Oracle9i OLAP

User’s Guide

Release 2 (9.2)

March 2002
Part No. A95295-01

ORACLE

Oracle9i OLAP User’s Guide, Release 2 (9.2)
Part No. A95295-01
Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Express, PL/SQL, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

SeNd US YOUT COMMENTES ...ttt XXi
=Y =0 =TT Xxiii
YU Lo 1T=T o o TSSOSO XXV
(O] o T-TaTFZ= 11 o] o FT O OSSPSR XXV
Related DOCUMENTALIONociiiiei ittt ettt e st e e st e s s ebae e s st e e s s ba s s sbaeessbaeesabbassneesssrbes XXVili
(0701 0)V7=T o1 110] o TR OO SRRTUSRRPTRROTROTRP XXIX
Documentation ACCESSIDIIITYcccoiiiiiiii e e e XXXii
What's NeW iN Oracle OLAP? ettt XXXiii
Oracle9i Release 2 (9.2) New Features in Oracle OLAP ...t XXXV

Part|l The Basics

1 Overview

WY OLAP?. ...ttt bbbt b btk bbb b b et £ bbb e b bbbt b bt ettt 1-2
Analytical Processing Answers BusSiness QUESTIONSccoiriiriiirinieie e 1-2
DY/ 0 1=T 0 L @ T I AN N o o] T 1 [o] 1S 1-3

ANAIYTICAI REPOITINGcuiiiiiiii it b e s eeeeneas 1-3
PrediCtiVe ANAIYSIS.o bbb et ettt e 1-3

The Oracle9i Integrated Relational-Multidimensional Database.............ccccocevvveicicinnennn, 1-4

ComponNeNnts OF OFaCIe OLAP ...t ettt saesbeneas 1-5
CalCUIAtioN ENQINEcoiiiiiiiiiee ettt bt bbb e b e e eb e ene 1-6
F N T LA oY AY L0 §] o - (o= 1-6

OLAP DML ..t et 1-6

SQL TabIe FUNCLIONSoveiiiiiiice ettt ettt s s e e bt esbaenbesbeenbesbeenes 1-7
OLAP AP oottt bbbt bt b e bbbttt et e ettt et te e etenrereaeas 1-7
OLAP CALAl0Q ..ttt bbb bt e e et et h e b e bt eb e st e ebe bt et et e e 1-8
Applications AcCeSS t0 Oracle OLAP ...ttt ene s 1-8

Manipulating Multidimensional Data

WHhat 1S The OLAP DIML? ...ttt et ettt et bbb e 2-2
Extensive Analytic Capabilities ... s 2-2
Features of the Multidimensional Model ... 2-3

Basic Categories of OLAP DML COMMANS.........ccooeveiiriiisieseneee s s seessnenees 2-4
Yo [0 | £=To =1 (0] o H OSSOSO 2-4
YA (o071 o] [O USSR 2-4
DAta SEIECLION ...t bbbttt 2-5
DAt EXCNANGE ...ttt bbbttt bt bbb e nb e be b b e e 2-5
File Reading and WIING.......cvcoiiiiiieiisee ettt sn e ene e 2-5
e TR T aToT T L @] o =T =1 T LSS 2-6
FOrecasts and REGIESSIONSciui ittt sb e bt e b et 2-6
Y ToTo 1= [OOSR TSSOSO 2-7
8T g =T ol @] g] 01U 1 r-1 o] g 13O 2-7
STAtiISTICAI OPEIALIONS.......iviieiitiiee ittt ettt sttt b et b e eb et e bbb eneeb e 2-8
LI Y/ = L T o 10 =4 o o TSR 2-8
Time SeriesS ManiPUIAtION.........cc.ciiiiiiii et r e 2-8

Methods of Executing OLAP DML COMMANGAScouiiiiiiiiieeirieie e 2-8
OLAP Worksheet: The OLAP DML Development TOOI........cccccovvveiiiininiiene e 2-9
Embedding OLAP DML Commands iN ProgramsS...........cccevueverinesinniesiesesieseessesieseeseessssennes 2-9

Developing OLAP Applications

Building SQL-Based OLAP APPHICALIONSccccovvieiieceeeee s 3-2
Methods of Accessing Multidimensional Data From SQLccccooieiniienenens e 3-3
Embedding OLAP DML Commands in SQLccccoevivreiiiecseeese e 3-4

Building Analytical Java APPIICAtiONSccccviivireicc e 3-4
AADOUL JAVA ..ottt bbb bbb et h et h e bt bt ea e b e et e b e 3-4
(BI=To] [o)VATa [0 INE\YZ: WAN o] o] 1 Tor: L1 o] o -SSP 3-5

The Java SOIULION TOr OLAP ettt e st e s s rae e s srbe s 3-6

Oracle Java Development ENVIFONMENT..........ccocviireiiniiee et seesaenesaenens 3-6
INtroducing the Bl BEANS.......cco it ettt ebe e ene e 3-7
Thick-Clent CoNfIQUIAtiONoci i 3-8
Thin-Client ConfigUIatioN.........c..coeiiiii e enees 3-9
V1< = To - L - LSO OSSOSO UPOTRRSORRRO 3-10
RUNTIME REPOSITONY ...cveiiiieiieie ettt sttt et e e e e e aneerenreanesrenee e s 3-10
[F= YT T L1 Lo o OSSP 3-11
FOFMATEING ..ottt bt b et b e bt e bt s bt b et b e b see e et ereanas 3-11
LT =T o SRS 3-11
CFOSSEADS ...ttt en et ne s 3-12
LI 1] LT OO VUSRS 3-12
OLAP Bl BEANS.......e ittt sttt bbbt bbb bbb b et e et s b e 3-12
WVIZATAS .ottt bbbttt R bbbt ren s 3-12
Understanding the OLAP APL......... ettt 3-13
How the OLAP API Accesses Multidimensional Data...........ccoccceveeivieneiineieneenseseeas 3-14
Y (=Y o =T o @ Vel 1 oV OSSPSR 3-16
Calculation Capabilities..........cooiiiie e e 3-16

Designing Your Database for OLAP

(@ YT Y= SRS 4-2
Preparing a Database for the OLAP AP ... e et ene s 4-2
Types of Data Stored in a Data War€hoUSEccccceoiiiiiiiiiine e 4-3
[[(ol g okl T | 7 RSSO 4-3
DEFIVEA DALAcoviviiiitiiicieiiee ettt ettt st b e st be bt s bbbt et et e b e 4-4
V=2 7= o Fo1 7 LU PP PP ORI 4-4
Data Structures in Relational and Multidimensional Data Stores..........ccccccveviiieiiiieieeinns 4-4
Relational Table STOFagec.cc vttt sre e e s 4-4
Multidimensional Table StOrageccoov v e 4-5
Temporary and Persistent Analytic WOrKSPaCeS........ccccoveiiieiiniiiiiiec e 4-5
About Star, Snowflake, Parent/Child, and Multidimensional Schemas.............cccccecevenee. 4-6
Choosing a SChema fOr YOUT Datal.........cccoovveiirieriiieeeese s sesie s see e se s e s s e snens 4-7
(@ 1IN SV = =T F= 1 = AV, [0 1= OSSP 4-8
Mapping Data Objects to Metadata ObJECESccccevvvieieieeieesece e 4-9
IMIBBSUIES ...tttk bbb bttt ekt h bt b e Rt bt b e bt e bt e b s e b e e bt e st bt ne e 4-9

(D] 10 4151 0 15T (0] 8 XTSRS 4-10

TIME DIMENSIONSviviie ittt e et e e e neetesrestestesaenee e e seneenen 4-11
Hierarchical DIMENSIONSccociiii et re e sre s 4-13
F N 1] 0T U (=SSR 4-14
LY A 1 g o] (=S 4-14
DIimeENSIioN ALIITDULES........ccv ettt st e s re e e s rennee s 4-14
(W] o T 4-14
Y 12T R 0T =T 0] Lo =T RS 4-15

Creating OLAP Catalog Metadata

Choosing the Right Metadata Creation Method............ccccooiieieiie e 5-2
Basic Star or SNOWFlIake SChemM@ ... s 5-2
Dimension Tables with Complex Hierarchies.........c.cccoviviiviiniiiiniinie e 5-2
Multidimensional Data and Parent-Child DIimensSioNnsccoccovennennenneneeneeee e, 5-3
Multidimensional Data Structures in the OLAP Catalogccccoeivieiiininenencicne e 5-4

ACCESSING the OLAP CatalOg ...cvcvcviiiieiiecse sttt nne e 5-4

Organization of the OLAP Catalogcoveviiiiiiiiie e ere s 5-5
CWIM @NA CWIM2 ...ttt ettt se ettt sb et e s bt e sbe e st et ebe e nbe e ebeeenas 5-5
Logical Steps for Creating the Metadataccccveovivriiiie s 5-6

Creating Metadata Using Oracle Enterprise Manager.........coccoovevereriineeieesieeesese e 5-7
Procedure: Accessing OLAP Management ..ot e 5-7
Defining Metadata for DIimension TableS ..o 5-8
Defining Metadata for Fact TableS ..o 5-9
WIBWING CUDES ...ttt ettt bbbt bbbt et e e bt et eb e bt ebesbe b enb et e enes 5-10
Procedure: VIEWING CUDEScccviiiiiicee ettt a e sneene s 5-10

Creating Metadata USING PL/SQLcovoviieiiiiscse sttt sne st enaans 5-11
CWWIM2 PACKAGES -...eeneeneeieeiieieeiee ettt ettt sttt etttk b e bt be bt et e b st et e e e e eneaneeneenes 5-11

Part Il Administering Oracle OLAP

6

vi

Administering Oracle OLAP

AAMINISTIATION OVEIVIEW ...ttt ettt e st e e s st e e s sbe s e s sbaeessbbeeesbbesssabanssrbeeas 6-2
Initialization Parameters for Oracle OLAP........o et 6-3
Initialization Parameters for the OLAP APL....... et 6-4

Creating Tablespaces for Analytic WOIrKSPACEScoveiiiiieiiiiiere st 6-5

Creating a Tablespace for ROHDACKScccviviiiiriiic e ene 6-7
Creating a Temporary TabIESPACEcouiiiiiiiiiie e 6-7
Creating Tablespaces for Analytic WOrKSPaCES.........cccoueiviiiiiiiiiie e e 6-8
Querying the Size of an Analytic WOrKSPACE.........ccccvrviiieieriicse e aenea 6-9
SEttiNG UP USEE INAIMIES ...ttt b e bbb e e bbb st et et e s neebesbe e 6-9
Controlling Access t0 EXTErNal FIleSccccvvviiiiiee st 6-9
Creating @ DIreCtOrY ALIGS.......ccccvviiiieiiicee ettt ens 6-10
Granting Access Rights to a DireCtory AlIas ..o 6-10
Example: Creating and Using a Directory Alas..........ccocvviieienineieieesseese e 6-11
Understanding Data STOrAQgEc..coveveieiiii e se et ere e te sttt e e see e e e sneens 6-11
USEr-OWNEA TaDIESot ettt bbbt b sns e 6-11
SYSIEM TADIES ..o et et ens 6-12
AV ol oY) (o] §T aTo l ad=T (o] ¢ 4 T Ua o= SR 6-13

OLAP Dynamic Performance Views

System Tables Referenced by OLAP Performance VIEWSccccccvvvvevevenene e 7-2
Summary of OLAP Performance VIBWSccoi ittt st 7-2
VEBAW _CALC ...ttt bbb bbb bbbtk e ket b ettt et et renr e 7-3
VEBAW _OLAP ..ttt bbbt bbbt bbb bbb ekttt nr e 7-5
VEAW _SESSION_INFO ..ottt ettt bbbttt s et senr e 7-6

OLAP_API_SESSION_INIT

(@ YT Y= SRS 8-2
Summary of OLAP_API_SESSION_INIT SUDPrograms.......cccccccvveveriniesieneneeereseseseeseeeenens 8-2
ADD_ALTER_SESSION PrOCEAUIE........ci ettt sttt st ssensenenses 8-3
)Y 1 €= O GRS U PP P OO T TP PURTPRUO 8-3
PAFAIMETETS ... b bt et bbbt b bbbt R e R et e e 8-3
(=T o) [0 T 8-3
[z 10 0] o] [T OSSO USRI 8-3
DELETE_ALTER_SESSION ProCeAUIE......ccccviiiiiiiieieriiesieeeie ettt sne e 8-5
Y1 = PSSR 8-5
L L= 10 L] (] 3 ST POURSRI 8-5
(=T o) [0 T 8-5
D 10 0] o =TSP 8-5

Vii

viii

Y1 = G SO S 8-6
ez 10 0] o] [T OSSR UT U STRUPRT 8-6
ALL_OLAP_ALTER_SESSION VIBW ..ottt ettt 8-7

Creating an Analytic Workspace From Relational Tables

PrOCESS OVEIVIBWoiviiiieei sttt bbbttt etttk e b ettt b e e bbbt 9-2
Creating an Analytic Workspace Using the CNV_CWM.TO.ECM Program............c........ 9-2
Manually Creating an Analytic WOrKSPACE.ccccouiiiiiiiiieccise e 9-4

CNV_CWM.TO.ECM PrOQIaIM ...ccoiiiieeieitietiesieeiesteetesseesaesseeseessessaesseessesseesssssssssssssessesssessessesssens 9-6
RETUIN WVAIUE ...ttt bbb e b et b e bbbttt 9-6
)Y 1 €= O G T T U TP U TP O TRV UPTUPOP 9-6
N 0 18 1 =T 1SS 9-6
0] (2 T TSSO ST TSP PV P TP PTPTSPRORPRON 9-8
ez 10 0] o] [T OSSO UPTP 9-9

GENSQLOBUIS PrOQIam.......ccuiiieiiieseeseeesiee e steestessee e sstesaeessesseasesssessesssesssessesssessesssesssensesseenses 9-10
RETUIN WVAIUE ...ttt bbbttt 9-10
)Y 1 €= O G TP U TS T PP URTUPUPRORPTN 9-10
N 0 18 1 =T 1SS 9-10
Dz 10 0] o LTSRS 9-11

Analytic Workspace Metadata Catalogsccooeiereriieiiree e 9-12
(01 7=1 (o]0 JOx 1 =1 Lo o 1RSSR 9-12
(101 oI @F-1 -1 [o [T 9-13
Y [T R UL T O =1 [o [OOSR 9-13
B YT =T oISy ol T @F-1 -1 [o [OOSR 9-14
[LT=T o Uod)V O -1 [o [SS 9-15
V=] 0= =1 oo TSRS 9-15
Level ALtribute Catalog........ccciiiiiiciiececi e 9-16

References to OLAP Catalog Metadatacccveieiiiiieieic e 9-17
(10T 9-17
IMIBAISUIES ...ttt ettt bt st h s Rt r e renr e nn e e n e nnes 9-17
DIEMENISIONS ...ttt ettt e bttt bttt e bt be e b et bt ab e bt et eneabeneaes 9-18
[FT=T = T o] 1= ST 9-18
LBV IS e b b e bt R R bbb e et ne e 9-18
LEVEI ALLFIDULES. ...ttt bbbt 9-18

Part Il SQL Access Reference

10 DBMS_AW

Summary of DBMS_AW SUDPIOgIamS.......c.cccviiieieieiie st ste e ere st s esesse e e ssens 10-2
EXECUTE PrOCEAUIE ..ottt ettt sttt sttt sttt s b b sbe e e e e enas 10-3
Guidelines for Using Quotation Marks in OLAP DML Commands.................... 10-3
Executing Large Numbers of OLAP DML Commands.........cccceeveivrvvivninnenenienens 10-3

Effect of the OUTFILE COMMANcocoiiiiiiiiiie e 10-4
b 10 0] o] RS 10-4
Executing Multiple OLAP DML CommMands..........ccoevvriveiirieninnsinnesenieseseeseeseens 10-4
Executing a Predefined OLAP DML Program.........ccccoeiininieninie e 10-5
Executing OLAP DML Commands Using an Infile ..o, 10-5
INTERP FUNCHION ...ttt bbbt bbb 10-6
Guidelines for Using Quotation Marks in OLAP DML Commands.................... 10-6

Effect of the OUTFILE COMMANGccoooiiriiiriiirieireee e 10-7
Printing the SESSION LOQ ...ttt e e 10-7
INTERPCLOB FUNCHIONiiiitiietiictisiee ettt sttt sttt et 10-8
Guidelines for Using Quotation Marks in OLAP DML Commands.................... 10-8

Effect of the OUTFILE COMMANccoocoriiiiiriiieeenee e 10-9
Printing the SESSION LOQ......ciiiiiiie e 10-9
GETLOG FUNCLIONouiiiiieieieeeestet ettt sttt bttt ettt bbb et s e b s e ebereanes 10-10
Effect of the OUTFILE COMMANccoooiiiiiiriiirieeenee e 10-10

Typical use of the GETLOG FUNCHIONccooiiiiiiiieiiee et 10-10
Printing the SESSION LOQ......cuiviiiiiiieiisise ettt ane s 10-10
PRINTLOG PrOCEAUIE ..ottt ettt st sttt st sttt sn e aneneas 10-11

11 OLAP_TABLE Function

Accessing Multidimensional Data Using the OLAP_TABLE FuNnction..........c.ccoceeveveiinenne 11-2
Preparing an Analytic Workspace for Access by OLAP_TABLE ... 11-3
Creating Object Type Definitions Used by OLAP_TABLEcccccoovivivviiirinee e 114

DeSIgNING the ODJECESvcuiciiiciiice et re et sae st e seeneenens 114

Creating Type Definitions for Multidimensional Data............c.cccceoiiiiiiieninsnne s 11-5
Syntax: OLAP_TABLE FUNCLIONcc.cviiii ettt 11-5
Example: Using the OLAP_TABLE FUNCLIONccoiiieiiccese e 11-11

Part IV OLAP Catalog Metadata API Reference

12 OLAP Catalog Union Views

Access to OLAP Catalog UNION VIEBWScccvieieiiie st
Summary of OLAP Catalog UnNioN VIBWS.........ccoiiiiiiriiiisieieere e e e
ALL_OLAP2_CATALOG_ENTITY_USES ...ttt s
ALL_OLAPZ2_CATALOGS. ..o oottt
ALL_OLAP2_CUBE_DIM_USES.......cccotiiitiitirieieir sttt e
ALL_OLAP2_CUBE_MEAS_DIM_USES. ...t
ALL_OLAP2_CUBE_MEASURE_MAPS. ..ottt
ALL_OLAP2_CUBE_MEASUREScceo ittt bbbt
ALL_OLAPZ_CUBES........coioiitiiititie s
ALL_OLAPZ2_DIM_ATTR_USES ..ottt
ALL_OLAP2_DIM_ATTRIBUTEScotiiittitirie ettt
ALL_OLAP2_DIM_HIER_LEVEL_USES. ...t
ALL_OLAP2_DIM_HIERARCHIES ..ot
ALL_OLAP2_DIM_LEVEL_ATTR_MAPS ..ottt
ALL_OLAP2_DIM_LEVEL_ATTRIBUTES. ..ottt
ALL_OLAPZ_DIM_LEVELS ..ottt
ALL_OLAP2_DIMENSIONS ..ottt sttt bbbt
ALL_OLAPZ2_ENTITY_DESC _USES ..ottt
ALL_OLAP2_FACT_LEVEL_USES ..ottt
ALL_OLAP2_FACT_TABLE_GID ..ottt
ALL_OLAP2_HIER_CUSTOM_SORTcooiiiiiirriiiiii et
ALL_OLAP2_JOIN_KEY_COLUMN_USES........ccotiirreirtnreee s
ALL_OLAP2_LEVEL_KEY_COLUMN_USESccccooitiiiireet et

13 OLAP Catalog (CWM2-Specific) Views

Access to OLAP Catalog (CWIM2) VIBWSc.ooiiiiiiiiiiiinie ettt s
System Tables Referenced by OLAP Catalog (CWM2) VIEWS.......cccoeivivnenienenenesceeiereens
Summary of OLAP Catalog (CWM2)VIEWS.......cccciuiuiierierieienieieiesieeesesiessessessessessessessessessesenses
ALLSOLAP2 CATALOG_ENTITY_USES ..ottt
ALLBOLAP2_CATALOGS. ...ttt et et ettt sttt st sttt et
ALLSOLAP2 _CUBE_DIM_USES........cccooiiiiie ettt

14

15

ALLSOLAP2_CUBE_MEAS_DIM _USES......oovovveoeoieeeesesessesseeesssssssssessssssesessssssssssssssssseeesees 13-6

ALLSOLAP2_CUBE_MEASURE_MAPS ..ot 13-7
ALLSOLAP2_CUBE_MEASURES.ccoct ittt 13-7
ALLSBOLAPZ2_CUBES ...ttt bbb e bbbttt 13-8
ALLSOLAPZ2_DIM_ATTR_USES.ottt 13-8
ALLSOLAP2_DIM_ATTRIBUTES ..ottt 13-9
ALLSOLAP2_DIM_HIER_LEVEL_USES........cocooiiiireeiee e 13-9
ALLSOLAP2_DIM_HIERARCHIES ..o 13-10
ALLSOLAP2_DIM_LEVEL_ATTR_MAPS ...ttt 13-10
ALLSOLAP2_DIM_LEVEL_ATTRIBUTEScocoiiiiiiiireeenesreere e 13-11
ALLSOLAPZ_DIM_LEVELS.......ciiiiei e 13-12
ALLSOLAPZ_DIMENSIONS ...ttt st 13-12
ALLSOLAPZ2_ENTITY_DESC_USES ...t 13-13
ALLSOLAPZ2_FACT_LEVEL_USES......cci it 13-14
ALLSOLAP2_FACT_TABLE_GID ...ttt 13-15
ALLSOLAP2_HIER_CUSTOM_SORT ..ottt 13-15
ALLSOLAP2_JOIN_KEY_COLUMN_USEScooitirieiineeeenrere e 13-16
ALLSOLAP2_LEVEL_KEY_COLUMN_USESccooiiiitiirrereiee e 13-17
OLAP Catalog Analytic Workspace Views
Summary of Analytic Workspace ODjJECt VIBWS........cccoiiiiiiiiiiiceese e 14-2
ALLSOLAPZ_AW_PHYS_OBJ....cooiiiirciirreseetre et 14-2
ALLSOLAPZ2_AW_PHYS_OBJ EXT ..ottt 14-3
ALLSOLAP2_AW_PHYS_OBJ REL_OBJc.coiitiiiiiirrieieit et 14-3
ALLSOLAP2_AW_PHYS_OBJ_PROP.......cco ittt 14-4
ALLSOLAPZ2_AW_MAP_DIM_USE ...ttt 14-4
ALLSOLAP2_AW_MAP_MEAS _USE ...ttt 14-4
ALLSOLAPZ2_AW_MAP_HIER_USE ...t 14-5
ALLSOLAPZ2_AW_MAP_LVL_USEciitiiiiiiree i 14-6
ALLSOLAP2_AW_MAP_ATTR_USE ..ottt 14-7
CWM2_OLAP_AW_ACCESS
L =T CT0 [T L (=TSPTSRO 15-2
PrOCESS OVEIVIEW ...ttt n et en s 15-2

Xi

Preparing the ANalytic WOIKSPACEcc.ooiiiiiiiiie ettt b s 15-3

IMIBASUIES ...ttt ettt h bbb et et e e bt b e Rt e bt eb e bt bt eb e r et e b s e e r e 15-3
DIIMENSIONS ..ttt et b bbb e b e b s b e b e b e R e e b eb e e s e e b e e be et e sbenbeebe b sbennane 154
HIBIAICNIES ... bbb e et b et bttt b e bbb e b b ne e e neene 154
HiIerarchy DIMENSIONScoeviieiece sttt ettt resn et e e ens 154
Parent-Child RelatioNS..........coco i b e 15-5

LEVE] DIMENSIONS ..oviviiitiiiiiiitistei ettt ettt sttt sttt 15-5

IN Hierarchy Variables..........ccouoiiieiec e 15-6
GENEIALEA ODJECES ... ittt bbb sttt et eb et sb e bbb e b e s 15-7

(€1 (o107 o1 o TN 15 1SS 15-7

T T €T (10 o1 o TN | 1S 15-8
Hierarchy HEIgNTot e 15-9
ALETTDULES ...t b e bbbt bbbttt 15-10
Specifying the Source and Target ODBJECTScccv v 15-10
Defining DIMENSION VIBWSooiiiiiiiiiee ettt st et 15-11

[1= oYL T = Yo YA =AY 15-15
EXAmMPIE: Creating VIBWS... ..ottt st ettt ste s te st st nae e e e e 15-16
Example: Input Files for Mapping Variables t0 VIeWS ... 15-17
Geography Dimension Standard Hierarchy VIew ..o 15-17
Product DIMENSION VIBWccoeiiiiiiiiiieiseieie ettt 15-17
Channel DIMENSION VIBWc.coiiiiiiiieiieee ettt 15-18

Time Standard Hierarchy INPUL Fil........cccocoviieieieccsece e 15-18

Sales aNd COSES FACT VIBWScviiiiiiiiiiiite ittt snene s 15-19
Example: Script for the Product VIBWcccoiiiiiiiit e 15-20
LEDE: 10 0] o] LI = o o [o1 AV 4 1= SR 15-22
Summary of CWM2_OLAP_AW_ACCESS Subprograms.........cccccoceevevviviienenieieerese e 15-23
Create AWACCESSSIructures_FR ProCeAUIEccvciiiiciceecteete e 15-24
Create AWACCESSSIIUCTUIES PrOCEAUIEoiiviiiiiiiiie et 15-25

16 CWM2_OLAP_PC_TRANSFORM

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms.........cccccoeveevrvnereneseneesveenns 16-2
CREATE_SCRIPT PrOCEAUIEcovcveivictectisie sttt e se e esa et ste e sne st snesaensensenaenen 16-2

Xii

17

18

CWM2_OLAP_DIMENSION
Understanding DIMENSIONS.c.cviiiieiiecese sttt s sr et ae e eseenaeneereens 17-2
Dimension Table REQUITEMENTSccoiiiiiie et 17-2
Normal Dimensions and Time DIMENSIONSccocoiiriiiiiiiineee e 17-3
Dependencies Between Dimensional ENLItIESc..ccccvvveiivcie e 17-3
Creating DIMENSIONSco ittt eb et e b ettt b e e et et e s e et e bt b e sbeneane e 17-3
Completing the DIimMension’s Metadata............cccuevviiiiiiienesene e 17-4
Verifying Dimensional Metadata...........cccoveiiiieieieii e 17-4
Common Logic in CWM2_OLAP_DIMENSION Subprogramsc.ccccceeereiennienieneseneenes 17-4
Case Requirements for Subprogram Parameters.........ccovveoeiiiiesesenin s nese s 17-5
Summary of CWM2_OLAP_DIMENSION Subprograms..........cccceeveieivsinninsieneneneseesieesens 17-5
CREATE_DIMENSION PrOCEAUIEccutiiiiiiitiieeiesisie ettt ssesasse e ssessssassssasessees 17-6
DROP_DIMENSION PrOCEAUIE......c.cveieiierieiieese et ste et seeae e e erestestesresse st saensensesenseenens 17-7
LOCK_DIMENSION PrOCEAUIE.......cieieieerieieeese e ste st stesie e saesaesesaeressessesresae st saessensesanseesens 17-8
SET_DEFAULT_DISPLAY_HIERARCHY Procedurecccovouiuiirisissinensisesiesessesnsees 17-9
SET_DESCRIPTION PrOCEAUIE........cveieiieiiee ettt ese st sa e re et sne e s 17-10
SET_DIMENSION_NAME ProCeAUIEeoiiiiiieiite ettt 17-10
SET_DISPLAY_NAME ProCeaUIEccciieieiee ittt ettt sre e sresasve st saene s 17-11
SET_PLURAL_NAME PrOCEAUIEcoeiviiiitiieitiristi sttt 17-12
SET_SHORT_DESCRIPTION ProCeaUIEc.ccviiiiiiiiiiisitiise e 17-13
CWM2_OLAP_DIMENSION_ATTRIBUTE
Understanding DIimension AttriDULES. ... 18-2
Creating Dimension AIHDULES ... e 18-2
Completing the DimMension’s Metadata............cccueivviiiiirinnesene e 18-3
Common Logic in CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms..........c......... 18-3
Case Requirements for Subprogram Parameters. ... 18-3
Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms..........cccecceevvvrveneen. 18-4
CREATE_DIMENSION_ATTRIBUTE ProCeAUIEccoeciriiiieirieiieesieeseesieesiesesenesne s 18-4
DROP_DIMENSION_ATTRIBUTE ProCedurecccoviieiiiriiinisenesesise e 18-6
LOCK_DIMENSION_ATTRIBUTE Procedurecccooivieiiininininense e 18-7
SET_DESCRIPTION PrOCEAUIE.....c.ccveiieieceetecisie st st na e aere e ens 18-8
SET_DIMENSION_ATTRIBUTE_NAME ProCeAUIe........cc.eovruiirieirieisieiseesieesasesaseesees 18-9
SET_DISPLAY_NAME ProCEAUIEccuvviiiieiieesieeeeteseste s e st s eeenae e e snenns 18-10
SET_SHORT_DESCRIPTION ProCeaUIEc.coeuiiiiiiiiiiinitiise et 18-11

Xiii

19

20

Xiv

CWM2_OLAP_HIERARCHY
Understanding HIBrarChies..........ccoviieiiiieieece st 19-2
Creating HIBrarChies.o 19-2
Completing the Dimension’s Metadata...........c.covieiiiiiiiiieee s 19-2
Common Logic in CWM2_OLAP_HIERARCHY Subprograms...........cccverersvsiesinsereennanens 19-3
Case Requirements for Subprogram Parameters.........cocooiiiiiiiniiesee s 19-3
Summary of CWM2_OLAP_HIERARCHY Subprograms.........ccccceevveinenenenieiesiesesenie e 19-3
CREATE_HIERARCHY ProCEAUIE.eieiieieieiiesieie st e sttt see s aeneeneeseenes 19-4
DROP_HIERARCHY PrOCEAUIEcveieeiee ettt st e ettt sr e ae e e 19-5
LOCK_HIERARCHY PrOCEAUIE ..ottt re s ere sttt snaneens 19-6
SET_DESCRIPTION PrOCEAUIEccuvcvietiie sttt ettt sne st ensenae s 19-7
SET_DISPLAY_NAME ProCeAUIEcociieiiiiee sttt sttt 19-8
SET_HIERARCHY_NAME ProCeAUIEooeiieiiiee ettt 19-9
SET_SHORT_DESCRIPTION ProCeAUIEccooeririeiiieirieieee et s 19-10
SET_SOLVED_CODE PrOCEAUIEcuvviviriitiiieiisieiisies et sa ettt sbe e s s 19-11
CWM2_OLAP_LEVEL
UNderstanding LEVEIS ...ttt bbb 20-2
(O Lo o I - S 20-2
Completing the Dimension’s Metadata..........ccccccvvereeieieiieciese e 20-2
Common Logic in CWM2_OLAP_LEVEL SUbProgramsccccoeeiereneneneesesesie e 20-3
Case Requirements for Subprogram Parameters.........ccocveeieeeiesiesie e 20-3
Summary of CWM2_OLAP_LEVEL SUBProgramsccccvevviviieieneesiese e s e 20-3
ADD_LEVEL_TO_HIERARCHY ProCedUIEccceviueiiiiiieiieiineie e snens 20-4
CREATE_LEVEL PrOCEAUIEovicveiie et sttt se et e aeneanaenenns 20-5
DROP_LEVEL PrOCEAUIEcveieieieieteeie sttt st sne e ete e ene st srens et aenaeenneans 20-6
LOCK _LEVEL PrOCEAUIEocviiiictece ettt st st s a ettt st st e naene e e 20-7
REMOVE_LEVEL_FROM_HIERARCHY Procedure........cccccooviiniinnineiseisesecse e 20-8
SET_DESCRIPTION PrOCEUUIEccuvceieiirieciise et eie et se s ste et sne s sne e ensenae s 20-9
SET_DISPLAY_NAME ProCeAUIEc.occiieieiiee sttt ettt 20-10
SET _LEVEL _NAME ProCEAUIE......c.ooiierieieieetise sttt ere e reste et e e aneene e 20-11
SET_PLURAL_NAME PrOCEAUIEocvevieieciietreiesie st asta sttt sa e e 20-12
SET_SHORT_DESCRIPTION ProCeAUIEcccceiiiiiiiieisiei ettt 20-13

21

22

CWM2_OLAP_LEVEL_ATTRIBUTE

Understanding LeVel AtIHIDULEScc.oov i 21-2
Creating LeVel ATIIIDULES ..ot 21-2
Completing the Dimension’s Metadata............cocceeieiiiiieieiee e 21-2
Common Logic in CWM2_OLAP_LEVEL_ATTRIBUTE Subprogramsc.cccccecvrvevnnnnn. 21-3
Case Requirements for Subprogram Parameters. ... 21-3
Summary of CWM2_OLAP_LEVEL _ATTRIBUTE Subprograms.........ccccoevveevvrereeneerieinnenns 21-3
CREATE_LEVEL_ATTRIBUTE ..ottt 21-4
DROP_LEVEL_ATTRIBUTE PrOCEAUIEcoiveiiiieeiiieie ettt et sesne e s 21-6
LOCK_LEVEL_ATTRIBUTE ProCEAUIEceiiiirietirieienieie ettt 21-7
SET_DESCRIPTION PrOCEAUIE........cieiieieceete sttt sa e aere e ens 21-8
SET_DISPLAY_NAME PrOCEAUIEcviviiiiieeieiiee ettt ssese s saens 21-9
SET_LEVEL_ATTRIBUTE_NAME Procedureccoeiiiiiininiiineenenese e 21-10
SET_SHORT_DESCRIPTION ProCedUIEcceiiiiiiiiinitiisiene e 21-12
CWM2_OLAP_CUBE

UNderstanding CUDEScocuiiii et st neeneens 22-2
CUDES BNA IMBASUIES ...ttt sttt e bbbt b b e et bt e bt s beebesbesbesbe e e beseene e 22-2
Fact Table REQUITEMENTSccoiiiii et eens 22-2
Fact Table Key COIUMNS........coiiiee e 22-2
CreatiNg CUDES ...ttt bbbt e s ekt e b e bt be s besbesb e e et e e eneebeene e 22-3
Creating @ CUbEe’s DIMENSIONScccciviiiiiiiie et s se e e naene e neesnens 22-3
Completing the CUbE’s Metadata..........cccvveieiiieiieiisee e enens 22-3
Verifying the Metadata for @ CUDE ..o 22-4
Common Logic in CWM2_OLAP_CUBE SUbpPrograms..........ccccceivereneiniesinsenieneseseseseenens 22-4
Case Requirements for Subprogram Parameters........ccccovveceiisievesenin s 22-4
Summary of CWM2_OLAP_CUBE SubPrograms...........cccoe i 22-4
ADD_DIMENSION_TO_CUBE ProCedUIecouviiriiiieirieseseiseee e 22-5
CREATE_CUBE PrOCEAUIEcuveiicieciesiesie ettt ettt sttt ns e ana e e anaenesreans 22-6
DROP_CUBE PrOCEAUIE.......cciiiieeie ettt ettt ettt e et ta e st st e st e be et e sbeeneesaaenesteesrens 22-7
LOCK _CUBE PrOCEAUIE.cueiviiiiiisieiesiete e e se e e e steste e ssesaesaesaesassestessassestesnesseneesaensasens 22-8
REMOVE_DIMENSION_FROM_CUBE ProCeAUIEcc.cecurieiirieiirieiesieesieiesiee et 22-9
SET _CUBE_NAME PrOCEAUIEc.viiiiiictecete ettt ettt st besbe st saeesre e sae e e stennaeas 22-10
SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure..........cccceouriiinenneineinieneeseieeas 22-11
SET_DESCRIPTION PrOCEAUIE........ciiieiieiiee ettt sa e e e sre e snesnenae s 22-12

XV

SET_DISPLAY_NAME ProCeAUIEcccciieiiiieesiee ettt 22-13
SET_MV_SUMMARY_CODE ProCeAUIE......c.coueieirererie et 22-13
SET_SHORT_DESCRIPTION ProCeAUIEcccceiiiiiiiieisieit ettt 22-14

23 CWMZ2_OLAP_MEASURE

UNAerstanding IMEBASUIESc.ciiiiiiieie ettt ettt sttt e et st esbe b e sbe bt b e ne e e ne e 23-2
CreatiNg IMBASUIEScueciiieiee st sie sttt te ettt e e e et e st e e e seesesbeeseaae st e besee e e neeennaensenennen 23-2
Creating a Cube fOor the IMEBASUIE.........c.ciieeicicese ettt en 23-2
Completing the Measure’s Metadata...........ccoeiiiiieiiiiiieiceee e 23-3
Common Logic in CWM2_OLAP_MEASURE Subprogramscccccocvivrenieniereenesnseseseeneens 23-3
Case Requirements for Subprogram Parameters........ccocveeieeeiesesie s 23-3
Summary of CWM2_OLAP_MEASURE Subprograms..........cccoieoiiniiiienene e 23-4
CREATE_MEASURE PrOCEAUIEc.viieieicveeicie ettt nesne e e sne st snesnnneenes 23-4
DROP_MEASURE PrOCEAUIEcveieceiiee sttt st st ens 23-5
LOCK _MEASURE PrOCEAUIEoctiiiieeie ettt ettt s a ettt st et e naebe e e 23-6
SET_DESCRIPTION PrOCEAUIEccuvcuieiiiestice et se ettt sne st sne e ensenae s 23-7
SET_DISPLAY _NAME PrOCEAUIEceciieitiriesiesesteiesteeesiesee e e sre e e e sre st sne s saesaenaenseseenes 23-8
SET_MEASURE_NAME PrOCEAUIE.......cviiitiriitiiitisisttsieiesiene e sesie ittt sseassesassesessesens 23-9
SET_SHORT_DESCRIPTION ProCEAUIEccuveviriecesie et seese ettt eaeneas 23-10

24 CWM2_OLAP _TABLE_MAP

XVi

Understanding OLAP Metadata Mapping........cccceieiiiiiienenienesceesieesese e s sanseens 24-2
Mapping Logical Metadata ENItIeS.........ccccovivieiiiiiii e 24-2
Joining Fact Tables with Dimension Tables ... 24-2

Common Logic in CWM2_OLAP_TABLE_MAP Subprogramsccecceeveiveivsivsiesinnenieneens 24-3
Case Requirements for Subprogram Parameters.........ccocveveieieiesiesiesie s 24-4

Summary of CWM2_OLAP_TABLE_MAP Subprograms.........c.ccoceeeiineininienesene e 24-4
MAP_DIMTBL_HIERLEVELATTR ProCeAUIEc.covviiiiiiiiieiirieicsieie s 24-5
MAP_DIMTBL_HIERLEVEL ProCedUIE.........ccciiiiieeieiieiie et 24-6
MAP_DIMTBL_HIERSORTKEY ProCeAUIEcccvciriiiriiiiisiiisesiete st ssesseenn 24-8
MAP_DIMTBL_LEVELATTR PrOCEAUIE.......c.e ittt 24-9
MAP_DIMTBL_LEVEL PrOCEAUIE.ciiiirieiiriciiriesie e 24-10
MAP_FACTTBL_LEVELKEY ProCEAUIEccoovieiiiiiiiiisiiiseisieisie s ssns 24-12
MAP_FACTTBL_MEASURE ProCedUIEcciviiiriiiirieiisieie e 24-14
REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure.........ccccocvvrninnenneneenseneens 24-15

REMOVEMAP_DIMTBL_HIERLEVEL ProCedureccccoiiriiiiieiee e 24-17

REMOVEMAP_DIMTBL_HIERSORTKEY ProCcedurecccooeeriirnereenenersennesenenens 24-18
REMOVEMAP_DIMTBL_LEVELATTR ProCedurecccconeireiineineesee e 24-19
REMOVEMAP_DIMTBL_LEVEL ProCedUIE........ccooeiiieirieiicinice et 24-20
REMOVEMAP_FACTTBL_LEVELKEY Procedure...........cccoveiirnnreiinnnreeenesnneeennns 24-21
REMOVEMAP_FACTTBL_MEASURE ProCedUre.........ccccceiiirieirieeiee e 24-22

25 CWM2_OLAP_AW_OBJECT

Understanding AW Object Metadata ENItIES..........ccooiiiiiiiiiiiicee e 25-2
Common Logic in CWM2_OLAP_AW_OBJECT Subprogramscccecvivrieninrereeneenieienens 25-2
Case Requirements for Subprogram Parameters.........ccoovveoeviiievesenie s nese s 25-2
Summary of CWM2_OLAP_AW_OBJECT SUDPIrOgramS.........ccccorerereneieeieniesesieseeseenesieeeas 25-2
CREATE_AW _OBJECT PrOCEAUIEcuvevviieeiesiiiesteiestereeiesaeesie e se s steste e saessessesaensenaesessenns 25-3
CREATE_AW _OBIJECT _INFO ProCEAUIEceoueieiieieeeieieeesie e st sa e e enaese e ens 25-4
CREATE_AW _OBJECT_RELATED_OBJ ProCeAUIe........cccuceieiiieiiisisieiisisesieiesiesasseseseens 25-5
CREATE_AW_OBJECT_PROPERTY ProCedurecccoeiririniiirieiinieeseeesieesieesiesesenesne s 25-6
DROP_AW _OBIECT PrOCEAUIEcvcuicieeceiete sttt se e ete st st sre e nsensesanneanens 25-7
DROP_AW_OBJECT _INFO ProCEAUNE.cceiiiieieteiiee ittt e e st e ssssesneresresesnesesne e 25-7
DROP_AW_OBJECT_RELATED_OBJ ProCedUIEcccoveieierieieriee e 25-8
DROP_AW_OBJECT_PROPERTY PrOCEAUIEcceoiirieiirie et 25-9

26 CWM2_OLAP_AW_MAP

Understanding AW Object Metadata Mappingccocceeveririreieieniesiesiene e seseeseeeenesreens 26-2
Common Logic in CWM2_OLAP_AW_MAP SUDPIrogramsccceeeririenenenene e seeeeeeene 26-2
Case Requirements for Subprogram Parameters........cccoovveoeiiiievesenie s 26-2
Summary of CWM2_OLAP_AW_MAP SUBPIrOgrams.......c.ccceevvrimrereeerisiesieseeseeesesessessesens 26-2
MAP_AW_ATTRIBUTE ProCEAUIE ..ottt st 26-3
MAP_AW_DIMENSION ProCEAUIE.......cveieieeeieeese st ee st se e et saeneesaeneenens 26-5
MAP_AW_HIERARCHY ProCeAUIEcc.eieiieeieieseee e st ste e ste s saeseeesseesaese e ssesseseesaensenens 26-6
MAP_AW _LEVEL PrOCEAUIE.........ciiciii ettt ettt sttt te e s beenn e sre e sneenens 26-7
MAP_AW_MEASURE PrOCEAUIEc.ociiieetistese st st ste e se e e e stesteseesresseseneensessesensessens 26-9
REMOVEMAP_AW_ATTRIBUTE ProCEAUIE.ccooeirieerieirietniee st 26-11
REMOVEMAP_AW _DIMENSION ProCeaUIEccouceirieieeisiiiseesesesie st sssee e seeseses 26-12

XVii

REMOVEMAP_AW_HIERARCHY Procedure. ..o
REMOVEMAP_AW _LEVEL ProCeAUIE.......ccecviiiie et
REMOVEMAP_AW_MEASURE ProCEAUFE........ceiiiiiieitirie sttt

27 CWM_CLASSIFY

Understanding the OLAP Classification SYStemcccooiiiiiiiiiiincene e

Summary of CWM_CLASSIFY SUDPIOGramS.......cccviiieiieienieieiesieeeses e se e siesee e ssensensesenses
ADD_CATALOG_ENTITY ProCEAUIE.....cecvieetere ettt
ADD_DESCRIPTOR_ENTITY_TYPE ProCedUIEccceiiieieieieeie et
ADD_ENTITY_DESCRIPTOR_USE ProCEAUIEccovrieiiiieiiiieiesieesieiesiee st
CREATE_CATALOG FUNCLIONcuviireitciie sttt s sa e enaeneens
CREATE_DESCRIPTOR FUNCLION ..c.vitiiitiieie ettt sveresreresne e s sssresssneseene e
CREATE_DESCRIPTOR_TYPE ProCEAUIEc..eveieiieireeieteeie ettt see e sa e enseseenes
DROP_CATALOG ProCEAUIE.......ueviierieieeieeie st se st ste st e e saeseesaesessessessessessessessessesseseeseeneens
DROP_DESCRIPTOR PrOCEAUIE........cciiitieiiite ettt st e ste e sba e sne e sneeneanes
DROP_DESCRIPTOR_TYPE ProCEAUIE.ccccvieiveeieriereesiesieseeeeietesesresesie s sse e ssenaesaens
LOCK_CATALOG ProCEAUIE.......ceiuiiteriereeieiterieie e etesestesteste e saesessessessessesessessessessessessessenes
REMOVE_CATALOG_ENTITY ProcedUIE......c.ccovviiiieiiieiseiseese e
REMOVE_DESCRIPTOR_ENTITY_TYPE ProCedure..........cccooviriinniieineseeseese e
REMOVE_ENTITY_DESCRIPTOR_USE ProCedurecccceoeiiireineineisesees e
SET_CATALOG_DESCRIPTION ProCeAUIE.......ccocceiiiiieiertctese sttt
SET_CATALOG_PARENT ProCEAUIEcueeviiieiectie ettt st

Part V Creating Materialized Views for the OLAP API

28 Developing a Summary Management Strategy

Optimizing the Database fOr OLAP ... ereenes
ADOUL MAtErTAlIZEA VIBWS.c.ocuiiiieieie ettt eb et
Summary Management OPTIONScoiiiiic ettt sb et se e se e se e ebeenes
(€T o 10] o1 o TR T-1 £ TSP
(0] aTor=1 (=T T= 1 t=To I 2 (o] | 16T o 1RSSR
Materialized Views and OLAP Metadatac.cccecvviiiiiiiii it
CWIM MELAAALA ..ottt ettt sttt st be bbb bbb et
CWIM2 METATEALA.......eeeveeeieseee ettt sttt sttt sb et bt

Xviii

DIimension MaterialiZEA VIBWSooocie ittt ettt s ae s st s bt e e s san e e s sban e e 28-4

Creating Dimension Materialized VIBWS.........cccvcvvviiiriiiene s 28-5
Number of Dimension Materialized VIBWS...........cooi i 28-5
FaCt MaterialiZEd VIBWS ..ot bbb bbb 28-6
Creating Fact MaterialiZEd VIBWSccocviiiiiiie sttt st en e enens 28-6
Number of Fact MaterialiZEd VIBWS..........cooiiiiiiiie e 28-6
Choosing the Right Summary Management SOIUtION ... 28-7
Summary Management for CWM Metadata...........cccovvvrerereiicneiesie e 28-7
Summary Management With a Graphical User Interfaceccocoeiiiiieniciiiiiiciee 28-7
Summary Management for Multiple Hierarchies..........ccocoovveeiii i 28-8
BUIIA TIMES .ottt bbbttt bttt 28-8

Partial MaterialiZation ... e 28-8

IMIV SIZE .ttt et sttt b ekttt et et e 28-8
LIiNEAGE (KKBY) oeteiueeteiiecie i e stet ettt et te e st s e st sa e e e e e ese e s s eteeseebesnesteseeseenteneeneeneenens 28-8

QUETY PEITOIMEANCEottt 28-9

29 Creating Dimension Materialized Views

Creating Materialized Views fOr DIMENSIONSccociiiiiiiiiiies e 29-2
Statistics and BitMap INUEXESccvveiiiiicieece e se e re e ens 29-2
SEALISTICS. .. vttt 29-2
BILMAP TNAEXES. ...ttt bttt e et b bbbt bbb besbe e et ebeenas 29-3
The CREATE Statement for a Dimension Materialized VIeW ..., 29-3
Sample Script for the TIMES _DIM DIiMENSIONcccovviiiiireieieeeises s enaere s 29-4
Table Structure of Sample TIMES_DIM Dimension Materialized View............ccccocoeenie 29-10

30 Creating Fact Materialized Views With DBMS_ODM

Using the DBMS_ODM PaCKAQE.........ccoiiiiiiiiiiii ittt 30-2
Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views 30-2
Partitioning, Statistics, aNd INAEXES..........cccviviiiiiieric e 30-3
ooV (A Lo] oY1 o OO SPR 30-3
R3] L[S (ot TP 30-3
2T A F= o T Lo (=SS 30-4
Sample Script for the COST CUDE ... 30-4

Xix

Summary of DBMS_ODM SUDPIOQIaMSccciiiiiiiiriesenie et see e 30-11

CREATEDIMLEVTUPLE PrOCEAUIEoveiirieieiieiesiee ettt 30-11
CREATECUBELEVELTUPLE ProCedUIE.......ccccouiviiiiiiieie ittt 30-12
CREATEFACTMY _GS PrOCEAUIE......cuiiiiiiiiieiisieis ettt et sen s 30-13
CREATEDIMMY _GS PrOCEAUIEo.veieeiceecctr ettt ettt ne e ne e 30-14
31 Creating Fact Materialized Views With OLAP Summary Advisor
Using the OLAP Summary AdViSOr WiIzZard...........cccvevvieiiiniesiesine e e 31-2
Procedure: Run the OLAP SUMMAry AGVISOrcooiiiiiiieieieie et 31-2
Partitioning, Statistics, aNd INAEXES.........ccveveieiiii e eneas 31-3
o1 (1 o] o T o SRS 31-3
R3] -1 0t SO ST SOU SRR 31-3
2T A F= o T T L= (=SS 314
The MV CREATE Statement With Concatenated ROHUPccccevvvivccivic e, 314
Sample Script for the COST CUDE ... s 31-6
A Upgrading From Express Server
AAMINTSTFATION ..ttt ettt et a e e e bt e e et e e e bt eb e e besbesaenbe b saeneane s A-2
AULNENTICALION OF USEISiviiiiietee ettt A-2
V=T Vo =T 1= o f I Yo | 3RS A-2
DAtA TrANSTEEe ittt bbbt bbbt s bt b et s be et et e et et e e ne et e enes A-3
[0 Tor=1 1 T7.4= 11 [o] o OSSO POO T RTOTRTPRI A-3
AN o] o] 1 Toz=1a [o] a F-ST U] o] 's 1o] o TSRS A-4
Programming ENVIFONMIENTcooiiiiiiiiiciee et bbb s sb e A-4
COMMUIICALIONS ...ttt b bbbt b et ettt st et e st et et et e e ebeneebeneas A-5
Y 1= 7= o Fo1 7 TSSOSO A-5
Programming Language CRanQESccooi ittt et ettt s enas A-6
NEW COMMANAS ...ttt ettt sttt es bttt st b A-6
ODSOIEtE COMMEANTS ...t et b e bbbttt e ettt se et e A-6
UPDATE aNd COMMIT ..ottt ettt st sn st snens A-6
How to Upgrade an EXPress DatabasSeccccvvivireiiiiiicisiece s enes A-7
Index

XX

Send Us Your Comments

Oracle9i/ OLAP User’s Guide, Release 2 (9.2)
Part No. A95295-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: i nf odev_us@r acl e. com
FAX: 781-238-9850 Attn: Oracle OLAP
Postal service:

Oracle Corporation

Oracle OLAP Documentation

10 Van de Graaff Drive

Burlington, MA 01803

US.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXi

XXii

Preface

The Oracle9i OLAP User’s Guide describes how to use Oracle OLAP for business
analysis. It introduces the concepts underlying analytical applications and
multidimensional querying, and the tools used for application development and
system administration.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XXiii

Audience

This guide is intended for application developers and database administrators who
perform the following tasks:

= Administer a database

« Build and maintain data warehouses or data marts
« Define metadata

« Develop analytical applications

To use this document, you need no prior knowledge of Oracle OLAP.

Organization

XXiV

This document is organized in five parts.

Part 1: The Basics

Provides conceptual information of general interest to anyone planning to use
Oracle OLAP.

Chapter 1, "Overview"

Explains the basics of using Oracle OLAP and related client software for analytical
applications.

Chapter 2, "Manipulating Multidimensional Data"
Provides an overview of data manipulation using the OLAP DML.

Chapter 3, "Developing OLAP Applications”

Presents the rich development environment and the powerful tools that you can use
to create OLAP applications.

Chapter 4, "Designing Your Database for OLAP"

Highlights some of the most important data warehousing concepts, and provides
additional information that is specific to Oracle OLAP.

Chapter 5, "Creating OLAP Catalog Metadata"
Provides an overview of OLAP catalog metadata and the APIs for working with it.

Part II: "Administering Oracle OLAP"

Provides information for database administrators on administrative tasks associated
with Oracle OLAP.

Chapter 6, "Administering Oracle OLAP"
Describes the various administrative tasks that are associated with Oracle OLAP.

Chapter 7, "OLAP Dynamic Performance Views"
Describes the relational views that contain performance data on Oracle OLAP.

Chapter 8, "OLAP_API_SESSION_INIT"

Describes the OLAP_API _SESSI ON_I NI T package, which contains procedures for
maintaining a configuration table of initialization parameters.

Chapter 9, "Creating an Analytic Workspace From Relational Tables"

Describes how to create an analytic workspace from data stored in relational tables,
either using a utility or performing the steps manually. Describes the OLAP DML
programs for creating an analytic workspace and for generating relational views of
the workspace data.

Part lll: "SQL Access Reference”

Provides information about SQL packages and procedures that either create
relational views of multidimensional data or embed OLAP DML commands in their
syntax.

Chapter 10, "DBMS_AW"

Contains reference information for the DBMS_AWpackage, which enables SQL
programmers to issue OLAP DML statements against analytic workspace data.

Chapter 11, "OLAP_TABLE Function"

Describes how SQL programmers can use the OLAP_TABLE function in a SQL
SELECT statement to query multidimensional data in an analytic workspace

Part IV: "OLAP Catalog Metadata APl Reference"

Describes the OLAP catalog views and the PL/SQL packages for creating OLAP
catalog metadata.

XXV

XXVi

Chapter 12, "OLAP Catalog Union Views"

Describes the views that constitute the comprehensive read API to all the OLAP
metadata (both CWM1 and CWM2) defined in the database.

Chapter 13, "OLAP Catalog (CWM2-Specific) Views"
Describes the views that constitute the read APl to CWM2.

Chapter 14, "OLAP Catalog Analytic Workspace Views"

Describes the views that represent analytic workspace objects registered in the
OLAP Catalog.

Chapter 15, "CWM2_OLAP_AW_ACCESS"

Describes procedures for creating views of workspace objects. The views can be
used by standard SQL to access data stored in the analytic workspace, or to define
OLAP metadata so that OLAP API applications can access the multidimensional
objects.

Chapter 16, "CWM2_OLAP_PC_TRANSFORM"

Describes the procedure for converting a parent-child dimension table to an
embedded-total dimension table.

Chapter 17, "CWM2_OLAP_DIMENSION"

Describes procedures for creating, dropping, and locking dimensions, and for
setting general dimension properties.

Chapter 18, "CWM2_OLAP_DIMENSION_ATTRIBUTE"

Describes procedures for creating, dropping, and locking dimension attributes, and
for setting general properties of dimension attributes.

Chapter 19, "CWM2_OLAP_HIERARCHY"

Describes procedures for creating, dropping, and locking hierarchies, and for setting
general hierarchy properties.

Chapter 20, "CWM2_OLAP_LEVEL"

Describes procedures for creating, dropping, and locking levels, for adding levels to
hierarchies, and for setting the general properties of levels.

Chapter 21, "CWM2_OLAP_LEVEL_ATTRIBUTE"

Describes a procedure for creating level attributes, associating them with dimension
attributes, and for dropping, locking, and setting the general properties of level
attributes.

Chapter 22, "CWM2_OLAP_CUBE"

Describes procedures for creating, dropping, and locking cubes, for adding
dimensions to cubes, and for setting general properties of cubes.

Chapter 23, "CWM2_OLAP_MEASURE"

Describes procedures for creating, dropping, and locking measures, and for setting
general properties of measures.

Chapter 24, "CWM2_OLAP_TABLE_MAP"

Describes procedures for mapping OLAP metadata entities to columns in your data
warehouse dimension tables and fact tables.

Chapter 25, "CWM2_OLAP_AW_OBJECT"

Describes procedures for registering metadata in the OLAP catalog for data that is
stored in an analytic workspace.

Chapter 26, "CWM2_OLAP_AW_MAP"

Describes procedures for mapping logical OLAP metadata entities to objects
defined in analytic workspaces.

Chapter 27, "CWM_CLASSIFY"

Describes procedures for creating measure folders and populating them with
measures.

Part V: "Creating Materialized Views for the OLAP API"

Explains how to create materialized views for queries for aggregate data from the
OLAP API.

Chapter 28, "Developing a Summary Management Strategy"

Provides general information about summary management issues for the OLAP
API.

XXVii

Chapter 29, "Creating Dimension Materialized Views"
Explains how to create materialized views for dimensions.

Chapter 30, "Creating Fact Materialized Views With DBMS_ODM"

Explains how to use the DBM5_ODMpackage to create fact table materialized views
in grouping set form.

Chapter 31, "Creating Fact Materialized Views With OLAP Summary Advisor"

Explains how to use OLAP Summary Advisor and the OLAPFACTVI EWpackage to
create fact table materialized views in concatenated rollup form.

Appendix A, "Upgrading From Express Server"

Provides upgrading instructions and identifies some of the major differences
between Oracle Express Server 6.3 and Oracle9i OLAP.

Related Documentation

XXViii

For more information, see these Oracle resources:

« Oracle9i OLAP Developer’s Guide to the OLAP API

= Oracle9i OLAP API Javadoc

« Oracle9i OLAP Developer’s Guide to the OLAP DML
« Oracle9i OLAP DML Reference help

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. cond

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from
ht t p: / / waw or acl ebookshop. cond

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. cont admi n/ account / nenber shi p. ht n

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. com docs/ i ndex. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis.

Ensure that the recovery catalog and target
database do not reside on the same disk.

XXiX

Convention Meaning Example

UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER

monospace elements supplied by the system. Such column.

(fixed-width) elements include parameters, privileges, .

font datatypes, RMAN keywords, SQL g&%ﬁaggﬁrﬁgﬂ?e database by using the
keywords, SQL*Plus or utility commands, :
packages and methods, as well as Query the TABLE_NAMEolumn in the USER _

system-supplied column names, database TABLESdata dictionary view.
objects and structures, usernames, and Use the DBMS_STATSSENERATE_STATS

roles. procedure.
lowercase Lowercase monospace typeface indicates Enter sqlplus to open SQL*Plus.
monospace executables, filenames, directory names, . e - .
(fixed-width) and sample user-supplied elements. Such The password is specified in the orapwd file.
font elements include computer and database Back up the datafiles and control files in the
names, net service names, and connect /disk1/oracle/dbs directory.

identifiers, as well as user-supplied
database objects and structures, column - . .
names, packages and classes, usernames ﬁng Iocattlon_id tcot:ILJmns are in the
and roles, program units, and parameter r.departments able.

values. Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

The department_id , department_name ,

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. Connect as oe user.

Enter these elements as shown. The JRepUtil class implements these

methods.
| ower case Lowercase italic monospace font You can specify the par al | el _cl ause.
italic represents placeholders or variables.
nonospace Run Uol d_rel ease.SQL where ol d_

(fixed-vi dth) r el ease refers to the release you installed

font prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE,

The following table describes typographic conventions used in code examples and
provides examples of their use.

XXX

Convention Meaning Example

[] Brackets enclose one or more optional DECIMAL (digits [, precision])
items. Do not enter the brackets.

{} Braces enclose two or more items, one of { ENABLE | DI SABLE}
which is required. Do not enter the braces.

| A vertical bar represents a choice of two { ENABLE | DI SABLE}

or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

[COWPRESS | NOCOVPRESS]

Horizontal ellipsis points indicate either:

« That we have omitted parts of the CREATE TABLE ... AS subquery;
code that are not directly related to
the example
. That you can repeat a portion of the SELECT CO,I 1, col2 coln FROM
enpl oyees;
code
Vertical ellipsis points indicate that we SQA > SHECT NAME FROM VSDATAFI LE
have omitted several lines of code not NAMVE

directly related to the example.

/sl /dbs/tbs_01. dbf
/ fs1/ dbs/ t bs_02. dbf

/fsl/dbs/tbs_09. dbf
9 rows sel ected.

Other notation You must enter symbols other than acct bal NUMBER(11, 2);

brackets, braces, vertical bars, and ellipsis C_ .
points as shown. acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em passwor d

variables for which you must supply _
particular values. DB_NAME = dat abase_name

UPPERCASE Uppercase typeface indicates elements SELECT | ast _name, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish . .
them from terms you define. Unless terms SELECT * FROM USER TABLES;
appear in brackets, enter them in the DROP TABLE hr. enpl oyees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

XXXI

Convention

Meaning Example

| oner case

Lowercase typeface indicates SELECT | ast _name, enpl oyee_id FROM
programmatic elements that you supply. enpl oyees;

For example, lowercase indicates names
of tables, columns, or files. sql plus hr/hr
Note: Some programmatic elements use a (REATE USER m ones | CENTI FI ED BY 1y3MUB;
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

Documentation Accessibility

XXXil

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //waw or acl e. comd accessi bi | ity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

What's New in Oracle OLAP?

Oracle9i Release 2 provides multidimensional analysis within the Oracle database.
Oracle OLAP is the next generation of analytical engines and related software,
providing an upgrade path from Oracle Express Server release 6.3.

See Also:

« Appendix A, "Upgrading From Express Server" for specific
differences between Express Server and Oracle OLAP.

« Oracle9i OLAP Developer’s Guide to the OLAP DML for changes
to the OLAP data manipulation language.

The following sections describe the new features in Oracle9i OLAP:

« Oracle9i Release 2 (9.2) New Features in Oracle OLAP

XXXiil

Oracle9i Release 2 (9.2) New Features in Oracle OLAP

The following list briefly describes the new features of Oracle OLAP.

XXXIV

Oracle OLAP is integrated with the Oracle database

The OLAP engine runs in the Oracle kernel, and analytic workspaces are stored
as LOBs in relational tables.

See Also: "The Oracle9i Integrated Relational-Multidimensional
Database" on page 1-4
Oracle OLAP management tools are integrated with Oracle

The Oracle DBA uses one set of management tools for both the Oracle database
and Oracle OLAP.

See Also: Chapter 6, "Administering Oracle OLAP"

SQL applications can access multidimensional data

SQL applications can use the database table functions to access and manipulate
data directly in the multidimensional OLAP data cache. Alternatively, relational
views can be created for multidimensional data, which provides access to
standard SQL.

See Also: Chapter 3, "Developing OLAP Applications"

Tools simplify creation of analytic workspaces and related views

Tools are available to help move data from relational tables into
multidimensional objects in an analytic workspace, and to generate views of
these objects so that applications can access workspace data using standard
SQL.

See Also:

« Chapter 9, "Creating an Analytic Workspace From Relational
Tables"

. Chapter 15, "CWM2_OLAP_AW_ACCESS"

« Applications can use OCI or JDBC to connect to Oracle OLAP

OLAP applications that used SNAPI communications in Express Server 6.3 and
earlier can upgrade to Oracle OLAP without substantially changing the
application’s Express language-based architecture.

See Also: Chapter 1, "Overview"

« OLAP API is available for developing Java applications

The Oracle OLAP API is an all-Java application programming interface that is
designed specifically to support multidimensional analysis.

See Also: Chapter 3, "Developing OLAP Applications"

« OLAP Catalog API supports third-party applications development

PL/SQL interfaces to the OLAP catalog allow developers to query and update
the logical multidimensional metadata model and map it to physical relational
and analytic workspace data.

See Also: Chapter 5, "Creating OLAP Catalog Metadata"

« OLAP metadata provides extended schema support

The Oracle OLAP catalog metadata supports star, snowflake, and
multidimensional schema. The metadata supports level-based, parent-child,
and complex dimension hierarchies.

See Also: Chapter 5, "Creating OLAP Catalog Metadata"

« Oracle Globalization Support extended to Oracle OLAP

Oracle Globalization Support provides the Oracle standard for internationalizing
and localizing Oracle products. The character set encoding supports Unicode using
the UTF-8 standard, which is a format that transforms all Unicode characters into a
variable-length encoding of bytes. Its use in the database and Oracle OLAP allows
text data in native languages to be passed between them without data loss or
performance degradation.

See Also: Oracle9i Database Globalization Support Guide

XXXV

XXXVi

Part |

The Basics

Part | contains basic information about multidimensional analysis. It is of interest to
anyone who may use Oracle OLAP as a database administrator, an applications
developer, or an end user.

This part contains the following chapters:

Chapter 1, "Overview"

Chapter 2, "Manipulating Multidimensional Data"
Chapter 3, "Developing OLAP Applications"
Chapter 4, "Designing Your Database for OLAP"
Chapter 5, "Creating OLAP Catalog Metadata"

1

Overview

This chapter explains the basics of using Oracle OLAP and related client software
for analytical applications. By reading this chapter, you will get an overview of its
features.

This chapter includes the following topics:

. Why OLAP?

« The Oracle9i Integrated Relational-Multidimensional Database
« Components of Oracle OLAP

« Applications Access to Oracle OLAP

Overview 1-1

Why OLAP?

Why OLAP?

Relational databases have dominated database technology by providing the online
transactional processing (OLTP) that is essential for businesses to keep track of their
affairs. Designed for efficient selection, storage, and retrieval of data, relational
databases are ideal for housing gigabytes of detailed data.

The success of relational databases is apparent in their use to store information
about an increasingly wide scope of activities. As a result, they contain a wealth of
data that can yield critical information about a business. This information can
provide a competitive edge in an increasingly competitive marketplace.

Analytical Processing Answers Business Questions

The challenge is in deriving answers to business questions from the available data,
so that decision makers at all levels can respond quickly to changes in the business
climate. While a standard transactional query might ask, “When did order 84305
ship?” a typical series of analytical queries might ask, “How do sales in the
Southwestern region for this quarter compare with sales a year ago? What can we
predict for sales next quarter? What factors can we alter to improve the sales
forecast?”

The transactional query involves simple data selection and retrieval. However, the
analytical queries involve inter-row calculations, time series analysis, and access to
aggregated historical and current data. This is online analytical processing — OLAP.

The data processing required to answer analytical questions is fundamentally
different from the data processing required to answer transactional questions.
Table 1-1 highlights the major differences.

Table 1-1 Characteristics of Transactional And Analytical Queries

Characteristic Transactional Query Analytical Query
Typical operation Update Analyze
Age of data Current Historical
Level of data Detail Aggregate
Data required per query Minimal Extensive
Querying pattern Individual queries Iterative queries

1-2 Oracle9i OLAP User’s Guide

Why OLAP?

Types of OLAP Applications

Applications that support business analyses fall into these major groups:
« Standard reporting

« Ad-hoc query and reporting

« Multidimensional analytical reporting

« Predictive analysis and planning

Oracle® provides the technology for all of these types of applications. Oracle OLAP
and its development tools are particularly suited to analytical reporting and
predictive analysis applications. This guide will introduce you to the tools for
developing these types of applications.

Analytical Reporting

Analytic applications can support many facets of a business and offer high returns
on the investment. Here are just a few examples of analytical applications:

« Accounting. Forecasting, budgeting, cost and profitability analyses, and
consolidation

« Human Resources. Skills consolidation, labor scheduling and optimization
« Distribution. Scheduling and optimization

« Sales Force Automation. Cross-selling and territory analyses

« Marketing. Churn and market-based analyses

« Retailing. Site location and demographic analyses

« Manufacturing. Demand planning and forecasting

« Health Care. Outcomes analysis

« Financial Services. Risk assessment and management

Predictive Analysis

Planning applications allow organizations to predict outcomes. They generate new
data using predictive analytical tools such as models, forecasts, aggregation,
allocation, and scenario management. Some examples of this type of application are
corporate budgeting and financial analyses, and demand planning systems.

Budgeting and financial analyses systems allow organizations to analyze past
performance, build revenue and spending plans, manage toward profit goals, and

Overview 1-3

The Oracle9i Integrated Relational-Multidimensional Database

model the effects of change on the financial plan. Management can determine
spending and investment levels that are appropriate for the anticipated revenue and
profit levels. Financial analysts can prepare alternative budgets and investment
plans contingent on factors such as fluctuations in currency values.

Demand planning systems allow organizations to predict market demand based on
factors such as sales history, promotional plans, pricing models, and so forth. They
can model different scenarios that forecast product demand and then determine
appropriate manufacturing goals.

The Oracle9i Integrated Relational-Multidimensional Database

Oracle provides multidimensional technology within the database. Organizations
no longer need to choose between a multidimensional OLAP database and a
relational database. By integrating OLAP into the database, Oracle provides the
power of a multidimensional database while retaining the manageability, scalability,
and reliability of the Oracle database and the accessibility of SQL. The Oracle
database provides the functionality of a specialized analytic database while
eliminating the need for a separate database system.

The advantages of a single integrated relational-multidimensional database when
compared to two separate relational and multidimensional databases are many:

« Simplified management. All management tasks are consolidated into a single
database and can be managed through Oracle Enterprise Manager or PL/SQL.

« High availability. Oracle OLAP has the same scalability and high reliability as
the Oracle database, including support for Real Application Clusters and Oracle
Data Guard. Real Application Clusters allow multiple instances of the database
to work cooperatively against a single disk image of the database. When more
processing power is needed, another server can be added to the cluster. If a
server fails, then another server automatically takes over. Oracle Data Guard
protects against complete site failure, for instance, in the event of an
unprotected power failure. In the event of site failure, Oracle Data Guard
automatically switches to a backup instance at a different site.

« High security. Oracle provides complete security to all data in the database,
including multidimensional data. All users are defined in a single user catalog
and are assigned privileges using standard security features such as roles and
privileges. More finely grained access privileges can also be granted.

= Open access. Both relational and multidimensional data can be accessed
through SQL and the OLAP API. Application developers can choose to use the
calculation and data navigation features of the OLAP API, or they can leverage

1-4 Oracle9i/ OLAP User’s Guide

Components of Oracle OLAP

their investment in SQL to access multidimensional data. Any OLAP
calculation can be queried using SQL. Standard reporting applications can
present the results of complex multidimensional calculations. Ad-hoc querying
tools can provide new calculation functions.

Reduced update time. Oracle allows data to be stored in either relational or
multidimensional tables and provides access to both through SQL and the
OLAP API. Thus, data does not need to be replicated in two data stores. The
typical two-step data maintenance process (update the data warehouse, then
update the multidimensional database) is now reduced to a single step. The
result is a corresponding reduction in the interval between the time the data is
available from the source system and the time the data is available to users for
analyses.

Improved data reliability. Because data does not need to be replicated between
the relational tables and multidimensional tables, it cannot get out of
synchronization. All users have access to the same version of the data as soon as
changes are committed to the database.

The Oracle relational database and Oracle OLAP provide complementary
functionality to support the most versatile and high performance applications. The
database and SQL engine provide detail data, summary management, and
one-dimensional calculations using the SQL-99 OLAP extensions. Oracle OLAP
expands these capabilities to provide forecasting, modeling, what-if scenarios, and
multidimensional calculations.

Components of Oracle OLAP

Analytical queries and predictive analyses require a multidimensional OLAP
solution. Oracle OLAP consists of the following components:

Calculation engine
Analytic workspace
OLAP DML

PL/SQL table functions
OLAP API

OLAP Catalog metadata

This guide explains the relationships among these components from the
perspectives of both database administrators and application developers.

Overview 1-5

Components of Oracle OLAP

Calculation Engine

The OLAP calculation engine supports the selection and rapid calculation of
multidimensional data. The status of an individual session persists to support a
series of queries, which is typical of analytical applications; the output from one
query is easily used as input to the next query. The OLAP engine runs within the
Oracle kernel.

Analytic Workspace

An analytic workspace stores multidimensional data objects and procedures written
in the OLAP DML. Within a single database, many analytic workspaces can be
created and shared among users. Like relational tables, an analytic workspace is
owned by a particular user ID, and other users can be granted access to it. Because
individual users can save a personal copy of their alterations to a workspace, the
workspace environment is particularly conducive to planning applications.

An analytic workspace can be temporary (that is, for the life of the session) or it can
be persistent, that is, saved from one session to the next. When an analytic
workspace is persistent, the data is stored as LOBs in database tables. Analytic
workspaces also provide an alternative to materialized views as a means of storing
aggregate data.

OLAP DML

The OLAP DML is a data manipulation language that is understood by the Oracle
OLAP calculation engine. The OLAP DML extends the analytical capabilities of
querying languages such as SQL and the OLAP API to include forecasting,
modeling, and what-if scenarios. Application developers can create stored
procedures that use conditional logic and the extensive library of DML commands
and functions to perform complex analyses of data. Moreover, the OLAP DML is a
very accessible calculation language, similar to that of a spreadsheet, which is easy
for power users and DBAs to learn and use.

OLAP DML commands and functions include the following categories:

Aggregation

Allocation

Data Selection

Date and Time Operations
File Reading and Writing
Financial Operations
Forecasts and Regressions

1-6 Oracle9/ OLAP User’s Guide

Components of Oracle OLAP

Numeric Manipulation
Models

Statistical Operations
Text Manipulation

Time Series Manipulation

Both the OLAP API and PL/SQL can embed OLAP DML commands in their
syntax.

Using the OLAP DML, database administrators and application developers can
create multidimensional data objects that are stored in an analytic workspace. The
OLAP DML operates on data that is stored (permanently or temporarily) in these
multidimensional objects.

See Also: Chapter 2, "Manipulating Multidimensional Data" for
more information about using the OLAP DML.

SQL Table Functions

OLAP API

SQL table functions can take a set of rows as input and produce a set of rows as
output that can be queried like a physical database table. Application developers
who use SQL can access SQL packages that use table functions to create views of
multidimensional data. SQL applications can then access these views. Thus, the
calculation engine and multidimensional data sources are accessible to SQL, making
analytic and predictive functions available to SQL-based applications. SQL
applications can connect to the database using either the Oracle Call Interface (OCI)
or Java Database Connectivity (JDBC).

See Also: Chapter 3, "Developing OLAP Applications" for more
information about using SQL table functions.

The Oracle OLAP API is an application programming interface to Oracle OLAP. It is
a querying language that selects and manipulates data for display in a Java client.
Because the OLAP API is all Java, it supports deployment of analytical applications
to large, geographically distributed user communities on the Internet. It is object
oriented, so that application developers define the results they want, not the process
by which the results are obtained. The OLAP API connects to the database using
JDBC.

The OLAP API is the technology underlying the Oracle Bl Beans for access to
relational and multidimensional data. JavaBeans are the building blocks of

Overview 1-7

Applications Access to Oracle OLAP

application development. They are reusable pieces of Java code that can be
assembled quickly into an application. The Oracle Bl Beans provide pre-built
OLAP-aware application building blocks: Connecting to a database; authenticating
user credentials; selecting and fetching data; and displaying the data in a variety of
tabular and graphical formats. Using the Bl Beans, developers can create
applications with a common “look and feel,” enabling users to gain expertise
quickly in the new product.

The BI Beans can be used within Oracle JDeveloper or other Java development
environments to build analytical applications, which can be deployed as either Java
or HTML clients.

See Also: Chapter 3, "Developing OLAP Applications" for a more
detailed introduction to the OLAP API and the Bl Beans.

OLAP Catalog

Metadata is typically defined as “data about data.” OLAP catalog metadata is
created and stored in relational tables in the database. OLAP applications can query
this metadata repository to find out what data is available for analyses and display.
The metadata contains information about the physical location of the data, that is,
whether it is stored in a relational table or in an analytic workspace. The application
does not need to be aware of the location of the data or alter its processing to
accommodate the storage location. Since the data is queried using SQL, data from
relational data and multidimensional data can be joined in a single SQL query.

Whether the data is stored in a relational schema or in an analytic workspace, the
metadata identifies the data in terms of the multidimensional objects: measures,
dimensions, levels, and attributes. The metadata provides information critical to the
selection, manipulation, and display of that data.

See Also: Chapter 4, "Designing Your Database for OLAP" for
information about creating OLAP metadata.

Applications Access to Oracle OLAP

On a very basic level, all applications have access to analytic workspaces and the
computational engine using SQL, but the application can be unaware of the SQL or
unaware of the underlying OLAP facilities. They all use OCI or JDBC for their
communications protocol.

However, at a higher level, different types of applications can access the
computational power of Oracle OLAP in different ways.

1-8 Oracle9i/ OLAP User’s Guide

Applications Access to Oracle OLAP

=« OLAP API clients are written in Java, which the SQL generator in Oracle OLAP
converts to SQL. The application developer does not need to be familiar either
with SQL or the OLAP DML.

= SQL-based applications can use pure SQL against relational views of
multidimensional data. The application developer only needs to know SQL and
the language of the user interface, such as C++. However, an application
developer who is familiar with the OLAP DML can manipulate
multidimensional data directly using DML commands embedded in SQL table
functions.

« OLAP applications can operate directly on multidimensional data by making
use of the conditional processing capabilities of stored procedures written in the
OLAP DML.

Figure 1-1 illustrates these methods.

Overview 1-9

Applications Access to Oracle OLAP

Figure 1-1 Methods of Querying Analytic Workspaces

Table Function

Object Type

OLAP
Engine

OLAP API Generic SQL OLAP Aware Direct SQL
Application Application SQL Application Application
JDBC OCl or JDBC OCl or JDBC OCl or JDBC
select * from select * from DBMS_AWPL/SQL
view table function Package with DML
SQL Generator FETCH
select * from
view
Relational
View

OLAP DML

1-10 Oracle9i OLAP User’s Guide

Analytic
Workspace
Object

2

Manipulating Multidimensional Data

This chapter provides an overview of data manipulation using the OLAP DML. It
includes the following topics:

« What Is the OLAP DML?
« Basic Categories of OLAP DML Commands
« Methods of Executing OLAP DML Commands

Manipulating Multidimensional Data 2-1

What Is the OLAP DML?

What Is the OLAP DML?

The OLAP DML is a data manipulation language. You can use DML commands and
functions to perform complex analysis of data. You can also write stored procedures
that contain DML commands and functions.

Extensive Analytic Capabilities

The OLAP DML enables application developers to extend the analytical capabilities
of querying languages such as SQL and the OLAP API. These are some situations in
which you might use the OLAP DML.:

=« When you need to calculate data that cannot be calculated as part of your data
warehouse extraction, transformation, and load (ETL) process or in SQL.
Examples include forecasts, solving a model, some types of consolidations
(aggregations), and allocations.

= When your application needs to perform various calculations, but you do not
want to immediately commit the results in SQL tables. For example, you might
have a forecasting application where you want to allow users to save personal
forecasts and reuse them during a later session, but you do not want users to
commit the forecast to the SQL tables. Instead, you can just commit the data to
the analytic workspace without committing it to SQL tables.

=« When you want to manipulate data that is stored in an analytic workspace. An
analytic workspace can be an alternative to materialized views for storing
aggregate data. It may also be the preferred storage location for data that is
frequently used in business analyses such as models and forecasts.

See Also:
= Oracle9i OLAP Developer’s Guide to the OLAP DML
« Oracle9i OLAP DML Reference help

2-2 Oracle9i OLAP User’s Guide

What Is the OLAP DML?

