
Oracle9 i

Java Stored Procedures Developer’s Guide

Release 2 (9.2)

March 2002

Part No. A96659-01

Oracle9i Java Stored Procedures Developer’s Guide, Release 2 (9.2)

Part No. A96659-01

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.

Author: Tom Portfolio

Graphics Artist: Valarie Moore

Contributors: Sheryl Maring, Dave Alpern, Gray Clossman, Matthieu Devin, Steve Harris, Hal
Hildebrand, Susan Kraft, Sunil Kunisetty, Thomas Kurian, Dave Rosenberg, Jerry Schwarz.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, PL/SQL, Pro*C/C++ and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send Us Your Comments .. vii

Preface .. ix

1 Introduction

Java and the RDBMS: A Robust Combination ... 1-2
Stored Procedures and Run-Time Contexts... 1-3

Functions and Procedures ... 1-4
Database Triggers ... 1-5
Object-Relational Methods.. 1-6

Advantages of Stored Procedures.. 1-6
Performance... 1-6
Productivity and Ease of Use.. 1-7
Scalability... 1-7
Maintainability.. 1-7
Interoperability ... 1-7
Replication ... 1-8
Security... 1-8

The Oracle JVM and Its Components... 1-9
The Oracle JVM versus Client JVMs.. 1-10
Main Components of the Oracle JVM ... 1-11

Java Stored Procedure Configuration.. 1-16
Developing Stored Procedures: An Overview .. 1-17
iii

2 Loading Java Classes

Java in the Database ... 2-2
Java Code, Binaries, and Resources Storage .. 2-3
Preparing Java Class Methods for Execution .. 2-4

Compiling Java Classes.. 2-4
Resolving Class Dependencies ... 2-9
Loading Classes... 2-12
How to Grant Execute Rights ... 2-15
Checking Java Uploads.. 2-16

User Interfaces on the Server .. 2-18
Shortened Class Names ... 2-19
Controlling the Current User.. 2-20

3 Publishing Java Classes

Understanding Call Specs ... 3-2
Defining Call Specs: Basic Requirements .. 3-3

Setting Parameter Modes... 3-3
Mapping Datatypes .. 3-4
Using the Server-Side Internal JDBC Driver... 3-7
Using the Server-Side SQLJ Translator.. 3-9

Writing Top-Level Call Specs ... 3-11
Writing Packaged Call Specs .. 3-15
Writing Object Type Call Specs ... 3-18

Declaring Attributes ... 3-19
Declaring Methods ... 3-19

4 Calling Stored Procedures

Calling Java from the Top Level... 4-2
Redirecting Output... 4-2

Calling Java from Database Triggers... 4-6
Calling Java from SQL DML .. 4-10

Restrictions... 4-11
Calling Java from PL/SQL ... 4-12
Calling PL/SQL from Java ... 4-14
iv

How the JVM Handles Exceptions .. 4-15

5 Developing an Application

Drawing the Entity-Relationship Diagram ... 5-2
Planning the Database Schema.. 5-5
Creating the Database Tables ... 5-7
Writing the Java Classes .. 5-9
Loading the Java Classes ... 5-15
Publishing the Java Classes .. 5-16
Calling the Java Stored Procedures ... 5-18

Index
v

vi

Send Us Your Comments

Oracle9 i Java Stored Procedures Developer’s Guide, Release 2 (9.2)

Part No. A96659-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: jpgcomment_us@oracle.com

■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager

■ Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 4op9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

Who Should Read This Guide?
Anyone developing Java applications for Oracle9i will benefit from reading this

guide. Written especially for programmers, it will also be of value to architects,

systems analysts, project managers, and others interested in network-centric

database applications. To use this guide effectively, you must have a working

knowledge of Java, SQL, PL/SQL, and Oracle9i.

How This Guide Is Organized
This guide enables you to build Java applications for Oracle. Working from simple

examples, you quickly learn how to load, publish, and call Java stored procedures.

This guide is divided into the following five chapters:

■ Chapter 1, "Introduction"—This chapter surveys the main features of stored

procedures and points out the advantages they offer. Then, you learn how the

Oracle JVM and its main components work together. The chapter ends with an

overview of the Java stored procedures development process.

■ Chapter 2, "Loading Java Classes"—This chapter shows you how to load Java

source, class, and resource files into the Oracle database. You learn how to

manage Java schema objects using the loadjava and dropjava utilities. In

addition, you learn about name resolution and invoker rights versus definer

rights.

Note: This guide presumes you are an experienced Java programmer.

If you are just learning Java, see "Suggested Reading" on page xiv.
ix

■ Chapter 3, "Publishing Java Classes"—This chapter shows you how to publish

Java classes to SQL. Among other things, you learn how to write call

specifications, map datatypes, and set parameter modes.

■ Chapter 4, "Calling Stored Procedures"—This chapter shows you how to call

Java stored procedures in various contexts. For example, you learn how to call

Java from SQL DML statements, database triggers, and PL/SQL blocks.

■ Chapter 5, "Developing an Application"—This chapter describes each step for

the development of a Java stored procedures application.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
x

Notational Conventions
This guide follows these conventions:

Java code examples follow these conventions:

Convention Meaning

Italic Italic font denotes terms being defined for the first time, words
being emphasized, error messages, and book titles.

Courier Courier font denotes program code, schema object names, file
names, path names, and Internet addresses.

Convention Meaning

{ } Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends to
the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case We use lower case for keywords and for one-word names of
variables, methods, and packages.

UPPER CASE We use upper case for names of constants (static final variables)
and for names of supplied classes that map to built-in SQL
datatypes.

Mixed Case We use mixed case for names of classes and interfaces and for
multi-word names of variables, methods, and packages. The
names of classes and interfaces begin with an upper-case letter.
In all multi-word names, the second and succeeding words
begin with an upper-case letter.
xi

PL/SQL code examples follow these conventions:

Syntax definitions use a simple variant of Backus-Naur Form (BNF) that includes

the following symbols:

Convention Meaning

-- A double hyphen begins a single-line comment, which extends
to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case We use lower case for names of constants, variables, cursors,
exceptions, subprograms, and packages.

UPPER CASE We use upper case for keywords, names of predefined
exceptions, and names of supplied PL/SQL packages.

Mixed Case We use mixed case for names of user-defined datatypes and
subtypes. The names of user-defined types begin with an
upper-case letter.

Symbol Meaning

[] Brackets enclose optional items.

{ } Braces enclose items of which only one is required.

| A vertical bar separates alternatives within brackets or braces.

... An ellipsis shows that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, vertical bars, and ellipses
must be entered as shown.
xii

Sample Database Tables
Most programming examples in this guide use two sample database tables named

dept and emp. Their definitions follow:

CREATE TABLE dept (deptno NUMBER(2) NOT NULL,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp (empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2));

Respectively, the dept and emp tables contain the following rows of data:

DEPTNO DNAME LOC
------- ---------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------- --------- ------ --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

To create and load the tables, run the script demobld.sql , which can be found in

the SQL*Plus demo directory.
xiii

Related Publications
Occasionally, this guide refers you to the following Oracle publications for more

information:

Oracle9i Application Developer’s Guide - Fundamentals
Oracle9i Java Developer’s Guide
Oracle9i JDBC Developer’s Guide and Reference
Oracle9i SQLJ Developer’s Guide and Reference
Oracle9i SQL Reference
SQL*Plus User’s Guide and Reference

Suggested Reading
The Java Programming Language by Arnold & Gosling, Addison-Wesley

Coauthored by the originator of Java, this definitive book explains the basic

concepts, areas of applicability, and design philosophy of the language. Using

numerous examples, it progresses systematically from basic to advanced

programming techniques.

Thinking in Java by Bruce Eckel, Prentice Hall

This book offers a complete introduction to Java on a level appropriate for both

beginners and experts. Using simple examples, it presents the fundamentals and

complexities of Java in a straightforward, good-humored way.

Core Java by Cornell & Horstmann, Prentice-Hall

This book is a complete, step-by-step introduction to Java programming principles

and techniques. Using real-world examples, it highlights alternative approaches to

program design and offers many programming tips and tricks.

Java in a Nutshell by Flanagan, O’Reilly

This indispensable quick reference provides a wealth of information about Java’s

most commonly used features. It includes programming tips and traps, excellent

examples of problem solving, and tutorials on important features.

Java Software Solutions by Lewis & Loftus, Addison-Wesley

This book provides a clear, thorough introduction to Java and object-oriented

programming. It contains extensive reference material and excellent pedagogy

including self-assessment questions, programming projects, and exercises that

encourage experimentation.
xiv

Online Sources
There are many useful online sources of information about Java. For example, you

can view or download guides and tutorials from the Sun Microsystems home page

on the Web:

http://www.sun.com

Another popular Java Web site is:

http://www.gamelan.com

For Java API documentation, visit:

http://www.javasoft.com/products

Also, the following Internet news groups are dedicated to Java:

comp.lang.java.programmer
comp.lang.java.misc

At the following site, you can get the latest Oracle JVM news, updates, and

offerings:

http://www.oracle.com/java

In addition to try-and-buy tools, you can download JDBC drivers, SQLJ reference

implementations, white papers on Java application development, and collections of

frequently asked questions (FAQs).
xv

xvi

Introdu
1

Introduction

The Oracle JVM has all the features you need to build a new generation of

enterprise-wide applications at a low cost. Chief among those features are stored

procedures, which open the Oracle RDBMS to all Java programmers. With stored

procedures, you can implement business logic at the server level, thereby

improving application performance, scalability, and security.

This chapter contains the following information:

■ Java and the RDBMS: A Robust Combination

■ Stored Procedures and Run-Time Contexts

■ Advantages of Stored Procedures

■ The Oracle JVM and Its Components

■ Java Stored Procedure Configuration

■ Developing Stored Procedures: An Overview
ction 1-1

Java and the RDBMS: A Robust Combination
Java and the RDBMS: A Robust Combination
The Oracle RDBMS provides Java applications with a dynamic data-processing

engine that supports complex queries and different views of the same data. All

client requests are assembled as data queries for immediate processing, and query

results are generated on the fly.

Several features make Java ideal for server programming. Java lets you assemble

applications using off-the-shelf software components (JavaBeans). Its type safety

and automatic memory management allow for tight integration with the RDBMS. In

addition, Java supports the transparent distribution of application components

across a network.

Thus, Java and the RDBMS support the rapid assembly of component-based,

network-centric applications that can evolve gracefully as business needs change. In

addition, you can move applications and data stores off the desktop and onto

intelligent networks and network-centric servers. More important, you can access

those applications and data stores from any client device.

Figure 1–1 shows a traditional two-tier, client/server configuration in which clients

call Java stored procedures the same way they call PL/SQL stored procedures.

(PL/SQL is an advanced 4GL tightly integrated with Oracle.) The figure also shows

how the Oracle Net Services Connection Manager can funnel many network

connections into a single database connection. This enables the RDBMS to support a

large number of concurrent users.
1-2 Java Stored Procedures Developer’s Guide

Stored Procedures and Run-Time Contexts
Figure 1–1 Two-Tier Client/Server Configuration

Stored Procedures and Run-Time Contexts
Stored procedures are Java methods published to SQL and stored in an Oracle

database for general use. To publish Java methods, you write call specifications (call
specs for short), which map Java method names, parameter types, and return types

to their SQL counterparts.

Unlike a wrapper, which adds another layer of execution, a call spec simply

publishes the existence of a Java method. So, when you call the method (through its

call spec), the run-time system dispatches the call with minimal overhead.

When called by client applications, a stored procedure can accept arguments,

reference Java classes, and return Java result values. Figure 1–2 shows a stored

procedure being called by various applications.

Oracle Database

PL/SQL Stored
Procedure

Relational
Data

Object-
Relational Data

Oracle Net
Connection

Manager

Oracle Net

Oracle Net Oracle Net

Oracle Net

ODBC
Client

Pro*
Client

OCI
Client

JDBC
Driver

Java
Applet

Oracle Forms / Oracle Reports

Thin Client

Java Stored
Procedure

Fat Client

NC
Introduction 1-3

Stored Procedures and Run-Time Contexts
Figure 1–2 Calling a Stored Procedure

Except for graphical-user-interface (GUI) methods, Oracle JVM can run any Java

method as a stored procedure. The run-time contexts are:

■ functions and procedures

■ database triggers

■ object-relational methods

The next three sections describe these contexts.

Functions and Procedures
Functions and procedures are named blocks that encapsulate a sequence of

statements. They are like building blocks that you can use to construct modular,

maintainable applications.

Generally, you use a procedure to perform an action, and a function to compute a

value. So, for void Java methods, you use procedure call specs, and for

value-returning methods, you use function call specs.

Only top-level and package (not local) PL/SQL functions and procedures can be

used as call specs. When you define them using the SQL CREATE FUNCTION,
CREATE PROCEDURE, or CREATE PACKAGE statement, they are stored in the

database, where they are available for general use.

Oracle Database

hire_emp(...)

Applications

code

hire_emp(...);

Program
.

hire_emp(...);

hire_emp(...);

Stored Procedure
1-4 Java Stored Procedures Developer’s Guide

Stored Procedures and Run-Time Contexts
Java methods published as functions and procedures must be invoked explicitly.

They can accept arguments and are callable from:

■ SQL DML statements (INSERT, UPDATE, DELETE, SELECT, CALL , EXPLAIN
PLAN, LOCK TABLE, and MERGE)

■ SQL CALL statements

■ PL/SQL blocks, subprograms, and packages

Database Triggers
A database trigger is a stored procedure associated with a specific table or view.

Oracle invokes (fires) the trigger automatically whenever a given DML operation

modifies the table or view.

A trigger has three parts: a triggering event (DML operation), an optional trigger

constraint, and a trigger action. When the event occurs, the trigger fires and a CALL
statement calls a Java method (through its call spec) to perform the action.

Database triggers, which you define using the SQL CREATE TRIGGER statement, let

you customize the RDBMS. For example, they can restrict DML operations to

regular business hours. Typically, triggers are used to enforce complex business

rules, derive column values automatically, prevent invalid transactions, log events

transparently, audit transactions, or gather statistics.
Introduction 1-5

Advantages of Stored Procedures
Object-Relational Methods
A SQL object type is a user-defined composite datatype that encapsulates a set of

variables (attributes) with a set of operations (methods), which can be written in Java.

The data structure formed by the set of attributes is public (visible to client

programs). However, well-behaved programs do not manipulate it directly. Instead,

they use the set of methods provided.

When you define an object type using the SQL CREATE ... OBJECT statement, you

create an abstract template for some real-world object. The template specifies only

those attributes and behaviors the object will need in the application environment.

At run time, when you fill the data structure with values, you create an instance of

the object type. You can create as many instances (objects) as necessary.

Typically, an object type corresponds to some business entity such as a purchase

order. To accommodate a variable number of items, object types can use

variable-length arrays (varrays) and nested tables. For example, this feature enables

a purchase order object type to contain a variable number of line items.

Advantages of Stored Procedures
Stored procedures offer several advantages including better performance, higher

productivity, ease of use, and increased scalability.

Performance
Stored procedures are compiled once and stored in executable form, so procedure

calls are quick and efficient. Executable code is automatically cached and shared

among users. This lowers memory requirements and invocation overhead.

By grouping SQL statements, a stored procedure allows them to be executed with a

single call. This minimizes the use of slow networks, reduces network traffic, and

improves round-trip response time. OLTP applications, in particular, benefit

because result-set processing eliminates network bottlenecks.

Additionally, stored procedures enable you to take advantage of the computing

resources of the server. For example, you can move computation-bound procedures

from client to server, where they will execute faster. Likewise, stored functions

called from SQL statements enhance performance by executing application logic

within the server.
1-6 Java Stored Procedures Developer’s Guide

Advantages of Stored Procedures
Productivity and Ease of Use
By designing applications around a common set of stored procedures, you can

avoid redundant coding and increase your productivity. Moreover, stored

procedures let you extend the functionality of the RDBMS. For example, stored

functions called from SQL statements enhance the power of SQL.

You can use the Java integrated development environment (IDE) of your choice to

create stored procedures. Then, you can deploy them on any tier of the network

architecture. Moreover, they can be called by standard Java interfaces, such as JDBC,

and by programmatic interfaces and development tools such as SQLJ, the OCI,

Pro*C/C++, and JDeveloper.

This broad access to stored procedures lets you share business logic across

applications. For example, a stored procedure that implements a business rule can

be called from various client-side applications, all of which can share that business

rule. In addition, you can leverage the server’s Java facilities while continuing to

write applications for your favorite programmatic interface.

Scalability
Stored procedures increase scalability by isolating application processing on the

server. In addition, automatic dependency tracking for stored procedures aids the

development of scalable applications.

The shared memory facilities of the Shared Server enable Oracle to support more

than 10,000 concurrent users on a single node. For more scalability, you can use the

Oracle Net Services Connection Manager to multiplex Oracle Net Services

connections.

Maintainability
Once it is validated, you can use a stored procedure with confidence in any number

of applications. If its definition changes, only the procedure is affected, not the

applications that call it. This simplifies maintenance and enhancement. Also,

maintaining a procedure on the server is easier than maintaining copies on different

client machines.

Interoperability
Within the RDBMS, Java conforms fully to the Java Language Specification and

furnishes all the advantages of a general-purpose, object-oriented programming
Introduction 1-7

Advantages of Stored Procedures
language. Also, as with PL/SQL, Java provides full access to Oracle data, so any

procedure written in PL/SQL can be written in Java.

PL/SQL stored procedures complement Java stored procedures. Typically, SQL

programmers who want procedural extensions favor PL/SQL, and Java

programmers who want easy access to Oracle data favor Java.

The RDBMS allows a high degree of interoperability between Java and PL/SQL.

Java applications can call PL/SQL stored procedures using an embedded JDBC

driver; conversely, PL/SQL applications can call Java stored procedures directly.

Replication
With Oracle Advanced Replication, you can replicate (copy) stored procedures from

one Oracle database to another. That feature makes them ideal for implementing a

central set of business rules. Once you write them, you can replicate and distribute

the stored procedures to work groups and branch offices throughout the company.

In this way, you can revise policies on a central server rather than on individual

servers.

Security
Security is a large arena that includes network security for the connection, access

and execution control of operating system resources or of JVM and user-defined

classes, and bytecode verification of imported JAR files from an external source.

Oracle uses Java 2 security to protect its Java virtual machine. All classes are loaded

into a secure database, so they are untrusted. To access classes and operating system

resources, a user needs the proper permissions. Likewise, all stored procedures are

secured against other users (to whom you can grant the database privilege

EXECUTE).

You can restrict access to Oracle data by allowing users to manipulate the data only

through stored procedures that execute with their definer’s privileges. For example,

you can allow access to a procedure that updates a database table, but deny access

to the table itself.

For a full discussion of Oracle JVM security, see the Oracle9i Java Developer’s Guide.
1-8 Java Stored Procedures Developer’s Guide

The Oracle JVM and Its Components
The Oracle JVM and Its Components
The Oracle Java virtual machine (JVM) is a complete, Java 2-compliant Java

execution environment. It runs in the same process space and address space as the

RDBMS kernel, sharing its memory heaps and directly accessing its relational data.

This design optimizes memory use and increases throughput.

The Oracle JVM provides a run-time environment for Java objects. It fully supports

Java data structures, method dispatch, exception handling, and language-level

threads. It also supports all the core Java class libraries including java.lang ,

java.io , java.net , java.math , and java.util . Figure 1–3 shows its main

components.

