;

private Sring runQery() {
SringBuffer sb = new SringBuffer();
Satenent stnt = nul | ;
Resul tSet rset = null;
try {
if (conn = null) {
Dri ver Manager . regi st er Dri ver (new or acl e. j dbc. dri ver. O acl eDxiver());
conn = Dri ver Manager . get Gnnecti on("j dbc: oracl e: oci 8: @,
"scott", "tiger");

}

stm = conn. createStatenent ();

rset = stnt.executeQuery ("SELECT enane, sal FROMscott.enp "+
(searchond. equal s("") ? "" : "WHERE " + searchCond));

result = format Result(rset);

return resul t;

} catch (SQException e) {
return ("<P> SQL error: <PRE>" + e +" </PRE> <P>\n");

}
finally {
try {
if (rset !'=null) rset.close();
if (stmt !'=null) stn.close();
}
cat ch (SQException ignored) {}
}
}

private Sring format Resul t (Resul t Set rset) throws SQException {

SringBuffer sb = new SringBuffer();
if (Irset.next())

sb. append("<P> No mat chi ng rows. <P>\n");
el se {

sh. append(" <U>");

do { sh. append("" + rset.getString(1l) +

" earns $ " + rset.getInt(2) + "</ LI>n");

3-12 Oracle9i Support for JavaServer Pages Reference

JSP Resource Management

} while (rset.next());
sh. append(" </ B></ U>") ;
}
return sh.toSring();

}

publ i ¢ voi d val ueBound(H t pSessi onBi ndi ngBvent event) {
/1 do nothing -- the session-scoped bean is al ready bound

}

publ i ¢ synchroni zed voi d val uethbound(H t pSessi onBi ndi ngEvent event) {
try {
if (conn!=null) conn.close();
}
catch (SQException ignored) {}
}
}

Note: The preceding code serves as a sample only. This is not
necessarily an advisable way to handle database connection
pooling in a large-scale Web application.

The UseJDBCQueryBean JSP Page

The following JSP page uses the JIDBCQuer yBean JavaBean defined in
"JDBCQueryBean JavaBean Code" above, invoking the bean with sessi on scope. It
uses JDBCQuer yBean to display employee names that match a search condition
entered by the user.

JDBCQuer yBean gets the search condition through the j sp: set Property
command in this JSP page, which sets the sear chCond property of the bean
according to the value of the sear chCond request parameter input by the user
through the HTML form. (The HTML | NPUT tag is what specifies that the search
condition entered in the form be named sear chCond.)

<j sp: useBean i d="queryBean" cl ass="nybeans. JOBOQuer yBean" scope="session" />
<j sp: set Property nanme="queryBean" property="searchCnd" />

<HTM_>
<HEAD> <TI TLE> The WseJDBOQUeryBean JSP </ TI TLE> </ HEAD>
<BCDY BAOCLCR="whi te">

<% Sring searchCondition = request. get Paranet er (" searchCond") ;

Basics 3-13

JSP Resource Management

if (search@ndition !'=null) { %
<H3> Search results for : <> <% searchCondition % </1> </ H3>
<% queryBean. getResult () %
<HR>

<%} %

Enter a search condition for the EMP tabl e: </ B>

<FCRM METHXD="get ">

<I NPUT TYPE="text" NAME="searchQond" VALUE="enane LIKE ' A% " S ZE="40">
<I NPUT TYPE="submit" VALUE="Ask QO acle">

</ FCRW>

</ BCDY>
</ HTM.>

Following is sample input and output for this page:

The UseJDECQueryBean J5P - Hetscape

File Edt “iew Go Communicator Help

v » A A 2 bW S & @ N

Back Fomward Reload Home Search Metzcape Prirt Security Stop

v wtv Bookmarks ¢ anation:l ﬂ @'What's Felated
Search results for : erurne LIKE '1%'

* ALLEN earns § 1600
* ADAMS earns § 1100

Enter a search condition for the EMP table:

Iena.me LIEE '&%' Ask Oracle |

=l |Document: Done

3-14 Oracle9i Support for JavaServer Pages Reference

JSP Resource Management

Advantages of HttpSessionBindingListener

In the preceding example, an alternative to the Ht t pSessi onBi ndi ngLi st ener
mechanism would be to close the connection inafi nal i ze() method in the
JavaBean. The fi nal i ze() method would be called when the bean is
garbage-collected after the session is closed. The Ht t pSessi onBi ndi ngLi st ener
interface, however, has more predictable behavior thanafi nal i ze() method.
Garbage collection frequency depends on the memory consumption pattern of the
application. By contrast, the val ueUnbound() method of the

Ht t pSessi onBi ndi ngLi st ener interface is called reliably at session shutdown.

Overview of Oracle Extensions for Resource Management

Oracle provides the following extensions for managing application and session
resources as well as page and request resources:

« JspScopeli st ener —for managing application, session, page, or request
resources

For information, see "Oracle JSP Event Handling with JspScopeListener" on
page 5-2.

« gl obal s. j sa application and session events—for start and end events for
applications and sessions, typically in a servlet 2.0 environment such as JServ

See "The globals.jsa Event Handlers" on page 9-31 for information.

Basics 3-15

JSP Runtime Error Processing

JSP Runtime Error Processing

While a JSP page is executing and processing client requests, runtime errors can
occur either inside the page or outside the page (such as in a called JavaBean). This
section describes the JSP error processing mechanism and provides a simple
example.

Using JSP Error Pages

Any runtime error encountered during execution of a JSP page is handled using the
standard Java exception mechanism in one of two ways:

= You can catch and handle exceptions in a Java scriptlet within the JSP page
itself, using standard Java exception-handling code.

« Exceptions you do not catch in the JSP page will result in forwarding of the
request and uncaught exception to an error page. This is the preferred way to
handle JSP errors.

You can specify the URL of an error page by setting the er r or Page parameterina
page directive in the originating JSP page. (For an overview of JSP directives,
including the page directive, see "Directives" on page 1-10.)

An error page must have a page directive setting the i sEr r or Page parameter to
true.

The exception object describing the errorisaj ava. | ang. Except i on instance that
is accessible in the error page through the implicit except i on object.

Only an error page can access the implicit except i on object. (For information
about JSP implicit objects, including the except i on object, see "Implicit Objects"
on page 1-15.)

See "JSP Error Page Example" below for an example of error page usage.

3-16 Oracle9i Support for JavaServer Pages Reference

JSP Runtime Error Processing

Note: There is ambiguity in the JSP 1.1 specification regarding
exception types that can be handled through the JSP mechanism.

In the Oracle JSP container, a page implementation class generated
by the translator can handle an instance of the

j ava. | ang. Except i on class or a subclass, but cannot handle an
instance of the j ava. | ang. Thr owabl e class or any subclass other
than Except i on. A Thr owabl e instance will be thrown by the JSP
container to the servlet container.

The ambiguity is expected to be addressed in the JSP 1.2
specification. The Oracle behavior will be modified appropriately in
a future release.

JSP Error Page Example

The following example, nul | poi nt er. j sp, generates an error and uses an error
page, nyerror. j sp, to output contents of the implicit except i on object.

Code for nullpointer.jsp

<HTM>
<BCDY>
<Y@page errorPage="nyerror.jsp" %
Nul | pointer is generated bel ow
<%
Sring s=null;
s.length();
%
</ BCDY>
</ HTM.>

Code for myerror.jsp

<HTM_>

<BCDY>

<Y@page i sErrorPage="true" %
Here is your error:

<% exception %

</ BCDY>

</ HTM>

Basics 3-17

JSP Runtime Error Processing

This example results in the following output:

- Netscape

Eile Edit “iew Go Communicator Help

4 ¥ A D . om 3 & § N

Back Forward Reload Haorme Search Metzcape Frint Security Stop

? Wt' Bookmarks A& Lu:u:atiu:un:l j Bl what's Related

Here 15 your error: java lang MNullPomnterException

=5 | Dacument; Done

Note: The line "Null pointer is generated below:" in

nul | poi nt er. j sp is not output when processing is forwarded to
the error page. This shows the difference between j sp: i ncl ude
and j sp: f or war d functionality—with j sp: f or war d, the output
from the "forward-to" page replaces the output from the
"forward-from" page.

3-18 Oracle9i Support for JavaServer Pages Reference

JSP Starter Sample for Data Access

JSP Starter Sample for Data Access

Chapter 1, "General Overview", provides a couple of simple JSP examples; however,
if you are using the Oracle JSP container, you presumably want to access an Oracle
database. This section offers a more interesting sample that uses standard JDBC
code in a JSP page to perform a query.

Because the JDBC API is simply a set of Java interfaces, JavaServer Pages
technology directly supports its use within JSP scriptlets.

Notes:

« Oracle JDBC provides several driver alternatives: 1) the JDBC
OCI driver for use with an Oracle client installation; 2) a
100%-Java JDBC Thin driver that can be used in essentially any
client situation, including applets; 3) a JDBC server-side Thin
driver to access one Oracle database from within another
Oracle database; and 4) a JDBC server-side internal driver to
access the database within which the Java code is running (such
as from a Java stored procedure). For more information about
Oracle JDBC, see the Oracle9i JDBC Developer’s Guide and
Reference.

« The Oracle JSP container also supports SQLJ (embedded SQL in
Java) for static SQL operations. This is discussed in "Oracle JSP
Support for Oracle SQLJ" on page 5-3.

The following example creates a query dynamically from search conditions the user
enters through an HTML form (typed into a box and entered with an Ask Or acl e
button). To perform the specified query, it uses JDBC code in a method called
runQuery() thatis defined in a JSP declaration. It also defines a method

f or mat Resul t () within the JSP declaration to produce the output. The
runQuery() method uses the scott schema with password ti ger.

The HTML | NPUT tag specifies that the string entered in the form be named cond.
Therefore, cond is also the input parameter to the get Par anet er () method of the
implicit r equest obiject for this HTTP request, and the input parameter to the
runQuery() method (which puts the cond string into the WHERE clause of the

query).

Basics 3-19

JSP Starter Sample for Data Access

Notes:

= Another approach to this example would be to define the
runQuer y() method in <% . . % scriptlet syntax instead of
<% . .. % declaration syntax.

= This example uses the JDBC OCI driver, which requires an
Oracle client installation. If you want to run this sample, use an
appropriate JDBC driver and connection string.

<Y@page | anguage="j ava" inport="java.sql.*" %
<HTM_>
<HEAD> <TI TLE> The JDBOQuery JSP </ TI TLE> </ HEAD>
<BDY BAOCLCR="whi te">
<% Sring searchCondition = request. get Paraneter ("cond");
if (search@ndition !'=null) { %
<H3> Search results for <I> <% searchCondition % </I> </ H3>
 <% runQuery(searchCondition) % </ B> <HR>

<%} %
Enter a search condition: </ B>
<FCRM METHD="get " >
<INPUT TYPE="text" NAME="cond" S ZE=30>
<INPUT TYPE="submit" VALUE="Ask QO acle");
</ FCRW>
</ BCDY>
</ HTM>
<%- Decl are and define the runQuery() method. --%
<% private Sring runQeery(Sring cond) throws SQException {
Connection conn = nul | ;
Statenmnent stm = nul | ;
ResultSet rset = null;
try {
Dri ver Manager . regi st er Dri ver (new or acl e. j dbc. dri ver. O acl eDriver());
conn = Dri ver Manager . get Gonnecti on("j dbc: oracl e: oci 8: @,
"scott", "tiger");
stm = conn. createX atenent () ;
/1 dynamic query
rset = stm.executeQuery ("SELECT enane, sal FRCMscott.enp "+
(cond.equal s("") ? "" : "WHERE " + cond));
return (fornatResul t(rset));
} catch (SQ.Exception e) {
return ("<P> SQ error: <PRE>" + e + " </PRE> </P>\n");
} finally {

3-20 Oracle9i Support for JavaServer Pages Reference

JSP Starter Sample for Data Access

if (rset!=null) rset.close();
if (stm!=null) stn.close();
if (conn!'=null) conn.close();
}
}
private Sring format Resul t (Resul t Set rset) throws SQLException {
SringBuffer sb = new SringBuffer();
if (Irset.next())
sb. append("<P> No mat chi ng rows. <P>\n");
el se { sb. append("<U>");
do { sh.append("" + rset.getSring(1l) +
"earns $ " +rset.getint(2) +".</LIX\n");
} while (rset.next());
sh. append(" </ UL>");
}
return sh.totring();

}
%

Basics 3-21

JSP Starter Sample for Data Access

The graphic below illustrates sample output for the following input:

sal >= 2500 AND sal < 5000

3 The JDBCQuery JSP - Netscape

Eile Edit Yiew Go Communicator Help

[34 5 2 & » @

Back Forward Heload Haome Search Metzcape

=%

Print

5 !
Security St

J'Bnnkmarks J{. Lu:n:atiu:un:l

j ﬁ' YWhat's Related

Search results for sal == 2500 AND sal < 5000

JONES earns § 2975,
BLAKE earns $ 2850.
SCOTT earns $ 3000.
FORD earns § 3000.

Enter a search condition:

| Ack Oracle

=

3-22 Oracle9i Support for JavaServer Pages Reference

A

Key Considerations

This chapter discusses important programming, configurational, and runtime
considerations in developing a JSP application. The following topics are covered:

« General JSP Programming Strategies, Tips, and Traps
« Key JSP Configuration Issues

« Oracle JSP Runtime Page and Class Reloading

Key Considerations 4-1

General JSP Programming Strategies, Tips, and Traps

General JSP Programming Strategies, Tips, and Traps

This section discusses issues you should consider when programming JSP pages
that will run in the Oracle JSP container, regardless of the particular target
environment. The following assortment of topics are covered:

« JavaBeans Versus Scriptlets

« Use of IDBC Performance Enhancement Features

« Static Includes Versus Dynamic Includes

« When to Consider Creating and Using JSP Tag Libraries

« Use of a Central Checker Page

« Workarounds for Large Static Content in JSP Pages

= Method Variable Declarations Versus Member Variable Declarations
« Page Directive Characteristics

= JSP Preservation of White Space and Use with Binary Data

« Oracle XML Support

Note: In addition to being aware of what is discussed in this
section, you should be aware of Oracle JSP translation and
deployment issues and behavior. See Chapter 6, "JSP Translation
and Deployment".

JavaBeans Versus Scriptlets

The section "Separation of Business Logic from Page Presentation: Calling
JavaBeans" on page 1-5 describes a key advantage of JavaServer Pages technology:
Java code containing the business logic and determining the dynamic content can
be separated from the HTML code containing the request processing, presentation
logic, and static content. This separation allows HTML experts to focus on
presentation logic in the JSP page itself, while Java experts focus on business logic
in JavaBeans that are called from the JSP page.

A typical JSP page will have only brief snippets of Java code, usually for Java
functionality for request processing or presentation. The sample page in "JSP Starter
Sample for Data Access" on page 3-19, although illustrative, is probably not an ideal
design. Data access, such as in the r unQuer y() method in the sample, is usually

4-2 Oracle9i Support for JavaServer Pages Reference

General JSP Programming Strategies, Tips, and Traps

more appropriate in a JavaBean. However, the f or mat Resul t () method in the
sample, which formats the output, is more appropriate for the JSP page itself.

Use of JDBC Performance Enhancement Features

You can use the following performance enhancement features, supported through
Oracle JDBC extensions, in JSP applications executed by the Oracle JSP container:

« caching database connections

« caching JDBC statements

« batching update statements

« prefetching rows during a query
« caching rowsets

Most of these performance features are supported by the Oracle ConnBean and
ConnCacheBean data-access JavaBeans (but not by DBBean). These beans are
described in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Database Connection Caching

Creating a new database connection is an expensive operation that you should
avoid whenever possible. Instead, use a cache of database connections. A JSP
application can get a logical connection from a pre-existing pool of physical
connections, and return the connection to the pool when done.

You can create a connection pool at any one of the four JSP scopes—appl i cat i on,
sessi on, page, orr equest . It is most efficient to use the maximum possible
scope—appl i cat i on scope if that is permitted by the Web server, or sessi on
scope if not.

The Oracle JDBC connection caching scheme, built upon standard connection
pooling as specified in the JDBC 2.0 standard extensions, is implemented in the
ConnCacheBean data-access JavaBean provided with Oracle9i. This is probably
how most JSP developers will use connection caching. This bean is described in the
Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference.

It is also possible to use the Oracle JDBC Or acl eConnect i onCachel npl class
directly, as though it were a JavaBean, as in the following example (although all
Or acl eConnecti onCachel npl functionality is available through
ConnCacheBean).

Key Considerations 4-3

General JSP Programming Strategies, Tips, and Traps

<j sp: useBean i d="occi" cl ass="oracl e. j dbc. pool . O acl eGnnect i onCachel npl "
scope="sessi on" />

The same properties are available in O acl eConnect i onCachel npl asin
ConnCacheBean. They can be set either through j sp: set Pr oper t y statements or
directly through the class setter methods.

For information about the Oracle JDBC connection caching scheme and the
O acl eConnecti onCachel npl class, see the Oracle9i JDBC Developer’s Guide and
Reference.

JDBC Statement Caching

Statement caching, an Oracle JDBC extension, improves performance by caching
executable statements that are used repeatedly within a single physical connection,
such as in a loop or in a method that is called repeatedly. When a statement is
cached, the statement does not have to be re-parsed, the statement object does not
have to be recreated, and parameter size definitions do not have to be recalculated
each time the statement is executed.

The Oracle JDBC statement caching scheme is implemented in the ConnBean and
ConnCacheBean data-access JavaBeans that are provided with Oracle9i. Each of
these beans has a st nt CacheSi ze property that can be set through a

j sp: set Property statement or the set St nt CacheSi ze() method of the bean.
The beans are described in the Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference.

Statement caching is also available directly through the Oracle JDBC

Or acl eConnecti onand Or acl eConnect i onCachel npl classes. For
information about the Oracle JDBC statement caching scheme and the

Or acl eConnecti onand Or acl eConnect i onCachel npl classes, see the
Oracle9i JDBC Developer’s Guide and Reference.

Important: Statements can be cached only within a single physical
connection. When you enable statement caching for a connection
cache, statements can be cached across multiple logical connection
objects from a single pooled connection object, but not across
multiple pooled connection objects.

Update Batching

The Oracle JDBC update batching feature associates a batch value (limit) with each
prepared statement object. With update batching, instead of the JDBC driver

4-4 Oracle9i Support for JavaServer Pages Reference

General JSP Programming Strategies, Tips, and Traps

executing a prepared statement each time its "execute" method is called, the driver
adds the statement to a batch of accumulated execution requests. The driver will
pass all the operations to the database for execution once the batch value is reached.
For example, if the batch value is 10, then each batch of ten operations will be sent
to the database and processed in one trip.

The Oracle JSP container supports Oracle JDBC update batching directly, through
the execut eBat ch property of the ConnBean data-access JavaBean. You can set
this property through aj sp: set Propert y statement or through the setter method
of the bean. If you use ConnCacheBean instead, you can enable update batching
through Oracle JDBC functionality in the connection and statement objects you
create. These beans are described in the Oracle9iAS Containers for J2EE JSP Tag
Libraries and Utilities Reference.

For more information about Oracle JDBC update batching, see the Oracle9i JDBC
Developer’s Guide and Reference.

Row Prefetching

The Oracle JDBC row prefetching feature allows you to set the number of rows to
prefetch into the client during each trip to the database while a result set is being
populated during a query, reducing the number of round trips to the server.

The Oracle JSP container supports Oracle JDBC row prefetching directly, through
the pr eFet ch property of the ConnBean data-access JavaBean. You can set this
property through aj sp: set Pr oper t y statement or through the setter method of
the bean. If you use ConnCacheBean instead, you can enable row prefetching
through Oracle JDBC functionality in the connection and statement objects you
create. These beans are described in the Oracle9iAS Containers for J2EE JSP Tag
Libraries and Utilities Reference.

For more information about Oracle JDBC row prefetching, see the Oracle9i JDBC
Developer’s Guide and Reference.

Rowset Caching

A cached rowset provides a disconnected, serializable, and scrollable container for
retrieved data. This feature is useful for small sets of data that do not change often,
particularly when the client requires frequent or continued access to the
information. By contrast, using a normal result set requires the underlying
connection and other resources to be held. Be aware, however, that large cached
rowsets consume a lot of memory on the client.

Key Considerations 4-5

General JSP Programming Strategies, Tips, and Traps

In Oracle9i, Oracle JDBC provides a cached rowset implementation. If you are using
an Oracle JDBC driver, use code inside a JSP page to create and populate a cached
rowset as follows:

CachedRowSet crs = new CachedRowSet () ;
crs.popul ate(rset); // rset is a previously created JDBC Resul t Set obj ect.

Once the rowset is populated, the connection and statement objects used in
obtaining the original result set can be closed.

For more information about Oracle JDBC cached rowsets, see the Oracle9i JDBC
Developer’s Guide and Reference.

Static Includes Versus Dynamic Includes

Thei ncl ude directive, described in "Directives" on page 1-10, makes a copy of the
included page and copies it into a JSP page (the "including page") during
translation. This is known as a static include (or translate-time include) and uses the
following syntax:

<Y@i ncl ude fil e="/jsp/userinfopage.jsp" %

Thej sp: i ncl ude action, described in "JSP Actions and the <jsp: > Tag Set" on
page 1-18, dynamically includes output from the included page within the output of
the including page, during runtime. This is known as a dynamic include (or runtime
include) and uses the following syntax:

<j sp:incl ude page="/j sp/ userinfopage.jsp" flush="true" />
For those of you who are familiar with C syntax, a static include is comparable to a

#i ncl ude statement. A dynamic include is similar to a function call. They are both
useful, but serve different purposes.

Note: Both static includes and dynamic includes can be used only
between pages in the same servlet context.

Logistics of Static Includes

A static include increases the size of the generated code for the including JSP page,
as though the text of the included page is physically copied into the including page
during translation (at the point of the i ncl ude directive). If a page is included
multiple times within an including page, multiple copies are made.

4-6 Oracle9i Support for JavaServer Pages Reference

General JSP Programming Strategies, Tips, and Traps

A JSP page that is statically included does not need to stand as an independent,
translatable entity. It simply consists of text that will be copied into the including
page. The including page, with the included text copied in, must then be
translatable. And, in fact, the including page does not have to be translatable prior
to having the included page copied into it. A sequence of statically included pages
can each be fragments unable to stand on their own.

Logistics of Dynamic Includes

A dynamic include does not significantly increase the size of the generated code for
the including page, although method calls, such as to the request dispatcher, will be
added. The dynamic include results in runtime processing being switched from the
including page to the included page, as opposed to the text of the included page
being physically copied into the including page.

A dynamic include does increase processing overhead, with the necessity of the
additional call to the request dispatcher.

A page that is dynamically included must be an independent entity, able to be
translated and executed on its own. Likewise, the including page must be
independent as well, able to be translated and executed without the dynamic
include.

Advantages, Disadvantages, and Typical Uses

Static includes affect page size; dynamic includes affect processing overhead. Static
includes avoid the overhead of the request dispatcher that a dynamic include
necessitates, but may be problematic where large files are involved. (There is a 64K
size limit on the service method of the generated page implementation class—see
"Workarounds for Large Static Content in JSP Pages" on page 4-10.)

Overuse of static includes can also make debugging your JSP pages difficult,
making it harder to trace program execution. Avoid subtle interdependencies
between your statically included pages.

Static includes are typically used to include small files whose content is used
repeatedly in multiple JSP pages. For example:

« Statically include a logo or copyright message at the top or bottom of each page
in your application.

« Statically include a page with declarations or directives (such as imports of Java
classes) that are required in multiple pages.

Key Considerations 4-7

General JSP Programming Strategies, Tips, and Traps

« Statically include a central "status checker" page from each page of your
application. (See "Use of a Central Checker Page" on page 4-9.)

Dynamic includes are useful for modular programming. You may have a page that
sometimes executes on its own but sometimes is used to generate some of the
output of other pages. Dynamically included pages can be reused in multiple
including pages without increasing the size of the including pages.

When to Consider Creating and Using JSP Tag Libraries

Some situations dictate that the development team consider creating and using
custom tags. In particular, consider the following situations:

= JSP pages would otherwise have to include a significant amount of Java logic
regarding presentation and format of output.

= Special manipulation or redirection of JSP output is required.

Replacing Java Syntax

Because one cannot count on JSP developers being experienced in Java
programming, they may not be ideal candidates for coding Java logic in the
page—Ilogic that dictates presentation and format of the JSP output, for example.

This is a situation where JSP tag libraries might be helpful. If many of your JSP
pages will require such logic in generating their output, a tag library to replace Java
logic would be a great convenience for JSP developers.

An example of this is the JML sample tag library provided with Oracle9i. This
library, documented in the Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference, includes tags that support logic equivalent to Java loops and
conditionals.

Manipulating or Redirecting JSP Output

Another common situation for custom tags is if special runtime processing of the
response output is required. Perhaps the desired functionality requires an extra
processing step or redirection of the output to somewhere other than the browser.

An example is to create a custom tag that you can place around a body of text
whose output will be redirected into a log file instead of to a browser, such as in the
following example (where cust is the prefix for the tag library and | og is one of
the library’s tags):

<cust: | og>
Today is <% new java.util.Date() %

4-8 Oracle9i Support for JavaServer Pages Reference

General JSP Programming Strategies, Tips, and Traps

Text to | og.

Mre text to |og.

Sill nmore text to |og.
</ cust : | og>

See "Tag Handlers" on page 7-4 for information about processing of tag bodies.

Use of a Central Checker Page

For general management or monitoring of your JSP application, it may be useful to
use a central "checker" page that you include from each page in your application. A
central checker page could accomplish tasks such as the following during execution
of each page:

« Check session status.

« Check login status (such as checking the cookie to see if a valid login has been
accomplished).

« Check usage profile (if a logging mechanism has been implemented to tally
events of interest, such as mouse clicks or page Vvisits).

There could be many more uses as well.

As an example, consider a session checker class, MySessi onChecker, that
implements the Ht t pSessi onBi ndi ngLi st ener interface. (See "Standard
Session Resource Management with HttpSessionBindingListener" on page 3-10.)

public class M/Sessi onChecker inpl enents HtpSessi onBi ndi ngLi st ener
{

val ueBound(H t pSessi onBi ndi ngEvent event)
{...}

val uelnbound(H t pSessi onBi ndi ngEvent event)
{...}

}

You can create a checker JSP page, suppose cent r al check. j sp, that includes
something like the following:

<j sp: useBean i d="sessi oncheck" cl ass="M/Sessi onChecker" scope="session" />

Key Considerations 4-9

General JSP Programming Strategies, Tips, and Traps

In any page that includes cent r al check. j sp, the servlet container will call the
val ueUnbound() method implemented in the MySessi onChecker class as soon
as sessi oncheck goes out of scope (at the end of the session). Presumably this is
to manage session resources. You could include cent r al check. j sp at the end of
each JSP page in your application.

Workarounds for Large Static Content in JSP Pages

JSP pages with large amounts of static content (essentially, large amounts of HTML
code without content that changes at runtime) may result in slow translation and
execution.

There are two primary workarounds for this (either workaround will speed
translation):

Put the static HTML into a separate file and use a dynamic i ncl ude command
(j sp: i ncl ude) to include its output in the JSP page output at runtime. See
"JSP Actions and the <jsp: > Tag Set" on page 1-18 for information about the

j sp:incl ude command.

Important: A static <%@ i ncl ude. .. % command would not
work. It would result in the included file being included at
translation time, with its code being effectively copied back into the
including page. This would not solve the problem.

Put the static HTML into a Java resource file.

The Oracle JSP container will do this for you if you enable the JSP
ext er nal _r esour ce configuration parameter. This parameter is documented
in "Oracle JSP Configuration Parameters" on page 9-7.

For pre-translation, the - ext r es option of the oj spc command-line tool also
offers this functionality.

Note: Putting static HTML into a resource file may resultin a
larger memory footprint than the j sp: i ncl ude workaround
mentioned above, because the page implementation class must load
the resource file whenever the class is loaded.

4-10 Oracle9i Support for JavaServer Pages Reference

General JSP Programming Strategies, Tips, and Traps

Another possible, though unlikely, problem with JSP pages that have large static
content is that most (if not all) JVMs impose a 64K byte size limit on the code within
any single method. Although j avac would be able to compile it, the JVM would be
unable to execute it. Depending on the implementation of the JSP translator, this
may become an issue for a JSP page, because generated Java code from essentially
the entire JSP page source file goes into the service method of the page
implementation class. (Java code is generated to output the static HTML to the
browser, and Java code from any scriptlets is copied directly.)

Another possible, though rare, scenario is for the Java scriptlets in a JSP page to be
large enough to create a size limit problem in the service method. If there is enough
Java code in a page to create a problem, however, then the code should be moved
into JavaBeans.

Method Variable Declarations Versus Member Variable Declarations

In "Scripting Elements" on page 1-12, it is noted that JSP <% ... 9% declarations
are used to declare member variables, while method variables must be declared in
<% ... % scriptlets.

Be careful to use the appropriate mechanism for each of your declarations,
depending on how you want to use the variables:

« Avariable thatis declared in <% ... 9% JSP declaration syntax is declared at
the class level in the page implementation class that is generated by the JSP
translator.

« Avariable that is declared in <% . . . % JSP scriptlet syntax is local to the

service method of the page implementation class.
Consider the following example, decl t est . j sp:

<HTM_>

<BCDY>

<%doubl e f2=0.0; %

<% doubl e f1=0.0; %
Variabl e declaration test.
</ BCDY>

</ HTM.>

This results in something like the following code in the page implementation class:

package ...;
inport ...;

Key Considerations 4-11

General JSP Programming Strategies, Tips, and Traps

public class decltest extends oracle.jsp.runtinme HtpJsp {

/1 ** Begin Declarations
doubl e f1=0. 0; [l *** f1 declaration is generated here ***
/!l ** End Declarations

public void _jspService
(HtpServl et Request request, HtpServl et Response response)
throws | CException, ServletException {

try {
out.println("<HM>");
out.println("<BDY>");
doubl e f2=0.0; [l *** £2 declaration is generated here ***
out.println("");
out.println("");
out.printIn("Variable declaration test.");
out.println("</ BDY>");
out.println("</ HM>");

out. fl ush();
}
cat ch(Exception e) {
try {
if (out '=null) out.clear();
}
cat ch(Exception cl ear Exception) {
}
finally {
if (out '=null) out.close();
}

Note: This code is provided for conceptual purposes only. Most of
the class is deleted for simplicity, and the actual code of a page
implementation class generated by the Oracle JSP translator would
differ somewhat.

4-12 Oracle9i Support for JavaServer Pages Reference

General JSP Programming Strategies, Tips, and Traps

Page Directive Characteristics
This section discusses the following page directive characteristics:

« A page directive is static and takes effect during translation; you cannot specify
parameter settings to be evaluated at runtime.

« Javai nport settingsin page directives are cumulative within a JSP page.