Features of the Multidimensional Model

There are inherent features of the multidimensional model that make it an
appropriate environment for business intelligence. The multidimensional model:

Enforces referential integrity. Each dimension member is unique and cannot be
NA. If a measure has three dimensions, then each data value of that measure
must be qualified by a member of each dimension.

Promotes consistency. Dimensions are maintained as separate workspace
objects and are shared by measures.

Preserves the order of data. Each dimension has a default status list, which
contains all of its members in the order they are stored. The default status list is
always the same unless it is purposefully altered by adding, deleting, or
moving members. Within a session, the user can change the selection and order
of the status list; this is called the current status list. The current status list
remains the same until the user purposefully alters it by adding, removing, or
changing the order of its members.

Because the order of dimension members is consistent and known, the selection
of members can be relative. For example, the function call

| ag(sal es, 12, nonth)

compares the sales values of all months in the current status list against sales
from a year ago (that is, 12 time periods earlier in the default status list for the
nmont h dimension).

Presents data as fully solved. Applications do not need to define calculations.
Because of the combination of power and ease-of-use of the OLAP DML, the
analytic workspace can be prepared so that the data is presented as fully solved
to the application.

Manages calculated members and measures transparently. Users can define
their own dimension members (often called custom aggregates), which function
identically to the other dimension members and can be used transparently in
any calculation. Similarly, users can define their own measures and assign
values to them using any of the methods available in the OLAP DML.
Throughout the session, these additions behave identically to the dimension
members and objects originally provided in the workspace. Users can save their
changes from one session to the next with a single DML command.

Manipulating Multidimensional Data 2-3

Basic Categories of OLAP DML Commands

Basic Categories of OLAP DML Commands

Aggregation

Allocation

Following are descriptions of some of the basic categories of OLAP DML
commands and functions.

The OLAP DML supports a variety of aggregation methods including first, last,
average, weighted average, and sum. In a multidimensional data object, the
aggregation method can vary by dimension. Some of the data can be aggregated
and stored, while other data is aggregated at runtime. A technique called “skip
level” aggregation pre-aggregates every other level in a dimension hierarchy. The
DBA can choose whatever method seems appropriate: by level, individual member,
member attribute, time range, data value, or other criteria.

Allocations are a critical part of planning applications. Given a target for the
organization — whether for sales quota, product growth, salary, or equipment —
managers must allocate that target among its contributors. Some of the key features
of the allocation system are:

« Support for hierarchies so the data is distributed based on parentage.

« Support for arbitrary selections so that data is distributed among selected
members, regardless of parentage or in the absence of a hierarchy.

« Avariety of allocation methods, including:
« Copy methods (hierarchical copy, minimum, maximum, first, last)
« Evendistribution (even, hierarchical even)

« Proportional distribution (including weighted distributions and
user-defined multidimensional functions.

« Cell-level locking prevents certain cells from being overwritten by the
allocation. This feature is used when some values for the planning period are
known.

« Logging records how far an allocation has progressed and whether any errors
have occurred.

2-4 Oracle9i OLAP User’s Guide

Basic Categories of OLAP DML Commands

Data Selection

Data selection within the analytic workspace is persistent throughout a session,
which is a feature that supports the iterative nature of analytic queries. Users can
select data in multiple steps, with each step refining the previous query. The OLAP
DML provides data selection methods that are specifically designed for
multidimensional data, such as hierarchical relations, levels of aggregation,
attributes, time series functions, and data values.

Data Exchange

SQL statements can be embedded in the OLAP DML, which allows applications to
select data from SQL tables and write data back to them. This can be done at
runtime or as a data maintenance procedure. Access to SQL tables is controlled by
the privileges and roles granted to the user’s database ID.

The following embedded SQL statements define a cursor and fetch data from a
relational table named pr oduct s into a workspace dimension named pr od and a
measure named pr od_| abel .

SQL DECLARE hi ghprice CURSOR FOR SELECT prod_id, prod_name -
FROM product s WHERE suggested_price > :set_price

SQL OPEN hi ghprice

SQL FETCH hi ghprice LOOP I NTO : prod, :prod_| abel

File Reading and Writing

Data can be read from flat files or spreadsheets into multidimensional objects. This
is typically done as a data maintenance procedure. Access to external files is
controlled by BFILE security. DBAs can set up aliases for directories and control
which users and groups can use those aliases, as described in "Controlling Access to
External Files" on page 6-9. The security system does not allow users to access
directories without an alias.

The following program copies data from a file named uni t and storesitin a
dimensions named nont h and pr oduct i d and variables named pr oduct name
and uni t s. sol d. The DBA previously created a directory alias named nydat .

DEFI NE read. product PROGRAM

PROGRAM

VARI ABLE fi | NT "Define a local integer variable

fi = FILEOPEN(' nydat/unit’ READ) "Store a file handle in the variable

Manipulating Multidimensional Data 2-5

Basic Categories of OLAP DML Commands

FI LEREAD fi COLUW 1 WDTH 5 nonth -
COLUW 6 WDTH 6 productid -
COLUWN 12 WDTH 30 product name -
COLUWN 44 WDTH 22 units.sold

FI LECLCSE fi

END

The next example creates a file named cust om ei f as a private data store that
contains the data and definitions for a custom measure named nysal es. The user
can import mysal es during another session.

EXPORT mysales TO EIF FILE 'userdat/custom.eif’ DATA DFNS

Financial Operations

The financial functions include interest rate calculations, depreciation, and payment
schedules, similar to those provided in spreadsheets.

For example, the FPMIT'SCHED function calculates a payment schedule (principal
plus interest) for paying off a series of fixed-rate installment loans over a specified
number of time periods. The following call to FPMI'SCHED calculates 36 payments
based on the amounts listed in the | oans variable, at the interest rates listed in the
r at es variable, for the nont h dimension of these variables.

FPMTSCHED(loans, rates, 36, month)

Forecasts and Regressions

The OLAP DML offers the most sophisticated and up-to-date forecasting and
regression tools of Roadmap Geneva Forecasting, including simple linear
regressions, non-linear regression methods, single exponential smoothing, double
exponential smoothing, and the Holt-Winters method.

For example, the following FORECAST command uses the EXPONENTIAL method
to forecast sales for the next 12 months based on historical data stored in the sal es
measure. It stores the results of the calculation in a second measure named

fcst. sal es.

FORECAST LENGTH 12 METHOD EXPONENTIAL FCNAME fcst.sales TIME month sales

2-6 Oracle9i OLAP User’s Guide

Basic Categories of OLAP DML Commands

Models

A model is a set of interrelated equations. These are some of the modeling features
supported by the OLAP DML

= You can perform calculations for individual dimension members following
unique calculation rules.

« Oracle OLAP determines the order of the calculations, so you can list them in
any order without concern for dependencies.

« Oracle OLAP solves simultaneous equations.

You can assign results either to a variable or to a dimension member.
Dimension-based equations provide flexibility; since you do not need to specify the
modeling variable until you solve a model, you can run the same model with any
other measure with the same dimension. For example, you could run the same
model on budget and act ual , which both have al i ne dimension.

The following is an example of a modeling program.

‘cost of goods’ = "raw materials'+labor+'fixed overhead’

‘fixed overhead’ = 'capital equipment'+'building costs’

‘building costs’ = building depreciation’+electric+heat+maintenance
'labor’ = salary+benefits

‘capital equipment’ = 'equipment maintenance’+'equipment depreciation’

Numeric Computations

Functions are available to perform a wide variety of computations (such as sine,
cosine, square root, minimum, and maximum) and data type conversions.

For example, the CEIl L function returns the smallest whole number greater than or
equal to a specified number. The function call

CEIL(-6.457)

returns a value of - 6.

Manipulating Multidimensional Data 2-7

Methods of Executing OLAP DML Commands

Statistical Operations

Statistical operations include standard deviation, rank, and correlation. For
example, the STDDEV function calculates the standard deviation. The function call

STDDEV(units nont h)

returns the standard deviation of values in the uni t s measure for all months that
are currently selected.

Text Manipulation

The OLAP DML provides support for manipulating both single- and multibyte
character sets, with functions for concatenating strings, locating a string within a
larger body of text, inserting a string, and so forth.

For example, the EXTCHARS function extracts a portion of text. The function call

EXTCHARS(’ | ast name, firstnanme’, 1,8)

extracts the first 8 characters, which contains the characters

| ast name

Time Series Manipulation

The time series functions perform operations such as lead, lag, and moving average.
For example, the MOVI NGTOTAL function calculates a series of totals over time. The
following example returns a 3-month total on the sal es measure for all currently
selected months.

MVI NGTOTAL(sal es, -2, 0, 1, nonth)

Methods of Executing OLAP DML Commands

The OLAP DML can be used when you want to perform calculations that are not
easily accomplished in the ETL process or using SQL (either directly or using the
OLAP API). The results can be calculated as part of the data warehouse build and
update process, and can optionally be written to SQL tables. Alternatively,
applications developers can create OLAP DML programs using the OLAP
Worksheet and execute them by embedding OLAP DML in their SQL- or Java-based
applications.

2-8 Oracle9i OLAP User’s Guide

Methods of Executing OLAP DML Commands

OLAP Worksheet: The OLAP DML Development Tool

OLAP Worksheet is an interactive command line interface to Oracle that you can
use to perform the following tasks:

Connect to an analytic workspace
Execute OLAP DML commands
Execute SQL statements

Create and populate data objects

Create, modify, compile, and execute OLAP DML programs

OLAP Worksheet has a command input window and a program edit window.

Once you have opened OLAP Worksheet, you can use its menus to establish a
connection to Oracle, open a workspace, execute OLAP DML commands, execute
SQL statements, or write OLAP DML programs, save any changes, and close the
connection.

Embedding OLAP DML Commands in Programs

Applications developers can embed OLAP DML in their SQL- or Java-based
applications:

In SQL programs, you can embed OLAP DML commands using the procedures
in the DBMS_AWpackage.

In Java programs, you can embed OLAP DML commands using the
SPLExecut or class in the OLAP API.

See Also:

« Oracle9i OLAP Developer’s Guide to the OLAP DML for further
information about the OLAP DML and the OLAP Worksheet

« OLAP API Javadoc for a description of the SPLExecut or class.

« Chapter 10, "DBMS_AW" for descriptions of the procedures in
the DBMS_AW package.

Manipulating Multidimensional Data 2-9

Methods of Executing OLAP DML Commands

2-10 Oracle9i OLAP User’s Guide

3

Developing OLAP Applications

This chapter presents the rich development environment and the powerful tools
that you can use to create OLAP applications. It includes the following topics:

« Building SQL-Based OLAP Applications
= Building Analytical Java Applications

= Introducing the Bl Beans

« Understanding the OLAP API

Developing OLAP Applications 3-1

Building SQL-Based OLAP Applications

Building SQL-Based OLAP Applications

SQL-based applications can access multidimensional data, which is stored in
analytic workspaces. Two mechanisms in the database’s object technology make
this possible:

Object types (also called abstract data types or ADT) are the basis for
object-oriented programming in PL/SQL. An object type encapsulates a data
structure along with the functions and procedures needed to manipulate the
data. When you define an object type using the CREATE TYPE statement, you
create an abstract template that corresponds to a real-world object.

In OLAP, these “real-world objects” are measures, dimensions, hierarchies,
attributes, and so forth. By defining object types for the objects in an analytic
workspace, you can describe the format of multidimensional data to SQL as
rows and columns.

Table functions produce a collection of rows that can be queried like a physical
database table. You use a table function instead of the name of a database table,
in the FROMclause of a query. A table function can take a collection of rows as
input.

You can use table functions to fetch data from objects in an analytic workspace.
The table functions require arguments that are passed to the OLAP engine,
which selects, manipulates, and returns the data. By incorporating table
functions into your application, you have the most power and flexibility in
selecting and manipulating data in the analytic workspace.

If you overlay the table functions with relational views, then you can make the table
functions (and thus the source of the data) transparent to SQL-based applications.
Your applications can use standard SQL to run against these views of
multidimensional data, the same way that they access other relational tables and
views in the database.

See Also: PL/SQL User’s Guide and Reference for detailed
information about object types and table functions.

Figure 3-1 shows how a SQL application can access multidimensional data (using
table functions and views) as well as relational data.

3-2 Oracle9i OLAP User’s Guide

Building SQL-Based OLAP Applications

Figure 3-1 Components of a SQL-Based Analytical Application

SQL Applications

sQL]

Relational Relational
Views Tables

SQL
Table Function
Object Type
SQL
OLAP . Analytic
Calculation Workspace
Engine OLAP DML Objects

Methods of Accessing Multidimensional Data From SQL

There are several ways that SQL can access the multidimensional data of an analytic
workspace. An abstract data type and the table functions underlie all of them. The
method that you choose depends on how you want to use the data.

« Usethe CWW2_COLAP_AW ACCESS PL/SQL package to define a star schema of
dimension views and fact views, which represent the measures, dimensions,
hierarchies, and attributes in the analytic workspace. You can then query these
views using standard SQL SELECT statements. (This package is part of CWM2
because it is also used to make workspace objects accessible to the OLAP
catalog metadata.)

If you are using the CNV_CWM TO. ECMOLAP DML program to create an
analytic workspace, you can also use it to generate relational views of your

Developing OLAP Applications 3-3

Building Analytical Java Applications

workspace data. The CNV_CWM TO. ECMprogram employs the
CWW2_OLAP_AW ACCESS package for this stage.

= Write object type definitions and then make relational queries and views of the
analytic workspace data by using the OLAP_TABLE function in SQL SELECT
statements. This method is more complex than using the
CWW2_OLAP_AW ACCESS package (which is a wrapper to this technology), but
it provides more flexibility and power in an application than using predefined
views.

See Also:

« Chapter 9, "Creating an Analytic Workspace From Relational
Tables"

« Chapter 10, "DBMS_AW"
» Chapter 15, "CWM2_OLAP_AW_ACCESS"

Embedding OLAP DML Commands in SQL

Using the procedures and functions in the DBMS_AWpackage, SQL programmers
can issue OLAP DML commands directly against analytic workspace data. They
can move data from relational tables into an analytic workspace, perform advanced
analysis of the data (for example, forecasting), and copy data from the analytic
workspace back into relational tables.

While the data is in the analytic workspace, SQL programmers can also issue
SELECT statements against the data in the analytic workspace using the
OLAP_TABLE function.

See Also: Chapter 10, "DBMS_AW"

Building Analytical Java Applications

Java is the language of the Internet. Using Java, an application developer can write a
standalone application or an applet, which is a program that can be included in an
HTML page and executed in a browser.

About Java

Java is the preferred programming language for an ever-increasing number of
professional software developers. For those who have been programming in C or
C++, the move to Java is easy because it provides a familiar environment while

3-4 Oracle9i OLAP User’s Guide

Building Analytical Java Applications

avoiding many of the shortcomings of the C language. Developed by Sun
Microsystems, Java is fast superseding C++ and Visual Basic as the language of
choice for application developers for the following reasons:

« Object oriented. Java allows application developers to focus on the data and
methods of manipulating that data, rather than on abstract procedures; the
programmer defines the desired object rather than the steps needed to create
that object. Almost everything in Java is defined as an object.

« Platform independent. The Java compiler creates byte code that is interpreted at
runtime by the Java Virtual Machine (JVM). As the result, the same software can
run on all Windows, Unix, and Macintosh platforms where the JVM has been
installed. All major browsers have the JVM built in.

= Network based. Java was designed to work over a network, which allows Java
programs to handle remote resources as easily as local resources.

« Secure. Java code is either trusted or untrusted, and access to system resources
is determined by this characteristic. Local code is trusted to have full access to
system resources, but downloaded remote code (that is, an applet) is not
trusted.

The Java “sandbox” security model provides a very restricted environment for
untrusted code. For example, untrusted Java code cannot read to or write from
files on the local file system, run programs, load libraries, define native method
calls, or make network connections except to the originating host computer. A
security manager determines the system resources that an applet can access.
However, a signed applet, which identifies itself as being from a trusted source,
has full access to system resources the same as local code.

Deploying Java Applications

With the rise in Internet technology, more and more businesses are recognizing the
savings they can accrue just by changing the way they deploy their applications.

Traditional thick client applications implement many of their functions on the
user’s computer, thus requiring a large proportion of installed code. However, the
days are gone when a team of technicians are required to install and maintain
applications software on hundreds or thousands of individual desktop computers
for a large user base. Instead, Java thick-client applications download the needed
software to client computers automatically at run-time.

Alternatively, system administrators can deploy thin client applications that do not
download any Java to client computers. These applications run on servers that users
world wide can access using Java clients such as their Web browsers. By deploying

Developing OLAP Applications 3-5

Building Analytical Java Applications

thin client business intelligence applications on the Internet, businesses can
distribute information both within their enterprise and externally to suppliers and
customers.

Regardless of whether you choose a thick-client or a thin-client configuration, Java
applications provide an immediate solution to the problems inherent in supporting
large user communities, which typically are equipped with a variety of
incompatible hardware and software platforms.

The Java Solution for OLAP

To develop an OLAP application, you can use the Java programming language. Java
enables you to write applications that are platform-independent and easily
deployed over the Internet.

The OLAP API is a Java-based application programming interface that provides
access to multidimensional data for analytical business applications. The OLAP API
fetches data stored in a data warehouse into the OLAP multidimensional data cache
for manipulation by its analytical engine. Java classes in the OLAP API provide all
of the functions required of an OLAP application: Connection to an OLAP instance;
authentication of user credentials; access to data in the RDBMS controlled by the
permissions granted to those credentials; and selection and manipulation of that
data for business analysis.

The BI Beans simplify application development by providing these functions as
JavaBeans. Moreover, the Bl Beans include JavaBeans for presenting the data in
graphs, crosstabs, and tables.

Note: Oracle JDeveloper and the Bl Beans are applications and are
not packaged with the Oracle RDBMS.

Oracle Java Development Environment

Oracle JDeveloper provides an integrated development environment (IDE) for
developing Java applications. Although third-party Java IDEs can also be used
effectively, only JDeveloper achieves full integration with the Oracle database and
Bl Beans wizards. The following are a few JDeveloper features:

= Remote graphical debugger with break points, watches, and an inspector.
= Multiple document interface (MDI)

= Codecoach feature that helps you to optimize your code

3-6 Oracle9/ OLAP User’s Guide

Introducing the Bl Beans

Generation of 100% Pure Java applications, applets, servlets, Java beans, and so
forth with no proprietary code or markers

Oracle database browser

For more information about the Java programming language, browse the Sun
Microsystems Java Web site at ht t p: / / j ava. sun. com For information about
JDeveloper, search the Oracle Web site at ht t p: / / www. or acl e. com

Note: Oracle JDeveloper is an application and is not packaged
with the Oracle RDBMS.

Introducing the Bl Beans

The BI Beans provide reusable components that are the basic building blocks for
OLAP decision support applications. Using the Bl Beans, developers can rapidly
develop and deploy new applications, because these large functional units have
already been developed and tested — not only for their robustness, but also for
their ease of use. And because the Bl Beans provide a common look and feel to
OLAP applications, the learning curve for end users is greatly reduced.

Two groups of Bl Beans are currently available:

Presentation Beans display the data in a rich variety of formats so that trends
and variations can easily be detected. Among the Presentation Bl Beans
currently available are Graph, Table, and Crosstabs.

The Presentation Beans can be implemented as a thick client or a thin client.
Thick clients best support users who do immersed analyses, that is, use the
system for extensive periods of time with a lot of interaction. For example, users
who create reports benefit from a thick client. Thin clients best support remote
users who use a low bandwidth connection and have basic analytical needs.
Thin clients can be embedded in a portal or other Web site for these users.

OLAP BI Beans acquire and manipulate the data. The OLAP Bl Beans use the
OLAP API to connect to a data source, define a query, manipulate the resultant
data set, and return the results to the Presentation Bl Beans for display.

You can use the Bl Beans in either thick-client or thin-client applications.

See Also: For more information about the Bl Beans, go to the
Oracle Web site at ht t p: / / www. or acl e. com

Developing OLAP Applications 3-7

Introducing the Bl Beans

Thick-Client Configuration

The components of an OLAP thick-client application are grouped into three tiers,
which can be on separate platforms or the same platform:

« Javaclient tier. A Java application can run either in a browser or directly in the
Java Runtime Environment (JRE). The Bl Beans that are dedicated to presenting
the data and metadata also run on this tier.

« Application server tier. The “brains” of the application run on this tier, which
includes the OLAP API and the OLAP BI Beans that are built using the OLAP
API.

« Data server tier. The Oracle RDBMS and OLAP service form the data server tier,
where the data is stored, selected, and manipulated. An OLAP APl component
also runs on the data server tier.

Figure 3-2 shows these relationships in a thick-client configuration.

3-8 Oracle9i OLAP User’s Guide

Introducing the Bl Beans

Figure 3-2 Thick Client Configuration

Java Client Tier

Applications

JRE * Browser
Presentation Beans

Application Server Tier

Bl Beans

OLAP API

Data Server Tier

Metadata

N-Pass
OLAP functions

Thin-Client Configuration

Oracle RDBMS

OLAP API

Metadata Provider

Oracle OLAP

Calculation
Engine

Analytic
Workspace

>

The components of an OLAP thin-client application are grouped into two tiers,
which can be on separate platforms or the same platform:

= Application server tier. The “brains” of the application run on this tier, which
includes a Web server, the OLAP API and the OLAP BI Beans (both

presentation and analytical).

« Data server tier. The Oracle RDBMS is the data server tier, where the data is
stored, selected, and manipulated either in relational tables or in the OLAP
analytic workspace. An OLAP APl component also runs on the data server tier.

Figure 3-3 shows these relationships in a thin-client configuration.

Developing OLAP Applications 3-9

Introducing the Bl Beans

Figure 3-3 Thin-Client Configuration

Application Server Tier

Application Server

i

Bl Beans

!

OLAP API

A

Data Server Tier

v

Oracle @

OLAP API

Metadata Provider

Metadata
Oracle OLAP
Calculation
Engine
N-Pass Analytic
OLAP functions Workspace

>

The OLAP API and the Bl Beans use the OLAP catalog to provide the information
they need about multidimensional objects defined in an Oracle data warehouse,
such as measures and dimensions. For information about metadata and other
requirements, refer to Chapter 4, "Designing Your Database for OLAP".

Metadata

Runtime Repository

The Bl Beans employ a runtime repository in the Oracle database that allows users
to save their personal analyses and to share their discoveries with other users.

3-10 Oracle9i OLAP User’s Guide

Introducing the Bl Beans

Navigation

Formatting

Graphs

The Presentation Bl Beans support navigation techniques such as drilling, pivoting,
and paging.

Drilling displays lower-level values that contribute to a higher-level aggregate,
such as the cities that contribute to a state total.

Pivoting rotates the data cube so that the dimension members that appeared
along the X-axis of a graph now appear along the Y-axis, or the dimension
members that labeled columns in a crosstab now label rows instead. For
example, if products label the rows and regions label the columns, then you can
pivot the data cube so that products label the columns and regions label the
rows.

Paging handles additional dimensions by showing each member in a separate
graph, crosstab, or table rather than nesting them in the columns or rows. For
example, you might want to see each time period in a separate graph rather
than all time periods on the same graph.

The Presentation Bl Beans allow you to change the appearance of a particular
display. In addition, the values of the data itself can affect the format.

Number formatting. Numerical displays can be modified by changing their
scale, number of decimal digits and leading zeros, currency symbol, negative
notation, and so forth. Currency symbols and scaling factors can be displayed in
the column or row headers rather than in the cells.

Stoplight formatting. The formatting of the cell background color, border, font,
and so forth can be data driven so that outstanding or problematic results stand
out visually from the other data values.

Ranking. In ranking reports, the numerical rank of each dimension value, based
on the value of the measure, is displayed.

The Graph bean presents data in a large selection of two- and three-dimensional
business chart types, such as bar, area, line, pie, ring, scatter, bubble, pyramid, and
stock market. Many of the 2D graphs can be displayed as clustered, stacked, dual-Y,
percentage, horizontal, vertical, or 3D effect.

Developing OLAP Applications 3-11

Introducing the Bl Beans

Crosstabs

Tables

Bar, line, and area graphs can be combined so that individual rows in the data cube
can be specified as one of these graph types. You can also assign marker shape and
type, data line type, color, and width, and fill colors on a row-by-row basis.

The graph image can be copied to the system clipboard and exported in GIF and
other image formats.

Users can zoom in and out of selected areas of a graph. They can also scroll across
the axes.

The Crosstab bean presents data in a two-dimensional grid similar to a spreadsheet.
Multiple dimensions can be nested along the rows or columns, and additional
dimensions can appear as separate pages. Among the available customizations are:
Font style, size, color and underlining; individual cell background colors; border
formats; and text alignment.

Users can navigate through the data using either a mouse or the keyboard. They can
insert rows and columns to display totals, and edit cells for what-if analysis.

The Table bean presents data in record format like a relational table or view. In
contrast to the crosstab, the table display handles measures individually rather than
as members of a measure dimension. Thus, each measure can be manipulated
individually.

OLAP Bl Beans

Wizards

The OLAP BI Beans use the OLAP API to provide the basic services needed by an
application. They enable clients to identify a database, present credentials for
accessing that database, and make a connection. The application can then access the
metadata and identify the available data. Users can select the measures they want to
see and the specific slice of data that is of interest to them. That data can then be
modified and manipulated.

The BI Beans offer wizards that can be used both by application developers in
creating an initial environment and by end users in customizing applications to suit
their particular needs. The wizards lead you step-by-step so that you provide all of

3-12 Oracle9i OLAP User’s Guide

Understanding the OLAP API

the information needed by an application. The following are some of the tasks that
can be done using wizards.

« Building a query. Fact tables and materialized views often contain much more
data than users are interested in viewing. Fetching vast quantities of data can
also degrade performance unnecessarily. In addition to selecting measures, you
can limit the amount of data fetched in a query by selecting dimension
members from a list or using a set of conditions. A selection can be saved and
used again just by picking its name from a list.

The Bl Beans take advantage of all of the new OLAP functions in the database,
including ranking, lag, lead, and windowing. End users can create powerful
queries that ask sophisticated analytical questions, without knowing SQL at all.

« Generating custom measures. You can define new “custom” measures whose
values are calculated from data stored within the database. For example, a user
might create a custom measure that shows the percent of change in sales from a
year ago. The data in the custom measure would be calculated using the lag
method on data in the Sales measure. Because a DBA cannot anticipate and
create all of the calculations required by all users, the Bl Beans enable users to
create their own.

Understanding the OLAP API

OLAP applications typically have object-oriented user interfaces where users
manipulate objects that represent organized groupings of their data. Thus, there is a
natural relationship between an object-oriented user interface and an
object-oriented API such as the Oracle OLAP API. The OLAP API exploits this
natural relationship by providing objects that match the end-user behavior that an
application needs.

Object-oriented languages such as Java manipulate data by applying methods on
objects. This approach enables the objects to maintain a current state and support
incremental modifications to that state. This approach provides excellent support
for common OLAP actions such as drill and rotate.

For example, a central activity for users of OLAP applications is refining queries. A
user has a question in mind and devises a query to answer that question. In most
cases, the initial results of the query prompt the user to want to dig deeper for a
solution, perhaps by drilling to see more detailed data or by rotating the report to
highlight correlations in the data. The OLAP API is able to use the result of one
query as the input to the next query.

Developing OLAP Applications 3-13

Understanding the OLAP API

How the OLAP API Accesses Multidimensional Data

The OLAP API accesses the data through the OLAP catalog, that is, the relational
tables that contain OLAP metadata. The application does not need to be aware of
whether the data is located in relational tables or in an analytic workspace, nor does
it need to know the mechanism for accessing that data.

Oracle OLAP translates all queries from the OLAP API into SQL; when a query is
issued through the OLAP API, the SQL generator in Oracle OLAP issues a SELECT
statement against a relational table or view. This has several advantages for
application developers:

« The difficult task of writing the complex SQL needed to resolve
multidimensional queries, and even more difficult task of optimizing that
complex SQL, is left for Oracle OLAP to do. Application developers can be
more productive writing in the OLAP API, which is designed for OLAP.

« Updates to SQL and the OLAP DML will be incorporated into new versions of
the OLAP API. Applications can make use of new analytic and performance
features without recoding.

Figure 3-4 shows how a query in the OLAP API that uses data from both a
multidimensional workspace object and a relational table is resolved.

3-14 Oracle9i OLAP User’s Guide

Understanding the OLAP API

Figure 3—-4 Accessing Relational and Multidimensional Data Using the OLAP API

Java OLAP Applications

OLAP API

OLAP SQL Generator

OLAP Catalog

SQL

Relational Relational
Views Tables

SQL

Table Function

Object Type

SQL

OLAP Analytic

Calculation Workspace
Engme OLAP DML Objects

As an alternative access method, the OLAP API provides a way for a Java
application to directly manipulate workspace data, without the need for any
metadata and without the use of the OLAP API data manipulation classes. The Java
application uses the SPLExecut or class in the OLAP API to send DML commands
directly to Oracle OLAP for execution in the workspace.

Whichever access method is used, the application establishes a connection, opens
the workspace, accesses the data (either through MDM metadata or through
SPLExecut or), closes the workspace, and closes the connection.

Developing OLAP Applications 3-15

Understanding the OLAP API

See Also:
« Oracle9i OLAP Developer’s Guide to the OLAP API
« OLAP API Javadoc

Intelligent Caching

Analytical queries are by nature iterative. An analyst formulates a query, sees the
results, and then formulates other queries based on those results. Since the
likelihood is very high in business analysis of needing the same data to answer
subsequent queries, the OLAP API caches the metadata so that it is available
throughout the session without fetching it again. Moreover, the OLAP API defines
the result set of a query geometrically. Using multidimensional cursors, the OLAP
API can randomly access disparate regions of the result set. This allows an
application to retrieve just the data currently of interest instead of all of the data in
the result set. For example, you might scroll to the end of a page without having to
fetch all of the data on the page.

To acquire data from a data warehouse, the OLAP API generates SQL statements.
Data fetches use many of the newest innovations in Oracle9i, including
concatenated rollup, scrollable cursors, and query rewrite.

Calculation Capabilities

The OLAP API generates SQL commands to select and manipulate data stored in
the relational tables. These SQL commands can include the “N-pass” functions,
such as RANK, PERCENTI LE, TOPN, BOTTOWN, LAG LEAD, SUM AVG M N, MAX,
COUNT, and STDDEV.

The OLAP API provides expanded calculation capabilities beyond those that can be
handled efficiently in other OLAP solutions, such as:

« Totals broken out by multiple attributes

= Suppression of NA and zero rows, columns, and pages

« Row and column calculations

« Union dimensions

« Measures as dimensions

« Inter-row calculations such as the following book-to-bill ratio:

Bal ance(Account "BOOKED', Period "PRIOR')/ Bal ance(Account
"Bl LLED', Period "LAST")

3-16 Oracle9/ OLAP User’s Guide

Understanding the OLAP API

« Asymmetric queries

The OLAP engine performs additional calculations, such as:
« Modeling

« Forecasting

« What-if scenarios

These types of analysis can be performed on data in the analytic workspace.

See Also:
« Oracle9i OLAP Developer’s Guide to the OLAP API
« Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 3-1 Selecting Values

This OLAP API code fragment demonstrates the selection of dimension values
based on the data values of a measure. The Sales measure has four dimensions. The
Geography, Channel, and Time dimensions are limited to one member each, then
Product members are selected with Sales values greater than 20,000,000.

Sour ce geographySel = geography. sel ect Val ue("BOSTON') ;
Source channel Sel = channel . sel ect Val ue(" TOTALCHANNEL") ;
Source timeSel = tine.selectValue("1996");
Source prodSel = product. sel ect (sal esSel . gt (20000000));
Source result = sales.join(geographySel).

join(channel Sel).join(tinmeSel).join(prodSel);

Developing OLAP Applications 3-17

Understanding the OLAP API

3-18 Oracle9/ OLAP User’s Guide

A

Designing Your Database for OLAP

This chapter highlights some of the most important data warehousing concepts as
they pertain to Oracle OLAP. It contains additional information that is specific to a
data warehouse that will support applications that use OLAP Catalog metadata,
such as the OLAP API and the Bl Beans.

This chapter includes the following topics:

« Overview

« Preparing a Database for the OLAP API

= Types of Data Stored in a Data Warehouse

« Data Structures in Relational and Multidimensional Data Stores
« OLAP Metadata Model

Designing Your Database for OLAP 4-1

Overview

Overview

This chapter provides concepts and background to help you start the process of
enabling your data warehouse for access by Oracle OLAP client applications. The
OLAP API has special requirements that are discussed in this chapter. If you are
developing a SQL application, you may still benefit from the discussion of OLAP
concepts. Moreover, SQL applications can also be implemented to use OLAP
Catalog metadata, like the OLAP API.

This chapter presumes that the relational data stores in your warehouse have
already been generated. For this purpose, you may have used Oracle Warehouse
Builder or some other Extraction Transformation Transport (ETT) tool. This chapter
does not provide sufficient information for you to build a relational data warehouse
of your own, or even to fully understand the issues involved in creating and
maintaining the relational structures for storing warehouse data.

See Also: Oracle9i Data Warehousing Guide for a detailed
discussion of data warehousing concepts as they apply to storage in
relational tables and data manipulation in SQL.

Preparing a Database for the OLAP API

Oracle provides specialized facilities for the development and deployment of
Java-based OLARP clients: the OLAP API and the Bl Beans (Business Intelligence
Beans). The OLAP API directly queries the data warehouse. The Bl Beans may be
used as a layer between the end user and the OLAP API.

The OLAP API requires the presence of OLAP catalog metadata in the database.
You will need to take these steps to prepare your data warehouse for the Oracle
OLAP API:

1. Design and implement the relational and/or multidimensional data stores to be
used by analytical applications.

2. Create the OLAP catalog metadata.
3. Create the special materialized views that are used by the Oracle OLAP API.

The information that you need to perform these steps is introduced in this chapter.

4-2 Oracle9/ OLAP User’s Guide

Types of Data Stored in a Data Warehouse

See Also:

« Chapter 5, "Creating OLAP Catalog Metadata" provides
detailed information about the tools and APIs you can use to
enable various warehouse configurations for OLAP access.

« The syntax of the PL/SQL APIs that create and display OLAP
catalog metadata are documented in Part IV, "OLAP Catalog
Metadata API Reference".

Types of Data Stored in a Data Warehouse

The term data warehouse is used to distinguish a database that is used for business
analysis (OLAP) rather than transaction processing (OLTP). While an OLTP
database contains current low-level data and is typically optimized for the selection
and retrieval of records, a data warehouse typically contains aggregated historical
data and is optimized for particular types of analyses, depending upon the client
applications.

The contents of your data warehouse depends on the requirements of your users.
They should be able to tell you what type of data they want to view and at what
levels of aggregation they want to be able to view it.

Your data warehouse will store these types of data:
« Historical data

« Derived data

«» Metadata

These types of data are discussed individually.

Historical Data

A data warehouse typically contains several years of historical data. The amount of
data that you decide to make available depends on available disk space and the
types of analysis that you want to support. This data can come from your
transactional database archives or other sources.

Some applications might perform analyses that require data at lower levels than
users typically view it. You will need to check with the application builder or the
application’s documentation for those types of data requirements.

Designing Your Database for OLAP 4-3

Data Structures in Relational and Multidimensional Data Stores

Derived Data

Metadata

Derived data is generated from existing data using a mathematical operation or a
data transformation. It can be created as part of a database maintenance operation
or generated at run-time in response to a query.

Metadata is data that describes the data and schema objects, and is used by
applications to fetch and compute the data correctly.

OLAP catalog metadata is designed specifically for use with Oracle OLAP. It is
required by the Java-based Oracle OLAP API, and can also be used by SQL-based
applications to query the database.

Data Structures in Relational and Multidimensional Data Stores

Oracle offers both relational and multidimensional storage within a single database.
Historical and derived data can be stored either in relational tables or in
multidimensional objects.

Relational Table Storage

The lowest level of historical data, as well as fully aggregated historical data, can be
stored in fact tables in your data warehouse. The lowest level in a data warehouse
is typically at a much higher level than in the transactional database. The
transactional data should be aggregated to a base level where patterns and trends
can emerge and analysis is meaningful, before being stored in the data warehouse.
For example, individual purchase orders might be aggregated by sales
representative, zip code, or some other demographic feature.

Dimension tables, also called lookup tables, are used to store the dimension
members that determine the aggregation criteria for fact data. Dimension members
are typically organized in levels that roll up within hierarchies.

The Oracle RDBMS provides materialized views for storing precomputed data
derived from fact tables. Materialized views significantly improve querying times
because the aggregates are computed and stored as a database administration task
for everyone’s use, that is, when the data is refreshed rather than each time the
aggregates are needed.

4-4 Oracle9/ OLAP User’s Guide

Data Structures in Relational and Multidimensional Data Stores

Multidimensional Table Storage

As an alternative to relational table storage, data can be stored in multidimensional
objects in analytic workspaces. Analytic workspaces are multidimensional
structures that are designed specifically to support analytic processing. The
equivalent of a relational table in an analytic workspace is a variable. You can think
of variables as multidimensional tables. The historical and derived data in a data
warehouse can be distributed between relational tables and workspace variables.
Keep in mind that there is no need to duplicate data; it can be stored in tables or
variables, but it does not need to be stored in both.

You can use the sophisticated analysis tools of the OLAP DML to generate new data
such as forecasts. You have the option of copying this data into relational tables or
keeping it exclusively in the analytic workspace. Analytic workspaces are also an
alternative to materialized views for generating and storing aggregate data.

See Also: "Choosing a Schema for Your Data" on page 4-7 for a
discussion of the merits of these storage alternatives.

Temporary and Persistent Analytic Workspaces

Data can be loaded into analytic workspaces from SQL tables or from flat files. The
analytic workspaces can be either temporary or persistent, depending on your
needs. If an analytic workspace is needed only to perform a specific calculation and
the results of the calculation does not need to persist in the workspace, the
workspace can be discarded at the end of the session. This might occur if, for
example, an application needs to forecast a small amount of sales data. Since the
forecast can be rerun at any time, there might not be any point in saving the results.

Analytic workspaces can also persist across sessions. You might want to save data
in an analytic workspace if you have calculated a significant amount of data (for
example, a large forecast or the results of solving a model), or if you have
aggregated data using non-additive aggregation methods.

Data in analytic workspaces can be shared by many different users. To share data in
an analytic workspace, the workspace must be saved in the database during the
period of time it is to be shared.

See Also: Oracle9i OLAP Developer’s Guide to the OLAP DML for
detailed instructions on how to create and populate an analytic
workspace, and how to manipulate data stored in it.

Designing Your Database for OLAP 4-5

Data Structures in Relational and Multidimensional Data Stores

About Star, Snowflake, Parent/Child, and Multidimensional Schemas

A schema is a collection of database objects. The following types of schemas are
characteristic of a relational data warehouse:

= Star schema. Consists of one or more fact tables related to one or more
dimension tables. The relationships are defined through foreign keys, metadata,
or both.

= Snowflake schema. A star schema that has been partially or fully normalized to
reduce the number of duplicate values in the dimension tables. However,
snowflake schema require more joins, which can slow performance.

For example, a star schema might have a single geogr aphy dimension table with
four columns: ci ty, st at e, regi on,and count ry. Only the ci t y column has
predominately unique values, while the other columns have increasing numbers of
duplicate values.

A snowflake schema might have three related geogr aphy dimension tables: One
table with two columns (ci t y and st at e) that define the relationship between
cities and states, a second table with two columns (st at e and count r y) that
define the relationship between states and countries, and a third table with two
columns (st at e and count r y) that define the relationship between states and
countries.

Star and snowflake schemas use level-based dimensions. Their hierarchies are
defined by the relationship between levels., and their levels map to columns in
dimension tables. Alternatively, a data warehouse schema may use parent/child
dimensions. In this type of schema, dimension members map to a parent column
and a child column. The parent/child combination in a given row expresses a
hierarchical relationship.

Your relational tables can be organized in either a level-based schema (star or
snowflake) or a parent/child schema.

With Oracle OLAP, your data warehouse storage options are extended to include:

« Multidimensional schema. You can think of analytic workspaces as
multidimensional schema, since a workspace stores a collection of related
objects.

With analytic workspace data, the data warehouse can support multidimensional
and hybrid solutions in addition to pure relational storage models. Thus, an Oracle
OLAP schema can contain multidimensional analytic workspace objects in addition
to fact tables and dimension tables.

4-6 Oracle9/ OLAP User’s Guide

Data Structures in Relational and Multidimensional Data Stores

Choosing a Schema for Your Data

The types of analyses performed by the OLAP applications that your data
warehouse will support determine the best choice of a data repository. You must
examine the benefits of each storage method in light of these applications and
decide which one most closely matches their requirements. You can choose to store
the data for your business analysis applications from these alternatives:

Entirely in a relational schema. During user sessions, SQL commands are used
to select and manipulate the data in the relational database.

Fact tables are the preferred data repository for most query and reporting
applications that require read-only access to the data. For these applications, the
relational database offers scalability in supporting very large data sets
efficiently and manageability with a single set of administrative tools.

Entirely in a multidimensional schema. As a routine maintenance task, data is
loaded into dimensions and variables in the analytic workspace from one or
more sources (including relational tables and flat files). During user sessions,
data is selected and manipulated in the analytic workspace.

Analytic workspaces should be used as a persistent data store for applications
that support predictive analysis functions, such as models, forecasts, and
what-if scenarios. Other design choices — such as the types of hierarchies, the
use of non-additive aggregation methods, or storage issues concerning
aggregate data — may make workspace objects the preferred data repository.

Distributed between a relational schema and a multidimensional schema.
The implementation of this model can, of course, vary widely since it
encompasses any scheme that draws on the other two methods. A distributed
solution may be desirable when an application requires the advanced
calculation capabilities of the analytic workspace combined with the efficient
storage of standard relational tables.

As explained in "How the OLAP API Accesses Multidimensional Data" on

page 3-14, the storage location of data is transparent to applications that use OLAP
metadata to identify data objects. Thus, database administrators can fine-tune the
database by moving data between relational tables and analytic workspaces
without breaking existing Java applications that use the OLAP API.

Designing Your Database for OLAP 4-7

OLAP Metadata Model

OLAP Metadata Model

The basic data model in a relational database is a table composed of one or more
columns of data. All of the data is stored in columns. In contrast, the basic data
model for multidimensional analysis is a cube, which is composed of Measures,
Dimensions, and Attributes.

Within the OLAP catalog, you identify whether the data will function as a measure,
a dimension, or an attribute. Once these decisions are stored in the OLAP catalog
metadata, the OLAP API can access warehouse data without regard to its
underlying storage format. Whether the data is stored in relational tables, analytic
workspaces, or some combination of relational and multidimensional schemas, the
OLAP catalog presents the same logical model to applications that use the OLAP
API.

Note: Itis also possible to register metadata in the OLAP catalog
to directly represent specific objects in analytic workspaces. Once
this metadata is created, the OLAP API can query the OLAP catalog
for information about data stored in multidimensional schemas. For
more information, refer to Chapter 5, "Creating OLAP Catalog
Metadata" and Chapter 25, "CWM2_OLAP_AW_OBJECT".

The OLAP catalog metadata informs applications about the data that is available
within the database. The application can then define multidimensional objects to
represent that data. When the application runs, it instantiates these objects and
populates them with data.

Before you can create metadata, you must know what data users want to view and
at what levels they want to view it. If you have already created a data warehouse,

then you have already done most of this research. You only need to verify that the
requirements haven’t changed for the analytical applications that will be run using
Oracle OLAP.

4-8 Oracle9/ OLAP User’s Guide

OLAP Metadata Model

Note: The OLAP API uses OLAP metadata. Even if you have
created other types of metadata to support other applications, you
must create OLAP metadata for applications written in the OLAP
API.

Keep in mind that the OLAP API only has access to objects in the
database through the metadata definitions. Thus, if an object (such
as a column in a table) has not been defined in the metadata, then it
is not available to the OLAP API.

Mapping Data Objects to Metadata Objects

Measures

The objects comprising a data warehouse and Oracle OLAP metadata use different
data structures. The data objects in your data warehouse are represented to the
OLAP metadata catalog in the following relational objects, regardless of whether
the data is actually stored in relational tables or workspace variables:

« Fact Tables or Views
« Level-based dimension Tables or Views

Oracle OLAP metadata catalog maps the data warehouse schema to these
multidimensional data objects:

« Measures

« Dimensions

« Dimension attributes
« Levels

« Level attributes

« Hierarchies

« Cubes

« Measure folders

Measures are the same as facts. The term “fact” is typically used in relational
databases, and the term “measure” is typically used in multidimensional
applications.

Designing Your Database for OLAP 4-9

OLAP Metadata Model

Dimensions

Measures are thus located in fact tables. A fact table has columns that store
measures (or facts) and foreign key columns that create the association with
dimension tables.

Measures contain the data that you wish to analyze, such as Sales or Cost. OLAP
catalog metadata requires that a column have a numerical or a date data type to be
identified as a measure. Most frequently, a measure is numerical and additive.

Note: The OLAP API supports native Java data types. It does not
support the following Oracle data types: BLOB, CLOB, NCLOB,
RAW, and LONG RAW. Do not create measures from facts with
these unsupported data types.

The OLAP DML supports CLOB and NCLOB data types. Search for
“SQL (FETCH)” in the Oracle9i OLAP DML Reference help for
additional information about supported data types.

Dimensions identify and categorize your data. Dimension members are stored in a
dimension table. Each column represents a particular level in a hierarchy. In a star
schema, the columns are all in the same table; in a snowflake schema, the columns
are in separate tables for each level.

Because measures are typically multidimensional, a single value in a measure must
be qualified by a member of each dimension to be meaningful. For example, the
uni t _cost measure has two dimensions: pr oduct s_di mandti nes_di m A
value of uni t _cost (21. 60) is only meaningful when it is qualified by a specific
product code (1575) and a time period (28- j an- 1998).

If you use Oracle Enterprise Manager to create OLAP metadata, then defining a
dimension in your data warehouse creates a database dimension object, in addition
to creating metadata. A dimension object contains the details of the parent-child
relationship between columns in a dimension table; it does not contain data.

Note: A dimension object is not created when you use the CWWR
PL/SQL procedures to create OLAP metadata.

The database dimension object is used by the Summary Advisor and query rewrite
to optimize your data warehouse.

4-10 Oracle9/ OLAP User’s Guide

OLAP Metadata Model

However, in the OLAP API, a dimension does contain data, such as the names of
individual products, geographic areas, and time periods. The OLAP API uses the
metadata, dimension objects, and dimension tables to construct its dimensions.

Time Dimensions

OLAP metadata considers time dimensions to be distinct from other dimensions.
When you specify a dimension in the OLAP metadata, you must identify whether it
is a time dimension. A time dimension has special attributes that support both
regular and irregular time periods.

Regular time periods, such as weeks, months, and years, are evident on standard
calendars. Typically, they neither overlap nor have gaps between them.

Irregular time periods, such as promotional schedules and seasonal time periods,
are not evident on standard calendars. They often overlap (even to the extent that
one time period is a subset of another time period) or have gaps between them.

The time dimension table should contain the following columns to provide full time
support:

= Values for all dimension members, with a column for each level of
summarization (such as weeks, quarters, and years).

« Anend-date attribute for each level, such as WEEK ENDDATE, QUARTER _
ENDDATE, and YEAR _ENDDATE. These columns must have a DATE data type.
Their values identify the last day in the time period.

« Atime-span attribute for each level, such as WEEK Tl MESPAN, QUARTER _
Tl MESPAN, and YEAR _TI MESPAN. These columns must have a NUMBER data
type. Their values identify the number of days in the period.

Note: The OLAP Management feature of Oracle Enterprise
Manager provides support for creating and populating time
dimension tables with these columns.

Designing Your Database for OLAP 4-11

OLAP Metadata Model

Example 4-1 Time Dimension in a Star Schema
The following table describes a dimension table in a star schema.

Column Name Sample Value Data Type Comment
VEEK_| D W12000 VARCHAR2 Level 1
WEEK_DESC Week Endi ng January VARCHAR2 Attribute

8, 2000
WEEK_ENDDATE 8- JAN- 00 DATE Attribute
VEEK_TI MESPAN 7 NUVBER Attribute
QUARTER | D 1QTR2000 VARCHAR?2 Level 2
QUARTER DESC 1st Quarter in Year VARCHAR2 Attribute
2000
QUARTER_ENDDATE 31- MAR- 00 DATE Attribute
QUARTER_TI MESPAN 91 NUVBER Attribute
YEAR I D YR2000 VARCHAR2 Level 3
YEAR DESC Year 2000 VARCHAR2 Attribute
YEAR_ENDDATE 31- DEC- 00 DATE Attribute
YEAR Tl MESPAN 366 NUMBER Attribute

Example 4-2 Time Dimension in a Snowflake Schema

The following tables describe dimension tables in a snowflake schema. The first
table defines weeks, which is the lowest level of time data.

Column Name Sample Value Data Type Comment
WEEK_I D WL2000 VARCHAR2 Level 1
WEEK_DESC Week Endi ng January VARCHAR2 Attribute

8, 2000
WEEK_ENDDATE 8- JAN- 00 DATE Attribute
WEEK_TI MESPAN 7 NUMBER Attribute

4-12 Oracle9/ OLAP User’s Guide

OLAP Metadata Model

A second table defines quarters.

Column Name Sample Value Data Type Comment
VEEK | D WL2000 VARCHAR2 Foreign key
QUARTER | D 1QTR2000 VARCHAR?2 Level 2
QUARTER _DESC 1st Quarter in Year VARCHAR2 Attribute

2000
QUARTER_ENDDATE 31- MAR- 00 DATE Attribute
QUARTER _TI MESPAN 91 NUMBER Attribute
A third table defines years.

Column Name Sample Value Data Type Comment
QUARTER_I D 1QTR2000 VARCHAR2 Foreign key
YEAR I D YR2000 VARCHAR2 Level 3
YEAR DESC Year 2000 VARCHAR2 Attribute
YEAR_ENDDATE 31- DEC- 00 DATE Attribute
YEAR Tl MESPAN 366 NUMBER Attribute

Hierarchical Dimensions

A hierarchy is a way to organize data according to levels. Dimensions are
structured hierarchically so that data at different levels of aggregation can be
manipulated together efficiently for analysis and display. Dimension hierarchies
enable users to recognize trends at one level of aggregation, drill down to lower
levels to identify reasons for these trends, and roll up to higher levels to see what
affect these trends have on a larger sector of the business.

Each level represents a position in the hierarchy. Levels group the data for
aggregation and are used internally for computation. Each level above the base (or
lowest) level represents the aggregate total of the levels below it. For example, a
t i me dimension might have day, week, quart er, and year for the levels of a

hierarchy. If data for the sal es measure is stored in days, then the higher levels of
the t i me dimension allow the sal es data to be aggregated correctly into weeks,
quarters, and years. Days roll up into weeks, weeks into quarters, and quarters into

years.

Designing Your Database for OLAP 4-13

OLAP Metadata Model

Attributes

Cubes

The members of a hierarchy at different levels have a one-to-many parent-child
relationship. For example, qt r 1 and gt r 2 are the children of yr 2001, thus yr 2001
isthe parentofqtrland qtr 2.

Attributes provide descriptive information about the data and are typically used for
display.

Level Attributes

Level attributes provide supplementary information about the dimension members
at a particular level of a dimension hierarchy. The dimension members themselves
may be meaningless, such as a value of “1296” for a time period. These cryptic
values for dimension members are used internally for selecting and sorting quickly,
but are meaningless to users.

For example, you might have columns for employee number (ENUM), last name
(LAST_NAME), first name (FI RST_NANME), and telephone extension (TELNO). ENUMis
the best choice for a level column, since it is a key column and its values uniquely
identify the employees. ENUMalso has a NUMBER data type, which makes it more
efficient than a text column for the creation of indexes. LAST _NAME, FI RST_NANME,
and TELNOare attributes. Even though they are dimensioned by ENUM they do not
make suitable measures because they are descriptive text rather than business
measurements.

Dimension Attributes

Dimension attributes specify groupings of level attributes for a specific dimension.
Whereas level attributes map to specific data values, dimension attributes are
purely logical metadata objects.

An example of a dimension attribute is end dat e, which is required for time
dimensions. If a time dimension has month, quarter, and year levels, end dat e
identifies the last date of each month, each quarter, and each year. Within a
relational schema, the three level attributes that make up the end dat e dimension
attribute would be stored in columns with names like ront h_end_dat e,
quarter_end_date,andyear _end_date.

Cubes are the metadata objects that associate measures with their dimensions. All
the measures associated with a cube have the exact same dimensionality.

4-14 Oracle9/ OLAP User’s Guide

OLAP Metadata Model

The edges of a cube are defined by its dimensions. Although there is no limit to the
number of edges on a cube, data is often organized for display purposes along three
edges, which are referred to as the row edge, column edge, and page edge. A single
dimension or multiple dimensions can be placed on an edge. For example, sales
data might be displayed with Product and Channel on the row edge, Time on the
column edge, and Customer on the page edge.

Measure Folders

Measures can be organized within measure folders, which facilitate the browsing of
data by business area. Measure folders are also known as catalogs.

Whereas dimensions and measures are associated with the schemas that contain
their source data, measure folders are schema independent. Each OLAP client can
view all measure folders defined within the Oracle instance.

Designing Your Database for OLAP 4-15

OLAP Metadata Model

4-16 Oracle9/ OLAP User’s Guide

D

Creating OLAP Catalog Metadata

This chapter describes OLAP metadata and the APIs for working with it. Detailed
descriptions of each APl appear in later chapters.

This chapter includes the following sections:

« Choosing the Right Metadata Creation Method

= Accessing the OLAP Catalog

= Organization of the OLAP Catalog

« Creating Metadata Using Oracle Enterprise Manager
« Creating Metadata Using PL/SQL

Creating OLAP Catalog Metadata 5-1

Choosing the Right Metadata Creation Method

Choosing the Right Metadata Creation Method
There are two tools for creating OLAP metadata:
« Oracle Enterprise Manager
« OLAP Catalog APIs (CW\R)

The tool that you can use depends on the structure of your data warehouse.

Basic Star or Snowflake Schema

OLAP Management is a tool in Oracle Enterprise Manager that provides an
easy-to-use graphical interface to release 1 of the OLAP Catalog (CWW). This tool
creates a database DI MENSI ON object for all logical dimensions defined in the
metadata, which imposes the following requirements on the dimension tables:

« Dimension values must be stored in dimension tables in a star or snowflake
schema.

« All hierarchies must be level-based; the schema cannot use parent-child
dimension tables.

= Multiple hierarchies defined for a dimension must have the same base level.
« Level columns cannot contain NULLs.

« Fact data must be unsolved, that is, it is stored only at the lowest level of the
hierarchy, and all the data for a cube must be stored in a single fact table.

If your data warehouse complies with all of these requirements, then you can use
either Enterprise Manager or the CWWR APIs for defining OLAP metadata. No
preprocessing steps are required.

Your ITT tool may have created metadata already. If so, you should check it using
the OLAP Management tool to see if the metadata structures are “OLAP enabled.”

Dimension Tables with Complex Hierarchies

Release 2 of the OLAP Catalog (CWWR) supports the following variations in
dimension tables:

« NULL values in level columns, such as in a skip-level hierarchy
« Data partitioning by hierarchy

« Different lowest levels for different hierarchies (sometimes called ragged
hierarchies)

5-2 Oracle9i OLAP User’s Guide

Choosing the Right Metadata Creation Method

Values mapped to different levels for multiple hierarchies

For level-based dimensions, fact data can be either completely solved or
completely unsolved. For parent/child dimensions, fact data must be
completely unsolved.

If your dimension tables have any of these characteristics, then you must use the
CWWR APIs to create OLAP metadata. No preprocessing is required.

Multidimensional Data and Parent-Child Dimensions

If your data warehouse stores data in analytic workspaces or has parent/child
(instead of level-based) dimensions, then you must use the CAM2 APIs to create
OLAP metadata. For both types of warehouse storage, OLAP metadata creation is a
two-step process:

1.

2.

Create relational views of the data. These views take the place of fact tables and
dimension tables where they do not exist (in the case of multidimensional data)
or are structurally unsuitable (in the case of parent-child dimension tables).

For dimension tables with parent-child relations, use the CWWv2_ OLAP_PC _
TRANSFORMpackage to generate the views, as described in Chapter 16.

For multidimensional data stored in analytic workspaces, use the CWVR2_
OLAP_AW ACCESS package, as described in Chapter 15.

Note: When you use the CWWR2_OLAP_AW ACCESS package,
multidimensional data is represented with the same metadata
structures that represent relational data, and access to the analytic
workspace is transparent to the client. You can also create metadata
that directly represents the multidimensional objects in an analytic
workspace. See Multidimensional Data Structures in the OLAP
Catalog on page 5-4.

Use the OLAP Catalog CWWR PL/SQL procedures to generate the metadata for
all of the data regardless of whether it is stored in relational tables or analytic
workspaces.

Creating OLAP Catalog Metadata 5-3

Accessing the OLAP Catalog

See Also:

Chapter 3, "Developing OLAP Applications" for a more
detailed explanation of the technology underlying views of
analytic workspace data.

Chapter 15, "CWM2_OLAP_AW_ACCESS" for specific
information about creating these views.

Multidimensional Data Structures in the OLAP Catalog

If some or all of your warehouse solution is stored in analytic workspaces, you may
wish to create metadata that directly represents the multidimensional objects
defined within the workspaces. This can be done using the CWW2 APIs.

Objects within analytic workspaces are defined and manipulated by the OLAP Data
Manipulation Language (DML).

To create metadata for analytic workspace objects, use the procedures in the CWWR_
OLAP_AW OBJECT package. To map this metadata to objects in an analytic
workspace, use the procedures in the CWW2_COLAP_AW NMAP package.

See Also:

Chapter 25, "CWM2_OLAP_AW_OBJECT" for specific
information about creating CWW2 metadata for analytic
workspace objects, and Chapter 26, "CWM2_OLAP_AW_MAP"
for specific information about mapping the metadata to objects
in analytic workspaces.

See Oracle9i OLAP Developer’s Guide to the OLAP DML and the
Oracle9i OLAP DML Reference help for specific information
about the OLAP DML.

Accessing the OLAP Catalog

To create OLAP metadata, you must be able to log into your database with
credentials that have been granted the OLAP_DBA role. The OLAP Catalog,
consisting of both CWMand CWW2 metadata, is owned by the OLAPSYS user.

5-4 Oracle9i OLAP User’s Guide

Organization of the OLAP Catalog

The OLAP_DBA role has system privileges associated with it, such as the ability to
create and drop tables, indexes, and dimensions. For a list of these privileges, follow
these steps:

1. Log into your database through Oracle Enterprise Manager.
2. Expand the Security branch.

3. Choose OLAP_DBA.

4. Display the Role and System Privileges pages.

If you have the system DBA role, then you also have the OLAP_DBA role. You must
also have the CONNECT role.

Note: To view existing metadata, you only need the CONNECT
and SELECT CATALOG ROLE roles.

Organization of the OLAP Catalog

The repository for OLAP metadata is known as the OLAP Catalog. This repository
is included by default with the Enterprise Edition of the database when installed
with either the General Purpose or Data Warehouse configuration.

The OLAP Catalog is one component of Oracle OLAP. The other server-side
components are the OLAP calculation engine and support for analytic workspaces.
On the client side, Oracle OLAP includes the OLAP API, an API for developing
OLARP client applications in Java.

CWM and CWM2

The OLAP Catalog, owned by the OLAPSYS user, contains two distinct metadata
repositories each with its own set of APIs:

« The C\WWMmetadata repository, first released with Oracle 9i Release 1, is still
supported in the current release. The CWWmetadata repository, based on CWM
Lite (Common Warehouse Metadata) is used by Oracle Enterprise Manager. You
can create and view CWMmetadata by using Enterprise Manager’s OLAP
Management feature.

« The CWMR metadata repository, newly available with Release 2 (9.2), provides
support for additional warehouse configurations. You can create and view
CWW2 metadata by using the CWWR PL/SQL packages and views.

Both metadata repositories include the following:

Creating OLAP Catalog Metadata 5-5

Organization of the OLAP Catalog

« Metadata model tables - A set of tables that instantiate the OLAP metadata
model. These tables define all the OLAP metadata objects: dimensions,
measures, cubes, measure folders, and so on. Within the metadata definitions
are references to the actual warehouse data. The C\WWmodel tables are named
with the CWMprefix. The CAM2 model tables are named with the QAW prefix.

« A Write API - A set of PL/SQL packages for creating and editing OLAP
metadata. These packages contain procedures for inserting, updating, and
deleting rows in the model tables. The CWMpackages are named with the CWWv
prefix. The CWWR packages are named with the CWWR prefix.

« A Read API - A set of SQL views providing information about the metadata
registered in the model tables. The CWMviews are named with the OLAP prefix.
The CWWR views are named with the OLAP2 prefix.

CWWR additionally includes Preprocessors, PL/SQL packages for transforming
certain types of warehouse data to a format supported by the CWWR APIs.
Preprocessors are available for data stored in analytic workspaces and for
parent/child dimension tables.

Depending on the organization of your warehouse and the needs of OLAP clients,
you can use CWWWimetadata or CWWR metadata, or some combination of both.

Important: You cannot create or view CWWR metadata from
Enterprise Manager’s OLAP Manager. Conversely, you cannot
create C\WMmetadata using the CWWV2 APIs.

However, CWWR includes a set of union views that allows you to
view the OLAP metadata in both the CAMand CWW2 model tables.

A separate set of CWWR views allows you to view metadata that
directly represents objects in analytic workspaces.

Logical Steps for Creating the Metadata

Whether you create OLAP metadata programmatically (CVWWWR) or by using Oracle
Enterprise Manager (CV\W), you follow the same logical steps.

To create OLAP metadata:

1. Create the dimensions. Specify the levels, attributes, and hierarchies associated
with each one.

2. Create cubes and specify their edges (dimensions).

5-6 Oracle9/ OLAP User’s Guide

Creating Metadata Using Oracle Enterprise Manager

Create measures that represent the fact data. Associate each measure with a
cube.

Map the metadata entities to the source data.

Create measure folders in which to store related measures. Populate the folders
with measures.

Creating Metadata Using Oracle Enterprise Manager

If your data warehouse complies with the requirements listed in "Basic Star or
Snowflake Schema" on page 5-2, you can create OLAP metadata using the OLAP
Management tool in Oracle Enterprise Managetr.

You generate the SQL statements that create the metadata primarily by following
the steps presented by a wizard or by completing a property sheet. If you wish, you
can display the SQL statements before executing them.

Note: If you prefer to execute PL/SQL programs directly or your
schema does not conform to the requirements of the OLAP
Management tool, refer to "Creating Metadata Using PL/SQL" on
page 5-11.

Procedure: Accessing OLAP Management

Follow these steps to start Oracle Enterprise Manager and access OLAP
Management:

1.

Open the Oracle Enterprise Manager console.
You see the main page.
Expand Databases by clicking the plus sign next to it.

You see the list of service names for Oracle databases for which you have
defined a connection.

If the database that you want to manage is not listed, then from the Navigator
menu choose Add Database to Tree. You will need to supply the host name,
port number, and SID.

Expand the database that you want to manage.

You see the Database Connect Information dialog box.

Creating OLAP Catalog Metadata 5-7

Creating Metadata Using Oracle Enterprise Manager

4.

Type in your user name (one with the appropriate credentials) and password
for that database.

Tip: Select the Save as preferred credentials box if you wish to
eliminate this step in future sessions. Your user name and
encrypted password will be saved in a local file. For security, make
sure that only you can run Oracle Enterprise Manager with your
stored credentials. Later, if you wish to change this information,
then choose Edit Local Preferred Credentials from the
Configuration menu.

The database folder will expand to show the various tools available for
administering the database.

Expand OLAP.

You see the types of objects that you can create. This part of Oracle Enterprise
Manager is for OLAP Management.

Defining Metadata for Dimension Tables

When creating OLAP metadata, you must first define the metadata objects for the
dimension tables. These metadata objects are logical dimensions. You can use the
Dimension Creation Wizard or supply information directly in the Create Dimension
dialog box.

To define a dimension, you provide all the information that will be needed to label
and aggregate the measures dimensioned by it, including:

The name of the dimension

The tables that contain the data for the dimension

The name of each level, and the columns that contain the data for each level
The number and order of levels in each hierarchy

Join keys for levels that are stored in separate tables

The columns that contain attributes for the levels

A display name and description for the dimension and each of its hierarchies,
levels, and attributes

5-8 Oracle9i OLAP User’s Guide

Creating Metadata Using Oracle Enterprise Manager

Business analysis is performed on historical data, so fully defined time periods are
vital. Special support for time dimensions is built into the metadata to allow for
time-dependent analyses, such as comparisons with earlier time periods.

Your time dimension table must have columns for end-date and time-span, as
described in "Time Dimensions" on page 4-11. Typical levels and hierarchies for time
dimensions are suggested by the Dimension Wizard, but you do not have to use
them.

Follow these steps to create a dimension and its associated levels, hierarchies, and
attributes:

1. Start Oracle Enterprise Manager and access OLAP management, as described in
"Procedure: Accessing OLAP Management" on page 5-7.

2. To create a new dimension, right click on Dimensions, then choose one of the
following:

« Create Using Wizard to run the Dimension Wizard
or
« Create to edit a new dimension property sheet

3. Choose Help if you need additional information.

Defining Metadata for Fact Tables

After you have defined the metadata objects for the dimension tables, you can
create metadata objects for the fact tables. These metadata objects are measures and
cubes. A cube is a collection of identically dimensioned measures. When you define
a cube, you identify information such as the following:

= The name of the cube and the fact table associated with it. All measures in a
cube must be from a single fact table.

= The names of the dimensions and the levels in the dimension hierarchies that
will be used in the cube.

= The names of the measures and the columns in the fact table where the values
for each measure is stored.

« Default aggregation operators for each dimension of each measure (such as sum
or average).

« Any calculation dependencies.

Creating OLAP Catalog Metadata 5-9

Creating Metadata Using Oracle Enterprise Manager

Cubes and measures are defined entirely in the OLAP metadata; there are no
corresponding database objects. In Oracle OLAP, measures are created in which to
cache the data for analysis and display.

Follow these steps to create a cube:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-7.

2. Right-click on Cubes, then choose one of the following:
« Create Using Wizard to run the Cube Wizard
or
« Create to edit a new cube property sheet

3. Choose Help if you need additional information.

Viewing Cubes

The Cube Viewer allows you to see the cube that you created in the same way that
end-users might see it — with the data presented in a Bl Beans crosstab, as
described in "Crosstabs" on page 3-12. Moreover, you can select the data that you
want to see by using the query builder.

Note: Only cubes created in Enterprise Manager are visible in the
Cube Viewer. Enterprise Manager’s OLAP Management feature
uses the OLAP Catalog Release 1 APIs (C\WW) and can only access
metadata in the CWMmetadata repository.

Procedure: Viewing cubes
Follow these steps to view a cube:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-7.

2. Expand the OLAP tree so that you can see the list of cubes.
3. Right-click on the cube you want to examine, then choose Cube Viewer.

4. If you need additional information, then search for the Help topic “Viewing a
Cube’s Data.”

5-10 Oracle9i OLAP User’s Guide

Creating Metadata Using PL/SQL

Creating Metadata Using PL/SQL

OLAP Catalog Release 2 includes a number of related PL/SQL packages for
creating CVWWR metadata. These packages contain stored procedures that can create
metadata for a wide variety of data warehouses. For example, you can create
metadata for parent/child dimension tables and for data stored in analytic
workspaces. Before using these packages, make sure that you have performed any
required preprocessing steps, as listed in "Choosing the Right Metadata Creation
Method" on page 5-2.

CWM2 Packages

The following packages contain procedures that create metadata for dimension
tables:

« CWW2_CLAP_DI MENSI ON contains procedures for creating OLAP dimensions
and providing display names and descriptions.

« CWW2_COLAP_HI ERARCHY contains procedures for creating OLAP hierarchies
and providing display names and descriptions.

« CWW2_COLAP_LEVEL contains procedures for creating levels and providing
display names and descriptions.

« CWW2_COLAP_LEVEL ATTRI BUTE contains procedures for creating level
attributes and providing display names and descriptions.

« CWW2_COLAP_DI MENSI ON_ATTRI BUTE contains procedures for creating
dimension attributes and providing display names and descriptions.

The following packages contain procedures that create metadata for fact tables:

« CWW2_COLAP_CUBE contains procedures for creating cubes and providing cube
display names and descriptions.

« CWW2_COLAP_MEASURE contains procedures for creating and deleting measures
and providing display names and descriptions.

The following package contains procedures that create metadata for analytic
workspace objects:

« CWW2_CLAP_AW OBJECT contains procedures for creating AW objects.

The following packages contain procedures that create the mapping between logical
metadata entities and the warehouse structures where the data is stored:

Creating OLAP Catalog Metadata 5-11

Creating Metadata Using PL/SQL

« CWW2_CLAP_TABLE_MAP contains procedures that map metadata entities to
relational fact tables and dimension tables.

« CWW2_COLAP_AW MAP contain procedures that map metadata entities to
multidimensional objects in analytic workspaces.

See Also: Part IV, "OLAP Catalog Metadata API Reference" for
comprehensive syntax and descriptions of these packages.

Example 5-1 Creating Metadata for a Dimension Table

In the Sales History sample schema, PRODUCTS is a dimension table with the
following columns:

Column Name Data Type
PRCD_I D NUVBER
PROD_NAME VARCHAR2
PROD_DESC VARCHAR2
PROD_SUBCATEGORY VARCHAR2
PROD_SUBCAT_DESC VARCHAR2
PROD_CATEGORY VARCHAR?
PROD_CAT_DESC VARCHAR2
PROD_WEI GHT_CLASS NUMBER
PROD UNI T_OF MEASURE VARCHAR?2
PROD_PACK_SI ZE VARCHAR2
SUPPLI ER_I D NUVBER
PRCOD_STATUS VARCHAR2
PROD LI ST_PRI CE NUMBER
PROD M N PRI CE NUVBER
PROD_TOTAL VARCHAR2

5-12 Oracle9i OLAP User’s Guide

Creating Metadata Using PL/SQL

The following PL/SQL calls create a logical metadata dimension object, PRODUCT _
DI M for the PRODUCTS dimension table.

Create the PRODUCT Dinension
cwr2_ol ap_di mensi on. creat e_di mension(’ SH, 'PRODUCT_DIM, ’'Product’,
"Products’, 'Product D nension’, 'Product Diniension Values');

--- Create Dinmension Attributes ---

cwr2_ol ap_di mensi on_attribute.create_dinension_attribute(’ SH, 'PRODUCT_DIM,
"Long Description’, 'Long Descriptions’,
"Long Desc’, 'Long Product Descriptions’, true);

cwr2_ol ap_di mensi on_attribute. create_dinension_attribute(’ SH, 'PRODUCT_DIM,
"PRCD NAME DIM, ' Product Name’,
"Prod Nane', 'Product Nane');

--- Create STANDARD Hierarchy ---

cwr2_ol ap_hi erarchy. create_hierarchy(’ SH, 'PRODUCT_DIM, ' STANDARD ,
"Standard’, 'Std Product’, ’Standard Product H erarchy’,
" Unsol ved Level - Based’);

--- Create Levels ---

cwr2_ol ap_| evel . create_| evel (" SH, 'PRODUCT_DIM, 'L4', 'Product 1D,
"Product ldentifiers’, 'Prod Key’,
"Product Key');

cwr2_ol ap_| evel .create_|l evel (" SH, 'PRODUCT_DIM, ’'L3", 'Product Sub-Category’,
"Product Sub-Categories’, 'Prod Sub-Category’,
' Sub- Cat egories of Products’);

cwr2_ol ap_| evel . create_|l evel (" SH, 'PRODUCT_DIM, 'L2', 'Product Category’,
"Product Categories’, 'Prod Category’,
' Cat egories of Products’);

cwr2_ol ap_| evel .create_|l evel (" SH, 'PRODUCT_DIM, ’'L1', 'Total Product’,
"Total Products’, 'Total Prod’,
"Total Product’);

Create Level Attributes ---
cwr2_ol ap_l evel _attribute.create_level _attribute(’ SH, 'PRODUCT_D M,
"Long Description’, 'L4, 'Long Description’,
" PRODUCT_LABEL’, 'L4 Long Desc’,
"Long Labels for PRODUCT Identifiers', TRUE);
cwr2_ol ap_l evel _attribute.create_level _attribute(’SH, 'PRODUCT_DM,
"Long Description’, 'L3', 'Long Description’,
' SUBCATEGORY_LABEL’, 'L3 Long Desc’,
"Long Label s for PRODUCT Sub-Categories’, TRUE);

Creating OLAP Catalog Metadata 5-13

Creating Metadata Using PL/SQL

cwr2_ol ap_l evel _attribute.create_level _attribute(’ SH, 'PRODUCT_DM,
"Long Description’, 'L2', 'Long Description’,
" CATEGORY_LABEL', 'L2 Long Desc’,
"Long Label s for PRODUCT Categories’, TRUE);
cwr2_ol ap_l evel _attribute.create_level _attribute(’ SH, 'PRODUCT_D M,
"PROD_NAME_DIM, 'L4’, 'PROD_NAME_LEV',
"Product Nane’, 'Product Nane');

--- Add levels to hierarchies ---
cwr2_ol ap_| evel . add_I evel _to_hierarchy(’ SH, ' PRODUCT_DIM, ' STANDARD ,

L4, ' L3);

cwr2_ol ap_| evel . add_I evel _to_hierarchy(’ SH, 'PRODUCT_DIM, 'STANDARD ,
L3, 'L2');

cwr2_ol ap_| evel . add_I evel _to_hierarchy(’ SH, ’PRODUCT_DIM, 'STANDARD ,
v L21 , 1 Lly) ’

cwm2_olap_level.add_level_to_hierarchy('SH', 'PRODUCT_DIM', 'STANDARD', 'L1";

--- Create mappings --
cwm2_olap_table_map.Map_DimThl_HierLevel('SH', 'PRODUCT_DIM', 'STANDARD", 'L4',

'SH', 'PRODUCTS', 'PROD_ID";
cwm2_olap_table_map.Map_DimTbl_HierLevelAttr('SH', 'PRODUCT_DIM',

‘Long Description’, 'STANDARD", 'L4', ‘Long Description’, 'SH',

'PRODUCTS', 'PROD_DESC);
cwm2_olap_table_map.Map_DimThl_HierLevelAttr('SH', 'PRODUCT_DIM',

'PROD_NAME_DIM', 'STANDARD', 'L4', 'PROD_NAME_LEV', 'SH,

'PRODUCTS', 'PROD_NAMEY;
cwm2_olap_table_map.Map_DimTbl_HierLevel('SH', 'PRODUCT_DIM', 'STANDARD", 'L3',

'SH', 'PRODUCTS', 'PROD_SUBCATEGORY");
cwm2_olap_table_map.Map_DimThl_HierLevelAttr('SH', 'PRODUCT_DIM',

'Long Description’, 'STANDARD", 'L3', ‘Long Description’, 'SH',

'PRODUCTS', 'PROD_SUBCAT_DESC);
cwm2_olap_table_map.Map_DimTbl_HierLevel('SH', 'PRODUCT_DIM', 'STANDARD", 'L2',

'SH', 'PRODUCTS', 'PROD_CATEGORY");
cwm2_olap_table_map.Map_DimTbl_HierLevelAttr('SH', 'PRODUCT_DIM',

'Long Description’, 'STANDARD", 'L2', ‘Long Description’, 'SH',

'PRODUCTS', 'PROD_CAT_DESC');
cwm2_olap_table_map.Map_DimThl_HierLevel('SH', 'PRODUCT_DIM', 'STANDARD", 'L1',

'SH', 'PRODUCTS', 'PROD_TOTAL);

5-14 Oracle9i OLAP User’s Guide

Creating Metadata Using PL/SQL

Example 5-2 Creating Metadata for a Fact Table

In the Sales History sample schema, COSTS is a fact table with the following
columns:

Column Name Data Type
PROD_|I D NUMBER
TIME_ID DATE
UNI T_COST NUMBER
UNI T_PRI CE NUMBER

The following procedures create a logical metadata cube object, ANALYTI C_CUBE,
for the COSTS fact table. The dimensions of the cube are: PRODUCT _DI M shown
above, and TI ME_DI M a time dimension mapped to a table Tl MVE.

Create the ANALYTIC CUBE Cube ---
cwr2_ol ap_cube. create_cube(’ SH, "ANALYTIC CUBE', ’'Analytics', 'Analytic Cube’,
"Unit Cost and Price Analysis’);

--- Add the dinmensions to the cube ---

cwr2_ol ap_cube. add_di nensi on_to_cube(’ SH, ' ANALYTI C_CUBE ,
"SH, 'TIMEDM);

cwr2_ol ap_cube. add_di nensi on_t o_cube(’ SH, " ANALYTI C_CUBE ,
"SH, 'PRODUCT_DIM);

--- Create the neasures ---

cwr2_ol ap_neasure. create_measure(’ SH, " ANALYTIC CUBE', 'UNIT_COST',
"Unit Cost’,’Unit Cost’, "Unit Cost');

cwr2_ol ap_neasure. create_neasure(’ SH, " ANALYTIC CUBE', 'UNIT_PRI CE,
"Unit Price’,’Unit Price’, "Unit Price');

--- Create the mappings ---
cwn?_ol ap_t abl e_nap. Map_Fact Thl _Level Key
("SH, "ANALYTIC OBE ,"SH, 'OOBTS, 'LOMEST LEVE,
" DM SH PRODUCTY H ER STANDARD LWL: L4/ GO PRCD | D
DIM:SH.TIMEMHIER:CALENDAR/LVL:L3/COLMONTH;);
cwm2_olap table map.Map_FactThl_Measure
(SH,"ANALYTIC_CUBEUNIT_COST, 'SH, 'COSTS,'UNIT_COST,
‘DIM:SH.PRODUCTS/HIER:STANDARDI/LVL:L4/COL:PROD_ID;
DIM:SH.TIMEHIER:CALENDAR/LVL:L3/COL.MONTH;);
cwm2_olap table map.Map_FactThl_Measure
('SH,"ANALYTIC_CUBE,UNIT_PRICE’,'SH, 'COSTS,"UNIT_PRICE,
'DIM:SH.PRODUCTS/HIER:STANDARDI/LVL:L4/COL:PROD_ID;
DIM:SH.TIMEHIER:CALENDAR/LVL:L3/COL.MONTH;);

Creating OLAP Catalog Metadata 5-15

Creating Metadata Using PL/SQL

5-16 Oracle9/ OLAP User’s Guide

Part Il

Administering Oracle OLAP

Part Il provides information for database administrators on administrative tasks
associated with Oracle OLAP.

This part contains the following chapters:

« Chapter 6, "Administering Oracle OLAP"

« Chapter 7, "OLAP Dynamic Performance Views"
« Chapter 8, "OLAP_API_SESSION_INIT"

« Chapter 9, "Creating an Analytic Workspace From Relational Tables"

S

Administering Oracle OLAP

This chapter describes the various administrative tasks that are associated with
Oracle OLAP. It contains the following topics:

Administration Overview

Initialization Parameters for Oracle OLAP
Initialization Parameters for the OLAP API
Creating Tablespaces for Analytic Workspaces
Setting Up User Names

Controlling Access to External Files
Understanding Data Storage

Monitoring Performance

Administering Oracle OLAP 6-1

Administration Overview

Administration Overview

Because Oracle OLAP is contained in the database and is managed using the same
tools, the management tasks of Oracle OLAP and the database converge.
Nonetheless, a database administrator or applications developer needs to address
management tasks in the specific context of Oracle OLAP. Following is a list of these
tasks.

