Oracle9i

JPublisher User’s Guide

Release 2 (9.2)

March 2002
Part No. A96658-01

ORACLE

Oracle9i JPublisher User’s Guide, Release 2 (9.2)

Part No. A96658-01

Copyright © 1999, 2002 Oracle Corporation. All rights reserved.

Primary Authors: Brian Wright, Ekkehard Rohwedder, Thomas Pfaeffle, P. Alan Thiesen
Contributing Author: Janice Nygard

Contributors: Quan Wang, Prabha Krishna, Ellen Barnes

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, PL/SQL, SQL*Plus, and Oracle Store are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send US YOUT COMMEBNTS ...t vii
P T AC .ottt ettt ettt ettt ettt ettt iX
{101 (T gL (=10 I AN U o [11 a1 JTTUTTRTTR X
DocumMEeNtation ACCESSIDIIITY ..o e X
OFQANIZATION ...ttt h bbb et eh et eh e eh e eh e b e bt b s s Xi
Related DOCUMENTATIONooieeiiiiiiie ettt ettt e et e e e et e s ettt e e s et b e e east e e s sbbee e s stbessasaesesaneessasees Xi
(000] 0 1VZ=T 0] K10] o F-THTET TR ORI XV

1 Introduction to JPublisher

Introduction to JPUBIISNEr FEATUIES ..o s 1-2
INVITAtioN T0 JPUBIISNET ..o e 1-2
Getting Started With JPUDIISNEr...........ccoiiii e 1-3
New JPublisher Features in Oracledi REIEASE 2.........ccociiiiiiiieiiee e 1-9

Understanding JPUBTISNET ... e 1-11
JPublisher Object Type Mappings and PL/ZSQL Mappings.......ccccuoermerneninieneieseie e 1-11
JPUBDIISNET PrOCESSESiviieieie sttt s b bbb e en e 1-12
What JPUDIISNEr PrOQUCES ...ttt s e 1-13
JPUBIISher REQUITEMENTS ..ot e 1-15
JPublisher INPUL aNd OULPUL ..o e e 1-16
Overview of DatatyPe MapPPiNgS......ociieirieire et sttt e er et er b ber e ber e seer e 1-18
Creating Types and Packages in the Database..........ccocovevrin e 1-19

JPUDIISNEI OPEIALIONeiviiciiiceet et ettt et b e 1-21
Translating and Using PL/SQL Packages and User-Defined TYpesS........ccccovevevirinennnn 1-21

Representing User-Defined Obiject, Collection, and Reference Types in Java................... 1-23

Strongly Typed Object References for ORAData Implementations...........ccccccoevveivrnnnnnn. 1-24
JPublisher Command-Line SYNTAXccuiiiiiiiiiiie e 1-25
Sample JPUDIISher Translation ... 1-26

2 JPublisher Concepts

Details of DatatyPe MaPPINGcoreuirieiirciirietinieteriet sttt ere bbbt eb et eb et en e ber e ber e 2-2
SQL and PL/SQL Mappings to Oracle and JDBC TYPES.......ccocverrernenieeniee e, 2-3
Allowed ODJECt ATIITDULE TYPES.....iiiiiiiire ettt e e e 2-6
Using Datatypes Unsupported DY JDBC ..o e 2-7

Concepts of JPublisher-Generated CIaSses.........ccouviiiiiirinie e 2-20
PaSSING OUT PAFaMELETSc.ciuiirieiirieririe sttt sttt s s s b s e 2-20
Translating Overloaded Methods ..o e 2-23

JPublisher Generation of SQLJ Classes (:SOIJ) ...cuieiririiiie i 2-24
Important Notes About Generation 0f SQLJ CIASSESc.cuiiiiririiiniieneeee e 2-24
Use of SQLJ Classes JPublisher Generates for PL/SQL Packages..........ccoooevveiiieienennenn 2-25
Use of Classes JPublisher Generates for ODJECt TYPESc.oviiiiiiiiiieieeee e 2-26
Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher........ 2-27

JPublisher Generation of Java Classes (JAVA)c.ccocveriiriiniienierecre e 2-31

User-Written Subclasses of JPublisher-Generated ClasSes ... 2-34
Extending JPublisher-Generated ClIaSSes ..o e 2-34
Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes 2-36
The setFrom(), setValueFrom(), and setContextFrom() Methods...........ccccccevriniiincnnee, 2-38

JPublisher SUPPOrt fOr INNEIITANCEociiiic e 2-39
ORAData Object Types and INNEFITANCEccccoiiiiiiii i 2-39
ORAData Reference Types and INNeritanCeccoccvveiieiiiineie e 2-42
SQLData Object Types and INNErItanCecocoooe i 2-47
Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE..... 2-48

Backward Compatibility and Migration ... s 2-49
JPublisher Backward CompatibDility ..o 2-49
JPublisher Compatibility Between JDK VErsiONScoouiiiiiiiiininiee e 2-49
Migration Between Oracle8i JPublisher and Oracle9i JPublisher.............ccccoviiniincnne, 2-50

JPUDIISNEr LIMITALIONScviiiii ittt e e bbbt eb e bt en e en e 2-55

Command-Line Options and Input Files

JPUDIISNEE OPLIONS ...ttt et b e 3-2
JPUbIiSher OPtionN SUMIMAIYccooiiiiii ittt et eb e er e en e eree s 3-2
JPUBIISNEr OPTION TIPS vttt b 3-5
NOTAtIONAl CONVENTIONS......c.ciiiiiieiie e e b 3-6
Detailed Descriptions of Options That Affect Datatype Mappings........ccccoeeerviincincinnns 3-7
Detailed Descriptions of General JPublisher Options..........ccocooeviiniiniincinc 3-13

JPUDIISNEr INPUL FTIES ... e b e 3-33
Properties File Structure and SYNTAXccooeiieiiiineiie e e 3-33
INPUT File Structure @nd SYNTAX.......cccoeoeiiriiie ittt st 3-35
INPUT File PreCAUTIONS ..ottt s s s s e s e e 3-41

JPublisher Examples

Example: JPublisher Translations with Different Mappings.........cccovevienienneneence e 4-2
JPublisher Translation with the IDBC Mappingcccccvrieeeireniinie et 4-2
JPublisher Translation with the Oracle Mappingccccocecviiiiiiiiiiei e 4-5

Example: JPublisher Object Attribute Mapping ..ot 4-8
Listing and Description of Address.java Generated by JPublisher.............c.ccccooiinn 4-10
Listing of AddressRef.java Generated by JPUDIIShEr ... 4-13
Listing of Alltypes.java Generated by JPUDIIShEr..........cccoooiiiii 4-15
Listing of AlltypesRef.java Generated by JPUDIIShEr ... 4-20
Listing of Ntbl.java Generated by JPUDIIShEr..........ccveiiiiiii 4-22
Listing of AddrArray.java Generated by JPUBLIShEr..........cocviiiiiiini e 4-25

Example: Generating a SQLDAta ClaSSccceiiriiiriiiriiiie e e 4-28
Listing of Address.java Generated by JPUDIISREN ..o, 4-28
Listing of Alltypes.java Generated by JPUDIIShEr..........cccooiiii 4-30

Example: Extending JPUDIISNEr CIaSSeS.........coiiiiiiniiri e 4-36

Example: Wrappers Generated for Methods in ODJecCts.........cccociiiiiiiiiicc e 4-42
Listing and Description of Rational.sqlj Generated by JPublisher...........ccccoiiiininnnn. 4-44

Example: Wrappers Generated for Methods in Packages...........cocovveniincencenecincceneeee e 4-49
Listing and Description of RationalP.sglj Generated by JPublisher ..., 4-51

Example: Using Classes Generated for ODJeCt TYPES......ccvoviirieniiie e 4-54
Listing of RationalO.sql (Definition of ObJect TYPE)...ccooviiririiieiiiicee e 4-56
Listing of JPubRationalO.sqlj Generated by JPUDIIShEr..........ccoceiiiiiiiii 4-57
Listing of RationalORef.java Generated by JPUbILISher ..., 4-60

Listing of RationalO.sqlj Generated by JPublisher and Modified by Usercc.cocce... 4-62

Listing of TestRationalO.java Written DY USEr..........ccovoiiiiniiniriinccee e 4-64
Example: Using Classes Generated for PaCKagesccovovviiniiniinincnce s 4-66
Listing of RationalP.sql (Definition of the Object Type and Package).........ccccceevvvrienennns 4-67
Listing of TestRationalP.java WIitten DY USErccociiiiiiiiiieceere e 4-69
Example: Using Datatypes Unsupported bY JDBC ... 4-71
The User-Defined BOOLEANS DatatyPecccoovevieieieiieeiiieisie et nesne e 4-71
Alternative 1: Using JPublisher for the ENtire Process.........cocviienniieeincnenie e 4-72
Alternative 2: Manual CONVEISIONc..oiiiiiiie ettt 4-76

Index

Vi

Send Us Your Comments

Oracle9i JPublisher User’s Guide, Release 2 (9.2)
Part No. A96658-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgcomment_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

vii

viii

Preface

This preface introduces you to the Oracle9i JPublisher User’s Guide, discussing the
intended audience, structure, and conventions of this document. A list of related
Oracle documents is also provided.

The JPublisher utility translates user-defined SQL object types and PL/SQL
packages to Java classes. SQLJ, JDBC, and J2EE programmers who need to have
Java classes in their applications to correspond to database object types, VARRAY
types, nested table types, object reference types, opaque types, or PL/SQL packages
can use the JPublisher utility.

This preface contains these topics:
« Intended Audience

« Documentation Accessibility
« Organization

« Related Documentation

= Conventions

Intended Audience

This manual is for JDBC and SQLJ programmers who want Java classes in their
applications to correspond to object types, VARRAY types, nested table types, object
reference types, OPAQUE types, or PL/SQL packages.

It assumes that you are an experienced Java programmer with knowledge of Oracle
databases, SQL, PL/SQL, JDBC, and SQLJ. Although general knowledge is
sufficient, any knowledge of Oracle-specific features would be helpful as well.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //waw or acl e. conf accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

This document contains:

Chapter 1, "Introduction to JPublisher"

Introduces the JPublisher utility by way of example, lists new features provided in
this release, and provides an overview of JPublisher operations.

Chapter 2, "JPublisher Concepts"

Provides full background and details on the concepts and usage of JPublisher,
including datatype mappings, generation of output classes, support for inheritance,
migration and backward compatibility, and JPublisher limitations.

Chapter 3, "Command-Line Options and Input Files"

Provides details of the JPublisher command line syntax, command line options, and
input file format.

Chapter 4, "JPublisher Examples"

Presents examples of JPublisher usage and output for various object types, wrapper
methods, and usage scenarios.

Related Documentation
Also available from the Oracle Java Platform group, for Oracle9i releases:
« Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle database Java environment in general,
rather than to a particular product such as JDBC or SQLJ, is in this book.

« Oracle9i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of the Oracle
implementation of the JDBC standard (for Java Database Connectivity). This
includes an overview of the Oracle JDBC drivers, details of the Oracle
implementation of JDBC 1.22, 2.0, and 3.0 features, and discussion of Oracle
JDBC type extensions and performance extensions.

xi

Xil

Oracle9i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

Oracle9i Support for JavaServer Pages Reference

This book covers the use of JavaServer Pages technology to embed Java code
and JavaBean invocations inside HTML pages. Both standard JSP features and
Oracle-specific features are described. Discussion covers considerations for the
Oracle9i release 2 Apache JServ environment, but also covers features for
servlet 2.2 environments and emulation of some of those features by the Oracle
JSP container for JServ.

Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle9i database. With stored procedures (functions, procedures, triggers, and
SQL methods), Java developers can implement business logic at the server
level, thereby improving application performance, scalability, and security.

The following OC4J documents, for Oracle9i Application Server releases, are also
available from the Oracle Java Platform group:

Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OCA4l.

Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4)J
configuration files.

Oracle9iAS Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4J,
such as JTA, JNDI, and the Oracle9i Application Server Java Object Cache.

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

The following documents are from the Oracle Server Technologies group:

Oracle9i XML Database Developer’s Guide - Oracle XML DB
Oracle9i XML Developer’s Kits Guide - XDK

Oracle9i Application Developer’s Guide - Fundamentals
Oracle9i Application Developer’s Guide - Large Objects (LOBSs)
Oracle9i Application Developer’s Guide - Object-Relational Features
Oracle9i Supplied Java Packages Reference

Oracle9i Supplied PL/SQL Packages and Types Reference
PL/SQL User’s Guide and Reference

Oracle9i SQL Reference

Oracle9i Net Services Administrator’s Guide

Oracle Advanced Security Administrator’s Guide

Oracle9i Database Globalization Support Guide

Oracle9i Database Reference

Oracle9i Database Error Messages

Oracle9i Sample Schemas

xiii

Xiv

The following documents from the Oracle9i Application Server group may also be
of some interest:

« Oracle9i Application Server Administrator’s Guide

« Oracle Enterprise Manager Administrator’s Guide

« Oracle HTTP Server Administration Guide

= Oracle9i Application Server Performance Guide

= Oracle9i Application Server Globalization Support Guide

» Oracle9iAS Web Cache Administration and Deployment Guide

= Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x
The following are available from the Oracle9i JDeveloper group:

« JDeveloper online help

« JDeveloper documentation on the Oracle Technology Network:

http://otn.oracl e. con product s/ j dev/ cont ent . ht m

In North America, printed documentation is available for sale in the Oracle Store at
htt p://oracl estore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

htt p: / / waw or acl ebookshop. cont

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. com adm n/ account / menber shi p. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracl e. com docs/ i ndex. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
= Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
fethphams, or terms that are defined in the Ensure that the recovery catalog and target
' database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-width)
font

| ower case
nonospace
(fixed-width)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to open SQL*Plus.
The password is specified in the or apwd file.

Back up the data files and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart ment _i d, depar t nent _nane,
and | ocat i on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED
initialization parametertot r ue.

Connect as oe user.

The JRepUt i | class implements these
methods.

XV

Convention Meaning Example

| overcase Lowercase italic monospace font You can specify the paral | el _cl ause.
italic represents place holders or variables. Run of d_rel ease.SQL where ol d_r el ease
nonospace

(fixed-wdth)
font

refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROMdba_users WHERE usemame ='MIGRATE,

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

(]

Other notation

Italics

XVi

Brackets enclose one or more optional
items. Do not enter the brackets.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates place holders or
variables for which you must supply
particular values.

DECIMAL (digits |, preci sionl)

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery;

SELECT col 1, col n FROM

employees;

col 2, ...,

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) :=3;

CONNECT SYSTEMJyst em passwor d
DB_NAME = dat abase_nane

Convention

Meaning

Example

UPPERCASE

| ower case

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT | ast _nane, enployee_id FROM
enpl oyees;

SELECT * FROM USER_TABLES;
DROP TABLE hr. enpl oyees;

SELECT | ast _nane, enployee_id FROM
enpl oyees;

sql plus hr/hr
CREATE USER nj ones | DENTI Fl ED BY t y3MB;

Xvii

xviii

1

Introduction to JPublisher

This chapter starts with a brief introduction and examples for the JPublisher utility,
followed by a more complete overview. The following topics are covered:

« Introduction to JPublisher Features
« Understanding JPublisher
« JPublisher Operation

If you are new to JPublisher, start with "Invitation to JPublisher" on page 1-2. If you
have used JPublisher before, you may want to skip ahead to "New JPublisher
Features in Oracle9i Release 2" on page 1-9.

Introduction to JPublisher 1-1

Introduction to JPublisher Features

Introduction to JPublisher Features

This section gives you an introduction to basic features and new features in Oracle9i
release 2 (9.2).

Invitation to JPublisher

JPublisher is a utility, written entirely in Java, that generates Java classes to
represent the following user-defined database entities in your Java program:

« SQL object types

= Object reference types ("REF types")

=« SQL collection types (VARRAY types or nested table types)
« PL/SQL packages

JPublisher enables you to specify and customize the mapping of SQL object types,
object reference types, and collection types (VARRAYs or nested tables) to Java
classes in a strongly typed paradigm.

JPublisher generates get XXX() and set XXX() accessor methods for each attribute
of an object type. If your object types have stored procedures, JPublisher can
generate wrapper methods to invoke the stored procedures. A wrapper method is a
method that invokes a stored procedure that executes in Oracle9i.

JPublisher can also generate classes for PL/SQL packages. These classes have
wrapper methods to invoke the stored procedures in the PL/SQL packages.

The wrapper methods JPublisher generates contain SQLJ code, so when JPublisher
generates wrapper methods, it generally produces . sql j source files. This is true
for classes representing PL/SQL packages or object types that define methods,
unless you specify (through the - net hods option) that JPublisher should not
generate wrapper methods.

If no wrapper methods are generated, JPublisher produces . j ava source files. This
is true for classes representing object types without methods, object reference types,
or collection types, or for classes where the - net hods option is off.

Instead of using JPublisher-generated classes directly, you can:

« Extend the generated classes. This is straightforward, since JPublisher can also
generate initial versions of the subclasses for you, into which you can add your
desired behavior.

1-2 Oracle9iJPublisher User’s Guide

Introduction to JPublisher Features

« Write your own Java classes by hand, without using JPublisher. This approach
is quite flexible, but time-consuming and error-prone.

« Use generic classes to represent object, object reference, and collection types.
Theor acl e. sgl package contains generic, weakly typed classes that represent
object, object reference, and collection types. If these classes meet your
requirements, you do not need JPublisher. Typically, you would use this
approach if you need to be able to generically process any SQL object, collection,
reference, or OPAQUE type.

In addition, JPublisher simplifies access to PL/SQL only types from Java. You can
employ predefined or user-defined mappings between PL/SQL and SQL types, as
well as make use of PL/SQL conversion functions between such types. With such
type correspondences in place, JPublisher can automatically generate all of the
required Java and PL/SQL code.

Getting Started with JPublisher

JPublisher is distributed with the Oracle SQLJ translator. If you have installed SQLJ
through the Oracle Installer, you should already be set up. If you have manually
downloaded a version of Oracle SQLJ, however, you have to go through a few
manual steps to ensure you can use SQLJ and JPublisher. You can refer to
instructions in the Oracle9i SQLJ Developer’s Guide and Reference.

You must ensure the following:

= Aversion of the Sun Microsystems JDK is installed such that you can invoke
the j avac compiler from the command line.

=« The Oracle JDBC driver is installed and in your classpath, typically
[Oracl e_Hone]/jdbc/classesXX j ar.

« The Oracle SQLJ translator and runtime are in your classpath, typically
[Oracle_Hone]/sqlj/runtinmeXX jar and
[Oacle_Hone]/sqlj/translator.jar.

« The invocation scripts or executables—j pub or j pub. exe, sql j or
sql j . exe—are in your file path, typically [Or acl e_Hon®e] / bi n or (for
manual downloads) [Or acl e_Hone] / sql j / bi n.

With proper setup, if you type j pub to the command line you will see
information about common JPublisher option and input settings.

Additionally, if you use JPublisher from release 9.2.0 or later against a 9.2.0 or later
Oracle database, the PL/SQL package SYS. SQLJUTL should be installed. If your
database is Java-enabled, this is already the case. If not, have your database

Introduction to JPublisher 1-3

Introduction to JPublisher Features

administrator install the SQL script [Oracl e_Hone] /sqlj/1ib/sqgljutl.sql
into the SYS schema.

Note: This rest of this section provides introductory discussion
and examples. For more examples, go to
[Oracl e_Hone]/sql j/deno/j pub inyour Oracle installation.

Publishing SQL Object Types

It is straightforward to use JPublisher for publishing SQL objects and packages as
Java classes. This section provides examples of this for the OE (Order Entry) schema
that is part of the Oracle9i sample schema (see Oracle9i Sample Schemas for detailed
information). If you do not have the sample schema installed, but have your own
object types or packages that you would like to publish, just replace the user name,
password, and object or package names with your own.

Assuming that the password for the OE schema is O, this is how you can publish
the SQL object type CATEGORY_TYP:

j pub -user=CH CE - sql =CATEQIRY_TYP: Cat egor yTyp

Use the JPublisher - user option to specify the user name (schema name) and
password. The - sql option specifies the types and packages to be published.
CATEGORY_TYP is the name of the SQL type and, separated by a colon (*":"),

Cat egor y Typ is the name of the corresponding Java class to be generated.
JPublisher echoes to the standard output the names of the SQL types and packages
that it is publishing:

CE CATEGRY_TYP

When you list the files in your current directory, you will notice that in addition to
the file Cat egor yTyp. j ava, which you would have expected, JPublisher has also
generated a file Cat egor yTypeRef . j ava. This represents a strongly typed

wrapper for SQL object references to OE. CATEGORY_TYP. Both files are ready to be
compiled with the Java compiler j avac.

Here is another example, for the type CUSTOVER_TYP, using the shorthand - u
(followed by a space) for "- user ="and - s for "- sql =":

jpub -u CH CE -s QUSTOMER TYP: Cust oner Typ

1-4 Oracle9iJPublisher User’s Guide

Introduction to JPublisher Features

JPublisher output:

CE. QUSTOMER TYP
CE. QUST_ADDRESS TYP

CE PHONE_LI ST_TYP

CE GROER LI ST_TYP

CE CROER TYP

CE GROER | TEM LI ST_TYP

CE GROER | TEM TYP

CE. PRCOUCT | NFCRVATI ON_TYP
CE. | NVENTCRY_LI ST_TYP

CE. | NVENTCRY_TYP

CE. WAREHOUSE_TYP

JPublisher reports a list of SQL object types, because whenever it encounters an
object type for the first time (whether it is an attribute, an object reference, or a
collection that has element types which themselves are objects or collections), it will
automatically generate a wrapper class for that type as well. Two wrapper files are
generated for each object type in this example: 1) a Java class, such as

Cust omer Typ, to represent instances of the object type; and 2) a reference class,
such as Cust omer TypeRef , to represent references to the object type. You may also
have noticed the naming scheme that JPublisher uses by default: the SQL type

OE. PRODUCT _| NFORMATI ON_TYP turns into a Java class

Product | nf or mati onTyp, for example.

Even though JPublisher automatically generates wrappers for embedded types, it
will not do so for subtypes of given object types. In this case, you have to explicitly
enumerate all of the subtypes that you want to have published. The
CATEGORY_TYP type has three subtypes: LEAF_CATEGORY_TYP,

COWPOSI TE_CATEGORY_TYP and CATALOG_TYP. The following is a single
wraparound JPublisher command line to publish these object types.

jpub -u GHHCE -s QOWCHl TE_CATEQRY_TYP: Conposi t eCat egor y Typ
-S LEAF CATEQRY_TYP: Leaf Cat egor yTyp, CATALGG TYP: Cat al ogTyp

JPublisher output:

CE. COMPCS| TE_CATEGCRY_TYP
CE. SUBCATEGORY_REF_LI ST TYP
CE LEAF_CATEGCRY_TYP

CE. CATALCG TYP

CE. CATEGCRY_TYP

CE. PRCDUCT_REF_LI ST TYP

Introduction to JPublisher 1-5

Introduction to JPublisher Features

Note the following:

« If you want to unparse several types, you can list them all together in the - sql
(- s) option, separated by commas , or you can supply several - sgl options on
the command line, or you can do both.

« Although JPublisher does not automatically generate wrappers for all
subclasses, it will generate them for all superclasses.

= When you ran JPublisher earlier to generate Cat al ogTyp, a. j ava file was
output. This time, however, JPublisher created . sqgl j files for CATALOG_TYP
and its three subtypes.

This is because SQLJ simplifies the coding of SQL invocations from Java.
Whenever a SQL object type contains methods, JPublisher by default will
generate a . sql j file that includes wrappers for these methods as well. Both
.sqglj and.j ava files can be immediately translated and compiled with the
Oracle SQLJ translator, as follows:

sqlj *.sqglj *.java

If you are generating Java wrappers for a SQL type hierarchy, and one or more
of the types contain methods (as is the case here), then JPublisher will
automatically generate . sql j files for all types in the hierarchy. Note that you
can always suppress the generation of method wrappers and thus of . sql |
files with the JPublisher option - met hods=f al se.

In case the code generated by JPublisher does not give you the functionality or
behavior you want, you can subclass generated wrapper classes in order to override
or complement their functionality. Consider the following example:

jpub -u CH CE -s WAREHOUSE TYP: JPubVér ehouse: M/\Vér ehouse

JPublisher output:
CE WWREHOUSE TYP

With this command, JPublisher generates JPubWar ehouse. j ava as well as
MyWar ehouse. j ava. The file JPubWar ehouse. j ava is regenerated every time
you rerun this command. The file MyWar ehouse. j ava is created in order to be
customized by you, and will not be overwritten by future runs of this JPublisher
invocation. You can add new methods in MyWar ehouse. j ava, override the
method implementations from JPubWar ehouse. j ava, or both. The class used to
materialize WAREHOUSE_TYP instances in Java is the specialized class

MyWar ehouse. If you want user-specific subclasses for all types in an object type

1-6 Oracle9iJPublisher User’s Guide

Introduction to JPublisher Features

hierarchy, you will have to specify "triplets" of the form
SQ._TYPE: JPubdl ass: User O ass as above for all members of the hierarchy.

Now that we have generated and compiled some Java wrapper classes—how do
you actually use them in Java programs?

Once you have generated and compiled Java wrapper classes with JPublisher, using
them is fairly straightforward, especially if you are programming in SQLJ—just use
the object wrappers directly. The following example calls a PL/SQL stored
procedure that takes a WAREHOUSE_TYPE instance as an | N OUT parameter:

java. math. BigDecimal |ocation = ...;
java. mat h. B gDeci nal werehouseld = .. .;
M/Vér ehouse w = new M/Vér ehouse(war ehousel d, "I ndustrial Park", | ocation);

#sgl { call register_warehouse(: | NAJT w };

In JDBC, you typically register the relationship between the SQL type name and the
corresponding Java class in the type map for your connection instance. This is
required once per connection, as in the following example:

java.util.Mp typeMip = conn. get TypeMap();
typeMap. put (" CE. WAREHOUSE TYP', M/\Wr ehouse. cl ass) ;
conn. set TypeMap(t ypeMap) ;

The following JDBC code corresponds to the #sql statement shown earlier.

Cal | abl eStat enent ¢s = conn. prepareCal | ("{cal | regi ster_warehouse(?)}");
((Cacl eCal | abl e at enent) ¢s) . r egi st er Qut Par anet er

(1, oracl e.jdbc. O acl eTypes. STRUCT, " CE WAREHOUSE TYP') ;
cs. set (j ect (W) ;
cs. execut elpdat e() ;
w = cs. get yj ect (1) ;

Publishing PL/SQL Packages

As shown in the preceding section, it is straightforward to use SQLJ code to call
PL/SQL stored procedures or functions. However, you might prefer to encapsulate
entire PL/SQL packages as Java classes, and JPublisher also offers functionality for
this.

The concept of representing PL/SQL functions and procedures as Java methods
presents a problem—arguments to such functions or procedures might use the
PL/SQL mode OUT or | N OUT, but there are no equivalent modes for passing
arguments in Java. A method that takes an i nt argument, for example, is not able

Introduction to JPublisher 1-7

Introduction to JPublisher Features

to modify this argument in such a way that its callers can receive a new value for it.
As a workaround, JPublisher generates single-element arrays for OUT and | N OUT
arguments. For an array i nt[] abc, for example, the input value is provided in
abc[0], and the modified output value is also returned in abc[0] . A similar
pattern is also used by JPublisher when generating code for SQL object type
methods.

The following command line publishes the SYS. DBMS_L OB package into Java:
jpub -u SCOTT/ TIGER -s SYS. DBVS LGB DohnsLob

JPublisher output:
SYS. DBV LCB

Since DBMS_L OB is publicly visible, we can access it from a different schema, such
as SCOTT. Note that this JPublisher invocation creates a SQLJ source file

DbnsLob. sqgl j that contains the calls to the PL/SQL package. The generated Java
methods are actually all instance methods. The idea is that you create an instance of
the package using a JDBC connection or a SQLJ connection context and then call the
methods on that instance.

Use of Object Types Instead of Java Primitive Numbers When you examine the generated
code, notice that JPublisher has generated j ava. | ang. | nt eger as arguments to
various methods. Using Java object types such as | nt eger instead of Java primitive
types such asi nt permits you to represent SQL NULL values directly as Javanul | s,
and JPublisher generates these by default. However, for the DBMS_L OB package we
actually prefer i nt over the object type | nt eger. The following modified
JPublisher invocation accomplishes this through the - nunbert ypes option.

jpub -nunbertypes=jdbc -u SCOIT/TIGER -s SYS DBVE LCB: DhnslLob

JPublisher output:
SYS. DB\ LCB

Wrapper Code for Procedures at the SQL Top Level JPublisher also allows you to
generate wrapper code for the functions and procedures at the SQL top level. Use
the special package name TOPLEVEL, as in the following example:

jpub -u SCOTT/ TIGER -s TCPLEVEL: SQL.TopLevel

JPublisher output:
SQOIT. <t op- I evel _scope>

1-8 Oracle9iJPublisher User’s Guide

Introduction to JPublisher Features

You will see a warning if there are no stored functions or procedures in the SQL
top-level scope.

If your stored procedures or functions use types that are specific to PL/SQL and not
supported from Java, you will receive warning messages and no corresponding Java
methods are generated. However, you may be able to map PL/SQL types to
corresponding SQL types and their Java counterparts, which will permit JPublisher
to generate appropriate Java code, and possibly PL/SQL code, to gain access to
these types from Java. (See "Using Datatypes Unsupported by JDBC" on page 2-7.)

New JPublisher Features in Oracle9i Release 2

With Oracle9i release 2 (9.2), JPublisher supports virtually all types that can be used
with the Oracle JDBC drivers. Additionally, JPublisher facilitates the use of PL/SQL
types in stored procedure and object method signatures through PL/SQL
conversion support. The following Oracle JDBC types are now directly supported:

« NCHAR types

. TIMESTAMP types
« SQLJ object types

« SQL OPAQUE types

Specifically, the OPAQUE type SYS. XMLTYPE is supported through the Java
type or acl e. xdb. XMLType. SQL OPAQUE types can be supported through a
predefined type correspondence or can trigger JPublisher code generation. (See
"Type Mapping Support for OPAQUE Types" on page 2-8.)

Native PL/SQL types can now be more easily accessed by JPublisher code through
the automatic generation of PL/SQL wrapper functions and procedures in
conjunction with the following mechanisms:

« predefined type conversions, such as between PL/SQL BOOLEAN and Java
bool ean, or PL/SQL | NTERVAL and Java St ri ng

See "Type Mapping Support Through PL/SQL Conversion Functions" on
page 2-11.

« user-defined mappings for PL/SQL indexed-by tables in conjunction with the
JDBC OCI driver

See "Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI" on
page 2-9.

Introduction to JPublisher 1-9

Introduction to JPublisher Features

user-defined conversion functions for mapping PL/SQL RECORD types and
tables of records to SQL object and collection types, and ultimately to Java

See "Type Mapping Support for PL/SQL RECORD Types" on page 2-14.

JPublisher now provides improved functionality as well as flexibility in the code it
generates, as follows:

JPublisher generates attribute-based constructors for SQL object types.

New APIs are now provided in the generated classes to convert between
strongly typed references and to transfer connection information between
objects.

Generated Java wrappers for SQL object types can be made serializable.
See "Serializability of Generated Object Wrappers (-serializable)" on page 3-26.
JPublisher can create t oSt ri ng() methods that report the object value.

See "Generation of toString() Method on Object Wrappers (-tostring)" on
page 3-29.

JPublisher now reduces the programming effort even further, as follows:

When you request user-subclassing of JPublisher-generated classes, an initial
version of these user subclasses will now be automatically generated by
JPublisher.

Inheritance hierarchies now require no initialization by the user application.

Generated files will not be overwritten unnecessarily, improving JPublisher’s
interaction with Make environments.

Extended syntax for JPublisher properties files permits embedding of JPublisher
directives in SQL scripts.

1-10 Oracle9i JPublisher User’s Guide

Understanding JPublisher

Understanding JPublisher

This section provides a basic understanding of what JPublisher is for and what it
accomplishes, covering the following topics:

= JPublisher Object Type Mappings and PL/SQL Mappings
= JPublisher Processes

= What JPublisher Produces

« JPublisher Requirements

= JPublisher Input and Output

« Overview of Datatype Mappings

« Creating Types and Packages in the Database

JPublisher Object Type Mappings and PL/SQL Mappings

JPublisher provides mappings from the following SQL entities to Java classes:
= SQL object types, collection types, reference types, and OPAQUE types
« PL/SQL packages and types

Object Types and JPublisher

JPublisher allows your Java language applications to employ user-defined object
types in Oracle9i. If you intend to have your Java-language application access object
data, then it must represent the data in a Java format. JPublisher helps you do this
by creating the mapping between object types and Java classes, and between object
attribute types and their corresponding Java types.

Classes generated by JPublisher implement either the or acl e. sql . ORADat a
interface or the j ava. sql . SQLDat a interface, depending on how you set the
JPublisher options. Either interface makes it possible to transfer object type
instances between the database and your Java program. For more information about
the ORADat a and SQ_Dat a interfaces, see the Oracle9i JDBC Developer’s Guide and
Reference.

PL/SQL Packages and JPublisher

You might want to call stored procedures in a PL/SQL package from your Java
application. The stored procedure can be a PL/SQL subprogram or a Java method

Introduction to JPublisher 1-11

Understanding JPublisher

that has been published to SQL. Java arguments and functions are passed to and
returned from the stored procedure.

To help you do this, you can direct JPublisher to create a class containing a wrapper
method for each subprogram in the package. The wrapper methods generated by
JPublisher provide a convenient way to invoke PL/SQL stored procedures from
Java code or to invoke a Java stored procedure from a client Java program.

If you call PL/SQL code that includes top-level subprograms (subprograms not in
any PL/SQL package), JPublisher can generate a class containing wrapper methods
for all top-level procedures and functions, or for a subset of the top-level
subprograms that you request.

PL/SQL Types and JPublisher

Java programs only permit you to use SQL types when calling PL/SQL stored
procedures or functions. Types that are supported by PL/SQL only, such as
BOOLEAN, PL/SQL RECORD types, and PL/SQL indexed-by tables cannot be
accessed by JDBC programs. One exception to this are scalar PL/SQL indexed-by
tables which are currently supported in the client-side JDBC OCI driver only.

JPublisher simplifies the invocation of stored procedures and functions that contain
such types: it will automatically create a package with PL/SQL wrapper procedures
and functions, as necessary, to convert between signatures containing PL/SQL
types and corresponding ones that can be used from Java programs and that
reference SQL types only. A mapping has been predefined for the BOOLEAN type.
However, in general users will have to provide correspondences and conversions
between SQL and PL/SQL in order for JPublisher to incorporate a particular
PL/SQL type into its code generation.

JPublisher Processes

JPublisher connects to a database and retrieves descriptions of the SQL object types
or PL/SQL packages that you specify on the command line or from an input file. By
default, JPublisher connects to the database by using the JDBC OCI driver, which
requires an Oracle client installation, including Oracle9i Net and required support
files. If you do not have an Oracle client installation, JPublisher can use the Oracle
JDBC Thin driver.

JPublisher generates a Java class for each SQL object type it translates. The Java
class includes code required to read objects from and write objects to the database.
When you deploy the generated JPublisher classes, your JDBC driver installation
includes all the necessary runtime files. If you create wrapper methods (Java
methods to wrap stored procedures or functions of the SQL object type), JPublisher

1-12 Oracle9i JPublisher User’s Guide

Understanding JPublisher

generates SQLJ source code so you must additionally have the SQLJ runtime
libraries.

When you call a wrapper method, the SQL value for the object is sent to the server,
along with any | Nour I N OUT arguments. Then the method (stored procedure or
function) is invoked, and the new object value is returned to the client, along with
any OUT or | N OUT arguments. Note that this results in a database round trip. If the
method call only performs a simple state change on the object, it will be much more
performant to write and use equivalent Java that affects the state change locally.

JPublisher also generates a class for each PL/SQL package it translates. The class
includes code to invoke the package methods on the server. | Narguments for the
methods are transmitted from the client to the server, and OUT arguments and
results are returned from the server to the client. In addition, JPublisher may also
generate a PL/SQL wrapper package, if required, for converting signatures
containing PL/SQL types into corresponding ones containing SQL types only.

The next section furnishes a general description of the source files that JPublisher
creates for object types and PL/SQL packages.

What JPublisher Produces

The number of files JPublisher produces depends on whether you request ORADat a
classes (classes that implement the or acl e. sql . ORADat a interface) or SQLDat a
classes (classes that implement the standard j ava. sql . SQLDat a interface).

The ORADat a interface supports SQL object, object reference, collection, and
OPAQUE types in a strongly typed way. That is, for each specific object, object
reference, collection, or OPAQUE type in the database, there is a corresponding Java
type. The SQLDat a interface, on the other hand, supports only SQL object types in a
strongly typed way. All object reference types are represented generically as

j ava. sql . Ref instances, and all collection types are represented generically as

j ava. sql . Arr ay instances. Therefore, JPublisher generates classes for object
reference, collection, and OPAQUE types only if it is generating ORADat a classes.

When you run JPublisher for a user-defined object type and you request ORADat a
classes, JPublisher automatically creates the following:

= anobject class that represents instances of the Oracle object type in your Java
program

« arelated reference class for object references to your Oracle object type

« Javaclasses for any object or collection or OPAQUE attributes nested directly or
indirectly within the top-level object

Introduction to JPublisher 1-13

Understanding JPublisher

This is necessary so that attributes can be materialized in Java whenever an
instance of the top-level class is materialized. If an attribute type, such as a SQL
OPAQUE type or a PL/SQL type, has been pre-mapped, then JPublisher will
use the target Java type from the map.

Note: For ORADat a implementations, a strongly typed reference
class is always generated, regardless of whether the SQL object type
uses references.

Advantages of using strongly typed instead of weakly typed
references are described in "Strongly Typed Object References for
ORAData Implementations" on page 1-24.

If you request SQLDat a classes instead, JPublisher does not generate the object
reference class and does not generate classes for nested collection attributes or for
OPAQUE attributes.

When you run JPublisher for a user-defined collection type, you must request
ORADat a classes. JPublisher automatically creates the following:

= acollection class to act as a type definition to correspond to your Oracle
collection type

« if the elements of the collection are objects, a Java class for the element type, and
Java classes for any object or collection attributes nested directly or indirectly
within the element type

This is necessary so object elements can be materialized in Java whenever an
instance of the collection is materialized.

When you run JPublisher for an OPAQUE type, you must request ORADat a classes.
JPublisher automatically creates:

« alavaclass that acts as a wrapper of the OPAQUE type, providing Java
versions of the OPAQUE type methods, as well as pr ot ect ed APIs to access
the representation of the OPAQUE type in a subclass

Typically, however, Java wrapper classes for SQL OPAQUE types will be
furnished by the provider of the OPAQUE type, such as, for example,

oracl e. xdb. XM_LType for the SQL OPAQUE type SYS. XMLTYPE. In this case,
ensure that the correspondence between the SQL and the Java type is
predefined to JPublisher.

1-14 Oracle9i JPublisher User’s Guide

Understanding JPublisher

When you run JPublisher for a PL/SQL package, it automatically creates the
following:

« alavaclass with wrapper methods that invoke the stored procedures of the
package

« if required, a PL/SQL package definition containing functions and procedures
needed to convert from PL/SQL signatures to signatures containing SQL types
only

This may also be generated if you translate methods of an object type, and
PL/SQL wrappers are needed for converting PL/SQL to SQL arguments and
vice versa.

JPublisher Requirements

JPublisher requires that Oracle SQLJ and Oracle JDBC also be installed on your
system and in your classpath appropriately. You will need the following libraries
(available as . j ar or. zi p files):

« SQLJtranslator classes (t r ansl at or)
« SQLJruntime classes (runti mel2, runti mel2ee,orrunti nell)
« JDBCclasses (cl asses12, oj dbcl4, orcl asses1ll)

"12" refers to versions for JDK 1.2.x or later; "14" refers to versions for JDK 1.4.x;
"11" and "111" refer to versions for JDK 1.1.x. See the Oracle9i SQLJ Developer’s
Guide and Reference for more information about these files.

When you use an Oracle9i release 2 or later database, then the package SQLJUTL
should also be installed and publicly accessible in the SYS schema. If this is not the
case, you will see the following warning message when you invoke JPublisher:

War ni ng: Cannot determ ne what kind of type is
<schema>. <type.> You likely need to install SYS.SQLJUTL. The
dat abase returns: ORA-06550: line 1, colum 7:

PLS-00201: identifier 'SYS. SQLJUTL' must be decl ared

In this situation, ask your database administrator to install the SQL file [Or acl e
Hone] /sqlj/1ib/sqgljutl.sqgl intothe SYSschemaand make it publicly
accessible. This will avoid the above warning message in the future.

When you use Oracle9i JPublisher, it is typical to use the equivalent version of SQLJ,
because these two products are always installed together. To use all features of
JPublisher, you also need the following.

Introduction to JPublisher 1-15

Understanding JPublisher

Oracle9i (or version 8.1.7 or 8.1.6)
Oracle9i JDBC drivers (or version 8.1.7 or 8.1.6)

Java Developer’s Kit (JDK) version 1.2 or higher

If you are using only some features of JPublisher, your requirements might be less
stringent:

If you never generate SQLDat a classes, and you never use the
java.sql .Blobandjava. sql . O ob classes, you can use JDK version 1.1.x
instead of JIDK 1.2.x.

If you never generate classes that implement the Oracle-specific ORADat a
interface (or the deprecated Cust onDat uminterface), you should be able to use
a non-Oracle JDBC driver or a non-Oracle SQLJ implementation. When running
code generated by JPublisher, you should even be able to connect to a
non-Oracle database; however, JPublisher itself must connect to an Oracle
database. Oracle does not test or support configurations that use non-Oracle
components.

If you instruct JPublisher to not generate wrapper methods (through the setting
- met hods=f al se), or if your object types define no methods, then JPublisher
will not generate wrapper methods or produce any . sql j files. In this case,
you would not need the SQLJ translator. See "Generation of Package Classes
and Wrapper Methods (-methods)" on page 3-21 for information about the

- met hods option.

If you want JPublisher to generate wrappers for SQL OPAQUE types, you must
use an Oracle 9i release 2 or later database and JDBC driver.

If you use JPublisher to generate only custom object classes that implement the
deprecated Cust onDat uminterface, you can use Oracle database version 8.1.5
with JDBC version 8.1.5 and JDK version 1.1.x or higher. (But it is advisable to
upgrade to the ORADat a interface, which requires an Oracle9i or higher JDBC
implementation.)

JPublisher Input and Output

You can specify input options on the command line and in the properties file. In
addition to producing . sql j and . j ava files for the translated objects, JPublisher
writes the names of the translated objects and packages to standard output.

1-16 Oracle9i JPublisher User’s Guide

Understanding JPublisher

JPublisher Input
"JPublisher Options" on page 3-2 describes all the JPublisher options.