Page Directives Are Static

A page directive is static; it is interpreted during translation. You cannot specify
dynamic settings to be interpreted at runtime. Consider the following examples:

Example 1 The following page directive is valid.
<Y@page content Type="text/htn; charset=BJCII S' %

Example 2 The following page directive is not valid and will result in an error.
(EUCJI Siis hard-coded here, but the example also holds true for any character set
determined dynamically at runtime.)

<% Sring s="BJAIS'; %
<Y@page content Type="text/htn; charset =<%s%" %

For some page directive settings there are workarounds. Reconsidering Example 2,
there is a set Cont ent Type() method that allows dynamic setting of the content
type, as described in "Dynamic Content Type Settings" on page 8-4.

Page Directive Import Settings Are Cumulative
Javai nport settings in page directives within a JSP page are cumulative.

Within any single JSP page, the following two examples are equivalent:
<Y@page | anguage="j ava" %

<Y@page inport="sqlj.runtine.ref.Defaul t ontext, java.sql.*" %

or:

<Y@page | anguage="j ava" %
<Y@page inport="sqlj.runtine.ref.Defaul t Context" %
<Y@page inport="java.sql .*" %

Key Considerations 4-13

General JSP Programming Strategies, Tips, and Traps

After the first page directive i nport setting, the i nport setting in the second
page directive adds to the set of classes or packages to be imported, as opposed to
replacing the classes or packages to be imported.

JSP Preservation of White Space and Use with Binary Data

The Oracle JSP container (and JavaServer Pages implementations in general)
preserves source code white space, including carriage returns and linefeeds, in what
is output to the browser. Insertion of such white space may not be what the
developer intended, and typically makes JSP technology a poor choice for
generating binary data.

White Space Examples

The following two JSP pages produce different HTML output, due to the use of
carriage returns in the source code.

Example 1—No Carriage Returns

The following JSP page does not have carriage returns after the Dat e() and
get Par anet er () calls. (The third and fourth lines, starting with the Dat e() call,
actually comprise a single wraparound line of code.)

nowhi t sp. j sp:

<HTM_>

<BCDY>

<% newjava.util.Date() % <% Sring user=request.getParaneter("user"); % <%
(user==null) ? "" : user %

Ent er nare: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>
<I NPUT TYPE="submt" VALUE="Submit nane">
</ FCRW>

</ BCDY>

</ HTM.>

This results in the following HTML output to the browser. (Note that there are no
blank lines after the date.)

<HTM_>

<BCDY>

Tue May 30 20: 07: 04 PDT 2000
Ent er nare: </ B>

<FCRM METHOD=get >

4-14 Oracle9i Support for JavaServer Pages Reference

General JSP Programming Strategies, Tips, and Traps

<INPUT TYPE="text" NAME="user" S ZE=15>
<I NPUT TYPE="submt" VALUE="Submit nane">
</ FCRW>

</ BCDY>

</ HTM.>

Example 2—Carriage Returns

The following JSP page does include carriage returns after the Dat e() and
get Par anet er () calls.

whi t esp. j sp:

<HTM_>

<BCDY>

<% newjava.util.Date() %

<% Sring user=request.getParaneter("user"); %
<% (user==null) ? "" : user %

Enter nane: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>
<INPUT TYPE="subnit" VALUE="Subnit nane">
</ FCRW>

</ BCDY>

</ HTM.>

This results in the following HTML output to the browser.

<HTM_>
<BCDY>
Tue May 30 20: 19: 20 PDT 2000

Ent er nare: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>
<I NPUT TYPE="submt" VALUE="Submit nane">
</ FCRW>

</ BCDY>

</ HTM.>

Note the two blank lines between the date and the "Enter name:" line. In this
particular case the difference is not significant, because both examples produce the
same appearance in the browser, as shown below. However, this discussion
nevertheless demonstrates the general point about preservation of white space.

Key Considerations 4-15

General JSP Programming Strategies, Tips, and Traps

- Metscape

File Edit “iew GEo Communicator Help

| 4 ¥ A A . w o & N

Back Forward Reload Home Search Metzcape Frint Security Stom

W!v Bookmarks & Ln:n::atin:-n:l j ﬁ"‘w’hat's Related
Tue May 30 20:1%:20 PDT 2000 Enter name:

| Submit narme

=5 | Dacument; D ore

Reasons to Avoid Binary Data in JSP Pages

For the following reasons, JSP pages are a poor choice for generating binary data.
Generally you should use servlets instead.

= JSP implementations are not designed to handle binary data—there are no
methods for writing raw bytes in the JspW i t er object.

« During execution, the JSP container preserves whitespace. Whitespace is
sometimes unwanted, making JSP pages a poor choice for generating binary
output (a . gi f file, for example) to the browser, or for other uses where
whitespace is significant.

Consider the following example:

<%out.getQutput Srean().wite(...binary data...) %
<%out.getQutputSrean().wite(...nore binary data...) %

In this case, the browser will receive an unwanted newline characters in the
middle of the binary data or at the end, depending on the buffering of your
output buffer. You can avoid this problem by not using a carriage return
between the lines of code, but of course this is an undesirable programming
style.

4-16 Oracle9i Support for JavaServer Pages Reference

General JSP Programming Strategies, Tips, and Traps

Trying to generate binary data in JSP pages largely misses the point of JSP
technology anyway, which is intended to simplify the programming of dynamic
textual content.

Oracle XML Support

This section describes the following Oracle support features for XML that may be
useful in JSP pages:

« XML-Alternative Syntax
« OracleXMLQuery Class

For information about additional support for XML and XSL, refer to the Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference.

XML-Alternative Syntax

JSP tags, such as <% . . % for scriptlets, <% . . . % for declarations, and

<%. .. % for expressions, are not syntactically valid within an XML document.
Sun Microsystems addressed this in the JavaServer Pages Specification, Version 1.1 by
defining equivalent JSP tags using syntax that is XML-compatible. This is
implemented through a standard DTD that you can specify within aj sp: r oot
start tag at the beginning of an XML document.

This functionality allows you, for example, to write XML-based JSP pages in an
XML authoring tool.

The Oracle JSP container does not use this DTD directly or require you to use a
j sp: root tag, but the Oracle JSP translator includes logic to recognize the
alternative syntax specified in the standard DTD. Table 4-1 documents this syntax.

Table 4-1 XML-Alternative Syntax

Standard JSP Syntax XML-Alternative JSP Syntax

<v@ directive ... % <jsp:directive.directive ... />
Such as: Such as:

<%@ page ... % <jsp:directive.page ... />
<%@include ... % <jsp:directive.include ... />
<% ... % (declaration) <j sp: decl arati on>

...declarations go here. ..
</jsp: decl arati on>

Key Considerations 4-17

General JSP Programming Strategies, Tips, and Traps

Table 4-1 XML-Alternative Syntax (Cont.)

Standard JSP Syntax XML-Alternative JSP Syntax

<%= ... % (expression) <j sp: expressi on>
...expression goes here. ..
</ j sp: expression>

<% ... % (scriptlet) <jsp:scriptlet>
...code fragnent goes here...
</jsp:scriptlet>

JSP action tags, such asj sp: useBean, for the most part already use syntax that
complies with XML. Changes due to quoting conventions or for request-time
attribute expressions may be necessary, however.

OracleXMLQuery Class

Theoracl e. xnm . sql . query. Oracl eXM_Query class is provided with Oracle9i
as part of the XML-SQL utility for XML functionality in database queries. This class
requires file xsul2. j ar (for JDK 1.2.x) or xsulll. j ar (for JDK 1.1.x), both of
which are provided with Oracle9i.

For information about the Or acl eXMLQuer y class and other XML-SQL utility
features, refer to the Oracle9i XML Developer’s Kits Guide - XDK.

4-18 Oracle9i Support for JavaServer Pages Reference

Key JSP Configuration Issues

Key JSP Configuration Issues

This section covers important effects of how you set key page directive parameters
and JSP configuration parameters. The discussion focuses on JSP page optimization,
classpath issues, and class loader issues. The following topics are covered:

« Optimization of JSP Execution

« Classpath and Class Loader Issues

Optimization of JSP Execution

There are settings you can consider to optimize JSP performance, including the
following:

« Unbuffering a JSP Page
« Not Checking for Retranslation

« Not Using an HTTP Session

Unbuffering a JSP Page

By default, a JSP page uses an area of memory known as a page buffer. This buffer
(8KB by default) is required if the page uses dynamic globalization support content
type settings, forwards, or error pages. If it does not use any of these features, you
can disable the buffer in a page directive:

<Y@page buf fer="none" %

This will improve the performance of the page by reducing memory usage and
saving an output step. Output goes straight to the browser instead of going through
the buffer first.

Not Checking for Retranslation

When the Oracle JSP container executes a JSP page, by default it will check whether
a page implementation class already exists, compare the . cl ass file timestamp
against the . j sp source file timestamp, and retranslate the page if the . cl ass file
is older.

If comparing timestamps is unnecessary (as is the case in a typical deployment
environment, where source code will not change), you can avoid the timestamp
comparison by setting the JSP devel oper _npde flag to f al se. The default setting
ist r ue. For information about how to set this flag in the JServ environment, see
"Setting JSP Parameters in JServ" on page 9-18.

Key Considerations 4-19

Key JSP Configuration Issues

Note: This discussion is not relevant for pre-translation scenarios.

Not Using an HTTP Session

If a JSP page does not require an HTTP session (essentially, does not require storage
or retrieval of session attributes), then you can avoid using a session through the
following page directive:

<Y@page session="fal se" %

This will improve the performance of the page by eliminating the overhead of
session creation or retrieval.

Note that although servlets by default do not use a session, JSP pages by default do
use a session.

Classpath and Class Loader Issues

The Oracle JSP container uses its own classpath, distinct from the Web server
classpath, and by default uses its own class loader to load classes from this
classpath. This has significant advantages and disadvantages.

The JSP classpath combines the following elements:
« the Oracle JSP default classpath

« additional classpaths you specify in the JSP cl asspat h configuration
parameter

If there are classes you want loaded by the Oracle JSP class loader instead of the
system class loader, then use the cl asspat h configuration parameter, or place the
classes in the Oracle JSP default classpath. See "Advantages and Disadvantages of
the Oracle JSP Class Loader" on page 4-22 for related discussion.

Oracle JSP Default Classpath

Oracle JSP defines standard locations on the Web server for locating . cl ass files
and . j ar files for classes (such as JavaBeans) that it requires. The Oracle JSP
container will find files in these locations without any Web server classpath
configuration.

4-20 Oracle9i Support for JavaServer Pages Reference

Key JSP Configuration Issues

These locations are as follows and are relative to the application root:

[/ WEB- | NF/ cl asses
IVEB-INH ib

/ _pages

(The VEB- | NF directories are not relevant in a servlet 2.0 environment, such as
JServ.)

Important: If you want classes in the VEB- | NF directories to be
loaded by the system class loader instead of the Oracle JSP class
loader, place the classes somewhere in the Web server classpath as
well. The system class loader takes priority—any class that is
placed in both classpaths will always be loaded by the system class
loader.

The _pages directory is the default location for translated and compiled JSP pages
(as output by the JSP translator).

The cl asses directory is for individual Java . cl ass files. These classes should be
stored in subdirectories under the cl asses directory, according to Java package
naming conventions.

For example, consider a JavaBean called Lot t oBean whose code defines it to be in
theoracl e.j sp. sanpl e. | ott ery package. The Oracle JSP container will look
for Lot t oBean. cl ass in the following location relative to the application root:

/WEB- | NF/ cl asses/ oracl e/ j sp/ sanpl e/ | ottery/ Lot t oBean. cl ass
The | i b directory is for . j ar files. Because Java package structure is specified in

the . j ar file structure, the . j ar files are all directly in the | i b directory (not in
subdirectories).

As an example, Lot t oBean. cl ass might be storedinl ottery.j ar, located as
follows relative to the application root:

/VWEB- 1IN/ lib/lottery.jar

The application root directory can be located in any of the following locations (as
applicable, depending on your Web server and servlet environment), listed in the
order they are searched:

« the Web server directory the application is mapped to

Key Considerations 4-21

Key JSP Configuration Issues

« the Web server document root directory

« the directory containing the gl obal s. j sa file (where applicable, typically in a
servlet 2.0 environment)

Notes:

« Some Web servers, particularly those supporting the servlet 2.0
specification, do not offer full application support such as
complete servlet context functionality. In this case, or when
application mapping is not used, the default application is the
server itself, and the application root is the Web server
document root.

« For older servlet environments, the gl obal s. j safileisan
Oracle extension that can be used as an application marker to
establish an application root. See "Oracle JSP Application and
Session Support for JServ" on page 9-26.

Oracle JSP classpath Configuration Parameter
Use the JSP cl asspat h configuration parameter to add to the Oracle JSP classpath.

For more information about this parameter, see "Oracle JSP Configuration
Parameters" on page 9-7. For information about how to set this parameter in the
JServ environment, see "Setting JSP Parameters in JServ" on page 9-18.

Advantages and Disadvantages of the Oracle JSP Class Loader

Using the Oracle JSP class loader results in the following advantages and
disadvantages:

« limited access to classes loaded by the Oracle JSP class loader from classes
loaded by any other class loader

When a class is loaded by the Oracle JSP class loader , its definition exists in
that class loader only. Classes loaded by the system class loader or any other
class loader, including any servlets, would have only limited access. The classes
loaded by another class loader could not cast the class loaded by the Oracle JSP
class loader or call methods on it. This may be desirable or undesirable,
depending on your situation.

4-22 Oracle9i Support for JavaServer Pages Reference

Key JSP Configuration Issues

= automatic class reloading

By default, the Oracle JSP class loader will automatically reload a class in the
Oracle JSP classpath whenever the class file or JAR file has been modified since
it was last loaded. For a JSP page, for example, this can happen as a result of
dynamic retranslation, which occurs by default if the . j sp source file for a page
has a more recent timestamp than its corresponding page implementation

. cl ass file.

This is usually only advantageous in a development environment. In a typical
deployment environment, the source, class, and JAR files will not change, and it
is inefficient to check them for changes.

See "Dynamic Class Reloading" on page 4-25 for more information.

It follows that in a deployment environment, you will typically not want to use the
Oracle JSP classpath. By default, the cl asspat h parameter is empty.

Key Considerations 4-23

Oracle JSP Runtime Page and Class Reloading

Oracle JSP Runtime Page and Class Reloading

This section describes conditions under which the Oracle JSP container retranslates
pages, reloads pages, and reloads classes during runtime.

Dynamic Page Retranslation

As a Web application is running, the Oracle JSP container by default will
automatically retranslate and reload a JSP page whenever the page source is
modified.

The JSP container checks whether the last-modified time of the page
implementation class file, as indicated in the Oracle JSP in-memory cache, is older
than the last-modified time of the JSP page source file.

You can avoid the overhead of the Oracle JSP container checking timestamps for
retranslation by setting the JSP devel oper _node flag to f al se. This is
advantageous in a deployment environment, where source and class files will
typically not change. For more information about this flag, see "Oracle JSP
Configuration Parameters" on page 9-7. For how to set it in a JServ environment, see
"Setting JSP Parameters in JServ" on page 9-18.

Notes:

= Because of the usage of in-memory values for the class file
last-modified time, note that removing a page implementation
class file from the file system will not cause the Oracle JSP
container to retranslate the associated JSP page source. The JSP
container will only retranslate when the JSP page source file
timestamp changes.

« Theclass file will be regenerated when the cache is lost. This
happens whenever a request is directed to this page after the
server is restarted or after another page in this application has
been retranslated.

4-24 Oracle9i Support for JavaServer Pages Reference

Oracle JSP Runtime Page and Class Reloading

Dynamic Page Reloading

The Oracle JSP container will automatically reload a JSP page (in other words,
reload the generated page implementation class) in the following circumstances:

« the page is retranslated
(See "Dynamic Page Retranslation" above.)

« alavaclass that is called by the page and was loaded by the Oracle JSP class
loader (and not the system class loader) is modified

(See "Dynamic Class Reloading" below.)
= any page in the same application is reloaded

A JSP pages is associated with the overall Web application within which it runs.
(Even JSP pages not associated with a particular application are considered to
be part of a "default application".)

Whenever a JSP page is reloaded, all JSP pages in the application are reloaded.

Notes:

« The Oracle JSP container does not reload a page just because a
statically included file has changed. (Statically included files,
included through <%@ i ncl ude ... % syntax, are included
during translation-time.)

« Page reloading and page retranslation are not the same thing.
Reloading does not imply retranslation.

Dynamic Class Reloading

By default, before the Oracle JSP container dispatches a request that will execute a

Java class that was loaded by the Oracle JSP class loader, it checks to see if the class
file has been modified since it was first loaded. If the class has been modified, then
the Oracle JSP class loader reloads it.

This applies only to classes in the Oracle JSP classpath, which includes the
following:

« JARfilesinthe/WEB- | NF/ | i b directory (servlet 2.2)

« . classfilesinthe/WEB- | NF/ cl asses directory (servlet 2.2)

Key Considerations 4-25

Oracle JSP Runtime Page and Class Reloading

« classes in paths specified through the Oracle JSP cl asspat h configuration
parameter

= Qenerated . cl ass files in the _pages output directory

As mentioned in the preceding section, "Dynamic Page Reloading", reloading a
class results in the dynamic reloading of JSP pages that reference that class.

Important:

=« Remember that classes must be in the JSP classpath, not the
system classpath, to be dynamically reloaded. If they are in the
system classpath as well, the system class loader may take
precedence in some circumstances, possibly interfering with
JSP automatic-reloading functionality.

« Dynamic class reloading can be expensive in terms of CPU
usage. You can disable this feature by setting the JSP
devel oper _node parameter to f al se. This is appropriate in
deployment environments where classes are not expected to
change.

For information about the cl asspat h and devel oper _node configuration
parameters and how to set them in a JServ environment, see "Oracle JSP
Configuration Parameters" on page 9-7 and "Setting JSP Parameters in JServ" on
page 9-18.

4-26 Oracle9i Support for JavaServer Pages Reference

D

Oracle-Specific Programming Extensions

This chapter discusses extended JSP functionality offered by Oracle that is not
portable to other JSP environments. This consists of event-handling through the
Oracle JspScopelLi st ener mechanism and support for SQLJ, a standard syntax
for embedding SQL statements directly into Java code. The chapter is organized as
follows:

« Oracle JSP Event Handling with JspScopeL.istener
» Oracle JSP Support for Oracle SQLJ

Notes:

« For servlet 2.0 environments, the Oracle JSP container supports
non-portable extensions through a mechanism called
gl obal s. j sato support a Web application framework.
"Oracle JSP Application and Session Support for JServ" on
page 9-26 describes this mechanism.

« The Oracle JSP container also has extended (and non-portable)
globalization support, which is described in "Oracle JSP
Extended Support for Multibyte Parameter Encoding” on
page 8-5.

Oracle-Specific Programming Extensions 5-1

Oracle JSP Event Handling with JspScopeListener

Oracle JSP Event Handling with JspScopeListener

In standard servlet and JSP technology, only session-based events are supported.
The Oracle JSP container extends this support through the JspScopelLi st ener
interface and JspScopeEvent class in the or acl e. j sp. event package. This
mechanism supports the four standard JSP scopes for event-handling for any Java
objects used in a JSP application:

- page

= request

= Session

« application

For Java objects that are used in your application, implement the
JspScopeli st ener interface in the appropriate class, then attach objects of that
class to a JSP scope using tags such asj sp: useBean.

When the end of a scope is reached, objects that implement JspScopeli st ener
and have been attached to the scope will be so notified. The Oracle JSP container
accomplishes this by sending a JspScopeEvent instance to such objects through
the out O Scope() method specified in the JspScopeli st ener interface.

Properties of the JspScopeEvent object include the following:

« the scope that is ending (one of the constants PAGE_SCOPE, REQUEST_ SCOPE,
SESSI ON_SCOPE, or APPLI CATI ON_SCOPE)

« the container object that is the repository for objects at this scope (one of the
implicit objects page, r equest , sessi on,orappl i cati on)

« the name of the object that the notification pertains to (the name of the instance
of the class that implements JspScopelLi st ener)

« theJSPimplicitappl i cati on object

The Oracle JSP event listener mechanism significantly benefits developers who
want to always free object resources that are of page or r equest scope, regardless
of error conditions. It frees these developers from having to surround their page
implementations with Javatry/cat ch/f i nal | y blocks.

5-2 Oracle9i Support for JavaServer Pages Reference

Oracle JSP Support for Oracle SQLJ

Oracle JSP Support for Oracle SQLJ

SQLJis a standard syntax for embedding static SQL instructions directly in Java
code, greatly simplifying database-access programming. The Oracle JSP container
and its JSP translator support Oracle SQLJ, allowing you to use SQLJ syntax in JSP
statements. SQLJ statements are indicated by the #sql token.

For general information about Oracle SQLJ programming features, syntax, and
command-line options, see the Oracle9i SQLJ Developer’s Guide and Reference.

SQLJ JSP Code Example

Following is a sample SQLJ JSP page. (The page directive imports classes that are
typically required by SQLJ.)

<Y@page | anguage="sql j"
import="sqlj.runtine.ref.DefaultContext,oracle.sqlj.runtine. acle" %

<HTM_>

<HEAD> <TI TLE> The SQJQuery JSP </ Tl TLE> </ HEAD>

<BDY BAOCLCR="whi te">

<% Sring enpno = request . get Paraneter ("enpno");

if (enpno !'=null) { %

<H3> Enpl oyee # <% enpno % Details: </ H3>

<% runQuery(enpno) %

<HR>

<%} %

Ent er an enpl oyee nunber: </ B>

<FCRM METHD="get " >

<INPUT TYPE="text" NAME="enpno" S ZE=10>

<INPUT TYPE="submit" VALUE="Ask QO acle");

</ FCRW>

</ BCDY>

</ HTM.>

<%

private String runQuery(String enpno) throws java. sgl . SQLException {
Def aul t Gontext dctx = nul | ;
Sring enane = null; double sal = 0.0; String hireDate = null;
SringBuffer sb = new StringBuffer();

try {
dctx = Gracl e. get Connect i on("j dbc: oracl e: oci 8: @, "scott", "tiger");

#sql [detx] {

sel ect ename, sal, TO CHAR hiredate,’' DD MN YYYY')
INTO : enane, :sal, :hireDate

FROM scot t. enp WHERE UPPER enpno) = WPPER(: enpno)

Oracle-Specific Programming Extensions 5-3

Oracle JSP Support for Oracle SQLJ

b
sb. append(" <BLOKQUOTE><Bl G<PRE>\n") ;
sb. append("Nane : " + enane + "\n");

sb. append("Salary : " + sal + "\n");
sb. append("Date hired : " + hireDate);
sb. append(" </ PRE></ B></ Bl G></ BLOKQUOTE>") ;
} catch (java.sql.SQException e) {
sb. append("<P> SQ error: <PRE>" + e + " </PRE> </P>\n");

} finally {
if (detx!'= null) dctx.close();
}
return sh.toString();
}
%

This example uses the JDBC OCI driver, which requires an Oracle client installation.
The Or acl e class used in getting the connection is provided with Oracle SQLJ.

Notes:

« Incase aJSP page is invoked multiple times in the same JVM, it
is recommended that you always use an explicit connection
context, such as dct x in the example, instead of the default
connection context. (Note that dct x is a local method variable.)

= The Oracle JSP container requires Oracle SQLJ release 8.1.6.1 or
higher.

« Infuture releases (and in Oracle9i Application Server release 2),
the Oracle JSP container will support | anguage="sqglj " ina
page directive to trigger the Oracle SQLJ translator during JSP
translation. For forward compatibility, it is recommended as a
good programming practice that you begin using this directive.

5-4 Oracle9i Support for JavaServer Pages Reference

Oracle JSP Support for Oracle SQLJ

Entering employee number 7788 for the schema used in the example results in the
following output:

¥ The SOLJQuery JSP - Netscape

Eile Edit “iew Go Communicator Help

'{@i\aﬁadﬂﬁéé

Back Formward Heload Harne Search Metzcape Print Security Stam

Wt " Bookmarks \,_& Lu:u:atiu:un:l j ﬁ' Yhat's Related
Employee & 7788 Details:

Hame : SCOTT
Salary : 3000.0
Date hired : 19-APE-1987

Enter an employee numher:

I Ask Oracle

=5 | Dacument; Dore

Triggering the SQLJ Translator

You can trigger the Oracle JSP translator to invoke the Oracle SQLJ translator by
using the file name extension . sql j sp for the JSP source file.

This results in the JSP translator generating a . sql j file instead ofa. j ava file. The
Oracle SQLIJ translator is then invoked to translate the . sqgl j fileintoa. j ava file.

Using SQLJ results in additional output files; see "Generated Files and Locations
(On-Demand Translation)" on page 6-6.

Oracle-Specific Programming Extensions 5-5

Oracle JSP Support for Oracle SQLJ

Important:

« To use Oracle SQLJ, you will have to install appropriate SQLJ
JAR or ZIP files, depending on your environment, and add
them to your classpath. See "Required and Optional Files for
Oracle JSP" on page 9-2.

« Do not use the same base file name fora . j sp fileand a
. sgl j sp file in the same application, because they would
result in the same generated class name and . j ava file name.

Setting Oracle SQLJ Options

When you execute or pre-translate a SQLJ JSP page, you can specify desired Oracle
SQLJ option settings. This is true both in on-demand translation scenarios and
pre-translation scenarios, as follows:

« Inanon-demand translation scenario, use the JSP sql j cnd configuration
parameter. This parameter, in addition to allowing you to specify a particular
SQLJ translator executable, allows you to set SQLJ command-line options.

For information, see the sqgl j cnd description in "Oracle JSP Configuration
Parameters" on page 9-7. For how to set configuration parameters in a JServ
environment, see "Setting JSP Parameters in JServ" on page 9-18.

« Inapre-translation scenario with the oj spc pre-translation tool, use the oj spc
- Soption. This option allows you to set SQLJ command-line options.

For information, see "Command-Line Syntax for ojspc" on page 6-17 and
"Option Descriptions for ojspc” on page 6-18.

5-6 Oracle9i Support for JavaServer Pages Reference

S

JSP Translation and Deployment

This chapter discusses operation of the Oracle JSP translator, then discusses the
oj spc utility and situations where pre-translation is useful, followed by general
discussion of a number of additional JSP deployment considerations.

The chapter is organized as follows:

« Functionality of the Oracle JSP Translator

« JSP Pre-Translation and the ojspc Utility

« Additional JSP Deployment Considerations

JSP Translation and Deployment 6-1

Functionality of the Oracle JSP Translator

Functionality of the Oracle JSP Translator

JSP translators generate standard Java code for a JSP page implementation class.
This class is essentially a servlet class wrapped with features for JSP functionality.

This section discusses general functionality of the Oracle JSP translator, focusing on
its behavior in on-demand translation scenarios. The following topics are covered:

« Generated Code Features
» Generated Package and Class Names (On-Demand Translation)
« Generated Files and Locations (On-Demand Translation)

« Sample Page Implementation Class Source

Important: Implementation details in this section regarding
package and class naming, file and directory naming, output file
locations, and generated code are for illustrative purposes. The
precise details apply to Oracle JSP 1.1.x.x releases only and are
subject to change from release to release.

Generated Code Features

This section discusses general features of the page implementation class code that is
produced by the Oracle JSP translator in translating JSP source (. j sp and . sql j sp
files).

Features of Page Implementation Class Code

When the Oracle JSP translator generates servlet code in the page implementation
class, it automatically handles some of the standard programming overhead. For
both the on-demand translation model and the pre-translation model, generated
code automatically includes the following features:

« Itextendsawrapper class (oracl e.j sp. runti me. H t pJsp) provided by the
Oracle JSP container that implements the standard
javax. servl et.jsp. H t pJspPage interface (which extends the more
generic j avax. servl et . j sp. JspPage interface, which in turn extends the
standard j avax. servl et. Servl et interface).

« Itimplementsthe j spServi ce() method specified by the Ht t pJspPage
interface. This method, often referred to generically as the "service" method, is
the central method of the page implementation class. Code from any Java

6-2 Oracle9i Support for JavaServer Pages Reference

Functionality of the Oracle JSP Translator

scriptlets and expressions in the JSP page is incorporated into this method
implementation.

« Itincludes code to request an HTTP session, unless your JSP source code
specifically sets sessi on=f al se (which can be done in a page directive).

Inner Class for Static Text

The service method, _j spSer vi ce(), of the page implementation class includes
print commands—out . pri nt () calls on the implicit out object—to print any
static text in the JSP page. The Oracle JSP translator, however, places the static text
itself in an inner class within the page implementation class. The service method
out . print () statements reference attributes of the inner class to print the text.

This inner class implementation results in an additional . cl ass file when the page
is translated and compiled. In a client-side pre-translation scenario, be aware this
means there is an extra . cl ass file to deploy.

The name of the inner class will always be based on the base name of the . j sp file
or . sql j sp file. For nypage. j sp, for example, the inner class (and its . cl ass
file) will always include "mypage" in its name.

Note: The Oracle JSP translator can optionally place the static text
in a Java resource file, which is advantageous for pages with large
amounts of static text. (See "Workarounds for Large Static Content
in JSP Pages" on page 4-10.) You can request this feature through
the JSP ext er nal _r esour ce configuration parameter for
on-demand translation, or the oj spc - extres option for
pre-translation.

Even when static text is placed in a resource file, the inner class is
still produced, and its . cl ass file must be deployed. (This is only
noteworthy if you are in a client-side pre-translation scenario.)

General Conventions for Output Names

The Oracle JSP translator follows a consistent set of conventions in naming output
classes, packages, files and directories. However, this set of conventions and other
implementation details may change from release to release.

One fact that is not subject to change is that the base name of a JSP page will be
included intact in output class and file names as long as it does not include special
characters. For example, translating MyPage123. j sp will always result in the

JSP Translation and Deployment 6-3

Functionality of the Oracle JSP Translator

string "MyPagel23" being part of the page implementation class name, Java source
file name, and class file name.

In Oracle JSP 1.1.x.x releases (as well as some previous releases), the base name is
preceded by an underscore ("_"). Translating MyPage123. j sp results in page

implementation class _MyPage123 in source file _MyPagel23. j ava, which is
compiled into _MyPagel123. cl ass.

Similarly, where path names are used in creating Java package names, each
component of the path is preceded by an underscore. Translating

/j spdir/ nyapp/ MyPagel23. j sp, for example, results in class _MyPagel23
being in the following package:

_j spdir._nyapp

The package name is used in creating directories for output . j ava and . cl ass
files, so the underscores are also evident in output directory names. For example, in
translating a JSP page in the directory ht docs/ t est, the Oracle JSP translator by
default will create directory ht docs/ _pages/ _t est for the page implementation
class source.

Note: All output directories are created under the standard
_pages directory by default, as described in"Generated Files and
Locations (On-Demand Translation)" on page 6-6. You can change
this behavior, however, through the page_r eposi tory_r oot
configuration parameter, described in "Oracle JSP Configuration
Parameters" on page 9-7, or the oj spc -d and - sr cdi r options,
described in "Option Descriptions for ojspc” on page 6-18.