Figure 1–3 Main Components of the Oracle JVM

The Oracle JVM embeds the standard Java namespace in RDBMS schemas. This

feature lets Java programs access Java objects stored in Oracle databases and

application servers across the enterprise.

In addition, the JVM is tightly integrated with the scalable, shared memory

architecture of the RDBMS. Java programs use call, session, and object lifetimes

efficiently without your intervention. So, you can scale Oracle JVM and middle-tier

Java business objects, even when they have session-long state.

loadjava Utility

CREATE JAVA Statement

SQL Calls

IIOP Calls

 JVM

Garbage Collector

Compiled Code

Class Loader

Interpreter &
Run-time System

Library Manager Memory Manager

Memory

RDBMS RDBMS

Natively
Introduction 1-9

The Oracle JVM and Its Components
The Oracle JVM versus Client JVMs
This section discusses some important differences between the Oracle JVM and

typical client JVMs.

Method main()
Client-based Java applications declare a single, top-level method (main()) that

defines the profile of an application. As with applets, server-based applications

have no such "inner loop". Instead, they are driven by logically independent clients.

Each client begins a session, calls its server-side logic modules through top-level

entry points, and eventually ends the session. The server environment hides the

managing of sessions, networks, and other shared resources from hosted Java

programs.

The GUI
A server cannot provide GUIs, but it can supply the logic that drives them. For

example, the Oracle JVM does not supply the basic GUI components found in the

JDK’s Abstract Windowing Toolkit (AWT). However, all AWT Java classes are

available within the server environment. So, your programs can use AWT

functionality, as long as they do not attempt to materialize a GUI on the server.

The IDE
The Oracle JVM is oriented to Java application deployment, not development. You

can write and unit-test applications in your favorite IDE, then deploy them for

execution within the RDBMS.

Java’s binary compatibility enables you to work in any IDE, then upload Java class

files to the server. You need not move your Java source files to the database. Instead,

you can use powerful client-side IDEs to maintain Java applications that are

deployed on the server.

Multithreading
Multithreading support is often cited as one of the key scalability features of the

Java language. Certainly, the Java language and class libraries make it simpler to

write multithreaded applications in Java than many other languages, but it is still a

daunting task in any language to write reliable, scalable multithreaded code.

As a database server, Oracle9i efficiently schedules work for thousands of users.

The Oracle JVM uses the facilities of the RDBMS server to concurrently schedule

Java execution for thousands of users. Although Oracle9i supports Java language
1-10 Java Stored Procedures Developer’s Guide

The Oracle JVM and Its Components
level threads required by the Java Language Specification (JLS) and Java

Compatibility Kit (JCK), using threads within the scope of the database will not

increase your scalability. Using the embedded scalability of the database eliminates

the need for writing multithreaded Java servers. You should use the database’s

facilities for scheduling users by writing single-threaded Java applications. The

database will take care of the scheduling between each application; thus, you

achieve scalability without having to manage threads. You can still write

multithreaded Java applications, but multiple Java threads will not increase your

server’s performance.

One difficulty multithreading imposes on Java is the interaction of threads and

automated storage management, or garbage collection. The garbage collector

executing in a generic JVM has no knowledge of which Java language threads are

executing or how the underlying operating system schedules them.

■ Non-Oracle model—A single user maps to a single Java language level thread;

the same single garbage collector manages all garbage from all users. Different

techniques typically deal with allocation and collection of objects of varying

lifetimes and sizes. The result in a heavily multithreaded application is, at best,

dependent upon operating system support for native threads, which can be

unreliable and limited in scalability. High levels of scalability for such

implementations have not been convincingly demonstrated.

■ Oracle JVM model—Even when thousands of users connect to the server and

execute the same Java code, each user experiences it as if he is executing his

own Java code on his own Java virtual machine. The responsibility of the Oracle

JVM is to make use of operating system processes and threads, using the

scalable approach of the Oracle RDBMS. As a result of this approach, the JVM’s

garbage collector is more reliable and efficient because it never collects garbage

from more than one user at any time.

Main Components of the Oracle JVM
This section briefly describes the main components of the Oracle JVM and some of

the facilities they provide.

Library Manager
To store Java classes in an Oracle database, you use the command-line utility

loadjava , which employs SQL CREATE JAVA statements to do its work. When

invoked by the CREATE JAVA {SOURCE | CLASS | RESOURCE} statement, the

library manager loads Java source, class, or resource files into the database. You

never access these Java schema objects directly; only the Oracle JVM uses them.
Introduction 1-11

The Oracle JVM and Its Components
Garbage Collection of Memory
Garbage collection is a major feature of Java’s automated storage management,

eliminating the need for Java developers to allocate and free memory explicitly.

Consequently, this eliminates a large source of memory leaks that commonly plague

C and C++ programs. There is a price for such a benefit: garbage collection

contributes to the overhead of program execution speed and footprint. Although

many papers have been written qualifying and quantifying the trade-off, the overall

cost is reasonable, considering the alternatives.

Garbage collection imposes a challenge to the JVM developer seeking to supply a

highly scalable and fast Java platform. The Oracle9i JVM meets these challenges in

the following ways:

■ The Oracle JVM uses the Oracle9i scheduling facilities, which can manage

multiple users efficiently.

■ Garbage collection is performs consistently for multiple users because garbage

collection is focused on a single user within a single session. The Oracle JVM

enjoys a huge advantage because the burden and complexity of the memory

manager’s job does not increase as the number of users increases. The memory

manager performs the allocation and collection of objects within a single

session—which typically translates to the activity of a single user.

■ The Oracle JVM uses different garbage collection techniques depending on the

type of memory used. These techniques provide high efficiency and low

overhead.

Compiler
The Oracle JVM includes a standard Java 2 (also known as JDK 1.2) Java compiler.

When invoked by the CREATE JAVA SOURCE statement, it translates Java source

files into architecture-neutral, one-byte instructions known as bytecodes. Each

bytecode consists of an opcode followed by its operands. The resulting Java class

files, which conform fully to the Java standard, are submitted to the interpreter at

run time.

Interpreter
To execute Java programs, the Oracle JVM includes a standard Java 2 bytecode

interpreter. The interpreter and associated Java run-time system execute standard

Java class files. The run-time system supports native methods and call-in/call-out

from the host environment.
1-12 Java Stored Procedures Developer’s Guide

The Oracle JVM and Its Components
Class Loader
In response to requests from the run-time system, the Java class loader locates,

loads, and initializes Java classes stored in the database. The class loader reads the

class, then generates the data structures needed to execute it. Immutable data and

metadata are loaded into initialize-once shared memory. As a result, less memory is

required for each session. The class loader attempts to resolve external references

when necessary. Also, it invokes the Java compiler automatically when Java class

files must be recompiled (and the source files are available).

Verifier
Java class files are fully portable and conform to a well-defined format. The verifier

prevents the inadvertent use of "spoofed" Java class files, which might alter

program flow or violate access restrictions. Oracle security and Java security work

with the verifier to protect your applications and data.

Note: Although your own code is interpreted, the Oracle JVM uses

natively compiled versions of the core Java class libraries, SQLJ transla-

tor, and JDBC drivers. For more information, see "Native Compiler

(Accelerator)" on page 1-14.
Introduction 1-13

The Oracle JVM and Its Components
Server-Side JDBC Internal Driver
JDBC is a standard set of Java classes providing vendor-independent access to

relational data. Specified by Sun Microsystems and modeled after ODBC (Open

Database Connectivity) and the X/Open SQL CLI (Call Level Interface), the JDBC

classes supply standard features such as simultaneous connections to several

databases, transaction management, simple queries, calls to stored procedures, and

streaming access to LONG column data.

Using low-level entry points, a specially tuned JDBC driver runs directly inside the

RDBMS, thereby providing the fastest access to Oracle data from Java stored

procedures. The server-side internal JDBC driver complies fully with the Sun

Microsystems JDBC specification. Tightly integrated with the RDBMS, it supports

Oracle-specific datatypes, globalization character sets, and stored procedures.

Additionally, the client-side and server-side JDBC APIs are the same, which makes

it easy to partition applications.

Server-Side SQLJ Translator
SQLJ enables you to embed SQL statements in Java programs. It is more concise

than JDBC and more amenable to static analysis and type checking. The SQLJ

preprocessor, itself a Java program, takes as input a Java source file in which SQLJ

clauses are embedded. Then, it translates the SQLJ clauses into Java class definitions

that implement the specified SQL statements. The Java type system ensures that

objects of those classes are called with the correct arguments.

A highly optimized SQLJ translator runs directly inside the RDBMS, where it

provides run-time access to Oracle data using the server-side internal JDBC driver.

SQLJ forms can include queries, DML, DDL, transaction control statements, and

calls to stored procedures. The client-side and server-side SQLJ APIs are identical,

which makes it easy to partition applications.

Native Compiler (Accelerator)
Java executes platform-independent bytecodes on top of a JVM, which in turn

interacts with the specific hardware platform. Any time you add levels within

software, your performance is degraded. Because Java requires going through an

intermediary to interpret platform-independent bytecodes, a degree of inefficiency

exists for Java applications that does not exists within a platform-dependent

language, such as C. To address this issue, several JVM suppliers create native

compilers. Native compilers translate Java bytecodes into platform-dependent

native code, which eliminates the interpreter step and improves performance.

The following describes two methods for native compilation:
1-14 Java Stored Procedures Developer’s Guide

The Oracle JVM and Its Components
Oracle9i uses Ahead-of-Time compilation to deliver its core Java class libraries:

JDBC code in natively compiled form. It is applicable across all the platforms Oracle

supports, whereas a JIT approach requires low-level, processor-dependent code to

be written and maintained for each platform. You can use this native compilation

technology with your own Java code.

As Figure 1–4 shows, natively compiled code executes up to ten times faster than

interpreted code. So, the more native code your program uses, the faster it executes.

Compiler Description

Just-In-Time (JIT)
Compilation

JIT compilers quickly compile Java bytecodes to native
(platform-specific) machine code during runtime. This does not
produce an executable to be executed on the platform; instead, it
provides platform-dependent code from Java bytecodes that is
executed directly after it is translated. This should be used for
Java code that is run frequently, which will be executed at
speeds closer to languages such as C.

Ahead-of-Time
Compilation

Compilation translates Java bytecodes to platform-independent
C code before runtime. Then a standard C compiler compiles the
C code into an executable for the target platform. This approach
is more suitable for Java applications that are modified
infrequently. This approach takes advantage of the mature and
efficient platform-specific compilation technology found in
modern C compilers.
Introduction 1-15

Java Stored Procedure Configuration
Figure 1–4 Interpreter versus Accelerator

You can natively compile your own code using the ncomp tool. See Oracle9i Java
Developer’s Guide for more information.

Java Stored Procedure Configuration
To configure the database to run Java stored procedures, you must decide whether

you want the database to run in dedicated server mode or shared server mode.

■ Dedicated server mode—You must configure the database and clients in

dedicated server mode using Oracle Net Services connections.

Java Source Code

Java Bytecode

Native Code

Java Compiler

Java Interpreter

Execution Speed is X

C Source Code

Accelerator

Platform C Compiler

Execution Speed is 2X to 10X

(depends on the number of casts,
 array accesses, message sends,
 accessor calls, etc. in the code)
1-16 Java Stored Procedures Developer’s Guide

Developing Stored Procedures: An Overview
■ shared server mode—You must configure the server for shared server mode

with the DISPATCHERS parameter, as Chapter 9 of the Oracle9i Net Services
Administrator’s Guide explains.

Java, SQL, or PL/SQL clients, which execute Java stored procedures on the server,

connect to the database over a Oracle Net Services connection. For a full description

of how to configure this connection, see the Oracle9i Net Services Administrator’s
Guide.

Developing Stored Procedures: An Overview
You execute Java stored procedures similarly to PL/SQL. Normally, calling a Java

stored procedure is a by-product of database manipulation, because it is usually the

result of a trigger or SQL DML call. To invoke a Java stored procedure, you must

publish it through a call specification.

This section demonstrates how to develop a simple Java stored procedure. For more

examples of a Java stored procedures application, see Chapter 5.

Step 1: Create or Reuse the Java Classes
Use your favorite Java IDE to create classes, or simply reuse existing classes that

meet your needs. Oracle’s Java facilities support many Java development tools and

client-side programmatic interfaces. For example, the Oracle JVM accepts programs

developed in popular Java IDEs such as Oracle’s JDeveloper, Symantec’s Visual

Café, and Borland’s JBuilder.

In the following example, you create the public class Oscar . It has a single method

named quote() , which returns a quotation from Oscar Wilde.

public class Oscar {
 // return a quotation from Oscar Wilde
 public static String quote() {
 return "I can resist everything except temptation.";
 }
}

In the following example, using Sun Microsystems’s JDK Java compiler, you

compile class Oscar on your client workstation:

javac Oscar.java

The compiler outputs a Java binary file—in this case, Oscar.class .
Introduction 1-17

Developing Stored Procedures: An Overview
Step 2: Load and Resolve the Java Classes
Using the utility loadjava , you can upload Java source, class, and resource files

into an Oracle database, where they are stored as Java schema objects. You can run

loadjava from the command line or from an application, and you can specify

several options including a resolver.

In the following example, loadjava connects to the database using the default

JDBC OCI driver. You must specify the username and password. By default, class

Oscar is loaded into the logon schema (in this case, scott).

> loadjava -user scott/tiger Oscar.class

Later, when you call method quote() , the server uses a resolver (in this case, the

default resolver) to search for supporting classes such as String . The default

resolver searches first in the current schema, then in schema SYS, where all the core

Java class libraries reside. If necessary, you can specify different resolvers.

For more information, see Chapter 2.

Step 3: Publish the Java Classes
For each Java method callable from SQL, you must write a call spec, which exposes

the method’s top-level entry point to Oracle. Typically, only a few call specs are

needed, but if you like, Oracle’s JDeveloper can generate them for you.

In the following example, from SQL*Plus, you connect to the database, then define a

top-level call spec for method quote() :

SQL> connect scott/tiger

SQL> CREATE FUNCTION oscar_quote RETURN VARCHAR2
 2 AS LANGUAGE JAVA
 3 NAME 'Oscar.quote() return java.lang.String';

For more information, see Chapter 3.

Step 4: Call the Stored Procedures
You can call Java stored procedures from SQL DML statements, PL/SQL blocks,

and PL/SQL subprograms. Using the SQL CALL statement, you can also call them

from the top level (from SQL*Plus, for example) and from database triggers.

In the following example, you declare a SQL*Plus host variable:

SQL> VARIABLE theQuote VARCHAR2(50);
1-18 Java Stored Procedures Developer’s Guide

Developing Stored Procedures: An Overview
Then, you call the function oscar_quote() , as follows:

SQL> CALL oscar_quote() INTO :theQuote;

SQL> PRINT theQuote;

THEQUOTE
--
I can resist everything except temptation.

For more information, see Chapter 4.

Step 5: If Necessary, Debug the Stored Procedures
Your Java stored procedures execute remotely on a server, which typically resides

on a separate machine. However, the JDK debugger (jdb) cannot debug remote

Java programs.

Oracle9i furnishes a debugging capability that is useful for developers who use the

JDK's jdb debugger. Two interfaces are supported.

■ The debug Agent protocol that was introduced in Oracle8i, and is supported by

JDK 1.2 and later versions of JDB. The class DebugProxy makes remote Java

programs appear to be local. It lets any debugger that supports the

sun.tools.debug.Agent protocol connect to a program as if the program

were local. The proxy forwards requests to the server and returns results to the

debugger.

For detailed instructions, see the Oracle9i Java Developer’s Guide.

■ The Java Debug Wire Protocol supported by JDK 1.3 and later versions of the

Sun Microsystems JDB debugger

(http://java.sun.com/j2se/1.3/docs/guide/jpda/ ,

http://java.sun.com/j2se/1.4/docs/guide/jpda/ .) The use of this

interface is documented on OTN. The JDWP protocol supports many new

features, including the ability to listen for connections (no more DebugProxy),

change the values of variables while debugging, and evaluate arbitrary Java

expressions, including method evaluation.

Oracle's JDeveloper provides a user-friendly integration with these debugging

features. See the JDeveloper documentation for more information on how to debug

your Java application through JDeveloper. Other independent IDE vendors will be

able to integrate their own debuggers with Oracle9i.
Introduction 1-19

Developing Stored Procedures: An Overview
Another Example
The following example shows how to create, resolve, load, and publish a simple

Java stored procedure that echoes “Hello world”.

1. Write the Java class.

Define a class, Hello , with one method, Hello.world() , that returns the

string “Hello world ”.

public class Hello
{
 public static String world ()
 {
 return "Hello world";
 }
}

2. Compile the class on your client system. Using the Sun Microsystems JDK, for

example, invoke the Java compiler, javac , as follows:

javac Hello.java

Normally, it is a good idea to specify your CLASSPATH on the javac command

line, especially when writing shell scripts or make files. The Java compiler

produces a Java binary file—in this case, Hello.class .

Keep in mind where this Java code will execute. If you execute Hello.class
on your client system, it searches the CLASSPATH for all supporting core

classes it must execute. This search should result in locating the dependent class

in one of the following:

■ as an individual file in a directory, where the directory is specified in the

CLASSPATH

■ within a .jar or .zip file, where the directory is specified in the

CLASSPATH

3. Decide on the resolver for your class.

In this case, you load Hello.class in the server, where it is stored in the

database as a Java schema object. When you execute the world() method of

the Hello.class on the server, it finds the necessary supporting classes, such

as String , using a resolver—in this case, the default resolver. The default

resolver looks for classes in the current schema first and then in PUBLIC. All

core class libraries, including the java.lang package, are found in PUBLIC.

You may need to specify different resolvers, and you can force resolution to
1-20 Java Stored Procedures Developer’s Guide

Developing Stored Procedures: An Overview
occur when you use loadjava , to determine if there are any problems earlier,

rather than at runtime. Refer to the Oracle9i Java Developer’s Guide for more

details on resolvers and loadjava .

4. Load the class on the Oracle9i server using loadjava . You must specify the

username and password.

loadjava -user scott/tiger Hello.class

5. Publish the stored procedure through a call specification.

To invoke a Java static method with a SQL CALL, you must publish it with a

call specification. A call specification defines for SQL which arguments the

method takes and the SQL types it returns.

In SQL*Plus, connect to the database and define a top-level call specification for

Hello.world() :

SQL> connect scott/tiger
connected
SQL> create or replace function HELLOWORLD return VARCHAR2 as
 2 language java name 'Hello.world () return java.lang.String';
 3 /
Function created.

6. Invoke the stored procedure.

SQL> variable myString varchar2[20];
SQL> call HELLOWORLD() into :myString;
Call completed.
SQL> print myString;

MYSTRING

Hello world

SQL>

The call HELLOWORLD() into :myString statement performs a top-level

call in Oracle9i. The Oracle-specific select HELLOWORLD from DUAL also

works. Note that SQL and PL/SQL see no difference between a stored

procedure that is written in Java, PL/SQL, or any other language. The call

specification provides a means to tie inter-language calls together in a

consistent manner. Call specifications are necessary only for entry points

invoked with triggers or SQL and PL/SQL calls. Furthermore, JDeveloper can

automate the task of writing call specifications.
Introduction 1-21

Developing Stored Procedures: An Overview
1-22 Java Stored Procedures Developer’s Guide

Loading Java Cl
2

Loading Java Classes

Before you can call Java stored procedures, you must load them into the Oracle

database and publish them to SQL. Loading and publishing are separate tasks.