In addition, you can use a file known as the | NPUT file to specify the object types
and PL/SQL packages JPublisher should translate. It also controls the naming of the
generated packages and classes. "INPUT File Structure and Syntax" on page 3-35
describes | NPUT file syntax.

A properties file is an optional text file that you can use to specify options to
JPublisher. Specify the names of properties files on the command line, using the

- pr ops option. JPublisher processes the properties files as if their contents were
inserted, in sequence, on the command line at that point. For additional flexibility,
properties files can also be SQL script files where the JPublisher directives are
embedded in SQL comments. For more information about this file and its format,
see "Properties File Structure and Syntax" on page 3-33.

JPublisher Output

JPublisher generates a Java class for each object type that it translates. For each
object type, whether an ORADat a or a SQLDat a implementation, JPublisher
generates a <t ype>. sql j file for the class code (or a <t ype>. j ava file if wrapper
methods were suppressed or do not exist, or depending on the JPublisher

- met hods option setting) and a <t ype>Ref . j ava file for the code for the REF
class of the Java type. For example, if you define an EMPLOYEE SQL object type,
JPublisher generates an enpl oyee. sql j file (or anenpl oyee. j ava file) and an
enpl oyeeRef . | ava file. Note that the case of Java class names produced by
JPublisher is determined by the - case option. See "Case of Java Identifiers (-case)"
on page 3-15.

For each collection type (nested table or VARRAY) it translates, JPublisher generates
a<type>. | ava file. For nested tables, the generated class has methods to get and
set the nested table as an entire array and to get and set individual elements of the
table. JPublisher translates collection types when generating ORADat a classes, but
not when generating SQLDat a classes. JPublisher can also generate wrapper classes
for OPAQUE types. However, OPAQUE types are more typically already
pre-mapped to corresponding Java classes that implement the ORADat a interface.

For PL/SQL packages, JPublisher generates classes containing wrapper methods as
.sqlj files.

When JPublisher generates the class files and wrappers, it also writes the names of
the translated types and packages to standard output.

Introduction to JPublisher 1-17

Understanding JPublisher

Overview of Datatype Mappings

JPublisher offers different categories of datatype mappings from SQL to Java.
JPublisher options to specify these mappings are described below, under "Detailed
Descriptions of Options That Affect Datatype Mappings" on page 3-7.

Each type mapping option has at least two possible values: j dbc and or acl e. The
- nunbert ypes option has two additional alternatives: obj ect j dbc and
bi gdeci mal .

The following sections describe these categories of mappings. For more information
about datatype mappings, see "Details of Datatype Mapping" on page 2-2.

JDBC Mapping

The JDBC mapping maps most numeric datatypes to Java primitive types such as

i nt and f | oat , and maps DECI MAL and NUMBERto j ava. mat h. Bi gDeci mal .
LOB types and other non-numeric built-in types map to standard JDBC Java types
such asj ava. sql . Bl ob andj ava. sql . Ti mest anp. For object types, JPublisher
generates SQLDat a classes. Predefined datatypes that are Oracle extensions (such
as BFI LE and ROW D) do not have JDBC mappings, so only the or acl e. sqgl . *
mapping is supported for these types.

The Java primitive types used in the JDBC mapping do not support null values and
do not guard against integer overflow or floating-point loss of precision. If you are
using the JDBC mapping and you attempt to call an accessor or method to get an
attribute of a primitive type (short,int,fl oat, ordoubl e) whose value is

nul | , an exception is thrown. If the primitive type isshort ori nt, then an
exception is thrown if the value is too large to fitina short ori nt variable.

Object JDBC Mapping

The Object JDBC mapping maps most numeric datatypes to Java wrapper classes
such asj ava. | ang. I nt eger andj ava. | ang. Fl oat, and maps DECI MAL and
NUMBERto j ava. mat h. Bi gDeci mal . It differs from the JDBC mapping only in
that it does not use primitive types.

When you use the Object JIDBC mapping, all your returned values are objects. If you
attempt to get an attribute whose value is nul | , a null object is returned.

The Java wrapper classes used in the Object JDBC mapping do not guard against
integer overflow or floating-point loss of precision. If you call an accessor method to
get an attribute that maps to j ava. | ang. | nt eger, an exception is thrown if the
value is too large to fit.

This is the default mapping for numeric types.

1-18 Oracle9i JPublisher User’s Guide

Understanding JPublisher

BigDecimal Mapping
Bi gDeci mal mapping, as the name implies, maps all numeric datatypes to
j ava. mat h. Bi gDeci mal . It supports null values and very large values.

Oracle Mapping

In the Oracle mapping, JPublisher maps any numeric, LOB, or other built-in type to
aclassin the or acl e. sql package. For example, the DATE type is mapped to

or acl e. sqgl . DATE, and all numeric types are mapped to or acl e. sql . NUVMBER.
For object, collection, and object reference types, JPublisher generates ORADat a
classes.

Because the Oracle mapping uses no primitive types, it can represent a null value as
aJava nul | in all cases. Because it uses the or acl e. sgl . NUMBER class for all
numeric types, it can represent the largest numeric values that can be stored in the
database.

Other Option Settings

Note that a number of additional option settings influence the nature of the
generated code. For example, the option - conpat i bl e controls generations of the
backward compatible Cust onDat umtype, while - access specifies the visibility of
the generated methods, constructors, and attributes. The option - seri al i zabl e
controls whether a generated object wrapper class implements

java.io. Serializabl eornot.

Creating Types and Packages in the Database

Before you run JPublisher, you must create any new datatypes that you will require
in the database. You must also ensure that any PL/SQL packages, methods, and
subprograms that you want to invoke from Java are also installed in Oracle9i.

Use the SQL CREATE TYPE statement to create object, VARRAY, and nested table
types in the database. JPublisher supports the mapping of these datatypes to Java
classes. JPublisher also generates classes for references to object types. REF types are
not explicitly declared in SQL. For more information on creating object types, see
the Oracle9i SQL Reference.

Use the CREATE PACKAGE and CREATE PACKAGE BODY statements to create
PL/SQL packages and store them in the database. PL/SQL furnishes all the
capabilities necessary to implement the methods associated with object types. These
methods (functions and procedures) reside on the server as part of a user’s schema.
You can implement the methods in PL/SQL or Java.

Introduction to JPublisher 1-19

Understanding JPublisher

Packages are often implemented to provide the following advantages:
« encapsulation of related procedures and variables

« declaration of publ i c and pri vat e procedures, variables, constants, and
cursors

« Dbetter performance

For more information on PL/SQL and creating PL/SQL packages, see the PL/SQL
User’s Guide and Reference.

1-20 Oracle9i JPublisher User’s Guide

JPublisher Operation

JPublisher Operation

This section discusses the basic steps in using JPublisher, describes the
command-line syntax, and concludes with a more detailed description of a sample
translation. The following topics are covered:

Translating and Using PL/SQL Packages and User-Defined Types
Representing User-Defined Object, Collection, and Reference Types in Java
Strongly Typed Object References for ORAData Implementations
JPublisher Command-Line Syntax

Sample JPublisher Translation

Translating and Using PL/SQL Packages and User-Defined Types

This section lists the basic steps, illustrated in Figure 1-1 below, for translating and
using code for user-defined types and PL/SQL packages. User-defined types
include Oracle objects and Oracle collections—VARRAYs and nested table types.

1.

Create the desired user-defined datatypes and PL/SQL packages in the
database.

Have JPublisher generate source code for Java classes that represent PL/SQL
packages, user-defined types, and reference types and places them in specified
Java packages. JPublisher generates . j ava files for object reference, VARRAY,
and nested table classes. If you instruct JPublisher to generate wrapper
methods, it will generate . sqgl j files for packages and object types (assuming
the object types have methods). If you instruct JPublisher to not generate
wrapper methods, it will generate . j ava files without wrapper methods for
object types and will not generate classes for packages (because they contain
only wrapper methods). For object types without methods, JPublisher generates
. j avafiles in any case.

Import these classes into your application code.

Use the methods in the generated classes to access and manipulate the
user-defined types and their attributes.

Compile all classes (the JPublisher-generated code and your code). SQLJ
translates and compiles . sgl j and . j ava files. Or, if you have only . j ava
files, you can simply invoke the Java compiler.

Run your compiled application.

Introduction to JPublisher 1-21

JPublisher Operation

Figure 1-1 Translating and Using JPublisher-Generated Code

54l DDLU

1-22 Oracle9i JPublisher User’s Guide

command line
and
properties file

Generated java
and .sql|
source files

User-written
Jjava and _sqlj
source files

S0LJ and Java

JDBC driver
and SalLJ
runtime library

Executed by
Java VM

1!

Compiler

class files

JPublisher Operation

Representing User-Defined Object, Collection, and Reference Types in Java

Here are the three ways to represent user-defined object, collection, object reference,
and OPAQUE types in your Java program:

Use classes that implement the ORADat a interface.

JPublisher generates classes that implement the or acl e. sql . ORADat a
interface. (You can also write them by hand, but this is not generally
recommended.)

Use classes that implement the SQLDat a interface, as described in the JDBC 2.0
API.

JPublisher generates classes for SQL object types that implement the

j ava. sqgl . SQLDat a interface. (You can also write them by hand, but this is
not generally recommended. Be aware that if you write them by hand, or if you
generate classes for an inheritance hierarchy of object types, your classes must
be registered using a type map.)

When you use the SQLDat a interface, all object reference types are represented
generically asj ava. sqgl . Ref instances, and all collection types are
represented generically asj ava. sql . Arr ay instances. There is no mechanism
for representing OPAQUE types.

Use or acl e. sql . * classes.

You can use the or acl e. sql . * classes to represent user-defined types
generically. The class or acl e. sgl . STRUCT represents all object types, the
class or acl e. sql . ARRAY represents all VARRAY and nested table types, the
class or acl e. sql . REF represents all REF types, and the class

oracl e. sgl . OPAQUE represents all OPAQUE types. These classes are
immutable in the same way thatj ava. | ang. Stri ng is.

You would need to choose this option if you need to write code that processes
objects, collections, references, or OPAQUE types in a generic way.

Compared to or acl e. sql . * classes, classes that implement ORADat a or SQLDat a
are strongly typed. Your connected SQLJ translator will detect an error at
translation time if, for example, you mistakenly select a PERSON object into an
ORADat a object that represents an ADDRESS.

JPublisher-generated classes that implement ORADat a or SQLDat a have additional
advantages:

The classes are customized, rather than generic. You access attributes of an
object using get XXX() and set XXX() methods named after the particular

Introduction to JPublisher 1-23

JPublisher Operation

attributes of the object. Note that you have to explicitly update the object in the
database if there are any changes to its data.

= Theclasses are mutable. You can generally modify attributes of an object or
elements of a collection. The exception is that ORADat a classes representing
object reference types are not mutable, because an object reference does not
have any subcomponents that could be sensibly modified. You can, however,
use the set Val ue() method of a reference object to change the database value
that the reference points to.

= You can generate Java wrapper classes that are serializable, or that have
t oSt ri ng() method to print out the object together with its attribute values.

Compared to classes that implement SQLDat a, classes that implement ORADat a are
fundamentally more efficient, because ORADat a classes avoid unnecessary
conversions to native Java types. For a comparison of the SQLDat a and ORADat a
interfaces, see the Oracle9i JDBC Developer’s Guide and Reference.

Strongly Typed Object References for ORAData Implementations

For Oracle ORADat a implementations, JPublisher always generates strongly typed
object reference classes as opposed to using the weakly typed or acl e. sql . REF
class. This is to provide greater type safety and to mirror the behavior in SQL,
where object references are strongly typed. The strongly typed classes (with names
such as Per sonRef for references to PERSON objects) are essentially wrappers for
the or acl e. sql . REF class.

In these strongly typed REF wrappers, there is a get Val ue() method that
produces an instance of the SQL object that is referenced, in the form of an instance
of the corresponding Java class. (Or, in the case of inheritance, perhaps as an
instance of a subclass of the corresponding Java class.) For example, if there is a
PERSON object type in the database, with a corresponding Per son Java class, there
will also be a Per sonRef Java class. The get Val ue() method of the Per sonRef
class would return a Per son instance containing the data for a PERSON object in the
database. In addition, JPublisher also generates a static cast () method on the

Per sonRef class, permitting you to convert other typed references to a

Per sonRef instance.

Whenever a SQL object type has an attribute that is an object reference, the Java
class corresponding to the object type would have an attribute that is an instance of
a Java class corresponding to the appropriate reference type. For example, if there is
a PERSON object with a MANAGER REF attribute, then the corresponding Per son
Java class will have a Manager Ref attribute.

1-24 Oracle9i JPublisher User’s Guide

JPublisher Operation

For standard SQLDat a implementations, strongly typed object references are not
supported—they are not part of the standard. JPublisher does not create a custom
reference class; you must use j ava. sqgl . Ref ororacl e. sqgl . REF as the reference

type.

JPublisher Command-Line Syntax

On most operating systems, you invoke JPublisher on the command line, typing
j pub followed by a series of options settings as follows:

j pub - optionl=val uel - option2=val ue2 . ..

JPublisher responds by connecting to the database and obtaining the declarations of
the types or packages you specify, then generating one or more custom Java files
and writing the names of the translated object types or PL/SQL packages to
standard output.

Here is an example of a command that invokes JPublisher (single wraparound
command line):

jpub -user=scott/tiger -input=demoin -nunbertypes=oracl e -usertypes=oracl e
- di r=deno - package=corp

Enter the command on one command line, allowing it to wrap as necessary. For
clarity, this chapter refers to the input file (the file specified by the - i nput option)
as the I NPUT file (to distinguish it from any other kinds of input files).

This command directs JPublisher to connect to the database with username SCOTT
and password Tl GER and translate datatypes to Java classes, based on instructions
in the | NPUT file denmoi n. The - nunber t ypes=or acl e option directs JPublisher
to map object attribute types to Java classes supplied by Oracle, and the

- usertypes=or acl e option directs JPublisher to generate Oracle-specific

ORADat a classes. JPublisher places the classes that it generates in the package cor p
in the directory deno.

"JPublisher Options" on page 3-2 describes each of these options in more detail.

Notes:
= No spaces are permitted around the equals sign (=).

« If you execute JPublisher without any options on the command
line, it displays an option list and then terminates.

Introduction to JPublisher 1-25

JPublisher Operation

Sample JPublisher Translation

This section provides a sample JPublisher translation of an object type. At this point,
do not worry about the details of the code JPublisher generates. You can find more
information about JPublisher input and output files, options, datatype mappings,
and translation later in this manual.

Create the object type EMPLOYEE:
CREATE TYPE enpl oyee AS CBIECT

(
nane VARCHAR2(30) ,
enpno | NTECER
dept no NUVBER
hiredate DATE
sal ary REAL

)s

The | NTEGER, NUMBER, and REAL types are all stored in the database as NUMBER
types, but after translation they have different representations in the Java program,
based on your choice for the value of the - nunbert ypes option.

JPublisher translates the types according to the following command line:

jpub -user=scott/tiger -dir=deno -nunbertypes=objectjdbc -builtintypes=j dbc
- package=cor p - case=ni xed - sql =Enpl oyee

This is a single wraparound command line. "JPublisher Options" on page 3-2
describes each of these options in detail.

Note that because the EMPLOYEE object type does not define any methods,
JPublisher will generate a . j ava file,nota . sql j file.

Because -di r =deno and - package=cor p were specified on the JPublisher
command line, the translated class Enpl oyee is written to Enpl oyee. j ava in the
following location:

./ deno/ cor p/ Enpl oyee. j ava (N X)
.\ deno\ cor p\ Enpl oyee. j ava (Wndows NI)

The Enpl oyee. j ava class file would contain the code below.

Note: The details of the code JPublisher generates are subject to
change. In particular, non-public methods, non-public fields, and
all method bodies may be generated differently.

1-26 Oracle9i JPublisher User’s Guide

JPublisher Operation

package corp;

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CQRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql . Datum

i nport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class Empl oyee inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ_ NAME = "SCOIT. BVPLOYEE",;
public static final int _SQ TYPEQCDE = O acl eTypes. STRULCT;

protected Mit abl eStruct _struct;

private static int[] _sql Type = { 12,4,2,91,7 };
private stati c CRADataFactory[] _factory = new CRADat aFactory[5];
protected static final Enpl oyee _Enpl oyeeFactory = new Enpl oyee(fal se);

public static CRADat aFactory get CRADat aFact ory()
{ return _Ewpl oyeeFactory; }

/* constructor */
prot ect ed Enpl oyee(bool ean init)
{ if(init) _struct = new Mitabl eXruct (new (bject[5], _sql Type, factory); }
publ i ¢ Enpl oyee()
{ this(true); }
publ i ¢ Enpl oyee(Sring nane, |Integer enpno, java.nmath. B gDeci nal dept no,
java.sql . Timestanp hiredate, Hoat sal ary)
throws SQException
{ this(true);
set Nane(narre) ;
set Enpno(enpno) ;
set Dept no(dept no) ;
setH redat e(hi redate) ;
set Sal ary(sal ary);

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _struct.tobDatunfc, _SQ_NAME);

Introduction to JPublisher 1-27

JPublisher Operation

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ect ed CRADat a creat e(Enpl oyee o, Datumd, int sql Type) throws SQException
{
if (d=null) return null;
if (0o = null) o= new Enpl oyee(fal se);
0. _struct = new Mitabl eStruct ((STRUIT) d, _sql Type, _factory);
return o;
}
/* accessor nethods */
public Sring getNane() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void setNane(Sring nane) throws SQException
{ _struct.setAttribute(0, name); }

public Integer getEnpno() throws SQException
{ return (Integer) _struct.getAttribute(l); }

publ i ¢ voi d set Enpno(l nteger enpno) throws SQLException
{ _struct.setAttribute(l, enpno); }

public java.nath. B gDeci nal getDeptno() throws SQException
{ return (java.math. BigDecinal) _struct.getAttribute(2); }

publ i ¢ voi d set Dept no(j ava. nat h. B gDeci nal deptno) throws SQLException
{ _struct.setAttribute(2, deptno); }

public java.sql.Tinestanp getH redate() throws SQException
{ return (java.sql.Tinestanp) _struct.getAttribute(3); }

public void setH redate(java. sql . Ti nestanp hi redate) throws SQException
{ _struct.setAttribute(3, hiredate); }

public Hoat getSalary() throws SQException
{ return (Hoat) _struct.getAttribute(4); }

public void setSal ary(Fl oat sal ary) throws SQException
{ _struct.setAttribute(4, salary); }

1-28 Oracle9i JPublisher User’s Guide

JPublisher Operation

Code Generation Notes

Oracle JPublisher in Oracle9i release 2 and higher also generates object
constructors based on the object attributes.

Additional pri vat e or publ i ¢ methods may be generated with other settings.
For example, the setting - seri al i zabl e=t r ue results in the object wrapper
implementing the interface j ava. i 0. Seri al i zabl e and in the generation of
privatewiteObject andreadObj ect methods. The setting

-t ostring=true results in the additional generation of a publ i c
toString() method.

For Oracle9i releases (as well as Oracle8i release 8.1.7), there is a pr ot ect ed
_struct field in JPublisher-generated code for SQL object types. This is an
instance of the internal class or acl e. j pub. runti nme. Mut abl eStr uct ; this
instance contains the data in original SQL format. In general, you should never
reference this field directly. Instead, use the setting - met hods=al ways or

- met hods=naned as necessary to ensure that JPublisher produces . sql j files,
then use the methods set Fr on{) and set Val ueFr on{) when subclassing.
See "The setFrom(), setValueFrom(), and setContextFrom() Methods" on

page 2-38.

In Oracle8i compatibility mode, there is also a pr ot ect ed _ct x field thatis a
SQLJ connection context instance. See "Oracle8i Compatibility Mode" on
page 2-52 for more information.

Note that Oracle8i JPublisher would generate implementations of the
now-deprecated Cust omDat umand Cust onDat unfact or y interfaces, instead
of ORADat a and ORADat aFact ory. In fact, it is still possible to do this through
the JPublisher - conpat i bl e option, and this is required if you are using an
Oracle8i JDBC driver.

JPublisher also generates an Enpl oyeeRef . j ava class. The source code is
displayed here:

package corp;

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . CQRADat a;

inport oracl e. sql . CQRADat aFact or y;
inport oracl e.sql . Datum

inport oracl e.sql . REF,

Introduction to JPublisher 1-29

JPublisher Operation

i mport oracl e. sql . STRUCT;

public class Enpl oyeeRef inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ BASETYPE = "SQOOIT. EMPLOYEE';
public static final int _SQ TYPEQXDE = O acl eTypes. REF;

REF ref;
private static final Enpl oyeeRef _Enpl oyeeRef Factory = new Enpl oyeeRef () ;

public static CRADat aFactory get CRADat aFact ory()
{ return _BEnpl oyeeRef Factory; }

/* constructor */

publ i ¢ Enpl oyeeRef ()

{

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

Enpl oyeeRef r = new Enpl oyeeRef () ;

r. ref = (REFH) d;

return r;
}

public static Enpl oyeeRef cast(CRAData o) throws SQ.Exception
{
if (o=null) return null;
try { return (Epl oyeeRef) get CRADat aFactory().create(o.tobDatun{null),
Q acl eTypes. REF); }
catch (Exception exn)
{ throw new SQ@Exception("Ulhabl e to convert "+o.getd ass().getNane()+" to
Enpl oyeeRef: "+exn.toString()); }

}

1-30 Oracle9i JPublisher User’s Guide

JPublisher Operation

publ i ¢ Enpl oyee getVal ue() throws SQException

{
return (Enpl oyee) Enpl oyee. get GRADat aFact ory(). creat e(

_ref. get STRICT(), O acl eTypes. REF);
}

public voi d setVal ue(Enpl oyee c) throws SQException
{

}
}

_ref. set Val ue((STRUCT) c.tobDatun{_ref.get JavaSgl Connection()));

Note that JPublisher in Oracle9i release 2 and higher also generates a publ i ¢
static cast () method to cast from other strongly typed references into a
strongly typed reference instance.

You can find more examples of object mappings in "Example: JPublisher Object
Attribute Mapping" on page 4-8.

Introduction to JPublisher 1-31

JPublisher Operation

1-32 Oracle9i JPublisher User’s Guide

2

JPublisher Concepts

This chapter provides a detailed discussion of JPublisher’s underlying concepts and
of its operation. The following topics are covered:

Details of Datatype Mapping

Concepts of JPublisher-Generated Classes

JPublisher Generation of SQLJ Classes (.sqlj)

JPublisher Generation of Java Classes (.java)
User-Written Subclasses of JPublisher-Generated Classes
JPublisher Support for Inheritance

Backward Compatibility and Migration

JPublisher Limitations

JPublisher Concepts 2-1

Details of Datatype Mapping

Details of Datatype Mapping

As described previously, you can specify one of the following settings for datatype
mappings when you use the type mapping options (- bui | t i nt ypes, - | obt ypes,
-nunbertypes,and - usertypes):

« jdbc

« objectjdbc (for - nunbert ypes only)
« bigdeci mal (for-nunbertypes only)
« oracle

These mappings, described in "Overview of Datatype Mappings" on page 1-18,
affect the argument and result types JPublisher uses in the methods it generates.

The class that JPublisher generates for an object type will have get XXX() and

set XXX() methods for the object attributes. The class that JPublisher generates for
a VARRAY or nested table type will have get XXX() and set XXX() methods that
access the elements of the array or nested table. When you use the option

- met hods=t r ue, the class that JPublisher generates for an object type or PL/SQL
package will have wrapper methods that invoke server methods of the object type
or package. The mapping options control the argument and result types these
methods will use.

The JDBC and Object JDBC mappings use familiar Java types that can be
manipulated using standard Java operations. If your JDBC program is manipulating
Java objects stored as object types, you might prefer the JDBC or Object JDBC

mapping.

The Oracle mapping is the most efficient mapping. The or acl e. sqgl types match
the Oracle internal datatypes as closely as possible so that little or no data
conversion is required between the Java and the SQL formats. You do not lose any
information and have greater flexibility in how you process and unpack the data.
The Oracle mappings for standard SQL types are the most convenient
representations if you are manipulating data within the database or moving data
(for example, performing SELECT and | NSERT operations from one existing table
to another). When data format conversion is necessary, you can use methods in the
oracl e. sqgl . * classes to convert to Java native types.

When you decide which mapping to use, you should remember that data format
conversion is only a part of the cost of transferring data between your program and
the server.

2-2 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping

SQL and PL/SQL Mappings to Oracle and JDBC Types

Table 2-1 lists the mappings from SQL and PL/SQL datatypes to Java types using
the Oracle and JDBC mappings. You can use all the supported datatypes listed in
this table as argument or result types for PL/SQL methods. You can use a subset of
the datatypes as object attribute types, as listed in "Allowed Object Attribute Types"
on page 2-6.

The SQL and PL/SQL Datatype column contains all possible datatypes.

The Oracle Mapping column lists the corresponding Java types JPublisher uses when
all the type mapping options are set to or acl e. These types are found in the

oracl e. sql package supplied by Oracle and are designed to minimize the
overhead incurred when converting Oracle datatypes to Java types. Refer to the
Oracle9i JDBC Developer’s Guide and Reference for more information on the

oracl e. sgl package.

The JDBC Mapping column lists the corresponding Java types JPublisher uses when
all the type mapping options are set to j dbc. For standard SQL datatypes,
JPublisher uses Java types specified in the JDBC specification. For SQL datatypes
that are Oracle extensions, JPublisher uses the or acl e. sql . * types. When you set
the type mapping option to obj ect j dbc, the corresponding types will be the same
as in the JDBC Mapping column except that primitive Java types, such asi nt , are
replaced with their object counterparts, such as j ava. | ang. | nt eger. Type
correspondences that are explicitly defined in the JPublisher type map, such as
PL/SQL BOOLEANto SQL NUVMBER to Java bool ean, are not affected by the
mapping option settings.

A few datatypes are not directly supported by JPublisher, in particular those types
that pertain to PL/SQL only. You can overcome these limitations by providing
equivalent SQL and Java types, as well as PL/SQL conversion functions between
PL/SQL and SQL representations. The annotations and subsequent sections explain
these conversions further.

Table 2-1 SQL and PL/SQL Datatype to Oracle and JDBC Mapping Classes

SQL and PL/SQL Datatype Oracle Mapping JDBC Mapping

CHAR, CHARACTER, LONG, oracle.sql.CHAR java.lang.String

STRING, VARCHAR, VARCHAR?2

NCHAR, NVARCHAR2 oracle.sql.NCHAR (note 1) oracle.sql.NString (note 1)
RAW, LONG RAW oracle.sql.RAW byte[]

JPublisher Concepts 2-3

Details of Datatype Mapping

Table 2-1 SQL and PL/SQL Datatype to Oracle and JDBC Mapping Classes (Cont.)

SQL and PL/SQL Datatype

Oracle Mapping

JDBC Mapping

BINARY_INTEGER, NATURAL,
NATURALN, PLS_INTEGER,

POSITIVE, POSITIVEN, SIGNTYPE,

INT, INTEGER

DEC, DECIMAL, NUMBER,
NUMERIC

DOUBLE PRECISION, FLOAT
SMALLINT

REAL

DATE

TIMESTAMP,
TIMESTAMP WITH TZ,
TIMESTAMP WITH LOCAL TZ

INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

ROWID, UROWID
BOOLEAN

CLOB

BLOB

BFILE

NCLOB

object types

SQLJ object types
OPAQUE types

RECORD types

nested table, VARRAY

reference to object type

REF CURSOR

2-4 Oracle9i JPublisher User’s Guide

oracle.sql. NUMBER

oracle.sql. NUMBER

oracle.sql. NUMBER
oracle.sql. NUMBER
oracle.sql. NUMBER
oracle.sql.DATE

oracle.sql. TIMESTAMP,
oracle.sql. TIMESTAMPTZ,
oracle.sql. TIMESTAMPLTZ

String (note 2)

oracle.sql.ROWID

boolean (note 3)

oracle.sql.CLOB

oracle.sql.BLOB

oracle.sql.BFILE
oracle.sql.NCLOB (note 1)
generated class

Java class defined at type creation

generated or predefined class
(note 4)

through mapping to SQL object
type (note 5)

generated class implemented
using oracle.sgl.ARRAY

generated class implemented
using oracle.sgl.REF

java.sql.ResultSet

int

java.math.BigDecimal

double

short

float
java.sql.Timestamp

java.sql.Timestamp

String (note 2)

oracle.sql.ROWID

boolean (note 3)

java.sql.Clob

java.sql.Blob

oracle.sql.BFILE
oracle.sql.NCLOB (note 1)
generated class

Java class defined at type creation

generated or predefined class
(note 4)

through mapping to SQL object
type (note 5)
java.sql.Array

java.sql.Ref

java.sql.ResultSet

Details of Datatype Mapping

Table 2-1 SQL and PL/SQL Datatype to Oracle and JDBC Mapping Classes (Cont.)

SQL and PL/SQL Datatype Oracle Mapping JDBC Mapping

scalar (numeric or character) through mapping to Java array through mapping to Java array

indexed-by tables (note 6) (note 6)

indexed-by tables through mapping to SQL through mapping to SQL collection
collection (note 7) (note 7)

user-defined subtypes same as for base type same as for base type

Datatype Mapping Notes The following notes correspond to marked entries in the
preceding table.

1.

The Java classes or acl e. sgl . NCHAR, or acl e. sql . NCLOB, and

oracl e. sgl . NSt ri ng are not part of JDBC but are distributed with the SQLJ
runtime. SQLJ uses these classes to represent the NCHAR form of use of the
corresponding classes or acl e. sql . CHAR, or acl e. sql . CLOB, and
java.lang. String.

Mapping of SQL | NTERVAL types to VARCHAR2 and Java St r i ng is defined in
a default JPublisher type map. It uses conversion functions from the

SYS. SQLIUTL package. See also "JPublisher Default Type Map and User Type
Map" on page 2-18.

Mapping of PL/SQL BOOLEAN to SQL NUMBER and Java bool ean is defined in
the default JPublisher type map. It uses conversion functions from the
SYS. SQLIJUTL package.

Mapping of the SQL OPAQUE type SYS. XMLTYPE to the Java class

or acl e. xdb. XMLType is defined in the default JPublisher type map. For other
OPAQUE types, the vendor will typically provide a corresponding Java class. In
this case you just have to specify a JPublisher type map entry that defines the
correspondence between the SQL OPAQUE type and the corresponding Java
wrapper class. If JPublisher encounters an OPAQUE type that does not have a
type map entry, it will generate a Java wrapper class for that OPAQUE type. See
also "Type Mapping Support for OPAQUE Types" on page 2-8.

In order to support a PL/SQL RECORD type you must define a corresponding
SQL object type and two PL/SQL conversion functions that map between SQL
and PL/SQL types (one function to convert in each direction). Additionally, you
must publish a Java wrapper class for the SQL type with JPublisher. At this
point you can provide a type map entry for JPublisher that defines the
correspondences between PL/SQL, SQL, and Java types and the PL/SQL
conversion functions. This allows JPublisher to automatically publish PL/SQL

JPublisher Concepts 2-5

Details of Datatype Mapping

or method signatures that use the PL/SQL RECORD type. See also "Type
Mapping Support for PL/SQL RECORD Types" on page 2-14.

If you are using the JDBC OCI driver to call PL/SQL stored procedures or
object methods, you have direct support for scalar indexed-by tables, also
known as PL/SQL TABLE types. In this case, specify a type map entry for
JPublisher that contains the PL/SQL scalar indexed-by table type and the
corresponding Java array type. JPublisher can then automatically publish
PL/SQL or object method signatures that use this scalar indexed-by type. See
also "Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI" on
page 2-9.

In order to support a PL/SQL indexed-by table type, you must define a
corresponding SQL collection type and two PL/SQL conversion functions that
map between SQL and PL/SQL types. Additionally, you must publish a Java
wrapper class for the SQL collection type with JPublisher. (If the elements of the
indexed-by table are PL/SQL records, you also must provide full JPublisher
mapping support between these records and corresponding SQL and Java
types.) At this point you can provide a type map entry for JPublisher that
defines the correspondences between PL/SQL, SQL, and Java types and the
PL/SQL conversion functions. Now JPublisher can automatically publish
PL/SQL or method signatures that use this PL/SQL indexed-by-table type. See
also "Type Mapping Support for PL/SQL Indexed-by Table Types" on

page 2-16.

Note: The Object JDBC and Bi gDeci mal mappings, which affect
numeric types only, are fully described in "Mappings For Numeric
Types (-numbertypes)" on page 3-10.

Allowed Object Attribute Types

You can use a subset of the PL/SQL datatypes listed in Table 2-1 as object attribute
types. These datatypes are listed here and have the same Oracle mappings and
JDBC mappings as described in the table:

CHAR, VARCHAR, VARCHAR2, CHARACTER
NCHAR, NVARCHAR2

DATE

DECI MAL, DEC, NUMBER, NUMERI C
DOUBLE PRECI SI ON, FLOAT

2-6 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping

= | NTEGER SMALLI NT, I NT

« REAL

=« RAWLONG RAW
« CLOB

« BLOB

« BFILE

= NCLOB

=« oObject type, OPAQUE type, SQLJ object type
« nested table, VARRAY type
« reference type

The TIMESTAMP types TI MESTAMP, TI MESTAMP W TH TI MEZONE, and

TI MESTAMP W TH LOCAL TI MEZONE are supported by JPublisher as object
attributes. However, in Oracle9i release 2 (9.2.0), JDBC does not support these types
as object attributes.

Using Datatypes Unsupported by JDBC

Generally, if JPublisher encounters a PL/SQL stored procedure or function or an
object type method with an unsupported PL/SQL type, it will issue an error
message and skip the generation of a corresponding method in the wrapper class.
However, if you provide appropriate type mapping information, such methods can
still be automatically published by JPublisher. In addition, a JPublisher type map
entry can be used to associate types, such as SQL OPAQUE types or certain scalar
PL/SQL indexed-by table types, with corresponding Java classes. The following
sections discuss various aspects of the type mapping support provided by
JPublisher:

« Type Mapping Support for OPAQUE Types

« Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI
« Type Mapping Support Through PL/SQL Conversion Functions

« Type Mapping Support for PL/SQL RECORD Types

« Type Mapping Support for PL/SQL Indexed-by Table Types

« JPublisher Default Type Map and User Type Map

JPublisher Concepts 2-7

Details of Datatype Mapping

Type Mapping Support for OPAQUE Types

Oracle JDBC and Oracle SQLJ provide support for SQL OPAQUE types that are
published as Java classes implementing the or acl e. sgl . ORADat a interface. Such
classes must also contain the following publ i ¢ st ati c fields and methods:
public static String _SQ_NAME = "SQ@ nane_of CQPAQLE type';

public static int _SQ_TYPEQXE = O acl eTypes. CPAQLE,

public static CRADataFactory get CRADataFactory() { ... }

As of Oracle 9i release 2, the SQL OPAQUE type SYS. XMLTYPE is supported with
the corresponding Java wrapper class or acl e. xdb. XM_Type.

If you have a Java wrapper class for a SQL OPAQUE type that follows the rules
outlined here, you can specify this association to JPublisher with the following
command line option:

- addt ypemap=sql _opaque_t ype: j ava_wr apper_cl ass

In this way the predefined type correspondence for XMLTYPE could have been
supplied explicitly to JPublisher as follows:

- addt ypenmap=SYS. XM.TYPE or acl e. xdb. XM.Type

Whenever JPublisher encounters a SQL OPAQUE type for which no type

correspondence has been provided, it will actually publish a Java wrapper class.
Consider the following SQL type defined in the SCOTT schema:

CREATE TYPE X TYP AS GBIECT (xmt SYS XM.TYPE);
Notice that the attribute xm is published as an or acl e. xdb. XM_Type, which

corresponds to the predefined type mapping for SYS. XMLTYPE. The following
publishes X_TYP as a Java class XTyp.

jpub -u scott/tiger -s X TYP: XTyp
If you clear the JPublisher default type map, then an additional wrapper class

Xm t ype would be automatically generated for the SYS. XMLTYPE attribute. You
can verify this by invoking JPublisher as follows:

jpub -u scott/tiger -s X TYP. XTyp -defaul ttypermap=
The option - def aul t t ypemap is for setting the JPublisher default type map. If you
give it no value, as in the preceding example, then the default type map is set to the

empty string, effectively clearing it. For more information on the default type map
refer to "JPublisher Default Type Map and User Type Map" on page 2-18.

2-8 Oracle9iJPublisher User’s Guide

Details of Datatype Mapping

Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI

The Oracle JDBC OCI driver directly supports PL/SQL scalar indexed-by tables
with numeric or character elements. (If you are not using the JDBC OCI driver, see
"Type Mapping Support for PL/SQL Indexed-by Table Types" on page 2-16.) An
indexed-by table with numeric elements can be mapped to the following Java array

types:

« int[]

« doubl e[]

« float[]

« java. math. Bi gDeci mal []
« oracle.sql.NUVBER]]

An indexed-by table with character elements can be mapped to the following Java
array types:

« String[]
« oracle.sqgl.CHAR[]

In certain circumstances, as described, you must convey the following information
for an indexed-by table type:

=« Whenever the indexed-by table is used in an OUT or | N OUT parameter
position, you must specify the maximum number of elements. (This is optional
otherwise.) This is defined using the customary syntax for Java array allocation.
For example, you could specify i nt [100] to denote a type that can
accommodate up to 100 elements, or or acl e. sql . CHAR[20] for up to 20
elements.

« For indexed-by tables with character elements, you can optionally specify the
maximum size of an individual element (in bytes). This setting is defined using
SQL-like size syntax. For example, for an indexed-by table used for | N
arguments, you could specify St ri ng[] (30) . Or specify
oracl e. sql . CHAR[20] (255) for an indexed-by table of maximum length
20, each of whose elements will not exceed 255 bytes.

Use the JPublisher option - addt ypenmap to add instructions to the user type map to
specify correspondences between PL/SQL types that are scalar indexed-by tables,
and corresponding Java array types. The size hints that are given using the syntax
outlined above will be embedded into the generated SQLJ statements and thus
conveyed to JDBC at runtime.

JPublisher Concepts 2-9

Details of Datatype Mapping

As an example, consider the following code fragment from the definition of a
PL/SQL package | NDEXBY in the schema SCOTT. Assume this is available in a file
i ndexby. sql .

create or repl ace package indexby as

--] pub. addt ypenap=SCOIT. | NDEXBY. VARCHAR ARY: St ri ng[1000] (4000)
--] pub. addt ypenap=SCOOIT. | NDEXBY. | NTEGER ARY: i nt [1000]
--] pub. addt ypenap=SCOIT. | NDEXBY. FLOAT_ARY: doubl e[1000]

type varchar_ary IS TABLE OF VARCHAR2(4000) | NCEX BY Bl NARY | NTEGER
type integer_ary IS TABLE CF | NTEGER I NDEX BY Bl NARY_| NTECER
type float_ary IS TABLE CF NUMBER I NDEX BY Bl NARY | NTEGER

function get_float_ary RETURN float_ary;
procedur e pow integer_ary(x integer_ary, y QJT integer_ary);
procedur e xformyvarchar_ary(x | N QJT varchar_ary);

end i ndexby;

/

create or repl ace package body indexby is ...
/

The following are the required - addt ypemap directives for mapping the three
indexed-by table types:

- addt ypenmap=SCOTT. | NDEXBY. VARCHAR ARY: & ri ng[1000] (4000)
- addt ypenmap=SCOTT. | NDEXBY. | NTEGER ARY: i nt [1000]
- addt ypenmap=SCOTIT. | NDEXBY. FLOAT_ARY: doubl e[1000]

Note that depending on the operating system shell you are using, you might have
to quote options that contain square brackets [...] or parentheses (...) . Or you can
avoid this by placing such options into a JPublisher properties file, as follows:

j pub. addt ypenap=SCOTT. | NDEXBY. VARCHAR_ARY: Stri ng[1000] (4000)
j pub. addt ypenap=SCOTT. | NDEXBY. | NTEGER_ARY: i nt [1000]
j pub. addt ypenap=SCOTT. | NDEXBY. FLOAT_ARY: doubl e[1000]

See "Properties File Structure and Syntax" on page 3-33 for information about
properties files.

Also, as a convenience feature, JPublisher directives in a properties file are
recognized when placed behind a "- - " prefix (two dashes), whereas any entry that
does not start with “j pub. " or with "- - j pub. " is simply ignored. This means you
can place JPublisher directives into SQL scripts and reuse the same SQL scripts as

2-10 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping

JPublisher properties files. Thus, after invoking the i ndexby. sql scriptin order to
define the | NDEXBY package, you can now run JPublisher to publish this package as
aJava class | ndexBy as follows:

jpub -u scott/tiger -s | NDEXBY: | ndexBy - props=i ndexby. sql

As mentioned previously, this mapping of scalar indexed-by tables can only be used
in conjunction with the JDBC OCI driver. If you are using another driver or if you
want to create driver-independent code, you will have to define SQL types that
correspond to the indexed-by table types as well as conversion functions that map
between the two. Please refer to the section "Type Mapping Support for PL/SQL
Indexed-by Table Types" on page 2-16.

Type Mapping Support Through PL/SQL Conversion Functions

This section discusses the general mechanism used by JPublisher for supporting
PL/SQL types in Java code, through PL/SQL functions that convert to
corresponding SQL types. The sections that follow this are concerned with mapping
issues that are specific to PL/SQL RECORD types and PL/SQL indexed-by table
types, respectively.

In general, Java programs do not support the binding of PL/SQL-specific types.
(Although one exception is scalar indexed-by tables. See "Type Mapping Support
for Scalar Indexed-by Tables Using JDBC OCI" on page 2-9.) The only way such
types can be used from Java is by using PL/SQL code to map them to SQL types
and then accessing these SQL types from Java.

JPublisher makes this task more convenient. For a particular PL/SQL type, specify
the following information in a JPublisher type map entry.

« the name of the PL/SQL type, typically of the following form:
SO-EMA. PACKAGE TYPE

« the name of the corresponding Java (wrapper) class
« the name of the SQL type that corresponds to the PL/SQL type

You must be able to directly map this type to the Java wrapper class. For
example, if the SQL type is NUMBER, then the corresponding Java class could be
types such asi nt,doubl e, | nt eger, Doubl e,j ava. mat h. Bi gDeci nal , or
oracl e. sgl . NUMBER Or, if the SQL type is an object type, then the
corresponding Java class would be a corresponding object wrapper
class—typically generated by JPublisher—that implements the ORADat a or
SQLDat a interface.

