
Oracle9i Enterprise Edition

User’s Guide

Release 2 (9.2.0.1.0) for OS/390

May 2002

Part No. A97312-01

 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Part No. A97312-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Author: Enterprise Platforms Division

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Transparent Gateway, Oracle8i, Oracle9i, Oracle9i
Application Server, PL/SQL, Pro*C, Pro*COBOL, Pro*FORTRAN, Pro*PL/1, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send Us Your Comments ... xiii

Preface... xv

Structure... xv
Related Documents.. xvi
Product Name ... xvii
Tool and Utility Prompts ... xvii
Storage Measurements ... xvii
Conventions... xvii
Documentation Accessibility .. xviii
Documents Referenced in this Guide ... xix

1 Overview of Oracle9i Products

Oracle9i for OS/390 Introduction... 1-2
Real Application Clusters.. 1-3
Oracle Label Security ... 1-3
Oracle Spatial .. 1-4
Oracle Partitioning ... 1-4
Oracle Advanced Security... 1-5
High-Performance Concurrency Control.. 1-5
Web Integration .. 1-5
SQL and PL/SQL Languages ... 1-6
Application Development ... 1-6
Server-Based Business Rules... 1-7
 iii

National Language Support .. 1-7
Data Replication in Distributed Environments .. 1-8
Advanced Queuing .. 1-8
Oracle Objects.. 1-8
Oracle Call Interface ... 1-9
Oracle for OS/390 Java Support ... 1-9

Java Database Connectivity (JDBC) .. 1-10
SQL Embedded in Java (SQLJ) .. 1-10
Oracle9i JVM ... 1-10
XML Support ... 1-11

Oracle9i for OS/390 Utilities ... 1-11
Recovery Manager.. 1-12
Export and Import .. 1-12
Migration.. 1-12
SQL*Loader ... 1-12
Oracle Enterprise Manager.. 1-13
UNIX System Services.. 1-13

Oracle9i for OS/390 Additional Products ... 1-13
Oracle Access Managers .. 1-13

Oracle Access Manager for CICS .. 1-13
Oracle Access Manager for IMS TM ... 1-14

Oracle Precompilers ... 1-15
Oracle Net .. 1-15
SQL*Plus .. 1-15

Oracle9i for OS/390 Transparent Gateways ... 1-16
Oracle Transparent Gateway for DB2 .. 1-16
Oracle Transparent Gateway for EDA/SQL ... 1-17

2 Using the OS/390 Database Instance

Oracle Database Instance Overview .. 2-1
Connecting to an Oracle Instance .. 2-2

Enabling OS/390 Local Client Access ... 2-2
Cross-Memory Protocol Address ... 2-2
Specifying Connections.. 2-3

Installation Information ... 2-4
iv

Oracle9i Server and Library Names... 2-4
Tool Syntax and Batch Procedures .. 2-4
OS/390 Features ... 2-5

Using Oracle Utilities ... 2-5
Invoking Oracle Utilities from TSO ... 2-5

Oracle Utilities as Command Processors ... 2-6
Oracle Utilities as CALL Programs... 2-6

Oracle Utilities Accessed Through CLISTs... 2-6
Submitting a Batch Job... 2-7

Sample Cataloged Procedure .. 2-7
Sample Batch Job ... 2-9
Using the Batch TMP .. 2-9

Exiting Utilities and Utilities in TSO ... 2-9
Attention Processing .. 2-10

OS/390 Environment Variables ... 2-10

3 Oracle9i Utilities and OS/390 Files

Using OS/390 Files ... 3-1
General Notation for Specifying Files ... 3-2
File Specification Types ... 3-2

Summary of Filespecs ... 3-2
Specifying Files by DDname (/DD/) .. 3-3
Specifying Files by Full Data Set Name (/DSN/) .. 3-4
Specifying Files by Unqualified Data Set Name... 3-5

Redirecting Standard Files and Parameters.. 3-6
Redirecting Files .. 3-7
Redirecting Parameters .. 3-7

Filetype Suffixes.. 3-8
File Name/Attribute Augmentation (FNA) Facility .. 3-8

FNA Controls and Operations.. 3-9
FSA Table.. 3-10

FNA File Name Construction ... 3-10
Substitution .. 3-10
Construction Procedure.. 3-11

FNA Example ... 3-12
v

Default FSA Entry... 3-13
User-Defined FNA Control Files ... 3-13

Specifying an FNA Control File.. 3-14
Creating an FNA Control File ... 3-14

FSA Entries ... 3-14
Attribute Keywords .. 3-16

FNA Control File Error Handling .. 3-18
FSA Keyword Usage Notes ... 3-18

Examples Using FNA ... 3-19

4 Accessing Oracle9i Under USS

OS/390 UNIX System Services Overview .. 4-1
Oracle Database Instance Overview ... 4-2
Connecting to an Oracle Instance... 4-2

Enabling OS/390 Local Client Access .. 4-2
Cross-Memory Protocol Address.. 4-3
Specifying Connections .. 4-3
Storing Connection Information.. 4-3

Break Processing .. 4-4
Running an Oracle Utility on OS/390 Under USS.. 4-4

Environment Variables .. 4-4
File Names in OS/390 UNIX System Services.. 4-6
Accessing OS/390 Data Sets.. 4-6

Utilities Available Under OS/390 USS.. 4-8
PL/SQL Wrapper ... 4-8
PL/SQL Server Page Loader... 4-8
Data Guard Command-line Utility .. 4-8
OEM Intelligent Agent and Data Gatherer ... 4-9
Oracle JDBC Thin Driver ... 4-9
SQLJ Translator ... 4-9
Loadjava/Dropjava Utilities ... 4-9
Oracle Wallet Manager .. 4-10
TNSPING ... 4-11
Character Set Scanner... 4-11
Locale Builder.. 4-11
vi

Customer-Written Applications Under USS ... 4-12
Child Process Restrictions .. 4-12
POSIX Thread Support .. 4-13

5 Export and Import Utilities

Export .. 5-1
Running Under UNIX System Services... 5-2
Running Under TSO... 5-2
Running in Batch .. 5-2
Return Codes... 5-4
Exporting to Non-OS/390 Systems.. 5-4

Import ... 5-4
Running Under UNIX System Services... 5-5
Running Under TSO... 5-5
Running in Batch .. 5-5
Return Codes... 5-6
Importing from Non-OS/390 Systems .. 5-7

6 SQL*Loader

Running Under UNIX System Services ... 6-1
Running Under TSO ... 6-2
SQL*Loader Files ... 6-2

SQL*Loader File Names .. 6-2
SQL*Loader File Attributes... 6-3

Running in Batch .. 6-4
Return Codes .. 6-5
SQL*Loader VSAM File Support ... 6-5

Specifying VSAM Input to SQL*Loader ... 6-6
SQL*Loader VSAM Processing Considerations... 6-7
BAD and DISCARD File Considerations with VSAM Input .. 6-8

SQL*Loader Direct Path ... 6-8
Performance... 6-8
vii

7 Oracle Precompilers

Oracle Precompilers Overview .. 7-2
Target Environment Design Considerations ... 7-3

TSO Programs ... 7-3
CICS Programs.. 7-3

Use of CONNECT...AT... 7-3
Synchronization of Oracle and CICS Updates .. 7-3
Passing Control with CICS LINK or XCTL Commands .. 7-4
Explicitly Opened Cursors ... 7-4
Accessing Multiple Oracle9i Databases ... 7-4
Additional SQL Statement Restrictions.. 7-4

IMS TM Programs... 7-5
CONNECT Not Supported .. 7-5
Accessing Multiple Oracle9i Databases ... 7-5
Additional SQL Statement Restrictions.. 7-6
Accessing Oracle9i and DB2 Databases in a Single Transaction 7-6
Controlling Oracle SQL Processing .. 7-6
Processing of Oracle9i Errors by Your IMS TM Program.. 7-6

Sample JCL ... 7-7
Usage Notes ... 7-8

Precompiling Your Program.. 7-10
Oracle Precompiler Options.. 7-10
Return Codes ... 7-11
Language-Specific Coding Considerations... 7-11

Compiler Support .. 7-11
Pro*COBOL .. 7-12
Pro*C.. 7-13
Pro*PL/1 ... 7-13

Compiling Your Program... 7-13
CICS Programs.. 7-13

Linking Your Program.. 7-13
Batch and TSO Programs... 7-14
CICS Programs ... 7-14
IMS TM Programs ... 7-14

Running Your Program .. 7-15
viii

UNIX System Services ... 7-15
Administering Pro*COB Under UNIX System Services.. 7-15
Administering Pro*C Under UNIX System Services ... 7-16
Building Pro*C Programs... 7-17
Sample Programs... 7-17

Batch and TSO Programs... 7-18
CICS Programs.. 7-19
IMS TM Programs .. 7-19

8 Oracle Call Interface

Oracle Call Interface Overview.. 8-1
Target Environment Design Considerations ... 8-2

TSO Programs ... 8-2
CICS Programs.. 8-3
IMS TM Programs .. 8-3

Accessing Multiple Oracle9i Databases ... 8-3
Additional Restricted OCI Functions ... 8-3
Unavailable Calls... 8-4
Accessing Oracle9i and DB2 Databases in a Single Transaction 8-5
Processing of Oracle9i Errors by Your IMS TM Program ... 8-5

Compiling Your Program .. 8-5
Long Name Support... 8-5
Callback Restriction.. 8-6
UNIX System Services ... 8-6

Linking Your Program ... 8-6
Sample Link JCL ... 8-6

Usage Notes.. 8-7
 Batch and TSO Programs.. 8-7
IMS TM Programs .. 8-8

Running Your Program .. 8-8
Batch and TSO Programs... 8-8
IMS TM Programs .. 8-9
OCI Interface to Publish/Subscribe... 8-9
ix

9 SQL*Plus

Running Under UNIX System Services.. 9-2
Running Under TSO ... 9-2
Attention Processing ... 9-3

Processing States ... 9-3
Batch Processing ... 9-4

Running in Batch ... 9-4
SQL*Plus Profiles .. 9-5
SQL*Plus HOST Command ... 9-5

Running TSO/E Commands... 9-6
Calling CLISTs... 9-6
Calling OS/390 Editors .. 9-6
Multiple SQL*Plus Processes .. 9-6

SQL*Plus Time Usage Information... 9-6
TIMING Command .. 9-6
SET TIMING Command .. 9-7

Using OS/390 Editors from SQL*Plus .. 9-7
ISPF Editor ... 9-7

Data Set Enqueuing .. 9-7
Restricting User’s Privileges in SQL*Plus .. 9-8
Exiting SQL*Plus ... 9-8

Spooling SQL*Plus Output ... 9-8
Usage Notes ... 9-9

Special Characters... 9-9
String Concatenation .. 9-9
Input Line Truncation .. 9-9
SQL ASCII Function ... 9-10

Unsupported Functions ... 9-10
SPOOL OUT ... 9-10
SET NEWPAGE 0 ... 9-10
RUNFORM .. 9-10

10 Oracle Net

Oracle Net Overview .. 10-1
Distributed Processing ... 10-2
x

Distributed Database.. 10-2
Oracle Net Terminology .. 10-2

Remote Access to OS/390 Server Using Oracle Net ... 10-2
Oracle Net for OS/390 Filenames .. 10-3
Locating the Oracle Net Service ... 10-4
Oracle Net Connect Descriptors for OS/390 .. 10-4

TCP/IP Addresses .. 10-4
Examples.. 10-4

Connecting to a Remote Server Using Oracle Net ... 10-4

11 Migration Considerations

Overview .. 11-1
OS/390 Language Environment.. 11-2
OS/390 Cross Memory Support.. 11-3

Cross Memory Support ... 11-3
MPM Compatibility .. 11-3

TNSNAMES Connect Descriptors ... 11-4
Database Links .. 11-5

IXCF Support ... 11-5
Remote Clients .. 11-5

A API Short Name Support

Method 1: Prelink and Link.. A-1
Method 2: Precompile and/or Compile with Name Mapping ... A-2

Index
xi

xii

Send Us Your Comments

Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Part No. A97312-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us at the following e-mail address.:

infoibm_us@oracle.com

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

Read this guide if you are responsible for performing tasks such as:

■ Running Oracle tools or utilities, such as SQL*Plus, Export, or SQL*Loader on
OS/390 or z/OS

■ Designing or developing Oracle applications, using Pro*C, Pro*COBOL,
Pro*PL/I, or Oracle Call Interface (OCI), that will run on an OS/390 or z/OS
system.

■ Running Oracle application programs on OS/390 or z/OS

You need to understand the fundamentals of OS/390 operating systems before
using this guide. This guide provides information only on Oracle9i products and
their interactions with OS/390.

Structure
This guide contains the following chapters and appendixes:

Chapter 1 provides an overview of Oracle9i products.

Chapter 2 discusses basic information about installation tools and utilities
needed for using Oracle9i Enterprise Edition for OS/390.

Chapter 3 discusses the interaction between OS/390 files and Oracle tools
and utilities.

Chapter 4 discusses running Oracle tools under OS/390 UNIX System
Services.

Chapter 5 describes the functions of the Export and Import utilities as they
relate to the OS/390 operating system.
xv

Related Documents
There are two parts to the Oracle documentation set: OS/390-specific
documentation and product-specific documentation. Your site automatically
receives both for the Oracle products you have purchased. Use the product-specific
documentation to learn how to use a product, and use the OS/390-specific
documentation to learn about special requirements or restrictions for using that
product under OS/390.

OS/390-Specific Documentation
The OS/390-specific documentation set is used to install, maintain, and use Oracle9i
for OS/390 products, and consists of:

■ Oracle9i Enterprise Edition Installation Guide for OS/390

■ Oracle9i Enterprise Edition System Administration Guide for OS/390

■ Oracle9i Enterprise Edition User’s Guide for OS/390

■ Oracle9i Enterprise Edition Messages Guide for OS/390

Product-Specific Documentation
Product-specific documentation describes how to use the Oracle9i products. The
information in these books is constant for all operating systems under which the

Chapter 6 discusses how the SQL*Loader utility capabilities are used with
OS/390.

Chapter 7 discusses OS/390-specific information about using the Oracle
Precompilers.

Chapter 8 discusses OS/390-specific information about using the Oracle Call
Interface.

Chapter 9 discusses accessing and running SQL*Plus commands and
procedures in an OS/390 environment.

Chapter 10 discusses using Oracle Net in an OS/390 environment.

Chapter 11 This chapter describes migration issues from an Oracle8 database
with OSDI to an Oracle9i database, and with an earlier Oracle8
database with MPM to an Oracle9i database.

Appendix A This appendix describes API short name support.
xvi

products run. Refer to the environment-specific (in this case, the OS/390-specific)
documentation for information that does not apply to every environment.

Refer to the Oracle Technical Publications Catalog and Price Guide for a complete list of
documentation provided for Oracle9i products.

Product Name
The complete name for this product is Oracle9i Enterprise Edition for OS/390. To
maintain readability and conciseness in this document, the Oracle9i Enterprise
Edition is referred to as Oracle9i for OS/390.

In all cases, the referenced product remains Oracle9i Enterprise Edition for OS/390.

Tool and Utility Prompts
Certain Oracle tools and utilities operate interactively, displaying a prompt message
in TSO or USS sessions when input is expected from the user. For example
SQL*Plus uses "SQL>" and Recovery Manager uses "RMAN>". These prompts
appear in examples but are not part of the text that is typed by the user.

Storage Measurements
Storage measurements use the following abbreviations:

■ K, for kilobyte, which equals 1,024 bytes

■ M, for megabyte, which equals 1,048,576 bytes

■ G, for gigabyte, which equals 1,073,741,824 bytes

Conventions
Examples of input and output to the system are shown in a special font:

//SYSIN DSN=oran.orav.INSTJCL(member)

All output is shown as it actually appears. For input, the following conventions
apply:
xvii

Commands, reserved words, and keywords appear in uppercase in both examples
and text. A fileid can appear with both uppercase and lowercase text. When
portions of a fileid appear in italics, the use of italic characters indicates that those
portions can vary. Reserved words and keywords must always be entered as is,
because they have reserved meanings within Oracle.

Documentation Accessibility
Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and
contains markup to facilitate access by the disabled community. Standards will
continue to evolve over time, and Oracle is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional

Convention Meaning

italic font indicates that a word or phrase of your choice must be substituted
for the term in italic font, such as the actual member name. For
example: member

oran.orav is the standard example for high-level and second-level data set
name qualifiers. Substitute your system’s actual high-level and
second-level qualifiers. These qualifiers may appear in lowercase
or in UPPERCASE typeface.

<> Angle brackets indicate that the enclosed arguments are required and at least one
of the arguments must be entered. Do not enter the brackets
themselves.

[] Square brackets indicate that the enclosed arguments are optional. Do not enter the
brackets themselves.

{} Braces indicate that one of the enclosed arguments is required. Do not
enter the braces themselves.

| Vertical lines separate choices.

... Ellipses indicate that the preceding item can be repeated. You can enter an
arbitrary number of similar items.

Other punctuation must be entered as shown unless otherwise specified. For example,
commas and quotes.
xviii

information, visit the Oracle Accessibility Program web site at
http://www.oracle.com/accessibility/.

Documents Referenced in this Guide

Oracle9i for OS/390 Books:
Oracle9i Enterprise Edition Installation Guide for OS/390

Oracle9i Enterprise Edition Messages Guide for OS/390

Oracle9i Enterprise Edition System Administration Guide for OS/390

Other Oracle Books:
OCI Programmer’s Guide

Oracle Intelligent Agent User’s Guide

Oracle Label Security Administrator's Guide

Oracle9i Application Developer's Guide - Fundamentals

Oracle9i Database Globalization Support Guide

Oracle9i Database Utilities

Oracle9i JDBC Developer’s Guide and Reference

Oracle9i Net Services Administrator’s Doc

PL/SQL User's Guide and Reference

Pro*C/C++ Precompiler Programmer's Guide

Pro*COBOL Precompiler Programmer's Guide

Pro*PL/I Supplement to the Oracle Precompilers Guide

Programmer's Guide to the Oracle Precompilers

SQL*Plus User's Guide and Reference

IBM Books:
OS/390 Run Time Library Reference
xix

http://www.oracle.com/accessibility/

xx

Overview of Oracle9i Pro
1

Overview of Oracle9i Products

Oracle9i Enterprise Edition is a high-performance, secure, high-availability database
management system that can be deployed across multiple operating systems and
hardware platforms, including OS/390. This architecture, unique to Oracle, offers
customers a database server with a consistent code base on a variety of platforms,
from desktop to UNIX to mainframe. In essence, this frees customers from viewing
the hardware and operating system as the platform and in turn view Oracle®
Enterprise Edition as the platform. Oracle software on UNIX is the same product as
Oracle software on OS/390.

In addition to integrating Oracle9i into a distributed environment, Oracle for
OS/390 supports traditional transaction processing such as CICS and IMS_TM
workloads, as well as Internet computing, where client applications can access
Oracle data on OS/390 from any number of distributed sources. This allows
customers to exploit the security, reliability, and availability of the mainframe where
it counts most, for the data, and use a less premium, commodity environment for
Web server applications. Oracle9i Enterprise Edition for OS/390 gives customers
that flexibility.

The complete name for this product is Oracle9i Enterprise Edition for OS/390. This
product runs on IBM’s z/OS as well as on OS/390. This document uses the term
OS/390 to indicate both operating systems. To maintain readability and
conciseness in this document, the Oracle9i Enterprise Edition is referred to as
Oracle9i for OS/390. In all cases, the referenced product remains Oracle9i
Enterprise Edition for OS/390.

The following sections are discussed in this chapter:

■ Oracle9i for OS/390 Introduction on page 1-2

■ Oracle9i for OS/390 Utilities on page 1-11

■ Oracle9i for OS/390 Additional Products on page 1-13
ducts 1-1

Oracle9i for OS/390 Introduction
■ Oracle9i for OS/390 Transparent Gateways on page 1-16

Oracle9i for OS/390 Introduction
This release of Oracle9i for OS/390 is based on the execution environment known as
OSDI which has replaced MPM. OSDI architecture is the S/390-specific execution
environment for all Oracle9i for OS/390 products. The same Oracle products are
supported, and their generic behavior with respect to applications is unchanged.
Some of the benefits of using OSDI are: virtual storage constraint relief, enhanced
client workload management, improved performance and throughput, and
improved reliability, availability, and serviceability. The supported products
include the Oracle9i Enterprise Edition RDBMS and Oracle Net.

Existing Oracle for OS/390 users should refer to Chapter 11, "Migration
Considerations", for further details on migration issues and downward
compatibility considerations.

Some of the key features and benefits of Oracle9i for OS/390 include the following:

■ Real Application Clusters

■ Oracle Label Security

■ Oracle Spatial

■ Oracle Partitioning

■ Oracle Advanced Security

■ High-Performance Concurrency Control

■ Web Integration

■ SQL and PL/SQL Languages

■ Application Development

■ Server-Based Business Rules

■ National Language Support

■ Data Replication in Distributed Environments

■ Advanced Queuing

■ Oracle Objects

■ Oracle Call Interface

■ Oracle for OS/390 Java Support
1-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 Introduction
Real Application Clusters
Oracle9i Real Application Clusters is a revolutionary leap beyond Oracle Parallel
Server. A separately licensed server option, Real Application Clusters provides your
applications with out-of-the-box, near-linear scaling without the need for
parallel-aware design changes. Configuring an Oracle instance to use Oracle9i Real
Application Clusters is simple, and you can easily and quickly add nodes to your
cluster as your needs change. Every node can always access all of your data, so if
one node needs to be taken off-line, or happens to fail, the remaining nodes will
seamlessly pick up and back out any transactions that may need recovery. This kind
of continuous availability is required for today’s demanding, 24x7 business
applications.

On OS/390, this scalability and availability is accomplished without the need for
specialized coupling hardware requiring difficult sizing exercises or complex
management tasks. Oracle9i uses the native, high-speed interconnect available in all
supported S/390 and zSeries environments. If coupling hardware is present
Oracle9i Real Application Clusters will transparently exploit it, but Real
Application Clusters does not require coupling hardware—or even a Parallel
Sysplex—to bring you the benefits of greater availability and scalability. When
combined with the multi-address space capabilities of Oracle9i, Real Application
Clusters will let you scale your user populations up to the levels required for
Internet applications.

Oracle Label Security
Oracle Label Security is but one of many layers of security protection that Oracle9i
provides to its OS/390 customers. Oracle Label Security builds on the Oracle Virtual
Private Database facilities available in Oracle9i by attaching access control
information directly to your data. With this sophisticated, flexible security option in
place in place each row of your data is separately secured. These techniques, used
by government and defense organizations to protect sensitive information and
provide data separation, can now be applied to enterprises as diverse as application
hosting and health care to help meet security requirements in the Internet Age. For
example, in application hosting, a subscriber label can be used to separate data
among subscribers in the same application. More importantly, your policies are
enforced within the database, providing security even if the application is bypassed.
Oracle Label Security also includes a sophisticated policy management tool to
manage policies, labels, and user label authorizations. Oracle Label Security is a
separately licensed option for the Oracle9i server.
Overview of Oracle9i Products 1-3

Oracle9i for OS/390 Introduction
Oracle Spatial
If you decide to license the Oracle Spatial server option, it will provide you with an
integrated set of functions and procedures that facilitate analysis based on the
spatial relationships of associated data. For example, in an Internet-based customer
service application Oracle Spatial could help you decide the most cost-effective way
to route deliveries and pickups to your customers. Because it’s fully integrated with
the Oracle9i database, Oracle Spatial allows you to seamlessly integrate this spatial
data with the rest of your enterprise applications.

Oracle Partitioning
Oracle Partitioning, a separately licensed option of the Oracle9i server, allows you
to divide large tables and indexes into pieces that can be separately managed,
instead of managing each table as one large object. Partitioning is a technique that
provides scalable performance with a large amount of data. Partitioning decreases
the time required to perform administrative operations by applying the operations
to smaller units of storage, improves performance through increased parallelism,
and improves availability by containing the impact of failures.

Database administrators (DBAs) can specify storage attributes for each partition
and the placement of the partition within the host file system, increasing the
granularity of control for very large databases. Partitions can be individually taken
off-line or brought online, backed up, recovered, exported and imported, and
loaded, thereby eliminating the time required for management operations. An
individual partition can be built for one table partition, bounding the time required
for index maintenance operations. Various local and global index strategies are
provided. Partition operations can be performed in parallel. Partitions increase
availability by containing media and application failures, that is, applications not
requiring data from a down or off-line partition continue to run without any
impact.

Partitioning is transparent to applications and standard data manipulation
language (DML) statements that run against partitioned tables. The Oracle9i

Note: Oracle Label Security is not supported with this release of
Oracle9i for OS/390.

Note: Oracle Spatial is not supported with this release of Oracle9i
for OS/390.
1-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 Introduction
optimizer is aware of the partitions; and partitions that do not contain any data for
query are eliminated from the search.

Oracle Advanced Security
The separately licensed Oracle Advanced Security server option provides a
comprehensive suite of security features to protect an enterprise’s networks and to
securely extend corporate networks to the Internet. The Oracle Advanced Security
option (formerly known as Advanced Networking Option) provides a single source
of integration with network encryption and authentication solutions, single sign-on
services, and security protocols.

High-Performance Concurrency Control
With other database systems, applications can have contention problems with
performance limited by transactions that lock data at the page level or escalate
lower-level locks, regardless of available CPU power or I/O bandwidth. Many
traditional mainframe shops must have separate windows of time for online
workloads and batch workloads to handle this contention. The Oracle9i database
server uses full, unrestricted row-level locking for data and indexes, and never
escalates locks. In addition, Oracle read operations do not prevent concurrent write
operations, ensuring maximum concurrent access to data. The Oracle9i database
server’s high-performance, scalable sequence number generator eliminates
application contention to obtain unique numeric key values, a common requirement
in transaction processing applications. Reverse-key indexes reverse the bytes in
index entries, spreading the inserts of consecutive keys among different blocks to
eliminate insertion hot spots.

Web Integration
The Oracle9i database server can be accessed by the Oracle9i Application Server,
which can fully integrate your existing Oracle9i business applications with Web
technology, and safely deploy them inside or outside of your corporate firewall.

The Oracle9i Internet Application Server (iAS) enables stored procedures to be
invoked by clients using Web browsers to generate dynamic Web documents. This
means that Web pages are no longer limited to displaying information from static
files.
Overview of Oracle9i Products 1-5

Oracle9i for OS/390 Introduction
SQL and PL/SQL Languages
The Oracle9i database server is 100 percent American National Standards Institute
and International Standardization Organization (ANSI/ISO) SQL92 entry-level
compliant SQL. This implementation ensures a fully-open application development
environment. In addition, the Oracle9i database server offers a number of robust
SQL extensions that allow complex operations to be expressed in SQL, improving
developer productivity by reducing the need for procedural code. Application
performance and scalability are enhanced by performing complex data
manipulation operations within the Oracle9i SQL engine.

PL/SQL, the Oracle procedural extension to SQL, is an advanced fourth-generation
programming language (4GL). It offers modern features such as data
encapsulation, overloading, collection types, exception handling, and information
hiding. PL/SQL also offers seamless SQL access, tight integration with the Oracle
database server and tools, portability, and security.

Application Development
Oracle9i stored procedures and triggers improve application development
scalability and productivity by allowing common procedures to be developed once
and maintained in a central location, instead of in every application. Stored
procedures and triggers improve application performance and scalability by
allowing application logic to be invoked with a single call. This minimizes network
traffic and isolates application processing on the server.

Oracle9i stored procedure implementation also supports automatic dependency
tracking for scalable application development. Oracle9i stored procedures can
dynamically define and run SQL statements, permitting powerful and flexible
procedures. User-defined functions referenced from SQL statements provide
productivity by enhancing the power of SQL, and by enhancing performance by
running application-specific logic within the server. PL/SQL cursor variables
provide a link to a SQL query, allowing stored procedures to encapsulate
statically-defined or dynamically-defined queries, and return one or more multirow
result sets to the calling application.

The Oracle9i database server includes application development features necessary
to construct a new generation of sophisticated applications at low cost. Declarative
facilities ensure scalable, reliable enforcement of data integrity while minimizing
development, maintenance, and administration costs. PL/SQL, an advanced
procedural 4GL that is tightly integrated with the Oracle9i database server, provides
the power to easily express complex business rules as stored procedural code. The
Oracle9i programmatic interfaces enable third-generation language (3GL) programs
1-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 Introduction
to access and manipulate Oracle9i data and schema. The productive development
features of the Oracle9i database server improve application performance,
scalability, and security to support hundreds of applications and thousands of
users.

Server-Based Business Rules
The Oracle9i database server enforces constraints, either for database integrity
purposes or business rules, at the database level, allowing the greatest amount of
security and business-rule enforcement. Oracle9i achieves this through the use of
declarative integrity constraints, database procedures, and database triggers.
Deferred constraint checking optionally shifts integrity constraints checking from
the end-of-statement operation to the end-of-transaction operation. This simplifies
the coding of certain operations involving integrity constraints. Also, many kinds
of constraints can be enabled without stopping update activity on the table.

With PL/SQL stored procedures, functions, packages, and database triggers, you
can enforce complex business rules at the server level. This improves application
performance, scalability, security, and reduces development costs. Procedures and
functions can accept arguments from calling client applications, and return one or
more result values. Packages group together definitions of related procedures,
functions, variables, cursors, and other database objects to improve development
productivity.

When rows are inserted, updated, or deleted from the Oracle9i tables, database
triggers are run automatically, either once per row or once per statement. Database
triggers can be used to enforce complex integrity rules within the server. The
Oracle9i database server trigger implementation is modeled on the draft ANSI and
SQL3 specification.

National Language Support
The Oracle9i database server supports deployment of heterogeneous Internet and
distributed database configurations by automatically and transparently performing
any necessary character set conversions. Oracle9i National Language Support
(NLS) ensures error messages, sort order, date format, and other conventions
automatically adapt to the native language. Parameter settings at the Oracle9i
database server and system levels determine the behavior of individual
conventions.

Separate national calendars, including Japanese Imperial, ROC Official, Thai
Buddha, Persian, and Arabic Hijrah, are supported. Arabic and Hebrew display
Overview of Oracle9i Products 1-7

Oracle9i for OS/390 Introduction
character set support is also available. NLS also supports user-defined characters
and calendar years.

Data Replication in Distributed Environments
The benefits of relational technology cannot be achieved without transparent
integration of new and existing systems. The Oracle9i database server provides
distributed database facilities that make the integration of enterprise data practical.
Data can be replicated for direct and highly available local access. Data can be
accessed remotely using both SQL and PL/SQL procedure calls in a transparent
manner, as if the data were local. Also, data can be stored in both Oracle9i database
servers and non-Oracle servers. No external servers are required, which can
complicate management procedures such as recovery.

The Oracle9i database offers basic and advanced replication facilities. For
information dissemination throughout an enterprise, Oracle9i basic replication
supports a simple primary site model of replication where one replica is updatable
and all others are read-only. For more sophisticated distributed operation systems,
including rollover configurations and mass deployment applications such as sales
force automation, Oracle9i advanced replication supports bidirectional replication
and sophisticated conflict detection, resolution, and management tool capabilities
that you require.

Both basic and advanced replication are fully integrated into the Oracle9i database
server. Updates to replicas are captured using internal triggers that run within the
server operation for maximum performance.

Advanced Queuing
Oracle9i advanced queuing provides direct support in the database for
high-performance queuing operations. This capability provides asynchronous
operations and eliminates the dependency on external systems for applications
requiring high scalability. The enqueue and dequeue operations can shift
processing from within a transaction to a background process, improving the
transaction response time.

Oracle Objects
Oracle Objects, the Oracle9i object-relational paradigm, allows developers to
directly define their business objects, such as purchase orders, inventory items, and
data warehouse information within the Oracle9i database server. This allows
1-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 Introduction
developers of mainstream commercial applications to better manage their business
objects.

The Oracle9i database server allows you to define custom object types. An object
type is typically defined to correspond to some business object, such as a purchase
order. The object type might contain multiple fields or attributes, and it might be
nested within other object types. More complex objects that include a variable
number of items are supported through variable length arrays and nested tables.
This allows, for example, a purchase order object type, which can accommodate a
variable number of line items.

Oracle9i database server development products, including Oracle Call Interface
(OCI), Pro*COBOL, and Pro*C, support objects. Client-side caching, complex object
retrieval, and navigational access provide client-side processing and minimize the
number of network roundtrips between the client and the server. The object type
translator utility generates C programming language header files for use in Pro*C
and OCI applications.

The Oracle9i database server eases the evolution from relational to object-oriented
functionality. The Oracle9i object-relational capabilities are built on the same solid
foundation as the relational functionality.