If special characters are included in a JSP page name or path name, the Oracle JSP
translator takes steps to ensure that no characters that would be illegal in Java
appear in the output class, package, and file names. For example, translating
My-nane_fo0ol2.jspresultsin _My_2d_name__f 0012 being the class name, in
source file _My_2d_nanme__fo0o012. j ava. The hyphen is converted to a string of
alpha-numeric characters. (An extra underscore is also inserted before "fo012".) In
this case, you can only be assured that alphanumeric components of the JSP page
name will be included intact in the output class and file names. For example, you
could search for "My", "name", or "foo12".

These conventions are demonstrated in examples provided later in this section and
later in this chapter.

6-4 Oracle9i Support for JavaServer Pages Reference

Functionality of the Oracle JSP Translator

Generated Package and Class Names (On-Demand Translation)

Although the Sun Microsystems JavaServer Pages Specification, Version 1.1 defines a
uniform process for parsing and translating JSP text, it does not describe how the
generated classes should be named—that is up to each JSP implementation.

This section describes how the Oracle JSP container creates package and class
names when it generates code during translation.

Note: For information about general conventions used by the
Oracle JSP container in naming output classes, packages, files, and
schema paths, see "General Conventions for Output Names" on
page 6-3

Package Naming

In an on-demand translation scenario, the URL path that is specified when the user
requests a JSP page—specifically, the path relative to the doc root or application
root—determines the package name for the generated page implementation class.
Each directory in the URL path represents a level of the package hierarchy.

It is important to note, however, that generated package names are always
lowercase, regardless of the case in the URL.

Consider the following URL as an example:

http:// host[: port]/ HY expenses/ | ogi n. j sp

In Oracle JSP 1.1.x.x releases, this results in the following package specification in
the generated code (implementation details are subject to change in future releases):
package _hr. _expenses;

No package name is generated if the JSP page is at the doc root or application root
directory, where the URL is as follows:

http:// host[: port]/login.jsp

Class Naming

The base name of the . j sp file (or . sql j sp file) determines the class name in the
generated code.

JSP Translation and Deployment 6-5

Functionality of the Oracle JSP Translator

Consider the following URL example:

http:// host[: port] ! HR expenses/ User Logi n. j sp

In Oracle JSP 1.1.x.x releases, this yields the following class name in the generated
code (implementation details are subject to change in future releases):

public class _UserLogin extends ...

Be aware that the case (lowercase/uppercase) that end users type in the URL must
match the case of the actual . j sp or . sql j sp file name. For example, they can
specify User Logi n. j sp if that is the actual file name, or user | ogi n. j sp if thatis
the actual file name, but not user | ogi n. j sp if User Logi n. j sp is the actual file
name.

In Oracle JSP 1.1.x.x releases, the translator determines the case of the class name
according to the case of the file name. For example:

« UserLogin.jspresultsinclass _User Logi n.
« Userlogin.jspresultsinclass _User| ogi n.
« userlogin.jspresultsinclass _userl| ogi n.

If you care about the case of the class name, then you must name the . j sp file or
. sql j sp file accordingly. However, because the page implementation class is
invisible to the end user, this is usually not a concern.

Generated Files and Locations (On-Demand Translation)

This section describes files that are generated by the Oracle JSP translator and
where they are placed. For pre-translation scenarios, oj spc places files differently
and has its own set of relevant options—see "Summary of ojspc Output Files,
Locations, and Related Options" on page 6-25.

The following subsections mention several JSP configuration parameters. For more
information about them, and about how to set them in a JServ environment, see
"Oracle JSP Configuration Parameters" on page 9-7 and "Setting JSP Parameters in
JServ" on page 9-18.

Note: For information about general conventions used by the
Oracle JSP container in naming output classes, packages, files, and
schema paths, see "General Conventions for Output Names" on
page 6-3

6-6 Oracle9i Support for JavaServer Pages Reference

Functionality of the Oracle JSP Translator

Files Generated by the Oracle JSP Container

This section considers both regular JSP pages (. j sp files) and SQLJ JSP pages

(- sql j sp files) in listing files that are generated by the Oracle JSP translator. For
the file name examples, presume a file Foo. j sp or Foo. sql j sp is being
translated.

Source files:

A. sqlj fileis produced by the Oracle JSP translator if the page is a SQLJ JSP
page (for example, _Foo. sql j).

A . j avafile is produced for the page implementation class and inner class (for
example, _Foo. j ava). Itis produced either directly by the Oracle JSP
translator from the. j sp file, or by the SQLJ translator from the. sql j file if the
page is a SQLJ JSP page. (The currently installed Oracle SQLJ translator is used
by default, but you can specify an alternative translator or an alternative release
of the Oracle SQLJ translator by using the JSP sql j cnd configuration
parameter.)

Binary files:

In the case of a SQLJ JSP page, if you use ISO standard SQLJ code generation
(SQLJ - codegen=i so setting), one or more binary files are produced during
SQLJ translation for SQLJ profiles. By default these are . ser Java resource files,
but they will be . cl ass files if you enable the SQLJ - ser 2cl ass option
(through the JSP sql j cnd configuration parameter). The resource file or

. ¢l ass file has "Foo0" as part of its name.

Note: No profiles are produced if you use Oracle-specific code
generation in SQLJ (- codegen=or acl e). As of Oracle9i release 2,
this is the SQLJ default mode.

A . cl ass file is produced by the Java compiler for the page implementation
class. (The Java compiler isj avac by default, but you can specify an alternative
compiler using the JSP j avaccnd configuration parameter.)

An additional . cl ass file is produced for the inner class of the page
implementation class. This file will have "Foo" as part of its name.

A . res Java resource file is optionally produced for the static page content (for
example, _Foo. r es) if the JSP ext er nal _r esour ce configuration parameter
is enabled.

JSP Translation and Deployment 6-7

Functionality of the Oracle JSP Translator

Note: The exact names of generated files for the page
implementation class may change in future releases, but will still
have the same general form. The names would always include the
base name (such as "Foo" in these examples), but may include slight
variations beyond that.

Oracle JSP Translator Output File Locations

The Oracle JSP container uses the Web server document repository to generate or
load translated JSP pages.

By default, the root directory is the Web server doc root directory (for JServ) or the
servlet context root directory of the application the page belongs to.

You can specify an alternative root directory through the JSP
page_repository_root configuration parameter.

In Oracle JSP 1.1.x.x releases, generated files are placed as follows (implementation
details may change in future releases):

If the . j sp (or. sql j sp) file is directly in the root directory, then the Oracle
JSP container will place generated files into a default _pages subdirectory
directly under the root directory.

If the . j sp (or. sql j sp) file is in a subdirectory under the root directory, then
a parallel directory structure is created under the _pages subdirectory for the

generated files. Subdirectory names under the _pages directory are based on

subdirectory names under the root directory.

As an example, consider a JServ environment with an ht docs doc root
directory. Ifa. j sp file is in the following directory:

ht docs/ subdi r/t est

then generated files will be placed in the following directory:

ht docs/ _pages/ _subdi r/ _t est

6-8 Oracle9i Support for JavaServer Pages Reference

Functionality of the Oracle JSP Translator

Sample Page Implementation Class Source
This section uses an example to illustrate the information in the preceding sections.

Consider the following scenario:

« JSP page code is in the file hel | 0. j sp.

« The page is executed in a JServ environment.

« Thehell o.] sp file is located in the following directory:

ht docs/ t est

Important: Code generation details discussed here are according
to the Oracle implementation of the JSP 1.1 specification. Details
may change in the future, as the result of either changes in the
specification or changes in how Oracle implements aspects that are
not specified.

Sample Page Source: hello.jsp
Following is the JSP code in hel | 0. j sp:

<HTM>

<HEAD><TI TLE>The Hel l o Wser JSP</ Tl TLE></ HEAD>
<BCDY>

<% Sring user=request.getParaneter("user"); %
<H3>\W¢| cone <% (user==null) ? "" : user %! </H3>
<P> Today is <% newjava.util.Date() %. Have a nice day! :-)</B</P>
Enter nane: </ B>

<FCRM METHOD=get >

<INPUT TYPE="text" NAME="user" S ZE=15>

<INPUT TYPE="subnit" VALUE="Subnit nane">

</ FCRW>

</ BCDY>

</ HTM.>

Sample: Generated Package and Class

Because hel | 0. j spisinthet est subdirectory of the root directory (ht docs),
Oracle JSP 1.1.x.x releases generate the following package name in the page
implementation code.

JSP Translation and Deployment 6-9

Functionality of the Oracle JSP Translator

package _test;

The Java class name is determined by the base name of the . j sp file (including
case), so the following class definition is generated in the page implementation
code:

public class _hell o extends oracle.jsp.runtine. HtpJsp

{
}

(Because the page implementation class is invisible to the end user, the fact that its
name does not adhere to Java capitalization conventions is generally not a concern.)

Sample: Generated Files
Because hel | 0. j sp is located as follows:

ht docs/test/ hel l 0. jsp
Oracle JSP 1.1.x.x releases generate output files as follows (the page implementation
class . j avafile and . cl ass file, and the inner class . cl ass file, respectively):

ht docs/ _pages/ _test/_hell o.] ava
ht docs/ _pages/ _test/_hel | o. cl ass
ht docs/ _pages/ _test/_hell 0$__jsp_StaticText.class

Note: These file names are based specifically on Oracle JSP 1.1.x.x
implementations; the exact details may change in future releases.
All file names will always include the base "hello", however.

Sample Page Implementation Code: _hello.java

Following is the generated page implementation class Java code (_hel | 0. j ava), as
generated by Oracle JSP 1.1.x.x releases:

package _test;

inport oracle.jsp.runtine.*;
inport javax.servlet.*;
inport javax.servlet.http.*;
inport javax.servlet.jsp.*;
inport java.io.*;

inport java. util.*;

6-10 Oracle9/ Support for JavaServer Pages Reference

Functionality of the Oracle JSP Translator

inport java.lang.reflect.*;
inport java. beans. *;

public class _hell o extends oracle.jsp.runtine. HtpJsp {
public final Sring _gl obal sd assNane = nul | ;

/1 ** Begin Decl arations

/] ** End Decl arations

public void _jspService(HtpServl et Request request, HtpServl et Response
response) throws | CException, ServletException {

/* set up the intrinsic variables using the pageCont ext goober:
** session = HtpSession
** application = Servl et Gont ext
** out = JspWiter
** page = this
** config = Servlet@nfig
** al| session/app beans declared in gl obal s.jsa
*/
JspFactory factory = JspFactory. get Defaul t Fact ory();
PageCont ext pageContext = factory. get PageContext(this, request, response,
nul |, true, JspWiter. DEFALLT BUFFER true);
/1 Note: this is not enitted if the session directive == fal se
H t pSessi on sessi on = pageCont ext . get Sessi on() ;
if (pageContext.getAttribute(C acl eJspRunti ne. JSP_REQUEST REDI RECTED,
PageCont ext . REQUEST SOCPE) != null) {
pageCont ext . set Attri but e(O acl eJspRunti me. JSP_PAGE DONTNOTI FY, "true",
PageCont ext . PAGE_ SCCPE) ;
factory. rel easePage(nt ext (pageCont ext) ;
return;

Servl et Cont ext applicati on = pageCont ext. get Servl et Cont ext ();
JspWiter out = pageContext.getQut();

hell o page =this;

Servl et Config config = pageCont ext . get Servl et Config();

try {
/1 gl obal beans

/1 end gl obal beans

JSP Translation and Deployment 6-11

Functionality of the Oracle JSP Translator

out.

print(__jsp SaticText.text[0]);

Sring user=request.get Paraneter("user");

out

out

out .

}

.print(__jsp SaticText.text[1]);
out .
out .

print((user==null) ?"" : user);
print(__jsp SaticText.text[2]);

.print(newjava.util.Date());
out .

print(__jsp SaticText.text[3]);

fl ush();

catch(Exception e) {

try {
if (out '=null) out.clear();

}

cat ch(Exception cl ear Exception) {

}

pageCont ext . handl ePageException(e);

}

finally {
if (out '=null) out.close();
factory. rel easePage(nt ext (pageCont ext) ;

}
}

private static class _ jsp_SaticText {
private static final char text[][]=new char[4][];
static {
text[0] =
" <HTML>\ r \ n<HEAD><TI TLE>The V¢l cone User
JSP</ Tl TLE></ HEAD>\ r\ n<BCDY>\r\ n". t oChar Arr ay() ;

text[1] =

"\r\ n<H3>W¢l cone ".toChar Array();

text[2] =

"I</H3>\r\n<P> Today is ".toCharArray();
text[3] =

Have a nice day! :-)</P>\r\nEnter name: \r\ n<FCRV

METHOD=get >\ r\ n<I NPUT TYPE=\ "text\" NAMER\"user\" S ZE=153\r\ n<l NPUT
TYPER "subm t\" VALUER\ " Submi t
namre\ " >\ r\ n</ FCRWH r\ n</ BADY>\ r\ n</ HTM>" . t oChar Array() ;

}
}
}

6-12 Oracle9/ Support for JavaServer Pages Reference

JSP Pre-Translation and the ojspc Utility

JSP Pre-Translation and the ojspc Utility

This section describes the oj spc utility, provided with Oracle9i for pre-translation,
and is organized as follows:

« General Use of ojspc for Pre-Translation

« Details of the ojspc Pre-Translation Tool

General Use of ojspc for Pre-Translation

You can use oj spc to pre-translate JSP pages in any environment, which may be
useful in saving end users the translation overhead the first time a page is executed.

If you are pre-translating in some environment other than the target environment,
specify the oj spc - d option to set an appropriate base directory for placement of
generated binary files.

As an example, consider a JServ environment with the following JSP source file:

ht docs/test/foo.jsp

A user would invoke this with the following URL:

http:// host[: port]/test/foo.]jsp

During on-demand translation at execution time, the Oracle JSP translator would
use a default base directory of ht docs/ _pages for placement of generated binary
files. Therefore, if you pre-translate, you should set ht docs/ _pages as the base
directory for binary output, such as in the following example (assume %is a UNIX
prompt):

%cd htdocs
%o0j spc -d _pages test/foo.]jsp

The URL noted above specifies an application-relative path of t est/ f 00. j sp, so
at execution time the Oracle JSP container looks for the binary filesin a _t est
subdirectory under the default ht docs/ _pages directory. This subdirectory would
be created automatically by oj spc if itis run as in the above example. At execution
time, the Oracle JSP container would find the pre-translated binaries and would not
have to perform translation, assuming that the source file was not altered after
pre-translation. (By default, the page would be re-translated if the source file
timestamp is later than the binary timestamp, assuming the source file is available
and the bypass_sour ce configuration parameter is not enabled.)

JSP Translation and Deployment 6-13

JSP Pre-Translation and the ojspc Utility

Note: Oracle JSP implementation details, such as use of an
underscore ("_") in output directory names (as for _t est above),

are subject to change from release to release. This documentation
applies specifically to Oracle JSP 1.1.x.X releases.

Details of the ojspc Pre-Translation Tool
The following topics are covered here:

« Overview of ojspc Functionality
« Option Summary Table for ojspc
« Command-Line Syntax for ojspc
« Option Descriptions for ojspc

« Summary of ojspc Output Files, Locations, and Related Options

Notes: There are other possible scenarios, such as in a middle-tier
environment, for using oj spc to pre-translate JSP pages. See
"General Use of ojspc for Pre-Translation" on page 6-13.

Overview of ojspc Functionality
For a simple JSP (not SQLJ JSP) page, default functionality for oj spc is as follows:

« Ittakesa.j sp file as an argument.

« Itinvokes the Oracle JSP translator to translate the . j sp file into Java page
implementation class code, producing a . j ava file. The page implementation
class includes an inner class for static page content.

« Itinvokes the Java compiler to compile the . j ava file, producing two . cl ass
files (one for the page implementation class itself and one for the inner class).

And following is the default oj spc functionality for a SQLJ JSP page:
«» Ittakesa. sqlj sp file as an argumentinstead of a . j sp file.

« Itinvokes the Oracle JSP translator to translate the . sql j sp fileintoa. sql |
file for the page implementation class (and inner class).

« Itinvokes the Oracle SQLJ translator to translate the . sql j file. This produces a
. j ava file for the page implementation class (and inner class). Also, if you use

6-14 Oracle9/ Support for JavaServer Pages Reference

JSP Pre-Translation and the ojspc Utility

I1SO standard SQLJ code generation (SQLJ - codegen=i so setting), a SQLJ
"profile" file is produced that is, by default, a . ser Java resource file.

Note: No profiles are produced if you use Oracle-specific SQLJ
code generation (SQLJ - codegen=or acl e setting). As of Oracle9i
release 2, this is the default mode.

For information about SQLJ profiles and Oracle-specific code generation, see
the Oracle9i SQLJ Developer’s Guide and Reference.

« Itinvokes the Java compiler to compile the . j ava file, producing two . cl ass
files (one for the page implementation class itself and one for the inner class).

Under some circumstances (see the - ext r es option description below), oj spc
settings direct the Oracle JSP translator to produce a . r es Java resource file for
static page content instead of putting this content into the inner class of the page
implementation class. However, the inner class is still created and must still be
deployed with the page implementation class.

Because oj spc invokes the Oracle JSP translator, oj spc output conventions are the
same as for the Oracle JSP container in general, as applicable. For general
information about Oracle JSP translator output, including generated code features,
general conventions for output names, generated package and class names, and
generated files and locations, see "Functionality of the Oracle JSP Translator" on
page 6-2.

Note: The oj spc command-line tool is a front-end utility that
invokes the or acl e. j sp. t ool . Jspc class.

Option Summary Table for ojspc

Table 6-1 describes the options supported by the oj spc pre-translation utility.
These options are further discussed in "Option Descriptions for ojspc" on page 6-18.

The second column notes comparable or related JSP configuration parameters for
on-demand translation environments (such as JServ).

JSP Translation and Deployment 6-15

JSP Pre-Translation and the ojspc Utility

Table 6-1 Options for ojspc Pre-Translation Utility

Related JSP
Configuration
Option Parameters Description Default
-addclasspath classpath (related, but additional classpath entries for ~ empty (no
with different j avac additional

-appRoot

-debug

-extend

-extres

-implement

-noCompile

-packageName

-S-<sqlj option>

-srcdir

functionality)

n/a

emit_debuginfo

page_repository_root

n/a

external_resource

n/a

javaccmd

n/a

sqglicmd

page_repository_root

6-16 Oracle9/ Support for JavaServer Pages Reference

application root directory for
application-relative static
i ncl ude directives from the

page

boolean to direct oj spc to
generate a line map to the
original . j sp file for debugging

location where oj spc should
place generated binary files
(- cl ass and resource)

class for the generated page
implementation class to extend

boolean to direct oj spc to
generate an external resource file
for static text from the . j sp file

interface for the generated page
implementation class to
implement

boolean to direct oj spc not to
compile the generated page
implementation class

package name for the generated
page implementation class

- S prefix followed by an Oracle
SQLJ option (for . sql j sp files)

location where oj spc should
place generated source files
(javaand.sqlj)

path entries)

current
directory

false

current
directory

empty

false

empty

false

empty
(generate
package
names per
.j spfile
location)

empty

current
directory

JSP Pre-Translation and the ojspc Utility

Table 6-1 Options for ojspc Pre-Translation Utility (Cont.)

Related JSP
Configuration
Option Parameters Description Default
-verbose n/a boolean to direct oj spc to print false
status information as it executes
-version n/a boolean to direct oj spc to false
display the Oracle JSP version
number

Command-Line Syntax for ojspc
Following is the general oj spc command-line syntax (assume %is a UNIX prompt):

%o0j spc [option settings] file_ list

The file list can include . j sp filesor . sqgl j sp files.
Be aware of the following syntax notes:

« Ifmultiple . j sp files are translated, they all must use the same character set
(either by default or through page directive cont ent Type settings).

« Use spaces between file names in the file list.

« Use spaces as separators between option names and option values in the option
list.

= Option names are not case sensitive, but option values usually are (such as
package names, directory paths, class names, and interface names).

« Enable boolean options, which are disabled by default, by simply entering the
option name on the command line. For example, type - ext r es, not - extr es
true.)

Following is an example:

%oj spc -d /nyapp/ nybi ndi r -srcdir /nyapp/nysrcdir -extres M/Page.sqljsp M/Page2. | sp

JSP Translation and Deployment 6-17

JSP Pre-Translation and the ojspc Utility

Option Descriptions for ojspc
This section describes the oj spc options in more detail.

-addclasspath (fully qualified path; oj spc default: empty)

Use this option to specify additional classpath entries for j avac to use when
compiling generated page implementation class source. Otherwise, j avac uses
only the system classpath.

Notes:

« Inanon-demand translation scenario, the JSP cl asspat h
configuration parameter provides related, although different,
functionality. See "Oracle JSP Configuration Parameters" on
page 9-7.

« The-addcl asspat h setting is also used by the SQLJ
translator for SQLJ JSP pages.

-appRoot (fully qualified path; oj spc default: current directory)

Use this option to specify an application root directory. The default is the current
directory, from which oj spc was run.

The specified application root directory path is used as follows:

« Itisused for static i ncl ude directives in the page being translated. The
specified directory path is prepended to any application-relative
(context-relative) paths in the i ncl ude directives of the translated page.

« Itisused in determining the package of the page implementation class. The
package will be based on the location of the file being translated relative to the
application root directory. The package, in turn, determines the placement of
output files. (See "Summary of ojspc Output Files, Locations, and Related
Options" on page 6-25.)

This option is necessary, for example, so included files can still be found if you run
oj spc from some other directory.

Consider the following example.

= You want to translate the following file:

/abc/ def/ ghi/test.jsp

6-18 Oracle9/ Support for JavaServer Pages Reference

JSP Pre-Translation and the ojspc Utility

= You run oj spc from the current directory, / abc, as follows (assume %is a
UNIX prompt):

%cd / abc
%oj spc def/ghi/test.jsp
« Thetest.]jsp page has the followingi ncl ude directive:

<Y@include file="/test2. jsp" %

« Thetest2.]sppageisinthe/abc directory, as follows:

/abc/test2.jsp

This requires no - appRoot setting, because the default application root setting is
the current directory, which is the / abc directory. The i ncl ude directive uses the
application-relative / t est 2. j sp syntax (note the beginning "/"), so the included
page will be found as/ abc/ t est 2. j sp.

The package in this case is _def . _ghi , based on the location of t est . j sp relative
to the current directory, from which oj spc was run (the current directory is the
default application root). Output files are placed accordingly.

If, however, you run oj spc from some other directory, suppose / horme/ nydi r,
then you would need an - appRoot setting as in the following example:

%cd / horre/ nydi r
% o0j spc -appRoot /abc /abc/ def/ghi/test.jsp

The package is still _def . _ghi , based on the location of t est . j sp relative to the
specified application root directory.

Note: Itis typical for the specified application root directory to be
some level of parent directory of the directory where the translated
JSP page is located.

-d (fully qualified path; oj spc default: current directory)

Use this option to specify a base directory for oj spc placement of generated binary
files—. cl ass files and Java resource files. (The . r es files produced for static
content by the - ext r es option are Java resource files, as are . ser profile files
produced by the SQLJ translator for SQLJ JSP pages.)

JSP Translation and Deployment 6-19

JSP Pre-Translation and the ojspc Utility

The specified path is taken simply as a file system path (not an application-relative
or page-relative path).

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package. See "Summary of ojspc Output Files,
Locations, and Related Options" on page 6-25 for more information.

The default is to use the current directory (your current directory when you
executed oj spc).

It is recommended that you use this option to place generated binary files into a
clean directory so that you easily know what files have been produced.

Notes:

« Inenvironments such as Windows NT that allow spaces in
directory names, enclose the directory name in quotes.

« Inanon-demand translation scenario, the JSP
page_repository_root configuration parameter provides
related functionality. See "Oracle JSP Configuration Parameters"
on page 9-7.

-debug (boolean; oj spc default: f al se)

Enable this flag to instruct oj spc to generate a line map to the original . j sp file for
debugging. Otherwise, line-mapping will be to the generated page implementation
class.

This is useful for source-level JSP debugging, such as when using Oracle9i
JDeveloper.

Note: In an on-demand translation scenario, the JSP

em t _debugi nf o configuration parameter provides the same
functionality. See "Oracle JSP Configuration Parameters" on
page 9-7.

-extend (fully qualified Java class name; oj spc default: empty)

Use this option to specify a Java class that the generated page implementation class
will extend.

6-20 Oracle9/ Support for JavaServer Pages Reference

JSP Pre-Translation and the ojspc Utility

-extres (boolean; oj spc default: f al se)

Enable this flag to instruct oj spc to place generated static content (the Java print
commands that output static HTML code) into a Java resource file instead of into an
inner class of the generated page implementation class.

The resource file name is based on the JSP page name. For Oracle JSP 1.1.x.x
releases, it will be the same core name as the JSP name (unless special characters are
included in the JSP name), but with an underscore ("_") prefix and . r es suffix.
Translation of MyPage. j sp, for example, would create _MyPage. r es in addition
to normal output. The exact implementation for name generation may change in

future releases, however.
The resource file is placed in the same directory as . cl ass files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. For more information, see "Workarounds for
Large Static Content in JSP Pages" on page 4-10.

Notes:
« Theinner class is still created and must still be deployed.

« Inanon-demand translation scenario, the JSP
ext er nal _r esour ce configuration parameter provides the
same functionality. See "Oracle JSP Configuration Parameters"
on page 9-7.

-implement (fully qualified Java interface name; oj spc default: empty)

Use this option to specify a Java interface that the generated page implementation
class will implement.

-noCompile (boolean; oj spc default: f al se)

Enable this flag to direct oj spc not to compile the generated page implementation
class Java source. This allows you to compile it later with an alternative Java
compiler.

JSP Translation and Deployment 6-21

JSP Pre-Translation and the ojspc Utility

Notes:

« Inanon-demand translation scenario, the JSP j avaccnd
configuration parameter provides related functionality,
allowing you to specify an alternative Java compiler directly.
See "Oracle JSP Configuration Parameters" on page 9-7.

« ForaSQLJIJSP page, enabling - noConpi | e does not prevent
SQLJ translation, just Java compilation.

-packageName (fully qualified package name; oj spc default: per . j sp file location)

Use this option to specify a package name for the generated page implementation
class, using Java "dot" syntax.

Without setting this option, the package name is determined according to the
location of the . j sp file relative to the current directory (from which you ran
0j spc).

Consider an example where you run oj spc from the / nyappr oot directory, while
the . j sp fileisin the / myappr oot/ src/ j spsr c directory (assume %is a UNIX
prompt):

%cd / nyappr oot
% o0j spc - packageNane nyroot . nypackage src/j spsrc/ Foo. j sp
This results in myr oot . nypackage being used as the package name.

If this example did not use the - packageNane option, Oracle JSP 1.1.x.x releases
would use _src. _j spsrc as the package name, by default. (Be aware that such
implementation details are subject to change in future releases.)

-S-<sqlj option> <value> (- S followed by SQLJ option setting; oj spc default: empty)

For SQLJ JSP pages, use the oj spc - S option to pass an Oracle SQLJ option to the
SQLJ translator. You can use multiple occurrences of - S, with one SQLJ option per
occurrence.

Unlike when you run the SQLJ translator directly, use a space between a SQLJ
option and its value (this is for consistency with other oj spc options).

For example (from a UNIX prompt):
%o0j spc - S-codegen iso -d /nyapproot/nybindir MPage.|sp

6-22 Oracle9/ Support for JavaServer Pages Reference

JSP Pre-Translation and the ojspc Utility

This directs SQLJ to generate ISO standard code instead of the default
Oracle-specific code.

Here is another example:

%o0j spc -S-codegen iso -S-ser2class true -d /nyapproot/nybi ndir M/Page.j sp

This again directs SQLJ to generate ISO standard code, and also enables the
- ser 2cl ass option to convert the profile toa. cl ass file.

Note: As the preceding example shows, you can use an explicit

t r ue setting in enabling a SQLJ boolean option through the - S
option setting. This is in contrast to oj spc boolean options, which
do not take an explicit t r ue setting.

Note the following for particular Oracle SQLJ options:

Do not use the SQLJ - encodi ng option; instead, use the cont ent Type
parameter in a page directive in the JSP page.

Do not use the SQLJ - cl asspat h option if you use the oj spc
- addcl asspat h option.

Do not use the SQLJ - conpi | e option if you use the oj spc - noConpi | e
option.

Do not use the SQLJ - d option if you use the oj spc - d option.

Do not use the SQLJ - di r option if you use the oj spc - srcdi r option.

For information about Oracle SQLJ translator options, see the Oracle9i SQLJ
Developer’s Guide and Reference.

Note: In an on-demand translation scenario, the JSP sql j cnd
configuration parameter provides related functionality, allowing
you to specify an alternative SQLJ translator or specify SQLJ option
settings. See "Oracle JSP Configuration Parameters" on page 9-7.

-sredir (fully qualified path; oj spc default: current directory)

Use this option to specify a base directory location for oj spc placement of
generated source files—. sql j files (for SQLJ JSP pages) and . j ava files.

JSP Translation and Deployment 6-23

JSP Pre-Translation and the ojspc Utility

The specified path is taken simply as a file system path (not an application-relative
or page-relative path).

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package. See "Summary of ojspc Output Files,
Locations, and Related Options" on page 6-25 for more information.

The default is to use the current directory (your current directory when you
executed oj spc).

It is recommended that you use this option to place generated source files into a
clean directory so that you conveniently know what files have been produced.

Notes:

« Inenvironments such as Windows NT that allow spaces in
directory names, enclose the directory name in quotes.

« Inanon-demand translation scenario, the JSP
page_repository_root configuration parameter provides
related functionality. See "Oracle JSP Configuration Parameters"
on page 9-7.

-verbose (boolean; oj spc default: f al se)
Enable this option to direct oj spc to report its translation steps as it executes.

The following example shows - ver bose output for the translation of
nmyerror.jsp (in this example, oj spc is run from the directory where
nyerror.jsp is located; assume %is a UNIX prompt):

% o0j spc - verbose nyerror.jsp
Translating file: nyerror.jsp
1 JSP files transl ated successfully.
Qonpi ling Java file: ./_nyerror.java

-version (boolean; oj spc default: f al se)

Enable this option for oj spc to display the Oracle JSP version number and then
exit.

6-24 Oracle9/ Support for JavaServer Pages Reference

JSP Pre-Translation and the ojspc Utility

Summary of ojspc Output Files, Locations, and Related Options

By default, oj spc generates the same set of files that are generated by the Oracle
JSP translator in an on-demand translation scenario and places them in or under the
current directory (from which oj spc was executed).