« Database configuration. Permanent and temporary tablespaces must be created
to prevent 1/0 bottlenecks, as described in "Creating Tablespaces for Analytic
Workspaces". Initialization parameters must also be set to optimize
performance.

= Security. Users of OLAP applications must have database identities that have
been granted the appropriate access rights. For users to have access to files,
aliases for the directories must be created and the access rights must be granted.
Refer to "Setting Up User Names" on page 6-9.

« Data maintenance. For data that will be stored in analytic workspaces, stored
procedures must be developed in the OLAP DML for copying the data into
multidimensional data objects and performing whatever aggregations or other
data manipulations are required. Refer to the Oracle9i OLAP Developer’s Guide to
the OLAP DML.

These tasks are typically performed during off-peak hours using a batch facility,
as described in "Monitoring Performance" on page 6-13.

« Data Interfaces. For access by SQL, views of multidimensional objects can be
created using table functions, as described in Chapter 3, "Developing OLAP
Applications”. For access by the OLAP API, OLAP metadata must be defined.
Refer to Chapter 5, "Creating OLAP Catalog Metadata".

« Performance. Materialized views must be created for data stored in relational
schema. All of the data, whether it is stored in relational tables or
multidimensional tables, may require striping and partitioning to gain the best
performance. For information about how analytic workspaces are stored in the
database, refer to "Understanding Data Storage" on page 6-11. For information
about striping and partitioning for relational tables, refer to the Oracle9i Data
Warehousing Guide.

6-2 Oracle9i OLAP User’s Guide

Initialization Parameters for Oracle OLAP

Initialization Parameters for Oracle OLAP

Several packages described in this guide require thatut | _fi |l e_di r be set. This
parameter enables the RDBMS to write to a file.

Table 6-1 identifies the parameters that affect the performance of Oracle OLAP.
Alter your server parameter file ori ni t . or a file to these values, then restart your
database instance.

Table 6—1 Database Performance Initialization Parameter Settings

Parameter Setting

db_cache_si ze Half of physical memory

paral | el _max_servers The number of processors minus one

This parameter limits the number of processes that are
used for a parallel update. The number of parallel
processes is also dependent on the number of analytic
workspace extension files that are being updated.

sessi ons 2.5 * maximum number of OLAP users

See Also: Oracle9i SQL Reference for information about these
parameters.

Take the following steps to set system parameters:

1. Opentheinitsid. oraparameters file in a text editor.

The parameters file is located in $ORACLE_HOVE/ adni n/ si d/ pfi | e, where
sid is the system identifier as defined in $ORACLE _
HOVE/ net wor k/ adni n/ t nsnanes. or a.

2. Add or change the settings in the file.

For example, you might enter a command like this so that Oracle can write files
to the Or aHon®e1/ ol ap directory:

UTL_FI LE DI R=/ user s/ oracl e/ Or aHonel/ ol ap

3. Stop and restart the database, using commands such as the following. Be sure to
identify the parameters file in the STARTUP command.

sqglplus '/ as sysdba’
shut down i medi at e
startup pfile=/users/oracl e/ O atonel/ admin/rel 9dw pfil e/initrel 9dw ora

Administering Oracle OLAP 6-3

Initialization Parameters for the OLAP API

Initialization Parameters for the OLAP API

The OLAP API will perform best if the configuration parameters for the database
are optimized for this type of use. During installation of the Oracle RDBMS, an
OLAP configuration table is created and populated with ALTER SESSI ON
commands that have been tested to optimize the performance of the OLAP API.
Each time the OLAP API opens a session, it executes these ALTER SESSI ON
commands.

If a database instance is being used only to support Java applications that use the
OLAP API, then you can modify your server parameter file ori ni t . or a file to
include these settings. Alternatively, you might want to include some of the settings
in the server parameter file and leave others in the table, depending upon how your
database instance is going to be used. These are your choices:

« Keep all of the parameters in the configuration table, so that they are set as part
of the initialization of an OLAP API session. This method fully isolates these
configuration settings solely for the OLAP API. (Default)

= Add some of the configuration parameters to the server parameter file or
i nit.orafile, and delete those rows from the configuration table. This is
useful if your database is being used by other applications that require the same
settings.

« Add all of the configuration parameters to the server parameter file or init.ora
file, and delete all rows from the configuration table. This is the most
convenient if your database instance is being used only by the OLAP API.

Regardless of where these parameters are set, you should check the Oracle
Technology Network for updated recommendations.

See Also:

« Chapter 8, "OLAP_API_SESSION_INIT" for information about
the read and write APIs

« Oracle9i SQL Reference for descriptions of initialization
parameters that can be set by the ALTER SESSI ON command

6-4 Oracle9i OLAP User’s Guide

Creating Tablespaces for Analytic Workspaces

Creating Tablespaces for Analytic Workspaces

Before users begin creating analytic workspaces, you should create tablespaces that
will be used for temporary and permanent storage of analytic workspaces. By
default, these tablespaces are created in the SYS tablespace, which can degrade
overall performance. Oracle OLAP makes heavy use of temporary tablespaces, so it
is particularly important that they be set up correctly to prevent 1/0 bottlenecks.

These are some of the objects that Oracle OLAP stores in temporary tablespaces:

« The results of what-if analysis or other changes to the analytic workspace before
they are committed to the database

« Output logs
« Views in a self-join
« Output of a table function when it exceeds 64KB

If possible, you should stripe the datafiles and temporary files across as many
controllers and drives as are available.

Example 6-1 provides an example of a session in SQL*PLUS in which these
tablespaces are created.

Example 6-1 Creating Tablespaces
The SQL commands in this example do the following:
« Create a tablespace named OLAPUNDOIn a disk file named ol apundo. f.

« Create and modify a rollback segment named OLAPSEGin the OLAPUNDO
tablespace.

« Create atemporary tablespace named OLAPTEMP that uses up to four
temporary disk files named t enpl. f ,t enp2. f ,t enp3. f,and t enp4. f . The
additional disk files are located on separate physical disks (user 2, user 3, and
user 4).

« Grant the SCOTT user access rights to use OLAPTEMP.

« Create a tablespace named OLAPTS in up to three disk files named ol apdf 1. f,
ol apdf 2. f,and ol apdf 3. f .

Administering Oracle OLAP 6-5

Creating Tablespaces for Analytic Workspaces

Following this example is an explanation of the statements beginning with
"Creating a Tablespace for Rollbacks" on page 6-7.

SQL> CREATE TABLESPACE olapundo DATAFILE '/userl/oracle/datafiles/olapundo.f
2 SIZE 200M REUSE AUTOEXTEND ON EXTENT MANAGEMENT LOCAL UNIFORM,;

Tablespace created.

SQL> CREATE ROLLBACK SEGMENT olapseg TABLESPACE olapundo STORAGE (OPTIMAL 6M);
Rollback segment created.

SQL> ALTER ROLLBACK SEGMENT olapseg ONLINE;

Rollback segment altered.

SQL> CREATE TEMPORARY TABLESPACE olaptemp TEMPFILE
2 'luser2/oracle/datafilesitempl.f’ SIZE 1024M REUSE
3 AUTOEXTEND ON NEXT 100M MAXSIZE 2048M EXTENT MANAGEMENT LOCAL;

SQL> ALTER TABLESPACE olaptemp ADD TEMPFILE

2 'luser2/oracle/datafiles/temp2.f SIZE 1024M REUSE
AUTOEXTEND ON NEXT 100M MAXSIZE 4096,

3 'luser3/oracle/datafiles/temp3.f’ SIZE 1024M REUSE
AUTOEXTEND ON NEXT 100M MAXSIZE 4096,

4 ’'luser4/oracle/datafiles/temp4.f’ SIZE 1024M REUSE
AUTOEXTEND ON NEXT 100M MAXSIZE UNLIMITED;

Tablespace altered.
SQL> ALTER USER scott TEMPORARY TABLESPACE olaptemp;
User altered.
SQL> CREATE TABLESPACE olapts DATAFILE

2 'luserl/oracle/olapdfl.f' SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSIZE 4096M,

3 ’luser2/oracle/olapdf2.f SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSIZE 4096M,

4 ’Juser3/oracle/olapdf3.f' SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSIZE UNLIMITED;

Tablespace created.

6-6 Oracle9/ OLAP User’s Guide

Creating Tablespaces for Analytic Workspaces

Creating a Tablespace for Rollbacks

The following SQL commands create a tablespace that Oracle OLAP uses to store
changes to active analytic workspaces so that the changes can be rolled back if
necessary.

CREATE TABLESPACE t abl espacenane DATAFI LE ' pat hnane’ Sl ZE size REUSE
AUTCEXTEND ON EXTENT MANAGEMENT LOCAL UNI FORM

CREATE ROLLBACK SEGMVENT segment name TABLESPACE t abl espacenane
STORAGE (OPTI MAL si ze);

Where:

segnent nane is the name of the segment.

pat hnane is the fully qualified file name.

Si ze is an appropriate size for these tablespaces.

t abl espacenane is the name of the tablespace being defined.

Creating a Temporary Tablespace

Oracle OLAP uses temporary tablespace to maintain different generations of an
analytic workspace. This allows it to present a consistent view of the analytic
workspace when one or more users are reading it while the contents are being
updated.

CREATE TEMPORARY TABLESPACE t abl espacename TEMPFI LE ' pat hnanmel’
SI ZE size REUSE AUTOEXTEND ON NEXT size MAXSI ZE size EXTENT MANAGEMENT LOCAL;
ALTER TABLESPACE t abl espacename ADD TEMPFI LE
‘pathname2’ SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size,
‘pathname3' SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size,
'pathname4' SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size;

ALTER USER username TEMPORARY TABLESPACE tablespacename;

Where:
segnment nanme is the name of the segment.

pat hnanel. .. pat hname4 are the fully qualified file names of files that located
on separate disk drives if possible.

Si ze is an appropriate size for these tablespaces.

Administering Oracle OLAP 6-7

Creating Tablespaces for Analytic Workspaces

t abl espacenane is the name of the tablespace being defined.
user nane is a user or group that you want to grant access rights to this tablespace.

wor kspacenane is the name of a new analytic workspace.

Creating Tablespaces for Analytic Workspaces

When a user creates an analytic workspace, it is created by default in the SYS
tablespace. The following commands create a tablespace that a user or group of
users can specify as the storage location for their analytic workspaces. Using this
temporary tablespace instead of the SYS tablespace will result in better
performance. Note that this tablespace can be located on a separate disk drive.

CREATE TABLESPACE t abl espacenanme DATAFI LE
"pathnamel’ S| ZE size REUSE AUTCEXTEND ON NEXT size MAXSI ZE si ze,
" pathname2’ Sl ZE size REUSE AUTCEXTEND ON NEXT size MAXSI ZE si ze,
' pat hname3’ S| ZE size REUSE AUTCEXTEND ON NEXT size MAXSI ZE UNLI M TED;

Where:
segnent nane is the name of the segment.

pat hnanel. .. pat hnane3 are the fully qualified names of files located on
separate disk drives if possible.

Si ze is an appropriate size for these tablespaces.

t abl espacenane is the name of the tablespace.

user nane is a user or group that you want to grant access rights to this tablespace.
wor kspacenane is the name of a new analytic workspace.

After creating this tablespace, be sure to instruct the users with access rights to
create their analytic workspaces with OLAP DML commands such as the following
one. Otherwise, their analytic workspaces will still be created in the SYS tablespace,
even though you have created a separate tablespace for this purpose.

AW CREATE wor kspacenanme TABLESPACE t abl espacenane

6-8 Oracle9/ OLAP User’s Guide

Controlling Access to External Files

Querying the Size of an Analytic Workspace

To find out the size of the tablespace extensions for a particular analytic workspace,
use the following SQL statements:

COLUWN DBMS_LOB. GETLENGTH(AWL.OB) HEADI NG "Byt es";
SELECT EXTNUM DBMS_LOB. GETLENGTH(AWLOB) FROM AWswor kspacenane;

Where:

wor kspacenane is the name of the analytic workspace.

Setting Up User Names

To connect to the database, a user must present a user name and password that can
be authenticated by database security. The privileges associated with that user name
control the user’s access to data. As a database administrator, you must set up user
names with appropriate credentials for all users of Oracle OLAP applications.

To connect to the database using the OLAP API, users must have the following
access rights to the database:

« CONNECT role
« QUERY REWRI TE system privilege
« SELECT privileges on the database objects containing the data to be analyzed

You can define user names and grant them these rights from the Security folder of
Oracle Enterprise Manager.

Controlling Access to External Files

The OLAP DML contains three types of commands that read from and write to
external files:

« File read commands that copy data between flat files and workspace objects.

« Import and export commands that copy workspace objects and their contents to
files for transfer to another database instance.

« File input and output commands that read and execute DML commands from a
file and redirect command output to a file.

These commands control access to files by using BFILE security. This database
security mechanism creates a directory alias to represent a physical disk directory.

Administering Oracle OLAP 6-9

Controlling Access to External Files

Permissions are assigned to the alias, which control access to files within the
associated physical directory.

You use PL/SQL statements to create a directory alias and grant permissions. The
relevant syntax of these SQL statements is provided in this chapter.

See Also: Oracle9i SQL Reference under the entries for CREATE
DI RECTORY and GRANT for the full syntax and usage notes.

Creating a Directory Alias

To create a directory alias, you must have CREATE ANY DI RECTORY system
privileges.

Use a CREATE DI RECTORY statement to create a new directory alias, or a REPLACE
DI RECTORY statement to redefine an existing directory alias, using the following
PL/SQL syntax:

{CREATE | REPLACE | CREATE OR REPLACE} DI RECTCRY alias AS ' pathnane’;

Where:
alias is the name of the directory alias.

pathname is the physical directory path.

Granting Access Rights to a Directory Alias

After you create a directory alias, grant users and groups access rights to the files
contained in that directory, using the following PL/SQL syntax:

CGRANT permi ssion ON DI RECTORY alias TO {user | role | PUBLIG;

Where:
per m ssi on is one of the following:

READ for read-only access
V\RI TE for write-only access
ALL for read and write access

al i as is the name of the directory alias.

user is a database user name. That user gets immediate access rights.

6-10 Oracle9/ OLAP User’s Guide

Understanding Data Storage

r ol e is a database role. All users who have been granted that role get immediate
access rights.

PUBLI Cis all database users. All users gets immediate access rights.

Example: Creating and Using a Directory Alias

The following SQL commands create a directory alias named ol apdeno to control
access to a directory named / user s/ or acl e/ Or aHore 1/ deno and grant read
access to all users.

CREATE DIRECTORY olapdemo as '/users/oracle/OraHomel/demo’;

GRANT READ ON olapdemo TO PUBLIC;

Users access files located in / user s/ or acl e/ Or aHonme1/ deno with DML
commands such as this one:

funit = FILEOPEN('olapdemo/units.dat' READ)

Understanding Data Storage

Oracle OLAP multidimensional data is stored in analytic workspaces. An analytic
workspace can contain a variety of objects, such as dimensions, variables (also
called measures), and OLAP DML programs. These objects typically support a
particular application or set of data.

Whenever an analytic workspace is created, modified, or accessed, the information
is stored in tables in the relational database.

Important: These tables are vital for the operation of Oracle OLAP.
Do not delete them or attempt to modify them directly unless you
are fully aware of the consequences.

User-Owned Tables

An analytic workspace is stored in a table in the Oracle database as a Binary Large
Object (BLOB).

For example, if the SCOTT user creates two analytic workspaces, one named
SALESDATA and the other named SALESPRGS, then these tables will be created in
the SCOTT schema:

AWBSALESDATA

Administering Oracle OLAP 6-11

Understanding Data Storage

AVBSAL ESPRGS

These tables store all of the object definitions and data for these analytic
workspaces.

See Also: Oracle9i OLAP Developer’s Guide to the OLAP DML for
information about managing analytic workspaces.

System Tables
The SYS user owns several tables associated with analytic workspaces:

AWBEXPRESS
AVS
PS$

AWBEXPRESS stores the expr ess analytic workspace. This workspace contains
objects and programs that support the OLAP DML. The expr ess workspace is
used any time that a session is open.

AW maintains a record of all analytic workspaces in the database, recording its
name, owner, and other information.

PS$ maintains a history of all page spaces. A page is an ordered series of bytes
equivalent to a file. Oracle OLAP manages a cache of workspace pages. Pages are
read from storage in a table and written into the cache in response to a query. The
same page can be accessed by several sessions.

One writer and many readers can use an analytic workspace at one time. The
information stored in PS$ enables the Oracle OLAP to discard pages that are no
longer in use, and to maintain a consistent view of the data for all users, even when
the workspace is being modified during their sessions. When changes to a
workspace are saved, unused pages are purged and the corresponding rows are
deleted from PS$.

6-12 Oracle9/ OLAP User’s Guide

Monitoring Performance

Monitoring Performance

Each Oracle database instance maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables. The dynamic
performance tables collect data on internal disk structures and memory structures.
Among them are tables that collect data on Oracle OLAP. By monitoring these
tables, you can detect usage trends and diagnose system bottlenecks.

OLAP dynamic performance tables and associated views are described in
Chapter 7, "OLAP Dynamic Performance Views".

Administering Oracle OLAP 6-13

Monitoring Performance

6-14 Oracle9/ OLAP User’s Guide

v

OLAP Dynamic Performance Views

Oracle collects performance statistics in fixed tables, and creates user-accessible
views from these tables. This chapter describes the views that contain performance
data on Oracle OLAP.

See Also: For additional information about dynamic performance
tables and views, refer to the following:

= Oracle9i Database Reference

= Oracle9i Database Performance Guide and Reference

This chapter contains the following topics:

« System Tables Referenced by OLAP Performance Views
« Summary of OLAP Performance Views

. V$AW _CALC

. V$AW_OLAP

« V$AW _SESSION_INFO

OLAP Dynamic Performance Views 7-1

System Tables Referenced by OLAP Performance Views

System Tables Referenced by OLAP Performance Views

Each Oracle database instance maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables.

The dynamic performance tables collect data on internal disk structures and
memory structures. Dynamic performance tables are continuously updated while
the database is in use. Among them are tables that collect data on Oracle OLAP.

The names of the OLAP dynamic performance tables begin with VEAW The SYS
user owns the dynamic performance tables. In addition, any user with the SELECT
CATALCOGrole can access the tables.

The system creates views from these tables and creates public synonyms for the
views. The views are sometimes called fixed views because they cannot be altered
or removed by the database administrator. The synonym names also begin with
V$AWThe views are also owned by SYS, but the DBA can grant access to them to a
wider range of users.

The following sample SQL*Plus session shows the list of OLAP system tables.

%sqlplus '/ as sysdba’

SQL> SELECT nanme FROM v$fixed_t abl e WHERE nane LI KE ' V$AWA ;

VSAW CLAP
VSAW CALC
VSAW SESSI ON_| NFO

Summary of OLAP Performance Views

Table 7-1 briefly describes each OLAP performance view.

Table 7-1 OLAP Performance Views

Fixed View Description

V$AW_CALC Collects information about the use of cache space.

V$AW_OLAP Collects information about the status of active analytic
workspaces.

V$AW_SESSION_INFO Collects information about each active session.

7-2 Oracle9i OLAP User’s Guide

V$AW_CALC

V$AW CALC

V$AW CAL Creports on the effectiveness of various caches used by Oracle OLAP.
Because OLAP queries tend to be iterative, the same data is typically queried
repeatedly during a session. The caches provide much faster access to data that has
already been calculated during a session than would be possible if the data had to
be recalculated for each query.

The more effective the caches are, the better the response time experienced by users.
An ineffective cache (that is, one with few hits and many misses) probably indicates
that the data is not being stored optimally for the way it is being viewed. To
improve runtime performance, you may need to reorder the dimensions of the
variables (that is, change the order of fastest to slowest varying dimensions).

Oracle OLAP uses the following caches:

« Aggregate cache. An optional cache used by the AGGREGATE function in the
OLAP DML. The AGGREGATE function calculates aggregate data at runtime in
response to a query. When a cache is maintained, AGGREGATE can retrieve data
that was previously calculated during the session instead of recalculating it
each time the data is queried.

= Session cache. Oracle OLAP maintains a cache for each session for storing the
results of calculations. When the session ends, the contents of the cache are
discarded.

« Page pool. A cache allocated from the program global area (PGA) in the
database, which Oracle OLAP maintains for the session. The page pool is
associated with a particular session and is shared by all attached analytic
workspaces. If the page pool becomes too full, then Oracle OLAP writes some
of the pages to the database cache. When an UPDATE command is issued in the
OLAP DML, the changed pages associated with that analytic workspace are
written to the permanent LOB, using temporary segments as the staging area
for streaming the data to disk.

« Database cache. The larger cache maintained by the Oracle RDBMS for the
database instance.
See Also:

« Oracle9i OLAP Developer’s Guide to the OLAP DML for full
discussions of data storage issues and aggregation.

« Oracle9i OLAP DML Reference help under the CACHE
command for information about defining an aggregate cache.

OLAP Dynamic Performance Views 7-3

V$AW_CALC

Column Datatype Description

AGGREGATE CACHE HI TS NUMBER The number of times a dimension member is found in the
aggregate cache (a hit).
The number of hits for run-time aggregation can be increased by
fetching data across the dense dimension.

AGGREGATE_CACHE_M SSES NUMBER The number of times a dimension member is not found in the
aggregate cache and must be read from disk (a miss).

SESSI ON_CACHE HI TS NUMBER The number of times the data is found in the session cache (a
hit).

SESSI ON_CACHE_M SSES NUVBER The number of times the data is not found in the session cache (a
miss).

POOL_HI TS NUVBER The number of times the data is found in a page in the OLAP
page pool (a hit).

POOL_M SSES NUVBER The number of times the data is not found in the OLAP page
pool (a miss).

POOL_NEW PAGES NUVBER The number of newly created pages in the OLAP page pool that
have not yet been written to the workspace LOB.

POOL_RECLAI MED_PAGES NUVBER The number of previously unused pages that have been recycled
with new data.

CACHE_WRI TES NUVBER The number of times the data from the OLAP page pool has
been written to the database cache.

POOL_SI ZE NUVBER The number of pages in the OLAP page pool.

7-4 Oracle9i OLAP User’s Guide

V$AW_OLAP

V$AW_OLAP

V$AW OLAP provides a record of active sessions and their use with analytic
workspaces. A row is generated whenever an analytic workspace is created or
attached. The first row for a session is created when the first DML command is
issued. It identifies the SYS. EXPRESS workspace, which is attached automatically
to each session. Rows related to a particular analytic workspace are deleted when
the workspace is detached from the session or the session ends.

Column Datatype Description

SESSI ON_I D NUMBER A unique numerical identifier for a session.

AW NUMBER NUMBER A unique numerical identifier for an analytic workspace.

ATTACH _MODE VARCHAR2(10) READ ONLY or READ WRI TE.

GENERATI ON NUVBER The generation of an analytic workspace. Each UPDATE creates a
new generation. Sessions attaching the same workspace between
UPDATE commands share the same generation.

TEMP_SPACE_PAGES NUMBER The number of pages stored in temporary segments for the
analytic workspace.

TEMP_SPACE_READS NUVBER The number of times data has been read from a temporary
segment and not from the page pool.

LOB_READS NUMBER The number of times data has been read from the table where
the analytic workspace is stored (the permanent LOB).

POOL_CHANGED PAGES NUVBER The number of pages in the page pool that have been modified

POOL_UNCHANGED_PAGES NUVBER

in this analytic workspace.

The number of pages in the page pool that have not been
modified in this analytic workspace.

OLAP Dynamic Performance Views 7-5

V$AW_SESSION_INFO

V$AW_SESSION_INFO

V$AW SESSI ON_|I NFO provides information about each active session.

A transaction is a single exchange between a client session and Oracle OLAP.
Multiple DML commands can execute within a single transaction, such as in a call
to the DBMS. AW EXECUTE procedure.

Column Datatype Description

CLI ENT_TYPE VARCHAR2(64) OLAP

SESSI ON_STATE VARCHAR2(64) TRANSACTI NG NOT_TRANSACTI NG EXCEPTI ON_
HANDL I NG, CONSTRUCTI NG, CONSTRUCTED,
DECONSTRUCTI NG or DECONSTRUCTED

SESSI ON_HANDLE NUMVBER The session identifier

USERI D VARCHAR2(64) The database user name under which the session
opened

CURR_DM._ COMVAND VARCHAR2(64) The DML command currently being executed

PREV_DM._ COVVAND VARCHAR2(64) The DML command most recently completed.

TOTAL_TRANSACTI ON NUMBER The total number of transactions executed within the
session; this number provides a general indication of
the level of activity in the session

TOTAL_TRANSACTI ON_TI ME NUMBER The total elapsed time in milliseconds in which
transactions were being executed

AVERAGE_TRANSACTI ON_TI ME NUMBER The average elapsed time in milliseconds to
complete a transaction

TRANSACTI ON_CPU_TI ME NUMBER The total CPU time in milliseconds used to complete
the most recent transaction

TOTAL_TRANSACTI ON_CPU_TI ME NUMBER The total CPU time used to execute all transactions
in this session; this total does not include
transactions that are currently in progress

AVERAGE_TRANSACTI ON_CPU_TI ME NUMBER The average CPU time to complete a transaction;

this average does not include transactions that are
currently in progress

7-6 Oracle9i OLAP User’s Guide

8

OLAP_AP|_SESSION_INIT

The OLAP_API SESSI ON_| NI T package contains procedures for maintaining a
configuration table of initialization parameters for the OLAP API.

This chapter contains the following topics:

Overview

Summary of OLAP_API_SESSION_INIT Subprograms
ADD_ALTER_SESSION Procedure
DELETE_ALTER_SESSION Procedure
CLEAN_ALTER_SESSION Procedure
ALL_OLAP_ALTER_SESSION View

OLAP_API_SESSION_INIT 8-1

Overview

Overview

The OLAP_API _SESSI ON_| NI T package contains procedures for maintaining a
configuration table of initialization parameters. When the OLAP API opens a
session, it executes the ALTER SESSI ONcommands listed in the table for any user
who has the specified roles. Only the OLAP API uses this table; no other type of
application executes the commands stored in it.

This functionality provides an alternative to setting these parameters in the
database initialization file or the i ni t . or a file, which would alter the environment
for all users.

During installation, the table is populated with ALTER SESSI ON commands that
have been shown to enhance the performance of the OLAP API. Unless new
settings prove to be more beneficial, you do not need to make changes to the table.

The information in the table can be queried through the ALL_OLAP_ALTER _
SESSI ONview alias, which is also described in this chapter.

Summary of OLAP_API_SESSION_INIT Subprograms

Table 8—1 OLAP_API_SESSION_INIT Subprograms

Subprogram Description

ADD_ALTER_SESSION Specifies an ALTER SESSI ON parameter for OLAP

Procedure on page 8-3 API users with a particular database role.

DELETE_ALTER_SESSION Removes a previously defined ALTER SESSI ON

Procedure on page 8-5 parameter for OLAP API users with a particular
database role.

CLEAN_ALTER_SESSION Removes orphaned data, that is, any ALTER

Procedure on page 8-6 SESSI ON parameters for roles that are no longer

defined in the database.

8-2 Oracle9i OLAP User’s Guide

ADD_ALTER_SESSION Procedure

ADD_ALTER_SESSION Procedure

This procedure specifies an ALTER SESSI ON parameter for OLAP API users with a
particular database role. It adds a row to the OLAP$SALTER SESSI ONtable.

Syntax
ADD ALTER SESSI ON (
rol e_name IN VARCHAR2,
session_parameter IN VARCHAR?) ;
Parameters
Ther ol e_nane and sessi on_par anet er are added as a row in OLAP$SALTER _
SESSI ON.
Table 8-2 ADD_ALTER_SESSION Procedure Parameters
Parameter Description
rol e_nane The name of a valid role in the database. Required.
sessi on_par anet er A parameter that can be set with a SQL ALTER SESSI ON
command. Required.
Exceptions
Table 8-3 ADD_ALTER_SESSION Procedure Exceptions
Exception Description
invalid role Role is not defined in the database.
duplicate_role Session parameter has already been set for that role.
Examples

The following call inserts a row in OLAP$SALTER_SESSI ON that turns on query
rewrite for users with the OLAP_DBA role.

cal | ol ap_api _session_init.add_alter_session(
" OLAP_DBA', ' SET QUERY_REWR TE_ENABLED=TRUE');

OLAP_AP|_SESSION_INIT 8-3

ADD_ALTER_SESSION Procedure

The ALL_OLAP_ALTER _SESSI ONview now contains the following row:

ROLE CLAUSE_TEXT
CLAP_DBA ALTER SESSI ON SET QUERY_REWRI TE_ENABLED=TRUE

8-4 Oracle9i OLAP User’s Guide

DELETE_ALTER_SESSION Procedure

DELETE ALTER_SESSION Procedure

Syntax

Parameters

Exceptions

Examples

This procedure removes a previously defined ALTER SESSI ON parameter for
OLAP API users with a particular database role. It deletes a row from the
OLAP$ALTER_SESSI ONtable.

DELETE _ALTER_SESSI ON (
rol e_name IN VARCHAR2,
session_parameter IN VARCHAR?) ;

Therol e_nane and sessi on_par anet er together uniquely identify a row in
OLAPS$ALTER_SESSI ON.

Table 8-4 DELETE _ALTER_SESSION Procedure Parameters

Parameter Description
rol e_nane The name of a valid role in the database. Required.
sessi on_par anet er A parameter that can be set with a SQL ALTER SESSI ON

command. Required.

Table 8-5 DELETE ALTER _SESSION Procedure Exceptions

Exception Description
invalid role Role is not defined in the database.
duplicate_role Session parameter has already been set for that role.

The following call deletes a row in OLAP$ALTER_SESSI ON that contains a value of
OLAP_DBA in the first column and QUERY_REWRI TE_ENABLED=TRUE in the
second column.

call ol ap_api_session_init.delete_alter_session(
" OLAP_DBA', ' SET QUERY_REWR TE_ENABLED=TRUE');

OLAP_AP|_SESSION_INIT 8-5

CLEAN_ALTER_SESSION Procedure

CLEAN_ALTER_SESSION Procedure

This procedure removes all ALTER SESSI ON parameters for any role that is not
currently defined in the database. It removes all orphaned rows in the
OLAP$ALTER_SESSI ON table for those roles.

Syntax
CLEAN_ALTER_SESSI ON ();

Examples
The following call deletes all orphaned rows.

call ol ap_api _session_init.clean_alter_session();

8-6 Oracle9/ OLAP User’s Guide

ALL_OLAP_ALTER_SESSION View

ALL_OLAP_ALTER_SESSION View

ALL_OLAP_ALTER_SESSI ONis the public synonym for VEOLAP_ALTER _
SESSI ON, which is a view for the OLAP$SALTER_SESSI ONtable. The view and table
are owned by the SYS user.

Each row of ALL_OLAP_ALTER SESSI ONidentifies a role and a session
initialization parameter. When a user opens a session using the OLAP API, the
session is initialized using the parameters for roles granted to that user. For
example, if there are rows for the OLAP_DBA role and the SELECT_CATALOG _ROLE,
and a user has the OLAP_DBA role, then the parameters for the OLAP_DBA role will
be set, but those for the SELECT _CATALOG_ROLE will be ignored.

Table 8—6 ALL_OLAP_ALTER _SESSION Column Descriptions

Column Datatype NULL Description
ROLE VARCHAR2(30) NOT NULL A database role
CLAUSE_TEXT VARCHAR2(3000) An ALTER SESSI ONcommand

OLAP_AP|_SESSION_INIT 8-7

ALL_OLAP_ALTER_SESSION View

8-8 Oracle9/ OLAP User’s Guide

9

Creating an Analytic Workspace From
Relational Tables

You can create an analytic workspace from relational tables. Moreover, you can
generate relational views of the analytic workspace data, which you can query
directly using standard SQL, or use to create OLAP catalog metadata for the OLAP
API.

This chapter contains the following topics:
» Process Overview

« CNV_CWM.TO.ECM Program

« GENSQLOBIJS Program

« Analytic Workspace Metadata Catalogs
« References to OLAP Catalog Metadata

Creating an Analytic Workspace From Relational Tables 9-1

Process Overview

Process Overview

This chapter primarily describes a tool for creating analytic workspaces. The OLAP
Catalog metadata defines a logical analysis model and a map to a physical source. If
you cannot create OLAP Catalog metadata because your database does not conform
to its requirements, you can still create an analytic workspace manually. The basic
steps that parallel the stages performed by the CNV_CWM TO. ECMprogram are also
described in this chapter.

The process that you will follow to create an analytic workspace from relational
tables is contingent on the design of your schema.

If you have a star or snowflake schema, then you can use the tools described in
"Creating an Analytic Workspace Using the CNV_CWM.TO.ECM Program" on
page 9-2.

Otherwise, follow the instructions in "Manually Creating an Analytic Workspace"
on page 9-4.

See Also: Oracle9i OLAP Developer’s Guide to the OLAP DML for
information about OLAP Worksheet, creating analytic workspaces,
aggregating data, and other multidimensional data manipulation
techniques.

Creating an Analytic Workspace Using the CNV_CWM.TO.ECM Program

The following steps describe how you might approach the task of creating an
analytic workspace using the CNV_CWM TO. ECMprogram.

Note: To run the GENSQ.OBJS program, which writes a SQL file,
you must have read/write access to a directory alias, as described
in "Controlling Access to External Files" on page 6-9.

1. Ifyou have not yet created OLAP metadata, then you must do that first, as
described in Chapter 5, "Creating OLAP Catalog Metadata". The metadata maps
the fact tables and dimension tables of your database to multidimensional
objects: measures, dimensions, attributes, levels, and so forth. These object
types are defined in Chapter 4, "Designing Your Database for OLAP".

2. If you plan to fetch only part of your relational schema into your analytic
workspace, then identify exactly which objects you want to use.

9-2 Oracle9i OLAP User’s Guide

Process Overview

Open an OLAP session using one of the methods described in "Methods of
Executing OLAP DML Commands" on page 2-8.

Create and detach an analytic workspace. Unless you have strong reasons for
doing otherwise, you should begin with an empty workspace. The following
command creates an analytic workspace named sal es in the ol apt s
tablespace:

AW CREATE sal es TABLESPACE ol apts
AW DETACH sal es

CNV_CWM TO. ECMwill create an analytic workspace if one does not exist
already, but it will be created in the default tablespace. The performance of an
analytic workspace is better if it is stored in a tablespace that has been created
specifically for that purpose.

Execute CNV_CVWM TO. ECM

The following example attaches an analytic workspace named sal es and
creates the dimensions, attributes, and hierarchies associated with the
SALES_QUANTI TY measure.

CALL OW OMTQEOM'sales’ "na’ 'na' -
" MEASURE: : SH. : SALES_CUBE: : SALES_QUANTI TY")

See "CNV_CWM.TO.ECM Program" on page 9-6 for the complete syntax.

The CNV_CWM TO. ECMutility loads only the base-level data stored in relational
tables. It does not load any aggregate data.

Create aggregation maps and generate aggregate data by using the AGGREGATE
command.

You now have an analytic workspace. SQL-based applications can use the
OLAP_TABLE function for direct access to the data.

Run the GENSQLOBJ S program to generate SQL scripts for creating relational
views of the analytic workspace data. (Optional)

Generate relational views of the multidimensional data by running the SQL
scripts. (Optional)

SQL-based applications can run directly against these views using standard
SQL commands, and thus have access to the workspace data.

You can now create OLAP catalog metadata if you wish, so that the OLAP API
can access the multidimensional data in the analytic workspace. Refer to
Chapter 5, "Creating OLAP Catalog Metadata". (Optional)

Creating an Analytic Workspace From Relational Tables 9-3

Process Overview

Manually Creating an Analytic Workspace

If your database design does not allow you to use the CNV_CWM TO. ECMprogram,
then you can still develop an analytic workspace from relational tables. However,
you will need to use the various programs and procedures that underlie

CNV_CWM TO. ECM Their use requires greater familiarity with the OLAP DML.

See Also: Oracle9i OLAP Developer’s Guide to the OLAP DML for
information about creating analytic workspaces using the SQL
command in the OLAP DML.

The following are the basic steps.

1.

Browse your database schema and identify the names of the tables and columns
whose data you want to fetch into an analytic workspace. Determine which
columns will be used as measures, dimensions, and attributes. Refer to

Chapter 4, "Designing Your Database for OLAP" for descriptions of
multidimensional objects.

Open an OLAP session, using one of the methods described in "Methods of
Executing OLAP DML Commands" on page 2-8

Create an analytic workspace or attach an existing workspace. The following
command creates an analytic workspace hamed sal es in the ol apt s
tablespace:

AW CREATE sal es TABLESPACE ol apts
Define the workspace objects in which you will store the data by using the
DEFI NE command.

Fetch data from the relational tables into workspace objects by using the SQL
FETCHor the SQL | MPORT commands.

Create aggregation maps and generate aggregate data by using the AGGREGATE
command.

You now have an analytic workspace. SQL-based applications can use the
OLAP_TABLE function for direct access to the data.

Generate relational views of the multidimensional data by using the
CWW2_OLAP_AW ACCESS PL/SQL package, as described in Chapter 15,
"CWM2_OLAP_AW_ACCESS". (Optional)

SQL-based applications can run directly against these views using standard
SQL commands, and thus have access to the workspace data.

9-4 Oracle9i OLAP User’s Guide

Process Overview

8. You can now create OLAP catalog metadata so that the OLAP API can access
the workspace data, as described in Chapter 5, "Creating OLAP Catalog
Metadata". (Optional)

Creating an Analytic Workspace From Relational Tables 9-5

CNV_CWM.TO.ECM Program

CNV_CWM.TO.ECM Program

Return Value

Syntax

Arguments

CNV_CWM TO. ECMis a DML program that creates analytic workspace objects from
OLAP catalog metadata and loads data into these objects. It runs in eight stages,
and updates the analytic workspace after completing each stage. It does not rerun
stages whose results are already saved in the analytic workspace. You can run
CNV_CWM TO. ECMin stages, check the results, and modify them before continuing
to the next stage.

None

C\V_CWM TO. ECM aw_narme, [stage], ['DEBUG], [selection], [directory, filenang]

where:
st age is a text expression identifying one of the following keywords:

GET_CWM METADATA
GEN_RDB_STRUCTURES
GET_RDB_STRUCTURES
CRT_DI M_STRUCTURES
DFN_MEASURES
CRT_ECM METADATA
GEN_MEASURES
GET_MEASURES

sel ecti onis atext expression in one of the following formats:

CATALOG : cat al og
CUBE: : owner: : cube
MEASURE: : owner : ; cube: : neasure

aw_name

A text expression that identifies the name of the analytic workspace in which the
objects will be created and stored. If the workspace exists, then it is attached
read/write. (Note that it cannot already be attached to your session.) If it does not
exist, then a new analytic workspace is created.

9-6 Oracle9/ OLAP User’s Guide

CNV_CWM.TO.ECM Program

The wor kspace should be used only to store objects created by this program.
Custom DML programs and data acquired from other sources can be stored in
separate analytic workspaces.

stage

By specifying a stage, you interrupt the utility so that you can review and edit the
contents of the analytic workspace before continuing. For example, the definition of
a variable identifies its dimensions, and the order in which the dimensions are
listed, from fastest to slowest varying, indicates how the data is stored. Depending
on how users will most frequently view the data, you might want to change the
order of the dimensions. If the data is sparse, you might want to create a composite
dimension and use it to dimension the variable.

The following are descriptions of the various stages:

'GET_CWM_METADATA’
Stage 1: Loads all of the metadata from the database into objects in the analytic
workspace.

"GEN_RDB_STRUCTURES’
Stage 2: Generates DML programs to fetch level values, attributes, and parent-child
relationships.

'GET_RDB STRUCTURES'
Stage 3: Executes the DML programs created in stage 2.

'CRT_DIM_STRUCTURES’
Stage 4: Creates analytic workspace dimensions, attributes, and hierarchies.

'DFN_MEASURES’
Stage 5: Generates and executes DML programs that determine sparsity patterns
and define measures and composites.

'CRT_ECM_METADATA’
Stage 6: Creates workspace objects.

"GEN_MEASURES’
Stage 7: Generates DML programs to load data from the fact tables.

'GET_MEASURES'
Stage 8: Executes the DML programs created in stage 7. (Default)

'DEBUG’

A text expression that specifies running in debug mode. In debug mode, the
workspace is attached read-only and remains attached at the end of the build. You
cannot save the analytic workspace when it runs in this mode.

Creating an Analytic Workspace From Relational Tables 9-7

CNV_CWM.TO.ECM Program

When this argument is NA, CNV_CWM TO. ECMruns in standard mode. The
workspace is attached read/write, and all objects are saved at the completion of
each stage. When CNV_CWM TO. ECMis done, it detaches the workspace.

CATALOG

Limits the build to include only the metadata associated with a particular catalog or
metadata folder. When this argument is omitted, all OLAP metadata in the schema
is included in the build.

CUBE
Limits the build to include only the metadata for cube. When this argument is
omitted, all cubes in cat al og are included in the build.

MEASURE
Limits the build to include only the metadata for a particular measure. When this
argument is omitted, all measures in cube are included in the build.

catalog
Identifies a particular measure folder in the schema.

owner

Identifies the owner of the schema that contains the dimension tables and fact
tables.

cube
Identifies a particular cube in cat al og.

measure
Identifies a particular measure in cube.

Notes

Using multiple analytic workspaces: The analytic workspace created by
CNV_CWM TO. ECMshould be used only for this purpose so that you can
periodically delete and recreate it. You can store DML programs and data from
other sources in separate analytic workspaces. A session can attach numerous
analytic workspaces, and objects in different analytic workspaces are fully
accessible to each other.

Recreating an analytic workspace: CNV_CWM TO. ECMrebuilds an analytic
workspace. If you have customized a workspace that was created by
CNV_CWM TO. ECM then you should export all customizations before rebuilding.

9-8 Oracle9i OLAP User’s Guide

CNV_CWM.TO.ECM Program

Examples

1. Export your customizations to an EIF file, using a DML command like the
following one:

export myprogs to eif file 'tenp/dnlprogs.eif’ rewite

Where:
t enp is the name of a directory alias to which you have write access.
dml progs. ei f is the name of the EIF file.

2. Delete the old analytic workspace. Then create a new analytic workspace and
populate it using CNV_CWM TO. ECM

3. Import the custom objects from the EIF file into the original workspace, using a
command like the following one:

inport all fromeif file ’tenp/dmprogs.eif’ dfns

4. Issue UPDATE and COVMM T commands.

Creating aggregate data: The CNV_CWM TO. ECMprogram reads and loads only
stored low-level source data from relational tables into the analytic workspace, and
creates the objects that define and support dimension hierarchies. No aggregate
data is loaded into the analytic workspace. The OLAP DML has very sophisticated
tools for aggregating data. Refer to the chapter on aggregating data in the Oracle9i
OLAP Developer’s Guide to the OLAP DML.

This example creates or attaches an analytic workspace named al | dat a and
creates all of the objects defined by the OLAP metadata for the current schema.

CALL OW OM TQEQM' al I data’)

The next example creates or attaches an analytic workspace named sal eshi st and
creates all of the objects defined by the OLAP metadata for the SH_CAT catalog.
CALL OW OMTQEM' sal eshist’, na, na, 'CATALOG : SH CAT')

The following example creates or attaches an analytic workspace named sal es and

creates the dimensions, attributes, and hierarchies associated with the
SALES QUANTI TY measure.

CALL OW OMI TQEM ' sales’, ' (RT_O M STRITURES , na, -
"MEASLRE : SH : SALES AUBE: : SALES QUANTI TY')

Creating an Analytic Workspace From Relational Tables 9-9

GENSQLOBJS Program

GENSQLOBJS Program

Return Value

Syntax

Arguments

GENSQLOBJS is an OLAP DML program that generates a SQL script. The script uses
the OLAP_TABLE function to generate views of multidimensional workspace data.
The analytic workspace must contain ECM-type metadata, whether generated by
CNV_CWM TO. ECMor provided in a legacy Express database. The resulting
dimension views and measure views comprise a star schema that represents the
analytic workspace.

You can use the resulting relational views in two ways:

« Create OLAP metadata so that the OLAP API can access data in the analytic
workspace.

« Use standard SQL to access data in the analytic workspace.

See Also: Chapter 15, "CWM2_OLAP_AW_ACCESS" for
information about generating views of analytic workspace data.

None

CGENSQLOBJS(aw_nane, directory, filenanme [, |anguage])

aw_name
A text expression that provides the name of an ECM-type analytic workspace.

directory

A text expression that provides the name of the directory alias where the SQL script
will be created. For information about obtaining access to a directory alias, see
"Controlling Access to External Files" on page 6-9.

filename
A text expression that specifies the base name of the output script file. An extension
of . sql will be appended to this base name.

9-10 Oracle9i OLAP User’s Guide

GENSQLOBJS Program

Examples

language

A text expression that identifies the desired language dimension value. Required
only when there are workspace objects that support multiple languages. For
example, a variable with dimension labels might have a language dimension with
values for English, French, and Spanish. When generating a relational view, you
must identify which language you want the view to support.

The following command creates a SQL script with a name of sal esdat . sql from
the sal es analytic workspace. The files are stored in the directory identified by the
scri pt s directory alias. The workspace language dimension will be limited to
ENGLI SH.

CALL CENSQLOBJS('sales’, 'scripts', 'salesdat’, 'ENGISH)

Creating an Analytic Workspace From Relational Tables 9-11

Analytic Workspace Metadata Catalogs

Analytic Workspace Metadata Catalogs

You can discover the names of objects by browsing through the metadata catalogs,
which are variables named __ CWM obj ect . CAT in the analytic workspace. Note
that three underscores prefix the name.

Table 9-1 lists the names of the basic catalogs. To see a full listing of the catalogs,
issue a LI STNAMES VARI ABLE command.

Table 9—1 Workspace Metadata Catalogs

Variable Name Description
___COWM _CAT. CAT Catalog Catalog
___OAWM CB. CAT Cube Catalog
O\ MEAS. CAT Measure Catalog
___CW DI M CAT Dimension Catalog
O HI ER. CAT Hierarchy Catalog
___ CWM LVL. CAT Level Catalog

O LVLA. CAT Level Attribute Catalog

Catalog Catalog

The Catalog catalog provides detailed information about each measure folder. Each
folder or catalog is represented by a member of the cwm cat . ent dimension.
The following example shows the entries for the xadeno_cat catalog.

report __ cwmcat. cat
----- CWM CAT. CAT------
----- CWM CAT. ENT------
CWM CAT. PRP 95
CATALOG NAME XADEMD CAT
PARENT CATALOG ID NA
DESCRI PTI ON XADEMO CWM Busi ness Area

9-12 Oracle9/ OLAP User’s Guide

Analytic Workspace Metadata Catalogs

Cube Catalog

The Cube catalog provides detailed information about each cube. Each cube in the
xadeno schema is represented by a member of the __cwm ch. ent dimension.
The following example shows the catalog entries for anal yti c_cube. The
Description field shows that this cube contains five measures (sal es, quot a, cost
uni t's, and pr ono), which are dimensioned by t i ne, channel , pr oduct , and

geogr aphy.

report ___cwmch. cat
---------------- OWM CB. CAT- - -c e mameme -
---------------- OWM CB. ENT- - -« - e e

CWM CB. PRP 1

OMNNER XADEMO

CUBE_NAME ANALYTI C_CUBE

Dl SPLAY_NAMVE Anal ytics

DESCRI PTI ON Sal es, Quota, Cost, Units, Pronp <TIME
CHANNEL PRODUCT GEOGRAPHY>

CBID 6 13 XADEMO ANALYTI C_CUBE

Measure Catalog

The Measure catalog provides detailed information about measures. Each measure
in the xadeno schema is represented by a member of the ___cwm mneas. ent
dimension.

The following example lists the catalog entries for the f . sal es measure. They
show that the data from the sal es column of the xadeno_anal yti c_f act s table
is mapped to a workspace variable named ___neas5. Note that two underscores
begin the name.

report ___cwm neas. cat
--------------- CWM MEAS. CAT---------------
--------------- CWM MEAS. ENT-------cmcmncnnn

CWM MEAS. PRP 5

OMNER XADEMO

CUBE_NAME ANALYTI C_CUBE

VEASURE_NAME F. SALES

DI SPLAY_NAME F. SALES

DESCRI PTI ON Dol | ar Sal es

DATA TYPE DECI MAL

Creating an Analytic Workspace From Relational Tables 9-13

Analytic Workspace Metadata Catalogs

FACT_TABLE_OWKER
FACT_TABLE_NAME
COLUMN_NAVE

CBI D

MEAS| D
EXPRESS_CBJ_NAME

XADEMD

XADEMO_ANALYTI C_FACTS

SALES

6 13 XADEMD ANALYTI C_CUBE

6 13 7 XADEMDO ANALYTI C_CUBE F. SALES
__MEAS5

Dimension Catalog

The Dimension catalog provides detailed information about dimensions. Each
dimension in the xadeno schema is represented by a member of the

____cwm di m ent dimension. The following example lists the catalog entries for
the geogr aphy measure. They show that the workspace geogr aphy dimension is
named __di nB, and the workspace objects that support the geography hierarchies

have an A3. prefix.

report ___cwmdim cat

___OWM DI M PRP

O/MER
DI MENSI ON_NAME
DI SPLAY_NAME
PLURAL_NAVE
DESCRI PTI ON

DEFAULT DI SPLAY_H ERARCHY
DI MENSI ON_TYPE

DMD

EXPRESS DI M NAVE
EXPRESS_LVLDI M NAMVE
EXPRESS_LVLREL_NAME
EXPRESS_Hl ERDI M_NAME
EXPRESS PARENTREL_NANE
EXPRESS_H ERLVLREL_NAME
EXPRESS_H ERLVLDEPTH NAMVE
EXPRESS_G D_NAME
EXPRESS | NH ER_NAMVE

9-14 Oracle9/ OLAP User’s Guide

---___CW DM CAT---
-=-__ _COWIDIMENT---

GECGRAPHY

Ceogr aphy

Ceogr aphys

Ceogr aphy Di nmensi on
Val ues

STANDARD

NA

6 9 XADEMO GEOGRAPHY
_ DM

A3. LEVELDI M

_ LREL3

A3. H ERDI M

A3. PARENTREL

A3. LVLREL

A3. LVLDEPTHVAR
A3.GD

A3. | NH ERARCHY

Analytic Workspace Metadata Catalogs

Hierarchy Catalog

Level Catalog

The Hierarchy catalog provides detailed information about dimension hierarchies.
Each hierarchy of each dimension in the xadenop schema is represented by a
member of the ___cwm hi er. ent dimension. The following example lists the

catalog entries for the two geogr aphy hierarchies, st andar d and consol i dat ed.

report ___cwm hier.cat
------------------ _ OMWHERCAT------mmmmmmeem -
------------------ _ OMMHERENT-----cmmmeaeem -
__ OMW H ER PRP 4 5
OMNER XADEMO XADEMO
DI MENSI ON_NAME GEQGRAPHY GEOGRAPHY
H ERARCHY_NAME STANDARD CONSCLI DATED
DI SPLAY_NAME St andar d Consol i dat ed
DESCRI PTI ON St andar d GEOGRAPHY Executive Consol i dated
hi erar chy CGEQGRAPHY hi erar chy
DMD 6 9 XADEMO GEOGRAPHY 6 9 XADEMO GEOGRAPHY
H ERI D 6 9 8 XADEMO GEOGRAPHY 6 9 12 XADEMD GEOGRAPHY
STANDARD CONSOLI DATED

The Level catalog provides detailed information about dimension levels. Each level
of each dimension hierarchy is represented by a member of the __cwm | vl . ent
dimension. The following example lists the catalog entries for the two of the four
geogr aphy levels. From this catalog, you can learn that geogr aphy members at
the city level are stored in a workspace dimension named __r dbl vl di n®, and
geogr aphy members at the country level are stored in a workspace dimension
named __rdbl vl di mlLO.

report cwn | vl. cat

Creating an Analytic Workspace From Relational Tables 9-15

Analytic Workspace Metadata Catalogs

----------------------- COWM LVL. CAT-- == mmmmmmmm e e e
----------------------- COWM LVL, ENT- - == - e e mmmm e mm e e e
CWM LVL. PRP 9 10
OMER XADEMO XADEMO
DI MENSI ON_NAME GEOGRAPHY GEOGRAPHY
LEVEL_NAME L4 L3
DI SPLAY_NAME Gties Count ri es/ Areas
DESCRI PTI ON Gties of standard GEOGRAPHY Countries/ Areas of standard
hi erar chy CGECGRAPHY hi er ar chy
LEVEL_TABLE_OMER XADEMO XADEMO
LEVEL_TABLE_NAMVE XADEMD_GEOGRAPHY XADEMD GEOGRAPHY
DM D 6 9 XADEMO GEOGRAPHY 6 9 XADEMO GEOGRAPHY
LWVLI D 6 9 2 XADEMD GEOGRAPHY L4 6 9 2 XADEMD GEOGRAPHY L3
RDBVS_LVLDI M_NAVE __RDBLVLDI M __RDBLVLDI MLO
RDBMS_TO EXPRESS LVLREL _ RDBEXPREL9 __RDBEXPREL10

NAMVE

Level Attribute Catalog

The Level Attribute catalog provides detailed information about level attributes.
Each level attribute for each dimension level is represented by a member of the
___cwm | vl a. ent dimension. This dimension can be quite large, so you might
want to use a command like the following to limit your view to the level attributes
for a single dimension:

l[imt __ cwmlvla.ent to (___cwnlvla. cat(-
__cwnlvla. prp, 'D MENSI ON_NAME) eq ' GEOGRAPHY')

The following example lists the catalog entries for one of the geography level
attributes. From this catalog, you can learn that the long names for cities are stored
in avariable named __rdbattrvar 19.

report __ cwmlvla.cat
---------- __ COWM LVLA CAT----------
---------- _ COWM LVLA ENT----------

_ OWM LVLA. PRP 19

OMNER XADEMO

DI MENSI ON_NAME CGEQGRAPHY

ATTRI BUTE_NAMVE CGEQG_STD CI TY_LLABEL

DI SPLAY_NAMVE Long Gty Nane(s)

DESCRI PTI ON Long Labels for Cities values of

t he STANDARD GEOGRAPHY hi erachy
DETERM NED BY LEVEL_NAME L4

9-16 Oracle9/ OLAP User’s Guide

References to OLAP Catalog Metadata

COLUMN_NAVE GEOG STD_CI TY_LLABEL

DATA_TYPE TEXT

DMD 6 9 XADEMD GEOGRAPHY

LVLID 6 9 2 XADEMD GEOGRAPHY L4

LVLAI D 6 9 2 20 XADEMD GEOGRAPHY L4
GEOG STD_CI TY_LLABEL

RDBVG_ATTRVAR NAVE __RDBATTRVARL9

References to OLAP Catalog Metadata

Cubes

Measures

When you are viewing the catalogs, it will help you to understand how references
are formed to OLAP catalog metadata definitions in the database. They are
constructed as a concatenation of the number of characters for each part of the name
followed by the various parts. References to various metadata objects that appeared
in "Analytic Workspace Metadata Catalogs" are described here.

The CBI D property in the catalogs references the cubes defined in the OLAP
catalog. It has the following format:

owner _chars cube_chars owner _nane cube_nane

The following example identifies a cube owner of XADEMO (6 characters) and a cube
name of ANALYTI C_CUBE (13 characters).

6 13 XADEMO ANALYTI C_CUBE

The MEASI D property in the catalogs references the measures defined in the OLAP
catalog. It has the following format:

owner _chars cube_chars neas_chars owner_nane cube_nane neas_nane

The following example identifies a cube owner of XADEMO (6 characters), a cube
name of ANALYTI C_CUBE (13 characters), and a measure name of F_SALES (7
characters):

6 13 7 XADEMO ANALYTI C_CUBE F. SALES

Creating an Analytic Workspace From Relational Tables 9-17

References to OLAP Catalog Metadata

Dimensions
The DI M D property in the catalogs references the dimensions defined in the OLAP
catalog. It has the following format:
owner _chars di mchars owner _nane di mnane
The following example identifies a dimension owner of XADEMO (6 characters) and a
dimension name of GEOGRAPHY (9 characters):
6 9 XADEMO GEOGRAPHY

Hierarchies
The HI ERI D property in the catalogs references the hierarchies defined in the OLAP
catalog. It has the following format:
owner_chars dimchars hier_chars owner _nane di mnanme hi er _nane
The following example identifies a dimension owner of XADEMO (6 characters), a
dimension name of GEOGRAPHY (9 characters), and a hierarchy name of STANDARD
(8 characters):
6 9 8 XADEMO GEOGRAPHY STANDARD

Levels

The LVLI D property in the catalogs references the hierarchy levels defined in the
OLAP catalog. It has the following format:

owner_chars dimchars Ivl _chars owner_nane di mnane | vl _nane

The following example identifies a dimension owner of XADEMO (6 characters), a
dimension name of GEOGRAPHY (9 characters), and a level name of L3 (2
characters):

6 9 2 XADEMO GEOGRAPHY L3

Level Attributes

The LVLAI D property in the catalogs references the level attributes defined in the
OLAP catalog. It has the following format:

owner _chars dimchars vl _chars attr_chars owner_nane
dimnane |vl _nane attr_nane

9-18 Oracle9/ OLAP User’s Guide

References to OLAP Catalog Metadata

The following example identifies a dimension owner of XADEMO (6 characters), a
dimension name of GEOGRAPHY (9 characters), a level of L4 (2 characters), and an
level attribute name of GEOG_STD _Cl TY_LLABEL (20):

6 9 2 20 XADEMD GEOGRAPHY L4 GEOG STD CI TY_LLABEL

Creating an Analytic Workspace From Relational Tables 9-19

References to OLAP Catalog Metadata

9-20 Oracle9/ OLAP User’s Guide

Part |l

SQL Access Reference

Part Il provides information about PL/SQL packages and procedures that either
create relational views of multidimensional data or embed OLAP DML commands
in their syntax.

This part contains the following chapters:
. Chapter 10, "DBMS_AW"
« Chapter 11, "OLAP_TABLE Function"

10

DBMS_AW

This chapter contains reference information for the DBMS_AWpackage. Using the
procedures and functions in the DBM5_AWpackage, SQL programmers can issue
OLAP DML statements against analytic workspace data. They can move data from
relational tables into the analytic workspace, perform advanced analysis (for
example, forecasting), and move data from the analytic workspace back into
relational tables. Also, once the data is in the analytic workspace, SQL programmers
can issue SELECT statements against the data in the analytic workspace using the
OLAP_TABLE function.

The DBM5_AWpackage also includes procedures and functions that SQL
programmers can use to retrieve and print the session logs created by the execution
of the OLAP_TABLE function or the procedures and functions in the DBVS_AW
package.

This chapter includes the following topics:
« Summary of DBMS_AW Subprograms
« EXECUTE Procedure

« INTERP Function

« INTERPCLOB Function

« GETLOG Function

« PRINTLOG Procedure

DBMS_AW 10-1

Summary of DBMS_AW Subprograms

Summary of DBMS_AW Subprograms

The following table describes the subprograms provided in DBVS_AW

Table 10-1 DBMS_AW Subprograms

Subprogram

Description

"EXECUTE Procedure” on
page 10-3

"INTERP Function" on
page 10-6

"INTERPCLOB Function"
on page 10-8

"GETLOG Function" on
page 10-10

"PRINTLOG Procedure"
on page 10-11

Executes one or more OLAP DML commands (input as a
VARCHARZ string) and prints the output of the OLAP DML
commands (if any) using the DBMS_OUTPUT package.

Executes one or more OLAP DML commands (input as a
VARCHARZ string) and returns the session log in which the
commands were executed.

Executes one or more OLAP DML commands (input as a
CLOB) and returns the session log in which the commands
were executed.

Returns the session log from the last execution of the
DBMS_AW | NTERP function, the DBMS_AW | NTERPCLOB
function, or the OLAP_TABLE function.

Prints a session log using the DBMS_COUTPUT package.

10-2 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

EXECUTE Procedure

Syntax

Parameters

Usage Notes

This procedure executes one or more OLAP DML commands (input as a VARCHAR2
string) and prints the output of the OLAP DML commands (if any) using the
DBMS_OUTPUT package.

See Also: For the syntax of individual OLAP DML commands,
see Oracle9i OLAP DML Reference help. For a information on
analytic workspace objects, see Oracle9i OLAP Developer’s Guide to
the OLAP DML.

The syntax for the DBMS_AW EXECUTE procedure is shown below.

DBVB_AW EXECUTE (
ol ap- commands I'N VARCHAR?) ;

Table 10-2 EXECUTE Procedure Parameters

Parameter Description
ol ap- conmands One or more OLAP DML commands separated by
semi-colons.

Guidelines for Using Quotation Marks in OLAP DML Commands

The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the ol ap- commands parameter:

« Wherever you would normally use single quote (') in an OLAP DML
command, use two single quotes (' '). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

« Inthe OLAP DML, a double quote (") indicates the beginning of a comment.

Executing Large Numbers of OLAP DML Commands
Since the ol ap- commands parameter of EXECUTE procedure is of type VARCHAR2,
you are limited to 4,000 bytes for OLAP DML commands. For larger values, use the

DBMS_AW 10-3

EXECUTE Procedure

Example

"INTERPCLOB Function” on page 10-8 which allows you to input the OLAP DML
commands as a CLOB.

Effect of the OUTFILE Command
This procedure does not print the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFI LE command.

Executing Multiple OLAP DML Commands

You can specify a number of OLAP DML commands in a single EXECUTE
procedure. In this case, you separate each OLAP DML command with a semicolon
(;). For example, the following EXECUTE procedure contains multiple lines of code
prepares an analytic workspace for access by the OLAP_TABLE function with a
complete limit map. It creates a grouping id variable for the Standard hierarchy of
geography, execute the OLAP DML code shown below.

DBVS_AW EXECUTE (' AW DETACH xadeno;

AW ATTACH xadeno ro;

PUSH OKNULLSTATUS;

OKNULLSTATUS = TRUE;

"Create variable for the grouping id;

DEFI NE geog. gi d | NTEGER VAR ABLE <geogr aphy>;

" Create new parent-child relations for only a single hierarchy;
" of each nultidinensional hierarchical dinension;
DEFI NE g0. newpar ent RELATI ON geogr aphy <geogr aphy>;
g0. newparent = g0. parent(g0. hierdim1);

" Popul ate the groupid variabl es;

CGROUPI NG D g0. newpar ent | NTO geog. gi d;

' Save changes to anal ytic workspace;

POP OKNULLSTATUS;

ALLSTAT;

LIMT g0. hierdimTO 1,

UPDATE;

COWMT;")

10-4 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

Executing a Predefined OLAP DML Program

Assume that you have defined an OLAP DML program named nakegr oupi d that
performs the functionality shown in "Executing Multiple OLAP DML Commands"
on page 10-4. The following code illustrates using the EXECUTE procedure to
execute the nakegr oupi d program.

DBVS_AW EXECUTE (
" AW DETACH xadeno;
AW ATTACH xadenp ro;
CALL makegr oupi d;
I'N VARCHAR);

Executing OLAP DML Commands Using an Infile

You can create a text file that consists only of the OLAP DML commands that you
want executed. For example, you could create a text file named makegr oupi d. i nf
that had the following lines of code.

AW DETACH xadeno
AW ATTACH xadenp ro
CALL makegroupi d

Assume that you have saved makegr oupi d. i nf into the/ user s/ oracl e/ sql
directory. The following code illustrates using the EXECUTE procedure to execute
the OLAP DML commands in xadenopr ep. i nf .

- Attach and prepare xadeno anal ytic workspace
EXECUTE DBMB_AW EXECUTE(' | NFI LE /users/oracl e/ sql / makegr oupi dp.inf")

DBMS_AW 10-5

INTERP Function

INTERP Function

Syntax

Parameters

Returns

Usage Notes

This function executes one or more OLAP DML commands (input as a VARCHAR2
string) and returns the session log in which the commands are executed.

See Also: For the syntax of individual OLAP DML commands,
see Oracle9i OLAP DML Reference help. For a information on
analytic workspace objects, see Oracle9i OLAP Developer’s Guide to
the OLAP DML.

The syntax for the | NTERP function is shown below.

DBVB_AW | NTERP (
ol ap- commands I'N VARCHAR?) ;

Table 10-3 DBMS_AW.INTERP Function Parameters

Parameter Description
ol ap- conmands One or more OLAP DML commands separated by
semi-colons.

The | NTERP function returns a CLOB which is the log for Oracle OLAP session in
which the OLAP DML commands were executed.

Guidelines for Using Quotation Marks in OLAP DML Commands

The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the ol ap- conmands parameter:

= Wherever you would normally use single quote (') in an OLAP DML
command, use two single quotes (" ’). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

« Inthe OLAP DML, a double quote (") indicates the beginning of a comment.

10-6 Oracle9/ OLAP User’s Guide

Summary of DBMS_AW Subprograms

Effect of the OUTFILE Command
This function does not return the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFI LE command.

Printing the Session Log
To print the session log returned by this function, use the DBMS_AW PRI NTLOG
procedure.

DBMS_AW 10-7

INTERPCLOB Function

INTERPCLOB Function

This function executes one or more OLAP DML commands (input as a CLOB) and
returns the session log in which the commands are executed.

See Also: For the syntax of individual OLAP DML commands,
see Oracle9i OLAP DML Reference help. For a information on
analytic workspace objects, see Oracle9i OLAP Developer’s Guide to
the OLAP DML.

Syntax
The syntax for the | NTERPCLOB procedure is shown below.
DBVS_AW | NTERPCLOB (
ol ap- commands IN CLOB);
Parameters
Table 10-4 DBMS_AW.INTERPCLOB Function Parameters
Parameter Description
ol ap- conmands One or more OLAP DML commands separated by
semi-colons.
Returns

The | NTERPCLOB function returns a CLOB which is the log for Oracle OLAP session
in which the OLAP DML commands were executed.

Usage Notes

Guidelines for Using Quotation Marks in OLAP DML Commands

The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the ol ap- conmands parameter:

= Wherever you would normally use single quote (') in an OLAP DML
command, use two single quotes (" ’). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

« Inthe OLAP DML, a double quote (") indicates the beginning of a comment.

10-8 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

Effect of the OUTFILE Command
This function does not return the output of the OLAP DML commands when you
have redirected the output by using the OLAP DML OUTFI LE command.

Printing the Session Log
To print the session log returned by this function, use the DBMS_AW PRI NTLOG
procedure.

DBMS_AW 10-9

GETLOG Function

GETLOG Function

This function returns the session log from the last execution of the
DBMS_AW | NTERP function, the DBMS AW | NTERPCL OB function, or the
OLAP_TABLE function.

Syntax
The syntax for the GETLOGfunction is shown below.
DBMS AW GETLOJ) ;

Returns
The GETLOG function returns a CLOB session log.

Usage Notes

Effect of the OUTFILE Command

The DBM5_AW | NTERP and DBMS_AW | NTERPCL OB functions do not return the
output of the DML commands when you have redirected the output by using the
OLAP DML QUTFI LE command.

Typical use of the GETLOG Function

Since both the DBM5_AW | NTERP and the DBVMS_AW | NTERPCL OB functions return
a session log, typically you use the GETLOGfunction to retrieve the session log in
which the OLAP_TABLE function was executed.

Printing the Session Log
To print the session log returned by this function, use the DBMS_AW PRI NTLOG
procedure.

10-10 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

PRINTLOG Procedure

This procedure prints a session log using the DBM5_OUTPUT package. You can use
this procedure to print a session log returned by the DBMS_AW | NTERP, the
DBVMS_AW | NTERPCLOB, or the DBMS AW GETLOG functions.

Syntax
The syntax for the PRI NTLOG procedure is shown below.
DBVS_AW PRI NTLOG (
sessi on-1 og IN CLOB);
Parameters

Table 10-5 DBMS _AW.PRINTLOG Procedure Parameters

Parameter Description

sessi on-1 og The log of a session.

Usage Notes

You can use the PRI NTLOG procedure to print a session log returned by the
DBMS_AW | NTERP, the DBM5S_AW | NTERPCLOB, or the DBMS_AW GETLOG
functions.

DBMS_AW 10-11

PRINTLOG Procedure

10-12 Oracle9i OLAP User’s Guide

11

OLAP_TABLE Function

This chapter describes how SQL programers can use the OLAP_TABLE function in a
SQL SELECT statement to query multidimensional data in an analytic workspace.

This chapter includes the following topics:

« Accessing Multidimensional Data Using the OLAP_TABLE Function
« Preparing an Analytic Workspace for Access by OLAP_TABLE

= Creating Object Type Definitions Used by OLAP_TABLE

« Syntax: OLAP_TABLE Function

« Example: Using the OLAP_TABLE Function

OLAP_TABLE Function 11-1

Accessing Multidimensional Data Using the OLAP_TABLE Function

Accessing Multidimensional Data Using the OLAP_TABLE Function

One way to access multidimensional data is by using the OLAP_TABLE function.
The OLAP_TABLE function is a predefined table function that returns a table of
objects that map to analytic workspace data.

Before you can access multidimensional data using the OLAP_TABLE function, you
must take the following steps:

1. Confirm that the analytic workspace has the necessary objects to support the
use of the OLAP_TABLE function and define any additional objects as described
in "Preparing an Analytic Workspace for Access by OLAP_TABLE" on
page 11-3.

2. In SQL, define an object types to represent the analytic workspace structures as
a relational table as described in "Creating Object Type Definitions Used by
OLAP_TABLE" on page 11-4.

Once you have created type definitions and defined the necessary analytic
workspace objects, you can make selections of that data using a SELECT statement
with the OLAP_TABLE function which works like a regular table function. By using
it within a SELECT statement you can select data from the analytic workspace or
create a view of analytic workspace data.

The simplified syntax for using the OLAP_TABLE function in a SQL SELECT
statement is shown below:

SELECT * FROM TABLE(OLAP_TABLE
(awattach, table-name, ol ap-conmmand, limt-nmap))
AS tabl e- nane;

Additionally, by coding the OLAP_TABLE function directly in a SELECT statement
of a CREATE VI EWcommand, you can create a relational view of analytic
workspace data without using the CAWR_ OLAP_AW ACCESS PL/SQL package.

For the complete syntax of the OLAP_TABLE function, see "Syntax: OLAP_TABLE
Function" on page 11-5. For an example of its use, see "Example: Using the
OLAP_TABLE Function" on page 11-11.

11-2 Oracle9/ OLAP User’s Guide

Preparing an Analytic Workspace for Access by OLAP_TABLE

Preparing an Analytic Workspace for Access by OLAP_TABLE

All hierarchies in an analytic workspace are defined by the following analytic
workspace objects:

« Adimension whose values are all of the values of the hierarchy.

« Achild-parent self-relation for that dimension whose values are the parents of
the dimension values.

When you want to define a complete limit map for OLAP_TABLE for a hierarchy or
for data that is dimensioned by a hierarchy, you must also define the following
analytic workspace objects:

=« A Boolean variable that has a value of TRUE for each dimension value
that is in the hierarchy.

« Adimension whose values are integers that represent the levels of the
hierarchy.

« Arelation that has been populated using the OLAP DML HI ERHEI GHT
command. This relation represents the values of the hierarchy by level.

Tip: When the hierarchical dimension is defined as a concat dimension, the
values of this relation are the values of the concat dimension. If you want the
base dimension values in the relational view, define a variable with the same
dimensions as this relation. and populate that variable using the following
syntax:

variabl e = BASEVAL(rel ation)

« Avariable that has been populated using the OLAP DML GROUPI NG D
command. The values of this variable, which is dimensioned by the hierarchy,
are the grouping ids for each value of the hierarchy.

For an example of preparing an analytic workspace for access by OLAP_TABLE see,
"Example: Using the OLAP_TABLE Function" on page 11-11. For more information
on the analytic workspace objects that support the use of hierarchies, see
"Hierarchies" on page 15-4.

OLAP_TABLE Function 11-3

Creating Object Type Definitions Used by OLAP_TABLE

Creating Object Type Definitions Used by OLAP_TABLE
Creating type definitions that are used by the OLAP_TABLE function involves:
1. Designing the objects that will represent the analytic workspace structures.

2. Writing the object type definitions and the table definitions to define the
analytic workspace data as a table of objects.

Designing the Objects

Each object type represents a row in a table. When mapping analytic workspace
structures to object types, typically, you do not define one object type for each
analytic workspace structure. Instead, you map many analytic workspace structures
to just a few objects:

« Objects that represent measure tables. All multidimensional analytic workspace
structures that share exactly the same dimensions can be mapped into a single
object.

« Objects that represent dimension tables. All one-dimensional analytic
workspace structures that have exactly the same dimension can be mapped into
the object type that you define for that dimension.

For a more complete discussion of the data warehouse designs that you can mimic
in your design, see "Data Structures in Relational and Multidimensional Data
Stores" on page 4-4.

For each object, you need to identify the attributes that correspond to the columns
of the table. To do this, you first need to determine if you want to support the use of
WHERE clauses when selecting the data. Only those attributes (table columns) that
appear inthel i m t - map parameter of the OLAP_TABLE function can be referenced
in a WHERE clause.

Typically, you will want to support the use of WHERE clauses. In this case, you need
to determine the format of the | i mi t - map parameter in order to determine the
columns of each table. The columns of each table must correspond exactly to the
columns specified in the | i m t - map parameter. For the syntax of the | i m t - map
parameter, see "Syntax: OLAP_TABLE Function" on page 11-5.

11-4 Oracle9/ OLAP User’s Guide

Syntax: OLAP_TABLE Function

Creating Type Definitions for Multidimensional Data

To create the type definitions that define the analytic workspace data as a table of
objects take the following steps:

1. Create a type definition for an object that represents a row in the table and
whose attributes represents the columns of the table. Simplified syntax for this
definition is shown below.

CREATE TYPE obj ect-nane AS OBJECT (

col um-first dat a-t ype,
col um- next dat a- t ype,
col um- | ast dat a-type);

2. Create a type definition for a table of these objects. Simplified syntax for this
definition is shown below.

CREATE TYPE t abl e-name AS TABLE OF obj ect - nane;

Syntax: OLAP_TABLE Function

The syntax for the OLAP_TABLE function is shown below.

OLAP_TABLE (
awat t ach I N VARCHAR?2,
t abl e- name I N VARCHAR?2,
ol ap- command I N VARCHAR?,
[imt-map I'N VARCHAR?) ;

The OLAP_TABLE function returns a table of objects.

Parameters

aw-attach

An optional text expression that specifies the name of the analytic workspace that
contains the data you want to query and whether the analytic workspace is
detached after this function executes. The format of aw at t ach is shown below:

[aw nane DURATI ON QUERY| SESSI O\

where:

aw- nane is the name of the analytic workspace that you want attached as the active
analytic workspace for Oracle OLAP. When there is one or more analytic

OLAP_TABLE Function 11-5

Syntax: OLAP_TABLE Function

workspaces attached, you do not have to specify a value for the aw_at t ach
parameter. In this case, Oracle OLAP searches these analytic workspaces for the
analytic workspace objects referenced in the ol ap- conmand and | i ni t - map
parameters. When you do not specify a value for the aw_at t ach parameter and an
analytic workspace is not attached, an error is returned.

The DURATI ON phrase specifies when the analytic workspace specified by aw- name
is detached. When the analytic workspace specified by aw nane is already
attached, the DURATI ON phrase is ignored. You can specify either of the following
keywords:

« QUERY specifies that the analytic workspace is detached after this function
executes.

« SESSI ONspecifies that the analytic workspace is detached when the connection
to the database ends.

table-name
The name of the table of objects that this function returns.

olap-command

A text expression that specifies one or more OLAP DML commands, including an
OLAP DML program. When you specify a value for this parameter, Oracle OLAP
executes these OLAP commands before it selects the data using the mapping
provided by the | i mi t - map parameter. When using quotation marks in an OLAP
command, follow these guidelines:

« Wherever you would normally use single quote (') in an OLAP command, use
two single quotes (' ') . The SQL processor strips one of the single quotes
before it sends the OLAP command to Oracle OLAP.

« Use adouble quote (") to indicate the beginning of a comment.

The main reasons why you specify a value for the ol ap- conmand parameter is if
you do not want to support the use of WHERE clauses. In this case, you specify a
FETCHcommand (or an OLAP DML program that includes a FETCH command) for
the value of the ol ap- command parameter instead of specifying a value for the

l'i mt-nmap parameter. For the syntax of the OLAP FETCHcommand, see the topic for
that command in Oracle9i OLAP DML Reference help.

11-6 Oracle9/ OLAP User’s Guide

Syntax: OLAP_TABLE Function

limit-map
A text expression that specifies how Oracle OLAP accesses analytic workspace data.
The format of the | i mi t - map parameter is shown below:

[MEASURE obj ect-attribute FROM aw neasure] ...
DI MENSI ON [object-attribute FROM awdim [WTH
[H ERARCHY [object-attribute FROM aw parent-rel
[(aw hi erdi m aw hierdimvalue [[, aw hierdimaw hierdimvalue] ...])]
[NHI ERARCHY awi nhi er - obj ect]
[G D object-attribute FROM aw gi d- obj ect]
[PARENTG D obj ect-attri bute FROM aw- gi d- obj ect]
[LEVELREL object-attribute-list FROM aw|evel-rel USING aw-I evel -dinj]
[[ATTRI BUTE obj ect-attribute FROM awattribute] ...]
[LOOP sparse-dinension]...
[PREDMLCVD ol ap- comrand]
[POSTDMLCVD ol ap- conmand)]

MEASURE block — Each MEASURE block maps the values of one analytic workspace
variable (or a function that returns an analytic workspace variable) specified by

aw- measur e to an object attribute (table column) specified by

obj ect - at tri but e. All of the analytic workspace variables mapped using a
single MEASURE block must have exactly the same analytic workspace dimensions.

DI MENSI ON block — Each DI MENSI ON block maps the values of an analytic
workspace dimension to one or more object attributes (table columns). When yo are
mapping an analytic dimension, you specify that dimension using a single

DI MENSI ONblock. When you are mapping one or more analytic workspace
variables using a MEASURE block, you also include one DI MENSI ON block for each
dimension of the analytic workspace variables.

The syntax varies depending on whether or not the dimension is a hierarchical
dimension.

When mapping a nonhierarchical dimension, use the obj ect -attri bute FROM
clause to map the dimension values to a single object attribute (table column)
specified by obj ect-attri bute.

When mapping a hierarchical dimension, use the W TH HI ERARCHY clause to map
the dimension values to several object attributes (table columns).

The[object-attri bute FROM aw parent-rel [(aw hierdim

aw hierdimvalue [[, aw hierdi maw hierdi mvalue]...]) subclause
maps the values of an hierarchical analytic workspace dimension to columns in the
relational object.