Objects are completely integrated throughout the Oracle9i database server in all
levels of the server, and are supported in both SQL and PL/SQL. The strengths of
the Oracle9i database server are provided with objects, including the sophisticated
Oracle9i database server concurrency model, industry leading performance,
scalability, reliability, manageability, and availability.

Oracle Call Interface
OCI is an application programming interface (API) that allows you to create
applications that use the native function calls of the C programming language to
access an Oracle9i database server and control all phases of SQL statement
execution.

Oracle for OS/390 Java Support
Oracle9i for OS/390 provides the following support for Java development under
UNIX System Services environment.

■ Java Database Connectivity (JDBC)

■ SQL embedded in Java (SQLJ)

■ Oracle9i JVM
Overview of Oracle9i Products 1-9

Oracle9i for OS/390 Introduction
■ XML Support

Java Database Connectivity (JDBC)
Oracle9i for OS/390 provides a JDBC thin driver. It is a Type IV driver that is
targeted for applet developers. The driver is 100 percent pure Java and complies
with the JDBC 1.2.2 standard.

For communicating with the database, the driver includes an equivalent
implementation of the Oracle TTC presentation protocol and Oracle Net session
protocol in Java. Both of these protocols are lightweight implementation versions of
their counterparts on the server. To use this driver, it is not necessary to install any
Oracle-specific software on the client.

SQL Embedded in Java (SQLJ)
SQLJ allows application programmers to embed static SQL operations in Java code
in a way that is compatible with the Java design philosophy. A SQLJ program is a
Java program containing embedded static SQL statements that comply with the
ANSI-standard SQLJ Language Reference syntax.

The Oracle SQLJ translator is conceptually similar to other Oracle Precompilers and
performs the following checks:

■ Checks the syntax of the embedded SQL.

■ Checks data types to ensure the data exchanged between Java and SQL has
compatible types and proper type conversions.

■ Checks SQL constructs against the database schema to ensure consistency.

The SQL methodology of embedding SQL operations directly in Java code is more
convenient and concise than the JDBC methodology. In this way, SQLJ reduces
development and maintenance costs in Java programs that require database
connectivity. When dynamic SQL is required, however, SQLJ supports
interoperability with JDBC such that you can intermix SQLJ code and JDBC code in
the same source file.

Oracle9i JVM
Oracle9i for OS/390 provides support for Java (JDK 1.2) from within the Oracle9i
database.

Java applications can range from the simple standalone application to large,
enterprise solutions. This support allows Java stored procedures running inside the
Oracle address space to access Oracle databases using the server-side JDBC driver.
1-10 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 Utilities
The entire JVM operates in the same address space as the database and the SQL
engine. This enhances the performance of Java programs and is much faster than
executing a remote call to access Oracle.

The server side JDBC driver supports the same features, APIs, and Oracle
extensions as the client-side drivers. This makes application partitioning very
straightforward. For example, a Java application that is data-intensive, can easily be
moved into the Oracle server for better performance, without having to modify the
application-specific calls.

XML Support
Oracle9i for OS/390 provides support for several XML related tools. They include
the XML Parser for Java, the XML Class Generator for Java, and the XML Parser for
PL/SQL. They are all implemented in Java.

The XML Parser for Java and the XML Parser for PL/SQL are stand-alone XML
components that parse an XML document so that it can be processed by an
application.

XML Class Generator for Java creates Java source files from an XML DTD.

Oracle9i for OS/390 Utilities
Oracle9i for OS/390 contains numerous, easy-to-use utilities for DBAs to use,
providing a fully-integrated data management system. Refer to the appropriate
Oracle documentation for product-specific functions and use of the Oracle utilities.

The following utilities are discussed in this section:

■ Recovery Manager

■ Export and Import

■ Migration

■ SQL*Loader

■ Oracle Enterprise Manager

■ UNIX System Services
Overview of Oracle9i Products 1-11

Oracle9i for OS/390 Utilities
Recovery Manager
The Oracle9i Recovery Manager utility uses information about the database to
automatically locate, backup, restore, and recover datafiles, control files, and
archived redo logs.

Recovery Manager allows database and tablespace point-in-time recovery. It also
allows you to simplify normal restore and recover operations. Instead of requiring
analysis of logs to perform point-in-time recovery, Oracle9i Recovery Manager
allows timestamp specification to simplify this procedure.

Export and Import
Export creates an operating system (OS) sequential data set containing data and
definitions from the Oracle9i database. The data is created in an internal Oracle
format. Export helps migrate data from one system to another in conjunction with
the companion utility, Import. Export is also used to provide backups of the Oracle
tables and database. Several types of Exports are available to you, depending upon
authority level within the Oracle9i database server.

Import reads the OS-sequential data set created by the Export utility and builds
tables and related data in the target Oracle9i database.

Migration
This release of Oracle9i for OS/390 supports direct upgrade from any Oracle8
release; a migration utility is not required to upgrade from Oracle8 to Oracle9i. A
migration utility is provided to upgrade from Oracle V7.3.3 to Oracle9i.

SQL*Loader
SQL*Loader facilitates the transfer of data from OS/390 data sets into tables in an
Oracle9i database. A control file is used to describe the data location, data format,
and target tables. You can direct data that does not satisfy certain conditions
specified in the control file to special files.

When combined with Oracle Net, SQL*Loader allows you to propagate existing
data to remote Oracle9i database servers. SQL*Loader supports a wide variety of
input file formats, including virtual storage access method (VSAM) files and
partitioned data sets (PDSs), and accepts DB2 Load Utility/DXT control file syntax.
1-12 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 Additional Products
Oracle Enterprise Manager
With the server-side Oracle Enterprise Manager Intelligent Agent, DBAs can
manage the Oracle for OS/390 database from any OEM console. Starting and
stopping the database, as well as managing backups with Recovery Manager, can be
controlled through the graphical user interface (GUI) on any OEM console.

UNIX System Services
Oracle9i includes several tools and utilities designed to run in the OS/390 UNIX
System Services (USS) environment. OS/390 UNIX System Services is similar to
other UNIX environments, and the Oracle9i tools built for OS/390 USS behave like
their UNIX counterparts with every few, if any, differences.

Chapter 4, "Accessing Oracle9i Under USS", describes the Oracle OS/390 UNIX
System Services environment. This chapter includes information on the Oracle java
utilities available under OS/390 USS. Furthermore, additional information on
specific USS compatibility is included in the relevant chapters of this guide.

Oracle9i for OS/390 Additional Products
A number of additional products are distributed on the Oracle9i for OS/390 server
distribution tape. They include the following:

■ Oracle Access Managers (for CICS and IMS_TM)

■ Oracle Precompilers

■ Oracle Net

■ SQL*Plus

Oracle Access Managers
Oracle Access Managers enable CICS and IMS_TM applications to directly access
local OS/390 data or remote Oracle systems. Usage of one of these is included with
the Oracle9i for OS/390 license.

Oracle Access Manager for CICS
Oracle Access Manager for CICS provides support for CICS transactions to access
Oracle data. The Oracle data can be local on the same OS/390 system or remote on
any Oracle-supported platform. If the Oracle data is remote, then Oracle Access
Manager for CICS routes the transaction’s Oracle requests through Oracle Net to the
Overview of Oracle9i Products 1-13

Oracle9i for OS/390 Additional Products
remote system. The distinction between local and remote Oracle9i database server
access is transparent to both the transaction program and the user.

CICS transactions written in COBOL or C programming language can be modified
to access the Oracle9i database server by embedding industry-standard SQL
statements in the source code. This does not affect a program’s ability to access
non-Oracle data stores on the enterprise server. Both the Oracle9i database server
data and non-Oracle data can be accessed and updated in a single transaction.
Oracle Access Manager for CICS provides the appropriate interfaces so that CICS
fulfills its normal role as commit, rollback, and recovery coordinator.

Data available on an Oracle platform can be accessed simultaneously by both CICS
transactions and the Oracle tools or programs. This provides complete, reliable
control over data consistency and integrity. You can begin to leverage the full range
of Oracle products and facilities while still utilizing your traditional applications.

Data available on an Oracle platform can be accessed simultaneously by both CICS
transactions and other Oracle tools or programs. This provides complete and
reliable control over data consistency and integrity. You can begin to leverage the
full range of Oracle products and facilities.

Oracle Access Manager for IMS TM
Oracle Access Manager for IMS_TM provides support for IMS_TM transactions to
access Oracle data. The Oracle data can be local on the same OS/390 system, or
remote on any Oracle-supported platform. If the Oracle data is remote, then Oracle
Access Manager for IMS_TM routes the transaction’s Oracle requests through
Oracle Net to the remote system. The distinction between local and remote Oracle9i
database server access is transparent to both the transaction program and to the
user.

IMS transaction programs written in COBOL or C programming language can be
modified to access the Oracle9i database server by embedding industry-standard
SQL statements in the source code. This does not affect a program’s ability to access
non-Oracle data stored on the enterprise server. Both Oracle9i database server data
and non-Oracle data can be accessed and updated in a single transaction. Oracle
Access Manager for IMS_TM provides the appropriate interfaces so that IMS_TM
fulfills its role as commit, rollback, and recovery coordinator.

Data moved to another platform can be accessed simultaneously by both IMS_TM
transactions and other Oracle tools or programs available in the new environment.
This provides complete and reliable control over data consistency and integrity.
You can leverage the full range of Oracle products and facilities.
1-14 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 Additional Products
Oracle Precompilers
Oracle Precompilers support SQL high-level source programs. The Oracle
Precompilers do the following:

■ Accept the source program as input.

■ Translate the embedded SQL statements into standard Oracle runtime calls.

■ Generate a modified source program you can compile, link, and run.

Oracle Precompilers supported on Oracle9i for OS/390 include:

■ Pro*C

■ Pro*COBOL

■ Pro*FORTRAN

■ Pro*PL/1

Oracle Net
Oracle Net provides network communications between Oracle client applications
and the Oracle9i database server or Oracle gateways. It operates across different
processors and operating systems. Users of one OS/390 system can access:

■ An Oracle9i for OS/390 instance on the same processor.

■ An Oracle9i for OS/390 instance on a different processor.

■ An Oracle9i instance on a non-OS/390 platform.

Oracle Net enables protocol independence. Regardless of the quantity or type of
communication protocols used, data access is seamless. Protocols supported for
Oracle Net include:

■ IBM TCP/IP High Performance Native Sockets (HPNS)

■ Oracle Net cross memory driver

SQL*Plus
SQL*Plus enables you to manipulate data using SQL commands. With SQL*Plus
you can do the following:

■ Enter, edit, store, retrieve, and run SQL commands

■ Format, perform calculations on, store, and print query results in report form
Overview of Oracle9i Products 1-15

Oracle9i for OS/390 Transparent Gateways
■ List column definitions for any table

■ Access and copy data between databases

■ Send messages to and accept responses from a user

■ Manage Oracle9i database servers

Oracle9i for OS/390 Transparent Gateways
There are two Oracle Transparent Gateways available for Oracle9i for OS/390:

■ Oracle Transparent Gateway for DB2

■ Oracle Transparent Gateway for EDA/SQL

Oracle Transparent Gateways are available on separate distribution media. To
obtain them, contact your local Oracle representative.

Oracle Transparent Gateway for DB2
Oracle Transparent Gateway for DB2 is tightly integrated with Oracle9i for OS/390
and provides Oracle applications with read and write access to DB2 tables. The
gateway runs as a started task under OS/390 and uses the DB2 standard Call Attach
Facility (CAF) to access tables stored in DB2.

Oracle Net provides network support between the client and the Oracle9i database
server for any protocol supported on both platforms, and supports TCP/IP between
a remote Oracle9i database server and the gateway on OS/390. The Oracle9i
database server can reside on any Oracle-supported platform, including OS/390.

Oracle Transparent Gateway for DB2 is Security Authorization Facility (SAF)
compliant and provides a user exit facility to give gateway installations a
mechanism for passing control to installation-written code at user logon time.
Security environments using the SAF interface include ACF2, RACF, and TOP
SECRET.

In addition, Oracle Transparent Gateway for DB2 can be configured to pass DB2
statistics to the Oracle optimizer for improved query performance. Oracle
Transparent Gateway for DB2 also provides customers with the ability to take
advantage of DB2 parallel query operations.
1-16 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 Transparent Gateways
Oracle Transparent Gateway for EDA/SQL
Oracle Transparent Gateway for EDA/SQL combines technology from Oracle
Corporation and Information Builders. Oracle Transparent Gateway for EDA/SQL
enables access for Oracle applications to the non-Oracle databases and file systems
supported by the EDA/SQL Server. These include the following:

Support includes the EDA/SQL Server capability for SQL INSERT, UPDATE, and
DELETE for IMS TM and IDMS data sources without the use of remote procedures.

■ VSAM ■ Infoman ■ ISAM

■ IMS ■ CA-IDMS ■ Datacom

■ ADABAS ■ SYSTEM 2000 ■ SUPRA

■ TOTAL ■ FOCUS ■ Model 204

■ Teradata ■ DB2 ■ QSAM
Overview of Oracle9i Products 1-17

Oracle9i for OS/390 Transparent Gateways
1-18 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Using the OS/390 Database Ins
2

Using the OS/390 Database Instance

The Oracle9i database server is implemented as a database service under OSDI. It
can monitor events relevant to its operation, such as TSO logoff, abnormal
terminations, and operator console commands.

This chapter describes basic information on installation, utilities, and utilities
needed for using the Oracle9i for OS/390 server and contains the following
sections:

■ Oracle Database Instance Overview on page 2-1

■ Connecting to an Oracle Instance on page 2-2

■ Installation Information on page 2-4

■ Using Oracle Utilities on page 2-5

■ OS/390 Environment Variables on page 2-10

Oracle Database Instance Overview
The Oracle database instance on OS/390 is implemented as a service under a given
Oracle subsystem. This chapter discusses considerations for connecting local (TSO,
batch, CICS, IMS) Oracle utilities or applications to database instances running on
the OS/390 system. Connecting from UNIX System Services is discussed in
Chapter 4, "Accessing Oracle9i Under USS".

Oracle9i database server users on OS/390 communicate with the local Oracle
database instance using OS/390 cross memory services. This facility allows both
data and program operation to cross address space boundaries in a secure and
controlled manner.
tance 2-1

Connecting to an Oracle Instance
Connecting to an Oracle Instance
Each TSO or batch user of an Oracle9i for OS/390 instance runs as a separate and
autonomous address space. You can only access an Oracle instance after a valid
connection is established between the user address space and the Oracle instance.
A valid connection occurs when the Oracle instance accepts the logon user id and
possibly a password provided by the user.

This section discusses considerations for connecting local TSO or batch Oracle
utilities or applications to Oracle database instances running on the same OS/390
system. Such connections use OS/390 cross-memory facilities and do not involve
the Oracle Net. However, since the Oracle database server logically views all client
connections as network connections, Oracle network terminology and some of the
mechanisms of Oracle Net play a role in local connections.

Enabling OS/390 Local Client Access
Oracle database server clients use a cross-memory protocol for connecting to
database instances. The protocol is based on Oracle Net architecture.

Since Oracle’s cross-memory protocol is based on Oracle Net, the formal mechanism
for specifying a local target Oracle instance is to supply a name that is looked up in
the client’s tnsnames file (which is identified by the TNSNAMES DD statement).
Applications supply the name by appending an "@" character followed by the name
to the userid and password that are passed during an Oracle connect request. The
entry in the tnsnames file contains an Oracle Net address string with
PROTOCOL=XM and additional parameters identifying the target database
service. The complete format of the PROTOCOL=XM Oracle Net address is
described under "Cross-Memory Protocol Address" on page 2-2. Usually the target
service is identified by its SID. Every service must have a SID that is unique
throughout the OS/390 image. Even services that are defined in different Oracle
subsystems cannot have the same SID if they are on the same OS/390 image.

It also is possible to append the complete Oracle Net address string directly to the
userid and password to avoid using the tnsnames file. Oracle does not recommend
this technique, however.

Cross-Memory Protocol Address
The formal Oracle Net address string for Oracle’s cross-memory protocol can be
specified using either of two methods:

■ One method identifies the database instance by its SID:
2-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Connecting to an Oracle Instance
(ADDRESS=(PROTOCOL=XM)(SID=sid))
where sid is the SID associated with the database instance.

■ The other method uses the Oracle subystem and service names:

(ADDRESS=(PROTOCOL=XM)(SUBSYS=ssn)(SERVICE=srvn))
where ssn is the Oracle subsystem name, and srvn is the database service
name.

Oracle recommends using the SID form of address because it is simpler and
because it avoids application dependence on the subsystem name.

Specifying Connections
There are four ways, including hardcoding an Oracle Net address on the connect
string as described in the previous section, to specify a target instance. In
descending order of precedence, the four ways are:

1. Specifying a tnsname entry which refers to the Oracle Net cross-memory
protocol on the connect string.

2. Providing a DD statement (or equivalent TSO allocation) of the form:

//ORA@sid DD DUMMY

where sid matches the SID of the target service. Normally this is used only in
batch or TSO applications.

3. A TWO_TASK environment variable that is set to an Oracle Net tnsnames-style
name or to an explicit Oracle Net address string. If a name is specified, then the
TNSNAMES DD in the client address space is opened and read to resolve the
name to an Oracle Net address. If the Oracle Net address specifies
PROTOCOL=XM, then the client is connected to the indicated OSDI service.
(The Oracle Net address could also specify PROTOCOL=TCP, in which case the
client would connect to a remote Oracle instance via Oracle Net as discussed in
"Oracle Net Connect Descriptors for OS/390" in Chapter 10.) In terms of
precedence, clients look for TWO_TASK after determining that no ORA@sid DD
is allocated in the address space.

4. An ORACLE_SID environment variable is set to the SID of a database instance;
the client is connected to that instance. Clients look for ORACLE_SID last, after
determining that no TWO_TASK environment variable is set.
Using the OS/390 Database Instance 2-3

Installation Information
Installation Information
Installation-specific information is required to use the Oracle9i database server
effectively. This information is available from your Oracle DBA.

Oracle9i Server and Library Names
The installation process creates several load and source module libraries you might
need to access. For example, you might need information about the following:

■ CMDLOAD library name

All utilities, programs, and dynamically loaded modules for Oracle utilities are
located in the CMDLOAD library. The person who installs the Oracle9i
database server at your site determines this data set name.

The examples presented in this guide assume the CMDLOAD library has the
data set name oran.orav.CMDLOAD.

■ MESG library name

This library contains NLS data objects and all Oracle message modules.

■ SQLLIB library name

The SQLLIB library contains modules used in linking programs developed in
high-level languages and IBM Assembler. It contains modules used by both
Oracle Precompiler applications and OCI applications.

■ SRCLIB library name

The SRCLIB library contains sample JCL, program code, and scripts for Oracle
tools, Programmatic Interfaces and Access Manager.

■ OBJLIB library name

The OBJLIB library contains the object module ()RASTBS) for liking Oracle call
Interface programs that do not use the LONGNAME compiler option.

Refer to the Oracle9i Enterprise Edition Installation Guide for OS/390 for more
information on load and source module libraries.

Tool Syntax and Batch Procedures
Contact your Oracle DBA for the following information you need to use the Oracle
utilities:

■ Name and location of the Oracle cataloged procedures
2-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Using Oracle Utilities
The following factors influence the syntax used to run the Oracle utilities:

■ Allocation of the Oracle CMDLOAD library to the STEPLIB DD statement in the
TSO LOGON procedure

■ Installation of TSO/E

■ Allocation of the ORA$ENV DD statement

■ Allocation of the ORA$LIB DD statement

■ Allocation of the TNSNAMES DD statement

■ Inclusion of Oracle CMDLOAD library in the system LINKLIST

■ Installation of reentrant Oracle modules in the system link pack area (EPLPA
and PLPA)

OS/390 Features
Use of Oracle utilities is subject to the normal conventions and features of the
OS/390 operating system. The syntax of TSO commands, CLISTs, and batch JCL
must be followed.

Using Oracle Utilities
You can invoke the Oracle utilities from TSO or you can use JCL procedures to
submit a batch job.

Invoking Oracle Utilities from TSO
How you invoke Oracle utilities from TSO at your site might differ slightly from
what is described in this guide because access standards and requirements differ
among installations. Your DBA can provide you with the command syntax
standards specific to your installation.

Call the Oracle utilities from TSO using one of the following:

■ Running as a command processor

■ Using the TSO CALL command

You control tool operation with CLISTs and the Interactive System Productivity
Facility (ISPF) regardless of which technique you use. The technique used is largely
determined by decisions made at your site during installation. The technique can
also be affected by the number of active Oracle instances and the release levels of
Using the OS/390 Database Instance 2-5

Using Oracle Utilities
the instances. Contact your DBA if you have any questions about which technique
to use.

Oracle Utilities as Command Processors
When the Oracle CMDLOAD library is concatenated to your STEPLIB or when its
contents are placed in a linklist library, the Oracle utilities are accessible as
command processors according to standard TSO conventions. The standard syntax
is:

command [parm1][parm2]...[parmn][userid[/password[@tnsname]]] [options]

Oracle Utilities as CALL Programs
All the Oracle utilities are accessible through the TSO CALL command. Use the
CALL command to specify operation of a program from a specific library. In the
CALL command, specify the module to be run and any needed parameters. The
CALL command syntax is:

CALL ’oran.orav.CMDLOAD(command)’ ’[parm1] [parm2]...[parmn] —
 [userid[/password[@tnsname]]] [options]’

Provide the CMDLOAD library name, the invocation command, one or more
positional parameters followed by the user id and password, an optional connect
string, and one or more options. The number of positional parameters and the
options available are tool-specific. The single quotes are part of the command
syntax and must be included as shown in the example.

The CALL command and other TSO commands can be continued from one line to
the next using the normal TSO continuation syntax (a dash, –, to indicate
continuation to the next line) and without regard for line formatting.

Oracle Utilities Accessed Through CLISTs
You may also access Oracle utilities using CLISTs. The CLIST can access the utilities
as command processors or as called programs. The developer of a CLIST can
perform preliminary allocations of files, check for error conditions, and generally
ensure that access to the Oracle server proceeds according to installation standards.

Note: You must allocate the MESG data set as ORA$LIB DD
before invoking any utilities:

alloc file(ORA$LIB) da(’orav.oran.MESG’) shr reuse
2-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Using Oracle Utilities
If you have any questions about the approved method of calling any Oracle tool at
your site, then contact your DBA.

Submitting a Batch Job
The Oracle installation process optionally creates batch JCL procedures you can use
to call the Oracle utilities. The procedures at your installation might have different
names than those in the following list if a procedure name suffix is selected during
the installation. Check with your system administrator before attempting to use the
following procedures.

Sample Cataloged Procedure
The following example shows the ORASQL JCL procedure, which runs SQL*Plus:

//ORASQL PROC INDEX=oran,
// LIBV=orav,
// SYSOUT=’SYSOUT=*’
//ORASQL EXEC PGM=SQLPLUS,REGION=4M
//STEPLIB DD DSN=&INDEX..&LIBV..CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=&INDEX..&LIBV..MESG,DISP=SHR
//SYSOUT DD &SYSOUT,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)

Table 2–1 Batch JCL Procedures for OS/390

Procedure Name Procedure Function

ORAC calls the Pro*C Precompiler.

ORACB2 calls the Pro*COBOL Precompiler version 9.

ORACOB calls the Pro*COBOL Precompiler version 1.

ORADBV calls the DBVerify utility.

ORAEXP calls the Export utility.

ORAFOR calls the Pro*FORTRAN Precompiler.

ORAIMP calls the Import utility.

ORALDR calls SQL*Loader.

ORAOTT calls the Object Type Translator.

ORAPLI calls the Pro*PL1 precompiler.

ORARMN calls the Oracle9i Recovery Manager utility.

ORASQL calls SQL*Plus.
Using the OS/390 Database Instance 2-7

Using Oracle Utilities
//SYSERR DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//ORAPRINT DD SYSOUT=*
//* REQUIRES //SYSIN DD* STATEMENT
//* REQUIRES //ORA@sid DD DUMMY STATEMENT (ORACLE INSTANCE NAME)

The INDEX and LIBV symbolic parameters are used to form the STEPLIB and
ORA$LIB data set names. The actual values for these parameters are established by
the person who installed the Oracle9i database server. The cataloged procedures
ensure the default values of these symbolic parameters conform to the actual names
selected for the Oracle data sets at your installation.

In the example, the installed Oracle INDEX and LIBV parameters are oran and
orav, respectively. These values result in the following data set name for the
STEPLIB DD statement:

oran.orav.CMDLOAD

The SYSOUT DD statement contains a symbolic reference to &SYSOUT. This
symbolic reference defaults to the string SYSOUT=*, which sets the SYSOUT class
of this DD statement to the same class as MSGCLASS in the JCL JOB statement.

The procedure requires additional JCL to point to the correct Oracle instance. See
earlier section ‘Specifying Connections’ for details. Some examples are:

Example 2–1 Example #1

//ORA@ORA1 DD DUMMY

Example 2–2 Example #2

//ORA$ENV DD *
TWO_TASK=ORANAME
//TNSNAMES DD *
ORANAME=(DESCRIPTION=
 (ADDRESS=(PROTOCOL=XM)(SID=ORA1))
)

Example 2–3 Example #3

 //ORA$ENV DD *
 ORACLE_SID=ORA1

All three of the above examples illustrate accessing a local instance whose SID is
ORA1.
2-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Using Oracle Utilities
Alternatively, the connection can also be specified using a tnsname alias on a userid
and password supplied in the SYSIN file, or in the PARM field of the EXEC
statement.

This procedure requires a SYSIN DD statement. The SYSIN DD statement can
contain instream SQL and SQL*Plus statements, or it can point to a file containing
such statements.

Each JCL procedure provided with the Oracle9i database server conforms to the
basic structure illustrated by the ORASQL procedure.

Sample Batch Job
The following example JCL runs the ORASQL cataloged procedure. You must
provide an appropriate JOB card at the beginning of the sample job. The example
assumes the Oracle instance you are connecting to has ORA1 as its SID.

// ... JOB ...
//SQL EXEC ORASQL,
// PARM=’SCOTT/TIGER’
//ORA@ORA1 DD DUMMY
//SYSIN DD DSN=SCOTT.ORACLE.SQL(SQLSTUFF),DISP=SHR

■ User id SCOTT is used to connect to the Oracle instance.

■ The ORA@ORA1 DD statement names the target instance, ORA1.

■ The contents of member SQLSTUFF in data set SCOTT.ORACLE.SQL is run.
This file must contain valid SQL and SQL*Plus statements.

Ask your DBA or systems programming staff for the location of these JCL
procedures and the correct symbolic parameters that must be provided to the
utilities. These procedures are installed in a library that is automatically searched
by the JES2 or JES3 job entry subsystem. If you experience problems in running
these procedures, then contact your Oracle DBA.

Using the Batch TMP
Run Oracle utilities in batch using TSO notation and conventions by running the
TSO batch terminal monitor program (TMP) facility.

Exiting Utilities and Utilities in TSO
In response to an input prompt, a forward slash followed by an asterisk (/*) is used
to exit any line mode Oracle9i for OS/390 tool or utility.
Using the OS/390 Database Instance 2-9

OS/390 Environment Variables
Attention Processing
For TSO applications, the Oracle subsystem establishes an attention processing
subtask through the OS/390 STAX macro instruction. When the [Attn] or [PA1] key
is pressed, the interrupted status is passed to the connected Oracle address space.
The corresponding main task then performs the interrupt processing and returns to
the application address space. The attention processing is removed when the
disconnect function is called and the attention processing subtask is detached.

For both Oracle tools and customer-written applications running in TSO/E, the
Oracle program interface code will attempt to establish an attention-processing
subtask that uses the TSO/E STAX service.

This mechanism allows the user to interrupt an operation in the Oracle server by
pressing the terminal [Attn] or [PA1] key. For this to work, the ORASTAX module
must be loadable from JOBLIB/STEPLIB, a linklist library, or LPA. If ORASTAX
cannot be loaded, attention processing is suppressed; no messages are issued to
indicate this condition.

In addition to the above, certain Oracle tools or utilities recognize and process
TSO/E attention if it occurs while the utility is active (that is; not during a server
request). These are discussed in the relevant tool or utility sections.

Attention interrupt processing is specific to each tool. Chapter 9, "SQL*Plus"
discusses the effect of attention processing.

OS/390 Environment Variables
Environment variables enable you to set certain options for each user. Specify
environment variables in a sequential file or in a PDS member pointed to by the
ORA$ENV DD statement.

Environment variables have the following syntax:

user_env_name = ’env_value’ *** comment ****

where:

user_env_name is the environment variable name. This name can be
expressed in uppercase, lowercase, or mixed case.

env_value is the environment variable value you specify. If the value
is enclosed by single quotes, then it is saved exactly as you
specify it. If the value is not enclosed in single quotes, then
the value is translated to uppercase and saved in uppercase.
2-10 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

OS/390 Environment Variables
The following environment variables are supported:

■ Oracle NLS parameters as described in the Oracle9i Database Globalization
Support Guide

■ Oracle connection environment variables, ORACLE_SID and TWO_TASK

■ OS/390-specific environment variables

 ORACLE_SID, TWO_TASK, and the OS/390 environment variables are described
in the following list.

comments is an optional comment. If comment is used, then ’env_
value’ must be enclosed by quotes. If the first nonblank
character is ’*’, ’/’, or ’#’, then the whole line is treated as a
line comment.

CRTL_SPFENQ enables or disables the PDS enqueuing mechanism for
Oracle utilities. For example:

CRTL_SPFENQ = ’yes|no’

The default is yes.

The enqueue mechanism used by Oracle utilities for
performing simultaneous updates to a shared PDS is
compatible with the method used by the ISPF editor. This
enqueue mechanism affects PDS members opened with
/DD/ or /DSN/.

CRTL_PDSWAIT alters the behavior of the PDS enqueue mechanism. When
the enqueue is not immediately available, a yes places the
user in a wait state. When the enqueue is not immediately
available a no returns an error to the user. The default is
no. Following is the correct syntax:

CRTL_PDSWAIT = ’yes|no’
Using the OS/390 Database Instance 2-11

OS/390 Environment Variables
NLS_LANG specifies the national language in which Oracle utilities
issue messages, format and display dates and numbers,
sort text, and process character data at computers. The
syntax is:

NLS_LANG=’language_territory.charset’

The default setting is:

NLS_LANG=’AMERICAN_AMERICA.WE8EBCDIC1047’

Customers who have built their databases with releases
earlier than 7.3.2 and who have ’WE8EBCDIC37C’ as their
character set can specify the following to eliminate
unnecessary conversion:

NLS_LANG=’AMERICAN_AMERICA.WE8EBCDIC37C’

Consult with your Oracle DBA for information about
which languages, character sets, and territories are
supported at your site.

ORACLE_HOME specifies the OS/390 USS directory path of the location
where the USS components of Oracle9i for OS/390 are
installed.

ORACLE_SID specifies the SID of a local Oracle for OS/390 database
instance that is used to connect a local Oracle for OS/390
client to a local Oracle database instance.

TWO_TASK specifies the Oracle Net tnsnames-style name or the
explicit Oracle Net address string that is used to connect a
local Oracle for OS/390 client to a local or remote Oracle
database instance.

TZ specifies the time zone that is used within the Oracle
JServer. If TZ is not defined, a default of GMT is used.
The TZ specified should match one of the entries from the
$ORACLE_HOME/javavm/lib/tzmappings file.
2-12 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i Utilities and OS/390
3

Oracle9i Utilities and OS/390 Files

Oracle utilities provide flexible file support within the OS/390 environment. Using
file specification syntax and a special feature, Oracle utilities allow great flexibility
in specifying and accessing OS/390 data sets and other types of files.

This discussion does not apply to Oracle utilities running in the UNIX System
Services environment. For information on Oracle utilities running in the USS
environment, see Chapter 4, "Accessing Oracle9i Under USS".

This chapter describes the interaction between OS/390 files and Oracle utilities.
The following topics are discussed:

■ Using OS/390 Files on page 3-1

■ File Name/Attribute Augmentation (FNA) Facility on page 3-8

■ FNA Example on page 3-12

■ User-Defined FNA Control Files on page 3-13

■ Examples Using FNA on page 3-19

Using OS/390 Files
All Oracle utilities use OS/390 files. Every tool or utility accesses one or more input
or output files. The term file refers to the logical unit that is the actual repository of
the data the tool or utility reads from or writes to. A file can be an OS/390 data set,
a TSO screen, the OS/390 operator console, an input or output spool file, or even a
load module containing static input data.

Most OS/390 users are accustomed to utilities or applications that operate on files
specified in DD statements or TSO ALLOC commands. Many TSO commands and
some IBM utilities (such as IDCAMS) let you specify a file as a data set name,
performing dynamic allocation automatically instead of requiring a pre-allocated
 Files 3-1

Using OS/390 Files
DD statement. With Oracle file support, you can also create new data sets without a
DD statement and you can access devices (such as the operator console) OS/390
does not usually consider files.