JPublisher Concepts 2-11

Details of Datatype Mapping

the name of a PL/SQL function (conversion function) that maps the SQL type
to the PL/SQL type

the name of a PL/SQL function (conversion function) that maps the PL/SQL
type to the SQL type

The - addt ypenap specification for this has the following form:

- addt ypemap=pl sql _t ype: j ava_type: sql _type. sql _to_pl sql _fun: pl sql _to _sql _fun

As an example, consider a type map entry for supporting the PL/SQL type
BOOLEAN. It consists of the following specifications:

the name of the PL/SQL type—BOOLEAN

specification to map it to Java bool ean

the corresponding SQL type—I| NTEGER

JDBC considers bool ean values as special numeric values.

the name of the PL/SQL function, | NT2BOCOL, that maps from SQL to PL/SQL
(from NUMBER to BOOLEAN)

Here is the code for that function:

function int2bool (i INTEGER return BOOLEAN i s
beginif i is null then return null;

el se return i <>0;

end if;
end i nt 2bool ;

the name of the PL/SQL function, BOOL21 NT, that maps from PL/SQL to SQL
(from BOOLEAN to NUVMBERY):

Here is the code for that function:

function bool 2i nt (b BOOLEAN) return | NTEGER i s
beginif bis null then return null;

elsif bthen return 1;

elsereturn O; end if;
end bool 2i nt;

Put all this together in the following type map entry:

- addt ypenmap=BACLEAN bool ean: | NTEGER | NT2BOCL: BOCL2I NT

Such a type map entry assumes that the SQL type, the Java type, and both
conversion functions have been defined in SQL, Java, and PL/SQL, respectively.

2-12 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping

Note that there already is an entry for PL/SQL BOOLEAN in the JPublisher default
type map—see "JPublisher Default Type Map and User Type Map" on page 2-18. If
you want to try the above type map entry, you would therefore have to override the
default type map. You can use the JPublisher - def aul t t ypemap option to
accomplish this, as follows:

jpub -u scott/tiger -s SYS SQJIUIL: SQLIWU |
- def aul t t ypenap=BOOLEAN bool ean: | NTEGER | NT2BOCL: BAL2I NT

Note: While this manual has described conversions in terms of
mapping between SQL and PL/SQL types, there is no intrinsic
limitation in this approach that would restrict us to PL/SQL. You
could also map between different SQL types. In fact, this is done in
the JPublisher default type map to support SQL INTERVAL types,
which are mapped to VARCHARZ values and back. (See "JPublisher
Default Type Map and User Type Map" on page 2-18.)

If the PL/SQL type that we are trying to convert occurs either as an | N parameter or
as a function return value, then no further effort is necessary. The two conversion
functions, from SQL to PL/SQL and vice versa, are entirely sufficient for all such
conversion requirements. A problem arises, however, if the PL/SQL type occurs in
an QUT or | N OUT parameter position. In this case, conversions between PL/SQL
and SQL representations may be required before or after calling the original
procedure or function that is using this type. This means that we may have to
generate and load additional PL/SQL code, on a method-by-method basis, for
performing this additional conversion task. Fortunately, JPublisher creates this code
automatically for you. It remains your responsibility, however, to install this
additional PL/SQL code in the database.

The following JPublisher options permit you to control how JPublisher creates this
PL/SQL code:

« -plsqlfile=filenane

This specifies the name of the file into which JPublisher generates PL/SQL
code. If this file already exists, it will be overwritten. If no file name is specified,
JPublisher will write to a file named pl sql _wr apper . sql . Remember that
you will have to run this SQL script in order to install the PL/SQL wrappers in
the database.

JPublisher Concepts 2-13

Details of Datatype Mapping

« -plsql package=pl sql _package

This specifies the name of the PL/SQL package into which JPublisher generates
PL/SQL code. If no package name is provided, JPublisher will use
JPUB_PLSQL_WRAPPER

« -plsqgl map=flag

This specifies how JPublisher generates PL/SQL wrapper procedures and
functions. The f | ag setting can be any of the following:

— true (default)—JPublisher will generate PL/SQL wrapper procedures and
functions as needed and use conversion functions only when that is
sufficient.

— fal se—JPublisher will not generate PL/SQL wrapper procedures or
functions. If it encounters a PL/SQL type in a signature that cannot be
supported by conversion functions alone, then it will skip generation of
Java code for the particular procedure or function.

— al ways—JPublisher will generate a PL/SQL wrapper procedure or
function for every stored procedure or function that uses a PL/SQL type.
This is useful for generating a "proxy" PL/SQL package that complements
an original PL/SQL package, providing Java-accessible signatures for those
functions or procedures that were not accessible from JDBC or SQLJ in the
original package.

Type Mapping Support for PL/SQL RECORD Types

Publishing PL/SQL RECORD types is just a special case of using conversion
functions as described in the previous section. The required steps are most easily
illustrated by a concrete example.

Assume that you have method signatures that use the following PL/SQL RECORD
type, defined in a PL/SQL package SCHEM PACK:

TYPE pl sqgl _record I'S REGORD (

pl s_nunber NUMBER
pl s_nane VARCHAR2(60)) ;

Also assume that the conversions are to take place in the schema SCOTT.

The following list describes the steps to take.

2-14 Oracle9/ JPublisher User’s Guide

Details of Datatype Mapping

Define a SQL type that PLSQL_RECORD can be mapped to. For example:

create TYPE sqgl _record as object (
sql _nunber NUVBER,
sql _nane VARCHAR2(60)) ;

Use JPublisher to publish the SQL type to Java. For example, you can create a
Java wrapper class Sql Recor d for SQ._ RECORD as follows:

jpub -u scott/tiger -s SQ_RECRD Syl Record

Define PL/SQL stored functions that map from PLSQL_RECORD to
SQL_RECORD and vice versa:

function plsqgl _record2sql (r SCHEM PACK PLSQL_REQCRD)
return sql _record is
begi n
return sql _record(r.inst_nunber, r.inst_nane);
end pl sqgl _record2sql;

function sqgl _record2pl sql (r sql _record)
return SCHEMPAOK PLSQL RECCRD i s
res SCHEM PACK PLSQL. REQCRD,
begi n
if r I'SNJ NALL
then
res. pl sql _nunber :
res. pl sql _nane
end if;
return res;
end sql _record2pl sql ;

r.sql _nunber;
r.sql _nane;

Set up a type map entry for JPublisher that tells it how to publish the
PLSQL_RECORD type by mapping it to the SQL_RECORD type. You could create
the following JPublisher properties file, r ecor d. properti es, for example
(with backslash characters, "\", indicating that continuation lines follow):

Type map entries have the fornat:
j pub. sql =PLSQL _t ype: Java_t ype: SQL_type: sqgl _to_plsq _fun:plsql _to sqgl_fun
#
Note the use of line continuation in the entry bel ow
j pub. addt ypenap=SCHEM PACK PLSQL_RECCRD \
Sgl Record: \
SQA_RECRD\
SQ_RECORIPPLSQL: \
PLSQ._RECORD2SQL

JPublisher Concepts 2-15

Details of Datatype Mapping

5. Use this type map entry whenever you publish a package or type that refers to
PLSQL_RECORD. For example, in the following JPublisher invocation we are
including r ecor d. pr oper ti es with this type map entry (using the - u
shorthand for - user s and - p for - pr ops):

jpub -u schena pw for_schem-p record. properties -s SCHEM PACK: Pack

6. IfPLSQ._RECORDis used asan OUT or | N OUT parameter in SCHEM PACK,
then JPublisher will also alert you that it has generated a file
pl sql _wr apper. sql containing PL/SQL wrapper definitions. Make sure to
run this script before using the generated Java class Pack. Also note that you
can usethe -plsqlfile,-plsqgl package, and - pl sql map options to
customize the PL/SQL script that JPublisher creates.

Type Mapping Support for PL/SQL Indexed-by Table Types

If you are using the JDBC OCI driver and require only the publishing of scalar
indexed-by tables, you can use the direct mapping between Java and these types
outlined in "Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI"
on page 2-9. In all other cases you must define a SQL collection type that permits
conversion to and from the PL/SQL indexed-by table type.

This section continues the example in the preceding section and adds an indexed-by
table type PLSQL_ | NDEXBY with elements of type PLSQL_RECORD. The steps to
follow are the same as those outlined previously. We assume once more that the
type declarations are defined in the package SCHEM PACK. In addition to the
previous declaration of PLSQL_RECORD, there is also the following definition for
PLSQL_| NDEXBY:

TYPE pl sqgl _i ndexby 1S TABLE GF pl sql _record | NDEX BY Bl NARY_| NTEGER

Again, assume that the conversions are taking place in the schema SCOTT.
The following list describes the steps to take.
1. Define a SQL type that PLSQL_| NDEXBY can be mapped to. For example:

create TYPE sql _indexby as tabl e of sql _record;

Note that the elements of this type must be mappable to the elements of
PLSQ._| NDEXBY. We accomplished this previously by creating the type
SQL_RECORD and mapping it to PLSQL_ RECORD.

2-16 Oracle9/ JPublisher User’s Guide

Details of Datatype Mapping

Use JPublisher to publish the SQL type to Java. For example, to create a Java
wrapper class Sql | ndexby for SQL_I NDEXBY, you can run JPublisher as
follows:

jpub -u scott/tiger -s SQ_| NDEXBY: Sgl | ndexby

Define PL/SQL stored functions that map from PLSQL_| NDEXBY to

SQL_I NDEXBY and vice versa. The following functions work in conjunction
with the previously defined conversion functions PLSQL_ RECORD2SQL and
SQL_RECORD2PLSQL:

function plsqgl _i ndexby2sqgl (r SCHEM PACK PLSQ_| NDEXBY)
return sql _i ndexby is
tab sql _i ndexby := sql _i ndexby();
begi n
FCRi IN1..r.LAST LOP
tab(i) := plsql _record2sql (r(i));
END LOP
return tab;
end pl sgl _i ndexby2sq| ;

function sqgl _i ndexby2pl sql (r sql _i ndexby)
return SCHEM PACK PLSQL | NDEXBY i s
res SCHEM PACK PLSQL | NDEXBY;
begi n
FCRi IN1. .r.LAST LOP
res(i) :=sql_record2plsql (r(i));
END LCCP,
return res;
end sql _i ndexby2pl sql ;

Set up a type map entry for JPublisher that tells it how to publish the

PLSQ._| NDEXBY type by mapping it to the SQL_| NDEXBY type. For example,
you could create the following JPublisher properties file,

i ndexby. properties:

Type map entries have the fornat:
j pub. sql =PLSQL _t ype: Java_t ype: SQL_type: sqgl _to_plsq _fun:plsql _to sqgl_fun
#
Note the use of line continuation in the entry bel ow
j pub. addt ypenmap=SCHEM PACK. PLSQL_| NDEXBY: \
gl | ndexby: \
SQL_| NDEXBY: \
SQ_| NDEXBY2PLSQL: \
PLSQ_| NDEXBY2SQL

JPublisher Concepts 2-17

Details of Datatype Mapping

5. Use this type map entry whenever you publish a package or type that refers to
PLSQ__| NDEXBY. For example, in the following JPublisher invocation (a single
wraparound command line), the i ndexby. properti es file is included with
this type map entry:

jpub -u scheni pw for_schem-p i ndexby. properties -p record. properties
-s SCHEM PACK: Pack

Note that we also included the r ecor d. pr operti es file that tells JPublisher
how to map PLSQL_RECORD entities. This allows JPublisher to map signatures
that contain either PLSQL_RECORD or PLSQL_ | NDEXBY types or both. Of
course you can also combine all the type map entries into a single properties
file.

6. IfPLSQ._I| NDEXBY or PLSQL_RECORDIs used as an OUT or | N OUT parameter
in SCHEM PACK, then JPublisher will also alert you that it has generated a file
pl sql _wr apper. sql containing PL/SQL wrapper definitions. Be sure to run
this script before using the generated Java class Pack. Also note that you can
usethe -plsqglfile,-plsql package,and - pl sgl map options to customize
the PL/SQL script that JPublisher creates.

JPublisher Default Type Map and User Type Map

JPublisher has a user type map, which is controlled by the - t ypemap and

- addt ypemap options and starts out empty, and a default type map, which is
controlled by the - def aul tt ypemap and - adddef aul tt ypermap options and
starts with the following entries:

j pub. def aul t t ypenap=SYS. XM_.TYPE: or acl e. xdb. XM.Type

j pub. adddef aul t t ypenap=BOOLEAN bool ean: | NTEGER \

SYS. SCLIJUTL. | NT2BOCL: SYS. SQLJUTL. BOOL2I NT

j pub. adddef aul t t ypenmap=| NTERVAL DAY TO SEQOND Stri ng: CGHAR \
SYS. SQLIUTL. CHARI b6 SYS. SQLJUTL. | DR2GAR

j pub. adddef aul t t ypermap=I NTERVAL YEAR TO MINTH Stri ng: CHAR \
SYS. SCLIUTL. CHAR2I YM SYS. SQLJUTL. | YWNeGHAR

JPublisher reads the default type map first. If you attempt in the user type map to
redefine a mapping that is in the default type map, JPublisher will generate a
warning message and ignore the redefinition. Similarly, attempts to add mappings
through - adddef aul t t ypemap or - addt ypemap settings that conflict with
previous mappings are ignored and generate warnings.

2-18 Oracle9/ JPublisher User’s Guide

Details of Datatype Mapping

To use custom mappings, it is recommended that you clear the default type map, as
follows:

- def aul tt ypermap=

and then use the - addt ypenap option to put any required mappings into the user
type map.

The predefined default type map defines a correspondence between the OPAQUE
type SYS. XMLTYPE and the Java wrapper class or acl e. xdb. XM_Type. In
addition, it maps the PL/SQL BOOLEAN type to Java bool ean and to SQL

| NTEGER through two conversion functions defined in the SYS. SQLJUTL package.
Finally, the default type map provides mappings between SQL | NTERVAL types
and the Java St ri ng type.

However, you may (for example) prefer mapping the PL/SQL BOOLEAN type to the
Java object type Bool ean in order to capture SQL NULL values in addition tot r ue
and f al se values. This can be accomplished by resetting the default type map, as
shown by the following (single wraparound line):

- def aul t t ypenap=BOOLEAN Bool ean: | NTEGER SYS. SQLJUTL. | NT2BOOL:
SYS. SQLJUTL. BAOL2I NT

This changes the designated Java type from bool ean to Bool ean. The rest of the
conversion remains valid.

Other Alternatives for Datatypes Unsupported by JDBC

The preceding sections describe the mechanisms used by JPublisher to access types
that are not supported in JDBC. As an alternative to using JPublisher in this way,
you can try one of these alternatives:

« Rewrite the PL/SQL method to avoid using the type.
= Write an anonymous block that does the following:

— Converts input types that JDBC supports into the input types used by the
PL/SQL method.

— Converts output types used by the PL/SQL method into output types that
JDBC supports.

For more information on this technique, see "Example: Using Datatypes
Unsupported by JDBC" on page 4-71.

JPublisher Concepts 2-19

Concepts of JPublisher-Generated Classes

Concepts of JPublisher-Generated Classes

This section covers basic concepts about the code that JPublisher produces,
including the following:

« how output parameters of SQL object type methods and PL/SQL methods are
treated

« how member methods are called

« how overloaded methods are handled

For more information, see the following sections later in this chapter:
« "JPublisher Generation of SQLJ Classes (.sqlj)" on page 2-24

« "JPublisher Generation of Java Classes (.java)" on page 2-31

= "JPublisher Support for Inheritance" on page 2-39

Passing OUT Parameters

Stored procedures called through SQLJ do not have the same parameter-passing
behavior as ordinary Java methods. This affects the code you write when you call a
wrapper method that JPublisher generates.

When you call an ordinary Java method, parameters that are Java objects are passed
as object references. The method can modify the object.

In contrast, when you call a stored procedure through SQLJ, a copy of each
parameter is passed to the stored procedure. If the procedure modifies any
parameters, copies of the modified parameters are returned to the caller. Therefore,
the "before" and "after" values of a parameter that has been modified appear in
separate objects.

A wrapper method JPublisher generates contains SQLJ code to call a stored
procedure. The parameters to the stored procedure, as declared in your CREATE
TYPE or CREATE PACKAGE declaration, have three possible parameter modes: | N,
QUT,and I N OUT. The | N OUT and OUT parameters of the stored procedure are
returned to the wrapper method in newly created objects. These new values must
be returned to the caller somehow, but assignment to the formal parameter within
the wrapper method does not affect the actual parameter visible to the caller.

2-20 Oracle9i JPublisher User’s Guide

Concepts of JPublisher-Generated Classes

Passing Parameters Other Than the "this" Parameter

The simplest way to solve the problem described above is to pass an OUT or | N OUT
parameter to the wrapper method in a single-element array. The array is a sort of
container that holds the parameter.

= You assign the "before" value of the parameter to element 0 of an array.
= You pass the array to your wrapper method.

« The wrapper method assigns the "after" value of the parameter to element 0 of
the array.

« After executing the method, you extract the "after" value from the array.

In the following example, you have an initialized variable p of class Per son, and x
is an object belonging to a JPublisher-generated class that has a wrapper method f
taking an | NOUT Per son argument. You create the array and pass the parameter as
follows:

Person [] pa = {p};
x.f(pa);
p = pa[Q];

Unfortunately, this technique for passing OUT or | N OUT parameters requires you
to add a few extra lines of code to your program for each parameter. If your stored
program has many OUT or | N OUT parameters, you might prefer to call it directly
using SQLJ code, rather than a wrapper method.

Passing the "this" Parameter

Problems similar to what is described above arise when the t hi s object of an
instance method is modified.

The t hi s object is an additional parameter that is passed in a different way. Its
mode, as declared in the CREATE TYPE statement, may be | Nor I N OUT. If you do
not explicitly declare the mode of t hi s, its mode is | N OUT if the stored procedure
does not return a result, or | Nif it does.

If the mode of the t hi s objectis | N OUT, the wrapper method must return the new
value of t hi s. The code generated by JPublisher processes this in different ways,
depending on the situation:

« For astored procedure that does not return a result, the new value of t hi s is
returned as the result of the wrapper method.

JPublisher Concepts 2-21

Concepts of JPublisher-Generated Classes

As an example, assume the SQL object type MYTYPE has the following member
procedure:

MEMBER PROCEDURE f1(y IN QUT | NTEGER) ;

Also assume that JPublisher generates a corresponding Java class MyJavaType.
This class would define the following method:

public MJavaType f1(int[] y)

The f 1 method returns the modified t hi s object value asa MyJavaType
instance.

« For astored function (a stored procedure that returns a result), the wrapper
method returns the result of the stored function as its result. The new value of
t hi s isreturned in a single-element array, passed as an extra argument (the last
argument) to the wrapper method.

Assume the SQL object type MYTYPE has the following member function:
MEVBER FUNCTI ON f2(x I N I NTEGER) RETURNS VARCHAR?;

Then the corresponding Java class MyJavaType would define the following
method:

public Sring f2(int x, MJavaType[] newval ue)

The f 2 method returns the VARCHAR2 function-return as a Java string, and

returns the modified t hi s object value as an array element in the MyJavaType
array.

Note: For PL/SQL static procedures or functions, JPublisher
generates instance methods, not static methods, in the wrapper
class. This is the logistic for associating a database connection (a
SQLJ connection context instance or JDBC connection instance)
with each wrapper class instance. The connection instance is used
in initializing the wrapper class instance, so that you are not
subsequently required to explicitly provide a connection or
connection context instance when calling wrapper methods.

2-22 Oracle9i JPublisher User’s Guide

Concepts of JPublisher-Generated Classes

Translating Overloaded Methods

PL/SQL, as with Java, lets you create overloaded methods—two or more methods
with the same name, but different signatures. If you use JPublisher to generate
wrapper methods for PL/SQL methods, it is possible that two overloaded methods
with different signatures in PL/SQL might have identical signatures in Java. If this
occurs, JPublisher changes the names of the methods to avoid generating two or
more methods with the identical signature. For example, consider a PL/SQL
package or object type that includes these functions:

FUNCTI ON f (x INTEGER y | NTEGER) RETURN | NTEGER

and
FUNCTI ON f (xx FLOAT, yy FLOAT) RETURN | NTEGER

In PL/SQL, these functions have different argument types. However, once they are
translated to Java with Oracle mapping, this difference disappears (both | NTEGER
and FLOAT map to or acl e. sgl . NUMBER).

Suppose that JPublisher generates a class for the package or object type with the
command-line setting - met hods=t r ue and Oracle mapping. JPublisher responds
by generating code similar to this:

public oracle.sqgl . NUOMBER f_1 (
or acl e. sgl . NUMBER X,
or acl e. sgl . NUOMBER y)

throws SQException

/* body omtted */
}

public oracle.sql. NUMBER f_4 (
oracl e. sgl . NUMBER xx,
or acl e. sgl . NUOMBER yy)

throws SQException

/* body omtted */
}

Note that in this example, JPublisher names the first function f _1 and the second
function f _4. Each function name ends with _<nn>, where <nn> is a number
assigned by JPublisher. The number has no significance of its own, but JPublisher
uses it to guarantee that the names of functions with identical parameter types will
be unique.

JPublisher Concepts 2-23

JPublisher Generation of SQLJ Classes (.sqlj)

JPublisher Generation of SQLJ Classes (.sqlj)

When - net hods=al | (the default) or - met hods=t r ue, JPublisher generates

. sqlj files for PL/SQL packages and for object types—both ORADat a
implementations and SQLDat a implementations (unless an object type does not
define any methods, in which case a . j ava file is generated). The classes includes
wrapper methods that invoke the server methods of the object types and packages.
Run SQLIJ to translate the . sql j file.

This section describes how to use these generated classes in your SQLJ code.

Important Notes About Generation of SQLJ Classes
Be aware of the following for JPublisher-generated SQLJ classes:

Classes produced by JPublisher include ar el ease() method. In creating and
using an instance of a JPublisher-generated wrapper class, if you do not use the
constructor with the Def aul t Cont ext argument, and you do not
subsequently call the set Connect i onCont ext () method with a connection
context argument, and you then invoke a wrapper method, then the wrapper
object will implicitly construct a Def aul t Cont ext instance. In this case, you
should use the r el ease() method to release the connection context instance
when it is no longer needed.

In other words, one of the following is recommended:

— Do not supply connection information, and thus implicitly use the static
SQLJ default connection context instance.

or:

— Explicitly associate the object with a SQLJ connection context instance
through the set Connect i onCont ext () method.

or:
— Construct the object with an explicitly provided SQLJ connection context.

See "Use of Connection Contexts and Instances in SQLJ Code Generated by
JPublisher" on page 2-27 for more information.

In Oracle8i JPublisher and in the JPublisher Oracle8i compatibility mode,
instead of the constructor taking a Def aul t Cont ext instance or
user-specified-class instance, there is a constructor that simply takes a
Connect i onCont ext instance (an instance of any class that implements the
standard sql j . runt i ne. Connect i onCont ext interface).

2-24 Oracle9/ JPublisher User’s Guide

JPublisher Generation of SQLJ Classes (.sqlj)

Use of SQLJ Classes JPublisher Generates for PL/SQL Packages

Take the following steps to use a class that JPublisher generates for a PL/SQL
package:

1. Construct an instance of the class.
2. Call the wrapper methods of the class.

The constructors for the class associate a database connection with an instance of
the class. One constructor takes a SQLJ Def aul t Cont ext instance (or an instance
of a class specified through the - cont ext option when you ran JPublisher), one
constructor takes a JDBC Connect i on instance, and one constructor has no
arguments. Calling the no-argument constructor is equivalent to passing the SQLJ
default context to the constructor that takes a Def aul t Cont ext instance. Oracle
JDBC provides the constructor that takes a Connect i on instance for the
convenience of the JDBC programmer who knows how to compile a SQLJ program,
but is unfamiliar with SQLJ concepts such as Def aul t Cont ext .

Important: See "Important Notes About Generation of SQLJ
Classes" on page 2-24.

The wrapper methods are all instance methods, because the connection context in
the t hi s object is used in #sqgl statements in the wrapper methods.

Because a class generated for a PL/SQL package has no instance data other than the
connection context, you will typically construct one class instance for each
connection context you use. If the default context is the only one you use then you
can call the no-argument constructor once. However, the Oracle9i SQLJ Developer’s
Guide and Reference discusses reasons for using explicit connection context instances
instead.

An instance of a class generated for a PL/SQL package does not contain copies of
PL/SQL package variables. It is not an ORADat a class or a SQLDat a class, and you
cannot use it as a host variable.

"Example: Using Classes Generated for Packages" on page 4-66 shows how to use a
class generated for a PL/SQL package.

JPublisher Concepts 2-25

JPublisher Generation of SQLJ Classes (.sqlj)

Use of Classes JPublisher Generates for Object Types

To use an instance of a Java class that JPublisher generates for a SQL object type or a
SQL OPAQUE type, you must first initialize the Java object. You can accomplish this
in one of the following ways:

or:

or:

Assign an already initialized Java object to your Java object.

Retrieve a copy of a SQL object into your Java object. You can do this by using
the SQL object as an OUT argument or as the function call return of a
JPublisher-generated wrapper method, or by retrieving the SQL object through
#sql statements you write, or by retrieving the SQL object through JDBC calls
you write.

Construct the Java object with the no-argument constructor and set its attributes
using the set XXX() methods, or construct the Java object with the constructor
that accepts values for all of the object attributes. Typically, you would
subsequently use the set Connect i on() or set Connecti onCont ext ()
method to associate the object with a database connection before invoking any
of its wrapper methods. If you do not explicitly associate the object with a JDBC
or SQLJ connection and invoke a method on it, it will become implicitly
associated with the default (static) SQLJ connection context.

Other constructors for the class associate a connection with the class instance.
One constructor takes a Def aul t Cont ext instance (or an instance of a class
specified through the - cont ext option when you ran JPublisher), and one
constructor takes a Connect i on instance. The constructor that takes a
Connect i on instance is provided for the convenience of the JDBC programmer
who knows how to compile a SQLJ program, but is unfamiliar with SQLJ
concepts such as Def aul t Cont ext .

Important: See "Important Notes About Generation of SQLJ
Classes" on page 2-24.

Once you have initialized your Java object, you can:

Call the accessor methods of the object.
Call the wrapper methods of the object.

Pass the object to other wrapper methods.

2-26 Oracle9/ JPublisher User’s Guide

JPublisher Generation of SQLJ Classes (.sqlj)

= Use the object as a host variable in #sql statements.
« Use the object as a host variable in JDBC calls.

There is a Java attribute for each attribute of the corresponding SQL object type,
with get XXX() and set XXX() accessor methods for each attribute. The accessor
method names are of the form get Foo() and set Foo() for attribute f 0o.
JPublisher does not generate fields for the attributes.

By default, the class includes wrapper methods that invoke the associated Oracle
object methods executing in the server. The wrapper methods are all instance
methods, regardless of whether the server methods are. The Def aul t Cont ext in
the t hi s object is used in #sql statements in the wrapper methods.

With Oracle mapping, JPublisher generates the following methods for the Oracle
JDBC driver to use. These methods are specified in the ORADat a and
ORADat aFact ory interfaces:

« Ccreate()
« toDatum)

These methods are not generally intended for your direct use. In addition,
JPublisher generates methods set Fr on(ot her Obj ect) ,

set Val ueFr om(ot her Obj ect) , and set Cont ext Fr om(ot her Obj ect) that
can be used to copy value or connection information from one object instance to
another.

The sample in "Example: Using Classes Generated for Object Types" on page 4-54
shows how to use a class that was generated for an object type and has wrapper
methods.

Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher

The class that JPublisher uses in creating SQLJ connection context instances
depends on how you set the - cont ext option when you run JPublisher, as follows:

« Asetting of - cont ext =Def aul t Cont ext (the default) results in JPublisher
using instances of the standard sql j . runti me. r ef . Def aul t Cont ext class.

« A setting of a user-specified class (that is in the classpath and implements the
standard sql j . runt i me. Connect i onCont ext interface) results in
JPublisher using instances of that class.

JPublisher Concepts 2-27

JPublisher Generation of SQLJ Classes (.sqlj)

« Asetting of - cont ext =gener at ed results in the following declaration in the
JPublisher-generated class.

#sgl static context _Qx;

In this case, JPublisher uses instances of the _Ct x class for connection context
instances.

Note: Itis no longer routine (as it was in Oracle8i JPublisher) for
JPublisher to declare a connection context instance _ct x. This is
used in Oracle8i compatibility mode, however (- conpat i bl e=8i
or - conpati bl e=bot h8i), with _ct x being declared as a

pr ot ect ed instance of the static connection context class _Ct x.

Unless you have legacy code that depends on _ct x, it is preferable
to use the get Connect i onCont ext () and

set Connect i onCont ext () methods to retrieve and manipulate
connection context instances in JPublisher-generated classes. See
"Considerations in Using Connection Contexts and Connection
Instances" below for more information about these methods.

See "SQLJ Connection Context Classes (-context)" on page 3-16 for more information
about the - cont ext option.

Considerations in Using Connection Contexts and Connection Instances

Consider the following points in using SQLJ connection context instances or JDBC
connection instances in instances of JPublisher-generated wrapper classes:

« Wrapper classes generated by JPublisher provide a
set Connecti onCont ext () method you can use to explicitly specify a SQLJ
connection context instance. (This will not be necessary if you have already
specified a connection context instance through the constructor.)

This method is defined as follows:

public void set Gonnect i onCont ext (conn_ct xt_i nst ance) ;

This installs the passed connection context instance as the SQLJ connection
context in the object wrapper instance. The connection context instance must be

an instance of the class specified through the - cont ext option for JPublisher
connection contexts (typically Def aul t Cont ext).

2-28 Oracle9/ JPublisher User’s Guide

JPublisher Generation of SQLJ Classes (.sqlj)

Be aware that the underlying JDBC connection must be compatible with the
connection used to materialize the database object in the first place. Specifically,
some objects may have attributes, such as object reference types or BLOBSs, that
are only valid for a particular connection.

Note: Using the set Connecti onCont ext () method to
explicitly set a connection context instance avoids a problem of the
connection context not being closed properly. This problem only
occurs with implicitly created connection context instances.

Use either of the following methods of an object wrapper instance, as
appropriate, to retrieve a connection or connection context instance.

— Connection get Connection()
— ConnCt xt Type get Connecti onCont ext ()

The get Connect i onCont ext () method returns an instance of the connection
context class specified through the JPublisher - cont ext option (typically
Def aul t Cont ext).

The returned connection context instance might either be an instance that was
set explicitly through the set Connect i onCont ext () method, or an instance
that was created implicitly by JPublisher.

Note: These methods are available only in generated . sql j files,
not generated . j ava files. If necessary, you can use the setting

- met hods=al ways to ensure that . sql j files are produced. See
"Generation of Package Classes and Wrapper Methods (-methods)"
on page 3-21.

If code in a JPublisher-generated class uses any SQLJ statements, and you do
not set a connection context instance explicitly, then one will be created
implicitly from the JDBC connection instance when the

get Connecti onCont ext () method is called.

In this circumstance, you must be careful to use the r el ease() method to free
resources in the SQLJ runtime that would otherwise result in a memory leak.

JPublisher Concepts 2-29

JPublisher Generation of SQLJ Classes (.sqlj)

« Having different connection context classes in different generated classes gives
you the option of checking different classes against different exemplar schemas
during SQLJ on-line semantics checking; however, because the SQLJ source is
constructed from actual SQL types, this checking is usually not necessary.

See "Releasing Connection Context Resources" (below) and "SQLJ Connection
Context Classes (-context)" on page 3-16 for related information.

Releasing Connection Context Resources

In some situations, you must use ther el ease() method of an instance of a
JPublisher-generated wrapper class in order to free SQLJ runtime connection
context resources. This is true in the following set of circumstances:

« You used the SQLJ setting - codegen=i so in translating SQLJ classes.
and:

« You use JDK 1.1.x or the SQLJ generic r unt i ne library (as opposed to
runtinel2,runtinell, and so on) when you execute the generated class or
classes.

and:

= You did not create the object with the constructor that takes an instance of
Def aul t Cont ext (or some other connection context class you specified
through the - cont ext option when you ran JPublisher).

and:
= You have called one or more wrapper methods on the wrapper instance.
and:

= You did not use the set Connect i onCont ext () method of the wrapper
instance to explicitly set a connection context instance.

In this set of circumstances, a connection context instance would have been created
implicitly on the object and must explicitly be freed through the r el ease()
method before the object goes out of scope.

(When there is an explicit connection context instance, such as through an explicit
constructor or use of the set Connect i onCont ext () method, using r el ease()
is not necessary.)

2-30 Oracle9i JPublisher User’s Guide

JPublisher Generation of Java Classes (.java)

JPublisher Generation of Java Classes (.java)

When - net hods=f al se, or when SQL object types do not define any methods,
JPublisher does not generate wrapper methods for object types. In this regard, the
behavior is the same for ORAdat a and SQLDat a implementations. Furthermore,
when - met hods=f al se, JPublisher does not generate code for PL/SQL packages
at all, because they are not useful without wrapper methods. (Note that when

- met hods=f al se, JPublisher exclusively generates . j ava files.)

JPublisher generates the same Java code for reference, VARRAY, and nested table
types regardless of whether - met hods isf al se ort r ue.

To use an instance of a class JPublisher generates for an object type when
- met hods=f al se, or for a reference, VARRAY, or nested table type, you must first
initialize the object.

Similarly to the case with JPublisher-generated SQLJ classes, you can initialize your
object in one of the following ways:

« Assign an already initialized Java object to your Java object.
or:

» Retrieve a copy of a SQL object into your Java object. You can do this by using
the SQL object as an OUT argument or as the function call return of a
JPublisher-generated wrapper method in some other class, or by retrieving the
SQL object through #sql statements you write, or by retrieving the SQL object
through JDBC calls you write.

or:

« Construct the Java object with a no-argument constructor and initialize its data,
or construct the Java object based on its attribute values.

Unlike the constructors generated in . sql j source files, the constructors generated
in . j ava source files do not take a connection argument. Instead, when your object
is passed to or returned from a St at enent, Cal | abl eSt at ement , or

Pr epar edSt at enent object, JPublisher applies the connection it uses to construct
the St at enent , Cal | abl eSt at ement , or Pr epar edSt at enent object.

This does not mean you can use the same object with different connections at
different times. On the contrary, this is not always possible. An object might have a
subcomponent, such as a reference or a BLOB, that is valid only for a particular
connection.

To initialize the object data, use the set XXX() methods if your class represents an
object type, or the set Array() or set El ement () method if your class represents

JPublisher Concepts 2-31

JPublisher Generation of Java Classes (.java)

a VARRAY or nested table type. If your class represents a reference type, you can
only construct a null reference. All non-null references come from the database.

Once you have initialized your object, you can accomplish the following:

Pass the object to wrapper methods in other classes.
Use the object as a host variable in #sql statements.
Use the object as a host variable in JDBC calls.

Call the methods that read and write the state of the object. These methods
operate on the Java object in your program and do not affect data in the
database.

— For aclass that represents an object type, you can call the get XXX() and
set XXX() accessor methods.

— For aclass that represents a VARRAY or nested table, you can call the
get Array(),setArray(),get El enent (), and set El enent ()
methods.

Theget Array() and set Array() methods return or modify an array as
awhole. The get El enent () and set El ement () methods return or
modify individual elements of the array. Then re-insert the Java array into
the database if you want to update the data there.

You cannot modify an object reference, because it is an immutable entity;
however, you can read and write the SQL object it references, using the
get Val ue() and set Val ue() methods.

The get Val ue() method returns a copy of the SQL object to which the
reference refers. The set Val ue() method updates a SQL object type instance
in the database, taking as input an instance of the Java class that represents the
object type. Unlike the get XXX() and set XXX() accessor methods of a class
generated for an object type, the get Val ue() and set Val ue() methods read
and write SQL objects.

Note that both, get Val ue() and set Val ue() will result in a database round
trip for reading and, respectively, writing the value of the underlying database
object that the reference points to.

A few methods have not been mentioned yet. You can use the

get ORADat aFact or y() method in JDBC code to return an ORADat aFact ory
object. You can pass this ORADat aFact or y to the Oracle get ORADat a() methods
in the classes Arr ayDat aResul t Set, Or acl eCal | abl eSt at enent , and

2-32 Oracle9/ JPublisher User’s Guide

JPublisher Generation of Java Classes (.java)

O acl eResul t Set inthe oracl e. j dbc package. The Oracle JDBC driver uses
the ORADat aFact or y object to create objects of your JPublisher-generated class.

In addition, classes representing VARRAYs and nested tables have a few methods
that implement features of the or acl e. sql . ARRAY class:

« getBaseTypeNane()
« getBaseType()
« getDescriptor()

JPublisher-generated classes for VARRAY's and nested tables do not, however,
extend or acl e. sgl . ARRAY.

With Oracle mapping, JPublisher generates the following methods for the Oracle
JDBC driver to use. These methods are specified in the ORADat a and
ORADat aFact ory interfaces:

« Ccreate()
« toDatum)

These methods are not generally intended for your direct use; however, you may
want to use them if converting from one object reference wrapper type to another.

The sample in "Example: Using Classes Generated for Packages" on page 4-66
includes a class that was generated for an object type that does not have wrapper
methods.

JPublisher Concepts 2-33

User-Written Subclasses of JPublisher-Generated Classes

User-Written Subclasses of JPublisher-Generated Classes

You might want to enhance the functionality of a custom Java class generated by
JPublisher by adding methods and transient fields.

One way to accomplish this is to add methods directly to the JPublisher-generated
class. However, this is not advisable if you anticipate running JPublisher at some
future time to regenerate the class. If you regenerate a class that you have modified
in this way, your changes (that is, the methods you have added) will be overwritten.
Even if you direct JPublisher output to a separate file, you will still need to merge
your changes into the file.

The preferred way to enhance the functionality of a generated class is to extend the

class—that is, treat the JPublisher-generated class as a superclass, write a subclass to
extend its functionality, then map the object type to the subclass. (This is referred to
as the "Generation Gap" pattern in object-oriented terminology.)

This section discusses how to accomplish this.

Extending JPublisher-Generated Classes

Suppose you want JPublisher to generate the class JAddr ess from the SQL object
type ADDRESS. You also want to write a class MyAddr ess to represent ADDRESS
objects, where MyAddr ess extends the functionality JAddr ess provides.

Under this scenario, you can use JPublisher to generate a custom Java class

JAddr ess, as well as an initial version of a subclass, MyAddr ess, into which you
then add the desired functionality. You then use JPublisher to map ADDRESS objects
to the MyAddr ess class instead of the JAddr ess class.

To do this, JPublisher must alter the code it generates in the following ways:
« It generates the reference class MyAddr essRef rather than JAddr essRef .

« ltusesthe MyAddr ess class instead of the JAddr ess class to represent
attributes whose SQL type is ADDRESS, or to represent VARRAY and nested
table elements whose SQL type is ADDRESS.

« ltusesthe MyAddr ess factory instead of the JAddr ess factory when the
ORADat aFact or y interface is used to construct Java objects whose SQL type is
ADDRESS.

« It generates or regenerates the code for the JAddr ess class. In addition, it also
generates an initial version of the code for the MyAddr ess class, which you can
then modify to insert your own additional functionality. If the source file for the

2-34 Oracle9/ JPublisher User’s Guide

User-Written Subclasses of JPublisher-Generated Classes

MyAddr ess class already exists, however, it will be left untouched by
JPublisher.

Syntax for Mapping to Alternative Classes
JPublisher has functionality to streamline the process of mapping to alternative
classes. Use the following syntax in your - sql command-line option setting:

-sql =obj ect _t ype: gener at ed_cl ass: nap_cl ass

For the above scenario, this would be:
- sql =ADDRESS: JAddr ess: M/Addr ess

See "Declaration of Object Types and Packages to Translate (-sql)" on page 3-26 for
information about the - sgl option.

If you were to enter the line in the | NPUT file instead of on the command line, it
would look like this:

SQ ADDRESS CHNERATE JAddress AS M/Addr ess

See "INPUT File Structure and Syntax" on page 3-35 for information about the
I NPUT file.

In this syntax, JAddr ess indicates the name of the class that JPublisher will
generate (typically as JAddr ess. sql j), but M/Addr ess specifies the name of the
class that actually maps to ADDRESS. You are ultimately responsible for the code in
My Addr ess. Update this as necessary to add your custom functionality. If you
retrieve an object that has an ADDRESS attribute, this attribute will be created as an
instance of MyAddr ess in Java. Or if you retrieve an ADDRESS object directly, you
will retrieve it into an instance of My Addr ess.

For an example of how you would use JPublisher to generate the JAddr ess class,
see "Example: Generating a SQLData Class" on page 4-28.

Format of the Class that Extends the Generated Class

For convenience, an initial version of the source file into which you place your
custom code—for example, MyAddr ess. sql j —is automatically generated by
JPublisher, unless it already exists.

JPublisher Concepts 2-35

User-Written Subclasses of JPublisher-Generated Classes

The generated code has the following features:

« Theclass has a no-argument constructor. The easiest way to construct a
properly initialized object is to invoke the constructor of the superclass, either
explicitly or implicitly.

« Theclass implements the ORADat a interface or the SQLDat a interface. This
happens implicitly by inheriting the necessary methods from the superclass.

« When extending an ORADat a class, the subclass will also implement the
ORADat aFact ory interface.

An implementation of the ORADat aFact ory cr eat e() method might look as

follows.
public CRAData create(Datumd, int sql Type) throws SQException
{
return create(new Userd ass(), d, sql Type) ;
}

When the class is part of an inheritance hierarchy, however, the generated
method changes to pr ot ect ed ORADat a cr eat eExact () with the same
signature and body as cr eat e() above.

The following code shows a more efficient implementation, where an initialized
User Cl ass instance is created through the User Cl ass(bool ean)
constructor. This constructor is provided in JPublisher-generated code,
including the superclass that User Cl ass extends. Using this constructor
ensures that a User Cl ass instance is not needlessly created if the data object is
null, or needlessly re-initialized if the data object is non-null.

protected Userd ass(bool ean init) { super(bool ean); }
public CRAData create(Datumd, int sql Type) throws SQException

{
}

return (d==null) ? null : create(new Wserd ass(fal se), d, sql Type);

Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes

If you have been providing user-written subclasses for JPublisher-generated classes
under Oracle8i JPublisher, you should be aware that there are a number of relevant
changes in how Oracle9i JPublisher generates code. You would have to make
changes in any applications written against the Oracle8i functionality if you want to
use it under Oracle9i.

2-36 Oracle9/ JPublisher User’s Guide

User-Written Subclasses of JPublisher-Generated Classes

Note: If you use the - conpat i bl e=bot h8i or 8i setting, you
will not see the changes discussed here and your application will
continue to work as before. See "Backward-Compatible Oracle
Mapping for User-Defined Types (-compatible)" on page 3-9.

In general, however, it is advisable to make the transformation to
Oracle9i JPublisher functionality, because this will help insulate
your user code from implementation details of
JPublisher-generated classes.

Following are the changes:

Replace any use of the declared _ct x connection context field with use of the
provided get Connect i onCont ext () method. The _ct x field is no longer
supported under Oracle9i.

Replace the explicit implementation of the cr eat e() method with a call to a
superclass cr eat e() method.