OLAP_TABLE Function 11-7

Syntax: OLAP_TABLE Function

obj ect - at t ri but e is the name of the object attribute (relational table
column) to which you want the analytic workspace value mapped.

aw- par ent - r el is a relation that is dimensioned by aw di mand all of the
aw- hi er di mdimensions. The values of aw par ent - r el are the values of
the aw di mdimension. For each unique combination of dimension values,
aw- par ent - r el has the value of aw di mthat is the parent. When

aw- par ent - r el represents more than one hierarchy, you use the

aw- hi er di m parameter to qualify it to a single hierarchy.

aw- hi er di mis the name of a dimension whose values are the names of
hierarchies and aw- hi er di m val ue is the name of a particular hierarchy.

aw- i nhi er - obj ect is the name of an analytic workspace variable or
relation whose non-NA values indicate membership in the hierarchy being
mapped. aw- i nhi er - obj ect must have the same dimensions as

aw- par ent -r el and aw gi d- obj ect (thatis, it must be dimensioned by
aw- di mand all of the aw hi er di mdimensions).

« The G D object-attribute FROM aw gi d- obj ect subclause maps the
grouping ids of the children of an hierarchical analytic workspace dimension to
a column in the relational object.

obj ect - at tri but e is the name of the object attribute (relational table
column) to which you want the analytic workspace value mapped.

aw- gi d- obj ect is the name of an analytic workspace variable whose
values are the grouping ids for the hierarchy or the name of an analytic
workspace relation that returns a Nunber dimension whose values are the
grouping ids for the hierarchy. aw gi d- obj ect must have the same
dimensions as aw- par ent - r el and aw-i nhi er - obj ect (thatis, it must be
dimensioned by aw di mand all of the aw hi er di mdimensions). When
the aw gi d- obj ect does not exist in the analytic workspace, you can
create it using the OLAP GROUPI NG D command. (For the syntax of
GROUPI NG D, see the topic for the command in the Oracle9i OLAP DML
Reference help.)

« The PARENTG D obj ect-attribute FROM aw gi d- obj ect subclause
maps the grouping ids of the parent values of an hierarchical analytic
workspace dimension to a column in the relational object.

obj ect - at tri but e is the name of the object attribute (relational table
column) to which you want the analytic workspace value mapped.

aw- gi d- obj ect is the name of an analytic workspace variable whose
values are the grouping ids for the hierarchy or the name of an analytic

11-8 Oracle9/ OLAP User’s Guide

Syntax: OLAP_TABLE Function

workspace relation that returns a Nunber dimension whose values are the
grouping ids for the hierarchy. aw gi d- obj ect must have the same
dimensions as aw- par ent - r el and aw- i nhi er - obj ect (thatis, it must be
dimensioned by aw di mand all of the aw hi er di mdimensions). When
the aw gi d- obj ect does not exist in the analytic workspace, you can
create it using the OLAP GROUPI NG D command. (For the syntax of
GROUPI NG D, see the topic for the command in the Oracle9i OLAP DML
Reference help.)

« TheLEVELREL object-attribute-list FROM aw | evel -rel USI NG
aw- | evel - di msubclause specifies how to map the values of a single
hierarchical dimension into several columns of the relational table. There is one
column in the table for each level of the analytic workspace hierarchy.

object-attribute-list isalist of the names of object attributes that
represent columns of the relational table to which you want the values
mapped. Specify one attribute (column) name for each level in the
hierarchy. Separate the names of the attributes (columns) using commas.
The order must be the same as the order specified in

aw-| evel -rel ati on.

aw- | evel - r el isthe name of an analytic workspace relation that is
dimensioned by aw di m aw- | evel - di m and all aw hi er di m
dimensions. The values of aw- | evel -r el are the numerical values that
represent the levels of the dimension. These are the values that will be in
the table columns specified by obj ect -attri bute-1i st.When

aw- | evel - r el does not exist in the analytic workspace, you can create it
using the OLAP HEI RHEI GHT command. In this case, you can specify if
you want the attributes in descending (the default) or ascending order. (For
the syntax of HI ERHEI GHT, see the topic for the command in the Oracle9i
OLAP DML Reference help.)

aw- | evel - di mis the name of an integer dimension whose values are
1 through the highest-level of hierarchy in the analytic workspace.

« The ATTRI BUTE obj ect-attribute FROM aw att ri but e subclause
specifies how dimension table attributes are mapped.

obj ect - at t ri but e is the name of the object attribute (relational table
column) to which you want the analytic workspace value mapped.

aw- at t ri but e is the name of an analytic workspace relation, variable, or
formula that is dimensioned only by the analytic workspace dimension
specified by aw- di m

OLAP_TABLE Function 11-9

Syntax: OLAP_TABLE Function

« TheLOOP spar se-di mensi on subclause specifies how the OLAP_TABLE
function loops over the values of aw- measur e to retrieve its values. You can
specify this subclause for only one dimension of a measure. Using this
subclause causes the function to loop sparsely over aw- measur e using the
analytic workspace composite, conjoint or multidimensional dimension
specified by spar se- di mensi on rather than looping over aw- neasur e
densely using the object specified by aw di m Typically, the composite specified
for spar se- di mensi on is one by which measure is dimensioned.

PREDMLCVD and POCSTMLCMVD blocks —PREDML_CMD is an optional block that
specifies an OLAP command to be executed before the data is fetched.
POSTDML.CMD is an optional block that specifies an OLAP command to be executed
after the data is fetched. In both blocks, the ol ap- command parameter specifies a
text expression that specifies one or more OLAP commands, including an OLAP
DML program. When using quotation marks in an OLAP command, follow these
guidelines:

« Wherever you would normally use single quote (') in an OLAP command, use
two single quotes (' ') . The SQL processor strips one of the single quotes
before it sends the OLAP command to Oracle OLAP.

« Use adouble quote (") to indicate the beginning of a comment.
Keep the following points in mind when creating a limit map:

« Many of the clauses in a limit map are optional. However, only those object
attributes (relational table columns) that are mapped to analytic workspace
objects can effectively be used in SQL SELECT statements and WHERE clauses.
When an object attribute (column) is referenced in a SELECT statement or a
WHERE clause but not in the limit map, that portion of the WHERE clause is
ignored when retrieving the data.

« A given analytic workspace object or object attribute (table column) can only be
referenced once within the limit map.

« Any multidimensional analytic workspace relation must be fully qualified
down to a single hierarchy.

Tip: To retrieve the Oracle OLAP session log from the last
execution of the OLAP_TABLE function, use the DBMS_AW GETLOG
function. You can print the session log returned by this function by
using the DBMS_AW PRI NTLOG procedure.

11-10 Oracle9i OLAP User’s Guide

Example: Using the OLAP_TABLE Function

Example: Using the OLAP_TABLE Function

In the discussion on working with relational tables in Oracle9i OLAP Developer’s
Guide to the OLAP DML there is an example of creating an analytic workspace
named aws h from the sample Sales History database. Assume that you want to
create relational views of the cost data in the awsh analytic workspace

For cost data, the Sales History database (which is fully described in Oracle9i Sample
Schemas) has a fact table named cost s that contains columns for its keys

(product _idandti nme_i d)and columns for facts (uni t _cost and
unit_price). The keys of cost s are primary keys of the pr oduct s dimension
table and the t i nes dimension table. The pr oduct s table represents one hierarchy
with four levels (prod_i d, prod_subcat egory, pr od_cat egory, and
products_al |). Theti nes table represents two hierarchies: Calendar Time and
Fiscal. The Calendar Time hierarchy has five levels: date, calendar week, calendar
month, calendar quarter, and calendar year. The Fiscal Time hierarchy has five
levels: date, fiscal week, fiscal month, fiscal quarter, and fiscal year.

In the aws h analytic workspace, the Products and Times hierarchies are defined as a
number of analytic workspace objects as illustrated in Example 11-1, "Definitions
for Cost Data in the awsh Analytic Workspace" on page 11-12. For the Products
hierarchy, there is a dimension for each level of a hierarchy, a concat dimension
named aw_pr oduct s for all of the levels, and a child-parent self-relation for the
concat dimension. When designing awsh, it was determined that applications only
need to summarize or aggregate data from at the year level. Consequently, there are
only three levels in the Time hierarchies in the analytic workspace: time id, fiscal
year, and calendar year. To define for the Time hierarchies, there is an analytic
workspace dimension containing the names of the two hierarchies (Calendar and
Fiscal), a dimensions for each of the three levels (time, fiscal year, and calendar
year), a concat dimension named aw _t i nes for all of the levels, and a child-parent
self-relation for the concat dimension. Since there are two time hierarchies the
child-parent self-relation created for aw_t i mes is dimensioned by both the concat
dimension and the hierarchies (by name). The facts in the costs table are defined as
analytic workspace variables dimensioned by a composite (named aw_cost sdi ns)
of aw_product s andaw _ti nes.

To prepare awsh for access by OLAP_TABLE, you need to add the analytic
workspace object definitions in Example 11-2, "Definitions for Additional Analytic
Workspace Objects" on page 11-13. Example 11-3, "Preparing the awsh Analytic
Workspace for OLAP_TABLE" on page 11-14 illustrates an OLAP DML program
that populates these analytic workspace objects using the HEI RHEI GHT command,
the GROUPI NG D command, and other OLAP DML commands.

OLAP_TABLE Function 11-11

Example: Using the OLAP_TABLE Function

After all of the necessary analytic workspace objects are defined and populated you
can use of the OLAP_TABLE function to create a relational view of the cost data in
awsh. Example 11-4, "Creating Views Using the OLAP_TABLE Function" on

page 11-15 is a script that creates these views.

The aw_pr oduct s_vi ewis a view of the Products hierarchy. It includes a
column for all of the values in the hierarchy, a column for the parent of each of
the values in the hierarchy, columns for the values of each level in the hierarchy
and, a column for the grouping id of each value in the hierarchy. The columns
that contain the values of the levels are mapped to analytic workspace data
using the LEVELREL clause of the | i nmi t - map parameter of the OLAP_TABLE
function.

Theaw_ti nes_vi ewis a view of the Times hierarchies. It includes a column
for all of the values in the hierarchy, a column for the parent of each values in
the hierarchy, and columns for the values of each level in the hierarchy. The
columns that contain the values of the levels are mapped to analytic workspace
data using the ATTRI BUTE phrases inthe | i m t - map parameter of the
OLAP_TABLE function. Each ATTRI BUTE phrase maps a column in the view to
a analytic workspace formula that retrieves the values of one level of the

aw_t i mes dimension.

The aw_cost s_vi ewis a view of the actual cost facts (unit _pri ce and
uni t _cost) and the analytic workspace dimensions that act as the keys to
these facts.

Example 11-1 Definitions for Cost Data in the awsh Analytic Workspace

DEFINE aw_prod_id DI MENSI ON NUMBER (6)

DEFI NE aw_pr od_subcat egory DI MENSI ON TEXT

DEFI NE aw_prod_cat egory DI MENSI ON TEXT

DEFI NE aw_products_al | DI MENSI ON TEXT

DEFI NE aw_products DI MENSI ON CONCAT (aw_products_al |

aw _prod_category -
aw_prod_subcat egory -
aw_prod_i d)

DEFI NE aw_product s. parents RELATI ON aw_products <aw_product s>

DEFINE aw time_id DI MENSI ON TEXT

11-12 Oracle9i OLAP User’s Guide

Example: Using the OLAP_TABLE Function

DEFI NE aw_cal _year DI MENSI ON NUMBER(4)
DEFINE aw fis_year DI MENSI ON NUMBER(4)
DEFINE aw times DI MENSI ON CONCAT (aw_cal _year -
aw fis_year -
aw_tinme_id)
DEFI NE aw_ti mes_hi ernanes DI MENSI ON TEXT
DEFINE aw_tinmes. parents RELATION aw_tinmes <aw_tines aw_times_hi er names>

DEFI NE aw_cost sdi ns COVWPCSI TE <aw_products aw_ti mes>

DEFINE aw_unit_cost VARIABLE NUMBER (10, 2) <aw costsdins -
<aw_products aw tines>>

DEFINE aw_unit_price VAR ABLE NUMBER (10, 2) <aw_costsdins -
<aw_products aw_tines>>

Example 11-2 Definitions for Additional Analytic Workspace Objects

DEFI NE tenp_| evel nanes DI MENSI ON TEXT

LD A dinension used to sort names of |evels

DEFI NE aw_product s_| evel names DI MENSI ON TEXT

LD Names of |evels of the Products hierarchy

DEFI NE aw_product s_| evel nums DI MENSI ON | NTEGER

LD Level s of the Products hierarchy identified by nunber

DEFINE aw_ti mes_| evel names DI MENSI ON TEXT

LD Narmes of levels of the Tinmes hierarchy

DEFINE aw tines_| evel nums DI MENSI ON | NTEGER

LD Level s of the Tinmes hierarchy identified by nunmber

DEFI NE aw_products_gid VARI ABLE | NTEGER <aw_pr oduct s>

LD Level s of the Products hierarchy identified by AD

DEFI NE aw_products. aw_products_I evel nuns RELATI ON aw_products <aw_products
aw_product s_| evel nuns>

LD Concat dimension values for the Products hierarchy by |evel nunber
DEFINE aw tines.aw times | evel nuns RELATION aw tines <aw tines

aw times_hiernanmes aw times_| evel nuns>

LD Concat dinension values for the Tines hierarchy by |evel number and hierarchy
DEFI NE aw_product s_baseval ues VARI ABLE aw products <aw_products

aw_product s_| evel nuns>

DEFI NE AW FI SCAL_YEAR_FORM FORMULA -
BASEVAL(aw_times.aw tinmes_| evel nuns(aw_times_| evel nuns 2 -

aw_times_hi ernames 'Fiscal'))
LD Fornula that returns the base val ues of fiscal year
DEFI NE AW CALENDAR_YEAR FORM FORMULA -

BASEVAL(aw_times. aw tines_| evel nuns(aw_times_|evel nums 1 -
aw_times_hi ernanmes ' Cal endar’))

LD Fornula that returns the base val ues of cal endar year

OLAP_TABLE Function 11-13

Example: Using the OLAP_TABLE Function

DEFI NE AW TI MEI D_FORM FORMULA -
BASEVAL(aw_times.aw tines_| evel nums(aw_times_| evel nuns 3 -
aw_times_hi ernames ' Cal endar’))
LD Formula that returns the values of time_id

Example 11-3 Preparing the awsh Analytic Workspace for OLAP_TABLE

" Initialize the | evel nanes di mension for aw products

" Initialize the tenp_|l evel nanes di nension

MAI NTAIN tenp_| evel names DELETE ALL

" Populate tenp_|l evel names with the | owercase names of

" the base di mensions of aw products in the order they were defined
which is top level (world) has position 1

MAI NTAI N t enp_| evel names ADD LOACASE(OBJ(DATA ' aw_products’))

" Sort |evel names so that bottomlevel (prod_id)

" has position 1

SORT tenp_| evel names A tenp_| evel names

" Popul at e aw _products_| evel names with sorted | evel nanes

MAI NTAI N aw_product s_| evel names ADD VALUES (tenp_| evel nanmes)

" Popul at e aw products_| evel nunms with integers reprsenting |evels
" value of 1 represents bottom | evel

MAI NTAI N aw_products_| evel nuns ADD STATLEN (aw_product s_| evel nanes)

" Initialize the | evel names di mension for aw tines

" Initialize the tenp_| evel nanes di nensi on

MAI NTAI N tenp_| evel names DELETE ALL

" Popul ate tenp_| evel names with the | owercase nanes of

" the base dimensions of aw tines in the order they were defined
MAI NTAIN tenp_| evel names ADD LOACASE(OBJ(DATA 'aw_ times’))

" Sort |evel names so that bottom|evel has position 1

SORT tenp_| evel names A tenp_| evel names

" Popul ate aw tines_| evel nanmes with sorted | evel nanes

MAI NTAIN aw_tines_| evel names ADD VALUES (tenp_I evel nanes)

" Popul at e aw _products_l evel nuns with integers reprsenting |evels
" val ue of 1 represents bottom | evel

MAI NTAI N aw_tinmes_| evel nunms ADD STATLEN (aw_times_| evel names)

" Popul ate aw products_gid with grouping ids

" for levels of products

CGROUPI NG D aw_products. parents | NTO aw _products_gid

" Popul ate relation with concat dinension values for the Products hierarchy
H ERHEI GHT aw_product s. parents | NTO aw_products. aw_product s_| evel nuns

" Popul ate relation with concat dinension values for the Tines hierarchy

H ERHEI GHT aw_times. parents INTO aw_times.aw times_| evel nuns

11-14 Oracle9i OLAP User’s Guide

Example: Using the OLAP_TABLE Function

" Popul ate variable with base di mension values for the Products hierarchy
aw_products_baseval s = BASEVAL(aw_products. aw_product s_| evel nuns)

" Popul ate variable with base dinmension values for the Tines hierarchy
aw_times_baseval s = BASEVAL(aw_tines.aw_times_| evel nums)

"Update the anal ytic workspace and nmake changes permanent
UPDATE
COW T

Example 11-4 Creating Views Using the OLAP_TABLE Function

AW CONNECT / as sysdba
SET ECHO ON
SET SERVERQUT ON

DROP TYPE aw_products_thl;
DROP TYPE aw_products_obj ;
DROP TYPE aw times_thl;
DROP TYPE aw_ti mes_obj ;
DROP TYPE aw costs_thl;
DROP TYPE aw_costs_obj ;

-- Create objects and tables

-- Define an object that identifies the colums for product data

(
prod_hi er_val ue VARCHAR2(35) ,
prod_hi er_parent VARCHAR2(35) ,
prod_id VARCHAR2(10) ,
prod_subcat egory VARCHAR2(20) ,
prod_cat egory VARCHAR2(5) ,
prod_al | VARCHAR2(15) ,
prod_hier_gid NUMBER(10)) ;

OLAP_TABLE Function

11-15

Example: Using the OLAP_TABLE Function

-- Define an object that identifies the colums for tines data

CREATE TYPE aw_tinmes_obj AS OBJECT (

tinme_hi er_val ue VARCHAR2(20) ,
tine_hi er_parent VARCHAR2(20) ,
cal endar _year NUMBER(4, 0) ,
fiscal _year NUMBER(4, 0) ,
date_id VARCHAR2(10)) ;

-- Define an object that identifies the colums for cost data

CREATE TYPE aw_costs_obj AS OBJECT (
prod_hi er_val ue VARCHAR2(35) ,
prod_hi er_parent VARCHAR2(35) ,
tinme_hi er_val ue VARCHAR2(20) ,
tine_hier_parent VARCHAR2(20) ,
unit_cost NUMBER(10, 2) ,
unit_price NUMBER(10, 2)) ;

-- Define a table of objects for products data

CREATE TYPE aw_products_thl AS TABLE OF aw_products_obj;
-- Define a table of objects for times data

CREATE TYPE aw_times_thl AS TABLE OF aw tines_obj;

-- Define a table of objects for cost data

CREATE TYPE aw_costs_thl AS TABLE OF aw costs_obj;

-- Define a view of products data
CREATE OR REPLACE VI EWaw_products_view AS SELECT * FROM TABLE (CAST (OLAP_TABLE

(

"awsh duration session’, 'aw products_thl", ,
" DI MENSI ON prod_hi er _val ue FROM aw_pr oduct s
W TH H ERARCHY prod_hi er _parent FROM aw_products. parents
| NHI ERARCHY aw_pr oduct s_i nhi er
G D prod_hier_gid FROM aw_products_gid
LEVELREL prod_id, prod_subcategory, prod_category, prod_all
FROM aw_product s_baseval ues USI NG aw_product s_| evel nuns’)
AS aw_products_thl));

11-16 Oracle9i OLAP User’s Guide

Example: Using the OLAP_TABLE Function

-- Define a view of times data

CREATE OR REPLACE VIEW aw times_view AS SELECT * FROM TABLE (CAST (OLAP_TABLE (
"awsh duration session’, "aw times_thl', ',
" DI MENSI ON ti ne_hi er _val ue FROM aw_ti nes
W TH HI ERARCHY ti ne_hi er _parent FROM aw_ti mes. parents
ATTRI BUTE cal endar _year FROM aw_cal endar _year _form
ATTRI BUTE fiscal _year FROM aw fiscal _year_form
ATTRI BUTE date_id FROM aw tinmeid_form’)
AS aw times_thl));

-- Define a view of cost data

CREATE OR REPLACE VI EW aw _costs_view AS SELECT * FROM TABLE (CAST (OLAP_TABLE (
"awsh duration session’, 'aw costs thl’, '’
" MEASURE unit_cost FROM aw unit_cost
MEASURE unit_price FROM aw_unit_price
DI MENSI ON prod_hi er _val ue FROM aw_pr oduct s
W TH H ERARCHY prod_hi er _parent FROM aw_products. parents
DI MENSI ON tine_hier_value FROM aw ti nes
W TH H ERARCHY ti me_hi er _parent FROM aw_times.parents’)
AS aw_costs_thl));

-- Gant selection rights to the views
GRANT SELECT ON aw_product s_vi ew TO PUBLI C
GRANT SELECT ON aw tines_view TO PUBLIC
GRANT SELECT ON aw costs_view TO PUBLI C

OLAP_TABLE Function 11-17

Example: Using the OLAP_TABLE Function

-- Define a view of sales data
CREATE OR REPLACE VI EWol ap_sal es_vi ew AS
SELECT *
FROM TABLE(OLAP_TABLE(’ XADEMO DURATI ON SESSION', ' XASALES T', '',
" MEASURE sal es FROM aw f. sal es
DI MENSI ON et _chan FROM aw_channel WTH
H ERARCHY aw_channel . par ent
G D gi d_chan FROM aw_channel . gi d
DI MENSI ON et _prod FROM aw_product WTH
H ERARCHY aw_pr oduct . par ent
G D gid_prod FROM aw_prod. gi d
DI MENSI ON et _geog FROM aw_geography W TH
H ERARCHY aw_geogr aphy. par ent
G D gi d_geog FROM aw_geog. gi d
DIMENSION et time FROMaw tine WTH
H ERARCHY ti nme. par ent
GDgid time FROMaw time.gid));

11-18 Oracle9i OLAP User’s Guide

Part IV

OLAP Catalog Metadata APl Reference

Part IV describes the OLAP catalog views and the PL/SQL packages for creating
OLAP catalog metadata.

This part contains the following chapters:

Chapter 12,
Chapter 13,

Chapter 15,
Chapter 16,
Chapter 17,
Chapter 18,
Chapter 19,
Chapter 20,
Chapter 21,
Chapter 22,
Chapter 23,
Chapter 24,
Chapter 25,
Chapter 26,
Chapter 27,

"OLAP Catalog Union Views"

"OLAP Catalog (CWM2-Specific) Views"
Chapter 14, "
"CWM2_OLAP_AW_ACCESS"
"CWM2_OLAP_PC_TRANSFORM"
"CWM2_OLAP_DIMENSION"
"CWM2_OLAP_DIMENSION_ATTRIBUTE"
"CWM2_OLAP_HIERARCHY"
"CWM2_OLAP_LEVEL"
"CWM2_OLAP_LEVEL_ATTRIBUTE"
"CWM2_OLAP_CUBE"
"CWM2_OLAP_MEASURE"
"CWM2_OLAP_TABLE_MAP"
"CWM2_OLAP_AW_OBJECT"
"CWM2_OLAP_AW_MAP"
"CWM_CLASSIFY"

OLAP Catalog Analytic Workspace Views"

12

OLAP Catalog Union Views

This chapter describes the views that constitute the comprehensive read API to all
the OLAP metadata defined in the database. This includes OLAP metadata stored
in the OLAP 2 Catalog (CWWR) and the OLAP 1 Catalog (CVWM).

The OLAP Catalog union views reference the OLAP 2 Catalog views and the OLAP
1 Catalog views. For information on the OLAP 2 Catalog views, see OLAP Catalog
(CWM2-Specific) Views.

This chapter discusses the following topics:
= Access to OLAP Catalog Union Views
« Summary of OLAP Catalog Union Views

OLAP Catalog Union Views 12-1

Access to OLAP Catalog Union Views

Access to OLAP Catalog Union Views

The OLAP Catalog comprehensive read API (union views) consists of two sets of
corresponding views:

« ALL_ views displaying all valid OLAP metadata accessible to the current user.

« DBA views displaying all OLAP metadata (both valid and invalid) in the entire
database. DBA views are intended only for administrators.

Note: The OLAP Catalog tables are owned by OLAPSYS. To create
OLAP metadata stored in these tables, the user must have the

OLAP_DBArrole.

The columns of the ALL_ and DBA _ views are identical. Only the ALL_ views are
listed in this chapter.

Summary of OLAP Catalog Union Views

The OLAP Catalog union views are summarized in the following table.

Table 12-1 OLAP Catalog Union Views

Synonym View Name Description
ALL_OLAP2 CATALOG ALL$COLAP2UCATALOG Represents measures in measure folders (catalogs).
ENTI TY_USES ENTI TY_USES

ALL_OLAP2_CATALOGS

ALL$OLAP2UCATALCGS

Represents measure folders (catalogs).

ALL_OLAP2_ CUBE ALL$CLAP2UCUBE_ Represents the association between cubes and their
DI M_USES DI M_USES dimensions.

ALL_OLAP2_ CUBE ALL$CLAP2UCUBE_ Represents the aggregation method specified for
MEAS_DI M_USES MEAS DI M USES measure/dimension combinations.
ALL_OLAP2_CUBE ALL$OLAP2UCUBE _ Represents the mapping of measures to columns in
MEASURE _NMAPS MEASURE _NAPS fact tables.

ALL_OLAP2_CUBE ALLSCOLAP2UCUBE _ Represents measures.

MEASURES MEASURES

ALL_OLAP2_CUBES ALL$COLAP2UCUBES Represents cubes.

ALL _OLAP2_DI M_ ALLSCLAP2UDI M_ Represents dimension attributes and their associated
ATTR_USES ATTR_USES level attributes.

12-2 Oracle9i OLAP User’s Guide

Summary of OLAP Catalog Union Views

Table 12-1 OLAP Catalog Union Views

Synonym View Name Description
ALL _OLAP2_DI M_ ALLSCLAP2UDI M_ Represents dimension attributes.
ATTRI BUTES ATTRI BUTES

ALL_OLAP2_ DI M_
H ER_LEVEL_USES

ALL_OLAP2_ DI M_
HI ERARCHI ES

ALL_OLAP2_ DI M_
LEVEL_ATTR_MAPS

ALL_OLAP2_ DI M_
LEVEL_ATTRI BUTES

ALL_OLAP2_ DI M_
LEVELS

ALL_OLAP2_
DI MENSI ONS

ALL_OLAP2_ENTI TY_
DESC_USES

ALL_OLAP2_FACT_
LEVEL_USES

ALL_OLAP2_FACT_
TABLE_G D

ALL_OLAP2_H ER_
CUSTOM_SORT

ALL_OLAP2_JO N_
KEY_COLUMN_USES

ALL_OLAP2_LEVEL_
KEY_COLUMN_USES

ALL$OLAP2UDI M_
H ER_LEVEL_USES

ALL$OLAP2UDI M
HI ERARCHI ES

ALL$OLAP2UDI M_
LEVEL_ATTR_MAPS

ALL$OLAP2UDI M
LEVEL_ATTRI BUTES

ALL$OLAP2UDI M
LEVELS

ALL$OLAP2UDI MENSI O

NS

ALLSOLAP2UENTI TY_
DESC_USES

ALL$OLAP2UFACT _
LEVEL_USES

ALL$SOLAP2UFACT _
TABLE_G D

ALL$OLAP2UHI ER
CUSTOM_SORT

ALL$OLAP2UJOI N_
KEY_COLUMN_USES

ALL$OLAP2ULEVEL _
KEY_COLUMN_USES

Represents the relationship between pairs of levels in
a hierarchy.

Represents hierarchies.
Represents the association between levels and level
attributes.

Represents level attributes.

Represents levels.

Represents dimensions.

Represents the association between OLAP metadata

entities and their descriptors.

Represents join relationships between fact tables and
dimension tables.

Represents Grouping ID (GID) columns in fact tables.
Represents custom sorting information for
hierarchies.

Represents the mapping between levels in a hierarchy.

Represents the mapping of levels to columns in
dimension tables.

OLAP Catalog Union Views 12-3

ALL_OLAP2_CATALOG_ENTITY_USES

ALL_OLAP2 _CATALOG_ENTITY_USES

ALL_OLAP2_ CATALOG ENTI TY_USES is a synonym for ALLSOLAP2UCATALOG _
ENTI TY_USES.

Each row represents an entity within an OLAP measure folder (catalog). Measures
are the only OLAP metadata entities that can be collected in measure folders.

Note: The classification system, used to manage measure folders
and classify various OLAP metadata entities, is implemented in the
OLAP 1 Catalog and referenced from the OLAP 2 Catalog.

Both OLAP 2 Catalog and OLAP 1 Catalog measure folders are
displayed by ALL_OLAP2_ CATALOG _ENTI TY_USES.

Note: The term catalog, when used in the context of the OLAP
metadata classification system, refers to a measure folder. It should
not be confused with the term OLAP Catalog, which refers to the
collection of tables that implement the OLAP metadata model.

Column Data Type NULL Description

CATALOG I D NUMBER NOT NULL ID of the measure folder.

ENTI TY_OANER VARCHAR2(30) NOT NULL Owner of the measure’s cube.

ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the measure’s cube.

CHI LD_ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the measure in the measure folder.

ALL_OLAP2_CATALOGS
ALL_CLAP2_CATALQOGS is a synonym for ALL$OLAP2UCATAL OGS.

Each row represents an OLAP measure folder (catalog). Measure folders are a
means of grouping measures related to a given business area. For instance, all the
measures that store information about a given product line might be collected in a
measure folder.

Measure folders are schema independent. All users can view all the measure folders
defined in the database, even if they do not have access privileges for the measures
within the folders.

12-4 Oracle9i OLAP User’s Guide

ALL_OLAP2_CUBE_DIM_USES

Measure folders can be nested within other measure folders.

Note: The term catalog, when used in the context of the
classification system, refers to a measure folder. It should not be
confused with the term OLAP Catalog, which refers to the
collection of tables that implement the OLAP metadata model. The
OLAP metadata classification system, implemented in the OLAP 1
Catalog, is used by both releases of the OLAP Catalog.

Column Data Type NULL Description

CATALCG | D NUMBER NOT NULL ID of the measure folder.

CATALOG_NAME VARCHAR2(30) NOT NULL Name of the measure folder.

PARENT_CATALOG | D NUMBER ID of the parent measure folder. This column is null for
measure folders at the root of the measure folder tree.

DESCRI PTI ON VARCHAR2(2000) Description of the measure folder.

ALL_OLAP2 CUBE_DIM_USES

ALL_OLAP2_ CUBE_DI M USES is a synonym for ALL$OLAP2UCUBE_DI M_USES.

Each row represents an association between a cube and a dimension. A dimension
may be associated more than once with the same cube, but each association is
specified in a separate row, under its own unique dimension alias.

Column Data Type NULL Description

CUBE_DI MENSI ON_USE_| D NUMBER NOT NULL ID of the association between a cube and a dimension.
OMNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OANER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DI MENSI ON_ALI AS VARCHAR2(30) Allias of the dimension, to provide unique identity of

dimension use within the cube.

OLAP Catalog Union Views 12-5

ALL_OLAP2_CUBE_MEAS_DIM_USES

Column

Data Type NULL Description

DEFAULT_CALC_
HI ERARCHY_NAME

VARCHAR2(30) The default hierarchy to be used for drilling up or down
within the dimension.

DEPENDENT_ON_DI M_USE_ NUMBER ID of the cube/dimension association on which this

1D

cube/dimension association depends. (OLAP 1 Catalog
only)

ALL_OLAP2 CUBE_MEAS_DIM_USES

ALL_OLAP2 CUBE_MEAS DI M _USES is a synonym for ALL$OLAP2UCUBE_MEAS
DI M_USES.

Each row represents the association of a measure with one of its dimensions, and
specifies how the measure’s data can be aggregated over that dimension. If no
aggregation method is specified, the data is added.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the cube that defines this measure.
CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube that defines this measure.
MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure.

DI MENSI ON_OWKER
DI MENSI ON_NAME
DI MENSI ON_ALI AS

DEFAULT_AGGR_
FUNCTI ON_USE_I D

VARCHAR2(30) NOT NULL Owner of a dimension associated with this measure.
VARCHAR2(30) NOT NULL Name of the dimension.
VARCHAR2(30) Alias of the dimension.

NUMBER ID of the default aggregation method used to aggregate this
measure’s data over this dimension. If this column is null, the
aggregation method is addition.

ALL_OLAP2 CUBE_MEASURE_MAPS

ALL_OLAP2_CUBE_MEASURE_MAPS is a synonym for ALL$OLAP2UCUBE._
MEASURE_MAPS.

Each row represents the mapping of a measure to a column in a fact table.

In the OLAP 2 Catalog, measures are mapped separately for each combination of
dimension hierarchies. For example, if a measure has three dimensions and each
dimension has two hierarchies, then the measure has eight separate fact table
mappings. These eight columns may exist within the same fact table or in separate
fact tables. Each of the eight column mappings would appear as a separate row in
the view.

12-6 Oracle9/ OLAP User’s Guide

ALL_OLAP2_CUBES

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube.

MEASURE_NAVE VARCHAR2(30) NOT NULL Name of the measure defined by this cube.

DI M H ER_COVBO | D NUMBER NOT NULL ID of the association between this measure and one combination
of its dimension hierarchies. (Release 2 metadata only)

FACT_TABLE_OMNER VARCHAR2(30) NOT NULL Owner of the fact table.

FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column in the fact table where this measure’s data is

stored. In Release 2 metadata, the measure’s data is for one
combination of its hierarchies.

ALL_OLAP2 CUBE_MEASURES

ALL_OLAP2_ CUBE_MEASURES is a synonym for ALL$OLAP2UCUBE_MEASURES.

Each row represents a measure.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube that defines the measure.
CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube that defines the measure.
MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure.

DI SPLAY_NANME VARCHAR2(30) Display name for the measure.

DESCRI PTI ON VARCHAR2(2000) Description of the measure.

ALL_OLAP2 CUBES
ALL_CQLAP2_CUBES is a synonym for ALL$OLAP2UCUBES.

Each row represents a cube.

OLAP Catalog Union Views 12-7

ALL_OLAP2_DIM_ATTR_USES

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube.

I NVALI D VARCHARZ2(1) NOT NULL Whether or not this cube is in an invalid state. A cube is valid if
it has at least one dimension, all of its dimensions are valid, and
all the fact table mappings are valid.

DI SPLAY_NANME VARCHAR2(30) Display name for the cube.

DESCRI PTI ON VARCHAR2(2000) Description of the cube.

MW_SUMVARYCODE VARCHAR2(2) If this cube has a materialized view in the OLAP 2 Catalog, the

MV summary code specifies whether it is in GS (Grouping Set)
or RU (Rolled Up) form.

RU form means that all the dimension key columns are
populated, and data may only be accessed when its full lineage
is specified.

GS form means that dimension key columns may contain null
values, and data may be accessed simply by specifying one or
more levels.

ALL_OLAP2 DIM_ATTR_USES

ALL_OLAP2_DI M ATTR_USES is a synonym for ALL$OLAP2UDI M_ATTR_USES.

Each row represents the association of a level attribute with a dimension attribute.
A dimension attribute is composed of a set of level attributes. The same level
attribute can be included in more than one dimension attribute.

A level attribute designates a column in a dimension table that stores descriptive
information about a level in the dimension. For example, there might be a color
attribute pertaining to a product ID level.

A dimension attribute is a collection of level attributes. For example, the TI ME_
SPAN dimension attribute stores the number of days associated with each time
period in a time dimension. Time periods are defined as levels, and each level has
its own associated TI ME_SPAN level attribute, but all the TI ME_SPAN level
attributes (for example, MONTH_TI ME_SPAN, QUARTER _TI ME_SPAN, and YEAR _
Tl ME_SPAN) are defined as a single TI ME_SPAN dimension attribute.

12-8 Oracle9/ OLAP User’s Guide

ALL_OLAP2_DIM_ATTRIBUTES

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DI M_ATTRI BUTE_ VARCHAR2(30) NOT NULL Name of the dimension attribute.

NAVE

LEVEL_NAME VARCHAR2(30) NOT NULL Name of a level within the dimension.

LVL_ATTRI BUTE_ VARCHAR2(30) NOT NULL Name of an attribute for this level. This level attribute is

NAME

included in the dimension attribute.

ALL_OLAP2 DIM_ATTRIBUTES

ALL_OLAP2_DI M _ATTRI BUTES is a synonym for ALL$OLAP2UDI M_

ATTRI BUTES.

Each row represents a dimension attribute, which is a logical attribute providing a
grouping of level attributes within the dimension. The level attributes within the
dimension attribute grouping can be determined from the ALL_OLAP2_DIM_

ATTR_USES view.

A dimension attribute is only meaningful if it contains level attributes.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

ATTRI BUTE_NANME VARCHAR2(30) NOT NULL Name of the dimension attribute.

DI SPLAY_NANME VARCHAR2(30) Display name for the dimension attribute.

DESCRI PTI ON VARCHAR2(2000) Description of the dimension attribute.

DESC I D NUMBER A classification for the dimension attribute. If a dimension

attribute is classified, it may be of type LONG_DESCRI PTI ON,
SHORT_DESCRI PTI ON, END_DATE, TI ME_SPAN, PRI OR_
PERI OD, or YEAR_AGO_PERI CD.

OLAP Catalog Union Views 12-9

ALL_OLAP2_DIM_HIER_LEVEL_USES

ALL_OLAP2 DIM_HIER_LEVEL_USES

ALL_OLAP2_DI M HI ER_LEVEL_USES is a synonym for ALLSOLAP2UDI M_HI ER_
LEVEL_USES.

Each row represents a hierarchical relationship between two levels in a dimension
hierarchy. Within separate hierarchies, the same parent level may be hierarchically
related to a different child level.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

PARENT_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the parent level.

CHI LD_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the child level.

PGsSI TI ON NUMBER NOT NULL Position of this parent-child relationship within the hierarchy,

with position 1 being the most detailed.

ALL_OLAP2 DIM_HIERARCHIES

ALL_OLAP2_DI M_HI ERARCHI ES is a synonym for ALL$OLAP2UDI M_
HI ERARCHI ES.

Each row represents a dimension hierarchy. The relationships between levels for
each hierarchy are represented by ALL_OLAP2_DIM_HIER_LEVEL_USES.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

DI SPLAY_NANME VARCHAR2(30) Display name for the hierarchy.
DESCRI PTI ON VARCHAR2(2000) Description of the hierarchy.

12-10 Oracle9i OLAP User’s Guide

ALL_OLAP2_DIM_LEVEL_ATTR_MAPS

Column

Data Type

NULL

Description

SOLVED_CODE

VARCHAR2(2)

NOT NULL

The solved code may be one of the following:

UNSOLVED LEVEL- BASED, for a hierarchy that contains
no embedded totals and is stored in a level-based
dimension table. Release 1 hierarchies are always of this type.

SOLVED LEVEL- BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table. (Release 2 hierarchies only)

SOLVED VALUE- BASED, for a hierarchy that contains
embedded totals for all level combinations and is stored
in a parent/child dimension table. (Release 2 hierarchies
only)

ALL_OLAP2 DIM_LEVEL_ATTR_MAPS

ALL_OLAP2 DI M LEVEL_ATTR_MAPS is a synonym for ALLSOLAP2UDI M_
LEVEL_ATTR_NAPS.

Each row represents the mapping of a level attribute to its associated level.

Each level maps to one or more columns in a dimension table. Each level attribute
maps to a single column in the same dimension table as its associated level.

The mapping of level attributes to levels is dependent on hierarchy. The same level
may have different attributes when it is used in different hierarchies.

All the levels defined as OLAP metadata are represented by the ALL_OLAP2_DIM _

LEVELS view.
Column Data Type NULL Description
OMNER VARCHAR2(30) NOT NULL Owner of the dimension.
DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.
HI ERARCHY_NAME VARCHAR2(30) Name of the hierarchy containing this level.
ATTRI BUTE_NANME VARCHAR2(30) Name of a dimension attribute grouping containing this level
attribute.
LVL_ATTRI BUTE_ VARCHAR2(30) NOT NULL Name of the level attribute, or name of the column if the level
NANMVE attribute name is not specified.
LEVEL_NAME VARCHAR2(30) NOT NULL Name of the level.
TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table containing the level and level

attribute.

OLAP Catalog Union Views 12-11

ALL_OLAP2_DIM_LEVEL_ATTRIBUTES

Column Data Type NULL Description

TABLE_NAMVE VARCHAR2(30) NOT NULL Name of the dimension table containing the level and level
attribute columns.

COLUWN_NAME VARCHAR2(30) NOT NULL Name of the column containing the level attribute.

DTYPE VARCHAR2(10) NOT NULL Data type of the column containing the level attribute.

ALL_OLAP2_DIM_LEVEL ATTRIBUTES

ALL_OLAP2_DI M LEVEL_ATTRI BUTES is a synonym for ALLSOLAP2UDI M_
LEVEL_ATTRI BUTES.

Each row represents a level attribute. Each level attribute is a column in a
dimension table. The column stores descriptive information about a level defined
within the same dimension table. If the level attribute is not named, the column
name is used.

The mapping of the level attribute column to its associated level columns is
represented in ALL_OLAP2 DIM_LEVEL_ATTR_MAPS.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension containing the level attribute.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension containing the level attribute.

ATTRI BUTE_NANME VARCHAR2(30) Name of the level attribute. If no attribute name is specified, the
column name is used.

DI SPLAY_NAME VARCHAR2(30) Display name for the level attribute.

DESCRI PTI ON VARCHAR2(2000) Description of the level attribute.

DETERM NED_BY_ VARCHAR2(30) NOT NULL Name of the level to which this level attribute is mapped.

LEVEL _NAME

ALL_OLAP2 DIM_LEVELS

ALL_OLAP2_DI M LEVELS is a synonym for ALL$OLAP2UDI M_LEVELS.

Each row represents a level within a dimension. A level is mapped to one or more
columns within a dimension table. In a star schema, all of a dimension’s levels are
mapped to columns within the same table. In a snowflake schema, a dimension’s
levels are mapped to columns in separate tables.

12-12 Oracle9i OLAP User’s Guide

ALL_OLAP2_DIMENSIONS

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension containing this level.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension containing this level.

LEVEL_NANME VARCHAR2(30) NOT NULL Name of the level.

DI SPLAY_NANME VARCHAR2(30) Display name for the level.

DESCRI PTI ON VARCHAR2(2000) Description of the level.

LEVEL_TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table that contains the columns
for this level.

LEVEL_TABLE_NAME VARCHAR2(30) NOT NULL l\rl;imle ofI the dimension table that contains the columns for
this level.

ALL_OLAP2_DIMENSIONS
ALL_CLAP2_DI MENSI ONS is a synonym for ALL$OLAP2UDI MENSI ONS.

Each row represents a dimension. In OLAP 1 metadata, dimensions are based on
Oracle dimension objects. In OLAP 2 metadata, dimensions are completely
independent of Oracle dimension objects.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

PLURAL _NANME VARCHAR2(30) Plural name for the dimension. Used for display.

DI SPLAY_NANME VARCHAR2(30) Display name for the dimension.

DESCRI PTI ON VARCHAR2(2000) Description of the dimension.

DEFAULT_DI SPLAY_ VARCHAR2(30) NOT NULL Default display hierarchy for the dimension.

HI ERARCHY

I NVALI D VARCHAR2(1) NOT NULL Whether or not the dimension is valid. A dimension is valid

when all of its levels and level attributes are mapped to existing
columns, any dimension attributes are defined with sets of valid
level attributes, and hierarchies are defined with valid levels.

DI MENSI ON_TYPE VARCHAR2(10) Not used.

OLAP Catalog Union Views 12-13

ALL_OLAP2_ENTITY_DESC_USES

ALL_OLAP2 ENTITY_DESC_USES

ALL_QOLAP2_ ENTI TY_DESC USES is a synonym for ALLSOLAP2UENTI TY_DESC _
USES.

Each row represents an association between an OLAP metadata entity and its
descriptor. The OLAP metadata entities and descriptors are defined in the OLAP 1
Catalog classification system and referenced from the OLAP 2 Catalog.

The following OLAP metadata entities are represented in this view:
« Dimensions whose descriptor is Ti ne.

« Dimension attributes whose descriptor is: Long Descri pti on, Short
Descri ption,orDescription.

« Dimension attributes (for time dimensions only) whose descriptor is: End
Dat e, Ti me Span,Prior Period,orYear Ago Peri od.

« Level attributes (for time dimensions only) whose descriptor is: Day, Mont h,
Quarter,orYear.

Column Data Type NULL Description

DESCRI PTOR_I D NUMBER NOT NULL ID of the descriptor, derived from the OLAP 1 classification
system.

ENTI TY_OANER VARCHAR2(30) NOT NULL Owner of the entity. If the entity is a dimension attribute or level

attribute, the owner is the owner of the dimension.

ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the entity. The entity may be a dimension, a dimension
attribute, or a level attribute.

CHI LD_ENTI TY_NAME VARCHAR2(30) Name of the child entity (if applicable). A dimension attribute is
a child entity of a dimension. A level attribute is a child entity of
a dimension attribute.

SECONDARY_CHI LD VARCHAR2(30) Name of the secondary child entity name (if applicable). A

ENTI TY_NAME dimension attribute is a child entity of a dimension. A level
attribute is a child entity of a dimension attribute. A level
attribute could be the secondary child entity of a dimension.

ALL_OLAP2 FACT LEVEL USES

ALL_OLAP2 FACT_LEVEL USES s asynonym for ALL$OLAP2UFACT LEVEL _
USES.

Each row represents a join relationship between a fact table and a dimension table.
The join relationship is derived from a single key column in the fact table.

12-14 Oracle9i OLAP User’s Guide

ALL_OLAP2_FACT LEVEL_USES

In OLAP 2 metadata, the fact table is always mapped in the context of a specific
dimension hierarchy.

Column Data Type NULL Description
OMNER VARCHAR2(30) NOT NULL Owner of the cube.
CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OWKER
DI MENSI ON_NAVE
DI MENSI ON_ALI AS
HI ERARCHY_NAVE

VARCHAR2(30) NOT NULL Owner of the dimension.

NUMBER NOT NULL Name of the dimension.

VARCHAR2(30) Dimension alias (if applicable).
NOT NULL Name of the hierarchy.

DI M H ER_COVBO | D NUMBER NOT NULL ID of the dimension hierarchy combination associated with this

LEVEL _NAME

FACT_TABLE_OWNER
FACT_TABLE_NAME

COLUWN_NAME
POSI TI ON

fact table. (Release 2 metadata only)

VARCHAR2(30) Name of the level within the hierarchy where the mapping
occurs. This represents the lowest level of aggregation defined by
the foreign key/primary key for a specific dimension of the cube.
In Release 1 metadata, this is always the leaf level (all the
dimension’s hierarchies share the same leaf level).

VARCHAR2(30) NOT NULL Owner of the fact table.
VARCHAR2(30) NOT NULL Name of the fact table.
VARCHAR2(30) NOT NULL Name of the foreign key column in the fact table.

NUMBER Position of this column within a multi-column key.

DI MENSI ON_KEYMAP_ VARCHAR2(30) NOT NULL Type of key mapping for the fact table. Values may be:

TYPE

FOREI GN_KEY_NAME

LL (Lowest Level), when only lowest-level dimension members
are stored in the key column. The fact table is unsolved. For
Release 1 metadata, the key mapping type is always LL.

ET (Embedded Totals), when dimension members for all level
combinations are stored in the key column. The fact table is
solved (contains embedded totals for all level combinations).
(Release 2 metadata only)

RU (Rolled Up), when dimension members for each level are
stored in a separate key column (multi-column key). (Release 2
metadata only)

VARCHAR2(30) Name of the foreign key constraint (OLAP 1 Catalog only)
applied to the foreign key column. Constraints are not used in the
OLAP 2 Catalog.

OLAP Catalog Union Views 12-15

ALL_OLAP2_FACT TABLE_GID

ALL_OLAP2_FACT TABLE GID

ALL_OLAP2_ FACT_TABLE d Dis asynonym for ALLSOLAP2UFACT _TABLE G D.
Each row represents information about a Grouping ID (GID) column in a fact table.

In the case of solved, embedded total fact table (where totals for every level
combination are embedded in the table), there is a GID column corresponding to
each dimension key in the fact table. For example, an embedded total fact table for
sales data, which is dimensioned by product, geography and time, has three GID
columns (one for each of the dimensions).

Note: This view only pertains to OLAP 2 metadata (CWWR). GID
columns are not supported in OLAP 1 metadata (CVW).

Column Data Type NULL Description
OWNER VARCHAR2(30) NOT NULL Owner of the cube.
CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OWKER
DI MENSI ON_NAME
HI ERARCHY_NAME

VARCHAR2(30) NOT NULL Owner of the dimension.
VARCHAR2(30) NOT NULL Name of the dimension
VARCHAR2(30) NOT NULL Name of the hierarchy.

DI M_H ER_COVBO | D NUMBER NOT NULL ID of the dimension-hierarchy association.

FACT_TABLE_OWNER
FACT_TABLE_NANE
COLUMN_NAMVE

VARCHAR2(30) NOT NULL Owner of the fact table.
VARCHAR2(30) NOT NULL Name of the fact table.
VARCHAR2(30) NOT NULL Name of the GID column.

ALL_OLAP2 HIER_CUSTOM_SORT

ALL_QOLAP2 HI ER_CUSTOM SORT is a synonym for ALLSOLAP2UHI ER_CUSTOM_
SORT.

Each row provides information about custom sorting specified for a given
dimension hierarchy. Custom sorting information is optional.

Custom sorting information specifies how to sort the members of a hierarchy based
on columns in the associated dimension table. The specific columns in the
dimension tables may be the same as the key columns or may be related attribute
columns.

12-16 Oracle9i OLAP User’s Guide

ALL_OLAP2_JOIN_KEY_COLUMN_USES

Custom sorting can specify that the column be sorted in ascending or descending
order, with nulls first or nulls last. Custom sorting can be applied at multiple levels
of a dimension.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table containing the column to be
sorted.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table containing the column to be
sorted.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column to be sorted.

POSI TI ON NUMBER NOT NULL Represents the position within a multi-column SORT_
PGsI TI ON. In most cases, a single column represents SORT_
PGsSI TI ON, and the value of POSI Tl ONis 1.

SORT_PGsI TI ON NUMBER NOT NULL Position within the sort order of the level to be sorted.

SORT_ORDER VARCHAR2(4) NOT NULL Sort order. Can be either Ascendi ng or Descendi ng.

NULL_ORDER VARCHAR2(5) NOT NULL Where to insert null values in the sort order. Can be either

Null's First orNulls Last.

ALL_OLAP2_JOIN_KEY_COLUMN_USES

ALL_OLAP2_JO N_KEY_COLUMN_USES is a synonym for ALL$OLAP2UJOI N_
KEY_COLUMN_USES.

Each row represents the key information that joins two levels in a hierarchy. If the
level is mapped to more than one column, each column mapping is represented in a
separate row in the view.

In a snowflake schema, where levels are defined in separate dimension tables, levels
in a hierarchy have a logical foreign key relationship. In a star schema, where levels
are defined within the same dimension table, the child level key specifies its
position in the hierarchy.

OLAP Catalog Union Views 12-17

ALL_OLAP2_LEVEL_KEY_COLUMN_USES

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

CH LD _LEVEL_NAME VARCHAR2(30) NOT NULL Child level in the hierarchy.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUWN_NAME VARCHAR2(30) NOT NULL Name of the child level column in the dimension table. In a star
schema, this is the column associated with CHI LD _LEVEL _
NAME. In a snowflake schema, this is the parent column of
CHI LD_LEVEL_NAME in the same dimension table.

PGsSI TI ON NUMBER Position of column within the key. Applies to multi-column
keys only (where the level is mapped to more than one column).

JO N_KEY_TYPE VARCHAR2(30) NOT NULL The key is of type SNONFLAKE if the join key is a logical foreign

key. The key is of type STARf the join key refers to a column
within the same table.

ALL_OLAP2_LEVEL_KEY COLUMN_USES

ALL_OLAP2 LEVEL KEY_COLUWN_USES is a synonym for ALL$OLAP2ULEVEL _
KEY_COLUMN_USES.

Each row represents the logical key linking a dimension level to one of its
underlying columns in a dimension table. If the level is mapped to more than one
column, each column mapping is represented in a separate row in the view.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) Name of the hierarchy that includes this level.

CHI LD _LEVEL_NAME VARCHARZ2(30) NOT NULL Name of the level.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column that stores CHI LD_LEVEL _NAME.

POSI TI ON NUMBER Position of the column within the key. Applies to multi-column

keys only (where the level is mapped to more than one column).

12-18 Oracle9i OLAP User’s Guide

13

OLAP Catalog (CWM2-Specific) Views

This chapter describes the views that constitute the read API to the OLAP Catalog
version 2 (CV\R).

You can query these views to obtain information about OLAP metadata stored in
the OLAP Catalog (CVWR) tables. To create this metadata, use the PL/SQL
procedures in the OLAP Catalog (CVWR)write API.

Two sets of views are provided with version 2 of the OLAP Catalog. The views
documented in this chapter directly represent the CAWR OLAP Catalog.
Additionally, a set of union views, which provide a comprehensive read API for all
OLAP metadata defined in the database (both CWMand CWWR), are provided. For
information on the union views, see OLAP Catalog Union Views.

This chapter discusses the following topics:

« Access to OLAP Catalog (CWM2) Views

« System Tables Referenced by OLAP Catalog (CWM2) Views
« Summary of OLAP Catalog (CWM2)Views

OLAP Catalog (CWM2-Specific) Views 13-1

Access to OLAP Catalog (CWM2) Views

Access to OLAP Catalog (CWM2) Views

The OLAP Catalog read API consists of two sets of corresponding views:

ALL_ views displaying all valid OLAP metadata accessible to the current user.

DBA views displaying all OLAP metadata (both valid and invalid) in the entire
database. DBA views are intended only for administrators.

Note: The OLAP Catalog tables are owned by OLAPSYS. To create
OLAP metadata stored in these tables, the user must have the
OLAP_DBArrole.

The columns of the ALL_ and DBA _ views are identical. Only the ALL_ views are
listed in this chapter.

System Tables Referenced by OLAP Catalog (CWM2) Views

The OLAP Catalog (CWWR) views present information stored in the CAM2 tables and
in several system tables.

The following system tables are referenced by the OLAP Catalog (CVWWR) views:

SYS. COL$

SYS. OBJ$

SYS. USER$
VS$ENABLEDPRI VS

System tables are referenced in the following views:

ALL$OLAP2_CUBES

ALL$OLAP2_DI MENSI ONS
ALL$OLAP2_CUBE_MEASURE_MAPS
ALL$OLAP2_DI M LEVEL_ATTR MAPS
ALL$OLAP2_FACT TABLE G D
ALL$OLAP2_FACT LEVEL_USES
ALL$OLAP2_JO N_KEY_COLUWN_USES
ALL$OLAP2_LEVEL_KEY_COLUWN_USES

13-2 Oracle9i OLAP User’s Guide

Summary of OLAP Catalog (CWM2)Views

Summary of OLAP Catalog (CWM2)Views

The OLAP Catalog (CWM2) views are summarized in the following table.

Table 13-1 OLAP 2 Catalog Views

View Name Description
ALLSCOLAP2_ CATALOG ENTI TY_ Represents measures in measure folders (catalogs).
USES

ALL$OLAP2_CATALOGS
ALL$OLAP2_CUBE_DI M_USES

ALL$OLAP2_CUBE_MEAS DI M_
USES

ALL$OLAP2_CUBE_MEASURE
MAPS

ALL$OLAP2_CUBE_MEASURES
ALL$OLAP2_CUBES
ALL$OLAP2_DI M ATTR_USES

ALL$OLAP2_DI M ATTRI BUTES

ALL$OLAP2_ DI M HI ER_LEVEL_
USES

ALL$OLAP2_DI M_HI ERARCHI ES

ALL$OLAP2_DI M LEVEL_ATTR
MAPS

ALL$OLAP2_DI M LEVEL_
ATTRI BUTES

ALL$OLAP2_DI M LEVELS
ALL$OLAP2_DI MENSI ONS

ALL$OLAP2_ENTI TY_DESC_
USES

ALL$OLAP2_FACT LEVEL_USES

Represents measure folders (catalogs).

Represents the association between cubes and their
dimensions.

Represents the aggregation method specified for
measure/dimension combinations.

Represents the mapping of measures to columns in
fact tables.

Represents measures.
Represents cubes.

Represents dimension attributes and their
associated level attributes.

Represents dimension attributes.

Represents the relationship between pairs of levels
in a hierarchy.

Represents hierarchies.

Represents the association between levels and level
attributes.

Represents level attributes.

Represents levels.
Represents dimensions.

Represents the association between OLAP metadata
entities and their descriptors.

Represents join relationships between fact tables
and dimension tables.

OLAP Catalog (CWM2-Specific) Views 13-3

ALL$OLAP2_CATALOG_ENTITY_USES

Table 13-1 OLAP 2 Catalog Views

View Name Description

ALL$OLAP2 FACT _TABLE G D Represents Grouping ID (GID) columns in fact
tables.

ALL$OLAP2_HI ER_CUSTOM_ Represents custom sorting information for

SORT hierarchies.

ALL$OLAP2_JA N_KEY_ Represents the mapping between levels in a

COLUWMN_USES hierarchy.

ALLSCLAP2_ LEVEL KEY_ Represents the mapping of levels to columns in

COLUWN_USES dimension tables.

ALLSOLAP2_CATALOG_ENTITY_USES

Each row represents an entity within an OLAP measure folder (catalog). Measures
are the only OLAP metadata entities that can be collected in measure folders.

Note: The classification system (CWM_CLASSIFY), used to
manage measure folders and classify various OLAP metadata
entities, is implemented in CWMand referenced from CWWR.

Only CWW2 measure folders are displayed by ALL$SOLAP2
CATALOG_ENTI TY_USES.

Note: The term catalog, when used in the context of the
classification system, refers to a measure folder. It should not be
confused with the term OLAP Catalog, which refers to the
collection of tables that implement the OLAP metadata model.

Column Datatype NULL Description

CATALOG I D NUMBER NOT NULL ID of the measure folder.

ENTI TY_OANER VARCHAR2(30) NOT NULL Owner of the measure’s cube.

ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the measure’s cube.

CHI LD_ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the measure in the measure folder.

13-4 Oracle9i OLAP User’s Guide

ALL$OLAP2_CATALOGS

ALLSOLAP2_CATALOGS

Each row represents an OLAP measure folder (catalog). Measure folders are a
means of grouping measures related to a given business area. For instance, all the
measures that store information about a given product line might be collected in a
measure folder.

Measure folders are schema independent. All users can view all the measure folders
defined in the database, even if they do not have access privileges for the measures
within the folders.

Measure folders can be nested within other measure folders.

Note: The classification system (CWM_CLASSIFY), used to
manage measure folders and classify various OLAP metadata
entities, is implemented in CWMand referenced from CWWR.

Only CWW2 measure folders are displayed by ALL$SOLAP2
CATALOG_ENTI TY_USES.

Note: The term catalog, when used in the context of the
classification system, refers to a measure folder. It should not be
confused with the term OLAP Catalog, which refers to the
collection of tables that implement the OLAP metadata model.

Column Datatype NULL Description

CATALCG | D NUMBER NOT NULL ID of the measure folder (from OLAP 1 Catalog).
CATALOG_NAME VARCHAR2(30) NOT NULL Name of the measure folder (from OLAP 1 Catalog).
PARENT_CATALOG | D NUMBER ID of the parent measure folder (from OLAP 1 Catalog).

DESCRI PTI ON

This column is null for measure folders at the root of the
measure folder tree.

VARCHAR2(2000) Description of the measure folder (from OLAP 1 Catalog).

OLAP Catalog (CWM2-Specific) Views 13-5

ALL$OLAP2_CUBE_DIM_USES

ALL$OLAP2 CUBE DIM_USES

Each row represents an association between a cube and a dimension. A dimension
may be associated more than once with the same cube, but each association is
specified in a separate row, under its own unique dimension alias.

Column Datatype NULL Description

CUBE_DI MENSI ON_USE_| D NUMBER NOT NULL ID of the association between a cube and a dimension.

OMNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OANER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DI MENSI ON_ALI AS VARCHAR2(30) Allias of the dimension, to provide unique identity of
dimension use within the cube.

DEFAULT_CALC VARCHAR2(30) The default hierarchy to be used for drilling up or down

HI ERARCHY_NAME within the dimension.

DEPENDENT_ON DI M_USE_ NUMBER ID of the cube/dimension association that this association

1D

depends on.

ALL$OLAP2 _CUBE_MEAS_DIM_USES

Each row represents the association of a measure with one of its dimensions, and
specifies how the measure’s data can be aggregated over that dimension. If no
aggregation method is specified, the data is added.

Column Datatype NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the cube that defines this measure.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube that defines this measure.
MEASURE_NAMVE VARCHAR2(30) NOT NULL Name of the measure.

DI MENSI ON_OANER VARCHAR2(30) NOT NULL Owner of a dimension associated with this measure.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DI MENSI ON_ALI AS VARCHAR2(30) Alias of the dimension.

DEFAULT_AGGR NUMBER ID of the default aggregation method used to aggregate this

FUNCTI ON_USE_I D

measure’s data over this dimension. If this column is null, the
aggregation method is addition.

13-6 Oracle9/ OLAP User’s Guide

ALL$OLAP2_CUBE_MEASURES

ALL$OLAP2_CUBE_MEASURE_MAPS

Each row represents the mapping of a measure to a column in a fact table.

Measures are mapped separately for each combination of dimension hierarchies.
For example, if a measure has three dimensions and each dimension has two
hierarchies, then the measure has eight separate fact table mappings. These eight
columns may exist within the same fact table or in separate fact tables. Each of the
eight column mappings would appear as a separate row in ALLSOLAP_CUBE _

MEASURE_MAPS.
Column Datatype NULL Description
OWNER VARCHAR2(30) NOT NULL Owner of the cube.
CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube.
MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure defined by this cube.
DI M H ER_COVBO | D NUMBER NOT NULL ID of the association between this measure and one combination

of its dimension hierarchies.

FACT_TABLE_OMNER VARCHAR2(30) NOT NULL Owner of the fact table.

FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.

Name of the column in the fact table where this measure’s data
for this combination of hierarchies is stored.

COLUWN_NAME VARCHAR2(30) NOT NULL

ALLSOLAP2_CUBE_MEASURES

Each row represents a measure.

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube that defines the measure.
CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube that defines the measure.
MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure.

DI SPLAY_NANME VARCHAR2(30) Display name for the measure.

DESCRI PTI ON VARCHAR2(2000) Description of the measure.

OLAP Catalog (CWM2-Specific) Views 13-7

ALL$OLAP2_CUBES

ALL$OLAP2 CUBES

Each row represents a cube.

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube.

I NVALI D VARCHARZ2(1) NOT NULL Whether or not this cube is in an invalid state. A cube is valid if
it has at least one dimension, all of its dimensions are valid, and
all the fact table mappings are valid.

DI SPLAY_NAME VARCHAR2(30) Display name for the cube.

DESCRI PTI ON VARCHAR2(2000) Description of the cube.

M_SUMVARYCODE VARCHARZ2(2) If the cube is a materialized view, whether it is in GS (Grouping

Set) or RU (Rolled Up) form. RU form means that all the
dimension key columns are populated, and data may only be
accessed when its full lineage is specified. GS form means that
dimension key columns may contain null values, and data may
be accessed simply by specifying one or more levels.

ALL$OLAP2 DIM_ATTR_USES

Each row represents the association of a level attribute with a dimension attribute.
A dimension attribute is composed of a set of level attributes. The same level
attribute can be included in more than one dimension attribute.

A level attribute designates a column in a dimension table that stores descriptive
information about a level in the dimension. For example, there might be a color
attribute pertaining to a product ID level.

A dimension attribute is a collection of level attributes. For example, the TI ME_
SPAN dimension attribute stores the number of days associated with each time
period in a time dimension. Time periods are defined as levels, and each level has
its own associated TI ME_SPAN level attribute, but all the TI ME_SPAN level
attributes (for example, MONTH_TI ME_SPAN, QUARTER_TI ME_SPAN, and YEAR _
Tl ME_SPAN) are defined as a single TI ME_SPAN dimension attribute.

13-8 Oracle9i OLAP User’s Guide

ALL$OLAP2_DIM_HIER_LEVEL_USES

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DI M_ATTRI BUTE_ VARCHAR2(30) NOT NULL Name of the dimension attribute.

NAVE

LEVEL_NAME VARCHAR2(30) NOT NULL Name of a level within the dimension.

LVL_ATTRI BUTE_ VARCHAR2(30) NOT NULL Name of an attribute for this level. This level attribute is

NAME

included in the dimension attribute.

ALLSOLAP2_DIM_ATTRIBUTES

Each row represents a dimension attribute, which is a logical attribute providing a
grouping of level attributes within the dimension. The level attributes within the
dimension attribute grouping can be determined from the ALL$OLAP2_DI M ATTR_

USES view.

A dimension attribute is only meaningful if it contains level attributes.

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

ATTRI BUTE_NANME VARCHAR2(30) NOT NULL Name of the dimension attribute.

DI SPLAY_NANME VARCHAR2(30) Display name for the dimension attribute.

DESCRI PTI ON VARCHAR2(2000) Description of the dimension attribute.

DESC I D NUMBER A classification for the dimension attribute (from OLAP 1

Catalog). If a dimension attribute is classified, it may be of type
LONG_DESCRI PTI ON, SHORT_DESCRI PTI ON, END_DATE,
TI ME_SPAN, PRI OR_PERI OD, or YEAR_AGO_PERI OD.

ALL$OLAP2 DIM_HIER_LEVEL_USES

Each row represents a hierarchical relationship between two levels in a dimension
hierarchy. Within separate hierarchies, the same parent level may be hierarchically
related to a different child level.

OLAP Catalog (CWM2-Specific) Views 13-9

ALL$OLAP2_DIM_HIERARCHIES

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

PARENT_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the parent level.

CHI LD_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the child level.

PCOSI TI ON NUMBER NOT NULL Position of this parent-child relationship within the hierarchy,

with position 1 being the most detailed.

ALLSOLAP2_DIM_HIERARCHIES

Each row represents a dimension hierarchy. The relationships between levels for
each hierarchy are represented by ALL$OLAP2_DI M H ER_LEVEL_USES.

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

DI SPLAY_NANME VARCHAR2(30) Display name for the hierarchy.
DESCRI PTI ON VARCHAR2(2000) Description of the hierarchy.
SOLVED_CODE VARCHAR2(2) NOT NULL One of the following:

UNSOLVED LEVEL- BASED, for a hierarchy that contains no
embedded totals and is stored in a level-based dimension table

SOLVED LEVEL- BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table

SOLVED VALUE- BASED for a hierarchy that contains embedded
totals and is stored in a parent/child dimension table

ALL$OLAP2 DIM_LEVEL_ATTR_MAPS

Each row represents the mapping of a level attribute to its associated level.

Each level maps to one or more columns in a dimension table. Each level attribute
maps to a single column in the same dimension table as its associated level.

The mapping of level attributes to levels is dependent on hierarchy. The same level
may have different attributes when it is used in different hierarchies.

13-10 Oracle9i OLAP User’s Guide

ALL$OLAP2_DIM_LEVEL_ATTRIBUTES

All the levels defined as OLAP 2 metadata are represented by the ALL$OLAP2_
DI M_LEVELS view.

Column

Datatype NULL Description

OMRER

DI MENSI ON_NAVE
HI ERARCHY_NAVE
ATTRI BUTE_NANE
LVL_ATTRI BUTE_
NAVE
LEVEL_NAMVE
TABLE_OWNER

TABLE_NAME

COLUWN_NAME
DTYPE

VARCHAR2(30) NOT NULL Owner of the dimension.
VARCHAR2(30) NOT NULL Name of the dimension.

VARCHAR2(30) Name of the hierarchy containing this level.
VARCHAR2(30) Name of a dimension attribute grouping containing this level
attribute.

VARCHAR2(30) NOT NULL Name of the level attribute, or name of the column if the level
attribute name is not specified.

VARCHAR2(30) NOT NULL Name of the level.

VARCHAR2(30) NOT NULL Owner of the dimension table containing the level and level
attribute.

VARCHAR2(30) NOT NULL Name of the dimension table containing the level and level
attribute.

VARCHAR2(30) NOT NULL Name of the column containing the level attribute.
VARCHAR2(10) NOT NULL Data type of the column containing the level attribute.

ALL$OLAP2_DIM_LEVEL_ATTRIBUTES

Each row represents a level attribute. Each level attribute is a column in a
dimension table. The column stores descriptive information about a level defined
within the same dimension table. If the level attribute is not named, the column
name is used.

The mapping of the level attribute column to its associated level columns is
represented in ALLSOLAP2_DI M LEVEL_ATTR_NMAPS.

Column Datatype NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension containing the level attribute.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension containing the level attribute.

ATTRI BUTE_NAME VARCHAR2(30) Name of the level attribute. If no attribute name is specified, the

column name is used. The level attribute name must be unique
within the dimension.

OLAP Catalog (CWM2-Specific) Views 13-11

ALL$OLAP2_DIM_LEVELS

Column Datatype NULL Description

DI SPLAY_NANME VARCHAR2(30) Display name for the level attribute.

DESCRI PTI ON VARCHAR2(2000) Description of the level attribute.

DETERM NED_BY_ VARCHAR2(30) NOT NULL Name of the level to which this level attribute is mapped.
LEVEL_NAME

ALL$OLAP2_DIM_LEVELS

Each row represents a level within a dimension. A level is mapped to one or more
columns within a dimension table. In a star schema, all of a dimension’s levels must
be mapped to columns within the same table. In a snowflake schema, a dimension’s
levels may be mapped to columns in separate tables.

Column Datatype NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension containing this level.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension containing this level.

LEVEL_NANME VARCHAR2(30) NOT NULL Name of the level. The name must be unique within the
dimension.

DI SPLAY_NANME VARCHAR2(30) Display name for the level.

DESCRI PTI ON VARCHAR2(2000) Description of the level.

ALLSOLAP2_DIMENSIONS

Each row represents an OLAP dimension. These dimensions are completely defined
within OLAP 2 metadata and have no relationship to Oracle dimension objects.

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

PLURAL _NANME VARCHAR2(30) Plural name for the dimension. Used for display.
DI SPLAY_NANME VARCHAR2(30) Display name for the dimension.

DESCRI PTI ON VARCHAR2(2000) Description of the dimension.

DEFAULT_DI SPLAY_ VARCHAR2(30) NOT NULL Default display hierarchy for the dimension.

HI ERARCHY

13-12 Oracle9i OLAP User’s Guide

ALL$OLAP2_ENTITY_DESC_USES

Column Datatype NULL Description

I NVALI D VARCHAR2(1) NOT NULL Whether or not the dimension is valid. A dimension is valid
when all of its levels and level attributes are mapped to existing
columns, any dimension attributes are defined with sets of valid
level attributes, and hierarchies are defined with valid levels.

DI MENSI ON_TYPE VARCHAR2(10) The dimension may be a time dimension or a normal

dimension.

ALL$OLAP2 ENTITY_DESC_USES

Each row represents an association between an OLAP metadata entity and its
descriptor. The OLAP metadata entities and descriptors are defined in the OLAP 1
Catalog classification system and referenced from the OLAP 1 Catalog.

The following OLAP metadata entities are represented in this view:

Dimensions whose descriptor is Ti ne.

Dimension attributes whose descriptor is: Long Descri pti on, Short
Descri ption,orDescription.

Dimension attributes (for time dimensions only) whose descriptor is: End

Dat e, Ti me Span, Pri or

Peri od, or Year Ago Peri od.

Level attributes (for time dimensions only) whose descriptor is: Day, Mont h,
Quarter,orYear.

Column Datatype NULL Description

DESCRI PTOR_I D NUMBER NOT NULL ID of the descriptor, derived from the OLAP 1 classification
system.

ENTI TY_OWNER VARCHAR2(30) NOT NULL Owner of the entity. If the entity is a dimension attribute or level
attribute, the owner is the owner of the dimension.

ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the entity. The entity may be a dimension, a dimension
attribute, or a level attribute.

CHI LD_ENTI TY_NAME VARCHAR2(30) Name of the child entity (if applicable). A dimension attribute is
a child entity of a dimension. A level attribute is a child entity of
a dimension attribute.

SECONDARY_CHI LD VARCHAR2(30) Name of the secondary child entity name (if applicable). A

ENTI TY_NAME

dimension attribute is a child entity of a dimension. A level
attribute is a child entity of a dimension attribute. A level
attribute could be the secondary child entity of a dimension.

OLAP Catalog (CWM2-Specific) Views 13-13

ALL$OLAP2_FACT_LEVEL_USES

ALLSOLAP2_FACT_LEVEL_USES

Each row represents a join relationship between a fact table and a dimension table.
The join relationship is derived from a single key column in the fact table.

The fact table is always mapped in the context of a specific dimension hierarchy.

Column Datatype NULL Description
OWNER VARCHAR2(30) NOT NULL Owner of the cube.
CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OWNER
DI MENSI ON_NAME
DI MENSI ON_ALI AS
HI ERARCHY_NAME

VARCHAR2(30) NOT NULL Owner of the dimension.

NUMBER NOT NULL Name of the dimension.

VARCHAR2(30) Dimension alias (if applicable).
NOT NULL Name of the hierarchy.

DI M H ER_COVBO | D NUMBER NOT NULL ID of the dimension hierarchy combination associated with this
fact table.
LEVEL_NAME VARCHAR2(30) NOT NULL Name of the level within the hierarchy where the mapping

FACT_TABLE_OWNER
FACT_TABLE_NAMVE

COLUMN_NAMVE
POSI TI ON

occurs. This represents the lowest level of aggregation defined by
the foreign key/primary key for a specific dimension of the cube.

VARCHAR2(30) NOT NULL Owner of the fact table.
VARCHAR2(30) NOT NULL Name of the fact table.
VARCHAR2(30) NOT NULL Name of the foreign key column in the fact table.

NUMBER Position of this column within a multi-column key.

DI MENSI ON_KEYMAP_ VARCHAR2(30) NOT NULL Type of key mapping for the fact table. Values may be:

TYPE

FOREI GN_KEY_NANME

LL (Lowest Level), when only lowest-level data is stored in the
key column. The fact table is unsolved.

ET (Embedded Totals), when all level combinations are stored in
the key column. The fact table is solved (contains embedded
totals for all level combinations).

RU (Rolled Up), when each level is stored in a separate key
column (multi-column key).

VARCHAR2(30) Name of the foreign key constraint (OLAP 1 Catalog only)
applied to the foreign key column. Constraints are not used in the
OLAP 2 Catalog.

13-14 Oracle9i OLAP User’s Guide

ALL$OLAP2_HIER_CUSTOM_SORT

ALL$OLAP2_FACT TABLE GID

Each row represents information about a Grouping ID (GID) column in a fact table.

In the case of solved, embedded total fact table (where totals for every level
combination are embedded in the table), there will be a GID column corresponding
to each dimension key in the fact table. For example, an embedded total fact table
for sales data, which is dimensioned by product, geography and time, has three
GID columns (one for each of the dimensions).

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NANME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OANER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

DIM H ER COMBO I D NUMBER NOT NULL ID of the dimension-hierarchy association.

FACT_TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the fact table.
FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.
COLUWN_NAME VARCHAR2(30) NOT NULL Name of the GID column.

ALL$OLAP2 HIER_CUSTOM_SORT

Each row provides information about custom sorting specified for a given
dimension hierarchy. Custom sorting information is optional.

Custom sorting information specifies how to sort the members of a hierarchy based
on columns in the associated dimension table. The specific columns in the
dimension tables may be the same as the key columns or may be related attribute
columns.

Custom sorting can specify that the column be sorted in ascending or descending
order, with nulls first or nulls last.

Column Datatype NULL Description

DI MENSI ON_OMNER VARCHAR2(30) NOT NULL Owner of the dimension.
DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.
HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

OLAP Catalog (CWM2-Specific) Views 13-15

ALL$OLAP2_JOIN_KEY_COLUMN_USES

Column Datatype NULL Description

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table containing the column to be
sorted.

TABLE_NAMVE VARCHAR2(30) NOT NULL Name of the dimension table containing the column to be
sorted.

COLUWN_NAME VARCHAR2(30) NOT NULL Name of the column to be sorted.

PGSI TI ON NUMBER NOT NULL Represents the position within a multi-column SORT_

SORT_PGCsI TI ON

SORT_ORDER
NULL_ORDER

PGsSI TI ON. In most cases, a single column represents SORT_
POSI TI ON, and the value of POSI TI ONiis 1.

NUVBER NOT NULL Position within the sort order of the level to be sorted.
VARCHAR2(4) NOT NULL Sort order. Can be either Ascendi ng or Descendi ng.

VARCHAR2(5) NOT NULL Where to insert null values in the sort order. Can be either
Nulls First orNulls Last.

ALL$OLAP2 JOIN KEY COLUMN_USES

Each row represents the key information that joins two levels in a hierarchy.
Multiple column keys are represented by multiple rows in the view, one for each
column use.

In a snowflake schema, where levels are defined in separate dimension tables, levels
in a hierarchy have a logical foreign key relationship. When levels are defined
within the same dimension table, the child level key specifies its position in the
hierarchy.

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

CH LD _LEVEL_NAME VARCHAR2(30) NOT NULL Child level in the hierarchy.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUWN_NAME VARCHAR2(30) NOT NULL Name of the child level column in the dimension table. In a star

schema, this is the column associated with CHI LD _LEVEL _
NAME. In a snowflake schema, this is the parent column of
CHI LD_LEVEL_NAME in the same dimension table.

13-16 Oracle9i OLAP User’s Guide

ALL$OLAP2_LEVEL_KEY_COLUMN_USES

Column Datatype NULL Description

PGsSI TI ON NUMBER Position of column within the key. Applies to multi-column
keys only.

JO N_KEY_TYPE VARCHAR2(30) NOT NULL SNOWFLAKE if the join key is a logical foreign key, or STAR if the

join key refers to a column within the same table.

ALL$OLAP2 LEVEL KEY COLUMN_USES

Each row represents the logical key linking a dimension level to its underlying

columns in a dimension table.

Multiple column keys are represented by multiple entries in the view for the level.

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) Name of the hierarchy that includes this level.

CH LD_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the level.

TABLE_OWMNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUWN_NAME VARCHAR2(30) NOT NULL Name of the column that stores CHI LD_LEVEL _NAME.

PGsSI TI ON NUMBER Position of this column within the key. Applies to multi-column

keys only.

OLAP Catalog (CWM2-Specific) Views 13-17

ALL$OLAP2_LEVEL_KEY_COLUMN_USES

13-18 Oracle9i OLAP User’s Guide

14

OLAP Catalog Analytic Workspace Views

This chapter describes the views that represent analytic workspace objects
registered in the OLAP Catalog.

This chapter discusses the following topics:

Summary of Analytic Workspace Object Views

OLAP Catalog Analytic Workspace Views 14-1

Summary of Analytic Workspace Object Views

Summary of Analytic Workspace Object Views

The OLAP Catalog analytic workspace object views are summarized in the
following table.

Table 14-1 OLAP Catalog Analytic Workspace Views

View Name Description

ALL$OLAP2_AW PHYS_OBJ Represents physical objects stored in analytic workspaces.