Many Java classes, referenced only by other Java classes, are never published.

To load Java stored procedures automatically, you use the command-line utility

loadjava . It uploads Java source, class, and resource files into a system-generated

database table, then uses the SQL CREATE JAVA {SOURCE | CLASS | RESOURCE}
statement to load the Java files into the Oracle database. You can upload Java files

from file systems, popular Java IDEs, intranets, or the Internet.

■ Java in the Database

■ Java Code, Binaries, and Resources Storage

■ Preparing Java Class Methods for Execution

■ User Interfaces on the Server

■ Shortened Class Names

■ Controlling the Current User

Note: To load Java stored procedures manually, you use CREATE
JAVA statements. For example, in SQL*Plus, you can use the

CREATE JAVA CLASS statement to load Java class files from local

BFILE s and LOB columns into the Oracle database.
asses 2-1

Java in the Database
Java in the Database
To make Java files available to the Oracle JVM, you must load them into the Oracle

database as schema objects. As Figure 2–1 illustrates, loadjava can invoke the

JVM’s Java compiler, which compiles source files into standard class files.

The figure also shows that loadjava can set the values of options stored in a

system database table. Among other things, these options affect the processing of

Java source files.

Figure 2–1 Loading Java into the Oracle Database

.jar file

loadjava

RDBMS

Java
Compiler

Java
Source

Java
Class

Java
Class

Schema

.class file .jar file.class file.java file

Java
Resource

Options
Table
2-2 Java Stored Procedures Developer’s Guide

Java Code, Binaries, and Resources Storage
Each Java class is stored as a schema object. The name of the object is derived from

the fully qualified name (full name) of the class, which includes the names of

containing packages. For example, the full name of class Handle is:

oracle.aurora.rdbms.Handle

In the name of a Java schema object, slashes replace dots, so the full name of the

class becomes:

oracle/aurora/rdbms/Handle

The Oracle RDBMS accepts Java names up to 4000 characters long. However, the

names of Java schema objects cannot be longer than 30 characters, so if a name is

longer than that, the system generates an alias (short name) for the schema object.

Otherwise, the full name is used. You can specify the full name in any context that

requires it. When needed, name mapping is handled by the RDBMS.

Java Code, Binaries, and Resources Storage
In the Sun Microsystems Java development environment, Java source code, binaries,

and resources are stored as files in a file system.

■ Source code files are known as .java files.

■ Compiled Java binary files are known as .class files.

■ Resources are any data files, such as .properties or .ser files that are held

within the file system hierarchy, which are loaded or used at runtime.

In addition, when you execute Java, you specify a CLASSPATH, which is a set of a

file system tree roots containing your files. Java also provides a way to group these

files into a single archive form—a ZIP or JAR file.

Both of these concepts are different within the database. The following describes

how Oracle9i handles Java classes and locates dependent classes:

Java code,

binaries, and

resources

In the Oracle JVM environment, source, classes, and resources

reside within the Oracle9i database. Because they reside in the

database, they are known as Java schema objects, where a

schema corresponds to a database user. There are three types

of Java objects: source, class, and resource. There are no .java ,

.class , .sqlj , .properties , or .ser files on the server;

instead, these files map to source, class, and resource Java

schema objects.
Loading Java Classes 2-3

Preparing Java Class Methods for Execution
The call and session terms, used during our discussions, are not Java terms; but are

server terms that apply to the Oracle JVM platform. The Oracle memory manager

preserves Java program state throughout your session (that is, between calls). The

JVM uses the Oracle database to hold Java source, classes, and resources within a

schema—Java schema objects. You can use a resolver to specify how Java, when

executed in the server, locates source code, classes, and resources.

Preparing Java Class Methods for Execution
For your Java methods to be executed, you must do the following:

1. Decide when your source is going to be compiled.

2. Decide if you are going to use the default resolver or another resolver for

locating supporting Java classes within the database.

3. Load the classes into the database. If you do not wish to use the default resolver

for your classes, you should specify a separate resolver on the load command.

4. Publish your class or method.

Compiling Java Classes
Compilation of your source can be performed in one of the following ways:

■ You can compile the source explicitly on your client machine, before loading it

into the database, through a Java compiler, such as javac .

■ You can ask the database to compile the source during the loading process

managed within the loadjava tool.

■ You can force the compilation to occur dynamically at runtime.

Locating Java

classes

Instead of a CLASSPATH, you use a resolver to specify one or

more schemas to search for source, class, and resource Java

schema objects.

Note: If you decide to compile through loadjava , you can

specify compiler options. See "Specifying Compiler Options" on

page 2-5 for more information.
2-4 Java Stored Procedures Developer’s Guide

Preparing Java Class Methods for Execution
Compiling Source Through javac
You can compile your Java with a conventional Java compiler, such as javac . After

compilation, you load the compiled binary into the database, rather than the source

itself. This is a better option, because it is normally easier to debug your Java code

on your own system, rather than debugging it on the database.

Compiling Source Through loadjava
When you specify the -resolve option on loadjava for a source file, the

following occurs:

1. The source file is loaded as a source schema object.

2. The source file is compiled.

3. Class schema objects are created for each class defined in the compiled .java
file.

4. The compiled code is stored in the class schema objects.

Oracle9i logs all compilation errors both to loadjava ’s logfile and the USER_
ERRORS view. For more information on the USER_ERRORS view.

Compiling Source at Runtime
When you load the Java source into the database without the -resolve option,

Oracle9i compiles the source automatically when the class is needed during

runtime. The source file is loaded into a source schema object.

Oracle9i logs all compilation errors both to loadjava ’s logfile and the USER_
ERRORS view.

Specifying Compiler Options
There are two ways to specify options to the compiler.

■ Specify compiler options on the loadjava command line. You can specify the

encoding option on the loadjava command line.

■ Specify persistent compiler options in a schema database table called

JAVA$OPTIONS. Every time you compile, the compiler uses these options.

However, any specified compiler options on the loadjava command override

the options defined in this table.

You must create this table yourself if you wish to specify compiler options this

way. See "Compiler Options Specified in a Database Table" on page 2-6 for

instructions on how to create the JAVA$OPTIONS table.
Loading Java Classes 2-5

Preparing Java Class Methods for Execution
The following sections describe your compiler options:

■ Default Compiler Options

■ Compiler Options on the Command Line

■ Compiler Options Specified in a Database Table

Default Compiler Options When compiling a source schema object for which there is

neither a JAVA$OPTIONS entry nor a command line value for an option, the

compiler assumes a default value as follows:

■ encoding = System.getProperty("file.encoding");

■ online = true : See the Oracle9i SQLJ Developer’s Guide and Reference for a

description of this option, which applies only to Java sources that contain SQLJ

constructs.

■ debug = true : This option is equivalent to javac -g .

Compiler Options on the Command Line The loadjava compiler option, encoding ,

identifies the encoding of the .java file. This option overrides any matching value

in the JAVA$OPTIONS table. The values are identical to the javac -encoding
option. This option is relevant only when loading a source file.

Compiler Options Specified in a Database Table Each JAVA$OPTIONS row contains the

names of source schema objects to which an option setting applies; you can use

multiple rows to set the options differently for different source schema objects.

You can set JAVA$OPTIONS entries by means of the following functions and

procedures, which are defined in the database package DBMS_JAVA:

■ PROCEDURE set_compiler_option(name VARCHAR2, option
VARCHAR2, value VARCHAR2);

■ FUNCTION get_compiler_option(name VARCHAR2, option
VARCHAR2) RETURNS VARCHAR2;

■ PROCEDURE reset_compiler_option(name VARCHAR2, option
VARCHAR2);

The parameters for these methods are described as follows:
2-6 Java Stored Procedures Developer’s Guide

Preparing Java Class Methods for Execution
A schema does not initially have a JAVA$OPTIONS table. To create a

JAVA$OPTIONS table, use the DBMS_JAVA package’s java.set_compiler_
option procedure to set a value. The procedure will create the table if it does not

exist. Specify parameters in single quotes. For example:

SQL> execute dbms_java.set_compiler_option('x.y', 'online', 'false');

Table 2–1 represents a hypothetical JAVA$OPTIONS database table. The pattern

match rule is to match as much of the schema name against the table entry as

possible. The schema name with a higher resolution for the pattern match is the

entry that applies. Because the table has no entry for the encoding option, the

compiler uses the default or the value specified on the command line. The online
option shown in the table matches schema object names as follows:

■ The name a.b.c.d matches class and package names beginning with

a.b.c.d ; the packages and classes are compiled with online = true .

■ The name a.b matches class and package names beginning with a.b . The

name a.b does not match a.b.c.d ; therefore, the packages and classes are

compiled with online = false .

■ All other packages and classes match the empty string entry and are compiled

with online = true .

name The name parameter is a Java package name, a fully qualified

class name, or the empty string. When the compiler searches

the JAVA$OPTIONS table for the options to use for compiling

a Java source schema object, it uses the row whose name most

closely matches the schema object’s fully qualified class name.

A name whose value is the empty string matches any schema

object name.

option The option parameter is either 'online' , 'encoding' or

’debug’ . For the value s you can specify for these options,

see the Oracle9i SQLJ Developer’s Guide and Reference.

Table 2–1 Example JAVA$OPTIONS Table

Name Option Value Match Examples

a.b.c.d online true ■ a.b.c.d —matches the pattern exactly.

■ a.b.c.d.e —first part matches the pattern
exactly; no other rule matches full name.
Loading Java Classes 2-7

Preparing Java Class Methods for Execution
Automatic Recompilation
Oracle9i provides a dependency management and automatic build facility that will

transparently recompile source programs when you make changes to the source or

binary programs upon which they depend. Consider the following cases:

public class A
{
 B b;
 public void assignB () {b = new B()}
}
public class B
{
 C c;
 public void assignC () {c = new C()}
}
public class C
{
 A a;
 public void assignA () {a = new A()}
}

The system tracks dependencies at a class level of granularity. In the preceding

example, you can see that classes A, B, and C depend on one another, because A

holds an instance of B, B holds an instance of C, and C holds an instance of A. If you

change the definition of class A by adding a new field to it, the dependency

mechanism in Oracle9i flags classes B and C as invalid. Before you use any of these

classes again, Oracle9i attempts to resolve them again and recompile, if necessary.

Note that classes can be recompiled only if source is present on the server.

The dependency system enables you to rely on Oracle9i to manage dependencies

between classes, to recompile, and to resolve automatically. You must force

a.b online false ■ a.b —matches the pattern exactly

■ a.b.c.x —first part matches the pattern
exactly; no other rule matches beyond
specified rule name.

(empty string) online true ■ a.c —no pattern match with any defined
name; defaults to (empty string) rule

■ x.y —no pattern match with any defined
name; defaults to (empty string) rule

Table 2–1 Example JAVA$OPTIONS Table

Name Option Value Match Examples
2-8 Java Stored Procedures Developer’s Guide

Preparing Java Class Methods for Execution
compilation and resolution yourself only if you are developing and you want to

find problems early. The loadjava utility also provides the facilities for forcing

compilation and resolution if you do not want to allow the dependency

management facilities to perform this for you.

Resolving Class Dependencies
Many Java classes contain references to other classes, which is the essence of

reusing code. A conventional Java virtual machine searches for classes, ZIP, and

JAR files within the directories specified in the CLASSPATH. In contrast, the Oracle

Java virtual machine searches database schemas for class objects. With Oracle, you

load all Java classes within the database, so you might need to specify where to find

the dependent classes for your Java class within the database.

All classes loaded within the database are referred to as class schema objects and

are loaded within certain schemas. All JVM classes, such as java.lang.* , are

loaded within PUBLIC. If your classes depend upon other classes you have defined,

you will probably load them all within your own schema. For example, if your

schema is SCOTT, the database resolver (the database replacement for CLASSPATH)
searches the SCOTT schema before PUBLIC. The listing of schemas to search is

known as a resolver spec. Resolver specs are for each class, whereas in a classic Java

virtual machine, CLASSPATH is global to all classes.

When locating and resolving the interclass dependencies for classes, the resolver

marks each class as valid or invalid, depending on whether all interdependent

classes are located. If the class that you load contains a reference to a class that is not

found within the appropriate schemas, the class is listed as invalid. Unsuccessful

resolution at runtime produces a “class not found” exception. Furthermore, runtime

resolution can fail for lack of database resources if the tree of classes is very large.

For each interclass reference in a class, the resolver searches the schemas specified

by the resolver spec for a valid class schema object that satisfies the reference. If all

references are resolved, the resolver marks the class valid. A class that has never

been resolved, or has been resolved unsuccessfully, is marked invalid. A class that

depends on a schema object that becomes invalid is also marked invalid.

Note: As with the Java compiler, loadjava resolves references to

classes, but not to resources. Be sure to correctly load the resource

files that your classes need.
Loading Java Classes 2-9

Preparing Java Class Methods for Execution
To make searching for dependent classes easier, Oracle provides a default resolver

and resolver spec that searches first the definer’s schema and then PUBLIC. This

covers most of the classes loaded within the database. However, if you are accessing

classes within a schema other than your own or PUBLIC, you must define your own

resolver spec.

■ loading using Oracle’s default resolver, which searches the definer’s schema

and PUBLIC:

loadjava -resolve

■ loading using your own resolver spec definition containing the SCOTT schema,

OTHER schema, and PUBLIC:

loadjava -resolve -resolver "((* SCOTT)(* OTHER)(* PUBLIC))"

The -resolver option specifies the objects to search within the schemas defined. In

the previous example, all class schema objects are searched within SCOTT, OTHER,

and PUBLIC. However, if you wanted to search for only a certain class or group of

classes within the schema, you could narrow the scope for the search. For example,

to search only for the classes "my/gui/*" within the OTHER schema, you would

define the resolver spec as follows:

loadjava -resolve -resolver ’((* SCOTT) ("my/gui/*" OTHER) (* PUBLIC))’

The first parameter within the resolver spec is for the class schema object; the

second parameter defines the schema within which to search for these class schema

objects.

Allowing References to Non-Existent Classes
You can specify a special option within a resolver spec that allows an unresolved

reference to a non-existent class. Sometimes, internal classes are never used within a

product. For example, some ISVs do not remove all references to internal test classes

from the JAR file before shipping. In a normal Java environment, this is not a

problem, because as long as the methods are not called, the Sun Microsystems JVM

ignores them. However, the Oracle9i resolver tries to resolve all classes referenced

within the JAR file—even unused classes. If the reference cannot be validated, the

classes within the JAR file are marked as invalid.

To ignore references, you can specify the "-" wildcard within the resolver spec. The

following example specifies that any references to classes within "my/gui " are to be

allowed, even if it is not present within the resolver spec schema list.

loadjava -resolve -resolver ’((* SCOTT) (* PUBLIC) ("my/gui/*" -))’
2-10 Java Stored Procedures Developer’s Guide

Preparing Java Class Methods for Execution
In addition, you can define that all classes not found are to be ignored. Without the

wildcard, if a dependent class is not found within one of the schemas, your class is

listed as invalid and cannot be run. However, this is also dangerous, because if there

is a dependent class on a used class, you mark a class as valid that can never run

without the dependent class. In this case, you will receive an exception at runtime.

To ignore all classes not found within SCOTT or PUBLIC, specify the following

resolver spec:

loadjava -resolve -resolver "((* SCOTT) (* PUBLIC) (* -))"

ByteCode Verifier
According to the JVM specification, .class files are subject to verification before

the class they define is available in a JVM. In Oracle JVM, the verification process

occurs at class resolution. The resolver might find one of the following problems

and issue the appropriate Oracle error code:

The resolver also issues the following warnings:

Note: Never use a resolver containing “-” if you later intend to

load the classes that were causing you to use such a resolver in the

first place. Instead, include all referenced classes in the schema

before resolving.

ORA-29545 If the resolver determines that the class is malformed, the

resolver does not mark it valid. When the resolver rejects a

class, it issues an ORA-29545 error (badly formed class). The

loadjava tool reports the error. For example, this error is

thrown if the contents of a .class file are not the result of a

Java compilation or if the file has been corrupted.

ORA-29552 In some situations, the resolver allows a class to be marked

valid, but will replace bytecodes in the class to throw an

exception at runtime. In these cases, the resolver issues an

ORA-29552 (verification warning), which loadjava will

report. The loadjava tool issues this warning when the Java

Language Specification would require an

IncompatibleClassChangeError be thrown. Oracle JVM

relies on the resolver to detect these situations, supporting the

proper runtime behavior that the JLS requires.
Loading Java Classes 2-11

Preparing Java Class Methods for Execution
■ Resolvers containing “-”

This type of resolver marks your class valid regardless of whether classes it

references are present. Because of inheritance and interfaces, you may want to

write valid Java methods that use an instance of a class as if it were an instance

of a superclass or of a specific interface. When the method being verified uses a

reference to class A as if it were a reference to class B, the resolver must check

that A either extends or implements B. For example, consider the following

potentially valid method, whose signature implies a return of an instance of B,

but whose body returns an instance of A:

B myMethod(A a) { return a; }

The method is valid only if A extends B, or A implements the interface B. If A

or B have been resolved using a “-” term, the resolver does not know that this

method is safe. It will replace the bytecodes of myMethod with bytecodes that

throw an Exception if myMethod is ever called.

■ Use of other resolvers

The resolver ensures that the class definitions of A and B are found and

resolved properly if they are present in the schemas they specifically identify.

The only time you might consider using the alternative resolver is if you must

load an existing JAR file containing classes that reference other non-system

classes that are not included in the JAR file.

For more information on class resolution and loading your classes within the

database, see the Oracle9i Java Developer’s Guide.

Loading Classes
This section gives an overview of loading your classes into the database using the

loadjava tool. You can also execute loadjava within your SQL. See the Oracle9i
Java Developer’s Guide for complete information on loadjava .

Unlike a conventional Java virtual machine, which compiles and loads from files,

the Oracle Java virtual machine compiles and loads from database schema objects.

.java source files or

.sqlj source files

 correspond to Java source schema objects

 .class compiled Java files correspond to Java class schema objects

 .properties Java resource files,

.ser SQLJ profile files, or data files

 correspond to Java resource schema objects
2-12 Java Stored Procedures Developer’s Guide

Preparing Java Class Methods for Execution
You must load all classes or resources into the database to be used by other classes

within the database. In addition, at loadtime, you define who can execute your

classes within the database.

The loadjava tool performs the following for each type of file:

Schema Object loadjava Operations on Object

 .java source files 1. It creates a source schema object within the definer’s
schema unless another schema is specified.

2. It loads the contents of the source file into a schema object.

3. It creates a class schema object for all classes defined in the
source file.

4. If -resolve is requested, it does the following:

a. It compiles the source schema object.

b. It resolves the class and its dependencies.

c. It stores the compiled class into a class schema object.

 .sqlj source files 1. It creates a source schema object within the definer’s
schema unless another schema is specified.

2. It loads contents of the source file into the schema object.

3. It creates a class schema object for all classes and resources
defined in the source file.

4. If -resolve is requested, it does the following:

a. It translates and compiles the source schema object.

b. It stores the compiled class into a class schema object.

c. It stores the profile into a .ser resource schema object and
customizes it.