Assume that in the example below, User Cl ass extends BaseCl ass. Instead of
writing the following method in User Cl ass:

public QustonbDatumcreate(Datumd, int sql Type) throws SQException
{

if (d=null) return null;

Wserd ass o = new Wserd ass() ;

0._struct = new Mitabl eStruct ((STRUCT) d, _sql Type, _factory);
0._ctx = new _Qx(((STRUT) d).getConnection());

return o;

}

supply the following:

public QustonbDatumcreate(Datumd, int sql Type) throws SQException
{

return create(new Wserd ass(), d, sql Type);

}

or, if the class is part of an inheritance hierarchy, write the following:

protected Qustonbatum creat eExact (Datumd, int sql Type) throws SQException
{

return create(new Wserd ass(), d, sql Type);

}

JPublisher Concepts 2-37

User-Written Subclasses of JPublisher-Generated Classes

In addition, in . sqgl j files, JPublisher now generates a pr ot ect ed constructor
with a boolean argument that specifies whether the object must be initialized:

protected Based ass(boolean init) { ... }
You can use this to optimize the User Cl ass code as described in "Format of
the Class that Extends the Generated Class" on page 2-35.

In addition to the get Connect i onCont ext () method, Oracle9i JPublisher
provides a get Connecti on() method that can be used to obtain the JDBC
connection associated with the object.

The setFrom(), setValueFrom(), and setContextFrom() Methods
Oracle9i JPublisher provides the following utility methods in generated . sql j files:

set Fr om(anot her Obj ect)

This initializes the calling object from another object of the same base type,
including connection and connection context information. An existing,
implicitly created, connection context object on the calling object is freed.

set Val ueFr om(anot her Qbj ect)

This initializes the underlying field values of the calling object from another
object of the same base type. This method does not transfer connection or
connection context information.

set Cont ext Fr on{ anot her Qbj ect)

This initializes the connection and connection context information on the calling
object from the connection setting of another object of the same base type. An
existing, implicitly created, connection context object on the calling object is
freed. This method does not transfer any information related to the object value.

Note that there is semantic equivalence between the following:

X. set From(y);

and the following:

X. set Val ueFronty) ;
X. set Cont ext Fronty) ;

2-38 Oracle9/ JPublisher User’s Guide

JPublisher Support for Inheritance

JPublisher Support for Inheritance

This section primarily discusses inheritance support for ORADat a types, explaining
the following related topics:

« how JPublisher implements support for inheritance

= why a reference class for a subtype does not extend the reference class for the
base type, and how you can convert from one reference type to another
reference type (typically a subclass or superclass)

This information is followed by a brief overview of standard inheritance support for
SQLDat a types, with reference to appropriate documentation for further
information.

ORAData Object Types and Inheritance
Consider the following SQL object types:
CREATE TYPE PERSON AS CBIECT (

) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (

);

CREATE TYPE | NSTRUCTCR UNDER PERSON (

);

And consider the following JPublisher command line to create corresponding Java
classes (a single wraparound command):

jpub -user=scott/tiger -sqgl =PERSON Person, STUCENT: S udent, | NSTRUCTCR | nst r uct or

-usert ypes=oracl e

In this example, JPublisher generates a Per son class, a St udent class, and an
I nstruct or class. The St udent and | nst ruct or classes extend the Per son
class, because STUDENT and | NSTRUCTOR are subtypes of PERSON.

The class at the root of the inheritance hierarchy—Per son in this
example—contains the full information for the entire inheritance hierarchy and
automatically initializes its type map with the required information. As long as you
use JPublisher to generate all the required classes of a class hierarchy together, no

JPublisher Concepts 2-39

JPublisher Support for Inheritance

additional action is required in order to appropriately populate the type map of the
class hierarchy.

Precautions when Combining Partially Generated Type Hierarchies

If you run JPublisher several times on a SQL type hierarchy, each time generating
only part of the corresponding Java wrapper classes, then you must take
precautions in the user application in order to ensure that the type map at the root
of the class hierarchy is properly initialized.

In our previous example you might have run the following JPublisher command
lines:

jpub -user=scott/tiger -sqgl =PERSON Person, STUCENT: S udent - usertypes=oracl e
jpub -user=scott/tiger -sqgl =PERSON Person, | NSTRUCTCR | nst r uct or
- usert ypes=or acl e

In this case you should create instances of the generated classes—at a minimum, the
leaf classes—before using these mapped types in your code. For example:

new Instructor(); // required
new S udent (); /1 required
new Person() ; /1 optional

The reason for this requirement is explained next.

Mapping of Type Hierarchies in JPublisher-Generated Code
The Per son class includes the following method:

Person create(oracl e.sql.Datumd, int sql Type)

This method, which converts a Dat uminstance to its representation as a custom
Java object, is called by the Oracle JDBC driver whenever a SQL object declared to
be a PERSON is retrieved into a Per son variable. The SQL object, however, might
actually be a STUDENT object. In this case, the cr eat e() method must create a

St udent instance rather than a Per son instance.

In general, to handle this kind of situation, the cr eat e() method of a custom Java
class (regardless of whether the class was created by JPublisher) must be able to
create instances of any subclass that represents a subtype of the SQL object type
corresponding to the or acl e. sql . Dat umargument. This ensures that the actual
type of the created Java object will match the actual type of the SQL object.

You might think that the code for the cr eat e() method in the root class of a
custom Java class hierarchy must mention all its subclasses. But if this were the case,

2-40 Oracle9/ JPublisher User’s Guide

JPublisher Support for Inheritance

you would have to modify the code for a base class when writing or generating a
new subclass. While this would happen automatically if you always use JPublisher
to regenerate entire class hierarchies, this might not always be possible. For
example, you might not have access to the source code for the Java classes being
extended.

Code generated by JPublisher permits incremental extension of a class hierarchy by
creating a static initialization block in each subclass of the custom Java class
hierarchy. This static initialization block initializes a data structure (equivalent to a
type map) declared in the root-level Java class, giving the root class the information
it needs about the subclass. When an instance of a subclass is created at runtime, the
type is registered in the data structure. Because of this implicit mapping
mechanism, no explicit type map, such as those required in SQLDat a scenarios, is
required.

Important: This implementation makes it possible to extend
existing classes without having to modify them, but it also carries a
penalty—the static initialization blocks of the subclasses must be
executed before the class hierarchy can be used to read objects from
the database. This occurs if you instantiate an object of each
subclass by calling new() . It is sufficient to instantiate just the leaf
classes, because the constructor for a subclass will invoke the
constructor for its immediate superclass.

As an alternative, you can always generate (or regenerate) the
entire class hierarchy. In this case, there is no need for concern
about instantiating the type map through creation of instances of all
the leaf classes.

To better understand how code generated by JPublisher supports inheritance, try an
example similar to the one at the beginning of this section, and look at the
generated code.

JPublisher Concepts 2-41

JPublisher Support for Inheritance

ORAData Reference Types and Inheritance

This section shows how to convert from one custom reference class to another, and
also generally explains why a custom reference class generated for a subtype by
JPublisher does not extend the reference classes of the base type.

Casting a Reference Type Instance into Another Reference Type

Revisiting the example in "ORAData Object Types and Inheritance" on page 2-39,
we also obtain Per sonRef , St udent Ref , and | nstruct or Ref , for strongly
typed references, in addition to the underlying object type wrappers.

There may be situations where you have a St udent Ref instance but you want to
use it in a context that requires a Per sonRef instance. In this case, use the static
cast () method that is generated on strongly typed reference classes:

SudentRef s ref = ...; PersonRef p ref = PersonRef.cast(s_ref);

Conversely, you might have a Per sonRef instance and know that you can narrow
ittoan | nstruct or Ref instance:

PersonRef pr = ...; InstructorRef ir = InstructorRef.cast(pr);

Next we outline why we need to use a cast () function rather than just being able
to establish a reference type hierarchy that mirrors the object type hierarchy.

Why Reference Type Inheritance Does Not Follow Object Type Inheritance

The example here helps explain why it is not desirable for reference types to follow
the hierarchy of their related object types.

Consider again a subset of the example given in the previous section, repeated here
for convenience:

CREATE TYPE PERSON AS QRIECT (

)I\DT FI NAL;

CREATE TYPE STUDENT UNDER PERSON (

)

jpub -user=scott/tiger -sqgl =PERSON Person, STUCENT: S udent - usertypes=oracl e

In addition to generating Per son. sql j (or.j ava)and St udent. sqlj (or
. j ava), JPublisher will generate Per sonRef . j ava and St udent Ref . j ava.

2-42 Oracle9/ JPublisher User’s Guide

JPublisher Support for Inheritance

Because the St udent class extends the Per son class, you might expect

St udent Ref to extend Per sonRef . This is not the case, however, because the

St udent Ref class can provide more compile-time type safety as an independent
class than as a subtype of Per sonRef . Additionally, a Per sonRef can do
something that a St udent Ref cannot do: modify a Per son object in the database.

The most important methods of the Per sonRef class would be the following:
« Person getVal ue()

« Vvoid setVal ue(Person c)

The corresponding methods of the St udent Ref class would be as follows:

« Student getVal ue()

« Vvoid setVal ue(Student c)

If the St udent Ref class extended the Per sonRef class, two problems would
occur:

« Javawould not permit the get Val ue() method in St udent Ref to return a
St udent object when the method it would override in the Per sonRef class
returns a Per son object, even though this is arguably a sensible thing to do.

« ThesetVal ue() method in St udent Ref would not override the
set Val ue() method in Per sonRef , because the two methods have different
signatures.

It would not be sensible to remedy these problems by giving the St udent Ref
methods the same signatures and result types as the Per sonRef methods, because
the additional type safety provided by declaring an object as a St udent Ref , rather
than as a Per sonRef , would be lost.

Manually Converting Between Reference Types

Because reference types do not follow the hierarchy of their related object types,
there is a JPublisher limitation that you cannot convert directly from one reference
type to another. For background information, this section explains how the
generated cast () methods work to convert from one reference type to another.

It is not recommended that you follow these manual steps—they are presented here
for illustration only. Simply use the cast () method instead.

The following code, for example, could be used to convert from the reference type
XxxxRef to the reference type YyyyRef.

JPublisher Concepts 2-43

JPublisher Support for Inheritance

java.sql . Gonnection conn = ...; [/ get underlying JDBC connection
XxxxRef xref = ...;
YyyyRef yref = (YyyyRef) YyyyRef.get CRADat aFact ory().

creat e(xref . t oDat unfconn), oracl e. j dbc. O acl eTypes. REF) ;

This conversion consists of two steps, each of which can be useful in its own right.

1. Convert xref from its strong XxxxRef type to the weak or acl e. sql . REF
type:
oracle.sql . REF ref = (oracle.sql.RE) xref.toDatunfconn);

2. Convert from the or acl e. sql . REF type to the target YyyyRef type:
YyyyRef yref = (YyyyRef) YyyyRef.get CRADat aFact ory().
create(ref, oracl e.jdbc. O acl eTypes. REF) ;

"Example: Manually Converting Between Reference Types" below provides sample
code for such a conversion.

Note: This conversion does not involve any type-checking.
Whether this conversion is actually permitted depends on your
application and on the SQL schema you are using.

Example: Manually Converting Between Reference Types

The following example, including SQL definitions and Java code, illustrates the
points of the preceding discussion.

SQL Definitions Consider the following SQL definitions:

create type person_t as object (ssn nunber, name varchar2 (30), dob date) not
final;

/

show errors

create type instructor_t under person_t (title varchar2(20)) not final;
/
show errors

create type instructorPartTime_t under instructor_t (numhours nunber);

/
show errors

2-44 Oracle9/ JPublisher User’s Guide

JPublisher Support for Inheritance

create type student_t under person_t (deptid nunber, naj or varchar2(30)) not
final;

/

show errors

create type graduate t under student_t (advisor instructor_t);
/
show errors

create type studentPartTi ne_t under student_t (numhours nunber);
/
show errors

create table person_tab of person_t;

insert into person_tab val ues (1001, 'Larry’, TO DATE(’ 11-SEP-60'));

insert into person_tab values (instructor_t (1101, 'Snmith’, TO DATE

(" 09-CCT-1940'), 'Professor’));

insert into person_tab val ues (instructorPartTi ne_t (1111, ' Mers’,

TO DATH(’ 10- OCT-65'), 'Adjunct Professor’, 20));

insert into person_tab val ues (student_t (1201, 'John’, To DATH'O01-CCT-78), 11,
"EE));

insert into person_tab val ues (graduate t(1211, 'Lisa’, TO DATH' 10-QOCT-75'),
12, "ICS, instructor_t(1101, 'Smth’, TODATE (' 09-CQCI-40'), 'Professor’)));
insert into person_tab val ues (studentPartTine_t (1221, ' Dave',

TO DATE(’ 11-CCT-70'), 13, 'MATH, 20));

JPublisher Mappings Assume the following mappings when you run JPublisher:

Person_t: Person,instructor_t:lnstructor,instructorPartTi ne t:|nstructorPartTi ne,
graduat e _t: G aduat e, st udent Part Ti ne_t : & udent Part Ti ne

Java Class Here is a Java class with an example of reference type conversion as
discussed above, in "Manually Converting Between Reference Types" on page 2-43:

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.j dbc. O acl eTypes;

inport oracle.sqlj.runtime. Cacle;
inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine.ResultSetliterator;

JPublisher Concepts 2-45

JPublisher Support for Inheritance

public class Inheritance
{
public static void main(Sring[] args) throws SQException
{
Systemout . println("Connecting.");
Q acl e. connect ("j dbc: oracl e: oci : @, "scott", "tiger");

/1 The following is only required in 9.0.1
/1 or if the Java class hierarchy was created pi eceneal
Systemout. printIn("lnitializing type system");
new Person();
new I nstructor();
new | nstructorPartTine();
new S udent T() ;
new S udent Part Ti me() ;
new G aduat e();

PersonRef p_ref;
InstructorRef i _ref;
InstructorPart Ti neRef ipt_ref;
S udent TRef s_ref;

S udent Part Ti meRef spt_ref;

Q aduat eRef g ref;

Systemout. println("Sel ecting a person.");
#sql { select ref(p) INTO:p_ref FROMPERSON TAB p WHERE p. NAME=' Larry’ };

Systemout. println("Selecting an instructor.");
#sqgl { select ref(p) INTO:i_ref FROMPERSON TAB p WHERE p. NAME=' Snith' };

Systemout. println("Selecting a part tine instructor.");
#sqgl { select ref(p) INTO:ipt_ref FROM PERSON TAB p WHERE p. NAME=' Mrer s’ };

Systemout. println("Sel ecting a student.");
#sqgl { select ref(p) INTO:s_ref FROMPERSON TAB p WHERE p. NAME=' John' };

Systemout. println("Selecting a part tine student.");
#sqgl { select ref(p) INTO:spt_ref FROM PERSON TAB p WHERE p. NAME=' Dave’ };

Systemout. println("Sel ecting a graduate student.");
#sqgl { select ref(p) INTO:g_ref FROMPERSON TAB p WHERE p. NAME=' Lisa’ };

/1 Qonnection object for conversions
Gonnecti on conn = Def aul t Cont ext . get Def aul t Gont ext () . get Gonnecti on() ;

2-46 Oracle9/ JPublisher User’s Guide

JPublisher Support for Inheritance

/] Assigning a part-tine instructor ref to a person ref
Systemout. println("Assigning a part-tine instructor ref to a person ref");
oracl e.sqgl . Datumref = ipt_ref.toDatun{conn);
PersonRef pref = (PersonRef) PersonRef. get CRADat aFactory() .
create(ref, O acl eTypes. REF) ;
/] or just use: PersonRef pref = PersonRef.cast(ipt_ref);

/] Assigning a person ref to an instructor ref

Systemout. println("Assigning a person ref to an instructor ref");

InstructorRef iref = (InstructorRef) InstructorRef.get CRADat aFact ory().
create(pref.tobatunf{conn), C acl eTypes. REF);

/] or just use: InstructorRef iref = InstructorRef.cast(pref);

/] Assigning a graduate ref to an part tine instructor ref
/1 =>this should actually bonb at runtine!
Systemout. println
("Assigning a graduate ref to a part tine instructor ref");
InstructorPart Ti neRef iptref =
(I'nstructorPart Ti neRef) InstructorPart T neRef. get CRADat aFact or y()
.create(g_ref.tobatunfconn), Q acl eTypes. REF);
/1 or just use: InstructorPartTi neRef iptref =
InstructorPart Ti neRef . cast (g_ref);

Q acl e. cl ose() ;

}
}

SQLData Object Types and Inheritance

As described earlier, if you use the JPublisher - user t ypes=j dbc setting instead of
- usertypes=or acl e, the custom Java class that JPublisher generates will
implement the standard SQLDat a interface instead of the Oracle ORADat a
interface. The SQLDat a standard r eadSQL() and wri t eSQL() methods provide
equivalent functionality to the ORADat a/ORADat aFact ory creat e() and

t oDat um() methods for reading and writing data.

As is the case when JPublisher generates ORADat a classes corresponding to a
hierarchy of SQL object types, when JPublisher generates SQLDat a classes
corresponding to a SQL hierarchy, the Java types will follow the same hierarchy as
the SQL types.

JPublisher Concepts 2-47

JPublisher Support for Inheritance

SQLDat a implementations do not, however, offer the implicit mapping intelligence
that JPublisher automatically generates into ORADat a classes (as described in
"ORAData Object Types and Inheritance" on page 2-39).

In a SQLDat a scenario, you must manually provide a type map to ensure the
proper mapping between SQL object types and Java types. In a JDBC application,
you can properly initialize the default type map for your connection, or you can
explicitly provide a type map as a get Obj ect () input parameter. (See the Oracle9i
JDBC Developer’s Guide and Reference for information.) In a SQLJ application, use a
type map resource that is similar in nature to a properties file. (See the Oracle9i SQLJ
Developer’s Guide and Reference for information.)

In addition, be aware that there is no support for strongly typed object references in
a SQLData implementation. All object references are weakly typed j ava. sqgl . Ref
instances.

Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE

This section discusses the effect on JPublisher-generated wrapper classes of using
the SQL modifiers FI NAL, NOT FI NAL, | NSTANTI ABLE, or NOT | NSTANTI ABLE.

Using the SQL modifier FI NAL or NOT FI NAL on a SQL type or on a method of a
SQL type has no effect on the generated Java wrapper code. This is so JPublisher
users are able in all cases to customize the generated Java wrapper class through
subclassing and overriding the generated behavior.

Using the SQL modifier NOT | NSTANTI ABLE on a method of a SQL type results in
no code being generated for that method in the Java wrapper class. Therefore, you
must cast to some wrapper class that corresponds to an instantiable SQL subtype in
order to call such a method.

Using NOT | NSTANTI ABLE on a SQL type results in the corresponding wrapper
class being generated with pr ot ect ed constructors. This will remind you that
instances of that class can only be created through subclasses that correspond to
instantiable SQL types.

2-48 Oracle9/ JPublisher User’s Guide

Backward Compatibility and Migration

Backward Compatibility and Migration

This section discusses issues of backward compatibility, compatibility between JDK
versions, and migration between Oracle8i and Oracle9i releases of JPublisher.

JPublisher Backward Compatibility

The JPublisher runtime is packaged with Oracle JDBC in the cl asses111,
cl asses12, or oj dbc14 library. Code generated by an earlier version of JPublisher
will:

« continue to run with the current release of the JPublisher runtime
« continue to be compilable against the current release of the JPublisher runtime

If you use an earlier release of the JPublisher runtime and Oracle JDBC in
generating code, the code will be compilable against that version of the JPublisher
runtime. Specifically, when you use an Oracle8i JDBC driver, JPublisher will
generate code for the now-deprecated Cust onDat uminterface, not the ORADat a
interface that replaced it.

JPublisher Compatibility Between JDK Versions

Generally speaking, . sql j files generated by JPublisher can be translated under
either JDK 1.1.x (assuming you are not using JDBC 2.0-specific types), or JDK 1.2.x
or higher. However, if you intend to translate and compile in separate steps (setting
-conpi | e=fal sein SQLJso thatonly . j ava files, not. cl ass files, are
produced), then you must use the same JDK version for compilation as for
translation unless you use a special JPublisher option setting.

In this situation (translating and compiling in separate steps), the JPublisher default
setting - cont ext =Def aul t Cont ext results in generation of . sql j files that are
completely compatible between JDK 1.1.x and JDK 1.2.x or higher. (With this
setting, for example, you could translate against JDK 1.1.x but still compile against
JDK 1.2.x successfully.)

In this situation, all generated . sql j files use the

sqlj.runtinme.ref. Defaul t Cont ext class forall connection contexts. This is
as opposed to the setting - cont ext =gener at ed, which results in each generated

. sqlj file declaring its own connection context inner class. This was the Oracle8i
JPublisher default behavior, and is what makes translated . j ava code incompatible
between JDK 1.1.x and 1.2.x or higher.

JPublisher Concepts 2-49

Backward Compatibility and Migration

See "SQLJ Connection Context Classes (-context)" on page 3-16 for more information
about the - cont ext option.

Important: With some JPublisher option settings under JDK 1.1.x
there is risk of memory leakage caused by SQLJ connection context
instances that are not closed. See "Releasing Connection Context
Resources" on page 2-30 for information.

See the Oracle9i SQLJ Developer’s Guide and Reference for general information about
connection contexts.

Migration Between Oracle8i JPublisher and Oracle9i JPublisher

In Oracle9i JPublisher, default option settings and some features of the generated
code have changed. If you wrote an application using JPublisher release 8.1.7 or
earlier, it is unlikely that you will be able to simply re-run JPublisher in Oracle9i and
have the generated classes still work within your application. This section describes
how to modify your JPublisher option settings or your application code
appropriately.

Note: Also see "Changes in User-Written Subclasses of Oracle9i
JPublisher-Generated Classes" on page 2-36 for differences between
Oracle8i functionality and Oracle9i functionality for classes that
extend JPublisher-generated classes.

Changes in Behavior in Oracle9i JPublisher
Be aware of the following changes in JPublisher behavior in Oracle9i:

« By default, JPublisher no longer declares the inner SQLJ connection context
class _Ct x for every object type. Instead, it uses the connection context class
sqlj.runtine.ref. Defaul t Cont ext throughout.

Also, user-written code must call the get Connect i onCont ext () method to
have a connection context handle, instead of using the _ct x connection context
field that was declared under Oracle8i code generation. See "Considerations in
Using Connection Contexts and Connection Instances" on page 2-28 for more
information about the get Connect i onCont ext () method.

2-50 Oracle9/ JPublisher User’s Guide

Backward Compatibility and Migration

« Even with the setting - met hods=t r ue, . j ava files are generated instead of
.sqlj files if the underlying SQL object type or PL/SQL package does not
define any methods. (But a setting of - net hods=al ways will always result in
. sqlj files being produced.)

« By default, JPublisher now generates code that implements the
oracl e. sgl . ORADat a interface instead of the deprecated
oracl e. sql . Cust onDat uminterface.

« By default, JPublisher now places generated code into the current directory;,
rather than into a package-directory hierarchy under the current directory.

See the following sections, "Individual Settings to Force JPublisher Behavior as in
Previous Releases" below and "Oracle8i Compatibility Mode" on page 2-52, for
information about how to revert to Oracle8i behavior instead.

Individual Settings to Force JPublisher Behavior as in Previous Releases

In Oracle9i, if you want JPublisher to behave as it did in release 8.1.7 and prior,
there are a number of individual backward-compatibility options you can set. This
is detailed in Table 2-2. See descriptions of these options under "Detailed
Descriptions of General JPublisher Options" on page 3-13 for more information.

See "Oracle8i Compatibility Mode" on page 2-52 for a single setting that results in
the same behavior as for Oracle8i JPublisher—backward-compatible code
generation plus behavior that is equivalent to what would happen with the
combination of these individual option settings.

Table 2-2 JPublisher Backward-Compatibility Options

Option Setting Behavior

-context=generated This results in the declaration of an inner class, _Ct x, for
SQLJ connection contexts. This is used instead of the default
Def aul t Cont ext class or user-specified connection context
classes.

-methods=always This forces generation of . sql j (as opposed to . j ava)
source files for all JPublisher-generated classes, regardless of
whether the underlying SQL object or package actually
defines any methods.

-compatible=customdatum For Oracle-specific object wrappers, this results in JPublisher
implementing the deprecated (but still supported)
oracl e. sql . Cust onDat umand Cust onDat unfact ory
interfaces instead of the or acl e. sql . ORADat a and
ORADat aFact ory interfaces.

JPublisher Concepts 2-51

Backward Compatibility and Migration

Table 2-2 JPublisher Backward-Compatibility Options (Cont.)

Option Setting Behavior

-dir=. Setting this option to "." (a period or "dot") results in
generation of output files into a hierarchy under the current
directory, as was the default behavior in Oracle8i.

Unless you have a compelling reason to use the backward-compatibility settings,
however, it is recommended that you accept the current default (or other) settings.

Oracle8i Compatibility Mode

Either of the JPublisher option settings - conpat i bl e=bot h8i and
- conpati bl e=8i results in what is called Oracle8i compatibility mode.

See "Backward-Compatible Oracle Mapping for User-Defined Types (-compatible)"
on page 3-9 for more information about this option.

For use of this mode to be permissible, however, at least one of the following
circumstances must hold:

= You will translate JPublisher-generated . sql j files with the default SQLJ
- codegen=or acl e setting.

or:

=« The JPublisher-generated code will execute under JDK 1.2 or higher and will
use the SQLJrunt i mel2 or runti mel2ee library, or will execute in the
Oracle9i release of the server-side Oracle JVM.

or:

=« You will run JPublisher with the - met hods=f al se or - nret hods=none
setting.

JPublisher has the following functionality in Oracle8i compatibility mode:

« It will generate code that implements the deprecated Cust onDat umand
Cust onDat unfact ory interfaces instead of the ORADat a interface (as with
the - conpat i bl e=cust ondat umsetting). In addition, if you choose the
setting - conpat i bl e=bot h8i , the generated code will also implement the
ORADat a interface, though not ORADat aFact ory.

« With the - net hods=t r ue setting, it will always generate SQLJ source code for
a SQL object type, even if the object type does not define any methods (as with
- met hods=al ways).

2-52 Oracle9i JPublisher User’s Guide

Backward Compatibility and Migration

« It will generate connection context declarations and connection context
instances on every object type wrapper, as follows (as with
- cont ext =gener at ed):

#sgl static context _Qx;
protected Qx _ctx;

« It provides a constructor in the wrapper class that takes a generic
Connect i onCont ext instance (an instance of any class implementing the
standard sql j . runt i me. Connecti onCont ext interface) as input. In
Oracle9i, the constructor accepts only a Def aul t Cont ext instance or an
instance of the class specified through the - cont ext option when JPublisher
was run.

« It does not provide an API for releasing a connection context instance that has
been created implicitly on a JPublisher object.

By contrast, Oracle9i JPublisher provides both a set Connect i onCont ext ()
method for explicitly setting the connection context instance for an object, and a
rel ease() method for releasing an implicitly created connection context
instance of an object.

In general, if you must choose Oracle8i compatibility mode, it is strongly
recommended that you use the setting - conpat i bl e=bot h8i . This will permit
your application to work in a middle-tier environment such as the Oracle9i
Application Server, where JDBC connections are obtained through data sources and
likely will be wrapped using or acl e. j dbc. Or acl e Xxxx interfaces.

Cust onDat umimplementations do not support such wrapped connections.

Note: The setting - conpat i bl e=bot h8i requires Oracle JDBC
9.0.1 or higher.

Oracle8i compatibility mode is now the only way for a connection context instance
_ct x to be declared in JPublisher-generated code—there is no other option setting
to accomplish this particular Oracle8i behavior. The _ct x instance might be useful
if you have legacy code that depends on it, but otherwise you should obtain
connection context instances through the get Connect i onCont ext () method.

JPublisher Concepts 2-53

Backward Compatibility and Migration

Important: There are circumstances where you should not use
Oracle8i compatibility mode. If your environment uses any of the
following:

« JDK1.1.x, the SQLJ generic r unt i me library, or the SQLJ
runti mell library

and you use the following SQLJ translator setting:
« -codegen=iso
as well as any of the following JPublisher settings:

« - nethods=naned (or sone), - met hods=true (oral |), or
- met hods=al ways

then there may be significant memory leakage caused by implicit
connection context instances that are not closed.

Avoid the - conpat i bl e=8i and - conpat i bl e=bot h8i settings
in these circumstances, and use the set Connect i onCont ext ()
and r el ease() methods in manipulating connection contexts. For
more information, see "Use of Connection Contexts and Instances
in SQLJ Code Generated by JPublisher" on page 2-27.

2-54 Oracle9/ JPublisher User’s Guide

JPublisher Limitations

JPublisher Limitations

This section summarizes limitations in the Oracle9i release 2 version of JPublisher.

Some datatypes are only supported indirectly through JPublisher type maps
that map PL/SQL-specific types to SQL types. This includes the following:

— RECORD types
— indexed-by tables

Note that JPublisher has predefined support for mapping PL/SQL BOOLEAN to
Java bool ean using conversion functions in the SYS. SQLJUTL package. In
general, if JPublisher encounters wrapper methods that use one or more
unrecognized datatypes, it will not generate a corresponding Java method and
will display one or more error messages instead.

For more information about datatype support, see "SQL and PL/SQL Mappings
to Oracle and JDBC Types" on page 2-3.

I NPUT file error reporting is sometimes incomplete.

JPublisher reports most, but not all, errors in the | NPUT file. The few errors in
the | NPUT file that are not reported by JPublisher are described in "INPUT File
Precautions" on page 3-41.

Although the - omi t _schena_nanes option behaves as a boolean option, you
cannot set it =t r ue or =f al se (unlike other boolean options). Simply specify
"-omt_scherma_nanes" to enable it. The default is disabled. See "Omission of
Schema Name from Generated Names (-omit_schema_names)" on page 3-22 for
information about this option.

JPublisher Concepts 2-55

JPublisher Limitations

2-56 Oracle9/ JPublisher User’s Guide

3

Command-Line Options and Input Files

This chapter describes the use and syntax details of JPublisher option settings and
input files to specify program behavior, organized as follows:

« JPublisher Options
« JPublisher Input Files

Command-Line Options and Input Files 3-1

JPublisher Options

JPublisher Options

This section lists and discusses JPublisher command-line options, covering the
following topics:

« JPublisher Option Summary

= JPublisher Option Tips

= Notational Conventions

« Detailed Descriptions of Options That Affect Datatype Mappings

« Detailed Descriptions of General JPublisher Options

JPublisher Option Summary

Table 3-1 lists the options that you can use on the JPublisher command line, their
syntax, and a brief description. The abbreviation "n/a" represents "not applicable".

Table 3-1 Summary of JPublisher Options

Option Name Description Default Value
-access Determines the access modifiers that public
JPublisher includes in generated method
definitions.

-adddefaul ttypemap Appends an entry to the JPublisher default n/a

type map.

- addt ypemap Appends an entry to the JPublisher user type n/a
map.

-builtintypes Specifies the datatype mappings (j dbc or j dbc

or acl e) for built-in datatypes that are
non-numeric and non-LOB.

-case Specifies the case of Java identifiers that m xed
JPublisher generates.

-conpati bl e Specifies the general Oracle8i compatibility or adat a
mode, or the particular interface to
implement in generated classes for Oracle
mapping of user-defined types—ORADat a or
Cust omDat um(supported for backward
compatibility); modifies the behavior of
-usertypes=oracl e.

3-2 Oracle9iJPublisher User’s Guide

JPublisher Options

Table 3-1 Summary of JPublisher Options (Cont.)

Option Name

Description

Default Value

-cont ext

-defaul ttypenap

-dir

-driver

-encodi ng

-gensubcl ass

-input (or-i)

-1 obt ypes

- mappi ng

- met hods

Specifies the class JPublisher uses for
connection contexts—the SQLJ

Def aul t Cont ext class, a user-specified
class, or a JPublisher-generated inner class.

Sets the default type map used by JPublisher.

Specifies the directory that holds generated
files or packages. An empty directory name
results in all generated files being placed in
the current directory. A non-empty directory
name specifies a directory to be used as the
root directory of a class hierarchy.

Specifies the driver class that JPublisher uses
for JDBC connections to the database.

Specifies the Java encoding of JPublisher
input files and output files.

Specifies whether and how to generate stub
code for user subclasses.

Specifies a file that lists the types and
packages JPublisher translates.

Specifies the datatype mappings (j dbc or
or acl e) that JPublisher uses for BLOB and
CLOB types.

Specifies the mapping that generated
methods support for object attribute types
and method argument types.

Note: This is deprecated in favor of the
"XXXtypes" mapping options, but is
supported for backward compatibility.

Determines whether JPublisher generates
wrapper methods for SQL object methods
and PL/SQL package methods. Also, as
secondary effects, determines whether
JPublisher generates . sql j filesor.j ava
files, and whether it generates PL/SQL
wrapper classes at all.

Def aul t Cont ext

See "JPublisher Default Type Map
and User Type Map" on page 2-18.

empty

oracl e.jdbc. Oracl eDri ver
the value of the system property
file.encoding

true

n/a

oracl e

obj ect j dbc

al |

Command-Line Options and Input Files 3-3

JPublisher Options

Table 3-1 Summary of JPublisher Options (Cont.)

Option Name

Description

Default Value

- nunbert ypes

-om t_schenmm_nanes

- package

-plsqglfile

-pl sql map

- pl sqgl package

-props (or-p)

-serializable

-sql (or-s)

-tostring

-typemap

-types

Specifies the datatype mappings (j dbc,
obj ect j dbc, bi gdeci mal , or or acl e)
that JPublisher uses for numeric datatypes.

Specifies whether all object types and
package names that JPublisher generates
include the schema name.

Specifies the name of the Java package into
which JPublisher generates Java wrappers.

Specifies a file into which JPublisher
generates PL/SQL wrapper functions and
procedures.

Specifies whether and how to generate
PL/SQL wrapper functions and procedures.

Specifies the PL/SQL package into which
JPublisher generates wrapper functions and
procedures.

Specifies a file that contains JPublisher
options in addition to those listed on the
command line.

Specifies whether code generated for object
types implements
java.io. Serializable.

Specifies object types and packages for
which JPublisher will generate code.

Specifies whether to generateat oSt ri ng()
method for object types.

Specifies the JPublisher type map (a list of
mappings).

Specifies object types for which JPublisher
will generate code.

Note: This option is deprecated in favor of
-sql , butis supported for backward
compatibility.

3-4 Oracle9i JPublisher User’s Guide

obj ect j dbc

disabled (do not omit schema names)

n/a

pl sql _wr apper. sql

true

JPUB_PLSQL_WRAPPER

n/a

fal se

n/a

fal se

empty

n/a

JPublisher Options

Table 3-1 Summary of JPublisher Options (Cont.)

Option Name Description Default Value
-url Specifies the URL JPublisher uses to connect j dbc: oracl e: oci : @
to the database.
-user (or-u) Specifies an Oracle username and password n/a
for connection.
-usertypes Specifies the type mappings (j dbc or oracle
or acl e) JPublisher uses for user-defined
SQL types.

JPublisher Option Tips
Be aware of the following usage notes for JPublisher options.
« JPublisher always requires the - user option (or - u, its shorthand equivalent).

« Options are processed in the order in which they appear. Options from an
I NPUT file are processed at the point where the - i nput (or - i) option occurs.
Similarly, options from a properties file are processed at the point where the
- pr ops (or - p) option occurs.

« Ifaparticular option appears more than once, JPublisher in general uses the
value from the last occurrence. This is not true for the following options,
however, which are cumulative.

-sqgl (or the deprecated -t ypes)
- addt ypemap or - adddef aul tt ypemap

« Ingeneral, options and corresponding option values must be separated by an
equals sign ("="). When the following options appear on the command line,
however, you are also permitted to use a space as a separator:

-sqgl (or-s),-user (or-u),-props (or-p),and-i nput (or-i)

« Itisadvisable to specify a Java package for your generated classes, with the
- package option, either on the command line or in a properties file. For
example, on the command line you could enter:

j pub -sqgl =Person - package=e.f ...

Command-Line Options and Input Files 3-5

JPublisher Options

or in the properties file you could enter:

j pub. sql =Per son
j pub. package=e. f

These statements direct JPublisher to create the class Per son in the Java
package e. f; that is, to create the class e. f . Per son.

"Properties File Structure and Syntax" on page 3-33 describes the properties file.

« Ifyou do not specify a type or package in the | NPUT file or on the command
line, then JPublisher translates all types and packages in the user schema
according to the options specified on the command line or in the properties file.

Notational Conventions

The JPublisher option syntax used in the following sections follows these notational
conventions:

« Angle brackets <. . . > enclose strings that the user supplies.

« Braces{. ..} enclose a list of possible values—specify only one of the values
within the braces.

« Avertical bar | separates alternatives within brackets or braces.
« Termsinitalics are like for values to input—specify an actual value or string.

» Square brackets [. . .] enclose optional items. In some cases, however, square
brackets or parentheses are part of the syntax and need to be entered verbatim.
In this case, this manual uses boldface: [...] or (...).

« Anellipsis. .. immediately following an item (or items enclosed in brackets)
means that you can repeat the item any number of times.

« Punctuation symbols other than those described above are entered as shown.

These include ". " and "@, for example.

The next section discusses the options that affect datatype mappings. The remaining
options are then discussed in alphabetical order.

3-6 Oracle9iJPublisher User’s Guide

JPublisher Options

Detailed Descriptions of Options That Affect Datatype Mappings

The following options control which datatype mappings JPublisher uses to translate
object types, collection types, object reference types, and PL/SQL packages to Java
classes:

« The-usertypes option controls JPublisher behavior for user-defined types
(possibly in conjunction with the - conpat i bl e option for or acl e mapping).

« The-nunbert ypes option controls datatype mappings for numeric types.

« The-1| obtypes option controls datatype mappings for the BLOB and CLOB
types.

« The-builtintypes option controls datatype mappings for non-numeric,
non-LOB, predefined SQL and PL/SQL types.

These four options are known as the type-mapping options. (Another, less flexible
option, - mappi ng, is discussed later. It is deprecated, but still supported for
compatibility with older releases of JPublisher.)

In addition, JPublisher code generation is also controlled through entries in the
JPublisher user type map or default type map. This is primarily to permit JPublisher
to access signatures with PL/SQL types. You can refer to "Using Datatypes
Unsupported by JDBC" on page 2-7 for more information.

The following options are used in conjunction with JPublisher type mapping, and
are described in the general options section:

« -addtypenap, - adddef aul tt ypenmap, - def aul tt ypenmap, and -t ypenap
for specifying type mappings

« -plsqglfile,-plsql map,and-pl sql package for controlling the generation
of PL/SQL wrapper code

For an object type, JPublisher applies the mappings specified by the type mapping
options to the object attributes and to the arguments and results of any methods
included with the object. The mappings control the types that the generated
accessor methods support; that is, what types the get XXX() methods return and
the set XXX() methods require.

For a PL/SQL package, JPublisher applies the mappings to the arguments and
results of the methods in the package.

For a collection type, JPublisher applies the mappings to the element type of the
collection.

Command-Line Options and Input Files 3-7

JPublisher Options

The - user t ypes option controls whether JPublisher implements the Oracle
ORADat a interface or the standard SQLDat a interface in generated classes, and
whether JPublisher generates code for collection and object reference types. In
addition, if - user t ypes=or acl e, you can use the - conpat i bl e option to specify
using Cust onDat uminstead of ORADat a for Oracle mapping. Cust onDat umis
replaced by ORADat a and deprecated in Oracle9i, but is supported for backward
compatibility. (Beyond this, you can use the - conpat i bl e option to specify a more
general Oracle8i compatibility mode. See "Oracle8i Compatibility Mode" on

page 2-52.)

See "Details of Datatype Mapping" on page 2-2 for more information about the
different datatype mappings and factors you should consider in deciding which
mappings to use.

The following sections provide additional information about these type mapping
options.

Mappings for User-Defined Types (-usertypes)
-usert ypes={or acl e| j dbc}

The - user t ypes option controls whether JPublisher implements the Oracle
ORADat a interface or the standard SQLDat a interface in generated classes for
user-defined types.

When - usert ypes=or acl e (the default), JPublisher generates ORADat a classes
for object, collection, and object reference types.

When - usert ypes=j dbc, JPublisher generates SQLDat a classes for object types.
JPublisher does not generate classes for collection or object reference types in this
case—use j ava. sql . Array for all collection types and j ava. sql . Ref for all
object reference types.

Notes:

« The-usertypes=j dbc setting requires JDK 1.2 or higher,
because the SQLDat a interface is a JDBC 2.0 feature.

= With certain settings of the - conpat i bl e option, a
-usertypes=or acl e setting results in classes that implement
the deprecated Cust omDat uminterface instead of ORADat a.
See "Backward-Compatible Oracle Mapping for User-Defined
Types (-compatible)" below.

3-8 Oracle9iJPublisher User’s Guide

JPublisher Options

Backward-Compatible Oracle Mapping for User-Defined Types (-compatible)
-conpat i bl e={ or adat a| cust ondat unj bot h8i | 8i }

If - usertypes=or acl e, you have the option of setting

- conpati bl e=cust ondat umto implement the Cust onDat uminterface instead of
the ORADat a interface in your generated classes for user-defined types.

Cust onDat umis replaced by ORADat a and deprecated in Oracle9i, but is still
supported for backward compatibility. If - usert ypes=j dbc,a- conpati bl e
setting of cust ondat um(or or adat a) is ignored.

The default setting is or adat a.

This option also has another mode of operation. With a setting of

-conpati bl e=8i or-conpati bl e=bot h8i, you can specify the general Oracle8i
compatibility mode. This not only uses Cust onDat um but also generates the same
code that would be generated by Oracle8i JPublisher, and is equivalent to setting
other JPublisher options for backward compatibility to Oracle8i. Behavior of
method generation is equivalent to that for a - met hods=al ways setting, and
generation of connection context declarations is equivalent to that for a

- cont ext =gener at ed setting. See "Oracle8i Compatibility Mode" on page 2-52.

Notes: If you use JPublisher in an environment that does not
support the ORADat a interface (such as Oracle8i JDBC 8.1.7 or prior
releases), then the Cust onDat uminterface is used automatically if
-usertypes=or acl e. (You will receive an informational warning
if - conpat i bl e=or adat a, but the generation will take place.)

The option setting - conpat i bl e=bot h8i additionally makes the
generated object type wrapper implement the ORADat a interface.
This is generally preferred over the - conpat i bl e=8i setting,
because support for ORADat a is required for programs running in
the middle tier, such as in the Oracle9i Application Server. Note,
however, that the use of ORADat a requires an Oracle 9.0.1 or higher
JDBC driver.