Here are the files:

« a.sgqlj source file (SQLJJSP pages only)

« a.javasource file

« a.cl ass file for the page implementation class
« a.class file for the inner class for static text

« alJavaresource file (. ser) or, optionally, a. cl ass file for the SQLJ profile
(SQLJ JSP pages only)

This assumes standard SQLJ code generation. Oracle-specific SQLJ code
generation produces no profiles.

« optionally, aJava resource file (. r es) for the static text of the page

For more information about files that are generated by the Oracle JSP translator, see
"Generated Files and Locations (On-Demand Translation)" on page 6-6.

To summarize some of the commonly used options described under "Option
Descriptions for ojspc” on page 6-18, you can use the following oj spc options to
affect file generation and placement:

« -appRoot to specify an application root directory
« -srcdir to place source files in a specified alternative location

« -dtoplace binary files (. cl ass files and Java resource files) in a specified
alternative location

= -noConpi | e to not compile the generated page implementation class source
(as a result of this, no . cl ass files are produced)

In the case of SQLJ JSP pages, translated . j ava files are still produced, but not
compiled.

« -extres to putstatic text into a Java resource file

« -S-ser2class (SQLJ-ser2cl ass option, for SQLJ JSP pages only, and for
ISO standard SQLJ code generation only) to generate the SQLJ profile in a
. cl ass file instead of a. ser Java resource file

JSP Translation and Deployment 6-25

JSP Pre-Translation and the ojspc Utility

For output file placement, the directory structure underneath the current directory
(or directories specified by the - d and - sr cdi r options, as applicable) is based on
the package. The package is based on the location of the file being translated
relative to the application root, which is either the current directory or the directory
specified in the - appRoot option.

For example, presume you run oj spc as follows (presume %is a UNIX prompt):

%cd / abc
%oj spc def/ghi/test.jsp

Then the package is _def . _ghi and output files will be placed in the directory
[abc/ _def/ _ghi,wherethe _def/ _ghi subdirectory structure is created as part
of the process.

If you specify alternate output locations through the - d and - sr cdi r options, a
_def/ _ghi subdirectory structure is created under the specified directories.

Now presume oj spc is run from some other directory, as follows:

%cd / horre/ nydi r
% o0j spc -appRoot /abc /abc/ def/ghi/test.jsp

The package is still _def . _ghi , according to the location of t est . j sp relative to
the specified application root. Output files will be placed in the directory

[honme/ nydi r/ _def/ _ghi orina_def/_ghi subdirectory under locations
specified through the - d and - sr cdi r options. In either case, the _def/ _ghi
subdirectory structure is created as part of the process.

Notes: Itis advisable that you run oj spc once for each directory
of your JSP application, so files in different directories can be given
different package names, as appropriate.

6-26 Oracle9/ Support for JavaServer Pages Reference

Additional JSP Deployment Considerations

Additional JSP Deployment Considerations

This section covers a variety of general deployment considerations and scenarios,
mostly independent of your target environment.

The following topics are covered:

« General JSP Pre-Translation Without Execution

« Deployment of Binary Files Only

« Deployment of JSP Pages with Oracle9i JDeveloper

« Doc Root for JServ

General JSP Pre-Translation Without Execution

In an on-demand translation environment, it is possible to specify JSP
pre-translation only, without execution, by enabling the standard

j sp_preconpi | e request parameter when invoking the JSP page from the end
user’s browser.

Following is an example:
http:// host[: port]/foo.]jsp? sp_preconpil e

Refer to the Sun Microsystems JavaServer Pages Specification, Version 1.1, for more
information.

Deployment of Binary Files Only

If your JSP source is proprietary, you can avoid exposing the source by
pre-translating JSP pages and deploying only the translated and compiled binary
files. Pages that are pre-translated, either from previous execution in an on-demand
translation scenario or by using oj spc, can be deployed to any environment that
supports the Oracle JSP container. There are two aspects to this scenario:

= You must deploy the binary files appropriately.

« Inthe target environment, the Oracle JSP container must be configured properly
to run pages when the . j sp (or. sql j sp) source is not available.

JSP Translation and Deployment 6-27

Additional JSP Deployment Considerations

Deploying the Binary Files

After JSP pages have been translated, archive the directory structure and contents
that are under the binary output directory, then copy the directory structure and
contents to the target environment, as appropriate. For example:

« If you pre-translate with oj spc, you should specify a binary output directory
with the o] spc - d option, then archive the directory structure under that
specified directory.

« Ifyou are archiving binary files produced during previous execution in a JServ
(on-demand translation) environment, archive the output directory structure,
typically under the default ht docs/ _pages directory.

In the target environment, restore the archived directory structure under the
appropriate directory, such as under the ht docs/ _pages directory in a JServ
environment.

Configuring the Oracle JSP Container for Execution with Binary Files Only

Set JSP configuration parameters as follows to execute JSP pages when the . j sp or
. sql j sp source is unavailable:

«» bypass_sourcetotrue
« devel oper _nodetofal se

Without these settings, the Oracle JSP container will always look for the . j sp or

. sql j sp file to see if it has been modified more recently than the page
implementation . cl ass file, and abort with a "file not found" error if it cannot find
the.jspor.sqljspfile.

With these parameters set appropriately, the end user can invoke a page with the
same URL that would be used if the source file were in place. For an example,
consider a JServ environment—if the binary files for f 0o. j sp are in the

ht docs/ _pages/ _t est directory, then the page can be invoked with the
following URL without f 00. j sp being present:

http:// host:[port]/test/foo.]jsp

For how to set configuration parameters in a JServ environment, see "Setting JSP
Parameters in JServ" on page 9-18.

6-28 Oracle9/ Support for JavaServer Pages Reference

Additional JSP Deployment Considerations

Deployment of JSP Pages with Oracle9i JDeveloper

Oracle9i JDeveloper release 3.1 and higher includes a deployment option, "Web
Application to Web Server", that was added specifically for JSP applications.

This option generates a deployment profile that specifies the following:

« alJAR file containing Business Components for Java (BC4J) classes required by
the JSP application

« static HTML files required by the JSP application
« the path to the Web server

The developer can either deploy the application immediately upon creating the
profile, or save the profile for later use.

Doc Root for JServ

JSP pages and servlets running in the JServ environment supplied with Oracle9i,
which are routed through the Apache nod_j ser v module provided with JServ, use
the Apache doc root. This doc root (typically ht docs) is set in the Docunent Root
command of the Apache ht t pd. conf configuration file.

For JSP pages running in JServ, JSP pages as well as static files are located in or
under the doc root.

Note: For an overview of the role of the Oracle HTTP Server and
its rod_j ser v module, see "Role of the Oracle HTTP Server" on
page 2-3.

JSP Translation and Deployment 6-29

Additional JSP Deployment Considerations

6-30 Oracle9/ Support for JavaServer Pages Reference

v

JSP Tag Libraries

This chapter discusses custom tag libraries, covering the basic framework that
vendors can use to provide their own libraries, and concluding with a comparison
of standard runtime tags versus vendor-specific compile-time tags. The chapter is
organized as follows:

» Standard Tag Library Framework
« Compile-Time Tags

For complete information about the tag libraries provided with Oracle9i release 2,
as summarized in "Overview of JSP Tag Libraries and JavaBeans Provided with
Oracle9i" on page 2-11, see the Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference.

Note: The tag library framework is supported by the Oracle JSP
container even in a JServ (servlet 2.0) environment. For full servlet
2.2 tag library support, however, you should use a servlet 2.2 or
higher environment such as Oracle9iAS Containers for J2EE
(preferably) or Tomcat.

JSP Tag Libraries 7-1

Standard Tag Library Framework

Standard Tag Library Framework

Standard JavaServer Pages technology allows vendors to create custom JSP tag
libraries.

A tag library defines a collection of custom actions. The tags can be used directly by
developers in manually coding a JSP page, or automatically by Java development
tools. A tag library must be portable between different JSP container
implementations.

For information beyond what is provided here regarding tag libraries and the
standard JavaServer Pages tag library framework, refer to the following resources.

= Sun Microsystems JavaServer Pages Specification, Version 1.1

= Sun Microsystems Javadoc for the j avax. servl et. j sp. t agext package, at
the following Web site:

http://java. sun. contj 2eel j 2sdkee/ t echdocs/ api / j avax/ servl et/ j sp/ t agext / package- summary. ht n

Note: Do notuse theservl et.j ar file of the Tomcat 3.1 beta
servlet/JSP implementation if you are using custom tags. The
constructor signature was changed for the class
javax.servlet.jsp.tagext. TagAttri but el nf o, which will
result in compilation errors. Instead, use the ser vl et . j ar file that
is provided with Oracle9i release 2 or the production version of
Tomcat 3.1.

Overview of a Custom Tag Library Implementation

A custom tag library is made accessible to a JSP page through at agl i b directive of
the following general form:

<Y@taglib uri="UR" prefix="prefix" %

Note the following:

« Thetags of a library are defined in a tag library description file, as described in
"Tag Library Description Files" on page 7-11.

« TheURIlinthetagli b directive specifies where to find the tag library
description file, as described in "The taglib Directive" on page 7-14. It is possible
to use URI shortcuts, as described in "Use of web.xml for Tag Libraries" on
page 7-12.

7-2 Oracle9i Support for JavaServer Pages Reference

Standard Tag Library Framework

The prefix in the t agl i b directive is a string of your choosing that you use in
your JSP page with any tag from the library.

Assume the t agl i b directive specifies a prefix or acust :

<Y@taglib uri="UR" prefix="oracust" %

Further assume that there is a tag myt ag in the library. You might use nyt ag as
follows:

<oracust:nytag attr1="...", attr2="..." />

Using the or acust prefix informs the JSP translator that myt ag is defined in

the tag library description file that can be found at the URI specified in the
abovet agl i b directive.

The entry for a tag in the tag library description file provides specifications
about usage of the tag, including whether the tag uses attributes (as nyt ag
does), and the names of those attributes.

The semantics of a tag—the actions that occur as the result of using the tag—are
defined in a tag handler class, as described in "Tag Handlers" on page 7-4. Each
tag has its own tag handler class, and the class name is specified in the tag
library description file.

The tag library description file indicates whether a tag uses a body.
As seen above, a tag without a body is used as in the following example:

<oracust:nytag attrl="...", attr2="..." />

By contrast, a tag with a body is used as in the following example:

<oracust:nytag attrl="...", attr2="..." >
... body. ..
</ oracust : nyt ag>

A custom tag action can create one or more server-side objects that are available
for use by the tag itself or by other JSP scripting elements, such as scriptlets.
These objects are referred to as scripting variables.

Details regarding the scripting variables that a custom tag uses are defined in a
tag-extra-info class. This is described in "Scripting Variables and Tag-Extra-Info
Classes" on page 7-7.

JSP Tag Libraries 7-3

Standard Tag Library Framework

Tag Handlers

A tag can create scripting variables with syntax such as in the following
example, which creates the object myobj :

<oracust:nytag id="nyobj" attr1="...", attr2="..." />

« Thetag handler of a nested tag can access the tag handler of an outer tag, in
case this is required for any of the processing or state management of the nested
tag. See "Access to Outer Tag Handler Instances" on page 7-10.

The sections that follow provide more information about these topics.

A tag handler describes the semantics of the action that results from use of a custom
tag. A tag handler is an instance of a Java class that implements one of two standard
Java interfaces, depending on whether the tag processes a body of statements
(between a start tag and an end tag).

Each tag has its own handler class. By convention, the name of the tag handler class
for atag abc, for example, is AbcTag.

The tag library description (TLD) file of a tag library specifies the name of the tag
handler class for each tag in the library. (See "Tag Library Description Files" on
page 7-11.)

A tag handler instance is a server-side object used at request time. It has properties
that are set by the JSP container, including the page context object for the JSP page
that uses the custom tag, and a parent tag handler object if the use of this custom
tag is nested within an outer custom tag.

See "Sample Tag Handler Class: ExampleLoopTag.java" on page 7-16 for sample
code of a tag handler class.

Note: The Sun Microsystems JavaServer Pages Specification, Version
1.1 does not mandate whether multiple uses of the same custom tag
within a JSP page should use the same tag handler instance or
different tag handler instances—this implementation detail is left to
the discretion of JSP vendors. The Oracle JSP container uses a
separate tag handler instance for each use of a tag.

7-4 Oracle9i Support for JavaServer Pages Reference

Standard Tag Library Framework

Custom Tag Body Processing

Custom tags, like standard JSP tags, may or may not have a body. And in the case of
a custom tag, even when there is a body, it may not need special handling by the tag
handler.

There are three possible situations:

There is no body.

In this case, there is just a single tag, as opposed to a start tag and end tag.
Following is a general example:

<oracust: abcdef attri="...", attr2="..." />

There is a body that does not need special handling by the tag handler.

In this case, there is a start tag and end tag with a body of statements in
between, but the tag handler does not have to process the body—body
statements are passed through for normal JSP processing only. Following is a
general example:

<foo:if cond="<% ... %" >
... body executed if cond is true, but not processed by tag handler. ..
</foo:if>

There is a body that needs special handling by the tag handler.

In this case also, there is a start tag and end tag with a body of statements in
between; however, the tag handler must process the body.

<oracust:ghijkl attr1="...", attr2="..." >
... body processed by tag handler.. .
</ oracust : ghi j kl >

Integer Constants for Body Processing

The tag handling interfaces that are described in the following sections specify a
doSt art Tag() method (further described below) that you must implement to
return an appropriate i nt constant, depending on the situation. The possible return
values are as follows:

SKI P_BODY if there is no body or if evaluation and execution of the body
should be skipped

EVAL_BODY_| NCLUDE if there is a body that does not require special handling
by the tag handler

JSP Tag Libraries 7-5

Standard Tag Library Framework

« EVAL_BODY_TAGIf there is a body that requires special handling by the tag
handler

Handlers for Tags That Do Not Process a Body

For a custom tag that does not have a body, or has a body that does not need special
handling by the tag handler, the tag handler class implements the following
standard interface:

« javax.servlet.jsp.tagext.Tag

The following standard support class implements the Tag interface and can be used
as a base class:

« javax.servlet.jsp.tagext. TagSupport

The Tag interface specifies a doSt art Tag() method and a doEndTag() method.
The tag developer provides code for these methods in the tag handler class, as
appropriate, to be executed as the start tag and end tag, respectively, are
encountered. The JSP page implementation class generated by the Oracle JSP
translator includes appropriate calls to these methods.

Action processing—whatever you want the action tag to accomplish—is
implemented in the doSt art Tag() method. The doEndTag() method would
implement any appropriate post-processing. In the case of a tag without a body,
essentially nothing happens between the execution of these two methods.

The doSt art Tag() method returns an integer value. For a tag handler class
implementing the Tag interface (either directly or indirectly), this value must be
either SKI P_BODY or EVAL_BODY_| NCLUDE (described in "Integer Constants for
Body Processing" above). EVAL_BODY_TAGis illegal for a tag handler class
implementing the Tag interface.

Handlers for Tags That Process a Body

For a custom tag with a body that requires special handling by the tag handler, the
tag handler class implements the following standard interface:

« javax.servlet.jsp.tagext.BodyTag

The following standard support class implements the Body Tag interface and can be
used as a base class:

« javax.servlet.jsp.tagext.BodyTagSupport

7-6 Oracle9i Support for JavaServer Pages Reference

Standard Tag Library Framework

The BodyTag interface specifies a dol ni t Body() method and a doAf t er Body()
method in addition to the doSt art Tag() and doEndTag() methods specified in
the Tag interface.

Just as with tag handlers implementing the Tag interface (described in the
preceding section, "Handlers for Tags That Do Not Process a Body"), the tag
developer implements the doSt art Tag() method for action processing by the tag,
and the doEndTag() method for any post-processing.

The doSt art Tag() method returns an integer value. For a tag handler class
implementing the Body Tag interface (directly or indirectly), this value must be
either SKI P_BODY or EVAL_BODY_TAG (described in "Integer Constants for Body
Processing" on page 7-5). EVAL_BODY_| NCLUDE is illegal for a tag handler class
implementing the Body Tag interface.

In addition to implementing the doSt art Tag() and doEndTag() methods, the
tag developer, as appropriate, provides code for the dol ni t Body() method, to be
invoked before the body is evaluated, and the doAf t er Body() method, to be
invoked after each evaluation of the body. (The body could be evaluated multiple
times, such as at the end of each iteration of a loop.) The JSP page implementation
class generated by the Oracle JSP translator includes appropriate calls to all of these
methods.

After the doSt art Tag() method is executed, the dol ni t Body() and
doAf t er Body() methods are executed if the doSt art Tag() method returned
EVAL_BODY_TAG

The doEndTag() method is executed after any body processing, when the end tag
is encountered.

For custom tags that must process a body, the

javax. servl et.jsp.tagext.BodyCont ent class is available for use. This is a
subclass of j avax. servl et.jsp. JspWi t er that can be used to process body
evaluations so that they can re-extracted later. The Body Tag interface includes a
set BodyCont ent () method that can be used by the JSP container to give a
BodyCont ent handle to a tag handler instance.

Scripting Variables and Tag-Extra-Info Classes

A custom tag action can create one or more server-side objects, known as scripting
variables, that are available for use by the tag itself or by other scripting elements,
such as scriptlets and other tags.

JSP Tag Libraries 7-7

Standard Tag Library Framework

Details regarding scripting variables that a custom tag defines must be specified in a
subclass of the standard j avax. servl et . j sp. t agext . TagExt r al nf o abstract
class. This document refers to such a subclass as a tag-extra-info class.

The JSP container uses tag-extra-info instances during translation. (The tag library
description file, specified in the t agl i b directive that imports the library into a JSP
page, specifies the tag-extra-info class to use, if applicable, for any given tag.)

A tag-extra-info class has a get Vari abl el nf o() method to retrieve names and
types of the scripting variables that will be assigned during HTTP requests. The JSP
translator calls this method during translation, passing it an instance of the
standard j avax. servl et.j sp. t agext. TagDat a class. The TagDat a instance
specifies attribute values set in the JSP statement that uses the custom tag.

This section covers the following topics:

« Defining Scripting Variables

« Scripting Variable Scopes

« Tag-Extra-Info Classes and the getVariablelnfo() Method

Defining Scripting Variables

Objects that are defined explicitly in a custom tag can be referenced in other actions
through the page context object, using the object ID as a handle. Consider the
following example:

<oracust:foo id="nyobj " attrl1="..." attr2="..." />

This statement results in the object myobj being available to any scripting elements
between the tag and the end of the page. The i d attribute is a translation-time
attribute. The tag developer provides a tag-extra-info class that will be used by the

JSP container. Among other things, the tag-extra-info class specifies what class to
instantiate for the myobj object.

The JSP container enters myobj into the page context object, where it can later be
obtained by other tags or scripting elements using syntax such as the following:

<oracust: bar ref="nyobj" />

The nyobj object is passed through the tag handler instances for f oo and bar . All
that is required is knowledge of the name of the object (nyobj).

7-8 Oracle9i Support for JavaServer Pages Reference

Standard Tag Library Framework

Important: Note thati d and r ef are merely sample attribute
names; there are no special predefined semantics for these
attributes. It is up to the tag handler to define attribute names and
create and retrieve objects in the page context.

Scripting Variable Scopes

Specify the scope of a scripting variable in the tag-extra-info class of the tag that
creates the variable. It can be one of the following i nt constants:

« NESTED—if the scripting variable is available between the start tag and end tag
of the action that defines it

« AT_BEG N—if the scripting variable is available from the start tag until the end
of the page

« AT_END—if the scripting variable is available from the end tag until the end of
the page

Tag-Extra-Info Classes and the getVariableInfo() Method

You must create a tag-extra-info class for any custom tag that creates scripting
variables. The class describes the scripting variables and must be a subclass of the
standard j avax. servl et.j sp. t agext. TagExtral nf o abstract class.

The key method of the TagExt r al nf o class is get Var i abl el nfo(), which is
called by the JSP translator and returns an array of instances of the standard
javax. servl et.jsp.tagext. Vari abl el nf o class (one array instance for each
scripting variable the tag creates).

The tag-extra-info class constructs each Var i abl el nf o instance with the following
information regarding the scripting variable:

« itsname
« its Java type (cannot be a primitive type)
= aboolean indicating whether it is a newly declared variable

« itsscope

JSP Tag Libraries 7-9

Standard Tag Library Framework

Important: In Oracle JSP 1.1.x.x releases, the

get Vari abl el nf o() method can return either a fully qualified
class name (FQCN) or a partially qualified class name (PQCN) for
the Java type of the scripting variable. FQCNSs were required in
previous releases, and are still preferred in order to avoid confusion
in case there are duplicate class names between packages.

Note that primitive types are not supported.

See "Sample Tag-Extra-Info Class: ExampleLoopTagTEl.java" on page 7-17 for
sample code of a tag-extra-info class.

Access to Outer Tag Handler Instances

Where nested custom tags are used, the tag handler instance of the nested tag has
access to the tag handler instance of the outer tag, which may be useful in any
processing and state management performed by the nested tag.

This functionality is supported through the static f i ndAncest or Wt hCl ass()
method of the j avax. servl et.j sp. tagext. TagSupport class. Even though
the outer tag handler instance is not named in the page context object, it is
accessible because it is the closest enclosing instance of a given tag handler class.

Consider the following JSP code example:

<foo:barl attr="abc" >
<foo:bar2 />
</ f oo: bar 1>

Within the code of the bar 2 tag handler class (class Bar 2Tag, by convention), you
can have a statement such as the following:

Tag bar 1t ag = TagSupport . fi ndAncest or Wt hd ass(thi s, Bar1Tag. cl ass);

Thefi ndAncest or Wt hCl ass() method takes the following as input:

« thet hi s object that is the class handler instance from which
findAncest or Wt hCl ass() was called (a Bar 2Tag instance in the example)

« the name of the bar 1 tag handler class (presumed to be Bar 1Tag in the
example), asaj ava. | ang. Cl ass instance

7-10 Oracle9/ Support for JavaServer Pages Reference

Standard Tag Library Framework

The fi ndAncest or Wt hCl ass() method returns an instance of the appropriate
tag handler class, in this case Bar 1Tag, asaj avax. servl et . j sp. t agext. Tag
instance.

It is useful for a Bar 2Tag instance to have access to the outer Bar 1Tag instance in
case the Bar 2Tag needs the value of a bar 1 tag attribute or needs to call a method
on the Bar 1Tag instance.

Tag Library Description Files

A tag library description (TLD) file is an XML document that contains information
about a tag library and about individual tags of the library. The name of a TLD file
has the . t | d extension.

A JSP container uses the TLD file in determining what action to take when it
encounters a tag from the library.

A tag entry in the TLD file includes the following:

« hame of the custom tag

= hame of the corresponding tag handler class

« hame of the corresponding tag-extra-info class (if applicable)

« information indicating how the tag body (if any) should be processed

« information about the attributes of the tag (the attributes that you specify
whenever you use the custom tag)

Here is a sample TLD file entry for the tag nyact i on:

<tag>
<nane>nyact i on</ nane>
<t agcl ass>exanpl es. Mact i onTag</ t agcl ass>
<t ei cl ass>exanpl es. M/act i onTagExt r al nf o</ t ei cl ass>
<bodycont ent >JSP</ bodycont ent >
<i nf o>
Performa server-side action (one mandatory attr; one optional)

</info>
<attribute>

<nane>at t r 1</ nane>

<r equi red>t r ue</ r equi r ed>
</attri bute>
<attribute>

<nane>at t r 2</ nane>

<r equi red>f al se</r equi red>

JSP Tag Libraries 7-11

Standard Tag Library Framework

</attribute>
</tag>

According to this entry, the tag handler class is Myact i onTag and the
tag-extra-info class is Myact i onTagExt r al nf 0. The attribute at t r 1 is required;
the attribute at t r 2 is optional.

The bodycont ent parameter indicates how the tag body (if any) should be
processed. There are three valid values:

« Avalue of enpt y indicates that the tag uses no body.

« A value of JSP indicates that the tag body should be processed as JSP source
and translated.

« Avalue of t agdependent indicates that the tag body should not be translated.
Any text in the body is treated as static text.

Thet agl i b directive in a JSP page informs the JSP container where to find the TLD
file. (See "The taglib Directive" on page 7-14.)

For more information about tag library description files, see the Sun Microsystems
JavaServer Pages Specification, Version 1.1.

Note: Inthe Tomcat 3.1 servlet/JSP implementation, the TLD file
bodycont ent parameter for a given tag is not read if the tag itself
(in the JSP page) has no body. It is possible, therefore, to have an
invalid bodycont ent value in your TLD file (such as none instead
of enpt y) without realizing it. Using the file in another JSP
environment, such as the Oracle JSP container, would then result in
errors.

Use of web.xml for Tag Libraries

The Sun Microsystems Java Servlet Specification, Version 2.2 describes a standard
deployment descriptor for servlets—the web. xm file. JSP pages can use this file in
specifying the location of a JSP tag library description file.

For JSP tag libraries, the web. xmi file can include at agl i b element and two
subelements:

« taglib-uri

« taglib-location

7-12 Oracle9/ Support for JavaServer Pages Reference

Standard Tag Library Framework

Thet agl i b-1 ocati on subelement indicates the application-relative location (by
starting with "/") of the tag library description file.

Thetagl i b-uri subelement indicates a "shortcut" URI touse int agl i b
directives in your JSP pages, with this URI being mapped to the TLD file location
specified in the accompanyingt agl i b- | ocat i on subelement. (The term URI,
universal resource indicator, is somewhat equivalent to the term URL, universal
resource locator, but is more generic.)

Important: When a JSP application uses a web. xn file, you must
deploy web. xm with the application. Treat it as a Java resource
file.

Following is a sample web. xmi entry for a tag library description file:

<taglib>

<tagl i b-uri >/ oracustontags</taglib-uri>

<tagl i b-1 ocati on> WEB- | N/ or acust om ags/ t| ds/ M/TLD. t| d</ tagl i b-1 ocati on>
</taglib>

This makes / or acust ont ags equivalent to
/ VIEB- | NF/ or acustont ags/tl ds/ MyTLD. t1 d intagl i b directives in your JSP
pages. See "Using a Shortcut URI for the TLD File" below for an example.

See the Sun Microsystems Java Servlet Specification, Version 2.2 and the Sun
Microsystems JavaServer Pages Specification, Version 1.1 for more information about
the web. xm deployment descriptor and its use for tag library description files.

Notes:

«» Do not use the sample web. xm file from the Tomcat 3.1
servlet/JSP implementation. It introduces new elements that
will not pass the standard DTD XML validation.

» Do not use the term "urn" instead of "uri" in aweb. xm file.
Some JSP implementations allow this (such as Tomcat 3.1), but
using "urn" will not pass the standard DTD XML validation.

JSP Tag Libraries 7-13

Standard Tag Library Framework

The taglib Directive
Import a custom library into a JSP page using at agl i b directive, as follows:
<Y@taglib uri="UR" prefix="prefix" %

For the URI, you have the following options:

« Specify a shortcut URI, as defined in aweb. xm file (see "Use of web.xml for
Tag Libraries" above).

« Fully specify the tag library description (TLD) file name and location.

Using a Shortcut URI for the TLD File

Assume the following web. xm entry for a tag library defined in the tag library
description file MyTLD. t | d:
<taglib>

<tagl i b-uri >/ oracustontags</taglib-uri>

<tagl i b-1 ocati on> WEB- | N/ or acust om ags/ t| ds/ M/TLD. t| d</ tagl i b-1 ocati on>
</taglib>

Given this example, the following directive in your JSP page results in the JSP
container finding the / or acust ont ags URI inweb. xm and, therefore, finding
the accompanying name and location of the tag library description file

(MyTLD. t 1 d):

<YU@taglib uri="/oracustontags" prefix="oracust" %

This statement allows you to use any of the tags of this custom tag library in a JSP
page.

Fully Specifying the TLD File Name and Location

If you do not want your JSP application to depend on a web. xmi file for its use of a
tag library, t agl i b directives can fully specify the name and location of the tag
library description file, as follows:

<Y@taglib uri="/WEB-| N+ oracustontags/tlds/ MTLD t|d" prefix="oracust" %
The location is specified as an application-relative location (by starting with "/", as

in this example). See "Requesting a JSP Page" on page 1-8 for related discussion of
application-relative syntax.

Alternatively, you can specify a. j ar fileinstead ofa.tl dfileinthetaglib
directive, where the . j ar file contains a tag library description file. The tag library

7-14 Oracle9/ Support for JavaServer Pages Reference

Standard Tag Library Framework

description file must be located and named as follows when you create the JAR file
(for servlet 2.2):

META- I N/ taglib. tld

Then the t agl i b directive might be as follows, for example:
<Y@taglib uri="/WEB-| N+ oracustontags/tlds/ MTLD jar" prefix="oracust" %

End-to-End Example: Defining and Using a Custom Tag

This section provides an end-to-end example of the definition and use of a custom
tag, | oop, that is used to iterate through the tag body a specified number of times.

Included in the example are the following:
= JSP source for a page that uses the tag

= source code for the tag handler class

= source code for the tag-extra-info class

« thetag library description file

Note: Sample code here uses extended datatypes in the
oracl e.jsp.jm package. These types are described in the
Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Sample JSP Page: exampletag.jsp

Following is a sample JSP page that uses the | oop tag, specifying that the outer
loop be executed five times and the inner loop three times:

exanpl et ag. j sp
<Y@taglib prefix="foo" uri="/WEB-|N-/exanpletag.tld" %
<%int nun¥5;, %

<pr e>

<foo:l oop i ndex="i" count="<%nun¥s">

bodylhere: i expr: <%i % i property: < sp:getProperty name="i" property="val ue"
/>

<foo: 1 oop index="j" count="3">
body2here: j expr: <% %
i property: <jsp:getProperty name="i" property="val ue" />

JSP Tag Libraries 7-15

Standard Tag Library Framework

j property: <jsp:getProperty name="j" property="val ue" />
</foo: | oop>

</ f oo: | oop>

</ pre>

Sample Tag Handler Class: ExampleLoopTag.java

This section provides source code for the tag handler class, Exanpl eLoopTag.
Note the following:

« ThedoStart Tag() method returns the integer constant EVAL_BODY_TAG, so
that the tag body (essentially, the loop) is processed.

= After each pass through the loop, the doAf t er Body() method increments the
counter. It returns EVAL_BODY_TAG:if there are more iterations left and
SKI P_BOQDY after the last iteration.