 .class compiled Java
files

1. It creates a class schema object within the definer’s schema
unless another schema is specified.

2. It loads the class file into the schema object.

3. It resolves and verifies the class and its dependencies if
-resolve is specified.

 .properties Java
resource files

1. It creates a resource schema object within the definer’s
schema unless another schema is specified.

2. It loads a resource file into a schema object.
Loading Java Classes 2-13

Preparing Java Class Methods for Execution
The dropjava tool performs the reverse of the loadjava tool: it deletes schema

objects that correspond to Java files. Always use dropjava to delete a Java schema

object created with loadjava . Dropping with SQL DDL commands will not

update auxiliary data maintained by loadjava and dropjava . You can also

execute dropjava from within SQL commands.

You must abide by certain rules, which are detailed in the following sections, when

loading classes into the database:

■ Defining the Same Class Twice

■ Designating Database Privileges and JVM Permissions

■ Loading JAR or ZIP Files

After loading, you can access the USER_OBJECTS view in your database schema to

verify that your classes and resources loaded properly. For more information, see

"Checking Java Uploads" on page 2-16.

Defining the Same Class Twice
You cannot have two different definitions for the same class. This rule affects you in

two ways:

■ You can load either a particular Java .class file or its .java file, but not both.

Oracle9i tracks whether you loaded a class file or a source file. If you wish to

update the class, you must load the same type of file that you originally loaded.

If you wish to update the other type, you must drop the first before loading the

second. For example, if you loaded x.java as the source for class y, to load

x.class , you must first drop x.java .

.ser SQLJ profile 1. It creates a resource schema object within the definer’s
schema unless another schema is specified.

2. It loads the .ser resource file into a schema object and
customizes it.

Note: More options for loadjava are available. However, this

section discusses only the major options. See the Oracle9i Java
Developer’s Guide for complete information on loadjava and

dropjava .

Schema Object loadjava Operations on Object
2-14 Java Stored Procedures Developer’s Guide

Preparing Java Class Methods for Execution
■ You cannot define the same class within two different schema objects within the

same schema. For example, suppose x.java defines class y and you want to

move the definition of y to z.java . If x.java has already been loaded,

loadjava rejects any attempt to load z.java (which also defines y). Instead,

do either of the following:

■ Drop x.java , load z.java (which defines y), then load the new x.java
(which does not define y).

■ Load the new x.java (which does not define y), then load z.java (which

defines y).

Designating Database Privileges and JVM Permissions
You must have the following SQL database privileges to load classes:

■ CREATE PROCEDURE and CREATE TABLE privileges to load into your schema.

■ CREATE ANY PROCEDURE and CREATE ANY TABLE privileges to load into

another schema.

■ oracle .aurora .security .JServerPermission .loadLibraryInClass .

<classname> . See the Security chapter in the Oracle9i Java Developer’s Guide for

more information.

Loading JAR or ZIP Files
The loadjava tool accepts .class , .java , .properties, .sqlj , .ser , .jar , or

.zip files. The JAR or ZIP files can contain source, class, and data files. When you

pass loadjava a JAR or ZIP file, loadjava opens the archive and loads its

members individually. There is no JAR or ZIP schema object. If the JAR or ZIP

content has not changed since the last time it was loaded, it is not reloaded;

therefore, there is little performance penalty for loading JAR or ZIP files. In fact,

loading JAR or ZIP files is the simplest way to use loadjava .

How to Grant Execute Rights
If you load all classes within your own schema and do not reference any class

outside of your schema, you already have execution rights. You have the privileges

necessary for your objects to invoke other objects loaded in the same schema. That

Note: Oracle does not reload a class if it has not changed since the

last load. However, you can force a class to be reloaded through the

loadjava -force option.
Loading Java Classes 2-15

Preparing Java Class Methods for Execution
is, the ability for class A to invoke class B. Class A must be given the right to invoke

class B.

The classes that define a Java application are stored within the Oracle9i RDBMS

under the SQL schema of their owner. By default, classes that reside in one user’s

schema are not executable by other users, because of security concerns. You can

allow other users (schemas) the right to execute your class through the loadjava
-grant option. You can grant execution rights to a certain user or schema. You

cannot grant execution rights to a role, which includes the super-user DBA role. The

setting of execution rights is the same as used to grant or revoke privileges in SQL

DDL statements.

Figure 2–2 Execution Rights

Checking Java Uploads
You can query the database view USER_OBJECTS to obtain information about

schema objects—including Java sources, classes, and resources—that you own. This

allows you, for example, to verify that sources, classes, or resources that you load

are properly stored into schema objects.

Columns in USER_OBJECTS include those contained in Table 2–2.

Table 2–2 Key USER_OBJECT Columns

Name Description

OBJECT_NAME name of the object

OBJECT_TYPE type of the object (such as JAVA SOURCE, JAVA CLASS, or JAVA
RESOURCE)

STATUS status of the object (VALID or INVALID) (always VALID for JAVA
RESOURCE)

Class A Class B Class C

Method invocation: Class A invokes class B; class B invokes class C.
Execution rights for classes:
* Class A needs execution rights for B.
* Class A does not need execution rights for C.
* Class B needs execution rights for C.
2-16 Java Stored Procedures Developer’s Guide

Preparing Java Class Methods for Execution
Object Name and Type
An OBJECT_NAMEin USER_OBJECTSis the short name. The full name is stored as a

short name if it exceeds 31 characters. See "Shortened Class Names" on page 2-19

for more information on full and short names.

If the server uses a short name for a schema object, you can use the LONGNAME()
routine of the server DBMS_JAVA package to receive it from a query in full name

format, without having to know the short name format or the conversion rules.

SQL*Plus> SELECT dbms_java.longname(object_name) FROM user_objects
 WHERE object_type=’JAVA SOURCE’;

This routine shows you the Java source schema objects in full name format. Where

no short name is used, no conversion occurs, because the short name and full name

are identical.

You can use the SHORTNAME() routine of the DBMS_JAVA package to use a full

name as a query criterion, without having to know whether it was converted to a

short name in the database.

SQL*Plus> SELECT object_type FROM user_objects
 WHERE object_name=dbms_java.shortname(’ known_fullname ’);

This routine shows you the OBJECT_TYPE of the schema object of the specified full

name. This presumes that the full name is representable in the database character

set.

SVRMGR> select * from javasnm;
SHORT LONGNAME
--
/78e6d350_BinaryExceptionHandl sun/tools/java/BinaryExceptionHandler
/b6c774bb_ClassDeclaration sun/tools/java/ClassDeclaration
/af5a8ef3_JarVerifierStream1 sun/tools/jar/JarVerifierStream$1

Status
STATUS is a character string that indicates the validity of a Java schema object. A

source schema object is VALID if it compiled successfully; a class schema object is

VALID if it was resolved successfully. A resource schema object is always VALID,
because resources are not resolved.

Example: Accessing USER_OBJECTS The following SQL*Plus script accesses the

USER_OBJECTS view to display information about uploaded Java sources, classes,

and resources.
Loading Java Classes 2-17

User Interfaces on the Server
COL object_name format a30
COL object_type format a15
SELECT object_name, object_type, status
 FROM user_objects
 WHERE object_type IN (’JAVA SOURCE’, ’JAVA CLASS’, ’JAVA RESOURCE’)
 ORDER BY object_type, object_name;

You can optionally use wildcards in querying USER_OBJECTS, as in the following

example.

SELECT object_name, object_type, status
 FROM user_objects
 WHERE object_name LIKE ’%Alerter’;

This routine finds any OBJECT_NAME entries that end with the characters:

Alerter .

User Interfaces on the Server
Oracle9i furnishes all core Java class libraries on the server, including those

associated with presentation of user interfaces (java.awt and java.applet). It

is, however, inappropriate for code executing in the server to attempt to bring up or

materialize a user interface in the server. Imagine thousands of users worldwide

exercising an Internet application that executes code that requires someone to click

a dialog presented on the server hardware. You can write Java programs that

reference and use java.awt classes as long as you do not attempt to materialize a

user interface.

When building applets, you test them using the java.awt and the Peer

implementation, which is a platform-specific set of classes for support of a specific

windowing system. When the user downloads an applet, it dynamically loads the

proper client Peer libraries, and the user sees a display appropriate for the

operating system or windowing system in use on the client side. Oracle9i takes the

same approach. We provide an Oracle-specific Peer implementation that throws an

exception, oracle.aurora.awt.UnsupportedOperation , if you execute Java

code on the Oracle9i server that attempts to materialize a user interface.

Oracle9i’s lack of support for materializing user interfaces in the server means that

we do not pass the Java 2 Compatibility Kit tests for java.awt ,

java.awt.manual , and java.applet . In the Oracle RDBMS, all user interfaces

are supported only on client applications, although they might be displayed on the

same physical hardware that supports the server—for example, in the case of
2-18 Java Stored Procedures Developer’s Guide

Shortened Class Names
Windows NT. Because it is inappropriate for the server to support user interfaces,

we exclude these tests from our complete Java Compatibility Kit testing.

A similar issue exists for vendors of Java-powered embedded devices and in

handheld devices (known as Personal Java). Future releases of Java and the Java

Compatibility Kit will provide improved factorization of user interface support so

that vendors of Java server platforms can better address this issue.

Shortened Class Names
Each Java source, class, and resource is stored in its own schema object in the server.

The name of the schema object is derived from the fully qualified name, which

includes relevant path or package information. Dots are replaced by slashes. These

fully qualified names (with slashes)—used for loaded sources, loaded classes,

loaded resources, generated classes, and generated resources—are referred to in this

chapter as schema object full names.

Schema object names, however, have a maximum of only 31 characters, and all

characters must be legal and convertible to characters in the database character set.

If any full name is longer than 31 characters or contains illegal or non-convertible

characters, the Oracle9i server converts the full name to a short name to employ as

the name of the schema object, keeping track of both names and how to convert

between them. If the full name is 31 characters or less and has no illegal or

inconvertible characters, then the full name is used as the schema object name.

Because Java classes and methods can have names exceeding the maximum SQL

identifier length, Oracle9i uses abbreviated names internally for SQL access.

Oracle9i provides a method within the DBMS_JAVA package for retrieving the

original Java class name for any truncated name.

FUNCTION longname (shortname VARCHAR2) RETURN VARCHAR2

This function returns the longname from a Java schema object. An example is to

print the fully qualified name of classes that are invalid for some reason.

select dbms_java.longname (object_name) from user_objects
 where object_type = 'JAVA CLASS' and status = 'INVALID';

In addition, you can specify a full name to the database by using the shortname()
routine of the DBMS_JAVA package, which takes a full name as input and returns

the corresponding short name. This is useful when verifying that your classes

loaded by querying the USER_OBJECTS view.

FUNCTION shortname (longname VARCHAR2) RETURN VARCHAR2
Loading Java Classes 2-19

Controlling the Current User
Controlling the Current User
During execution of Java or PL/SQL, there is always a current user. Initially, this is

the user who creates the session.

Invoker’s and definer’s rights is a SQL concept that is used dynamically when

executing SQL, PL/SQL, or JDBC. The current user controls the interpretation of

SQL and determines privileges. For example, if a table is referenced by a simple

name, it is assumed that the table belongs in the user’s schema. In addition, the

privileges that are checked when resources are requested are based on the privileges

granted to the current user.

In addition, for Java stored procedures, the call specifications use a PL/SQL

wrapper. So, you could specify definer’s rights on either the call specification or on

the Java class itself. If either is redefined to definer’s rights, then the called method

executes under the user that deployed the Java class.

By default, Java stored procedures execute without changing the current user—that

is, with the privileges of their invoker, not their definer. Invoker-rights procedures

are not bound to a particular schema. Their unqualified references to schema objects

(such as database tables) are resolved in the schema of the current user, not the

definer.

On the other hand, definer-rights procedures are bound to the schema in which

they reside. They execute with the privileges of their definer, and their unqualified

references to schema objects are resolved in the schema of the definer.

Invoker-rights procedures let you reuse code and centralize application logic. They

are especially useful in applications that store data in different schemas. In such

cases, multiple users can manage their own data using a single code base.

Consider a company that uses a definer-rights procedure to analyze sales. To

provide local sales statistics, the procedure analyze must access sales tables that

reside at each regional site. To do so, the procedure must also reside at each regional

site. This causes a maintenance problem.

To solve the problem, the company installs an invoker-rights (IR) version of the

procedure analyze at headquarters. Now, as Figure 2–3 shows, all regional sites

can use the same procedure to query their own sales tables.
2-20 Java Stored Procedures Developer’s Guide

Controlling the Current User
Figure 2–3 Invoker-Rights Solution

Occasionally, you might want to override the default invoker-rights behavior.

Suppose headquarters would like the procedure analyze to calculate sales

commissions and update a central payroll table. That presents a problem because

invokers of analyze should not have direct access to the payroll table, which

stores employee salaries and other sensitive data. As Figure 2–4 shows, the solution

is to have procedure analyze call the definer-rights (DR) procedure calcComm ,

which, in turn, updates the payroll table.

Figure 2–4 Indirect Access

To override the default invoker-rights behavior, specify the loadjava option

-definer , which is similar to the UNIX facility setuid , except that -definer

Schema HQSchema WEST

sales

Schema EAST

sales

analyze
(IR)

Schema HQSchema WEST

analyze

sales

Schema EAST

sales

payroll

calc_comm
(DR)

(IR)
Loading Java Classes 2-21

Controlling the Current User
applies to individual classes, not whole programs. Alternatively, you can execute

the SQL DDL that changes the AUTHID of the current user.

Different definers can have different privileges, and applications can consist of

many classes. So, use the option -definer carefully, making sure that classes have

only the privileges they need.
2-22 Java Stored Procedures Developer’s Guide

Publishing Java Cl
3

Publishing Java Classes

Before calling Java methods from SQL, you must publish them in the Oracle data

dictionary. When you load a Java class into the database, its methods are not

published automatically because Oracle does not know which methods are safe

entrypoints for calls from SQL. To publish the methods, you must write call

specifications (call specs), which map Java method names, parameter types, and

return types to their SQL counterparts.

■ Understanding Call Specs

■ Defining Call Specs: Basic Requirements

■ Writing Top-Level Call Specs

■ Writing Packaged Call Specs

■ Writing Object Type Call Specs
asses 3-1

Understanding Call Specs
Understanding Call Specs
To publish Java methods, you write call specs. For a given Java method, you declare

a function or procedure call spec using the SQL CREATE FUNCTION or CREATE
PROCEDURE statement. Inside a PL/SQL package or SQL object type, you use

similar declarations.

You publish value-returning Java methods as functions or procedures and void
Java methods as procedures. The function or procedure body contains the

LANGUAGE JAVA clause. This clause records information about the Java method

including its full name, its parameter types, and its return type. Mismatches are

detected only at run time.

As Figure 3–1 shows, applications call the Java method through its call spec, that is,

by referencing the call-spec name. The run-time system looks up the call-spec

definition in the Oracle data dictionary, then executes the corresponding Java

method.

Figure 3–1 Calling a Java Method

Application

Oracle Database

Java
methodApplication

Data
Dictionary

Call
Spec
3-2 Java Stored Procedures Developer’s Guide

Defining Call Specs: Basic Requirements
Defining Call Specs: Basic Requirements
A call spec and the Java method it publishes must reside in the same schema (unless

the Java method has a PUBLIC synonym). You can declare the call spec as a:

■ standalone (top-level) PL/SQL function or procedure

■ packaged PL/SQL function or procedure

■ member method of a SQL object type

A call spec exposes a Java method’s top-level entry point to Oracle. Therefore, you

can publish only public static methods—with one exception. You can publish

instance methods as member methods of a SQL object type.

Packaged call specs perform as well as top-level call specs. So, to ease maintenance,

you might want to place call specs in a package body. That way, you can modify

them without invalidating other schema objects. Also, you can overload them.

Setting Parameter Modes
In Java and other object-oriented languages, a method cannot assign values to

objects passed as arguments. So, when calling a method from SQL or PL/SQL, to

change the value of an argument, you must declare it as an OUT or IN OUT
parameter in the call spec. The corresponding Java parameter must be a

one-element array.

You can replace the element value with another Java object of the appropriate type,

or (with IN OUT parameters) you can modify the value if the Java type permits.

Either way, the new value propagates back to the caller. For example, you might

map a call spec OUT parameter of type NUMBER to a Java parameter declared as

float[] p , then assign a new value to p[0] .

Note: A function that declares OUT or IN OUT parameters cannot be

called from SQL DML statements.
Publishing Java Classes 3-3

Defining Call Specs: Basic Requirements
Mapping Datatypes
In a call spec, corresponding SQL and Java parameters (and function results) must

have compatible datatypes. Table 3–1 contains all the legal datatype mappings.

Oracle converts between the SQL types and Java classes automatically.

Table 3–1 Legal Datatype Mappings

SQL Type Java Class

CHAR, LONG,
VARCHAR2

oracle.sql.CHAR
java.lang.String
java.sql.Date
java.sql.Time
java.sql.Timestamp
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal
byte, short, int, long, float, double

DATE oracle.sql.DATE
java.sql.Date
java.sql.Time
java.sql.Timestamp
java.lang.String

NUMBER oracle.sql.NUMBER
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal
byte, short, int, long, float, double

OPAQUE oracle.sql.OPAQUE

RAW, LONG RAW oracle.sql.RAW
byte[]

ROWID oracle.sql.CHAR
oracle.sql.ROWID
java.lang.String

BFILE oracle.sql.BFILE
3-4 Java Stored Procedures Developer’s Guide

Defining Call Specs: Basic Requirements
BLOB oracle.sql.BLOB
oracle.jdbc2.Blob
 (oracle.jdbc2.Blob under JDK 1.1.x)

CLOB, NCLOB oracle.sql.CLOB
oracle.jdbc2.Clob
 (oracle.jdbc2.Clob under JDK 1.1.x)

OBJECT

Object types
and SQLJ types

oracle.sql.STRUCT
java.sql.Struct
 (oracle.jdbc2.Struct under JDK 1.1.x)
java.sql.SqlData
oracle.sql.ORAData

REF

Reference
types

oracle.sql.REF
java.sql.Ref (oracle.jdbc2.Ref under JDK 1.1.x)
oracle.sql.ORAData

TABLE, VARRAY

Nested table
types and
VARRAY types

oracle.sql.ARRAY
java.sql.Array (oracle.jdbc2.Array under JDK 1.1.x)
oracle.sql.ORAData

any of the
preceding SQL
types

oracle.sql.CustomDatum
oracle.sql.Datum

Table 3–1 Legal Datatype Mappings (Cont.)

SQL Type Java Class
Publishing Java Classes 3-5

Defining Call Specs: Basic Requirements
Notes:

3. The type UROWID and the NUMBER subtypes (INTEGER, REAL, and so on) are not
supported.

4. You cannot retrieve a value larger than 32KB from a LONG or LONG RAW
database column into a Java stored procedure.

5. The Java wrapper classes (java.lang.Byte , java.lang.Short , and so on) are
useful for returning nulls from SQL.

6. When you use the class oracle.sql.CustomDatum to declare parameters, it must
define the following member:

public static oracle.sql.CustomDatumFactory.getFactory();

7. oracle.sql.Datum is an abstract class. The value passed to a parameter of type
oracle.sql.Datum must belong to a Java class compatible with the SQL type.
Likewise, the value returned by a method with return type oracle.sql.Datum must
belong to a Java class compatible with the SQL type.