Command-Line Options and Input Files 3-9

JPublisher Options

Mappings For Numeric Types (-numbertypes)
- nunber t ypes={j dbc| obj ect j dbc| bi gdeci nal | or acl e}

The - nunber t ypes option controls datatype mappings for numeric SQL and
PL/SQL types. The following four choices are available:

« The JDBC mapping maps most numeric datatypes to Java primitive types such
asint and f| oat, and maps DECI MAL and NUMBER to
j ava. mat h. Bi gDeci mal .

=« The Object JIDBC mapping (the default) maps most numeric datatypes to Java
wrapper classes such asj ava. | ang. I nt eger and j ava. | ang. Fl oat, and
maps DECI MAL and NUMBERto j ava. mat h. Bi gDeci mal .

« The Bi gDeci mal mapping maps all numeric datatypes to
j ava. mat h. Bi gDeci mal .

= The Oracle mapping maps all numeric datatypes to or acl e. sql . NUMBER

Table 3-2 lists the SQL and PL/SQL types affected by the - nunbert ypes option,
and shows their Java type mappings for - nunbert ypes=j dbc and
-nunbert ypes=obj ectj dbc (the default).

Table 3-2 Mappings for Types Affected by the -numbertypes Option

SQL or PL/SQL Datatype JDBC Mapping Type Object JDBC Mapping Type

BINARY_INTEGER, INT, int java.lang.Integer
INTEGER, NATURAL,

NATURALN, PLS_INTEGER,

POSITIVE, POSITIVEN,

SIGNTYPE

SMALLINT short java.lang.Integer
REAL float java.lang.Float
DOUBLE PRECISION, FLOAT double java.lang.Double
DEC, DECIMAL, NUMBER, java.math.BigDecimal java.math.BigDecimal
NUMERIC

3-10 Oracle9j JPublisher User’s Guide

JPublisher Options

Mappings For LOB Types (-lobtypes)
-1 obt ypes={j dbc]| or acl e}

The - | obt ypes option controls datatype mappings for the LOB types. Table 3-3
shows how these types are mapped for - | obt ypes=or acl e (the default) and for
-1 obt ypes=j dbc.

Table 3-3 Mappings for Types Affected by the -lobtypes Option

SQL or PL/SQL Datatype Oracle Mapping Type JDBC Mapping Type

CLOB oracle.sql.CLOB java.sql.Clob

BLOB oracle.sql.BLOB java.sql.Blob

BFILE oracle.sql.BFILE oracle.sql.BFILE
Notes:

« BFI LEis an Oracle-specific SQL type, so there is no standard
java. sgl . Bfi | e Java type.

« NCLOB s an Oracle-specific SQL type. It denotes an NCHAR
form of use of a CLOB and is represented as an instance of
oracl e. sgl . NCLOB in SQLJ programs.

« Thejava.sqgl.C obandjava. sql . Bl ob interfaces are new
in JDK 1.2. If you use JDK 1.1, do not select - | obt ypes=j dbc.

Mappings For Built-In Types (-builtintypes)
-bui l tintypes={j dbc| oracl e}

The - bui | ti nt ypes option controls datatype mappings for all the built-in
datatypes except the LOB types (controlled by the - | obt ypes option) and the
different numeric types (controlled by the - nunber t ypes option). Table 3-4 lists
the datatypes affected by the - bui | ti nt ypes option and shows their Java type
mappings for - bui | ti nt ypes=oracl e and - bui | ti nt ypes=j dbc (the default).

Command-Line Options and Input Files 3-11

JPublisher Options

Table 3-4 Mappings for Types Affected by the -builtintypes Option

SQL or PL/SQL Datatype Oracle Mapping Type JDBC Mapping Type
CHAR, CHARACTER, LONG, oracle.sql. CHAR java.lang.String
STRING, VARCHAR,

VARCHAR?2

RAW, LONG RAW oracle.sql.RAW byte[]

DATE oracle.sql.DATE java.sql.Timestamp
TIMESTAMP, oracle.sql. TIMESTAMP, java.sql.Timestamp
TIMESTAMP WITH TZ, oracle.sql. TIMESTAMPTZ,

TIMESTAMP WITH LOCAL TZ oracle.sql. TIMESTAMPLTZ

Mappings for All Types (-mapping)
- mappi ng={j dbc| obj ect j dbc| bi gdeci nal | or acl e}

Note: This option is deprecated in favor of the more specific type

mapping options: - user t ypes, - nunbert ypes,

-builtintypes,and -1 obt ypes. Itis still supported, however,

for backward compatibility.

The - mappi ng option specifies mapping for all datatypes, so offers little flexibility

between types.

The setting - mappi ng=or acl e is equivalent to setting all the type mapping
options to or acl e . The other - mappi ng settings are equivalent to setting
- nunber t ypes equal to the value of - mappi ng and setting the other type

mapping options to their defaults, as summarized in Table 3-5.

Table 3-5 Relation of -mapping Settings to Settings of Other Mapping Options

-builtintypes= -numbertypes= -lobtypes= -usertypes=
-mapping=oracle oracle oracle oracle oracle
-mapping=jdbc jdbc jdbc oracle oracle
-mapping=objectjdbc jdbc objectjdbc oracle oracle
(default)
-mapping=bigdecimal jdbc bigdecimal oracle oracle

3-12 Oracle9j JPublisher User’s Guide

JPublisher Options

Note: Because options are processed in the order in which they
appear on the command line, if the - mappi ng option precedes one
of the specific type mapping options (- bui | ti nt ypes,

-1 obt ypes, - nunber t ypes, or - usert ypes), the specific type
mapping option overrides the - mappi ng option for the relevant
types. If the - mappi ng option follows one of the specific type
mapping options, the specific type mapping option is ignored.

Detailed Descriptions of General JPublisher Options

This section discusses the remaining JPublisher options, for settings other than
datatype mappings. Options in this section are in alphabetical order.

Method Access (-access)
-access={publ i c| pr ot ect ed| package}

The - access option determines the access modifier that JPublisher includes in
generated constructors, attribute setter and getter methods, member methods on
object type wrapper classes, and methods on PL/SQL packages.

JPublisher uses the possible option settings as follows:
« publi c (default)—Methods are generated with the publ i ¢ access modifier.
« protect ed—Methods are generated with the pr ot ect ed access modifier.

« package—The access modifier is omitted, which means that generated
methods are local to the package.

You might want to use a setting of - access=pr ot ect ed or - access=package if
you need to control the usage of the generated JPublisher wrapper classes. Perhaps
you are providing your own customized versions of the wrappers as subclasses of
the JPublisher-generated classes, but do not want to provide access to the generated
superclasses.

You can specify the - access option on the command line or in a properties file.

Note: Wrappers for object references, VARRAYS, and nested tables
are not affected by the value of the - access option.

Command-Line Options and Input Files 3-13

JPublisher Options

Additional Entry to the Default Type Map (-adddefaulttypemap)
- adddef aul tt ypenmap=</i st_of _t ypenap entri es>

This option permits you to append an entry or a comma-separated list of entries to
the default type map used by JPublisher. This option is used internally by
JPublisher for setting up its default type map. The format for type map entries is
described in "Additional Entry to the User Type Map (-addtypemap)" below.

Note: Avoid conflicts between the default type map and user type
map—see "JPublisher Default Type Map and User Type Map" on
page 2-18 for information. That section also describes the initial
content of the default type map.

Additional Entry to the User Type Map (-addtypemap)
- addt ypemap=</i st_of_t ypenap_entri es>

This option permits you to append an entry or a comma-separated list of entries to
the JPublisher user type map. An entry has one of the following formats:

- addt ypemap=<opaque_sql _t ype>: <j ava_t ype>
- addt ypemap=<nuneri c_i ndexed_by t abl e>: <j ava_nuneric_type>[<nax_| engt h>]
- addt ypemap=<char_i ndexed_by t abl e>: <j ava _char_t ype>[<nax_| engt h>] (<el em si ze>)
- addt ypemap=<pl sql _t ype>: <j ava_t ype>: <sql _t ype>: <sql _to_pl sql _func>:
<pl sql _to sql _func>

Note that [...] and (...) are part of the syntax. Also note that some operating
systems require you to quote command-line options that contain special characters.

The maximum array length <max_/ engt h>and the maximum element size
designation <el em si ze> can be omitted in certain cases.

The difference between the - addt ypemap option and the - t ypenmap option is that
- addt ypemap appends entries to the user type map, while - t ypemap replaces the
existing type map with the specified entries. See "Replacement of the JPublisher
Type Map (-typemap)" on page 3-29.

For more information about the first - addt ypenmap format above, see "Type
Mapping Support for OPAQUE Types" on page 2-8. The second and third formats
are discussed in "Type Mapping Support for Scalar Indexed-by Tables Using JDBC
OCI" on page 2-9. The last format is explained in "Type Mapping Support Through
PL/SQL Conversion Functions" on page 2-11.

3-14 Oracle9j JPublisher User’s Guide

JPublisher Options

Note: Avoid conflicts between the default type map and user type
map—see "JPublisher Default Type Map and User Type Map" on
page 2-18 for information.

Case of Java Ildentifiers (-case)
- case={m xed| sarre| | ower | upper}

For class or attribute names you do not specify in an | NPUT file or on the command
line, the - case option affects the case of Java identifiers that JPublisher generates,
including class names, method names, attribute names embedded within

get XXX() and set XXX() method names, arguments of generated method names,
and Java wrapper names.

Table 3-6 describes the possible values for the - case option.

Table 3-6 Values for the -case Option

-case Option Value Description

m xed (default) The first letter of every word-unit of a class name or every
word-unit after the first word-unit of a method name is in
uppercase. All other characters are in lower case. An
underscore (_), dollar sign ($), or any character that is illegal in
Java constitutes a word-unit boundary and is silently removed.
A word-unit boundary also occurs after get or set ina
method name.

sanme JPublisher does not change the case of letters from the way
they are represented in the database. Underscores and dollar
signs are retained. JPublisher removes any other character that
isillegal in Java and issues a warning message.

upper JPublisher converts lowercase letters to uppercase and retains
underscores and dollar signs. It removes any other character
that is illegal in Java and issues a warning message.

| oner JPublisher converts uppercase letters to lowercase and retains
underscores and dollar signs. It removes any other character
that is illegal in Java and issues a warning message.

For class or attribute names that you enter with the - sql option, or class names in
the | NPUT file, JPublisher retains the case of the letters in the specified name,
overriding the - case option.

Command-Line Options and Input Files 3-15

JPublisher Options

JPublisher will retain, as written, the case of the Java class identifier for an object
type specified on the command line or in the | NPUT file. For example, if the
command line includes the following:

- sql =\Wr ker

then JPublisher generates:

public class Wrker ... ;

If the entry in the | NPUT file is written as:
L warKeR

then JPublisher will follow the case for the identifier as it was entered in the | NPUT
file and generate:

public class wOkeR ... ;

SQLJ Connection Context Classes (-context)
- cont ext ={ gener at ed| Def aul t Cont ext | user- speci fi ed}

The - cont ext option controls the connection context class that JPublisher may use,
and possibly declare, for . sql j wrappers for user-defined object types and
PL/SQL packages.

The setting - cont ext =Def aul t Cont ext is the default and results in any
JPublisher-generated . sql j source files using the SQLJ default connection context
class—sql j . runti ne. r ef . Def aul t Cont ext —for all connection contexts.

Alternatively, you can specify any class that implements the standard
sqlj.runtime. Connecti onCont ext interface and that exists in the classpath.
The specified class will be used for all connection contexts.

Note: With a user-specified class setting, instances of that class
must be used for output from the get Connect i onCont ext ()
method or input to the set Connect i onCont ext () method. See
"Considerations in Using Connection Contexts and Connection
Instances" on page 2-28 for information about these methods.

The setting - cont ext =gener at ed results in the following inner class declaration
inall . sql j files generated by JPublisher.

3-16 Oracle9j JPublisher User’s Guide

JPublisher Options

#sgl static context _Qx;

This means that each PL/SQL package and each object type wrapper uses its own
SQLJ connection context class. (Also see "Use of Connection Contexts and Instances
in SQLJ Code Generated by JPublisher" on page 2-27.)

Note the following benefits in using the Def aul t Cont ext setting or
user-specified-class setting:

= No additional context classes are generated.

= You have greater flexibility if you translate and compile your . sqgl j filesin

separate steps (translating with the SQLJ - conpi | e=f al se setting). Assuming
you are not using JDK 1.2-specific types (such asj ava. sql . BLOB, CLOB,
Struct, Ref , or Arr ay), the resulting . j ava files can be compiled under
either JDK 1.1.x or under JDK 1.2.x or higher. This is not the case with the
setting - cont ext =gener at ed, because SQLJ connection contexts in JDK 1.1.x
usejava. util . Di ctionary instances for object type maps, while SQLJ
connection contexts in JDK 1.2 or higher use j ava. uti | . Map instances.

A benefit of using the gener at ed setting, however, is that it permits full control
over the way the SQLJ translator performs online checking. Specifically, every object
type and every PL/SQL package can be checked against its own exemplar database
schema. However, because JPublisher generates . sqgl j files from an existing
schema, the generated code is already verified as correct through construction from
that schema.

Note that using the user-specified-class setting gives you the flexibility of the
gener at ed setting while still giving you the advantages of the Def aul t Cont ext
setting.

You can specify the - cont ext option on the command line or in a properties file.

See the Oracle9i SQLJ Developer’s Guide and Reference for general information about
SQLJ connection contexts.

Default Type Map for JPublisher (-defaulttypemap)
-def aul tt ypenmap=[</ i st_of _t ypenap_ent ri es>]

This option is used internally by JPublisher to set up predefined type map entries.
This is separate from the user type map entries specified with - addt ypenmap or
-t ypemap. If you want to clear the default type map, you can use the following
option setting:

- def aul tt ypermap=

Command-Line Options and Input Files 3-17

JPublisher Options

Note: Avoid conflicts between the default type map and user type
map—see "JPublisher Default Type Map and User Type Map" on
page 2-18 for information. That section also describes the initial
content of the default type map.

Output Directory for Generated Files (-dir)
-di r=<directory name>

A non-empty - di r option setting specifies the root of the directory tree within
which JPublisher will place Java and SQLJ source files. JPublisher will nest

generated packages in this directory. A setting of "." (a period, or "dot") specifies the
current directory as the root of the directory tree.

The empty setting, however, installs all generated file directly into the current
directory—there is no hierarchy in this case. This is the default setting, but you can
also specify it explicitly as follows:

-dir=

If you specify a non-empty setting, JPublisher combines the directory, the package
name given with the - package option, and any package name included in a SQL
statement in the | NPUT file to determine the specific directory within which it will
generatea . j avaor. sqlj file. The "Name for Generated Packages (-package)"
section on page 3-23 discusses this in more detail.

For example, consider the following command line (which is a single wraparound
line):

jpub -user=scott/tiger -input=demoin -mnappi hg=oracl e -case=l oner -sqgl =enpl oyee
- package=cor p -di r =deno

In this case, the deno directory will be the base directory for packages JPublisher
generates for object types you specify in the | NPUT file denoi n.

You can specify - di r on the command line or in a properties file. The default value
for the - di r option is empty.

3-18 Oracle9j JPublisher User’s Guide

JPublisher Options

JDBC Driver Class for Database Connection (-driver)
-driver=<dri ver_cl ass_nane>

The - dri ver option specifies the driver class that JPublisher uses for JDBC
connections to the database. The default is:

-driver=oracl e. jdbc. Oacl eDxi ver

This setting is appropriate for any Oracle JDBC driver.

Java Character Encoding (-encoding)
- encodi ng=<nane_of _char act er _encodi ng>

The -encodi ng option specifies the Java character encoding of the | NPUT file
JPublisher reads and the . sql j and . j ava files JPublisher writes. The default
encoding is the value of the system property fi | e. encodi ng, or, if this property is
not set, 8859_1 (ISO Latin-1).

As a general rule, you are not required to specify this option unless you specify an
- encodi ng option when you invoke SQLJ and your Java compiler, in which case
you should use the same - encodi ng option for JPublisher.

You can use the - encodi ng option to specify any character encoding that is
supported by your Java environment. If you are using the Sun Microsystems JDK,
these options are listed in the nat i ve2asci i documentation, which you can find
at the following URLSs:

http://ww j avasof t. comd product s/ j dk/ 1. 2/ docs/ t ool docs/ sol ari s/ native2ascii . ht n

or:

http://java. sun. contj 2se/ 1. 3/ docs/ t ool docs/ sol ari s/ nati ve2ascii.htn

Note: Encoding settings, either set through the JPublisher

- encodi ng option or the Javafi | e. encodi ng setting, do not
apply to Java properties files, including those specified through the
JPublisher - pr ops option. Properties files always use the encoding
8859_1. This is a feature of Java in general, not JPublisher in
particular. You can, however, use Unicode escape sequences in a
properties file.

Command-Line Options and Input Files 3-19

JPublisher Options

Generation of User Subclasses (-gensubclass)
-gensubcl ass={t rue| fal se| force| cal | - super}

The value of the - gensubcl ass option determines whether JPublisher generates
initial source files for user-provided subclasses and, if so, what format these
subclasses should have.

For - gensubcl ass=t r ue (the default), JPublisher will generate code for the
subclass only if it finds that no source file (. j ava or . sql j) is present for the user
subclass.

The - gensubcl ass=f al se setting results in JPublisher not generating any code
for user subclasses.

For - gensubcl ass=f or ce, JPublisher will always generate code for user
subclasses. It will overwrite any existing code in the corresponding . j ava or
.sqlj fileifitalready exists. Use this setting with caution.

The setting - gensubcl ass=cal | - super is equivalent to - gensubcl ass=t r ue,
except that JPublisher will generate slightly different code. By default, JPublisher
generates only constructors and methods necessary for implementing, for example,
the ORADat a interface. JPublisher indicates how superclass methods or attribute
setter and getter methods can be called, but places this code inside comments. With
the cal | - super setting, all methods, getters, and setters are generated as code.
The idea is that you can specify this setting if you are using Java development tools
that are based on class introspection. Generally only those methods that relate to
SQL object attributes and SQL object methods are interesting, while JPublisher
implementation details should remain hidden. In this case you can point the tool at
the generated user subclass.

You can specify the - gensubcl ass option on the command line or in a properties
file.

File Containing Names of Objects and Packages to Translate (-input)
-1 nput =<fi | enane>
-i <filenanme>

Both formats are synonymous. The second one is provided for convenience as a
command-line abbreviation.

The - i nput option specifies the name of a file from which JPublisher reads the
names of object types and PL/SQL packages to translate, and other information it
needs for their translation. JPublisher translates each object type and package in the

3-20 Oracle9j JPublisher User’s Guide

JPublisher Options

list. You can think of the | NPUT file as a makefile for type declarations—it lists the
types that need Java class definitions.

In some cases, JPublisher might find it necessary to translate some additional
classes that do not appear in the | NPUT file. This is because JPublisher analyzes the
types in the | NPUT file for dependencies before performing the translation, and
translates other types as necessary. For more information on this topic, see
"Translating Additional Types" on page 3-39.

If you do not specify any packages or object types in an | NPUT file or on the
command line, then JPublisher translates all object types and packages declared in
the database schema to which it is connected.

For more information about the syntax of the | NPUT file, see "INPUT File Structure
and Syntax" on page 3-35.

Generation of Package Classes and Wrapper Methods (-methods)
- et hods={true| al | | al ways| naned| sone| f al se| none}

The value of the - met hods option determines whether JPublisher generates
wrapper methods for methods in object types and PL/SQL packages.

For - met hods=t r ue or, equivalently, - net hods=al | (the default), JPublisher
generates wrapper methods for all the methods in the object types and PL/SQL
packages it processes. In Oracle9i, this results in generation of a . sql j source file
whenever the underlying SQL object or package actually defines methods, but a

. j ava source if not. (In previous releases, . sql j source files were always
generated foratrue oral | setting.)

The - met hods=al ways setting also results in wrapper methods being generated;
however, for backward compatibility to earlier JPublisher versions, this setting
always results in . sql j files being generated for all SQL object types, regardless of
whether the types define methods.

For - met hods=narmed or, equivalently, - met hods=sone, JPublisher generates
wrapper methods only for the methods explicitly named in the | NPUT file.

For - net hods=f al se or, equivalently, - met hods=none, JPublisher does not
generate wrapper methods. In this case JPublisher does not generate classes for
PL/SQL packages, because they would not be useful without wrapper methods.

The default is - net hods=al | .

You can specify the - net hods option on the command line or in a properties file.

Command-Line Options and Input Files 3-21

JPublisher Options

Omission of Schema Name from Generated Names (-omit_schema_names)
-om t _schena_nanes

Specifying - omi t _schenma_nanes determines that certain object type names
generated by JPublisher include the schema name. Omitting the schema name
makes it possible for you to use classes generated by JPublisher when you connect
to a schema other than the one used when JPublisher was invoked, as long as the
object types and packages you use are declared identically in the two schemas.

ORADat a and SQLDat a classes generated by JPublisher include astati ¢ fi nal
St ri ng that names the SQL object type matching the generated class. When the
code generated by JPublisher executes, the object type name in the generated code
is used to locate the object type in the database. If the object type name does not
include the schema name, the type is looked up in the schema associated with the
current connection when the code generated by JPublisher is executed. If the object
type name does include the schema name, the type is looked up in that schema.

If you specify - omi t _schena_nanes, every object type or wrapper name
generated by JPublisher is qualified with a schema name.

If you do not specify - om t _schena_nanes, an object type or wrapper name
generated by JPublisher is qualified with a schema name only under the following
circumstances:

= You declare the object type or wrapper in a schema other than the one to which
JPublisher is connected.

or:

= You declare the object type or wrapper with a schema name on the command
line or | NPUT file.

That is, an object type or wrapper from another schema requires a schema name to
identify it, and the use of a schema name with the type or package on the command
line or | NPUT file overrides the - oni t _schema_nanes option.

Note: Although this option behaves as a boolean option, as of
Oracle9i release 2 you cannot set it =t r ue or =f al se. Simply
specify "- om t _schema_namnes" to enable it, or do nothing to
leave it disabled.

3-22 Oracle9j JPublisher User’s Guide

JPublisher Options

Name for Generated Packages (-package)
- package=<package nane>

The - package option specifies the name of the package JPublisher generates. The
name of the package appears in a package declaration in each . j ava or . sql j file.
The directory structure also reflects the package name. An explicit name in the

| NPUT file, after the - sql option, overrides the value given to the - package
option.

Example 1 If the command line includes the following:

-dir=/a/b -package=c.d -case=ni xed

and the | NPUT file contains the following line (and assuming the SQL type PERSON
has methods defined on it):

SQ. PERSCN AS Per son

then in the following cases, JPublisher creates the file / a/ b/ ¢/ d/ Per son. sql j :

- sql =PERSON Per son

- sql =PERSCN

SQ. PERSCN AS Per son
SQA PERSON

The Per son. sql j file contains (among other things) the following package
declaration:

package c. d;

Example 2 Now assume the following is again in the command line:

-dir=/a/b -package=c.d -case=nixed

but is followed by specification of an | NPUT file containing the following:

- sql =PERSCN e. f . Per son
SQ. PERSON AS e. f. Person

In this case the package information in the | NPUT file overrides the - package
option on the command line. JPublisher creates the file a/ b/ e/ f/ Per son. sql j ,
which includes the following package declaration:

package e. f;

Command-Line Options and Input Files 3-23

JPublisher Options

If you do not supply a package name for a class by any of the means described in
this section, then JPublisher will not supply a name for the package containing the
class. In addition, JPublisher will not generate a package declaration, and it will put
the file containing the declaration of the class in the directory specified by the - di r
option.

Occasionally, JPublisher might need to translate a type not explicitly listed in the

I NPUT file, because the type is used by another type that must be translated. In this
case, the file declaring the required type is placed in the default package named on
the command line, in a properties file, or in the | NPUT file. JPublisher does not
translate non-specified packages, because packages do not have dependencies on
other packages.

File for Generated PL/SQL Wrapper Code (-plsqlfile)

-pl sql fil e=<nane_of _file for_generated PLSQ code>

The - pl sql fi | e option specifies the name of the file into which JPublisher writes
PL/SQL wrapper stored procedures and functions. If this file already exists, it will
be silently overwritten. By default, JPublisher writes PL/SQL code to the file

pl sql _wr apper. sql .

Also note that it is your responsibility to load the generated file into the database
(using SQL*Plus, for example).

Generation of PL/SQL Wrapper Code (-plsqimap)
- pl sql nap={t r ue| f al se| al ways}

The - pl sgl map option specifies how JPublisher generates PL/SQL wrapper
procedures and functions.

If this option is set to t r ue (the default), JPublisher will generate PL/SQL wrapper
procedures and functions as needed and, whenever possible, use conversion
functions only.

If this option is set to f al se, JPublisher will not generate PL/SQL wrapper
procedures or functions. If it encounters in a signature a PL/SQL type that cannot
be supported by conversion functions alone (in other words, that would require
generation of a PL/SQL wrapper), then JPublisher will skip generation of Java code
for this particular procedure or function.

The setting al ways specifies that JPublisher will generate a PL/SQL wrapper
procedure or function for every stored procedure or function that uses a PL/SQL
type. This is useful for generating a "proxy" PL/SQL package that complements an

3-24 Oracle9j JPublisher User’s Guide

JPublisher Options

original PL/SQL package. The proxy provides Java-accessible signatures for those
functions or procedures that are not directly accessible from JDBC or SQLJ in the
original package.

Package for Generated PL/SQL Wrapper Code (-plsqlpackage)
- pl sql package=<nane_of PLSQ._package to_hol d generat ed PLSQ. code>

The - pl sql package option specifies the name of a PL/SQL package into which
JPublisher places any generated PL/SQL wrapper stored procedures and functions.
By default, JPublisher uses the package JPUB_PLSQ._WRAPPER

Note that it is your responsibility to create this package in the database by running
the SQL script generated by JPublisher. See "File for Generated PL/SQL Wrapper
Code (-plsqlfile)" on page 3-24.

Input Properties File (-props)
- props=<fi | enane>
-p <filenanme>

Both formats are synonymous. The second one is provided for convenience as a
command-line abbreviation.

The - pr ops option, entered on the command line, specifies the name of a
JPublisher properties file that lists the values of commonly used options. JPublisher
processes the properties file as if its contents were inserted in sequence on the
command line at that point.

If more than one properties file appears on the command line, JPublisher processes
them with the other command-line options in the order in which they appear.

For information on the contents of the properties file, see "Properties File Structure
and Syntax" on page 3-33.

Note: Encoding settings, either set through the JPublisher

- encodi ng option or the Javafi | e. encodi ng setting, do not
apply to Java properties files, including those specified through the
- pr ops option. Properties files always use the encoding 8859 1.
This is a feature of Java in general, not JPublisher in particular. You
can, however, use Unicode escape sequences in a properties file.

Command-Line Options and Input Files 3-25

JPublisher Options

Serializability of Generated Object Wrappers (-serializable)
-serializabl e={true|fal se}

The boolean option - seri al i zabl e specifies whether the Java classes that
JPublisher generates for SQL object types implement the j ava. i 0. Seri al i zabl e
interface. The default setting is - seri al i zabl e=f al se. Please note the following
if you choose to set - seri al i zabl e=t rue:

= Not all object attributes are serializable. In particular, none of the Oracle LOB
types, such as or acl e. sql . BLOB, or acl e. sql . CLOB, or
oracl e. sqgl . BFI LE, can be serialized. Whenever you serialize objects with
such attributes, the corresponding attribute values will be initialized to nul |
after deserialization.

« If you use object attributes of type j ava. sql . Bl ob orj ava. sql . Cl ob, then
the code generated by JPublisher requires that the Oracle JDBC rowset
implementation be available in the classpath. This is provided in the
ocrsl2.jar libraryat[Oracl e Hore] /j dbc/ | b. In this case, the
underlying value of Cl ob and Bl ob objects is materialized, serialized, and
subsequently retrieved.

« Whenever you deserialize objects containing attributes that are object
references, the underlying connection is severed, and you cannot issue
set Val ue() or get Val ue() calls on the reference. For this reason, JPublisher
generates the following method into your Java classes whenever you specify
-serializabl e=true:

public void restoreCnnection(Connect i on)

After deserialization, call this method once for a given object reference or object
in order to restore the current connection into the reference or, respectively, into
all transitively embedded references.

Declaration of Object Types and Packages to Translate (-sql)

-sql ={topl evel | obj ect type and package transl ation syntax}
-s {topl evel | obj ect type and package transl ation synt ax}

The two formats are synonymous. The second one is provided for convenience as a
command-line shortcut.

You can use the - sql option when you do not need the generality of an | NPUT file.
The - sql option lets you list one or more database entities declared in SQL that
you want JPublisher to translate. (Alternatively, you can use several - sql options

3-26 Oracle9j JPublisher User’s Guide

JPublisher Options

in the same command line, or several j pub. sgl options in a properties file.)
Currently, JPublisher supports translation of object types and packages. JPublisher
also translates the top-level subprograms in a schema, just as it does for
subprograms in a PL/SQL package.

You can mix object types and package names in the same - sql declaration.
JPublisher can detect whether each item is an object type or a package.

You can also use the - sql option with the keyword t opl evel to translate all
top-level PL/SQL subprograms in a schema. The t opl evel keyword is not
case-sensitive. More information on the t opl evel keyword is provided later in
this section.

If you do not enter any types or packages to translate in the | NPUT file or on the
command line, then JPublisher will translate all the types and packages in the
schema to which you are connected.

In this section, the - sql option is explained by translating it to the equivalent
I NPUT file syntax. | NPUT file syntax is explained in "Understanding the Translation
Statement"” on page 3-35.

The JPublisher command-line syntax for - sql lets you indicate three possible type
translations.

« -sql=nane_a

JPublisher interprets this syntax as: SQL nane_a
« -sql =nane_a: nane_c

JPublisher interprets this syntax as: SQL nane_a AS nane_c
« -sql =nane_a: nane_b: nane_c

JPublisher interprets this syntax as:
SQL name_a GENERATE nane_b AS nane_c

In this case, name_a must represent an object type.

Important: Only non-case-sensitive SQL names are supported on
the JPublisher command line. If a user-defined type was defined in
a case-sensitive way (in quotes) in SQL, then you must specify the

name in the JPublisher | NPUT file instead of on the command line,
and in quotes. See "INPUT File Structure and Syntax" on page 3-35
for information.

Command-Line Options and Input Files 3-27

JPublisher Options

Note: The nane_a: nane_b: name_c translation syntax is not
meaningful when nanme_a represents a package.

Enter - sql =. .. followed by one or more object types and packages (including
top-level "packages") that you want JPublisher to translate. If you enter more than
one item for translation, they must be separated by commas, without any white
space. This example assumes that CORPORATI ONis a package, and EMPLOYEE and
ADDRESS are object types:

- sql =CORPCRATI ON EMPLOYEE: or acl eEnpl oyee, ADDRESS: JAddr ess: M/Addr ess

JPublisher will interpret this as follows:

SQ QCRPCRATI ON
SQ BEMPLOYEE AS or acl eEnpl oyee
SQ ADDRESS CENERATE JAddress AS M/Addr ess

And JPublisher executes the following:
« It creates a wrapper for the CORPORATI ON package.
« Ittranslates the object type EMPLOYEE as or acl eEnpl oyee.

« lttranslates ADDRESS as JAddr ess, generating code so that ADDRESS objects
will be represented by the MyAddr ess class that you will write to extend
JAddr ess.

« It creates the references to the MyAddr ess class that you will write to extend
JAddr ess.

If you want JPublisher to translate all the top-level PL/SQL subprograms in the
schema to which JPublisher is connected, enter the keyword t opl evel following
the - sql option. JPublisher treats the top-level PL/SQL subprograms as if they
were in a package. For example:

-sql =t opl evel
JPublisher generates a wrapper class, known as t opl evel , for the top level

subprograms. If you want the class to be generated with a different name, you can
declare the name with the - sql =nane_a: nane_b syntax. For example:

-sql =t opl evel : nyd ass

Note that this is synonymous with the | NPUT file syntax:
SQ toplevel AS nyd ass

3-28 Oracle9j JPublisher User’s Guide

JPublisher Options

Similarly, if you want JPublisher to translate all the top-level PL/SQL subprograms
in some other schema, enter:

- sgl =<schena_nare>. t opl evel

In this example, <schena_nane> is the name of the schema containing the
top-level subprograms.

When you request generation of top-level subprograms, you can also supply a list
of names, in which case JPublisher will only generate code for those top-level
functions or procedures mentioned in the list. The list of names must follow the
TOPLEVEL token and be enclosed in (...) , and the function names must be
separated with "+" (the plus character). Consider the following example:

-sql =t opl evel (BOOL2l NT+l NT2BAL) : Conver si ons

Function and procedure names specified in the list are sensitive to case. You must
specify them in uppercase if they were defined in a case-insensitive way. Also note
that if you want to use this option, your operating system shell may require that this
option be quoted in the JPublisher command line.

Generation of toString() Method on Object Wrappers (-tostring)
-tostring={true|fal se}

You can use the boolean option - t ost ri ng to tell JPublisher to generate an
additional t oSt ri ng() method for printing out an object value. The output
resembles SQL code you would use to construct the object. The default setting is
fal se.

Replacement of the JPublisher Type Map (-typemap)
-typemap=[</ i st_of _typenap entries>]

The difference between the - addt ypemap option and the - t ypenmap option is that
- addt ypemap appends entries to the user type map, while - t ypemap replaces the
existing type map with the specified entries. Thus, if you want to clear the user type
map, you can use the following option setting.

-t ypenap=

Note that this does not clear the content of the default type map, which is controlled
independently from the user type map with the - def aul t t ypemap and

Command-Line Options and Input Files 3-29

JPublisher Options

- adddef aul t t ypenap options. The format of the type map entries is described in
"Additional Entry to the User Type Map (-addtypemap)" on page 3-14.

Note: Avoid conflicts between the default type map and user type
map—see "JPublisher Default Type Map and User Type Map" on
page 2-18 for information.

Declaration of Object Types to Translate (-types)
-types=<t ype transl ati on_synt ax>

Note: The-types option is currently supported for compatibility,
but deprecated. Use the - sql option instead.

You can use the - t ypes option, for object types only, when you do not need the
generality of an | NPUT file. The - t ypes option lets you list one or more individual
object types that you want JPublisher to translate. Except for the fact that the

-t ypes option does not support PL/SQL packages, it is identical to the - sql
option.

If you do not enter any types or packages to translate in the | NPUT file or with the
-types or - sgl options, then JPublisher will translate all the types and packages
in the schema to which you are connected.

The command-line syntax lets you indicate three possible type translations.
« -types=nane_a

JPublisher interprets this syntax as

TYPE nane_a

« -types=nane_a: nane_b
JPublisher interprets this syntax as:
TYPE nane_a AS nane b

« -types=nane_a: nane_b: nane_c
JPublisher interprets this syntax as:
TYPE nane_a GENERATE nane_b AS nane ¢

3-30 Oracle9j JPublisher User’s Guide

JPublisher Options

TYPE, TYPE. . . AS, and TYPE. . . GENERATE. . . AS syntax has the same
functionality as SQL, SQL. . . ASand SQL. . . GENERATE. . . AS syntax. See
"Understanding the Translation Statement" on page 3-35.

Enter -t ypes=. .. on the command line, followed by one or more object type
translations you want JPublisher to perform. If you enter more than one item, they
must be separated by commas without any white space. For example, if you enter:

-t ypes=CORPCRATI O\, EMPLOYEE: or acl eEnpl oyee, ADDRESS: JAddr ess: M/Addr ess

JPublisher will interpret this as:

TYPE OORPCRATI ON
TYPE EMPLOYEE AS or acl eEnpl oyee
TYPE ADDRESS (ENERATE JAddress AS MyAddr ess

Connection URL for Target Database (-url)
-url =<url>

You can use the - ur | option to specify the URL of the database to which you want
to connect. The default value is:

-url =j dbc: oracl e: oci : @

You can follow the "@ symbol with an Oracle SID.
To specify the Thin driver, enter:
-url =j dbc: oracl e: t hin: @ost: port: sid

In this example, host is the name of the host on which the database is running,
port is the port number, and s/ d is the Oracle SID.

Note: With Oracle9i, use "oci" in the connect string for the Oracle
JDBC OCI driver in any new code. For backward compatibility,
however, "oci8" is still accepted. (And "oci7" is accepted for Oracle9i
version 7.3.4.)

Command-Line Options and Input Files 3-31

JPublisher Options

User Name and Password for Database Connection (-user)

- user =<user nanel passvor o>
- U <user nanel passwor d>

Both formats are synonymous. The second one is provided for convenience as a
command-line shortcut.

JPublisher requires the - user option, which specifies an Oracle user name and
password, so that it can connect to the database. If you do not enter the - user
option, JPublisher prints an error message and stops execution.

For example, the following command line directs JPublisher to connect to your
database with username scot t and password ti ger:

jpub -user=scott/tiger -input=demoin -dir=deno -nappi ng=oracl e - package=cor p

3-32 Oracle9j JPublisher User’s Guide

JPublisher Input Files

JPublisher Input Files
These sections describe the structure and contents of JPublisher input files:
« Properties File Structure and Syntax
« INPUT File Structure and Syntax
« INPUT File Precautions

Properties File Structure and Syntax

A properties file is an optional text file where you can specify frequently used
options. Specify the name of the properties file on the JPublisher command line
with the - pr ops option. (And - pr ops is the only option that you cannot specify in
a properties file.)

In a properties file, enter one option with its associated value on each line. Enter
each option name with the following prefix (including the period), case-sensitive:

j pub.

White space is permitted only directly in front of "j pub. "—any other white space
within the option line is significant.

Alternatively, JPublisher permits you to specify options using the following prefix,
which resembles the syntax of SQL line comments.

-- jpub.

A line that does not start with either of the prefixes above is simply ignored by
JPublisher.

Additionally, you can use line continuation to spread a JPublisher option over
several lines in the properties file. A line that is to be continued must have "\ "
(backslash character) as the last character, immediately after the text of the line. Any
leading space, or any leading "- - " (SQL comment designation), on the following
line is ignored. Consider the following sample entries:

/* The next three lines represent a JPublisher option
j pub. sgl =SQ_TYPE JPubJavaType: M/JavaType, \

OHER SQ._TYPE Q her JPubType: M/Q her JavaType, \
LAST_SQ_TYPE M: Last Type

*/

-- The next two lines represent another JPublisher option

-- j pub. addt ypenmap=PLSQ@._TYPE JavaType: SQ TYPE

-- : SQA_TO PLSQ_FUNCTI ON PLSQL_TO SQ_ FUNCTI ON

Command-Line Options and Input Files 3-33

JPublisher Input Files

Because of this functionality, it is straightforward to embed JPublisher options in
SQL scripts. This can be useful when setting up PL/SQL-to-SQL type mappings.

JPublisher reads the options in the properties file in order, as if its contents were
inserted on the command line at the point where the - pr ops option is specified. If
you specify an option more than once, the last value encountered by JPublisher will
override previous values, except for the following options, which are cumulative:

=« jpub.sql

=« jpub.type

«] pub. addtypemap

« | pub. adddef aul ttypemap

For example, consider the following command line (a single wraparound line):
jpub -user=scott/tiger -sqgl=enployee -nappi ng=oracl e - case=l oner - package=corp
- di r=deno

This is equivalent to the following:

j pub - props=ny_properties

if you assume nmy_pr oper ti es has a definition like the following:

-- jpub. user=scot t\
-- /tiger
/1 j pub. user =cannot _use/j ava_l i ne_conment s
j pub. sql =enpl oyee
/*
j pub. mappi ng=or acl e
*/
Jpub. notreal | y=a j pub option
j pub. case=l ower
j pub. package=cor p
j pub. di r =deno

You must include the "j pub. " prefix (including the period) at the beginning of each
option name. If you enter anything else except white space or "- - " before the option
name, JPublisher will ignore the entire line.

This example also illustrates that the "j pub. " prefix must be all lowercase,
otherwise it is ignored, as for "Jpub. not real | y=a j pub option".

"JPublisher Options" on page 3-2 describes all the JPublisher options.

3-34 Oracle9j JPublisher User’s Guide

JPublisher Input Files

INPUT File Structure and Syntax

Specify the name of the | NPUT file on the JPublisher command line with the

- i nput option. This file identifies the object types and PL/SQL packages
JPublisher should translate. It also controls the naming of the generated classes and
packages. Although you can use the - sql command-line option to specify object
types and packages, an | NPUT file allows you a finer degree of control over how
JPublisher translates object types and PL/SQL packages.

If you do not specify types or packages to translate in an | NPUT file or on the
command line, then JPublisher translates all object types and PL/SQL packages in
the schema to which it connects.

Understanding the Translation Statement

The translation statement in the | NPUT file identifies the names of the object types
and PL/SQL packages that you want JPublisher to translate. Optionally, the
translation statement can also specify a Java name for the type or package, a Java
name for attribute identifiers, and whether there are any extended classes.

One or more translation statements can appear in the | NPUT file. The structure of a
translation statement is:

(SQ <nane>
| SQ [<schena_name>.]topl evel [(<nane_list>)]
| TYPE <type nane>)
[EENERATE <j ava_nane_1>]
[AS <java_nane 2]
[TRANSLATE
<dat abase _nenber _nane> AS <si npl e_j ava_nane>
{ , <dat abase nenber_name> AS <si npl e_j ava_nane>}*

]

The following sections describe the components of the translation statement.

SQL <name>| TYPE <type_name> Clause Enter SQL <name> to identify an object type
or a PL/SQL package that you want JPublisher to translate. JPublisher examines the
<nane>, determines whether it is an object type or a package name, and processes it
appropriately. If you use the reserved word t opl evel in place of <nane>,
JPublisher translates the top-level subprograms in the schema to which JPublisher is
connected.

Instead of SQL, it is permissible to enter TYPE <t ype_nane> if you are specifying
only object types; however, TYPE syntax is deprecated in Oracle9i.

Command-Line Options and Input Files 3-35

JPublisher Input Files

You can enter <name> as <schema_name>.<name> to specify the schema to which
the object type or package belongs. If you enter <schena_nane>.t opl evel ,
JPublisher translates the top-level subprograms in schema <schema_nane>. In
conjunction with TOPLEVEL, you can also supply (<nane_Il i st>) ,a
comma-separated list of names, enclosed in parentheses, that are to be published.
JPublisher will consider only top-level functions and procedures that match this list.
If you do not specify this list, JPublisher will generate code for all top-level
subprograms.

Important: If a user-defined type was defined in a case-sensitive
way (in quotes) in SQL, then you must specify the name in quotes.
For example:

SQ "CaseSensti veType" AS CaseSensitiveType
or, if also specifying a non-case-sensitive schema name:
SQ SOOIT. "CaseSensi ti veType" AS CaseSensitiveType
or, if also specifying a case-sensitive schema name:
SQ "Scott"."CaseSensitiveType AS CaseSensitiveType

The AS clauses, described below, are optional.

Avoid situations where a dot (".") is part of the schema name or
type name itself.

Note: The TYPE syntax is currently supported for compatibility,
but deprecated. Use the SQL syntax instead.