Here is the code:

package exanpl es;

inport javax.servlet.jsp.*;

inport javax.servlet.jsp.tagext.?*;
inport java. util.Hashtabl e;

inport java.io.Witer;

inport java.io.|CException;

inport oracle.jsp.jn.Jn Nunber ;

public cl ass Exanpl eLoopTag
ext ends BodyTagSuppor t

{

Sring index;

int count;

int i=0;

Jm Nunber i b=new Jni Nunber ();

public void setlndex(Sring i ndex)

{
t hi s. i ndex=i ndex;
}
public void setGunt(Sring count)
{
thi s. count =I nt eger . par sel nt (count) ;
}

7-16 Oracle9/ Support for JavaServer Pages Reference

Standard Tag Library Framework

public int doStartTag() throws JspException {
return EVAL BODY TAG

}

public void dol nitBody() throws JspException {
page@ont ext . set At tri but e(i ndex, ib);
i ++
i b.setVal ue(i);

}

public int doAfterBody() throws JspException {
try {
if (i > count) {
bodyGont ent . wi t eQut (bodyCont ent . get Encl osi ngWiter());
return SKI P_BODY;
} else
pageCont ext . set Attri bute(index, ib);
i ++;
i b. setVal ue(i);
return EVAL BODY TAG
} catch (1 CException ex) {
t hr ow new JspTagException(ex.toSring());

}

Sample Tag-Extra-Info Class: ExampleLoopTagTEl.java

This section provides the source code for the tag-extra-info class that describes the
scripting variable used by the | oop tag.

A Var i abl el nf o instance is constructed that specifies the following for the
variable:

The variable name is according to the i ndex attribute.

The variable is of the type or acl e. j sp. j m . Jm Nunber (this must be
specified as a fully qualified class name).

The variable is newly declared.
The variable scope is NESTED.

In addition, the tag-extra-info class has ani sVal i d() method that determines
whether the count attribute is valid—it must be an integer.

JSP Tag Libraries 7-17

Standard Tag Library Framework

package exanpl es;
inport javax.servlet.jsp.tagext.?*;

public cl ass Exanpl eLoopTagTH ext ends TagExtral nfo {
public Variabl el nfo[] getVariabl el nfo(TagData data) {
return new Vari abl el nf o[]

{
new Vari abl el nfo(data. get AttributeSring("i ndex"),
"oracl e.jsp.jm.Jn Nunber",
true,
Vari abl el nf 0. NESTED)
b

}

publ i ¢ bool ean isVali d(TagData dat a)

{
Sring count Str=data.getAttributeString("count");

if (countSr!=null) // for request tine case

{
try {
i nt count=lnteger. parselnt(countStr);
}
cat ch (Nunber For mat Excepti on e)
{
return fal se;
}
}
return true;

Sample Tag Library Description File: exampletag.tld

This section presents the tag library description (TLD) file for the tag library. In this
example, the library consists of only the one tag, | oop.

This TLD file specifies the following for the | oop tag:

« the tag handler class—exanpl es. Exanpl eLoopTag

« the tag-extra-info class—exanpl es. Exanpl eLoopTagTEl
« bodycont ent specification of JSP

This means the JSP translator should process and translate the body code.

7-18 Oracle9/ Support for JavaServer Pages Reference

Standard Tag Library Framework

« attributesi ndex and count , both mandatory
The count attribute can be a request-time JSP expression.
Here is the TLD file:

<?xm version="1.0" encodi ng="1 SO 8859-1" ?>

<IDOCTYPE taglib
PUBLI C "-//Sun Mcrosystens, Inc.//DID JSP Tag Library 1. 1//EN
"http://java. sun. conij 2ee/ dtds/web-jsptaglibrary_1 1.dtd">

<l-- atag library descriptor -->

<taglib>
<l-- after this the default space is
"http://java. sun. conij2ee/ dtds/jsptaglibrary 1 2.dtd"

-->
<tlibversi on>1. 0</t| i bversi on>
<j spver si on>1. 1</ j spver si on>
<shor t name>si npl e</ shor t nane>
<--
there should be no <urn></urn> here
-->
<i nf 0>
Asinple tag library for the exanpl es
</info>

<I-- exanple tag -->
<I-- for loop -->
<t ag>
<nane>| oop</ nane>
<t agcl ass>exanpl es. Exanpl eLoopTag</t agcl ass>
<t ei cl ass>exanpl es. Exanpl eLoopTagTH </t ei cl ass>
<bodycont ent >JSP</ bodycont ent >
<i nfo>for | oop</info>
<attribute>
<name>i ndex</ nane>
<requi r ed>t r ue</ r equi r ed>
</attribute>
<attribute>
<name>count </ nane>
<requi r ed>t r ue</ r equi r ed>
<rtexprval ue>t rue</rtexprval ue>
</attribute>
</tag>
</taglib>

JSP Tag Libraries 7-19

Compile-Time Tags

Compile-Time Tags

Standard tag libraries, as described in the Sun Microsystems JavaServer Pages
Specification, Version 1.1, use a runtime support mechanism. They are typically
portable, not requiring any particular JSP container.

It is also possible, however, for a vendor to support custom tags through
vendor-specific functionality in their JSP translator. Such tags are not portable to
other containers.

It is generally advisable to develop standard, portable tags that use the runtime
mechanism, but there may be scenarios where tags using a compile-time
mechanism are appropriate, as discussed in this section.

General Compile-Time Versus Runtime Considerations

The JSP 1.1 specification describes a runtime support mechanism for custom tag
libraries. This mechanism, using an XML-style tag library description file to specify
the tags, is covered in "Standard Tag Library Framework" on page 7-2.

Creating and using a tag library that adheres to this model assures that the library
will be portable to any standard JSP environment.

There are, however, reasons to consider compile-time implementations:
« A compile-time implementation may produce more efficient code.

« A compile-time implementation allows the developer to catch errors during
translation and compilation, instead of the end-user seeing them at runtime.

In the future, the Oracle JSP container may support a general framework for
creating custom tag libraries with compile-time tag implementations. Such
implementations would depend on the Oracle JSP translator, so would not be
portable to other JSP environments.

Oracle JML Library: Compile-Time Versus Runtime

Oracle provides a portable tag library called the JSP Markup Language (JML)
library. This library uses the standard JSP 1.1 runtime mechanism.

However, the ML tags are also supported through a compile-time mechanism. This
is because the tags were first introduced with older JSP versions that preceded the
JSP 1.1 specification, when the runtime mechanism was introduced. The
compile-time tags are still supported for backward compatibility.

7-20 Oracle9/ Support for JavaServer Pages Reference

Compile-Time Tags

The general advantages and disadvantages of compile-time implementations apply
to the Oracle JML tag library as well. There may be situations where it is
advantageous to use the compile-time JML implementation as first introduced in
older Oracle JSP versions. There are also a few additional tags in that
implementation, and some additional expression syntax that is supported.

Both the runtime version and the compile-time version of the JML library are
described in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

JSP Tag Libraries 7-21

Compile-Time Tags

7-22 Oracle9/ Support for JavaServer Pages Reference

8

Oracle JSP Globalization Support

The Oracle JSP container provides standard globalization support (also known as
National Language Support, or NLS) according to the Sun Microsystems JavaServer
Pages Specification, Version 1.1, and also offers extended support for serviet
environments that do not support multibyte parameter encoding.

Standard Java support for localized content depends on the use of Unicode 2.0 for
uniform internal representation of text. Unicode is used as the base character set for
conversion to alternative character sets.

This chapter describes key aspects of how the Oracle JSP container handles Oracle
Globalization Support. The following topics are covered:

« Content Type Settings in the page Directive
« Dynamic Content Type Settings
» Oracle JSP Extended Support for Multibyte Parameter Encoding

Note: For detailed information about Oracle Globalization
Support, see the Oracle9i Database Globalization Support Guide.

Oracle JSP Globalization Support 8-1

Content Type Settings in the page Directive

Content Type Settings in the page Directive

You can use the page directive cont ent Type parameter to set the MIME type and
to optionally set the character encoding for a JSP page. The MIME type applies to
the HTTP response at runtime. The character encoding, if set, applies to both the
page text during translation and the HTTP response at runtime.

Use the following syntax for the page directive:

<Y@page ... contentType="TYPE charset=character_set" ... %

or, to set the MIME type while using the default character set:
<Y@page ... contentType="TYPE ... %
TYPE is an IANA (Internet Assigned Numbers Authority) MIME type;

char act er _set isan IANA character set. (When specifying a character set, the
space after the semi-colon is optional.)

For example:

<Y@page | anguage="j ava' content Type="text/htni; charset=UTF8" %

or:

<Y@page | anguage="j ava"' content Type="text/htnm" %

The default MIME type ist ext / ht ml . The IANA maintains a registry of MIME
types at the following site:

ftp://ww isi.edu/in-notes/ianalassi gnnent s/ nedi a-types/ nedi a- t ypes

The default character encoding is | SO 8859- 1 (also known as Latin-1). The IANA

maintains a registry of character encodings at the following site. Use the indicated
"preferred MIME name" if one is listed:

http://wwu i ana. or g/ assi gnnent s/ char acter-sets
(There is no JSP requirement to use an IANA character set as long as you use a
character set that Java and the Web browser support, but the IANA site lists the

most common character sets. Using the preferred MIME names they document is
recommended.)

8-2 Oracle9i Support for JavaServer Pages Reference

Content Type Settings in the page Directive

The parameters of a page directive are static. If a page discovers during execution
that a different setting is necessary for the response, it can do one of the following:

« Use the servlet response object API to set the content type during execution, as
described in "Dynamic Content Type Settings" on page 8-4.

« Forward the request to another JSP page or to a servlet.

Notes:

The page directive that sets cont ent Type should appear as
early as possible in the JSP page.

A JSP page written in a character set other than | SO 8859- 1
must set the appropriate character set in a page directive. It
cannot be set dynamically because the page has to be aware of
the setting during translation. Dynamic settings are for runtime
only.

The JSP 1.1 specification assumes that a JSP page is written in
the same character set that it will use to deliver its content.

This document, for simplicity, assumes the typical case that the
page text, request parameters, and response parameters all use
the same encoding (although other scenarios are technically
possible). Request parameter encoding is controlled by the
browser, although Netscape browsers and Internet Explorer
follow the setting you specify for the response parameters.

Oracle JSP Globalization Support 8-3

Dynamic Content Type Settings

Dynamic Content Type Settings

For situations where the appropriate content type for the HTTP response is not
known until runtime, you can set it dynamically in the JSP page. The standard

j avax. servl et. Servl et Response interface specifies the following method for
this purpose:

public void set Gontent Type(j ava. | ang. String contenttype)

The implicitr esponse object of a JSP page is a
javax.servlet. http. Ht t pServl et Response instance, where the
Ht t pSer vl et Response interface extends the Ser vl et Response interface.

The set Cont ent Type() method input, like the cont ent Type setting in a page
directive, can include a MIME type only, or both a character set and a MIME type.
For example:

response. set Gont ent Type("text/htnt; charset=UTF-8");

or:

response. set Gont ent Type("text/htn");

As with a page directive, the default MIME type ist ext / ht M and the default
character encoding is | SO 8859- 1.

This method has no effect on interpreting the text of the JSP page during translation.
If a particular character set is required during translation, that must be specified in a
page directive, as described in "Content Type Settings in the page Directive" on
page 8-2.

Be aware of the following important usage notes.
« The JSP page cannot be unbuffered if you are using the set Cont ent Type()

method. It is buffered by default; do not set buf f er =" none" in apage
directive.

« Theset Cont ent Type() call must appear early in the page, before any output
to the browser or any j sp: i ncl ude command (which flushes the JSP buffer to
the browser).

« Inservilet 2.2 environments, the r esponse object hasa set Local e() method
that sets a default character set based on the specified locale, overriding any
previous character set. For example, the following method call results in a
character set of Shi ft _JI S:

response. set Local e(new Local e("ja", "JP'));

8-4 Oracle9i Support for JavaServer Pages Reference

Oracle JSP Extended Support for Multibyte Parameter Encoding

Oracle JSP Extended Support for Multibyte Parameter Encoding

Character encoding of request parameters is not well defined in the HTTP
specification. Most servlet containers must interpret them using the servlet default
encoding, | SO- 8859- 1.

For such environments, where the servlet container cannot encode multibyte
request parameters and bean property settings, the Oracle JSP container offers
extended support in two ways:

« through the set ReqChar act er Encodi ng() method
or:

« through thetransl at e_par ans configuration parameter

The setReqCharacterEncoding() Method

Oracle provides a set ReqChar act er Encodi ng() method that is useful in case
the default encoding for the servlet container is not appropriate. Use this method to
specify the encoding of multibyte request parameters and bean property settings,
such as for aget Par anet er () call inJava code or aj sp: set Property
statement to set a bean property in JSP code. If the default encoding is already
appropriate, then it is not necessary to use this method, and in fact using it may
create some performance overhead in your application.

The set ReqChar act er Encodi ng() method is a static method in the
Publ i cUtil classoftheoracle.jsp.util package.

This method affects parameter names and values, specifically:
= request object get Par anet er () method output

= request object get Par anet er Val ues() method output
= request object get Par anet er Names() method output

=] sp:setProperty settings for bean property values

When invoking the method, input a request object and a string that specifies the
desired encoding, as follows:

oracle.jsp.util.Publiclil.setReqCharact er Encodi ng(nyrequest, "BJGJP');

Oracle JSP Globalization Support 8-5

Oracle JSP Extended Support for Multibyte Parameter Encoding

Notes:

« Beginning with Oracle JSP 1.1.2.x releases, using the
set ReqChar act er Encodi ng() method is preferable to using
thet ransl at e_par ans configuration parameter described in
"The translate_params Configuration Parameter" below.

« Theset ReqChar act er Encodi ng() method is
forward-compatible with the method
request . set Char act er Encodi ng(encodi ng) of the
serviet 2.3 API.

The translate_params Configuration Parameter

This section describes how to use the JSP t r ansl at e_par ans configuration
parameter for encoding of multibyte request parameters and bean property settings,
such as for a get Par anet er () call inJava code or for aj sp: set Property
statement to set a bean property in JSP code.

Note that beginning with Oracle JSP 1.1.2.x releases, it is preferable to use the
PubliclUil.set ReqCharact er Encodi ng() method instead. See "The
setRegCharacterEncoding() Method" above.

Also note that you should not enable t r ansl at e_par ans in any of the following
circumstances:

= when the servlet container properly handles multibyte parameter encoding
itself

Setting t r ansl| at e_par amns tot r ue in this situation will cause incorrect
results. As of this writing, however, it is known that JServ, JSWDK, and Tomcat
all do not properly handle multibyte parameter encoding.

= when the request parameters use a different encoding from what is specified for
the response in the JSP page directive or set Cont ent Type() method

« when code with workaround functionality equivalent to what
transl at e_par ans accomplishes is already present in the JSP page

See "Code Equivalent to the translate_params Configuration Parameter" on
page 8-7.

8-6 Oracle9i Support for JavaServer Pages Reference

Oracle JSP Extended Support for Multibyte Parameter Encoding

Effect of translate_params in Overriding Non-Multibyte Servlet Containers

Setting t r ansl at e_par ans tot r ue overrides servlet containers that cannot
encode multibyte request parameters and bean property settings. (For information
about how to set JSP configuration parameters in a JServ environment, see "Setting
JSP Parameters in JServ" on page 9-18.)

When this flag is enabled, the Oracle JSP container encodes the request parameters
and bean property settings based on the character set of the r esponse object, as
indicated by the r esponse. get Char act er Encodi ng() method.

Thet ransl at e_par ans flag affects parameter names and values, specifically:
= request object get Par anet er () method output

= request object get Par anet er Val ues() method output

= request object get Par anet er Narmes() method output

=] sp:setProperty settings for bean property values

Code Equivalent to the translate_params Configuration Parameter

There may be situations where you do not want to or cannot use the

transl at e_par ans configuration parameter. It is useful to be aware of equivalent
functionality that can be implemented through scriptlet code in the JSP page, for
example:

<Y@page content Type="text/htn; charset=BUGJIP' %

String paraniNane="XXYYZZ'; /1 where XXYYZZ is a nultibyte string
par amNane =
new & ri ng(par aniane. get Byt es(r esponse. get Char act er Encodi ng()), "1 S@859 1");
Sring paranVal ue = request. get Par anet er (par anih\ane) ;
par anVal ue= new S ri ng(par anVal ue. get Byt es("1S08859 1"), "EUG JP');

This code accomplishes the following:

« Sets XXYYZZ as the parameter name to search for. (Presume XX, YY, and ZZ are
three Japanese characters.)

« Encodes the parameter name to | SO 8859- 1, the servlet container character
set, so that the servlet container can interpret it. (First a byte array is created for
the parameter name, using the character encoding of the request object.)

Oracle JSP Globalization Support 8-7

Oracle JSP Extended Support for Multibyte Parameter Encoding

« Gets the parameter value from the request object by looking for a match for the
parameter name. (It is able to find a match because parameter names in the
request object are also in | SO 8859- 1 encoding.)

« Encodes the parameter value to EUC- JP for further processing or output to the
browser.

See the next two sections for a globalization sample that depends on
transl at e_par ans being enabled, and one that contains the equivalent code so
that it does not depend on the t r ans| at e_par ans setting.

Globalization Sample Depending on translate_params

The following sample accepts a user name in Japanese characters and correctly
outputs the name back to the browser. In a servlet environment that cannot encode
multibyte request parameters, this sample depends on the JSP configuration setting
oftransl at e_par ans=true.

Presume XXYY is the parameter name (something equivalent to "user name" in
Japanese) and AABB is the default value (also in Japanese).

(See the next section for a sample that has the code equivalent of the
transl at e_par ans functionality, so does not depend on the
transl at e_par amns setting.)

<Y@page content Type="text/htn; charset=BUGJIP'" %

<HTM_>

<HEAD>

<Tl TLE>Hel | o</ Tl TLE></ HEAD>

<BCDY>

<%
//charset is as specified in page directive (BUGJP)
Sring charset = response. get Charact er Encodi ng();

%

 encodi ng = <% charset %

<%
Sring paranVal ue = request. get Paranet er (" XXYY");
if (paramVal ue == null || paranVal ue.length() ==0) { %
<FORM METHOD=" GET" >
F ease input your nane: <INPUT TYPE="TEXT' NAME="XXYY" val ue="AABB' size=20>

<INPUT TYPE="SUBM T >

8-8 Oracle9i Support for JavaServer Pages Reference

Oracle JSP Extended Support for Multibyte Parameter Encoding

</ FARW>
<%}
el se
{ %
<HL> Hel |l 0, <% paranVal ue % </ HL>
<%} %
</ BCDY>
</ HTM.>

Following is the sample input:

] Hello - Microsoft Internet Explorer

o2 .9 AT B
Back Forward Stop Fefresh Home Search
J ‘Y? Eﬁ @ 5 | mI]"r’! Bookmarks @I‘-ﬂy “ahoo! - hdare »
J.&eress j & Go
=
encoding = EUC-JP
Please input your name: Iﬁ#
Submit Cluery |
| []
| €] Done I_l_ 2 Local intranet ,‘.‘.;

Oracle JSP Globalization Support

8-9

Oracle JSP Extended Support for Multibyte Parameter Encoding

and the sample output:

] Hello - Microsoft Internet Explorer

R, AN
Back Farward Stop Fefresh Home Search
J Edlt @ 5 | IHI] 'l Bookmarks @I‘-ﬂy Yahool - hdare ¥
J.ﬁ.ddress j & Go
=
encoding = EUC-JP
Hello, {5
| []
| |&] Dane C | 5 Local intranet ,‘.‘.;

Globalization Sample Not Depending on translate_params

The following sample, as with the preceding sample, accepts a user name in
Japanese characters and correctly outputs the name back to the browser. This
sample, however, has the code equivalent of t r ansl at e_par ans functionality, so
does not depend on the t r ansl at e_par amns setting.

Important: Ifyou usetransl at e_par ans-equivalent code, do
not also enable the t r ansl at e_par ans flag. This would cause
incorrect results.

Presume XXYY is the parameter name (something equivalent to "user name" in
Japanese) and AABB is the default value (also in Japanese).

8-10 Oracle9i Support for JavaServer Pages Reference

Oracle JSP Extended Support for Multibyte Parameter Encoding

For an explanation of the critical code in this sample, see "Code Equivalent to the
translate_params Configuration Parameter" on page 8-7.

<Y@page content Type="text/htn; charset=BUGJIP' %

<HTM_>
<HEAD>
<TlI TLE>Hel | o</ Tl TLE></ HEAD>
<BCDY>
<%
//charset is as specified in page directive (BUGJP)
Sring charset = response. get Charact er Encodi ng();
%

 encodi ng = <% charset %

<%
Sring paramMame = "XXYY';

par amNane = new S ri ng(par ani\ane. get Byt es(charset), "1SM8859 1");
Sring paranVal ue = request. get Par anet er (par anih\ane) ;

if (paramVal ue == null || paranVal ue.length() ==0) { %
<FORM METHOD=" GET" >
M ease input your nane: <INPUT TYPE="TEXT' NAME='XXYY" val ue="AABB' size=20>

<INPUT TYPE="SUBM T >
</ FCRW>
<%}
el se
{
par anVal ue= new S ri ng(paranVal ue. get Byt es("1S(8859_1"), "EUGJP'); %
<HL> Hel | 0, <% paranVal ue % </ HL>
<%} %
</ BCDY>
</ HTM.>

Oracle JSP Globalization Support 8-11

Oracle JSP Extended Support for Multibyte Parameter Encoding

8-12 Oracle9/ Support for JavaServer Pages Reference

9

Oracle JSP in Apache JServ

Oracle9i release 2 includes an Apache JServ servlet environment. For those who use
this environment, there are special considerations relating to servlet and JSP usage,
as with any servlet 2.0 environment.

The following topics are covered here:

« Getting Started in a JServ Environment

« Considerations for JServ Servlet Environments

« Oracle JSP Application and Session Support for JServ

« Samples Using globals.jsa for Servlet 2.0 Environments

Oracle JSP in Apache JServ 9-1

Getting Started in a JServ Environment

Getting Started in a JServ Environment

This section provides information about configuring JServ to run JSP pages,
covering the following topics:

« Required and Optional Files for Oracle JSP

« Adding Files to the JServ Web Server Classpath
« Mapping JSP File Name Extensions for JServ

« Oracle JSP Configuration Parameters

« Setting JSP Parameters in JServ

Required and Optional Files for Oracle JSP

This section summarizes JAR and ZIP files required in order to use the Oracle JSP
container, as well as optional JAR and ZIP files to use Oracle JDBC and SQLJ
functionality, JIML or SQL custom tags, or custom data-access JavaBeans.

Required files must also be added to your classpath. (See "Adding Files to the JServ
Web Server Classpath" on page 9-4.)

Note: The servlet library for your servlet environment must be
installed on your system and included in the classpath in your Web
server configuration file. This library contains the standard

j avax. servl et . * packages.

The following files are provided with Oracle9i release 2 and must be installed on
your system:

« 0j sp.jar (the Oracle JSP container)

« xml parserv2.jar (for XML parsing—required for the web. xm deployment
descriptor in a servlet 2.2 environment, and for any tag library descriptors)

« servlet.jar (standard servlet library, servlet 2.2 version)

In addition, if your JSP pages will use Oracle JSP Markup Language (JML) tags,
SQL tags, or data-access JavaBeans, you will need the following files:

« Ojsputil.jar (OracleJSP utility library)

« Xsul2.jar,forJDK 1.2.x,0r xsulll. j ar, for JDK 1.1.x (for XML
functionality)

9-2 Oracle9i Support for JavaServer Pages Reference

Getting Started in a JServ Environment

To run in a client environment, xsul2. j ar or xsulll. j ar isrequired only if you
will use XML functionality in the data-access JavaBeans (such as getting a result set
as an XML string). The xsul2. j ar and xsulll. j ar files are included with
Oracle9i.

For Oracle data access, you will also need the following:
« Oracle JDBC class files (for any Oracle data access)
« Oracle SQLJ class files (if using SQLJ code in your JSP pages)

See "Files for JDBC (optional)" on page 9-4 and "Files for SQLJ (optional)" on
page 9-4 for more information.

To use JDBC data sources or Enterprise JavaBeans, you will need the following:
« jndi.jar
(This file is required for some of the Oracle JSP demos.)

Servlet Library Notes Note that Oracle JSP 1.1.x.x releases require and supply the 2.2
version of the servlet library, which is where the standard j avax. servl et . *
packages are located. Your Web server environment likely requires and supplies a
different servlet library version. You must be careful in your classpath to have the
version for your Web server precede the version for the Oracle JSP container.
"Adding Files to the JServ Web Server Classpath" on page 9-4 further discusses this.

Table 9-1 summarizes the servlet library versions. Do not confuse the Sun
Microsystems JSWDK (JavaServer Web Developer’s Kit) with the Sun Microsystems
JSDK (Java Servlet Developer’s Kit).

Table 9-1 Servlet Library Versions

Servlet Library Version Library File Name Provided with:

servlet 2.2 servlet.jar Oracle JSP, Tomcat 3.1
servlet 2.1 servlet.jar Sun JSWDK 1.0
servlet 2.0 jsdk.jar Sun JSDK 2.0; also used with JServ

(For JServ, download j sdk. j ar separately.)

Oracle JSP in Apache JServ 9-3

Getting Started in a JServ Environment

Files for JDBC (optional) The following files are required if you will use Oracle JDBC
for data access. (Be aware that Oracle SQLJ uses Oracle JDBC.)

« 0jdbcl4.jar or.zip (for IDK 1.4 environments)

or:

« classesl2.jar or.zip (forJDK 1.2 or 1.3 environments)

or:

« classeslll.jar or.zip (for IDK 1.1 environments)

Files for SQLJ (optional) The following files are necessary if your JSP pages use Oracle
SQLJ for their data access:

« translator.jar or.zip (for the SQLJ translator, for JDK 1.2.x or 1.1.x)
as well as the appropriate SQLJ runtime:

« runtinmel2.jar or.zip (for JIDK 1.2.x with Oracle9i JDBC)

or:

« runtinmel2ee.jar or.zip (for IDK 1.2.x enterprise edition with Oracle9i
JDBC)

or:
« runtimell.jar or.zip (for JDK 1.1.x with Oracle9i JDBC)
or:

« runtinme.jar or.zip (moregeneral—for JDK 1.2.x or 1.1.x with any Oracle
JDBC version)

or:

=« runtime-nonoracle.jar or.zip (generic—for use with non-Oracle JDBC
drivers and any JDK environment)

(The JDK 1.2.x enterprise edition allows data source support, in compliance with
the ISO SQLJ specification.)

Adding Files to the JServ Web Server Classpath

To add files to the Web server classpath in a JServ environment, insert appropriate
wr apper . cl asspat h commands into the j serv. properti es file in the JServ
conf directory. Note that j sdk. j ar should already be in the classpath. This file is
from the Sun Microsystems JSDK 2.0 and provides servlet 2.0 versions of the

9-4 Oracle9i Support for JavaServer Pages Reference

Getting Started in a JServ Environment

j avax. servl et . * packages that are required by JServ. Additionally, files for your
JDK environment should already be in the classpath.

The following example (which happens to use UNIX directory paths) includes files
for JSP, JDBC, and SQLJ. Replace [Or acl e_Hone] with your Oracle Home path.

servlet 2.0 APls (required by JServ, fromSun JSIK 2.0):

wr apper . cl asspat h=j sdk2. 0/l i b/ j sdk. j ar

#

servlet 2.2 APls (required and provided by GCAJ):

wr apper . cl asspat h=[O acl e_Hone] / oj sp/ i b/ servl et .| ar

JSP packages:

wr apper . cl asspat h=[O acl e_Hone] / oj sp/ | i b/ o] sp. j ar

wr apper . cl asspat h=[O acl e_tbne] / oj sp/ | i b/ oj sputil.jar

XML parser (used for servliet 2.2 web depl oynent descriptor):
wr apper . cl asspat h=[Oracl e_Hone] / oj sp/ | i b/ xm par serv2. j ar

JDBC libraries for Oracl e dat abase access (JDK 1.2.x envi ronnent):
wr apper . cl asspat h=[O acl e_Hone] / oj sp/ | i b/ cl asses12. zi p

SQJ translator (optional):

wr apper . cl asspat h=[O acl e_Hone] / oj sp/l i b/transl ator. zi p

SQJ runtinme (optional) (for JOK 1.2.x enterprise edition):
wr apper . cl asspat h=[O acl e_Hone] / oj sp/ | i b/ runti nel2. zi p

Important:

« Ifservlet.jar (provided with Oracle JSP for servlet 2.2
versions of j avax. ser vl et . * packages) is in your classpath
in aJServ environment, j sdk. j ar must precede it.

= You must also ensure that the Oracle JSP container can find
j avac (or an alternative Java compiler, according to your
j avaccnd configuration parameter setting). For j avac ina
JDK 1.1.x environment, the JDK cl asses. zi p file must be in
the Web server classpath. For j avac in a JDK 1.2.x or later
environment, the JDK t ool s. j ar file must be in the Web
server classpath.

Now consider an example where you have the following useBean command:

<j sp: useBean i d="queryBean" cl ass="nybeans. JOBOQuer yBean" scope="session" />

Oracle JSP in Apache JServ 9-5

Getting Started in a JServ Environment

You can add the following wr apper . cl asspat h command to the
j serv. properti es file. (This example happens to be for a Windows NT
environment.)

wr apper . cl asspat h=D \ Apache\ Apachel. 3. 9\ beans\

And then JDBCQuer yBean. cl ass should be located as follows:
D\ Apache\ Apachel. 3. 9\ beans\ nybeans\ JDBOQuer yBean. cl ass

Mapping JSP File Name Extensions for JServ

In a JServ environment, mapping each JSP file name extension to

oracl e. jsp. JspSer vl et —the JSP front-end servlet for JServ—requires an
ApJSer vAct i on command in either the j serv. conf file or the

nod_j serv. conf file. These configuration files are in the JServ conf directory.

(In older versions, you must instead update the ht t pd. conf file in the Apache
conf directory. In newer versions, the j serv. conf or nod_j serv. conf fileis
"included" into ht t pd. conf during execution—look at the ht t pd. conf file to see
which one it includes.)

Following is an example (which happens to use UNIX syntax):

Map file nane extensions (.sqgljsp and . SQLISP are optional).
ApJServAction . jsp /servlets/oracl e.jsp. JspServl et
ApJServAction . JSP /servl ets/oracl e.j sp. JspServl et
ApJServAction .sqljsp /servlets/oracl e.jsp. JspServl et
ApJServAction . SQLISP /servl ets/oracl e.j sp. JspServl et

The path you use in this command for or acl e. j sp. JspSer vl et is not a literal
directory path in the file system. The path to specify depends on your JServ servlet
configuration—how the servlet zone is mounted, the name of the zone properties
file, and the file system directory that is specified as the repository for the servlet.
("Servlet zone" is a JServ term that is similar conceptually to "servlet context".)
Consult your JServ documentation for more information.

9-6 Oracle9i Support for JavaServer Pages Reference

Getting Started in a JServ Environment

Important: With the above configurations, Oracle JSP will support
page references that use either a . j sp file name extension or a

. JSP file name extension, but the case in the reference must match

the actual file name in a case-sensitive environment. If the file name
isfile.jsp,youcanreference it that way, butnotasfil e. JSP If
the file name isf i | e. JSP, you can reference it that way, but not as
file.jsp.(Thesame holds true for . sql j sp versus . SQLJSP)

Oracle JSP Configuration Parameters

This section describes the configuration parameters supported by the Oracle
JspServl et.