ALL$OLAP2_AW PHYS_OBJ_EXT Represents additional information about analytic workspace
objects.

ALL$OLAP2_AW PHYS OBJ_REL_OBJ Represents objects related to other objects within analytic
workspaces.

ALL$OLAP2_AW PHYS_OBJ_PROP Represents the properties of analytic workspace objects.

ALL$OLAP2_AW MAP_DI M_USE Represents the mapping of dimensions to dimensions stored in
analytic workspaces.

ALL$OLAP2_AW MAP_MEAS_USE Represents the mapping of measures to variables in analytic
workspaces.

ALL$OLAP2_AW MAP_HI ER_USE Represents the mapping of dimension hierarchies to
hierarchical information within analytic workspaces.

ALL$OLAP2_AW MAP_LVL_USE Represents the mapping of levels to level information within
analytic workspaces.

ALL$OLAP2_AW MAP_ATTR_USE Represents the mapping of attributes to attribute information

within analytic workspaces.

ALL$OLAP2 AW _PHYS_OBJ

Each row represents an object defined within an analytic workspace.

Column Datatype NULL Description
AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.
AW NAVE VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the analytic workspace object, as defined by the OLAP
DML.

AW OBJECT_TYPE VARCHAR2(30) NOT NULL Type of the analytic workspace object, as defined by the OLAP
DML. Examples are dimensions, variables, and relations.

AW OBJECT_ VARCHAR2(30) NOT NULL Data type of the analytic workspace object, as defined by the
DATATYPE OLAP DML.

14-2 Oracle9i OLAP User’s Guide

ALL$OLAP2_AW_PHYS_OBJ_REL_OBJ

ALL$OLAP2 AW _PHYS_OBJ EXT

Each row represents additional information about an AW object. If the definition of
an AW object contains information other than the name and data type, that
information is represented by this view. For example, an AW dimension may have a
specified width, or a composite or conjoint dimension may have a specified sorting
algorithm (BTREE, HASH, or NOHASH).

Column Datatype NULL Description

AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.

AW NAVE VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the AW object, as defined by the OLAP DML.

AW PHYS_ATTR_TYPE VARCHAR2(30) NOT NULL Type of extension to the OLAP DML definition of the AW object.
AW PHYS_ATTR_ VARCHAR2(30) NOT NULL Value of the extension to the OLAP DML definition of the AW

VALUE

object.

ALL$OLAP2 AW _PHYS_OBJ REL_OBJ

Each row represents an AW object related to the definition of another AW object.
Examples are the dimensions of variables and the related dimensions of relations.

Column Datatype NULL Description

AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.

AW NAME VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the AW object, as defined by the OLAP DML.

AW OBJECT_REL _ VARCHAR2(30) NOT NULL Name of the related AW object, as defined by the OLAP DML.
NAVE

AW REL_TYPE VARCHAR2(30) NOT NULL Type of the related AW object, as defined by the OLAP DML.
PGsSI TI ON NUMBER The position of the related AW object within the list of related

objects. For example, the position of a dimension within the list of
dimensions associated with a variable.

OLAP Catalog Analytic Workspace Views 14-3

ALL$OLAP2_AW_PHYS_OBJ_PROP

ALLSOLAP2_AW_PHYS OBJ_PROP

Each row represents a property associated with an AW object.

Column Datatype NULL Description

AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.

AW NAVE VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the AW object, as defined by the OLAP DML.

AW PROP_NANME VARCHAR2(30) NOT NULL Property of the AW object, as defined by the OLAP DML.
AW PROP_DATATYPE VARCHAR2(30) NOT NULL Data type of the AW object property, as defined by the OLAP

DML.

ALL$OLAP2_ AW _MAP_DIM_USE

Each row represents the mapping between a dimension entity within the OLAP
Catalog and a dimension within an analytic workspace.

Column Datatype NULL Description

DI MENSI ON_OANER VARCHAR2(30) NOT NULL Owner of the dimension entity within the OLAP Catalog.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension entity within the OLAP Catalog.

AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.

AW NAVE VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the dimension object within the analytic workspace, as

defined by the OLAP DML.

ALL$OLAP2 AW_MAP_MEAS_USE

Each row represents the mapping between a measure entity within the OLAP
Catalog and a variable within an analytic workspace.

Column Datatype NULL Description

CUBE_OWNER VARCHAR2(30) NOT NULL Owner of the cube that defines the measure within the OLAP
Catalog.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube that defines the measure within the OLAP
Catalog.

MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure entity within the OLAP Catalog.

14-4 Oracle9i OLAP User’s Guide

ALLSOLAP2_AW_MAP_HIER_USE

Column Datatype NULL Description
AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.
AW NAME VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the variable within the analytic workspace, as defined by
the OLAP DML.

AWLIM T_TYPE VARCHAR2(30) NOT NULL One of the following values:

« PROPERTY -- The logical measure will be mapped
using a property of the object in the analytic
workspace.

« LIMTSET -- The logical measure will be mapped
using an expression that limits one or more of the
variable’s dimensions.

=« NULL -- Not applicable.

AW LIM T_OBJ_NAME VARCHAR2 For a limit type of LI M TSET, the names of the dimensions
that are limited to a single value.

AWLIMT OBJ_ VARCHAR2 For a limit type of LI M TSET, the values of the limited

VALUE dimensions.

ALL$OLAP2 AW _MAP_HIER_USE

Each row represents the mapping between a dimension hierarchy entity within the
OLAP Catalog and dimension hierarchy information within an analytic workspace.

Column Datatype NULL Description

DI MENSI ON_OMNER VARCHAR2(30) NOT NULL Owner of the dimension entity within the OLAP Catalog.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension entity within the OLAP Catalog.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the dimension hierarchy entity within the OLAP
Catalog.

AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.

AW _NAME VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the dimension object within the analytic workspace, as

defined by the OLAP DML.

OLAP Catalog Analytic Workspace Views 14-5

ALL$OLAP2_AW_MAP_LVL_USE

Column Datatype

NULL

Description

AW LI M T_TYPE VARCHAR2(30)

AWLIMT_OBJ_NAME VARCHAR?

AWLIMT_OBJ_ VARCHAR2
VALUE

NOT

NULL

One of the following values:
One of the following values:

« PROPERTY -- The logical hierarchy will be mapped
using a property of the object in the analytic
workspace.

« LIMTSET -- The logical hierarchy will be mapped
using an expression that limits one or more
dimensions.

=« NULL -- Not applicable.

For a limit type of LI M TSET, the names of the dimensions
that are limited to a single value.

For a limit type of LI M TSET, the values of the limited
dimensions.

ALL$OLAP2 AW _MAP_LVL_USE

Each row represents the mapping between a dimension level entity within the
OLAP Catalog and dimension level information within an analytic workspace.

Column Datatype NULL Description

DI MENSI ON_OMNER VARCHAR2(30) NOT NULL Owner of the dimension entity within the OLAP Catalog.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension entity within the OLAP Catalog.
LEVEL_NANME VARCHAR2(30) NOT NULL Name of the dimension level entity within the OLAP Catalog.
AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.

AW NAME VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the dimension object within the analytic workspace, as

AWLIM T_TYPE VARCHAR2(30)

14-6 Oracle9/ OLAP User’s Guide

defined by the OLAP DML.

One of the following values:

« PROPERTY -- The logical level will be mapped using a
property of the object in the analytic workspace.

« LIMTSET -- The logical level will be mapped using
an expression that limits one or more dimensions.

« NULL -- Not applicable.

ALLSOLAP2_AW_MAP_ATTR_USE

Column Datatype NULL Description

AW LI M T_0BJ_NAME VARCHAR2 For a limit type of LI M TSET, the names of the dimensions
that are limited to a single value.

AWLIMT_0BJ_ VARCHAR? For a limit type of LI M TSET, the values of the limited

VALUE dimensions.

ALL$OLAP2 AW _MAP_ATTR USE

Each row represents the mapping between a dimension attribute entity within the
OLAP Catalog and dimension attribute information within an analytic workspace.

Column Datatype NULL Description

DI MENSI ON_OANER VARCHAR2(30) NOT NULL Owner of the dimension entity within the OLAP Catalog.
DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension entity within the OLAP Catalog.

ATTRI BUTE_NAME VARCHAR2(30) NOT NULL Name of the dimension attribute entity within the OLAP Catalog.
AW ONNER VARCHAR2(30) NOT NULL Owner of the analytic workspace.

AW _NAME VARCHAR2(30) NOT NULL Name of the analytic workspace.

AW OBJECT_NAME VARCHAR2(30) NOT NULL Name of the dimension object within the analytic workspace, as

defined by the OLAP DML.

AW LIM T _TYPE VARCHAR2(30) One of the following values:

« PROPERTY -- The logical dimension attribute will be
mapped using a property of the object in the analytic
workspace.

« LIMTSET -- The logical dimension attribute will be
mapped using an expression that limits one or more
dimensions.

« NULL -- Not applicable.

AW LI M T_0BJ_NAME VARCHAR2 For a limit type of LI M TSET, the names of the dimensions
that are limited to a single value.

AWLIMT_0BJ_ VARCHAR? For a limit type of LI M TSET, the values of the limited

VALUE dimensions.

OLAP Catalog Analytic Workspace Views 14-7

ALLSOLAP2_AW_MAP_ATTR_USE

14-8 Oracle9/ OLAP User’s Guide

15

CWM2_OLAP_ AW ACCESS

The CWWR_ OLAP_AW ACCESS package contains procedures for generating scripts
that create views of workspace objects. After running the scripts and creating the
views, you can use standard SQL to access data stored in the analytic workspace.
You can also use the views to define OLAP metadata so that OLAP API applications
can access the multidimensional objects.

See Also:

« Chapter 2, "Manipulating Multidimensional Data" for a
discussion of analytic workspaces and the OLAP DML.

« Chapter 3, "Developing OLAP Applications" for information
about how this package fits into the process of preparing a
database for use with OLAP applications.

This chapter contains the following topics:

Prerequisites

Process Overview

Preparing the Analytic Workspace

Specifying the Source and Target Objects

Example: Creating Views

Summary of CWM2_OLAP_AW_ACCESS Subprograms

CWM2_OLAP_AW_ACCESS

15-1

Prerequisites

Prerequisites

Theut!| file_dir parameter must be set to a valid directory, as described in
"Initialization Parameters for Oracle OLAP" on page 6-3. Otherwise, the procedures
in CWWR2_ OLAP_AW ACCESS will not be able to write the SQL scripts to a file.

Process Overview

These are the basic steps you need to follow to generate views of data stored in an
analytic workspace. They are described more fully throughout this chapter.

1.

Explore the analytic workspace and identify the objects that you want to expose
in a relational view.

Create a text file for each view that you want to create. The text files map
analytic workspace objects to columns in a relational view.

If you intend to create OLAP Catalog metadata, then you need to generate
views that form a star schema, that is, fact views and dimension views. For
more information about OLAP Catalog schema requirements, refer to
Chapter 4, "Designing Your Database for OLAP".

In PL/SQL, execute the Cr eat eAWAccessSt ruct ur es_FRprocedure for each
input file.

Tip: Create a script that executes these procedures.

Use a text editor to view the resulting scripts and make whatever changes you
wish.

In PL/SQL, run the scripts.

If errors are triggered, do the following:

a. Identify and fix the problems in the input files.
b. Delete the script files.

Cr eat eAWAccess St ruct ur es_FRwill not overwrite an existing output
file. If you created a script to execute this procedure on each of your input
files, you may want to begin the that script by deleting existing output files.

c. Regenerate the script files.

In PL/SQL, select data from the views to verify that they work properly. Errors
at this stage are caused by problems in the definition of the workspace objects.

If necessary, correct the errors and regenerate the views.

15-2 Oracle9i OLAP User’s Guide

Preparing the Analytic Workspace

8. When no errors occur, commit the views to the database.
9. Change the access protection of the view with a command such as this one:

grant select on view el ectro_product _view to public

Preparing the Analytic Workspace

Measures

The CWWR_ OLAP_AW ACCESS package can expose various types of analytic
workspace objects in relational views. You will need to gather information about
these objects and decide how you are going to map them to the columns of a
relational view. These are the steps you might take:

1. Identify the measures that you want to make available to applications.

2. Identify the dimensions of the measures.

3. For hierarchical dimensions, identify the objects that support the hierarchy.
4

Identify the dimension attributes, which are objects that provide additional
information about the dimensions.

5. If you plan to create OLAP catalog metadata, generate the additional objects
that are needed by the OLAP API.

Following are descriptions of these objects.

Measures are VARl ABLE, FORMULA, or RELATI ON objects with a numeric data type.
For the best performance and data retrieval, the measures represented in a single
fact view should have the exact same dimensions listed in the exact same order.

For example, these two variables can be represented very effectively in the same fact
view:

DEFI NE SALES VARI ABLE SHORT <GEOGRAPHY PRCDUCT CHANNEL TI ME>

DEFI NE COSTS VARI ABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TI ME>

You can combine them with a variable that uses a composite, as long as the
dimensions are listed in the same order:

DEFINE UNI TS VARI ABLE SHORT GEOGRAPHY PRODUCT SPARSE <CHANNEL TI ME>

However, you should not combine the sal es and cost s variables with variables
dimensioned in any of the following ways:

CWM2_OLAP_AW_ACCESS 15-3

Preparing the Analytic Workspace

Dimensions

Hierarchies

<GEOGRAPHY TI ME> Fewer dimensions results in repetitive data in the view.

<TI ME GEOCGRAPHY PRCDUCT CHANNEL> Different order of dimensions means
that the data is stored differently and runtime performance will suffer as a result.

<TI ME SPARSE <CGEOGRAPHY PRODUCT CHANNEL>> Different order of
dimensions means that the data is stored differently and runtime performance will
suffer as a result.

If the measure is sparse, then it is probably dimensioned by a composite or a
conjoint dimension. If it is dimensioned by a composite, then you will need to
identify the base dimensions. If it is dimensioned by a conjoint, then you will need
to identify the conjoint dimension.

A flat dimension (that is, one without a hierarchy or one in which all members are
at the same level of a hierarchy) requires no supporting objects. However, a
hierarchical dimension requires other objects to identify the relationships among
members, as described in "Hierarchies" on page 15-4.

Hierarchical dimensions are supported by several workspace objects: hierarchy
dimensions, parent-child relations, level dimensions, and “in hierarchy” variables.

Hierarchy Dimensions

When a dimension has more than one hierarchy, then a hierarchy dimension is used
to identify them. The members of the hierarchy dimension are the names of the
hierarchies. The following example shows the hierarchy dimension for the

geogr aphy dimension.

DEFI NE GEOGRAPHY. HI ERARCHI ES DI MENSI ON TEXT

LD Hi erarchy dimensi on for GEOGRAPHY

REPCRT geogr aphy. hi er ar chi es

GEOGRAPHY. H ERARCHI ES

STANDARD
CONSOLI DATED

15-4 Oracle9i OLAP User’s Guide

Preparing the Analytic Workspace

Parent-Child Relations

A parent- or self-relation is typically used to identify the parent of each dimension
member. In the following example, the geogr aphy dimension has a parent relation
named geogr aphy. parentrel.

Because geography has two hierarchies, STANDARD and CONSOLI| DATED, a
hierarchy dimension named geogr aphy. hi er ar chi es also dimensions the
parent relation. The names of the hierarchies are the members of

geogr aphy. hi er ar chi es.

DEFI NE GEOGRAPHY. PARENTREL RELATI ON GEOGRAPHY <GEOGRAPHY GEOGRAPHY. HI ERARCHI ES>
LD Parent-child relation for GEOGRAPHY

REPCRT DOMN geogr aphy geography. parentrel

- - - GEOGRAPHY. PARENTREL- - -
- - GEOGRAPHY. HI ERARCHI ES- -

CGEOGRAPHY STANDARD ~ CONSOLI DATED
WORLD NA NA

AMERI CAS WORLD NA

CANADA AVERI CAS AVERI CAS
TORONTO CANADA NA

MONTREAL CANADA NA

OTTAVA CANADA NA

From this example, you can see that in the STANDARD hierarchy, CANADA is the
parent of TORONTO, MONTREAL, and OTTAWA, AVERI CAS is the parent of CANADA,
and WORLD s the parent of AMERI CAS.

Level Dimensions

The levels of a dimension hierarchy are defined by the members of a dimension.
This dimension often has a TEXT data type so that the members have descriptive
names. For example, the geogr aphy. | evel di mdimension might list geography
levels such as Cl TY, STATE, COUNTRY, REA ON, and so forth.

However, if you are providing support for the OLAP API, you will need to have an
| NTEGER dimension for the levels.

The following is the workspace definition of geogr aphy. | evel di m which is an
dimension with an | NTEGER data type required by the H ERHEI GHT command.

DEFI NE GECGRAPHY. LVLDI M DI MENSI ON | NTEGER

CWM2_OLAP_AW_ACCESS 15-5

Preparing the Analytic Workspace

The content of all | NTEGER dimensions is sequential numbers. In this case, the
length of the dimension is important, since it indicates the number of levels.

REPCRT geography. | vl dim

CGEOGRAPHY. LVLDI M

You can specify the length of the | NTEGER dimension based on the content of a text
dimension that contains the names of the levels. For example, this command sets
the length of the geogr aphy. | vl di m | NTEGER dimension based on the number
of values currently in status for the geogr aphy. | evel di mTEXT dimension:

LIMT geography TO ALL
MAI NTAI N geogr aphy. | vl di m MERGE STATLEN(geogr aphy. | evel di m

In Hierarchy Variables

If a hierarchical dimension contains members that are excluded from a hierarchy;,
then a boolean variable is needed to identify whether a dimension member is in the
hierarchy (YES) or not in the hierarchy (NOor NA). Otherwise, an NA value in the
parent relation is ambiguous. It can mean either that the member is at the top level
of the hierarchy (and therefore has no parent) or that it is excluded from the
hierarchy. If all the members of a dimension are included in the hierarchy, then this
boolean dimension is not needed because there is no ambiguity.

The following example shows a boolean variable named t i ne. i nhi er ar chy
defined for the time dimension, which has two hierarchies, STANDARD and YTD.

DESCRI BE tine. i nhi erarchy

DEFI NE TI ME. | NHI ERARCHY VARI ABLE BOCOLEAN <TI ME TI ME. H ERARCH ES>

15-6 Oracle9/ OLAP User’s Guide

Preparing the Analytic Workspace

REPCRT DOMN tine tine.inhierarchy time.parentrel

------------ STANDARD- - - ---------- =--ooemeeeee YD - e -
TIME TI'ME. | NH ERARCHY Tl ME. PARENTREL TI ME. | NHI ERARCHY Tl ME. PARENTREL
LAST. YTD no NA yes NA
CURRENT. YTD no NA yes NA
JANO1 yes QL. 01 yes LAST. YTD
FEBO1 yes QL. 01 yes LAST. YTD
QL. 02 yes 2002 no NA
Q.02 yes 2002 no NA
2001 yes NA no NA
2002 yes NA no NA

Generated Objects

The OLAP DML contains two commands for generating objects that provide
information for the OLAP API:

« CGROUPI NG D. Populates a variable that identifies the hierarchy level of each
dimension value.

« HI ERHEI GHT. Populates a relation that contains a value for each level in the
hierarchy.

Use these commands to generate this information for each hierarchy of each
dimension. If you do not generate these objects for use in the views, then the OLAP
API performs a runtime calculation using SQL functions. This slows performance.

Grouping IDs

The following is the definition of a variable that stores the results of the
GROUPI NG Dcommand. It is an | NTEGER variable dimensioned by the data
dimension (geogr aphy) and the hierarchy dimension

(geogr aphy. hi erar chi es).

DEFI NE GEOGRAPHY. G D VAR ABLE | NTEGER <GEOGRAPHY GEOGRAPHY. H ERARCHI ES>
LD Qut put from GROUPING D command

CWM2_OLAP_AW_ACCESS 15-7

Preparing the Analytic Workspace

A command like the following populates geogr aphy. gi d:
groupi ngi d geography. parentrel |NTO geography. gi d
The contents of geogr aphy. gi d specify the hierarchy level for each dimension

value. These values correspond in order (but not value) to the level numbers. In this
case, geogr aphy. gi d identifies the four levels as 0, 1, 3, and 7.

---------- CEOGRAPHY. G D----------

------ GEOCRAPHY. Hl ERARCH ES- - - - - -
CGEOGRAPHY STANDARD CONSCLI DATED
WORLD 7 0
AMERI CAS 3 3
CANADA 1 1
TORONTO 0 0
MONTREAL 0 0
OTTAVA 0 0
VANCOUWER 0 0
EDMONTON 0 0
CALGARY 0 0

Parent Grouping IDs

Parent grouping IDs identify the GID value of the parent for each member. You can
define a formula that calculates these values based on the values of the GID variable
described in "Grouping IDs" above.

For dimension members at the topmost level of a hierarchy, the parent GID must be
calculated separately because their parent member is NA. That equation is
2**| evel s-1, where | evel s is the number of levels in the hierarchy.

Create a formula like the following one, which calculates parent GIDs for the
geogr aphy dimension.

DEFI NE GEOGPARENT. G D FORMULA | NTEGER <GEQOGRAPHY GEOGRAPHY. H ERARCHI ES>
EQ | F geography. parentrel EQ NA THEN 2** STATLEN(geogr aphy. | evel dim-1 ELSE
geogr aphy. gi d(geography geography. parentrel)

LIMT geography. hierarchies TO 1
REPCRT DOMN geogr aphy geography. gi d geogparent. gi d

15-8 Oracle9/ OLAP User’s Guide

Preparing the Analytic Workspace

GEOGRAPHY. HI ERARCHI ES

GEOGRAPHY. GECGPARENT
CGEOGRAPHY GD .GD

P
CoOO0OO0O0OFr W=
PR RRPRRER OO

Hierarchy Height

The following is the definition of a relation that stores the results of the

HI ERHEI GHT command. The relation must have the dimension as a data type
(geogr aphy) and be dimensioned by the same dimensions as the parent relation
(geogr aphy and geogr aphy. hi er ar chi es) and the integer dimension for levels
(geogr aphy. | vl di m.

DEFI NE GEOGRAPHY. HI ERHEI GHT RELATI ON GEOGRAPHY <GEOGRAPHY GEOGRAPHY. HI ERARCHI ES

GECGRAPHY. LVLDI M>
LD Qut put from H ERHElI GHT conmmand

The following command generates the content of geogr aphy. hi er hei ght :
H ERHEI GHT geogr aphy. parentrel | NTO geography. hi er hei ght

The geogr aphy. hi er hei ght relation identifies the hierarchy level of each
dimension value and its ancestors.

REPCRT DOMN geogr aphy ACRGCSS geography. | vl di m geography. hi er hei ght

GEOGRAPHY 1 2 3 4
WORLD NA NA NA WORLD
AVERI CAS NA NA AMERI CAS WORLD
CANADA NA CANADA AMERI CAS WORLD
TORONTO TORONTO CANADA AMERI CAS WORLD
MONTREAL MONTREAL ~ CANADA AMERI CAS WORLD
OTTAVA OTTAVA CANADA AMERI CAS WORLD

CWM2_OLAP_AW_ACCESS 15-9

Specifying the Source and Target Objects

See Also: Oracle9i OLAP DML Reference help for syntax and
examples of the GROUPI NG Dand H ERHEI GHT commands.

Attributes

Attributes are text variables that provide descriptive information about dimension
members, and are useful for displaying the data. Dimension members are usually
very cryptic, and are more useful for uniquely identifying the data internally than
for labeling the data for users in a table or graph. For this reason, dimensions often
have one or more variables that provide descriptions of the dimension members.
The following example shows two variables that contain short and long descriptive
names for geogr aphy members.

REPCRT DOMN geogr aphy geography. shortl abel geography. | ongl abel

CGEOGRAPHY GEOGRAPHY. SHORTLABEL GEQGRAPHY. LONGLABEL
WORLD Wrl d Regi ons of the Wrld
AVERI CAS Aneri cas Areas in the Arericas
CANADA Canada Canada

TORONTO Toront o Toronto

MONTREAL Mont r eal Mont r eal

OTTAVWA Qtawa Qtawa

VANCOWER Vancouver Vancouver

EDMONTON Edront on Edront on

CALGARY Cal gary Cal gary

USA USA United States of Anerica

Specifying the Source and Target Objects

A delimited text string specifies multidimensional source objects in the analytic
workspace and maps them to target columns in a relational view. You can supply
this delimited text string either in files (as described in
"CreateAWAccessStructures_FR Procedure” on page 15-24) or directly in the
command line (as described in "Create AWAccessStructures Procedure” on

page 15-25).

Each source and target object is defined by a keyword followed by one or more
values. Two colons (: :) delimit the keywords and values. In the following example,
MEASURE is a keyword, and sal es and cost s are the names of measures in the
analytic workspace.

MEASURE: : sal es: : costs

15-10 Oracle9i OLAP User’s Guide

Specifying the Source and Target Objects

When you provide mapping information in a text file, each keyword begins a new
line:

MEASURE: : sal es: : costs
MEASURE COLUMNS: : sal es: : costs

When you provide mapping information directly in the command line, a semicolon
delimits the individual object specifications;

MEASURE: : sal es: : costs; MEASURE COLUWNS: : sal es: : costs

Each call to one of these procedures generates a single view. For example, to create
one fact view and three dimension tables, you must execute the procedure four
times. If you are supplying input files for the mapping information, then you must
create four files, one for each view that you want to generate.

Note: If you are creating views that will be accessed directly using
SQL, then you can structure the views in whatever way is
appropriate for your application.

If you will use the views to create OLAP Catalog metadata, then
you must create a star schema with measure views and dimension
views as described in this chapter.

Defining Dimension Views

For a star schema, you must define a dimension view for every hierarchy of every
dimension of the fact view. A flat dimension, that is, one with no hierarchies,
requires a single dimension view.

Since each call to one of these procedures generates a single view, you must create a
separate mapping file for each one. For example, if the geography dimension has
two hierarchies, then you need to create two mapping files.

Table 15-1 describes the keywords that identify the source data in an analytic
workspace that will be used to create a dimension view. Table 15-2 describes the
keywords that specify the target columns in the generated database dimension
view. Enter these keywords in the same input file. Some of these keywords are
required and others are optional. DI MENSI ON must be the first keyword.

CWM2_OLAP_AW_ACCESS 15-11

Specifying the Source and Target Objects

Table 15-1 Keywords for Defining the Source Data for a Dimension View

Keyword

Description

DI MENSI ON

HI ERARCHY

I N H ERARCHY

HI ERARCHY DI MENSI ON

HI ERARCHY DI MENSI ON VALUE

PARENT G D

ATTRI BUTES

15-12 Oracle9i OLAP User’s Guide

A workspace DI MENSI ON, which dimensions the
measures in the fact view, as described in
"Dimensions" on page 15-4. This keyword must
appear first. Required.

A workspace RELATI ON that identifies the parent
value for each dimension value in the hierarchy, as
described in "Hierarchies" on page 15-4. Required
for hierarchical dimensions.

A workspace VARI ABLE with a BOOLEAN data

t ype that identifies whether or not each value of
DI MENSI ONis included in the hierarchy, as
described in "In Hierarchy Variables" on page 15-6.
Required only when some dimension members are
omitted from the hierarchy.

The workspace DI MENSI ON that contains the names
of the hierarchies, as described in "Hierarchy
Dimensions" on page 15-4. Required only if more
than one hierarchy is defined for DI MENSI ON.

The dimension member in the HI ERARCHY

DI MENSI ON object that identifies the hierarchy.
Required only if H ERARCHY DI MENSI ONis
specified.

A workspace VARl ABLE with an | NTEGER data type
that identifies the hierarchy level of each dimension
value. Use the GROUPI NG Dcommand to generate
this variable, as described in "Grouping IDs" on
page 15-7. Improves performance of the OLAP API.

Identifies the grouping IDs of the parent values. You
can define a formula that generates the parent
values from the GID variable, as described in
"Grouping IDs" on page 15-7.

One or more workspace VARI ABLE objects that
contain descriptive information about the dimension
members, as described in "Attributes” on page 15-10.
Optional.

Specifying the Source and Target Objects

Table 15-1 Keywords for Defining the Source Data for a Dimension View

Keyword Description

COLUW LEVEL DI MENSI ON A workspace DI MENSI ONwith an | NTEGER data
type, which contains a value for each level in the
hierarchy, as described in "Level Dimensions" on
page 15-5. It dimensions the COLUMN LEVEL
RELATI ON object. Required for hierarchical
dimensions.

COLUW LEVEL RELATI ON A workspace RELATI ONwith a value for each level
in the hierarchy. Use the Hl ERHEI GHT command in
the OLAP DML to generate the values of this
relation, as described in "Hierarchy Height" on
page 15-9. Required for hierarchical dimensions.

Important: When listing the keywords for the target columns, you
must list DI MENSI ON COLUMN, PARENT COLUWN, and Gl D
COLUMWN in that order. All column names must comply with Oracle
requirements.

Table 15-2 Keywords for Defining the Target Columns for a Dimension View

Keyword Description

DI MENSI ON COLUMN A valid name for the column that will represent
dimension values from DI MENSI ON. Required.

PARENT COLUWN A valid name for the column that will represent the
parent value for each dimension value. Required for
hierarchical dimensions.

G D COLUW A valid name for the column that will represent the
grouping IDs from G D. Required for hierarchical
dimensions.

PARENT G D COLUWN A valid name for the column that will represent the

grouping IDs from PARENT G D. Optional.

CWM2_OLAP_AW_ACCESS 15-13

Specifying the Source and Target Objects

Table 15-2 Keywords for Defining the Target Columns for a Dimension View

Keyword

Description

DI MENSI ON DATATYPES

LEVEL COLUWNS

LEVEL DATATYPES

ATTRI BUTE COLUWNS

ATTRI BUTE DATATYPES

The data types of the previously specified columns,
as follows:

First value: DI MENSI ON COLUWN
Second value: PARENT COLUWN
Third value: G D COLUWN

Fourth value: PARENT G D
Required for each defined column.

For information about compatible workspace and
database data types, search for the SQ. FETCH
command in the Oracle9i OLAP DML Reference
help.

Valid names for the columns that represent level
values. You must identify a column for each value in
COLUWN LEVEL DI MENSI ON. For example, if the
level dimension has four values, then you must
define four columns. Required for hierarchical
dimensions.

The data types of the columns listed in LEVEL
COLUMWNS. The data types must correspond in
number and order to the columns listed in LEVEL
COLUMWNS, that is, the first column will be defined
with the first data type, the second column will be
defined with the second data type, and so forth.
Required when LEVEL COLUMNS is specified.

Valid names for the columns that represent attribute
values. The columns must correspond in number
and order to the variables listed in ATTRI BUTES,
that is, the first column will represent the first
variable, the second column will represent the
second variable, and so forth. Optional.

The data type of the columns listed in ATTRI BUTE
COLUMWNS. The data types must correspond in
number and order to the columns listed in

ATTRI BUTE COLUMNS, that is, the first column will
be defined with the first data type, the second
column will be defined with the second data type,
and so forth. Required when ATTRI BUTE COLUWNS
is specified.

15-14 Oracle9i OLAP User’s Guide

Specifying the Source and Target Objects

Defining Fact Views

You can create a single group of views for several measures if they are dimensioned
identically, as described in "Measures" on page 15-3.

For the OLAP API, you need to create one view for each combination of dimension
hierarchies. The views must contain columns for the measures themselves and the
dimension values that qualify this data. You can copy statements from the input
files for dimension views into the input files for fact views.

Create input files (or text strings) that includes the following keywords:

All of the keywords in Table 15-3. They must appear in the order shown at the
beginning, before keywords for the dimensions.

The following keywords from Table 15-1, "Keywords for Defining the Source
Data for a Dimension View" if they appear in the input file for the dimension
view: DI MENSI ON, H ERARCHY, | N HI ERARCHY, and d D. If you wish to create
a denormalized view for use by SQL applications, you can include additional
keywords.

Keywords from Table 15-2, "Keywords for Defining the Target Columns for a
Dimension View" that correspond to the source data keywords. The OLAP API
uses the DI MENSI ONand @ D columns in the fact views, and uses the
dimension views for all other information about the dimensions. Thus, you
only need to define columns for the dimension members and the GIDs.

Table 15-3 lists the keywords that map workspace measures to columns in a fact
view.

Table 15-3 Additional Keywords for Defining a Fact View

Keyword Description

VEASURE One or more workspace VARl ABLE, RELATI ON, or FORMULA

objects that are dimensioned identically, as described in
"Measures" on page 15-3. The MEASURE keyword must appear
before the other keywords listed in this table.

MEASURE COLUWNS The names for the columns in the fact view where the data

from MEASURE wiill be represented. You can specify any valid
column name. The columns correspond in number and order
to the workspace objects listed in MEASURE, that is, the first
measure will be mapped to the first column, the second
measure to the second column, and so forth.

CWM2_OLAP_AW_ACCESS 15-15

Example: Creating Views

Table 15-3 Additional Keywords for Defining a Fact View

Keyword Description

MEASURE DATATYPES The data types of the columns in the fact view. The data types
must correspond in number and order to the columns listed in
MEASURE COLUMNS, that is, the first column will be defined
with the first data type, the second column will be defined
with the second data type, and so forth.

For a comparison between workspace data types and database
data types, search for the SQL FETCHcommand in the
Oracle9i OLAP DML Reference help.

Example: Creating Views

This example creates fact views and dimension views for two variables, sal es and
cost s. The following are their object definitions. Note that they are dimensioned
identically.

DEFI NE SALES VARI ABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TI ME>
DEFI NE COSTS VARI ABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TI ME>

In a star schema for use with OLAP Catalog metadata, you would create dimension
views for each hierarchy and fact views for each combination of dimension
hierarchies.

If the hierarchies shown in Table 15-4 have been defined for these dimensions, then
the following views must be generated:

« Sixdimension views(2+1+1+2)

« Four fact views (2* 1* 1* 2)

Table 15-4 Sample Dimension Hierarchies

Dimensions Hierarchies Required Number of Views
geogr aphy st andard 2
consol i dat ed
pr oduct st andard 1
channel st andard 1
time st andard 2
ytd

15-16 Oracle9i OLAP User’s Guide

Example: Creating Views

Example: Input Files for Mapping Variables to Views
This example creates views in a star schema for use by the OLAP API.

Geography Dimension Standard Hierarchy View

These statements define the geogr aphy dimension view for the STANDARD
hierarchy. A separate file is required to generate another view to support the
CONSOLI DATED hierarchy, but it is not included in this example.

DI MENSI ON: : geogr aphy

H ERARCHY: : geogr aphy. parentrel

| NHI ERARCHY: geogr aphy. i nhi erar chy

H ERARCHY DI MENSI ON: : geogr aphy. hi erarchi es

H ERARCHY DI MENSI ON VALUE: : STANDARD

G D:: geography. gid

PARENT @ D: : geogparent.gid

ATTRI BUTES: : geogr aphy. | ongl abel : : geogr aphy. short | abel
COLUWN LEVEL DI MENSI ON: : geography. | vl dim

COLUWN LEVEL RELATI ON: : geogr aphy. hi er hei ght

DI MENSI ON COLUMN: : geogr aphy

PARENT COLUWN: : geog_par ent

G D COLUMN: : geog_gi d

PARENT G D COLUWN: : geogp_gi d

DI MENSI ON DATATYPES: : var char 2(16) : : var char 2(16) : : nunber (10) : : nunber (10)
LEVEL COLUWNS::city::country::continent::world

LEVEL DATATYPES::varchar2(16)::varchar2(16)::varchar2(16):: varchar?2(16)
ATTRI BUTE COLUWNS: : geog_| ong: : geog_short

ATTRI BUTE DATATYPES: : var char (32): : var char (16)

Product Dimension View
The following statements define the pr oduct dimension view.

DI MENSI ON: : pr oduct

H ERARCHY: : product . parentrel

G D::product.gid

PARENT G D:: prodparent.gid

ATTRI BUTES: : product. | ongl abel : : product . short| abel
COLUWN LEVEL DI MENSI ON: : product.|vldim

COLUWN LEVEL RELATI ON: : product. hi er hei ght

DI MENSI ON COLUWN: : pr oduct

PARENT COLUWN: : pr od_par ent
G D COLUMN: : prod_gid

CWM2_OLAP_AW_ACCESS 15-17

Example: Creating Views

PARENT G D COLUWN: : prodp_gid

DI MENSI ON DATATYPES: : var char 2(16) : : var char 2(16) : : nunber (10) : : nunber (10)
LEVEL COLUMNS: : equi prent : : conponent : : di vi si on: :t ot al prod

LEVEL DATATYPES::varchar2(16)::varchar2(16)::varchar2(16):: varchar?2(16)
ATTRI BUTE COLUMNS: : prod_| ong: : prod_short

ATTRI BUTE DATATYPES: : var char (32): : var char (16)

Channel Dimension View
These statements define the channel dimension view.

DI MENSI ON: : channel

H ERARCHY: : channel . parentrel

G D:: channel . gi d

PARENT @ D:: chanparent.gid

ATTRI BUTES: : channel . | ongl abel : : channel . short| abel
COLUWN LEVEL DI MENS|I ON: : channel . | vl dim

COLUWN LEVEL RELATI ON: : channel . hi er hei ght

DI MENSI ON COLUWN: : channel

PARENT COLUWN: : chan_par ent

G D COLUMN: : chan_gi d

PARENT @ D COLUWN: : chanp_gid

DI MENSI ON DATATYPES: : var char 2(16) : : var char 2(16) : : nunber (10) : : nunber (10)
LEVEL COLUWNS::outlet::total chan

LEVEL DATATYPES:: varchar2(16):: varchar2(16)

ATTRI BUTE COLUMNS: : chan_| ong: : chan_short

ATTRI BUTE DATATYPES: : var char (32): : var char (16)

Time Standard Hierarchy Input File

These statements define the t i me dimension view for the STANDARD hierarchy. A
separate file is required to generate another view to support the YTD hierarchy, but
it is not included in this example.

DI MENSI ON: : time

H ERARCHY: : ti me. parentrel

| NHI ERARCHY: tine.inhierarchy

H ERARCHY DI MENSI ON: : ti me. hi erarchi es

H ERARCHY DI MENSI ON VALUE: : STANDARD
GD:time.gid

PARENT G D::tineparent.gid

ATTRI BUTES: : time. | ongl abel : : ti ne. short| abel
COLUWN LEVEL DI MENSION::tinme.lvldim
COLUWN LEVEL RELATION::time. hierheight

15-18 Oracle9i OLAP User’s Guide

Example: Creating Views

DI MENSI ON COLUWN: : ti me

PARENT COLUWN: : ti nme_parent

G D COLUWN: :time_gid

PARENT G'D COLUWN: :tinep_gid

DI MENSI ON DATATYPES: : var char 2(8): : varchar 2(8) : : nurmber (10) : : nunber (10)
LEVEL COLUWNS:: nonth::quarter::year

LEVEL DATATYPES:: varchar2(16)::varchar2(16):: varchar2(16)

ATTRI BUTE COLUMNS: : time_long::time_short

ATTRI BUTE DATATYPES: : var char (32): : var char (16)

Sales and Costs Fact Views

For the OLAP API, you need to create a fact view for each combination of
dimension hierarchies. In addition to the fact columns, the OLAP API also needs
columns for dimension members and grouping IDs.

The following statements identify two workspace measures, sal es and cost s, as
the source objects for a fact view. The fact view will have columns for the data from
sal es and cost s. Both of these columns will have a NUMBER data type with 12
significant digits and 2 decimal places. The data from sal es will be fetched into the
sal es column, and the data from cost s will be fetched into the cost s column.

The following is an example of just one of the four input files needed by the sal es
and cost s measures. The statements defining the pr oduct and channel columns
are also omitted, as indicated by the ellipsis.

MEASURE: : sal es: : costs
MEASURE COLUMNS: : sal es: : costs
MEASURE DATATYPES: : nunber (12, 2) : : nunber (12, 2)

DI MENSI ON: : geogr aphy

H ERARCHY: : geogr aphy. parentrel

| NHI ERARCHY: geogr aphy. i nhi erar chy

H ERARCHY DI MENSI ON: : geogr aphy. hi erar chi es
H ERARCHY DI MENSI ON VALUE: : STANDARD

G D:: geography. gid

DI MENSI ON COLUMN: : geogr aphy

G D COLUMN: : geog_gi d
DI MENSI ON DATATYPES: : var char 2(16) : : nunber (10)

DI MENSI ON : ti ne
H ERARCHY: : ti me. parentrel

CWM2_OLAP_AW_ACCESS 15-19

Example: Creating Views

| NHI ERARCHY: tine.inhierarchy

H ERARCHY DI MENSI ON: : ti me. hi erarchi es
H ERARCHY DI MENSI ON VALUE: : STANDARD
GD:time.gid

DI MENSI ON COLUMN: : ti me
G D COLUMN::time_gid
DI MENSI ON DATATYPES: : var char 2(8) : : nunmber (10)

Example: Script for the Product View

This PL/SQL command uses the / user s/ or acl e/ mapfi | es/ product . t xt
input file shown in "Product Dimension View" on page 15-17 to generate a script
named / user s/ oracl e/ scri pt s/ product . sqgl . The resulting view will be
named el ectro_product _vi ew

CALL CWWR_OLAP_AW ACCESS. CREATEAWACCESSSTRUCTURES FR(
"lusers/oracle/scripts/’, 'product.sqgl’, ’electro_product_’,
"scott.electronics', '/users/oracle/mapfiles/', 'product.txt’);

Before executing the script, you may edit it.

--product. sql
--CGenerated on: 15-FEB-2002 09: 16: 42am

SET ECHO ON

SET LI NESI ZE 200
SET PAGESI ZE 50
SET SERVERQUT ON

DROP TYPE el ectro_product _TBL;
DROP TYPE el ectro_product _CBJ;

CREATE TYPE el ectro_product _OBJ AS OBJECT (
PRODUCT VARCHAR2(16),
PROD_PARENT VARCHAR2(16) ,
PRCD_G D NUMBER(10),
PRCDP_G D NUMBER(10),
EQUI PMENT VARCHAR2(16)
COVPONENT VARCHAR2(16) ,
DI VI Sl ON VARCHAR2(16) ,
TOTALPROD VARCHAR2(16),
PROD_LONG VARCHAR(32),
PROD_SHORT VARCHAR(16));

15-20 Oracle9i OLAP User’s Guide

Example: Creating Views

CREATE TYPE el ectro_product _TBL AS TABLE CF el ectro_product _OBJ;
/

CREATE OR REPLACE FUNCTI ON el ectro_product LMAP RETURN VARCHAR2 | S
--This function will return the following Linit Mp:

-- DI MENSI ON PRODUCT FROM PRODUCT

-- W TH HI ERARCHY PRCD PARENT FROM PRCDUCT. PARENTREL

-- G D PROD_ G D FROM PRODUCT. G D

-- PARENTG D PRODP_G D FROM PRODPARENT. G D

-- LEVELREL EQUI PMENT, COVPONENT, DI VISION, TOTALPROD FROM
PRCODUCT. HI ERHEI GHT USI NG PRODUCT. LVLDI M

-- ATTRI BUTE PRCD_LONG FROVI PRODUCT. LONGLABEL

-- ATTRI BUTE PRCD_SHORT FROM PRODUCT. SHORTLABEL

vRetVal VARCHAR2(443) :=";

BEGIN
vRetVal := vRetVal || 'DIMENSION PRODUCT FROM PRODUCT ;
vRetVal := vRetVal || 'WITH HEERARCHY PROD_PARENT FROM PRODUCT.PARENTREL ;
vRetVal := vRetVal || 'GID PROD_GID FROM PRODUCT.GID *;
vRetVal ;= vRetVal || 'PARENTGID PRODP_GID FROM PRODPARENT.GID ’;
vRetVal ;= vRetVal || 'LEVELREL EQUIPMENT, COMPONENT, DIVISION, TOTALPROD
FROM PRODUCT.HIERHEIGHT USING PRODUCT.LVLDIM *;
vRetVal := vRetVal || 'ATTRIBUTE PROD_LONG FROM PRODUCT.LONGLABEL *;
vRetVal := vRetVal || 'ATTRIBUTE PROD_SHORT FROM PRODUCT.SHORTLABEL';
RETURN vRetVal;
END electro_product_LMAP;
/

SHOW ERRORS;

CREATE OR REPLACE VIEW electro_product_VIEW AS SELECT * FROM
TABLE(CAST(OLAP_TABLE('scott.electronics DURATION QUERY’, 'electro_product_TBL',
" electro_product_LMAP())AS electro_product_TBL));

--The command below should be modified to provide appropriate security to

Analytic Workspace data.

--GRANT SELECT ON electro_product_VIEW TO PUBLIC;

--End of file: product.sql

CWM2_OLAP_AW_ACCESS 15-21

Example: Creating Views

Example: Product View

The script shown in "Example: Script for the Product View" on page 15-20 creates a
view named ELECTRO_PRODUCT _VI EWwhich has the following definition:

SELECT "PRCDUCT", "PROD_PARENT", "PRCD G D', "PRODP_G D' "EQU PMENT",
" COMPONENT", " DI VI SI ON, "TOTALPRCOD', "PROD_LONG', "PROD_SHORT"
FROM TABLE(CAST (OLAP_TABLE(’ scott. el ectronics DURATI ON QUERY’,
"electro_product _TBL', ', electro_product_ LMAP()) AS electro_product_TBL))

Use a command like the following to access data about products from the
el ect r oni cs analytic workspace:

sel ect product, prod_long, prod_short fromelectro_product_view
where prod_gi d=0;

PRCDUCT PRCD LONG PRCD SHORT
PORTCD Portable CD Pl ayer Port CD
PORTST Portable Stereo Port Stereo
PORTCAS Portabl e Cassette Port Cassette
TUNER Tuner Tuner
METALCAS Metal Cassette M| Cassette
STNDCAS Standard Cassette Std Cassette
STNDVHSVI DEO Standard VHS Vi deo VHS Vi deo
8MWI DEO 8W Vi deo 8W Vi deo

H 8VI DEO H 8 Video H 8 Video

22 rows sel ected.

15-22 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_ACCESS Subprograms

Summary of CWM2_OLAP_AW_ACCESS Subprograms

Table 15-5 lists the subprograms provided in CVWW2_ OLAP_ AW ACCESS.

Table 15-5 CWM2_OLAP_AW_ACCESS

Subprogram Description

CreateAWAccessStructures_FR Functions the same way as

Procedure on page 15-24 Cr eat eAWAccessSt ruct ur es except that it accepts a
file that contains the mapping information. This procedure
parses the information contained in the file and passes it,
along with the other parameters, to
Creat eAWAccessSt ruct ures.

Create AWAccessStructures Generates one or more scripts. The scripts create views

Procedure on page 15-25 that represent the multidimensional objects in an analytic
workspace. The views take the place of dimension tables
and measure tables when creating metadata. This
procedure accepts a delimited text string on the command
line for the mapping information. The mapping
information identifies source objects in the analytic
workspace and target columns in the database.

CWM2_OLAP_AW_ACCESS 15-23

CreateAWAccessStructures_FR Procedure

CreateAWAccessStructures FR Procedure

This procedure creates a SQL script that will create the relational objects needed for
SQL to access objects in the analytic workspace, such as object types and views. As
input, it takes a text file that maps the workspace objects to columns of the views.

Syntax
Creat eAWAccessSt ruct ures_FR(

script_directory VARCHAR2,
script_name VARCHAR?,
prefix VARCHAR?,
aw_namne VARCHAR?,
infile_directory VARCHAR2
infile_nane VARCHAR?) ;

Parameters

Table 15-6 CWMZ2_OLAP_AW _ACCESS Procedure Parameters

Parameter Description

script_directory An existing directory path where scri pt _nane will be written.

scri pt _nane The file name that will be given to the generated SQL script. This
procedure does not overwrite an existing file, so be sure that a file
by the name you specify does not already exist in
script_directory.

prefix A prefix that will be given to the view created by executing the
script. This prefix identifies the objects in a schema that relate to the
analytic workspace. It can be up to 25 characters long, and must
comply with the requirements for a database object name.

aw_nane The name of the analytic workspace where the source objects are
stored.

infile_directory Thedirectory path where thei nfil e_nane is stored.

i nfile_nane The name of the input file that contains mapping information, as
described in Example , "Specifying the Source and Target Objects™.

15-24 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_ACCESS Subprograms

CreateAWAccessStructures Procedure

Syntax

Parameters

This procedure creates a SQL script that will create the relational objects needed for
SQL to access objects in the analytic workspace, such as object types and views. It
takes a delimited string as input for the mapping information.

Creat eAWAccessSt ruct ures(

script_directory VARCHAR2,
script_filenane VARCHAR?,
prefix VARCHAR?,
aw_namne VARCHAR?,
mappi ng_i nfo VARCHAR?) ;

Table 15-7 CWMZ2_OLAP_AW _ACCESS Procedure Parameters

Parameter Description

script_directory An existing directory path where scri pt _nane will be written.

scri pt _nane The file name that will be given to the generated SQL script. This
procedure does not overwrite an existing file, so be sure that a file
by the name you specify does not already exist in
script_directory.

prefix A prefix that will be given to the view created by executing the
script. This prefix identifies the objects in a schema that relate to the
analytic workspace. It can be up to 25 characters long, and must
comply with the requirements for a database object name.

aw_nane The name of the analytic workspace where the source objects are
stored.
mappi ng_i nfo A delimited string that contains mapping information, as described

in "Specifying the Source and Target Objects" on page 15-10.

CWM2_OLAP_AW_ACCESS 15-25

CreateAWAccessStructures Procedure

15-26 Oracle9i OLAP User’s Guide

16

CWM2_OLAP_PC_TRANSFORM

The CWWR_OLAP_PC_TRANSFORMpackage provides a procedure that generates a
SQL script for converting a parent/child dimension table to an embedded-total
dimension table.

Once your parent-child tables are converted to embedded-total tables you can map
OLAP metadata to them.

This chapter discusses the following topics:
. Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

CWM2_OLAP_PC_TRANSFORM 16-1

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Table 16-1 CWMZ2_OLAP_PC_TRANSFORM

Subprogram Description

CREATE_SCRI PT Procedure on Generates a script that converts a parent-child
page 16-2 table to an embedded-total table.

CREATE_SCRIPT Procedure

This procedure generates a script that converts a parent/child dimension table to an
embedded-total dimension table.

Syntax
CREATE_SCRI PT (
directory IN VARCHARZ,
schema IN VARCHAR?,
pc_table IN VARCHAR?,
pc_par ent IN VARCHARZ,
pc_child IN VARCHAR?,
t_table IN VARCHARZ,
t _tabl espace IN VARCHARZ,
pc_root IN VARCHAR2 DEFAULT,
level s IN VARCHAR2 DEFAULT,
level s |ist IN VARCHAR2 DEFAULT,
short _description IN VARCHAR2 DEFAULT,
long_description IN VARCHAR2 DEFAULT,
attributes |ist IN VARCHARZ DEFALLT) ;
Parameters

Table 16-2 CREATE_SCRIPT Procedure Parameters

Parameter Description

directory Full path of a directory where the procedures will put the
generated script.

schenma Schema containing the parent-child table. This schema will also
contain the embedded-total table.

pc_table Parent-child table.

pc_parent Column containing the parent in the parent-child table.

16-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Table 16-2 CREATE_SCRIPT Procedure Parameters

Parameter Description
pc_child Column containing the child in the parent-child table.
t _table Embedded total table.

t _tabl espace

pc_r oot

levels

levels_list

short_description

long_description

Tablespace where the embedded total table will be created.

One of the following:

nul I - Root of parent-child table hierarchy is identified by
nul | in the parent column. (default)

condi ti on - Root of the hierarchy in the parent-child table is
a condition, for example:

'long_des = "Northeast Region™

One of the following:

null - Compute the number of levels in the parent-child table
and create the embedded-total table with that number of levels.
(default)

nunmber - The number of levels for the embedded-total table.

One of the following:

null - Generate the embedded-total table column names based
on the parent-child column and level number. (default)

I'i st - Acomma-separated list of column names for the
embedded-total table.

One of the following:

null - No short description in the parent-child table. Use the
highest level non-null child in row of embedded-total table as
short description. (default)

col utm name - Name of the column in the parent-child table
that contains the short description. Copy the short description
column from the parent-child table to the embedded-total table.

One of the following:

null - No long description in the parent-child table. Use the
short description in the embedded-total table as the long
description. (default)

col unm nane - Name of the column in the parent-child table
that contains the long description. Copy the long description
column from the parent-child table to the embedded-total table

CWM2_OLAP_PC_TRANSFORM 16-3

CREATE_SCRIPT Procedure

Usage Notes

Table 16-2 CREATE_SCRIPT Procedure Parameters

Parameter Description
attributes_|list One of the following:
nul I - No attributes. (default)

I'i st - Acomma-separated list of attribute columns in the
parent-child table. Copy these columns to the embedded-total
table.

The CREATE_SCRI PT procedure must have write access to the directory where
the script will reside. The database must be able to execute scripts in this
directory.

The script identifies the root of a parent-child hierarchy by a nul | in the pc_
par ent parameter. If the root is identified some other way, you may need to
edit the generated script and change the way that the root is identified.

If a table with the same name as the embedded-total table already exists, the
script will delete it.

Calculating the number of levels in the parent-child table is a relatively
expensive operation. You can reduce the time required to generate the script by
specifying the number of levels to be processed in the et _| evel s parameter.

16-4 Oracle9i OLAP User’s Guide

17

CWM2_OLAP_DIMENSION

The CWWv2_OLAP_DI MENSI ON package provides procedures for creating, dropping,
and locking dimensions. It also provides procedures for setting general dimension
properties.

This chapter discusses the following topics:

« Understanding Dimensions

« Creating Dimensions

« Common Logic in CWM2_OLAP_DIMENSION Subprograms
« Summary of CWM2_OLAP_DIMENSION Subprograms

CWM2_OLAP_DIMENSION 17-1

Understanding Dimensions

Understanding Dimensions

A dimension is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP 2 Catalog (CVW\R).

OLAP dimensions provide the dimensionality of OLAP measures. A measure
represents data, stored in a fact table, that can be accessed by specifying values for
its dimensions. For example, a measure representing sales data might be
dimensioned by time, product, and location. This means that the sales data can be
accessed for a given time period, a given product, and a given location. A set of
measures with the same dimensionality can be represented as an OLAP cube.

OLAP dimensions represent columns in your data warehouse dimension tables as
levels and attributes of levels. Each level defines a set of dimension members that
share the same level of aggregation. For example, within a time dimension, the
levels might be months, quarters, and years. Each level attribute holds descriptive
information about dimension members within a given level. For example, the level
attribute END DATE holds the final date for each of the months in the month level,
for each of the quarters in the quarter level, and so on.

Dimensions usually have hierarchies, which define parent/child relationships
between levels, and dimension attributes, which define sets of level attributes.

Note: Dimensions in the OLAP 2 Catalog map directly to columns
in dimension tables and have no relationship to Oracle database
dimension objects.

Dimension Table Requirements

The dimension tables that underlie OLAP dimensions must be organized in levels.
The dimension members for each level are stored in one or more columns.

If your dimension tables are in parent-child format instead of level-based format,
you must call CREATE_SCRI PT in the CWW2_ OLAP_PC_TRANSFORMpackage to
generate level-based views for your parent-child tables. Then you can call
procedures in CWWR2_ OLAP_DI MENSI ON and related packages to create dimensions
in the OLAP 2 Catalog.

If your source dimensions are stored in an analytic workspace within the database,
you must call procedures in the CWWR2_ OLAP_AW ACCESS package to create
relational views that reference the workspace. Then you can call procedures in the
CWW2_OLAP_DI MENSI ON package to create dimensions in the OLAP 2 Catalog.

17-2 Oracle9i OLAP User’s Guide

Creating Dimensions

Normal Dimensions and Time Dimensions

There are two types of dimensions: normal dimensions and time dimensions. The
default type is normal.

A time dimension is a normal dimension with two mandatory dimension attributes:
END DATE and TI ME SPAN. Time dimensions typically contain levels for day,
month, quarter, and year and one or more hierarchies defining the parent/child
relationships between the levels. The END DATE and TI ME SPAN attributes must be
mapped for all the levels of a time dimension.

Dependencies Between Dimensional Entities

While a dimension is itself an OLAP metadata entity, it must have at least one child
entity in order to be valid. This child entity must represent a level with a valid
mapping to one or more columns in a dimension table.

The following table shows the parent/child dependencies between the metadata
entities that make up a dimension.

Table 17-1 Hierarchical Relationships Between OLAP Dimensional Metadata Entities

Parent Entity Child Entities

dimension dimension attribute, hierarchy, level
dimension attribute level attribute

hierarchy level

level level attribute

Creating Dimensions

The CWW2_OLAP_DI MENSI ON package contains procedures that establish
dimension entities within the OLAP 2 Catalog.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating an entity of metadata does not fully
define a dimension or a cube, nor does it involve any mapping to
warehouse dimension tables or fact tables.

CWM2_OLAP_DIMENSION 17-3

Common Logic in CWM2_OLAP_DIMENSION Subprograms

Completing the Dimension’s Metadata

Creating dimensions is the first step in creating the OLAP metadata for a
dimension. Typically you will create hierarchies and dimension attributes after
creating the dimension and before creating the dimension levels and level
attributes. Once the levels and level attributes are defined, you can map them to
columns in one or more warehouse dimension tables.

Once you have created a dimension, you will need to call procedures in the
following packages to fully define the dimension’s metadata:

« CWM2 OLAP_DIMENSION_ATTRIBUTE to create dimension attributes

« CWM2 _OLAP_HIERARCHY to create hierarchical relationships for the
dimension’s levels

« CWM2_OLAP_LEVEL to create levels and assign them to hierarchies

« CWM2 OLAP_LEVEL_ATTRIBUTE to create level attributes and assign them
to dimension attributes

« CWM2_OLAP_TABLE_MAP to establish the mapping to columns in one or
more dimension tables

Verifying Dimensional Metadata

To be valid, a dimension must have at least one level. If the dimension is a time
dimension, it must also have the END DATE and TI ME SPAN dimension attributes
mapped for all levels.

All the dimension's levels and level attributes must be mapped to columns in
dimension tables. Each level must map to one or more columns in one or more
tables. If a level maps to multiple columns, they must be in the same table. Each
level attribute must map to a single column in the same table as its associated level.
If any of these columns is inaccessible, the dimension is not valid.

To test the validity of your dimensional metadata, use the VALI DATE DI MENSI ON
procedure in the CWW2_ OLAP_VALI DATE package.

Common Logic in CWM2_OLAP_DIMENSION Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must be the dimension owner and must have the OLAP_DBA role. If the calling user
does not meet the security requirements, the procedure fails with an exception.

17-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

Each procedure then checks for the existence of the dimension specified by

di mensi on_owner and di nensi on_nane within the OLAP 2 Catalog. All
procedures, except CREATE_DI MENSI ON, return an error if the dimension does not
already exist.

Case Requirements for Subprogram Parameters
You can specify arguments in lower case, upper case, or mixed case.

If the argument is a metadata entity name (for example, di mensi on_nan®e) or a
value that will be used in further processing by other procedures (for example,
sol ved_code), the procedure converts the argument to upper case. For all other
arguments, the case that you specify is retained.

Summary of CWM2_OLAP_DIMENSION Subprograms

Table 17-2 CWMZ2_OLAP_DIMENSION Subprograms

Subprogram Description

CREATE_DI MENSI ON Creates a dimension.
Procedure on page 17-6

DROP_DI MENSI ON Procedure Drops a dimension.
on page 17-7

LOCK_DI MENSI ON Procedure Locks the dimension metadata for update.
on page 17-8

SET_DEFAULT_DI SPLAY_ Sets the default hierarchy for a dimension.
H ERARCHY Procedure on
page 17-9

SET_DESCRI PTI ON Procedure Sets the description for a dimension.
on page 17-10

SET_DI MENSI ON_NAME Sets the name of a dimension.
Procedure on page 17-10
SET_DI SPLAY_NAME Sets the display name for a dimension.

Procedure on page 17-11

SET_PLURAL_NAME Procedur e Sets the plural name for a dimension.
on page 17-12

SET_SHORT_DESCRI PTI ON Sets the short description for a dimension.
Procedure on page 17-13

CWM2_OLAP_DIMENSION 17-5

CREATE_DIMENSION Procedure

CREATE_DIMENSION Procedure

This procedure registers a new dimension entity in the OLAP 2 Catalog.

By default the new dimension is a normal dimension, but you can specify the value
TI ME for the di mensi on_t ype parameter to create a time dimension.

Descriptions and display properties must also be established as part of dimension
creation. Once the dimension has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE_DI MENSI ON (
di mensi on_owner I'N
di mensi on_name I'N
di spl ay_nane I'N
pl ural _nane I'N
short _description I'N
description I'N
di mensi on_t ype IN
Parameters

VARCHAR?,
VARCHAR?,
VARCHARZ,
VARCHARZ,
VARCHARZ,
VARCHAR?,
VARCHAR2 DEFAULT NULL);

Table 17-3 CREATE_DIMENSION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

di spl ay_nanme Display name for the dimension.

pl ural _name Plural name for the dimension.

short_description Short description of the dimension.

description Description of the dimension.

di nensi on_t ype (Optional) Type of the dimension. Specify the value TI ME to

create a time dimension. If you do not specify this parameter,
the dimension is created as a normal dimension.

17-6 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

Exceptions

Table 17-4 CREATE_DIMENSION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_al ready_exi sts Cannot create dimension. Dimension already exists in
the OLAP 2 Catalog.

DROP_DIMENSION Procedure

Syntax

Parameters

Exceptions

This procedure drops a dimension from the OLAP 2 Catalog. All related levels,
hierarchies, and dimension attributes are also dropped.

DROP_DI MENSI ON (
di mensi on_owner IN VARCHARZ,
di mensi on_narne IN VARCHAR?);

Table 17-5 DROP_DIMENSION Procedure Parameters

Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

Table 17-6 DROP_DIMENSION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _found Cannot drop dimension. Dimension does not exist
within the OLAP 2 Catalog.

CWM2_OLAP_DIMENSION 17-7

LOCK_DIMENSION Procedure

LOCK_DIMENSION Procedure

Syntax

Parameters

Exceptions

This procedure locks the dimension metadata for update by acquiring a database
lock on the row that identifies the dimension in the OLAP 2 Catalog.

LOCK_Di MENSI ON (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHAR2.
wait _for_|ock IN BOOLEAN DEFAULT FALSE);

Table 17-7 LOCK_DIMENSION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di mensi on_name Name of the dimension.

wai t _for_|ock (Optional) Whether or not to wait for the dimension to be

available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 17-8 LOCK_DIMENSION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

di mensi on_not _found Cannot lock dimension. Dimension does not exist within the
OLAP 2 Catalog.

17-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

SET_DEFAULT_DISPLAY_HIERARCHY Procedure

Syntax

Parameters

Exceptions

This procedure sets the default hierarchy to be used for display purposes.

SET_DEFAULT_DI SPLAY_HI ERARCHY (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
hi erarchy_name IN VARCHAR?);

Table 17-9 SET_DEFAULT_DISPLAY_HIERARCHY Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di mensi on_name Name of the dimension.

hi erar chy_name Name of one of the dimension’s hierarchies.

Table 17-10 SET_DEFAULT_DISPLAY_HIERARCHY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

di nensi on_not _found Cannot update dimension. Dimension does not exist within the
OLAP 2 Catalog.

hi erarchy_not _f ound This hierarchy not found for this dimension.

CWM2_OLAP_DIMENSION 17-9

SET_DESCRIPTION Procedure

SET_DESCRIPTION Procedure

Syntax

Parameters

Exceptions

This procedure sets the description for a dimension.

SET_DESCR! PTI ON (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
description IN VARCHAR?);

Table 17-11 SET_DESCRIPTION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di mensi on_name Name of the dimension.
description Description of the dimension.

Table 17-12 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Cannot update dimension. Dimension does not exist
within the OLAP 2 Catalog.

SET_DIMENSION_NAME Procedure

Syntax

This procedure sets the name for a dimension.

SET_DI MENSI ON_NAME (

di mensi on_owner IN VARCHARZ,
di nensi on_nane IN VARCHAR?2,
set _di mensi on_nane IN VARCHAR?);

17-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

Parameters

Exceptions

Table 17-13 SET_DIMENSION_NAME Procedure Parameters

Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Original name of the dimension.

set _di nensi on_nanme New name for the dimension.

Table 17-14 SET_DIMENSION_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be

the owner and have the OLAP_DBA role.

di nensi on_not _found Cannot update dimension. Dimension does not exist within

the OLAP 2 Catalog.

SET _DISPLAY_NAME Procedure

Syntax

Parameters

This procedure sets the display name for a dimension.

SET_DI SPLAY_NAME (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
di spl ay_nane IN VARCHAR?);

Table 17-15 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di mensi on_name Name of the dimension.

di spl ay_name Display name for the dimension.

CWM2_OLAP_DIMENSION

17-11

SET_PLURAL_NAME Procedure

Exceptions

Table 17-16 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di mensi on_not _found Cannot update dimension. Dimension does not exist within
the OLAP 2 Catalog.

SET_PLURAL_NAME Procedure

Syntax

Parameters

Exceptions

This procedure sets the plural name of a dimension.

SET_PLURAL_NAME (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
pl ural _nane IN VARCHAR?);

Table 17-17 SET PLURAL NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

pl ural _nane Plural name for the dimension.

Table 17-18 SET_PLURAL_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have privileges to edit the dimension. User
must be the owner or OLAP_DBA.

di mensi on_not _found Cannot update dimension. Dimension does not exist within
the OLAP 2 Catalog.

17-12 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

SET_SHORT_DESCRIPTION Procedure

This procedure sets the short description for a dimension.

Syntax
SET_DESCR! PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
short _description IN VARCHAR?);
Parameters
Table 17-19 SET_SHORT_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.
short_description Short description of the dimension.
Exceptions

Table 17-20 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Cannot update dimension. Dimension does not exist
within the OLAP 2 Catalog.

CWM2_OLAP_DIMENSION 17-13

SET_SHORT_DESCRIPTION Procedure

17-14 Oracle9i OLAP User’s Guide

18

CWM2_OLAP_DIMENSION_ATTRIBUTE

The CWW2_OLAP_DI MENSI ON_ATTRI BUTE package provides procedures for
creating, dropping, and locking dimension attributes. It also provides procedures
for setting general properties of dimension attributes.

This chapter discusses the following topics:

« Understanding Dimension Attributes

« Creating Dimension Attributes

« Common Logic in CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
. Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

CWM2_OLAP_DIMENSION_ATTRIBUTE 18-1

Understanding Dimension Attributes

Understanding Dimension Attributes

A dimension attribute is an OLAP metadata entity. This means that it is a logical
object, identified by name and owner, within the OLAP 2 Catalog.

Dimension attributes are child entities of dimension entities. Dimension attributes
define sets of level attributes, which map to columns on a per level basis. Each level
attribute column is associated with a level and must exist in the same dimension
table as the level column. Dimension attributes may include level attributes for
some or all of the dimension’s levels.

Examples of dimension attributes are end dat e andti ne span, which are
required for time dimensions. In order for a time dimension to be valid, end dat e
andti ne span dimension attributes must be defined for all levels. For example, if
a time dimension has month, quarter, and year levels, end dat e must identify the
last date of each month, each quarter, and each year. Likewise t i me span must
identify the length of each month, each quarter, and each year.

Creating Dimension Attributes

The CWW2_OLAP_DI MENSI ON_ATTRI BUTE package contains procedures that
establish attribute entities for dimensions within the OLAP 2 Catalog.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating a dimension attribute does not fully
define it, nor does it involve any mapping to warehouse dimension
tables.

The parent dimension must already exist in the OLAP 2 Catalog before you can
create dimension attributes for it.

18-2 Oracle9/ OLAP User’s Guide

Common Logic in CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Completing the Dimension’s Metadata

Creating dimension attributes is one of the first steps in creating the OLAP
metadata for a dimension. Once you have created the dimension attributes, you will
need to call procedures in the following packages to fully define the dimension’s
metadata:

« CWM2 OLAP_HIERARCHY to create hierarchical relationships for the
dimension’s levels (if you have not already done so)

« CWM2_OLAP_LEVEL to create levels and assign them to hierarchies within the
dimension

« CWM2_OLAP_LEVEL_ATTRIBUTE to create level attributes and assign them
to dimension attributes within the dimension

« CWM2_OLAP_TABLE_MAP to establish the mapping to columns in one or
more dimension tables

Common Logic in CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must be the dimension owner and must have the OLAP_DBA role. If the calling user
does not meet the security requirements, the procedure fails with an exception.

Each procedure then checks for the existence of the parent dimension within the
OLAP 2 Catalog. If the dimension does not exist, the procedure fails with an
exception.

Each procedure then checks for the existence of the dimension attribute. All
procedures, except CREATE_DI MENSI ON_ATTRI BUTE, return an error if the
dimension attribute does not already exist.

Case Requirements for Subprogram Parameters

You can specify arguments in lower case, upper case, or mixed case.
If the argument is a metadata entity name (for example, di mensi on_attri bute_
nane) or a value that will be used in further processing by other procedures, the

procedure converts the argument to upper case. For all other arguments, the case
that you specify is retained.

CWM2_OLAP_DIMENSION_ATTRIBUTE 18-3

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Table 18-1 CWMZ2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Subprogram

Description

CREATE_DI MENSI ON_
ATTRI BUTE Procedure on
page 18-4

DROP_DI MENSI ON_ATTRI BUTE
Procedure on page 18-6

LOCK_DI MENSI ON_ATTRI BUTE
Procedure on page 18-7

SET_DESCRI PTI ON Pr ocedur e
on page 18-8

SET_DI MENSI ON_ATTRI BUTE_
NAME Procedure on
page 18-9

SET_DI SPLAY_NANMVE
Procedure on page 18-10

SET_SHORT_DESCRI PTI ON
Procedure on page 18-11

Creates a dimension attribute.

Drops a dimension attribute.

Locks the dimension attribute metadata for update.

Sets the description for a dimension attribute.

Sets the name of a dimension attribute.

Sets the display name for a dimension attribute.

Sets the short description for a dimension attribute.

CREATE_DIMENSION_ATTRIBUTE Procedure

This procedure registers a new dimension attribute entity in the OLAP 2 Catalog.

Syntax

Descriptions and display properties must also be established as part of dimension
attribute creation. Once the dimension attribute has been created, you can override
these properties by calling other procedures in this package.

CREATE_DI MENSI ON_ATTRI BUTE (

di mensi on_owner I'N
di nensi on_nane I'N
di mensi on_attri bute_name IN
di spl ay_nane IN
short _description IN
description IN

reserved _di mension_attribute IN

18-4 Oracle9i OLAP User’s Guide

VARCHARZ,
VARCHARZ,
VARCHARZ,
VARCHARZ,
VARCHARZ,
VARCHARZ,
BOOLEAN DEFAULT FALSE);

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Parameters
Table 18-2 CREATE_DIMENSION_ATTRIBUTE Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di mensi on_nanme Name of the dimension.
di mension_attribute_ Name of the dimension attribute.
name
di spl ay_nanme Display name for the dimension attribute.
short_description Short description of the dimension attribute.
description Description of the dimension attribute.
reserved_di nensi on_ Whether or not this is a reserved dimension attribute. By
attribute default, the dimension attribute is not reserved.
The reserved dimension attributes are as follows.
Long Description
Short Description
End Date
Ti me Span
Prior Period
Year Ago Period
ET Key
Parent ET Key
Gouping ID
Parent Gouping ID
Exceptions

Table 18-3 CREATE_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mension_attribute_ Cannot create dimension attribute. Dimension attribute

al ready_exi sts already exists in the OLAP 2 Catalog.

CWM2_OLAP_DIMENSION_ATTRIBUTE 18-5

DROP_DIMENSION_ATTRIBUTE Procedure

DROP_DIMENSION_ATTRIBUTE Procedure

Syntax

Parameters

Exceptions

This procedure drops a dimension attribute from the OLAP 2 Catalog.

DROP_DI MENSI ON_ATTRI BUTE (

di mensi on_owner IN VARCHARZ,
di mensi on_narne IN VARCHARZ,
di nension_attribute name IN VARCHAR?);

Table 18-4 DROP_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter Description
di nensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.

di mension_attribute_ Name of the dimension attribute.
name

Table 18-5 DROP_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di mension_attribute_not _ Dimension attribute does not exist within the OLAP 2
found Catalog.

18-6 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

LOCK_DIMENSION_ATTRIBUTE Procedure

This procedure locks the dimension attribute metadata for update by acquiring a
database lock on the row that identifies the dimension attribute in the OLAP 2
Catalog.

Syntax

LOCK_DI MENSI ON_ATTRI BUTE (
di mensi on_owner IN VARCHARZ,
di mensi on_nane IN VARCHARZ,
di nension_attribute_name IN VARCHARZ,
wait _for_|ock IN BOOLEAN DEFAULT FALSE);

Parameters

Table 18-6 LOCK_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter Description

di mensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.

di mension_attribute_ Name of the dimension attribute.
name

wai t _for_Ilock (Optional) Whether or not to wait for the dimension attribute
to be available when it is already locked by another user. If you
do not specify a value for this parameter, the procedure does
not wait to acquire the lock.

Exceptions

Table 18-7 LOCK_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di nensi on_attri bute_ Dimension attribute does not exist within the OLAP 2 Catalog.
not found

CWM2_OLAP_DIMENSION_ATTRIBUTE 18-7

SET_DESCRIPTION Procedure

SET_DESCRIPTION Procedure

This procedure sets the description for a dimension attribute.

Syntax
SET_DESCR! PTI ON (
di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
di nensi on_attri bute_nane IN VARCHARZ,
description IN VARCHAR?);
Parameters
Table 18-8 SET_DESCRIPTION Procedure Parameters
Parameter Description
di mensi on_owner Owner of the dimension.
di mensi on_nane Name of the dimension.
di mension_attri bute _nanme Name of the dimension attribute.
description Description of the dimension attribute.
Exceptions

Table 18-9 SET_DESCRIPTION Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

di mension_attribute_not
found

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

Dimension attribute does not exist within the OLAP 2
Catalog.

18-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

SET_DIMENSION_ATTRIBUTE_NAME Procedure

This procedure sets the name for a dimension attribute.

Syntax
SET_DI MENSI ON_ATTRI BUTE_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
di nensi on_attri bute_nane IN VARCHARZ,
set _di nension_attribute_nane IN VARCHARZ,
reserved_di mension_attribute IN BOOLEAN DEFAULT FALSE);
Parameters
Table 18-10 SET_DIMENSION__ATTRIBUTE_NAME Procedure Parameters
Parameter Description
di mensi on_owner Owner of the dimension.
di mensi on_nane Name of the dimension.
di nensi on_ Original name for the dimension attribute.
attribute_nane
set _di nension_ New name for the dimension attribute.
attribute_name
reserved_ Whether or not this is a reserved dimension attribute. By default,
di nensi on_ the dimension attribute is not reserved.
attribute
Exceptions

Table 18-11 SET_DIMENSION_ATTRIBUTE_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di mension_attribute_ Dimension attribute does not exist within the OLAP 2

not _found Catalog.

CWM2_OLAP_DIMENSION_ATTRIBUTE 18-9

SET_DISPLAY_NAME Procedure

SET _DISPLAY_NAME Procedure

This procedure sets the display name for a dimension attribute.

Syntax
SET_DI SPLAY_NAME (
di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
di nensi on_attri bute_nane IN VARCHARZ,
di spl ay_nane IN VARCHAR?);
Parameters
Table 18-12 SET_DISPLAY_NAME Procedure Parameters
Parameter Description
di mensi on_owner Owner of the dimension.
di mensi on_nane Name of the dimension.
di mensi on_ Name of the dimension attribute.
attribute_nane
di spl ay_nanme Display name for the dimension attribute.
Exceptions

Table 18-13 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di nension_attribute_ Dimension attribute does not exist within the OLAP 2

not _found Catalog.

18-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

SET_SHORT_DESCRIPTION Procedure

Syntax

Parameters

Exceptions

This procedure sets the short description for a dimension attribute.

SET_SHORT_DESCRI PTI ON (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
di nensi on_attri bute_nane IN VARCHARZ,
short _description IN VARCHAR?);

Table 18-14 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description
di mensi on_owner Owner of the dimension.
di mensi on_nane Name of the dimension.

di mension_attri bute_name Name of the dimension attribute.

short_description Short description of the dimension attribute.

Table 18-15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di nension_attribute_not_ Dimension attribute does not exist within the OLAP 2
f ound Catalog.

CWM2_OLAP_DIMENSION_ATTRIBUTE 18-11

SET_SHORT_DESCRIPTION Procedure

18-12 Oracle9i OLAP User’s Guide

19

CWM2_OLAP_HIERARCHY

The CWW2_ OLAP_HI ERARCHY package provides procedures for creating, dropping,
and locking hierarchies. It also provides procedures for setting general hierarchy
properties.

This chapter discusses the following topics:

« Understanding Hierarchies

« Creating Hierarchies

« Common Logic in CWM2_OLAP_HIERARCHY Subprograms
« Summary of CWM2_OLAP_HIERARCHY Subprograms

CWM2_OLAP_HIERARCHY 19-1

Understanding Hierarchies

Understanding Hierarchies

A hierarchy is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP 2 Catalog.

Hierarchies are child entities of dimension entities. Hierarchies define parent/child
relationships between sets of levels. There can be multiple hierarchies associated
with a single dimension, and the same level can be used in multiple hierarchies.

Creating Hierarchies

The CWW2_ OLAP_HI ERARCHY package contains procedures that establish hierarchy
entities for dimensions within the OLAP 2 Catalog.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating a hierarchy does not fully define it,
nor does it involve any mapping to warehouse dimension tables.

The parent dimension must already exist in the OLAP 2 Catalog before you can
create hierarchies for it.

Completing the Dimension’s Metadata

Creating hierarchies is one of the first steps in creating the OLAP metadata for a
dimension. Once you have created the hierarchies, you will need to call procedures
in the following packages to fully define the dimension’s metadata:

« CWM2 OLAP_DIMENSION_ATTRIBUTE to create dimension attributes (if
you have not already done so)

« CWM2_OLAP_LEVEL to create levels and assign them to hierarchies

« CWM2_OLAP_LEVEL_ATTRIBUTE to create level attributes and assign them
to dimension attributes

« CWM2_OLAP_TABLE_MARP to establish the mapping to columns in one or
more dimension tables

19-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms

Common Logic in CWM2_OLAP_HIERARCHY Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must be the dimension owner and must have the OLAP_DBA role. If the calling user
does not meet the security requirements, the procedure fails with an exception.

Each procedure then checks for the existence of the parent dimension within the
OLAP 2 Catalog. If the dimension does not exist, the procedure fails with an
exception.

Each procedure then checks for the existence of the hierarchy. All procedures,
except CREATE_HI ERARCHY, return an error if the hierarchy does not already exist.

Case Requirements for Subprogram Parameters
You can specify arguments in lower case, upper case, or mixed case.

If the argument is a metadata entity name (for example, hi er ar chy_nan®e) or a
value that will be used in further processing by other procedures (for example,
sol ved_code), the procedure converts the argument to upper case. For all other
arguments, the case that you specify is retained.