8. The mappings to oracle.sql classes are optimal because they preserve data formats
and require no character-set conversions (apart from the usual network conversions).
Those classes are especially useful in applications that "shovel" data between SQL and
Java.

Table 3–1 Legal Datatype Mappings (Cont.)

SQL Type Java Class
3-6 Java Stored Procedures Developer’s Guide

Defining Call Specs: Basic Requirements
Using the Server-Side Internal JDBC Driver
Normally, with JDBC, you establish a connection to the database using the

DriverManager class, which manages a set of JDBC drivers. Once the JDBC

drivers are loaded, you call the method getConnection . When it finds the right

driver, getConnection returns a Connection object, which represents a database

session. All SQL statements are executed within the context of that session.

However, the server-side internal JDBC driver runs within a default session and

default transaction context. So, you are already "connected" to the database, and all

your SQL operations are part of the default transaction. You need not register the

driver because it comes pre-registered. To get a Connection object, simply execute

the following statement:

Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");

Use class Statement for SQL statements that take no IN parameters and are

executed only once. When invoked on a Connection object, method

createStatement returns a new Statement object. An example follows:

String sql = "DROP " + object_type + " " + object_name;
Statement stmt = conn.createStatement();
stmt.executeUpdate(sql);

Use class PreparedStatement for SQL statements that take IN parameters or are

executed more than once. The SQL statement, which can contain one or more

parameter placeholders, is precompiled. (Question marks serve as placeholders.)

When invoked on a Connection object, method prepareStatement returns a

new PreparedStatement object, which contains the precompiled SQL statement.

Here is an example:

String sql = "DELETE FROM dept WHERE deptno = ?";
PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setInt(1, deptID);
pstmt.executeUpdate();

A ResultSet object contains SQL query results, that is, the rows that met the

search condition. You use the method next to move to the next row, which becomes

the current row. You use the get XXX methods to retrieve column values from the

current row. An example follows:

String sql = "SELECT COUNT(*) FROM " + tabName;
int rows = 0;
Statement stmt = conn.createStatement();
Publishing Java Classes 3-7

Defining Call Specs: Basic Requirements
ResultSet rset = stmt.executeQuery(sql);
while (rset.next()) {rows = rset.getInt(1);}

A CallableStatement object lets you call stored procedures. It contains the call

text, which can include a return parameter and any number of IN , OUT, and INOUT
parameters. The call is written using an escape clause, which is delimited by braces.

As the following examples show, the escape syntax has three forms:

// parameterless stored procedure
CallableStatement cstmt = conn.prepareCall("{CALL proc}");

// stored procedure
CallableStatement cstmt = conn.prepareCall("{CALL proc(?,?)}");

// stored function
CallableStatement cstmt = conn.prepareCall("{? = CALL func(?,?)}");

Important Points
When developing JDBC stored procedure applications, keep the following points in

mind:

■ The server-side internal JDBC driver runs within a default session and default

transaction context. So, you are already "connected" to the database, and all

your SQL operations are part of the default transaction. Note that this

transaction is a local transaction and not part of a global transaction, such as

implemented by JTA or JTS.

■ Statements and result sets persist across calls, and their finalizers do not release

database cursors. So, to avoid running out of cursors, close all statements and

result sets when you are done with them. Alternatively, you can ask your DBA

to raise the limit set by the Oracle initialization parameter OPEN_CURSORS.

■ The server-side internal JDBC driver does not support auto-commits. So, your

application must explicitly commit or roll back database changes.

■ You cannot connect to a remote database using the server-side internal JDBC

driver. You can "connect" only to the server running your Java program. For

server-to-server connections, use the server-side JDBC Thin driver. (For

client/server connections, use the client-side JDBC Thin or JDBC OCI driver.)

■ You cannot close the physical connection to the database established by the

server-side internal JDBC driver. However, if you call method close() on the

default connection, all connection instances (which, in fact, reference the same

object) are cleaned up and closed. To get a new connection object, you must call

method getConnection() again.
3-8 Java Stored Procedures Developer’s Guide

Defining Call Specs: Basic Requirements
For more information, see the Oracle9i JDBC Developer’s Guide and Reference.

Using the Server-Side SQLJ Translator
The SQLJ translator lets you embed SQL statements in your Java source files using

an escape clause, which begins with #sql . For example, the SQLJ input file embeds

SELECT and CALL statements in the definition of Java class TodaysDate . No

explicit connection handling is required for the server-side execution of SQLJ

programs.

import java.sql.*;
class TodaysDate {
 public static void main (String[] args) {
 try {
 Date today;
 #sql {SELECT SYSDATE INTO :today FROM dual};
 putLine("Today is " + today);
 } catch (Exception e) {putLine("Run-time error: " + e);}
 }

 static void putLine(String s) {
 try {
 #sql {CALL DBMS_OUTPUT.PUT_LINE(:s)};
 } catch (SQLException e) {}
 }
}

SQLJ provides the following convenient syntax for calling stored procedures and

functions:

// parameterless stored procedure
#sql {CALL procedure_name()};

// stored procedure
#sql {CALL procedure_name(parameter, parameter, ...)};

// stored function
#sql result = {VALUES(function_name(parameter, parameter, ...))};

where parameter stands for the following syntax:

{literal | :[{IN | OUT | INOUT}] host_variable_name}

If host_variable_name is a dot-qualified expression (such as max.Salary), it

must be enclosed in parentheses.
Publishing Java Classes 3-9

Defining Call Specs: Basic Requirements
You can use the client-side SQLJ translator to compile source files and customize

profiles. Then, you can upload the resulting class and resource file into the database.

Alternatively, you can use the server-side SQLJ translator to compile source files

after they are uploaded. If you are writing programs on the client side, the first

method is more flexible because most SQLJ translator options are not available on

the server side.

Important Points
When developing SQLJ stored procedure applications, keep the following points in

mind:

■ The SQLJ run-time packages are available automatically on the server. You need

not import them to use the run-time classes.

■ The current user has an implicit channel to the database. So, you need not create

a SQLJ connection-context instance, register a driver, or specify a default

connection for your #sql statements.

■ You cannot connect to a remote database using the server-side internal JDBC

driver. You can "connect" only to the server running your Java program. For

server-to-server connections, use the server-side JDBC Thin driver. (For

client/server connections, use the client-side JDBC Thin or JDBC OCI driver.)

■ A SQLJ connection-context instance communicates with the database through

the session that is running your Java program, not through a true connection.

So, any attempt to close the connection-context instance is ignored, and no

exception is thrown.

■ Option settings for the server-side SQLJ translator are stored in the database

table JAVA$OPTIONS. You can get and set the option values using functions

and procedures in the utility package DBMS_JAVA.

■ The server-side SQLJ translator does not support the option -ser2class . So, it

always generates profiles as resource schema objects, never as class schema

objects.

■ On the server side (but not on the client side), the SQLJ translator lets you give

different names to an input source file and its first public class. However, it is a

poor programming practice to use different names.

For more information, see the Oracle9i SQLJ Developer’s Guide and Reference.
3-10 Java Stored Procedures Developer’s Guide

Writing Top-Level Call Specs
Writing Top-Level Call Specs
In SQL*Plus, you can define top-level call specs interactively using the following

syntax:

CREATE [OR REPLACE]
{ PROCEDURE procedure_name [(param[, param]...)]
 | FUNCTION function_name [(param[, param]...)] RETURN sql_type}
[AUTHID {DEFINER | CURRENT_USER}]
[PARALLEL_ENABLE]
[DETERMINISTIC]
{IS | AS} LANGUAGE JAVA
NAME ’method_fullname (java_type_fullname[, java_type_fullname]...)
 [return java_type_fullname]’;

where param stands for the following syntax:

parameter_name [IN | OUT | IN OUT] sql_type

The AUTHID clause determines whether a stored procedure executes with the

privileges of its definer or invoker (the default) and whether its unqualified

references to schema objects are resolved in the schema of the definer or invoker.

You can override the default behavior by specifying DEFINER. (However, you

cannot override the loadjava option -definer by specifying CURRENT_USER.)

The PARALLEL_ENABLEoption declares that a stored function can be used safely in

the slave sessions of parallel DML evaluations. The state of a main (logon) session is

never shared with slave sessions. Each slave session has its own state, which is

initialized when the session begins. The function result should not depend on the

state of session (static) variables. Otherwise, results might vary across sessions.

The hint DETERMINISTIC helps the optimizer avoid redundant function calls. If a

stored function was called previously with the same arguments, the optimizer can

elect to use the previous result. The function result should not depend on the state

of session variables or schema objects. Otherwise, results might vary across calls.

Only DETERMINISTIC functions can be called from a function-based index or a

materialized view that has query-rewrite enabled. For more information, see the

statements CREATE INDEX and CREATE MATERIALIZED VIEW in the Oracle9i SQL
Reference.

The NAME-clause string uniquely identifies the Java method. The Java full names

and the call spec parameters, which are mapped by position, must correspond one

to one. (This rule does not apply to method main . See Example 2 on page 3-13.) If

the Java method takes no arguments, code an empty parameter list for it but not for

the function or procedure.
Publishing Java Classes 3-11

Writing Top-Level Call Specs
As usual, you write Java full names using dot notation. The following example

shows that long names can be broken across lines at dot boundaries:

artificialIntelligence.neuralNetworks.patternClassification.
 RadarSignatureClassifier.computeRange()

Example 1
Assume that the executable for the following Java class has been loaded into the

Oracle database:

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class GenericDrop {
 public static void dropIt (String object_type, String object_name)
 throws SQLException {
 // Connect to Oracle using JDBC driver
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 // Build SQL statement
 String sql = "DROP " + object_type + " " + object_name;
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(sql);
 stmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

Class GenericDrop has one method named dropIt , which drops any kind of

schema object. For example, if you pass the arguments ’table’ and ’emp’ to

dropIt , the method drops database table emp from your schema. Let’s write a call

spec for this method.

CREATE OR REPLACE PROCEDURE drop_it (
 obj_type VARCHAR2,
 obj_name VARCHAR2)
AS LANGUAGE JAVA
NAME ’GenericDrop.dropIt(java.lang.String, java.lang.String)’;

Notice that you must fully qualify the reference to class String . Package

java.lang is automatically available to Java programs but must be named

explicitly in call specs.
3-12 Java Stored Procedures Developer’s Guide

Writing Top-Level Call Specs
Example 2
As a rule, Java names and call spec parameters must correspond one to one.

However, that rule does not apply to method main . Its String[] parameter can be

mapped to multiple CHAR or VARCHAR2 call spec parameters. Suppose you want to

publish the following method main , which prints its arguments:

public class EchoInput {
 public static void main (String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

To publish method main , you might write the following call spec:

CREATE OR REPLACE PROCEDURE echo_input (
 s1 VARCHAR2,
 s2 VARCHAR2,
 s3 VARCHAR2)
AS LANGUAGE JAVA
NAME ’EchoInput.main(java.lang.String[])’;

You cannot impose constraints (such as precision, size, or NOT NULL) on call spec

parameters. So, you cannot specify a maximum size for the VARCHAR2 parameters,

even though you must do so for VARCHAR2 variables, as in:

DECLARE
 last_name VARCHAR2(20); -- size constraint required

Example 3
Next, you publish Java method rowCount , which returns the number of rows in a

given database table.

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class RowCounter {
 public static int rowCount (String tabName) throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "SELECT COUNT(*) FROM " + tabName;
 int rows = 0;
Publishing Java Classes 3-13

Writing Top-Level Call Specs
 try {
 Statement stmt = conn.createStatement();
 ResultSet rset = stmt.executeQuery(sql);
 while (rset.next()) {rows = rset.getInt(1);}
 rset.close();
 stmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 return rows;
 }
}

In the following call spec, the return type is NUMBER, not INTEGER, because

NUMBERsubtypes (such as INTEGER, REAL, and POSITIVE) are not allowed in a call

spec:

CREATE FUNCTION row_count (tab_name VARCHAR2) RETURN NUMBER
AS LANGUAGE JAVA
NAME ’RowCounter.rowCount(java.lang.String) return int’;

Example 4
Suppose you want to publish the following Java method named swap, which

switches the values of its arguments:

public class Swapper {
 public static void swap (int[] x, int[] y) {
 int hold = x[0];
 x[0] = y[0];
 y[0] = hold;
 }
}

The call spec publishes Java method swap as call spec swap. The call spec declares

IN OUT formal parameters because values must be passed in and out. All call spec

OUT and IN OUT parameters must map to Java array parameters.

CREATE PROCEDURE swap (x IN OUT NUMBER, y IN OUT NUMBER)
AS LANGUAGE JAVA
NAME ’Swapper.swap(int[], int[])’;

Notice that a Java method and its call spec can have the same name.
3-14 Java Stored Procedures Developer’s Guide

Writing Packaged Call Specs
Writing Packaged Call Specs
A PL/SQL package is a schema object that groups logically related types, items, and

subprograms. Usually, packages have two parts, a specification (spec) and a body
(sometimes the body is unnecessary). The spec is the interface to your applications:

it declares the types, constants, variables, exceptions, cursors, and subprograms

available for use. The body fully defines cursors and subprograms, thereby

implementing the spec. (For details, see the PL/SQL User’s Guide and Reference.)

In SQL*Plus, you can define PL/SQL packages interactively using this syntax:

CREATE [OR REPLACE] PACKAGE package_name
 [AUTHID {CURRENT_USER | DEFINER}] {IS | AS}
 [type_definition [type_definition] ...]
 [cursor_spec [cursor_spec] ...]
 [item_declaration [item_declaration] ...]
 [{subprogram_spec | call_spec} [{subprogram_spec | call_spec}]...]
END [package_name];

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}
 [type_definition [type_definition] ...]
 [cursor_body [cursor_body] ...]
 [item_declaration [item_declaration] ...]
 [{subprogram_spec | call_spec} [{subprogram_spec | call_spec}]...]
[BEGIN
 sequence_of_statements]
END [package_name];]

The spec holds public declarations, which are visible to your application. The body

contains implementation details and private declarations, which are hidden from

your application. Following the declarative part of the package body is the optional

initialization part, which typically holds statements that initialize package variables.

It is run only once, the first time you reference the package.

A call spec declared in a package spec cannot have the same signature (name and

parameter list) as a subprogram in the package body. If you declare all the

subprograms in a package spec as call specs, the package body is unnecessary

(unless you want to define a cursor or use the initialization part).

The AUTHIDclause determines whether all the packaged subprograms execute with

the privileges of their definer (the default) or invoker, and whether their unqualified

references to schema objects are resolved in the schema of the definer or invoker.
Publishing Java Classes 3-15

Writing Packaged Call Specs
An Example
Consider the Java class DeptManager , which has methods for adding a new

department, dropping a department, and changing the location of a department.

Notice that method addDept uses a database sequence to get the next department

number. The three methods are logically related, so you might want to group their

call specs in a PL/SQL package.

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class DeptManager {
 public static void addDept (String deptName, String deptLoc)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "SELECT deptnos.NEXTVAL FROM dual";
 String sql2 = "INSERT INTO dept VALUES (?, ?, ?)";
 int deptID = 0;
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 ResultSet rset = pstmt.executeQuery();
 while (rset.next()) {deptID = rset.getInt(1);}
 pstmt = conn.prepareStatement(sql2);
 pstmt.setInt(1, deptID);
 pstmt.setString(2, deptName);
 pstmt.setString(3, deptLoc);
 pstmt.executeUpdate();
 rset.close();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void dropDept (int deptID) throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "DELETE FROM dept WHERE deptno = ?";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, deptID);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
3-16 Java Stored Procedures Developer’s Guide

Writing Packaged Call Specs
 public static void changeLoc (int deptID, String newLoc)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "UPDATE dept SET loc = ? WHERE deptno = ?";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setString(1, newLoc);
 pstmt.setInt(2, deptID);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

Suppose you want to package methods addDept , dropDept , and changeLoc .

First, you create the package spec, as follows:

CREATE OR REPLACE PACKAGE dept_mgmt AS
 PROCEDURE add_dept (dept_name VARCHAR2, dept_loc VARCHAR2);
 PROCEDURE drop_dept (dept_id NUMBER);
 PROCEDURE change_loc (dept_id NUMBER, new_loc VARCHAR2);
END dept_mgmt;

Then, you create the package body by writing call specs for the Java methods:

CREATE OR REPLACE PACKAGE BODY dept_mgmt AS
 PROCEDURE add_dept (dept_name VARCHAR2, dept_loc VARCHAR2)
 AS LANGUAGE JAVA
 NAME ’DeptManager.addDept(java.lang.String, java.lang.String)’;

 PROCEDURE drop_dept (dept_id NUMBER)
 AS LANGUAGE JAVA
 NAME ’DeptManager.dropDept(int)’;

 PROCEDURE change_loc (dept_id NUMBER, new_loc VARCHAR2)
 AS LANGUAGE JAVA
 NAME ’DeptManager.changeLoc(int, java.lang.String)’;
END dept_mgmt;

To reference the stored procedures in the package dept_mgmt , you must use dot

notation, as the following example shows:

CALL dept_mgmt.add_dept(’PUBLICITY’, ’DALLAS’);
Publishing Java Classes 3-17

Writing Object Type Call Specs
Writing Object Type Call Specs
In SQL, object-oriented programming is based on object types, which are

user-defined composite data types that encapsulate a data structure along with the

functions and procedures needed to manipulate the data. The variables that form

the data structure are known as attributes. The functions and procedures that

characterize the behavior of the object type are known as methods, which can be

written in Java.

SQLJ Types are implemented to support automatic generation. You can create SQL

types that correspond to Java types, which implement SQLData. SQLJ object types

are discussed in Oracle9i JDBC Developer’s Guide and Reference. In addition, you can

use JPublisher as a convenient method for creating classes that implement SQL

data. See Oracle9i JPublisher User’s Guide for more information.

As with a package, an object type has two parts: a specification (spec) and a body.

The spec is the interface to your applications; it declares a data structure (set of

attributes) along with the operations (methods) needed to manipulate the data. The

body implements the spec by defining PL/SQL subprogram bodies or call specs.

(For details, see the PL/SQL User’s Guide and Reference.)

If an object type spec declares only attributes or call specs, then the object type body

is unnecessary. (You cannot declare attributes in the body.) So, if you implement all

your methods in Java, you can place their call specs in the object type spec and omit

the body.

In SQL*Plus, you can define SQL object types interactively using this syntax:

CREATE [OR REPLACE] TYPE type_name
 [AUTHID {CURRENT_USER | DEFINER}] {IS | AS} OBJECT (
 attribute_name datatype[, attribute_name datatype]...
 [{MAP | ORDER} MEMBER {function_spec | call_spec},]
 [{MEMBER | STATIC} {subprogram_spec | call_spec}
 [, {MEMBER | STATIC} {subprogram_spec | call_spec}]...]
);

[CREATE [OR REPLACE] TYPE BODY type_name {IS | AS}
 { {MAP | ORDER} MEMBER function_body;
 | {MEMBER | STATIC} {subprogram_body | call_spec};}
 [{MEMBER | STATIC} {subprogram_body | call_spec};]...
END;]

The AUTHID clause determines whether all member methods execute with the

current user privileges—which determines invoker’s or definer’s rights.
3-18 Java Stored Procedures Developer’s Guide

Writing Object Type Call Specs
Declaring Attributes
In an object type spec, all attributes must be declared before any methods. At least

one attribute is required (the maximum is 1000). Methods are optional.