The Oracle9i database server supports all non-VSAM file organizations except
spanned records (RECFM=VS or VBS) and ISAM (DSORG=IS). For information
about the VSAM files that comprise the Oracle control, database server, and redo
log files, refer to the Oracle9i Enterprise Edition System Administration Guide for
OS/390.

General Notation for Specifying Files
All Oracle9i for OS/390 utilities recognize a uniform notation for specifying files.
The general form of this notation (called a file specification or filespec) is shown in
the following example:

[/pathname/]data

where:

The following string indicates a file identified by DDname INFILE in the present job
step or TSO session:

/DD/INFILE

File Specification Types
You can specify files in the following ways:

■ By DDname

■ By full data set name

■ By unqualified data set name

■ By PDS member (as a control or parameter file)

Summary of Filespecs
The following table summarizes the types of file specifications you can use with
Oracle utilities.

pathname is one of several reserved names specifying the type of filespec.

data is additional information or specific file related parameters.
3-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Using OS/390 Files
The file specifications and the notation for using them are described in the
following sections:

■ Specifying Files by DDname (/DD/)

■ Specifying Files by Full Data Set Name (/DSN/)

■ Specifying Files by Unqualified Data Set Name

Specifying Files by DDname (/DD/)
To specify a file by DDname to an Oracle tool use the following string, where
ddname is the one-character to eight-character DDname:

/DD/ddname

The DDname must be allocated to the job step or TSO session before the file is
opened. In a TSO session, an ALLOC command must be issued, usually before the

Table 3–1 Summary of Filespecs

Syntax What is Accessed

dsname The fully-qualified sequential data set that results after TSO
prefix and filetype suffix extensions are performed.

dsname(mem) Member mem of the fully-qualified PDS that results after
TSO prefix and filetype suffix extensions are performed.

/DD/ddname

or

DD:ddname

data set or spool file designated by the corresponding DD
statement or ALLOC command.

or

The Language Environment equivalent

/DD/ddname(mem)

or

DD:ddname(mem)

Member mem of the PDS designated by the corresponding
DD statement or ALLOC command.

or

The Language Environment equivalent

/DSN/dsname

or

//dsname(mem)

The fully-qualified sequential data set dsname.

or

The Language Environment equivalent

/DSN/dsname(mem)

or

//dsname(mem)

Member mem of the fully-qualified PDS dsname.

or

The Language Environment equivalent
Oracle9i Utilities and OS/390 Files 3-3

Using OS/390 Files
tool is called. (During a SQL*Plus session, you can use the HOST command to issue
a TSO ALLOC command for a file used by a subsequent SQL*Plus command such
as START or SAVE.) In a batch job, a matching DD statement must be included in
the JCL.

You can specify a member of an OS/390 PDS as part of the /DD/ notation. The
member name must be provided in parentheses immediately after the DDname, as
shown in the following example:

/DD/MYPDS(SQL2)

The DD statement for batch (or TSO ALLOC) specifies the PDS name but no
member name, as shown in the following example:

//MYPDS DD DISP=SHR,DSN=PAYROLL.SQLLIB.CNTL

Usage Notes The following usage notes are for specifying files by DDname:

■ When an existing PDS member is specified for output, the current contents of
the member are completely replaced by what is written. If a nonexistent
member name is specified for output, then a new member with that name is
created.

■ When a JES spool file is used by an Oracle tool, the file must be specified by
DDname. The corresponding DD statement or ALLOC command indicates a
SYSOUT class (output spool files) or DD * (input spool files, only used in batch
jobs).

See the SPOOL OUT command in "SPOOL OUT" on page 9-10 for an example
specifying a filename with /DD/.

Specifying Files by Full Data Set Name (/DSN/)
You can specify a file by OS/390 data set name to an Oracle tool using the following
syntax, where hlq.dsname is the fully-qualified data set name:

/DSN/hlq.dsname

This notation gives access to a sequential OS/390 data set with the fully-qualified
data set name. The Oracle9i database server dynamically allocates the data set. You
do not need to provide a DD statement or a TSO ALLOC command.

Access a member of a PDS by including a member name in parentheses
immediately after the data set name, as in the following example:

/DSN/ORACLE.OSDI.CNTL(ORASQL1)
3-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Using OS/390 Files
In this case, the member ORASQL1 of PDS ORACLE.OSDI.CNTL is read or written.

Usage Notes The following usage notes are for specifying files by full data set name:

■ If the file is being used for input, then the data set must exist and be cataloged;
otherwise, an error is reported.

■ If the file is being used for output, then the existing data set of the specified
name is overwritten. If the data set does not exist, then it is created through
dynamic allocation with your system’s default space allocation.

■ When an existing PDS member is specified for output, the current contents of
the member are completely replaced by what is written. If a nonexistent
member name is specified for output, then a new member with that name is
created.

■ If an output file using PDS member notation specifies a data set name that does
not exist, then the data set is created dynamically in the same manner as a
sequential data set. However, because OS/390 has no default space allocation
for PDSs, the Oracle9i server inserts its own default of one track primary, one
track secondary, and one PDS directory block. This default is not appropriate
for most PDS applications.

See the start file parameter in "Running Under TSO" on page 9-2 for an example of
the /DSN/ notation.

Specifying Files by Unqualified Data Set Name
You can specify a file without a pathname to an Oracle tool. If a file specification
does not have a pathname (it does not begin with a slash), then it is treated as a
partial data set name that is subject to extension.

Most Oracle utilities also extend unqualified data set names by appending a suffix
to the right of the name. The suffix, often called a filetype extension, is generally an
acronym or mnemonic describing the type of data or records in the file. For
example, files read by the SQL*Plus START command, which normally contain
SQL*Plus commands or SQL statements, have a filetype extension of SQL. "Filetype
Suffixes" on page 3-8 provides a list of the filetype extensions used by Oracle
utilities.

Unqualified data set file names, like fully-qualified names, can refer to PDS
members by including the member name in parentheses immediately after the
name. The addition of the filetype extension does not affect the member name
because the suffix is added before the member name.
Oracle9i Utilities and OS/390 Files 3-5

Using OS/390 Files
Usage Notes The following usage notes are for specifying files by unqualified data
set name:

■ Only file names specified without a pathname are subject to extension
processing.

■ Extension processing is further controlled by the File Name/Attribute
Augmentation Facility (FNA).

Examples To illustrate prefix and suffix extension of unqualified data set names,
assume a TSO user, whose PROFILE PREFIX is GJONES, calls SQL*Plus and then
enters the following command:

START MYSQL2

Because there is no pathname prefix, MYSQL2 is considered an unqualified data set
name and is extended (at both ends) to become GJONES.MYSQL2.SQL. The
following command produces the same result:

START /DSN/GJONES.MYSQL2.SQL

The next example illustrates unqualified file specification with a member name:

START MYSQLLIB(TEST2)

This name is extended to GJONES.MYSQLLIB.SQL (TEST2).

Redirecting Standard Files and Parameters
You can redirect standard files and parameters to specify a nondefault file for the
duration of the associated TSO command or job step. To specify redirection, use
one of the following symbols followed by a file specification from the command
parameter line in TSO or the PARM field of the EXEC statement in batch:

< for input

> for output

>> to append output

? for error output

?? to append error output

++ for parameters
3-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Using OS/390 Files
Redirecting Files
Any of the standard input, output, and error files can be redirected with these
symbols. While the redirection parameters can be mixed with other command or
utility parameters, Oracle Corporation recommends grouping these parameters at
the beginning or end of the command parameters or PARM field for clarity. The
following example redirects the input file to the INFIL DD statement.

//STEP1 EXEC PGM=PROC,PARM=’</DD/INFIL’
//INFIL DD *

If an output file specified by a data set name does not exist, then the Oracle
application dynamically allocates it using the installation or IBM default space and
unit specifications. If the output file does exist, then the Oracle application
normally overwrites any existing contents.

You can append output to a data set by doubling the redirection prefix symbol.
If the data set does not already exist, then it is created. For example, the following
command adds error messages to the end of the data set named
tsoprefix.MY.ERRORS:

??MY.ERRORS

Redirecting Parameters
To use parameter redirection, imbed the following string in the OS/390 parameter
field, where filespec is a valid Oracle for OS/390 file specification:

++filespec

When the Oracle tool or utility encounters this in the parameter field, it scans the
data in the file specified by filespec and processes it as if it is included in the
OS/390 parameter field. At end-of-file (EOF), the Oracle tool or utility continues
scanning the OS/390 PARM field at the end of filespec.

The following example uses a parameter redirection operator:

//STEP1 EXEC PGM=PROCOB18,PARM=’++/DD/SYSPARM HOST=COBOL’
//SYSPARM DD *
 INAME=/DD/SYSIN
 ONAME=/DD/SYSPUNCH
 LNAME=/DD/SYSPRINT
 USERID=SCOTT/TIGER
/*
Oracle9i Utilities and OS/390 Files 3-7

File Name/Attribute Augmentation (FNA) Facility
In this example, the Oracle Pro*COBOL Precompiler processes all the data
(including INAME=......USERID=SCOTT/TIGER) as if it is passed in the
OS/390 parameter field. You can specify parameter redirection anywhere in the
OS/390 parameter field and it is implemented at that point.

Filetype Suffixes
The contents of Oracle files can be identified by the filetype suffix. A filetype suffix
is supplied by each Oracle tool for each file used. The suffix is a short mnemonic or
acronym identifying the file contents. The suffixes in Table 3–2 identify the different
types of Oracle files:

File Name/Attribute Augmentation (FNA) Facility
Many utilities support the full range of naming syntax described in "Using OS/390
Files" on page 3-1. Some utilities require file names in a simpler format or shorter

Note: The ++ filespec does not support the use of redirection
parameters.

Table 3–2 Filetype Suffixes for Oracle Utilities

Suffix Filetype

BAD Reject record output from SQL*Loader.

BUF An input and output save file in SQL*Plus.

CTL A control file input to SQL*Loader.

DAT An input file to SQL*Loader.

DMP The output from the Export utility.

DSC Discarded record output from SQL*Loader.

LOG A log output file from SQL*Loader.

LST A print or listing file from SQL*Plus.

PKH Oracle9i Text PL/SQL header files used during installation.

PLB A PL/SQL binary file.

SQL An input file to SQL*Plus.

XLT Oracle9i Text file.
3-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

File Name/Attribute Augmentation (FNA) Facility
length than is preferable in OS/390. If the full range of naming syntax is not
available, then you can take advantage of FNA name manipulation to convert a
simple name string to a larger, more complex file name string.

The FNA facility provides automated user-defined manipulation of file names
beyond the scope of normal OS/390 file name and extension processing. Before a
tool opens a file, it calls FNA processing. The tool supplies FNA with the base file
name and filetype suffix. FNA builds the final file name from this input, using the
file syntax array (FSA) data and a set of rules. The final file name string, which is
essentially unrestricted in size and syntax, is returned to the tool. The tool then
proceeds with opening and reading or writing the file.

Only file names specified without a pathname (without a /.../ prefix) are subject
to extension processing.

With FNA, you can do the following:

■ Access OS/390 data set names that have relatively complex syntax (such as
PDS).

■ Overcome logical ambiguities imposed by nonextendable file names (those
prefixed with a pathname).

■ Select JCL-like parameters (such as DCB attributes and DASD space allocations)
for specific types of files written by Oracle utilities.

A small set of FNA controls is distributed with Oracle9i for OS/390. These controls
ensure the use of specific DCB attributes with several types of output files. You can
modify, eliminate, or expand these controls.

FNA Controls and Operations
FNA is controlled by the file syntax array (FSA), a logical table containing
specifications for modifying file names and adding JCL-like keywords before a file
is actually opened. The FSA contents are determined by the following:

■ A set of default FSA entries distributed with the product.

■ An optional user-defined control file that adds more FSA entries or alters the
distributed default entries.

FNA file name manipulation is controlled by the FSA contents and the following
specifications:

base file name A character string, usually (though not always) supplied
by the user.
Oracle9i Utilities and OS/390 Files 3-9

File Name/Attribute Augmentation (FNA) Facility
You can supply the base file name in the following ways:

■ In the parameters specified when a tool is called

■ In response to a prompt from the tool

■ In a subcommand of the tool (like the SQL*Plus SPOOL command)

FSA Table
The logical table of FSA data used by FNA is comprised of three columns. The first
column contains filetype suffixes. Each filetype for which FSA data is present
appears in this column once. The second column contains character strings that
designate construction of the final file name for the corresponding filetype. The
third column contains character strings of JCL-like keywords. These are added to
final file names for the corresponding filetype and are only effective when the file is
opened for output.

FNA File Name Construction
To construct a file name, FNA substitutes characters as appropriate, then extends
the name accordingly.

Substitution
The FNA file name construction process copies all characters from the modification
string except plus signs exactly as given. FNA uses the following substitution for
these special characters:

filetype suffix A character string supplied by the Oracle tool, which
identifies the type of file being used.

TSO PROFILE PREFIX A character string that might have been set by the
PROFILE PREFIX command (this command must be
issued before calling the Oracle tool).

+ is replaced with the user-supplied base file name.

* when used as the high level qualifier, is replaced with the
current TSO PROFILE PREFIX value when running in the
foreground, and the TSO login ID must be used when running
in batch mode.
3-10 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

File Name/Attribute Augmentation (FNA) Facility
Construction Procedure
FNA takes the base file name and filetype suffix as input and uses the following
procedure to construct the final file name:

1. The FSA is searched for an entry with a filetype matching the filetype suffix
provided. If a matching entry is found, then FNA proceeds with Step 2 through
Step 4. If no matching entry is found, then FNA uses the unmodified base file
name and proceeds with Step 4.

2. If the FSA contains a file name string, then that name is modified. If the FSA
does not contain a name string, then the base (user-supplied) file name is
modified.

To modify the name, first the base file name is substituted wherever the plus
sign appears in the FSA file name string, and then the TSO PROFILE PREFIX is
substituted wherever an asterisk appears. If no PREFIX is defined, then each
asterisk is replaced by a null string.

3. If the FSA entry for the filetype contains a non-null attribute string, then a
colon (:) and the attribute string are appended to the file name (which might
have been modified by Step 2).

The colon is a delimiter to separate the attribute keywords from the file name.
The attribute string is the third column of the FSA entry, where JCL-like
attributes are specified. The addition of attributes is only meaningful for files
that undergo dynamic allocation. FNA attributes for /DD/ files have no effect.

4. If the file name does not begin with a path prefix (/) or apostrophe (’), then the
following steps are taken:

■ A period and the filetype suffix are added on the right. The filetype suffix
is added so any PDS member name or attributes in parentheses are kept on
the right end of the file name.

■ If attributes are specified by the user in addition to those specified in the
FSA, then the user’s attributes are attached to the name following those
from the FSA. If the user specifies attribute keywords that duplicate those
in the FSA, then the user’s attributes are used.

■ The following string is attached to the beginning of the name, where
prefix is your TSO PROFILE PREFIX:

/DSN/prefix
If the PROFILE PREFIX is not set or you are not running under TSO, then
only /DSN/ is attached to the name.
Oracle9i Utilities and OS/390 Files 3-11

FNA Example
FNA processing is complete and the file name is returned to the tool, which opens
and then reads or writes the file.

FNA Example
Suppose TSO user GJONES (with PROFILE PREFIX set as GJONES) has issued the
following SQL*Plus command, which specifies a base file name of MYSQL2:

START MYSQL2
SQL*Plus associates a filetype of SQL with the file used in the START command.
Assume also that the following entry is in the FSA:

FSA (
 FTYPE(SQL)
 FNAME(’SQLLIB(+)’)
 FATTR(’VB,LRECL=240’)
)

The following sample shows an FNA process:

1. Locate the FSA entry

This locates the FSA entry for the filetype SQL (case is ignored).

2. Perform the substitution

This processes the file name string SQLLIB(+), substituting the base file name
MYSQL2 for the +, resulting in the following:

SQLLIB(MYSQL2)
3. Add the attribute string

This step appends a colon (:) and the attribute string. The section "Attribute
Keywords" on page 3-16 discusses the attribute string. The result is the
following name:

SQLLIB(MYSQL2):VB,LRECL=240
Since the name does not begin with a path prefix or apostrophe, the following steps
are completed:

1. Add the suffix

Attaches a period and a filetype suffix to the end of the name, before the
member name in parentheses. The result is the following name:

SQLLIB.SQL(MYSQL2):VB,LRECL=240

2. Add the user’s attributes
3-12 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

User-Defined FNA Control Files
No additional attributes are specified with the SQL*Plus START command, so
the name remains unchanged.

3. Add /DSN/ and the TSO PREFIX

This step attaches the /DSN/ pathname and the TSO PROFILE PREFIX to the
beginning of the name, resulting in:

/DSN/GJONES.SQLLIB.SQL(MYSQL2):VB,LRECL=240

This file name string is passed back to SQL*Plus and opened. Because the START
command opens the subject file for input, the attribute data is ignored and the data
set’s existing DCB attributes are observed. A member called MYSQL2 in the PDS
named GJONES.SQLLIB.SQL is opened for the user’s MYSQL2 specification.

You can use FNA to provide additional flexibility in managing the interaction
between Oracle utilities and OS/390 files by controlling the FSA entries. The
section "User-Defined FNA Control Files" describes additional examples of FSA
entries and FNA processing.

Default FSA Entry
The distributed Oracle product contains the default FSA entry listed in Table 3–3.
For all other filetypes, the defaults are null strings, which means FNA supplies no
special name or attributes.

The DMP entry sets DCB attributes required for Export data.

The FSA default entry can be overridden, unless otherwise noted in Table 3–3, by
supplying an FNA control file with an entry for the corresponding filetype with a
string specified for the item (FNAME or FATTR) to be overridden.

User-Defined FNA Control Files
All Oracle utilities use the default FSA entries every time the Oracle9i database
server is called. You cannot permanently modify the default entries. However, you
can define a control file that includes FSA entries for a specific invocation of an
Oracle tool.

Table 3–3 Oracle Product Default FSA Entry

Filetype FNAME FATTR

DMP (null) FB,LR=4096
Oracle9i Utilities and OS/390 Files 3-13

User-Defined FNA Control Files
An FNA control file has the following uses:

■ Add FSA entries for suffixes not included in the default FSA, including
specifications for modifying file names and appending output attributes.

■ Change the default FSA specifications for modifying file names and appending
attribute data. These changes can include eliminating the default specifications
entirely.

■ Add specifications for modifying file names to a default entry that only
appends attribute data, or add specifications for appending attribute data to an
entry that only modifies file names.

Specifying an FNA Control File
A user-defined FNA control file always has the following name:

/DD/ORA$FNA

You must allocate this file to an ORA$FNA DD statement in your JCL or TSO
session. The ORA$FNA DD statement must refer to one of the following types of
data sets:

■ A sequential data set with fixed or variable length records

■ An instream (DD *) data set

■ A PDS member with the member name specified in the DD statement

If an ORA$FNA DD statement is present when a utility is called, then the utility
refers to the FNA control file specified in the DD statement. If an ORA$FNA DD
statement is not present, then FNA uses the default FSA entries.

Creating an FNA Control File
The FNA control file contains FSA entries specified with EBCDIC characters. Any
number of FSA entries can be included. An FSA entry can be continued over
multiple lines; no special continuation indicator is required. Comments,
surrounded by /* and */, can be included at any point that permits a blank or end
of record. The control file records must not contain sequence numbers.

FSA Entries
FSA entries have the following format:

FSA (FTYPE(suffix-type)
 FNAME(’name-string’) /*<optional>*/
3-14 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

User-Defined FNA Control Files
 FATTR(’attribute-string’) /*<optional>*/
) /*<required>*/

where:

suffix-type
is a one-character to eight-character string indicating a file name suffix. Any file
name with this suffix is substituted by the value provided by the FNAME keyword
that follows.

Do not enclose this string in single or double quotes. The string is converted to
uppercase characters. The first blank space or right parenthesis, , is considered
the end of the string. For example:

FTYPE(SQL)

name-string
is an alphanumeric string indicating the file name to substitute for files that have
the suffix specified in FTYPE. The FNAME keyword is optional.

Because FNAME is optional, the value for the omitted keyword is the value in the
default FSA distributed with the Oracle9i database server, if any. If there is no
default entry in the default FSA, then an omitted FNAME is assumed to be a null
(empty) string.

Enclose the substituted file name in single or double quotes; blanks within the
quotes are recognized. For example:

FNAME(’/DSN/*.ORACLE.+.SQL’)

If the substituted file name needs more than one line in the control file, then extend
the value to the end of the line and continue in the first position of the next line.

If the TSO PREFIX is GJONES and the user supplies a base file named MYSQL, then
FNA processing resolves this name string to:

/DSN/GJONES.ORACLE.MYSQL.SQL

If there is no TSO PREFIX, then FNA processing resolves this string to the invalid
file name string:

/DSN/.ORACLE.MYSQL.SQL

This particular FNAME is only usable with a TSO PROFILE PREFIX.
Oracle9i Utilities and OS/390 Files 3-15

User-Defined FNA Control Files
attribute-string
is the attribute data added to the substituted file name. The FATTR keyword is
optional.

The attribute data can be in the form of a keyword list separated by commas and
enclosed in single or double quotes. Do not include blanks. For example:

FATTR(’VB,LRECL=255’)

Because this keyword is optional, the value for the omitted keyword is the value in
the default FSA distributed with the Oracle9i database server, if any. If there is no
default entry in the default FSA, then an omitted FATTR is assumed to be a null
(empty) string.

Refer to "Attribute Keywords" for information about the correct syntax for this
keyword value.

Usage Notes The following usage notes are for FSA control file entries:

■ Include any character you want added to the base file. These characters are
added exactly as specified in the string.

■ Use a plus sign, +, to indicate where to substitute the user-supplied base file
name.

■ When the utility is run with PROFILE PREFIX, use an asterisk (*)to indicate
where to substitute the TSO PROFILE PREFIX in the file name. If the utility is
run with PROFILE NOPREFIX, then the asterisk is ignored.

To use the TSO prefix substitution function in a batch job, run the job under the
control of the batch monitor program IKJEFT01. Use the TSO PROFILE PREFIX
command in your SYSIN data stream to set the appropriate TSO prefix before
calling the utility.

■ To eliminate a default FSA entry, specify an empty string with a pair of adjacent
single or double quotes.

Attribute Keywords
Attribute data that can be added to a file name includes the following examples
with the equivalent JCL parameter. Keyword characters in lowercase can be
omitted.
3-16 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

User-Defined FNA Control Files
The following keywords indicate DCB record format:

Table 3–4 Attribute Keywords and JCL Parameter Equivalents

Keyword JCL Parameter Equivalent

BLKsize DCB=BLKSIZE=n.

BLOck indicates the space is allocated in blocks; it cannot be used with
the CYL or TRK keywords.

CYL indicates space is allocated in cylinders; it cannot be used with
the BLO or TRK keywords.

DIrectory indicates the number of directory blocks for a PDS.

LRecl DCB=LRECL=n.

OLD DISP=OLD (exclusive DSN enqueue).

PRIMary indicates primary space allocation.

SECondary indicates secondary space allocation.

SHR DISP=SHR (shared DSN enqueue).

TRK indicates space allocation is in tracks; it cannot be used with
the BLO or CYL keywords.

UNIT indicates the name of the allocation unit; it can be up to eight
characters.

VOLume indicates the specific volume of allocation; it can be up to six
characters.

Table 3–5 DCB Record Format Keywords and JCL Parameter Equivalents

Keyword JCL Parameter Equivalents

F RECFM=F

FA RECFM=FA

FB RECFM=FB

FBA RECFM=FBA

FBS RECFM=FBS

FBAS RECFM=FBAS

V RECFM=V

VA RECFM=VA
Oracle9i Utilities and OS/390 Files 3-17

User-Defined FNA Control Files
FNA Control File Error Handling
Most logical or syntax errors in the FNA control file are detected when the Oracle
utility initializes. Error messages are displayed in the standard error file, which is
normally the screen in TSO (if PROFILE WTPMSG is set) or the OS/390 console (if
PROFILE NOWTPMSG is set). In batch, the SYSERR DD statement controls the
output destination. In general, an erroneous entry is ignored and utility operation
proceeds as though the entry is not specified.

Errors within the quoted FNAME or FATTR strings, such as invalid name syntax or
improper attribute keywords or values, are not detected until the utility opens the
associated file. These errors normally result in descriptive messages written to the
standard error file. Because such errors usually make it impossible to open the
associated file, utility operation typically halts in this situation.

FSA Keyword Usage Notes
When you use an FNA control file to override a default FSA entry, the string you
specify for FNAME or FATTR completely replaces the string in the default entry. Be
careful to add attributes using FATTR; a default attribute not replicated in the
control file FATTR string is lost. For example, the DMP filetype has default FATTR
of FB and LR of 4096 to meet the requirements of Export. To force the DMP file to a
specific allocation unit, you can use an FNA control file containing:

FSA(FTYPE(DMP) FATTR(’UNIT=SYSTSO’))

Because the override FATTR string replaces the default, the RECFM with FB and
LRECL with 4096 attributes are lost in this sample specification, resulting in an
unusable Export file. To prevent this, you must respecify the needed defaults along
with the attribute being added, as in the following example:

FSA(FTYPE(DMP) FATTR(’UNIT=SYSTSO,FB,LR=4096’))

DCB attributes specified through FATTR, whether defaults or from an FNA control
file, replace corresponding attributes that might already be associated with an
OS/390 data set.

VB RECFM=VB

VBA RECFM=VBA

Table 3–5 (Cont.) DCB Record Format Keywords and JCL Parameter Equivalents

Keyword JCL Parameter Equivalents
3-18 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Examples Using FNA
When writing to pre-allocated data sets with DCB attributes you want to retain, do
not use an FATTR specification, as shown in the following example:

FSA (FTYPE(SQL) FNAME(’/DD/SQLS’))

Attributes supplied for a file specified with a /DD/ pathname generally have no
effect. In this case, attributes must be specified on the DD statement or in the TSO
ALLOC command, or must already exist (for an existing data set).

Files opened for output default to DISP=OLD. If you want to allow for concurrent
use of PDSs, then you must override this default by including an FATTR string of
SHR in the FNA control file.

Examples Using FNA
The examples in the following sections illustrate sample FNA control file
specifications for:

■ Partitioned data sets

■ Shared libraries

■ Group libraries

Example 1 Partitioned Data Sets
In the following example, assume the installation wants each user to have a PDS
that stores the SQL files created and run by each user. The installation sets up an
FNA control file containing the following entry:

FSA(FTYPE(SQL)/* SQL*PLUS */
FNAME(’SQLS(+)’))

Assume a user with a TSO PREFIX of GJONES has an ORA$FNA DD statement
pointing to the FSA in the previous example. When the user issues the SQL*Plus
START command with PAYROLL as the argument, GJONES.SQLS.SQL(PAYROLL)
becomes the file name and is used for the SQL file.

Without this FSA entry, the system defaults to file name GJONES.PAYROLL.SQL for
the SQL file.

This example emphasizes two points:

■ The general defaults for naming files are implemented in the default FSA,
which has the following format:

FSA (
Oracle9i Utilities and OS/390 Files 3-19

Examples Using FNA
 FTYPE(suffix)
 FNAME(’+’)
)

■ You can use the FNA facility to specify simple names that are treated as
members of PDSs.

Example 2 Shared Libraries
In this example, assume the installation wants shared libraries for SQL files. The
installation sets up the following FSA control file:

FSA (
 FTYPE(SQL)
 FNAME(’/DSN/SYS5.SQL(+)’)
)

Assuming the same user described in "Partitioned Data Sets" on page 3-19, the
SYS5.SQL(PAYROLL) becomes the shared library name and is used for the SQL file.

The pathname /DSN/ preceding the data set name suppresses the extension
processing normally performed under OS/390. Both /DSN/ and /DD/ can be
used in the FSA.

Example 3 Group Libraries
In the following example, assume an installation groups users, and each group is
identified by a TSO PREFIX. This FSA entry provides the necessary names for a
library shared within a group:

FSA(FTYPE(SQL)
 FNAME(’/DSN/*.SQL(+)’)

Assume a user with a TSO PREFIX of GROUP2 uses the SQL*Plus command START
PAYROLL and has an ORA$FNA DD statement pointing to the previous FSA.
Group2.SQL(PAYROLL) becomes the shared group library name and is used for the
SQL file.

Although the Oracle9i server dynamically creates these data sets, Oracle
Corporation recommends the installation pre-allocate all data sets referenced
by FNA. Pre-allocating the data sets that are referenced by FNA ensures your
requirements are met. The default values selected by FNA might not be
appropriate for your requirements.
3-20 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Accessing Oracle9i Unde
4

Accessing Oracle9i Under USS

This chapter explains how to run selected Oracle utilities under OS/390 UNIX
System Services (USS). Information about implementing your own
customer-written Oracle applications so they run under OS/390 UNIX System
Services in included at the end of this chapter. The following topics are discussed in
this chapter:

■ OS/390 UNIX System Services Overview on page 4-1

■ Running an Oracle Utility on OS/390 Under USS on page 4-4

■ Utilities Available Under OS/390 USS on page 4-8

■ Customer-Written Applications Under USS on page 4-12

OS/390 UNIX System Services Overview
OS/390 UNIX System Services is similar to other UNIX environments, and the
Oracle9i utilities built for OS/390 UNIX System Services behave like their UNIX
counterparts with very few, if any, differences.

When the guide describes Oracle utilities running under OS/390 UNIX System
services, it assumes that you have some familiarity with UNIX (whether it is
OS/390 UNIX System Services or some other version). This guide describes what
you have to do to be able to run any of the Oracle9i utilities designed for OS/390
UNIX System Services and it highlights some differences between using Oracle
utilities in the traditional OS/390 environment and in the OS/390 UNIX System
Services environment.
r USS 4-1

OS/390 UNIX System Services Overview
Oracle Database Instance Overview
The Oracle database instance on OS/390 is implemented as a service under a given
Oracle subsystem. This chapter discusses considerations for connecting local USS
Oracle utilities or applications to Oracle database instances running on the OS/390
system.

Oracle9i database server users on OS/390 communicate with the local Oracle
database instance using OS/390 cross memory services. This facility allows both
data and program operation to cross address space boundaries in a secure and
controlled manner.

Connecting to an Oracle Instance
Each USS user of an Oracle9i for OS/390 instance runs as a separate and
autonomous address space. You can only access an Oracle instance after a valid
connection is established between the user address space and the Oracle instance.
A valid connection occurs when the Oracle instance accepts the logon user id and
possibly a password provided by the user.

This section discusses considerations for connecting local USS Oracle utilities or
applications to Oracle database instances running on the same OS/390 system.
Such connections use OS/390 cross-memory facilities and do not involve Oracle
Net. However, since the Oracle database server logically views all client
connections as network connections, Oracle network terminology and some of the
mechanisms of Oracle Net play a role in local connections.

Enabling OS/390 Local Client Access
Oracle database clients use a cross-memory protocol for connecting to database
instances. The protocol is based on Oracle Net architecture.

Since Oracle’s cross-memory protocol is based on Oracle Net, the formal mechanism
for specifying a local target Oracle instance is to supply a name that is looked up in
the client’s tnsnames file (tnsnames.ora). Applications supply the name by
appending an "@" character followed by the name to the userid and password that
are passed during an Oracle connect request. The entry in the tnsnames file
contains an Oracle Net address string with PROTOCOL=XM and additional
parameters identifying the target database service. The complete format of the
PROTOCOL=XM Oracle Net address is described under "Cross-Memory Protocol
Address" on page 4-3. Usually the target service is identified by its SID. Every
service must have a SID that is unique throughout the OS/390 image. Even services
that are defined in different Oracle subsystems cannot have the same SID if they are
on the same OS/390 image.
4-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

OS/390 UNIX System Services Overview
It also is possible to append the complete Oracle Net address string directly to the
userid and password to avoid using the tnsnames file. Oracle does not recommend
this technique, however.

Cross-Memory Protocol Address
The formal Oracle Net address string for Oracle’s cross-memory protocol can be
specified using either of two methods:

■ One method identifies the database instance by its SID:

(ADDRESS=(PROTOCOL=XM)(SID=sid) [(STAX=yes)])

where sid is the SID associated with the database instance.

■ The other method uses the Oracle subsystem and service names:

(ADDRESS=(PROTOCOL=XM)(SUBSYS=ssn)(SERVICE=srvn))

where ssn is the Oracle subsystem name, and srvn is the Oracle database
service name.

Oracle recommends using the SID form of address because it is simpler and because
it avoids application dependence on the subsystem name.