Summary of CWM2_OLAP_HIERARCHY Subprograms

Table 19-1 CWMZ2_OLAP_HIERARCHY Subprograms

Subprogram Description

CREATE_HI ERARCHY Pr ocedur e Creates a hierarchy.
on page 19-4

DROP_HI ERARCHY Pr ocedur e Drops a hierarchy.
on page 19-5

LOCK_HI ERARCHY Pr ocedur e Locks the hierarchy metadata for update.
on page 19-6

SET_DESCRI PTI ON Procedure Sets the description for a hierarchy.
on page 19-7

SET_DI SPLAY_NAME Pr ocedur e Sets the display name for a hierarchy.
on page 19-8

SET_H ERARCHY_NAME Sets the name of a hierarchy.
Procedure on page 19-9

CWM2_OLAP_HIERARCHY 19-3

CREATE_HIERARCHY Procedure

Table 19-1 CWMZ2_OLAP_HIERARCHY Subprograms

Subprogram Description

SET_SHORT_DESCRI PTI ON Sets the short description for a hierarchy.
Procedure on page 19-10

SET_SOLVED CODE Procedure Sets the solved code for a hierarchy.
on page 19-11

CREATE_HIERARCHY Procedure

Syntax

Parameters

This procedure registers a new hierarchy entity in the OLAP 2 Catalog.

You must specify descriptions and display properties as part of hierarchy creation.
Once the hierarchy has been created, you can override these properties by calling
other procedures in the CWW2_OLAP_HI ERARCHY package.

CREATE_HI ERARCHY (

di mensi on_owner IN VARCHARZ,
di nensi on_nane IN VARCHAR?,
hi erarchy_name IN VARCHAR?,
di spl ay_nane IN VARCHARZ,
short _description IN VARCHARZ,
description IN VARCHARZ,
sol ved_code IN VARCHAR?);

Table 19-2 CREATE_HIERARCHY Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

hi erar chy_name Name of the hierarchy.

di spl ay_name Display name for the hierarchy.
short_description Short description of the hierarchy.
description Description of the hierarchy.

19-4 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms

Table 19-2 CREATE_HIERARCHY Procedure Parameters

Parameter

Description

sol ved_code

Specifies whether or not the hierarchy includes embedded
totals and whether it is mapped to a level-based dimension
table or a parent/child dimension table.

Values for this parameter are:

« UNSOLVED LEVEL-BASED, for a hierarchy that contains
no embedded totals and is stored in a level-based
dimension table

« SOLVED LEVEL-BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table

. SOLVED VALUE- BASED, for a hierarchy that contains
embedded totals and is stored in a parent/child
dimension table

Exceptions

Table 19-3 CREATE_HIERARCHY Procedure Exceptions

Exception

Description

no_access_privil eges

di mensi on_not _found

User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

hi erarchy_al ready_exi st s This hierarchy already exists for this dimension.

DROP_HIERARCHY Procedure

This procedure drops a hierarchy from the OLAP 2 Catalog.

Syntax
DROP_H ERARCHY (

di mensi on_owner
di mensi on_narne
hi erar chy_name

IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ) ;

CWM2_OLAP_HIERARCHY 19-5

LOCK_HIERARCHY Procedure

Parameters
Table 19—-4 DROP_HIERARCHY Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_name Name of the hierarchy.
Exceptions

Table 19-5 DROP_HIERARCHY Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

hi erarchy_not _f ound

User does not have the necessary privileges. User must be the
dimension owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2

Catalog.

This hierarchy does not exist for this dimension.

LOCK_HIERARCHY Procedure

This procedure locks the hierarchy metadata for update by acquiring a database
lock on the row that identifies the hierarchy in the OLAP 2 Catalog.

Syntax

LOCK_HI ERARCHY (
di mensi on_owner
di nensi on_nane
hi erar chy_name
wait _for_|ock

19-6 Oracle9/ OLAP User’s Guide

IN
IN
IN
IN

VARCHARZ,
VARCHARZ,
VARCHARZ,
BOOLEAN DEFAULT FALSE);

Summary of CWM2_OLAP_HIERARCHY Subprograms

Parameters

Exceptions

Table 19-6 LOCK_HIERARCHY Procedure Parameters

Parameter

Description

di nensi on_owner
di mensi on_nanme
hi erar chy_name

wait _for | ock

Owner of the dimension.
Name of the dimension.
Name of the hierarchy.

(Optional) Whether or not to wait for the hierarchy to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 19-7 LOCK_HIERARCHY Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

hi erarchy_not _f ound

User does not have the necessary privileges. User must be the
dimension owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

This hierarchy does not exist for this dimension.

SET_DESCRIPTION Procedure

This procedure sets the description for a hierarchy.

Syntax

SET_DESCR! PTI ON (

di mensi on_owner IN VARCHARZ,

di mensi on_name
hi erarchy_name
description

IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ) ;

CWM2_OLAP_HIERARCHY 19-7

SET_DISPLAY_NAME Procedure

Parameters
Table 19-8 SET _DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_name Name of the hierarchy.
description Description of the hierarchy.
Exceptions

Table 19-9 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

hi erarchy_not _f ound This hierarchy does not exist for this dimension.

SET_DISPLAY_NAME Procedure

This procedure sets the display name for a dimension.

Syntax
SET_DI SPLAY_NAME (
di nensi on_owner IN VARCHAR?2,
di nensi on_nane IN VARCHAR?,
hi erarchy_name IN VARCHAR?,
di spl ay_nane IN VARCHAR?);

19-8 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms

Parameters

Exceptions

Table 19-10 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di mensi on_nanme Name of the dimension.

hi erar chy_name Name of the hierarchy.

di spl ay_nane Display name for the hierarchy.

Table 19-11 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the dimension owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.
hi erarchy_not _f ound This hierarchy does not exist for this dimension.

SET_HIERARCHY_NAME Procedure

This procedure sets the name for a hierarchy.

Syntax

SET_H ERARCHY_NAME (

di mensi on_owner I'N
di nensi on_nane I'N
hi erarchy_name IN
set _hierarchy_name IN

VARCHARZ,
VARCHARZ,
VARCHARZ,

VARCHAR?) ;

CWM2_OLAP_HIERARCHY 19-9

SET_SHORT_DESCRIPTION Procedure

Parameters

Table 19-12 SET HIERARCHY NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

hi er ar chy_name Original name for the hierarchy.

set _hi erarchy_name New name for the hierarchy.
Exceptions

Table 19-13 SET_HIERARCHY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the dimension owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.
hi erarchy_not _f ound This hierarchy does not exist for this dimension.

SET_SHORT_DESCRIPTION Procedure

This procedure sets the short description for a hierarchy.

Syntax
SET_SHORT_DESCRI PTI ON (
di mensi on_owner IN
di mensi on_name IN
hi erarchy_name IN
short _description IN

19-10 Oracle9i OLAP User’s Guide

VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Summary of CWM2_OLAP_HIERARCHY Subprograms

Parameters

Exceptions

Table 19-14 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter

Description

di nensi on_owner
di mensi on_nanme
hi erar chy_name

short_description

Owner of the dimension.
Name of the dimension.
Name of the hierarchy.

Short description of the hierarchy.

Table 19-15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

hi erarchy_not _f ound

User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

This hierarchy does not exist for this dimension.

SET_SOLVED_CODE Procedure
This procedure sets the solved code for a hierarchy. The solved code specifies whether
or not the hierarchy includes embedded totals and whether it is mapped to a level-based
dimension table or a parent/child dimension table.

Syntax

SET_SCOLVED_CCDE (
di mensi on_owner
di nensi on_nane
hi erarchy_name
sol ved_code

IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHARY);

CWM2_OLAP_HIERARCHY 19-11

SET_SOLVED_CODE Procedure

Parameters
Table 19-16 SET SOLVED CODE Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_name Name of the hierarchy.
sol ved_code One of the following values:
« UNSCLVED LEVEL, for a hierarchy that contains no embedded
totals and is stored in a level-based dimension table
« SOLVED LEVEL, for a hierarchy that contains embedded
totals, has a grouping ID, and is stored in a level-based
dimension table
« SOLVED VALUE, for a hierarchy that contains embedded
totals and is stored in a parent/child dimension table
Exceptions

Table 19-17 SET_SOLVED_CODE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

hi erarchy_not _found This hierarchy does not exist for this dimension.

19-12 Oracle9i OLAP User’s Guide

20

CWM2_OLAP_LEVEL

The CWW2_ OLAP_LEVEL package provides procedures for creating, dropping, and
locking levels, and for adding levels to hierarchies. It also provides procedures for
setting the general properties of levels.

This chapter discusses the following topics:

« Understanding Levels

« Creating Levels

=« Common Logic in CWM2_OLAP_LEVEL Subprograms
« Summary of CWM2_OLAP_LEVEL Subprograms

CWM2_OLAP_LEVEL 20-1

Understanding Levels

Understanding Levels

A level is an OLAP metadata entity. This means that it is a logical object, identified
by name and owner, within the OLAP 2 Catalog.

A level is a child entity of a dimension entity. Each dimension must have at least
one level. A level is also normally a child entity of one or more hierarchy entities. If
a level is not assigned to a hierarchy, the OLAP 2 Catalog considers its hierarchy to
be hidden.

Each level maps to one or more columns in a dimension table. In a star schema, the
columns are in the same table. In a snowflake schema, the columns are in separate
tables. If the dimension is stored in a parent/child table instead of a level-based
table, levels map to columns in the view you can generate via the CWWv2_OLAP_PC_
TRANSFORMpackage. Similarly, if the dimension is stored in an analytic workspace,
levels map to columns in the view you can generate via the AWCONVERT package.

Creating Levels

The CWW2_ OLAP_LEVEL package contains procedures that establish level entities
for dimensions within the OLAP 2 Catalog.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating a level does not fully define it, nor
does it involve any mapping to warehouse dimension tables.

The parent dimension must already exist in the OLAP 2 Catalog before you can
create levels for it. Hierarchies must already exist for the dimension before you can
assign levels to them.

Completing the Dimension’s Metadata

Creating levels is one of the steps in creating the OLAP metadata for a dimension.
Once you have created the hierarchies, you will need to call procedures in the
following packages to fully define the dimension’s metadata:

« CWM2 OLAP_DIMENSION_ATTRIBUTE to create dimension attributes (if
you have not already done so)

« CWM2_OLAP_LEVEL_ATTRIBUTE to create level attributes and assign them
to dimension attributes

20-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

« CWM2_OLAP_TABLE_MAP to map levels and level attributes to columns in
one or more dimension tables

Common Logic in CWM2_OLAP_LEVEL Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must be the dimension owner and must have the OLAP_DBA role. If the calling user
does not meet the security requirements, the procedure fails with an exception.

Each procedure then checks for the existence of the parent dimension within the
OLAP 2 Catalog. If the dimension does not exist, the procedure fails with an
exception.

Each procedure then checks for the existence of the level. All procedures, except
CREATE_LEVEL, return an error if the level does not already exist.

Case Requirements for Subprogram Parameters
You can specify arguments in lower case, upper case, or mixed case.

If the argument is a metadata entity name (for example, | evel _nane) or a value
that will be used in further processing by other procedures, the procedure converts
the argument to upper case. For all other arguments, the case that you specify is
retained.

Summary of CWM2_OLAP_LEVEL Subprograms

Table 20-1 CWMZ2_OLAP_LEVEL Subprograms

Subprogram Description

ADD LEVEL_TO_H ERARCHY Adds a level to a hierarchy.
Procedure on page 20-4

CREATE_LEVEL Procedure on Createsa level.

page 20-5

DROP_LEVEL Procedure on Drops a level.

page 20-6

LOCK_LEVEL Procedure on Locks the level metadata for update.
page 20-7

REMOVE_LEVEL_FROM_ Removes a level from a hierarchy.

HI ERARCHY Procedure on

page 20-8

CWM2_OLAP_LEVEL 20-3

ADD_LEVEL_TO_HIERARCHY Procedure

Table 20-1 CWMZ2_OLAP_LEVEL Subprograms

Subprogram

Description

SET_DESCRI PTI ON Pr ocedur e Sets the description for a level.

on page 20-9
SET_DI SPLAY_NAVE

Sets the display name for a level.

Procedure on page 20-10
SET _LEVEL NAME Procedure Setsthe name of a level.

on page 20-11

SET_PLURAL_NAME Procedur e Sets the plural name for a level.

on page 20-12
SET_SHORT_DESCRI PTI ON

Sets the short description for a level.

Procedure on page 20-13

ADD_LEVEL_TO_HIERARCHY Procedure

This procedure adds a level to a hierarchy.

IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,

parent _|evel _name IN VARCHAR2 DEFAULT);

Syntax
ADD_LEVEL_TO HI ERARCHY (
di mensi on_owner
di mensi on_name
hi erarchy_name
| evel _name
Parameters

Table 20-2 ADD_LEVEL TO_HIERARCHY Procedure Parameters

Parameter

Description

di nensi on_owner
di mensi on_nanme
hi erar chy_name
| evel _name

parent _| evel _nane

Owner of the dimension.

Name of the dimension.

Name of the hierarchy.

Name of the level to add to the hierarchy.

Name of the level’s parent in the hierarchy. If you do not
specify a parent, then the added level is the root of the
hierarchy.

20-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Exceptions

Table 20-3 ADD_LEVEL TO_HIERARCHY Procedure Exceptions

Exception

Description

no_access_privil eges

di mensi on_not _found

hi erarchy_not _found

| evel _not _found

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2

Catalog.

This hierarchy does not exist for this dimension.

This level does not exist for this dimension.

CREATE_LEVEL Procedure

This procedure registers a new level as an entity in the OLAP 2 Catalog.

Syntax

Parameters

You must specify descriptions and display properties as part of level creation. Once
the level has been created, you can override these properties by calling other
procedures in the CWW2_ OLAP_LEVEL package.

CREATE_LEVEL (
di mensi on_owner I'N
di nensi on_nane I'N
| evel nane I'N
di spl ay_nane I'N
pl ural _nane I'N
short _description I'N
description IN

VARCHAR?,
VARCHARZ,
VARCHAR?,
VARCHARZ,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Table 20-4 CREATE _LEVEL Procedure Parameters

Parameter

Description

di nensi on_owner
di nensi on_nane
| evel name

di spl ay_nane

Owner of the dimension.

Name of the dimension.

Name of the level.

Display name for the level.

CWM2_OLAP_LEVEL 20-5

DROP_LEVEL Procedure

Table 20-4 CREATE_LEVEL Procedure Parameters

Parameter

Description

pl ural _name
short_description

description

Plural name for the level.
Short description of the level.

Description of the level.

Exceptions

Table 20-5 CREATE_LEVEL Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

| evel _al ready_exists

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

This level already exists for this dimension.

DROP_LEVEL Procedure

This procedure drops a level from the OLAP 2 Catalog. All related level attributes

are also dropped.

Syntax
DROP_LEVEL (
di nensi on_owner
di nensi on_nane
| evel _nane
Parameters

IN VARCHAR?,
IN VARCHAR?,
IN VARCHARY):

Table 20-6 DROP_LEVEL Procedure Parameters

Parameter

Description

di mensi on_owner
di nensi on_nane

| evel _name

Owner of the dimension.
Name of the dimension.

Name of the level.

20-6 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Exceptions

Table 20-7 DROP_LEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

| evel _not _found This level does not exist for this dimension.

LOCK_LEVEL Procedure

This procedure locks the level metadata for update by acquiring a database lock on
the row that identifies the level in the OLAP 2 Catalog.

Syntax
LOCK_LEVEL (
di mensi on_owner IN VARCHARZ,
di mensi on_nane IN VARCHARZ,
| evel nane IN VARCHAR?,
wait _for_lock IN BOOLEAN DEFAULT FALSE);
Parameters

Table 20-8 LOCK_LEVEL Procedure Parameters

Parameter Description

di mensi on_owner Owner of the dimension.

di mensi on_nane Name of the dimension.

| evel name Name of the level.

wai t _for_lock (Optional) Whether or not to wait for the level to be available

when it is already locked by another user. If you do not specify
a value for this parameter, the procedure does not wait to
acquire the lock.

CWM2_OLAP_LEVEL 20-7

REMOVE_LEVEL_FROM_HIERARCHY Procedure

Exceptions

Table 20-9 LOCK_LEVEL

Procedure Exceptions

Exception

Description

no_access_privil eges

di mensi on_not _found

| evel _not _found

User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

This level does not exist for this dimension.

REMOVE_LEVEL_FROM_HIERARCHY Procedure

This procedure removes a level from a hierarchy.

Syntax

Parameters

REMOVE_LEVEL_FROM H ERARCHY (
di nensi on_owner IN VARCHAR?2,

di nensi on_nane
hi erarchy_name
| evel _name

IN VARCHARZ,
IN VARCHAR?,
IN VARCHARY):

Table 20-10 REMOVE _LEVEL FROM_ HIERARCHY Procedure Parameters

Parameter

Description

di nensi on_owner
di nensi on_nane
hi erar chy_name

| evel _name

Owner of the dimension.
Name of the dimension.
Name of the hierarchy.

Name of the level to remove from the hierarchy.

20-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Exceptions

Table 20-11 REMOVE_LEVEL _FROM_HIERARCHY Procedure Exceptions

Exception

Description

no_access_privil eges

di mensi on_not _found

hi erarchy_not _found

child_I evel _not_found

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

This hierarchy does not exist for this dimension.

This level is not a child of this hierarchy.

SET_DESCRIPTION Procedure

This procedure sets the description for a level.

Syntax

Parameters

SET_DESCR! PTI ON (
di mensi on_owner
di nensi on_nane
| evel nane
description

IN VARCHAR?,
IN VARCHAR?,
IN VARCHAR?,
IN VARCHARY);

Table 20-12 SET_DESCRIPTION Procedure Parameters

Parameter

Description

di mensi on_owner
di mensi on_name
| evel _name

description

Owner of the dimension.
Name of the dimension.
Name of the level.

Description of the level.

CWM2_OLAP_LEVEL 20-9

SET_DISPLAY_NAME Procedure

Exceptions

Table 20-13 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

| evel _not _found This level does not exist for this dimension.

SET_DISPLAY _NAME Procedure

This procedure sets the display name for a level.

Syntax
SET_DI SPLAY_NAME (
di mensi on_owner I'N
di mensi on_name I'N
| evel nane I'N
di spl ay_nane I'N
Parameters

VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Table 20-14 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.

| evel nanme Name of the level.

di spl ay_name Display name for the level.

20-10 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Exceptions

Table 20-15 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.
| evel _not _found This level does not exist for this dimension.

SET_LEVEL_NAME Procedure

This procedure sets the name for a level.

Syntax

Parameters

SET_LEVEL_NAME (

di mensi on_owner IN
di mensi on_name IN
| evel nane I'N
set | evel nane I'N

VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Table 20-16 SET_LEVEL NAME Procedure Parameters

Parameter Description

di mensi on_owner Owner of the dimension.

di mensi on_nane Name of the dimension.

| evel _name Original name for the level.
set _| evel _nane New name for the level.

CWM2_OLAP_LEVEL 20-11

SET_PLURAL_NAME Procedure

Exceptions

Table 20-17 SET_LEVEL_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.
| evel _not _found This level does not exist for this dimension.

SET_PLURAL_NAME Procedure

This procedure sets the plural name of a level.

Syntax
SET_PLURAL_NAME (
di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
| evel nane IN VARCHAR?2,
pl ural _nane IN VARCHAR?);
Parameters

Table 20-18 SET_PLURAL_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.

| evel nanme Name of the level.

pl ural _name Plural name for the level.

20-12 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Exceptions

Table 20-19 SET_PLURAL_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have privileges to edit the dimension. User
must be the owner or OLAP_DBA.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.
| evel _not _found This level does not exist for this dimension.

SET_SHORT _DESCRIPTION Procedure

This procedure sets the short description for a level.

Syntax
SET_SHORT_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di nensi on_nane IN VARCHAR?,
| evel _name IN VARCHARZ,
short _description IN VARCHAR?);
Parameters

Table 20-20 SET _SHORT _DESCRIPTION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

| evel _name Name of the level.
short_description Short description of the level.

CWM2_OLAP_LEVEL 20-13

SET_SHORT_DESCRIPTION Procedure

Exceptions

Table 20-21 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

| evel _not _found This level does not exist for this dimension.

20-14 Oracle9/ OLAP User’s Guide

21

CWM2_OLAP_LEVEL_ATTRIBUTE

The CWW2_OLAP_LEVEL_ATTRI BUTE package provides a procedure for creating
level attributes and associating them with dimension attributes. It also provides
procedures for dropping, locking, and setting the general properties of level
attributes.

This chapter discusses the following topics:

= Understanding Level Attributes

« Creating Level Attributes

« Common Logic in CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
« Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

CWM2_OLAP_LEVEL_ATTRIBUTE 21-1

Understanding Level Attributes

Understanding Level Attributes

A level attribute is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP 2 Catalog.

A level attribute is a child entity of a level, and it may be a child entity of one or
more dimension attributes.

A level attribute stores descriptive information about its related level. For example,
a level containing product identifiers might have an associated level attribute that
contains color information for each product.

Each level attribute maps to a column in a dimension table. The level attribute
column must be in the same table as the column (or columns) for its associated
level. If the dimension is stored in a parent/child table instead of a level-based
table, level attributes map to columns in the view you can generate via the CWW2_
OLAP_PC TRANSFCRMpackage. Similarly, if the dimension is stored in an analytic
workspace, level attributes map to columns in the view you can generate via the
AWCONVERT package.

Creating Level Attributes

The CWW2_ OLAP_LEVEL_ATTRI BUTE package contains procedures that establish
entities for level attributes within the OLAP 2 Catalog.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating a level attribute does not involve any
mapping to warehouse dimension tables.

The parent dimension, parent level, and parent dimension attribute must already
exist in the OLAP 2 Catalog before you can create a level attribute.

Completing the Dimension’s Metadata

Creating level attributes is one of the final steps in creating the OLAP metadata for

a dimension. Once you have created the level attributes, you have probably created
all the entities that comprise the dimension. You then need to call procedures in the
CWM2_OLAP_TABLE_MAP package to map levels and level attributes to columns
in one or more dimension tables.

21-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Common Logic in CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must be the dimension owner and must have the OLAP_DBA role. If the calling user
does not meet the security requirements, the procedure fails with an exception.

Each procedure then checks for the existence of the parent dimension, the parent
dimension attribute, and the parent level within the OLAP 2 Catalog. If any of the
parent entities do not exist, the procedure fails with an exception.

Each procedure then checks for the existence of the level attribute. All procedures,
except CREATE _LEVEL_ATTRI BUTE, return an error if the level attribute does not
already exist.

Case Requirements for Subprogram Parameters
You can specify arguments in lower case, upper case, or mixed case.

If the argument is a metadata entity name (for example, | evel _attri but e_nane)
or a value that will be used in further processing by other procedures, the procedure
converts the argument to upper case. For all other arguments, the case that you
specify is retained.

Summary of CWM2_OLAP_LEVEL ATTRIBUTE Subprograms

Table 21-1 CWMZ2_OLAP_LEVEL _ATTRIBUTE Subprograms

Subprogram Description
CREATE_LEVEL_ATTRI BUTE on Creates a level attribute.
page 21-4

DROP_LEVEL ATTRI BUTE Drops a level attribute.

Procedure on page 21-6

LOCK_LEVEL_ATTRI BUTE Locks the level attribute metadata for update.
Procedure on page 21-7

SET_DESCRI PTI ON Pr ocedur e Sets the description for a level attribute.
on page 21-8

SET_DI SPLAY_NAME Sets the display name for a level attribute.
Procedure on page 21-9

CWM2_OLAP_LEVEL_ATTRIBUTE 21-3

CREATE_LEVEL_ATTRIBUTE

Table 21-1 CWMZ2_OLAP_LEVEL_ATTRIBUTE Subprograms

Subprogram Description

SET_LEVEL ATTRI BUTE NAME Sets the name of a level attribute.
Procedure on page 21-10

SET_SHORT_DESCRI PTI ON Sets the short description for a level attribute.
Procedure on page 21-12

CREATE_LEVEL_ATTRIBUTE

Syntax

Parameters

This procedure registers a new level attribute as an entity in the OLAP 2 Catalog
and associates the level attribute with a level and with a dimension attribute.

If the level attribute name should be reserved for a specific level and dimension
attribute combination, you can set the RESERVED LEVEL_ATTRI BUTE argument to
TRUE.

You must specify descriptions and display properties as part of level attribute
creation. Once the level attribute has been created, you can override these
properties by calling other procedures in the CWW2_OLAP_LEVEL ATTRI BUTE
package.

CREATE_LEVEL_ATTRI BUTE (

di mensi on_owner IN VARCHARZ,
di nensi on_nane IN VARCHAR?,
dinension_attribute name IN VARCHARZ,
| evel nane IN VARCHAR?,
| evel _attribute_name IN VARCHARZ,
di spl ay_nane IN VARCHARZ,
short _description IN VARCHARZ,
description IN VARCHAR?,

reserved_l evel _attribute IN BOOLEAN FALSE);

Table 21-2 CREATE_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description
di mensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.

21-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 21-2 CREATE_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description

di mension_attribute_ Name of the dimension attribute that includes this level
name attribute.

| evel _name Name of the level.

| evel _attribute_nane Name of the level attribute.

di spl ay_name Display name for the level attribute.

short_description Short description of the level attribute.

description Description of the level attribute.

reserved | evel _ Whether or not this level attribute is reserved. By default, the
attribute level attribute is not reserved.

The reserved level attributes are as follows.

Long Description
Short Description
End Date

Ti me Span

Prior Period

Year Ago Period

ET Key
Parent ET Key
Gouping ID

Parent Gouping ID

Exceptions

Table 21-3 CREATE_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di nension_attribute_not_ The parent dimension attribute does not exist for this

found dimension.

| evel _not _found The parent level does not exist for this dimension.

| evel _attribute_already_ This level attribute already exists for this level.
exi sts

CWM2_OLAP_LEVEL_ATTRIBUTE 21-5

DROP_LEVEL_ATTRIBUTE Procedure

DROP_LEVEL_ATTRIBUTE Procedure

This procedure drops a level attribute from the OLAP 2 Catalog.

Syntax
DROP_LEVEL_ATTRI BUTE (
di mensi on_owner IN VARCHARZ,
di mensi on_narne IN VARCHARZ,
dinension_attribute name IN VARCHAR?,
| evel nane IN VARCHAR?,
| evel _attribute_nane IN VARCHAR2) ;
Parameters
Table 21-4 DROP_LEVEL_ATTRIBUTE Procedure Parameters
Parameter Description
di mensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.
di nension_attribute_ Name of the dimension attribute.
name
| evel nanme Name of the level.
| evel attribute_nane Name of the level attribute.
Exceptions

Table 21-5 DROP_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di mension_attribute_not _ This dimension attribute does not exist for this

f ound dimension.

| evel _not _found This level does not exist for this dimension.

| evel _attribute_not _ This level attribute does not exist for this dimension

f ound attribute and level combination.

21-6 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

LOCK_LEVEL_ATTRIBUTE Procedure

Syntax

Parameters

Exceptions

This procedure locks the level attribute metadata for update by acquiring a
database lock on the row that identifies the level attribute in the OLAP 2 Catalog.

LOCK_LEVEL_ATTRI BUTE (

di mensi on_owner IN VARCHARZ,
di mensi on_nane IN VARCHARZ,
dinension attribute name IN VARCHARZ,
| evel nane IN VARCHAR?,
| evel _attribute_nane IN VARCHARZ,
wai t _for_| ock IN BOOLEAN DEFAULT FALSE);

Table 21-6 LOCK LEVEL ATTRIBUTE Procedure Parameters

Parameter Description
di mensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

di nensi on_attri but e_ Name of the dimension attribute.
nane

| evel nanme Name of the level.
| evel _attribute_nane Name of the level attribute.

wai t _for_lock (Optional) Whether or not to wait for the level attribute to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 21-7 LOCK_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

di nensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

CWM2_OLAP_LEVEL_ATTRIBUTE 21-7

SET_DESCRIPTION Procedure

Table 21-7 LOCK_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

di mension_attribute_ This dimension attribute does not exist for this dimension.
not found

| evel _not_found This level does not exist for this dimension.

| evel _attribute_not_ This level attribute does not exist for this level and dimension
f ound attribute combination.

SET_DESCRIPTION Procedure

This procedure sets the description for a level attribute.

Syntax
SET_DESCR! PTI ON (
di mensi on_owner IN VARCHAR?,
di nensi on_nane IN VARCHAR?,
dinension_attribute name IN VARCHARZ,
| evel _name IN VARCHARZ,
| evel _attribute_name IN VARCHARZ,
description IN VARCHAR?);
Parameters

Table 21-8 SET _DESCRIPTION Procedure Parameters

Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

di mension_attri bute _nanme Name of the dimension attribute.

| evel name Name of the level.
| evel _attribute_nanme Name of the level attribute.
description Description of the level attribute.

21-8 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Exceptions

Table 21-9 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di nension_attribute_not_ This dimension attribute does not exist for this

f ound dimension.

| evel _not _found This level does not exist for this dimension.

| evel attribute_not This level attribute does not exist for this dimension

found attribute and level combination.

SET _DISPLAY_NAME Procedure

This procedure sets the display name for a level attribute.

Syntax

Parameters

SET_DI SPLAY_NAME (

di mensi on_owner IN
di mensi on_name IN
dinension_attribute name IN
| evel nane I'N
evel _attribute_nane I'N
di spl ay_nane IN

VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Table 21-10 SET _DISPLAY NAME Procedure Parameters

Parameter Description

di mensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

di nensi on_ Name of the dimension attribute.

attribute_name

| evel name Name of the level.

CWM2_OLAP_LEVEL_ATTRIBUTE 21-9

SET_LEVEL_ATTRIBUTE_NAME Procedure

Table 21-10 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

| evel _attribute Name of the level attribute.

name

di spl ay_name Display name for the level attribute.

Exceptions

Table 21-11 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di mensi on_not _found The parent dimension does not exist within the OLAP 2
Catalog.

di nension_attribute_ This dimension attribute does not exist for this dimension.

not _found

| evel _not _found This level does not exist for this dimension.

| evel attribute_not This level attribute does not exist for this dimension

found attribute and level combination.

SET_LEVEL_ATTRIBUTE_NAME Procedure

This procedure sets the name for a level attribute.

Syntax

SET_LEVEL_ATTRI BUTE_NAME (
di mensi on_owner
di mensi on_name
di mensi on_attri bute_name
| evel _name
evel _attribute_nane
set _level attribute name
reserved | evel attribute

21-10 Oracle9/ OLAP User’s Guide

IN
IN
IN
IN
IN
IN
IN

VARCHARZ,
VARCHARZ,
VARCHARZ,
VARCHAR?,
VARCHARZ,
VARCHARZ,
BOOLEAN DEFAULT FALSE);

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Parameters

Exceptions

Table 21-12 SET_LEVEL ATTRIBUTE_NAME Procedure Parameters

Parameter

Description

di nensi on_owner
di mensi on_nanme

di mensi on_
attribute_name

| evel _name

| evel _attribute_
nane

set |evel _
attribute_nane

reserved_| evel _
attribute

Owner of the dimension.
Name of the dimension.

Name of the dimension attribute.

Name for the level.

Original name for the level attribute.

New name for the level attribute.

Whether or not this level attribute is reserved. By default, the
level attribute is not reserved.

Table 21-13 SET_LEVEL _ATTRIBUTE_NAME Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

di mension_attribute_

not found

| evel _not_found

User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

This dimension attribute does not exist for this dimension.

This level does not exist for this dimension.

| evel _attribute_not _ This level attribute does not exist for this dimension

f ound

attribute and level combination.

CWM2_OLAP_LEVEL_ATTRIBUTE 21-11

SET_SHORT_DESCRIPTION Procedure

SET_SHORT_DESCRIPTION Procedure

This procedure sets the short description for a level attribute.

Syntax
SET_SHORT_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
dimension_attribute_name IN VARCHARZ,
| evel nane IN VARCHAR?,
evel _attribute_nane IN VARCHARZ,
short _description IN VARCHAR2);
Parameters
Table 21-14 SET _SHORT _DESCRIPTION Procedure Parameters
Parameter Description
di mensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di nension_attri bute_name Name of the dimension attribute.
| evel _name Name of the level.
| evel _attribute_name Name of the level attribute.
short_description Short description of the level attribute.
Exceptions

Table 21-15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

di mension_attribute_not
f ound

21-12 Oracle9/ OLAP User’s Guide

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

The parent dimension does not exist within the OLAP 2
Catalog.

This dimension attribute does not exist for this
dimension.

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 21-15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description
This level does not exist for this dimension.

| evel _not _found

This level attribute does not exist for this dimension

| evel attribute_not
attribute and level combination.

f ound

CWM2_OLAP_LEVEL_ATTRIBUTE 21-13

SET_SHORT_DESCRIPTION Procedure

21-14 Oracle9/ OLAP User’s Guide

22

CWM2 OLAP_CUBE

The CWW2_ OLAP_CUBE package provides procedures for creating, dropping, and
locking cubes, and for adding dimensions to cubes. It also provides procedures for
setting general properties of cubes.

This chapter discusses the following topics:

« Understanding Cubes

« Creating Cubes

« Common Logic in CWM2_OLAP_CUBE Subprograms
« Summary of CWM2_OLAP_CUBE Subprograms

CWM2_OLAP_CUBE 22-1

Understanding Cubes

Understanding Cubes

A cube is an OLAP metadata entity. This means that it is a logical object, identified
by name and owner, within the OLAP 2 Catalog.

OLAP cubes represent dimensioned data. Cubes must exist for any data that you
wish to make accessible to the Oracle OLAP API.

Cubes and Measures

A cube is a dimensional framework to which you can assign measures. A measure
represents data stored in fact tables. The fact tables may be relational tables or
views. The views may reference data stored in analytic workspaces.

A measure’s data can be accessed by specifying values for its dimensions. For
example, a measure representing sales data might be dimensioned by time, product,
and location. This means that the sales data can be accessed for a given time period,
a given product, and a given location.

Note: A cube may contain multiple measures. All the measures of
a cube share the same set of dimensions.

Fact Table Requirements

The fact tables or views that underlie a cube have data columns and key columns.
The data columns store the source data for the cube’s measures. The key columns
reference the dimension tables that underlie the cube’s dimensions.

If your measures and dimensions are stored in an analytic workspace within the
database, you must call procedures in the AWCONVERT package to create the fact
tables as relational views that reference the workspace. Then you can call
procedures in the CWW2_ OLAP_ CUBE package to create cubes in the OLAP 2
Catalog.

Fact Table Key Columns

Each fact table key column references a level column in a dimension table. The level
is mapped to one of the dimension’s hierarchies. This means that fact data is stored
on a per-hierarchy basis.

22-2 Oracle9i OLAP User’s Guide

Creating Cubes

Note: The measures for a single cube may be stored in more than
one fact table. The key columns of each fact table may store
different hierarchies for the same dimensions.

Creating Cubes

The CWW2_ OLAP_CUBE package contains procedures that establish cube entities
within the OLAP 2 Catalog.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating an entity of metadata does not fully
define a dimension or a cube, nor does it involve any mapping to
warehouse dimension tables or fact tables.

Creating a Cube’s Dimensions

Before you create a cube, you must create its dimensions by calling procedures in
the following packages:

. CWM2_OLAP_DIMENSION
. CWM2_OLAP_DIMENSION_ATTRIBUTE
. CWM2_OLAP_HIERARCHY

. CWM2 OLAP LEVEL

. CWM2 OLAP_LEVEL_ATTRIBUTE

Completing the Cube’s Metadata

Once you have created a cube, you will need to call procedures in the following
packages to fully define the cube’s metadata:

« CWM2_OLAP_MEASURE to create measures and add them to the cube

« CWM2_OLAP_TABLE_MAP to establish the mapping to columns in one or
more fact tables

CWM2_OLAP_CUBE 22-3

Common Logic in CWM2_OLAP_CUBE Subprograms

Verifying the Metadata for a Cube

To be valid, a cube must have at least one valid dimension and at least one measure
that is correctly mapped to a column in a fact table.

To test the validity of the cube’s dimensional metadata, use the VALI DATE _
DI MENSI ON procedure in the CWWv2_ OLAP_VALI DATE package.

To test the validity of the cube itself, use the VALI DATE_CUBE procedure in the
CWW2_OLAP_VALI DATE package.

Common Logic in CWM2_OLAP_CUBE Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must be the cube owner and must have the OLAP_DBA role. If the calling user does
not meet the security requirements, the procedure fails with an exception.

Each procedure then checks for the existence of the cube specified by cube_owner
and cube_name within the OLAP 2 Catalog. All procedures, except CREATE_CUBE,
return an error if the cube does not already exist.

Case Requirements for Subprogram Parameters
You can specify arguments in lower case, upper case, or mixed case.

If the argument is a metadata entity name (for example, cube_nane) or a value that
will be used in further processing by other procedures, the procedure converts the
argument to upper case. For all other arguments, the case that you specify is
retained.

Summary of CWM2_OLAP_CUBE Subprograms

Table 22-1 CWMZ2_OLAP_CUBE Subprograms

Subprogram Description

ADD_DI MENSI ON_TO_CUBE Adds a dimension to a cube.
Procedure on page 22-5

CREATE_CUBE Procedure on Creates acube.
page 22-6

DROP_CUBE Procedure on Drops a cube.
page 22-7

22-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Table 22-1 CWMZ2_OLAP_CUBE Subprograms

Subprogram

Description

LOCK _CUBE Procedure on
page 22-8

REMOVE_DI MENSI ON_FROM_
CUBE Procedure on
page 22-9

SET_CUBE_NAME Procedure
on page 22-10

SET_DEFAULT_CUBE_DI M_
CALC HI ER Procedure on
page 22-11

SET_DESCRI PTI ON Pr ocedur e
on page 22-12

SET_DI SPLAY_ NAMVE
Procedure on page 22-13

SET_MW_SUMVARY_CODE
Procedure on page 22-13

SET SHORT _DESCRI PTI ON
Procedure on page 22-14

Locks a cube’s metadata for update.

Removes a dimension from a cube.

Sets the name of a cube.

Sets the default calculation hierarchy for a dimension of
the cube.

Sets the description for a cube.
Sets the display name for a cube.
Sets the format for materialized views associated with a

cube.

Sets the short description for a cube.

ADD_DIMENSION_TO_CUBE Procedure

This procedure adds a dimension to a cube.

Syntax

ADD DI MENSI ON_TO CUBE (
cube_owner
cube_name
di mensi on_owner
di nensi on_nane

I'N
I'N
I'N

VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

CWM2_OLAP_CUBE 22-5

CREATE_CUBE Procedure

Parameters
Table 22-2 ADD DIMENSION_TO_CUBE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
di mensi on_owner Owner of the dimension to be added to the cube.
di mensi on_nane Name of the dimension to be added to the cube.
Exceptions

Table 22-3 ADD_DIMENSION_TO_CUBE Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

di nensi on_not _found

User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

Cannot update cube. Cube does not exist within the OLAP 2
Catalog.

Dimension does not exist or is not accessible within the OLAP
2 Catalog.

CREATE_CUBE Procedure

This procedure registers a new cube entity in the OLAP 2 Catalog.

Descriptions and display properties must also be established as part of cube
creation. Once the cube has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE_CUBE (
cube_owner IN VARCHARZ,
cube_name IN VARCHAR?,
di spl ay_nane IN VARCHARZ,
short _description IN VARCHAR?,
description IN VARCHAR?);

22-6 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Parameters
Table 22-4 CREATE_CUBE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
di spl ay_name Display name for the cube.
short_description Short description of the cube.
description Description of the cube.
Exceptions

Table 22-5 CREATE_CUBE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_al ready_exi sts Cannot create cube. Cube already exists within the
OLAP 2 Catalog.

DROP_CUBE Procedure
This procedure drops a cube from the OLAP 2 Catalog.

Note: When a cube is dropped, its associated measures are also
dropped. However, the cube’s dimensions are not dropped. They
might be mapped within the context of a different cube.

Syntax
DROP_CUBE (
cube_owner IN VARCHARZ,
cube_nane IN VARCHAR?) ;

CWM2_OLAP_CUBE 22-7

LOCK_CUBE Procedure

Parameters

Exceptions

Table 22—-6 DROP_CUBE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

Table 22-7 DROP_CUBE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cannot drop cube. Cube does not exist within the OLAP
2 Catalog.

LOCK_CUBE Procedure

Syntax

Parameters

This procedure locks the cube’s metadata for update by acquiring a database lock
on the row that identifies the cube in the OLAP 2 Catalog.

LOCK_CUBE (
cube_owner IN VARCHARZ,
cube_nare IN VARCHAR2.
wait _for_lock IN BOOLEAN DEFAULT FALSE);

Table 22-8 LOCK_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

wai t _for_|ock (Optional) Whether or not to wait for the cube to be available

when it is already locked by another user. If you do not specify
a value for this parameter, the procedure does not wait to
acquire the lock.

22-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Exceptions

Table 22-9 LOCK_CUBE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

cube_not _found Cannot lock cube. Cube does not exist within the OLAP 2

Catalog.

REMOVE_DIMENSION_FROM_CUBE Procedure

This procedure removes a dimension from a cube.

Syntax

Parameters

REMOVE_Di MENSI ON_FROM CUBE ~ (

cube_owner I'N
cube_name I'N
di mensi on_owner I'N
di mensi on_name I'N

VARCHAR?,
VARCHARZ,
VARCHARZ,
VARCHAR?) ;

Table 22-10 REMOVE_DIMENSION_FROM_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

di nensi on_owner Owner of the dimension to be removed from the cube.
di nensi on_nane Name of the dimension to be removed from the cube.

CWM2_OLAP_CUBE 22-9

SET_CUBE_NAME Procedure

Exceptions

Table 22-11 REMOVE_DIMENSION_FROM_CUBE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

cube_not _found Cannot update cube. Cube does not exist within the OLAP 2
Catalog.

di nensi on_not _found This dimension not found for this cube.

SET_CUBE_NAME Procedure

Syntax

Parameters

This procedure sets the name for a cube.

SET_CUBE_NAME (

cube_owner IN VARCHAR?,
cube_name IN VARCHAR?,
set _cube_nane IN VARCHAR?);

Table 22-12 SET CUBE_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_nane Original name of the cube.
set _cube_nane New name for the cube.

22-10 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Exceptions

Table 22-13 SET_CUBE_NAME Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

Cannot update cube. Cube does not exist within the OLAP 2
Catalog.

SET DEFAULT CUBE_DIM_CALC_HIER Procedure

This procedure sets the default calculation hierarchy for a dimension of this cube.

Syntax

Parameters

SET_DEFAULT_CUBE_DI M CALC_H ER (

cube_owner
cube_name

di nensi on_owner
di nensi on_nane
hi erarchy_name

IN VARCHAR?,

IN VARCHAR?,
IN VARCHARZ,
IN VARCHARZ,

IN VARCHARY)

Table 22-14 SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure Parameters

Parameter

Description

cube_owner
cube_owner
di mensi on_owner
di nensi on_nane

hi erar chy_name

Owner of the cube.
Name of the cube.
Owner of the dimension.
Name of the dimension.

Name of the hierarchy to be used by default for this
dimension.

CWM2_OLAP_CUBE 22-11

SET_DESCRIPTION Procedure

Exceptions

Table 22-15 SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cannot update cube. Cube does not exist within the
OLAP 2 Catalog.

SET_DESCRIPTION Procedure

Syntax

Parameters

Exceptions

This procedure sets the description for a cube.

SET_DESCRI PTI ON (
cube_owner IN VARCHARZ,
cube_name IN VARCHARZ,
description IN VARCHAR?);

Table 22-16 SET _DESCRIPTION Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
description Description of the cube.

Table 22-17 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cannot update cube. Cube does not exist within the
OLAP 2 Catalog.

22-12 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

SET _DISPLAY _NAME Procedure

Syntax

Parameters

Exceptions

This procedure sets the display name for a cube.

SET_DI SPLAY_NAME (
cube_owner IN VARCHARZ,
cube_name IN VARCHARZ,
display_name IN VARCHAR?);

Table 22-18 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_nane Name of the cube.

di spl ay_namne Display name for the cube.

Table 22-19 SET_DISPLAY_NAME Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

Cannot update cube. Cube does not exist within the OLAP 2
Catalog.

SET_MV_SUMMARY_CODE Procedure

This procedure specifies the form of materialized views for this cube. Materialized
views may be in Grouping Set (GS) or Rolled Up (RU) form.

In a materialized view in Rolled Up form, all the dimension key columns are
populated, and data may only be accessed when its full lineage is specified.

In a materialized view in Grouping Set form, dimension key columns may contain
null values, and data may be accessed simply by specifying one or more levels.

CWM2_OLAP_CUBE 22-13

SET_SHORT_DESCRIPTION Procedure

Syntax
SET_M/_SUMVARY_CCDE (
cube_owner IN VARCHAR?,
cube_name IN VARCHAR?,
sumary_code IN VARCHAR?);
Parameters
Table 22-20 SET_MV_SUMMARY_CODE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
sunmary_code One of the following:
. RU, for Rolled Up form.
. GS, for Grouping Set form.
Exceptions

Table 22-21 SET_MV_SUMMARY_CODE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cannot update cube. Cube does not exist within the
OLAP 2 Catalog.

SET_SHORT _DESCRIPTION Procedure

This procedure sets the short description for a cube.

Syntax
SET_DESCRI PTI ON (
cube_owner IN VARCHARZ,
cube_name IN VARCHAR?,
short _description IN VARCHAR?);

22-14 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Parameters
Table 22-22 SET_SHORT_DESCRIPTION Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
short_description Short description of the cube.
Exceptions

Table 22-23 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cannot update cube. Cube does not exist within the
OLAP 2 Catalog.

CWM2_OLAP_CUBE 22-15

SET_SHORT_DESCRIPTION Procedure

22-16 Oracle9/ OLAP User’s Guide

23

CWM2_OLAP_MEASURE

The CWWR_ OLAP_MEASURE package provides procedures for creating, dropping,
and locking measures. It also provides procedures for setting general properties of
measures.

This chapter discusses the following topics:

« Understanding Measures

« Creating Measures

« Common Logic in CWM2_OLAP_MEASURE Subprograms
. Summary of CWM2_OLAP_MEASURE Subprograms

CWM2_OLAP_MEASURE 23-1

Understanding Measures

Understanding Measures

A measure is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP 2 Catalog.

Measures represent data stored in fact tables. The fact tables may be relational tables
or views. The views may reference data stored in analytic workspaces.

Measures exist within the context of cubes, which fully specify the dimensionality
of the measures’ data. Cubes must exist for any data that you wish to make
accessible to the Oracle OLAP API.

A measure’s data can be accessed by specifying values for its dimensions. For
example, a measure representing sales data might be dimensioned by time, product,
and location. This means that the sales data can be accessed for a given time period,
a given product, and a given location.

Note: A cube may contain multiple measures. All the measures of
a cube share the same set of dimensions.

Creating Measures

The CWW2_ OLAP_MEASURE package contains procedures that establish measure
entities within the OLAP 2 Catalog.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating an entity of metadata does not fully
define a dimension or a cube, nor does it involve any mapping to
warehouse dimension tables or fact tables.

Creating a Cube for the Measure

Before you create a measure, you must create the cube that will provide its context.
To create the cube, use procedures in the CWM2_OLAP_CUBE package.

Prior to creating the cube, you must create the cube’s dimensions by calling
procedures in the following packages:

. CWM2_OLAP_DIMENSION
. CWM2_OLAP_DIMENSION_ATTRIBUTE

23-2 Oracle9i OLAP User’s Guide

Common Logic in CWM2_OLAP_MEASURE Subprograms

« CWM2_OLAP_HIERARCHY
« CWM2_OLAP_LEVEL
« CWM2_OLAP_LEVEL_ATTRIBUTE

Completing the Measure’s Metadata

Once you have created a measure, you will need to call procedures in the CWM2_
OLAP_TABLE_MAP package to establish the mapping to columns in one or more
fact tables.

Common Logic in CWM2_OLAP_MEASURE Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must be the cube owner and must have the OLAP_DBA role. If the calling user does
not meet the security requirements, the procedure fails with an exception.

Each procedure then checks for the existence of the cube specified by cube_owner
and cube_narme within the OLAP 2 Catalog. All procedures return an error if the
cube does not already exist.

Each procedure then checks for the existence of the measure specified by measur e_
nane. All procedures, except CREATE_MEASURE, return an error if the measure
does not already exist for this cube.

Case Requirements for Subprogram Parameters

You can specify arguments in lower case, upper case, or mixed case.
If the argument is a metadata entity name (for example, neasur e_nane) or a value
that will be used in further processing by other procedures, the procedure converts

the argument to upper case. For all other arguments, the case that you specify is
retained.

CWM2_OLAP_MEASURE 23-3

Summary of CWM2_OLAP_MEASURE Subprograms

Summary of CWM2_OLAP_MEASURE Subprograms

Table 23-1 CWMZ2_OLAP_MEASURE Subprograms

Subprogram Description
CREATE_MEASURE Procedure Creates a measure.
on page 23-4

DROP_MEASURE Procedure on Drops a measure.
page 23-5

LOCK_MEASURE Procedure on Locks a measure’s metadata for update.
page 23-6

SET_DESCRI PTI ON Procedur e Sets the description for a measure.
on page 23-7

SET_DI SPLAY_NAME Sets the display name for a measure.
Procedure on page 23-8

SET_MEASURE_NAME Sets the name of a measure.
Procedure on page 23-9

SET_SHORT_DESCRI PTI ON Sets the short description for a measure.

Procedure on page 23-10

CREATE_MEASURE Procedure

This procedure registers a new measure entity in the OLAP 2 Catalog.

A measure can only be created in the context of a cube. The cube must already exist
before you create the measure.

Descriptions and display properties must also be established as part of measure
creation. Once the measure has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE_MEASURE (
cube_owner IN VARCHARZ,
cube_name IN VARCHARZ,
measur e_name IN VARCHARZ,
di spl ay_nane IN VARCHARZ,
short _description IN VARCHAR?,
description IN VARCHAR?);

23-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_MEASURE Subprograms

Parameters
Table 23-2 CREATE_MEASURE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
nmeasur e_narme Name of the measure.
di spl ay_nane Display name for the measure.
short_description Short description of the measure.
description Description of the measure.
Exceptions

Table 23-3 CREATE_MEASURE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cannot create measure. Cube does not exist within the
OLAP 2 Catalog.

nmeasur e_al ready_exi sts Cannot create measure. This measure already exists for
this cube.

DROP_MEASURE Procedure

This procedure drops a measure from a cube.

Syntax
DROP_MEASURE (
cube_owner IN VARCHARZ,
cube_nane IN VARCHAR?,

nmeasur e_nane IN VARCHAR?);

CWM2_OLAP_MEASURE 23-5

LOCK_MEASURE Procedure

Parameters

Table 23—-4 DROP_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

neasur e_nane Name of the measure to be dropped from the cube.
Exceptions

Table 23-5 DROP_MEASURE Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

nmeasur e_not _found

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

Cannot drop measure. Cube does not exist within the
OLAP 2 Catalog.

Cannot drop measure. This measure does not exist for
this cube.

LOCK_MEASURE Procedure

This procedure locks the measure’s metadata for update by acquiring a database
lock on the row that identifies the measure in the OLAP 2 Catalog.

Syntax

LOCK_MEASURE (
cube_owner
cube_nane

neasur e_nane
wait _for_lock

23-6 Oracle9/ OLAP User’s Guide

IN VARCHARZ,
IN VARCHARZ.
IN VARCHARZ,

IN BOOLEAN DEFAULT FALSE);

Summary of CWM2_OLAP_MEASURE Subprograms

Parameters

Exceptions

Table 23—-6 LOCK_MEASURE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

neasur e_nane

wait _for | ock

Name of the measure to be locked.

(Optional) Whether or not to wait for the measure to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 23-7 LOCK_MEASURE Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

nmeasur e_not _found

User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

Cannot lock measure. Its cube does not exist within the OLAP
2 Catalog.

Cannot lock measure. This measure does not exist for this cube.

SET_DESCRIPTION Procedure

This procedure sets the description for a measure.

Syntax

SET_DESCR! PTI ON (
cube_owner
cube_name
neasur e_nane
description

IN VARCHAR?,

IN VARCHAR?,
IN VARCHARZ,

IN VARCHARY);

CWM2_OLAP_MEASURE 23-7

SET_DISPLAY_NAME Procedure

Parameters
Table 23-8 SET _DESCRIPTION Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
nmeasur e_narme Name of the measure.
description Description of the measure.
Exceptions

Table 23-9 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cannot update measure. Its cube does not exist within
the OLAP 2 Catalog.

measur e_not _found Cannot update measure. This measure does not exist for
this cube.

SET_DISPLAY _NAME Procedure

This procedure sets the display name for a measure.

Syntax
SET_DI SPLAY_NAME (
cube_owner IN VARCHAR?,
cube_name IN VARCHARZ,

neasur e_nane IN VARCHARZ,
display_nane IN VARCHAR?);

23-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_MEASURE Subprograms

Parameters

Table 23-10 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

nmeasur e_narme Name of the measure.

di spl ay_nane Display name for the measure.
Exceptions

Table 23-11 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not _found Cannot update measure. Its cube does not exist within the
OLAP 2 Catalog.

measur e_not _found Cannot update measure. This measure does not exist for
this cube.

SET_MEASURE_NAME Procedure

This procedure sets the name for a measure.

Syntax
SET_MEASURE_NAME (
cube_owner IN VARCHAR?,
cube_name IN VARCHARZ,
neasur e_nane IN VARCHAR?,
set _cube_name IN VARCHAR?2);

CWM2_OLAP_MEASURE 23-9

SET_SHORT_DESCRIPTION Procedure

Parameters

Table 23-12 SET _MEASURE _NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

neasur e_nane Original name of the measure.

set _cube_nane New name for the measure.
Exceptions

Table 23-13 SET_MEASURE_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not _found Cannot update measure. Its cube does not exist within the
OLAP 2 Catalog.

measur e_not _found Cannot update measure. This measure does not exist for
this cube.

SET_SHORT_DESCRIPTION Procedure

This procedure sets the short description for a cube.

Syntax
SET_DESCRI PTI ON (
cube_owner IN VARCHAR?,
cube_name IN VARCHARZ,
neasur e_nane IN VARCHARZ,
short _description IN VARCHAR?);

23-10 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_MEASURE Subprograms

Parameters
Table 23-14 SET_SHORT_DESCRIPTION Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
nmeasur e_narme Name of the measure.
short_description Short description of the measure.
Exceptions

Table 23-15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cannot update measure. Its cube does not exist within
the OLAP 2 Catalog.

measur e_not _found Cannot update measure. This measure does not exist for
this cube.

CWM2_OLAP_MEASURE 23-11

SET_SHORT_DESCRIPTION Procedure

23-12 Oracle9/ OLAP User’s Guide

24

CWM2_OLAP TABLE MAP

The CWW2_OLAP_TABLE MAP package provides procedures for mapping OLAP
metadata entities to columns in your data warehouse dimension tables and fact
tables.

This chapter discusses the following topics:

« Understanding OLAP Metadata Mapping

=« Common Logic in CWM2_OLAP_TABLE_MAP Subprograms
« Summary of CWM2_OLAP_TABLE_MAP Subprograms

CWM2_OLAP_TABLE_MAP 24-1

Understanding OLAP Metadata Mapping

Understanding OLAP Metadata Mapping

OLAP metadata mapping is the process of establishing the links between logical
metadata entities and the physical locations where the data is stored. The CWVR_
OLAP_TABLE_ AP package provides procedures for linking OLAP metadata
entities to columns in fact tables and dimension tables and for establishing the join
relationships between a fact table and its associated dimension tables.

Note: The dimension tables and fact tables may be implemented
as views. For example, the views you can generate using the
CWM2_OLAP_AW_ACCESS package may be a data source for
OLAP metadata. These views project an image of relational fact
tables and dimension tables over an analytic workspace, where the
data actually resides.

Mapping Logical Metadata Entities

Each dimension level maps to one or more columns in a dimension table. All the
columns of a multicolumn level must be mapped within the same table. All the
levels of a dimension may be mapped to columns in the same table (a traditional
star schema), or the levels may be mapped to columns in separate tables (snowflake
schema).

Each dimension level attribute maps to a single column. Level attributes must be
mapped within the same table as their associated levels.

Each measure maps to a single column in a fact table. All the measures mapped
within the same fact table must share the same dimensionality.

Joining Fact Tables with Dimension Tables

Once you have mapped the levels, attributes, and measures, you can specify the
mapping of logical foreign key columns in the fact table to level key columns in
dimension tables.

The mapping between a fact table and its dimension tables may be specified for any
of the following configurations:

« LOWEST LEVEL. A single fact table stores lowest level data for all the
measures of a cube. If any of the cube’s dimensions have more than one
hierarchy, they must all have the same lowest level.

24-2 Oracle9i OLAP User’s Guide

Common Logic in CWM2_OLAP_TABLE_MAP Subprograms

Each foreign key column in the fact table maps to a level key column in a
dimension table.

This warehouse configuration is required for metadata in the OLAP 1 Catalog.
It is supported, but not required, for metadata in the OLAP 2 Catalog.

« EMBEDDED TOTAL. Fact tables store embedded totals and lowest level data
for specific hierarchies of the cube’s dimensions. Typically, the data for each
combination of hierarchies is stored in a separate fact table. Multiple hierarchies
in dimensions do not have to share the same lowest level.

An embedded total key and a grouping ID key (GID) in the fact table maps to
corresponding columns that identify a dimension hierarchy in a solved
dimension table.

This warehouse configuration is supported for metadata in the OLAP 2 Catalog
only.

« ROLLED UP. This type of warehouse has embedded total fact tables and
solved, hierarchical dimension tables as in EMBEDDED TOTAL mode. All
mapping to dimension tables is in the context of hierarchies as in EMBEDDED
TOTAL mode.

However, in ROLLED UP mode, there are key columns in the fact table for each
level of each dimension hierarchy. The presence of fully populated level keys in
the fact table facilitates aggregation at runtime.

This warehouse configuration is supported for metadata in the OLAP 2 Catalog
only.

Common Logic in CWM2_OLAP_TABLE_MAP Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must have the OLAP_DBA role and must be the owner of the entity that will be
mapped. If the calling user does not meet the security requirements, the procedure
fails with an exception.

Each procedure then checks for the existence of the metadata entity within the
OLAP 2 Catalog. All procedures return an error if the entity does not already exist.

Each procedure then checks for the existence of tables and columns. If these do not
exist in the data dictionary, an error is generated.

CWM2_OLAP_TABLE_MAP 24-3

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Case Requirements for Subprogram Parameters

You can specify arguments in lower case, upper case, or mixed case.

If the argument is a metadata entity name (for example, cube_nane or

di mensi on_nan®) or a value that will be used in further processing by other
procedures, the procedure converts the argument to upper case. For all other
arguments, the case that you specify is retained.

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 24-1 CWM2_OLAP_TABLE_MAP

Subprogram

Description

MAP_DI MTBL_HI ERLEVELATTR
Procedure on page 24-5

MAP_DI MTBL_HI ERLEVEL
Procedure on page 24-6

MAP_DI MTBL_HI ERSORTKEY
Procedure on page 24-8

MAP_DI MTBL_LEVELATTR
Procedure on page 24-9

MAP_DI MIBL_LEVEL
Procedure on page 24-10

MAP_FACTTBL_LEVELKEY
Procedure on page 24-12

MAP_FACTTBL_MEASURE
Procedure on page 24-14

REMOVENVAP_DI MIBL_
H ERLEVELATTR Procedure
on page 24-15

REMOVENMAP_DI MIBL_
H ERLEVEL Procedure on
page 24-17

REMOVENVAP_DI MIBL_
HI ERSORTKEY Procedure on
page 24-18

24-4 Oracle9/ OLAP User’s Guide

Maps a hierarchical level attribute to a column in
a dimension table.

Maps a hierarchical level to one or more columns
in a dimension table.

Sorts the members of a hierarchy within a column
of a dimension table.

Maps a non-hierarchical level attribute to a
column in a dimension table

Maps a non-hierarchical level to one or more
columns in a dimension table.

Maps the dimensions of a cube to a fact table.
Maps a measure to a column in a fact table.

Removes the mapping of a hierarchical level
attribute from a column in a dimension table.

Removes the mapping of a hierarchical level from
one or more columns in a dimension table.

Removes custom sorting criteria associated with
columns in a dimension table.

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 24-1 CWM2_OLAP_TABLE_MAP

Subprogram Description

REMOVENVAP_DI MIBL_ Removes the mapping of a non-hierarchical level
LEVELATTR Procedure on attribute from a column in a dimension table.

page 24-19

REMOVEVAP_DI MIBL_LEVEL Removes the mapping of a non-hierarchical level from
Procedure on page 24-20 one or more columns in a dimension table.
REMOVEMAP_FACTTBL Removes the mapping of a cube’s dimensions
LEVELKEY Procedure on from a fact table.

page 24-21

REMOVEVAP_FACTTBL_MEASURE Removes the mapping of a measure from a column in a
Procedure on page 24-22 fact table.

MAP_DIMTBL_HIERLEVELATTR Procedure

Syntax

Parameters

This procedure maps a level attribute to a column in a dimension table.

The attribute being mapped is associated with a level in the context of a hierarchy.

MAP_DI MrBL_HI ERLEVELATTR (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
di nensi on_attri but e_nane IN VARCHAR?,
hi erarchy_name IN VARCHAR?,
| evel nane IN VARCHAR?,
| evel _attribute nanme IN VARHAR2,
tabl e_owner IN VARCHARZ,
tabl e_name IN VARCHARZ,
attrcol IN VARHAR?);

Table 24-2 MAP_DIMTBL HIERLEVELATTR Procedure Parameters

Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

di mension_attribute_ Name of the dimension attribute.
name

CWM2_OLAP_TABLE_MAP 24-5

MAP_DIMTBL_HIERLEVEL Procedure

Table 24-2 MAP_DIMTBL_HIERLEVELATTR Procedure Parameters

Parameter Description
hi er ar chy_name Name of the hierarchy.
| evel name Name of the level.

| evel _attribute _nane Name of the level attribute associated with this level.

t abl e_owner Owner of the dimension table.
t abl e_nane Name of the dimension table.
attrcol Column in the dimension table to which this level attribute

should be mapped.

Exceptions

Table 24-3 MAP_DIMTBL_HIERLEVELATTR Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _found Dimension does not exist within the OLAP 2 Catalog.

hi erarchy_not _found This hierarchy does not exist for this dimension.

| evel _not _found This level does not exist for this dimension.

attribute_not found This level attribute does not exist for this level.

tabl e_not found Dimension table does not exist or is not accessible to the
calling user.

col um_not _f ound This column not found in this dimension table.

MAP_DIMTBL_HIERLEVEL Procedure

This procedure maps a level to one or more columns in a dimension table.

The level being mapped is identified within the context of a hierarchy.

24-6 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Syntax

Parameters

Exceptions

MAP_DI MrBL_HI ERLEVEL (

di nensi on_owner
di nensi on_nane
hi erar chy_name
| evel _nane

tabl e_owner

t abl e_name
keycol

par ent col

IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHAR?,

IN VARCHAR2 DEFAULT NULL);

Table 24-4 MAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter

Description

di mensi on_owner

di mensi on_nane
hi erar chy_name
| evel _name
t abl e_owner
t abl e_nane

keycol

par ent col

Owner of the dimension.
Name of the dimension.
Name of the hierarchy.

Name of the level.

Owner of the dimension table.
Name of the dimension table.

Column in the dimension table to which this level should be
mapped. This column will be the key for this level column in
the fact table.

If the level is stored in more than one column, separate the
column names with commas. These columns will be the
multicolumn key for these level columns in the fact table.

Column that stores the parent level in the hierarchy. If you do
not specify this parameter, the level is the root of the
hierarchy.

Table 24-5 MAP_DIMTBL_HIERLEVEL Procedure Exceptions

Exception

Description

no_access_privil eges

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

CWM2_OLAP_TABLE_MAP 24-7

MAP_DIMTBL_HIERSORTKEY Procedure

Table 24-5 MAP_DIMTBL_HIERLEVEL Procedure Exceptions

Exception Description

di mensi on_not _found Dimension does not exist within the OLAP 2 Catalog.

hi erarchy_not _f ound This hierarchy does not exist for this dimension.

| evel _not _found This level does not exist for this dimension.

tabl e_not _found Dimension table does not exist or is not accessible to the
calling user.

col um_not _found This column not found in this dimension table.

MAP_DIMTBL_HIERSORTKEY Procedure

This procedure specifies how to sort the members of a hierarchy within a column of
a dimension table. The column may be the key column or it may be a related
attribute column. Custom sorting can specify that the column be sorted in
ascending or descending order, with nulls first or nulls last.

Custom sorting information is optional and can be applied at multiple levels of a

dimension.
Syntax
MAP_DI MIBL_HI ERSORTKEY (
di nensi on_owner IN VARCHAR?,
di nensi on_nane IN VARCHAR?,
hi erar chy_name IN VARCHAR?,
sortcol IN VARCHAR?);
Parameters

Table 24-6 MAP_DIMTBL HIERSORTKEY Procedure Parameters

Parameter Description

di mensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_name Name of the hierarchy.

24-8 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Exceptions

Table 24-6 MAP_DIMTBL_HIERSORTKEY Procedure Parameters

Parameter Description

sortcol A string specifying how to sort the values stored in a given
column of a dimension table. The string specifies the table
name, the column name, whether to sort in ascending or
descending order, and whether to place nulls first or last.

The string should be enclosed in single quotes, and it should
be in the following form.

TBL: t abl eowner. t abl enane | COL: col unmnane
/ ORD: ASC| DSC / NULL: FI RST| LAST

Table 24-7 MAP_DIMTBL_HIERSORTKEY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _found Dimension does not exist within the OLAP 2 Catalog.

hi erarchy_not _f ound This hierarchy does not exist for this dimension.

MAP_DIMTBL_LEVELATTR Procedure

This procedure maps a level attribute to a column in a dimension table.

Syntax

The attribute being mapped is associated with a level that has no hierarchical
context. Typically, this level is the only level defined for this dimension.

MAP_DI MrBL_LEVELATTR (

di mensi on_owner I'N
di mensi on_name I'N
di mensi on_attri bute_name I'N
| evel _name I'N
| evel _attribute nanme IN
t abl e_owner I'N
tabl e_name I'N
attrcol IN

VARCHAR?,
VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

CWM2_OLAP_TABLE_MAP 24-9

MAP_DIMTBL_LEVEL Procedure

Parameters
Table 24-8 MAP_DIMTBL LEVELATTR Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di mension_attribute_ Name of the dimension attribute.
name
| evel _name Name of the level.
| evel _attribute_nanme Name of the level attribute associated with this level.
t abl e_owner Owner of the dimension table.
tabl e_nane Name of the dimension table.
attrcol Column in the dimension table to which this level attribute
should be mapped.
Exceptions

Table 24-9 MAP_DIMTBL_LEVELATTR Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _found Dimension does not exist within the OLAP 2 Catalog.

| evel _not _found This level does not exist for this dimension.

attribute_not found This level attribute does not exist for this level.

tabl e_not found Dimension table does not exist or is not accessible to the
calling user.

col um_not _f ound This column not found in this dimension table.

MAP_DIMTBL_LEVEL Procedure

This procedure maps a level to one or more columns in a dimension table.

The level being mapped has no hierarchical context. Typically, this level is the only
level defined for this dimension.

24-10 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Syntax

Parameters

Exceptions

MAP_DI MIBL_LEVEL (
di nensi on_owner
di nensi on_nane
| evel _nane
tabl e_owner
t abl e_name
keycol

I'N
I'N
I'N
I'N
I'N
I'N

VARCHAR?,
VARCHAR?,
VARCHAR2,
VARCHAR?,
VARCHAR2,
VARCHAR?) ;

Table 24-10 MAP_DIMTBL LEVEL Procedure Parameters

Parameter

Description

di nensi on_owner
di nensi on_nane
| evel name
t abl e_owner
tabl e_nane

keycol

Owner of the dimension.

Name of the dimension.

Name of the level.

Owner of the dimension table.

Name of the dimension table.

Column in the dimension table to which this level should be
mapped. This column will be the key for this level column in
the fact table.

If the level is stored in more than one column, separate the
column names with commas. These columns will be the
multicolumn key for these level columns in the fact table.

Table 24-11 MAP_DIMTBL_LEVEL Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found
| evel _not _found

tabl e_not found

col um_not _f ound

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

Dimension does not exist within the OLAP 2 Catalog.

This level does not exist for this dimension.

Dimension table does not exist or is not accessible to the
calling user.

This column not found in this dimension table.

CWM2_OLAP_TABLE_MAP 24-11

MAP_FACTTBL_LEVELKEY Procedure

MAP_FACTTBL_LEVELKEY Procedure

This procedure creates the join relationships between a fact table and a set of
dimension tables. A join must be specified for each of the dimensions of the cube.
Each dimension is joined in the context of one of its hierarchies.

For example, if you had a cube with three dimensions, and each dimension had
only one hierarchy, you could fully map the cube with one call to MAP_FACTTBL _
LEVELKEY.

However, if you had a cube with three dimensions, but two of the dimensions each
had two hierarchies, you would need to call MAP_FACTTBL _LEVELKEY four times
to fully map the cube. For dimensions Di mL, Di n2, and Di 8, where Di ml and

Di nB each have two hierarchies, you would specify the following mapping strings
in each call to VAP_FACTTBL_LEVELKEY, as shown below.

Onl Herl, On2 Her, Dn8 Herl
Onl Herl, Dn2 Her, Dn8 Her2
Dm Her2, Dn2 Her, Dn8 Herl
Dm Her2, Dn2 Her, Dn8 Her2

Typically the data for each hierarchy combination would be stored in a separate fact

table.
Syntax
MAP_FACTTBL_LEVELKEY (
cube_owner IN VARCHARZ,
cube_name IN VARCHARZ,
facttabl e_owner IN VARCHARZ,
facttabl e_nane IN VARCHAR?,
st or et ype IN VARCHARZ,
di nkeynap IN VARCHAR?,
di mkt ype IN VARCHAR2 DEFAULT NULL);
Parameters

Table 24-12 MAP_FACTTBL LEVELKEY Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
facttabl e_owner Owner of the fact table.

24-12 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Exceptions

Table 24-12 MAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter

Description

facttabl e_nanme

st oretype

di nkeynap

di nktype

Name of the fact table.

One of the following:

LOWNEST LEVEL, for a fact table that stores only lowest level
data

ET, for a fact table that stores embedded totals in addition to
lowest level data

ROLLED UR, for an embedded total fact table with key
columns for all levels

For more information on storetype, see Joining Fact Tables
with Dimension Tables.

A string specifying the mapping for each dimension of the
data in the fact table. For each dimension you must specify a
hierarchy and the lowest level to be mapped within that
hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DI M di mmane | H ER: hi ernane [A D:. col unrmnane
/ LVL: | evel nanel/ COL: col utmnane,

This string must also be specified as an argument to the MAP_
FACTTBL_MEASURE procedure.

This parameter is not currently used.

Table 24-13 MAP_FACTTBL_LEVELKEY Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

fact _table_not_ found

User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

Cube does not exist within the OLAP 2 Catalog.

Fact table does not exist or is not accessible to the calling
user

CWM2_OLAP_TABLE_MAP 24-13

MAP_FACTTBL_MEASURE Procedure

Example

The following call to the MAP_FACTTBL_LEVELKEY procedure maps a cube named
ANALYTI C_CUBE_AWin the schema XADEMOto a fact table named XADEMO AW
SALES VI EW 4 in the same schema. The fact table stores lowest level data and
embedded totals for all level combinations. The cube has four dimensions:
PRODUCT, CHANNEL, Tl ME, and GEOGRAPHY.

cwn?_ol ap_t abl e_nap. Map_Fact Thl _Level Key
(" XADEMD, ' ANALYTI C OBE AW/, XADEMD, ' XADEMD AWSALES VIEW4', ' ET,

" D M XADEMD PRODUCT_AWH ER STANDARD G D PRODUCT @ DY LWL: L4/ OL: PRODUCT _ET:
DI M XADEMD CHANNEL_AWH ER STANDARD G D GHANNEL_@ [LVL: STANDARD 1/ OCL: CHANNEL_ETT;
DI M XADEMQ TI ME_AWH ER YTIY @ D T ME_YTD @ IY LVL: L3/ GCL: TI ME_YTD ET;

D M XADEMD GEORAPHY AWH ER GONSCLI DATEDY A D GEGG GONS_ G I LML: L4/ OO GECG GONS ET; ') ;

MAP_FACTTBL_MEASURE Procedure

This procedure maps a measure to a column in a fact table.

Syntax
MAP_FACTTBL_MEASURE (
cube_owner IN VARCHARZ,
cube_name IN VARCHARZ,
neasur e_nane IN VARCHAR?,
facttabl e_owner IN VARCHAR?,
facttabl e_name IN VARCHAR?,
col unm_nane IN VARCHAR?,
di mkeynap IN VARCHAR?);
Parameters

Table 24-14 MAP_FACTTBL _MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

nmeasur e_nane Name of the measure to be mapped.
facttabl e_owner Owner of the fact table.

24-14 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 24-14 MAP_FACTTBL_MEASURE Procedure Parameters

Parameter

Description

facttabl e_nanme

col um_nane

di nkeynap

Name of the fact table.

Column in the fact table to which the measure will be
mapped.

A string specifying the mapping for each of the measure’s
dimensions. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DI M di mmane | H ER: hi ernane [A D: col unrmnane
/ LVL: | evel nane/ COL: col utmnane;

This string must also be specified as an argument to the MAP_
FACTTBL_HI ERLEVELKEY procedure.

Exceptions

Table 24-15 MAP_FACTTBL_MEASURE Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

fact _tabl e_not_found

measur e_not _found

col um_not _f ound

User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

Cube does not exist within the OLAP 2 Catalog.

Fact table does not exist or is not accessible to the calling
user

This measure does not exist in this cube.

This column does not exist in this fact table.

REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure

This procedure removes the relationship between a level attribute and a column in a
dimension table. The attribute is identified by the hierarchy that contains its

associated level.

Upon successful completion of this procedure, the level attribute is a purely logical
metadata entity. It has no data associated with it.

CWM2_OLAP_TABLE_MAP 24-15

REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure

Syntax
REMOVEVAP_DI MTBL_HI ERLEVELATTR (
di mensi on_owner IN VARCHAR?,
di nensi on_nane IN VARCHAR?,
dimension attribute nane IN VARCHARZ,
hi erarchy_name IN VARCHARZ,
| evel _name IN VARCHARZ,
| evel _attribute_nane IN VARHAR?);
Parameters
Table 24-16 REMOVEMAP _DIMTBL HIERLEVELATTR Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di mension_attribute_ Name of the dimension attribute.
name
hi er ar chy_name Name of the hierarchy.
| evel _name Name of the level.
| evel _attribute_nanme Name of the level attribute associated with this level.
Exceptions

Table 24-17 REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure Exceptions

Exception

Description

no_access_privil eges

di mensi on_not _found
hi erarchy_not _f ound
| evel _not _found

attribute_not_found

User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

Dimension does not exist within the OLAP 2 Catalog.
This hierarchy does not exist for this dimension.
This level does not exist for this dimension.

This level attribute does not exist for this level.

24-16 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

REMOVEMAP_DIMTBL_HIERLEVEL Procedure

This procedure removes the relationship between a level of a hierarchy and one or

Syntax

Parameters

Exceptions

more columns in a dimension table.

Upon successful completion of this procedure, the level is a purely logical metadata
entity. It has no data associated with it.

REMOVEMAP_DI MTBL_HI ERLEVEL (

di mensi on_owner I'N
di mensi on_narne I'N
hi erar chy_name I'N
| evel nane I'N

VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Table 24-18 REMOVEMAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter Description

di mensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.
hi erar chy_name Name of the hierarchy.

| evel _name Name of the level.

Table 24-19 REMOVEMAP_DIMTBL_HIERLEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _found Dimension does not exist within the OLAP 2 Catalog.

hi erarchy_not _f ound This hierarchy does not exist for this dimension.

| evel _not _found This level does not exist for this dimension.

CWM2_OLAP_TABLE_MAP 24-17

REMOVEMAP_DIMTBL_HIERSORTKEY Procedure

REMOVEMAP_DIMTBL_HIERSORTKEY Procedure

Syntax

Parameters

Exceptions

This procedure removes custom sorting criteria associated with columns in a
dimension table.

REMOVEMAP_DI MTBL_HI ERSORTKEY (

di mensi on_owner IN VARCHARZ,
di mensi on_narne IN VARCHARZ,
hi erar chy_name IN VARCHAR?);

Table 24-20 REMOVEMAP_DIMTBL_HIERSORTKEY Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.
hi erar chy_name Name of the hierarchy.

Table 24-21 REMOVEMAP_DIMTBL_HIERSORTKEY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Dimension does not exist within the OLAP 2 Catalog.

hi erarchy_not _found This hierarchy does not exist for this dimension.

24-18 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

REMOVEMAP_DIMTBL_LEVELATTR Procedure

This procedure removes the relationship between a level attribute and a column in a

Syntax

Parameters

Exceptions

dimension table.

Upon successful completion of this procedure, the level attribute is a purely logical
metadata entity. It has no data associated with it.

REMOVEMAP_DI MTBL_LEVELATTR (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
di nensi on_attribute_nane IN VARCHARZ,
| evel nane IN VARCHAR?,
| evel _attribute nanme IN VARHAR?) ;

Table 24-22 REMOVEMAP_DIMTBL_LEVELATTR Procedure Parameters

Parameter Description
di mensi on_owner Owner of the dimension.
di mensi on_nane Name of the dimension.

di nension_attri bute_ Name of the dimension attribute.

name

| evel name Name of the level.

| evel _attribute _nane Name of the level attribute associated with this level.

Table 24-23 REMOVEMAP_DIMTBL_LEVELATTR Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _found Dimension does not exist within the OLAP 2 Catalog.

| evel _not _found This level does not exist for this dimension.

attribute_not _found This level attribute does not exist for this level.

CWM2_OLAP_TABLE_MAP 24-19

REMOVEMAP_DIMTBL_LEVEL Procedure

REMOVEMAP_DIMTBL_LEVEL Procedure

This procedure removes the relationship between a level and one or more columns
in a dimension table.

Upon successful completion of this procedure, the level is a purely logical metadata
entity. It has no data associated with it.

Syntax
REMOVEMAP_DI MBL_LEVEL (
di mensi on_owner IN VARCHARZ,
di mensi on_nane IN VARCHAR?,
| evel nane IN VARCHAR?);
Parameters
Table 24-24 REMOVEMAP_DIMTBL_LEVEL Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di mensi on_name Name of the dimension.
| evel _name Name of the level.
Exceptions

Table 24-25 REMOVEMAP_DIMTBL_LEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Dimension does not exist within the OLAP 2 Catalog.

| evel _not_found Level does not exist within the OLAP 2 Catalog.

24-20 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

REMOVEMAP_FACTTBL_LEVELKEY Procedure

This procedure removes the relationship between the key columns in a fact table
and the level columns of a dimension hierarchy in a dimension table.

Syntax

Parameters

Exceptions

REMOVEMAP_FACTTBL_LEVELKEY (

cube_owner IN
cube_name IN
facttabl e_owner I'N
facttabl e_name I'N

VARCHARZ,
VARCHARZ,
VARCHARZ,
VARCHAR2 DEFAULT);

Table 24-26 REMOVEMAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
facttabl e_owner Owner of the fact table.
facttabl e_nane Name of the fact table.