Configuration Parameters Summary Table

Table 9-2 summarizes the configuration parameters supported by Oracle
JspSer vl et, the front-end of the Oracle JSP container. For each parameter, the
table notes the following:

« Wwhether it is used during page translation or page execution

« Whether it is typically of interest in a development environment, deployment
environment, or both

= any equivalent oj spc translation options for pages you are pretranslating
(The oj spc utility does not use JspSer vl et .)
Be aware of the following:

« The parameters debug_npde and send_err or are new with Oracle JSP 1.1.2.x
releases.

« The parameter al i as_t ransl ati on is for use in the JServ environment only.

« The parameter sessi on_shari ng is for use with gl obal s. j sa only
(presumably in a servlet 2.0 environment such as JServ).

Oracle JSP in Apache JServ 9-7

Getting Started in a JServ Environment

Notes:

= See "Details of the ojspc Pre-Translation Tool" on page 6-14 for a

description of the oj spc options.

« The distinction between execution-time and translation-time is
not particularly significant in a real-time translation

environment, but may be of interest when pre-translating.

Table 9-2 Oracle JSP Configuration Parameters

Used in
Used in JSP Development
Related ojspc Translation or or Deployment
Parameter Options Description Default Execution? Environment?
alias_translation n/a boolean; t r ue to work false execution development
(Apache-specific) around JServ limitations in and deployment
directory aliasing for JSP
page references
bypass_source n/a boolean;t r ue for the false execution deployment
Oracle JSP container to (also used by
ignore Fi | eNot Found JDeveloper)
exceptions on . j sp source;
uses pre-translated and
compiled code when source
is not available
classpath -addclasspath additional classpath entries null translation or development
(related, but for Oracle JSP class loading (noaddl. execution and deployment
different path)
functionality)
debug_mode n/a boolean;t r ue for the true execution development
Oracle JSP container to print
the stack trace when a
runtime exception occurs
developer_mode n/a boolean; f al se to not check true execution development

timestamps to see if page
retranslation and class
reloading is necessary when
a page is requested

9-8 Oracle9i Support for JavaServer Pages Reference

and deployment

Getting Started in a JServ Environment

Table 9-2 Oracle JSP Configuration Parameters (Cont.)

Used in
Used in JSP Development
Related ojspc Translation or or Deployment
Parameter Options Description Default Execution? Environment?
emit_debuginfo -debug boolean;t rue to generate a false translation development
line map to the original
. j sp file for debugging
during development
external_resource -extres boolean; t r ue for the false translation development
Oracle JSP container to and deployment
place all static content of the
page into a separate Java
resource file during
translation
javaccmd -noCompile Java compiler command null translation development
line—j avac options, or and deployment
alternative Java compiler
run in aseparate JVM (nul |
for JDK j avac with default
options)
page_repository_root -srcdir alternative root directory null translation or development
-d (fully qualified path) for the (use execution and deployment
Oracle JSP container to use default
in loading and generating root)
JSP pages
send_error n/a boolean; t r ue to output false execution deployment
standard "404" messages for
file-not-found, "500"
messages for compilation
errors (instead of outputting
customized messages)
session_sharing n/a boolean; for applications true execution development

(for use with
globals.jsa in servlet
2.0 environments)

using gl obal s. j sa,true
for JSP session data to be
propagated to underlying
servlet session

and deployment

Oracle JSP in Apache JServ 9-9

Getting Started in a JServ Environment

Table 9-2 Oracle JSP Configuration Parameters (Cont.)

Used in
Used in JSP Development
Related ojspc Translation or or Deployment
Parameter Options Description Default Execution? Environment?
sqglicmd -S SQLJcommand line—sql j null translation development
options, or alternative SQLJ and deployment
translator run in a separate
JVM (nul | for the Oracle
SQLJ version provided with
Oracle9i, with default
option settings)
translate_params n/a boolean;t rue to override false execution development
servlet containers that do and deployment
not perform multibyte
encoding
unsafe_reload n/a boolean; t r ue to not restart false execution development

(for development
only)

the application and sessions
whenever a JSP page is
retranslated and reloaded

Configuration Parameter Descriptions
This section describes the Oracle JSP configuration parameters in more detail.

alias_translation (boolean; default: f al se) (Apache-specific)

This parameter allows the Oracle JSP container to work around limitations in the
way JServ handles directory aliasing. For information about the current limitations,
see "Directory Alias Translation" on page 9-23.

You mustsetal i as_transl ationtotrue forhttpd. conf directory aliasing
commands, such as the following example, to work properly in the JServ serviet
environment:

Aias /icons/ "/apachel apachel39/i cons/"

bypass_source (boolean; default: f al se)

Normally, when a JSP page is requested, the Oracle JSP container will throw a
Fi | eNot Found exception if it cannot find the corresponding . j sp source file, even
if it can find the page implementation class. (This is because, by default, the JSP

9-10 Oracle9/ Support for JavaServer Pages Reference

Getting Started in a JServ Environment

container checks the page source to see if it has been modified since the page
implementation class was generated.)

Set this parameter to t r ue for the Oracle JSP container to proceed and execute the
page implementation class even if it cannot find the page source.

If bypass_sour ce is enabled, the JSP container will still check for retranslation if
the source is available and is needed. One of the factors in determining whether it is
needed is the setting of the devel oper _node parameter.

Notes:

« Thebypass_sour ce option is useful in deployment
environments that have the generated classes only, not the
source. (For related discussion, see "Deployment of Binary Files
Only" on page 6-27.)

« Oracle9i JDeveloper enables bypass_sour ce so that you can
translate and run a JSP page before you have saved the JSP
source to afile.

classpath (fully qualified path; default: nul | ')

Use this parameter to add classpath entries to the Oracle JSP default classpath for
use during translation, compilation, or execution of JSP pages. For information
about the Oracle JSP classpath and class loader, see "Classpath and Class Loader
Issues” on page 4-20.

The exact syntax depends on your Web server environment and operating system.
See "Setting JSP Parameters in JServ" on page 9-18 for some examples.

Overall, the Oracle JSP container loads classes from its own classpath (including
entries from this cl asspat h parameter), the system classpath, the Web server
classpath, the page repository, and predefined locations relative to the root directory
of the JSP application.

Be aware that classes loaded through the path specified in the cl asspat h setting
path are loaded by the JSP class loader, not the system class loader. During JSP
execution, classes loaded by the JSP class loader cannot access (or be accessed by)
classes loaded by the system class loader or any other class loader.

Oracle JSP in Apache JServ 9-11

Getting Started in a JServ Environment

Notes:

« Oracle JSP runtime automatic class reloading applies only to
classes in the Oracle JSP classpath. This includes paths
specified through this cl asspat h parameter. (See "Dynamic
Class Reloading" on page 4-25 for information about this
feature.)

=« When you pre-translate pages, the oj spc - addcl asspat h
option offers some related, though different, functionality. See
"Option Descriptions for ojspc” on page 6-18.

debug_mode (boolean; default: t r ue)

Use the default t r ue setting of this flag to direct the Oracle JSP container to print a
stack trace whenever a runtime exception occurs. Set it to f al se to disable this
feature.

developer_mode (boolean; default: t r ue)

Set this flag to f al se to instruct the Oracle JSP container to not routinely compare
the timestamp of the page implementation class to the timestamp of the . j sp
source file when a page is requested. With devel oper _node settotrue, the
Oracle JSP container checks every time to see if the source has been modified since
the page implementation class was generated. If that is the case, the JSP container
retranslates the page. With devel oper _npde setto f al se, the JSP container will
check only upon the initial request for the page or application. For subsequent
requests, it will simply re-execute the generated page implementation class.

This flag also affects dynamic class reloading for JavaBeans and other support
classes called by a JSP page. With devel oper _node settot r ue, the Oracle JSP
container checks to see if such classes have been modified since being loaded by the
Oracle JSP class loader.

Oracle generally recommends setting devel oper _node tof al se, particularly ina
deployment environment where code is not likely to change and where
performance is a significant issue.

Also see "Oracle JSP Runtime Page and Class Reloading" on page 4-24.

9-12 Oracle9/ Support for JavaServer Pages Reference

Getting Started in a JServ Environment

emit_debuginfo (boolean; default: f al se)

Set this flag to true to instruct the Oracle JSP container to generate a line map to the
original . j sp file for debugging during development. Otherwise, lines will be
mapped to the generated page implementation class.

Notes:
« Oracle9i JDeveloper enables emi t _debugi nf o.

« When you are pre-translating pages, the oj spc - debug option
is equivalent. See "Option Descriptions for ojspc" on page 6-18.

external_resource (boolean; default: f al se)

Set this flag to true to instruct the Oracle JSP translator to place generated static
content (the Java print commands that output static HTML code) into a Java
resource file instead of into the service method of the generated page
implementation class.

The resource file name is based on the JSP page name, with the . r es suffix. With
Oracle9i, translation of MyPage. j sp, for example, would create _MyPage. r es in
addition to normal output. The exact implementation may change in future releases,
however.

The resource file is placed in the same directory as generated class files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. In extreme cases, it may even prevent the service
method from exceeding the 64K method size limit imposed by the Java VM. For
more information, see "Workarounds for Large Static Content in JSP Pages" on
page 4-10.

Note: When you are pre-translating pages, the oj spc - extres
option is equivalent.

javaccmd (compiler executable; default: nul 1)
This parameter is useful in any of the following circumstances:

« ifyouwantto setj avac command-line options (although default settings are
typically sufficient)

Oracle JSP in Apache JServ 9-13

Getting Started in a JServ Environment

« if you want to use a compiler other than j avac (optionally including
command-line options)

« if you want to run the Java compiler in a separate process from the Oracle JSP
container

Specifying an alternative compiler results in the Oracle JSP container spawning that
executable as a separate process in a separate JVM, instead of spawning the JDK
default compiler within the same JVM in which the Oracle JSP container is running.
You can fully specify the path for the executable, or specify only the executable and
let the Oracle JSP container look for it in the system path.

Following is an example of aj avaccnd setting to enable the j avac - ver bose
option:

j avaccni=j avac - verbose

The exact syntax depends on your servlet environment. See "Setting JSP Parameters
in JServ" on page 9-18.

Notes:

« The specified Java compiler must be installed in the classpath
and any front-end utility (if applicable) must be installed in the
system path.

« When you are pre-translating pages, the oj spc - noConpi | e
option allows similar functionality. It results in no compilation
by j avac, so you can compile the translated classes manually
using your desired compiler. See "Option Descriptions for
ojspc” on page 6-18.

page_repository_root (fully qualified directory path; default: nul |)

The Oracle JSP container uses the Web server document repository to generate or
load translated JSP pages. By default, in an on-demand translation scenario, the root
directory is the Web server doc root directory (for JServ) or the servlet context root
directory of the application the page belongs to. JSP page source is in the root
directory or some subdirectory. Generated files are written to a _pages
subdirectory or some corresponding subdirectory.

Set the page_r eposi t ory_r oot option to instruct the Oracle JSP container to use
a different root directory.

9-14 Oracle9/ Support for JavaServer Pages Reference

Getting Started in a JServ Environment

For information about file locations relative to the root directory and _pages
subdirectory, see "Oracle JSP Translator Output File Locations" on page 6-8.

Notes:

« The specified directory, _pages subdirectory, and any
appropriate subdirectories under these are created
automatically if they do not already exist.

=« When you are pre-translating pages, the oj spc options
-srcdi r and - d provide related functionality. See "Option
Descriptions for ojspc" on page 6-18.

send_error (boolean; default: f al se)

Set this flag to t r ue to direct the Oracle JSP container to output generic "404"
messages for file-not-found conditions, and generic "500" messages for compilation
errors.

This is as opposed to outputting customized messages that provide more
information (such as the name of the file not found). Some environments, such as
JServ, do not allow output of a customized message if a "404" or "500" message is
output.

session_sharing (boolean; default: t r ue) (for use with globals.jsa)

When a gl obal s. j sa file is used for an application, presumably in a servlet 2.0
environment, each JSP page uses a distinct JSP session wrapper attached to the
single overall servlet session object provided by the servlet container.

In this situation, the default t r ue setting of the sessi on_shar i ng parameter
results in JSP session data being propagated to the underlying servlet session. This
allows servlets in the application to access the session data of JSP pages in the
application.

If sessi on_shari ngis f al se (which parallels standard behavior in most JSP
implementations), JSP session data is not propagated to the servlet session. As a
result, application servlets would not be able to access JSP session data.

This parameter is meaningless if gl obal s. j sa is not used. For information about
gl obal s. j sa, see "Oracle JSP Application and Session Support for JServ" on
page 9-26.

Oracle JSP in Apache JServ 9-15

Getting Started in a JServ Environment

sglicmd (SQLJ translator executable and options; default: nul | ')

This parameter is useful in any of the following circumstances:

« if you want to set one or more SQLJ command-line options
(You can set multiple SQLJ options in the sqgl j cnd setting.)

« if you want to use a different SQLJ translator (or at least a different version)
than the one provided with Oracle9i

« if youwant to run SQLJ in a separate process from the Oracle JSP container

Specifying a SQLJ translator executable results in the JSP container spawning that
executable as a separate process in a separate JVM, instead of spawning the default
SQLJ translator within the same JVM in which the JSP container is running.

You can fully specify the path for the executable, or specify only the executable and
let the JSP container look for it in the system path.

Following is an example of a sql j cnd setting to log into scot t/ t i ger for online
semantics-checking and to generate 1SO standard SQLJ code:

sgl j cmd=sqlj -user=scott/tiger -codegen=iso

(The exact syntax depends on your servlet environment. See "Setting JSP
Parameters in JServ" on page 9-18.)

9-16 Oracle9/ Support for JavaServer Pages Reference

Getting Started in a JServ Environment

Notes:

« Appropriate SQLJ files must be in the classpath, and any
front-end utility (such as sql j in the example) must be in the
system path. (For Oracle SQLJ, the t r ansl at or ZIP or JAR file
and the appropriate SQLJ runtime ZIP or JAR file must be in
the classpath. See "Required and Optional Files for Oracle JSP"
on page 9-2.)

« Presumably the great majority of JSP developers will use Oracle
SQLJ (as opposed to some other SQLJ product) if they use SQLJ
code in their JSP pages; however, this option is useful if you
want to use a different Oracle SQLJ version (for example, one
intended for use with Oracle JDBC 8.0.x/7.3.x drivers instead
of Oracle9i drivers) or if you want to set SQLJ options.

« When you are pre-translating pages, the oj spc - S option
provides related functionality. See "Option Descriptions for
ojspc” on page 6-18.

translate_params (boolean; default: f al se)

Note: Beginning with Oracle JSP 1.1.2.x releases, it is preferable to
use the Publ i cUti | . set ReqChar act er Encodi ng() method
instead of using the t r ansl at e_par ans parameter. See "The
setRegCharacterEncoding() Method" on page 8-5.

Set this flag to t r ue to override servlet containers that do not encode multibyte
(globalization support) request parameters or bean property settings. With this
setting, the Oracle JSP container encodes request parameters and bean property
settings. Otherwise, the JSP container returns the parameters from the servlet
container unchanged.

For more information about the functionality and use of t r ansl at e_par ans,
including situations where it should not be used, see "Oracle JSP Extended Support
for Multibyte Parameter Encoding" on page 8-5.

Oracle JSP in Apache JServ 9-17

Getting Started in a JServ Environment

unsafe_reload (boolean; default: f al se) (for development only)

By default, the Oracle JSP container restarts the application and sessions whenever
a JSP page is dynamically retranslated and reloaded (which occurs when the JSP
translator finds a . j sp source file with a more recent timestamp than the
corresponding page implementation class).

Set this parameter to t r ue to instruct the JSP container not to restart the application
after dynamic retranslations and reloads. This avoids having existing sessions
become invalid.

For a given JSP page, this parameter has no effect after the initial request for the
page if devel oper _node issettof al se (in which case the JSP container never
retranslates after the initial request).

Important: This parameter is intended for developers only and is
not recommended for deployment environments.

Setting JSP Parameters in JServ

Each Web application in a JServ environment has its own properties file, known as a
zone properties file. In Apache terminology, a zone is essentially the same as a servlet
context.

The name of the zone properties file depends on how you mount the zone. (See the
JServ documentation for information about zones and mounting.)

To set JSP configuration parameters in a JServ environment, set the JspSer vl et
i ni t Ar gs property in the application zone properties file, as in the following
example (which happens to use UNIX syntax):

servlet.oracle.jsp.JspServl et.initArgs=devel oper_node=f al se,
sgl j cmd=sqlj -user=scott/tiger -codegen=iso, cl asspath=/nydir/nyapp.jar
(This is a single wraparound line.)

The servlet path, servl et . oracl e. j sp. JspSer vl et , also depends on how you
mount the zone. It does not represent a literal directory path.

Be aware of the following:

« The effects of multiple i ni t Ar gs commands are cumulative and overriding.
For example, consider the following two commands (in order):

servlet.oracle.jsp.JspServlet.initA gs=fool=val 1, f oo2=val 2
servlet.oracle.jsp.JspServlet.initA gs=fool=val 3

9-18 Oracle9/ Support for JavaServer Pages Reference

Getting Started in a JServ Environment

This combination is equivalent to the following single command:

servlet.oracle.jsp.JspServl et.initA gs=fool=val 3, f o02=val 2

In the first two commands, the val 3 value overrides the val 1 value for f oo1,
but does not affect the f 002 setting.

Because i ni t Ar gs parameters are comma-separated, there can be no commas
within a parameter setting. Spaces and other special characters (such as "="in
this example) do not cause a problem, however.

Oracle JSP in Apache JServ 9-19

Considerations for JServ Servlet Environments

Considerations for JServ Servlet Environments

There are special considerations in running the Oracle JSP container in JServ-based
platforms, because this is a servlet 2.0 environment. The servlet 2.0 specification
lacked support for some significant features that are available in servlet 2.1 and 2.2
environments.

For information about how to configure a JServ environment for the Oracle JSP
container, see the following sections:

« "Adding Files to the JServ Web Server Classpath" on page 9-4

= "Mapping JSP File Name Extensions for JServ" on page 9-6

« "Setting JSP Parameters in JServ" on page 9-18

This section discusses the following Apache-specific considerations:
« Dynamic Includes and Forwards in JServ

« Application Framework for JServ

« JSPand Servlet Session Sharing

« Directory Alias Translation

Dynamic Includes and Forwards in JServ

JSP dynamic includes (the j sp: i ncl ude action) and forwards (the j sp: f orwar d
action) rely on request dispatcher functionality that is present in servlet 2.1 and 2.2
environments but not in servlet 2.0 environments.

The Oracle JSP container, however, provides extended functionality to allow
dynamic includes and forwards from one JSP page to another JSP page or to a static
HTML file in JServ and other servlet 2.0 environments.

This Oracle JSP functionality for servlet 2.0 environments does not, however, allow
dynamic forwards or includes to servlets. (Servlet execution is controlled by the
JServ or other servlet container, not the JSP container.)

If you want to include or forward to a servlet in JServ, however, you can create a JSP
page that acts as a wrapper for the servlet.

The following example shows a servlet, and a JSP page that acts as a wrapper for
that servlet. In a JServ environment, you can effectively include or forward to the
servlet by including or forwarding to the JSP wrapper page.

9-20 Oracle9/ Support for JavaServer Pages Reference

Considerations for JServ Servlet Environments

Servlet Code Presume that you want to include or forward to the following servlet:

inport java.io.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

public class TestServl et extends HtpServlet {

public void init(Servlet@nfig config) throws ServletException
{

super.init(config);

Systemout.printin("initialized");

}

public void destroy()
{

Systemout. println("destroyed");
}

public void service
(HtpServl et Request request, HtpServl et Response response)
throws Servl et Exception, | CException

r esponse. set Gont ent Type("text/htm");

PrintWiter out = response.getWiter();

out. printl n(" <HTM><BDY>") ;

out.println("TestServlet Testing");

out.println("<H3>The local tinme is: "+ newjava. util.Date());
out. print!l n("</BADY></ HIM>") ;

JSP Wrapper Page Code You can create the following JSP wrapper (w apper . j sp)
for the preceding servlet.

<%- wapper.jsp--waps TestServlet for JSP include/forward --%
<Y@page i sThreadSaf e="true" inport="TestServlet" %
<%
Test Servl et s=nul | ;
public void jsplnit() {
s=new Test Servl et ();
try {
s.init(this.getServlietnfig());
} catch (Servl et Exception se)

Oracle JSP in Apache JServ 9-21

Considerations for JServ Servlet Environments

{

s=nul | ;
}

}
public void jspDestroy() {

s. destroy();

}
%
<%s. servi ce(request, response); %

Including or forwarding to wr apper . j sp in a servlet 2.0 environment has the same
effect as directly including or forwarding to Test Ser vl et inaservlet2.1or 2.2
environment.

Note Regarding Dynamic Includes and Forwards

« Whethertoseti sThreadSaf e totrue orfal se inthe wrapper JSP page
depends on whether the original servlet is thread-safe.

« Asan alternative to using a wrapper JSP page for this situation, you can add
HTTP client code to the original JSP page (the one from which the i ncl ude or
f orwar d is to occur). You can use an instance of the standard j ava. net . URL
class to create an HTTP request from the original JSP page to the servlet. (Note
that you cannot share session data or security credentials in this scenario.)
Alternatively, you can use the HTTPCl i ent class from Innovation GmbH. The
Oracle JVM provides a modified version of this class that supports SSL, directly
or through a proxy, when you use ht t ps: // for the URL. (See
http://ww. i nnovation.ch/java/ HTTPC i ent for general information
about this class. Click "Getting Started" for information that includes how to
replace the IDK HTTP client with the HTTPCl i ent class.) Details of these
alternatives are outside the scope of this document, however, and this approach
is generally not recommended.

Application Framework for JServ

The servlet 2.0 specification does not provide the full servlet context framework for
application support that is provided in later specifications.

For servlet 2.0 environments, including JServ, the Oracle JSP container supplies its
own application framework using a file, gl obal s. j sa, that you can use as an
application marker.

For more information, see "Distinct Applications and Sessions Through globals.jsa"
on page 9-27.

9-22 Oracle9/ Support for JavaServer Pages Reference

Considerations for JServ Servlet Environments

JSP and Servlet Session Sharing

To share HTTP session information between JSP pages and servlets in a JServ
environment, you must configure your environment so that

oracl e.jsp. JspServl et (the servlet that acts as the front-end of the Oracle JSP
container) is in the same zone as the servlet or servlets with which you want your
JSP pages to share a session. Consult your Apache documentation for more
information.

To verify proper zone setup, some browsers allow you to enable a warning for
cookies. In an Apache environment, the cookie name includes the zone name.

Additionally, for applications that use a gl obal s. j sa file, the JSP configuration
parameter sessi on_shari ng should be set to t r ue (the default) for JSP session
data to be accessible to servlets. See these sections for related information:

« "Oracle JSP Application and Session Support for JServ" on page 9-26
« "Oracle JSP Configuration Parameters" on page 9-7

« "Setting JSP Parameters in JServ" on page 9-18

Directory Alias Translation

Apache supports directory aliasing by allowing you to create a "virtual directory"
through an Al i as command in the ht t pd. conf configuration file. This allows
Web documents to be placed outside the default doc root directory.

Consider the following sample ht t pd. conf entry:
Aias /icons/ "/apache/ apachel39/i cons/"
This command should result in i cons being usable as an alias for the

[apache/ apachel39/i cons/ path. In this way, for example, the file
[apache/ apachel39/i cons/ art. gi f, could be accessed by the following URL:

http:// host[: port]/icons/art.gif
Currently, however, this functionality does not work properly for servlets and JSP

pages, because the JServ get Real Pat h() method returns an incorrect value when
processing a file under an alias directory.

Oracle provides an Apache-specific JSP configuration parameter,
al i as_transl ati on, that works around this limitation when you set
alias_transl ati ontotrue (the default setting is f al se).

Oracle JSP in Apache JServ 9-23

Considerations for JServ Servlet Environments

Be aware that setting al i as_t ransl ati on=t r ue also results in the alias directory
becoming the application root. Therefore, in a dynamici ncl ude or f or war d
command where the target file name starts with "/", the expected target file location
will be relative to the alias directory.

Consider the following example, which results in all JSP and HTML files under
/ privat e/ f oo being effectively under the application / nyt est :

Aias /nytest/ "/privatel/fool"

Also assume there is a JSP page located as follows:

[private/ fool xxx.jsp

The following dynamic i ncl ude command will work, because xxx. j sp is directly
below the aliased directory, / pri vat e/ f oo, which is effectively the application
root:

<j sp:include page="/xxx.jsp" flush="true" />

JSP pages in other applications or in the general doc root cannot forward to or
include JSP pages or HTML files under the / myt est application. It is only possible
to forward to or include pages or HTML files within the same application (per the
servlet 2.2 specification).

Notes:

« Animplicit application is created for the Web server document
root and each aliasing root.

« For information about how to set JSP configuration parameters
in a JServ environment, see "Setting JSP Parameters in JServ" on
page 9-18.

Also be aware that there are issues when two aliases begin with the same partial
directory path. Consider the following two aliases as an example:

Aias /foo/barl "/ path/tolny/dir/x/barl"
Aias /foolbar2 "/path/tol/ny/dir/ylbar2"

An initial request for / f oo/ bar 1/ bar 1. j sp will work, but a subsequent request
for / f oo/ bar 2/ bar 2. j sp will incorrectly look in/ pat h/ t o/ my/ di r/ x for
bar 2. j sp, and will fail with a Fi | eNot Found exception. This is due to further

9-24 Oracle9/ Support for JavaServer Pages Reference

Considerations for JServ Servlet Environments

limitations with the JServ get Real Pat h() implementation, which returns
incorrect information. There are two workarounds for this situation:

or:

Have only one alias, with real directories underneath:
Aias /foo "/path/to/ny/dir"
Here the bar 1 and bar 2 directories would physically exist as

[path/to/ my/dir/barland/path/to/ny/dir/bar2,and there would
not be a problem.

Have more than one alias, but do not have common directory names:

Aias /foo/barl "/path/to/ny/dir/x_barl"
Aias /foo/bar2 "/path/to/ny/dir/y_bar2"

Note that the physical directories do not have the same name as the alias
directories (unlike the problematic example above, where alias directories and
physical directories shared bar 1 and bar 2 in common).

Oracle JSP in Apache JServ 9-25

Oracle JSP Application and Session Support for JServ

Oracle JSP Application and Session Support for JServ

The Oracle JSP container defines a file, gl obal s. j sa, as a mechanism for
implementing the JSP specification in a servlet 2.0 environment. Web applications
and servlet contexts were not fully defined in the servlet 2.0 specification.

This section discusses the gl obal s. j sa mechanism and covers the following
topics:

« Overview of globals.jsa Functionality

« Overview of globals.jsa Syntax and Semantics
« The globals.jsa Event Handlers

« Global Declarations and Directives

For sample applications, see "Samples Using globals.jsa for Serviet 2.0
Environments" on page 9-39.

Important: Use all lowercase for the gl obal s. j sa file name.
Mixed case works in a non-case-sensitive environment, but makes
it difficult to diagnose resulting problems if you port the pages to a
case-sensitive environment.

Overview of globals.jsa Functionality

Within any single Java virtual machine, you can use a gl obal s. j sa file for each
application (or, equivalently, for each servlet context). This file supports the concept
of Web applications in the following areas:

« application deployment—through its role as an application location marker to
define an application root

« distinct applications and sessions—through its use by the Oracle JSP container
in providing distinct servlet context and session objects for each application

« application lifecycle management—through start and end events for sessions
and applications

The gl obal s. j sa file also provides a vehicle for global Java declarations and JSP
directives across all JSP pages of an application.

9-26 Oracle9/ Support for JavaServer Pages Reference

Oracle JSP Application and Session Support for JServ

Application Deployment through globals.jsa

To deploy an Oracle JSP application that does not incorporate servlets, copy the
directory structure into the Web server and create a file called gl obal s. j sa to
place at the application root directory.

The gl obal s. j sa file can be of zero size. The Oracle JSP container will locate it,
and its presence in a directory defines that directory (as mapped from the URL
virtual path) as the root directory of the application.

The JSP container also defines default locations for JSP application resources. For
example, application beans and classes in the application-relative

/ VIEB- | NF/ cl asses and / WEB- | NF/ | i b directories (servlet 2.2 or higher) will
automatically be loaded by the Oracle JSP classloader without the need for specific
configuration.

Notes: For an application that does incorporate servlets, especially
in a servlet environment preceding the servlet 2.2 specification,
manual configuration is required as with any servlet deployment.
For servlets in a servlet 2.2 or higher environment, you can include
the necessary configuration in the standard web. xm deployment
descriptor.

Distinct Applications and Sessions Through globals.jsa

The servlet 2.0 specification does not have a clearly defined concept of a Web
application and there is no defined relationship between servlet contexts and
applications, as there is in later servlet specifications. In a servlet 2.0 environment
such as JSery, there is only one servlet context object per VM. A servlet 2.0
environment also has only one session object.

The gl obal s. j sa file, however, provides support for multiple applications and
multiple sessions in a Web server, particularly for use in a servlet 2.0 environment.

Where a distinct servlet context object would not otherwise be available for each
application, the presence of a gl obal s. j sa file for an application allows the
Oracle JSP container to provide the application with a distinct Ser vl et Cont ext
object.

Additionally, where there would otherwise be only one session object (with either
one servlet context or across multiple servlet contexts), the presence of a

gl obal s. j sa file allows the Oracle JSP container to provide a proxy

Ht t pSessi on object to the application. This prevents the possibility of session
variable-name collisions with other applications, although unfortunately it cannot

Oracle JSP in Apache JServ 9-27

Oracle JSP Application and Session Support for JServ

protect application data from being inspected or modified by other applications.
This is because Ht t pSessi on objects must rely on the underlying servlet session
environment for some of their functionality.

Application and Session Lifecycle Management Through globals.jsa

An application must be notified when a significant state transition occurs. For
example, applications often want to acquire resources when an HTTP session begins
and release resources when the session ends, or restore or save persistent data when
the application itself is started or terminated.

In standard servlet and JSP technology, however, only session-based events are
supported.

For applications that use a gl obal s. j sa file, the Oracle JSP container extends this
functionality with the following four events:

« session OnStart

« session_OnkEnd

« application_OnStart
« application_OnEnd

You can write event handlers in the gl obal s. j sa file for any of these events that
the server should respond to.

The sessi on_OnSt art event and sessi on_OnEnd event are triggered at the
beginning and end of an HTTP session, respectively.

The appl i cati on_OnSt art eventis triggered for any application by the first
request for that application within any single JVM. The appl i cati on_OnEnd
event is triggered when the Oracle JSP container unloads an application.

For more information, see "The globals.jsa Event Handlers" on page 9-31.

Overview of globals.jsa Syntax and Semantics

This section is an overview of general syntax and semantics for a gl obal s. j sa
file.