Specifying Connections
There are three ways, including hardcoding a tnsname entry on the connect string
as described in the previous section, to specify a target instance. In descending
order of precedence, the three ways are:

1. Specifying a tnsname entry which refers to the Oracle Net cross-memory
protocol on the connect string.

2. A TWO_TASK environment variable that is set to an Oracle Net tnsnames-style
name or to an explicit Oracle Net address string.

3. An ORACLE_SID environment variable is set to the SID of a database instance;
The client is connected to that instance. Clients look for ORACLE_SID last,
after determining that no TWO_TASK environment variable is set.

Storing Connection Information
You can use three general methods to store connection information:

1. In a tnsnames.ora

2. In an LDAP server pointed to by sqlnet.ora and ldap.ora
Accessing Oracle9i Under USS 4-3

Running an Oracle Utility on OS/390 Under USS
3. In an ONAMES server pointed to by sqlnet.ora

All files are located in $TNS_ADMIN if specified or in $ORACLE_
HOME/network/admin. For a complete discussion on connect strings to remote
servers, see the Oracle9i Net Services Administrator’s Guide for a discussion of
specifying a local connection, see Chapter 2, "Using the OS/390 Database Instance".

Break Processing
Use of the cross-memory (XM) protocol from a tool or application in USS causes a
thread to be created for break signal (Control-C) processing. This allows the user to
interrupt an in-progress server request similar to the attention subtask processing
provided in TSO.

Due to a limitation of USS, the presence of the break-handling thread precludes
using the fork() system call. The spawn() system call can be used instead. If your
application specifically requires fork(), you must use TCP/IP protocol rather than
XM.

Running an Oracle Utility on OS/390 Under USS
The following sections describe the environment variables needed to run Oracle
utilities under UNIX System Services.

Environment Variables
OS/390 UNIX System Services, like other UNIX systems, supports the use of
environment variables. These are character values that are maintained by the UNIX
shell and made available to any program that asks for them. The various values are
given a name, to make it easier to reference them. UNIX programs typically require
that one or more environment variables be properly set before the program is run.
Oracle9i programs are no different. This section describes the key environment
variables that can be used with Oracle9i utilities that run under OS/390 UNIX
System Services.

ORACLE_HOME
When an Oracle product is installed on OS/390 UNIX System Services, it is placed
into a home directory. The directory name must be defined by the ORACLE_
HOME environment variable before any Oracle product is run. For example,
assuming the Oracle home directory is /oracle/v920, the following statement
would set the variable ORACLE_HOME:

export ORACLE_HOME=/oracle/v920
4-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Running an Oracle Utility on OS/390 Under USS
Shell scripts are often used to set the value of ORACLE_HOME and other
environment variables that need to be specified. The actual value of
ORACLE_HOME must be provided by your Oracle system administrator.

TNS_ADMIN
The file tnsnames.ora contains tnsnames entries which could be used by Oracle
utilities or user-written programs as connect string specifications. Its default
location is $ORACLE_HOME/network/admin and can be overridden by using the
TNS_ADMIN environment variable. Refer to the Oracle9i Net Services
Administrator’s Guide for further details.

TWO_TASK
A TWO_TASK environment variable is set to an Oracle Net tnsnames-style name or
to an explicit Oracle Net address string. If a name is specified, then the
tnsnames.ora file is opened and read to resolve the name to an Oracle Net
address. The tnsnames.ora file location may be specified in
$TNS_ADMIN, or is in $ORACLE_HOME/network/admin by default. If the Oracle
Net address specifies PROTOCOL=XM, then the client is connected to the indicated
database service. (The Oracle Net address could also specify PROTOCOL=TCP, in
which case the client would connect to a remote Oracle instance via OSDI Network
service as discussed in Chapter 10, "Oracle Net".) In terms of precedence, Oracle
clients look for TWO_TASK after determining that no ORA@sid DD is allocated in
the address space.

ORACLE_SID
An ORACLE_SID environment variable is set to the SID of an OSDI-managed
database instance: OSDI connects the client to that instance. Oracle clients look for
ORACLE_SID last, after determining that no TWO_TASK environment variable is
set.

NLS_LANG
Oracle9i includes comprehensive National Language Support (NLS) that
transparently handles all necessary conversions between ASCII and EBCDIC.

If you decide to use a different character set, then you need to set NLS_LANG
accordingly. For example, assuming you need to use Swedish characters on OS/390
UNIX System Services, the following might set appropriate values into NLS_LANG:

export NLS_LANG=Swedish_Sweden.S8EBCDIC278
Accessing Oracle9i Under USS 4-5

Running an Oracle Utility on OS/390 Under USS
LIBPATH
The LIBPATH environment variable controls the search path for DLLs or shared
objects under OS/390 UNIX System Services. Several Oracle executables use DLLs.
To locate the Oracle DLLs, LIBPATH must include the $ORACLE_HOME/lib
directory. You can prepend the $ORACLE_HOME/lib directory to the LIBPATH
environment variable by issuing the following command:

export LIBPATH=$ORACLE_HOME/lib:$LIBPATH

PATH
The PATH environment variable controls the search path for OS/390 UNIX System
Services programs. It is a list of directories in the following form:

absolute_pathname[:absolute_pathname ...]

This chapter assumes that the path to the Oracle9i program has been specified in the
PATH environment variable. For example:

export PATH=$PATH:$ORACLE_HOME/bin

File Names in OS/390 UNIX System Services
The Oracle OS/390 utilities support a number of file name features that are
unnecessary on OS/390 UNIX System Services.

■ DD statements are not normally used in OS/390 UNIX System Services, so the
/DD/ddname form of naming a file is not supported.

■ File names refer to files in the HFS and adhere to POSIX naming rules. Files
designated by the /DSN/ method of naming files are in the OS/390 file system,
not the HFS. The /DSN/ notation is not supported.

■ On OS/390, the Oracle FNA service supports the construction of file names
compatible with the OS/390 file system. Files in the HFS are accessed, not
OS/390 files, so FNA is not supported.

■ Parameter redirection (++/DD/ddname or ++/DSN/dsname) is not
supported. In addition to the use of OS/390 file system files, the facility is
designed for the OS/390 JCL PARM field; OS/390 UNIX System Services does
not have access to the PARM field.

Accessing OS/390 Data Sets
When run under USS, the imp, exp, and sqlldr utilities are called in the same
manner as on other UNIX platforms. In addition, these utilities can access OS/390
4-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Running an Oracle Utility on OS/390 Under USS
data sets by simply specifying the filenames by preceding them with a double
forward slash and enclosing them in single quotes.

Example 4–1 //’ORACLE.EXPEMPL’

//’ORACLE.EXPEMPL’
If you specify the filename on the command line or at a utility prompt, you must
escape all forward slashes and the single quotes.

Example 4–2 \\/\/\’ORACLE.EXPEMP\’

\/\/\’ORACLE.EXPEMP\’

The following is an example of running exp under UNIX System Services:

exp

Export: Release 9.0.1.0.1 - Production on Thu Aug 10 10:53:20 2000

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Username: scott
Password:
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.1 - Production
With the Partitioning option
Enter array fetch buffer size: 4096 >

Export file: expdat.dmp > \/\/\'ORACLE.EXPEMP\'

(2)U(sers), or (3)T(ables): (2)U > 3

Export table data (yes/no): yes >

Compress extents (yes/no): yes >

Export done in WE8EBCDIC1047 character set and WE8EBCDIC1047 NCHAR character set

About to export specified tables via Conventional Path ...
Table(T) or Partition(T:P) to be exported: (RETURN to quit) > EMP
. . exporting table EMP 14 rows exported
Table(T) or Partition(T:P) to be exported: (RETURN to quit) >
Export terminated successfully without warnings.
Accessing Oracle9i Under USS 4-7

Utilities Available Under OS/390 USS
Utilities Available Under OS/390 USS
The following utilities are available under OS/390 UNIX System Services.

PL/SQL Wrapper
The PL/SQL wrapper enables you to produce a binary version of your PL/SQL
packages that is suitable for shipping in a tamper-proof way. To run it, enter the
following at the command prompt:

wrap

For additional information, refer to the PL/SQL User’s Guide and Reference.

PL/SQL Server Page Loader
The Oracle9i PL/SQL Server Page Loader enables you to load PL/SQL Server Pages
(PSP) into the database as stored procedures.

For example:

loadpsp -replace -user scott/tiger@WEBDB banner.inc error.psp display_order.psp

Additional information can be found in the Oracle9i Application Developer’s Guide -
Fundamentals, in the chapter named "Developing Web Applications with PL/SQL".

Data Guard Command-line Utility
The Data Guard command-line interface allows you to control and monitor a Data
Guard configuration from the DGMGRL command-line prompt or from within
scripts. You can perform most of the activities required to manage and monitor the
objects in the configuration using the command-line interface.

To run the Data Guard command-line interface, you must have SYSDBA privileges.
Start the command-line interface by entering DGMGRL at the command line
prompt on a system where Oracle9i Data Guard is installed:

$ DGMGRL [options]

Additional information can be found in the Oracle9i Data Guard Concepts and
Administration Guide.
4-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Utilities Available Under OS/390 USS
OEM Intelligent Agent and Data Gatherer
OEM Intelligent Agent allows you to monitor events, start and stop an Oracle
Instance in OS/390. Data Gatherer allows you to gather database and operating
system statistics on OS/390. See the Oracle9i Enterprise Edition System Administration
Guide for OS/390 and Oracle Intelligent Agent User’s Guide for further information.

Oracle JDBC Thin Driver
The Oracle JDBC thin driver is a Type IV JDBC driver targeted to application
developers. Written entirely in Java, it complies fully with the JDBC 1.2.2 standard.
It requires the use of TCP/IP. For additional information, refer to the Oracle9i JDBC
Developer’s Guide and Reference.

To run the Oracle JDBC thin driver, you must add the following to the CLASSPATH
environment variable that is in effect when the JDBC driver runs:

$ORACLE_HOME/jdbc/lib/classes111.zip /*Oracle JDBC thin driver*/
<installation-specific path> /*IBM JDK classes */

SQLJ Translator
The SQLJ translator is conceptually similar to other Oracle Precompilers, SQLJ
consists of both a translator and a runtime component. The translator replaces
embedded SQL calls to the SLQJ runtime, which implements the SQL operations.
When the end user runs the SQLJ application, the runtime is invoked to handle the
SQL operations in real-time. For additional information, refer to the Oracle9i JDBC
Developer’s Guide and Reference.

To run the SQLJ translator, you must add the following to the CLASSPATH
environment variable that is in effect when SQLJ runs. For example:

current directory
$ORACLE_HOME/sqlj/lib/translator.zip /*SQLJ translator */
$ORACLE_HOME/jdbc/lib/classes111.zip /*Oracle JDBC thin driver*/
<installation-specific_path> /*IBM JDK classes */

Loadjava/Dropjava Utilities
The loadjava utility is used to load java source code or byte code into an Oracle
database as Java stored procedure. The dropjava removes it.

For example:
Accessing Oracle9i Under USS 4-9

Utilities Available Under OS/390 USS
> loadjava -thin -verbose -user scott/tiger@144.25.40.59:1493:ORAJ
-resolve Test1.class
initialization complete
loading : Test1
creating : Test1
resolver :
resolving: Test1

A sample session for dropjava of a class file:

> dropjava -thin -verbose -user scott/tiger@144.25.40.59:1493:ORAJ
Test1.class
dropping class : Test1
A sample session for loadjava of a source file:

> loadjava -thin -verbose -user scott/tiger@144.25.40.59:1493:ORAJ
-resolve -encoding Cp1047 Test2.java
initialization complete
loading : Test2
creating : Test2
resolver :
resolving: Test2

A sample session for dropjava of a source file:

> dropjava -thin -verbose -user scott/tiger@144.25.40.59:1493:ORAJ
Test2.java
dropping source : Test2

Oracle Wallet Manager
Oracle Wallet Manager (OWM) is a Java application that requires Java 1.1.8, an X11
server and a graphics terminal. OWM allows the user to administer certificates in
his wallet directory, including generating certificate requests, importing/exporting
user certificates and importing/exporting trustpoint certificates. See the Oracle
Label Security Administrator’s Guide for more information.

A sample session for OWM could be started as follows:

export DISPLAY=my_workstation:0.0
owm

where: my_workstation is your workstation name or IP address and the
environment variable ORACLE_HOME must be set.

If Java returns the following message, your DISPLAY value is invalid:
4-10 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Utilities Available Under OS/390 USS
java.lang.LNullPointerException
java.lang.NullPointerException
 at oracle.ewt.lwAWT.BufferedFrame._init(Unknown Source)
 at oracle.ewt.lwAWT.BufferedFrame.<init>(Unknown Source)
 at

oracle.sysman.emSDK.client.appContainer.ApplicationFrame.<init>(ApplicationFrame
.java:75)

 at

oracle.sysman.emSDK.client.appContainer.WebApplication.main(WebApplication.java:
2908)

TNSPING
TNSPING is a command line executable that tests tns connectivity. See the Oracle9i
Net Services Administrator’s Guide for more information.

Character Set Scanner
Refer to Chapter 10 of the Oracle9i Database Globalization Support Guide for
information on using the Character Set Scanner utility. Also refer to Appendix D of
the Oracle9i Enterprise Edition System Administration Guide for OS/390 to obtain the
list of supported character sets for OS/390 databases.

Please note that the Character Set Scanner under UNIX System Services can only
support databases running with the EBCDIC character set.

Locale Builder
To run the Locale Builder, you must have the JAVA_HOME environment variable set
to the root directory that JAVA is currently installed under.

For example:

export JAVA_HOME=/usr/lpp/java/J1.1

Also, you may have to customize the JAVALIB and CLASSPATH environment
variable in shell script LBuilder.ksh to point to the current Oracle, Sun, and IBM
classes.

For example:

JAVALIB
Accessing Oracle9i Under USS 4-11

Customer-Written Applications Under USS
 classes.zip for JRE 1.1.8
CLASSPATH
 current directory
 LocaleBuilder.jar
 swingall.jar required for JRE 1.1.8 only
 jewt-all-dbg-4_1_0.jar required for JRE 1.1.8 only

Please note that the Locale Builder is currently supported under JRE 1.1.8 only.

Customer-Written Applications Under USS
Oracle9i database servers can be accessed by programs run from the OS/390 UNIX
System Services Hierarchical File System (HFS). These programs must be coded in
C programming language and must utilize OCI or the Oracle Pro*C Precompiler.
You need a thorough understanding of the following:

■ OS/390 UNIX System Services environment

■ IBM C/370 or IBM C/C++ compiler

■ DFSMS/MVS Program Management binder

■ IBM prelinker

■ LE/370 runtime library

■ OS/390 UNIX System Services c89 shell command

OCI programs can be compiled, prelinked, and linkedited (bound) entirely within
the OS/390 UNIX System Services shell using the c89 command. Oracle Pro*C
precompiler programs can now be precompiled, compiled, prelinked, and
linkedited (bound) entirely within the OS/390 UNIX System Services shell. An
OS/390 UNIX System Services compatible version of the IBM C/370 or IBM C/C++
compiler and LE/370 runtime library must be used. Depending on the nature of
the application, you might also need to call the C/370 or C/C++ prelinker.

Once the OCI or Oracle Precompiler application is created, it is typically run from
the OS/390 UNIX System Services shell. The environment variables described in
"Running an Oracle Utility on OS/390 Under USS" on page 4-4 are also applicable
for the execution of user-written programs.

Child Process Restrictions
An application using a cross-memory connection to Oracle (PROTOCOL=XM)
cannot use the fork() system call to create a child process. This is because the
4-12 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Customer-Written Applications Under USS
cross-memory protocol adapter uses a thread to field the SIGINT signal from the
Ctrl-C key while it is in cross-memory mode. The UNIX System Services kernel will
not deliver a signal to a program running in cross-memory mode. Applications
should use the spawn() system call instead. If the application must use fork(), it
must use TCP/IP to connect to the database.

The Oracle9i database server does not allow a child process to make use of a
connection established by a parent. If this is attempted, then the result is:

CEE3250C The system or user abend S0D6 R=00000022 was issued.

The connect capabilities for a child process after a fork are:

POSIX Thread Support
OS/390 UNIX System Services also provides for POSIX threading. If the
application uses threads, then it must ensure two or more threads do not attempt to
use the same connection simultaneously.
Accessing Oracle9i Under USS 4-13

Customer-Written Applications Under USS
4-14 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Export and Import U
5

Export and Import Utilities

The Export and Import utilities are used to move Oracle database tables and other
objects from one database to another. The databases can be on the same platform
(for instance, both OS/390) or on different platforms.

The executables for Oracle Export and Import are named EXP and IMP. If you
make these available to your TSO session by placing them in your STEPLIB, it
disables the abbreviated forms of the native (IDCAMS) export and import
commands, which are also EXP and IMP.

This chapter describes the function of each of these utilities as they relate to the
OS/390 operating system and contains the following sections:

■ Export on page 5-1

■ Import on page 5-4

The information in this chapter supplements the documentation for the Oracle
utilities in Oracle9i Database Utilities.

Export
The Export (EXP) utility reads data from the Oracle9i database according to your
request and writes an OS/390 sequential data set. Export is used to provide
backups of the Oracle tables and database. It is also used to move data from one
Oracle9i database to another.

The Export utility has additional functions for users with Oracle DBA authority.
For example, to perform incremental or cumulative Exports, DBA authority is
required. Refer to the Oracle9i Enterprise Edition System Administration Guide for
OS/390 for a description of the Export utility for database administrators.
tilities 5-1

Export
Running Under UNIX System Services
When running Export under USS, considerations are the same as described in the
Oracle9i Database Utilities manual. Refer to Chapter 4, "Accessing Oracle9i Under
USS", for general information about running utilities in the USS environment.

Running Under TSO
The syntax for running Export under TSO is:

EXP [userid[/password[@connect-string]]

where:

The normal OS/390 EOF key sequence, /*, ends the Export utility from any
prompt. The alias of EXP is ORAEXP.

Running in Batch
Export is supported in the batch environment through the ORAEXP JCL procedure.
The following is a copy of this procedure:

//ORAEXP PROC INDEX=oran,
// LIBV=orav,
// SYSOUT=’SYSOUT=*’,
// USERID=’NAME/PASSWORD’
//ORAEXP EXEC PGM=EXP,REGION=4M,
// PARM=’&USERID’
//STEPLIB DD DSN=&INDEX..&LIBV..CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=&INDEX..&LIBV..MESG,DISP=SHR
//SYSOUT DD &SYSOUT,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//SYSERR DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//ORAPRINT DD SYSOUT=*

userid is the Oracle user id. This parameter is optional.

password is the password associated with userid. This parameter
is optional.

connect-string is a tnsnames alias name or a complete Oracle Net address
string. This parameter is optional if the Oracle database
server is specified using methods described in Chapter 2.
Refer to Chapter 9 for further details.
5-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Export
To run this JCL procedure, you must include additional DD statements that refer to
other required data sets. The following example assumes the Oracle9i database
server is installed with a system identification (SID) of ORA1:

//USER1JOB JOB
//STEP1 EXEC ORAEXP,
// PARM=’SCOTT/TIGER PARFILE=/DD/PARFILE’
//ORA@ORA1 DD DUMMY
//SYSIN DD DUMMY
//EXPTFL DD DSN=userid.EXPDTFL.TEST,
// DISP=(NEW,CATLG,DELETE),
// VOL=SER=TEMP01,UNIT=SYSDA,
// SPACE=(TRK,(5,5),RLSE),
// DCB=(RECFM=FB,LRECL=4096,BLKSIZE=24576)
//PARFILE DD *
DIRECT=N
BUFFER=10240
FILE=/DD/EXPTFL
GRANTS=Y
INDEXES=Y
ROWS=Y
CONSTRAINTS=Y
COMPRESS=N
FULL=N
TABLES=(DEPT)
/*

In this example, Oracle user SCOTT with password TIGER performs an Export of
data from the database instance whose OSDI service SID ORA1. The Export
parameters reside in PARFILE instream data. As an alternative, the Export
responses can be included as SYSIN instream data.

To further illustrate, you can use Export in two ways:

■ Enter the command EXP user name and password PARFILE=filename with
the remaining Export parameters contained in the specified file. This is the
preferred method. If you use this method, then PARFILE cannot be a PDS
member.

■ Enter the command EXP user name and password followed by various
parameters that control how Export runs. You can use this method as long as
the number of parameters does not exceed the maximum length of a command
line on your system. The parameter redirection attribute ++ can be used to
redirect parameters to the input file.
Export and Import Utilities 5-3

Import
For more information on using Export, refer to Oracle9i Database Utilities.

Return Codes
Export issues the following return codes:

Exporting to Non-OS/390 Systems
When exporting to non-OS/390 systems, ensure the data transfer process does not
result in the translation of the Export file from EBCDIC to ASCII or from one
EBCDIC character set to another. This translation, if necessary, is provided by the
Import utility on the receiving system. If an external translation is performed, then
Import ends with an irrecoverable error and you receive the following error
message:

Seals don’t match

You must also ensure Exports to other operating system environments are done on
compatible media.

Import
The Import (IMP) utility reads data from a sequential data set prepared by the
Export utility and writes data into an Oracle9i database.

The Import utility has additional functions for users with Oracle DBA authority.
Refer to the Oracle9i Enterprise Edition System Administration Guide for OS/390 for a
description of Import with DBA authority.

0 is a normal (successful) completion. Review results carefully as a 0 return
code can indicate an error not serious enough to terminate the utility, but
invalidates the Export file.

8 is an end due to an irrecoverable error. The error can be one of the
following:

■ File error (in this case Export ends with an X’37’ abend).

■ Insufficient parameters in the input file when Export is run in batch.

■ Export session ended with a period (.) instead of a null entry. The
Export log file contains an error message describing the error.
5-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Import
Running Under UNIX System Services
When running Import under USS, considerations are the same as described in the
Oracle9i Database Utilities manual. Refer to Chapter 4, "Accessing Oracle9i Under
USS", for general information about running utilities in the USS environment.

Running Under TSO
The syntax for running the Import utility under TSO is:

IMP [userid[/password[@connect-string]]

where:

Use the normal OS/390 EOF key sequence (/*) to end the Import utility from any
prompt. The IMP alias is ORAIMP.

Running in Batch
Import is supported in the batch environment through the ORAIMP JCL procedure.
A copy of this procedure is:

//ORAIMP PROC INDEX=oran,
// LIBV=orav,
// SYSOUT=’SYSOUT=*’,
// USERID=’NAME/PASSWORD’
//ORAIMP EXEC PGM=IMP,REGION=4M,
// PARM=’&USERID’
//STEPLIB DD DSN=&INDEX..&LIBV..CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=&INDEX..&LIBV..MESG,DISP=SHR
//SYSOUT DD &SYSOUT,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//SYSERR DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//ORAPRINT DD SYSOUT=*

The following JCL illustrates the use of the previous procedure:

userid is the Oracle user id. This parameter is optional.

password is the password associated with userid. This parameter is
optional.

connect-string is a tnsnames alias name or a complete Oracle Net address
string. This parameter is optional if the Oracle database
server is specified using methods described in Chapter 2.
Refer to Chapter 9 for further details.
Export and Import Utilities 5-5

Import
//USER1JOB JOB
//STEP1 EXEC ORAIMP,
// USERID=,
// PARM=’PARFILE=/DD/PARFILE’
//ORA@ORA1 DD DUMMY
//SYSIN DD DUMMY
//EXPTFL DD DSN=userid.EXPDTFL.TEST,DISP=SHR
//PARFILE DD *
USERID=SCOTT/TIGER
BUFFER=10240
FILE=/DD/EXPTFL
SHOW=N
IGNORE=N
GRANTS=Y
INDEXES=Y
ROWS=Y
FULL=Y
COMMIT=Y
/*

In this example, data is imported to the database instance whose OSDI service SID
is ORA1. The Import parameters reside in PARFILE instream data. These
responses can alternatively be specified as SYSIN instream data.

To further illustrate, you can use Import in two ways:

■ Enter the command IMP user name and password PARFILE=filename with
the remaining Import parameters contained in the specified file. This is the
preferred method. If you use this method, then PARFILE cannot be a PDS
member.

■ Enter the command IMP user name and password followed by various
parameters that control how Import runs. You can use this method as long as
the number of parameters does not exceed the maximum length of a command
line on your system. The parameter redirection attribute ++ can be used to
redirect parameters to the input file.

For more information about Import, refer to Oracle9i Database Utilities.

Return Codes
Import provides one of the following return codes:
5-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Import
Importing from Non-OS/390 Systems
When importing from non-OS/390 systems, ensure your data transfer process does
not translate the Export file from ASCII to EBCDIC. This translation, if needed, is
provided by the Import utility on the OS/390 system. If an external translation is
performed, then Import ends with an irrecoverable error and you receive the
following error message:

Seals don’t match
You must also ensure Exports done for eventual Import to OS/390 environments
are done on compatible media.

0 is a normal (successful) completion. Review results carefully as a 0 return
code can indicate an error not serious enough to end the utility, but
invalidates the Import file.

8 is an end due to an irrecoverable error. The Import log file contains an
error message describing the error.

Note: Importing partitioned tables that are partitioned on
character values into an OS/390 table might not be possible if they
were exported from an ASCII database. The same is true for
importing into an ASCII database after exporting from OS/390. If
this is required, then use conventional path export and create the
table before importing.
Export and Import Utilities 5-7

Import
5-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

SQL*L
6

SQL*Loader

SQL*Loader is a utility that loads from sequential files into tables in an Oracle9i
database.

Read this chapter to understand how this powerful utility’s advanced function data
loader capabilities are used under OS/390.

The following sections are discussed in this chapter:

■ Running Under UNIX System Services on page 6-1

■ Running Under TSO on page 6-2

■ SQL*Loader Files on page 6-2

■ Running in Batch on page 6-4

■ Return Codes on page 6-5

■ SQL*Loader VSAM File Support on page 6-5

■ SQL*Loader Direct Path on page 6-8

This information supplements the documentation for SQL*Loader in Oracle9i
Database Utilities.

Running Under UNIX System Services
When running SQL*Loader under USS, considerations are the same as described in
the Oracle9i Database Utilities manual. Refer to the section "OS/390 UNIX System
Services Overview" on page 4-1 for general information about running utilities in
the USS environment.
oader 6-1

Running Under TSO
Running Under TSO
Use SQL*Loader to load data from sequential files into the Oracle9i database. Use a
control file to describe the data location, data format, and target tables. You can
direct data that does not satisfy specified conditions to special files.

The following is the syntax of the SQL*Loader command under TSO:

SQLLDR keyword=value [keyword=value,...]

The parameters passed to SQL*Loader are keyword parameters. The parameters
are fully described in Oracle9i Database Utilities.

SQL*Loader Files
SQL*Loader uses the following files:

■ A BAD file to store records from the input data file that fail basic validation
checks, such as nonnumeric data in a numeric field

■ A CTL file containing all the control information

■ A DAT file containing the data to be loaded

■ A DSC file to store the discarded records from the input data file, which are
records that do not qualify to be loaded into the database

■ A LOG file containing entries describing what SQL*Loader did

SQL*Loader File Names
The section "File Name/Attribute Augmentation (FNA) Facility" on page 3-8
describes extension and FNA processing that each of the file names supplied to
SQL*Loader is subject to. The filetype extensions are BAD, CTL, DAT, DSC, and
LOG.

For example, without any special FNA controls, the following specification results
in SQL*Loader using tsoprefix.TESTDATA.CTL as the control data set:

SQLLDR ... CONTROL=TESTDATA

In batch or when using TSO without a PROFILE PREFIX, TESTDATA.CTL is used
as the control file. This data set is not a good choice in most OS/390 systems
because TESTDATA is not a proper high-level qualifier for a data set name.
6-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

SQL*Loader Files
If any file other than the control file is not specified, then SQL*Loader uses the
control file name to derive the name of the file. For example, if the LOG parameter
is omitted but CONTROL=TEST3 is specified, then a log file name of
tsoprefix.TEST3.LOG is used. The same processing applies to the BAD, DAT,
and DSC files if any of these are not specified.

To have a BAD file generated, you must specify a BAD filetype.

If the supplied control file name is one that cannot be modified with an extension
(that is, it is prefixed with a pathname surrounded by slashes), then the name
cannot be used to derive the names of any omitted files. In this case, SQL*Loader
uses the default name LOADER for the derivation.

For example, to call SQL*Loader use the following command:

SQLLDR USERID=SCOTT/TIGER CONTROL=/DD/CTLFILE ...

This command results in the derived LOG file name tsoprefix.LOADER.LOG
because /DD/CTLFILE cannot be used to derive the other distinct file names.

This approach to deriving file names can be convenient in the TSO environment.
But when running in batch where there is no TSO PROFILE PREFIX it might be
difficult to use, depending on the data set naming standards and allocation controls
at your installation. The best approach to running SQL*Loader in batch is to specify
all required files with /DSN/ or /DD/ notation:

//LOAD EXEC PGM=SQLLDR,
// PARM=’CONTROL=/DD/CTL DATA=/DD/DATA LOG=/DD/LOG BAD=/DD/BAD DISCARD=/DD/DIS’
//CTL DD ...
//DATA DD ...
//LOG DD ...
//BAD DD ...
//DIS DD ...

SQL*Loader File Attributes
SQL*Loader for OS/390 differs from SQL*Loader for other systems in the way file
attributes are decided for the BAD and DSC files. In other systems, the file
attributes for these files are made identical to the data file. This is done so you can
make corrections to these files and recycle them through SQL*Loader again. In
OS/390, these data sets are created with default DCB attributes that are generally
different from the attributes of the input file. There are two ways to overcome this:
SQL*Loader 6-3

Running in Batch
1. You can, in your JCL or TSO ALLOC command for the BAD/DSC file, specify
the DCB attributes of the BAD/DSC files be the same as that of the data file by a
refer back, as shown in the following example:

//BAD DD DISP=SHR,DSN=PROD.CASE1.BAD,DCB=PROD.CASE1.DAT
//DIS DD DISP=SHR,DSN=PROD.CASE1.DSC,DCB=PROD.CASE1.DAT

2. For each invocation of SQL*Loader you can have a different FNA control file
allocated to the ORA$FNA DD statement at runtime. This FNA control file can
contain FSA entries for suffixes BAD and DSC specifying the correct FATTR
parameters.

Running in Batch
SQL*Loader is supported in the batch environment through the ORALDR JCL
procedure. A copy of this procedure is reproduced in the following example. The
example assumes the Oracle9i database server has been installed with the system
identification (SID) of ORA1.

//ORALDR PROC INDEX=’oran’,
//* NONVSAM LIBRARY HLINDEX.
// LIBV=’orav’,
//* ORACLE/VERSION AND INSTALL LEVEL.
// INDD=LDRCTL, INPUT CONTROL FILE DDNAME.
// SYSOUT=’SYSOUT=*’, SYSOUT CLASS.
// LOGDD=LOGDD, OUTPUT REPORT.
// USERID=’NAME/PASSWORD’, USERID
// D=FALSE DIRECT=TRUE FOR FAST LOADER
//*
//* *
//* SQL*LOADER BATCH PROCESSOR *
//*
//ORALDR EXEC PGM=SQLLDR,REGION=4M,
// PARM=(’CONTROL=/DD/&INDD USERID=&USERID’,
// ’LOG=/DD/&LOGDD DIRECT=&D’)
//STEPLIB DD DSN=&INDEX..&LIBV..CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=&INDEX..&LIBV..MESG,DISP=SHR
//SYSOUT DD &SYSOUT,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//SYSERR DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//ORAPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* REQUIRES //ORA@SID DD DUMMY STATEMENT (ORACLE SUBSYSTEM NAME).
//* ALSO REQUIRES BADDD AND DSCDD TO SPECIFY BAD AND DSC FILES
6-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

SQL*Loader VSAM File Support
//*

When running this procedure, you must include additional DD statements. These
DD statements refer to other required data sets.

The following example illustrates the use of the previous procedure:

//USER1JOB JOB
//S1 EXEC ORALDR,
// PARM=’CONTROL=/DD/CTL USERID=A/B BAD=/DD/BAD DATA=/DD/DAT
// DISCARD=/DD/DIS’
//CTL DD DISP=SHR,DSN=PROD.CASE1.CTL
//DAT DD DISP=SHR,DSN=PROD.CASE1.DAT
//BAD DD DISP=SHR,DSN=PROD.CASE1.BAD,DCB=PROD.CASE1.DAT
//DIS DD DISP=SHR,DSN=PROD.CASE1.DSC,DCB=PROD.CASE1.DAT
//SYSIN DD DUMMY
//ORA@ORA1 DD DUMMY

When called in batch, the command line arguments are often longer than is allowed
in the PARM field of the EXEC statement. To work around this, use the standard
Oracle parameter redirection operation as in any other Oracle utility. Refer to
"Redirecting Standard Files and Parameters" on page 3-6 for more information.