AS <java_name_2> Clause This clause optionally specifies the name of the Java class
that represents the user-defined type or PL/SQL package. The <j ava_nane_2>
can be any legal Java name and can include a package identifier. The case of the
Java name overrides the value of the - case option. For more information on how
to name packages, see "Package Naming Rules in the INPUT File" on page 3-38.

When you use the AS clause without a GENERATE clause, the class in the AS clause
is what JPublisher generates and is mapped to the SQL type.

When you use the AS clause with a GENERATE clause, JPublisher generates the class
in the GENERATE clause but maps the SQL type to the class in the AS clause. You

3-36 Oracle9j JPublisher User’s Guide

JPublisher Input Files

manually create the class in the AS clause, extending the class that JPublisher
generates.

Also see "Extending JPublisher-Generated Classes" on page 2-34.

GENERATE <java_name_1> Clause This clause specifies the name of the class that
JPublisher generates when you want to create a subclass for mapping purposes. Use
the GENERATE clause in conjunction with the AS clause. JPublisher generates the
class in the GENERATE clause. The AS clause specifies the name of the subclass that
you create and that your Java program will use to represent the SQL object type.

The <j ava_nane_1> can be any legal Java name and can include a package
identifier. Its case overrides the value of the - case option.

Use the GENERATE clause only when you are translating object types. When you are
translating an object type, the code JPublisher generates mentions both the name of
the class that JPublisher generates and the name of the class that your Java program
will use to represent the SQL object type. When these are two different classes, use
CGENERATE. . . AS.

Do not use this clause if you are translating PL/SQL packages. When you are
translating a PL/SQL package, the code JPublisher generates mentions only the
name of the class that JPublisher generates, so there is no need to use the GENERATE
clause in this case.

Also see "Extending JPublisher-Generated Classes" on page 2-34.

TRANSLATE <database_member_name> AS <simple_java_name> Clause This clause
optionally specifies a different name for an attribute or method. The

<dat abase_nenber_nane> is the name of an attribute of an object type, or a
method of a type or package, which is to be translated to the following

<si npl e_j ava_nane>. The <si npl e_j ava_nane> can be any legal Java hame,
and its case overrides the value of the - case option. This name cannot have a
package name.

If you do not use TRANSLATE. . . AS to rename an attribute or method, or if
JPublisher translates an object type not listed in the | NPUT file, then JPublisher uses
the database name of the attribute or method as the Java name as modified
according to the value of the - case option. Reasons why you might want to
rename an attribute name or method include:

« The name contains characters other than letters, digits, and underscores.

« The name conflicts with a Java keyword.

Command-Line Options and Input Files 3-37

JPublisher Input Files

« The type name conflicts with another name in the same scope. This can happen,
for example, if the program uses two types with the same name from different
schemas.

Remember that your attribute names will appear embedded within get XXX() and
set XXX() method names, so you might want to capitalize the first letter of your
attribute names. For example, if you enter:

TRANSLATE FI RSTNAME AS Fi rst Nane

JPublisher will generate a get Fi r st Name() method and a set Fi r st Name()
method. In contrast, if you enter:

TRANSLATE FI RSTNAME AS fi rst Nane

JPublisher will generate aget fi r st Name() methodandasetfirst Name()
method.

Note: The Java keyword nul | has special meaning when used as
the target Java name for an attribute or method, such as in the
following example:

TRANSLATE FI RSTNAME AS nul |
When you map a SQL method to nul | , JPublisher does not
generate a corresponding Java method in the mapped Java class.
When you map a SQL object attribute to nul | , JPublisher does not
generate the getter and setter methods for the attribute in the
mapped Java class.

Package Naming Rules in the INPUT File If you use a simple Java identifier to name a
class in the | NPUT file, its full class name will include the package name from the
- package option. If the class name in the | NPUT file is qualified with a package
name, then that package name overrides the value of the - package option and
becomes the full package name of the class.

Note the following:
« Ifyou enter the syntax:
QL AASB

then JPublisher uses the value that was entered for - package on the command
line or the properties file.

3-38 Oracle9j JPublisher User’s Guide

JPublisher Input Files

« Ifyou enter the syntax:
QL AASBC

then JPublisher interprets B. Cto represent the full class name.
For example, if you enter the following on the command line:

- package=a. b

and the | NPUT file contains the following translation statement:

SQ scott. enpl oyee AS e. Enpl oyee

then JPublisher will generate the class as follows:
e. Enpl oyee

For more examples of how the package name is determined, see "Name for
Generated Packages (-package)" on page 3-23.

Translating Additional Types It might be necessary for JPublisher to translate
additional types not listed in the | NPUT file. This is because JPublisher analyzes the
types in the | NPUT file for dependencies before performing the translation, and
translates other types as necessary. Recall the example in "Sample JPublisher
Translation" on page 1-26. Assume the object type definition for EMPLOYEE had
included an attribute called ADDRESS, and ADDRESS was an object with the
following definition:

CREATE (R REPLACE TYPE address AS C(BIECT

(
st reet VARCHAR2(50) ,
city VARCHAR2(50) ,
state VARCHAR2(30) ,
zip NUVBER

)

In this case, JPublisher would first translate ADDRESS, because that would be
necessary to define the EMPLOYEE type. In addition, ADDRESS and its attributes
would all be translated in the same case, because they are not specifically
mentioned in the | NPUT file. A class file would be generated for Addr ess. j ava,
which would be included in the package specified on the command line.

JPublisher does not translate packages you do not request. Because packages do not
have attributes, they do not have any dependencies on other packages.

Command-Line Options and Input Files 3-39

JPublisher Input Files

Sample Translation Statement

To better illustrate the function of the | NPUT file, consider a more complicated
version of the example in "Sample JPublisher Translation" on page 1-26. Consider
the following command line (a single wraparound line):

jpub -user=scott/tiger -input=denoin -dir=denmo -nunbertypes=oracl e - package=cor p
- case=sane

And assume the | NPUT file denoi n contains the following:

SQ enpl oyee AS c. Enpl oyee
TRANSLATE NAME AS Nane
H RE DATE AS HreDate

The - case=san® option indicates that generated Java identifiers should maintain
the same case as in the database. Any identifier in a CREATE TYPE or CREATE
PACKAGE declaration is stored in upper case in the database unless it is quoted.
However, the - case option is applied only to those identifiers not explicitly
mentioned in the | NPUT file. Therefore, Enpl oyee will appear as written. The
attribute identifiers not specifically mentioned (that is, EMPNO, DEPTNQO, and
SALARY) will remain in upper case, but JPublisher will translate the specifically
mentioned NAMVE and HI RE_DATE attribute identifiers as shown.

The translation statement specifies a SQL object type to be translated. In this case,
there is only one object type, Enpl oyee.

The AS c. Enpl oyee clause causes the package name to be further qualified. The
translated type will be written to the following file:

./ deno/ cor p/ ¢/ Enpl oyee. sql j (UNX)
.\ deno\ cor p\ c\ Enpl oyee. sql j (Wndows NI)

(This assumes the object type defines methods; otherwise Enpl oyee. j ava will be
generated instead.)

The generated file is written in package cor p. ¢ in output directory deno. Note
that the package name is reflected in the directory structure.

The TRANSLATE. . . AS clause specifies that the name of any mentioned object
attributes should be changed when the type is translated into a Java class. In this
case, the NAME attribute is changed to Nane and the Hl RE_DATE attribute is
changed to Hi r eDat e.

3-40 Oracle9j JPublisher User’s Guide

JPublisher Input Files

INPUT File Precautions

This section describes some of the common errors made in | NPUT files. Check for
these errors before you run JPublisher. Although JPublisher reports most of the
errors that it finds in the | NPUT file, it does not report these.

Requesting the Same Java Class Name for Different Object Types
If you request the same Java class name for two different object types, the second
class will silently overwrite the first. For example, if the | NPUT file contains:

type PERSONL as Person
TYPE PERSON2 as Person

JPublisher will create the file Per son. j ava for PERSON1 and will then overwrite it
for type PERSON2.

Requesting the Same Attribute Name for Different Object Attributes

If you request the same attribute name for two different object attributes, JPublisher
will generate get XXX() and set XXX() methods for both attributes without
issuing a warning message. The question of whether the generated class is valid in
Java depends on whether the two get XXX() methods with the same name and the
two set XXX() methods with the same name have different argument types so that
they may be unambiguously overloaded.

Specifying Nonexistent Attributes

If you specify a nonexistent object attribute in the TRANSLATE clause, JPublisher
will ignore it without issuing a warning message.

Consider the following example from an | NPUT file:
type PERSON translate X as attrl

A situation where X is not an attribute of PERSON would not cause JPublisher to
issue a warning message.

Command-Line Options and Input Files 3-41

JPublisher Input Files

3-42 Oracle9j JPublisher User’s Guide

A

JPublisher Examples

This chapter provides examples of the output JPublisher produces when translating
object types and PL/SQL packages. It contains the following sections:

Example: JPublisher Translations with Different Mappings—Contains examples
of JPublisher output, comparing different outputs where only the values of the
datatype mapping parameters are changed.

Example: JPublisher Object Attribute Mapping—Illustrates an example of
JPublisher output when translating different object types.

Example: Generating a SQLData Class—Covers an example of JPublisher
output when generating classes that implement the SQLData interface.

Example: Extending JPublisher Classes—Presents an example of JPublisher
output when generating a class that you will extend.

Example: Wrappers Generated for Methods in Objects—Shows an example of
JPublisher output when generating method wrappers for object type attributes
and methods.

Example: Wrappers Generated for Methods in Packages—Shows an example of
JPublisher output when generating method wrappers for PL/SQL methods.

Example: Using Classes Generated for Object Types—Presents a complete
program using the classes that JPublisher generates for object types.

Example: Using Classes Generated for Packages—Presents a complete program
using the classes and method wrappers that JPublisher generates for objects and
packages respectively.

Example: Using Datatypes Unsupported by JDBC—Illustrates JPublisher
support for PL/SQL types, setting up an object type that uses PL/SQL
BOOLEAN values. The example compares publishing the type directly through
JPublisher, and manually writing conversions for the type.

JPublisher Examples 4-1

Example: JPublisher Translations with Different Mappings

Example: JPublisher Translations with Different Mappings

This section presents sample output from JPublisher with the only difference in the
translations being the values of the datatype mapping parameters. It uses the
following type declaration:

CREATE TYPE enpl oyee AS CBIECT

(
nane VARCHAR2(30) ,

enpno | NTECER
dept no NUVBER
hiredate DATE
sal ary REAL

);

And the following command line (a single wraparound line), but with different
-nunbertypes and - bui | ti nt ypes settings for the two examples:

jpub -user=scott/tiger -dir=deno -nunbertypes=xxxx -buil tintypes=xxxx

- package=cor p - case=ni xed - sql =Enpl oyee

In the following two examples, JPublisher uses these datatype mappings:

« first, with - nunber t ypes=j dbc and - bui | ti nt ypes=j dbc

« second, with - nunbert ypes=oracl eand-buil ti ntypes=oracl e

JPublisher Translation with the JDBC Mapping

Because the user requests the JDBC mapping rather than the Object JDBC mapping
for numeric types, the get XXX() and set XXX() accessor methods use the type
i nt instead of | nt eger and the type f | oat instead of Fl oat .

Following are the contents of the Enpl oyee. j ava file. The Enpl oyeeRef . j ava
file is unchanged because it does not depend on the types of the attributes.

Note: The details of method bodies generated by JPublisher might
change in future releases.

package corp;
inport java. sql . SQ Exception;

inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;

4-2 Oracle9i JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings

inport oracle.sqgl . CQRADat a;

i nport oracl e. sql . GRADat aFact or y;

inport oracl e.sql . Datum

import oracl e. sgl . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public cl ass Empl oyee inpl enents CRAData, CRADat aFact ory

{

public static final Sring _SQ_ NAME = "SCOIT. BVPLOYEE",;
public static final int _SQ TYPEQCE = O acl eTypes. STRULCT;

protected Mitabl eStruct _struct;

private static int[] _sql Type = { 12,4,2,91,7 };
private stati c CRADataFactory[] _factory = new CRADat aFactory[5];

protected static final Empl oyee _Enpl oyeeFactory = new Enpl oyee(f al se);

public static CRADat aFactory get CRADat aFact ory()
{ return _Ewpl oyeeFactory; }
/* constructor */
prot ect ed Enpl oyee(bool ean init)
{ if(init) _struct = new Mitabl eXruct (new (bject[5], _sql Type, factory); }
publ i ¢ Enpl oyee()
{ this(true); }
publ i ¢ Enpl oyee(String nane, int enpno, java.nath. B gDeci nal deptno,
java.sql.Tinestanp hiredate, float sal ary) throws SQException
{ this(true);
set Nane(narre) ;
set Enpno(enpno) ;
set Dept no(dept no) ;
setH redat e(hi redate) ;
set Sal ary(sal ary);

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */

publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

{ return create(null, d, sql Type); }

prot ect ed CRADat a creat e(Enpl oyee o, Datumd, int sqgl Type) throws SQException

JPublisher Examples 4-3

Example: JPublisher Translations with Different Mappings

if (d=null) return null;
if (0o =null) o= new Enpl oyee(fal se);
0._struct = new Mitabl eStruct ((STRICT) d, _sql Type, _factory);
return o;
}
/* accessor nethods */
public Sring getNane() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void set Nane(Sring nane) throws SQException

{ _struct.setAttribute(0, name); }

public int getEwpno() throws SQException

{ return ((Integer) _struct.getAttribute(l)).intValue(); }

publ i c voi d set Enpno(int enpno) throws SQException

{ _struct.setAttribute(l, new Integer(enpno)); }

public java.nath. B gDeci nal getDeptno() throws SQException

{ return (java.math. BigDecimal) _struct.getAttribute(2); }

publ i c voi d set Dept no(j ava. nat h. B gDeci nal deptno) throws SQLException
{ _struct.setAttribute(2, deptno); }

public java.sql.Tinestanp getH redate() throws SQException

{ return (java.sql.Tinestanp) _struct.getAttribute(3); }

public void setH redate(java. sql . Ti nestanp hi redate) throws SQException
{ _struct.setAttribute(3, hiredate); }

public float getSalary() throws SQException

{ return ((Hoat) _struct.getAttribute(4)).floatVal ue(); }

public void setSal ary(float sal ary) throws SQException
{ _struct.setAttribute(4, new Hoat(salary)); }

4-4 Oracle9iJPublisher User’s Guide

Example: JPublisher Translations with Different Mappings

JPublisher Translation with the Oracle Mapping

Because the user requests Oracle type mappings, the get XXX() and set XXX()
accessor methods employ the type or acl e. sgl . CHARinstead of St ri ng, the type
oracl e. sql . DATE instead of j ava. sql . Ti nest anp, and the type

oracl e. sgl . NUMBER instead of j ava. | ang. | nt eger,

j ava. mat h. Bi gDeci mal ,and j ava. | ang. Fl oat .

Following are the contents of the Enpl oyee. j ava file. The Enpl oyeeRef . j ava
file is unchanged, because it does not depend on the types of the attributes.

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql.Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class Empl oyee inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ_ NAME = "SCOIT. BVPLOYEE";
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

protected Mitabl eSruct _struct;

private static int[] _sql Type = { 12,4,2,91,7 };
private stati c CRADataFactory[] _factory = new CRADat aFactory[5];
protected static final Empl oyee _Enpl oyeeFactory = new Enpl oyee(f al se);

public static CRADat aFactory get CRADat aFact ory()

{ return _BEwl oyeeFactory; }

/* constructor */

prot ect ed Enpl oyee(bool ean init)

{ if(init) _struct = new Mitabl eXruct (new (bject[5], _sql Type, factory); }
publ i ¢ Enpl oyee()

{ this(true); }

JPublisher Examples 4-5

Example: JPublisher Translations with Different Mappings

publ i ¢ Enpl oyee(oracl e. sql . CHAR nane, oracl e. sgl . NOMBER enpno,
oracl e. sgl . NUMBER dept no,
oracl e. sgl . DATE hiredate, oracle.sqgl.NUMBER sal ary) throws
SQ Except i on
{ this(true);
set Nane(nare) ;
set Enpno(enpno) ;
set Dept no(dept no) ;
setH redat e(hi redate) ;
set Sal ary(sal ary);

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ect ed CRADat a creat e(Enpl oyee o, Datumd, int sql Type) throws SQException
{
if (d=null) return null;
if (o =null) o= new Enpl oyee(fal se);
0. _struct = new Mitabl eStruct ((STRUT) d, _sql Type, _factory);
return o;
}
/* accessor nethods */
public oracle.sql . CHAR get Name() throws SQException
{ return (oracle.sql.CHAR _struct.getQacl eAttribute(0); }

public voi d set Nane(oracl e. sgl . CHAR nang) throws SQ Exception
{ _struct.setQacleAttribute(0, nane); }
publ i ¢ oracl e. sql . NUMBER get Enpno() throws SQLException

{ return (oracle.sql.NUMBER _struct.getQacleAttribute(l); }

publ i ¢ voi d set Enpno(oracl e. sql . NJMBER enpno) throws SQExcepti on
{ _struct.setQacleAttribute(l, enpno); }

4-6 Oracle9iJPublisher User’s Guide

Example: JPublisher Translations with Different Mappings

publ i ¢ oracl e. sql . NUMBER get Dept no() throws SQException
{ return (oracle.sql.NUMBER _struct.getQacleAttribute(2); }

publ i ¢ voi d set Dept no(oracl e. sgl . NJMBER dept no) throws SQException

{ _struct.setQacleAttribute(2, deptno); }

public oracle.sql.DATE getH redate() throws SQException

{ return (oracle.sql.DATE) _struct.getQacleAttribute(3); }

public void setH redate(oracl e. sql . DATE hiredate) throws SQException
{ _struct.setQacleAttribute(3, hiredate); }

publ i c oracl e.sql . NOMBER get Sal ary() throws SQException

{ return (oracle.sql.NUMBER _struct.getQacleAttribute(4); }

public void setSal ary(oracl e. sgl . NJMBER sal ary) throws SQException
{ _struct.setQacleAttribute(4, salary); }

JPublisher Examples 4-7

Example: JPublisher Object Attribute Mapping

Example: JPublisher Object Attribute Mapping

This section provides examples of JPublisher output for a variety of object attribute
types, demonstrating the various datatype mappings that JPublisher creates.

The example defines an address object (addr ess) and then uses it as the basis of
the definition of an address array (Addr _Ar r ay). The al | t ypes object definition
also uses the address and address-array objects to demonstrate the mappings that
JPublisher creates for object references and arrays (seeattr 17,attr 18, and
attr19intheal | t ypes object definition below).

GONNECT SCOTT/ Tl GER

CREATE (R REPLACE TYPE address AS obj ect
(

street varchar2(50),

city varchar2(50),

state varchar2(30),

zZip nunber

)

CREATE CR REPLACE TYPE Addr_Array AS varray(10) CF address;
CREATE (R REPLACE TYPE ntbl AS table CF Integer;
CREATE TYPE al | types AS obj ect (

attrl bfile,

attr2 bl ob,

attr3 char(10),

attr4 clob,

attr5 date,

attr6 deci mal,

attr7 doubl e precision,

attr8 float,

attr9 integer,

attr10 nunber,

attr1l nuneric,

attr12 raw(20),

attr13 real,

attr14 smallint,

attr15 varchar(10),

attr16 varchar2(10),

attr17 address,

attr18 ref address,

attr19 Addr_Array,

attr20 ntbl);

4-8 Oracle9iJPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

In this example, JPublisher was invoked with the following command line (a single
wraparound line):

jpub -user=scott/tiger -input=denoin -dir=deno - package=cor p - mappi ng=obj ect j dbc
- et hods=f al se

Note: The - mappi ng option, while deprecated, is still supported
so is therefore demonstrated. The - mappi ng=obj ect j dbc setting
is equivalent to the combination of - bui | ti nt ypes=j dbc,
-nunbert ypes=obj ectj dbc, - | obt ypes=or acl e, and

- usertypes=or acl e. See "Mappings for All Types (-mapping)"
on page 3-12 for more information.

It is not necessary to create the deno and cor p directories in advance. JPublisher
will create the directories for you.

The denpi n file contains these declarations:

SQ. ADDRESS AS Address
SQ ALLTYPES AS al | . Al I types

JPublisher generates declarations of the types Al | t ypes and Addr ess, because
denvoi n explicitly lists them. It also generates declarations of the types nt bl and
Addr Array, because the Al | t ypes type requires them.

Additionally, JPublisher generates declarations of the types Al | t ypesRef and
Addr essRef , because it generates a declaration of a reference type for each object
type. A reference type is in the same package as the corresponding object type.
Reference types are not listed in the | NPUT file or on the command line. The

Addr ess and Addr essRef types are in package cor p, because - package=cor p
appears on the command line. The Al | t ypes and Al | t ypesRef types are in
package al | , because theal | inall. Al ltypes overrides - package=cor p. The
remaining types were not explicitly mentioned, so they go in package cor p.

Therefore, JPublisher creates the following files in package cor p:

./ deno/ cor p/ Address. j ava

./ deno/ cor p/ Addr essRef . j ava
./ deno/ corp/ N bl . j ava

./ deno/ corp/ Addr Array. j ava

JPublisher Examples 4-9

Example: JPublisher Object Attribute Mapping

and the following files in package al | :

./deno/al |/ Alltypes.java
./deno/al |/ Al typesRef . j ava

Listing and Description of Address.java Generated by JPublisher
The file . / deno/ cor p/ Addr ess. j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . GQRADat a;

inport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql.Datum

i nport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class Address inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ NAME = "SQOOIT. ADDRESS';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

protected Mitabl eStruct _struct;

private static int[] _sql Type = { 12,12,12,2 };
private stati c CRADataFactory[] _factory = new CRADat aFactory[4];
protected static final Address _AddressFactory = new Address(fal se);

public static CRADat aFactory get CRADat aFact ory()

{ return _AddressFactory; }

/* constructor */

prot ect ed Address(bool ean init)

{ if(init) _struct = new Mitabl eSruct (new (bject[4], _sql Type, factory); }
publ i ¢ Address()

{ this(true); }

4-10 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

public Address(String street, Sring city, Sring state,
j ava. mat h. Bi gDeci nal zi p) throws SQ.Exception
{ this(true);
setSreet(street);
setdty(city);
setSate(state);
setZip(zip);

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobDatunfc, _SQ NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ect ed CRADat a creat e(Address o, Datumd, int sgl Type) throws SQException
{
if (d=null) return null;
if (0o =null) o= new Address(fal se);
0. _struct = new Mitabl eStruct ((STRUT) d, _sql Type, _factory);
return o;
}
/* accessor nethods */
public Sring getSreet() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void setStreet(String street) throws SQException
{ _struct.setAttribute(O, street); }

public Sring getdty() throws SQException

{ return (Sring) _struct.getAttribute(l); }

public void setdty(Sring city) throws SQException

{ _struct.setAttribute(l, city); }

public Sring getSate() throws SQException
{ return (Sring) _struct.getAttribute(2); }

JPublisher Examples 4-11

Example: JPublisher Object Attribute Mapping

public void setState(Sring state) throws SQException
{ _struct.setAttribute(2, state); }

public java. math. B gDeci nal getZip() throws SQException
{ return (java. math. BigDecinal) _struct.getAttribute(3); }

public voi d setZip(java. nath. B gDeci nal zip) throws SQLException
{ _struct.setAttribute(3, zip); }

}

The Addr ess. j ava file illustrates several points about Java source files.
JPublisher-generated files begin with a package declaration whenever the generated
class is in a named package. Note that you can specify a package in any of these
ways:

« a-package parameter that you specify on the command line or in the
properties file

« theAS <Java identifier>clause inthe | NPUT file, where
Java_i denti fi er includes a package name

Import declarations for specific classes and interfaces mentioned by the Addr ess
class follow the package declaration.

The class definition follows the i nport declarations. All classes JPublisher
generates are declared publ i c.

SQLJuses the _SQ._NAME and _SQL_ TYPECODE strings to identify the SQL type
matching the Addr ess class.

The no-argument constructor is used to create the _Addr essFact ory object,
which will be returned by get ORADat aFact or y() . For efficiency, JPublisher also
generates a pr ot ect ed bool ean constructor for Addr ess objects. This can be
used in subclasses of Addr ess to create uninitialized Addr ess objects. Other
Addr ess objects are constructed by the cr eat e() method. The pr ot ect ed
create(...,...,...) method is used to encapsulate details of the JPublisher
implementation in the JPublisher-generated Addr ess class, and to simplify the
writing of user-provided subclasses. Implementation details, such as generation of
the static _f act ory field and the _st ruct field, are implementation-specific and
should not be referenced or exploited by any subclass of Addr ess. (In this
implementation, the _f act or y field is an array of factories for attributes of

Addr ess, but in this case the factories are null because none of the attribute types

4-12 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

of Addr ess require a factory. The _st ruct field holds the object data and is a
Mut abl eSt ruct instance.)

The t oDat unm() method converts an Addr ess object to a Dat umobiject (in this
case, a STRUCT object). JDBC requires the connection argument, although it might
not be logically necessary.

The get XXX() and set XXX() accessor methods use the obj ect j dbc mapping for
numeric attributes and the j dbc mapping for other attributes. The method names
are in mixed case because - case=ni xed is the default.

Listing of AddressRef.java Generated by JPublisher

The file . / deno/ cor p/ Addr essRef . j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport

java. sql . SQLExcept i on;
j ava. sqgl . Gonnecti on;
oracl e. j dbc. O acl eTypes;

or acl e. sql
or acl e. sql
or acl e. sql
or acl e. sql
or acl e. sql

. CRADet a;

. CRADat aFact or y;
. Dat um

. REF;

. STR.CT;

public class AddressRef inpl enents CRAData, CRADat aFactory

{

public static final Sring _SQ BASETYPE = "SQOIT. ADDRESS';
public static final int _SQ TYPEQXDE = O acl eTypes. REF;

REF

_ref;

private static final AddressRef _AddressRef Factory = new AddressRef();

public static CRADat aFactory get CRADat aFact ory()
{ return _AddressRef Factory; }

/* constructor */

publ i ¢ AddressRef ()

{

JPublisher Examples 4-13

Example: JPublisher Object Attribute Mapping

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

AddressRef r = new AddressRef ();

r. ref = (REH) d;

return r;
}
public static AddressRef cast(CRAData 0) throws SQ.Exception
{

if (o=null) return null;

try { return (AddressRef) get GRADat aFactory().create(o.tobDatun{null),
Q acl eTypes. REF); }

catch (Exception exn)

{ throw new SQ@Exception("Ulhabl e to convert "+o.getd ass().getNane()+" to
AddressRef: "+exn.toSring()); }

}

publ i c Address getVal ue() throws SQException

{

return (Address) Address. get CRADat aFactory(). creat e(
_ref. get STRICT(), O acl eTypes. REF);

}

public voi d setVal ue(Address c) throws SQException

{

_ref. set Val ue((STRUCT) c.toDatun{_ref.get JavaSgl Connection()));

}

}

The get Val ue() method in the Addr essRef class returns the address referenced
by an Addr essRef object, with its proper type. The set Val ue() method copies
the contents of the Addr ess argument into the database Addr ess object to which
the Addr essRef object refers. The Addr essRef class also provides a static

cast () method to convert references to other types into Addr ess references.

4-14 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

Listing of Alltypes.java Generated by JPublisher

The file. /deno/ al | / Al | t ypes. j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package al | ;

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CQRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql.Datum

import oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class A ltypes inplenents CRAData, CRADat aFact ory

{

public static final Sring _SQ_ NAME = "SCOOIT. ALLTYPES';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

protected Mitabl eStruct _struct;

private static int[] _sql Type = {

-13, 2004, 1, 2005, 91, 3,8, 6, 4, 2, 3,- 2, 7, 5, 12, 12, 2002, 2006, 2003, 2003 };

private static CRADataFactory[] _factory = new CRADat aFact or y[20] ;
static

{
_factory[16] = corp. Addr ess. get GRADat aFact ory();
_factory[17] = cor p. Addr essRef . get GRADat aFact ory();
_factory[18] = cor p. Addr Array. get GRADat aFactory() ;
_factory[19] = corp. N bl .get GRADat aFact ory();

}

protected static final Altypes _AlltypesFactory = new A |types(false);

public static CRADat aFactory get CRADat aFact ory()

{ return _AltypesFactory; }

/* constructor */

protected Al ltypes(bool ean init)

{ if(init) _struct = new Mitabl eXruct (new (bj ect[20], _sql Type, _factory); }
public Altypes()

JPublisher Examples 4-15

Example: JPublisher Object Attribute Mapping

{ this(true); }
public Alltypes(oracle.sql .BFILE attrl, oracle.sql.B.CB attr2, Sring attr3,
oracle.sqgl.Q.(B attr4,
java.sqgl. Tinestanp attr5, java. nmath. BigDecimal attr6,
Double attr7, Double attr8,
Integer attr9, java. nath. B gDecinal attr10, java.nath. B gDecimal
attrll,
byte[] attr1l2, Foat attr13, Integer attr14, String
attr15, String attr16, corp. Address attr17,
corp. AddressRef attr18, corp.AddrArray attr19, corp.Nbl attr20)
throws SQ.Exception
{ this(true);
setAttri(attrl);
setAttr2(attr2);
setAttr3(attr3);
setAttrd(attrd);
setAttr5(attr5);
setAttr6(attr6);
setAttr7(attr7);
setAttr8(attr8);
setAttr9(attr9);
set Attrl0(attr10);
setAttrll(attr1l);
setAttri2(attr12);
setAttrl3(attr13);
setAttrl4(attr14);
setAttri5(attr15);
setAttrl6(attr16);
setAttrl7(attrl7);
setAttrl8(attr18);
setAttrl9(attr19);
set Attr20(attr20);

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */

publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

{ return create(null, d, sql Type); }

protected CRAData create(Alltypes o, Datumd, int sqgl Type) throws SQException

4-16 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

if (d=null) return null;
if (o =null) o=newA ltypes(false);
0._struct = new Mitabl eStruct ((STRICT) d, _sql Type, _factory);
return o;
}
/* accessor nethods */
public oracle.sql.BFILE getAttrl() throws SQ Exception
{ return (oracle.sql.BFILE) _struct.getCacleAttribute(0); }

public void setAttrl(oracle.sql.BFILE attrl) throws SQException
{ _struct.setQacleAttribute(0, attrl); }

public oracle.sql .BL(B get Attr2() throws SQException

{ return (oracle.sql.BLAB) _struct.getQacleAttribute(l); }
public void setAttr2(oracle.sq .BLCB attr2) throws SQException
{ _struct.setQacleAttribute(l, attr2); }

public Sring getAttr3() throws SQException

{ return (Sring) _struct.getAttribute(2); }

public void setAttr3(Sring attr3) throws SQException

{ _struct.setAttribute(2, attr3); }

public oracle.sql..(B get Attr4() throws SQException

{ return (oracle.sql.A.(B) _struct.getQacleAttribute(3); }
public void setAttr4(oracle.sq .CB attr4) throws SQException
{ _struct.setQacleAttribute(3, attr4); }

public java.sql.Tinestanp get Attr5() throws SQException

{ return (java.sql.Tinestanp) _struct.getAttribute(4); }

public void setAttr5(java.sq . Tinestanp attr5) throws SQException

{ _struct.setAttribute(4, attr5); }

public java. nath. B gDeci nal getAttr6() throws SQException
{ return (java.math. BigDecimal) _struct.getAttribute(5); }

JPublisher Examples 4-17

Example: JPublisher Object Attribute Mapping

public void setAttr6(java. nath. Bigbeci nal attr6) throws SQException
{ _struct.setAttribute(5, attr6); }

public Double getAttr7() throws SQException

{ return (Double) _struct.getAttribute(6); }

public void setAttr7(Doubl e attr7) throws SQException

{ _struct.setAttribute(6, attr7); }

public Double getAttr8() throws SQException

{ return (Double) _struct.getAttribute(7); }

public void setAttr8(Doubl e attr8) throws SQ Exception

{ _struct.setAttribute(7, attr8); }

public Integer getAtr9() throws SQException

{ return (Integer) _struct.getAttribute(8); }

public void setAttr9(Integer attr9) throws SQException

{ _struct.setAttribute(8, attr9); }

public java.nath. B gDecinal getAttr10() throws SQException
{ return (java.math. BigDecimal) _struct.getAttribute(9); }
public void setAttr10(j ava. nat h. B gDeci nal attr10) throws SQLException
{ _struct.setAttribute(9, attr10); }

public java.nath. B gDecinal getAttr11() throws SQException
{ return (java.math. BigDecinal) _struct.getAttribute(10); }
public void setAttr11(java. nath. B gDeci nal attr11) throws SQLException
{ _struct.setAttribute(10, attrll); }

public byte[] getAttr12() throws SQException

{ return (byte[]) _struct.getAttribute(11); }

public void setAttr12(byte[] attr12) throws SQException
{ _struct.setAttribute(1l, attrl2); }

4-18 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

public Hoat getAttr13() throws SQException
{ return (Hoat) _struct.getAttribute(12); }

public void setAttrl13(Float attr13) throws SQLException

{ _struct.setAttribute(12, attr13); }

public Integer getAttrl14() throws SQException

{ return (Integer) _struct.getAttribute(13); }

public void setAttrl4(Integer attrl14) throws SQException
{ _struct.setAttribute(13, attrl4); }

public Sring getAttr15() throws SQException

{ return (Sring) _struct.getAttribute(14); }

public void setAttr15(String attr15) throws SQException
{ _struct.setAttribute(14, attrl5); }

public Sring getAttr16() throws SQException

{ return (Sring) _struct.getAttribute(15); }

public void setAttr16(String attr16) throws SQException
{ _struct.setAttribute(15, attrl6); }

public corp. Address get Atr17() throws SQException

{ return (corp. Address) _struct.getAttribute(16); }
public void setAttrl17(corp. Address attrl7) throws SQException
{ _struct.setAttribute(16, attrl7); }

public corp. AddressRef get Attr18() throws SQ Exception

{ return (corp. AddressRef) _struct.getAttribute(17); }
public void set Attr18(corp. AddressRef attr18) throws SQException

{ _struct.setAttribute(17, attr18); }

public corp. AddrArray getAttr19() throws SQException
{ return (corp. AddrArray) _struct.getAttribute(18); }

JPublisher Examples 4-19

Example: JPublisher Object Attribute Mapping

public void setAttr19(corp. AddrArray attr19) throws SQException
{ _struct.setAttribute(18, attr19); }

public corp.Ntbl getAttr20() throws SQException
{ return (corp.Ntbl) _struct.getAttribute(19); }

public void setAttr20(corp. N bl attr20) throws SQException
{ _struct.setAttribute(19, attr20); }

}

When a declared class requires user-defined classes from another package,
JPublisher generates i nport declarations for those user-defined classes following
the i mpor t declaration for the or acl e. sql package. In this case, JDBC requires
the Addr ess and Addr essRef classes from package cor p.

The attributes with types Addr ess, Addr essRef , Addr Ar r ay, and Nt bl require
the construction of factories. The static block puts the correct factories in the
_factory array.

Note: Notice that the SMALLI NT SQL type for at t r 14 maps to
the Java type shor t , but thismaps to | nt eger in

- nunmbert ypes=obj ect j dbc mapping. This was a JPublisher
implementation decision. See "Mappings For Numeric Types
(-numbertypes)" on page 3-10 for related information.

Listing of AlltypesRef.java Generated by JPublisher

The file . / deno/ corp/al | / Al |l t ypesRef . j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package al | ;

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . GQRADat a;

4-20 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

inport oracl e. sql . GQRADat aFact or y;
inport oracl e.sql . Datum

inport oracl e.sql . REF,

import oracl e. sql . STRUCT;

public class Al ltypesRef inplenents CRAData, (RADat aFact ory

{
public static final Sring _SQ BASETYPE = "SQOIT. ALLTYPES';
public static final int _SQ TYPEQXDE = O acl eTypes. REF;

REF ref;
private static final AlltypesRef _AltypesRefFactory = new Al typesRef();

public static CRADat aFactory get CRADat aFact ory()
{ return _AltypesRefFactory; }

/* constructor */

public AltypesRef()

{

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

A ltypesRef r = new Al | t ypesRef ();

r. ref = (REFH) d;

returnr;

}

public static A ltypesRef cast(CRAData o) throws SQException
{
if (o=null) return null;
try { return (A ltypesRef) get GRADataFactory().create(o.tobDatun{null),
Q acl eTypes. REF); }
catch (Exception exn)
{ throw new SQ@Exception("Ulhabl e to convert "+o.getd ass().getNane()+" to
AltypesRef: "+exn.toString()); }

}

JPublisher Examples 4-21

Example: JPublisher Object Attribute Mapping

public Altypes
{

get Val ue() throws SQException

return (Alltypes) A ltypes.get GRADat aFactory(). creat e(
_ref. get STRICT(), O acl eTypes. REF);

}

public void setVal ue(A ltypes c) throws SQException

{

_ref. set Val ue((STRUCT) c.tobDatun{_ref.get JavaSgl Connection()));

}
}

Listing of Ntbl.java Generated by JPublisher

The file . / deno/ cor p/ Nt bl . j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.j dbc. O acl eTypes;

inport oracl e. sql
inport oracl e. sql
inport oracl e. sql
inport oracl e. sql
inport oracle.sql.

. CRADat a;

. CRADat aFact or y;
. Dat um

. ARRAY:

ArrayDescriptor;

inport oracl e.jpub.runtime. Mit abl eArray;

public class N bl
{

public static fi
public static fi

i npl enents CRAData, CRADat aFactory

nal Sring _SQ_ NAME = "SCOIT. NTBL";
nal int _SQ TYPEQE = O acl eTypes. ARRAY;

Mut abl eArray _array;

private static final NNbl _N bl Factory = new N bl ();

public static CRADat aFactory get CRADat aFact ory()

4-22 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

{ return _Nbl Factory; }
/* constructors */

public Nbl()
{
this((Integer[])null);
}
public Nbl(Integer[] a)
{
_array = new Mitabl eArray(4, a, null);
}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _array.tobDatun{c, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;
N bl a =newNbl();
a._array = new Mitabl eArray(4, (ARRAY) d, null);

return a;
}
public int length() throws SQException
{
return _array.length();
}
public int getBaseType() throws SQException
{
return _array. get BaseType();
}
public Sring get BaseTypeNane() throws SQException
{
return _array. get BaseTypeNane();
}

public ArrayDescriptor getDescriptor() throws SQException
{

return _array. getDescriptor();

JPublisher Examples 4-23

Example: JPublisher Object Attribute Mapping

}

/* array accessor nethods */
public Integer[] getArray() throws SQException

{
return (Integer[]) _array.get(hj ectArray();
}
public void setArray(Integer[] a) throws SQException
{
_array.set(hjectArray(a);
}
public Integer[] getArray(long index, int count) throws SQException
{
return (Integer[]) _array.getChj ect Array(index, count);
}
public void setArray(Integer[] a, long index) throws SQException
{
_array.set(hjectArray(a, index);
}
public Integer getH enent(long index) throws SQException
{
return (Integer) _array.get Chj ect H enent (i ndex);
}
public void setH enent(Integer a, |ong index) throws SQException
{
_array. set(oj ect H enent (a, index);
}

4-24 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

Listing of AddrArray.java Generated by JPublisher

JPublisher generates declarations of the type Addr Ar r ay because they are required
by the Al | t ypes type. The file. / deno/ cor p/ Addr Arr ay. j ava reads as
follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CRADat a;

inport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql.Datum

inport oracl e. sql . ARRAY;,

inport oracle.sql.ArayDescriptor;
inport oracl e.jpub. runtime. Mit abl eArray;

public class AddrArray inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ@ NAME = "SCOIT. ADDR ARRAY";

public static final int _SQ TYPEQCDE = O acl eTypes. ARRAY;
Mut abl eArray _array;
private static final AddrArray _AddrArrayFactory = new Addr Array();
public static CRADat aFactory get CRADat aFact ory()
{ return _AddrArrayFactory; }
/* constructors */

public AddrArray()

this((Address[])null);

}
publ ic Addr Array(Address[] a)
{
_array = new Mit abl eArray(2002, a, Address. get CRADat aFactory());
}

JPublisher Examples 4-25

Example: JPublisher Object Attribute Mapping

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _array.tobDatun{c, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{
if (d=null) return null;
AddrArray a = new AddrArray();
a._array = new Mit abl eArray(2002, (ARRAY) d, Address. get CRADat aFactory());

return a;
}
public int length() throws SQException
{
return _array.length();
}
public int getBaseType() throws SQException
{
return _array. get BaseType();
}
public Sring get BaseTypeNane() throws SQException
{
return _array. get BaseTypeNane();
}
public ArrayDescriptor getDescriptor() throws SQException
{
return _array. getDescriptor();
}

/* array accessor nethods */
public Address[] getArray() throws SQ.Exception

{
return (Address[]) _array.get (hj ect Array(

new Address[_array.length()]);
}

public void set Array(Address[] a) throws SQException

{
_array.set(hjectArray(a);

4-26 Oracle9j JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping

}

public Address[] getArray(long index, int count) throws SQException

{
return (Address[]) _array.get (hj ect Array(i ndex,

new Address[_array. sl i ceLengt h(index, count)]);

}

public void setArray(Address[] a, |ong index) throws SQException
{

_array.set(hject Array(a, index);

}
publ i c Address getH enent (1 ong i ndex) throws SQException
{
return (Address) _array. get Cbj ect H enent (i ndex) ;
}

public voi d setH enent (Address a, |ong index) throws SQException
{

_array. set(hj ectH enent (a, index);

}

JPublisher Examples 4-27

Example: Generating a SQLData Class

Example: Generating a SQLData Class

This example is identical to the previous one, except that JPublisher generates a
SQLDat a class rather than an ORADat a class. The command line for this example is:

jpub -user=scott/tiger -input=denoin -dir=deno - package=cor p - mappi ng=obj ect j dbc
- usert ypes=j dbc - net hods=f al se

(This is a single wraparound command line.)

Note: The - mappi ng option, while deprecated, is still supported
so is therefore demonstrated. The - mappi ng=obj ect j dbc setting
is equivalent to the combination of - bui | ti nt ypes=j dbc,
-nunmbert ypes=obj ectj dbc, - | obt ypes=or acl e, and

- usertypes=or acl e; however, this command line overrides the
- usertypes=or acl e setting with a- user t ypes=j dbc setting.
See "Mappings for All Types (-mapping)" on page 3-12 for more
information about the - mappi ng option.