As with a Java variable, you declare an attribute with a name and datatype. The

name must be unique within the object type but can be reused in other object types.

The datatype can be any SQL type except LONG, LONG RAW, NCHAR, NVARCHAR2,
NCLOB, ROWID, or UROWID.

You cannot initialize an attribute in its declaration using the assignment operator or

DEFAULT clause. Furthermore, you cannot impose the NOT NULL constraint on an

attribute. However, objects can be stored in database tables on which you can

impose constraints.

Declaring Methods
MEMBER methods accept a built-in parameter known as SELF, which is an instance

of the object type. Whether declared implicitly or explicitly, it is always the first

parameter passed to a MEMBER method. In the method body, SELF denotes the

object whose method was invoked. MEMBER methods are invoked on instances, as

follows:

instance_expression.method()

However, STATIC methods, which cannot accept or reference SELF, are invoked on

the object type, not its instances, as follows:

object_type_name.method()

If you want to call a non-static Java method, you specify the keyword MEMBER in
its call spec. Likewise, if you want to call a static Java method, you specify the

keyword STATIC in its call spec.
Publishing Java Classes 3-19

Writing Object Type Call Specs
Map and Order Methods
The values of a SQL scalar datatype such as CHAR have a predefined order, which

allows them to be compared. However, instances of an object type have no

predefined order. To put them in order, SQL calls a user-defined map method.

SQL uses the ordering to evaluate Boolean expressions such as x > y and to make

comparisons implied by the DISTINCT , GROUP BY, and ORDER BY clauses. A map

method returns the relative position of an object in the ordering of all such objects.

An object type can contain only one map method, which must be a parameterless

function with one of the following return types: DATE, NUMBER, or VARCHAR2.

Alternatively, you can supply SQL with an order method, which compares two

objects. Every order method takes just two parameters: the built-in parameter SELF
and another object of the same type. If o1 and o2 are objects, a comparison such as

o1 > o2 calls the order method automatically. The method returns a negative

number, zero, or a positive number signifying that SELF is respectively less than,

equal to, or greater than the other parameter. An object type can contain only one

order method, which must be a function that returns a numeric result.

You can declare a map method or an order method but not both. If you declare

either method, you can compare objects in SQL and PL/SQL. However, if you

declare neither method, you can compare objects only in SQL and solely for

equality or inequality. (Two objects of the same type are equal if the values of their

corresponding attributes are equal.)

Constructor Methods
Every object type has a constructor method (constructor for short), which is a

system-defined function with the same name as the object type. The constructor

initializes and returns an instance of that object type.

Oracle generates a default constructor for every object type. The formal parameters

of the constructor match the attributes of the object type. That is, the parameters

and attributes are declared in the same order and have the same names and

datatypes. SQL never calls a constructor implicitly, so you must call it explicitly.

Constructor calls are allowed wherever function calls are allowed.

Note: To invoke a Java constructor from SQL, you must wrap calls to it

in a static method and declare the corresponding call spec as a STATIC
member of the object type.
3-20 Java Stored Procedures Developer’s Guide

Writing Object Type Call Specs
Examples
In this section, each example builds on the previous one. To begin, you create two

SQL object types to represent departments and employees. First, you write the spec

for object type Department . The body is unnecessary because the spec declares

only attributes.

CREATE TYPE Department AS OBJECT (
 deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);

Then, you create object type Employee . Its last attribute, deptno , stores a handle,

called a ref, to objects of type Department . A ref indicates the location of an object

in an object table, which is a database table that stores instances of an object type.

The ref does not point to a specific instance copy in memory. To declare a ref, you

specify the datatype REF and the object type that the ref targets.

CREATE TYPE Employee AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno REF Department
);

Next, you create SQL object tables to hold objects of type Department and

Employee . First, you create object table depts , which will hold objects of type

Department . You populate the object table by selecting data from the relational

table dept and passing it to a constructor, which is a system-defined function with

the same name as the object type. You use the constructor to initialize and return an

instance of that object type.

CREATE TABLE depts OF Department AS
 SELECT Department(deptno, dname, loc) FROM dept;
Publishing Java Classes 3-21

Writing Object Type Call Specs
Finally, you create the object table emps, which will hold objects of type Employee .

The last column in object table emps, which corresponds to the last attribute of

object type Employee , holds references to objects of type Department . To fetch the

references into that column, you use the operator REF, which takes as its argument a

table alias associated with a row in an object table.

CREATE TABLE emps OF Employee AS
 SELECT Employee(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal,
 e.comm, (SELECT REF(d) FROM depts d WHERE d.deptno = e.deptno))
 FROM emp e;

Selecting a ref returns a handle to an object; it does not materialize the object itself.

To do that, you can use methods in class oracle.sql.REF , which supports Oracle

object references. This class, which is a subclass of oracle.sql.Datum , extends

the standard JDBC interface oracle.jdbc2.Ref . For more information, see the

Oracle9i JDBC Developer’s Guide and Reference.

Using Class oracle.sql.STRUCT
To continue, you write a Java stored procedure. The class Paymaster has one

method, which computes an employee's wages. The method getAttributes()
defined in class oracle.sql.STRUCT uses the default JDBC mappings for the

attribute types. So, for example, NUMBER maps to BigDecimal .

import java.sql.*;
import java.io.*;
import oracle.sql.*;
import oracle.jdbc.*;
import oracle.oracore.*;
import oracle.jdbc2.*;
import java.math.*;

public class Paymaster {
 public static BigDecimal wages(STRUCT e)
 throws java.sql.SQLException {
 // Get the attributes of the Employee object.
 Object[] attribs = e.getAttributes();
 // Must use numeric indexes into the array of attributes.
 BigDecimal sal = (BigDecimal)(attribs[5]); // [5] = sal
 BigDecimal comm = (BigDecimal)(attribs[6]); // [6] = comm
 BigDecimal pay = sal;
 if (comm != null) pay = pay.add(comm);
 return pay;
 }
}

3-22 Java Stored Procedures Developer’s Guide

Writing Object Type Call Specs
Because the method wages returns a value, you write a function call spec for it, as

follows:

CREATE OR REPLACE FUNCTION wages (e Employee) RETURN NUMBER AS
 LANGUAGE JAVA
 NAME 'Paymaster.wages(oracle.sql.STRUCT) return BigDecimal';

This is a top-level call spec because it is not defined inside a package or object type.

Implementing the SQLData Interface
To make access to object attributes more natural, you can create a Java class that

implements the SQLData interface. To do so, you must provide the methods

readSQL() and writeSQL() as defined by the SQLData interface. The JDBC

driver calls method readSQL() to read a stream of database values and populate

an instance of your Java class. (For details, see the Oracle9i JDBC Developer’s Guide
and Reference) In the following example, you revise class Paymaster , adding a

second method named raiseSal() :

import java.sql.*;
import java.io.*;
import oracle.sql.*;
import oracle.jdbc.*;
import oracle.oracore.*;
import oracle.jdbc2.*;
import java.math.*;

public class Paymaster implements SQLData {
 // Implement the attributes and operations for this type.
 private BigDecimal empno;
 private String ename;
 private String job;
 private BigDecimal mgr;
 private Date hiredate;
 private BigDecimal sal;
 private BigDecimal comm;
 private Ref dept;

 public static BigDecimal wages(Paymaster e) {
 BigDecimal pay = e.sal;
 if (e.comm != null) pay = pay.add(e.comm);
 return pay;
 }
Publishing Java Classes 3-23

Writing Object Type Call Specs
 public static void raiseSal(Paymaster[] e, BigDecimal amount) {
 e[0].sal = // IN OUT passes [0]
 e[0].sal.add(amount); // increase salary by given amount
 }

 // Implement SQLData interface.

 private String sql_type;

 public String getSQLTypeName() throws SQLException {
 return sql_type;
 }

 public void readSQL(SQLInput stream, String typeName)
 throws SQLException {
 sql_type = typeName;
 empno = stream.readBigDecimal();
 ename = stream.readString();
 job = stream.readString();
 mgr = stream.readBigDecimal();
 hiredate = stream.readDate();
 sal = stream.readBigDecimal();
 comm = stream.readBigDecimal();
 dept = stream.readRef();
 }

 public void writeSQL(SQLOutput stream) throws SQLException {
 stream.writeBigDecimal(empno);
 stream.writeString(ename);
 stream.writeString(job);
 stream.writeBigDecimal(mgr);
 stream.writeDate(hiredate);
 stream.writeBigDecimal(sal);
 stream.writeBigDecimal(comm);
 stream.writeRef(dept);
 }
}

You must revise the call spec for method wages , as follows, because its parameter

has changed from oracle.sql.STRUCT to Paymaster :

CREATE OR REPLACE FUNCTION wages (e Employee) RETURN NUMBER AS
 LANGUAGE JAVA
 NAME 'Paymaster.wages(Paymaster) return BigDecimal';
3-24 Java Stored Procedures Developer’s Guide

Writing Object Type Call Specs
Because the new method raiseSal is void, you write a procedure call spec for it,

as follows:

CREATE OR REPLACE PROCEDURE raise_sal (e IN OUT Employee, r NUMBER)
 AS LANGUAGE JAVA
 NAME ’Paymaster.raiseSal(Paymaster[], java.math.BigDecimal)’;

Again, this is a top-level call spec.

Implementing Object Type Methods
Later, you decide to drop the top-level call specs wages and raise_sal and

redeclare them as methods of object type Employee . In an object type spec, all

methods must be declared after the attributes. The object type body is unnecessary

because the spec declares only attributes and call specs.

CREATE TYPE Employee AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno REF Department
 MEMBER FUNCTION wages RETURN NUMBER
 AS LANGUAGE JAVA
 NAME ’Paymaster.wages() return java.math.BigDecimal’,
 MEMBER PROCEDURE raise_sal (r NUMBER)
 AS LANGUAGE JAVA
 NAME ’Paymaster.raiseSal(java.math.BigDecimal)’
);

Then, you revise class Paymaster accordingly. You need not pass an array to

method raiseSal because the SQL parameter SELF corresponds directly to the

Java parameter this —even when SELF is declared as IN OUT (the default for

procedures).

import java.sql.*;
import java.io.*;
import oracle.sql.*;
import oracle.jdbc.*;
import oracle.oracore.*;
import oracle.jdbc2.*;
import java.math.*;
Publishing Java Classes 3-25

Writing Object Type Call Specs
public class Paymaster implements SQLData {
 // Implement the attributes and operations for this type.
 private BigDecimal empno;
 private String ename;
 private String job;
 private BigDecimal mgr;
 private Date hiredate;
 private BigDecimal sal;
 private BigDecimal comm;
 private Ref dept;

 public BigDecimal wages() {
 BigDecimal pay = sal;
 if (comm != null) pay = pay.add(comm);
 return pay;
 }

 public void raiseSal(BigDecimal amount) {
 // For SELF/this, even when IN OUT, no array is needed.
 sal = sal.add(amount);
 }

 // Implement SQLData interface.

 String sql_type;

 public String getSQLTypeName() throws SQLException {
 return sql_type;
 }

 public void readSQL(SQLInput stream, String typeName)
 throws SQLException {
 sql_type = typeName;
 empno = stream.readBigDecimal();
 ename = stream.readString();
 job = stream.readString();
 mgr = stream.readBigDecimal();
 hiredate = stream.readDate();
 sal = stream.readBigDecimal();
 comm = stream.readBigDecimal();
 dept = stream.readRef();
 }
3-26 Java Stored Procedures Developer’s Guide

Writing Object Type Call Specs
 public void writeSQL(SQLOutput stream) throws SQLException {
 stream.writeBigDecimal(empno);
 stream.writeString(ename);
 stream.writeString(job);
 stream.writeBigDecimal(mgr);
 stream.writeDate(hiredate);
 stream.writeBigDecimal(sal);
 stream.writeBigDecimal(comm);
 stream.writeRef(dept);
 }
}

Publishing Java Classes 3-27

Writing Object Type Call Specs
3-28 Java Stored Procedures Developer’s Guide

Calling Stored Proce
4

Calling Stored Procedures

After you load and publish a Java stored procedure, you can call it. This chapter

demonstrates how to call Java stored procedures in various contexts. You learn how

to call them from the top level and from database triggers, SQL DML statements,

and PL/SQL blocks. You also learn how SQL exceptions are handled.

■ Calling Java from the Top Level

■ Calling Java from Database Triggers

■ Calling Java from SQL DML

■ Calling Java from PL/SQL

■ Calling PL/SQL from Java

■ How the JVM Handles Exceptions
dures 4-1

Calling Java from the Top Level
Calling Java from the Top Level
The SQL CALL statement lets you call Java methods published at the top level, in

PL/SQL packages, or in SQL object types. In SQL*Plus, you can execute the CALL
statement interactively using the syntax:

CALL [schema_name.][{package_name | object_type_name}][@dblink_name]
{ procedure_name ([param[, param]...])
 | function_name ([param[, param]...]) INTO :host_variable};

where param stands for the following syntax:

{literal | :host_variable}

Host variables (that is, variables declared in a host environment) must be prefixed

with a colon. The following examples show that a host variable cannot appear twice

in the same CALL statement, and that a parameterless subprogram must be called

with an empty parameter list:

CALL swap(:x, :x); -- illegal, duplicate host variables
CALL balance() INTO :current_balance; -- () required

Redirecting Output
On the server, the default output device is a trace file, not the user screen. As a

result, System.out and System.err print to the current trace files. To redirect

output to the SQL*Plus text buffer, call the procedure set_output() in package

DBMS_JAVA, as follows:

SQL> SET SERVEROUTPUT ON
SQL> CALL dbms_java.set_output(2000);

The minimum (and default) buffer size is 2,000 bytes; the maximum size is 1,000,000

bytes. In the following example, the buffer size is increased to 5,000 bytes:

SQL> SET SERVEROUTPUT ON SIZE 5000
SQL> CALL dbms_java.set_output(5000);

Output is printed when the stored procedure exits.

For more information about SQL*Plus, see the SQL*Plus User’s Guide and Reference.

Example 1
In the following example, the method main accepts the name of a database table

(such as ’emp’) and an optional WHERE clause condition (such as ’sal > 1500’).
4-2 Java Stored Procedures Developer’s Guide

Calling Java from the Top Level
If you omit the condition, the method deletes all rows from the table. Otherwise, the

method deletes only those rows that meet the condition.

import java.sql.*;
import oracle.jdbc.*;

public class Deleter {
 public static void main (String[] args) throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "DELETE FROM " + args[0];
 if (args.length > 1) sql += " WHERE " + args[1];
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(sql);
 stmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

The method main can take either one or two arguments. Normally, the DEFAULT
clause is used to vary the number of arguments passed to a PL/SQL subprogram.

However, that clause is not allowed in a call spec. So, you must overload two

packaged procedures (you cannot overload top-level procedures), as follows:

CREATE OR REPLACE PACKAGE pkg AS
 PROCEDURE delete_rows (table_name VARCHAR2);
 PROCEDURE delete_rows (table_name VARCHAR2, condition VARCHAR2);
END;

CREATE OR REPLACE PACKAGE BODY pkg AS
 PROCEDURE delete_rows (table_name VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'Deleter.main(java.lang.String[])';

 PROCEDURE delete_rows (table_name VARCHAR2, condition VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'Deleter.main(java.lang.String[])';
END;
Calling Stored Procedures 4-3

Calling Java from the Top Level
Now, you are ready to call the procedure delete_rows :

SQL> CALL pkg.delete_rows('emp', 'sal > 1500');

Call completed.

SQL> SELECT ename, sal FROM emp;

ENAME SAL
--------- --------
SMITH 800
WARD 1250
MARTIN 1250
TURNER 1500
ADAMS 1100
JAMES 950
MILLER 1300

7 rows selected.

Example 2
Assume that the executable for the following Java class is stored in the Oracle

database:

public class Fibonacci {
 public static int fib (int n) {
 if (n == 1 || n == 2)
 return 1;
 else
 return fib(n - 1) + fib(n - 2);
 }
}

The class Fibonacci has one method named fib , which returns the nth Fibonacci

number. The Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, . . .), which was first used to

model the growth of a rabbit colony, is recursive. Each term in the sequence (after

the second) is the sum of the two terms that immediately precede it. Because the

method fib returns a value, you publish it as a function:

CREATE OR REPLACE FUNCTION fib (n NUMBER) RETURN NUMBER
AS LANGUAGE JAVA
NAME ’Fibonacci.fib(int) return int’;
4-4 Java Stored Procedures Developer’s Guide

Calling Java from the Top Level
Next, you declare two SQL*Plus host variables, then initialize the first one:

SQL> VARIABLE n NUMBER
SQL> VARIABLE f NUMBER
SQL> EXECUTE :n := 7;

PL/SQL procedure successfully completed.

Finally, you are ready to call the function fib . Remember, in a CALL statement, host

variables must be prefixed with a colon.

SQL> CALL fib(:n) INTO :f;

Call completed.

SQL> PRINT f

 F

 13
Calling Stored Procedures 4-5

Calling Java from Database Triggers
Calling Java from Database Triggers
A database trigger is a stored program associated with a specific table or view. Oracle

executes (fires) the trigger automatically whenever a given DML operation affects

the table or view.

A trigger has three parts: a triggering event (DML operation), an optional trigger

constraint, and a trigger action. When the event occurs, the trigger fires and either a

PL/SQL block or a CALL statement performs the action. A statement trigger fires

once, before or after the triggering event. A row trigger fires once for each row

affected by the triggering event.

Within a database trigger, you can reference the new and old values of changing

rows using the correlation names new and old . In the trigger-action block or CALL
statement, column names must be prefixed with :new or :old .

To create a database trigger, you use the SQL CREATE TRIGGER statement. For the

syntax of that statement, see theOracle9i SQL Reference. For a full discussion of

database triggers, see the Oracle9i Application Developer’s Guide - Fundamentals.

Example 1
Suppose you want to create a database trigger that uses the following Java class to

log out-of-range salary increases:

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class DBTrigger {
 public static void logSal (int empID, float oldSal, float newSal)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "INSERT INTO sal_audit VALUES (?, ?, ?)";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, empID);
 pstmt.setFloat(2, oldSal);
 pstmt.setFloat(3, newSal);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

4-6 Java Stored Procedures Developer’s Guide

Calling Java from Database Triggers
The class DBTrigger has one method, which inserts a row into the database table

sal_audit . Because logSal is a void method, you publish it as a procedure:

CREATE OR REPLACE PROCEDURE log_sal (
 emp_id NUMBER, old_sal NUMBER, new_sal NUMBER)
AS LANGUAGE JAVA
NAME 'DBTrigger.logSal(int, float, float)';

Next, you create the database table sal_audit , as follows:

CREATE TABLE sal_audit (
 empno NUMBER,
 oldsal NUMBER,
 newsal NUMBER);

Finally, you create the database trigger, which fires when a salary increase exceeds

twenty percent:

CREATE OR REPLACE TRIGGER sal_trig
AFTER UPDATE OF sal ON emp
FOR EACH ROW
WHEN (new.sal > 1.2 * old.sal)
CALL log_sal(:new.empno, :old.sal, :new.sal);

When you execute the following UPDATE statement, it updates all rows in the table

emp. For each row that meets the trigger’s WHEN clause condition, the trigger fires

and the Java method inserts a row into the table sal_audit .