Table 24-27 REMOVEMAP_FACTTBL_LEVELKEY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not _found Cube does not exist within the OLAP 2 Catalog.

fact _table_not_ found

Fact table does not exist or is not accessible to the calling

user

CWM2_OLAP_TABLE_MAP 24-21

REMOVEMAP_FACTTBL_MEASURE Procedure

REMOVEMAP_FACTTBL_MEASURE Procedure

This procedure removes the relationship between a measure column in a fact table
and a logical measure associated with a cube.

Upon successful completion of this procedure, the measure is a purely logical
metadata entity. It has no data associated with it.

Syntax
REMOVEMAP_FACTTBL_MEASURE (
cube_owner IN VARCHARZ,
cube_name IN VARCHARZ,
neasur e_nane IN VARCHAR?,
facttabl e_owner IN VARCHAR?,
facttabl e_name IN VARCHAR?,
col unm_nane IN VARCHAR?,
di mkeynap IN VARCHAR?);
Parameters

Table 24-28 REMOVEMAP_FACTTBL MEASURE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

nmeasur e_namne
facttabl e_owner
facttabl e_name
col um_nane

di nkeynap

Name of the measure.

Owner of the fact table.

Name of the fact table.

Column in the fact table to which the measure is mapped.

A string specifying the mapping for each of the measure’s
dimensions. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DI M di mmane | H ER: hi er nane | G D:. col unmnane
/ LVL: | evel nane

This string must also be specified as an argument to the MAP_
FACTTBL_HI ERLEVELKEY procedure.

24-22 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Exceptions

Table 24-29 REMOVEMAP_FACTTBL_MEASURE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not _found Cube does not exist within the OLAP 2 Catalog.

fact _table_not_ found Fact table does not exist or is not accessible to the calling
user

measur e_not _f ound This measure does not exist in this cube.

col um_not _found This column does not exist in this fact table.

CWM2_OLAP_TABLE_MAP 24-23

REMOVEMAP_FACTTBL_MEASURE Procedure

24-24 Oracle9/ OLAP User’s Guide

25

CWM2 OLAP AW OBJECT

The CWW2_OLAP_AW OBJECT package provides procedures for registering
metadata in the OLAP Catalog for a data warehouse that is stored in an analytic
workspace.

Note: In no way does the CWW2_ OLAP_AW OBJECT package affect
actual objects in the analytic workspace.

To map these metadata entities to the analytic workspace, use the procedures in the
CWM2_OLAP_AW_MAP package.

This chapter discusses the following topics:

« Understanding AW Object Metadata Entities

« Common Logic in CWM2_OLAP_AW_OBJECT Subprograms
« Summary of CWM2_OLAP_AW_OBJECT Subprograms

CWM2_OLAP_AW_OBJECT 25-1

Understanding AW Object Metadata Entities

Understanding AW Object Metadata Entities

An AW metadata object within the OLAP Catalog represents an object defined
within an analytic workspace.

Objects within analytic workspaces are defined and manipulated by the OLAP Data
Manipulation Language (DML).

See Also: For information on the OLAP DML, see Oracle9i OLAP
Developer’s Guide to the OLAP DML and the Oracle9i OLAP DML
Reference help.

Common Logic in CWM2_OLAP_AW_OBJECT Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must have the OLAP_DBA role and must be the owner of the entity that will be
mapped. If the calling user does not meet the security requirements, the procedure
fails with an exception.

Case Requirements for Subprogram Parameters
You can specify arguments in lower case, upper case, or mixed case.

If the argument is a metadata entity name (for example, measur e_nane or

di mensi on_nan®) or a value that will be used in further processing by other
procedures, the procedure converts the argument to upper case. For all other
arguments, the case that you specify is retained.

Summary of CWM2_OLAP_AW_OBJECT Subprograms

Table 25-1 CWMZ2_OLAP_AW_OBJECT

Subprogram Description

CREATE_AW OBJECT Creates an AW metadata object in the OLAP

Procedure on page 25-3 Catalog. This metadata object represents an object
defined within an analytic workspace.

CREATE_AW OBJECT | NFO Creates additional information about an AW

Procedure on page 25-4 metadata object in the OLAP Catalog.

CREATE_AW OBJECT_RELATED_ Creates a relationship between two AW metadata

OBJ Procedure on objects in the OLAP Catalog.

page 25-5

25-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_OBJECT Subprograms

Table 25-1 CWMZ2_OLAP_AW_OBJECT

Subprogram

Description

CREATE_AW OBJECT PROPERTY
Procedure on page 25-6

DROP_AW OBJECT Procedure
on page 25-7

DROP_AW OBJECT | NFO
Procedure on page 25-7

DROP_AW OBJECT_RELATED _
OBJ Procedure on
page 25-8

DROP_AW OBJECT PROPERTY
Procedure on page 25-9

Creates a property for an AW metadata object in
the OLAP Catalog.

Drops an AW metadata object from the OLAP
Catalog.

Drops additional information about an AW
metadata object from the OLAP Catalog.

Drops a relationship between two AW metadata
objects in the OLAP Catalog.

Drops a property of an AW metadata object in the
OLAP Catalog.

CREATE_AW_OBJECT Procedure

This procedure creates an AW object within the OLAP Catalog. This object may
represent a dimension, variable, relation, or any of the object types that are
supported within analytic workspaces.

Syntax

Parameters

CREATE_AW OBJECT (
aw_owner
aw_nane
aw_obj ect _name
aw_obj ect _type
aw_obj ect _dat at ype

IN VARCHAR2 (30),
IN VARCHAR2 (30),
IN VARCHAR2 (30),
IN VARCHAR2 (30),
IN VARCHAR2 (30));

Table 25-2 CREATE_AW_OBJECT Procedure Parameters

Parameter Description

aw_owner Owner of analytic workspace.
aw_nane Name of the analytic workspace.
aw_obj ect _nane Name of the analytic workspace object.

CWM2_OLAP_AW_OBJECT 25-3

CREATE_AW_OBJECT_INFO Procedure

Table 25-2 CREATE_AW_OBJECT Procedure Parameters

Parameter

Description

aw_obj ect _type

aw_obj ect _dat at ype

Type of the analytic workspace object (dimension, variable,
relation, and so on).

Data type of the analytic workspace object.

CREATE_AW_OBJECT_INFO Procedure

This procedure creates additional information about an analytic workspace object
that has already been registered in the OLAP Catalog by the CREATE_AW OBJECT

procedure.

For example, an analytic workspace dimension may have width defined to a
specific value. Or a composite or conjoint dimension may have
BTREE/HASH/NCOHASH explicitly defined.

Syntax
CREATE_AW OBJECT_I NFO (
aw_owner IN VARCHAR2 (30),
aw_narne IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30),
aw object_attr_type IN VARCHAR2 (30),
aw object_attr_name IN VARCHAR2 (30));
Parameters

Table 25-3 CREATE_AW_OBJECT_INFO Procedure Parameters

Parameter Description
aw_owner Owner of analytic workspace.
aw_nane Name of the analytic workspace.

aw_obj ect _nane
aw_obj ect _attr_type

aw_obj ect _attr_nane

Name of the analytic workspace object.
Analytic workspace object attribute extension.

Analytic workspace object attribute extension value.

25-4 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_AW_OBJECT Subprograms

CREATE_AW_OBJECT RELATED_OBJ Procedure

This procedure relates one AW object to another AW object. This relationship might
be the dimensions associated with a variable, or the related dimensions of a relation,

Syntax

Parameters

and so on.

CREATE_AW OBJECT_RELATED OBJ (

aw_owner
aw_nane
aw_obj ect _name

aw_object_related_name IN VARCHAR2
aw object_related_type IN VARCHAR2

posi tion

IN VARCHAR? (30),
IN VARCHAR? (30),
IN VARCHAR? (30),
(30),
(30)

IN NUMBER);

Table 25-4 CREATE AW _OBJECT RELATED_ OBJ Procedure Parameters

Parameter Description
aw_owner Owner of analytic workspace.
aw_nane Name of the analytic workspace.

aw_obj ect _nane

aw_obj ect _rel ated_
nane

aw_obj ect _rel ated_
type

position

Name of the AW object.

The new object that is related to aw_obj ect _nane.

How aw_obj ect _r el at ed_nan® is related to aw_obj ect _
namne. Values can be either: DI MENS| ON or RELATI ON.

Position order of related object in case of dimensionality of a
variable.

CWM2_OLAP_AW_OBJECT 25-5

CREATE_AW_OBJECT_PROPERTY Procedure

CREATE_AW_OBJECT_PROPERTY Procedure

This procedure creates a property of an AW object.

Syntax
CREATE_AW OBJECT_PROPERTY (
aw_owner IN VARCHAR2 (30),
aw_nare IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30),
aw_obj ect _prop_nane IN VARCHAR2 (30),
aw_obj ect _prop_datatype IN VARCHAR2 (30);
Parameters

Table 25-5 CREATE_AW_OBJECT_PROPERTY Procedure Parameters

Parameter Description

aw_owner Owner of analytic workspace.
aw_nane Name of the analytic workspace.
aw_obj ect _nane Name of the AW object.

aw_obj ect _prop_nane Property of the AW object.

aw_obj ect _prop_ Data type of the property.
dat at ype

25-6 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_AW_OBJECT Subprograms

DROP_AW_OBJECT Procedure
This procedure drops an AW object from the OLAP Catalog.

Syntax
DROP_AW OBJECT (
aw_owner IN VARCHAR2 (30),
aw_nare IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30));
Parameters

Table 25-6 DROP_AW_OBJECT Procedure Parameters

Parameter Description

aw_owner Owner of analytic workspace.
aw_nane Name of the analytic workspace.
aw_obj ect _nane Name of the AW object.

DROP_AW_OBJECT_INFO Procedure
Drops the information that was created by CREATE_AW OBJECT | NFO

This procedure drops the additional information that was added to the AW obiject. It
does not drop the AW object.

CWM2_OLAP_AW_OBJECT 25-7

DROP_AW_OBJECT_RELATED_OBJ Procedure

Syntax

Parameters

DROP_AW OBJECT | NFO (

aw_owner IN VARCHAR2 (30),
aw_nare IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30),
aw object_attr_type IN VARCHAR2 (30),
aw object_attr_name IN VARCHAR2 (30));

Table 25-7 DROP_AW _OBJECT INFO Procedure Parameters

Parameter Description

aw_owner Owner of analytic workspace.
aw_nane Name of the analytic workspace.
aw_obj ect _nane Name of the AW object.

aw_obj ect _attr_type AW object attribute extension.

aw_obj ect _attr_nane AW object attribute extension value.

DROP_AW_OBJECT_RELATED_OBJ Procedure

Syntax

Parameters

This procedure drops a relationship between one AW object and another AW object.
This relationship might be the dimensions associated with a variable, or the related
dimensions of a relation, and so on.

DROP_AW OBJECT_RELATED OBJ (

aw_owner IN VARCHAR2 (30),
aw_nare IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30),
aw _object_related_name IN VARCHAR2 (30));

Table 25-8 DROP_AW _OBJECT _RELATED OBJ Procedure Parameters

Parameter Description
aw_owner Owner of analytic workspace.
aw_nane Name of the analytic workspace.

25-8 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_AW_OBJECT Subprograms

Table 25-8 DROP_AW_OBJECT_RELATED_OBJ Procedure Parameters

Parameter

Description

aw_obj ect _nane

aw_obj ect _rel ated_
name

Name of the AW object.

Related AW object.

DROP_AW _OBJECT_PROPERTY Procedure
This procedure drops a property of an AW object.

Syntax

Parameters

DROP_AW OBJECT PROPERTY (

aw_owner IN VARCHAR2 (30),
aw_narne IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30),
aw_obj ect _prop_name IN VARCHAR2 (30);

Table 25-9 DROP_AW_OBJECT_PROPERTY Procedure Parameters

Parameter Description
aw_owner Owner of analytic workspace.
aw_nane Name of the analytic workspace.

aw_obj ect _nane

aw_obj ect _prop_nane

Name of the AW object.
Property of the AW object.

CWM2_OLAP_AW_OBJECT 25-9

DROP_AW_OBJECT_PROPERTY Procedure

25-10 Oracle9/ OLAP User’s Guide

26

CWM2 _OLAP AW MAP

The CWW2_ OLAP_AW MAP package provides procedures for mapping logical
metadata entities to objects defined in analytic workspaces. The mapping
information is stored in a set of OLAP Catalog metadata tables.

The OLAP metadata entities must have previously been created by procedures in
the CWM2_OLAP_AW_OBIJECT package.

This chapter discusses the following topics:

= Understanding AW Object Metadata Mapping

« Common Logic in CWM2_OLAP_AW_MAP Subprograms
« Summary of CWM2_OLAP_AW_MAP Subprograms

CWM2_OLAP_AW_MAP 26-1

Understanding AW Object Metadata Mapping

Understanding AW Object Metadata Mapping

OLAP metadata mapping is the process of establishing the links between logical
metadata entities and the physical locations where the data is stored. The CWVR_
OLAP_AW MAP package provides procedures for linking OLAP metadata entities to
objects in analytic workspaces.

Objects within analytic workspaces are defined and manipulated by the OLAP Data
Manipulation Language (DML).

See Also: For information on the OLAP DML, see Oracle9i OLAP
Developer’s Guide to the OLAP DML and the Oracle9i OLAP DML
Reference help.

Common Logic in CWM2_OLAP_AW_MAP Subprograms

Each procedure first checks the calling user’s security privileges. The calling user
must have the OLAP_DBA role and must be the owner of the entity that will be
mapped. If the calling user does not meet the security requirements, the procedure
fails with an exception.

Case Requirements for Subprogram Parameters
You can specify arguments in lower case, upper case, or mixed case.

If the argument is a metadata entity name (for example, measur e_nane or

di mensi on_nan®) or a value that will be used in further processing by other
procedures, the procedure converts the argument to upper case. For all other
arguments, the case that you specify is retained.

Summary of CWM2_OLAP_AW_MAP Subprograms

Table 26-1 CWM2_OLAP_AW_MAP

Subprogram Description

MAP_AW ATTRI BUTE Maps a dimension attribute in the OLAP Catalog to
Procedure on page 26-3 attribute information in an analytic workspace.
MAP_AW DI MENSI ON Maps a dimension in the OLAP Catalog to a
Procedure on page 26-5 dimension in an analytic workspace.

VAP AW HI ERARCHY Maps a hierarchy in the OLAP Catalog to
Procedure on page 26-6 hierarchy information in an analytic workspace.

26-2 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_AW_MAP Subprograms

Table 26-1 CWMZ2_OLAP_AW_MAP

Subprogram Description

MAP_AW LEVEL Procedure on Mapsalevel in the OLAP Catalog to level information

page 26-7 in an analytic workspace.

MAP_AW MEASURE Procedure Maps a measure in the OLAP Catalog to a

on page 26-9 variable in an analytic workspace.

REMOVENVAP_AW ATTRI BUTE Removes the mapping between an attribute in the

Procedure on page 26-11 OLAP Catalog and attribute information in an analytic
workspace.

REMOVENVAP_AW DI MENSI ON Removes the mapping between a dimension in
Procedure on page 26-12 the OLAP Catalog and a dimension in an analytic

workspace.
REMOVENVAP_AW HI ERARCHY Removes the mapping between a hierarchy in the
Procedure on page 26-12 OLAP Catalog and hierarchy information in an analytic
workspace.
REMOVENVAP_AW LEVEL Removes the mapping between a level in the OLAP
Procedure on page 26-13 Catalog and level information in an analytic
workspace.
REMOVENVAP_AW MEASURE Removes the mapping between a measure in the OLAP

Procedure on page 26-14 Catalog and a variable in an analytic workspace.

MAP_AW_ATTRIBUTE Procedure

This procedure associates a logical dimension attribute in the OLAP Catalog with
attribute information in an analytic workspace.

The dimension attribute entity in the OLAP Catalog must have been created by
procedures in the CWM2_OLAP_AW_OBJECT package.

Note: Whereas dimensions and variables (measures) are native to
the analytic workspace, there is no single native workspace object
for a dimension attribute.

CWM2_OLAP_AW_MAP 26-3

MAP_AW_ATTRIBUTE Procedure

Syntax

Parameters

MAP_AW ATTRI BUTE (
di mensi on_owner
di nensi on_nane
attribute_nane
aw_owner
aw_nane
aw_obj ect _name
aw limt_type
aw |imt_value

IN
IN
IN
IN
IN
IN
IN
IN

VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2

S NeNeNoNoNoNoNe)

e e R e e e e
N WWwWWwwwww
Mmoo ==

~ -
~

Table 26-2 MAP_AW_ATTRIBUTE Procedure Parameters

Parameter

Description

di mensi on_owner
di mensi on_nane
attribute_name
aw_owner
aw_nane

aw_obj ect _nane
aw limt_type

26-4 Oracle9/ OLAP User’s Guide

Owner of the logical dimension in the OLAP Catalog.

Name of the logical dimension in the OLAP Catalog.

Name of the logical dimension attribute in the OLAP Catalog.
Owner of analytic workspace.

Name of analytic workspace.

Name of the object in the analytic workspace.

One of the following values:

PROPERTY -- The logical dimension attribute will be
mapped using a property of the object in the analytic
workspace.

LI M TSET -- The logical dimension attribute will be
mapped using an expression that limits one or more
dimensions.

Summary of CWM2_OLAP_AW_MAP Subprograms

Table 26-2 MAP_AW_ATTRIBUTE Procedure Parameters

Parameter Description

aw | imt_val ue Whenaw_| i m t _t ype is PROPERTY, the limit value is the
property name.

Whenaw | i mt_typeisLlI M TSET, the limit value is a
string that specifies how to limit one or more dimensions in
the analytic workspace. Each dimension is limited to one of
its members.

The string should be enclosed in single quotes, and each
dimension name and dimension member pair should be
separated by a forward slash. There should be a space
between the dimension name and the dimension member, but
there should be no space before or after the forward slash.

The format of the limit expression is as follows.
" di minane di ninenber/ di nenanme di nemenber’

MAP_AW_DIMENSION Procedure

Syntax

Parameters

This procedure associates a logical dimension in the OLAP Catalog with a
dimension in an analytic workspace.

The dimension entity in the OLAP Catalog must have been created by procedures
in the CWM2_OLAP_AW_OBJECT package.

MAP_AW DI MENSI ON (

di mension_owner IN VARCHAR2 (30),
di mensi on_name IN VARCHAR2 (30),
aw_owner IN VARCHAR2 (30),
aw_nare IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30));

Table 26-3 MAP_AW_DIMENSION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the logical dimension in the OLAP Catalog.
di nensi on_nane Name of the logical dimension in the OLAP Catalog.
aw_owner Owner of analytic workspace.

CWM2_OLAP_AW_MAP 26-5

MAP_AW_HIERARCHY Procedure

Table 26-3 MAP_AW_DIMENSION Procedure Parameters

Parameter

Description

aw_nane

aw_obj ect _nane

Name of the analytic workspace.

Name of the dimension in the analytic workspace.

MAP_AW_HIERARCHY Procedure

This procedure associates a logical hierarchy in the OLAP Catalog with hierarchy
information in an analytic workspace.

Syntax

Parameters

The hierarchy entity in the OLAP Catalog must have been created by procedures in
the CWM2_OLAP_AW_OBJECT package.

Note:

Whereas dimensions and variables (measures) are native to

the analytic workspace, there is no single native workspace object

for a hierarchy.

MAP_AW HI ERARCHY (
di nensi on_owner
di nensi on_nane
hi erarchy_name
aw_owner
aw_nane
aw_obj ect _name
aw limt_type
aw |imt_value

IN
IN
IN
IN
IN
IN
IN
IN

VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2

e e R e e e e
N WWwWwwwww
01 O O O O O O o

Ol — — — — = — —

~ -
~

Table 26—4 MAP_AW_HIERARCHY Procedure Parameters

Parameter

Description

di mensi on_owner
di mensi on_name

hi erar chy_name

Owner of the logical dimension in the OLAP Catalog.

Name of the logical dimension in the OLAP Catalog.

Name of the logical hierarchy in the OLAP Catalog.

aw_owner Owner of analytic workspace.

aw_nane Name of analytic workspace.

26-6 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_AW_MAP Subprograms

Table 26—-4 MAP_AW_HIERARCHY Procedure Parameters

Parameter Description
aw_obj ect _nane Name of the object in the analytic workspace.
aw limt_type One of the following values:

« PROPERTY -- The logical hierarchy will be mapped using
a property of the object in the analytic workspace.

« LIMTSET -- The logical hierarchy will be mapped
using an expression that limits one or more dimensions.

aw | imt_val ue When aw_| i m t _t ype is PROPERTY, the limit value is the
property name.

Whenaw_| i mt_typeisLlI M TSET, the limit value is a
string that specifies how to limit one or more dimensions in
the analytic workspace. Each dimension is limited to one of
its members.

The string should be enclosed in single quotes, and each
dimension name and dimension member pair should be
separated by a forward slash. There should be a space
between the dimension name and the dimension member, but
there should be no space before or after the forward slash.

The format of the limit expression is as follows.
" di minane di ninenber/ di nenanme di nememnber’

MAP_AW_LEVEL Procedure

This procedure associates a logical level in the OLAP Catalog with level information
in an analytic workspace.

The level entity in the OLAP Catalog must have been created by procedures in the
CWM2_OLAP_AW_OBJECT package.

Note: Whereas dimensions and variables (measures) are native to
the analytic workspace, there is no single native workspace object
for a level.

CWM2_OLAP_AW_MAP 26-7

MAP_AW_LEVEL Procedure

Syntax

Parameters

MAP_AW LEVEL (
di mensi on_owner
di nensi on_nane
| evel nane
aw_owner
aw_nane
aw_obj ect _name
aw limt_type
aw |imt_value

IN VARCHAR? (30),
IN VARCHAR? (30),
IN VARCHAR? (30),
IN VARCHAR? (30),
IN VARCHAR? (30),
IN VARCHAR? (30),
IN VARCHAR? (30),
IN VARCHAR? (255));

Table 26-5 MAP_AW_LEVEL Procedure Parameters

Parameter

Description

di mensi on_owner
di mensi on_nane
| evel name
aw_owner
aw_nane

aw_obj ect _nane

aw limt_type

26-8 Oracle9/ OLAP User’s Guide

Owner of the logical dimension in the OLAP Catalog.

Name of the logical dimension in the OLAP Catalog.

Name of the logical level in the OLAP Catalog.

Owner of analytic workspace.
Name of analytic workspace.
Name of the object in the analytic workspace.

One of the following values:

« PROPERTY -- The logical level will be mapped using a
property of the object in the analytic workspace.

« LIMTSET -- The logical level will be mapped using an
expression that limits one or more dimensions.

Summary of CWM2_OLAP_AW_MAP Subprograms

Table 26-5 MAP_AW_LEVEL Procedure Parameters

Parameter

Description

aw | imt_val ue

When aw_| i m t _t ype is PROPERTY, the limit value is the
property name.

Whenaw | i mt_typeisLlI M TSET, the limit value is a
string that specifies how to limit one or more dimensions in
the analytic workspace. Each dimension is limited to one of
its members.

The string should be enclosed in single quotes, and each
dimension name and dimension member pair should be
separated by a forward slash. There should be a space
between the dimension name and the dimension member, but
there should be no space before or after the forward slash.

The format of the limit expression is as follows.
" di minanme di ninenber/ di nenane di nemenber’

MAP_AW_MEASURE Procedure

This procedure associates a logical measure in the OLAP Catalog with a variable in

an analytic workspace.

The measure entity in the OLAP Catalog must have been created by procedures in
the CWM2_OLAP_AW_OBJECT package.

CWM2_OLAP_AW_MAP 26-9

MAP_AW_MEASURE Procedure

Syntax
MAP_AW MEASURE (
cube_owner IN VARCHAR2 (30),
cube_name IN VARCHAR2 (30),
measur e_narme IN VARCHAR (30),
aw_owner IN VARCHAR2 (30),
aw_nare IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30),
aw limt_type IN VARCHAR2 (30),
aw_|imt_value IN VARCHAR2 (255));
Parameters

Table 26—-6 MAP_AW_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube in the OLAP Catalog that contains this

measure.

cube_nane Name of the cube in the OLAP Catalog.

nmeasur e_nane Name of the measure in the OLAP Catalog.

aw_owner Owner of the analytic workspace.

aw_nane Name of the analytic workspace.

aw_obj ect _nane Name of the variable in the analytic workspace.

aw limt_type One of the following values:

« PROPERTY -- The logical measure will be mapped using
a property of the object in the analytic workspace.

« LIMTSET -- The logical measure will be mapped
using an expression that limits one or more of the
variable’s dimensions.

26-10 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_AW_MAP Subprograms

REMOVEMAP_AW_ATTRIBUTE Procedure

Syntax

Parameters

Table 26—-6 MAP_AW_MEASURE Procedure Parameters

Parameter Description

aw | imt_val ue When aw_| i m t _t ype is PROPERTY, the limit value is the
property name.

Whenaw | i mt_typeisLlI M TSET, the limit value is a

string that specifies how to limit one or more dimensions in
the analytic workspace. Each dimension is limited to one of
its members.

The string should be enclosed in single quotes, and each
dimension name and dimension member pair should be
separated by a forward slash. There should be a space
between the dimension name and the dimension member, but
there should be no space before or after the forward slash.

The format of the limit expression is as follows.
" di minanme di ninenber/ di nenane di nemenber’

This procedure removes the association between a logical dimension attribute in the
OLAP Catalog and dimension attribute information in an analytic workspace.

REMOVEMAP_AW ATTRI BUTE (

di mensi on_owner IN
di mensi on_name IN
attribute_nane I'N
aw_owner I'N
aw_name I'N
aw_obj ect _name IN

VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2

—_~ e~~~ —~
WwWwWwwww
O O O O o o
oo o=
_ - -

Table 26-7 REMOVEMAP_AW_ATTRIBUTE Procedure Parameters

Parameter Description

di mensi on_owner Owner of the logical dimension in the OLAP Catalog.

di nensi on_nane Name of the logical dimension in the OLAP Catalog.
attribute_name Name of the logical dimension attribute in the OLAP Catalog.
aw_owner Owner of analytic workspace.

CWM2_OLAP_AW_MAP 26-11

REMOVEMAP_AW_DIMENSION Procedure

Table 26-7 REMOVEMAP_AW _ATTRIBUTE Procedure Parameters

Parameter Description
aw_nane Name of analytic workspace.
aw_obj ect _nane Name of the dimension in the analytic workspace.

REMOVEMAP_AW_DIMENSION Procedure

This procedure removes the association between a logical dimension in the OLAP
Catalog and a dimension in an analytic workspace.

Syntax
REMOVEMAP_AW DI MENSI ON (
di mensi on_owner IN VARCHAR2 (30),
di mensi on_name IN VARCHAR2 (30),
aw_owner IN VARCHAR2 (30),
aw_nare IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30));
Parameters

Table 26-8 REMOVEMAP_AW _DIMENSION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the logical dimension in the OLAP Catalog.
di nensi on_nane Name of the logical dimension in the OLAP Catalog.
aw_owner Owner of analytic workspace.

aw_nane Name of the analytic workspace.

aw_obj ect _nane Name of the dimension in the analytic workspace.

REMOVEMAP_AW_HIERARCHY Procedure

This procedure removes the association between a logical hierarchy in the OLAP
Catalog and hierarchy information in an analytic workspace.

26-12 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_AW_MAP Subprograms

Syntax

Parameters

REMOVEMAP_AW HI ERARCHY (
di mensi on_owner
di nensi on_nane
hi erarchy_name
aw_owner
aw_nane
aw_obj ect _name

IN
IN
IN
IN
IN
IN

VARCHAR2
VARCHAR2
VARCHAR2
VARCHARZ2
VARCHAR2
VARCHAR2

P,

W W wwww

o O O o oo

oo oo

—_ -

Table 26-9 REMOVEMAP_AW_HIERARCHY Procedure Parameters

Parameter

Description

di nensi on_owner
di nensi on_nane
hi erar chy_name
aw_owner
aw_nane

aw_obj ect _nane

Owner of the logical dimension in the OLAP Catalog.

Name of the logical dimension in the OLAP Catalog.

Name of the logical hierarchy in the OLAP Catalog.

Owner of analytic workspace.

Name of analytic workspace.

Name of the dimension in the analytic workspace.

REMOVEMAP_AW_LEVEL Procedure

This procedure removes the association between a logical level in the OLAP Catalog
and level information in an analytic workspace.

Syntax

REMOVEVAP_AW LEVEL (
di mensi on_owner
di mensi on_name
| evel _name
aw_owner
aw_nane
aw_obj ect _name

IN
IN
IN
IN
IN
IN

VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2

CWM2_OLAP_AW_MAP 26-13

REMOVEMAP_AW_MEASURE Procedure

Parameters

Table 26-10 REMOVEMAP_AW _LEVEL Procedure Parameters

Parameter Description

di nensi on_owner Owner of the logical dimension in the OLAP Catalog.
di nensi on_nane Name of the logical dimension in the OLAP Catalog.
| evel _name Name of the logical level in the OLAP Catalog.
aw_owner Owner of analytic workspace.

aw_nane Name of analytic workspace.

aw_obj ect _nane Name of the dimension in the analytic workspace.

REMOVEMAP_AW_MEASURE Procedure

This procedure removes the association between a logical measure in the OLAP
Catalog and a variable in an analytic workspace.

Syntax
REMOVEMAP_AW MEASURE (
cube_owner IN VARCHAR2 (30),
cube_name IN VARCHAR2 (30),
measur e_name IN VARCHAR (30),
aw_owner IN VARCHAR2 (30),
aw_nare IN VARCHAR2 (30),
aw_obj ect _name IN VARCHAR2 (30));
Parameters

Table 26-11 MAP_AW_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube in the OLAP Catalog that contains this
measure.

cube_nane Name of the cube in the OLAP Catalog.

nmeasur e_nane Name of the measure in the OLAP Catalog.

aw_owner Owner of analytic workspace.

aw_nane Name of the analytic workspace.

26-14 Oracle9/ OLAP User’s Guide

Summary of CWM2_OLAP_AW_MAP Subprograms

Table 26-11 MAP_AW_MEASURE Procedure Parameters

Parameter Description

aw_obj ect _name Name of the variable in the analytic workspace.

CWM2_OLAP_AW_MAP 26-15

REMOVEMAP_AW_MEASURE Procedure

26-16 Oracle9/ OLAP User’s Guide

217

CWM_CLASSIFY

The CWM _CLASSI FY package implements the OLAP metadata classification system,
used to manage measure folders (catalogs) and classify various OLAP metadata
entities. It provides procedures for creating measure folders and populating them
with measures.

Note: The term catalog, when used in the context of the
classification system, refers to a measure folder. It should not be
confused with the term OLAP Catalog, which refers to the
collection of tables that implement the OLAP metadata model.

This chapter discusses the following topics:
« Understanding the OLAP Classification System
« Summary of CWM_CLASSIFY Subprograms

CWM_CLASSIFY 27-1

Understanding the OLAP Classification System

Understanding the OLAP Classification System

The CWM _CLASSI FY package, implementing the OLAP classification system, is
used primarily to manipulate OLAP measure folders.

The OLAP classification system is the single area of overlap between the C\WWand
CWWR versions the OLAP Catalog.

The CWM _CLASSI FY package is part of CWM the metadata repository that underlies
the OLAP Management feature of Oracle Enterprise Manager. However, the
classification system is also used by CWW2, the new metadata repository that is
available via the PL/SQL packages whose names start with CWv2_ OLAP.

Note: Although the CWM CLASSI FY package manages measure
folders for both metadata management systems, the measures
stored within measure folders are specific to either CWMand CVWWVR.
Measures created by Enterprise Manager cannot be accessed by
CWWR procedures, and measures created by CWWR procedures are
not visible within Enterprise Manager.

27-2 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Summary of CWM_CLASSIFY Subprograms

Table 27-1 CWM_CLASSIFY Subprograms

Subprogram

Description

ADD_CATALOG _ENTI TY
Procedure on page 27-4

ADD_DESCRI PTOR_ENTI TY_
TYPE Procedure on
page 27-5

ADD_ENTI TY_DESCRI PTOR_USE
Procedure on page 27-6

CREATE_CATALOG Functi on
on page 27-7

CREATE_DESCRI PTOR
Functi on on page 27-8

CREATE_DESCRI PTOR TYPE
Procedure on page 27-9

DROP_CATALQOG Procedure on
page 27-9

DROP_DESCRI PTOR Pr ocedur e
on page 27-10

DROP_DESCRI PTCR_TYPE
Procedure on page 27-11

LOCK_CATALOG Pr ocedure on
page 27-12

REMOVE_CATALOG_ENTI TY
Procedure on page 27-12

REMOVE_DESCRI PTOR_ENTI TY_
TYPE Procedure on
page 27-13

REMOVE_ENTI TY_DESCRI PTOR _
USE Procedure on
page 27-14

SET_CATALOG_DESCRI PTI ON
Procedure on page 27-15

SET_CATALOG PARENT
Procedure on page 27-16

Adds a measure to a measure folder (catalog).

Adds a descriptor type to an entity type.

Attaches a descriptor to an entity.

Creates a measure folder (catalog).

Creates a descriptor.

Creates a descriptor type.

Drops a measure folder (catalog).

Drops a descriptor.

Drops a descriptor type.

Locks a measure folder’s metadata for update.

Removes a measure from a measure folder (catalog).

Removes a descriptor type from an entity type.

Removes a descriptor from an entity.

Sets the description for a measure folder (catalog).

Sets the parent folder for a measure folder (catalog).

CWM_CLASSIFY 27-3

ADD_CATALOG_ENTITY Procedure

ADD_CATALOG_ENTITY Procedure

This procedure adds a metadata entity to a measure folder. The entity may be a

measure or a cube.

Syntax
ADD_CATALOG ENTI TY (
catalog_id IN NUMBER,
entity_owner IN VARCHARZ,
entity_name IN VARCHAR?2,
child_entity_name IN VARCHAR?) ;
Parameters
Table 27-2 ADD_CATALOG_ENTITY Procedure Parameters
Parameter Description
catalog_id Name of the measure folder.
entity_owner Owner of the cube to be added to the measure folder.
entity_nane Name of the cube to be added to the measure folder.
child_ entity_ Name of a measure. If this parameter is specified, the procedure adds
name this individual measure to the measure folder, instead of adding all
of the cube’s measures. If this parameter is NULL, the procedure adds
all of the cube’s measures. The default is NULL.
Exceptions

Table 27-3 ADD_CATALOG_ENTITY Procedure Exceptions

Exception

Description

el ement _al ready_
exi sts

el ement _not _f ound

cat al og_not _f ound

This cube is already added to this measure folder.

Cube or measure does not exist or is not accessible to user.

Measure folder not found.

27-4 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

ADD_DESCRIPTOR_ENTITY_TYPE Procedure

This procedure adds a type of descriptor to a type of metadata entity.

Syntax

Parameters

This procedure is only available to DBAs.

The following pairs of entity types and descriptor types are predefined in the OLAP

catalog.

Entity Type Descriptor Type

Dimension Dimension Type

Dimension Dimension Primary Display Sort Order
Dimension Dimension Secondary Display Sort Order

Dimension Attribute
Dimension Attribute
Level Attribute
Level Attribute
Level

Level

Parameter

Dimension Attribute Descriptor
Time Dimension Attribute Type
Dimension Attribute Descriptor
Time Dimension Attribute Type
Total Level

Time Dimension Level Type

Parameter Source Type

ADD_DESCRI PTOR_ENTI TY_TYPE (

descriptor_type I'N
entity_type

VARCHARZ,
IN VARCHARZ);

Table 27-4 ADD_DESCRIPTOR_ENTITY_TYPE Procedure Parameters

Parameter

Description

descriptor_type

entity_type

Name of the descriptor type. Examples might be
di nension type,orattribute type.

One of the following types of entities: DI MENSI ON,
CUBE, MEASURE, LEVEL, ATTRI BUTE,
HI ERARCHY, PARAMETER

CWM_CLASSIFY 27-5

ADD_ENTITY_DESCRIPTOR_USE Procedure

ADD_ENTITY_DESCRIPTOR_USE Procedure

This procedure assigns a descriptor to an OLAP metadata entity. An entity may
have multiple descriptors.

This procedure is only available to DBAs.

Syntax
ADD_ENTI TY_DESCRI PTOR_USE (
descriptor_id IN NUMBER
entity _type IN VARCHARZ,
entity_owner IN VARCHAR?,
entity_name IN VARCHAR?,
child_entity_name IN VARCHAR2,
secondary_child_entity_name IN VARCHAR?2);
Parameters

Table 27-5 ADD ENTITY _DESCRIPTOR_USE Procedure Parameters

Parameter

Description

descriptor_id

entity_type

entity_owner

entity_nane

child_entity_
name

secondary_
child_ entity_
nane

Identifier of the descriptor.

One of the following types of entities: DI MENSI ON, CUBE,
MEASURE, LEVEL, ATTRI BUTE,
H ERARCHY, PARAMETER

Owner of the entity.

Name of the parent entity. If there is no child entity, this is the name
of the entity to which the descriptor should be applied.

If the entity is a child of ent i t y_name, name of the child entity. If
the entity is not a child of another entity, this parameter is NULL.

When this parameter is specified and there is no secondary child
entity, this is the name of the entity to which the descriptor should be
applied.

Levels, hierarchies, and dimension attributes are children of
dimensions. Measures are children of cubes.

Used for specifying level attributes, which are children of levels. If
the entity is not a level attribute, this parameter is NULL.

27-6 Oracle9/ OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Exceptions

Table 27-6 ADD_ENTITY_DESCRIPTOR_USE Procedure Exceptions

Exception Description
entity_not_found Entity with this name does not exist or is not accessible to
user.

descri ptor_undefined Descriptor value not found in ALL$OLAP_DESCRI PTORS
lookup view.

CREATE_CATALOG Function

Syntax

Parameters

This function creates a measure folder and returns a unique identifier (NUMBER) for
the measure folder.

This identifier may be used to create subfolders of this measure folder.

CREATE_CATALCG (

catal og_nane IN VARCHARZ,
catal og_description IN NUMBER,
parent _catal og_id IN |N NUMBER);

Table 27-7 CREATE_CATALOG Procedure Parameters

Parameter Description

cat al og_nane Name of the measure folder.

cat al og_description Description of the measure folder.

parent _catal og_id Identifier of the parent measure folder. By default, this

parameter is NULL, meaning that the new measure folder
is at the root level in the hierarchy.

CWM_CLASSIFY 27-7

CREATE_DESCRIPTOR Function

CREATE_DESCRIPTOR Function

Syntax

Parameters

Exceptions

This function creates a descriptor and returns a unique identifier (NUMBER) for the
new descriptor.

For each descriptor type, multiple descriptors may be defined. These descriptors
are used as a domain to descriptor usages.

This procedure is only available to DBAs.

CREATE_DESCRI PTCR (

descriptor_type IN VARCHARZ,
descriptor_val ue IN VARCHARZ,
description IN VARCHAR?);

Table 27-8 CREATE_DESCRIPTOR Function Parameters

Parameter Description

descri ptor_type Name of the descriptor type. Examples might be di nensi on type,
orattribute type.

descriptor_ The value for the descriptor. For example, | ong descri pti on and
val ue short descri ption are descriptors of typeattri bute type.
description Description of the descriptor.

Table 27-9 CREATE_DESCRIPTOR Function Exceptions

Exception Description

descri ptor_type_not_found Descriptor type must be created first using the
CREATE_DESCRI PTOR_TYPE procedure.

descri ptor_al ready_exists This descriptor value already exists for this
descriptor type.

no- access-privil eges Must be OLAPDBA.

27-8 Oracle9/ OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

CREATE_DESCRIPTOR_TYPE Procedure

Syntax

Parameters

Exceptions

This procedure creates a descriptor type.

A descriptor type serves as a domain for descriptors, which describe OLAP
metadata entities. The descriptor type also specifies the metadata entities to which
its descriptors may apply.

This procedure is only available to DBAs.

CREATE_DESCRI PTOR_TYPE (
descriptor_type IN VARCHAR?);

Table 27-10 CREATE _DESCRIPTOR_TYPE Procedure Parameters

Parameter Description

descri ptor _type Name of the descriptor type. Examples might be di nensi on type,
orattribute type.

Table 27-11 CREATE_DESCRIPTOR_TYPE Procedure Exceptions

Exception Description

descriptor_type_al ready_ A descriptor type with this name already exists.
exists

entity_type_not_al | owed Entity type is not one of the supported types.

DROP_CATALOG Procedure

Syntax

This procedure deletes a measure folder. By default, you must delete subfolders
before deleting a measure folder. However, if you set the cascade parameter, all
subfolders are deleted along with the measure folder.

DROP_CATALOG (
catalog_id IN NUMBER
cascade IN VARCHAR?);

CWM_CLASSIFY 27-9

DROP_DESCRIPTOR Procedure

Parameters
Table 27-12 DROP_CATALOG Procedure Parameters
Parameter Description
catalog_ id Identifier of the measure folder.
cascade Whether or not the subfolders should be deleted with the measure
folder. Values may be Y or N. Y means that subfolders will be deleted. N
means that subfolders will not be deleted, and if there are subfolders the
measure folder will not be deleted. The default is N.
Exceptions

Table 27-13 DROP_CATALOG Procedure Exceptions

Exception Description

catal og_has_sub_catal ogs You must drop the subfolders before deleting the
measure folder.

cat al og_not _f ound Measure folder not found.

DROP_DESCRIPTOR Procedure

This procedure drops a descriptor.

Syntax

DROP_DESCRI PTQR (
descriptor_id IN NUMBER);

Parameters

Table 27-14 DROP_DESCRIPTOR Procedure Parameters

Parameter Description

descriptor_id Descriptor identifier

27-10 Oracle9/ OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Exceptions

Table 27-15 DROP_DESCRIPTOR Procedure Exceptions

Exception Description
descri ptor_not _found Descriptor not found.
no_access_privil eges Must be OLAPDBA.

DROP_DESCRIPTOR_TYPE Procedure

This procedure drops a descriptor type.

A descriptor type serves as a domain for descriptors, which describe OLAP
metadata entities. The descriptor type also specifies the metadata entities to which
its descriptors may apply.

This procedure is granted only to DBA.

Syntax
DROP_DESCRI PTOR_TYPE (
descriptor_type IN VARCHAR?);
Parameters
Table 27-16 DROP_DESCRIPTOR_TYPE Procedure Parameters
Parameter Description
descri ptor_type Name of the descriptor type.
Exceptions

Table 27-17 DROP_DESCRIPTOR_TYPE Procedure Exceptions

Exception Description

descri ptor_type_not_found Descriptor type not found.

CWM_CLASSIFY 27-11

LOCK_CATALOG Procedure

LOCK_CATALOG Procedure

This procedure locks the measure folder metadata for update. A database lock is
acquired on the row for the measure folder metadata.

Syntax
LOCK_CATALOG (
catal og_id IN NUMBER,
wait _for_| ock IN BOOLEAN);
Parameters
Table 27-18 LOCK_CATALOG Procedure Parameters
Parameter Description
catalog_ id Identifier of the measure folder.
wai t _for_Ilock When t r ue, wait for lock to released if it has already been
acquired by another user. The defaultisf al se.
Exceptions

Table 27-19 LOCK_CATALOG Procedure Exceptions

Exception Description
cat al og_not _f ound Measure folder does not exist.
failed_to_gain_| ock Failed to acquire lock.

no_access_privil eges User does not have privileges to edit the measure folder.
User must be the owner or OLAP_DBA.

REMOVE_CATALOG_ENTITY Procedure

This procedure removes a cube or a measure from a measure folder.

Syntax
REMOVE_CATALOG ENTI TY (
catalog_id IN NUMBER,
entity_owner IN VARCHARZ,
entity_name IN VARCHAR?2,

child_entity_name IN VARCHAR?) ;

27-12 Oracle9/ OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Parameters
Table 27-20 REMOVE_CATALOG_ENTITY Procedure Parameters
Parameter Description
catalog_id Identifier of the measure folder.
entity_owner Owner of the cube to be removed from the measure folder.
entity_nane Name of the cube to be removed from the measure folder.
child_entity_ Name of a measure. If this parameter is specified, the procedure
nane removes this individual measure from the measure folder, instead of
removing all of the cube’s measures. If this parameter is NULL, the
procedure removes all of the cube’s measures. The default is NULL.
Exceptions

Table 27-21 REMOVE_CATALOG_ENTITY Procedure Exceptions

Exception Description
el enent _not _found Cube or measure does not exist or is not accessible to user.
cat al og_not _f ound Measure folder not found.

REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure

This procedure removes a descriptor type from an entity type.

CWM_CLASSIFY 27-13

REMOVE_ENTITY_DESCRIPTOR_USE Procedure

Syntax
REMOVE_DESCRI PTOR_ENTI TY_TYPE (
descriptor_type IN VARCHAR?,
entity_type IN VARCHAR?);
Parameters

Table 27-22 REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be
di nension type,orattribute type.

entity_type One of the following types of entities: DI MENSI ON,
CUBE, MEASURE, LEVEL, ATTRI BUTE,
H ERARCHY, PARAMETER

REMOVE_ENTITY_DESCRIPTOR_USE Procedure

This procedure removes a descriptor from an OLAP metadata entity.

Syntax
REMOVE_ENTI TY_DESCRI PTOR_USE (
descriptor_id IN NUMBER,
entity_type IN VARCHAR?,
entity_owner IN VARCHAR?2,
entity_name IN VARCHAR?,
child_entity_name IN VARCHARZ,
secondary_child_entity_name IN VARCHAR?);
Parameters

Table 27-23 REMOVE_ENTITY _DESCRIPTOR_USE Procedure Parameters

Parameter Description
descriptor_id Identifier of the descriptor.
entity_type One of the following types of entities: DI MENSI ON, CUBE,

MEASURE, LEVEL, ATTRI BUTE,
HI ERARCHY, PARAMETER

entity_owner Owner of the entity.

27-14 Oracle9/ OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Table 27-23 REMOVE_ENTITY_DESCRIPTOR_USE Procedure Parameters

Parameter Description

entity_nane Name of the parent entity. If there is no child entity, this is the name
of the entity from which the descriptor should be removed.

child_ entity_ If the entity is a child of ent i t y_nane, name of the child entity. If

name the entity is not a child of another entity, this parameter is NULL.

When this parameter is specified and there is no secondary child
entity, this is the name of the entity from which the descriptor should
be removed.

Levels, hierarchies, and dimension attributes are children of
dimensions. Measures are children of cubes.

secondary_ Used for specifying level attributes, which are children of levels. If
child_entity_ the entity is not a level attribute, this parameter is NULL.
nane

Exceptions

Table 27-24 REMOVE_ENTITY_DESCRIPTOR_USE Procedure Exceptions

Exception Description
entity_not_found Entity with this name does not exist or is not accessible to
user.

SET_CATALOG_DESCRIPTION Procedure

This procedure sets the description of a measure folder.

Syntax
SET_CATALOG _DESCRI PTI ON (
catalog_id IN NUMBER,
catal og_description IN VARCHAR?);
Parameters

Table 27-25 SET_CATALOG_DESCRIPTION Procedure Parameters

Parameter Description
catalog_id Identifier of the measure folder.
cat al og_description Description of the measure folder.

CWM_CLASSIFY 27-15

SET_CATALOG_PARENT Procedure

Exceptions

Table 27-26 SET_CATALOG_DESCRIPTION Procedure Exceptions

Exception Description

cat al og_not _found Measure folder not found.

SET_CATALOG_PARENT Procedure

Syntax

Parameters

Table 27-27 CREATE_CATALOG Procedure Exceptions

Exception Description

parent _catal og_not _found Parent measure folder not found.

cat al og_al ready_exi sts A measure folder with this name already exists.

i nval i d_nane Measure folder name may not be empty or null.

This procedure changes the parent folder of an existing measure folder.

SET_CATALOG_PARENT (
catalog_id IN NUMBER,
parent _catal og_id IN NUMBER);

Table 27-28 SET_CATALOG_PARENT Procedure Parameters

Parameter Description
catalog_id Identifier of the measure folder.
parent _catal og_id Identifier of the parent measure folder.

27-16 Oracle9/ OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Exceptions

Table 27-29 SET_CATALOG_PARENT Procedure Exceptions

Exception Description

parent _catal og_not _found Parent measure folder not found.

cat al og_not _f ound Measure folder not found.

ci rcul ar _dependency Cannot add the measure folder at this position in the
hierarchy. The parent is already a child of the measure
folder.

CWM_CLASSIFY 27-17

SET_CATALOG_PARENT Procedure

27-18 Oracle9/ OLAP User’s Guide

Part V

Creating Materialized Views for the

OLAP API

Part V explains how to create materialized views for queries for aggregate data
from the OLAP API.

This part contains the following chapters:

« Chapter 28, "
« Chapter 29,"
« Chapter 30,
« Chapter 31,

Developing a Summary Management Strategy"

Creating Dimension Materialized Views"

"Creating Fact Materialized Views With DBMS_ODM"
"Creating Fact Materialized Views With OLAP Summary Advisor"

28

Developing a Summary Management
Strategy

This chapter provides information to help you develop a summary management
strategy specific to the requirements of the OLAP API. It describes the kinds of
materialized views you will need to create, and it presents an overview of the tools
that can assist you in creating them.

See Also:
« Chapter 29, "Creating Dimension Materialized Views"

« Chapter 30, "Creating Fact Materialized Views With DBMS _
obDM"

« Chapter 31, "Creating Fact Materialized Views With OLAP
Summary Advisor"
This chapter includes the following topics:
« Optimizing the Database for OLAP
« Summary Management Options
« Materialized Views and OLAP Metadata
« Dimension Materialized Views
« Fact Materialized Views

« Choosing the Right Summary Management Solution

Developing a Summary Management Strategy 28-1

Optimizing the Database for OLAP

Optimizing the Database for OLAP

A basic feature of online analytical processing (OLAP) is the ability to analyze and
view various levels of aggregate data. Queries generated by the Oracle OLAP API
use the database’s query rewrite capability whenever possible. Query rewrite
enables a query to fetch aggregate data from materialized views rather than
recomputing the aggregates at runtime.

The creation of materialized views and indexes can significantly improve the
performance of analytical queries generated by the OLAP API.

About Materialized Views

Materialized views store data that has been calculated from detail tables. When data
in the detail tables changes, you can refresh materialized views with the new data.
While a view only stores the query, a materialized view actually stores the results
of a query. Thus, you will need to allocate sufficient tablespace to store the required
materialized views.

For query rewrite to recognize that a materialized view contains the query results,
the materialized view must have been created using basically the same type of SQL
commands that Oracle OLAP generates. The OLAP API requires a very specific set
of materialized views.

Summary Management Options

To enhance the performance of queries generated by the OLAP API, you should
create materialized views for frequently-aggregated data that is stored at detail level
in a star or snowflake schema.

You do not need to create materialized views for data stored in embedded-total
tables or analytic workspaces. Relational tables with embedded totals contain all the
summary information within the tables. Analytic workspaces provide summary
management based on a native multidimensional model.

The database provides you with several tools for generating materialized views for
the OLAP API. These tools produce materialized views for dimensions and fact
tables. Fact materialized views may be built with concatenated rollup syntax or
with grouping set syntax.

28-2 Oracle9i OLAP User’s Guide

Materialized Views and OLAP Metadata

Important: You must be sure to create materialized views that are
specifically for use by the OLAP API. Query rewrite will not map
the SQL generated by the OLAP API to the materialized views
generated by the DBMS_COLAP PL/SQL package, which is described
in the Oracle9i Data Warehousing Guide. Do not use the DBMS_COLAP
package for the OLAP API.

Grouping Sets

The OLAP API supports fact table materialized views that use explicit grouping set
syntax. This type of materialized view uses the GROUP BY GROUPI NG SETS syntax
to aggregate the data for each level combination in the summary.

Materialized views generated with grouping set syntax can support asymmetric
partial summarization. A single materialized view of this type holds all the
summary information for a cube.

To generate this type of materialized view, use the Oracle Data Management
PL/SQL package, DBMS_CODM

Concatenated Rollup

The OLAP API also supports fact table materialized views that use concatenated
rollup syntax. This type of materialized view uses the GROUP BY ROLLUP syntax to
aggregate the data for each level combination in the summary.

Materialized views generated with concatenated rollup syntax can support
symmetric partial summarization. A single materialized view of this type holds the
summary information for one hierarchy combination of a cube.

To generate this type of materialized view, use the OLAP Summary Advisor within
Oracle Enterprise Manager.

Materialized Views and OLAP Metadata

You should create materialized views after you have defined the OLAP metadata
for your star schema. You may have used Enterprise Manager to create CV\M
metadata, or you may have developed scripts to create CAWW2 metadata, or you may
have some combination of CWMand CWWM2 metadata.

However, the structure of the metadata in the OLAP Catalog does not affect the
structure of the materialized views that enable query rewrite at runtime. The

Developing a Summary Management Strategy 28-3

Dimension Materialized Views

choices you make in establishing materialized views will be based primarily on the
structure of the data in the star schema and on the query requirements of OLAP
clients.

See Also: Chapter 5, "Creating OLAP Catalog Metadata" for
information about defining OLAP metadata.

CWM Metadata

CWMmetadata for dimension tables and fact tables is visible within the property
pages for dimensions and cubes in the OLAP folder of Enterprise Manager. OLAP
Summary Advisor generates concatenated rollup style MVs for cubes that are
visible within Enterprise Manager.

If you wish to create grouping set style materialized views for CWmetadata, then
you must develop your own scripts using the DBMS_CODMpackage. OLAP Summary
Advisor does not support this type of materialized view.

See Also: Chapter 31, "Creating Fact Materialized Views With
OLAP Summary Advisor".

CWM2 Metadata

CWW2 metadata is not visible within the OLAP folder of Enterprise Manager. Thus,
you cannot use OLAP Summary Advisor with CWW2 metadata.

To create materialized views for CWWR metadata, use the DVMBS_ODMpackage. DBVS
ODMcontains procedures for creating dimension MVs and grouping set style MVs.

To create materialized views in grouping set form for a star schema that is mapped
to CWWW2 metadata, use the DBMS_ODMpackage.

See Also: Chapter 30, "Creating Fact Materialized Views With
DBMS_ODM".

Dimension Materialized Views

When creating materialized views for the OLAP API, you should create MVs for
each dimension in a star schema. Dimensions may be denormalized in a single table
or normalized in separate tables (snow flake schema).

The structural differences between concatenated rollup style and grouping set style
apply only to materialized views for fact tables. The structure of dimension

28-4 Oracle9/ OLAP User’s Guide

Dimension Materialized Views

materialized views is the same whether the fact table materialized view uses
concatenated rollup or grouping sets.

Creating Dimension Materialized Views

When you use OLAP Summary Advisor, dimension materialized views are
automatically created along with the fact materialized views for a C\\Mcube.

Alternatively, you can use the CREATEDI MW _GS procedure in the DBMS_ODM
package to create dimension materialized views.

Important: The syntax of the CREATE MATERI ALI ZED VI EW
statement is the same whether generated by OLAP Summary
Advisor or the DBMS_ODMpackage.

Number of Dimension Materialized Views

The dimension MV scripts produced by OLAP Summary Advisor and DBMS_ODM
create a separate MV for each hierarchy of a dimension.

Table 28-1, "SALES_CUBE Cube" lists the dimensions and hierarchies associated
with the SALES CUBE cube in the Sales History (SH) schema.

Table 28-1 SALES_CUBE Cube

SALES CUBE Dimensions Hierarchies Number of MVs
SH. CHANNELS_DI M CHANNEL_ROLLUP 1
SH. CUSTOVERS_DI M CUST_ROLLUP 2
GEOG ROLLUP
SH. PRODUCTS_DI M PROD_ROLLUP 1
SH. PROVOTI ONS_DI M PROVD_ROLLUP 1
SH. TIMES DI M CAL_ROLLUP 2
FI'S ROLLUP

The total number of dimension materialized views required for SALES CUBE is
seven, the sum of the number of materialized views required for each of its
dimension hierarchies.

Developing a Summary Management Strategy 28-5

Fact Materialized Views

See Also: Chapter 29, "Creating Dimension Materialized Views"
for more information about creating materialized views for
dimensions.

Fact Materialized Views

When creating MVs for the OLAP API, you should create materialized views for
each cube that represent a star schema. The cube must be mapped to a single fact
table, and the fact table may contain only lowest-level data.

For C\WMmetadata, you can choose to create fact materialized views using
concatenated rollup syntax or grouping set syntax. For CWWR2 metadata, only
grouping set style fact MVs are supported.

Creating Fact Materialized Views

When you use OLAP Summary Advisor, fact materialized views are created
automatically for each hierarchy combination of a CWMcube. The materialized views
are created with concatenated rollup syntax.

Alternatively, you can use the CREATEDI MLEVTUPLE, CREATECUBELEVELTUPLE,
and CREATEFACTMV_GS procedures in the DBM5_ODMpackage to create a fact
materialized view for a CAMor CWWVR cube. The materialized view is created with
grouping set syntax.

Number of Fact Materialized Views

The number of fact materialized views for a cube depends on whether you using
concatenated rollup style MVs or grouping set MVs.

If you use OLAP Summary Advisor, you will generate a separate concatenated
rollup style MV for each combination of hierarchies in the cube. If you use DBMS_
ODM you will generate a single grouping set style MV for the cube.

For example, the SALES CUBE cube in the Sales History (SH) schema, described in
Table 28-1, would have either one materialized view generated with grouping sets
or four materialized views generated with concatenated rollup.

For SALES CUBE, there would be a separate concatenated rollup materialized view
for the each of the following dimension hierarchy combinations.

. (CHANNEL, PRODUCT, PROVOTI ONS, CUSTOVERS_CUST_ROLLUP, TI MES_CAL _
ROLLUP)

28-6 Oracle9/ OLAP User’s Guide

Choosing the Right Summary Management Solution

. (CHANNEL, PRODUCT, PROVOTI ONS, CUSTOVERS_CUST_ROLLUP, TI MES_FI S_
ROLLUP)

. (CHANNEL, PRODUCT, PROVOTI ONS, CUSTOVERS_GEOG ROLLUP, TI MES_CAL _
ROLLUP)

. (CHANNEL, PRODUCT, PROVOTI ONS, CUSTOVERS_GEOG ROLLUP, TI MES_FI S_
ROLLUP)

See Also:

« Chapter 30, "Creating Fact Materialized Views With DBMS _
OoDM"

« Chapter 31, "Creating Fact Materialized Views With OLAP
Summary Advisor".

Choosing the Right Summary Management Solution

Whether you choose to use grouping set or concatenated rollup for your fact
materialized views will depend primarily on the complexity of the data in your star
schema. However, the nature of your existing metadata (C\WMor CWWR) may also be
a factor, as well as your preference for using either Enterprise Manager or your own
PL/SQL scripts.

Summary Management for CWM Metadata

If you have existing CWWMmetadata, you can use Enterprise Manager to create all the
necessary materialized views. The fact materialized views will be generated with
concatenated rollup syntax. However, you are not limited to concatenated rollup
style MVs if you have CWMmetadata. You can create scripts that generate
materialized views for your CWWMmetadata by using the DBM5S_ODMpackage.

Summary Management With a Graphical User Interface

If you would rather not create your own SQL scripts for summary management and
you prefer to use Enterprise Manager, you are limited to the concatenated rollup
style MVs for your fact data. Moreover, the star schema must be mapped to C\WM
(not CWWR) metadata.

Developing a Summary Management Strategy 28-7

Choosing the Right Summary Management Solution

Summary Management for Multiple Hierarchies

Unless you have a very simple data model with only single-hierarchy dimensions,
grouping set MVs are generally more efficient and provide greater flexibility than
concatenated rollup MVs.

Build Times

If you have single-hierarchy dimensions, concatenated rollup MVs will take less
time to build than grouping set MVs. If you have multiple-hierarchy dimensions,
grouping set MVs generally will take less time to build.

Partial Materialization

If you want to store partially aggregated data in your materialized views, the
grouping set form provides more flexibility than the concatenated rollup form.
Grouping set form supports asymmetric partial materialization. Concatenated
rollup form supports only symmetric partial materialization.

With grouping set form, you could store month level summaries for specific level
combinations only. For example, you could summarize month data for a certain
type of product within a given geographical region, without regard for the other
dimension levels associated with the data. You would do this by specifying
individual level combinations before generating the script for creating the MV.

With concatenated rollup form, you could store month level summaries only, but
they would be aggregated over all of the dimension hierarchies associated with the
cube. You could choose to limit the MV to month data by editing the script for
creating the MV.

MV Size

Although a grouping set style MV may be very large, it requires significantly less
tablespace than concatenated rollup style MVs. The multiple concatenated rollup
style MVs for a cube store redundant data, since each hierarchy combination is
stored in a separate MV. A grouping set style MV for a cube contains all hierarchy
combinations within the single MV.

Lineage (Key)

With concatenated rollup form, all the dimension key columns are populated, and
data may only be accessed when its full lineage is specified. With true grouping set
form, dimension key columns may contain null values, and data may be accessed
simply by specifying one or more levels.

28-8 Oracle9/ OLAP User’s Guide

Choosing the Right Summary Management Solution

Note: Inthe current release, all MVs, whether generated with
concatenated rollup or with grouping sets, are full lineage
preserving.

Query Performance

MVs generated with concatenated rollup are more efficient for schemas that have
only single-hierarchy dimensions. MVs generated with grouping sets provide better
runtime query performance for schemas that have dimensions with multiple
hierarchies.

Developing a Summary Management Strategy 28-9

Choosing the Right Summary Management Solution

28-10 Oracle9/ OLAP User’s Guide

29

Creating Dimension Materialized Views

This chapter explains how to create dimension materialized views for the OLAP
API.

This chapter contains the following topics:

« Creating Materialized Views for Dimensions

« Statistics and Bitmap Indexes

« Sample Script for the TIMES_DIM Dimension

« Table Structure of Sample TIMES_DIM Dimension Materialized View

Creating Dimension Materialized Views 29-1

Creating Materialized Views for Dimensions

Creating Materialized Views for Dimensions

You can use OLAP Summary Advisor or the DBVMS_ODMPL/SQL package to create
dimension materialized views. When you use OLAP Summary Advisor, the
dimension materialized views are automatically created along with the fact
materialized views for a CWMcube. When you use the DBMS_CODMpackage, you must
call the CREATEDI MW _GS procedure to create dimension materialized views.

The syntax of the CREATE MATERI ALI ZED VI EWstatement is the same whether
generated by OLAP Summary Advisor or the DBMS_CODMpackage.

See Also:

« "Dimension Materialized Views" on page 28-4.

« "Using the DBMS_ODM Package" on page 30-2.

« "Using the OLAP Summary Advisor Wizard" on page 31-2.

Statistics and Bitmap Indexes

Statistics

The scripts for creating dimension materialized views, whether generated by OLAP
Summary Advisor or DBM5S_0ODM include syntax for gathering statistics and creating
bitmap indexes.

Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE nv_nanme COVPUTE STATI STI CS;

EXECUTE dbns_stats. gather _table_stats (m/_owner, mv_nane, degree=>
dbns_stats. defaul t _degree, nethod_opt=>"for all colums size skewonly') ;

ALTER TABLE nv_name M NIM ZE RECORDS_PER BLOCK ;

For more information about the ANALYZE TABLE statement, refer to the Oracle9i
SQL Reference. For more information about the DBMS_STATS package, refer to the
Oracle9i Supplied PL/SQL Packages and Types Reference.

29-2 Oracle9i OLAP User’s Guide

Statistics and Bitmap Indexes

Bitmap Indexes

Bitmap indexes optimize the performance of materialized views at runtime.
Dimension materialized views for the OLAP API include bitmap indexes for all
columns that contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BI TMAP | NDEX i ndex_name ON nv_nane (nv_col nane)
TABLESPACE ¢ bl space_namne

PCTFREE 0

COWPUTE STATI STI CS

LOCAL

NOLOGGE NG

The CREATE Statement for a Dimension Materialized View

The following example shows the basic structure of the SQL statements generated
by OLAP Summary Advisor or DBMS_CODMto create a dimension materialized view
for the OLAP API.

The SELECT statement contains a COUNT(*) function, a GROUPI NG _| D function,
MAX aggregate functions, and a ROLLUP function. The following example shows the
basic syntax.

CREATE MATER ALl ZED M BEW nv_nane
PARTI TI CN BY RANCE (gi d)
(partition val ues less than(1l) ,
partition val ues | ess than(3) ,

partition val ues | ess than(MAXVALLE))
TABLESPACE t bl space_nane
BU LD | MED ATE
USI NG NO | NDEX
REFRESH FORCE
ENABLE QUERY RBWR TE
AS
SH ECT
COUNT(*) COUNT_STAR,
GROUPING_I D(I evel _col s) gid,
MAX(attribute_col 1)

MAX(attribute_col n)
level cols

Creating Dimension Materialized Views 29-3

Sample Script for the TIMES_DIM Dimension

FROM
di mensi on_t abl e
GROP BY level 1, RALLU(/evel 2, ..., leveln)

where:

mv_name is the name of the materialized view. The name is derived from the names
of the dimension table and the hierarchy.

level _cols are the names of columns in the dimension table that contain data for the
levels of the hierarchy, beginning with the most aggregate (level1) and ending with
the least aggregate (leveln).

attribute_col is the name of a column defined as an attribute. All columns defined as
attributes should be listed in a MAX function.

dimension_table is the name of the dimension table whose columns are being
aggregated to create the materialized view.

levell is the highest level of aggregation. Note that levell is excluded from the
ROLLUP list.

leveln is the lowest level of aggregation or “leaf node”, which is also the key column.

Sample Script for the TIMES_DIM Dimension

The following sample script creates materialized views for the TI MES_DI M
dimension in the SHschema. This script could result from running OLAP Summary
Advisor or from invoking the DBM5s_ODM CREATEDI MW_GS procedure.

The script creates two materialized views: one for the CAL_ ROLLUP hierarchy, and
one for the FI S_ROLLUP hierarchy

CREATE materialized view TIMES CAL_R OLAP
partition by range (gid) (
partition values |ess than(1),
partition val ues |ess than(3),
partition val ues |ess than(7),
partition val ues | ess than(MAXVALUE))
TABLESPACE SH _DATABUI LD | MVEDI ATE
USI NG NO | NDEX
REFRESH FORCE
ENABLE QUERY REWRI TE
AS
SELECT
COUNT(*) COUNT_STAR
GROUPING_| D(TI MES. CALENDAR_YEAR, Tl MES. CALENDAR_QUARTER_DESC,

29-4 Oracle9/ OLAP User’s Guide

Sample Script for the TIMES_DIM Dimension

TI MES. CALENDAR MONTH_DESC, TIMES. TIME_I D) gi d,
max(Tl VES. CALENDAR YEAR) CALENDAR YEAR AR,
max(T MES. END_OF_CAL_YEAR) END OF CAL_YEAR AR
max(TI MES. DAYS_| N_CAL_YEAR) DAYS_ N CAL_YEAR AR
max(Tl MES. CALENDAR QUARTER DESC) CALENDAR QUARTER DESC AR
max(Tl VES. END_OF_CAL_QUARTER) END OF CAL_QUARTER AR,
max(Tl MES. DAYS_| N_CAL_QUARTER) DAYS | N_CAL_QUARTER AR
max(Tl VES. CALENDAR QUARTER NUMBER) CALENDAR QUARTER NUMBER AR,
max(Tl MES. CALENDAR_MONTH_DESC) CALENDAR MONTH DESC AR,
max(T MES. END_OF_CAL_MONTH) END_OF CAL_MONTH AR
max(TI MES. DAYS_| N_CAL_MONTH) DAYS_ | N CAL_MONTH AR
max(Tl MES. CALENDAR_MONTH_NAME) CALENDAR MONTH NAME AR,
max(Tl MES. CALENDAR_MONTH NUMBER) CALENDAR MONTH NUMBER AR
max(Tl MES. DAY_NUVBER | N VEEK) DAY _NUMVBER | N VEEK AR,
max(Tl MES. CALENDAR VEEK_NUVBER) CALENDAR WEEK NUMBER AR,
max(TI MES. DAY_NUVBER | N_MONTH) DAY _NUMBER | N_MONTH AR
max(Tl VES. DAY_NAVE) DAY NAME AR
TI MES. CALENDAR YEAR CALENDAR YEAR,
TI MES. CALENDAR QUARTER DESC CALENDAR QUARTER DESC,
TI MES. CALENDAR MONTH_DESC CALENDAR MONTH_DESC,
TIMES. TIME_ID TIME_I D
FROM
SH. TIMES TIMES
GROUP BY
TI MES. CALENDAR YEAR ,
ROLLUP(TI MES. CALENDAR QUARTER DESC, T MES. CALENDAR MONTH_DESC, TI MES. TI ME_I D) :

execute dbms_stats.gather _table stats ("SH, 'TIMES CAL_R OLAP', degree=>
dbns_stats. def aul t _degree, method_opt=>"for all colums size skewonly’) ;
ALTER TABLE TIMES_CAL_R OLAP M NI M ZE RECORDS_PER BLOCK ;

CREATE BI TMAP | NDEX M/_CALENDAR QUARTER DESCCA Bl 2 ON TI MES_CAL_R CLAP
(CALENDAR_QUARTER DESC)

TABLESPACE SH | DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGGE NG

CREATE BI TMAP | NDEX M/_CALENDAR MONTH DESCCA BI 3 ON TI MES CAL_R OLAP
(CALENDAR_MONTH_DESC)

TABLESPACE SH | DX

PCTEREE 0

Creating Dimension Materialized Views 29-5

Sample Script for the TIMES_DIM Dimension

COVPUTE STATI STI CS
LOCAL
NOLOGGE NG

CREATE BI TMAP | NDEX M/_TI ME_I DCA Bl 4 ON TI MES_CAL_R OLAP
(TIME_I D)

TABLESPACE SH | DX

PCTEREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGG NG

CREATE BI TMAP | NDEX W_GI D_CA Bl 4 ON TIMES_CAL_R OLAP
(gid)

TABLESPACE SH | DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGGE NG

CREATE BI TMAP | NDEX M/_TI MES_CAL_R OLAP_PREL_FI ON TI MES_CAL_R OLAP
((CASE G D
WHEN(7) THEN NULL
WHEN(3) THEN TO CHAR(CALENDAR YEAR)
WHEN(1) THEN TO CHAR(CALENDAR QUARTER DESC)
ELSE TO CHAR(CALENDAR MONTH DESC) END))
TABLESPACE SH_ | DX
PCTFREE 0
COMPUTE STATI STI CS
LOCAL
NOLOGG NG

CREATE BI TMAP | NDEX M/_TI MES_CAL_R OLAP_ET FI ON TI MES_CAL_R OLAP
((CASE G D

WHEN(7) THEN TO CHAR(CALENDAR YEAR)
WHEN(3) THEN TO CHAR(CALENDAR QUARTER DESC)
WHEN(1) THEN TO CHAR(CALENDAR MONTH DESC)
ELSE TO CHAR(TIME_ID) END))

TABLESPACE SH | DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGA NG

29-6 Oracle9/ OLAP User’s Guide

Sample Script for the TIMES_DIM Dimension

execute dbnms_stats.gather _table stats('SH, 'TIMES CAL_R OLAP',

degree=>dbns_st ats. def aul t _degree, estinmate_percent=>

dbns_stats. auto_sanpl e_si ze, method_opt=>"for all hidden colums size 254") ;

create materialized view TIMES FIS R OLAP

partition
partition
partition
partition
partition
partition

by range (gid) (

val ues | ess than(1),

val ues | ess than(3),

val ues |l ess than(7),

val ues | ess than(15),

val ues | ess than(MAXVALUE))

TABLESPACE SH_DATA
BUI LD | MVEDI ATE

USI NG NO | NDEX
REFRESH FORCE
ENABLE QUERY REVRI TE

AS
SELECT

COUNT(*

) COUNT_STAR

GROUPI NG | D{ TI MES. FI SCAL_YEAR,

TI MES. FI SCAL_QUARTER DESC,

TI MES. FI SCAL_MONTH_DESC,

TI MES. WEEK_ENDI NG_DAY,

TIMES. TIME_I D) gid,

max(Tl MES. FI SCAL_YEAR) FI SCAL_YEAR AR,

max(TI MES. END_OF_FI'S_YEAR) END OF FI'S_YEAR AR

X

3333333333333 33

(
x(TI VES. DAYS_I N_FI'S_YEAR) DAYS_IN FI'S YEAR AR
x(TI MES. FI SCAL_QUARTER DESC) FI SCAL_QUARTER DESC AR,
x(TI VES. END_OF_FI'S_QUARTER) END OF FI'S QUARTER AR,
x(TI MES. DAYS_IN_FI' S QUARTER) DAYS | N_FI'S_QUARTER AR
x(TI MES. FI SCAL_QUARTER NUMBER) FI SCAL_QUARTER NUMBER AR
x(TI MES. FI SCAL_MONTH_DESC) FI SCAL_MONTH DESC_AR
(TIMES. END_OF_FI'S_MONTH) END OF FI'S_MONTH AR,
x(TI VES. DAYS_I N_FI' S MONTH) DAYS_I N_FI' S_MONTH_AR,
x(TI MVES. FI SCAL_MONTH_NAME) FI SCAL_MONTH_NAME_AR,
x(TI MES. FI SCAL_MONTH_NUMBER) FI SCAL_MONTH_NUMBER AR,
x(TI MES. VEEK_ENDI NG DAY) WEEK ENDI NG DAY AR,
x(TI MES. FI SCAL_WEEK_NUMBER) FI SCAL_WEEK_NUVBER AR,
x(T VES. DAY_NUVBER | N VEEK) DAY _NUMBER | N WEEK AR,
x(TI MES. CALENDAR WEEK_NUVBER) CALENDAR WEEK_NUMBER AR,
x(TI MES. DAY_NUVBER | N_MONTH) DAY _NUMVBER | N_MONTH AR

max(Tl VES. DAY_NAVE) DAY NAME AR

TI MES. FI SCAL_YEAR FI SCAL_YEAR,

TI MES. FI SCAL_QUARTER DESC FI SCAL_QUARTER DESC,
TI MES. FI SCAL_MONTH _DESC FI SCAL_MONTH_DESC,

Creating Dimension Materialized Views

29-7

Sample Script for the TIMES_DIM Dimension

TI MES. WEEK_ENDI NG DAY VEEK_ENDI NG_DAY,
TIMES. TIME_ID TIME_I D
FROM
SH. TIMES TIMES
GROUP BY
TI MES. FI SCAL_YEAR , ROLLUP(TI MES. FI SCAL_QUARTER DESC ,
TI MES. FI SCAL_MONTH DESC , TI MES. W\EEK_ENDI NG DAY , TIMES. TIME_ID);

execute dbms_stats.gather _table stats(’'SH, 'TIMES_ FIS R OLAP',
degree=>dbns_st at s. def aul t _degr ee, net hod_opt =>
"for all colums size skewonly’) ;

ALTER TABLE TIMES_FIS_.R OLAP M NI M ZE RECORDS_PER BLOCK ;

CREATE BI TMAP | NDEX M/_FI SCAL_QUARTER DESCFI _BI8 ON TIMES FI'S R OLAP
(FI SCAL_QUARTER DESC)

TABLESPACE SH | DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGGE NG

CREATE BI TMAP | NDEX M/_FI SCAL_MONTH_DESCFI Bl 12 ON TIMES_FI S R OLAP
(FI SCAL_MONTH_DESC)

TABLESPACE SH | DX

PCTEREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGG NG

CREATE BI TMAP | NDEX M/_V\EEK_ENDI NG DAYFI Bl 16 ON TIMES_FI'S R OLAP
(VEEK_ENDI NG_DAY)

TABLESPACE SH | DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGGE NG

CREATE BI TMAP | NDEX M/_TI ME_I DFI _BI 20 ON TI MES_FI'S_R OLAP
(TIME_I D)

TABLESPACE SH | DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGA NG

29-8 Oracle9/ OLAP User’s Guide

Sample Script for the TIMES_DIM Dimension

CREATE BI TMAP | NDEX W/_G D_FI_Bl 20 ON TIMES FI'S R OLAP
(gid)

TABLESPACE SH | DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGGE NG

CREATE BI TMAP | NDEX M/_TI MES_FI'S R OLAP_PREL_FI ON TIMES_FI'S R OLAP
((CASE G D
WHEN(15) THEN NULL
WHEN(7) THEN TO CHAR(FI SCAL_YEAR)
WHEN(3) THEN TO CHAR(FI SCAL_QUARTER DESC)
WHEN(1) THEN TO CHAR(FI SCAL_MONTH DESC)
ELSE TO CHAR(VEEEK_ENDI NG DAY) END))
TABLESPACE SH | DX
PCTFREE 0
COMPUTE STATI STI CS
LOCAL
NOLOGG NG

CREATE BI TMAP | NDEX M/_TI MES_FI'S R OLAP_ET_FI ON TIMES_FI'S R OLAP

((CASE G D
WHEN(15) THEN TO CHAR(FI SCAL_YEAR)
WHEN(7) THEN TO CHAR(FI SCAL_QUARTER DESC)
WHEN(3) THEN TO CHAR(FI SCAL_MONTH DESC)
WHEN(1) THEN TO CHAR(V\EEK_ENDI NG _DAY)
ELSE TO CHAR(TIME_ID) END))

TABLESPACE SH | DX

PCTEREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGG NG

execute dbms_stats.gather _table stats(’'SH, 'TIMES_ FIS R OLAP',

degree=>dbns_stats. defaul t _degree, estinate_percent=>
dbns_stats. aut o_sanpl e_si ze, nethod_opt=>'for all hidden col ums size 254') ;

Creating Dimension Materialized Views 29-9

Table Structure of Sample TIMES_DIM Dimension Materialized View

Table Structure of Sample TIMES _DIM Dimension Materialized View

The following table identifies the columns of the materialized view for the Times
dimension CAL_ROLLUP hierarchy.

Column Name Datatype Description
COUNT_STAR NUVBER The total number of rows.
G D NUVBER The grouping IDs for the remaining level

columns. Created by the GROUPI NG_| D
function to identify whether a level has a
value that should be included in the
aggregation. A zero (0) indicates that the
cell contains a value that should be
included; a one (1) indicates that it is null
or should not be included in the
aggregation.

CALENDAR_YEAR AR DATE Calendar year attribute.

END_OF CAL_YEAR_ AR DATE End date attribute for year level.
DAYS | N CAL_YEAR AR NUVBER Time span attribute for year level.
CALENDAR_QUARTER _ VARCHAR2 | Description attribute for quarter level.
DESC_AR

END OF CAL_QUARTER AR | DATE End date attribute for quarter level.
DAYS | N_CAL_QUARTER _ NUVBER Time span attribute for quarter level.
AR

CALENDAR QUARTER _ NUMBER Number of quarters.

NUMBER_AR

CALENDAR_MONTH_DESC VARCHAR2 Description attribute for month level.
AR

END OF CAL_MONTH AR DATE End date attribute for month level.
DAYS | N _CAL_MONTH_AR | NUMBER Time span attribute for month level.
CALENDAR _MONTH_NAME_ VARCHAR2 Name attribute for month level.

AR

CALENDAR_MONTH_ NUVBER Number of months.