The option - user t ypes=j dbc instructs JPublisher to generate classes that
implement the SQLDat a interface. The SQLDat a interface supports reference and
collection classes generically, using the generic typesj ava. sql . Ref and

j ava. sgl . Array rather than using custom classes. Therefore, JPublisher
generates only two classes:

./ deno/ cor p/ Address. j ava
./deno/al |/ Alltypes.java

Listing of Address.java Generated by JPublisher

Because we specified - usert ypes=j dbc in this example, the Addr ess class
implements the j ava. sql . SQLDat a interface rather than the

oracl e. sgl . ORADat a interface. The file. / deno/ cor p/ Addr ess. j ava reads as
follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

4-28 Oracle9j JPublisher User’s Guide

Example: Generating a SQLData Class

package corp;

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracl e.sql . CRADat a;

i nport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eSruct;

public class Address inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ NAME = "SQOOIT. ADDRESS';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

protected Mit abl eStruct _struct;

private static int[] _sql Type = { 12,12,12,2 };
private stati c CRADataFactory[] _factory = new CRADat aFactory[4];
protected static final Address _AddressFactory = new Address(fal se);

public static CRADat aFactory get CRADat aFact ory()
{ return _AddressFactory; }
/* constructor */
prot ect ed Address(bool ean init)
{ if(init) _struct = new Mitabl eSruct (new (bj ect[4], _sql Type, factory); }
publ i ¢ Address()
{ this(true); }
public Address(String street, Sring city, Sring state, java.nath. B gDeci nal
zip) throws SQException
{ this(true);
setSreet(street);
setdty(city);
setSate(state);
setZip(zip);
}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{
}

return _struct.tobDatunfc, _SQ_NAME);

JPublisher Examples 4-29

Example: Generating a SQLData Class

/* CRADataFactory interface */

publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

{ return create(null, d, sql Type); }

prot ect ed CRADat a creat e(Address o, Datumd, int sql Type) throws SQException

{
if (d=null) return null;
if (0o =null) o= new Address(fal se);
0. _struct = new Mitabl eStruct ((STRUIT) d, _sql Type, _factory);
return o;

}

/* accessor nethods */
public Sring getSreet() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void setStreet(String street) throws SQExcept

Listing of Alltypes.java Generated by JPublisher

Because - usert ypes=j dbc was specified in this example, the Al | t ypes class
implements the j ava. sql . SQLDat a interface rather than the

oracl e. sgl . ORADat a interface. Although the SQLDat a interface is a
vendor-neutral standard, there is Oracle-specific code in the Al | t ypes class
because it uses Oracle-specific types such as or acl e. sql . BFI LEand

oracl e.sql . CLOB. Thefile./ deno/ cor p/ Al | t ypes. j ava reads as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package al | ;

inport java. sqgl . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CRADat a;

i nport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class A ltypes inplenents CRAData, CRADat aFact ory

{
public static final Sring _SQ_ NAME = "SCOIT. ALLTYPES';

4-30 Oracle9j JPublisher User’s Guide

Example: Generating a SQLData Class

public static final int _SQ TYPEQXE = O acl eTypes. STRULCT;
protected Mitabl eStruct _struct;

private static int[] _sqgl Type = {

- 13, 2004, 1, 2005, 91, 3, 8,6, 4, 2, 3, -2, 7, 5, 12, 12, 2002, 2006, 2003, 2003 };
private stati c CRADataFactory[] _factory = new CRADat aFact ory[20] ;
static

{
_factory[16] = corp. Addr ess. get CRADat aFact ory();
_factory[17] = cor p. Addr essRef . get GRADat aFact ory();
_factory[18] = corp. Addr Array. get GRADat aFact ory() ;
_factory[19] = corp. N bl .get GRADat aFact ory();

}

protected static final Altypes _AlltypesFactory = new A |types(false);

public static CRADat aFactory get CRADat aFact ory()
{ return _AltypesFactory; }
/* constructor */
protected Al ltypes(bool ean init)
{ if(init) _struct = new Mitabl eXruct (new (bj ect[20], _sql Type, _factory); }
public Altypes()
{ this(true); }
public Alltypes(oracle.sql .BFILE attrl, oracle.sql.BL.CB attr2, Sring attr3,
oracle.sqgl.Q.(B attr4,
java.sql. Timestanp attr5, java. math. BigDecinal attr6,
Doubl e attr7, Double attr8,
Integer attr9, java.math. B gDecimal attr10,
java.math. BigDecimal attr1l, byte[] attr12,
Hoat attrl13, Integer attr1l4, String attr15, String
attr16, corp.Address attri7,
corp. AddressRef attr18, corp. AddrArray attr19,
corp. N bl attr20) throws SQException
{ this(true);
setAttri(attrl);
setAttr2(attr2);
setAttr3(attr3);
setAttrd(attrd);
setAttr5(attr5);
setAttr6(attr6);
setAttr7(attr7);
setAttr8(attr8);
setAttr9(attr9);
setAttrl0(attr10);
setAttrll(attrll);

JPublisher Examples 4-31

Example: Generating a SQLData Class

setAttri2(attr12);
setAttri3(attr13);
setAttrld(attrl4);
setAttri5(attr15);
setAttrl6(attr16);
setAttrl7(attrl7);
setAttrl8(attr18);
setAttrl9(attr19);
set Attr20(attr20);

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
protected CRAData create(A ltypes o, Datumd, int sql Type) throws SQException
{
if (d=null) return null;
if (o =null) o=newA ltypes(false);
0. _struct = new Mitabl eStruct ((STRUIT) d, _sql Type, _factory);
return o;
}
/* accessor nethods */
public oracle.sql.BFILE getAttrl() throws SQ Exception
{ return (oracle.sql.BFILE) _struct.getCacleAttribute(0); }

public void setAttrl(oracle.sql.BFILE attrl) throws SQException
{ _struct.setQacleAttribute(0, attrl); }

public oracle.sql .BL(B get Attr2() throws SQException

{ return (oracle.sql.BLAB) _struct.getQacleAttribute(l); }
public void setAttr2(oracle.sq .BLCB attr2) throws SQException

{ _struct.setQacleAttribute(l, attr2); }

public Sring getAttr3() throws SQException
{ return (Sring) _struct.getAttribute(2); }

4-32 Oracle9j JPublisher User’s Guide

Example: Generating a SQLData Class

public void setAttr3(Sring attr3) throws SQException
{ _struct.setAttribute(2, attr3); }

public oracle.sql..(B get Atr4() throws SQException

{ return (oracle.sql.A.(B) _struct.getQacleAttribute(3); }
public void setAttrd(oracle.sq .CB attr4) throws SQException
{ _struct.setQacleAttribute(3, attr4); }

public java.sqgl.Tinestanp get Attr5() throws SQException

{ return (java.sql.Tinestanp) _struct.getAttribute(4); }
public void setAttr5(java.sq . Tinestanp attr5) throws SQException
{ _struct.setAttribute(4, attr5); }

public java. nath. B gDeci nal getAttr6() throws SQException

{ return (java.math. BigDecinal) _struct.getAttribute(5); }
public void setAttr6(java. nat h. BigDeci mal attr6) throws SQException
{ _struct.setAttribute(5, attr6); }

public Double getAttr7() throws SQException

{ return (Double) _struct.getAttribute(6); }

public void setAttr7(Doubl e attr7) throws SQException

{ _struct.setAttribute(6, attr7); }

public Double getAttr8() throws SQException

{ return (Double) _struct.getAttribute(7); }

public void setAttr8(Doubl e attr8) throws SQ Exception

{ _struct.setAttribute(7, attr8); }

public Integer getAtr9() throws SQException

{ return (Integer) _struct.getAttribute(8); }

public void setAttr9(Integer attr9) throws SQLException
{ _struct.setAttribute(8, attr9); }

JPublisher Examples 4-33

Example: Generating a SQLData Class

public java. math. B gDeci nal getAttr10() throws SQException
{ return (java. math. Bigbecinal) _struct.getAttribute(9); }

public void set Attr10(j ava. math. Bi gDeci nal attr10) throws SQLException
{ _struct.setAttribute(9, attr10); }

public java. math. B gDeci nal getAttr11() throws SQException
{ return (java math. BigDecinal) _struct.getAttribute(10); }
public void setAttr1l(java. math. BigDecinal attr1l) throws SQLException
{ _struct.setAttribute(10, attrll); }

public byte[] getAttr12() throws SQException

{ return (byte[]) _struct.getAttribute(11); }

public void setAttr12(byte[] attr12) throws SQException

{ _struct.setAttribute(1l, attrl2); }

public Hoat getAttr13() throws SQException

{ return (Hoat) _struct.getAttribute(12); }

public void setAttr13(Float attr13) throws SQLException

{ _struct.setAttribute(12, attr13); }

public Integer getAttrl14() throws SQException

{ return (Integer) _struct.getAttribute(13); }

public void setAttrl4(Integer attrl14) throws SQException

{ _struct.setAttribute(13, attrl4); }

public Sring getAttr15() throws SQException

{ return (Sring) _struct.getAttribute(14); }

public void setAttr15(String attr15) throws SQException

{ _struct.setAttribute(14, attrl15); }

public Sring getAttr16() throws SQException

4-34 Oracle9j JPublisher User’s Guide

Example: Generating a SQLData Class

{ return (Sring) _struct.getAttribute(15); }

public void setAttr16(String attr16) throws SQException

{ _struct.setAttribute(15, attrl6); }

public corp. Address get Atr17() throws SQException

{ return (corp. Address) _struct.getAtribute(16); }

public void setAttrl17(corp. Address attrl7) throws SQException

{ _struct.setAttribute(16, attrl7); }

publ i c corp. AddressRef get Attr18() throws SQ Exception

{ return (corp. AddressRef) _struct.getAttribute(17); }

public void setAttr18(corp. AddressRef attr18) throws SQException
{ _struct.setAttribute(17, attr18); }

public corp. AddrArray getAttr19() throws SQException

{ return (corp. AddrArray) _struct.getAttribute(18); }

public void setAttr19(corp. AddrArray attr19) throws SQException
{ _struct.setAttribute(18, attr19); }

public corp.Ntbl getAttr20() throws SQException

{ return (corp.Ntbl) _struct.getAttribute(19); }

public void setAttr20(corp. N bl attr20) throws SQException
{ _struct.setAttribute(19, attr20); }

JPublisher Examples 4-35

Example: Extending JPublisher Classes

Example: Extending JPublisher Classes

Here is an example of the scenario described in "Extending JPublisher-Generated
Classes" on page 2-34.

The following code is the initial version for the class MyAddr ess. j ava. This code
is automatically created by JPublisher and stored in the directory deno/ cor p. You
can subsequently modify this code, since JPublisher will regenerate the superclass

JAddr ess, not MyAddr ess (if it already exists), whenever it is invoked again with
the same command line.

Note: There way the ORADat aFact ory cr eat e() method is
coded here ensures that an object instance is not needlessly created
if the data object is null, or needlessly re-initialized if the data object
is non-null. This is discussed in "Format of the Class that Extends
the Generated Class" on page 2-35.

package corp;

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CQRADat a;

inport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class M/Address extends JAddress inpl enents CRAData, CRADat aFactory
{
private static final M/Address _M/AddressFactory = new M/Address();
public static CRADataFactory get CRADat aFact ory()
{ return _M/AddressFactory; }

public M/Address() { super(); }

publ ic MAddress(String street, Sring city, Sring state,
java. nat h. B gDeci nal zip) throws SQException

{

setSreet(street);

setdty(city);

setSate(state);

setZ p(zip);

4-36 Oracle9j JPublisher User’s Guide

Example: Extending JPublisher Classes

/* CRAData interface */
public CRAData create(Datumd, int sql Type) throws SQException
{ return create(new M/Address(), d, sql Type); }

/* supercl ass accessors */

/*
public Sring getSreet() throns SQException { return super.getSreet(); }
public void setStreet(String street) throws SQException {
super.set Street (street); }
*/

/*
public Sring getdty() throws SQException { return super.getdty(); }
public void setAty(String city) throws SQException { super.setdty(city); }
*/

/*
public Sring getSate() throns SQException { return super.getSate(); }
public void setState(Sring state) throws SQException {

super.set Sate(state); }

*/

/*

public java. nath. B gDeci nal getZ p() throws SQException { return

super.getZip(); }
public voi d setZ p(java. nath. B gDeci mal zip) throws SQException {
super.setZp(zip); }
*/

}

Enter the following command line to have JPublisher generate code for the
superclass JAddr ess, and also to generate an initial stub for the class MyAddr ess
that is to extend JAddr ess. (The stub is only created if MyAddr ess. j ava does not
already exist.)

jpub -user=scott/tiger -input=denmoin -dir=deno - package=corp

Assume the deni n file includes the following:
SQ ADDRESS CENERATE JAddress AS M/Addr ess

JPublisher Examples 4-37

Example: Extending JPublisher Classes

JPublisher will generate these files:

deno/ cor p/ JAddr ess. j ava
deno/ cor p/ M/Addr essRef . j ava

Because an ADDRESS object will be represented in the Java program as a
My Addr ess instance, JPublisher generates the class My Addr essRef rather than
JAddr essRef .

Here is a listing of the deno/ cor p/ JAddr ess. j ava class file, which will always
be generated by JPublisher:

Note: The details of method bodies that JPublisher generates
might change in future releases.

package corp;

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CQRADat a;

inport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql. Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class JAddress inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ NAME = "SQOOIT. ADDRESS';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

protected Mitabl eStruct _struct;

private static int[] _sql Type = { 12,12,12,2 };
private stati c CRADataFactory[] _factory = new CRADat aFactory[4];
protected static final JAddress _JAddressFactory = new JAddress(fal se);

public static CRADat aFactory get CRADat aFact ory()

{ return _JAddressFactory; }

/* constructor */

prot ect ed JAddress(bool ean init)

{ if(init) _struct = new Mitabl eXruct (new (bject[4], _sql Type, factory); }
publ i ¢ JAddress()

{ this(true); }

4-38 Oracle9j JPublisher User’s Guide

Example: Extending JPublisher Classes

public JAddress(String street, String city, String state,
java. mat h. Bigbeci mal zip) throws SQ.Exception
{ this(true);
setSreet(street);
setdty(city);
setSate(state);
setZip(zip);

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{
return _struct.tobatunfc, _SQ NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
prot ect ed CRADat a creat e(JAddress o, Datumd, int sqgl Type) throws SQException
{
if (d=null) return null;
if (0o =null) o= new JAddress(fal se);
0. _struct = new Mitabl eStruct ((STRUT) d, _sql Type, _factory);
return o;
}
/* accessor nethods */
public Sring getSreet() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public void setStreet(String street) throws SQException
{ _struct.setAttribute(O, street); }

public Sring getdty() throws SQException

{ return (Sring) _struct.getAttribute(l); }

public void setdty(Sring city) throws SQException

{ _struct.setAttribute(l, city); }

public Sring getSate() throws SQException
{ return (Sring) _struct.getAttribute(2); }

JPublisher Examples 4-39

Example: Extending JPublisher Classes

public void setState(Sring state) throws SQException
{ _struct.setAttribute(2, state); }

public java. math. B gDeci nal getZip() throws SQException
{ return (java. math. BigDecinal) _struct.getAttribute(3); }

public voi d setZip(java. nath. B gDeci nal zip) throws SQLException
{ _struct.setAttribute(3, zip); }

}

Here is a listing of the deno/ cor p/ MyAddr essRef . j ava class file generated by
JPublisher:

package corp;

i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport

public
{

java. sqgl . SQLExcept i on;
j ava. sqgl . Gonnecti on;
oracl e. j dbc. O acl eTypes;

oracl e. sql .
. CRADat aFact or y;
. Dat um

. REF;

. STR.CT;

or acl e. sql
or acl e. sql
or acl e. sql
or acl e. sql

CRADat a;

cl ass M/AddressRef inpl enents (RADat a, CRADat aFactory

public static final Sring _SQ BASETYPE = "SQOOIT. ADDRESS';
public static final int _SQ TYPEQXDE = O acl eTypes. REF;

REF

_ref;

private static final M/AddressRef _M/AddressRef Factory = new M/AddressRef ();

public static CRADat aFactory get CRADat aFact ory()
{ return _M/AddressRef Factory; }

/* constructor */

publ i ¢ M/Addr essRef ()

{
}

4-40 Oracle9j JPublisher User’s Guide

Example: Extending JPublisher Classes

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

M/Addr essRef r = new M/Addr essRef ();

r. ref = (REH) d;

returnr;

}

public static M/AddressRef cast(CRAData o) throws SQLException
{
if (o=null) return null;
try { return (MAddressRef) get CRADat aFact ory(). create(o.toDatun{null),
Q acl eTypes. REF); }
catch (Exception exn)
{ throw new SQ@Exception("Ulhabl e to convert "+o.getd ass().getNane()+" to
M/Addr essRef: "+exn.toSring()); }

}

publ i c M/Address get Val ue() throws SQ.Exception

{

return (M/Address) M/Address. get GRADat aFact ory() . cr eat e(
_ref. get STRICT(), O acl eTypes. REF);

}

public voi d setVal ue(M/Address c) throws SQException

{

_ref. set Val ue((STRUCT) c.tobDatun{_ref.get JavaSgl Connection()));

}

}

JPublisher Examples 4-41

Example: Wrappers Generated for Methods in Objects

Example: Wrappers Generated for Methods in Objects

Note: The wrapper methods that JPublisher generates to invoke
stored procedures are generated in SQLJ code; therefore,
JPublisher-generated classes that contain wrapper methods must be
processed by the SQLJ translator.

This section describes an example of JPublisher output given the definition below of
a SQL type containing methods. The example defines a type Rat i onal with

numer at or and denom nat or attributes and the following functions and
procedures:

« MEMBER FUNCTI ON t oReal : Given two integers, this function converts a
rational number to a real number and returns a real number.

« MEMBER PROCEDURE nor nal i ze: Given two integers, representing a
numerator and a denominator, this procedure reduces a fraction by dividing the
numerator and denominator by their greatest common divisor.

« STATI C FUNCTI ON gcd: Given two integers, this function returns their
greatest common divisor.

« MEMBER FUNCTI ON pl us: This function adds two rational numbers and
returns the result.

The code forrati onal . sgl follows:

CREATE TYPE Rational AS CBIECT (
nuner at or | NTECER
denom nat or | NTEGER
MAP MEMBER FUNCTI ON t oReal RETURN REAL,
MEMBER PROCEDURE nor nal i ze,
STATI C FUNCTI ON ged(x | NTEGER
y INTEGER RETURN | NTEGER
MEMBER FUNCTI ON plus (x Rational) RETURN Rati onal
)s

CREATE TYPE BODY Rational AS

MAP MEMBER FUNCTI ON toReal RETURN REAL | S
-- convert rational nunber to real nunber
BEA N

RETURN nurnrer at or / denomi nat or;
END toReal ;

4-42 Oracle9j JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects

MEMBER PROCEDURE nornal i ze |'S

g I NTECER

BEG N

g := Rational . gcd(nunerator, denoninator);
nunerator : = nunerator / g;

denoninator := denonminator / g;

END nornal i ze;

STATI C FUNCTI ON ged(x | NTEGER
y INTEGER) RETURN INTEGER | S

-- find greatest common divisor of x and y
ans | NTECGER
z | NTEGER
BEG N
IF x <y THN

ans := Rational .gcd(y, X);
BSF (x MDy = 0) THEN

ans :=vy;
ELSE

z:=Xx MDYy;

ans := Rational .gcd(y, 2);
BE\D I F;
RETURN ans;
END gcd;

MEVBER FUNCTI ON pl us (x Rational) RETURN Rational IS
BEA N
return Rational (nunerator * x.denoninator + x.nunerator * denoninator,
denoni nator * X.denomnator);
BE\D pl us;
END,

In this example, JPublisher is invoked with the following command line:

jpub -user=scott/tiger -sgl =Rational -nethods=true

The - user parameter directs JPublisher to login to the database as user scot t with
passwordti ger. The - met hods parameter directs JPublisher to generate wrappers
for the methods contained in the type Rat i onal . You can omit this parameter,
because - net hods=t r ue is the default.

JPublisher Examples 4-43

Example: Wrappers Generated for Methods in Objects

Listing and Description of Rational.sqlj Generated by JPublisher
JPublisher generates the file Rat i onal . sql j . This file reads as follows:

Notes:

= The details of method bodies that JPublisher generates might
change in future releases.

= Notice ther el ease() calls, which are to avoid memory leaks
related to SQLJ connection contexts. See "Releasing Connection
Context Resources" on page 2-30 for more information.

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CRADat a;

inport oracl e. sql . GQRADat aFact or y;
inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;
inport sqlj.runtine.ref.Defaul t Context;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class Rational inplenents CRAData, CRADat aFactory

{
public static final Sring _SQ_ NAME = "SCOIT. RATI ONAL";
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

/* connection nmanagenent */
protected Defaul t@ntext _ tx = null;
protected Gonnection __onn = nul | ;
publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException
{ release(); __tx =ctx; }
publ i ¢ Def aul t Gont ext get Connect i onCont ext () throws SQException
{ if (_tx==null)
{ _tx = (_onn=null) ? Defaul tContext.getDefaultContext() : new
Def aul t Context (__onn); }

return __tx;
b
publ i ¢ Gonnection get Gonnection() throws SQException
{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getGonnection()) : _ onn;

}

4-44 Oracle9j JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects

public void rel ease() throws SQException
{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;
_onn =null; _tx =null;

}

protected Mit abl eStruct _struct;

private static int[] _sql Type = { 4,4 };
private stati c CRADataFactory[] _factory = new CRADat aFactory[2];
protected static final Rational _Rational Factory = new Rati onal (fal se);

public static CRADat aFactory get CRADat aFact ory()

{ return _Rational Factory; }

/* constructors */

prot ect ed Rational (bool ean init)

{ if (init) _struct = new Mitabl eSruct(new Chject[2], _sql Type, _factory); }
public Rational ()

{ this(true); __tx = DefaultContext.getDefaul tContext(); }

public Rational (Default Gontext c¢) /*throws SQException*/

{ this(true); _tx =c; }

public Rational (Gonnection c) /*throws SQException*/

{ this(true); _onn =c; }

public Rational (Integer nunerator, |nteger denominator) throws SQException

this(true);
set Nurrer at or (nuner at or) ;
set Denom nat or (denoni nat or) ;

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{
if (_tx!'=null & _onn!=c) release();
_onn = ¢;
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */

publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }

public void setFron{fRational o) throws SQException

{ setContext From{o); setVal ueFronfo); }

protect ed voi d set Gontext Fron{Rational o) throws SQException

JPublisher Examples 4-45

Example: Wrappers Generated for Methods in Objects

{ release(); _tx =o._tx; _onn=o._onn; }
prot ect ed voi d setVal ueFron{Rati onal o) { _struct = o._struct; }
protected CRADat a create(Rational o, Datumd, int sql Type) throws SQException
{
if (d=mnull) {if (o=null) { o.release(); }; return null; }
if (o =null) o= newRational(false);
0. _struct = new Mitabl eStruct ((STRUT) d, _sql Type, _factory);
0. __onn = ((STRUT) d).get JavaSgl Gonnection();
return o;
}
/* accessor nethods */
public Integer getNunerator() throws SQException
{ return (Integer) _struct.getAttribute(0); }

public voi d set Nunerator (I nteger nunerator) throws SQException
{ _struct.setAttribute(O, nurerator); }

public Integer getDenoninator() throws SQException
{ return (Integer) _struct.getAttribute(l); }

publ i ¢ voi d set Denomi nat or (I nteger denoninator) throws SQException
{ _struct.setAttribute(l, denominator); }

public Integer ged (
I nteger X,
I nteger y)
throws SQException
{
Integer _ jPt _result;
#sql [get GonnectionContext()] __jPt_result ={ VALUES(SCOIT. RATI ONAL. Q0
1X,
) b
return _ jPt _result;

}

public Rational normalize ()
throws SQException
{
Rational _ jPt_tenp = this;
#sql [get GonnectionContext ()] {
BEQ N
DINQJT _jPt_tenp. NORVALI ZK() ;
END,

4-46 Oracle9j JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects

i
return _ jPt_tenp;
}

public Rational plus (
Rational x)
throws SQException

{

Rational _ jPt_tenp = this;

Rational _ jPt_result;

#sql [get GonnectionContext ()] {
BEQ N
QJT __jPt result :=:_ jPt_tenp. PLUY
%)
BEND,

b

return _ jPt _result;

}

public Hoat toreal ()
throws SQException

{

Rational _ jPt_tenp = this;

Hoat _jPt_result;

#sql [get GonnectionContext ()] {
BEQ N
QJT _jPt _result :=:__ jPt_tenp. TAREAL();
END,

|3

return _ jPt _result;

}
}

All the methods that JPublisher generates invoke the corresponding PL/SQL
methods executing in the server.

JPublisher declares the sq/ _nane for the object to be SCOTT. RATI ONAL, and its
sql _type_codetobe Oracl eTypes. STRUCT. By default, it uses the SQLJ
connection context class sql j . runti ne. r ef . Def aul t Cont ext . It creates
accessor methods get Nuner at or (), set Nuner at or (), get Denoni nat or (),
and set Denom nat or () for the object attributes nuner at or and denoni nat or.

JPublisher generates source code for the gcd static function, which takes two
I nt eger values as input and returns an | nt eger result. This gcd function invokes
the RATI ONAL. GCD stored function with | N host variables : x and : y.

JPublisher Examples 4-47

Example: Wrappers Generated for Methods in Objects

JPublisher generates source code for the nor mal i ze member procedure, which
defines a PL/SQL block containing an | N OUT parameter inside the SQLJ
statement. The t hi s parameter passes the values to the PL/SQL block.

JPublisher generates source code for the pl us member function, which takes an
object x of type Rat i onal and returns an object of type Rat i onal . It defines a
PL/SQL block inside the SQLJ statement. The | N host variables are : x and a copy
of t hi s. The result of the function is an OUT host variable.

JPublisher generates source code for the t oReal member function, which returns a
Fl oat value. It defines a host OUT variable that is assigned the value returned by
the function. A copy of the t hi s object is an | N parameter.

4-48 Oracle9j JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages

Example: Wrappers Generated for Methods in Packages

Note: The wrapper methods that JPublisher generates to invoke
stored procedures are generated in SQLJ code; therefore,
JPublisher-generated classes that contain wrapper methods must be
processed by the SQLJ translator.

This section describes an example of JPublisher output given the definition below of
a PL/SQL package containing methods. The example defines the package

Rat i onal P with the following functions and procedures, which manipulate the
numerators and denominators of fractions.

=« FUNCTI ON t oReal : Given two integers, this function converts a rational
number to a real number and returns a real number.

« PROCEDURE nor mal i ze: Given two integers (representing a numerator and a
denominator), this procedure reduces a fraction by dividing the numerator and
denominator by their greatest common divisor.

« FUNCTI ON gcd: Given two integers, this function returns their greatest
common divisor.

«» PROCEDURE pl us: Adds two rational numbers and returns the result.
The code for Rat i onal P. sql follows:
CREATE PACKACE Rational P AS

FUNCTI ON t oReal (nuner at or | NTEGER
denomi nator | NTEGER) RETURN REAL;

PROCEDURE nor nal i ze(nuner at or IN QJT | NTECER
denoninator | N QUT | NTEGER);

FUNCTI ON ged(x |NTEGER vy | NTEGER) RETURN | NTEGER,
PROCEDURE plus (nl1 I|NTEGER d1 | NTEGER

n2 INTEEER d2 | NTEGER

n3 QUT | NTEGER d3 QUT I NTEGER);
END rational P,

/

JPublisher Examples 4-49

Example: Wrappers Generated for Methods in Packages

CREATE PACKAGE BCODY rational P AS

FUNCTI ON t oReal (nunerat or | NTEGER
denonminator INTEGER) RETURNreal IS
-- convert rational nunber to real nunber
BEA N
RETURN nunerat or / denom nator;
END t oReal ;

FUNCTI ON ged(x | NTEGER y INTEGER) RETURN INTEGER | S
-- find greatest common divisor of x and y
ans | NTECER
BEA N
IFx <y THN
ans :=gcd(y, X);
BHSF (x MDy = 0) THEN
ans :=y;
ELSE
ans :=gcd(y, x MDYy);
END I F;
RETURN ans;
END gcd;

PROCEDURE nor nal i ze(nunerator | N QUT | NTEGER
denominator IN QUT INTEGER IS

g | NTEGRR
BEQ N

g : = gcd(nunerator, denoninator);
nunerator := nunerator / g;
denoninator := denonminator / g;

END nornal i ze;

PROCEDURE plus (nl | NTEGER d1 | NTEGER
n2 | NTEEER d2 | NTEGER
n3 QUT INTEEER d3 QJT INTEEER IS
BEA N
n3:=nl1* d2 + n2 * di;
d3 :=d1 * d2;
END pl us;

END rational P,

In this example, JPublisher is invoked with the following command line:

jpub -user=scott/tiger -sqgl=Rational P -methods=true

4-50 Oracle9j JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages

The - user parameter directs JPublisher to login to the database as user scot t with
passwordti ger. The - met hods parameter directs JPublisher to generate wrappers
for the methods in the package Rat i onal P. You can omit this parameter, because

- met hods=t r ue is the default.

Listing and Description of RationalP.sqlj Generated by JPublisher

JPublisher generates the file Rat i onal P. sql j , as follows:

Note: The details of method bodies that JPublisher generates
might change in future releases.

inport java. sql . SQLExcepti on;

inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class Rational P
{

/* connection nanagenent */

protected Defaul t@ntext _ tx = null;

protected Gonnection __onn = nul | ;

publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException

{ release(); __tx =ctx; }

publ i ¢ Def aul t Gont ext get Connect i onCont ext () throws SQException

{ if (_tx==null)

{ _tx = (_onn=null) ? Defaul tContext.getDefaultContext() : new

Def aul t Gontext (__onn); }

return __tx;
b
publ i ¢ Gonnection get Gonnection() throws SQException
{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getCGonnection()) : _ onn;

}
public void rel ease() throws SQException
{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;
_onn =null; _tx =null;

}

/* constructors */
public Rational P() throws SQException

JPublisher Examples 4-51

Example: Wrappers Generated for Methods in Packages

{ _tx = Defaul t Gont ext . get Def aul t Cont ext () ;

}

public Rational P(Defaul tGontext c) throws SQ Exception
{ _tx=c; }

publ i ¢ Rational P(Gonnection c¢) throws SQException
{_onn =c; _tx = new Defaul tContext(c); }

public Integer gcd (
I nteger x,
I nteger y)
throws SQException
{
Integer _ jPt _result;
#sql [get GonnectionContext()] _ jPt_result = { VALUES(SCOIT. RATI ONALP. GO
TX,
) b
return _ jPt _result;
}
public void plus (
Integer ni,
Integer di,
I nteger n2,
I nteger d2,
Integer n3[],
Integer d3[])
throws SQException
{
#sql [get GonnectionContext ()] { CALL SCOTT. RATI ONALP. PLUSY(
1nl,
1di,
‘N2,
1 d2,
tQJT (n3[0]),
} tQUT (d3[0])) };
public Hoat toreal (
I nteger nunerator,
I nteger denoni nat or)
throws SQException
{
FHoat _ jPt_result;
#sql [get GonnectionContext()] _jPt_result ={
VALUES(SOOTT. RATI ONALP. TOREAL(
: nuner at or,
:denonminator)) };

4-52 Oracle9j JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages

return _ jPt _result;

}

public void normalize (
Integer nunerator[],
Integer denominator[])

throws SQException

{
#sql [get ConnectionContext()] { CALL SOOIT. RATI ONALP. NCRVALI ZK(
SINQUT (nunerator[0]),
:INQJT (denoninator[0])) };
}
}

All the methods that JPublisher generates invoke the corresponding PL/SQL
methods executing in the server.

By default, JPublisher uses the existing SQLJ connection context class
sqlj.runtinme.ref. Def aul t Cont ext and associates an instance of it with the
Rat i onal P package.

JPublisher generates source code for the gcd function, which takes two

Bi gDeci mal values—x and y—and returns a Bi gDeci mal result. This gcd
function invokes the stored function RATI ONALP. GCDwith | N host variables : x
and:vy.

JPublisher generates source code for the nor mal i ze procedure, which takes two

Bi gDeci mal values—numer at or and denoni nat or. This normalize procedure
invokes the stored procedure call RATI ONALP. NORMALI ZE with | N OUT host
variables : nuner at or and : denomi nat or. Because these are | N OUT parameters,
JPublisher passes their values as the first element of an array.

JPublisher generates source code for the pl us procedure, which has four

Bi gDeci mal | Nparameters and two Bi gDeci mal OUT parameters. This pl us
procedure invokes the stored procedure call RATI ONALP. PLUS, with | Nhost
variables: nl,:dl,: n2,and: d2. It also defines the QUT host variables : n3 and
: d3. Because these are OUT variables, JPublisher passes each of their values as the
first element of an array.

JPublisher generates source code for the t oReal function, which takes two

Bi gDeci mal values—numer at or and denoni nat or —and returns a

Bi gDeci mal result. Thist oReal function invokes the stored function call

RATI ONALP. TOREAL, with | N host variables : numer at or and : denom nat or.

JPublisher Examples 4-53

Example: Using Classes Generated for Object Types

Example: Using Classes Generated for Object Types

This section illustrates an example of how you can use the classes that JPublisher
generates for object types. Suppose you have defined a SQL object type that
contains attributes and methods. You use JPublisher to generate a <nane>. sql j
file and a <nane>Ref . j ava file for the object type. To enhance the functionality of
the Java class generated by JPublisher for the object type, you can extend the class.
After translating (if applicable) and compiling the classes, you can use them in a
program. For more information on this topic, see "Use of Classes JPublisher
Generates for Object Types" on page 2-26.

The following steps demonstrate the scenario described above. In this case, define a
Rat i onal OSQL object type that contains numer at or and denomni nat or
attributes and several methods to manipulate rational numbers. After using
JPublisher to generate JPubRat i onal O. sql j , Rati onal ORef. j ava, and an
initial version of Rat i onal O. sql j, editRati onal O sql j to extend and enhance
the functionality of the JPubRat i onal Oclass. After translating and compiling the
necessary files, use the classes in a test file to test the performance of the

Rat i onal O. j ava class.

Here are the steps, followed by listings of the files:

1. Create the SQL object type Rat i onal Q "Listing of RationalO.sql (Definition of
Obiject Type)" on page 4-56 contains the code for the Rat i onal O. sql file.

2. Use JPublisher to generate Java classes for the object—a
JPubRat i onal O sql j file,aRati onal ORef. | ava file, and an initial
Rat i onal O. sql j file for the subclass. Use this command line:

j pub - props=Rational O props
Assume the properties file Rat i onal O. pr ops contains the following:

j pub. user=scott/tiger
j pub. sql =Rati onal O JPubRati onal O Rati onal O
j pub. net hods=t rue

According to the properties file, JPublisher will log into the database with user
name scott and password ti ger. The sgl parameter directs JPublisher to
translate the object type Rat i onal O(declared by Rat i onal O. sql) and
generate JPubRat i onal Oas Rat i onal O where the second Rat i onal O
indicates a subclass (Rat i onal O. sql j) that extends the functionality of the
original Rat i onal O. The value of the net hods parameter indicates that
JPublisher will generate classes for PL/SQL packages and wrapper methods.

4-54 Oracle9j JPublisher User’s Guide

Example: Using Classes Generated for Object Types

JPublisher produces the following files:

JPubRat i onal O. sql |
Rat i onal ORef . j ava
Rati onal O sql j

See sections that follow for listings of these files.

Edit Rat i onal O. sql j to extend and enhance the functionality of

JPubRat i onal O. sql j . In particular, add code forat oSt ri ng() method,
which is used in the last two Syst em out . pri nt | n() calls in the test
program Test Rati onal O. j ava.

Use SQLIJ to translate and compile the necessary files. Enter the following:
sqlj JPubRational O sqlj Rational O sqglj

This translates and compiles the JPubRat i onal O. sql j and
Rati onal O sql j files.

Write a program Test Rat i onal O. j ava that uses the Rat i onal Oclass.
"Listing of TestRationalO.java Written by User" on page 4-64 contains the code.

Create the file connect . properti es, which Test Rat i onal Ouses to
determine how to connect to the database. The file reads as follows:

sqlj.user=scott

sqlj . password=ti ger

sqlj.url =jdbc:oracle:oci:@
sqlj.driver=oracle.jdbc.driver.Oacl eDriver
Compile and run Test Rat i onal G

javac TestRational O java
java Test Rational O

The program produces the following output:

gcd: 5

real value: 0.5
sum 100/ 100
sum 1/1

JPublisher Examples 4-55

Example: Using Classes Generated for Object Types

Listing of RationalO.sqgl (Definition of Object Type)
This section contains the code that defines the Rat i onal OSQL object type.

CREATE TYPE Rati onal O AS GBIECT (

nurrer at or | NTECER

denom nat or | NTECER,

MAP MEMBER FUNCTI ON t oReal RETURN REAL,

MEVBER PROCEDURE nor nal i ze,

STATI C FUNCTI ON ged(x | NTEGER

y INTEGER RETURN | NTEGER

MEVBER FUNCTI ON plus (x Rational O RETURN Rati onal O

)s

CREATE TYPE BODY Rational O AS

MAP MEMBER FUNCTI ON toReal RETURN REAL | S
-- convert rational nunber to real nunber
BEA N

RETURN nuner at or / denom nat or ;
END t oReal ;

MEMBER PROCEDURE nornal i ze 1S
g BI NARY_| NTEGER
BEA N
g : = Rational Q gcd(nunerator, denonmnator);
nunerator := nunerator / g;
denoninator := denomnator / g;
END nor nal i ze;

STATI C FUNCTI ON ged(x | NTEGER,
y INTEGER) RETURN INTEGER | S

-- find greatest common divisor of x and y
ans Bl NARY | NTECER
BEA N
IFx <y THN

ans := Rational Qgcd(y, X);
BHSF (x MDy = 0) THEN

ans :=vy;
ELSE

ans := Rational Qgcd(y, x MDYy);
END I F;
RETURN ans;
END gcd;

MEMBER FUNCTI ON plus (x Rational @ RETURN Rational OIS

4-56 Oracle9j JPublisher User’s Guide

Example: Using Classes Generated for Object Types

BEA N
return Rational Q nunerator * x.denoninator + X.nurerator * denon nator,
denoni nat or * x.denomnator);
END pl us;
END,

Listing of JPubRationalO.sqlj Generated by JPublisher
This section lists the code in JPubRat i onal O. j ava that JPublisher generates.

inport java. sql . SQ.Excepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . GRADat a;

inport oracl e. sql . GRADat aFact or y;
inport oracl e.sql. Datum

i nport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;
inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class JPubRational Oi npl enents CRAData, CRADat aFactory
{
public static final Sring _SQ_NAME = "SCOIT. RATIONALO';
public static final int _SQ TYPEQCDE = O acl eTypes. STRULCT;

/* connection nanagenent */
protected Defaul t@ntext _ tx = null;
protected Gonnection __onn = nul | ;
publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException
{ release(); __tx =ctx; }
publ i ¢ Def aul t Gont ext get Connect i onCont ext () throws SQException
{ if (_tx==null)
{ _tx = (_onn=null) ? Defaul tContext.getDefaultContext() : new
Def aul t Gontext (__onn); }

return __tx;
b
publ i ¢ Gonnection get Gonnection() throws SQException
{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getCGonnection()) : _ onn;
}

public void release() throws SQException
{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;

JPublisher Examples 4-57

Example: Using Classes Generated for Object Types

_onn =null; _tx =null;

}

protected Mitabl eStruct _struct;

private static int[] _sql Type = { 4,4 };

private stati c CRADataFactory[] _factory = new CRADat aFactory[2];

protected static final JPubRational O _JPubRational CFactory = new
JPubRat i onal (f al se);

public static CRADat aFactory get CRADat aFact ory()

{ return _JPubRational CFactory; }

/* constructors */

prot ect ed JPubRati onal O(bool ean init)

{ if (init) _struct = new Mitabl eSruct(new Chject[2], _sql Type, _factory); }
publ i ¢ JPubRati onal)

{ this(true); __tx = DefaultContext.getDefaul tContext(); }

publ i ¢ JPubRati onal Q' Def aul t Context ¢) /*throws SQ.Exception*/

{ this(true); _tx =c; }

publ i ¢ JPubRati onal O Gonnection c) /*throws SQException*/

{ this(true); __onn =c; }
publ i ¢ JPubRational I nteger nurerator, |nteger denom nator) throws
SQ Except i on
{
this(true);

set Nurrer at or (nuner at or) ;
set Denom nat or (denoni nat or) ;

}

/* CRAData interface */
publ i ¢ Dat um t oDat un{Gonnection c) throws SQ Exception

{
if (_tx!=null & _onn!=c) release();
_onn = ¢;
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */

publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

{ return create(null, d, sql Type); }

public voi d set Fron{JPubRati onal O 0) throws SQException

{ setContext From{o); setVal ueFronfo); }

prot ect ed voi d set Gont ext Fron{JPubRati onal O 0) throws SQException

{ release(); _tx =o._tx; _onn=o._onn; }

prot ect ed voi d set Val ueFron{JPubRational O 0) { _struct = o._struct; }

4-58 Oracle9j JPublisher User’s Guide

Example: Using Classes Generated for Object Types

prot ect ed CRADat a creat e(JPubRati onal O o, Datumd, int sql Type) throws

SQ Except i on
{
if (d=mnull) {if (o=null) { o.release(); }; return null; }
if (0o =null) o= new JPubRational fal se);

0._struct = new Mitabl eStruct ((STRICT) d, _sql Type, _factory);
0.__onn = ((STRUT) d).getJavaSgl Gonnection();
return o;

}

/* accessor nethods */

public Integer getNunerator() throws SQException

{ return (Integer) _struct.getAttribute(0); }

public voi d set Nunerator (I nteger nunerator) throws SQException
{ _struct.setAttribute(O, nurerator); }

public Integer getDenoninator() throws SQException
{ return (Integer) _struct.getAttribute(l); }

publ i ¢ voi d set Denomi nat or (1 nteger denoninator) throws SQException
{ _struct.setAttribute(l, denominator); }

public Integer ged (

I nteger X,
I nteger vy)
throws SQException
{
Integer _ jP _result;
#sql [get GonnectionContext()] _ jPt_result = { VALUES(SCOIT. RATI ONALQ G
1X,
) b
return _ jPt _result;
}

public Rational O nornalize ()
throws SQException

{
Rational O _jPt_tenp = (Rational Q this;
#sql [get GonnectionContext ()] {
BEQ N
DINQJT _jPt_tenp. NORVALI ZK() ;
END,
b
return _jPt_tenp;
}

JPublisher Examples 4-59

Example: Using Classes Generated for Object Types

public Rational O plus (
Rati onal O x)
throws SQException
{
JPubRational O __jPt_tenp = this;
Rational O _ jPt result;
#sql [get GonnectionContext ()] {
BEA N
QJT __jPt result :=:_ jPt_tenp. PLUY
%)
END,
b
return _ jPt _result;

}

public Hoat toreal ()
throws SQException

{
JPubRational O __jPt_tenp = this;
Hoat __jPt_result;
#sql [get GonnectionContext ()] {
BEQ N
QJT _jPt _result :=:_ jPt_tenp. TAREAL();
END,
b
return _ jPt _result;
}
}

Listing of RationalORef.java Generated by JPublisher

This section lists the code in Rat i onal ORef . j ava that JPublisher generates.