SQL> UPDATE emp SET sal = sal + 300;

SQL> SELECT * FROM sal_audit;

 EMPNO OLDSAL NEWSAL
---------- ---------- ----------
 7369 800 1100
 7521 1250 1550
 7654 1250 1550
 7876 1100 1400
 7900 950 1250
 7934 1300 1600

6 rows selected.
Calling Stored Procedures 4-7

Calling Java from Database Triggers
Example 2
Suppose you want to create a trigger that inserts rows into a database view defined

as follows:

CREATE VIEW emps AS
 SELECT empno, ename, ’Sales’ AS dname FROM sales
 UNION ALL
 SELECT empno, ename, ’Marketing’ AS dname FROM mktg;

where the database tables sales and mktg are defined as:

CREATE TABLE sales (empno NUMBER(4), ename VARCHAR2(10));
CREATE TABLE mktg (empno NUMBER(4), ename VARCHAR2(10));

You must write an INSTEAD OF trigger because rows cannot be inserted into a view

that uses set operators such as UNION ALL. Instead, your trigger will insert rows

into the base tables.

First, you add the following Java method to the class DBTrigger (defined in the

previous example):

public static void addEmp (
 int empNo, String empName, String deptName)
throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String tabName = (deptName.equals("Sales") ? "sales" : "mktg");
 String sql = "INSERT INTO " + tabName + " VALUES (?, ?)";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, empNo);
 pstmt.setString(2, empName);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
}

The method addEmp inserts a row into the table sales or mktg depending on the

value of the parameter deptName . You write the call spec for this method as

follows:

CREATE OR REPLACE PROCEDURE add_emp (
 emp_no NUMBER, emp_name VARCHAR2, dept_name VARCHAR2)
AS LANGUAGE JAVA
NAME ’DBTrigger.addEmp(int, java.lang.String, java.lang.String)’;
4-8 Java Stored Procedures Developer’s Guide

Calling Java from Database Triggers
Then, you create the INSTEAD OF trigger:

CREATE OR REPLACE TRIGGER emps_trig
INSTEAD OF INSERT ON emps
FOR EACH ROW
CALL add_emp(:new.empno, :new.ename, :new.dname);

When you execute each of the following INSERT statements, the trigger fires and

the Java method inserts a row into the appropriate base table:

SQL> INSERT INTO emps VALUES (8001, 'Chand', 'Sales');
SQL> INSERT INTO emps VALUES (8002, 'Van Horn', 'Sales');
SQL> INSERT INTO emps VALUES (8003, 'Waters', 'Sales');
SQL> INSERT INTO emps VALUES (8004, 'Bellock', 'Marketing');
SQL> INSERT INTO emps VALUES (8005, 'Perez', 'Marketing');
SQL> INSERT INTO emps VALUES (8006, 'Foucault', 'Marketing');

SQL> SELECT * FROM sales;

 EMPNO ENAME
---------- ----------
 8001 Chand
 8002 Van Horn
 8003 Waters

SQL> SELECT * FROM mktg;

 EMPNO ENAME
---------- ----------
 8004 Bellock
 8005 Perez
 8006 Foucault

SQL> SELECT * FROM emps;

 EMPNO ENAME DNAME
---------- ---------- ---------
 8001 Chand Sales
 8002 Van Horn Sales
 8003 Waters Sales
 8004 Bellock Marketing
 8005 Perez Marketing
 8006 Foucault Marketing
Calling Stored Procedures 4-9

Calling Java from SQL DML
Calling Java from SQL DML
If you publish Java methods as functions, you can call them from SQL SELECT,
INSERT, UPDATE, DELETE, CALL, EXPLAIN PLAN, LOCK TABLE, and MERGE
statements. For example, assume that the executable for the following Java class is

stored in the Oracle database:

public class Formatter {
 public static String formatEmp (String empName, String jobTitle) {
 empName = empName.substring(0,1).toUpperCase() +
 empName.substring(1).toLowerCase();
 jobTitle = jobTitle.toLowerCase();
 if (jobTitle.equals("analyst"))
 return (new String(empName + " is an exempt analyst"));
 else
 return (new String(empName + " is a non-exempt " + jobTitle));
 }
}

The class Formatter has one method named formatEmp , which returns a

formatted string containing a staffer’s name and job status. First, you write the call

spec for this method as follows:

CREATE OR REPLACE FUNCTION format_emp (ename VARCHAR2, job VARCHAR2)
 RETURN VARCHAR2
AS LANGUAGE JAVA
NAME ’Formatter.formatEmp (java.lang.String, java.lang.String)
 return java.lang.String’;

Then, you call the function format_emp to format a list of employees:

SQL> SELECT format_emp(ename, job) AS "Employees" FROM emp
 2 WHERE job NOT IN ('MANAGER', 'PRESIDENT') ORDER BY ename;

Employees
--
Adams is a non-exempt clerk
Allen is a non-exempt salesman
Ford is an exempt analyst
James is a non-exempt clerk
Martin is a non-exempt salesman
Miller is a non-exempt clerk
Scott is an exempt analyst
Smith is a non-exempt clerk
Turner is a non-exempt salesman
Ward is a non-exempt salesman
4-10 Java Stored Procedures Developer’s Guide

Calling Java from SQL DML
Restrictions
To be callable from SQL DML statements, a Java method must obey the following

"purity" rules, which are meant to control side effects:

■ When you call it from a SELECT statement or a parallelized INSERT, UPDATE,
or DELETE statement, the method cannot modify any database tables.

■ When you call it from an INSERT, UPDATE, or DELETE statement, the method

cannot query or modify any database tables modified by that statement.

■ When you call it from a SELECT, INSERT, UPDATE, or DELETE statement, the

method cannot execute SQL transaction control statements (such as COMMIT),
session control statements (such as SET ROLE), or system control statements

(such as ALTER SYSTEM). In addition, it cannot execute DDL statements (such

as CREATE) because they are followed by an automatic commit.

If any SQL statement inside the method violates a rule, you get an error at run time

(when the statement is parsed).
Calling Stored Procedures 4-11

Calling Java from PL/SQL
Calling Java from PL/SQL
You can call Java stored procedures from any PL/SQL block, subprogram, or

package. For example, assume that the executable for the following Java class is

stored in the Oracle database:

import java.sql.*;
import oracle.jdbc.*;

public class Adjuster {
 public static void raiseSalary (int empNo, float percent)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "UPDATE emp SET sal = sal * ? WHERE empno = ?";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setFloat(1, (1 + percent / 100));
 pstmt.setInt(2, empNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

The class Adjuster has one method, which raises the salary of an employee by a

given percentage. Because raiseSalary is a void method, you publish it as a

procedure, as follows:

CREATE OR REPLACE PROCEDURE raise_salary (empno NUMBER, pct NUMBER)
AS LANGUAGE JAVA
NAME ’Adjuster.raiseSalary(int, float)’;

In the following example, you call the procedure raise_salary from an

anonymous PL/SQL block:

DECLARE
 emp_id NUMBER;
 percent NUMBER;
BEGIN
 -- get values for emp_id and percent
 raise_salary(emp_id, percent);
 ...
END;
4-12 Java Stored Procedures Developer’s Guide

Calling Java from PL/SQL
In the next example, you call the function row_count (defined in "Example 3" on

page 3-13) from a standalone PL/SQL stored procedure:

CREATE PROCEDURE calc_bonus (emp_id NUMBER, bonus OUT NUMBER) AS
 emp_count NUMBER;
 ...
BEGIN
 emp_count := row_count(’emp’);
 ...
END;

In the final example, you call the raise_sal method of object type Employee
(defined in "Implementing Object Type Methods" on page 3-25) from an anonymous

PL/SQL block:

DECLARE
 emp_id NUMBER(4);
 v emp_type;
BEGIN
 -- assign a value to emp_id
 SELECT VALUE(e) INTO v FROM emps e WHERE empno = emp_id;
 v.raise_sal(500);
 UPDATE emps e SET e = v WHERE empno = emp_id;
 ...
END;
Calling Stored Procedures 4-13

Calling PL/SQL from Java
Calling PL/SQL from Java
JDBC and SQLJ allow you to call PL/SQL stored functions and procedures. For

example, suppose you want to call the following stored function, which returns the

balance of a specified bank account:

FUNCTION balance (acct_id NUMBER) RETURN NUMBER IS
 acct_bal NUMBER;
BEGIN
 SELECT bal INTO acct_bal FROM accts
 WHERE acct_no = acct_id;
 RETURN acct_bal;
END;

From a JDBC program, your call to the function balance might look like this:

CallableStatement cstmt = conn.prepareCall("{? = CALL balance(?)}");
cstmt.registerOutParameter(1, Types.FLOAT);
cstmt.setInt(2, acctNo);
cstmt.executeUpdate();
float acctBal = cstmt.getFloat(1);

From a SQLJ program, the call might look like this:

#sql acctBal = {VALUES(balance(:IN acctNo))};

To learn more about JDBC, see the Oracle9i JDBC Developer’s Guide and Reference. To

learn more about SQLJ, see the Oracle9i SQLJ Developer’s Guide and Reference.
4-14 Java Stored Procedures Developer’s Guide

How the JVM Handles Exceptions
How the JVM Handles Exceptions
Java exceptions are objects, so they have classes as their types. As with other Java

classes, exception classes have a naming and inheritance hierarchy. Therefore, you

can substitute a subexception (subclass) for its superexception (superclass).

All Java exception objects support the method toString() , which returns the

fully qualified name of the exception class concatenated to an optional string.

Typically, the string contains data-dependent information about the exceptional

condition. Usually, the code that constructs the exception associates the string with

it.

When a Java stored procedure executes a SQL statement, any exception thrown is

materialized to the procedure as a subclass of java.sql.SQLException . That

class has the methods getErrorCode() and getMessage() , which return the

Oracle error code and message, respectively.

If a stored procedure called from SQL or PL/SQL throws an exception not caught

by Java, the caller gets the following error message:

ORA-29532 Java call terminated by uncaught Java exception

This is how all uncaught exceptions (including non-SQL exceptions) are reported.
Calling Stored Procedures 4-15

How the JVM Handles Exceptions
4-16 Java Stored Procedures Developer’s Guide

Developing an Appli
5

Developing an Application

This chapter demonstrates the building of a Java stored procedures application. The

example is based on a simple business activity: managing customer purchase

orders. By following along from design to implementation, you learn enough to

start writing your own applications.

■ Drawing the Entity-Relationship Diagram

■ Planning the Database Schema

■ Creating the Database Tables

■ Writing the Java Classes

■ Loading the Java Classes

■ Publishing the Java Classes

■ Calling the Java Stored Procedures
cation 5-1

Drawing the Entity-Relationship Diagram
Drawing the Entity-Relationship Diagram
The objective is to develop a simple system for managing customer purchase

orders. First, you must identify the business entities involved and their

relationships. To do that, you draw an entity-relationship (E-R) diagram by

following the rules and examples given in Figure 5–1.

Figure 5–1 Rules for Drawing an E-R Diagram

Symbols:

entity type

attribute

relationship between entities

one-to-one association

one-to-many association

partly optional association

fully optional association

mutually inclusive association

mutually exclusive association

Examples:

A

One A is associated with one B:

B

One A is associated with one or more B's:

A B

One or more A's are associated with one or more B's:

B

One A is associated with zero or one B:

BA

A

One A is associated with zero or more B's:

A B

One A is associated with one B and one C:

One A is associated with one B or one C (but not both):

A

A

B

C

B

C

many-to-many association

Definitions:

entity something about which data is
collected, stored, and maintained

attribute a characteristic of an entity

relationship an association between
entities

entity type a class of entities that have
the same set of attributes

record an ordered set of attribute values
that describe an instance of an entity type
5-2 Java Stored Procedures Developer’s Guide

Drawing the Entity-Relationship Diagram
As Figure 5–2 illustrates, the basic entities in this example are customers, purchase

orders, line items, and stock items.

Figure 5–2 E-R Diagram for Purchase Order Application

Stock Item

p_o_number

customer_number

order_date

ship_date

to_street

to_city

to_state

to_zip_code

Customer places Purchase Order

lists

refers toLine Item

customer_name

street

city

state

zip_code

phone_number

stock_item_number

description

price

refers to

line_item_number

p_o_number

stock_item_number

quantity

discount

customer_number
Developing an Application 5-3

Drawing the Entity-Relationship Diagram
A Customer has a one-to-many relationship with a Purchase Order because a

customer can place many orders, but a given purchase order can be placed by only

one customer. The relationship is optional because zero customers might place a

given order (it might be placed by someone not previously defined as a customer).

A Purchase Order has a many-to-many relationship with a Stock Item because

a purchase order can refer to many stock items, and a stock item can be referred to

by many purchase orders. However, you do not know which purchase orders refer

to which stock items.

Therefore, you introduce the notion of a Line Item . A Purchase Order has a

one-to-many relationship with a Line Item because a purchase order can list many

line items, but a given line item can be listed by only one purchase order.

A LineItem has a many-to-one relationship with a StockItem because a line item

can refer to only one stock item, but a given stock item can be referred to by many

line items. The relationship is optional because zero line items might refer to a given

stock item.
5-4 Java Stored Procedures Developer’s Guide

Planning the Database Schema
Planning the Database Schema
Next, you must devise a schema plan. To do that, you decompose the E-R diagram

into the following database tables:

■ Customers

■ Orders

■ LineItems

■ StockItems

For example, you assign Customer attributes to columns in the table Customers .

Figure 5–3 on page 5-6 depicts the relationships between tables. The E-R diagram

showed that a line item has a relationship with a purchase order and with a stock

item. In the schema plan, you establish these relationships using primary and

foreign keys.

A primary key is a column (or combination of columns) whose values uniquely

identify each row in a table. A foreign key is a column (or combination of columns)

whose values match the primary key in some other table. For example, column

PONo in table LineItems is a foreign key matching the primary key in table

Orders . Every purchase order number in column LineItems.PONo must also

appear in column Orders.PONo .
Developing an Application 5-5

Planning the Database Schema
Figure 5–3 Schema Plan for Purchase Order Application

Orders

PONo

NUMBER

PK FK

CustNo

NUMBER

OrderDate

DATE

ShipDate

DATE

ToStreet

VARCHAR2

ToCity

VARCHAR2

ToState

CHAR

ToZip

VARCHAR2

StockItems

StockNo

NUMBER

PK

Description

VARCHAR2

Price

NUMBER

Customers

CustNo

NUMBER

PK

CustName

VARCHAR2

Street

VARCHAR2

City

VARCHAR2

State

CHAR

Zip

VARCHAR2

Phone

VARCHAR2

LineItems

LineNo

NUMBER

PK PK, FK

PONo

NUMBER

StockNo

NUMBER

Quantity

NUMBER

Discount

NUMBER

FK

Column Name

Datatype

Primary Key and/or Foreign Key
5-6 Java Stored Procedures Developer’s Guide

Creating the Database Tables
Creating the Database Tables
Next, you create the database tables required by the schema plan. You begin by

defining the table Customers , as follows:

CREATE TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CustName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 PRIMARY KEY (CustNo)
);

The table Customers stores all the information about customers. Essential

information is defined as NOT NULL. For example, every customer must have a

shipping address. However, the table Customers does not manage the relationship

between a customer and his or her purchase order. So, that relationship must be

managed by the table Orders , which you define as:

CREATE TABLE Orders (
 PONo NUMBER(5),
 Custno NUMBER(3) REFERENCES Customers,
 OrderDate DATE,
 ShipDate DATE,
 ToStreet VARCHAR2(20),
 ToCity VARCHAR2(20),
 ToState CHAR(2),
 ToZip VARCHAR2(10),
 PRIMARY KEY (PONo)
);

The E-R diagram in Figure 5–2 showed that line items have a relationship with

purchase orders and stock items. The table LineItems manages these relationships

using foreign keys. For example, the foreign key (FK) column StockNo in the table

LineItems references the primary key (PK) column StockNo in the table

StockItems , which you define as:

CREATE TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2))
);
Developing an Application 5-7

Creating the Database Tables
The table Orders manages the relationship between a customer and purchase

order using the FK column CustNo , which references the PK column CustNo in the

table Customers . However, the table Orders does not manage the relationship

between a purchase order and its line items. So, that relationship must be managed

by the table LineItems , which you define as:

CREATE TABLE LineItems (
 LineNo NUMBER(2),
 PONo NUMBER(5) REFERENCES Orders,
 StockNo NUMBER(4) REFERENCES StockItems,
 Quantity NUMBER(2),
 Discount NUMBER(4,2),
 PRIMARY KEY (LineNo, PONo)
);
5-8 Java Stored Procedures Developer’s Guide

Writing the Java Classes
Writing the Java Classes
Next, you consider the operations needed in a purchase order system, then you

write appropriate Java methods. In a simple system based on the tables defined in

the previous section, you need methods for registering customers, stocking parts,

entering orders, and so on. You implement these methods in the Java class

POManager, as follows:

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class POManager {
 public static void addCustomer (int custNo, String custName,
 String street, String city, String state, String zipCode,
 String phoneNo) throws SQLException {
 String sql = "INSERT INTO Customers VALUES (?,?,?,?,?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, custNo);
 pstmt.setString(2, custName);
 pstmt.setString(3, street);
 pstmt.setString(4, city);
 pstmt.setString(5, state);
 pstmt.setString(6, zipCode);
 pstmt.setString(7, phoneNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
Developing an Application 5-9

Writing the Java Classes
 public static void addStockItem (int stockNo, String description,
 float price) throws SQLException {
 String sql = "INSERT INTO StockItems VALUES (?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, stockNo);
 pstmt.setString(2, description);
 pstmt.setFloat(3, price);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void enterOrder (int orderNo, int custNo,
 String orderDate, String shipDate, String toStreet,
 String toCity, String toState, String toZipCode)
 throws SQLException {
 String sql = "INSERT INTO Orders VALUES (?,?,?,?,?,?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, orderNo);
 pstmt.setInt(2, custNo);
 pstmt.setString(3, orderDate);
 pstmt.setString(4, shipDate);
 pstmt.setString(5, toStreet);
 pstmt.setString(6, toCity);
 pstmt.setString(7, toState);
 pstmt.setString(8, toZipCode);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
5-10 Java Stored Procedures Developer’s Guide

Writing the Java Classes
 public static void addLineItem (int lineNo, int orderNo,
 int stockNo, int quantity, float discount) throws SQLException {
 String sql = "INSERT INTO LineItems VALUES (?,?,?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, lineNo);
 pstmt.setInt(2, orderNo);
 pstmt.setInt(3, stockNo);
 pstmt.setInt(4, quantity);
 pstmt.setFloat(5, discount);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void totalOrders () throws SQLException {
 String sql =
 "SELECT O.PONo, ROUND(SUM(S.Price * L.Quantity)) AS TOTAL " +
 "FROM Orders O, LineItems L, StockItems S " +
 "WHERE O.PONo = L.PONo AND L.StockNo = S.StockNo " +
 "GROUP BY O.PONo";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 ResultSet rset = pstmt.executeQuery();
 printResults(rset);
 rset.close();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
Developing an Application 5-11

Writing the Java Classes
 static void printResults (ResultSet rset) throws SQLException {
 String buffer = "";
 try {
 ResultSetMetaData meta = rset.getMetaData();
 int cols = meta.getColumnCount(), rows = 0;
 for (int i = 1; i <= cols; i++) {
 int size = meta.getPrecision(i);
 String label = meta.getColumnLabel(i);
 if (label.length() > size) size = label.length();
 while (label.length() < size) label += " ";
 buffer = buffer + label + " ";
 }
 buffer = buffer + "\n";
 while (rset.next()) {
 rows++;
 for (int i = 1; i <= cols; i++) {
 int size = meta.getPrecision(i);
 String label = meta.getColumnLabel(i);
 String value = rset.getString(i);
 if (label.length() > size) size = label.length();
 while (value.length() < size) value += " ";
 buffer = buffer + value + " ";
 }
 buffer = buffer + "\n";
 }
 if (rows == 0) buffer = "No data found!\n";
 System.out.println(buffer);
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
5-12 Java Stored Procedures Developer’s Guide

Writing the Java Classes
 public static void checkStockItem (int stockNo)
 throws SQLException {
 String sql = "SELECT O.PONo, O.CustNo, L.StockNo, " +
 "L.LineNo, L.Quantity, L.Discount " +
 "FROM Orders O, LineItems L " +
 "WHERE O.PONo = L.PONo AND L.StockNo = ?";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, stockNo);
 ResultSet rset = pstmt.executeQuery();
 printResults(rset);
 rset.close();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void changeQuantity (int newQty, int orderNo,
 int stockNo) throws SQLException {
 String sql = "UPDATE LineItems SET Quantity = ? " +
 "WHERE PONo = ? AND StockNo = ?";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, newQty);
 pstmt.setInt(2, orderNo);
 pstmt.setInt(3, stockNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
Developing an Application 5-13

Writing the Java Classes
 public static void deleteOrder (int orderNo) throws SQLException {
 String sql = "DELETE FROM LineItems WHERE PONo = ?";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, orderNo);
 pstmt.executeUpdate();
 sql = "DELETE FROM Orders WHERE PONo = ?";
 pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, orderNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

5-14 Java Stored Procedures Developer’s Guide

Loading the Java Classes
Loading the Java Classes
Next, you use the command-line utility loadjava to upload your Java stored

procedures into the Oracle database, as follows:

> loadjava -u scott/tiger@myPC:1521:orcl -v -r -t POManager.java
initialization complete
loading : POManager
creating : POManager
resolver : resolver (("*" scott) ("*" public) ("*" -))
resolving: POManager

Recall that option -v enables verbose mode, that option -r compiles uploaded Java

source files and resolves external references in the classes, and that option -t tells

loadjava to connect to the database using the client-side JDBC Thin driver.
Developing an Application 5-15

Publishing the Java Classes
Publishing the Java Classes
Next, you must publish your Java stored procedures in the Oracle data dictionary.