Each event block in a gl obal s. j sa file—asessi on_OnSt art block, a

sessi on_OnEnd block, an appl i cati on_OnSt art block, or an

appl i cat i on_OnEnd block—has an event start tag, an event end tag, and a body
(everything between the start and end tags) that includes the event-handler code.

9-28 Oracle9/ Support for JavaServer Pages Reference

Oracle JSP Application and Session Support for JServ

The following example shows this pattern:

<event:session_hStart >
<% This scriptlet contains the inplenmentation of the event handl er %
</event:session S art>

The body of an event block can contain any valid JSP tags—standard tags as well as
tags defined in a custom tag library.

The scope of any JSP tag in an event block, however, is limited to only that block.
For example, a bean that is declared in a j sp: useBean tag within one event block
must be redeclared in any other event block that uses it. You can avoid this
restriction, however, through the gl obal s. j sa global declaration
mechanism—see "Global Declarations and Directives" on page 9-36.

For details about each of the four event handlers, see "The globals.jsa Event
Handlers" on page 9-31.

Important: Static text as used in a regular JSP page can reside in a
sessi on_OnSt art block only. Event blocks for sessi on_OnEnd,
application_OnStart,andapplicati on_OnEnd can contain
only Java scriptlets.

JSP implicit objects are available in gl obal s. j sa event blocks as follows:
« Theapplication_OnStart block has access to the appl i cat i on object.
« Theapplicati on_OnEnd block has access to the appl i cat i on object.

« Thesession_OnStart block has access to the appl i cati on, sessi on,
request,response, page, and out objects.

« Thesessi on_OnEnd block has access to the appl i cati on and sessi on
objects.

Example of a Complete globals jsa File This example shows you a complete
gl obal s. j sa file, using all four event handlers.

<event:application_nStart>
<%- Initializes counts to zero --%
<j sp: useBean i d="pageCount" class="oracle.jsp.jn.Jn Nunber" scope = "application" />

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jnt.JInt Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />

Oracle JSP in Apache JServ 9-29

Oracle JSP Application and Session Support for JServ

</event:application_ (hSart>
<event : appl i cati on_QhEnd>

<%- Acquire beans --%

<j sp: useBean i d="pageCount" class="oracle.jsp.jn.Jn Nunber" scope = "application" />

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<% appl i cation.|og("The nunber of page hits were: " + pageCount.getValue()); %

<% application.|og("The nunber of client sessions were: " + sessionCount.getValue()); %

</ event: appl i cati on_QhEnd>
<event:session_hStart>

<%- Acquire beans --%
<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<j sp: useBean i d="activeSessi ons" class="oracl e.jsp.jnm.Jm Nunber" scope = "application" />
<%
sessi onCount . set Val ue(sessi onCount . get Val ue() + 1);
act i veSessi ons. set Val ue(acti veSessi ons. get Val ue() + 1);
%

Sarting session # <%sessi onCount. get Val ue() %

There are currently <% activeSessions. getVal ue() % </ b> active sessions <p>

</event:session S art>
<event : sessi on_(hEnd>
<%- Acquire beans --%
<j sp: useBean i d="activeSessi ons" class="oracle.jsp.jnm.Jm Nunber" scope = "application" />
<%
act i veSessi ons. set Val ue(acti veSessi ons. get Val ue() - 1);

%

</ event : sessi on_hEnd>

9-30 Oracle9/ Support for JavaServer Pages Reference

Oracle JSP Application and Session Support for JServ

The globals.jsa Event Handlers

This section provides details about each of the four gl obal s. j sa event handlers.

application_OnStart
The appl i cati on_OnSt art block has the following general syntax:

<event:application_nStart>
<% Thi s scriptlet contains the inplenentation of the event handl er %
</event:application_ (hSart>

The body of the appl i cati on_OnSt art event handler is executed when the
Oracle JSP container loads the first JSP page in the application. This usually occurs
when the first HTTP request is made to any page in the application, from any client.
Applications use this event to initialize application-wide resources, such as a
database connection pool or data read from a persistent repository into application
objects.

The event handler must contain only JSP tags (including custom tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the Oracle JSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: application_OnStart The following appl i cati on_OnSt art example is
from the "A globals.jsa Example for Application Events: lotto.jsp" on page 9-39. In
this example, the generated lottery numbers for a particular user are cached for an
entire day. If the user re-requests the picks, he or she gets the same set of numbers.
The cache is recycled once a day, giving each user a new set of picks. To function as
intended, the lotto application must make the cache persistent when the application
is being shut down, and must refresh the cache when the application is reactivated.

The appl i cati on_OnSt art event handler reads the cache from the | ot t 0. che
file.

<event:application_nStart>

<%

Cal endar today = Cal endar. get | nstance();
application.setAttribute("today", today);

try {

Oracle JSP in Apache JServ 9-31

Oracle JSP Application and Session Support for JServ

FlelnputSreamfis = new F | el nput S ream
(appl i cation. get Real Path("/")+Fi | e. separator +'l ott 0. che");
(oj ect I nput Stream oi s = new (pj ect | nput Streanffis);
Cal endar cacheDay = (Cal endar) ois.read(ject();
i f (cacheDay. get (Cal endar. DAY O YEAR == today. get (Cal endar. DAY CF YEAR)) {
cachedNunbers = (Hashtabl e) ois. read)j ect();
appl i cation.set Attribut e("cachedNunbers", cachedNunbers);

oi s.close();
} catch (Exception theE) {
/] catch all -- can't use persistent data

}
%

</event:application (hSart>

application_OnEnd
The appl i cati on_OnEnd block has the following general syntax:

<event : appl i cati on_QhEnd>
<% Thi s scriptlet contains the inplenentation of the event handl er %
</ event: appl i cati on_QnEnd>

The body of the appl i cat i on_OnEnd event handler is executed when the Oracle
JSP container unloads the JSP application. Unloading occurs whenever a previously
loaded page is reloaded after on-demand dynamic re-translation (unless the JSP
unsaf e_r el oad configuration parameter is enabled), or when the JSP container,
which itself is a servlet, is terminated by having its dest r oy() method called by
the underlying servlet container. Applications use the appl i cati on_OnEnd event
to clean up application level resources or to write application state to a persistent
store.

The event handler must contain only JSP tags (including custom tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the Oracle JSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

9-32 Oracle9/ Support for JavaServer Pages Reference

Oracle JSP Application and Session Support for JServ

Example: application_OnEnd The following appl i cat i on_OnEnd example is from
the "A globals.jsa Example for Application Events: lotto.jsp" on page 9-39. In this
event handler, the cache is written to file | ot t 0. che before the application is
terminated.

<event : appl i cati on_QOhEnd>

<%

%

Cal endar now = Cal endar . get | nstance();
Cal endar today = (Cal endar) application.getAttribute("today");
if (cachedNunbers.isEmpty() ||

try {

} catch

now get (Cal endar. DAY_CF_YEAR) > today. get (Cal endar . DAY COF YEAR)) {
Filef = new F le(application. getReal Path("/")+F | e. separat or+"l otto.che");
if (f.exists()) f.delete();
return;

F leQutputSreamfos = new Fil eQut put S ream
(appl i cation. get Real Path("/")+Fi | e. separator +'l ott 0. che");
(bj ect Qut put Stream oos = new (bj ect Qut put S rean{f 0s) ;
0os. witeChj ect (today);
00s. wi t e(yj ect (cachedNunber s) ;

00s. cl ose();
(Exception theE) {
/] catch all -- can't use persistent data

</ event : appl i cati on_ChEnd>

session_OnStart
The sessi on_OnSt art block has the following general syntax:

<event:session_hStart >
<% Thi s scriptlet contains the inplenentation of the event handl er %
(ptional static text...

</event:session S art>

The body of the sessi on_OnSt art event handler is executed when the Oracle JSP
container creates a new session in response to a JSP page request. This occurs on a
per client basis, whenever the first request is received for a session-enabled JSP page
in an application.

Oracle JSP in Apache JServ 9-33

Oracle JSP Application and Session Support for JServ

Applications might use this event for the following purposes:
« toinitialize resources tied to a particular client
« to control where a client starts in an application

Because the implicit out object is available to sessi on_OnSt art, this is the only
gl obal s. j sa event handler that can contain static text in addition to JSP tags.

The sessi on_OnSt art event handler is called before the code of the JSP page is
executed. As a result, output from sessi on_OnSt art precedes any output from
the page.

The sessi on_OnSt art event handler and the JSP page that triggered the event
share the same out stream. The buffer size of this stream is controlled by the buffer
size of the JSP page. The sessi on_OnSt art event handler does not automatically
flush the stream to the browser—the stream is flushed according to general JSP
rules. Headers can still be written in JSP pages that trigger the sessi on_OnSt art
event.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the Oracle JSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: session_OnStart The following example makes sure that each new session
starts on the initial page (i ndex. j sp) of the application.
<event:session_hStart>

<%if (!page.equal s("index.jsp")) { %

<j sp:forward page="i ndex. jsp" />
<%} %

</event:session S art>

session_OnEnd
The sessi on_OnEnd block has the following general syntax:

<event:sessi on_OnEnd>
<% Thi s scriptlet contains the inplenentation of the event handl er %
</ event:sessi on_OnEnd>

9-34 Oracle9/ Support for JavaServer Pages Reference

Oracle JSP Application and Session Support for JServ

The body of the sessi on_OnEnd event handler is executed when the Oracle JSP
container invalidates an existing session. This occurs in either of the following
circumstances:

= The application invalidates the session by calling the
session.inval i date() method.

= The session expires ("times out") on the server.
Applications use this event to release client resources.

The event handler must contain only JSP tags (including tag library tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the Oracle JSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: session_OnEnd The following example decrements the "active session"
count when a session is terminated.

<event : sessi on_(hEnd>

<%- Acquire beans --%
<j sp: useBean id="act i veSessi ons" cl ass="oracl e. | sp.jnt.Jm Nunber" scope = "appl ication" />

<%
act i veSessi ons. set Val ue(acti veSessi ons. get Val ue() - 1);
%

</ event : sessi on_CnhEnd>

Oracle JSP in Apache JServ 9-35

Oracle JSP Application and Session Support for JServ

Global Declarations and Directives

In addition to holding event handlers, a gl obal s. j sa file can be used to globally
declare directives and objects for the JSP application. You can include JSP directives,
JSP declarations, JSP comments, and JSP tags that have a scope parameter (such as
j sp: useBean).

This section covers the following topics:
« Global JSP Directives

« Declarations in globals.jsa

« Global JavaBeans

« Structure of globals.jsa

« Global Declarations and Directives Example

Global JSP Directives
Directives used within a gl obal s. j sa file serve a dual purpose:

« They declare the information that is required to process the gl obal s. j sa file
itself.

« They establish default values for succeeding pages.

A directive in a gl obal s. j sa file becomes an implicit directive for all JSP pages in
the application, although a gl obal s. j sa directive can be overwritten for any
particular page.

A gl obal s. j sa directive is overwritten in a JSP page on an attribute-by-attribute
basis. If a gl obal s. j sa file has the following directive:

<Y@page inport="java.util.*" bufferS ze="10kb" %

and a JSP page has the following directive:
<Ygpage bufferS ze="20kb" %

then this would be equivalent to the page having the following directive:
<Y@page inport="java.util.*" bufferS ze="20kb" %

9-36 Oracle9/ Support for JavaServer Pages Reference

Oracle JSP Application and Session Support for JServ

Declarations in globals.jsa

If you want to declare a method or data member to be shared across any of the
event handlersinagl obal s. j safile,usealJSP<% ... % declaration within the
gl obal s. j safile.

Note that JSP pages in the application do not have access to these declarations, so
you cannot use this mechanism to implement an application library. Declaration
support is provided in the gl obal s. j sa file for common functions to be shared
across event handlers.

Global JavaBeans

Probably the most common elements declared in gl obal s. j sa files are global
objects. Objects declared in a gl obal s. j sa file become part of the implicit object
environment of the gl obal s. j sa event handlers and all the JSP pages in the
application.

An object declared in a gl obal s. j safile (such as by aj sp: useBean statement)
does not need to be redeclared in any of the individual JSP pages of the application.

You can declare a global object using any JSP tag or extension that has a scope
parameter, such asj sp: useBean orj m : useVar i abl e. Globally declared objects
must be of either sessi on or appl i cat i on scope (not page or r equest scope).

Nested tags are supported. Thus, aj sp: set Proper t y command can be nested in
aj sp: useBean declaration. (A translation error occurs if j sp: set Property is
used outside aj sp: useBean declaration.)

Structure of globals.jsa

When a global object is used in a gl obal s. j sa event handler, the position of its
declaration is important. Only those objects that are declared before a particular
event handler are added as implicit objects to that event handler. For this reason,
developers are advised to structure their gl obal s. j sa file in the following
sequence:

1. global directives
2. global objects

3. event handlers
4

gl obal s. j sa declarations

Oracle JSP in Apache JServ 9-37

Oracle JSP Application and Session Support for JServ

Global Declarations and Directives Example
The sample gl obal s. j sa file below accomplishes the following:

« Itdefines the JML tag library (in this case, the compile-time implementation) for
the gl obal s. j sa file, as well as for all subsequent pages.

By including the t agl i b directive in the gl obal s. j sa file, the directive does
not have to be included in any of the individual JSP pages of the application.

« Itdeclares three application variables for use by all pages (in the j sp: useBean
statements).

For an additional example of using gl obal s. j sa for global declarations, see "A
globals.jsa Example for Global Declarations: index2.jsp" on page 9-45.

<%- Directives at the top --%
<Y@taglib uri="oracl e.]sp. parse. QpenJspRegi sterLi b" prefix="jm" %
<%- Decl are gl obal objects here --%

<%- Initializes counts to zero --%

<j sp: useBean i d="pageCount" class="oracle.jsp.jn.Jn Nunber" scope = "application" />

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" class="oracl e.jsp.jn.Jm Nunber" scope = "application" />

<%- Application |ifecycle event handlers go here --%

<event:application_nStart>
<% This scriptlet contains the inplenentation of the event handl er %
</event: application S art>

<event : appl i cati on_QOhEnd>
<% This scriptlet contains the inplenentation of the event handl er %
</ event: appl i cati on_QnEnd>

<event:session_ S art >

<% This scriptlet contains the inplenentation of the event handl er %
</event:session Start >
<event : sessi on_(hEnd>

<% This scriptlet contains the inplenentation of the event handl er %
</ event : sessi on_hEnd>

<%- Decl arations used by the event handlers go here --%

9-38 Oracle9/ Support for JavaServer Pages Reference

Samples Using globals.jsa for Servlet 2.0 Environments

Samples Using globals.jsa for Servlet 2.0 Environments

This section has examples of how the Oracle gl obal s. j sa mechanism can be used
in servlet 2.0 environments to provide an application framework and
application-based and session-based event handling. The following examples are
provided:

« A gglobals.jsa Example for Application Events: lotto.jsp
« A globals.jsa Example for Application and Session Events: index1.jsp
« A gglobals.jsa Example for Global Declarations: index2.jsp

For information about gl obal s. j sa usage, see "Oracle JSP Application and
Session Support for JServ" on page 9-26.

Note: The examples in this section base some of their functionality
on application shutdown. Many servers do not allow an application
to be shut down manually. In this case, gl obal s. j sa cannot
function as an application marker. However, you can cause the
application to be automatically shut down and restarted
(presuming devel oper _node is setto t r ue) by updating either
the |l ott 0. j sp source or the gl obal s. j sa file. (The Oracle JSP
container always terminates a running application before
retranslating and reloading an active page.)

A globals.jsa Example for Application Events: lotto.jsp

This sample illustrates gl obal s. j sa event handling through the
application_OnStart and appl i cati on_OnEnd event handlers. In this
sample, numbers are cached on a per-user basis for the duration of the day. As a
result, only one set of numbers is ever presented to a user for a given lottery
drawing. In this sample, a user is identified by their IP address.

Code has been written for appl i cati on_OnSt art and appl i cati on_OnEnd to
make the cache persistent across application shutdowns. The sample writes the
cached data to a file as it is being terminated and reads from the file as it is being
restarted (presuming the server is restarted the same day that the cache was
written).

Oracle JSP in Apache JServ 9-39

Samples Using globals.jsa for Servlet 2.0 Environments

globals.jsa File for lotto.jsp
<Y@page inport="java. util.*, oracle.jsp.jm.*" %

<j sp: useBean id = "cachedNunbers" class = "java.util.Hashtabl e" scope = "application" />

<event:application_nStart>

<%
Cal endar today = Cal endar. get | nstance();
application.setAttribute("today", today);
try {
FlelnputSreamfis = new F | el nput S ream
(appl i cation. get Real Path("/")+Fi | e. separator+'l ott 0. che");
(oj ect I nput Stream oi s = new (pj ect | nput Streanffis);
Cal endar cacheDay = (Cal endar) ois.read(ject();
i f (cacheDay. get (Cal endar. DAY O YEAR == today. get (Cal endar. DAY CF YEAR)) {
cachedNunbers = (Hashtabl e) ois. read)j ect();
appl i cation.set Attribut e("cachedNunbers", cachedNunbers);
}
oi s.cl ose();
} catch (Exception theE) {
/] catch all -- can't use persistent data
}
%

</event:application_ (hSart>
<event : appl i cati on_QOhEnd>

<%

Cal endar now = Cal endar . get | nstance();

Cal endar today = (Cal endar) application.getAttribute("today");

if (cachedNunbers.isEnpty() ||

now get (Cal endar. DAY_(F_YEAR) > today. get (Cal endar . DAY COF YEAR)) {

Filef = new F le(application.getReal Path("/")+F | e. separat or+"l otto. che");
if (f.exists()) f.delete();
return;

try {
FleQutputSreamfos = new Fil eQut put S ream

(appl i cation. get Real Path("/")+Fi | e. separator +'l ott 0. che");
(bj ect Qut put Stream oos = new (bj ect Qut put & r ean{f os) ;
0os. witeChj ect (today);
0os. w it e(yj ect (cachedNunber s) ;

9-40 Oracle9/ Support for JavaServer Pages Reference

Samples Using globals.jsa for Servlet 2.0 Environments

00s. cl ose();
} catch (Exception theE) {
/] catch all -- can't use persistent data

}
%

</ event: appl i cati on_QnEnd>

lotto.jsp Source

<Y@page session = "false" %
<jsp:useBean id = "picker" class = "oracle.jsp.sanple.lottery. LottoPi cker" scope = "page" />

<HTM_>

<HEAD><TI TLE>Lot t 0 Nunber Gener at or </ Tl TLE></ HEAD>
<BCDY BACKARAND="i nages/ creamj pg" BGOCLOR="#FFFFFF' >
<HL ALl G\F"' CENTER' ></ H1>

<I-- <HL ALI G\F"CENTER'> | P. <% request . get Renot eAddr () %
 -->

<HL ALI O\="CENTER' >Your Speci al |y Pi cked</ HL>

<P ALlI G\F" CENTER' ><| M5 SRC="i nages/ w nni ngnunber s. gi f" WDITH="450" HEl GHT="69" ALl G\="BOTTQM
BORCER="0"></ P>

<P~

<P ALI O\" CENTER' >
<TABLE ALl G\="CENTER' BORDER="0" CHLLPADD NG="0" CELLSPAA NG="0">
<TR>
<%
int[] picks;
String identity = request. get Rermot eAddr () ;

/1 Make sure its not tonorrow
Cal endar now = Cal endar . get | nstance();
Cal endar today = (Cal endar) application.getAttribute("today");
i f (now get (Cal endar. DAY OF YEAR > today. get (Cal endar. DAY (F YEAR)) {
Systemout. printl n("New day....");
cachedNunber s. cl ear () ;
today = now
application. setAttribute("today", today);
}

synchroni zed (cachedNunbers) {

Oracle JSP in Apache JServ 9-41

Samples Using globals.jsa for Servlet 2.0 Environments

if ((picks = (int []) cachedNunbers.get(identity)) == null) {
pi cks = pi cker.get A cks();
cachedNunber s. put (i dentity, picks);

}
}
for (int i =0; i <picks.length; i++ {
%
<TD>
<I M5 SRC="i nages/ bal | <% picks[i] %.gif" WDIH="68" HE GHI="76" ALI G\="'BOITAM BCROER="0">
</ D>

<%

}
%
</ TR>
</ TABLE>

<P>

<P ALl G\F" CENTER' >

<I M5 SRC="i mages/ pl ayr espon. gi f" WDTH="120" HEl GHT="73" ALI G\="BOITGM BCRDER="0">

</ BCDY>
</ HTM.>

A globals.jsa Example for Application and Session Events: index1.jsp

This example uses a gl obal s. j sa file to process applications and session lifecycle
events. It counts the number of active sessions, the total number of sessions, and the
total number of times the application page has been hit. Each of these values is
maintained at the appl i cat i on scope. The application page (i ndex1. j sp)
updates the page hit count on each request. The gl obal s. j sa

sessi on_OnSt art event handler increments the number of active sessions and
the total number of sessions. The gl obal s. j sa sessi on_OnEnd handler
decrements the number of active sessions by one.

The page output is simple. When a new session starts, the session counters are
output. The page counter is output on every request. The final tally of each value is
outputin the gl obal s. j sa appl i cati on_OnEnd event handler.

9-42 Oracle9/ Support for JavaServer Pages Reference

Samples Using globals.jsa for Servlet 2.0 Environments

Note the following in this example:

= When the counter variables are updated, access must be synchronized, as these
values are maintained at appl i cati on scope.

« Thecountvalues use the oracl e. j sp.jm . Jm Nunber extended datatype,
which simplifies the use of data values at application scope. For information
about the JML extended datatypes, refer to the Oracle9iAS Containers for J2EE
JSP Tag Libraries and Utilities Reference.

globals.jsa File for index1.jsp

<Y@taglib uri="oracle.jsp. parse. QpenJspRegi sterLi b" prefix="jm" %
<event:application_nStart>

<%- Initializes counts to zero --%

<j sp: useBean i d="pageCount" class="oracle.jsp.jni.Jn Nunber" scope = "application" />

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />

<j sp: useBean i d="acti veSessi ons" cl ass="oracl e.jsp.jnm.Jm Nunber" scope = "application" />

<%- Consider storing pageCount persistently -- If you doread it here --%
</event:application_ (hSart>
<event : appl i cati on_QOhEnd>

<%- Acquire beans --%

<j sp: useBean i d="pageCount" class="oracle.jsp.jni.Jn Nunber" scope = "application" />

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />

<% appl ication.|l og("The nunber of page hits were: " + pageCount.getValue()); %
<% application.log("The nunber of client sessions were: " + sessionCount.getValue()); %

<%- Consider storing pageCount persistently -- If you do wite it here --%
</ event: appl i cati on_QhEnd>
<event:session_hStart >

<%- Acquire beans --%

<j sp: useBean i d="sessi onCount" cl ass="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" class="oracl e.jsp.jm.Jm Nunber" scope = "application" />

Oracle JSP in Apache JServ 9-43

Samples Using globals.jsa for Servlet 2.0 Environments

<%
synchroni zed (sessi onGunt) {
sessi on(ount . set Val ue(sessi onCount . get Val ue() + 1);

%

Sarting session # <% sessionCount. get Val ue() %

<%
}
%
<%

synchroni zed (activeSessions) {
acti veSessi ons. set Val ue(acti veSessi ons. get Val ue() + 1);
%
There are currently <% activeSessions. get Val ue() % </ b> active sessions <p>
<%

}
%

</event:session S art>
<event : sessi on_(hEnd>

<%- Acquire beans --%
<j sp: useBean i d="activeSessi ons" class="oracle.jsp.jn.Jm Nunber" scope = "application" />

<%
synchroni zed (activeSessi ons) {
acti veSessi ons. set Val ue(acti veSessi ons. get Val ue() - 1);

}
%

</ event : sessi on_hEnd>

index1.jsp Source

<%- Acquire beans --%
<j sp: useBean i d="pageCount" class="oracl e.jsp.jn.Jn Nunber" scope = "application" />

<%
synchr oni zed(pageCount) {
page@unt . set Val ue(pageCount . get Val ue() + 1);

}
%

9-44 Oracle9/ Support for JavaServer Pages Reference

Samples Using globals.jsa for Servlet 2.0 Environments

Thi s page has been accessed <% pageCount.getVal ue() % </ b> tines.
<p>

A globals.jsa Example for Global Declarations: index2.jsp

This example uses a gl obal s. j sa file to declare variables globally. It is based on
the event handler sample in "A globals.jsa Example for Application and Session
Events: index1.jsp" on page 9-42, but differs in that the three application counter
variables are declared globally. (In the original event-handler sample, by contrast,
each event handler and the JSP page itself had to provide j sp: useBean statements
to locally declare the beans they were accessing.)

Declaring the beans globally results in implicit declaration in all event handlers and
the JSP page.

globals.jsa File for index2.jsp
<%- globally declares variables and initializes themto zero --%

<j sp: useBean i d="pageCount" class="oracl e.jsp.jn.Jn Nunber" scope = "application" />
<j sp: useBean i d="sessi onCount" cl ass="oracl e.j sp.jnt.Jnh Nunber" scope = "application" />
<j sp: useBean i d="acti veSessi ons" class="oracl e.jsp.jn.Jm Nunber" scope = "application" />
<event:application_nStart>

<%- Consider storing pageQunt persistently -- If you do read it here --%
</event: appl i cation OnSart>
<event : appl i cati on_QOhEnd>

<% appl i cation.|l og("The nunber of page hits were: " + pageCount.getValue()); %

<% application.log("The nunber of client sessions were: " + sessionCount.getValue()); %

<%- Consider storing pageCount persistently -- If you do wite it here --%
</ event: appl i cati on_QnEnd>
<event:session_hStart>

<%

synchroni zed (sessi onCount) {

sessi on(ount . set Val ue(sessi onCount . get Val ue() + 1);
%

Oracle JSP in Apache JServ 9-45

Samples Using globals.jsa for Servlet 2.0 Environments

Starting session # <% sessionCount.getVal ue() %

<%

}
%

<%
synchroni zed (activeSessions) {
acti veSessi ons. set Val ue(acti veSessi ons. get Val ue() + 1);
%
There are currently <% activeSessions. get Val ue() % </ b> active sessions <p>
<%

}
%

</event:session S art>
<event : sessi on_(hEnd>
<%

synchroni zed (activeSessi ons) {
acti veSessi ons. set Val ue(acti veSessi ons. get Val ue() - 1);

}
%
</ event : sessi on_hEnd>
index2.jsp Source
<%- pageCount declared in globals.jsa so active in all pages --%
<%

synchr oni zed(pageCount) {
page@ount . set Val ue(pageCount . get Val ue() + 1);

}
%
Thi s page has been accessed <% pageCount.getVal ue() % </ b> tines.

<p>

9-46 Oracle9/ Support for JavaServer Pages Reference

A

Getting Started in Alternative Environments

This appendix provides information about configuring the Web server to run Oracle
JSP and configuring Oracle JSP in alternative environments. The technical
information focuses on the following environments:

« JSWDK (the Sun Microsystems JavaServer Web Developer’s Kit)

« Tomcat (from Apache, in cooperation with Sun Microsystems)

This appendix includes the following topics:

« Configuration of Web Server and Servlet Environment for Oracle JSP

« Oracle JSP Configuration Parameter Settings

Note: For installation and configuration information for the JServ
environment, provided with Oracle9i release 2, as well as for
general configuration information and required files, see "Getting
Started in a JServ Environment" on page 9-2. For information for an
OC4J environment, refer to the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Reference.

Getting Started in Alternative Environments A-1

Configuration of Web Server and Servlet Environment for Oracle JSP

Configuration of Web Server and Servlet Environment for Oracle JSP

Configuring your Web server to run the Oracle JSP container requires the following
general steps:

1. AddJSP-related JAR and ZIP files to the Web server classpath.

2. Configure the Web server to map JSP file name extensions (. j sp and . JSP and,
optionally, . sql j sp and . SQLJSP) to the Oracle JspSer vl et , which is the
front-end of the Oracle JSP container.

These steps apply to any Web server environment, but the information in this
section focuses on the Sun Microsystems JSWDK and Tomcat.

Note: Examples here are for a UNIX environment, but the basic
information (such as directory names and file names) applies to
other environments as well.

Adding Oracle JSP-Related JAR and ZIP Files to Web Server Classpath

You must update the Web server classpath to add JAR and ZIP files that are
required by the Oracle JSP container, being careful to add them in the proper order.
(In particular, you must be careful as to where you place the servlet 2.2 version of
servl et . j ar in the classpath, as described below.) This includes the following:

= Ojsp.jar
« Xxml parserv2.jar
=« servlet.jar (servlet 2.2 version)

Note that the ser vl et . j ar supplied with Oracle9i release 2 is identical to the
servl et.j ar provided with Tomcat 3.1.

« Ojsputil.jar (optional, for IML tags, SQL tags, and data-access JavaBeans)

« Xsul2.jar,forJDK 1.2.x,0r xsulll. j ar, for JDK 1.1.x (optional, for XML
functionality for JIML tags, SQL tags, and data-access JavaBeans)

« additional optional ZIP and JAR files, as necessary, for JDBC and SQLJ

See "Required and Optional Files for Oracle JSP" on page 9-2 for additional
information.

A-2 Oracle9i Support for JavaServer Pages Reference

Configuration of Web Server and Servlet Environment for Oracle JSP

Important: You must also ensure that the Oracle JSP container can
find j avac (or an alternative Java compiler, according to your

j avaccnd configuration parameter setting). For j avac in a JDK
1.1.x environment, the JDK cl asses. zi p file must be in the Web
server classpath. For j avac in a JDK 1.2.x environment, the JDK

t ool s. j ar file must be in the Web server classpath.

Add Files to Classpath for the JSWDK Environment

Update the st art ser ver scriptinthej swdk- 1. 0 root directory to add files
required by the Oracle JSP container to the j spJar s environment variable. Append
them to the last . j ar file listed, using the appropriate directory syntax and
separator character for your operating system, such as a colon (" : ") for UNIX or a
semi-colon (*; ") for Windows NT. Here is an example:

jsplars=./libljspengine.jar:./lib/lojsp.jar:./liblojsputil.jar
This example (with UNIX syntax) assumes that the JAR filesareinthel i b
subdirectory under the j swdk- 1. O root directory.

Similarly, update the st ar t ser ver script to specify any additional required files in
the ni scJar s environment variable, such as in the following example:

msclars=./lib/xn.jar:./lib/xmparserv2.jar:./lib/servlet.jar

This example (with UNIX syntax) also assumes that the files are in the | i b
subdirectory under the j swdk- 1. 0 root directory.

Important: In aJSWDK environment, the servlet 2.1 version of
servl et.jar (provided with Sun JSWDK 1.0) must precede the
servlet 2.2 version of ser vl et . j ar (provided with Oracle9i
release 2) in your classpath.

The servlet 2.1 version is typically in the j sdkJar s environment
variable. The overall classpath is formed through a combination of
various xxxJar s environment variables, including j sdkJar s,

j spJars,and m scJar s. Examine the st art ser ver script to
verify that mi scJar s is added to the classpath after j sdkJar s.