Return Codes
SQL*Loader issues the following return codes:

SQL*Loader VSAM File Support
SQL*Loader for OS/390 is enhanced to provide native VSAM support. This feature
lets you load Oracle tables directly from VSAM key sequenced data set (KSDS),
entry sequenced data set (ESDS), and relative record data set (RRDS) clusters. All
the normal SQL*Loader operating capabilities, such as loading multiple tables and
discard logic, work with VSAM clusters in the same way as with non-VSAM data
sets.

0 is a normal (successful) completion.

4 indicates a discontinued load. This is due to a runtime error, such as
running out of file extents.

8 is an end due to an irrecoverable error.
SQL*Loader 6-5

SQL*Loader VSAM File Support
Specifying VSAM Input to SQL*Loader
The file name supplied with the INFILE or INDDN keyword can take one of three
forms:

In all these cases, name can optionally include a slash followed by a VSAM cluster
password on the right side. Because SQL*Loader only opens VSAM clusters for
input, a cluster’s READPW (read password) or any higher-level password can be
specified. If a cluster does not have a read password, then no password must be
specified. If a cluster has a read password and the correct password is not supplied
in the file name, then VSAM performs normal prompting of the TSO user or system
operator when SQL*Loader opens the cluster. VSAM password prompting is
affected by the ATTEMPTS parameter of the IDCAMS DEFINE or ALTER
command.

Examples
The following partial examples of SQL*Loader LOAD DATA statements show how
to specify VSAM files in various ways.

The VSAM cluster GJONES.PAYSEQ2.MASTER is dynamically allocated for input;
the password ZAP is included:

LOAD DATA INFILE /DSN/GJONES.PAYSEQ2.MASTER/ZAP ...

Assuming a TSO user with a PROFILE PREFIX of GJONES, the VSAM cluster
GJONES.MY.RRDS is dynamically allocated for input:

/DD/name is the one-character to eight-character name of a DD statement or
TSO allocation already present in the jobstep or TSO session. The
DD statement or allocation specifies the VSAM cluster to be
loaded.

/DSN/name is the 1-character to 44-character, fully-qualified data set name of
the VSAM cluster. SQL*Loader dynamically allocates the cluster
with DISP set to SHR before opening it.

name a file name that does not begin with /DD/ or /DSN/ is assumed
to be an unqualified data set name. In this case, SQL*Loader
appends a TSO user’s PROFILE PREFIX on the left side of name
and proceeds with dynamic allocation and open as if /DSN/ is
used. When no PROFILE PREFIX is defined for a TSO user and
when running in batch, name is processed as a fully-qualified
name just as though a /DSN/ pathname prefix is included.
6-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

SQL*Loader VSAM File Support
LOAD DATA INFILE MY.RRDS ...

A password is also supplied:

LOAD INFILE /DD/VSAMDD/password ...

For the following specification, the job includes a DD statement:

//VSAMDD DD DISP=SHR,DSN=GJONES.RECVBL.LOG

Or, if it is being used in a TSO session, a prior TSO ALLOC command can be issued:

ALLOC FILE(VSAMDD) DA(’GJONES.RECVBL.LOG’) SHR

SQL*Loader VSAM Processing Considerations
SQL*Loader VSAM processing is generally the same as for non-VSAM input files.
The following considerations are unique to VSAM:

■ SQL*Loader reads KSDS clusters in key sequence, RRDS clusters in record
number sequence, and ESDS clusters in RBA sequence. Empty record slots in
an RRDS are not read and do not contribute to SQL*Loader SKIP or LOAD
counts.

■ SQL*Loader also processes an Alternate Index Path (AIX) as input. Oracle
Corporation recommends loading directly from the base cluster since AIX only
changes the order in which records are read and can significantly reduce
performance.

■ All VSAM-specific error or warning messages issued by SQL*Loader are
written to the C programming language standard error file (normally the
SYSERR DD allocation in batch or the user’s screen in TSO).

■ If SQL*Loader is unable to dynamically allocate a VSAM cluster, then the
return, error, and information codes from OS/390 dynamic allocation are
reported and the load ends.

■ If the OPEN of a VSAM cluster fails, then the return code and ACBERFL
(ACB error code) value are reported and the load ends.

■ Warning conditions indicated by VSAM OPEN are reported by SQL*Loader but
do not end processing.

■ VSAM clusters containing invalid control intervals (that is, lacking valid
CIDF/RDF fields) cannot be processed by SQL*Loader.
SQL*Loader 6-7

SQL*Loader Direct Path
■ If a VSAM GET request fails, then the return, component, and RPL feedback
codes are reported and the load ends.

■ If the CLOSE of a VSAM cluster fails, then the return code and ACBERFL value
are reported, but the already completed load is unaffected.

Return and related codes from OS/390 dynamic allocation and VSAM request
macroinstructions are documented in the appropriate IBM documentation.

BAD and DISCARD File Considerations with VSAM Input
When an input record to SQL*Loader encounters an Oracle error during insertion or
is not selected for insertion due to WHEN criteria, it is written to the BAD or DSC
file, respectively. These files are normally identical to the input data file in structure
and format.

When a VSAM file is used as input to SQL*Loader, the BAD and DSC files remain
non-VSAM in structure (as they are with non-VSAM input). This eliminates the
need to DEFINE additional VSAM files each time SQL*Loader is used with VSAM
input.

With VSAM input, SQL*Loader normally requires the BAD and DSC files to use
RECFM=V or VB and LRECL=n, where n is greater than or equal to the maximum
record length of the input VSAM file. When the input VSAM file is known to have
all records the same length (such as in an RRDS), you can use RECFM=F or FB and
LRECL=x, where x is the exact length of the input VSAM records. Use caution
when using this format for non-RRDS clusters, however, because VSAM has no
mechanism to ensure all records in a KSDS cluster or ESDS cluster are actually the
same size.

SQL*Loader Direct Path
The SQL*Loader direct path (DIRECT option) has significant performance
improvements for many data load applications. Some of the performance
improvements include reduced CPU usage and reduced time to perform a data
load. Refer to Oracle9i Database Utilities for a complete description of the
SQL*Loader direct path.

Performance
When you run SQL*Loader with the DIRECT option set to TRUE, performance is
significantly influenced by the number of QSAM buffers available for processing
the input file. The number of buffers is controlled by the DCB BUFNO parameter
6-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

SQL*Loader Direct Path
value you specify when you allocate the data file. The default value is five if you do
not specify a BUFNO value. You can dramatically increase the data load rate in
DIRECT mode by increasing the number of buffers to 100 or more.

Tests show that 200 buffers can increase the data load rate by a factor of three or
more over the data load rate with the default number of buffers. SQL*Loader
performance does not appear to improve with more than 200 buffers allocated for
the input file.

Increase the number of buffers by providing a BUFNO value when the input file is
allocated. For example, if you are running SQL*Loader as a batch job, then provide
100 buffers for the input file by allocating the file with the DCB=BUFNO=100
parameter as shown in the following example:

//DATA DD DSN=input.file.name,DISP=SHR,DCB=BUFNO=100

If you are running SQL*Loader from TSO, then provide 100 buffers for the input file
by adding the BUFNO parameter to the ALLOC command that allocates the file.
For example:

ALLOC FILE(DATA) DA(’input.file.name’) SHR BUFNO(100)

Ensure the region available to SQL*Loader includes enough memory to hold the
extra buffers. For example, a file with a blocksize of 23,476 allocated with 100 input
buffers requires 2,347,600 bytes of memory for the buffers. You might need to
increase the region parameter value to 4M or more to run SQL*Loader with many
buffers.

With 200 input file buffers available, SQL*Loader running with the DIRECT set to
the TRUE option can use more than 90% of one central processor, and attain data
load rates of over 250K per second on some types of processors. If you do not want
SQL*Loader to use this much CPU, then reduce the data load rate by reducing the
BUFNO value for the input file to 20 or less.

Each SQL*Loader session runs as a single OS/390 task and does not use more than
one central processor in a multiprocessor complex. For example, the maximum
amount of CPU a single SQL*Loader session can use in a four-way processor
complex is 25 percent.

To exploit more than one processor in a multiprocessor complex, use multiple
SQL*Loader sessions as documented in Oracle9i Database Utilities.
SQL*Loader 6-9

SQL*Loader Direct Path
6-10 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Precom
7

Oracle Precompilers

Oracle Precompilers are used to process C, COBOL, or PL/I programs before
passing them to their native compilers. Oracle Precompilers translate embedded
SQL statements into calls necessary to access the Oracle9i database server.

Read this chapter for OS/390-specific information about using the Oracle
Precompilers and Chapter 8, "Oracle Call Interface" for information about the
Oracle Call Interface. Sections in this chapter include:

■ Oracle Precompilers Overview on page 7-2

■ Target Environment Design Considerations on page 7-3

■ Sample JCL on page 7-7

■ Precompiling Your Program on page 7-10

■ Compiling Your Program on page 7-13

■ Linking Your Program on page 7-13

■ Running Your Program on page 7-15

The product-specific documentation for the Oracle Precompilers is contained in the
following Oracle documents:

■ Programmer’s Guide to the Oracle Precompilers

■ Pro*C/C++ Precompiler Programmer’s Guide

■ Pro*COBOL Precompiler Programmer’s Guide

■ Pro*PL/I Supplement to the Oracle Precompilers Guide
pilers 7-1

Oracle Precompilers Overview
Oracle Precompilers Overview
The Oracle Precompilers are used to process C, COBOL, or PL/I programs before
passing them to their native compilers. Oracle Precompilers translate embedded
SQL statements in the programs into the appropriate native language statements
and calls necessary to access the Oracle9i database server.

OS/390 supports several major operating environments, and the Oracle
Precompilers can be used to target your programs to run in any of them. Whether
your application requires traditional batch processing, interactive processing under
TSO, or transaction processing under CICS or IMS TM, the Oracle Precompilers are
the first step in building your programs.

Oracle also supports the OS/390 UNIX System Services (USS) environment. Refer
to Chapter 4, "Accessing Oracle9i Under USS", for additional information about
building and running Oracle Precompiler applications in the OS/390 UNIX System
Services environment.

Regardless of the environment you choose, there are four steps involved:

1. Precompiling your program with one of the Oracle Precompilers and other
precompilers that are required by the target environment.

2. Compiling the program with the language’s compiler.

3. Linking the program with an Oracle interface stub designed especially for the
target environment. Batch, TSO, CICS, and IMS TM each require linking with a
different stub.

4. Running your program in the target environment.

This chapter discusses each of the steps needed to build and run an Oracle
Precompiler application program, and contains some environment-specific program
design considerations. For more information, refer to Oracle9i Application
Developer’s Guide - Fundamentals and the precompiler documentation specific to the
programming language you plan to use.

Note: A Language Environment conforming compiler is required
for programs targeted to run in BATCH or TSO.
7-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Target Environment Design Considerations
Target Environment Design Considerations
The following information discusses application design considerations that apply to
each of the target environments.

TSO Programs
To use an Oracle Precompiler application under TSO (by the CALL command or as
a command processor), ensure an EXEC SQL COMMIT WORK RELEASE or EXEC
SQL ROLLBACK WORK RELEASE statement is run before the program ends

The IBM TSO TEST processor does not support cross memory mode operations.
Because Oracle applications perform all database operations in cross memory
mode, you cannot escape to TSO TEST when an Oracle application is performing
operations within the database.

CICS Programs
Oracle Access Manager for CICS allows COBOL or C programming language
programs running as CICS transactions to access an Oracle9i database server
anywhere in your network. Programs can access and update DL/I, VSAM, and
Oracle9i data within a single synchronized transaction.

From a CICS perspective, programs accessing Oracle9i databases have no special
requirements. The normal CICS SEND and RECEIVE functions are used to
communicate with the CICS terminal.

From an Oracle9i perspective, Oracle Precompiler applications running under CICS
are no different from other Oracle Precompiler applications. They contain SQL
statements that are translated by Oracle Precompilers and passed to the Oracle9i
database server as the program runs. When using Pro*C or Pro*COBOL programs
in a CICS transaction, however, there are some special considerations.

Use of CONNECT...AT
Oracle9i programs often use the AT clause of the CONNECT statement to specify
which server to access.

Synchronization of Oracle and CICS Updates
Your CICS programs can, optionally, synchronize Oracle updates with updates to
CICS resources such as VSAM files. When COMMIT(CICS) is specified as the
recovery option during configuration of Oracle Access Manager for CICS, Oracle
Access Manager for CICS participates in SYNCPOINT processing. You must also
Oracle Precompilers 7-3

Target Environment Design Considerations
use CICS SYNCPOINT functions in your programs instead of Oracle9i COMMIT or
ROLLBACK.

If there is more than one explicit connect (i.e., exec sql connect) within the same
CICS transaction, a CICS syncpoint is required prior to a second, or subsequent
connect statement. This applies whether multiple connect statements are within
one program or the program containing a connect statement is given control by a
CICS LINK or XCTL within the same CICS transaction.

Passing Control with CICS LINK or XCTL Commands
Programs that use CICS LINK or XCTL commands must specify RELEASE_
CURSOR=YES as an Oracle Precompiler option.

Explicitly Opened Cursors
Programs that explicitly open cursors must explicitly close them before control is
passed to another program with CICS LINK, CICS XCTL, or as a program linked to
a CICS RETURN.

■ Each explicitly opened cursor is the target of a CLOSE statement.

■ If COMMIT(ORACLE) is specified as the recovery option, then the Oracle
COMMIT WORK RELEASE statement can be used.

Accessing Multiple Oracle9i Databases
Each program targeted to CICS can only communicate with one Oracle Access
Manager for CICS and only one server because it can only be linked with one
ORACSTUB interface stub. Access to more than one Oracle9i database server from
a single CICS region is accomplished as follows:

■ You can use Oracle database links. With this method, all updates to any of the
accessed databases can be part of a single program.

■ You can use multiple Oracle Access Managers. To do this, you first design your
application so that the access logic for each database is contained in a separate
CICS program. Then you configure an Oracle Access Manager and a
corresponding ORACSTUB interface stub for each distinct server to be accessed.
Finally, you link each of the CICS programs with the appropriate ORACSTUB
stub.

Additional SQL Statement Restrictions
Programs used with Oracle Access Manager for CICS can only use Oracle data
manipulation language (DML) SQL statements. Programs attempting to use data
7-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Target Environment Design Considerations
definition language (DDL) or data control language (DCL) statements, such as
CREATE TABLE or GRANT, receive an Oracle error code indicating improper use
of distributed transaction mechanics.

IMS TM Programs
Oracle Access Manager for IMS TM allows COBOL or C programming language
programs running in an IMS MPP, IFP, or BMP region to access an Oracle9i database
server anywhere in your network.

From an IMS TM perspective, transaction programs accessing Oracle9i databases
have no special requirements. The normal IMS calls for input and output message
processing, data access, and synchronization behave as they would if Oracle9i were
not in use.

From an Oracle9i perspective, Oracle Precompiler applications running under
IMS TM are no different from other Oracle Precompiler applications. They contain
SQL statements that are translated by the Oracle Precompilers and passed to the
Oracle9i database server as the program runs. When using Pro*C or Pro*COBOL
programs in an IMS TM transaction, however, there are some special
considerations.

CONNECT Not Supported
A typical Oracle9i application uses the CONNECT statement to specify which
server is to be accessed and to send the server an Oracle user id and password for
authentication. With Oracle Access Manager for IMS TM, this information is
configured outside of the program in one of the following ways:

■ The language interface token (LIT) linked with your application designates
which Oracle Access Manager for IMS TM instance and which database is to be
accessed. The name of this module is determined by your IMS TM system
administrator.

■ The Oracle user id and password, if any, are related to the IMS PSB name for the
application.

Accessing Multiple Oracle9i Databases
Each program targeted to IMS TM can normally only communicate with one Oracle
Access Manager for IMS TM and only one server because it can only be linked with
one LIT. Access to more than one Oracle9i database server from a single IMS TM
region can be accomplished as follows:
Oracle Precompilers 7-5

Target Environment Design Considerations
■ You can use Oracle database links. With this method, all updates to any of the
accessed databases can be part of a single program.

■ You can use multiple Oracle Access Managers. To accomplish this, you first
design your application so that the access logic for each database is contained in
a separate IMS TM program. Then you configure an Oracle Access Manager
and a corresponding LIT for each distinct server to be accessed. Finally, you
link each of the IMS TM programs with the appropriate LIT.

Additional SQL Statement Restrictions
Programs used with Oracle Access Manager for IMS TM can only use Oracle DML
SQL statements. Programs attempting to use DDL or DCL statements, such as
CREATE TABLE or GRANT, receive an Oracle error code indicating improper use
of distributed mechanics.

A typical Oracle9i application might use COMMIT or ROLLBACK statements to
control whether database updates are committed or removed. With Oracle Access
Manager for IMS TM, these SQL statements are not available. Instead, programs
must use native IMS functions (such as GU, SYNC, ROLL, or ROLB) to synchronize
both Oracle and non-Oracle updates.

Accessing Oracle9i and DB2 Databases in a Single Transaction
When accessing Oracle and DB2 data in a single transaction, the DB2 and Oracle
access logic must be separated into distinct source programs that are precompiled
and compiled separately. They are then linked to act as a single transaction
program.

Controlling Oracle SQL Processing
The Oracle Precompiler MODE option lets you specify one of several alternatives to
normal Oracle SQL processing behavior. This allows applications to adhere more
closely to ANSI/ISO rules. These options work under Oracle Access Manager for
IMS TM. For example, if MODE is set to ANSI, then the cursors are closed with
each transaction.

Processing of Oracle9i Errors by Your IMS TM Program
Oracle errors that are considered application-oriented are always returned to the
transaction program to be handled by the application logic. These include message
ORA-0001, all errors in the range of messages ORA-1400 to ORA-1489, and
user-defined error messages in the range of ORA-20xxx. It is the responsibility of
7-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Sample JCL
the application developer to include suitable error handling logic for these types of
errors.

All other errors are considered system-oriented. These include errors associated
with loss of the connection to the target Oracle9i database server and simpler errors
such as ORA-0942. How Oracle Access Manager for IMS TM handles these errors is
determined by an IMS option called the region error option (REO).

The REO can specify that system errors are to be passed to the transaction for
handling that is identical to application-oriented errors. Alternatively, the REO can
specify that system errors abend and requeue, or abend and discard the transaction.
Which REO to use is decided by the application developer and the IMS
administrator. The REO is not specified by or in the application program. It is an
Oracle Access Manager for IMS TM configuration parameter.

Sample JCL
Oracle Precompilers are normally run in a batch environment but can be run under
TSO if the required data sets have been allocated before the precompiler is run.

The following sample JCL illustrates the precompile, compile, and link steps
necessary to build a precompiler application program.

//PRECOMPL EXEC PGM=pcc_mod, *- Refer to Note 1 -*
// PARM=’++/DD/SYSPARM’ *- Refer to Note 2 -*
//STEPLIB DD DSN=oran.orav.CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=oran.orav.MESG,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=oran.orav.H,DISP=SHR
// DD DSN=SYS1.SCEEH.H
// DD DSN=SYS1.SCEEH.SYS.H
//PROCFG DD DUMMY *- Refer to Note 12 -*
//SYSIN DD DSN= *- Refer to Note 4 -*,DISP=SHR
//SYSPUNCH DD DSN=&&PCCOUT,DISP=(,PASS,DELETE),
// UNIT=VIO *- Refer to Note 5 -*

Note: Unlike previous releases of OS/390 Precompilers, this
release relies on and exploits native support for long, mixed-case
function names. The object produced will cause the binder to
create a PM3 type program object. If this is not appropriate, other
methods are available. See Appendix A, "API Short Name
Support".
Oracle Precompilers 7-7

Sample JCL
//SYSPARM DD *
 INAME=/DD/SYSIN
 ONAME=/DD/SYSPUNCH
 LNAME=/DD/SYSPRINT
/*
//SYSOUT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//SYSUT1 DD UNIT=VIO *- Refer to Note 6 -*
//SYSUT2 DD UNIT=VIO
//SYSUT3 DD UNIT=VIO *- Refer to Note 3 -*
//*
If CICS is the target environment, run the CICS translator compiler here. The
input to the CICS translator should be data set "&&PCCOUT" from the precompiler
step, and the output should be passed to the host language compiler (next).
//*
Run the Oracle Precompiler program’s native language here. The input to the
compiler should be data set "&&PCCOUT" from the precompile step (or the output
from the CICS translator step if CICS is the target environment).
//*
//LKED EXEC PGM=IEWL,
// PARM=’XREF,LET,LIST,DYNAM=DLL’
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=oran.orav.SQLLIB,DISP=SHR
// DD DSN=SYS1.SCEELKED
// DD *- Refer to Note 7 -*
//SYSLMOD DD *- Refer to Note 8 -*
//TEXT DD *- Refer to Note 9 -*
//SYSUT1 DD UNIT=VIO /
//SYSLIN DD *
 INCLUDE SYSLIB(stub) *- Refer to Note 10 -*
 INCLUDE TEXT
 - Refer to Note 11 -
/*

Usage Notes
The following usage notes apply to the previous JCL example:

1. This is the name of the Oracle Precompiler load module. There is a different
Oracle Precompiler for each supported language. They are:

Language Oracle Precompiler Load Module

C programming language PROC
7-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Sample JCL
2. This PARM keyword shows an example of using parameter redirection. It
points to the SYSPARM DD statement, which contains the INAME, ONAME,
and LNAME parameters.

3. Only PROCOB and PROC require this DD statement.

4. This DD statement points to your Oracle Precompiler program source.

5. The output from the precompilation process is placed in this data set.

6. If the ORECLEN parameter is larger than 132, then the DCB attributes must be
specified in the SYSUT1 or SYSUT2 DD statements to set the LRECL equal to
the ORECLEN value. For example, the following statement sets the LRECL
to 200:

//SYSUT1 DD UNIT=VIO,DCB=(LRECL=200)

7. Include additional libraries required by your program and any runtime libraries
required by the native language.

8. This DD statement describes the library in which your linkedited Oracle load
module is placed.

9. This DD statement points to the object output from your Oracle Precompiler
program’s native language compiler.

10. The specific contents of the SYSLIN DD statement depend on the target
environment. Refer to "Linking Your Program" on page 7-13 for more
information.

11. Include any additional linkage editor statements you might require.

12. Only PROCOB requires this DD statement.

COBOL PROCOB18 (version 1 precompiler)

PROCOB (version 9 precompiler)

PL/I PROPLI

Note: PROCOB18 is an older precompiler release which only supports the
functionality of the Oracle V7 database server. PROCOB is a newer precompiler release
that supports all the latest Oracle9i functionality.

Language Oracle Precompiler Load Module
Oracle Precompilers 7-9

Precompiling Your Program
Precompiling Your Program
The following sections discuss precompiling your program using Oracle
Precompilers.

Oracle Precompiler Options
Because there are many possible options for the Oracle Precompilers, you might
find it impossible to fit all the options you need in the 100 bytes OS/390 allows for
parameters initially passed to user programs (for example, from JCL or under TSO).
You can use the following methods to pass more than 100 bytes of precompiler
options to an Oracle Precompiler interface:

■ Use the Oracle Precompiler EXEC ORACLE OPTION statement in your source
program to specify some of the parameters. This is a good way to specify
options that do not change for each compile. Refer to the appropriate Oracle
Precompiler manual for information on the EXEC ORACLE OPTION statement.

■ Use a parameter redirection operator to direct the Oracle Precompiler to retrieve
parameters from an OS/390 file in addition to the OS/390 parameter field.
Refer to Chapter 3, "Oracle9i Utilities and OS/390 Files" for more information
about parameter redirection.

When running under OS/390, some of the Oracle Precompiler options require
special attention:

INAME specifies the input data set containing the source code, in any
supported language, for the precompiler. Refer to Chapter 3,
"Oracle9i Utilities and OS/390 Files" for a description of how to
specify OS/390 data set names to the Oracle9i database server.
Typically, this operand is coded as shown in the following example
with a SYSIN DD statement pointing to the input source code:

INAME=/DD/SYSIN

ONAME specifies the data set to contain the output from the Oracle
Precompiler. Refer to Chapter 3, "Oracle9i Utilities and OS/390 Files"
for rules on specifying OS/390 data set names to the Oracle9i database
server. Typically, this operand is coded as shown in the following
example with a SYSPUNCH DD statement pointing to a data set that
is passed as input to the native language compiler:

ONAME=/DD/SYSPUNCH
7-10 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Precompiling Your Program
Return Codes
The Oracle Precompiler utility sets a return code of 0 upon successful
precompilation of source code. A return code of 8 is set if the precompiler detects
an irrecoverable error condition. In this case, an error message is written to the data
set specified in the LNAME parameter passed to the Oracle Precompiler.

Language-Specific Coding Considerations
The following sections discuss certain considerations that impact Oracle
Precompiler programs written in a particular language, regardless of the target
environment running the program.

Compiler Support
Refer to Chapter 2 of the Oracle9i Enterprise Edition Installation Guide for OS/390 for
specific compilers supported with each precompiler.

LNAME specifies the data set to contain the listing from the Oracle
Precompiler. Typically, this operand is coded as shown in the
following example with a SYSPRINT DD statement pointing to a
SYSOUT data set:

LNAME=/DD/SYSPRINT

CONFIG Pro*C and Pro*COBOL now support system configuration files,
pointed to by PROCFG DD. Additionally, an overriding configuration
file can be specified in SYPARM by /DD/CONFIG. The methods
previously in place for specifying Oracle Precompilers option can also
be used.

For example:

PARM=’++/DD/ddname option1 option1 ...’

When specifying Oracle Precompiler options, separate each option
with one or more blanks. Do not use a comma as a separator. If you
use a data set to pass options to an Oracle Precompiler, then the data
set must not have sequence numbers. If sequence numbers are found,
then the Oracle Precompiler stops processing. To specify a
fully-qualified data set name in an Oracle Precompiler option, use the
/DSN/ or /DD/ specifications. Do not use a quoted data set name.
Oracle Precompilers 7-11

Precompiling Your Program
Pro*COBOL
When using Pro*COBOL, each of the following have special considerations:

■ RETURN-CODE special register

■ INTEGER values

■ Compiler support

■ MAXLITERAL option

■ DYNAM compiler option

RETURN-CODE Special Register OS/390 COBOL programs use the RETURN-CODE
special register to pass a return code from a main program back to OS/390. It is
then used to form the job step completion code. The OS/390 standard subroutine
linkage places unpredictable values into the RETURN-CODE special register as a
subroutine is called. OS/390 subprograms can set the value of the RETURN-CODE
special register as they exit. However, the RETURN-CODE special register is an
IBM extension to the COBOL language and is not part of the SQL standard.

In compliance with the SQL standard, Oracle Pro*COBOL does not make use of the
RETURN-CODE special register and does not explicitly set the value. This causes
the value of the RETURN-CODE special register to be unpredictable after each SQL
statement completes. If a SQL statement is issued immediately before the main
program returns to OS/390, then the unpredictable value remains in the
RETURN-CODE special register and is used to form the job step completion code.
You are responsible for ensuring the correctness of the RETURN-CODE special
register.

INTEGER Values In the generic Oracle documentation, SQL library function
parameters are often documented with a data type of INTEGER. In OS/390,
integers are a fullword and must be defined in COBOL as S9(8) COMP fields. An
S9(4) definition generates a halfword that is the default integer size on some
operating systems. This can cause problems when migrating applications from
other operating systems to OS/390. For example, a call to SQLIEM expects an
integer MESSAGE_LENGTH as the second parameter. Define a MESSAGE_
LENGTH field as PIC S9(8) COMP in your program. A call to SQLGLM expects the
second and third parameters, BUFFER_SIZE and MESSAGE_LENGTH respectively,
to be integers. As with SQLIEM, they must be defined as PIC S9(8) COMP fields.

MAXLiteral Oracle Precompiler Option The default value of the MAXLITERAL Oracle
Precompiler option is 120. If you supply a MAXLITERAL value, then it is rounded
down to the next full word boundary (for example, 50 to 48).
7-12 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Linking Your Program
DYNAM Compiler Option The Oracle Precompiler interface stub must be statically
linked with your application. Therefore, the COBOL compiler DYNAM option
must not be used with Pro*COBOL programs. You can dynamically call your own
subroutines by using the CALL identifier form of the COBOL CALL statement.
Refer to the appropriate compiler documentation for more information.

Pro*C
When using Pro*C, each of the following have special considerations:

■ Object support

Object Support The Object Type Translator (OTT) utility is used to convert database
object type definitions into C programming language declarations that are included
in your Pro*C applications.

Pro*PL/1
The native language output from the Pro*PL/1 Precompiler that is directed to the
data set specified in the ONAME parameter cannot have a RECFM of V. This is
because an OS/390 compiler restriction requires all PL/I programs contained on a
variable length data set have a blank or a sequence number in columns 1 to 8. This
restriction does not apply to the data set input to PROPLI, only to the intermediate
data set passed to the PL/I compiler.

Compiling Your Program
After your program has been precompiled, the resulting source file is passed to the
host language compiler.

CICS Programs
You must run the Oracle Precompiler program first and pass the output to the CICS
translator to translate the CICS commands. Otherwise, the CICS translator issues
warning messages for each EXEC SQL statement that is encountered. Refer to the
machine-readable samples in the SRCLIB library for the JCL used to process
COBOL or C programming language programs.

Linking Your Program
After your program has been compiled, the resulting object code is passed to the
linkage editor where it is linked with the Oracle Precompiler interface stub. Each
Oracle Precompilers 7-13

Linking Your Program
target environment has a unique stub and different linking considerations apply to
each of the target environments. In all cases the interface stub must be linked
directly to your load module. Dynamic loading techniques (for example, the
COBOL dynamic call mechanism) cannot be used with the interface stub.

Batch and TSO Programs
When linking a program to run in batch or TSO, add the following linkage editor
control statement to the SYSLIN DD statement:

INCLUDE SYSLIB(ORASTBL)

If there are unresolved external references for symbols whose names begin with
SQL, then ensure ORASTBL is included in the linkedit. This stub resolves any calls
in the generated code. If ORASTBL is correctly included, then the problem is
probably caused by a missing entry point to the stub routine. You can contact
Oracle Support Services for additional assistance.

CICS Programs
When linking a program to run under CICS, add the following linkage editor
control statement to the SYSLIN DD statement:

INCLUDE SQLLIB(ORACSTUB)

Do not include references for ORASTBL or AMILS.

AMODE must be set to 31. There are no special requirements for RMODE.

If there are any unresolved external references for symbols whose names start with
SQL, then ensure ORACSTUB is included in the linkedit. This stub resolves any
calls in the generated code. If ORACSTUB is correctly included, then the problem is
caused by a missing entry point in the stub routine. You can contact Oracle Support
Services for additional assistance.

IMS TM Programs
When linking a program to run under IMS TM, add the following linkage editor
control statements to the SYSLIN DD statement:

INCLUDE SYSLIB(AMILS)
INCLUDE SYSLIB(lit-module)
7-14 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Running Your Program
The lit-module statement is the customer-generated language interface module
described later in this chapter. The IMS TM system administrator generates and
names the lit-module according to installation standards.

Do not include references to ORASTBL or ORACSTUB.

If there are unresolved external references for symbols whose names begin with
SQL, then ensure AMILS is included in the linkedit. This stub resolves any calls in
the generated code. If AMILS is correctly included, then the problem might be
caused by a missing entry point to the stub routine. You can contact Oracle Support
Services for additional assistance.

Running Your Program
After your program has been linked, the resulting load module is run in the target
environment. As your program runs, it passes SQL statements to the SQL interface
stub that is linked with it. The interface stub contains logic to dynamically locate
the full Oracle SQL interface for the target environment and pass control to it. The
full interface must be available in a load library as your program runs. Depending
on the target environment, other runtime considerations might apply. These are
discussed in the following sections:

■ UNIX System Services (USS)

■ Batch and TSO Programs

■ CICS Programs

■ IMS TM Programs

UNIX System Services
Pro*C, PRO*COB, and PROCOB18 are supported in the UNIX System Services
environment. Refer to Chapter 4, "Accessing Oracle9i Under USS", for more
information.