NUMBER_AR

DAY_NUMBER_| N_VEEK_AR | NUMBER Number of days in a week.

29-10 Oracle9/ OLAP User’s Guide

Table Structure of Sample TIMES_DIM Dimension Materialized View

Column Name Datatype Description

CALENDAR _WEEK_NUMBER_ | NUMBER Number of weeks.
AR

DAY_NUMBER_| N_MONTH_ NUVMBER Number of days in a month.
AR

DAY_NAME_AR VARCHAR2 Name attribute for day level.

CALENDAR_YEAR NUVBER Year level of calendar hierarchy.

CALENDAR QUARTER DESC | VARCHAR2 | Quarter level of calendar hierarchy.

CALENDAR_MONTH_DESC VARCHAR2 | Month level of calendar hierarchy.

TIME_ID DATE The primary key in the dimension table.
The “leaf node” in which the lowest level
of data is stored.

Creating Dimension Materialized Views 29-11

Table Structure of Sample TIMES_DIM Dimension Materialized View

29-12 Oracle9/ OLAP User’s Guide

30

Creating Fact Materialized Views With
DBMS_ODM

This chapter explains how to use the DBM5_ODMpackage to create materialized
views with grouping sets for the OLAP API.

This chapter contains the following topics:

« Using the DBMS_ODM Package

« Partitioning, Statistics, and Indexes

« Sample Script for the COST Cube

« Summary of DBMS_ODM Subprograms

Creating Fact Materialized Views With DBMS_ODM 30-1

Using the DBMS_ODM Package

Using the DBMS_ODM Package

The procedures in the OLAP Data Management package, DBMS_CODM generate
scripts that create materialized views in grouping set form for fact tables. Each
script generates a single MV containing all hierarchy combinations for a CWWR cube.

The procedures in DBVS_ODMgenerate scripts that create materialized views,
bitmap indexes, and partitions. You can run these scripts in their original form,
modify the scripts before executing them, or use them simply as models for writing
your own SQL scripts.

See Also:
« "Fact Materialized Views".

= "Choosing the Right Summary Management Solution".

Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views
Follow these steps to create a grouping set materialized view for a cube:

1.

Create and map a valid CWM2 cube as described in Chapter 22, "CWM2_OLAP_
CUBE".

Enable your database to write the scripts to a file by setting the UTL_FI LE_DI R
parameter to a valid directory, as described in "Initialization Parameters for
Oracle OLAP" on page 6-3.

Log into SQL*Plus using the identity of the metadata owner.
Delete any materialized views that currently exist for the cube.

Use the following three step procedure to create a script to generate a grouping
set materialized view for the cube:

a. Execute DBMS_ODM CREATEDI MLEVTUPLE to create the table
sys. ol apt abl evel s. This table lists all the dimensions of the cube and
all of the levels of each dimension.

By default, all the levels of all the dimensions are selected for inclusion in
the materialized view. You can edit the table to deselect any levels that you
do not want to include.

b. Execute DBMS_ ODM CREATECUBELEVELTUPLE to create the table
sys. ol apt abl evel t upl es. This table lists all of the level combinations
that will be included in the materialized view. This table is derived from the
table created in the previous step.

30-2 Oracle9i OLAP User’s Guide

Partitioning, Statistics, and Indexes

By default, all the levels combinations are selected for inclusion in the
materialized view. You can edit the table to deselect any level combinations
that you do not want to include.

c. Execute DBM5_ODM CREATEFACTMW_GS to create the script.

For example, in the Sales History sample schema, you would create a script for
COST_CUBE and a script for SALES CUBE.

5. Optionally, edit the script using any text editor.
6. Run the scripts in SQL*Plus, using commands such as the following:
@ users/ oracl e/ OraHomel/ ol ap/ mvscri pt. sql ;
See Also: "Summary of DBMS_ODM Subprograms" on

page 30-11 for the syntax of the procedures in the DVBS_CODM
package.

Partitioning, Statistics, and Indexes

Partitioning

Statistics

The scripts generated by DBMS_ODM CREATEFACTMV_GS include syntax for
partitioning, gathering statistics, and creating bitmap indexes.

Partitioning can have a significant impact upon query performance. You may want
to customize the partitioning of fact materialized views before running the scripts
generated by DBMS_ODM CREATEFACTMV_GS.

By default, partitioning is based on grouping IDs since most queries are based on
levels. A grouping ID uniquely identifies one level combination per partition (such
as CALENDAR_YEAR and PROD_TOTAL).

Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE nv_name COVPUTE STATI STI CS;
EXECUTE dbns_stats. gather _tabl e_stats (m/_owner, nv_name, degree=>

dbns_st ats. def aul t _degree, method_opt=>"for all colums size skewonly’) ;
ALTER TABLE mv_name M N'M ZE RECORDS_PER BLOCK ;

Creating Fact Materialized Views With DBMS_ODM 30-3

Sample Script for the COST Cube

For more information about the ANALYZE TABLE statement, refer to theOracle9i SQL
Reference. For more information about the DBMS_STATS package, refer to the Oracle9i
Supplied PL/SQL Packages and Types Reference.

Bitmap Indexes

Bitmap indexes optimize the performance of materialized views at runtime. Fact
materialized views for the OLAP API include bitmap indexes for all columns that
contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BI TMAP | NDEX i ndex_name ON nmv_nane (nv_col nane)
TABLESPACE t bl space_nane

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGE NG

Sample Script for the COST Cube

The following sample script, generated by DBMS_ODM CREATEFACTMW_GS, creates
a materialized view in grouping set form for the COST_CUBE cube, which is
mapped to the COSTS fact table in the SHschema.

This script contains all level combinations for all hierarchies. To deselect levels and
level combinations, edit the tables generated by the CREATEDIMLEVTUPLE
Procedure and the CREATECUBELEVELTUPLE Procedure before invoking
CREATEFACTMYV_GS Procedure.

create materialized view
COST_CUBE_2_QOLAP

partition by range (gid) (
partition values |ess than(1),
partition val ues |ess than(62),
partition val ues |ess than(126),
partition val ues |ess than(254),
partition val ues |ess than(450),
partition values |ess than(454),
partition values |ess than(462),
partition values |ess than(478),
partition values |ess than(512),
partition values |ess than(574),
partition val ues |ess than(638),

30-4 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube

partition values |ess than(766),
partition val ues |ess than(962),
partition val ues |ess than(966),
partition values |ess than(974),
partition values |ess than(990),
partition values |ess than(1536),
partition values |ess than(1598),
partition val ues |ess than(1662),
partition val ues |ess than(1790),
partition val ues |ess than(1986),
partition val ues |ess than(1990),
partition values |ess than(1998),
partition values |ess than(2014),
partition values |ess than(3584),
partition val ues |ess than(3646),
partition val ues |ess than(3710),
partition val ues |ess than(3838),
partition values |ess than(4034),
partition values |ess than(4038),
partition values |ess than(4046),
partition val ues |ess than(4062),
partition val ues | ess than(MAXVALUE))
pctfree 5 pctused 40
build imediate
usi ng no index
refresh force
enabl e query rewite
AS
SELECT

GROUPI NG _| D(PRODUCTS. PRCD_TOTAL, PRODUCTS. PROD_CATEGCRY,

PRODUCTS. PROD_SUBCATEGORY, PRODUCTS. PRCD_I D,

TI MES. CALENDAR_YEAR, TI MES. CALENDAR_QUARTER DESC,

TI MES. CALENDAR_MONTH_DESC, TI MES. FI SCAL_YEAR,

TI MES. FI SCAL_QUARTER _DESC, TI MES. FI SCAL_MONTH_DESC,

TI MES. VEEK_ENDI NG DAY, TIMES. TIME_ID) gid,

SUM COSTS. UNI T_COST) SUM_OF_UNI T_COST,

SUM COSTS. UNI T_PRI CE) SUM OF_UNI T_PRI CE,

COUNT(*) COUNT_OF_STAR,

PRODUCTS. PROD_TOTAL PROD _TOTAL_77,

PRODUCTS. PROD_CATEGORY PROD_CATEGORY_78,

PRODUCTS. PROD_SUBCATEGORY PROD_SUBCATEGORY_79,

PRODUCTS. PROD_I D PRCD_I D _80,

TI MES. CALENDAR_YEAR CALENDAR_YEAR 169,

TI MES. CALENDAR_QUARTER_DESC CALENDAR_QUARTER DESC 170,

TI MES. CALENDAR_MONTH_DESC CALENDAR_MONTH DESC 171,

Creating Fact Materialized Views With DBMS_ODM 30-5

Sample Script for the COST Cube

TI MES. FI SCAL_YEAR FI SCAL_YEAR 172,
TI MES. FI SCAL_QUARTER DESC FI SCAL_QUARTER DESC 173,
TI MES. FI SCAL_MONTH_DESC FI SCAL_MONTH_DESC 174,
TI MES. WEEK_ENDI NG DAY VEEK_ENDI NG DAY 175,
TIMES. TIME_ID TIME_I D 176
FROM
SH. PRODUCTS PRODUCTS,
SH. TI MES TI MES,
SH. COSTS COSTS
WHERE
(TIMES. TIME_I D = COSTS. TI ME_I D) AND
(PRODUCTS. PROD | D = COSTS. PROD_| D)
GROUP BY GROUPI NG SETS

((PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,
PRODUCTS. PROD_SUBCATEGCRY , PRODUCTS. PROD_I D, TI MES. CALENDAR YEAR |
TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR_MONTH_DESC |
TI MES. FI SCAL_YEAR , TIMES. FI SCAL_QUARTER DESC |,
TI MES. FI SCAL_MONTH DESC , TI MES. W\EEK_ENDI NG DAY , TIMES. TIME_ID),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY |
PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_I D, TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC , Tl MES. FI SCAL_MONTH DESC ,

T MES. WEEK_ENDI NG DAY),

(PRODUCTS, PROD_TOTAL , PRODUCTS. PROD_CATEGORY |
PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_ I D, TI MES. FI SCAL_YEAR |
TI MES. FI SCAL_QUARTER DESC , TIMES. FI SCAL_MONTH DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY |
PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD | D, TI MES. CALENDAR YEAR ,
T| MES. CALENDAR QUARTER DESC , Tl MES. CALENDAR MONTH DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY |
PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_I D, TI MES. FI SCAL_YEAR ,
T MES. FI SCAL_QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY |
PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_I D, TI MES. CALENDAR YEAR |
T MES. CALENDAR QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRCDUCTS. PROD_CATEGCRY |
PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_I D , TI MES. FI SCAL_YEAR),

(PRODUCTS. PRCD_TOTAL , PRODUCTS. PROD_CATEGORY

30-6 Oracle9/ OLAP User’s Guide

Sample Script for the COST Cube

PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD I D, TI MES. CALENDAR YEAR),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY |

PRODUCTS. PROD_SUBCATEGCRY , Tl MES. CALENDAR YEAR |

TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR MONTH DESC |,

TI MES. FI SCAL_YEAR , TI MES. FI SCAL_QUARTER DESC |,

TI MES. FI SCAL_MONTH DESC , TI MES. W\EEK_ENDI NG DAY , TIMES. TIME_ID),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |
PRODUCTS. PROD_SUBCATEGORY , TI MES. FI SCAL_YEAR ,

TI MES. FI SCAL_QUARTER DESC , TI MES. FI SCAL_MONTH DESC ,
TI MES. WEEK_ENDI NG DAY),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,
PRODUCTS. PRCD_SUBCATEGORY , TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC , Tl MES. FI SCAL_MONTH_DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,
PRODUCTS. PROD_SUBCATEGORY , Tl MES. CALENDAR YEAR ,
TI MES. CALENDAR QUARTER DESC , Tl MES. CALENDAR MONTH DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY
PRODUCTS. PROD_SUBCATEGORY , TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,
PRODUCTS. PROD_SUBCATEGORY , Tl MES. CALENDAR YEAR ,
TI MES. CALENDAR QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,
PRODUCTS. PROD_SUBCATEGORY , TI MES. FI SCAL_YEAR),

(PRODUCTS. PRCD_TOTAL , PRODUCTS. PROD_CATEGCRY
PRODUCTS. PROD_SUBCATEGORY , TI MES. CALENDAR_YEAR),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. CALENDAR YEAR ,
TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR MONTH DESC ,

TI MES. FI SCAL_YEAR , TIMES. FI SCAL_QUARTER DESC ,

TI MES. FI SCAL_MONTH DESC , TI MES. W\EEK_ENDI NG DAY, TIMES. TIMEID),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. FI SCAL_YEAR |
TI MES. FI SCAL_QUARTER DESC , TI MES. FI SCAL_MONTH DESC ,
TI MES. WEEK_ENDI NG DAY),

(PRODUCTS. PRCD_TOTAL , PRODUCTS. PROD_CATEGCRY , TI MES. FI SCAL_YEAR ,

Creating Fact Materialized Views With DBMS_ODM 30-7

Sample Script for the COST Cube

TI MES. FI SCAL_QUARTER DESC , Tl MES. FI SCAL_MONTH DESC),

(PRODUCTS. PRCD_TOTAL , PRODUCTS. PROD_CATEGCORY , Tl MES. CALENDAR_YEAR
TI MES. CALENDAR_QUARTER DESC , TI MES. CALENDAR_MONTH_DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , TI MES. FI SCAL_YEAR |
TI MES. FI SCAL_QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. CALENDAR YEAR ,
TI MES. CALENDAR QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. FI SCAL_YEAR),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. CALENDAR YEAR),
(PRODUCTS. PROD_TOTAL , TI MES. CALENDAR YEAR |

TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR MONTH DESC ,

TI MES. FI SCAL_YEAR , TIMES. FI SCAL_QUARTER DESC ,

TI MES. FI SCAL_MONTH DESC , TI MES. W\EEK_ENDI NG DAY , TIMES. TIME_ID),

(PRODUCTS. PRCD_TOTAL , TI MES. FI SCAL_YEAR , TI MES. FI SCAL_QUARTER DESC ,
TI MES. FI SCAL_MONTH _DESC , TI MES. \EEK_ENDI NG_DAY),

(PRODUCTS. PROD_TOTAL , TI MES. FI SCAL_YEAR , TI MES. FI SCAL_QUARTER DESC ,
TI MES. FI SCAL_MONTH_DESC),

(PRODUCTS. PRCD_TOTAL , TI MES. CALENDAR _YEAR
TI MES. CALENDAR_QUARTER DESC , TI MES. CALENDAR_MONTH_DESC),

(PRODUCTS. PROD_TOTAL , TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC),

(PRODUCTS. PROD_TOTAL, TI MES. CALENDAR YEAR,
TI MES. CALENDAR QUARTER DESC),

(PRODUCTS. PRCD_TOTAL , TI MES. FI SCAL_YEAR),
(PRODUCTS. PROD_TOTAL , TIMES. CALENDAR YEAR)) ;
execute dbms_stats.gather _table stats(’SH, 'COST_CUBE 2_COLAP', degree=>
dbms_stats. defaul t _degree, estimate_percent=>
dbns_stats. auto_sanpl e_si ze, nethod_opt =>

"for all colums size 1 for colums size 254 G D , granularity=> GLOBAL') ;
ALTER TABLE COST_CUBE_2_OLAP M NI M ZE RECORDS_PER BLOCK ;

30-8 Oracle9/ OLAP User’s Guide

Sample Script for the COST Cube

CREATE BI TMAP | NDEX BVHI DX_COST_PROD_TOTALTAL ON COST_CUBE_2_OLAP(PROD TOTAL_77)
LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX BVHI DX_COST_PROD_CATEGORY ON COST_CUBE 2_OLAP
(PROD_CATEGORY_78)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX BVHI DX_COST_PROD_SUBCACRY ON COST_CUBE 2_OLAP
(PROD_SUBCATEGORY_79)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX BVHI DX_COST_PROD_ | D | D ON COST_CUBE_2_OLAP
(PROD_| D_80)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX BMVHI DX_COST_CALENDAR YEAR ON COST_CUBE 2 OLAP
(CALENDAR YEAR 169)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BMVHI DX_COST_CALENDAR QESC ON COST_CUBE 2 OLAP
(CALENDAR QUARTER DESC_170)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BVHI DX_COST_CALENDAR MESC ON COST_CUBE 2_OLAP
(CALENDAR MONTH DESC 171)

LOCAL

COMPUTE STATI STI CS

Creating Fact Materialized Views With DBMS_ODM 30-9

Sample Script for the COST Cube

PARALLEL PCTFREE 0
NOLOGAE NG

CREATE BI TMAP | NDEX BVHI DX_COST_FI SCAL_YEAEAR ON COST_CUBE 2 OLAP
(FI SCAL_YEAR 172)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BVHI DX_COST_FI SCAL_QUAESC ON COST_CUBE 2 OLAP
(FI SCAL_QUARTER DESC 173)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BVHI DX_COST_FI SCAL_MONESC ON COST_CUBE_2_OLAP
(FI SCAL_MONTH_DESC_174)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BVHI DX_COST_VEEK_ENDI NDAY ON COST_CUBE 2 OLAP
(VEEK_ENDI NG_DAY_175)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX BVHI DX_COST_TIME_I D | D ON COST_CUBE_2_OLAP(TI ME_I D_176)
LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGGE NG

execute dbns_stats.gather _table stats(’'SH, 'COST_CUBE 2 OLAP', degree=>
dbrms_st ats. def aul t _degree, estimate_percent=>
dbrms_st at s. aut o_sanpl e_si ze, net hod_opt =>
"for all hidden colums size 254’ |, granularity=> GLOBAL") ;

execute cwn2_ol ap_cube. set _mv_summary_code(’' SH, ' COST_CUBE', ' GROUPI NGSET') ;

30-10 Oracle9/ OLAP User’s Guide

Summary of DBMS_ODM Subprograms

Summary of DBMS_ODM Subprograms

Table 30-1 DBMS_ODM Subprograms

Subprogram Description

CREATEDI MLEVTUPLE Creates a table of levels to be included in the
Procedure on page 30-11 materialized view for a cube.
CREATECUBELEVELTUPLE Creates a table of level combinations to be included in
Procedure on page 30-12 the materialized view for a cube.

CREATEFACTMW_GS Procedur e Generates a script that creates a fact table materialized
on page 30-13 view.

CREATEDI MW_GS Procedure Generates a script that creates a dimension table
on page 30-14 materialized view.

CREATEDIMLEVTUPLE Procedure

Syntax

Parameters

This procedure creates the table sys. ol apt abl evel s, which lists all the levels of all
of the dimensions of the cube. By default, all levels are selected for inclusion in the
materialized view. You can edit the table to deselect any levels that you do not want
to include.

CREATE_DI MLEVTUPLE (
cube_owner I'N varchar 2,
cube_nane I'N varchar2);

Table 30-2 CREATEDIMLEVTUPLE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

Creating Fact Materialized Views With DBMS_ODM 30-11

CREATECUBELEVELTUPLE Procedure

CREATECUBELEVELTUPLE Procedure

Syntax

Parameters

This procedure creates the table sys. ol apt abl evel t upl es, which lists all the level
combinations to be included in the materialized view for the cube.

The table sys. ol apt abl evel t upl es is created based on the table
sys. ol apt abl evel s, which was generated by the CREATEDIMLEVTUPLE
Procedure.

Important: If you do not want to include all level combinations in
the materialized view for the cube, you must edit the table

sys. ol apt abl evel s before executing the
CREATECUBELEVELTUPLE procedure.

CREATECUBELEVELTUPLE (
cube_owner IN VARCHAR?2,
cube_nane IN VARCHAR?);

Table 30-3 CREATECUBELEVELTUPLE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

30-12 Oracle9/ OLAP User’s Guide

Summary of DBMS_ODM Subprograms

CREATEFACTMV_GS Procedure

This procedure generates a script that creates a fact table materialized view.

The materialized view will include all level combinations specified in the
sys. ol apt abl evel t upl es table, which was created by the
CREATECUBELEVELTUPLE Procedure.

Syntax
CREATEFACTW_GS (

cube_owner IN VARCHAR?,

cube_nane IN VARCHAR?,

outfile IN VARCHAR?,

outfile_path IN VARCHARZ,

partitioning IN BOOLEAN,

tabl espace_nv IN VARCHAR2 DEFAULT NULL,

tabl espace_i ndex IN VARCHAR2 DEFAULT NULL);
Parameters

Table 30-4 CREATEFACTMV_GS Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

output _file File name where the PL/SQL script will be written.

out put _path Directory path where out put _f i | e will be created.
partitioning TRUE turns on index partitioning; FALSE turns it off.
t abl espace_mv The name of the tablespace in which the materialized view

will be created. When this parameter is omitted, the
materialized view is created in the user’s default tablespace.

t abl espace_i ndex The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user’s default tablespace.

Creating Fact Materialized Views With DBMS_ODM 30-13

CREATEDIMMV_GS Procedure

CREATEDIMMV_GS Procedure

This procedure generates a script that creates a dimension table materialized view
for each hierarchy of a dimension.

Syntax
CREATEDI MW_GS (

di mensi on_owner IN VARCHAR?,

di mensi on_name IN VARCHAR?,

output _file IN VARCHAR2,

out put _path IN VARCHAR?,

tabl espace_nv IN VARCHAR2 DEFAULT NULL,

tabl espace_index IN VARCHAR2 DEFAULT NULL);
Parameters

Table 30-5 CREATEDIMMV_GS Procedure Parameters

Parameter Description

di mensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

output _file File name where the PL/SQL script will be written.

out put _path Directory path where out put _fi | e will be created.

t abl espace_mv The name of the tablespace in which the materialized view

will be created. When this parameter is omitted, the
materialized view is created in the user’s default tablespace.

t abl espace_i ndex The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user’s default tablespace.

30-14 Oracle9/ OLAP User’s Guide

31

Creating Fact Materialized Views With OLAP
Summary Advisor

This chapter explains how to use OLAP Summary Advisor to create fact table
materialized views in concatenated rollup form for the OLAP API.

This chapter contains the following topics:

« Using the OLAP Summary Advisor Wizard

« Partitioning, Statistics, and Indexes

« The MV CREATE Statement With Concatenated Rollup
« Sample Script for the COST Cube

Creating Fact Materialized Views With OLAP Summary Advisor 31-1

Using the OLAP Summary Advisor Wizard

Using the OLAP Summary Advisor Wizard
To create concatenated rollup MVs for CWM cubes, use OLAP Summary Advisor.

Oracle Enterprise Manager has two distinct Summary Advisors. They generate
very different types of materialized views. One Summary Advisor generates
materialized views for Oracle OLAP, and the other generates materialized views for
other types of applications.

The Summary Advisor that you need to use for OLAP is located within the OLAP
Management tool. It generates materialized views that query rewrite will use for
queries generated by the OLAP API.

See Also:
« "Fact Materialized Views".

= "Choosing the Right Summary Management Solution".

Procedure: Run the OLAP Summary Advisor

Follow these steps to run the OLAP Summary Advisor wizard:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
Chapter 5, "Creating OLAP Catalog Metadata".

2. Expand the OLAP folder, then fully expand the Cubes folder.
3. Right-click a cube or its Materialized Views subfolder.
You see a popup menu.
4. Choose Summary Advisor from the menu.
You see the Summary Advisor Wizard Welcome page.
5. Choose Next.

The Summary Advisor analyzes the cube and makes recommendations for
creating materialized views for the fact table and dimension tables associated
with the selected cube. When it is done, you see the Recommendations page.

6. Choose Next.

The Summary Advisor generates the scripts to create the recommended
materialized views. When it is done, you see the Finish page.

31-2 Oracle9i OLAP User’s Guide

Partitioning, Statistics, and Indexes

7. Examine the scripts. If you have already created the materialized views for
another cube that uses some of the same dimensions, delete the scripts that
recreate materialized views for those dimensions.

8. To modify the scripts, choose Save to file. Then choose Cancel to close the
Summary Advisor. You can edit the file, then execute it using SQL*Plus or Job
Manager.

or

Choose Finish to execute the original scripts immediately. You see the
Implement Recommendations page while the scripts are executing.

9. Runthe OLAP Summary Advisor wizard on other cubes in your schema.

Partitioning, Statistics, and Indexes

Partitioning

Statistics

The scripts generated by OLAP Summary Advisor include syntax for partitioning,
gathering statistics and creating bitmap indexes.

Partitioning can have a significant impact upon query performance. You may want
to customize the partitioning of fact materialized views before running the scripts
generated by OLAP Summary Advisor.

By default, partitioning is based on grouping IDs since most queries are based on
levels. A grouping ID uniquely identifies one level combination per partition (such
as CALENDAR_YEAR and PROD_TOTAL).

Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE nv_nanme COVPUTE STATI STI CS;

EXECUTE dbns_stats. gather _tabl e_stats (m/_owner, nv_name, degree=>
dbns_stats. defaul t _degree, nethod_opt=>"for all colums size skewonly') ;

ALTER TABLE nv_name M NIM ZE RECORDS_PER BLOCK ;

Creating Fact Materialized Views With OLAP Summary Advisor 31-3

The MV CREATE Statement With Concatenated Rollup

For more information about the ANALYZE TABLE statement, refer to theOracle9i SQL
Reference. For more information about the DBMS_STATS package, refer to the Oracle9i
Supplied PL/SQL Packages and Types Reference.

Bitmap Indexes

Bitmap indexes optimize the performance of materialized views at runtime. Fact
materialized views for the OLAP API include bitmap indexes for all columns that
contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BI TMAP | NDEX i ndex_nanme ON nv_nane (nv_col nane)
TABLESPACE ¢ bl space_nane

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGE NG

The MV CREATE Statement With Concatenated Rollup

The following example shows the basic structure of the SQL statements generated
by OLAP Summary Advisor to create a concatenated rollup style fact MV for the
OLAP API. The following general characteristics apply:

« The SELECT statement contains SUM col unm) and COUNT(col unmn) function
calls for all measures in the cube (that is, all aggregated columns in the fact
table), and a COUNT(*) function call.

= The SELECT list contains all GROUP BY columns.

« The list of level key columns always appear in the exact same order, especially
in the GROUPI NG _| Dand GROUP BY clauses.

The following example shows the basic syntax.

CREATE MATER ALl ZED M EW nvnarre
partition by range (gid)
(partition val ues less than (1),

partition val ues | ess than (MAXVALLE))
BU LD | MED ATE
REFRESH FARCE

31-4 Oracle9i OLAP User’s Guide

The MV CREATE Statement With Concatenated Rollup

ENABLE QUERY REVRR TE

AS

SELECT SUM neasurel) target, GONI(neasurel) target,
SUM neasure2) target, OONT(neasure2) target,

QONT(*) GANT_CF _STAR select_Iist

hi erarchl | evel 1, hierarchl |evel 2,

hi erarch2 | evel 1, hierarch2 |evel 2, . ..

GQROPI NG | D hi erarchl | evel 1, hierarchl |evel 2,

hierarch2_level 1, hierarch2_level2,...) gid

FROM di nt abl e1, dintable2, ...
WHERE (di mkeyl=fact_keyl) AND (di mkey2=fact_key2)...AND ..
GRAPBY

hi erarchl level 1, RALUP(hierarchl leveln2, ... hierarchl |eveln),

hi erarch2 | evel 1 ROLLUP(hi erarch2 | evel n2, ... hierarch2 | evel n,

hi erarchn_| evel 1 ROLLUP(hi erarchn_| evel 2... hi erarchn_| evel n)
where:
nmeasurel, neasure 2..arethe measures in the fact table.

sel ect I i st are the dimension levels from hi erarchl_I evel 1 to
hi erarchn_| evel n.

hi erarchl. .. hi erar chn are the dimension hierarchies, beginning with the
hierarchy with the most levels (1) and ending with the hierarchy with the fewest
levels (n). Note that this ordering is important.

I evel 1. .. evel nare the columns in the related dimension tables, from the
highest (1) to the lowest (n) levels of aggregation.

di m key is the key column in the dimension table.

fact _key is the related column in the fact table.

Creating Fact Materialized Views With OLAP Summary Advisor 31-5

Sample Script for the COST Cube

Sample Script for the COST Cube

The following sample script creates materialized views in concatenated rollup form
for the COST_CUBE cube, which is mapped to the COSTS fact table in the SH
schema.

This script creates two materialized views, one for each combination of hierarchies
associated with the COST_CUBE cube.

create materialized view

COST_CUBE_1_CQLAP

partition by range (gid) (

partition values |ess than(1),

partition values |ess than(3),

partition val ues | ess than(7),

partition val ues |ess than(16),

partition val ues |ess than(17),

partition values |ess than(19),

partition values |ess than(23),

partition values |ess than(48),

partition val ues |ess than(49),

partition val ues |ess than(51),

partition val ues |ess than(55),

partition values |ess than(112),

partition values |ess than(113),

partition values |ess than(115),

partition values |ess than(119),

partition val ues | ess than(MAXVALUE))

pctfree 5 pctused 40

tabl espace SH DATA

build imediate

usi ng no index

refresh force

enabl e query rewite

AS

SELECT
GROUPI NG_I D(TI MES. CALENDAR_YEAR, TI MES. CALENDAR_QUARTER_DESC,
TI MES. CALENDAR_MONTH_DESC, TI MES. TI ME_I D, PRODUCTS. PRCD_TOTAL,
PRODUCTS. PROD_CATEGORY, PRODUCTS. PRCD_SUBCATEGORY,
PRODUCTS. PROD | D) gi d,
SUM COSTS. UNI T_COST) SUM OF _UNI T_CCST,
SUM COSTS. UNI T_PRI CE) SUM OF_UNI T_PRI CE,
COUNT(*) COUNT_OF_STAR,
TI MES. CALENDAR_YEAR CALENDAR YEAR 1,
TI MES. CALENDAR_QUARTER _DESC CALENDAR QUARTER DESC 2,
TI MES. CALENDAR_MONTH_DESC CALENDAR_MONTH_DESC 3,

31-6 Oracle9/ OLAP User’s Guide

Sample Script for the COST Cube

TIMES. TIME_ID TIME_I D 4,
PRODUCTS. PROD_TOTAL PROD TOTAL._10,
PRODUCTS. PROD_CATEGORY PROD_CATEGORY_ 11,
PRODUCTS. PROD_SUBCATEGORY PROD_SUBCATEGORY 12,
PRODUCTS. PROD_| D PROD | D 13
FROM
SH. TI MES TI MES,
SH. PRODUCTS PRODUCTS,
SH. COSTS COSTS
WHERE
(TIMES. TIME_I D = COSTS. TI ME_I D) AND
(PRODUCTS. PROD_| D = COSTS. PROD_| D)
GROUP BY
TI MES. CALENDAR YEAR ,
ROLLUP
(TI MES. CALENDAR QUARTER DESC, TI MES. CALENDAR MONTH_DESC, TI MES. TI ME_I D),
PRODUCTS. PROD_TOTAL
ROLLUP
(PRODUCTS. PROD_CATEGCRY, PRODUCTS. PROD_SUBCATEGORY, PRODUCTS. PROD | D) ;

execute dbms_stats.gather _table stats(’SH, 'COST_CUBE 1 _OLAP', degree=>
dbrms_st ats. def aul t _degree, estimate_percent=>
dbms_st at s. aut o_sanpl e_si ze, nethod_opt =>
"for all colums size 1 for colums size 254 G D , granularity=> GLOBAL') ;
ALTER TABLE COST_CUBE_1_OLAP M N'M ZE RECORDS_PER BLOCK ;

CREATE BI TMAP | NDEX Bl _COST_CALENAR QUESC 2 1 ON COST_CUBE_1_OLAP(CALENDAR
QUARTER DESC_2)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_CALENAR MOESC 3 1 ON COST_CUBE_1_OLAP(CALENDAR
MONTH_DESC_3)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_TIME D 1D 4 1 ON COST_CUBE_1 OLAP(TIME_I D 4)

LOCAL
COWPUTE STATI STI CS

Creating Fact Materialized Views With OLAP Summary Advisor 31-7

Sample Script for the COST Cube

TABLESPACE SH | DX
PARALLEL PCTFREE 0
NOLOGGE NG

CREATE BI TMAP | NDEX Bl _COST_PROD ATEGOCRY 22 1 ON COST_CUBE_1_OLAP(PROD_
CATEGORY_11)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_PROD UBCATORY 24 1 ON COST_CUBE_1_OLAP(PROD_
SUBCATEGORY_12)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX B _COST_PROD D I D 26 1 ON COST_CUBE_1_OLAP(PROD | D 13)
LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGGE NG

execute dbms_stats.gather _table stats(’SH, 'COST_CUBE 1 _OLAP', degree=>
dbms_st ats. defaul t _degree, estimate_percent=>

dbns_stats. aut o_sanpl e_si ze, nethod_opt=>

"for all hidden colums size 254" , granularity=>" GLOBAL') ;

execute cwn2_ol ap_cube. set_mv_summary_code(’' SH, ' COST_CUBE', 'ROLLUP') ;

create materialized view
COST_CUBE_2_CLAP

partition by range (gid) (
partition values |ess than(1),
partition val ues |ess than(3),
partition val ues |ess than(7),
partition val ues |ess than(15),
partition values |ess than(32),
partition values |ess than(33),
partition values |ess than(35),
partition val ues |ess than(39),

31-8 Oracle9/ OLAP User’s Guide

Sample Script for the COST Cube

partition values |ess than(47),
partition val ues |ess than(96),
partition values |ess than(97)
partition val ues |ess than(99),
partition values |ess than(103),
partition values |ess than(111),
partition values |ess than(224),

)

)

)

1

partition val ues |ess than(225),

partition values |ess than(227),

partition values |ess than(231),

partition val ues |ess than(239),

partition values |ess than(MAXVALUE))

pctfree 5 pctused 40

tabl espace SH DATA

build imediate

usi ng no index

refresh force

enabl e query rewite

AS

SELECT
GROUPI NG _| D(PRODUCTS. PROD_TOTAL, PRODUCTS. PROD_CATEGORY,
PRODUCTS. PROD_SUBCATEGORY, PRODUCTS. PRCD_I D, TI MES. FI SCAL_YEAR
TI MES. FI SCAL_QUARTER _DESC, TI MES. FI SCAL_MONTH_DESC,
TI MES. VEEK_ENDI NG_DAY, TIMES. TIME_ID) gid,
SUM COSTS. UNI T_COST) SUM_OF_UNI T_COST,
SUM COSTS. UNI T_PRI CE) SUM OF_UNI T_PR! CE,
COUNT(*) COUNT_OF_STAR,
TI MES. FI SCAL_YEAR FI SCAL_YEAR 5,
TI MES. FI SCAL_QUARTER_DESC FI SCAL_QUARTER _DESC 6,
TI MES. FI SCAL_MONTH_DESC FI SCAL_MONTH_DESC 7,
TI MES. WVEEK_ENDI NG_DAY WEEK_ENDI NG_DAY_8,
TIMES. TIME_ID TIME_ID 9,
PRODUCTS. PROD_TOTAL PROD_TOTAL_10,
PRODUCTS. PROD_CATEGORY PROD_CATEGORY 11,
PRODUCTS. PROD_SUBCATEGORY PROD_SUBCATEGORY_12,
PRODUCTS. PROD_I D PRCD_I D 13

FROM
SH. PRODUCTS PRODUCTS,
SH. TI MES TI MES,
SH. COSTS COSTS

VWHERE
(PRODUCTS. PROD_I D = COSTS. PROD_I D) AND
(TIMES. TIME_I D = COSTS. TI ME_I D) GROUP BY
PRODUCTS. PROD_TOTAL ,

Creating Fact Materialized Views With OLAP Summary Advisor 31-9

Sample Script for the COST Cube

ROLLUP
(PRODUCTS. PROD_CATEGCRY, PRODUCTS. PROD_SUBCATEGORY, PRODUCTS. PRCD | D),
TI MES. FI SCAL_YEAR |,
ROLLUP
(TI MES. FI SCAL_QUARTER DESC, TI MES. FI SCAL_MONTH_DESC,
TI MES. WEEK_ENDI NG DAY, TIMES. TIME_ID) ;

execute dbns_stats.gather _table stats(’'SH, 'COST_CUBE 2 OLAP', degree=>
dbrms_st ats. def aul t _degree, estimate_percent=>
dbnms_stat s. aut o_sanpl e_si ze, nethod_opt =>
"for all colums size 1 for colums size 254 G D , granularity=> GLOBAL") ;
ALTER TABLE COST_CUBE_2_OLAP M N'M ZE RECORDS_PER BLOCK ;

CREATE BI TMAP | NDEX Bl _COST_PROD ATEGOCRY 33 2 ON COST_CUBE_2_OLAP(PROD_
CATEGORY_11)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX Bl _COST_PROD UBCATCRY 36 _2 ON COST_CUBE_2_OLAP(PROD_
SUBCATEGORY_12)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_PROD D | D 39 2 ON COST_CUBE_2_OLAP(PROD | D 13)
LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_FI SCA QUARESC 24 2 ON COST_CUBE_2_ OLAP(FI SCAL_
QUARTER_DESC._6)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGGE NG

31-10 Oracle9/ OLAP User’s Guide

Sample Script for the COST Cube

CREATE BI TMAP | NDEX Bl _COST_FI SCA MONTESC 28 2 ON COST_CUBE_2_OLAP(FI SCAL_MONTH_
DESC_7)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX Bl _COST VEEK_NDI NGDAY_32_2 ON COST_CUBE_2_OLAP(WEEK_ENDI NG_
DAY_8)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_TIME_D | D 36_2 ON COST_CUBE_2_OLAP(TIME_I D 9)
LOCAL

COMPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGG NG

execute dbns_stats.gather _table stats(’'SH, 'COST_CUBE 2 OLAP', degree=>
dbns_stats. defaul t _degree, estinate_percent=>
dbns_stats. aut o_sanpl e_si ze, nethod_opt=>
"for all hidden colums size 254’ |, granularity=> GLOBAL") ;

execute cwn2_ol ap_cube. set _mv_summary_code(’' SH, ' COST_CUBE', 'ROLLUP') ;

Creating Fact Materialized Views With OLAP Summary Advisor 31-11

Sample Script for the COST Cube

31-12 Oracle9/ OLAP User’s Guide

A

Upgrading From Express Server

This appendix provides upgrading instructions and identifies some of the major
differences between Oracle Express Server 6.3 and Oracle9i OLAP. It is intended to
provide a frame of reference to help you understand the material presented in this
guide.

This chapter includes the following topics:

Administration

Data Transfer

Localization

Applications Support
Programming Language Changes

How to Upgrade an Express Database

See Also: "What’s New in Oracle OLAP?" for a list of major
features introduced in this release.

Upgrading From Express Server A-1

Administration

Administration

Oracle OLAP is installed as an option in Oracle Enterprise Edition, and it is now
integrated with the Oracle database. While Express Server runs in a service
environment, Oracle OLAP runs within the database kernel.

In Oracle9i, the term database refers only to the relational database. Express
databases are now called analytic workspaces. In Oracle OLAP, an analytic
workspace can be used either as a transient data cache or as a persistent data
repository. A persistent analytic workspace is stored as a LOB in a relational table.
There are no “. db” files.

The administrative tasks for Oracle OLAP are merged with the database tool set.

Authentication of Users

Oracle OLAP does not use operating system identities, except for the installation
user under whose identity the RDBMS is installed. You can delete other operating
system identities created for use by Express Server (such as the DBA user, the
Initialize user, the Default user, and individual user names) if they have no other
purpose.

All authentication is performed by the Oracle RDBMS. Applications must always
present credentials before opening a session, and those credentials must match a
user name and password stored in the relational database. Before users can access
Oracle OLAP, you must define user names and passwords in the database.

For users to access operating system files, they must have access rights to a
directory alias that is mapped to the physical directory path. This access is granted
either to an individual user ID or to a database role.

Management Tools

Oracle Enterprise Manager encompasses the tools for administering Oracle OLAP,
providing a common user interface across all platforms. Various PL/SQL packages
extend the functionality currently available through Oracle Enterprise Manager and
provide a alternative to its use.

Performance data can be collected in system tables the same as other Oracle
database performance statistics.

Instance Manager, oesngr, and oescnd are not available.

A-2 Oracle9i OLAP User’s Guide

Localization

Data Transfer

Oracle OLAP runs within the Oracle database kernel. An Oracle OLAP session is
always connected to the database. You do not open a connection with the database
as a separate or optional step.

You can move data between an analytic workspace objects (such as variables and
dimensions) and relational tables in the following ways:

« The OLAP DML’s SQL command fetches data into dimensions and variables for
further manipulation. A new SQL | MPORT command facilitates bulk data
transfer from relational tables into the analytic workspace, and a new SQL
I NSERT DI RECT command facilitates data transfer from the analytic
workspace into relational tables.

« An OLAP DML utility named CNV_CWM TO. ECMcreates an ECM-type analytic
workspace from relational tables.

« Using SQL table functions, it is now possible for a SQL-based application to
manipulate and extract data from an analytic workspace. Express Server did not
permit a data transfer to be initiated externally.

ODBC is not available, and thus access to third-party databases is not available
directly from Oracle OLAP.

Oracle Express Relational Access Administrator and Oracle Express Relational
Access Manager are not available.

Localization

The Express Server language support has been replaced by Oracle Globalization
Technology, which provides more extensive localization support and is much easier
to administer than the localization features of Express Server. The RDBMS and
Oracle OLAP typically use the same character set, which is selected during
installation.

If you are upgrading Express databases that used translation tables, then you can
delete those tables because they are not needed by Oracle OLAP. Likewise, you
should check your Express programs for use of obsolete commands and keywords
that supported translation tables. If you plan to import Express databases or to use
Oracle OLAP to access multibyte data in external files, then you might find

Table A-1, "Multibyte Character Set Equivalents" helpful in identifying a character
set. Note that the CHARSET option is now obsolete.

Upgrading From Express Server A-3

Applications Support

Support for Globalization Technology has been added to the OLAP DML. These
options allow an application to query the current localization settings and override
the behaviors controlled by the default language and territory.

Note: Oracle OLAP does not support EBCDIC character sets.

Table A-1 identifies the Unicode character sets available in Oracle that are
equivalent to the Express Server character sets.:

Table A—1 Multibyte Character Set Equivalents

Express Server
DefaultCharacterSet Parameter or

CHARSET Option Value Equivalent Unicode Character Set
EUC JA16EUC

SHI FTJI S JA16SJ1 S

HANGEUL KOL6KSC5601

SCHI NESE ZHS16GBK

TCHI NESE ZHT16BI G5

Applications Support

Oracle OLAP allows applications to access its multidimensional data directly
through either a Java API or SQL. Express SPL programs can be executed using
either programming method. Be sure to review all SPL programs to remove
commands that are no longer available and to take advantage of new functionality.

An OLAP DML program named GENSQLOBJ S generates a SQL script that creates
views of ECM-type analytic workspaces. You can create OLAP catalog metadata for
use by the OLAP API, or use SQL to run directly against these views of your
multidimensional data.

You cannot run Windows C++, HTML, or Java applications that were developed for
use with Express Server.

Programming Environment

Applications for Oracle OLAP can be developed in Java using the OLAP API.
SQL-based applications can access OLAP data through views or manipulate it
directly through SQL table functions.

A-4 Oracle9i OLAP User’s Guide

Applications Support

OLAP Worksheet provides an interactive environment for developing stored
procedures in either the OLAP DML or SQL. The DBM5_AWprocedure executes
OLAP DML commands from within a SQL program.

You cannot connect to Oracle OLAP using Express Administrator, Personal Express,
or the Express Connection Utility.

Communications

Metadata

Oracle OLAP provides communications through Oracle Call Interface (OCI) and
Java Database Connectivity (JDBC).

OLAP Worksheet uses XCA for communication with the analytic workspace.
However, XCA is not supported for user-developed applications and may produce
unexpected results.

SNAPI is no longer available. Session sharing is not supported.

In Oracle OLAP, the database administrator defines multidimensional objects and
associated CWM2 metadata in the relational database using PL/SQL packages for
use by the OLAP API.

OLAP Worksheet allows DBAs and applications developers to create objects in the
analytic workspace by issuing DML commands. For the OLAP API to access these
objects, the appropriate analytic workspace metadata must be defined.

Oracle Express Administrator is not available in Oracle OLAP, and the Oracle
Express Objects metadata that it generated is not used by the OLAP API. However,
you can use the GENSQLOBJ S utility to generate relational views of variables,
dimensions, and other objects in an ECM-type analytic workspace, and create
OLAP catalog metadata for those views.

Upgrading From Express Server A-5

Programming Language Changes

Programming Language Changes

Numerous changes have been made to the Express Stored Procedure Language
(now called the OLAP Data Manipulation Language or OLAP DML).

New Commands

Support in the following areas has been added to the OLAP DML

Parallel aggregate

Allocation

Dynamic model execution

Bulk data transfers between analytic workspaces and relational tables
Byte manipulation functions

Data conversion functions

New data types

Obsolete Commands
Support in the following areas has been dropped:

EXTCALL
ODBC
SNAPI
XCA

Operating system commands

For comprehensive lists of new, obsolete, and significantly revised commands, open
OLAP DML Help and click List of Changes on the Contents page.

UPDATE and COMMIT

The UPDATE command moves analytic workspace changes from a temporary area
to the database table in which the workspace is stored. Your changes are not saved
until you execute a COVM T command, either from your Oracle OLAP session or
from SQL.

If you want changes that you have made in a workspace to be committed when you
execute the COVMM T command, then you must first update the workspace using the

A-6 Oracle9i OLAP User’s Guide

How to Upgrade an Express Database

UPDATE command. Changes that have not been moved to the table are not
committed.

The COVWM T command executes a SQL COVM T command. All changes made
during your session are committed, whether they were made through Oracle OLAP
or through another form of access (such as SQL) to the database.

How to Upgrade an Express Database

Follow these steps to upgrade an Express database for use as an analytic workspace
in Oracle9i:

1.

Open a connection with Express Server and create an EIF file of your Express
database, using a command such as this:

EXPORT ALL TO EIF FILE "upgrade.eif’ REWRITE

where upgr ade. ei f is the name of the file being created.

Copy the file to a directory that has a directory alias in the Oracle database and
to which you have access rights.

For information about directory aliases, refer to "Controlling Access to External
Files" on page 6-9.

Open a connection to the Oracle database using OLAP Worksheet.

For information about using OLAP Worksheet, refer to the Oracle9i OLAP
Developer’s Guide to the OLAP DML.

Create an empty analytic workspace with a command such as this:
AW CREATE financi al s TABLESPACE ol apt s
where f i nanci al s is the name of the analytic workspace and ol apt s is the

name of a tablespace allocated for your use. Note that the DATABASE command
has changed to the AWcommand.

Copy the object definitions and data from the EIF file into the new analytic
workspace with a command such as this:

| MPORT ALL FROM EI F FILE "alias/upgrade.eif’ DATA DFNS

where al i as is the name of the directory alias, and upgr ade. ei f is the name
of the EIF file.

Upgrading From Express Server A-7

How to Upgrade an Express Database

6. Save your changes to the new analytic workspace:
UPDATE

7. Commit the new analytic workspace to the Oracle database:
oW T

8. Revise any programs in the analytic workspace to delete references to obsolete
commands. Save these changes.

A-8 Oracle9iOLAP User’s Guide

A

abstract data types

See object types
access rights, 5-5, 6-9
ADD_ALTER_SESSION procedure, 8-3
administration privileges, 5-4
ADT, 3-2
aggregate cache

performance statistics, 7-3
AGGREGATE command, 9-4
aggregation, 2-4,9-3,9-4,9-9, A-6
ALL$OLAP2_AW_MAP_ATTR_USE view, 14-7
ALL$OLAP2_AW_MAP_DIM_USE view, 14-4
ALL$OLAP2_AW_MAP_HIER_USE view, 14-5
ALL$OLAP2_AW_MAP_LVL_USE view, 14-6
ALL$OLAP2_AW_MAP_MEAS_USE view, 14-4
ALL$OLAP2_AW_PHYS_OBJview, 14-2
ALL$OLAP2_AW_PHYS_OBJ_EXT view, 14-3
ALL$OLAP2_AW_PHYS_OBJ_PROP view, 14-4
ALL$OLAP2_AW_PHYS_OBJ_REL_OBJ

view, 14-3
ALL$OLAP2_CATALOGS view, 13-5
ALL$OLAP2_CUBE_DIM_USES view, 13-6
ALL$OLAP2_CUBE_MEAS_DIM_USES view, 13-6
ALL$OLAP2_CUBE_MEASURE_MAPS view, 13-7
ALL$OLAP2_CUBE_MEASURES view, 13-7
ALL$OLAP2_CUBES view, 13-8
ALL$OLAP2 _DIM_ATTR_USES view, 13-8
ALL$OLAP2_DIM_ATTRIBUTES view, 13-9
ALL$OLAP2 DIM_HIER_LEVEL_USES

view, 13-9

Index

ALLSOLAP2_DIM_HIERARCHIES view, 13-10
ALLSOLAP2_DIM_LEVEL_ATTR_MAPS
view, 13-10
ALLSOLAP2 DIM_LEVEL_ATTRIBUTES
view, 13-11
ALLSOLAP2_DIM_LEVELS view, 13-12
ALLSOLAP2_DIMENSIONS view, 13-12
ALLSOLAP2_ENTITY_DESC_USES view, 13-13
ALLSOLAP2 FACT LEVEL USESview, 13-14
ALLSOLAP2 FACT TABLE_GID view, 13-15
ALLSOLAP2 HIER_CUSTOM_SORT view, 13-15
ALLSOLAP2_JOIN_KEY_COLUMN_USES
view, 13-16
ALLSOLAP2_LEVEL_KEY_COLUMN_USES
view, 13-17
allocation, 2-4, A-6
ALTER SESSION commands, 6-4, 8-2
analytic workspaces, 5-5
accessing from SQL, 15-2
creating from relational tables, 9-1
creating from tables, 9-1
creating metadata for, 5-3, 25-1, 26-1
creating with DML, 9-4
data manipulation, 2-2
data refresh, 9-8
database storage, 6-11
defined, 1-6
metadata in OLAP Catalog, 14-1, 25-1
performance counters, 7-5
preparing for OLAP_TABLE, 11-3
preparing for SQL access, 15-3

Index-1

applications
business analysis, 1-3
comparison, 1-8
components of SQL-based, 3-2
differences from Express, A-4
attributes, 12-8
See Also dimension attributes
See Also level attributes
creating, 5-9,5-11, 18-2, 21-2
defined, 4-14
in analytic workspaces, 15-10
authentication, 6-9
AWS tables, 6-12

B

BFILE security, 6-9

Bl Beans
described, 1-7,3-6, 3-7
thick-client configuration, 3-8
thin-client configuration, 3-9

C

caches
performance statistics, 7-3
use in iterative queries, 3-16
calculation engine, 5-5
defined, 1-6
calculations
runtime, 2-2
catalogs
defined, 4-15
character sets, A-3
CHARSET option, A-3
CLEAN_ALTER_SESSION procedure, 8-6
CMW?2_OLAP_AW_ACCESS package
generated script example, 15-20
CNV_CWM.TO.ECM program, 3-3,9-2t09-18
syntax, 9-6
composite dimensions, 15-4
configuration procedures, 6-2
conjoint dimensions, 15-4
CONNECT role, 6-9

Index-2

CreateAWAccessStructures procedure, 9-3
syntax, 15-25
CreateAWAccessStructures_FR procedure
generated script example, 15-20
syntax, 15-24
CREATECUBELEVELTUPLE procedure, 30-12
CREATEDIMLEVTUPLE procedure, 30-11
CREATEDIMMV_GS procedure, 30-14
CREATEFACTMV_GS procedure, 30-13
crosstab bean, 3-12
Cube Viewer, 5-10
cubes, 12-7
creating, 22-3
defined, 4-14,5-9, 22-2
fact table requirements, 22-2
materialized views, 28-6, 30-1 to 30-14,
31-1to 31-11
viewing, 5-10
cursors, 3-16
custom aggregates, 2-3
custom measures, 3-13
CWM, 5-2,5-5,27-2
See Also OLAP Catalog
CWM Lite
See CWM
CWM_CLASSIFY package, 27-1to27-17
subprograms, 27-3
CWM2, 5-2to5-3,5-5,5-11
See Also OLAP Catalog
views, 13-1
write APIs, 5-11
CWM2_OLAP_AW_ACCESS package, 3-3,5-3,
15-1 to 15-25
subprograms, 15-23
CWM2_OLAP_AW_MAP package, 5-12,
26-1t0 26-15
subprograms, 26-2
CWM2_OLAP_AW_OBJECT package, 5-4,5-11,
25-1t0 25-9
subprograms, 25-2
CWM2_OLAP_CUBE package, 5-11, 22-1 to 22-15
subprograms, 22-4
CWM2_OLAP_DIMENSION package, 5-11,
17-1to 17-13
subprograms, 17-5

CWM2_OLAP_DIMENSION_ATTRIBUTE
package, 5-11,18-1to 18-11
subprograms, 18-4
CWM2_OLAP_HIERARCHY package, 5-11,
19-1 to 19-12
subprograms, 19-3

CWM2_OLAP_LEVEL package, 5-11, 20-1 to 20-14

subprograms, 20-3
CWM2_OLAP_LEVEL_ATTRIBUTE
package, 5-11, 21-1to 21-13
subprograms, 21-3
CWM2_OLAP_MEASURE package, 5-11,
23-1t0 23-11
subprograms, 23-4
CWM2_OLAP_PC_TRANSFORM package, 5-3,
16-1 to 16-4, 17-2
CWM2_OLAP_TABLE_MAP package, 5-12,
24-1to 24-23
subprograms, 24-4

D

data exchange commands, 2-5

data formatting, 3-11

data selection commands, 2-5

data storage, 4-7

data striping, 6-5

database cache, 7-3

database configuration, 6-2

database initialization, 8-1, 8-2

database security, 6-9

DB_CACHE_SIZE parameter, 6-3

DBMS_AW package, 2-9,3-4
EXECUTE procedure, 10-3, 10-5
GETLOG function, 10-10
INTERP function, 10-6
INTERPCLOB function, 10-8
overview, 10-1,10-2
PRINTLOG procedure, 10-11

DBMS_ODM package, 28-3,29-2, 30-1 to 30-14
subprograms, 30-11

DEFINE command, 9-4

DELETE_ALTER_SESSION procedure, 8-5

demand planning systems, 1-4

derived data, 4-4

dimension alias, 12-5
dimension attributes, 12-9, 17-4
creating, 18-2
defined, 4-14, 18-2
dimension hierarchies
See hierarchies
dimension tables, 4-4,5-8, 12-14, 17-2, 24-2
joining with fact tables, 24-2
dimension views
defining for workspace objects, 15-11
dimensions, 12-13
analytic workspace, 15-4
creating, 5-8,5-9,17-3
defined, 4-10, 17-2
embedded-total, 16-2
exposing in views, 15-4
materialized views, 28-4, 29-1 to 29-11
parent/child, 5-3,16-1
time, 4-11,5-9,17-2,17-3

valid, 17-4
directory aliases, 6-9
drilling

described, 3-11
dynamic performance tables, 6-13
dynamic performance views, 7-1to 7-6

E

ECM catalogs, 9-12

end-date attribute, 4-11,17-3

ETL process, 2-2

ETT tool, 4-2

Express Common Metadata, A-2, A-5
Express Connection Utility (obsolete), A-5
Express databases, A-7

Express Relational Access Administrator, A-3
Express Relational Access Manager, A-3
Express Web Agent support, A-5

Index-3

F

fact tables, 4-4,4-10, 5-9, 12-14, 22-2, 24-2
joining with dimension tables, 24-2
supported configurations, 24-2

fact views
defining from workspace objects, 15-15

file read/write commands, 2-5

files
allowing access, 6-9

financial applications, 1-3

financial operations, 2-6

fixed views, 7-2

forecasting commands, 2-6

formatting
data, 3-11

G

GENSQLOBIJS program, 9-10
gid
See grouping IDs
globalization, A-3
Globalization Technology . See NLS
graph bean, 3-11
grouping IDs, 12-16
parent, 15-8
GROUPINGID command, 11-3,11-8,11-11, 15-7

H

hierarchical dimensions, 15-4
hierarchies, 12-10, 12-17,17-2, 17-4
creating, 5-9,19-2
custom sorting, 12-16, 24-8
defined, 4-13, 19-2
hierarchy dimension
defined, 15-4
HIERHEIGHT command, 11-3,11-11, 15-5, 15-9
historical data, 4-3

IDE
defined, 3-6
in hierarchy variables, 15-6

Index-4

initialization parameters, 8-1, 8-2
init.ora file, 6-3, 8-2
Instance Manager (obsolete), A-2

J

Java

described, 3-4

sandbox security, 3-5
Java Database Connectivity, A-5
JDBC communications, A-5
JDeveloper, 3-6

L

language support, A-3
level attributes, 12-11, 12-12, 17-4
creating, 21-2
defined, 4-14, 21-2
level dimensions, 15-5
levels, 12-12,17-4
creating, 5-9, 20-2
defined, 4-13, 20-2
defining an integer dimension for, 11-3, 15-5
limit maps
OLAP_TABLE function, 11-7to 11-10
LISTNAMES VARIABLE command, 9-12
localization, A-3
login names, 6-9
lookup tables
See dimension tables

M

materialized views, 4-4
asymmetric materialization, 28-8
concatenated rollup, 28-3, 28-7, 31-1 to 31-11
cubes, 30-1to 30-14, 31-1to 31-11
CWM2, 30-2
defined, 28-2
dimensions, 29-1to 29-11
for OLAP API, 28-1to28-9
grouping sets, 28-3, 28-7, 30-2 to 30-14,
30-2 to 30-14

MDI
defined, 3-6
measure folders, 12-4, 13-4, 27-2
defined, 4-15, 12-4
measures, 12-7
analytic workspace, 15-3
creating, 23-2
custom, 3-13
defined, 4-9,22-2,23-2
exposing in a view, 15-3
metadata
defined, 4-4,4-8
modeling commands, 2-7
modeling support, A-6
multibyte character sets
Express equivalents, A-4

N

NLS_LANG configuration parameter, A-3
n-pass functions, 3-16

number formatting, 3-11

numeric computation, 2-7

O

object types, 3-2
object-oriented programming, 3-13
OCI communications, A-5
ODBC support (obsolete), A-3
oescmd program (obsolete), A-2
oesmgr program (obsolete), A-2
OLADM, 10-3,10-6, 10-8
OLAP

defined, 1-2
OLAP 1 Catalog

See CWM
OLAP 2 Catalog

See CWM2
OLAP API, 5-5

defined, 1-7

described, 3-6, 3-13
OLAP API optimization, 8-1,8-2
OLAP beans, 3-7,3-12
OLAP Catalog, 5-2

classification system, 12-5, 12-14, 13-4, 27-2
CWM, 5-2,5-7
CWM and CWM2, 5-4,5-5,27-2
CWM2 views, 13-3
defined, 1-8,5-5
metadata model tables, 5-6
preprocessors, 5-6, 16-1, 17-2
read APls, 5-6,12-1,13-1, 14-1
union views, 12-1
write APlIs, 5-6
OLAP commands
executing in SQL, 10-3, 10-5, 10-8, 10-10
OLAP DML
defined, 1-6
described, 2-1to 2-9, 25-2
executing commands, 2-9
OLAP Management tool, 5-7
OLAP metadata
creating for a dimension table, 5-12
creating for a fact table, 5-15
logical steps for creating, 5-6
mapping, 5-14to 5-16, 12-6, 12-11, 12-18, 17-4,
24-2, 26-2
materialized views, 28-3
tools for creating, 5-2
OLAP performance views, 7-2

OLAP Summary Advisor, 28-3,29-2, 31-1to 31-11

OLAP Worksheet, 2-9, A-5
OLAP_API_SESSION_INIT package, 8-1to8-7
OLAP_DBArole, 5-4
OLAP_TABLE function, 9-4

example, 11-11

limit map, 11-7 to 11-10

preparing analytic workspace for, 11-3

retrieving session log, 10-10

syntax, 11-5

type definitions, 11-4to 11-5

use in SELECT statement, 11-2

uses, 3-4
OLAP2_CATALOG_ENTITY_USES view, 12-4
OLAP2_CATALOGS view, 12-4
OLAP2_CUBE_DIM_USES view, 12-5
OLAP2_CUBE_MEAS_DIM_USES view, 12-6
OLAP2_CUBE_MEASURE_MAPS view, 12-6
OLAP2_CUBE_MEASURES view, 12-7

Index-5

OLAP2_CUBES view, 12-7
OLAP2_DIM_ATTR_USES view, 12-8
OLAP2_DIM_ATTRIBUTES view, 12-9
OLAP2_DIM_HIER_LEVEL_USES view, 12-10
OLAP2_DIM_HIERARCHIES view, 12-10
OLAP2_DIM_LEVEL_ATTR_MAPS view, 12-11
OLAP2_DIM_LEVEL_ATTRIBUTES view, 12-12
OLAP2_DIM_LEVELS view, 12-12
OLAP2_DIMENSIONS view, 12-13
OLAP2_FACT_LEVEL_USES view, 12-14
OLAP2_FACT_TABLE_GID view, 12-16
OLAP2_HIER_CUSTOM_SORT view, 12-16
OLAP2_JOIN_KEY_COLUMN_USES view, 12-17
OLAP2_LEVEL_KEY_COLUMN_USES

view, 12-18
OLAPSYS user, 5-4
OLTP

defined, 1-2
optimization

OLAP API, 8-1,8-2
optimization techniques, 6-5
Oracle Call Interface, A-5
Oracle Globalization Support. See also NLS, xxxv
Oracle Instance Manager (obsolete), A-2

P

page pool

performance statistics, 7-3
paging

described, 3-11
parallel_max_servers parameter, 6-3
parameter file, 6-3
parent-child relation

defined, 15-5
parent-child relations, 15-5
performance counters, 6-13, 7-1to 7-6
Personal Express (obsolete), A-5
pfile settings, 6-3
PGA allocation, 7-3
pivoting

described, 3-11
predictive analytsis applications, 1-3
Presentation Beans, 3-7
PS$ tables, 6-12

Index-6

Q

query builder, 3-13
QUERY REWRITE system privilege, 6-9
querying methods, 1-9

R

rank formatting, 3-11
referential integrity, 2-3
regressions, 2-6
Relational Access Administrator (obsolete), A-3
Relational Access Manager (obsolete), A-3
reporting applications, 1-3
repository
application runtime, 3-10
result sets, 3-16
roles, 6-9

S

schemas
star, snowflake defined, 4-6
star,snowflake, 5-2,5-7
SELECT privilege, 6-9
SELECT statements
using OLAP_TABLE function, 11-2
server parameter file, 6-3
session cache
performance statistics, 7-3
session counters, 7-6
session logs
printing, 10-11
retrieving, 10-10
session sharing, A-5
session statistics, 7-5
sessions parameter, 6-3
simultaneous equations, 2-7
SNAPI communications (obsolete), A-5
SNAPI support (obsolete), A-5
SPLExecutor class, 2-9
SQL
embedding OLAP commands, 10-3, 10-5, 10-8,
10-10
SQL command (OLAP DML), A-3
SQL FETCH command, 2-5,9-4

SQL IMPORT command, 9-4
SQL-99 extensions, 1-5
SQL-based applications

components, 3-2
star schema

materialized views, 28-2
statistical operations, 2-8
stoplight formatting, 3-11
striping, 6-5
summary management

See materialized views
summary tables

See materialized views

T

table bean, 3-12
table functions

defined, 1-7,3-2
tablespaces

for analytic workspaces, 6-5
text manipulation, 2-8
thick-client applications

defined, 3-5

illustrated, 3-8
thin-client applications

defined, 3-5

illustrated, 3-9
tiers, 3-8,3-9
time dimensions, 4-11, 5-9, 17-2, 17-3
time periods

regular, irregular defined, 4-11
time series functions, 2-8
time-span attributes, 4-11
transaction statistics, 7-6
translation tables, A-3
type definitions

for OLAP_TABLE, 11-4to11-5

U

Unicode, A-4

union views, 12-2

user access rights, 6-9

user names, 6-9

utl_file_dir parameter, 6-3, 15-2

Vv

V$AW_CALC view, 7-3
V$AW_OLAP view, 7-5
V$AW_SESSION_INFO view, 7-6
views
analytic workspace metadata objects, 14-1
creating for analytic workspaces, 11-2, 15-1,
15-2
CWM and CWM2, 12-1,12-2
CwM2, 13-1

wW

wizards
Beans, 3-12
workspaces
See Also analytic workspaces, 9-1

X

XCA support, A-5

Index-7

Index-8

	Send Us Your Comments
	Preface
	What’s New in Oracle OLAP?
	Part I� The Basics
	1 Overview
	Why OLAP?
	Analytical Processing Answers Business Questions
	Types of OLAP Applications
	Analytical Reporting
	Predictive Analysis

	The Oracle9i Integrated Relational-Multidimensional Database
	Components of Oracle OLAP
	Calculation Engine
	Analytic Workspace
	OLAP DML
	SQL Table Functions
	OLAP API
	OLAP Catalog

	Applications Access to Oracle OLAP

	2 Manipulating Multidimensional Data
	What Is the OLAP DML?
	Extensive Analytic Capabilities
	Features of the Multidimensional Model

	Basic Categories of OLAP DML Commands
	Aggregation
	Allocation
	Data Selection
	Data Exchange
	File Reading and Writing
	Financial Operations
	Forecasts and Regressions
	Models
	Numeric Computations
	Statistical Operations
	Text Manipulation
	Time Series Manipulation

	Methods of Executing OLAP DML Commands
	OLAP Worksheet: The OLAP DML Development Tool
	Embedding OLAP DML Commands in Programs

	3 Developing OLAP Applications
	Building SQL-Based OLAP Applications
	Methods of Accessing Multidimensional Data From SQL
	Embedding OLAP DML Commands in SQL

	Building Analytical Java Applications
	About Java
	Deploying Java Applications
	The Java Solution for OLAP
	Oracle Java Development Environment

	Introducing the BI Beans
	Thick-Client Configuration
	Thin-Client Configuration
	Metadata
	Runtime Repository
	Navigation
	Formatting
	Graphs
	Crosstabs
	Tables
	OLAP BI Beans
	Wizards

	Understanding the OLAP API
	How the OLAP API Accesses Multidimensional Data
	Intelligent Caching
	Calculation Capabilities

	4 Designing Your Database for OLAP
	Overview
	Preparing a Database for the OLAP API
	Types of Data Stored in a Data Warehouse
	Historical Data
	Derived Data
	Metadata

	Data Structures in Relational and Multidimensional Data Stores
	Relational Table Storage
	Multidimensional Table Storage
	Temporary and Persistent Analytic Workspaces
	About Star, Snowflake, Parent/Child, and Multidimensional Schemas
	Choosing a Schema for Your Data

	OLAP Metadata Model
	Mapping Data Objects to Metadata Objects
	Measures
	Dimensions
	Time Dimensions
	Hierarchical Dimensions

	Attributes
	Level Attributes
	Dimension Attributes

	Cubes
	Measure Folders

	5 Creating OLAP Catalog Metadata
	Choosing the Right Metadata Creation Method
	Basic Star or Snowflake Schema
	Dimension Tables with Complex Hierarchies
	Multidimensional Data and Parent-Child Dimensions
	Multidimensional Data Structures in the OLAP Catalog

	Accessing the OLAP Catalog
	Organization of the OLAP Catalog
	CWM and CWM2
	Logical Steps for Creating the Metadata

	Creating Metadata Using Oracle Enterprise Manager
	Procedure: Accessing OLAP Management
	Defining Metadata for Dimension Tables
	Defining Metadata for Fact Tables
	Viewing Cubes
	Procedure: Viewing cubes

	Creating Metadata Using PL/SQL
	CWM2 Packages

	Part II� Administering Oracle OLAP
	6 Administering Oracle OLAP
	Administration Overview
	Initialization Parameters for Oracle OLAP
	Initialization Parameters for the OLAP API
	Creating Tablespaces for Analytic Workspaces
	Creating a Tablespace for Rollbacks
	Creating a Temporary Tablespace
	Creating Tablespaces for Analytic Workspaces
	Querying the Size of an Analytic Workspace

	Setting Up User Names
	Controlling Access to External Files
	Creating a Directory Alias
	Granting Access Rights to a Directory Alias
	Example: Creating and Using a Directory Alias

	Understanding Data Storage
	User-Owned Tables
	System Tables

	Monitoring Performance

	7 OLAP Dynamic Performance Views
	System Tables Referenced by OLAP Performance Views
	Summary of OLAP Performance Views
	V$AW_CALC
	V$AW_OLAP
	V$AW_SESSION_INFO

	8 OLAP_API_SESSION_INIT
	Overview
	Summary of OLAP_API_SESSION_INIT Subprograms
	ADD_ALTER_SESSION Procedure
	Syntax
	Parameters
	Exceptions
	Examples

	DELETE_ALTER_SESSION Procedure
	Syntax
	Parameters
	Exceptions
	Examples

	CLEAN_ALTER_SESSION Procedure
	Syntax
	Examples

	ALL_OLAP_ALTER_SESSION View

	9 Creating an Analytic Workspace From Relational Tables
	Process Overview
	Creating an Analytic Workspace Using the CNV_CWM.TO.ECM Program
	Manually Creating an Analytic Workspace

	CNV_CWM.TO.ECM Program
	Return Value
	Syntax
	Arguments
	Notes
	Examples

	GENSQLOBJS Program
	Return Value
	Syntax
	Arguments
	Examples

	Analytic Workspace Metadata Catalogs
	Catalog Catalog
	Cube Catalog
	Measure Catalog
	Dimension Catalog
	Hierarchy Catalog
	Level Catalog
	Level Attribute Catalog

	References to OLAP Catalog Metadata
	Cubes
	Measures
	Dimensions
	Hierarchies
	Levels
	Level Attributes

	Part III� SQL Access Reference
	10 DBMS_AW
	Summary of DBMS_AW Subprograms

	11 OLAP_TABLE Function
	Accessing Multidimensional Data Using the OLAP_TABLE Function
	Preparing an Analytic Workspace for Access by OLAP_TABLE
	Creating Object Type Definitions Used by OLAP_TABLE
	Designing the Objects
	Creating Type Definitions for Multidimensional Data

	Syntax: OLAP_TABLE Function
	Example: Using the OLAP_TABLE Function

	Part IV� OLAP Catalog Metadata API Reference
	12 OLAP Catalog Union Views
	Access to OLAP Catalog Union Views
	Summary of OLAP Catalog Union Views
	ALL_OLAP2_CATALOG_ENTITY_USES
	ALL_OLAP2_CATALOGS
	ALL_OLAP2_CUBE_DIM_USES
	ALL_OLAP2_CUBE_MEAS_DIM_USES
	ALL_OLAP2_CUBE_MEASURE_MAPS
	ALL_OLAP2_CUBE_MEASURES
	ALL_OLAP2_CUBES
	ALL_OLAP2_DIM_ATTR_USES
	ALL_OLAP2_DIM_ATTRIBUTES
	ALL_OLAP2_DIM_HIER_LEVEL_USES
	ALL_OLAP2_DIM_HIERARCHIES
	ALL_OLAP2_DIM_LEVEL_ATTR_MAPS
	ALL_OLAP2_DIM_LEVEL_ATTRIBUTES
	ALL_OLAP2_DIM_LEVELS
	ALL_OLAP2_DIMENSIONS
	ALL_OLAP2_ENTITY_DESC_USES
	ALL_OLAP2_FACT_LEVEL_USES
	ALL_OLAP2_FACT_TABLE_GID
	ALL_OLAP2_HIER_CUSTOM_SORT
	ALL_OLAP2_JOIN_KEY_COLUMN_USES
	ALL_OLAP2_LEVEL_KEY_COLUMN_USES

	13 OLAP Catalog (CWM2-Specific) Views
	Access to OLAP Catalog (CWM2) Views
	System Tables Referenced by OLAP Catalog (CWM2) Views
	Summary of OLAP Catalog (CWM2)Views
	ALL$OLAP2_CATALOG_ENTITY_USES
	ALL$OLAP2_CATALOGS
	ALL$OLAP2_CUBE_DIM_USES
	ALL$OLAP2_CUBE_MEAS_DIM_USES
	ALL$OLAP2_CUBE_MEASURE_MAPS
	ALL$OLAP2_CUBE_MEASURES
	ALL$OLAP2_CUBES
	ALL$OLAP2_DIM_ATTR_USES
	ALL$OLAP2_DIM_ATTRIBUTES
	ALL$OLAP2_DIM_HIER_LEVEL_USES
	ALL$OLAP2_DIM_HIERARCHIES
	ALL$OLAP2_DIM_LEVEL_ATTR_MAPS
	ALL$OLAP2_DIM_LEVEL_ATTRIBUTES
	ALL$OLAP2_DIM_LEVELS
	ALL$OLAP2_DIMENSIONS
	ALL$OLAP2_ENTITY_DESC_USES
	ALL$OLAP2_FACT_LEVEL_USES
	ALL$OLAP2_FACT_TABLE_GID
	ALL$OLAP2_HIER_CUSTOM_SORT
	ALL$OLAP2_JOIN_KEY_COLUMN_USES
	ALL$OLAP2_LEVEL_KEY_COLUMN_USES

	14 OLAP Catalog Analytic Workspace Views
	Summary of Analytic Workspace Object Views
	ALL$OLAP2_AW_PHYS_OBJ
	ALL$OLAP2_AW_PHYS_OBJ_EXT
	ALL$OLAP2_AW_PHYS_OBJ_REL_OBJ
	ALL$OLAP2_AW_PHYS_OBJ_PROP
	ALL$OLAP2_AW_MAP_DIM_USE
	ALL$OLAP2_AW_MAP_MEAS_USE
	ALL$OLAP2_AW_MAP_HIER_USE
	ALL$OLAP2_AW_MAP_LVL_USE
	ALL$OLAP2_AW_MAP_ATTR_USE

	15 CWM2_OLAP_AW_ACCESS
	Prerequisites
	Process Overview
	Preparing the Analytic Workspace
	Measures
	Dimensions
	Hierarchies
	Hierarchy Dimensions
	Parent-Child Relations
	Level Dimensions
	In Hierarchy Variables

	Generated Objects
	Grouping IDs
	Parent Grouping IDs
	Hierarchy Height

	Attributes

	Specifying the Source and Target Objects
	Defining Dimension Views
	Defining Fact Views

	Example: Creating Views
	Example: Input Files for Mapping Variables to Views
	Geography Dimension Standard Hierarchy View
	Product Dimension View
	Channel Dimension View
	Time Standard Hierarchy Input File
	Sales and Costs Fact Views

	Example: Script for the Product View
	Example: Product View

	Summary of CWM2_OLAP_AW_ACCESS Subprograms

	16 CWM2_OLAP_PC_TRANSFORM
	Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

	17 CWM2_OLAP_DIMENSION
	Understanding Dimensions
	Dimension Table Requirements
	Normal Dimensions and Time Dimensions
	Dependencies Between Dimensional Entities

	Creating Dimensions
	Completing the Dimension’s Metadata
	Verifying Dimensional Metadata

	Common Logic in CWM2_OLAP_DIMENSION Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_DIMENSION Subprograms

	18 CWM2_OLAP_DIMENSION_ATTRIBUTE
	Understanding Dimension Attributes
	Creating Dimension Attributes
	Completing the Dimension’s Metadata

	Common Logic in CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

	19 CWM2_OLAP_HIERARCHY
	Understanding Hierarchies
	Creating Hierarchies
	Completing the Dimension’s Metadata

	Common Logic in CWM2_OLAP_HIERARCHY Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_HIERARCHY Subprograms

	20 CWM2_OLAP_LEVEL
	Understanding Levels
	Creating Levels
	Completing the Dimension’s Metadata

	Common Logic in CWM2_OLAP_LEVEL Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_LEVEL Subprograms

	21 CWM2_OLAP_LEVEL_ATTRIBUTE
	Understanding Level Attributes
	Creating Level Attributes
	Completing the Dimension’s Metadata

	Common Logic in CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

	22 CWM2_OLAP_CUBE
	Understanding Cubes
	Cubes and Measures
	Fact Table Requirements
	Fact Table Key Columns

	Creating Cubes
	Creating a Cube’s Dimensions
	Completing the Cube’s Metadata
	Verifying the Metadata for a Cube

	Common Logic in CWM2_OLAP_CUBE Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_CUBE Subprograms

	23 CWM2_OLAP_MEASURE
	Understanding Measures
	Creating Measures
	Creating a Cube for the Measure
	Completing the Measure’s Metadata

	Common Logic in CWM2_OLAP_MEASURE Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_MEASURE Subprograms

	24 CWM2_OLAP_TABLE_MAP
	Understanding OLAP Metadata Mapping
	Mapping Logical Metadata Entities
	Joining Fact Tables with Dimension Tables

	Common Logic in CWM2_OLAP_TABLE_MAP Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_TABLE_MAP Subprograms

	25 CWM2_OLAP_AW_OBJECT
	Understanding AW Object Metadata Entities
	Common Logic in CWM2_OLAP_AW_OBJECT Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_AW_OBJECT Subprograms

	26 CWM2_OLAP_AW_MAP
	Understanding AW Object Metadata Mapping
	Common Logic in CWM2_OLAP_AW_MAP Subprograms
	Case Requirements for Subprogram Parameters

	Summary of CWM2_OLAP_AW_MAP Subprograms

	27 CWM_CLASSIFY
	Understanding the OLAP Classification System
	Summary of CWM_CLASSIFY Subprograms

	Part V� Part V� Creating Materialized Views for the OLAP�API
	28 Developing a Summary Management Strategy
	Optimizing the Database for OLAP
	About Materialized Views

	Summary Management Options
	Grouping Sets
	Concatenated Rollup

	Materialized Views and OLAP Metadata
	CWM Metadata
	CWM2 Metadata

	Dimension Materialized Views
	Creating Dimension Materialized Views
	Number of Dimension Materialized Views

	Fact Materialized Views
	Creating Fact Materialized Views
	Number of Fact Materialized Views

	Choosing the Right Summary Management Solution
	Summary Management for CWM Metadata
	Summary Management With a Graphical User Interface
	Summary Management for Multiple Hierarchies
	Build Times
	Partial Materialization
	MV Size
	Lineage (Key)
	Query Performance

	29 Creating Dimension Materialized Views
	Creating Materialized Views for Dimensions
	Statistics and Bitmap Indexes
	Statistics
	Bitmap Indexes
	The CREATE Statement for a Dimension Materialized View

	Sample Script for the TIMES_DIM Dimension
	Table Structure of Sample TIMES_DIM Dimension Materialized View

	30 Creating Fact Materialized Views With DBMS_ODM
	Using the DBMS_ODM Package
	Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views

	Partitioning, Statistics, and Indexes
	Partitioning
	Statistics
	Bitmap Indexes

	Sample Script for the COST Cube
	Summary of DBMS_ODM Subprograms

	31 Creating Fact Materialized Views With OLAP Summary Advisor
	Using the OLAP Summary Advisor Wizard
	Procedure: Run the OLAP Summary Advisor

	Partitioning, Statistics, and Indexes
	Partitioning
	Statistics
	Bitmap Indexes

	The MV CREATE Statement With Concatenated Rollup
	Sample Script for the COST Cube

	A Upgrading From Express Server
	Administration
	Authentication of Users
	Management Tools

	Data Transfer
	Localization
	Applications Support
	Programming Environment
	Communications
	Metadata

	Programming Language Changes
	New Commands
	Obsolete Commands
	UPDATE and COMMIT

	How to Upgrade an Express Database

	Index