Getting Started in Alternative Environments A-3

Configuration of Web Server and Servlet Environment for Oracle JSP

Add Files to Classpath for the Tomcat Environment

For Tomcat, the procedure for adding files to the classpath is more operating-system
dependent than for the other servlet environments discussed here.

For a UNIX operating system, copy the JSP-related JAR and ZIP files to your
[TOMCAT_HOVE] / | i b directory. This directory is automatically included in the
Tomcat classpath.

For a Windows NT operating system, update the t ontat . bat file in the

[TOMCAT_HOVE] \ bi n directory to individually add each file to the CLASSPATH
environment variable. The following example presumes that you have copied the
files to the [TOMCAT_HOME] \ | i b directory:

set CLASSPATH=Y61ASSPATH/ Y9 OMCAT_HOME%A | i b\ o] sp. j ar; YTOMCAT_HOME% 1 i b\ oj sputi | . j ar

The servlet 2.2 version of ser vl et . j ar (the same version that is provided with
Oracle9i release 2) is already included with Tomcat, so it needs no consideration.

Mapping JSP File Name Extensions to Oracle JspServlet

You must configure the Web server to be able to do the following:
« It must recognize appropriate file name extensions as JSP pages.

Map . j sp and. JSP. Alsomap . sql j sp and . SQLISP if your JSP pages use
Oracle SQLJ.

« It must find and execute the servlet that begins processing JSP pages.

For the Oracle JSP container, thisis or acl e. j sp. JspSer vl et , which you can
think of as the front-end of the JSP container.

Important: With the above configurations, the Oracle JSP
container will support page references that use either a. j sp file
name extension or a . JSP file name extension, but the case in the
reference must match the actual file name in a case-sensitive
environment. If the file nameisfi | e. j sp, you can reference it that
way, but notasfil e. JSP If the file nameisfil e. JSP, you can
reference it that way, but notasfi | e. j sp. (The same holds true
for . sqgl j sp versus . SQLISP)

A-4 Oracle9i Support for JavaServer Pages Reference

Configuration of Web Server and Servlet Environment for Oracle JSP

Map File Name Extensions for the JSWDK Environment

In a JSWDK environment, mapping each JSP file name extension to the Oracle
JspSer vl et requires two steps.

1.

The first step is to update the mappi ngs. properti es file in the VEB- | NF
directory of each servlet context to define JSP file name extensions. Do this with
the following commands:

Map JSP file name extensions (.sqljsp and . SQLISP are optional).
-jsp=j sp

.JSP sp

-sql j sp=j sp

. SQISPS) sp

The second step is to update the ser vl et . properti es file in the WEB- | NF

directory of each servlet context to define the Oracle JspSer vl et as the servlet
that begins JSP processing. In addition, be sure to comment out the previously
defined mapping for the JSP reference implementation. Do this as follows:

#j sp. code=com sun. j sp. runti me. JspServl et (replacing this with Qacle)
j sp. code=or acl e. j sp. JspSer vl et

Map File Name Extensions for the Tomcat Environment

In a Tomcat environment, mapping each JSP file name extension to the Oracle
JspSer vl et requires a single step. Update the servlet mapping section of the
web. xm file as shown below.

Note: There is a global web. xmi file in the

[TOMCAT_HOVE] / conf directory. To override any settings in this
file for a particular application, update the web. xmi file in the
V\EB- | NF directory under the particular application root.

Map file name extensions (.sqljsp and . SQLISP are optional).

<ser vl et - mappi ng>

<servl et - nane>

oracl e. j sp. JspServl et
</ servl et - nane>
<url-pattern>

*.jsp
< url - pattern>

Getting Started in Alternative Environments A-5

Configuration of Web Server and Servlet Environment for Oracle JSP

</ servl et - nappi ng>

<ser vl et - mappi ng>
<servl et - nane>
oracl e. j sp. JspServl et
</ servl et - nane>
<url-pattern>
*. JSP
< url -pattern>
</ servl et - nappi ng>

<ser vl et - nappi ng>
<servl et - nane>
oracl e. j sp. JspServl et
</ servl et - nane>
<url-pattern>
*.sqljsp
< url - pattern>
</ servl et - nappi ng>

<ser vl et - nappi ng>
<servl et - nane>
oracl e. j sp. JspServl et
</ servl et - nane>
<url-pattern>
*. SQISP
< url - pattern>
</ servl et - nappi ng>

You can optionally set an alias for the or acl e. j sp. JspSer vl et class name, as
follows:

<servl et >
<servl et - name>
oj sp
</ servl et - nane>
<servl et - cl ass>
oracl e. j sp. JspServl et
</servl et - cl ass>

</servl et >
Setting this alias allows you to use "ojsp" instead of the class name for your other
settings, as follows:

<ser vl et - mappi ng>

A-6 Oracle9i Support for JavaServer Pages Reference

Configuration of Web Server and Servlet Environment for Oracle JSP

<servl et - nane>
oj sp
</ servl et - nane>
<url-pattern>
*.jsp
</url - pattern>
</ servl et - nappi ng>

Getting Started in Alternative Environments A-7

Oracle JSP Configuration Parameter Settings

Oracle JSP Configuration Parameter Settings

The Oracle JSP front-end servlet, JspSer vl et , supports a number of configuration
parameters to control operation of the JSP container. These are described in "Oracle
JSP Configuration Parameters" on page 9-7. They are set as servlet initialization
parameters for JspSer vl et . How you accomplish this depends on the Web server
and servlet environment you are using.

This section describes how to set them in the JISWDK and Tomcat servlet
environments.

Setting Oracle JSP Parameters in JSWDK

To set JSP configuration parameters in a JSWDK environment, set the

j sp.initparamns property intheservl et. properti es file in the WEB- | NF
directory of the application servlet context, as in the following example (which
happens to use UNIX syntax):

j sp. i ni t par ans=devel oper _node=f al se, cl asspat h=/ nydi r/ nyapp. j ar

Note: Becausei nit par ans parameters are comma-separated,
there can be no commas within a parameter setting. Spaces and
other special characters do not cause a problem, however.

Setting Oracle JSP Parameters in Tomcat

To set JSP configuration parameters in a Tomcat environment, add i ni t - par am
entries in the web. xni file as shown below.

Note: There is a global web. xmi file in the

[TOMCAT_HOVE] / conf directory. To override any settings in this
file for a particular application, update the web. xmi file in the
V\EB- | NF directory under the particular application root.

<servl et>
<init-paran»
<par am nane>
devel oper _node
</ par am nane>
<par am val ue>

A-8 Oracle9i Support for JavaServer Pages Reference

Oracle JSP Configuration Parameter Settings

true
</ par am val ue>
</init-parany
<init-parane
<par am nane>
ext ernal _resource
</ par am nane>
<par am val ue>
true
</ paramval ue>
</init-paranm>
<init-paran»
<par am nane>
j avaccrd
</ par am nane>
<par am val ue>
javac -verbose
</ paramval ue>
</init-paranm>
</servl et >

Getting Started in Alternative Environments A-9

Oracle JSP Configuration Parameter Settings

A-10 Oracle9i Support for JavaServer Pages Reference

B

Third Party Licenses

This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document. Topics include:

« Apache HTTP Server
« Apache JServ

Third Party Licenses B-1

Apache HTTP Server

Apache HTTP Server

Under the terms of the Apache license, Oracleis required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS I1S" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License

|* ——=—=—========
* The Apache Software License, Version 1.1

* Copyright (c) 2000 The Apache Software Foundation. All rights
* reserved.

* Redistribution and use in source and binary forns, with or wthout
* nmodification, are pernitted provided that the foll owi ng conditions
* are net:

* 1. Redistributions of source code nust retain the above copyright
* notice, this list of conditions and the followi ng disclainer.

* 2. Redistributions in binary formnust reproduce the above copyright

* notice, this list of conditions and the following disclainmer in
* the docunentation and/or other materials provided with the
* distribution.

* 3. The end-user docunentation included with the redistribution,

* if any, must include the follow ng acknow edgnent:

* "This product includes software devel oped by the

* Apache Software Foundation (http://www. apache.org/)."

* Alternately, this acknow edgnent nay appear in the software itself,
* if and wherever such third-party acknow edgnents normal |y appear.

* 4. The nanes "Apache" and "Apache Software Foundation" nust

* not be used to endorse or promote products derived fromthis
* software without prior witten pernission. For witten
* perm ssion, please contact apache@pache. org.

* 5. Products derived fromthis software may not be called "Apache",
* nor may "Apache" appear in their name, without prior witten

B-2 Oracle9i Support for JavaServer Pages Reference

Apache HTTP Server

* perm ssion of the Apache Software Foundation.

*

*THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
*|TS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

*

* This software consists of voluntary contributions made by many

* individuals on behalf of the Apache Software Foundation. For more

* information on the Apache Software Foundation, please see

* <http://www.apache.org/>.

*

* Portions of this software are based upon public domain software

* originally written at the National Center for Supercomputing Applications,
* University of lllinois, Urbana-Champaign.

¥

Third Party Licenses B-3

Apache JServ

Apache JServ

Under the terms of the Apache license, Oracleis required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS I1S" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistribution of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA

B-4 Oracle9i Support for JavaServer Pages Reference

Apache JServ

APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Third Party Licenses B-5

Apache JServ

B-6 Oracle9i Support for JavaServer Pages Reference

A

action tags

forward tag, 1-21

getProperty tag, 1-19

include tag, 1-20

overview, 1-18

param tag, 1-20

plugin tag, 1-22

setProperty tag, 1-18

useBean tag, 1-18
addclasspath, ojspc option, 6-18
alias translation, JServ

alias_translation configuration parameter, 9-10

overview, 9-23
application events

with globals.jsa, 9-31

with JspScopeListener, 5-2
application framework for JServ, 9-22
application object (implicit), 1-16
application root functionality, 3-2
application scope (JSP objects), 1-15
application support

overview, 3-4

through globals.jsa, 9-27
application_OnEnd tag, globals.jsa, 9-32
application_OnStart tag, globals.jsa, 9-31
application-relative path, 1-9
appRoot, ojspc option, 6-18

B

batch updates--see update batching
binary data, reasons to avoid in JSP, 4-16

Index

binary file deployment, 6-27
binary file location, ojspc d option, 6-19
bypass_source config param, 9-10

C

call servlet from JSP, JSP from servlet, 3-5
checker pages, 4-9
class loader issues, 4-20
class naming, translator, 6-5
class reloading, dynamic, 4-25
classes files for JIDBC, 9-4
classpath
classpath and class loader issues, 4-20
classpath config param, 9-11
configuration, JServ, 9-4
configuration, JSSWDK, A-3
configuration, Tomcat, A-4
Web server classpath configuration, A-2
code, generated by translator, 6-2
comments (in JSP code), 1-14
compilation
javaccmd config param, 9-13
ojspc noCompile option, 6-21
config object (implicit), 1-17
configuration
classpath and class loader issues, 4-20
classpath, JSSWDK, A-3
classpath, Tomcat, A-4
config param descriptions, 9-10
config params, summary table, 9-7
map file name extensions, JServ, 9-6
map file name extensions, JSSWDK, A-5
map file name extensions, Tomcat, A-5

Index-1

map JSP file name extensions, A-4
optimization of execution, 4-19
setting parameters, JServ, 9-18
setting parameters, JSSWDK, A-8
setting parameters, Tomcat, A-8
Web server and servlet environment, A-2
Web server classpath, A-2
connection caching, overview, 4-3
content type settings
dynamic (setContentType method), 8-4
static (page directive), 8-2
context-relative path, 1-9
custom tags--see tag libraries

D

d, ojspc option (binary output dir), 6-19
debugging

debug, ojspc option, 6-20

debug_mode config param, 9-12

emit_debuginfo config param, 9-13

through JDeveloper, 2-7
declarations

global declarations, globals.jsa, 9-37

member variables, 1-12

method variable vs. member variable, 4-11
deployment, general considerations

deploying pages with JDeveloper, 6-29

deployment of binary files only, 6-27

doc root, JServ, 6-29

general pre-translation without execution, 6-27

overview, 6-27

use of ojspc pre-translation tool, 6-13
developer_mode config param, 9-12
directives

global directives, globals.jsa, 9-36

include directive, 1-11

overview, 1-10

page directive, 1-10

taglib directive, 1-11
directory alias translation--see alias translation
doc root

for JServ, 6-29

functionality, 3-2
dynamic class reloading, 4-25

Index-2

dynamic forward, special support for JServ, 9-20
dynamic include
actiontag, 1-20
for large static content, 4-10
logistics, 4-7
special support for JServ, 9-20
vs. static include, 4-6
dynamic page reloading, 4-25
dynamic page retranslation, 4-24

E

emit_debuginfo config param, 9-13

error processing
atruntime, 3-16
send_error config param, 9-15

event handling
with globals.jsa, 9-31
with HttpSessionBindingListener, 3-10
with JspScopeListener, 5-2

exception object (implicit), 1-17

execution models for Oracle JSP, 2-14

execution of a JSP page, 1-7

explicit JSP objects, 1-15

expressions, 1-12

extend, ojspc option, 6-20

extensions
extended functionality for servlet 2.0, 2-5
overview of data-access JavaBeans, 2-12
overview of extended globalization

support, 2-10
overview of extended types, 2-11
overview of globals.jsa (application
support), 2-10

overview of JML tag library, 2-12
overview of JspScopeListener, 2-10
overview of Oracle-specific extensions, 2-9
overview of portable extensions, 2-11
overview of programmatic extensions, 2-9
overview of SQL tag library, 2-12
overview of SQLJ support, 2-9
overview of XML/XSL support, 2-11

external resource file
for static text, 4-10
through external_resource parameter, 9-13

through ojspc extres option, 6-21
external_resource config param, 9-13
extres, ojspc option, 6-21

F

fallback tag (with plugin tag), 1-23
Feiner, Amy (welcome), 1-3
file name extensions, mapping, A-4
files
generated by translator, 6-7
locations, ojspc d option, 6-19
locations, ojspc srcdir option, 6-23
locations, page_repository_root config
param, 9-14
locations, translator output, 6-8
forward tag, 1-21

G

generated code, by translator, 6-2
generated output names, by translator, 6-3
getProperty tag, 1-19
globalization support
content type settings (dynamic), 8-4
content type settings (static), 8-2
multibyte parameter encoding, 8-5
overview, 8-1
sample depending on translate_params, 8-8
sample not depending on
translate_params, 8-10
globals.jsa
application and session lifecycles, 9-28
application deployment, 9-27
application events, 9-31
distinct applications and sessions, 9-27
event handling, 9-31
example, declarations and directives, 9-38
extended support for servlet 2.0, 9-26
file contents, structure, 9-37
global declarations, 9-37
global JavaBeans, 9-37
global JSP directives, 9-36
overview of functionality, 9-26
overview of syntax and semantics, 9-28

sample application, application and session
events, 9-42

sample application, application events, 9-39

sample application, global declarations, 9-45

sample applications, 9-39

session events, 9-33

H

HttpSessionBindingListener, 3-10

implement, ojspc option, 6-21
implicit JSP objects
overview, 1-15
using implicit objects, 1-17
include directive, 1-11
include tag, 1-20
inner class for static text, 6-3
interaction, JSP-servlet, 3-5
invoke servlet from JSP, JSP from servlet, 3-5

J

JavaBeans
global JavaBeans, globals.jsa, 9-37
use for separation of business logic, 1-5
use with useBean tag, 1-18
vs. scriptlets, 4-2

javaccmd config param, 9-13

JDBC in JSP pages
performance enhancements, 4-3
required files, 9-4

JDeveloper
Oracle JSP support, 2-7
use for deploying JSP pages, 6-29

JServ
Apache "mods", 2-4
classpath configuration, 9-4
config, map file name extensions, 9-6
mod_jserv module, 2-4
Oracle JSP application framework, 9-22
Oracle JSP dynamic include support, 9-20
overview of JSP-servlet session sharing, 9-23

Index-3

overview of special considerations, 9-20
setting configuration parameters, 9-18
support for Oracle JSP, 2-8

JSP containers, overview, 1-7

jsp fallback tag (with plugin tag), 1-23

jsp forward tag, 1-21

jsp getProperty tag, 1-19

jsp include tag, 1-20

jsp param tag, 1-20

jsp plugin tag, 1-22

jsp setProperty tag, 1-18

JSP translator--see translator

jsp useBean tag, 1-18

JspScopeEvent class, event handling, 5-2

JspScopeListener, event handling, 5-2

JSP-servlet interaction
invoking JSP from servlet, request

dispatcher, 3-6

invoking servlet from JSP, 3-5
passing data, JSP to servlet, 3-6
passing data, servlet to JSP, 3-8
sample code, 3-8

JSWDK
classpath configuration, A-3
config, map file name extensions, A-5
setting configuration parameters, A-8
support for Oracle JSP, 2-8

M

mapping JSP file name extensions, A-4

member variable declarations, 4-11

method variable declarations, 4-11

multibyte parameter encoding, globalization
support, 8-5

N

National Language Support--see Globalization
Support

NLS--see Globalization Support

noCompile, ojspc option, 6-21

Index-4

O

objects and scopes (JSP objects), 1-14
ojspc pre-translation tool
command-line syntax, 6-17
general use, 6-13
option descriptions, 6-18
option summary table, 6-15
output files, locations, related options, 6-25
overview, 6-13
overview of functionality, 6-14
ojsp.jar, required file, 9-2
ojsputil jar, optional file, 9-2
on-demand translation (runtime), 1-7,2-14
optimization
not checking for retranslation, 4-19
not using HTTP session, 4-20
unbuffering a JSP page, 4-19
Oracle HTTP Server
role with Oracle JSP, 2-3
with mod_jserv, 2-4
Oracle JSP translator--see translator
out object (implicit), 1-17
output files
generated by translator, 6-7
locations, 6-8
locations and related options, ojspc, 6-25
ojspc d option (binary location), 6-19
ojspc srcdir option (source location), 6-23
page_repository_root config param, 9-14
output names, conventions, 6-3

P

package naming

by translator, 6-5

ojspc packageName option, 6-22
packageName, ojspc option, 6-22
page directive

characteristics, 4-13

contentType setting for globalization

support, 8-2

overview, 1-10
page events (JspScopelListener), 5-2
page implementation class

generated code, 6-2
overview, 1-7
sample code, 6-9
page object (implicit), 1-16
page reloading, dynamic, 4-25
page retranslation, dynamic, 4-24
page scope (JSP objects), 1-15
page_repository_root config param, 9-14
pageContext object (implicit), 1-16
page-relative path, 1-9
param tag, 1-20
plugin tag, 1-22
portability of Oracle JSP, 2-5
prefetching rows--see row prefetching
pre-translation
general use of ojspc tool, 6-13
without execution, general, 6-27

R

reloading classes, dynamic, 4-25
reloading page, dynamic, 4-25
request dispatcher (JSP-servlet interaction),
request events (JspScopeListener), 5-2
request object (implicit), 1-16
request scope (JSP objects), 1-15
RequestDispatcher interface, 3-6
requesting a JSP page, 1-8
resource management
application (JspScopeListener), 5-2
overview of Oracle JSP extensions, 3-15
page (JspScopeListener), 5-2
request (JspScopeListener), 5-2
session (JspScopelListener), 5-2
standard session management, 3-10
response object (implicit), 1-16
retranslation of page, dynamic, 4-24
row prefetching, overview, 4-5
rowset caching, overview, 4-5
runtime considerations
dynamic class reloading, 4-25
dynamic page reloading, 4-25
dynamic page retranslation, 4-24
runtimeXX.zip, required file for SQLJ, 9-4

3-6

S

S, ojspc option (for SQLJ options), 6-22
sample applications
custom tag definition and use, 7-15
data access, starter sample, 3-19
globalization, depending on
translate_params, 8-8
globalization, not depending on
translate_params, 8-10
globals.jsa samples, 9-39

globals.jsa, application and session events, 9-42

globals.jsa, application events, 9-39
globals.jsa, global declarations, 9-45
HttpSessionBindingListener sample, 3-11
JSP-servlet interaction, 3-8
page implementation class code, 6-9
SQLJ example, 5-3

scopes (JSP objects), 1-15

scripting elements
comments, 1-14
declarations, 1-12
expressions, 1-12
overview, 1-12
scriptlets, 1-13

scripting variables (tag libraries)

defining, 7-8
scopes, 7-9
scriptlets

overview, 1-13
vs. JavaBeans, 4-2
send_error config param, 9-15
servlet 2.0 environments
added support through globals.jsa, 9-26
globals.jsa sample applications, 9-39
Oracle JSP application root functionality, 3-3
overview of Oracle JSP functionality, 2-5
servlet library, 9-3
servlet.jar
required file, 9-2
versions, 9-3
servlet-JSP interaction
invoking JSP from servlet, request
dispatcher, 3-6
invoking servlet from JSP, 3-5

Index-5

passing data, JSP to servlet, 3-6
passing data, servlet to JSP, 3-8
sample code, 3-8
servlets
session sharing, JSP, JServ, 9-23
wrapping servlet with JSP page, 9-20
session events
with globals.jsa, 9-33
with HttpSessionBindingListener, 3-10
with JspScopeListener, 5-2
session object (implicit), 1-16
session scope (JSP objects), 1-15
session sharing
overview, JSP-servlet, JServ, 9-23
session_sharing config param, 9-15
session support
default session requests, 3-4
overview, 3-4
through globals.jsa, 9-27
session_OnEnd tag, globals.jsa, 9-34
session_OnStart tag, globals.jsa, 9-33
session_sharing config param, 9-15
setContentType() method, globalization
support, 8-4
setProperty tag, 1-18
setRegCharacterEncoding() method, multibyte
parameter encoding, 8-5
source file location, ojspc srcdir option, 6-23
SQLJ
JSP code example, 5-3
ojspc S option for SQLJ options, 6-22
Oracle JSP support, 5-3
required files for use in JSP, 9-4
setting Oracle SQLJ options, 5-6
sqglijcmd config param, 9-16
sqljsp files, 5-5
triggering SQLJ translator, 5-5
sqglijcmd config param, 9-16
sqljsp files for SQLJ, 5-5
srcdir, ojspc option, 6-23
statement caching, overview, 4-4
static include
directive, 1-11
logistics, 4-6
vs. dynamic include, 4-6

Index-6

static text
external resource file, 4-10
external resource, ojspc extres option, 6-21
external_resource parameter, 9-13
generated inner class, 6-3
workaround for large static content, 4-10
Sun Microsystems JSWDK--see JSWDK
syntax (overview), 1-10

T

tag handlers (tag libraries)
access to outer tag handlers, 7-10
overview, 7-4
sample tag handler class, 7-16
tags with bodies, 7-6
tags without bodies, 7-6

tag libraries

defining and using, end-to-end example, 7-15

overview, 1-23
overview of standard implementation, 7-2
runtime vs. compile-time implementations,
scripting variables, 7-7
standard framework, 7-2
strategy, when to create, 4-8
tag handlers, 7-4
tag library description files, 7-11
tag-extra-info classes, 7-7
taglib directive, 7-14
web.xml use, 7-12

tag library description files
defining shortcut URI in web.xml, 7-13
general features, 7-11
sample file, 7-18

tag-extra-info classes (tag libraries)
general use, getVariablelnfo() method, 7-9
sample tag-extra-info class, 7-17

taglib directive
general use, 7-14
syntax, 1-11
use of full TLD name and location, 7-14
use of shortcut URI, 7-14

tips
avoid JSP use with binary data, 4-16
JavaBeans vs. scriptlets, 4-2

JSP page as servlet wrapper, 9-20

JSP preservation of white space, 4-14

key configuration issues, 4-19

method vs. member variable declaration,

page directive characteristics, 4-13

static vs. dynamic includes, 4-6

using a "checker" page, 4-9

when to create tag libraries, 4-8

workaround, large static content, 4-10
TLD file--see tag library description file
Tomcat

classpath configuration, A-4

config, map file name extensions, A-5

setting configuration parameters, A-8

support for Oracle JSP, 2-8
translate_params config param

code equivalent, 8-7

effect in overriding non-multibyte servlet

containers, 8-7
general information, 9-17

globalization sample depending on it, 8-8

globalization sample not depending on it,

overview, multibyte parameter encoding,
translation

on-demand (runtime), 1-7

pre-translation without execution, 6-27
translator

generated class names, 6-5

generated code features, 6-2

generated files, 6-7

generated inner class, static text, 6-3

generated names, general conventions, 6-3

generated package names, 6-5

output file locations, 6-8

sample generated code, 6-9
translator.zip, required file for SQLJ, 9-4

types, overview of Oracle JSP type extensions,

U

unsafe_reload config param, 9-18
update batching, overview, 4-4
useBean tag, 1-18

\%

verbose, ojspc option, 6-24
version, ojspc option, 6-24

\W

web.xml, usage for tag libraries, 7-12
wrapping servlet with JSP page, 9-20

X

XML-alternative syntax, 4-17
xmlparserv2.jar, required file, 9-2
xsul2.jar or xsulll.jar, optional file, 9-2

Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	1 General Overview
	Introduction to JavaServer Pages
	What a JSP Page Looks Like
	Convenience of JSP Coding Versus Servlet Coding
	Separation of Business Logic from Page Presentation: Calling JavaBeans
	JSP Pages and Alternative Markup Languages

	JSP Execution
	JSP Containers in a Nutshell
	JSP Pages and On-Demand Translation
	Requesting a JSP Page

	Overview of JSP Syntax Elements
	Directives
	Scripting Elements
	JSP Objects and Scopes
	JSP Actions and the <jsp: > Tag Set
	Tag Libraries

	2 Overview of the Oracle JSP Implementation
	Overview of JSP and Servlet Containers and Web Server with Oracle9i
	JSP Container and Servlet Environment Provided with Oracle9i
	Other Servlet Environments
	Role of the Oracle HTTP Server

	Portability and Functionality Across Servlet Environments
	Oracle JSP Portability
	Oracle JSP Extended Functionality for Servlet 2.0 Environments

	Oracle9i JDeveloper Support for the Oracle JSP Container
	Support for the Oracle JSP Container in Non-Oracle Environments
	Overview of Oracle JSP Programmatic Extensions
	Overview of Oracle-Specific Extensions
	Overview of JSP Tag Libraries and JavaBeans Provided with Oracle9i

	JSP Execution Models
	On-Demand Translation Model
	Pre-Translation Model

	3 Basics
	Application Root and Doc Root Functionality
	Application Roots in Servlet 2.2 Environments
	Oracle Implementation of Application Root Functionality in Servlet 2.0 Environments

	Overview of JSP Applications and Sessions
	General Application and Session Support in the Oracle JSP Container
	JSP Default Session Requests

	JSP-Servlet Interaction
	Invoking a Servlet from a JSP Page
	Passing Data to a Servlet Invoked from a JSP Page
	Invoking a JSP Page from a Servlet
	Passing Data Between a JSP Page and a Servlet
	JSP-Servlet Interaction Samples

	JSP Resource Management
	Standard Session Resource Management with HttpSessionBindingListener
	Overview of Oracle Extensions for Resource Management

	JSP Runtime Error Processing
	Using JSP Error Pages
	JSP Error Page Example

	JSP Starter Sample for Data Access

	4 Key Considerations
	General JSP Programming Strategies, Tips, and Traps
	JavaBeans Versus Scriptlets
	Use of JDBC Performance Enhancement Features
	Static Includes Versus Dynamic Includes
	When to Consider Creating and Using JSP Tag Libraries
	Use of a Central Checker Page
	Workarounds for Large Static Content in JSP Pages
	Method Variable Declarations Versus Member Variable Declarations
	Page Directive Characteristics
	JSP Preservation of White Space and Use with Binary Data
	Oracle XML Support

	Key JSP Configuration Issues
	Optimization of JSP Execution
	Classpath and Class Loader Issues

	Oracle JSP Runtime Page and Class Reloading
	Dynamic Page Retranslation
	Dynamic Page Reloading
	Dynamic Class Reloading

	5 Oracle-Specific Programming Extensions
	Oracle JSP Event Handling with JspScopeListener
	Oracle JSP Support for Oracle SQLJ
	SQLJ JSP Code Example
	Triggering the SQLJ Translator
	Setting Oracle SQLJ Options

	6 JSP Translation and Deployment
	Functionality of the Oracle JSP Translator
	Generated Code Features
	General Conventions for Output Names
	Generated Package and Class Names (On-Demand Translation)
	Generated Files and Locations (On-Demand Translation)
	Sample Page Implementation Class Source

	JSP Pre-Translation and the ojspc Utility
	General Use of ojspc for Pre-Translation
	Details of the ojspc Pre-Translation Tool

	Additional JSP Deployment Considerations
	General JSP Pre-Translation Without Execution
	Deployment of Binary Files Only
	Deployment of JSP Pages with Oracle9i JDeveloper
	Doc Root for JServ

	7 JSP Tag Libraries
	Standard Tag Library Framework
	Overview of a Custom Tag Library Implementation
	Tag Handlers
	Scripting Variables and Tag-Extra-Info Classes
	Access to Outer Tag Handler Instances
	Tag Library Description Files
	Use of web.xml for Tag Libraries
	The taglib Directive
	End-to-End Example: Defining and Using a Custom Tag

	Compile-Time Tags
	General Compile-Time Versus Runtime Considerations
	Oracle JML Library: Compile-Time Versus Runtime

	8 Oracle JSP Globalization Support
	Content Type Settings in the page Directive
	Dynamic Content Type Settings
	Oracle JSP Extended Support for Multibyte Parameter Encoding
	The setReqCharacterEncoding() Method
	The translate_params Configuration Parameter

	9 Oracle JSP in Apache JServ
	Getting Started in a JServ Environment
	Required and Optional Files for Oracle JSP
	Adding Files to the JServ Web Server Classpath
	Mapping JSP File Name Extensions for JServ
	Oracle JSP Configuration Parameters
	Setting JSP Parameters in JServ

	Considerations for JServ Servlet Environments
	Dynamic Includes and Forwards in JServ
	Application Framework for JServ
	JSP and Servlet Session Sharing
	Directory Alias Translation

	Oracle JSP Application and Session Support for JServ
	Overview of globals.jsa Functionality
	Overview of globals.jsa Syntax and Semantics
	The globals.jsa Event Handlers
	Global Declarations and Directives

	Samples Using globals.jsa for Servlet 2.0 Environments
	A globals.jsa Example for Application Events: lotto.jsp
	A globals.jsa Example for Application and Session Events: index1.jsp
	A globals.jsa Example for Global Declarations: index2.jsp

	A Getting Started in Alternative Environments
	Configuration of Web Server and Servlet Environment for Oracle JSP
	Adding Oracle JSP-Related JAR and ZIP Files to Web Server Classpath
	Mapping JSP File Name Extensions to Oracle JspServlet

	Oracle JSP Configuration Parameter Settings
	Setting Oracle JSP Parameters in JSWDK
	Setting Oracle JSP Parameters in Tomcat

	B Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