Administering Pro*COB Under UNIX System Services
Pro*COB parses the input files, and must know the include pathname to find all the
include files. The Pro*COB command line must have each nonstandard include
pathname specified. For example:

$procob iname=xyz.pco include=/home/jones/copybooks oname=xyz.cbl
$/usr/lpp/cobol/bin/cob2 -c xyz.cbl
Oracle Precompilers 7-15

Running Your Program
Building Pro*COB Programs You can build your own Pro*COB programs with demo_
procob.mk. For example, to precompile, compile, and link the userprog.pco
program, enter:

$ make -f $ORACLE_HOME/precomp/demo/proc/demo_proc.mk userprog

Users must change makefiles or scripts that call proc. The proc command line
must have each nonstandard include pathname specified. For example:

Sample Programs Please note that the sample programs require that you run a SQL
script to create the various tables and packages required by the precompiler. You
must run the SQL scripts in the precomp/demo/sql directory for the following
sample programs in precomp/demo/:

lobdemo1.pco

To build one of the sample PRO*COB programs, cd to the precomp/demo/proc
directory and issue the following make command:

make -f demo_proc.mk sample1

To build all of the sample PRO*COB programs, cd to the precomp/demo/proc
directory and issue the following make command:

make -f demo_proc.mk samples

Administering Pro*C Under UNIX System Services
Pro*C is upwardly compatible for all Pro*C programs written in C. (Pro*C does not
support C++ programs.) Pro*C parses the input files, and must know the include
pathname to find all the include files.

Users must change makefiles or scripts that call proc. The proc command line
must have each nonstandard include pathname specified. For example:

$proc iname=xyz.pc include=/home/jones/include
$c89 -r/home/jones/include xyz.c

Note: If your program depends on non-Oracle libraries, you may
have to alter demo_procob.mk to include them.
7-16 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Running Your Program
Building Pro*C Programs
You can build your own Pro*C programs with demo_proc.mk. For example, to
precompile, compile, and link the userprog.pc program, enter:

$ make -f $ORACLE_HOME/precomp/demo/proc/demo_proc.mk userprog

Sample Programs
Please note that the sample programs require that you run a SQL script to create the
various tables and packages required by the precompiler. You must run the SQL
scripts in the precomp/demo/sql directory for the following sample programs in
precomp/demo/:

sample11
cv_demo
ansidyn1

coldemo1
lobdemo1
objdemo1
navdemo1

cppdemo2

To build one of the sample PRO*C programs, cd to the precomp/demo/proc
directory and issue the following make command:

make -f demo_proc.mk sample1

To build all of the sample PRO*C programs, cd to the precomp/demo/proc
directory and issue the following make command:

make -f demo_proc.mk samples

To build one of the C++ sample PRO*C programs, cd to the precomp/demo/proc
directory and issue the following make command:

make -f demo_proc.mk cppdemo1

Note: If your program depends on non-Oracle libraries, you may
have to alter demo_proc.mk to include them.
Oracle Precompilers 7-17

Running Your Program
To build all of the C++ sample PRO*C programs, cd to the precomp/demo/proc
directory and issue the following make command:

make -f demo_proc.mk cppsamples

To build one of the Object sample PRO*C programs, cd to the
precomp/demo/proc directory and issue the following make command:

make -f demo_proc.mk coldemo1

To build all of the Object sample PRO*C programs, cd to the precomp/demo/proc
directory and issue the following make command:

make -f demo_proc.mk object_samples

Batch and TSO Programs
As your batch or TSO program runs, it must have access to several load modules
contained in the oran.orav.CMDLOAD library and all modules in the
oran.orav.MESG library. This includes the following modules:

Your programs can access these modules in the following ways:

■ Add a JOBLIB or STEPLIB statement to your JCL and point to the
oran.orav.CMDLOAD library.

■ Add an ORA$LIB statement to your JCL and point to the library,
oran.orav.MESG. Message modules will be accessed from here.

■ Your Oracle system administrator might place an oran.orav.CMDLOAD library
in the system LINKLIST or he might place various modules in the PLPA or
EPLPA. If this is the case, then you might have other directions for writing your
JCL.

LIBCLNTS is the SQL and OCI interface module. This is a DLL containing
the SQL and OCI interfaces. This module also serves as the
"shared library" used by Oracle tools and utilities.

All Modules in MESG data set.

Note: One common option you can use is to put CMDLOAD data
set in STEPLIB and MESG data set in ORA$LIB.
7-18 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Running Your Program
If your program receives OS/390 message IEA703I, then this is an indication that
one of the required modules cannot be located. IEA703I is accompanied by error
codes 106-n, 306-n, or 806-n. Refer to the IBM OS/390 System Codes manual to
determine why LIBCLNTS cannot be located and correct the problem.

CICS Programs
Normal CICS practices for defining your program to CICS are followed for Oracle
Precompiler programs. CICS programs access a shared copy of the full SQL
interface (called the CICS adapter) that must be configured and available before
your program begins running. If the adapter is not available, then you receive error
AEY9 from CICS. You need to contact your CICS system administrator to have this
condition corrected.

IMS TM Programs
Normal IMS TM practices for defining your program to IMS TM are followed for
Oracle Precompiler programs. IMS TM programs access a shared copy of the full
SQL interface that must be configured and available before your program begins
running. If the interface is not available, then you receive error 3042 from IMS TM.
You must contact your IMS TM system administrator to have this condition
corrected.
Oracle Precompilers 7-19

Running Your Program
7-20 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Call Inte
8

Oracle Call Interface

Oracle9i for OS/390 supports two types of programmatic interfaces: Oracle
Precompilers and the Oracle Call Interface (OCI). Together, they allow precise
control over SQL statement operations in a high-level source program.

Read this chapter for OS/390-specific information about using the Oracle Call
Interface under OS/390 and Chapter 7, "Oracle Precompilers" for information about
Oracle Precompilers. Sections in this chapter include:

■ Oracle Call Interface Overview on page 8-1

■ Target Environment Design Considerations on page 8-2

■ Compiling Your Program on page 8-5

■ Linking Your Program on page 8-6

■ Running Your Program on page 8-8

The product-specific documentation for OCI is contained in the OCI Programmer’s
Guide.

Oracle Call Interface Overview
The Oracle Call Interface (OCI) provides precise control over all aspects of Oracle9i
database access to your C programming language application programs. Unlike
Oracle Precompiler applications that use Pro*C to convert embedded SQL
statements into C programming language statements and function calls, OCI
applications are written to specify the C programming language function calls
directly. Oracle9i OCI only supports programs written in C programming
language. Although use of Oracle V7 OCI is still supported for existing
applications and existing applications can be run without relinking, it is no longer
documented.
rface 8-1

Target Environment Design Considerations
OS/390 supports several major operating environments and OCI programs can be
targeted to run in any of them. Whether your application requires traditional batch
processing, interactive processing under TSO, or transaction processing under CICS
or IMS TM, OCI can be a part of your application architecture.

OCI is also supported in the OS/390 UNIX System Services environment. Refer to
Chapter 4, "Accessing Oracle9i Under USS", for additional information about
building and running OCI programs in the OS/390 UNIX System Services
environment.

Regardless of which environment you choose, the same steps are done. These steps
are:

1. Compiling the program with the language’s compiler.

2. Linking the program with an Oracle interface stub designed especially for the
target environment. Batch, TSO, CICS, and IMS TM each require linking with a
different stub.

3. Running your program in the target environment.

This chapter discusses each of the steps needed to build and run an application
program that uses Oracle9i OCI. It contains environment-specific program design
considerations. For more information, refer to the OCI Programmer’s Guide.

Target Environment Design Considerations
This section discusses application design considerations that apply specifically to a
target environment.

TSO Programs
To use an OCI application under TSO (by the CALL command or as a command
processor), ensure you call OCISessionEnd or OCIServerDetach before the program
ends. Otherwise, an abend with completion code A03 occurs when the program
attempts to end. The OCISessionEnd or OCIServerDetach call ensures Oracle
cleanup actions are taken, in particular the removal of an OS/390 subtask that is
used to handle TSO session attention signals.

The IBM TSO TEST processor does not support cross memory mode operations.
Because Oracle applications perform all database operations in cross memory
mode, you cannot escape to TSO TEST when an Oracle application is performing
operations within the database.
8-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Target Environment Design Considerations
CICS Programs
Oracle OCI calls are not supported by Oracle Access Manager for CICS.

IMS TM Programs
Oracle Access Manager for IMS TM allows OCI programs written in C
programming language and running in an IMS MPP, IFP, or BMP region to access
an Oracle9i database server anywhere in your network. Programs can access and
update IMS, DB2, and Oracle9i data within a single synchronized transaction.

From an IMS TM perspective, transaction programs accessing Oracle9i databases
have no special requirements. The normal IMS calls for input and output messages
processing, data access, and synchronization perform as if the Oracle9i system is not
being used.

From an Oracle9i perspective, OCI applications running under IMS TM are no
different from other OCI applications. They contain OCI function calls that are
passed to the Oracle9i database server as the program runs. When using OCI
programs in an IMS TM transaction, there are some special considerations.

Accessing Multiple Oracle9i Databases
Each program target to IMS TM can only communicate with one Oracle Access
Manager for IMS TM and one server because it can only link with one LIT. Access
to more than one Oracle9i database server from a single IMS TM region can be done
as follows:

■ You can use Oracle database links. With this method, all updates to any of the
accessed databases can be part of a single program.

■ You can use multiple Oracle Access Managers. To do this, you first design your
application so that the access logic for each database is contained in a separate
IMS TM program. You then configure an Oracle Access Manager and a
corresponding LIT for each distinct server to be accessed. Finally, you link each
of the IMS TM programs with the appropriate LIT.

Additional Restricted OCI Functions
Programs used with Oracle Access Manager for IMS TM can only use Oracle DML
SQL statements. Programs attempting to use DDL or DCL statements, such as
CREATE TABLE or GRANT, receive an Oracle error code indicating incorrect use of
distributed transaction mechanics.
Oracle Call Interface 8-3

Target Environment Design Considerations
A typical Oracle9i application might use OCI functions for commit or rollback
statements to control whether database updates are committed or removed. With
Oracle Access Manager for IMS TM, these OCI functions are not available. Instead,
programs must use native IMS functions (such as GU, SYNC, ROLL, or ROLB) to
synchronize both Oracle and non-Oracle updates.

Unavailable Calls
When using Oracle Access Manager for IMS TM, the following OCI function calls
are not available:

■ All OCI security calls

■ All OCI thread calls

■ All OCI direct path load operations

■ The following function calls:

Oracle Access Manager for IMS TM supports both version 7 and version 9 OCI
functions. OCON and OCOF are only supported for version 7. For version 9, use
OCIStmtExecute with mode parameter OCI_COMMIT_ON_SUCCESS. If you
specify OCI_COMMIT_ON_SUCCESS with version 7, then the mode parameter is
changed to OCI_DEFAULT.

■ OCIBreak ■ OCIServerDetach

■ OCIDefineDynamic ■ OCISessionBegin

■ OCIEnvCreate ■ OCISessionEnd

■ OCIEnvInit ■ OCISvcCtxToLda

■ OCIInitialize ■ OCITerminate

■ OCILdaToSvcCtx ■ OCITransCommit

■ OCILogoff ■ OCITransDetach

■ OCILogon ■ OCITransForget

■ OCIPasswordChange ■ OCITransPrepare

■ OCIReset ■ OCITransRollback

■ OCIServerAttach ■ OCITransStart
8-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Compiling Your Program
Accessing Oracle9i and DB2 Databases in a Single Transaction
When accessing Oracle and DB2 data in a single transaction, the DB2 and Oracle
access logic must be separated into distinct source programs that are precompiled
and compiled separately. They are then linked to act as a single transaction
program.

Processing of Oracle9i Errors by Your IMS TM Program
Oracle errors that are considered application-oriented are always returned to the
transaction program to be handled by the application logic. These include message
ORA-0001, all errors in the range of messages ORA-1400 to ORA-1489, and
user-defined error messages in the range of ORA-20xxx. It is the responsibility of
the application developer to include suitable error handling logic for these types of
errors.

All other errors are considered system-oriented. These include errors associated
with loss of the connection to the target Oracle9i database server and simpler errors,
such as ORA-0942. How Oracle Access Manager for IMS TM handles these errors is
determined by an IMS option called the region error option (REO).

The REO can specify that system errors are to be passed to the transaction for
handling that is identical to application-oriented errors. Alternatively, the REO can
specify that system errors abend and requeue, or abend and discard the transaction.
The application developer and IMS administrator decide which REO to use. The
REO is not specified by or in the application program. It is an Oracle Access
Manager for IMS TM configuration parameter.

Compiling Your Program
When compiling your program there are considerations for long name support and
callback restrictions.

Long Name Support
Unlike previous releases of the OS/390 implementation of OCI, this release relies on
and exploits native support for long, mixed-case function names. So, when
compiling an OCI application, the LONGNAME compiler option must be specified.
The object produced will cause the binder to create a PM3 type program object. If
this is not appropriate, another method is available. See Appendix A, "API Short
Name Support".
Oracle Call Interface 8-5

Linking Your Program
Callback Restriction
Applications using OCI functions that make use of callbacks must be compiled with
the DLL option.

UNIX System Services
The Oracle Call Interface may be used in C programs developed for the USS
environment. Refer to Chapter 4, "Accessing Oracle9i Under USS" for more
information.

To build one of the sample OCI programs, cd to the rdbms/demo directory and
issue the following make command:

make -f demo_rdbms.mk build EXE=demo OBJS="demo.o ..."

For example:

make -f demo_rdbms.mk build EXE=oci02 OBJS=oci02.o

To build all of the sample OCI programs, cd to the rdbms/demo directory and issue
the following make command:

make -f demo_rdbms.mk demos

Linking Your Program
After your program has been compiled, the resulting object code file is passed to the
linkage editor where it is linked with the Oracle interface stub. Each target
environment has a unique stub and different linking considerations apply to each
target environment. In all cases the interface stub must be linked directly to your
load module. Dynamic loading cannot be used with the interface stub.

Sample Link JCL
Following is an example of JCL that might be used for linking:

//LKED EXEC PGM=IEWL,

Note: The sample OCI C++ programs are not supported in the
USS environment due to a current limitation with the IBM C++
compiler on OS/390. The current versions of the C++ compiler
(version 2.6 through version 2.9) do not support the "long long"
datatype.
8-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Linking Your Program
// PARM=’XREF,LET,LIST,DYNAM=DLL’
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.SCEELKED,DISP=SHR
// DD *- Refer to Note 1 -*
// DD SYS.SCEELKED
//SQLLIB DD DSN=oran.orav.SQLLIB,DISP=SHR
//SYSLMOD DD *- Refer to Note 2 -*
//TEXT DD *- Refer to Note 3 -*
//SYSUT1 DD UNIT=VIO
//SYSLIN DD *
INCLUDE SQLLIB(stub) *- Refer to Note 4 -*
INCLUDE TEXT
- Refer to Note 5 -
/*

Usage Notes
The following usage notes apply to the previous JCL example:

1. Include additional libraries required by your program and any runtime libraries
required by the C programming language compiler.

2. This DD statement describes the library in which your linkedited Oracle load
module is placed.

3. This DD statement points to the object output from the C programming
language compiler’s program native language compiler.

4. The specific contents of the SYSLIN DD statement depend on the target
environment. These contents are discussed later in this chapter.

5. Include any additional linkage editor statements you require.

 Batch and TSO Programs
When linking an OCI program to run in batch or TSO, you must add the following
linkage editor control statement to the SYSLIN DD statement:

INCLUDE SYSLIB(ORASTBL)

The ORASTBL stub provides long name support for OCI functions and support for
SQL functions.

If there are external references for symbols whose names begin with the letter O,
then the linkage editor cannot find one or more of the function calls in your
application. Ensure ORASTBL is included in your linkedit. The ORASTBL stub
Oracle Call Interface 8-7

Running Your Program
resolves any calls in your code. If ORASTBL is correctly included, then the problem
might be caused by a missing entry point to the stub routine. You can contact
Oracle Support Services for additional assistance.

IMS TM Programs
When linking a program to run under IMS TM, add the following linkage editor
control statements to the SYSLIN DD statement:

INCLUDE SQLLIB(AMILS)
INCLUDE SQLLIB(lit-module)

The AMILS module must be the version that is compatible with this release if
Oracle9i OCI is used.

The lit-module statement refers to a customer-generated language interface
module. The IMS TM system administrator generates and names the statement
according to the installation’s standards.

Do not include references to ORASTBL, ORASTUBS, or ORACSTUB.

If there are external references for symbols whose names begin with the letter O,
then the linkage editor cannot find one or more of the function calls in your
application. Ensure AMILS is included in your linkedit. The AMILS stub resolves
any calls in your code. If AMILS is correctly included, then the problem might be
caused by a missing entry point to the stub routine. You can contact Oracle Support
Services for additional assistance.

Running Your Program
After your program has been linked, the resulting load module is run in the target
environment. As your program runs, it passes OCI function calls to the OCI
interface stub linked with it. The interface stub contains logic to dynamically locate
the full Oracle OCI interface for the target environment and to pass control to it.
The full interface must be available in a load library as your program runs.
Depending on the target environment, other runtime considerations might apply.

Batch and TSO Programs
The requirement for OCI programs in batch and TSO environments is the same as
Precompiler programs. Refer to the "Running Your Program" on page 7-15.
8-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Running Your Program
IMS TM Programs
Normal IMS TM practices for defining your program to IMS TM are followed for
OCI programs. IMS TM programs access a shared copy of the full OCI interface
that must be configured and available before your program begins running. If the
interface is not available, then you receive error message 3042 from IMS TM. You
must contact your IMS TM system administrator to have this condition corrected.

OCI Interface to Publish/Subscribe
The OCI interface to Oracle’s publish/subscribe features allows an application to
register a callback function that is driven when there are queue data or trigger
events to process. This feature is supported with Oracle for OS/390 server as long
as the client executes in a multi-threaded environment and there is TCP
connectivity between the server and the client. This includes local OS/390 clients
running under USS as well as remote clients on any multi-threaded platform. It
excludes native TSO/batch and IMS clients at this time

The TCP connectivity requirement does not mean that the client must be connected
to the server via Oracle Net PROTOCOL=TCP. The client can be connected via any
protocol (including Oracle Net PROTOCOL=XM for a local USS client) and in fact
the client can disconnect its session from the database after setting up the callback
without affecting the callback. A special background process in the server (EMON)
opens a TCP connection to the client thread that gets created when
OCISubscriptionRegister is called. TCP communication from the server to the client
thread ultimately drives the callback functions.

See the OCI Programmer’s Guide for further details on the OCI interface to Oracle’s
publish/subscribe facility.
Oracle Call Interface 8-9

Running Your Program
8-10 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

SQL
9

SQL*Plus

The primary interface to the Oracle9i database server, SQL*Plus, provides a
powerful environment for querying, defining, and controlling data.

This chapter describes accessing and running SQL*Plus commands and procedures
in an OS/390 environment. The following topics are discussed:

■ Running Under UNIX System Services on page 9-2

■ Running Under TSO on page 9-2

■ Attention Processing on page 9-3

■ Running in Batch on page 9-4

■ SQL*Plus Profiles on page 9-5

■ SQL*Plus HOST Command on page 9-5

■ SQL*Plus Time Usage Information on page 9-6

■ Using OS/390 Editors from SQL*Plus on page 9-7

■ Data Set Enqueuing on page 9-7

■ Restricting User’s Privileges in SQL*Plus on page 9-8

■ Exiting SQL*Plus on page 9-8

■ Usage Notes on page 9-9

■ Unsupported Functions on page 9-10

The information in this chapter supplements the primary documentation for
SQL*Plus found in the SQL*Plus User’s Guide and Reference.
*Plus 9-1

Running Under UNIX System Services
Running Under UNIX System Services
Oracle9i provides a native OS/390 UNIX System Services version of SQL*Plus. To
run it, first ensure the environment is established as described in Chapter 4,
Running an Oracle Utility Under USS, then enter the following at the command
prompt:

sqlplus

For additional information, refer to Chapter 4, "Accessing Oracle9i Under USS" and
the SQL*Plus User’s Guide and Reference.

Running Under TSO
To access SQL*Plus as a command processor, use the following syntax:

SQLPLUS [-S] [userid[/password[@connect-string]]] [@start_file]

where:

All parameters are optional to SQL*Plus.

According to the following syntax, the command connects Oracle user SCOTT to
the Oracle instance specified in the ORA1 tnsnames alias. This automatically runs
the SQL statements contained in member INITIAL in data set TEST.ORACLE.SQL:

-S calls SQL*Plus silently. The initial banner and the
command prompts are not displayed. If used, then -S
must be specified immediately following the SQLPLUS
command.

userid is the Oracle user id.

password is the Oracle password associated with userid.

connect-string is a tnsnames alias name or a complete Oracle Net
address string. This parameter is optional if the Oracle
database server is specified using methods described in
Chapter 2. Otherwise, refer to Chapter 10 for further
details.

start_file specifies a SQL command file to start after SQL*Plus
initialization. This string must be separated from
userid and password by at least one blank to indicate
it is a start file and not a database pointer.
9-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Attention Processing
SQLPLUS SCOTT/TIGER@ORA1 @/DSN/TEST.ORACLE.SQL(INITIAL)

Attention Processing
Use of the [PA1] or [Attn] key interrupts the operation of SQL*Plus. When you
enter a command producing results you did not expect or are not interested in
viewing, using the attention interrupt is useful.

When running in TSO/E, SQL*Plus attempts to establish an attention processing
exit using the TSO/E STAX service. For this to work, the ORASTAX module must
be loadable from JOBLIB/STEPLIB, a linklist library, or LPA. If ORASTAX cannot
be loaded, attention processing is suppressed; no messages are issued to indicate
this condition.

When attention processing is established, it is used by both SQL*Plus and by the
Oracle program interface code. The effect of an attention signal depends on
whether SQL*Plus or an Oracle server is in control. If a request has been issued to a
server, the attention signal is associated with the Oracle program interface and it
will halt the in-progress server request. Otherwise, the signal is handled by
SQL*Plus itself and will halt the current SQL*Plus activity. For example, if
SQL*Plus is displaying large amounts of data from a SELECT statement, and
attention will halt the output display and return to the "SQL>" prompt.

Processing States
Because the computer operator can issue an attention interrupt at any time, the
attention exit responds differently depending upon the processing state of
SQL*Plus. Regardless of the processing state, the following message is displayed:

!
Oracle ATTN.

If the [PA1] key is pressed during a running query or update, then the operation is
canceled. The Oracle9i database server returns the following error message,
acknowledging the cancel:

Error: ORA-1013: user requested cancel of current operation

If the [Attn] key is pressed during a running query, then the query might continue
to retrieve and display a number of rows before the cancel is acknowledged. The
query sometimes continues because the [Attn] key operates asynchronously. Any
messages queued to the user before the attention interrupt are displayed.

If there is no update or query running, then SQL*Plus waits for other user input.
SQL*Plus 9-3

Running in Batch
Batch Processing
Because attention processing cannot occur in the OS/390 batch environment,
attention processing considerations do not apply to SQL*Plus operations in batch.

Running in Batch
You can call SQL*Plus in the batch environment by running the ORASQL JCL
procedure. This procedure is created during the Oracle9i database server
installation process. Consult with your DBA or systems programming staff for the
location of this procedure. A copy of the procedure is reproduced in the following
example:

//ORASQL PROC INDEX=oran,
// LIBV=orav,
// SYSOUT=’SYSOUT=*’
//ORASQL EXEC PGM=SQLPLUS,REGION=4M
//STEPLIB DD DSN=&INDEX..&LIBV..CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=&INDEX..&LIBV..MESG,DISP=SHR

When running this JCL procedure, include additional DD statements referring to
other data sets required for proper operation of the utility.

The following JCL illustrates the use of the procedure described in the previous
example:

//USER1JOB JOB
//STEP1 EXEC ORASQL,PARM=’SCOTT/TIGER’
//ORA@sid DD DUMMY
//SYSIN DD DSN=SCOTT.ORACLE.SQL(SQLSTUFF),DISP=SHR

Note the additional DD statements:

■ ORA@sid, where sid is the SID associated with the Oracle9i database server to
which you want to connect.

■ SYSIN, which contains the SQL commands you want to run.

■ SYSOUT and SYSERR will be used if present.

Use this procedure as a model for creating your own JCL procedures conforming to
your installation’s policies.

To pass parameters to SQL*Plus in the batch environment, use the JCL PARM field.
9-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

SQL*Plus HOST Command
You can also access the Oracle9i database server through the terminal monitor
program (TMP) in batch mode. Refer to "Running Under TSO" on page 9-2 in this
case. File allocations required in TSO access are also required in batch mode.

SQL*Plus Profiles
During initialization, SQL*Plus searches for an allocation to the SQLLOGIN DD
statement. If a file is allocated to this DD statement, then it is opened for input and
the contents are run automatically, one command at a time, until an EOF is
encountered. This DD statement points to a file that can contain any valid SQL or
SQL*Plus statements you want run with each logon to SQL*Plus.

If the file allocated by the SQLLOGIN DD statement is not found during
initialization, then the following messages are displayed:

ERROR OPENING /DD/SQLLOGIN: DDNAME STATEMENT MISSING OR MISSPELLED
UNABLE TO OPEN FILE: "/DD/SQLLOGIN"

These messages signal an unsuccessful SQLLOGIN allocation and you are provided
with the normal SQL prompt. This message display is not an error condition. It
indicates automatic running of SQL or SQL*Plus statements at startup did not
occur.

If you are not using automatic running of SQL or SQL*Plus statements at startup
and do not want to receive these messages, then use the DUMMY parameter in the
data set allocation.

A short SQLLOGIN profile example is shown in the following example:

Set echo off
set feedback 4
set message on
set echo on
select * from daily_reminder;
__

SQL*Plus HOST Command
The SQL*Plus HOST command allows you to use a variety of commands and
utilities from within SQL*Plus.
SQL*Plus 9-5

SQL*Plus Time Usage Information
Running TSO/E Commands
The SQL*Plus HOST command lets you run TSO/E commands from within
SQL*Plus:

SQL> HOST SEND ’GOOD MORNING’ USER(SMITH)

The HOST command is only valid in native TSO/E and cannot be used in batch
mode.

Calling CLISTs
The SQL*Plus HOST command lets you use CLISTs from within SQL*Plus. To run a
CLIST use the following, where clist is the name of the CLIST to run:

SQL> HOST clist

Calling OS/390 Editors
Call an OS/390 editor using one of the following SQL*Plus HOST commands:

SQL> HOST EDIT filename OLD DATA
SQL> HOST ISPF 2

Multiple SQL*Plus Processes
Use the HOST command from within SQL*Plus with a different Oracle user id to
start a new, separate SQL*Plus process. Other Oracle utilities can also be called,
subject to available memory.

SQL*Plus Time Usage Information
SQL*Plus provides two means of gathering time usage information: the TIMING
and SET TIMING commands. Refer to the SQL*Plus User’s Guide and Reference for
more information about TIMING and SET TIMING.

TIMING Command
The TIMING command is used to record and display time usage statistics. The
timing data returned has the following format:

Elapsed x:xx:xx.xx, user-CPU y.yy sec

where:
9-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Data Set Enqueuing
SET TIMING Command
The SET TIMING command is used to display time usage information. The
information returned by the SET TIMING command is displayed after each
SQL*Plus command is run. The timing data returned has the following format:

Elapsed x:xx:xx.xx, user-CPU y.yy sec

where:

Using OS/390 Editors from SQL*Plus
You can use the ISPF editor with SQL*Plus:

ISPF Editor
To support the ISPF editor, the editor must be defined as ISPF using a DEFINE_
EDITOR command from the command line or from a profile. Once the editor is
defined as ISPF, when a SQL*Plus EDIT command is issued, the ISPLINK interface
is dynamically loaded.

Data Set Enqueuing
When you begin editing a member with ISPF, ISPF obtains an exclusive ENQ for
QNAME SPFEDIT and a 52-byte RNAME consisting of the data set name and
member. ENQ is held during the entire edit session. When you save the member,
ISPF obtains a second exclusive ENQ for QNAME SPFEDIT and a 44-byte RNAME
containing only the data set name. ISPF opens the PDS for output, writes the edited
member, and closes the PDS. The two enqueues are released in the order they were
obtained.

x:xx:xx.xx is the amount of time since the current timing area started.

y.yy is the amount of CPU-time used since the current timing area
started.

x:xx:xx.xx is the amount of time since the SQL*Plus command was issued.

y.yy is the amount of CPU-time used to run the SQL*Plus command.
SQL*Plus 9-7

Restricting User’s Privileges in SQL*Plus
Restricting User’s Privileges in SQL*Plus
The DBA can use the PRODUCT_USER_PROFILE table, located in the SYSTEM
account, to disable certain SQL*Plus commands for a user. You might be able to use
the PRODUCT_USER_PROFILE table with your applications. For more
information about the PRODUCT_USER_PROFILE table, consult with the DBA for
your system and refer to the SQL*Plus User’s Guide and Reference.

Exiting SQL*Plus
To exit SQL*Plus, you can enter one of the following:

SQL>EXIT [return code keyword | variable]
SQL>QUIT [return code keyword | variable]

QUIT is a synonym for the EXIT command.

The EXIT command lets you specify an operating system return code. This enables
you to run SQL*Plus command files in batch mode and detect any unexpected
events. Under OS/390, the return code values are:

The syntax for the EXIT command is described in the SQL*Plus User’s Guide and
Reference.

Spooling SQL*Plus Output
When using the SQL*Plus SPOOL command, SQL*Plus uses a default output file
suffix of LST.

Command Condition Return Code

SQL>EXIT SUCCESS 0

FAILURE 1

WARNING 1

<variable> Value of <variable>

SQL.SQLCODE Return code from the last SQL operation to the
database
9-8 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Usage Notes
Usage Notes
There are special considerations for the following:

■ Special characters

■ String concatenation

■ Input line truncation

■ SQL*Plus ASCII function

Special Characters
The SQL symbol for negation is the exclamation point. For not equal, <> is
recommended.

String Concatenation
The SQL symbol for concatenation under OS/390 is the solid vertical bar.

A string concatenation function, CONCAT, provides an alternative to using the
vertical bar character for concatenation. Installations that do not have computer
keyboards with the vertical bar can use this function. For installations where the
vertical bar is available on the computer keyboards and where portability to
environments with other character sets is not important, the vertical bar character
can be used.

The CONCAT function has the following syntax, where x and y are the strings to
concatenate:

CONCAT(’x’,’y’)

The quotes in the syntax are required.

For example, the following statement selects rows where the employee name is
CLARK:

SELECT * FROM EMP WHERE ENAME = CONCAT(’CL’,’ARK’);

Input Line Truncation
SQL*Plus currently truncates, without warning, input lines exceeding 255
characters.
SQL*Plus 9-9

Unsupported Functions
SQL ASCII Function
Under OS/390, the SQL ASCII function can cause confusion. Contrary to what the
name implies, the ASCII function does not convert an EBCDIC value to its ASCII
equivalent.

The ASCII function takes a character, in this case EBCDIC, and returns the number
representation for that character in the given character set. For example, the ASCII
value of A is 193 (ASCII(’A’)=193). The inverse function is CHR (meaning,
CHR(193)=’A’).

Unsupported Functions
The following functions are not supported:

■ SPOOL OUT

■ SET NEWPAGE 0

■ RUNFORM

SPOOL OUT
The SPOOL OUT function documented in the SQL*Plus User’s Guide and Reference is
not supported in OS/390 in the TSO or batch environments. To spool to a data set
that is automatically printed, you can use the following steps:

1. Allocate a DDname to SYSOUT:

//SPOOLED DD SYSOUT=*

2. Spool the output of the query to the pre-allocated DDname:

SQL> SPOOL /DD/SPOOLED

SET NEWPAGE 0
Using SET NEWPAGE 0 in SQL*Plus in OS/390 does not clear the screen between
logical pages on a 3270 computer. NEWPAGE 0 only applies to printed output.

RUNFORM
The RUNFORM command is unavailable. When you enter the RUNFORM
command, you receive an error message.
9-10 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Ora
10

Oracle Net

Oracle Net is a component of the Oracle server providing distributed database and
processing capabilities. Oracle Net for OS/390 supports network communications
between Oracle applications and Oracle9i database server systems across different
OS/390 systems or foreign operating systems.

This chapter discusses usage considerations for Oracle Net on OS/390 and covers
OS/390 clients (including servers that initiate database links) accessing remote
Oracle servers as well as remote clients accessing a Oracle server on OS/390. It
contains the following sections:

■ Oracle Net Overview on page 10-1

■ Remote Access to OS/390 Server Using Oracle Net on page 10-2

For product-specific information, refer to the Oracle9i Net Services Administrator’s
Guide.

See Chapter 2, "Using the OS/390 Database Instance", for information about
accessing an Oracle instance from a local client. For information about accessing a
remote Oracle instance from USS, see Chapter 4, "Accessing Oracle9i Under USS".

Oracle Net Overview
The Oracle Net Network Service acts as the bridge between Oracle clients and
servers and the communication facilities of the OS/390 operating system, thus
supporting network communications between Oracle applications and Oracle9i
database server systems or gateways across different images or operating systems.
One protocol is available: TCP/IP. The Oracle Net Network Service is controlled via
the parameters in its service definition.
cle Net 10-1

Remote Access to OS/390 Server Using Oracle Net
Distributed Processing
Dividing processing between a front-end computer running an application and a
back-end computer used by the application is known as distributed processing.
Oracle Net enables an Oracle tool or application to connect to a remote computer
supporting an Oracle9i database server or gateway.