Note: The details of method bodies that JPublisher generates

might change in future releases.

inport java. sql . SQ.Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . CQRADat a;

inport oracl e. sql . CQRADat aFact or y;

4-60 Oracle9j JPublisher User’s Guide

Example: Using Classes Generated for Object Types

inport oracl e.sql.Datum
inport oracl e.sql . REF,
i mport oracl e. sql . STRUCT;

public class Rational CRef inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ BASETYPE = "SQOOIT. RATI ONALO';
public static final int _SQ TYPEQXE = O acl eTypes. REF;

REF ref;
private static final Rational QRef _Rational GRef Factory = new Rati onal GRef ();

public static CRADat aFactory get CRADat aFact ory()
{ return _Rational GRef Factory; }

/* constructor */

public Rational GRef ()

{

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception
{

return _ref;

}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{

if (d=null) return null;

Rati onal GRef r = new Rational CRef ();

r. ref = (REFH) d;

returnr;

}

public static Rational ORef cast(CRAData o) throws SQLException
{
if (o=null) return null;
try { return (Rational ORef) get CRADat aFactory(). create(o.toDatun{null),
Q acl eTypes. REF); }
catch (Exception exn)
{ throw new SQ@Exception("Uhabl e to convert "+o.getd ass().getNane()+" to
Rational GRef: "+exn.toSring()); }

}

JPublisher Examples 4-61

Example: Using Classes Generated for Object Types

publ i c Rational O get Val ue() throws SQException

{
return (Rational O Rational Q get GRADat aFact ory() . creat e(

_ref. get STRICT(), O acl eTypes. REF);
}

public voi d setVal ue(Rational Oc) throws SQException

{
_ref. set Val ue((STRUCT) c.toDatun{_ref.get JavaSgl Connection()));

}
}

Listing of RationalO.sqlj Generated by JPublisher and Modified by User

This section lists the code for the Rat i onal Oclass that extends the
JPublisher-generated superclass JpubRat i onal O This is for the default mode

(- gensubcl ass=t r ue), where JPublisher generates an initial . sql j source file for
the class, which the user then modifies as desired.

Typically, a user-written subclass needs to accomplish the following:

« lItdeclares a factory object, _JPubRat i onal O

« Itimplements a get ORADat aFact or y() method.

« Itimplementsacreate() method.

« Itimplements the constructors by calling the constructors in the superclass.

This particular subclass also requiresat oSt ri ng() method, which is used in the
last two Syst em out . printl n() callsin Test Rati onal O. j ava (described in
"Listing of TestRationalO.java Written by User" on page 4-64). See "Manually Coded
toString() Method" at the end of the generated code.

JPublisher-Generated Code
This section lists the Rat i onal O. sql j source code generated by JPublisher.

inport java. sqgl . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CQRADat a;

inport oracl e. sql . GQRADat aFact ory;

inport oracl e.sql . Datum

i nport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

4-62 Oracle9j JPublisher User’s Guide

Example: Using Classes Generated for Object Types

inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class Rational O extends JPubRational Oi npl enents CRAData, CRADat aFactory
{
private static final Rational O_Rational Gractory = new Rati onal O(f al se);
public static CRADataFactory get CRADat aFact ory()
{ return _Rational GFactory; }

public Rational Q) { super(); }

public Rational QGnnection conn) throws SQException { super(conn); }
public Rational QDefaultContext ctx) throws SQException { super(ctx); }
protected Rational Q(bool ean init) { super(init); }

public Rational Q(Integer nunerator, |nteger denonminator) throws SQException
{
set Nurrer at or (nuner at or) ;
set Denom nat or (denoni nat or) ;
}
/* CRAData interface */
public CRAData create(Datumd, int sql Type) throws SQException
{ return create(new Rational O false), d, sq Type); }

/* supercl ass accessors */

/*
public Integer getNunerator() throws SQException { return
super. get Nunerator(); }
public voi d set Nunerator(lnteger nunerator) throws SQException {
super . set Nurerat or (nurrerator); }
*/

/*
public Integer getDenonminator() throws SQException { return
super. get Denom nator (); }
publ i c voi d set Denomi nat or (I nteger denoninator) throws SQException {
super . set Denom nat or (denoninator); }
*/

/* supercl ass net hods */

/*
public Integer gcd(Integer x, Integer y) throws SQException
{ return super.gcd(x, y); }

*/

JPublisher Examples 4-63

Example: Using Classes Generated for Object Types

/*
public Rational O nornalize() throws SQLException
{ return super.nornalize(); }
*/
/*
public Rational O plus(Rati onal O x) throws SQ Exception
{ return super.plus(x); }
*/
/*
public Hoat toreal () throws SQException
{ return super.toreal (); }
*/
}

Manually Coded toString() Method

This section shows the t oSt ri ng() method required by Test Rat i onal O In this
example, you would have to add this method definition to the JPublisher-generated
Rat i onal O. sql j source file.

Alternatively, you could use the JPublisher option setting - t ost ri ng=t r ue to
have JPublisher automatically generate at oSt ri ng() method into the Java object

type wrappers.

/* additional nethod not in base class */
public Sring toString()
{

try

{

}
catch (SQException e)

{

}
}

return getNunerator().toSring() +"/" + getDenomnator().toSring();

return nul | ;

Listing of TestRationalO.java Written by User

This section lists the contents of a user-written file, Test Rat i onal O. j ava, that
tests the performance of the Rat i onal Oclass, given initial values for nuner at or
and denomi nat or. Note that the Test Rat i onal O j ava file also demonstrates
how to perform the following tasks.

4-64 Oracle9j JPublisher User’s Guide

Example: Using Classes Generated for Object Types

« Connect to the database by calling the Or acl e. connect () method.

« Declare a Java object representing a SQL object type and initialize it by setting
its attributes.

« Use the object to call server methods.

inport oracle.sqlj.runtime. Oacle;
inport oracl e.sql . Datum

inport java. sql . Gonnecti on;

inport java.sql.Driver Manager;
inport java.sql.Driver;

public class TestRational O

{

public static void main(String[] args)

throws java. sql . SQLExcepti on

{
Q acl e. connect (new Test Rati onal (). getd ass(),

"connect . properties");

Rational Or = new Rational ();
Integer n = new I nteger(5);
Integer d = new I nteger(10);
r.set Nunerator(n);
r. set Denom nat or (d);
Integer g = r.ged(n, d);
Systemout. printin("ged: " + @g);
Hoat f =r.toreal ();
Systemout. println("real value: " + f);
Rational Os = r.plus(r);
Systemout. printIn("sum " +s);
s = s.nornalize();
Systemout. printIn("sum " +s);

}

}

JPublisher Examples 4-65

Example: Using Classes Generated for Packages

Example: Using Classes Generated for Packages

This section provides an example of how you can use the classes and method
wrappers that JPublisher generates for objects and packages, respectively. Suppose
you have defined a SQL object type that contains attributes and a package with
methods. Use JPublisher to generate <nane>. sql j files for the object and the
package. After translating the classes, you can use them in a program. For more
information on this topic, see "Use of SQLJ Classes JPublisher Generates for
PL/SQL Packages" on page 2-25.

The following steps demonstrate the scenario described above. In this case, you
define a Rat i onal SQL object type that contains nuner at or and denom nat or
integer attributes, and a package Rat i onal P that contains methods to manipulate
rational numbers. After using JPublisher to generate the Rat i onal . sql j and

Rat i onal P. sql j files, translate them with SQLJ, then use them in a test file to test
the performance of the Rat i onal and Rati onal P classes.

Here are the steps, followed by listings of the files:

1. Create the SQL object type Rat i onal and package Rat i onal P. "Listing of
RationalP.sgl (Definition of the Object Type and Package)" on page 4-67 contains
the SQL code for the Rat i onal P. sql file.

2. Use JPublisher to generate a Java class file and a SQLJ class file
(Rati onal . j ava and Rat i onal P. sql j) for the object and package,
respectively. Use this command line:

j pub - props=Rational P. props
Assume the properties file Rat i onal P. pr ops contains the following:

j pub. user=scott/tiger

j pub. sgl =Rat i onal P, Rati onal
j pub. mappi ng=or acl e

j pub. net hods=t rue

According to the properties file, JPublisher will log into the database with user
name scott and password ti ger. The sgl parameter directs JPublisher to
translate the object type Rat i onal and package Rat i onal P (declared in

Rat i onal P. sql). JPublisher will translate the type and package according to
the or acl e mapping. The value of the met hods parameter indicates that
JPublisher will generate classes for PL/SQL packages, including wrapper
methods. Since the object type Rat i onal does not have any member functions,
JPublisher will translate itinto a . j ava file, nota. sql j file. By using the

- met hods=al ways setting for JPublisher, however, you could have requested

4-66 Oracle9j JPublisher User’s Guide

Example: Using Classes Generated for Packages

the generation of a . sql j file regardless. See "Generation of Package Classes
and Wrapper Methods (-methods)" on page 3-21 for more information.

JPublisher produces the following files:

Rati onal . j ava
Rat i onal P. sql j

3. Translate/compile the Rat i onal P. sgl j and Rati onal . j ava files:
sqlj Rational P.sglj Rational.java
4. Write a program, Test Rat i onal P. j ava, that uses the Rat i onal P class.

5. Write the file connect . properti es, which Test Rati onal P. j ava uses to
determine how to connect to the database. The file is as follows:

sqlj.user=scott

sqlj . password=ti ger

sqlj.url =jdbc:oracle:oci:@
sqlj.driver=oracle.jdbc.driver.Oacl eDriver

6. Compile and run Test Rat i onal P:

javac TestRational P.java
java TestRational P

The program produces the following output:

gcd: 5

real value: 0.5
sum 100/ 100
sum 1/1

Listing of RationalP.sql (Definition of the Object Type and Package)

This section lists the contents of the file Rat i onal P. sql , which defines the
Rat i onal SQL object type and the Rat i onal P package.

CREATE TYPE Rational AS CBIECT (
nurrer at or | NTECER
denom nat or | NTEGER

)s

/

CREATE PACKACE Rational P AS

FUNCTI ON toReal (r Rational) RETURN REAL;

JPublisher Examples 4-67

Example: Using Classes Generated for Packages

PROCEDURE nornal i ze(r IN QUT Rational);
FUNCTI ON ged(x INTEGER y | NTEGER) RETURN | NTEGER
FUNCTION plus (rl1 Rational, r2 Rational) RETURN Rati onal ;

END rational P,
/
CREATE PACKAGE BCODY rational P AS

FUNCTION toReal (r Rational) RETURNreal IS
-- convert rational nunber to real nunber
BEA N

RETURN r. nunerator / r.denonm nator;
END t oReal ;

FUNCTI ON ged(x | NTEGER y |NTEGER) RETURN I NTEGER | S
-- find greatest common divisor of x and y

result | NTECER
BEAQ N
IFx <y THN

result := gcd(y, X);
BHSF (x MDy = 0) THEN

result :=vy;
ELSE
result :=gcd(y, x MDYy);
END I F;
RETURN resul t;
END gcd;
PROCEDURE nornal ize(r IN QJT Rational) IS
g | NTEGRR
BEG N
g :=gcd(r.nunerator, r.denomnator);
r.nunerator :=r.nunerator / g;
r.denomnator :=r.denomnator / g;

END nornal i ze;

FUNCTION plus (r1 Rational,
r2 Rational) RETURN Rational IS
n | NTEGER
d | NTEGER
result Rational;
BEQ N
n:=rl nunerator * r2.denomnator + r2.nunerator * rl.denom nator;

4-68 Oracle9j JPublisher User’s Guide

Example: Using Classes Generated for Packages

d :=rl.denomnator * r2.denom nator;

result := Rational (n, d);
RETURN resul t;
END pl us;

END rational P,
/

Listing of TestRationalP.java Written by User

The test program, Test Rat i onal P. j ava, uses the package Rat i onal P and the
object type Rat i onal , which does not have methods. The test program creates an
instance of package Rat i onal P and two Rat i onal objects.

Test Rat i onal P connects to the database through the Oracle SQLJ

O acl e. connect () method. In this example, the Or acl e. connect () call
specifies the file connect . properti es, which contains these connection
properties:

sqlj.url=jdbc:oracle:oci: @
sql j . user=scott
sql j . passwor d=ti ger

Following is a listing of Test Rat i onal P. j ava:

inport oracl e.sql. Datum

import oracl e. sgl . NOMBER

inport java. nat h. Bi gDeci mal ;

inport sqlj.runtine.ref.Defaul t Gontext;
inport oracle.sqlj.runtime. Cacle;
inport java. sql . Gonnecti on;

public class TestRational P

{

public static void main(String[] args)
throws java. sql . SQLExcepti on
{

Q acl e. connect (new Test Rati onal (). getd ass(),
"connect . properties");

Rational P p = new Rational P();

JPublisher Examples 4-69

Example: Using Classes Generated for Packages

NUMBER n = new NUMBER(5) ;
NUMBER d = new NUMBER(10);
Rational r = new Rational ();
r.set Nunerator(n);

r. set Denom nat or (d);

NUMBER f = p.toreal (r);
Systemout. printin("real value: " + f.stringvalue());

NUMBER g = p.gcd(n, d);
Systemout. println("ged: " + g.stringvalue());

Rational s = p.plus(r, r);
Systemout. println("sum " + s.getNunerator().stringVal ue() +
"/" + s.getDenomnator().stringVal ue());

Rational [] sa = {s};

p. nor nal i ze(sa);

s =sa[0];

Systemout. println("sum " + s.getNunerator().stringVal ue() +
"/" + s.getDenom nator().stringVal ue());

4-70 Oracle9j JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC

Example: Using Datatypes Unsupported by JDBC

JPublisher provides a number of mechanisms to facilitate the use of types that are
PL/SQL-specific and cannot be accessed directly from Java. This example sets up a
SQL object type that uses the PL/SQL BOOLEAN type in its object methods.

We contrast publishing this type directly using JPublisher, with writing conversions
for this type manually. Since JPublisher can deal automatically with the BOOLEAN
type, there is no question as to which approach brings you the quickest result.
However, the manual approach provides a good illustration of the basic conversion
idea that is also employed by JPublisher. Also, remember that for types that do not
have predefined conversions, you will still have to create corresponding SQL types
as well as conversion functions. Fortunately, once you have done this for a
particular type, you can provide the type map entry to JPublisher, which will use
the information to properly map every method in which the type occurs.

The User-Defined BOOLEANS Datatype

The following . sql file defines an object type with methods that use PL/SQL
BOOLEAN arguments. The methods this program uses are elementary; they serve
only to demonstrate that arguments are passed correctly.

Note: Do not confuse the user-defined BOOLEANS object type with
the PL/SQL BOOLEAN type.

CREATE TYPE BOCLEANS AS CBIECT (

iln I NTEGER
ilnQut | NTEGER
i Qut I NTEGER

MEMBER PROCEDURE p(i 1 | N BOOLEAN
i2 IN QUT BOOLEAN,
i3 QUT BOOLEAN),

MEMBER FUNCTI ON f (i 1 | N BOCLEAN) RETURN BOCLEAN
)

CREATE TYPE BODY BOCLEANS AS
MEMBER PROCEDURE p(i 1 | N BOOLEAN

i2 IN QU BOOLEAN
i3 QUT BOCLEAN) 1S

JPublisher Examples 4-71

Example: Using Datatypes Unsupported by JDBC

BEA N
iQut :=iln;

IFilnQut IS NLL THEN

ilnQut :=0;
ELSFilnQut =0 THEN
ilnQut :=1;
ELSE
ilnQut := NUL;
END I F;
i3:=i1;
i2:=NOriz;
END,

MEMBER FUNCTI ON f (i1 | N BOOLEAN) RETURN BOOLEAN | S
BEQ N

return il =(iln = 1);
END,

BEND,

Alternative 1: Using JPublisher for the Entire Process

You can directly publish the BOOLEANS object type, as shown in the JPublisher
command line below, because conversions for BOOLEAN are defined in the

SYS. SQLJUTL package to convert between PL/SQL BOOLEAN and SQL | NTEGER.
Additionally, SQL | NTEGER itself is directly mappable to Java bool ean, so there is
a natural correspondence. Also, remember to install the PL/SQL wrapper script
before using the SQLJ code that JPublisher generates in Bool ean. sql j .

jpub -u scott/tiger -s BOOLEANS: Bool eans -pl sql fil e=BWap. sql
- pl sql package=B \WRAP
sql j pl us scott/tiger @wap. sql

As noted in "Type Mapping Support Through PL/SQL Conversion Functions" on
page 2-11, the JPublisher default type map relates PL/SQL BOOLEAN to Java

bool ean. To preserve the ability to represent null data, you might prefer mapping
to the Java object type Bool ean instead. You can accomplish this by redefining the
default type map.

For completeness, the content of the JPublisher-generated file Bool eans. sql j
followvs.

4-72 Oracle9j JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . CQRADat a;

i nport oracl e. sql . GQRADat aFact ory;
inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eSruct;
inport sqlj.runtine.ref.Defaul t Context;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class Bool eans inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ_ NAME = "SCOIT. BOOLEANS';
public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

/* connection nanagenent */
protected Defaul t@ntext _ tx = null;
protected Gonnection __onn = nul | ;
publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException
{ release(); __tx =ctx; }
publ i ¢ Def aul t Gont ext get Connect i onCont ext () throws SQException
{ if (_tx==null)
{ _tx = (_onn=null) ? Defaul tContext.getDefaultContext() : new
Def aul t Context (__onn); }

return __tx;
b
publ i ¢ Gonnection get Gonnection() throws SQException
{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getCGonnection()) : _ onn;

}
public void release() throws SQException

{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;
_onn =null; _tx =null;

}

protected Mitabl eStruct _struct;

private static int[] _sql Type = { 4,4,4 };

private static CRADataFactory[] _factory = new CRADat aFactory[3];
protected static final Bool eans _Bool eansFactory = new Bool eans(f al se);

public static CRADat aFactory get CRADat aFact ory()
{ return _Bool eansFactory; }

JPublisher Examples 4-73

Example: Using Datatypes Unsupported by JDBC

/* constructors */

prot ect ed Bool eans(bool ean init)

{if (init) _struct = new Mit abl eXruct(new Cbject[3], _sql Type, _factory); }
publ i ¢ Bool eans()

{ this(true); __ tx = DefaultContext.getDefaul tContext(); }

publ i ¢ Bool eans(Defaul t Context c) /*throws SQException*/

{ this(true); _tx =c; }

publ i ¢ Bool eans(onnection c) /*throws SQException*/

{ this(true); _onn =c; }
publ ic Bool eans(Integer iin, Integer iinout, Integer iout) throws SQException
{

this(true);

setlin(iin);

setlinout(iinout);
setlout (iout);

}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{
if (_tx!'=null & _onn!=c) release();
_onn = ¢;
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
publ i c voi d set Fron{Bool eans 0) throws SQException
{ setContext From{o); setVal ueFronfo); }
prot ect ed voi d set Gont ext Fron{Bool eans 0) throws SQ Exception
{ release(); _tx =o._tx; _onn=o._onn; }
prot ect ed voi d set Val ueFron{Bool eans 0) { _struct = o._struct; }
prot ect ed CRADat a creat e(Bool eans o, Datumd, int sqgl Type) throws SQException
{
if (d=mnull) {if (ol=null) { o.release(); }; return null; }
if (0o ==null) o= new Bool eans(fal se);
0. _struct = new Mitabl eStruct ((STRUCT) d, _sql Type, _factory);
0.__onn = ((STRUT) d).getJavaSgl Gonnection();
return o;
}
/* accessor nethods */
public Integer getlin() thronws SQException
{ return (Integer) _struct.getAttribute(0); }

4-74 Oracle9j JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC

public void setlin(Integer iin) thronws SQException
{ _struct.setAttribute(0, iin); }

public Integer getlinout() throws SQException
{ return (Integer) _struct.getAttribute(l); }

public void setlinout(lnteger iinout) throws SQException
{ _struct.setAttribute(l, iinout); }

public Integer getlout() throws SQException
{ return (Integer) _struct.getAttribute(2); }

public void setlout(lnteger iout) throws SQException
{ _struct.setAttribute(2, iout); }

public boolean f (
bool ean i1)
throws SQException
{
Booleans _ jPt_tenp = this;
boolean _ jPt result;
#sql [get GonnectionContext ()] {
BEA N
QJT __jPt _result := SYS SQJIUTL. BOOL2INT(: __ jPt_tenp. K
SYS. SQLIUTL. I NT2BAOL(:i1)));
END,
b
return _ jPt _result;

}

publ i ¢ Bool eans p (
bool ean i1,
bool ean i2[],
bool ean i3[])
throws SQLException
{
Booleans _ jPt_tenp = this;
#sql [get GonnectionContext ()] {
BEQ N
B WRAP. BOOLEANSSP(: | NOUT __j Pt _tenp,
Tid,

JPublisher Examples 4-75

Example: Using Datatypes Unsupported by JDBC

SINQJT (i 2[0]),
QJT (13(0]));
END,
b
return _ jPt_tenp;
}
}

And this is the content of the file BW ap. sql generated by JPublisher that contains
PL/SQL wrapper code. Note that JPublisher must generate wrappers only in those
cases where PL/SQL arguments occur as IN OUT or as OUT parameters.

CREATE CR REPLACE PACKAGE B \WRAP AS
PROCEDURE BOOLEANSSP (SELF_ | N QUT SOOTT. BOOLEANS, | 1 | NTEGER |2 | N QUT
INTEGER | 3 QUT | NTEGER);
END B VRAP,
/
CREATE CR REPLACE PACKAGE BCDY B WRAP 1S

PROCEDURE BOOLEANSSP (SELF_ | N QUT SCOTT. BOCLEANS, |1 I NTEGER 12 | N QUT
INTEGER 13 QUT INTEGER) IS
|1 BOCLEAN
12 BOCLEAN
13 BOCLEAN
BEQ N
11 := SYS SQJIUTL. I NT2BOOL(11);
12_ := SYS SQJIUTL. I NT2BO0L(12);
SHF.PI1,12,13);
12 := SYS. SQIUTL. BaCL2I NT(12);
13 := SYS. SQIUTL. BaL2I NT(13) ;
END BOCLEANSSP,

END B VRAP,
/

Alternative 2; Manual Conversion

Another technique you can employ to use datatypes not supported by JDBC is to
write an anonymous PL/SQL block that converts JDBC-supported input types into
input types that the PL/SQL method uses. Then convert the output types that the
PL/SQL method uses into output types that JDBC supports. For more information
on this topic, see "Using Datatypes Unsupported by JDBC" on page 2-7.

4-76 Oracle9j JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC

The following steps offer a general outline of how you would do this. The steps
assume that you used JPublisher to translate an object type with methods that
contain argument types not supported by JDBC. The steps describe the changes you
must make. You could make changes by extending the class or by modifying the
generated files. Extending the classes is generally a better technique; however, in
this example, the generated files are modified.

1. InJava, converteach | Nor | N OUT argument having a type that JDBC does not
support to a Java type that JDBC does support.

2. Passeach | Norl N OUT argument to a PL/SQL block.

3. Inthe PL/SQL block, convert each | Nor | N OUT argument to the correct type
for the PL/SQL method.

4. Call the PL/SQL method.

5. InPL/SQL, convert each OUT argument, | N OUT argument, or function result
from the type that JDBC does not support to the corresponding type that JDBC
does support.

6. Returneach OUT argument, | N OUT argument, or function result from the
PL/SQL block.

7. InJava, convert each OUT argument, | N OUT argument, or function result from
the type JDBC does support to the type it does not support.

Here is an example of how to handle an argument type not directly supported by
JDBC. The example converts from or to a type that JDBC does not support

(Bool ean/BOOLEAN) to or from a type that JDBC does support

(St ri ng/VARCHAR2).

The following . sql j file was first generated by JPublisher and then user-modified,
according to the preceding steps. The wrapper methods accomplish the following:

« Convert each argument from Bool ean to St ri ng in Java.

«» Pass each argument into a PL/SQL block.

« Convert the argument from VARCHAR2 to BOOLEANin PL/SQL.
« Call the PL/SQL method.

« Convert each OUT argument, | N OUT argument, or function result from
BOOLEAN to VARCHARZ in PL/SQL.

« Return each OUT argument, | N OUT argument, or function result from the
PL/SQL block.

JPublisher Examples 4-77

Example: Using Datatypes Unsupported by JDBC

« Finally, convert each OUT argument, | N OUT argument, or function result.

Here is the code:

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle.sql . GQRADat a;

inport oracl e. sql . GRADat aFact or y;
inport oracl e.sql.Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;
inport sqlj.runtine.ref.Defaul t Gontext;
inport sqlj.runtine. Gnnecti onCont ext ;
inport java. sql . Gonnecti on;

public class Bool eans inpl enents CRAData, CRADat aFact ory

{
public static final Sring _SQ_ NAME = "SCOIT. BOOLEANS';
public static final int _SQ TYPEQCE = O acl eTypes. STRULCT;

/* connection nanagenent */
protected Defaul tntext _ tx = null;
protected Gonnection __onn = nul | ;

publ i ¢ voi d set Connecti onCont ext (Def aul t Context ctx) throws SQException

{ release(); _tx =ctx; }

publ i ¢ Def aul t Gont ext get Connect i onCont ext () throws SQException

{ if (_tx==null)

{ _tx = (_onn=null) ? Defaul tContext.getDefaultContext() : new

Def aul t Gontext (__onn); }
return __tx;

b
publ i ¢ Gonnection get Gonnection() throws SQException

{ return (_onn==null) ? ((_tx==null) ? null : _ tx.getGonnection()) : _ onn;

}
public void release() throws SQException
{ if (_tx!=null & __onn!=null)
__tx.cl ose(Connect i onCont ext . KEEP_GONNECTI QN ;
_onn =null; _tx =null;

}

protected Mitabl eStruct _struct;

static int[] _sql Type =

4-78 Oracle9j JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC

b
static CRADataFactory[] _factory = new CRADat aFactory[3];

static final Bool eans _Bool eansFact ory = new Bool eans(fal se);
public static CRADat aFactory get CRADat aFact ory()
{

return _Bool eansFact ory;

}

/* constructors */

prot ect ed Bool eans(bool ean init)

{ if (init) _struct = new Mitabl eSruct(new Chject[3], _sql Type, _factory); }
publ i ¢ Bool eans()

{ this(true); __tx = DefaultContext.getDefaul tContext(); }

publ i ¢ Bool eans(Defaul t Gontext c¢) throws SQException

{ this(true); _tx =c; }

publ i ¢ Bool eans(Gonnection c) throws SQException

{ this(true); _onn =c; }

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c) throws SQ Exception

{
if (_tx!'=null & _onn!=c) release();
_onn = ¢;
return _struct.tobDatunfc, _SQ_NAME);
}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException
{ return create(null, d, sql Type); }
publ i c voi d set Fron{Bool eans o) throws SQException
{ release(); _struct = o._struct; _tx =o._tx; _onn =o0._onn; }
prot ect ed voi d set Val ueFron{Bool eans 0) { _struct = o._struct; }
prot ect ed CRADat a creat e(Bool eans o, Datumd, int sqgl Type) throws SQException
{
if (d=null) {if (ol=null) { o.release(); }; return null; }
if (o ==null) o = new Bool eans(fal se);
0._struct = new Mitabl eStruct ((STRICT) d, _sql Type, _factory);
0.__onn = ((STRUCT) d).get Javasgl Gonnecti on();
return o;

}

/* accessor nethods */
public Integer getlin() throns SQException

JPublisher Examples 4-79

Example: Using Datatypes Unsupported by JDBC

{ return (Integer) _struct.getAttribute(0); }

public void setlin(Integer iin) throns SQException
{ _struct.setAttribute(0, iin); }

public Integer getlinout() throws SQException
{ return (Integer) _struct.getAttribute(l); }

public void setlinout(lnteger iinout) throws SQException
{ _struct.setAttribute(l, iinout); }

public Integer getlout() throws SQException
{ return (Integer) _struct.getAttribute(2); }

public void setlout(lnteger iout) throws SQException
{ _struct.setAttribute(2, iout); }

/* Uhabl e to generate nethod "f"
because it uses a type that is not supported

publ i ¢ <unsupported type> f (
<unsupported type> i 1)
throws SQException
{
Booleans _ jPt_tenp = this;
<unsupported type> _ jPt_result;
#sql [get GonnectionContext ()] {
BEQ N
QJT _jPt _result :=:_ jPt_tenp. K
1),
END,
b
return _ jPt _result;
}or

public Bool ean f (
Bool ean i 1)

throws SQException

{
Bool eans _tenp = this;
Sring _il =null;

4-80 Oracle9j JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC

Sring _result =null;
if (il'=null) _il1=il.toSring();

#sql [get GonnectionContext ()] {
CEQLARE
i1 BOOLEAN
resul t _ BOOLEAN
t_ VARCHAR(5):

BEG N
il :=:1i1="true;
result_ :=: _tenp.F(il);
IF result _ THEN
t_:="true;
BLSIF NOT result _ THEN
t :='false;
B.SE
t_ = NUL;
BE\D I F;

:QJT _result =1t ;

END,
b

if (_result == null)
return nul l;
el se
return new Bool ean(_result.equal s("true"));

/* Unhabl e to generate nethod "p"
because it uses a type that is not supported

publ i ¢ Bool eans p (
<unsupported type> i1,
<unsupported type> i2[],
<unsupported type> i3[])

throws SQException

{
Booleans _ jPt_tenp = this;
#sqgl [get GonnectionCntext()] {

JPublisher Examples 4-81

Example: Using Datatypes Unsupported by JDBC

BEQ N
JINQJT _ jPt_tenmp. P(
Til,
SINQJT (i 2[0]),
QJT (13(0]));
END,

b

return _jPt_tenp;

}or

publ i c Bool eans p (
Bool ean i 1,
Bool ean i 2[],
Bool ean i 3[])
throws SQException
{
Sring il =(il=null) ? null
il.toSring();

Sring _i2 = (i2[0] =null) ? null
i2[0].toring();

Sring _i3 =(i3[0] =null) ? null
i3[0].toXring();

Bool eans _tenp = this;

#sql [get GonnectionContext ()] {
CEQLARE
i1 BOOLEAN
i 2_ BOOLEAN
i 3_ BOOLEAN
t_ VARGHAR(5):

BEA N
il
i2

il
12

"true’
"true’

JINQJT _tenp.P(i1, i2, i3);

IFi2 THEN
t_ :="true';
BLSIF NOT i2_ THEN
t :='false;
B.SE

4-82 Oracle9j JPublisher User’s Guide

Example

: Using Datatypes Unsupported by JDBC

new Bool ean(_i 2. equal s("true"));

t_ 1= NULL;
END | F;
QJT 2=t ;
IFi3 THEN
t_ :="true;
BLSIF NOT i 3 THEN
t :='false;
B.SE
t = NUL;
END | F;
QJT i3 :=1t_;
END,
b
i2[00 =(2=null) ? null
i3[0) =(i3=null) ? null

new Bool ean(_i 3. equal s("true"));

return _tenp;

Note:

Because of the semantics of SQLJ parameters, it is necessary

to assign to each output parameter exactly once within the block.

JPublisher Examples 4-83

Example: Using Datatypes Unsupported by JDBC

4-84 Oracle9j JPublisher User’s Guide

Index

A CREATE PACKAGE BODY statement, 1-19
CREATE PACKAGE statement, 1-19
CREATE TYPE statement, 1-19

access option, 3-13
adddefaulttypemap option, 3-14
addtypemap option, 3-14
ARRAY class, features supported, 2-33 D
AS clause, translation statement, 3-36
attribute mapping, sample program, 4-8
attribute types, allowed, 2-6

datatype mappings
allowed object attribute types, 2-6
BigDecimal mapping, 1-19
-builtintypes option, 3-11

B -compatible option, 3-9

datatype tables, 2-3

details of use, 2-2

indexed-by table support (general), 2-16

indexed-by table support with JDBC OCI, 2-9

JDBC mapping, 1-18

C -lobtypes option, 3-11

-mapping option (deprecated), 3-12

mapping to alternative class (subclass),

syntax, 2-35

-numbertypes option, 3-10

Object JIDBC mapping, 1-18

OPAQUE type support, 2-8

Oracle mapping, 1-19

backward compatibility for JPublisher, 2-49
BigDecimal mapping, 1-19
builtintypes option, 3-11

case option, 3-15
case-sensitive SQL UDT names, 3-27, 3-36
classes, extending, 2-34
collection types
output, 1-17
representing in Java, 1-23

command-line options--see options
command-line syntax, 1-25
compatibility

backward, for JPublisher, 2-49

between JDK versions, 2-49

Oracle8i compatibility mode, 2-52
compatible option, 3-9
connection contexts and instances, use of, 2-27
context option, 3-16
conventions, notation, 3-6

overview, 1-18

PL/SQL conversion functions, 2-11

RECORD type support, 2-14

relevant options, 3-7

sample program, 4-2

-usertypes option, 3-8

using types not supported by JDBC, 2-7,2-19

using types not supported by JDBC, sample
program, 4-71

default type map, 2-18

Index-1

defaulttypemap option, 3-17 JDK versions, JPublisher compatibility, 2-49
dir option, 3-18

L
E limitations of JPublisher, 2-55
extending JPublisher-generated classes lobtypes option, 3-11
changes in Oracle9i JPublisher, 2-36
concepts, 2-34 M
format of subclass, 2-35
-gensubclass option, 3-20 mapping option (deprecated), 3-12
introduction, 2-34 mappings--see datatype mappings
sample program, 4-36 method access option, 3-13
methods option, 3-21
G methods, overloaded, translating, 2-23
GENERATE clause, translation statement, 3-37 N
gensubclass option, 3-20
getConnection() method, 2-29 nested table types, creating in the database, 1-19
getConnectionContext() method, 2-29 nested tables, output, 1-17
getting started, 1-3 new features in Oracle9i, 1-9
notational conventions, 3-6
| numbertypes option, 3-10
i option (-input), 3-20 O
indexed-by table support, 2-6
general support, 2-16 Object IDBC mapping, 1-18
with JDBC OCI, 2-9 object types
inheritance, support through ORAData, 2-39 classes generated for, 2-26
INPUT files creating in the database, 1-19
package naming rules, 3-38 inheritance, 2-39
precautions, 3-41 output, 1-17
structure and syntax, 3-35 publishing (introduction), 1-4
translation statement, 3-35 representing in Java, 1-23
input files translation, 1-21
overview, 1-17 using generated classes, sample program, 4-54
properties files and INPUT files, 3-33 with JPublisher, overview, 1-11
-props option (properties file), 3-25 omit_schema_names option, 3-22
input option, 3-20 OPAQUE type support, 2-8
input, JPublisher (overview), 1-17 option syntax (command line), 1-25
options
J -access option, 3-13
-adddefaulttypemap option, 3-14
Java classes, generation and use, 2-31 -addtypemap option, 3-14
JDBC mapping -builtintypes option, 3-11
overview, 1-18 -case option, 3-15
sample program, 4-2 -compatible option, 3-9

Index-2

-context option, 3-16 P
-defaulttypemap option, 3-17
-dir option, 3-18
general options, 3-13
general tips, 3-5
-gensubclass option, 3-20
-i option (-input), 3-20
-input option, 3-20
-lobtypes option, 3-11
-mapping option (deprecated), 3-12
-methods option, 3-21
-numbertypes option, 3-10
-omit_schema_names option, 3-22
-p option (-props), 3-25
-package option, 3-23
-plsqlfile option, 3-24
-plsglmap option, 3-24
-plsglpackage option, 3-25
-props option (properties file), 3-25
-s option (-sql), 3-26
-serializable option, 3-26
-sgl option, 3-26
summary and overview, 3-2
that affect type mappings, 3-7
-tostring option, 3-29
-typemap option, 3-29
-types option (deprecated), 3-30
-u option (-user), 3-32
-user option, 3-32
-usertypes option, 3-8
Oracle mapping R

overview, 1-19 RECORD type support, 2-14
sample program, 4-5
reference types

Oracle8! compatlblll_ty mode, 2-52 inheritance, 2-42
Oracle9i, new JPublisher features, 1-9 .
representing in Java, 1-23

ORAData interface
. . . strongly typed, 1-24
object types and inheritance, 2-39 . .
f X d inherit 942 release() method (releasing connection
reference types and inheritance, 2- contexts), 2-30, 4-44

use by JPublisher, 1-11 - .
T requirements for JPublisher, 1-15
OUT parameters, passing, 2-20 q

p option (-props), 3-25
packages
creating in the database, 1-19
naming rules in INPUT file, 3-38
-package option, 3-23
using generated classes, sample program, 4-66
PL/SQL conversion functions, 2-11
PL/SQL packages
generated classes for, 2-25
output, 1-17
publishing (introduction), 1-7
translation, 1-21
with JPublisher, overview, 1-11
PL/SQL subprograms, translating top level, 3-27
PL/SQL wrapper code
controlling generation, 3-24
generation of toString() method, 3-29
serializability of object wrappers, 3-26
specifying file name, 3-24
specifying package name, 3-25
plsqglfile option, 3-24
plsglmap option, 3-24
plsglpackage option, 3-25
properties files
overview, 1-17
structure and syntax, 3-33
props option (properties file), 3-25

output
-dir option, 3-18 S
from JPublisher (overview), 1-17 s option (-sql), 3-26
overview, what JPublisher produces, 1-13 sample translétion 1-26
overloaded methods, translating, 2-23 schema names, -omit_schema_names option, 3-22

Index-3

serializable option, 3-26
setConnectionContext() method, 2-28
setContextFrom() method, 2-38
setFrom() method, 2-38
setValueFrom() method, 2-38
SQL name clause, translation statement, 3-35
sql option, 3-26
SQLData interface
object types and inheritance, 2-47
sample, generated SQLData class, 4-28
use by JPublisher, 1-11
SQLJ classes, generation and use, 2-24
strongly typed object references, 1-24
subclassing JPublisher-generated classes--see
extending
syntax, command line, 1-25

T

TABLE types--see indexed-by tables
toplevel keyword (-sql option), 3-27
tostring option, 3-29
TRANSLATE...AS clause, translation
statement, 3-37
translation
declare objects/packages to translate, 3-26
of types, steps involved, 1-21
translation statement
in INPUT file, 3-35
sample statement, 3-40
type mappings--see datatype mappings
type maps
add to default type map, 3-14
add to user type map, 3-14
default type map, 2-18
option for default type map, 3-17
replace user type map, 3-29
user type map, 2-18
typemap option, 3-29
types option (deprecated), 3-30
types, creating in the database, 1-19

U

u option (-user), 3-32

Index-4

user option, 3-32
user type map, 2-18
usertypes option, 3-8

\%

VARRAY types, creating in the database,
VARRAY, output, 1-17

\W

1-19

wrapper methods
for object, sample program, 4-42
-methods option, 3-21

	Send Us Your Comments
	Preface
	1 Introduction to JPublisher
	Introduction to JPublisher Features
	Invitation to JPublisher
	Getting Started with JPublisher
	New JPublisher Features in Oracle9i Release 2

	Understanding JPublisher
	JPublisher Object Type Mappings and PL/SQL Mappings
	JPublisher Processes
	What JPublisher Produces
	JPublisher Requirements
	JPublisher Input and Output
	Overview of Datatype Mappings
	Creating Types and Packages in the Database

	JPublisher Operation
	Translating and Using PL/SQL Packages and User-Defined Types
	Representing User-Defined Object, Collection, and Reference Types in Java
	Strongly Typed Object References for ORAData Implementations
	JPublisher Command-Line Syntax
	Sample JPublisher Translation

	2 JPublisher Concepts
	Details of Datatype Mapping
	SQL and PL/SQL Mappings to Oracle and JDBC Types
	Allowed Object Attribute Types
	Using Datatypes Unsupported by JDBC

	Concepts of JPublisher-Generated Classes
	Passing OUT Parameters
	Translating Overloaded Methods

	JPublisher Generation of SQLJ Classes (.sqlj)
	Important Notes About Generation of SQLJ Classes
	Use of SQLJ Classes JPublisher Generates for PL/SQL Packages
	Use of Classes JPublisher Generates for Object Types
	Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher

	JPublisher Generation of Java Classes (.java)
	User-Written Subclasses of JPublisher-Generated Classes
	Extending JPublisher-Generated Classes
	Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes
	The setFrom(), setValueFrom(), and setContextFrom() Methods

	JPublisher Support for Inheritance
	ORAData Object Types and Inheritance
	ORAData Reference Types and Inheritance
	SQLData Object Types and Inheritance
	Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE

	Backward Compatibility and Migration
	JPublisher Backward Compatibility
	JPublisher Compatibility Between JDK Versions
	Migration Between Oracle8i JPublisher and Oracle9i JPublisher

	JPublisher Limitations

	3 Command-Line Options and Input Files
	JPublisher Options
	JPublisher Option Summary
	JPublisher Option Tips
	Notational Conventions
	Detailed Descriptions of Options That Affect Datatype Mappings
	Detailed Descriptions of General JPublisher Options

	JPublisher Input Files
	Properties File Structure and Syntax
	INPUT File Structure and Syntax
	INPUT File Precautions

	4 JPublisher Examples
	Example: JPublisher Translations with Different Mappings
	JPublisher Translation with the JDBC Mapping
	JPublisher Translation with the Oracle Mapping

	Example: JPublisher Object Attribute Mapping
	Listing and Description of Address.java Generated by JPublisher
	Listing of AddressRef.java Generated by JPublisher
	Listing of Alltypes.java Generated by JPublisher
	Listing of AlltypesRef.java Generated by JPublisher
	Listing of Ntbl.java Generated by JPublisher
	Listing of AddrArray.java Generated by JPublisher

	Example: Generating a SQLData Class
	Listing of Address.java Generated by JPublisher
	Listing of Alltypes.java Generated by JPublisher

	Example: Extending JPublisher Classes
	Example: Wrappers Generated for Methods in Objects
	Listing and Description of Rational.sqlj Generated by JPublisher

	Example: Wrappers Generated for Methods in Packages
	Listing and Description of RationalP.sqlj Generated by JPublisher

	Example: Using Classes Generated for Object Types
	Listing of RationalO.sql (Definition of Object Type)
	Listing of JPubRationalO.sqlj Generated by JPublisher
	Listing of RationalORef.java Generated by JPublisher
	Listing of RationalO.sqlj Generated by JPublisher and Modified by User
	Listing of TestRationalO.java Written by User

	Example: Using Classes Generated for Packages
	Listing of RationalP.sql (Definition of the Object Type and Package)
	Listing of TestRationalP.java Written by User

	Example: Using Datatypes Unsupported by JDBC
	The User-Defined BOOLEANS Datatype
	Alternative 1: Using JPublisher for the Entire Process
	Alternative 2: Manual Conversion

	Index