To do that, you write call specs, which map Java method names, parameter types,

and return types to their SQL counterparts.

The methods in the Java class POManager are logically related, so you group their

call specs in a PL/SQL package. First, you create the package spec, as follows:

CREATE OR REPLACE PACKAGE po_mgr AS
 PROCEDURE add_customer (cust_no NUMBER, cust_name VARCHAR2,
 street VARCHAR2, city VARCHAR2, state CHAR, zip_code VARCHAR2,
 phone_no VARCHAR2);
 PROCEDURE add_stock_item (stock_no NUMBER, description VARCHAR2,
 price NUMBER);
 PROCEDURE enter_order (order_no NUMBER, cust_no NUMBER,
 order_date VARCHAR2, ship_date VARCHAR2, to_street VARCHAR2,
 to_city VARCHAR2, to_state CHAR, to_zip_code VARCHAR2);
 PROCEDURE add_line_item (line_no NUMBER, order_no NUMBER,
 stock_no NUMBER, quantity NUMBER, discount NUMBER);
 PROCEDURE total_orders;
 PROCEDURE check_stock_item (stock_no NUMBER);
 PROCEDURE change_quantity (new_qty NUMBER, order_no NUMBER,
 stock_no NUMBER);
 PROCEDURE delete_order (order_no NUMBER);
END po_mgr;

Then, you create the package body by writing call specs for the Java methods:

CREATE OR REPLACE PACKAGE BODY po_mgr AS
 PROCEDURE add_customer (cust_no NUMBER, cust_name VARCHAR2,
 street VARCHAR2, city VARCHAR2, state CHAR, zip_code VARCHAR2,
 phone_no VARCHAR2) AS LANGUAGE JAVA
 NAME ’POManager.addCustomer(int, java.lang.String,
 java.lang.String, java.lang.String, java.lang.String,
 java.lang.String, java.lang.String)’;

 PROCEDURE add_stock_item (stock_no NUMBER, description VARCHAR2,
 price NUMBER) AS LANGUAGE JAVA
 NAME ’POManager.addStockItem(int, java.lang.String, float)’;
5-16 Java Stored Procedures Developer’s Guide

Publishing the Java Classes
 PROCEDURE enter_order (order_no NUMBER, cust_no NUMBER,
 order_date VARCHAR2, ship_date VARCHAR2, to_street VARCHAR2,
 to_city VARCHAR2, to_state CHAR, to_zip_code VARCHAR2)
 AS LANGUAGE JAVA
 NAME ’POManager.enterOrder(int, int, java.lang.String,
 java.lang.String, java.lang.String, java.lang.String,
 java.lang.String, java.lang.String)’;

 PROCEDURE add_line_item (line_no NUMBER, order_no NUMBER,
 stock_no NUMBER, quantity NUMBER, discount NUMBER)
 AS LANGUAGE JAVA
 NAME ’POManager.addLineItem(int, int, int, int, float)’;

 PROCEDURE total_orders
 AS LANGUAGE JAVA
 NAME ’POManager.totalOrders()’;

 PROCEDURE check_stock_item (stock_no NUMBER)
 AS LANGUAGE JAVA
 NAME ’POManager.checkStockItem(int)’;

 PROCEDURE change_quantity (new_qty NUMBER, order_no NUMBER,
 stock_no NUMBER) AS LANGUAGE JAVA
 NAME ’POManager.changeQuantity(int, int, int)’;

 PROCEDURE delete_order (order_no NUMBER)
 AS LANGUAGE JAVA
 NAME ’POManager.deleteOrder(int)’;
END po_mgr;
Developing an Application 5-17

Calling the Java Stored Procedures
Calling the Java Stored Procedures
Now, you can call your Java stored procedures from the top level and from database

triggers, SQL DML statements, and PL/SQL blocks. To reference the stored

procedures in the package po_mgr , you must use dot notation.

From an anonymous PL/SQL block, you might start the new purchase order system

by stocking parts, as follows:

BEGIN
 po_mgr.add_stock_item(2010, ’camshaft’, 245.00);
 po_mgr.add_stock_item(2011, ’connecting rod’, 122.50);
 po_mgr.add_stock_item(2012, ’crankshaft’, 388.25);
 po_mgr.add_stock_item(2013, ’cylinder head’, 201.75);
 po_mgr.add_stock_item(2014, ’cylinder sleeve’, 73.50);
 po_mgr.add_stock_item(2015, ’engine bearning’, 43.85);
 po_mgr.add_stock_item(2016, ’flywheel’, 155.00);
 po_mgr.add_stock_item(2017, ’freeze plug’, 17.95);
 po_mgr.add_stock_item(2018, ’head gasket’, 36.75);
 po_mgr.add_stock_item(2019, ’lifter’, 96.25);
 po_mgr.add_stock_item(2020, ’oil pump’, 207.95);
 po_mgr.add_stock_item(2021, ’piston’, 137.75);
 po_mgr.add_stock_item(2022, ’piston ring’, 21.35);
 po_mgr.add_stock_item(2023, ’pushrod’, 110.00);
 po_mgr.add_stock_item(2024, ’rocker arm’, 186.50);
 po_mgr.add_stock_item(2025, ’valve’, 68.50);
 po_mgr.add_stock_item(2026, ’valve spring’, 13.25);
 po_mgr.add_stock_item(2027, ’water pump’, 144.50);
 COMMIT;
END;

Then, you register your customers:

BEGIN
 po_mgr.add_customer(101, ’A-1 Automotive’, ’4490 Stevens Blvd’,
 ’San Jose’, ’CA’, ’95129’, ’408-555-1212’);
 po_mgr.add_customer(102, ’AutoQuest’, ’2032 America Ave’,
 ’Hayward’, ’CA’, ’94545’, ’510-555-1212’);
 po_mgr.add_customer(103, ’Bell Auto Supply’, ’305 Cheyenne Ave’,
 ’Richardson’, ’TX’, ’75080’, ’972-555-1212’);
 po_mgr.add_customer(104, ’CarTech Auto Parts’, ’910 LBJ Freeway’,
 ’Dallas’, ’TX’, ’75234’, ’214-555-1212’);
 COMMIT;
END;
5-18 Java Stored Procedures Developer’s Guide

Calling the Java Stored Procedures
Next, you enter purchase orders placed by various customers:

BEGIN
 po_mgr.enter_order(30501, 103, ’14-SEP-1998’, ’21-SEP-1998’,
 ’305 Cheyenne Ave’, ’Richardson’, ’TX’, ’75080’);
 po_mgr.add_line_item(01, 30501, 2011, 5, 0.02);
 po_mgr.add_line_item(02, 30501, 2018, 25, 0.10);
 po_mgr.add_line_item(03, 30501, 2026, 10, 0.05);

 po_mgr.enter_order(30502, 102, ’15-SEP-1998’, ’22-SEP-1998’,
 ’2032 America Ave’, ’Hayward’, ’CA’, ’94545’);
 po_mgr.add_line_item(01, 30502, 2013, 1, 0.00);
 po_mgr.add_line_item(02, 30502, 2014, 1, 0.00);

 po_mgr.enter_order(30503, 104, ’15-SEP-1998’, ’23-SEP-1998’,
 ’910 LBJ Freeway’, ’Dallas’, ’TX’, ’75234’);
 po_mgr.add_line_item(01, 30503, 2020, 5, 0.02);
 po_mgr.add_line_item(02, 30503, 2027, 5, 0.02);
 po_mgr.add_line_item(03, 30503, 2021, 15, 0.05);
 po_mgr.add_line_item(04, 30503, 2022, 15, 0.05);

 po_mgr.enter_order(30504, 101, ’16-SEP-1998’, ’23-SEP-1998’,
 ’4490 Stevens Blvd’, ’San Jose’, ’CA’, ’95129’);
 po_mgr.add_line_item(01, 30504, 2025, 20, 0.10);
 po_mgr.add_line_item(02, 30504, 2026, 20, 0.10);
 COMMIT;
END;

Finally, in SQL*Plus, after redirecting output to the SQL*Plus text buffer, you might

call the Java method totalOrders as follows:

SQL> SET SERVEROUTPUT ON
SQL> CALL dbms_java.set_output(2000);
...
SQL> CALL po_mgr.total_orders();
PONO TOTAL
30501 1664
30502 275
30503 4149
30504 1635

Call completed.
Developing an Application 5-19

Calling the Java Stored Procedures
5-20 Java Stored Procedures Developer’s Guide

Index

A
Accelerator, 1-14

application

compiling, 2-4

developing, 5-1

execution rights, 2-16

attributes, 1-6, 3-18

declaring, 3-19

AUTHID clause, 3-11, 3-15, 3-18

B
body

package, 3-15

SQL object type, 3-18

bytecode

definition, 1-12

verification, 2-11

C
call specs, 1-3

basic requirements for defining, 3-3

definition, 1-21

example, 1-21

understanding, 3-2

writing object type, 3-18

writing packaged, 3-15

writing top-level, 3-11

class

loader, 1-13

loading, 2-12

marking valid, 2-9

name, 2-19

resolving references, 2-9

schema object, 2-3, 2-9, 2-12, 2-13

.class files, 2-3, 2-12, 2-13

CLASSPATH, 2-3

compiling, 1-12, 2-4

error messages, 2-5

options, 2-5

runtime, 2-4

components, Oracle JVM, 1-9

constructor methods, 3-20

contexts, stored procedure run-time, 1-3

conventions, notational, xi

CREATE JAVA statement, 2-1

D
database

Java, 2-2

sample tables, xiii

schema plan, 5-5

triggers, 1-5, 4-6

database triggers

calling Java from, 4-6

datatypes

mapping, 3-4

DBMS_JAVA package, 4-2

longname method, 2-17, 2-19

shortname method, 2-17, 2-19

debug

compiler option, 2-6

stored procedures, 1-19

definer rights, 2-20

versus invoker rights, 2-20
Index-1

DETERMINISTIC hint, 3-11

dropjava tool, 2-14

E
ease of use, 1-7

encoding

compiler option, 2-6

entity-relationship (E-R) diagram, drawing an, 5-2

errors

compilation, 2-5

exceptions, how handled, 4-15

execution rights, 2-16

F
foreign key, 5-5

full name, Java, 2-3

functions, 1-4

G
garbage collection, 1-10, 1-12

get_compiler_option method, 2-6

Graphical User Interface, see GUI

GUI, 1-10, 2-18

I
IDE (integrated development environment), 1-10

interfaces

user, 2-18

interoperability, 1-7

interpreter, 1-12

invoker rights, 2-20

advantages, 2-20

versus definer rights, 2-20

J
Java

applications, 2-4

loading, 2-12

calling from database triggers, 4-6

calling from PL/SQL, 4-12

calling from SQL DML, 4-10

calling from the top level, 4-2

calling restrictions, 4-11

compiling, 2-4

development environment, 2-3

execution rights, 2-16

full name, 2-3

in the RDBMS, 2-2

loading classes

checking results, 2-16

Oracle database execution, 1-2

resolving classes, 2-9

schema objects, managing, 2-20

short name, 2-3

.java files, 2-3, 2-12, 2-13

Java stored procedures

calling, 4-1

configuring, 1-16

defined, 1-17

developing, 5-1

introduction to, 1-1

loading, 2-1

publishing, 3-1

Java virtual machine. See JVM

JAVA$OPTIONS table, 2-5

JDBC driver. See server-side JDBC driver

JVM, 1-10

client JVMs versus Oracle JVM, 1-10

components, 1-9

garbage collection, 1-10, 1-12

multithreading, 1-10

K
key

foreign, 5-5

primary, 5-5

L
library manager, 1-11

loader, class, 1-13

loading, 2-12 to ??

checking results, 2-14, 2-16

class, 2-4

compilation option, 2-4
Index-2

granting execution, 2-16

JAR or ZIP files, 2-15

necessary privileges and permissions, 2-15

reloading classes, 2-15

restrictions, 2-14

loadjava tool, 2-13 to 2-15, 2-20

compiling source, 2-4

example, 1-21

execution rights, 2-16

loading class, 2-12

loading ZIP or JAR files, 2-15

restrictions, 2-14

logging, 2-5

longname method, 2-17, 2-19

M
main method, 1-10

maintainability, 1-7

manager

library, 1-11

memory, 1-12

map methods, 3-20

memory manager, 1-12, 2-4

methods, 1-6, 3-18

constructor, 3-20

declaring, 3-19

map and order, 3-20

object-relational, 1-6

modes, parameter, 3-3

multithreading, 1-10

N
NAME clause, 3-11

notational conventions, xi

O
object

full to short name conversion, 2-17

schema, 2-3

short name, 2-17

SQL type, 1-6

table, 3-21

type

call specs, writing, 3-18

object-relational methods, 1-6

online

compiler option, 2-6

Oracle Net Services Connection Manager, 1-2

order methods, 3-20

output, redirecting, 4-2

P
package DBMS_JAVA, 4-2

packaged call specs, writing, 3-15

PARALLEL_ENABLE option, 3-11

parameter modes, 3-3

performance, 1-6

PL/SQL

calling Java from, 4-12

packages, 3-15

primary key, 5-5

procedures, 1-4

advantages of stored, 1-6

productivity, 1-7

.properties files, 2-3, 2-12, 2-13

publications, related, xiv

publishing, 2-4

example, 1-21

purity rules, 4-11

R
redirecting output, 4-2

ref, 3-21

replication, 1-8

reset_compiler_option method, 2-6

resolver, 2-9 to 2-12

default, 2-10

defined, 2-3, 2-4, 2-10

example, 1-20

ignoring non-existent references, 2-10, 2-12

resource schema object, 2-3, 2-12, 2-13

rights, invoker versus definer, 2-20

row trigger, 4-6

rules, purity, 4-11

run-time contexts, stored procedure, 1-3
Index-3

S
sample database tables, xiii

scalability, 1-7

schema object

defined, 2-12

managing Java, 2-20

name, 2-19

names, maximum length, 2-3

using, 2-3

security, 1-8

.ser files, 2-3, 2-12, 2-13

server-side JDBC driver, 1-14

using, 3-7

server-side SQLJ translator, 1-14

using, 3-9

set_compiler_option method, 2-6

shared server, 1-7

short name, Java, 2-3

shortname method, 2-17, 2-19

side effects

controlling, 4-11

source schema object, 2-3, 2-12, 2-13

spec

package, 3-15

SQL object type, 3-18

SQL

DML, calling Java from, 4-10

object type, 1-6, 3-18

.sqlj files, 2-3, 2-12, 2-13

SQLJ translator. See server-side SQLJ translator

statement trigger, 4-6

stored procedures

advantages of, 1-6

calling, 4-1

developing, 1-17, 5-1

introduction to, 1-1

loading, 2-1

publishing, 3-1

T
tables, sample database, xiii

threading

model, 1-10

top-level call specs, writing, 3-11

trigger

database, 1-5, 4-6

row, 4-6

statement, 4-6

using Java stored procedures, 1-17

U
user interface, 2-18

USER_ERRORS view, 2-5

USER_OBJECTS view, 2-14, 2-16

utilities

loadjava, 2-20

V
verifier, 1-13
Index-4

	Send Us Your Comments
	Preface
	1 Introduction
	Java and the RDBMS: A Robust Combination
	Stored Procedures and Run-Time Contexts
	Functions and Procedures
	Database Triggers
	Object-Relational Methods

	Advantages of Stored Procedures
	Performance
	Productivity and Ease of Use
	Scalability
	Maintainability
	Interoperability
	Replication
	Security

	The Oracle JVM and Its Components
	The Oracle JVM versus Client JVMs
	Main Components of the Oracle JVM

	Java Stored Procedure Configuration
	Developing Stored Procedures: An Overview

	2 Loading Java Classes
	Java in the Database
	Java Code, Binaries, and Resources Storage
	Preparing Java Class Methods for Execution
	Compiling Java Classes
	Resolving Class Dependencies
	Loading Classes
	How to Grant Execute Rights
	Checking Java Uploads

	User Interfaces on the Server
	Shortened Class Names
	Controlling the Current User

	3 Publishing Java Classes
	Understanding Call Specs
	Defining Call Specs: Basic Requirements
	Setting Parameter Modes
	Mapping Datatypes
	Using the Server-Side Internal JDBC Driver
	Using the Server-Side SQLJ Translator

	Writing Top-Level Call Specs
	Writing Packaged Call Specs
	Writing Object Type Call Specs
	Declaring Attributes
	Declaring Methods

	4 Calling Stored Procedures
	Calling Java from the Top Level
	Redirecting Output

	Calling Java from Database Triggers
	Calling Java from SQL DML
	Restrictions

	Calling Java from PL/SQL
	Calling PL/SQL from Java
	How the JVM Handles Exceptions

	5 Developing an Application
	Drawing the Entity-Relationship Diagram
	Planning the Database Schema
	Creating the Database Tables
	Writing the Java Classes
	Loading the Java Classes
	Publishing the Java Classes
	Calling the Java Stored Procedures

	Index