Distributed Database
Several databases linked through a network, appearing to a user as a single logical
database, are known as a distributed database. Oracle tools running on a client
computer can share and obtain information retrieved from other remote Oracle9i
database servers or gateway systems. Regardless of the number of database
information sources, the user may only be aware of one logical database.

Oracle Net Terminology
The following terms are used to explain the architecture of Oracle Net for OS/390:

Remote Access to OS/390 Server Using Oracle Net
Remote (inbound) clients access Oracle9i for OS/390 database instances through
Oracle Net using Oracle Net address strings as follows:

1. Oracle Net listens on a single endpoint (network address) for each protocol. All
remote clients that go through a particular network service with a particular
protocol use the same network address regardless of which database instance
they want to access. All TCP/IP clients specify the same hostname (or IP) and
port number.

Host is the computer on which the database resides. It runs the
Oracle9i database server or an Oracle gateway.

Server is the Oracle9i database service.

Client is the application using Oracle Net to communicate with a
server. A server is also considered a client if it initiates a
connection with another server.

Protocol is a set of standards governing the operation of a communication
link.

Network is a configuration of devices and software connected for
information interchange.
10-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Remote Access to OS/390 Server Using Oracle Net
2. Clients indicate the target database instance that they want with the
’(CONNECT_DATA=(SID=sid))’ clause in the Oracle Net address string. This is
required with Oracle Net for OS/390.

Oracle Net for OS/390 Filenames
Oracle Net for OS/390 supports a number of Oracle Net files that are used to
specify TNSNAMES connect descriptors as well as Oracle Net parameters. The
Oracle Net parameters are used to configure Oracle Net processing options for
Oracle Net facilities such as Name Server, LDAP as well as Oracle Net logging.

The base Oracle Net documentation, Oracle9i Net Services Administrator’s Guide,
refers to files in the following form:

basename.extension

where basename is the product name and extension is the extension.

An example of this form is SQLNET.ORA.

These files are mapped to DDnames on OS/390. The following DDnames are
implemented under OS/390:

SQLNET defines a data set containing any SQLNET.ORA diagnostic,
ASO, or Oracle Names parameters. It is not necessary to allocate
this DD unless these features are desired. Refer to Oracle9i Net
Services Administrator’s Guide or the Oracle Label Security
Administrator's Guide for more information.

SQLNETLG defines a data set into which any logging output is written.
Oracle Corporation recommends that this be defined as a
SYSOUT data set in a held output class.

SQLNETTC defines a data set into which any logging output is written.
Oracle Corporation recommends that this be defined as a
SYSOUT data set in a held output class.

TNSNAMES defines a data set containing all the TNS connect descriptors and
aliases for your installation. For further information on TNS
connect descriptors, refer to the Oracle9i Net Services
Administrator’s Guide. This DDname is not necessary on server
JCL unless DBLINKS originate from the server.

LDAP defines the location of the LDAP server.

TNSNAV TNS client navigation. (Generally not used on OS/390.)

INTCHG Interchange. (Generally not used on OS/390.)
Oracle Net 10-3

Remote Access to OS/390 Server Using Oracle Net
Locating the Oracle Net Service
Beginning with Release 9.2, clients open their own sockets and the SSN parameter
used by clients in previous releases is no longer required.

Oracle Net Connect Descriptors for OS/390
The Oracle Net connect descriptors for OS/390 adopts the same syntax as the base
Oracle Net connect descriptors.

TCP/IP Addresses
The syntax for the TCP/IP address portion of a connect descriptor on OS/390 is
described as follows:

aliasname=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL = TCP)
 (HOST = hostname)
 (PORT = port_num)
 (CONNECT_DATA=(SID=sid)))

where:

Examples
The examples are:

Connecting to a Remote Server Using Oracle Net
With Oracle9i, Release 2, clients open their own sockets and no longer need to direct
their request through the Net address space. To use Oracle Net for OS/390 in client
mode, the connect string must include an alias defined in a TNSNAMES file, LDAP,
an Oracle Names server, or a valid TNS connect descriptor.

aliasname is the name used to reference this connection description.

hostname is the host nickname as defined to TCP/IP or the host internet
address as a decimal value.

port_num is the TCP/IP port number on which the target database is
listening.

sid is the SID of the target Oracle server.
10-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Remote Access to OS/390 Server Using Oracle Net
■ To use the descriptors defined in the TNSNAMES file in a TSO session, allocate:

ALLOC F(TNSNAMES) DA(’ORA.SQLNET.CNTL(tnsname)’) SHR REUSE

■ To connect to a remote database with an alias of ORAUNIX using SQL*Plus, the
following connect string can be used:

SQLPLUS SCOTT/TIGER@ORAUNIX

The definition for alias ORAUNIX is defined in the data set allocated to
DDname TNSNAMES with:

ORAUNIX=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQUNIX)
 (PORT=1533))
 (CONNECT_DATA=
 (SID=UNIX)))

With the 9.2 release, clients open their own sockets and no longer need to direct
their request through the Net address space.

Oracle Names and LDAP
Oracle clients on OS/390 can use an Oracle Names or LDAP server running on
another platform to resolve connection requests. The following samples of the
Oracle Net configuration file is required to make use of these services.

Name Server
SQLNET DD or SQLNET.ORA Definitions:
###############
Names: (CONNECT_TIMEOUT = 0) -MUST- be specified
###############
NAMES.DEFAULT_DOMAIN = world
NAMES.DEFAULT_ZONE = my.domain.com

Note: Oracle Corporation recommends you define all your
databases in a public data set accessible by all users so they can
connect to databases using aliases instead of TNS connect
descriptors.
Oracle Net 10-5

Remote Access to OS/390 Server Using Oracle Net
NAMES.DIRECTORY_PATH = (TNSNAMES,ONAMES, LDAP)
NAMES.PREFERRED_SERVERS =
(ADDRESS_LIST =
(DESCRIPTION =
(ADDRESS =
(PROTOCOL = TCP)
(HOST = names_host)
(Port = 1575)
)
(CONNECT_TIMEOUT = 0)
)
)

LDAP Server
LDAP DD or LDAP.ORA Definitions:
A sample LDAP.ORA file:
DEFAULT_ADMIN_CONTEXT = "c=us"
DIRECTORY_SERVERS = (hostname:389:636)
DIRECTORY_SERVER_TYPE = OID, LDAP after ONAMES

LDAP.ORA can be generated using the NETCA utility.
10-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Migration Consid
11

Migration Considerations

This chapter describes usage considerations when migrating from an earlier
Oracle8i database with MPM or earlier OSI database to this release of the Oracle9i
database.

The following topics are included:

■ Overview on page 11-1

■ OS/390 Language Environment on page 11-2

■ OS/390 Cross Memory Support on page 11-3

■ IXCF Support on page 11-5

■ Remote Clients on page 11-5

Overview
Oracle9i database server users on OS/390 communicate with the OSDI database
service address space using OS/390 cross memory services. This facility allows
both data and program operation to cross address space boundaries in a secure and
controlled manner.

OSDI provides a cross-memory protocol for connecting local Oracle database server
clients to OSDI-managed database instances. The protocol is based on Oracle Net
architecture. If migrating from MPM, this protocol replaces the SQL*Net V1-based
protocols that are used by MPM. You cannot connect to an OSDI-managed server
using the MPM protocol, and you cannot connect to an MPM-based Oracle instance
using the OSDI protocol.
erations 11-1

OS/390 Language Environment
OS/390 Language Environment
In this release all Oracle clients use the IBM Language Environment for C program
runtime services. This includes all Oracle tool, utilities, Access Managers and the
Oracle client code used by customer written applications built using the Oracle
precompilers or OCI interface.

The Oracle client code previously provided with the ORADRV load module, is now
provided in LIBCLNTS. LIBCLNTS is a DLL module in CMDLOAD and must be
made available to tools, utilities, Access Managers, and customer written
applications either:

■ by placing CMDLOAD in the STEPLIB DD concatenation in the jcl, or

■ by LIBCLNTS copied into SYS1.PALIB so that one copy is shared across all uses.

The IBM Language Environment runtime library, SYS1.SCEERUN, must be made
available either in the STEPLIB DD concatenation in the jcl, or by placing
SYS1.SCEERUN in the LNKLSTxx member of SYS1.PARMLIB.

TOS/Batch and USS customer applications must be compiled using a Language
Environment conforming compiler. See the Release Notes, "Additional Software
Requirements" section for supported compilers. With migration to the use of the
LIBCLNTS DLL, customer applications must be linked with a new stub as described
in "Linking Your Program" in the Oracle Precompilers chapter of this book. For
migration, existing applications using an OSDI version of CMDLOAD can access
this version of the database as long as they continue to use the existing CMDLOAD
and MSEG datasets. Existing applications built using an MPM version of
CMDLOAD must be recompiled if compiled with a non-conforming Language
Environment compiler and/or be relinked with the new stub.

Oracle tools and utilities now support file specifications and redirection
specifications according to Language Environment syntax. See the IBM C/C++
Programming guide section on "Opening Files" and "Using Redirection Symbols"
for more information. For backward compatibility Oracle Runtime file specification
is supported as described in the "Oracle9i Utilities and OS/390 Files" chapter of this
book. See also the appropriate chapter for the specific product being used. A
previous OSDI version of tools such as SQL*Plus can access this version of the
database as long as they continue to use the CMDLOAD and MESG datasets
provided with that release. Prior versions of the tools provided in an MPM release
will not work with this version of the database.
11-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

OS/390 Cross Memory Support
OS/390 Cross Memory Support
OS/390 cross memory support is provided for Oracle clients as described in the
following sections.

Cross Memory Support
Oracle9i’s cross memory mechanism is based on Oracle Net and supports local
access to Oracle database instances by its SID using the ORA@sid DD statement,
local tnsnames connect string (either explicitly or using the TWO_TASK
environment variable) or with the ORACLE_SID environment variable. See
"Enabling OS/390 Local Client Access" on page 2-2 for details.

Applications that utilize an ORA@ssn DD statement to access an MPM-based
Oracle database would require only minor JCL change to access an OSDI-managed
database instance with a different SID. In other cases where other MPM specific
local connection mechanisms are used, applications will need to be changed to use
one of the Oracle9i supported mechanisms.

Support for the old SQL*Net V1-style connection strings (M:, F:, W:, and Z:) and for
the CONNSTR environment variable has been removed for the Oracle9i and
subsequent releases; therefore, a SQL*Net V1-style connection string will produce
an error during the connect attempt. Any CONNSTR setting will be ignored, and
other mechanisms that are lower in the precedence list will be attempted. You will
need to convert scripts or applications that use either of these mechanisms to one of
the others before you upgrade to Oracle9i.

MPM Compatibility
With MPM, a TSO or batch Oracle application has four different ways to specify a
local target instance. They are, in descending order of precedence:

1. A SQL*Net V1-style connection string following an "@" character that is
appended to the userid and password supplied to an Oracle connect call. This
string is of the general form:

x:ssn
where x is the letter M, F, W, or Z and ssn is the 1-character to 4-character
subsystem name of the target MPM. Additional protocol parameters following
ssn such as buffer size or NOSTAX are not supported under OSDI. Note that it
is the colon character that distinguishes this connection string from a Oracle Net
tnsname-type specification.
Migration Considerations 11-3

OS/390 Cross Memory Support
2. A CONNSTR environment variable containing a connection string of the form
just described in specification 1. Environment variables are supplied in a
sequential file that is specified by an ORA$ENV DD statement in the batch job
or is allocated to the TSO session.

3. A DD statement in a batch job (or equivalent TSO allocation) of the form:

//ORA@ssn DD DUMMY
where ssn is the 1-character to 4-character subsystem name of the target MPM
Oracle instance.

4. None of the above. By default, the subsystem name MPMT is targeted.

Oracle9i only provides compatibility support for the ORA@ssn DD (as in method 3
above). Any applications that rely on the other mechanisms to specify a target
instance will have to be changed to access an Oracle9i server.

These connection short-cut mechanisms all specify an MPM subsystem name. With
OSDI, a single subsystem can support many Oracle instances, so the "subsystem
name" that is specified by the supported mechanism is not used as such by OSDI.
Instead, it is used as a SID (service identification). The SID is an identifier that is
specified on the OSDI DEFINE SERVICE command. Every service must have a SID
that is unique throughout the OS/390 system. Even services that are defined in
different OSDI subsystems cannot have the same SID if they are on the same
OS/390 system.

When you use the ORA@ssn DD described above with an OSDI-enabled client,
OSDI attempts to connect to the service whose SID matches the 1-character to
4-character string that was treated as a subsystem name by MPM. OSDI SIDs can
be up to 8 characters long, but if you want to exploit this client compatibility
feature, then you must use a SID that matches the subsystem name of your old
MPM Oracle instance, which means that the SID must be 4 characters or less. If you
do not specify a SID in the DEFINE SERVICE command, then the SID name defaults
to the service name. You may want to specify the SID (matching your old MPM
subsystem name) so that you can use a longer, more descriptive name for the
service.

Henceforth, we will refer to the DD statement mechanism for specifying an instance
as "ORA@sid" instead of "ORA@ssn".

TNSNAMES Connect Descriptors
All of the mechanisms that OS/390 clients can use to specify connections, both local
and remote, are listed below in descending precedence order. Aspects of each were
11-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Remote Clients
discussed in the prior sections as well as Chapter 2, "Using the OS/390 Database
Instance".

1. A connection string following an "@" appended to the userid and password
supplied on an Oracle connect request. This can be a tnsname-style name for
TNSNAMES lookup, or a complete Oracle Net address string.

2. A DD statement (or TSO allocation equivalent) of the form:

//ORA@sid DD DUMMY

where sid matches the SID of a local OSDI-managed instance

3. A TWO_TASK environment variable whose value is a tnsname-style name, or a
complete Oracle Net address string.

4. An ORACLE_SID environment variable whose value matches the SID of a local
OSDI-managed instance.

If none of the above four mechanisms is specified, then the client connection
attempt will fail. There is no "default instance" mechanism.

Database Links
Cross-memory database links (in either direction) between MPM and OSDI
instances are not supported. If you have a requirement for such distributed access,
then you will need to use a network protocol (that is, TCP/IP) instead of
cross-memory access. Doing this requires running both OSDI Oracle Net and TNS
with distinct endpoints for the chosen protocol.

IXCF Support
IXCF is no longer supported as a separate Oracle Net for OS/390 protocol. IXCF
can be supported via IBM TCP/IP in which case, Oracle Net IBM TCP/IP protocol
can be used. Consult with your Oracle for OS/390 administrator regarding IXCF
support with IBM TCP for your installation.

Remote Clients
All net applications now open their own tcp/ip sockets; that is, they no longer make
use of the Net address for communications. Instead, each net application makes
direct use of OS/390 UNIX System Services and therefore requires an OS/390 UNIX
security context, also known as an OMVS segment. Each user that invokes tcp/ip
Migration Considerations 11-5

Remote Clients
functionality must have an MVS segment if an installation is not using a default
OMVS segment.
11-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

API Short Name Sup
A

API Short Name Support

With this release of Oracle9i Enterprise Edition for OS/390, the nominal API
application executable takes the form of a Program Object 3 (PM3). This appendix
presents methods for producing traditional load modules if needed. The common
components of these methods are the Prelinker and an alternate API stub called
ORASTBS. ORASTBS is shipped as an object deck so as to be suitable for Prelinker
input.

Method 1: Prelink and Link
This method is suitable for the following types of Oracle API programs;
Pro*COBOL, Pro*FORTRAN, Pro*PL/I, and OCI V7 programs.

Existing Pro*C and OCI V8 programs calling API functions via their truncated
names, as documented in prior releases, can use this method as well. The object
produced by the compile step along with the alternate API stub ORASTBS are
passed to the Prelinker and the resultant object is then passed to the Linkage Editor.

Example:

//PRELINK EXEC PGM=EDCPRLK,COND=(4,LT),PARM=’’
//STEPLIB DD DISP=SHR,
// DSNAME=SYS1.SCEERUN
//SYSMSGS DD DISP=SHR,
// DSNAME=SYS1.SCEEMSGP(EDCPMSGE)
//SYSLIB DD DISP=SHR,
// DSNAME=ORACLE.V920.OBJLIB
//SYSIN DD DISP=(OLD,DELETE),
// DSN=&&LOADSET
// DD DDNAME=SYSIN2
//SYSMOD DD DISP=(NEW,PASS),
// DSNAME=&&PLKSET,
port A-1

Method 2: Precompile and/or Compile with Name Mapping
// UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN2 DD *
INCLUDE SYSLIB(ORASTBS)
/*
//LINKEDIT EXEC PGM=HEWL,COND=(4,LT),
// PARM=’LET,LIST,MAP,XREF,DYNAM=DLL’
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,
// DSN=SYS1.SCEELKED
//SYSUT1 DD UNIT=VIO
//SYSLMOD DD DISP=SHR,
// DSN=USER.LOADLIB(SAMPLE1)
//SYSLIN DD DISP=(OLD,DELETE),
// DSN=&&PLKSET
// DD DDNAME=SYSIN
//SYSIN DD DUMMY

The steps to precompile and/or compile the program would precede the PRELINK
step. In the case of C programs NOLONGNAME must be specified on the compile
step.

Method 2: Precompile and/or Compile with Name Mapping
This method is suitable for the following types of Oracle API programs: Pro*C and
OCI V8. At precompile and/or compile time, a header file is included which maps
the long names to short names. Inclusion of the header file is triggered by the
definition of ORA_SNAME. The object produced by the compile step, along with
the alternate API stub ORASTBS, are passed to the Prelinker and the resultant object
is then passed to the Linkage Editor.

Example:

//PRECOMP EXEC PGM=PROC,
//STEPLIB DD DISP=SHR,
// PARM=’++/DD/SYSPARM’
// DSN=ORACLE.V920.CMDLOAD
//ORA$LIB DD DISP=SHR,
// DSN=ORACLE.V920.MESG
//SYSPRINT DD SYSOUT=*,
// DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
A-2 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Method 2: Precompile and/or Compile with Name Mapping
//SYSOUT DD SYSOUT=*,
// DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//SYSERR DD SYSOUT=*,
// DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//SYSCOD DD UNIT=SYSDA,
// SPACE=(TRK,(10,10))
//SYSCUD DD UNIT=SYSDA,
// SPACE=(TRK,(10,10))
//SYSPUNCH DD DISP=(,PASS),
// DSN=&&PCCOUT,
// UNIT=SYSDA,
// SPACE=(CYL,(2,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//SYSUT1 DD UNIT=SYSDA,
// SPACE=(CYL,(5,5))
//SYSUT2 DD UNIT=VIO
//SYSUT3 DD UNIT=VIO
//SYSLIB DD DISP=SHR,
// DSN=ORACLE.U920.H
// DD DISP=SHR,
// DSN=SYS1.SCEEH.H
// DD DISP=SHR,
// DSN=SYS1.SCEEH.SYS.H
// DD DISP=SHR,
// DSN=SYS1.SCLBH.H
//CONFIG DD DUMMY
//SYSIN DD DISP=SHR,
// DSN=USER.PROGRAM.SRC
//ORA@XXXX DD DUMMY
//SYSPARM DD *
INAME=/DD/SYSIN
LNAME=/DD/SYSPRINT
ONAME=/DD/SYSPUNCH
CONFIG=/DD/CONFIG
CODE=ANSI_C
USER=SCOTT/TIGER
SQLCHECK=FULL
DEFINE=ORA_SNAME
/*
//COMPILE EXEC PGM=CBCDRVR,COND=(0,LT),
// PARM=(’/SOURCE,NOMAR,NOSEQ,LIST,RENT,DEF(ORA_SNAME=)’)
//STEPLIB DD DISP=SHR,
// DSNAME=SYS1.SCEERUN
// DD DISP=SHR,
// DSNAME=SYS1.SCBCCMP
API Short Name Support A-3

Method 2: Precompile and/or Compile with Name Mapping
//SYSMSGS DD SYSOUT=*
//SYSLIB DD DISP=SHR,
// DSN=ORACLE.V920.H
// DD DISP=SHR,
// DSN=SYS1.SCEEH.H
// DD DISP=SHR,
// DSN=SYS1.SCEEH.SYS.H
// DD DISP=SHR,
// DSN=SYS1.SCLBH.H
//SYSLIN DD DISP=(,PASS),
// DSN=&&LOADSET,
// UNIT=VIO,
// SPACE=(CYL,(3,3)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD UNIT=VIO,
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSIN DD DISP=(OLD,DELETE),
// DSN=&&PCCOUT
A-4 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Method 2: Precompile and/or Compile with Name Mapping
The precompile step is only needed when the program is a Pro*C application. For
OCI V8 programs, only the compile step is needed. In either case, the object
produced by the compile step, along with the alternate API stub ORASTBS, are
passed to the Prelinker and the resultant object is then passed to the Linkage Editor
(see Method 1 above).
API Short Name Support A-5

Method 2: Precompile and/or Compile with Name Mapping
A-6 Oracle9i Enterprise Edition User’s Guide Release 2 (9.2.0.1.0) for OS/390

Index

A
accessing multiple Oracle9i databases

OCI
database links, 8-3
LIT, 8-3
Oracle Access Managers, 8-3

Oracle Precompilers, 7-4, 7-5
database links, 7-4, 7-6
LIT, 7-6
Oracle Access Managers, 7-4, 7-6
ORACSTUB stub, 7-4

additional products for Oracle9i, 1-13
Oracle Access Manager for CICS, 1-13
Oracle Access Manager for IMS TM, 1-14
Oracle Net, 1-15
Oracle Precompilers, 1-15
SQL*Plus, 1-15

addresses
relative byte, 6-7
spaces, 4-2

ALLOC command, 3-1, 3-3, 3-4, 3-19
SQL*Loader, 6-4, 6-7, 6-9

alternate index path, 6-7
AMILS

OCI
module, 8-8
stub, 8-8

Oracle Precompilers, stub, 7-14, 7-15
AMODE

Oracle Precompilers, 7-14
ANSI/ISO rules, 7-6
API stub

ORASTBS, A-1

appending output, 3-7
application

compatibility support, 11-4
connecting to database instances, 2-2, 4-2

ASCII
Export translation, 5-7
OS/390 UNIX System Services, 4-5
SQL function, 9-10

AT clause, Oracle Precompilers, 7-3
ATTEMPTS parameter, SQL*Loader, 6-6
attention processing

SQL*Plus, 9-3
TSO/E STAX, 9-3

attributes
appending, 3-14
DCB, 3-9, 3-19, 7-9
for SQL*Loader files, 6-3
preallocated data sets, 3-19

B
BAD

file, 6-2, 6-4, 6-8
filetype, 6-3

extension, 6-2
suffix, 3-8

batch
linking

OCI, 8-7
Oracle Precompilers, 7-2

monitor program IKJEFT01, 3-16
procedures, 2-4, 2-7
processing

OCI, 8-2
Index-1

Oracle Precompilers, 7-2
programs

OCI, 8-7, 8-8
Oracle Precompilers, 7-14, 7-18

running
Export utility, 5-2
Import utility, 5-5
OCI, 8-8
SQL*Loader, 6-3, 6-4
SQL*Plus, 9-4
TMP, 9-5

SQL
unsupported functions, 9-10

SQL*Plus
processing, 9-4

submissions, 2-7
supplied tools, 2-7

BLKsize attribute keyword, 3-17
BLOck attribute keyword, 3-17
BMP IMS region

Oracle Precompilers, 7-5
break processing, 4-4
BUF filetype suffix, 3-8
BUFFER_SIZE parameter, Oracle

Precompilers, 7-12
buffers

increasing number, 6-9
QSAM, 6-8

C
C programming language

OCI, 8-1
compiler, 8-7
IMS TM, 8-3

Oracle Access Manager for CICS
Oracle Precompilers, 7-3

Oracle Precompilers
CICS, 7-13
object support, 7-13
PROC load module, 7-8

C/370 prelinker, 4-12
c89 command, 4-12
CALL

CMDLOAD library, 2-6

command, 2-6, 3-7
OCI, 8-2
Oracle Precompilers, 7-3

statement, COBOL, 7-13
calls

OCI
OCIServerDetach, 8-2
OCISessionEnd, 8-2

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCIBreak, 8-4
OCIDefineDynamic, 8-4
OCIEnvCreate, 8-4
OCIEnvInit, 8-4
OCIInitialize, 8-4
OCILdaToSvcCtx, 8-4
OCILogoff, 8-4
OCILogon, 8-4
OCIPasswordChange, 8-4
OCIReset, 8-4
OCIServerAttach, 8-4
OCIServerDetach, 8-4
OCISessionBegin, 8-4
OCISessionEnd, 8-4
OCISvcCtxToLda, 8-4
OCITerminate, 8-4
OCITransCommit, 8-4
OCITransDetach, 8-4
OCITransForget, 8-4
OCITransPrepare, 8-4
OCITransRollback, 8-4
OCITransStart, 8-4
security, 8-4
thread, 8-4

child processes, OS/390 USS, 4-12
CHR SQL function, 9-10
CICS

adapter, 7-19
AMODE

Oracle Precompilers, 7-14
commands

LINK, 7-4
RETURN, 7-4
translated for Oracle Precompilers, 7-13
XCTL, 7-4
Index-2

functions
COMMIT, Oracle Precompilers, 7-4
RECEIVE, 7-3, 8-2
SEND, 7-3

Oracle Access Manager for CICS, 1-13
processing

OCI, 8-2
Oracle Precompilers, 7-2

programs
C programming language, 7-13
COBOL, 7-13
OCI, 8-3
Oracle Precompilers, 7-3, 7-13, 7-14, 7-19
Pro*C, 7-3
Pro*COBOL, 7-3

RECEIVE function
Oracle Precompilers, 7-3

regions
Oracle Precompilers, 7-4

RMODE
Oracle Precompilers, 7-14

ROLLBACK function, Oracle Precompilers, 7-4
SEND function

Oracle Precompilers, 7-3
class, SYSOUT, 3-4
CLASSPATH environment variable, 4-9
clauses, AT, Oracle Precompilers, 7-3
CLIST

accessing tools, 2-6
controlling tool operation, 2-5
invoking from SQL*Plus, 9-6

CLOSE
failure, 6-8
statement, Oracle Precompilers, 7-4

clusters, 6-7
ESDS, 6-7, 6-8
KSDS, 6-7, 6-8
RRDS, 6-5, 6-7, 6-8
VSAM, 6-5, 6-6, 6-7

CMDLOAD
library, 2-4, 2-5

assumed name, 2-4
CALL command, 2-6

COBOL
Oracle Precompilers

DYNAM compiler option, 7-13
PROCOB load module, 7-9
PROCOB18 load module, 7-9

statements, CALL, 7-13
command processors, 2-6
commands

ALLOC TSO
SQL*Loader, 6-7

CALL, 3-7
OCI, 8-2

CICS
LINK, 7-4
RETURN, 7-4
translated for Oracle Precompilers, 7-13
XCTL, 7-4

EXP, 5-3
EXP, alias for ORAEXP, 5-2
IDCAMS

ALTER, 6-6
DEFINE, 6-6

IMP, 5-5, 5-6
IMP, alias for ORAIMP, 5-5
ORAEXP, 5-2
ORAIMP, 5-5
OS/390 UNIX System Services c89, 4-12
processors, 2-6
RUNFORM, 9-10
SQL*Loader

SQLLDR, alias for SQLLOAD, 6-2
SQL*Plus

DEFINE_EDITOR, 9-7
EXIT, 9-8
HOST, 3-4, 9-5, 9-6
QUIT, 9-8
SAVE, 3-4
SET TIMING, 9-7
SPOOL, 3-10, 9-8
START, 3-4, 3-5, 3-12, 3-13, 3-19
TIMING, 9-6

TSO
ALLOC, 3-1, 3-3, 3-4, 3-19, 6-4, 6-7, 6-9
CALL, 2-6, 7-3
PROFILE PREFIX, 3-10, 3-16

COMMIT
(CICS) recovery option
Index-3

Oracle Precompilers, 7-3
(ORACLE) recovery option

Oracle Precompilers, 7-4
statement, 7-6

compiling
C programming language, 8-7
OCI, 8-5

long name support, 8-5
Oracle Precompilers, 7-13
support for Oracle Precompilers, 7-11

CONCAT SQL function, 9-9
concatenation

SQL string, 9-9
configuration file

LDAP Server, 10-6
Name Server, 10-5

CONNECT statement, Oracle Precompilers, 7-5
CONNECT_DATA clause, 10-3
connections, 4-2
CONNSTR environment variable

specifying local connections, 11-4
support, 11-3

control files
ORA$FNA, 3-14

CPU usage with SQL*Loader, 6-9
CREATE TABLE statement

Oracle Precompilers, 7-6
cross memory

driver protocol, 1-15
services, 11-1

cross-memory facilities, 2-2, 4-2
cross-memory protocol

break processing, 4-4
CRTL_PDSWAIT environment variable, 2-11
CRTL_SPFENQ environment variable, 2-11
CTL

file, 6-2
filetype

extension, 6-2
suffix, 3-8

cumulative export, 5-1
CYL attribute keyword, 3-17

D
DAT

file, 6-2
filetype

extension, 6-2
suffix, 3-8

data
access

OCI, 8-3
DB2

Oracle Precompilers, 7-6
load rate, 6-9
OCI

access, 8-3
Oracle Precompilers

access, 7-5
SYSIN stream, 3-16

data access
Oracle Precompilers, 7-5

data manipulation language — See DML statement
data sets

accessing under USS, 4-6
ESDS, 6-5
KSDS, 6-5
partitioned, 2-10
preallocated, 3-19
specifying

by unqualified name, 3-5
files by full name, 3-4
files by unqualified name, 3-5

SQL*Forms, FRM, 3-18
SQL*Loader, TESTDATA.CTL, 6-2
SQL*Plus, enqueuing, 9-7
STEPLIB, 2-8
SYSOUT, 7-11
unqualified names, 3-5
VSAM, 6-5

data types
INTEGER, 7-12

fullword, 7-12
halfword, 7-12

database
links

OCI, 8-3
Index-4

Oracle Precompilers, 7-6
options for Oracle9i

advanced security, 1-5
partitioning, 1-4

options for Oracle9i for OS/390
Java support, 1-9

DB2
accessing database in single transaction

OCI, 8-5
Oracle Precompilers, 7-6

DCB
attributes, 3-9, 3-19, 7-9
BUFNO parameter, 6-9
FNA facility, 3-9
record format keywords

F, 3-17
FA, 3-17
FB, 3-17
FBA, 3-17
FBAS, 3-17
FBS, 3-17
V, 3-17
VA, 3-17
VB, 3-18
VBA, 3-18

DCL statement
OCI, 8-3
Oracle Precompilers, 7-5, 7-6

DD statement
ORA$ENV, 11-4

DD statements
INFIL, 3-7
ORA$ENV, 2-5, 2-10
ORA$FNA, 3-14, 6-4
ORA$LIB, 2-5
ORA@sid

SQL*Plus, 9-4
ORA@ssn, 2-5, 2-9
OS/390 UNIX System Services, 4-6
SQLLOGIN, 9-5
STEPLIB, 2-5, 2-8
SYSERR, 3-18, 6-7
SYSIN, 2-9

Oracle Precompilers, 7-10
SQL*Plus, 9-4

SYSLIN
OCI, 8-7, 8-8
Oracle Precompilers, 7-9, 7-14

SYSOUT, 2-8
SYSPARM, 7-9
SYSPRINT, 7-11
SYSPUNCH, 7-10
SYSUT1, 7-9
SYSUT2, 7-9

DDL statement
OCI, 8-3
Oracle Precompilers, 7-5

DDNames, 10-3
DDnames

allocation, 3-3
/DD/ filetype, 3-3
specifying files, 3-3
using, 3-3

defaults
FNA facility, FSA entries, 3-13, 3-14
FSA

FNA facility, 3-13
overriding entries, 3-13

DEFINE_EDITOR command, 9-7
DIRECT

mode, 6-9
option, 6-8

DIrectory attribute keyword, 3-17
DML statement, 1-4

OCI, 8-3
Oracle Precompilers, 7-4, 7-6

DMP
default FSA entry, 3-13
files, 3-13
filetype suffix, 3-8

documentation
related, xvi

DSC
file, 6-2, 6-4, 6-8
filetyp, 6-2
filetype

suffix, 3-8
DUMMY

parameter, 9-5
DYNAM compiler option, Oracle
Index-5

Precompilers, 7-13

E
EBCDIC

characters, FNA facility control files, 3-14
OS/390 UNIX System Services, 4-5
translation, 5-4
value, 9-10

EDA/SQL Server, 1-17
SQL DELETE, 1-17
SQL INSERT, 1-17
SQL UPDATE, 1-17
supported file systems, 1-17

Enterprise Manager utility, 1-13
environment variable

CONNSTR
specifying local connections, 11-4
support, 11-3

ORACLE_SID
connection specifiers and precedence, 11-5
specifying a target instance, 2-3, 4-3, 4-5

TWO_TASK
connection specifiers and precedence, 11-5
specifying a target instance, 2-3, 4-3, 4-5

environment variables
CRTL_PDSWAIT, 2-11
CRTL_SPFENQ, 2-11
NLS_LANG, 2-12
ORACLE_HOME, 2-12
ORACLE_SID, 2-12
OS/390 UNIX System Services, 4-4

CLASSPATH, 4-9
ORACLE_HOME, 4-4

PATH, 4-6
PDS member, 2-10
sequential files, 2-10
TWO_TASK, 2-12
TZ, 2-12

EOF
Export utility usage, 5-2
Import utility, 5-5

EPLPA, 2-5
Oracle Precompilers, 7-18

errors

handling, FNA facility control files, 3-18
messages, displays, 3-18
OCI, 8-5
SQL*Loader VSAM processing, 6-7
SQL*Net V1-style connection strings, 11-3

ESDS
clusters, 6-7, 6-8
data set, 6-5

EXEC ORACLE OPTION statement, 7-10
EXEC SQL

statement for Oracle Precompilers, 7-13
EXEC statement, 3-6, 6-5
EXIT command, return codes, 9-8
exiting, tools, 2-9
exp

see MVS data sets, 4-6
EXP command, 5-3

alias for ORAEXP, 5-2
Export

DMP filetype, 3-8
running

in batch, 5-2
in TSO, 5-2

to non-OS/390 systems, 5-4
utility, 1-12, 5-1

ASCII translation, 5-4
cumulative incremental exports, 5-1
EBCDIC translation, 5-4
ending, 5-2
EOF, 5-2
incremental, 5-1
media compatibility, 5-4
ORAEXP JCL procedure, 2-7
overview, 5-1
parameters, 5-2
return codes, 5-4

F
F DCB record format keyword, 3-17
FA DCB record format keyword, 3-17
failures

CLOSE of VSAM cluster, 6-8
OPEN of a VSAM cluster, 6-7
VSAM GET request, 6-8
Index-6

FATTR keyword, 3-16
FB DCB record format keyword, 3-17
FBA DCB record format keyword, 3-17
FBAS DCB record format keyword, 3-17
FBS DCB record format keyword, 3-17
features for Oracle9i, 1-2, 1-6

advanced queuing, 1-8
data replication in distributed

environments, 1-8
high-performance concurrency control, 1-5
NLS, 1-7
OCI, 1-9
Oracle objects, 1-8
server-based business rules, 1-7
SQL language, 1-6
Web integration, 1-5

fields
parameter, 3-8
PARM, 3-6

OS/390 UNIX System Services, 4-6
SQL*Loader, 6-5
SQL*Plus, 9-4

File Name/Attribute Augmentation facility — See
FNA facility

file names, OS/390 UNIX System Services, 4-6
file syntax array — See FSA
files

BAD, 6-4, 6-8
base, 3-9
DMP, 3-13
DSC, 6-4, 6-8
FNA, control, 3-19
FRM, 3-13
general notation, 3-2
INP, 3-13
JES spool, 3-4
names

extending with suffix, 3-5
FNA facility construction, 3-10
manipulation, 3-9
SQL*Loader, 6-2

ORA$FNA, 3-14
OS/390

using, 3-1
redirecting, 3-6

appending output, 3-7
recommendations, 3-7
specifying, 3-6
symbols, 3-6

specification
methods, 3-2
type summary, 3-2
using DDname, 3-3
using unqualified data set names, 3-5
without pathname, 3-5

specification types, 3-2
/DD/ddname, 3-3
/DD/ddname(mem), 3-3
dsname, 3-3
dsname(mem), 3-3
/DSN/dsname, 3-3
/DSN/dsname(mem), 3-3

SQL, 3-20
SQL*Loader, 6-2

attributes, 6-3
BAD, 6-2, 6-8
CTL, 6-2
DAT, 6-2
default, 6-3
DSC, 6-2, 6-8
LOG, 6-2
names, 6-2
unspecified, 6-3
VSAM support, 6-5

type
BAD suffix, 3-8
BUF suffix, 3-8
CTL suffix, 3-8
DAT suffix, 3-8
defaults, 3-8
DMP suffix, 3-8
DSC suffix, 3-8
LOG suffix, 3-8
LST suffix, 3-8
PLB suffix, 3-8
SQL suffix, 3-8
suffix, 3-8, 3-10

VSAM, 3-2
filetypes

BAD, 3-8, 6-3
Index-7

BUF, 3-8
CTL, 3-8
DAT, 3-8
DMP, 3-8
DSC, 3-8
LOG, 3-8
LST, 3-8
PKH, 3-8
PLB, 3-8
SQL, 3-8
XLT, 3-8

FNA facility, 3-8, 3-9
adding specifications, 3-14
appending attributes, 3-14
attribute keywords

BLKsize, 3-17
BLOck, 3-17
CYL, 3-17
DIrectory, 3-17
LRecl, 3-17
OLD, 3-17
PRIMary, 3-17
SECondary, 3-17
SHR, 3-17
TRK, 3-17
UNIT, 3-17
VOLume, 3-17

base file name, 3-9
construction, 3-10, 3-11
control files, 3-13, 3-14

creating, 3-14
default FSA entries, 3-13
EBCDIC characters, 3-14
error handling, 3-18
error message displays, 3-18
FSA entry usage notes, 3-16
FSA keyword usage, 3-18
ORA$FNA, 3-14
requirements, 3-14
specifying, 3-14, 3-16
SQL*Loader, 6-4
uses, 3-14

controls, 3-9
DCB attributes, 3-9
default FSA entries, 3-13

file name
extension, 3-10
FSA manipulation, 3-9
manipulation specifications, 3-9, 3-10
prefixes, 3-9
substitution, 3-10

filetype suffix, 3-9, 3-10
FSA, 3-13

appending output attributes, 3-14
controls, 3-9
delete default, 3-14
DMP default entry, 3-13
modifying file names, 3-14

operations, 3-9
overview, 3-9
special characters, 3-10
SQL*Loader, 6-2
substitution description, 3-10
TSO PROFILE PREFIX, 3-10
user-defined control files, 3-13

FNAME keyword, 3-15
fork(), 4-4
FSA

contents, 3-9
entries

DMP, 3-13
overriding defaults, 3-13

file name manipulation, 3-9
FNA facility, 3-13

changing default entries, 3-14
default entries, 3-13
entries, 3-14
format, 3-14
modifying file name entries, 3-14
overriding entries, 3-13

keyword usage notes, 3-18
table, 3-10
table columns, 3-10

full word boundary, 7-12
function keys, 2-10

SQL*Plus, 9-3
functions

CICS
RECEIVE, 7-3
SEND, 7-3
Index-8

IMS
GU, 7-6, 8-4
ROLB, 7-6, 8-4
ROLL, 7-6, 8-4
SYNC, 7-6, 8-4

OCI
restricted, 8-3

Oracle Precompilers
CICS SYNCPOINT, 7-4

SQL
ASCII, 9-10
CHR, 9-10
CONCAT, 9-9
unsupported SET NEWPAGE 0, 9-10
unsupported SPOOL OUT, 9-10
unsupported, RUNFORM, 9-10

G
general notation of files, 3-2
GET failure, 6-8
GU IMS function

Oracle Precompilers, 7-6

H
HFS, OS/390 UNIX System Services, 4-6
Hierarchical File System — See HFS
HOST command, 3-4, 9-5, 9-6

I
IBM

TCP/IP HPNS protocol, 1-15
TSO TEST processor, 7-3

IDCAMS
commands

ALTER, 6-6
DEFINE, 6-6

utility, 3-2
IKJEFT01 batch monitor program, 3-16
imp

see MVS data sets, 4-6
IMP command, 5-5, 5-6

alias for ORAIMP, 5-5

Import, 5-4
from non-OS/390 systems, 5-7
media compatibility, 5-7
overview, 5-4
return codes, 5-6
running

in batch, 5-5
in TSO, 5-5

utility, 1-12, 5-1
ASCII translation, 5-4, 5-7
EOF, 5-5
IMP command, 5-5
ORAIMP JCL procedure, 2-7
parameters, 5-5

IMS
functions

GU, 7-6, 8-4
ROLB, 7-6, 8-4
ROLL, 7-6, 8-4
SYNC, 7-6, 8-4

PSB name, Oracle Precompilers, 7-5
regions

BMP, 8-3
IFP, 8-3
MPP, 8-3

IMS TM
Oracle Access Manager for IMS TM, 1-14
processing

OCI, 8-2
Oracle Precompilers, 7-2

processing Oracle9i errors
OCI, 8-5
Oracle Precompilers, 7-6

programs
C programming language, 7-5
COBOL, 7-5
OCI, 8-3, 8-8, 8-9
Oracle Precompilers, 7-5, 7-14, 7-19
Pro*C, 7-5
Pro*COBOL, 7-5

regions
OCI, 8-3

INAME parameter, 7-10
INDDN keyword, 6-6
INDEX parameter, 2-8
Index-9

INFIL DD statement, 3-7
INFILE keyword, 6-6
input line truncation, SQL*Plus, 9-9
INTEGER

data type, 7-12
fullword, 7-12
halfword, 7-12

values for Oracle Precompilers, 7-12
interfaces

Oracle Precompilers
SQL, 7-19
stubs, 7-14

ORADRV
Oracle Precompilers, 7-18

SQL
Oracle Precompilers, 7-18

SQL*Plus ISPLINK, 9-7
introduction to Oracle9i for OS/390, 1-2
invoking

methods, 2-5
Oracle tools

as command processors, 2-6
in TSO, 2-5

ISPF
controlling tool operation, 2-5
SQL*Plus

DEFINE_EDITOR command, 9-7
editor, 9-7
enqueuing data sets, 9-7
ISPLINK interface, 9-7

ISPLINK interface, 9-7

J
Java

OS/390 UNIX System Services
JDBC thin driver, 4-9
Oracle JDBC thin driver, 4-9
SQLJ translator, 4-9

support, 1-9
JVM, 1-10
XML, 1-11

JCL
JOB statement, 2-8
OCI, 8-6

Oracle Precompilers, 7-7
procedures

ORAC, 2-7
ORACB2, 2-7
ORACOB, 2-7
ORADBV, 2-7
ORAEXP, 2-7, 5-2
ORAFOR, 2-7
ORAIMP, 2-7, 5-5
ORALDR, 2-7, 6-4
ORAOTT, 2-7
ORARMN, 2-7
ORASQL, 2-7, 9-4
supplied with Oracle, 2-7

sample link for OCI, 8-6
JES spool file, 3-4
JES2 job entry system, 2-9
JES3 job entry system, 2-9
job entry system

JES2, 2-9
JES3, 2-9

JOBLIB statement
Oracle Precompilers, 7-18

K
keywords

attributes
BLKsize, 3-17
BLOck, 3-17
CYL, 3-17
DIrectory, 3-17
LRecl, 3-17
OLD, 3-17
preallocated data sets, 3-19
PRIMary, 3-17
SECondary, 3-17
SHR, 3-17
TRK, 3-17
UNIT, 3-17
VOLume, 3-17

DCB record format
F, 3-17
FA, 3-17
FB, 3-17
Index-10

FBA, 3-17
FBAS, 3-17
FBS, 3-17
V, 3-17
VA, 3-17
VB, 3-18
VBA, 3-18

FATTR, 3-16
FNA facility, 3-16
FNAME, 3-15
FSA usage, 3-18
SQL*Loader

INDDN, 6-6
INFILE, 6-6

KSDS
clusters, 6-7, 6-8
data sets, 6-5

L
language interface token — See LIT
LDAP and Oracle Names, 10-5
LDAP Server configuration file example, 10-6
LE/370 runtime library, 4-12
libraries

CMDLOAD, 2-4, 2-5
Oracle Precompilers, 7-18

load
OCI, 8-8
Oracle Precompilers, 7-15

names, 2-4
OBJLIB, 2-4
OCI

load, 8-8
Oracle Precompilers

CMDLOAD, 7-18
load, 7-15
MESG, 7-18
oran.orav.CMDLOAD, 7-18
oran.orav.MESG, 7-18
runtime, 7-9
SRCLIB, 7-13

oran.orav.CMDLOAD
Oracle Precompilers, 7-18

oran.orav.MESG

Oracle Precompilers, 7-18
OS/390 UNIX System Services

LE/370 runtime, 4-12
runtime

Oracle Precompilers, 7-9
SQLLIB, 2-4
SRCLIB, 2-4
SRCLIB, Oracle Precompilers, 7-13

LIBV parameter, 2-8
LINK CICS command, Oracle Precompilers, 7-4
linkage editor

OCI, 8-7
Oracle Precompilers, 7-13

batch, 7-14
CICS, 7-14
IMS TM, 7-14
TSO, 7-14

linking
OCI, 8-6

batch, 8-7
IMS TM, 8-8
sample JCL, 8-6
TSO, 8-7

Oracle Precompilers, 7-13
CICS, 7-14
IMS TM, 7-14

LINKLIST
Oracle Precompilers, 7-18

LIT
Oracle Access Manager for IMS TM, 7-6

OCI, 8-3
Oracle Precompilers, 7-5

Oracle Precompilers, 7-5
LNAME parameter, Oracle Precompilers, 7-11
LOAD

DATA statement, 6-6
SQL*Loader counts, 6-7

load modules
OCI, 8-6, 8-7, 8-8
Oracle Precompilers, 7-18

Loadjava/Dropjava
OS/390 UNIX System Services

Loadjava/Dropjava Utilities, 4-9
LOG

file, 6-2
Index-11

filetype
suffix, 3-8

parameter, 6-3
long name support for OCI, 8-5
LPA, 2-5
LRecl attribute keyword, 3-17
LST filetype suffix, 3-8

M
macroinstructions

STAX, 2-10
MAXLITERAL option (Oracle Precompilers), 7-12
MESG

library
Oracle Precompilers, 7-18

MESSAGE_LENGTH parameter, Oracle
Precompilers, 7-12

migration
utility, 1-12

mode, DIRECT, 6-9
modules

load
OCI, 8-6, 8-7
Oracle Precompilers, 7-8, 7-9, 7-14, 7-18

OCI
AMILS, 8-8
load, 8-6, 8-7

Oracle Precompilers
load, 7-8, 7-9, 7-14, 7-18
ORADRV load, 7-18
PROC load, 7-8
PROCOB load, 7-9
PROCOB18 load, 7-9

ORADRV
Oracle Precompilers, 7-18

MVS data sets
accessing under USS, 4-6

N
Name Server

configuration file example, 10-5
Name Server configuration file, 10-5
negation with SQL*Plus, 9-9

NLS_LANG, environment variable, 2-12, 4-5

O
O, 4-5
Object support, Oracle Precompilers, 7-13
Object Type Translator — See OTT utility
OCI, 1-9, 8-1

accessing
DB2 database, single transaction, 8-5
multiple Oracle9i databases, 8-3
multiple Oracle9i databases, database

links, 8-3
Oracle9i, single transaction, 8-5

C programming language, 1-9
compiler, 8-7

callback restrictions, 8-6
calls

OCIServerDetach, 8-2
OCISessionEnd, 8-2

calls unavailable for Oracle Access Manager for
IMS TM, 8-4

OCIBreak, 8-4
OCIDefineDynamic, 8-4
OCIEnvCreate, 8-4
OCIEnvInit, 8-4
OCIInitialize, 8-4
OCILdaToSvcCtx, 8-4
OCILogoff, 8-4
OCILogon, 8-4
OCIPasswordChange, 8-4
OCIReset, 8-4
OCIServerAttach, 8-4
OCIServerDetach, 8-4
OCISessionBegin, 8-4
OCISessionEnd, 8-4
OCISvcCtxToLda, 8-4
OCITerminate, 8-4
OCITransCommit, 8-4
OCITransDetach, 8-4
OCITransForget, 8-4
OCITransPrepare, 8-4
OCITransRollback, 8-4
OCITransStart, 8-4
security, 8-4
Index-12

thread, 8-4
CICS

data access, 8-3
programs, 8-3

commands
CALL, 8-2

compiling, 8-5
long name support, 8-5

data
DB2, 8-5

functions
GU IMS, 8-4
restricted, 8-3
ROLB IMS, 8-4
ROLL IMS, 8-4
SYNC IMS, 8-4

IMS
BMP region, 8-3
calls, 8-3
IFP region, 8-3
MPP region, 8-3
Oracle Access Manager for IMS TM, 8-3
REO, 8-5

interfaces
modules, 8-8
stubs, 8-2, 8-6, 8-8

libraries
load, 8-8
runtime, 8-7

linking, 8-6
batch, 8-2, 8-7
CICS, 8-2
IMS TM, 8-2, 8-8
sample JCL, 8-6
TSO, 8-2, 8-7
usage notes for sample JCL, 8-7

long name support, 8-5
modules

AMILS, 8-8
Oracle Access Manager for CICS

C programming language, 8-3
Oracle7, 8-3

Oracle Access Manager for IMS TM
LIT, 8-3
REO, 8-5

Oracle9i
accessing multiple databases, 8-3
AMILS module, 8-8
application programs, 8-2
long name support, 8-5

OS/390 UNIX System Services, 4-12, 8-2
overview, 8-1
processing

batch, 8-2
CICS, 8-2
errors, 8-5
IMS TM, 8-2
TSO, 8-2

programs
C programming language, 8-1
CICS, 8-3
IMS TM, 8-3, 8-8, 8-9
Pro*C, 8-1
TSO, 8-2

regions
IMS IFP, 8-3
IMS MPP, 8-3
IMS TM, 8-3

RELEASE request, 8-2
running, 8-8

batch, 8-8
IMS TM, 8-9
in IMS BMP, 8-3
in IMS IFP, 8-3
in IMS MPP, 8-3
OS/390 UNIX System Services, 8-2
TSO, 8-8

statements
DCL SQL, 8-3
DDL SQL, 8-3
DML SQL, 8-3
linkage editor, 8-7
SYSLIN DD, 8-7, 8-8

stubs
AMILS, 8-8
interface, 8-2
ORACSTUB, 8-8
ORASTBL, 8-7, 8-8
ORASTUBs, 8-8

target environment design considerations, 8-2
Index-13

CICS, 8-3
TSO, 8-2

TSO
attention signals, 8-2
CALL command, 8-2
linking, 8-2
programs, 8-2, 8-7, 8-8
TEST processor, 8-2

OCI_COMMIT_ON_SUCCESS mode
parameter, 8-4

OCIBreak OCI call
unavailable for Oracle Access Manager for IMS

TM, 8-4
OCIDefineDynamic OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCIEnvCreate OCI call
unavailable for Oracle Access Manager for IMS

TM, 8-4
OCIEnvInit OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCIInitialize OCI call
unavailable for Oracle Access Manager for IMS

TM, 8-4
OCILdaToSvcCtx OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCILogoff OCI call
unavailable for Oracle Access Manager for IMS

TM, 8-4
OCILogon OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCIPasswordChange OCI call
unavailable for Oracle Access Manager for IMS

TM, 8-4
OCIReset OCI call,unavailable for Oracle Access

Manager for IMS TM, 8-4
OCIServerAttach OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCIServerDetach OCI call, 8-2
unavailable for Oracle Access Manager for IMS

TM, 8-4

OCISessionBegin OCI call, unavailable for Oracle
Access Manager for IMS TM, 8-4

OCISessionEnd OCI call, unavailable for Oracle
Access Manager for IMS TM, 8-2, 8-4

OCISvcCtxToLda OCI call
unavailable for Oracle Access Manager for IMS

TM, 8-4
OCITerminate OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCITransCommit OCI call
unavailable for Oracle Access Manger for IMS

TM, 8-4
OCITransDetach OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCITransForget OCI call
unavailable for Oracle Access Manager for IMS

TM, 8-4
OCITransPrepare OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OCITransRollback OCI call
unavailable for Oracle Access Manager for IMS

TM, 8-4
OCITransStart OCI call

unavailable for Oracle Access Manager for IMS
TM, 8-4

OJBLIB
libraries, 2-4

OLD attribute keyword, 3-17
ONAME parameter, 7-13
ONAME parameter, Oracle Precompilers, 7-10
OPEN failure, 6-7
options

COMMIT(CICS)
Oracle Precompilers, 7-3

DIRECT, 6-8
Oracle Precompilers, 7-10

COMMIT(CICS) recovery, 7-3
COMMIT(ORACLE) recovery, 7-4
MAXLITERAL, 7-12
MODE, 7-6
RELEASE_CURSOR, 7-4

ORA$ENV
Index-14

DD statement, 2-5, 2-10
ORA$ENV DD statement, 11-4
ORA$FNA

DD statement, 3-14, 6-4
FNA control file, 3-14

ORA$LIB
DD statement, 2-5
statement

Oracle Precompilers, 7-18
ORA@ssn DD statement, 2-5, 2-9

SQL*Plus, 9-4
ORA_SNAME, A-2
ORAC JCL procedure, 2-7
ORACB2 JCL procedure, 2-7
Oracle

tools, 2-5
Oracle Access Manager for CICS, 1-13

OCI
C programming language, 8-3
Oracle7, 8-3

Oracle Precompilers, 7-4
Oracle Access Manager for IMS TM, 1-14

accessing multiple Oracle9i databases
OCI, 8-3
Oracle Precompilers, 7-5

configuration parameter, 7-7
IMS TM, 1-14
LIT

OCI, 8-3
Oracle Precompilers, 7-5, 7-6

Oracle Precompilers, 7-5
REO, 7-7

OCI, 8-5
Oracle Precompilers, 7-7

Oracle Access Managers, 1-13
for CICS, 1-13
for IMS TM, 1-14

Oracle Call Interface — See OCI
Oracle Names and LDAP, 10-5
Oracle Net, 1-15

connect descriptors, 10-4
protocols, 1-15

cross memory driver, 1-15
IBM TCP/IP HPNS, 1-15

TCP/IP address, 10-4

Oracle Net configuration file
examples, 10-5

Oracle Net connect string example, 10-5
Oracle Net protocols

TCP/IP, 10-1
Oracle Net syntax

TCP/IP, 10-4
Oracle Precompilers, 1-15, 7-1

accessing multiple Oracle9i databases, 7-4, 7-5
database links, 7-4, 7-6
DB2 in a single transaction, 7-6
Oracle Access Manager for CICS, 7-4
Oracle Access Manager for IMS TM, 7-6

ANSI/ISO rules, 7-6
batch

specifying input, 7-7
C programming language, 7-1

PROC load module, 7-8
CICS

adapter, 7-19
AMODE, 7-14
C programming language, 7-3, 7-13
COBOL, 7-3, 7-13
compiling, 7-13
explicitly opened cursor, 7-4
LINK command, 7-4
linking, 7-2, 7-14
Oracle Access Manager for CICS, 7-3
Pro*C, 7-3
programs, 7-13
RECEIVE function, 7-3
RMODE, 7-14
running, 7-19
SEND function, 7-3
synchronization, 7-3
target environment design

considerations, 7-3
transaction processing, 7-2
XCTL command, 7-4

clause, AT, 7-3
COBOL, 7-1

CALL statement, 7-13
DYNAM compiler option, 7-13
PROCOB load module, 7-9
PROCOB18 load module, 7-9
Index-15

commands
CICS LINK, 7-4
CICS RETURN, 7-4
CICS XCTL, 7-4
CICS, translated, 7-13

compiling, 7-13
CONNECT statement not supported, 7-5
controlling Oracle SQL processing, 7-6
data access, 7-5
data sets

SYSOUT, 7-11
DYNAM compiler option, 7-13
explicitly opened cursors, 7-4
FORTRAN, 7-1
functions

CICS ROLLBACK, 7-4
CICS SYNCPOINT, 7-4

IMS
calls, 7-5
PSB name, 7-5
REO, 7-7

interfaces
SQL, 7-19
stubs, 7-14

JCL, 7-7
sample, 7-7
usage notes, 7-8

language-specific coding considerations, 7-11
libraries

CMDLOAD, 7-18
load, 7-9, 7-15
MESG, 7-18
oran.orav.CMDLOAD, 7-18
oran.orav.MESG, 7-18
runtime, 7-9
SRCLIB, 7-13

linkage editor, 7-13
batch, 7-14
TSO, 7-14

linking, 7-13
CICS, 7-14
IMS TM, 7-14

modules
load, 7-18
ORADRV load, 7-18

PROC load, 7-8
PROCOB load, 7-9
PROCOB18 load, 7-9
SQL, 7-18

object support, 7-13
options, 7-10

COMMIT(CICS) recovery, 7-3
COMMIT(ORACLE) recovery, 7-4
MAXLITERAL, 7-12
MODE, 7-6
RELEASE_CURSOR, 7-4

Oracle Access Manager for CICS, 7-4
OS/390

COBOL, 7-12
subprograms, 7-12

OS/390 UNIX System Services, 7-2
overview, 7-2
parameters

BUFFER_SIZE, 7-12
INAME, 7-10
LNAME, 7-11
MESSAGE_LENGTH, 7-12
ONAME, 7-10, 7-13
ORECLEN, 7-9
OS/390 field, 7-10
redirection, 7-10

passing control, 7-4
precompiling, 7-10
Pro*C, 7-13
Pro*COBOL, 7-12

compiler support, 7-11
INTEGER values, 7-12
RETURN-CODE special register, 7-12

Pro*PL/1, 7-13
processing

batch, 7-2
interactive, 7-2
Oracle9i errors by IMS TM, 7-6
transaction, 7-2

programs
batch, 7-14, 7-18
CICS, 7-3, 7-13, 7-14, 7-19
IMS TM, 7-5, 7-14, 7-19
TSO, 7-3, 7-14, 7-18

return codes, 7-11
Index-16

RETURN-CODE special register, 7-12
running

in batch, 7-18
in CICS, 7-19
in IMS TM, 7-19
in TSO, 7-15

sample JCL, 7-7
separator, 7-11
sequence numbers, 7-11
SQL restrictions, 7-4
statements

CALL for COBOL, 7-13
CLOSE, 7-4
COMMIT, 7-6
CONNECT, 7-3, 7-5
EXEC ORACLE OPTION, 7-10
EXEC SQL, 7-13
EXEC SQL COMMIT WORK RELEASE, 7-3
JOBLIB, 7-18
ORA$LIB, 7-18
ROLLBACK, 7-6
SQL, 7-2, 7-3, 7-5
SQL DCL, 7-5
SQL DDL, 7-5
SQL DML, 7-4, 7-6
SQL restrictions, 7-6
STEPLIB, 7-18
SYSIN DD, 7-10
SYSLIN DD, 7-9, 7-14
SYSPARM DD, 7-9
SYSPRINT DD, 7-11
SYSPUNCH DD, 7-10

stubs
AMILS, 7-14, 7-15
ORACSTUB, 7-4, 7-14, 7-15
ORASTBL, 7-14, 7-15
SQLSTUB, 7-14

stubsORACSTUB, 7-4
synchronization of Oracle and CICS

updates, 7-3
target environment considerations, 7-3
TSO

specifying input, 7-7
target environment design

considerations, 7-3

TEST processor, 7-3
unresolved external references, 7-14
use of CONNECT statement and AT clause, 7-3
utilities

return codes, 7-11
Oracle Transparent Gateways

for DB2, 1-16
for EDA/SQL, 1-17

Oracle Wallet Manager, 4-10
ORACLE_HOME environment variable, 2-12
ORACLE_HOME, environment variable, 4-4
ORACLE_SID environment variable, 2-12

connection specifiers and precedence, 11-5
specifying a target instance, 2-3, 4-3, 4-5

Oracle9i
accessing

database in single transaction for OCI, 8-5
multiple databases, 7-4
multiple databases with database links, 7-4
multiple databases with database links,

OCI, 8-3
multiple databases with OCI, 8-3

COMMIT statement, Oracle Precompilers, 7-6
CONNECT statement, Oracle Precompilers, 7-3,

7-5
IMS TM

Oracle Precompilers, 7-5
Oracle Access Manager for IMS TM

OCI, 8-3
overview, 1-1
processing errors

OCI, 8-5
Oracle Precompilers, 7-6

ROLLBACK statement, Oracle
Precompilers, 7-6

transactions
Oracle Precompilers, 7-3

Oracle9i Enterprise Edition for OS/390 — See
Oracle9i for OS/390

Oracle9i Enterprise Edition with OSDI for OS/390
— See Oracle9i for OS/390

Oracle9i for OS/390, 1-2
additional products, 1-13

Oracle Access Manager for CICS, 1-13
Oracle Access Manager for IMS TM, 1-14
Index-17

Oracle Net, 1-15
Oracle Precompilers, 1-15
SQL*Plus, 1-15

database options
advanced security, 1-5
Java support, 1-9
partitioning, 1-4

features, 1-2
advanced queuing, 1-8
application development, 1-6
data replication in distributed

environments, 1-8
high-performance concurrency control, 1-5
NLS, 1-7
OCI, 1-9
Oracle objects, 1-8
server-based business rules, 1-7
SQL language, 1-6
Web integration, 1-5

introduction, 1-2
Oracle Transparent Gateway for DB2, 1-16
Oracle Transparent Gateway for

EDA/SQL, 1-17
utilities, 1-11

Enterprise Manager, 1-13
Export, 1-12
Import, 1-12
migration, 1-12
Recovery Manager, 1-12
SQL*Loader, 1-12

ORACOB JCL procedure, 2-7
ORACSTUB interface stub

Oracle Precompilers, 7-4, 7-14, 7-15
ORACSTUB stub

OCII, 8-8
ORADBV JCL procedure, 2-7
ORADRV

load module
Oracle Precompilers, 7-18

ORAEXP
command, 5-2
JCL procedure, 2-7, 5-2

ORAFOR JCL procedure, 2-7
ORAIMP

command, 5-5

JCL procedure, 2-7, 5-5
ORALDR JCL procedure, 2-7, 6-4, 6-5
oran.orav.CMDLOAD

library
Oracle Precompilers, 7-18

oran.orav.MESG
library

Oracle Precompilers, 7-18
ORAOTT JCL procedure, 2-7
ORARMN JCL procedure, 2-7
ORASQL JCL procedure, 2-7, 2-9, 9-4
ORASTAX module, 2-10, 9-3
ORASTBL stub

OCI, 8-7
OCII, 8-8
Oracle Precompilers, 7-14, 7-15

ORASTBS, A-1
ORASTUBS stub

OCII, 8-8
ORECLEN parameter (Oracle Precompilers), 7-9
OS/390

documentation, xvi
Oracle Precompilers

COBOL, 7-12
parameter field, 7-10
subprograms, 7-12

parameter field, 3-8
using files, 3-1

OS/390 UNIX System Services, 4-1
accessing Oracle9i database server, 4-12
c89 command, 4-12
child processes, 4-12
commands

sqlplus, 9-2
wrap, 4-8

DD statements, 4-6
EBCDIC, 4-5
environment variables, 4-4

CLASSPATH, 4-9
ORACLE_HOME, 4-4

fields, PARM, 4-6
file names, 4-6
FNA, 4-6
HFS, 4-6
Java
Index-18

JDBC thin driver, 4-9
Oracle JDBC thin driver, 4-9
SQLJ translator, 4-9

libraries
LE/370 runtime, 4-12

OCI, 4-12, 8-2
Oracle Precompilers, 7-2
Oracle Wallet Manager, 4-10
overview, 4-1
parameter redirection, 4-6
PL/SQL wrapper, 4-8
POSIX

naming rules, 4-6
support, 4-13

Pro*C, 4-12
shell scripts, 4-5
TNSPING, 4-11
variables

NLS_LANG environment, 4-5
ORACLE_HOME environment, 4-4
PATH environment, 4-6

OTT utility
ORAOTT JCL procedure, 2-7

output
attributes for FNA facility, appending, 3-14
files

default disposition, 3-19
setting for concurrent use, 3-19

overview
Oracle9i, 1-1

overviews
Export utility, 5-1
Import utility, 5-4
OCI, 8-1
Oracle Precompilers, 7-2
OS/390 UNIX System Services, 4-1
SQL*Loader, 6-1
SQL*Plus, 9-1

P
Parameters

Oracle Precompilers
ONAME, 7-13

parameters

ATTEMPTS, 6-6
DCB BUFNO, 6-9
Export, 5-2
fields, 3-8
Import, 5-5
INDEX, 2-8
LIBV, 2-8
mode, OCI_COMMIT_ON_SUCCESS, 8-4
Oracle Precompilers

BUFFER_SIZE, 7-12
INAME, 7-9, 7-10
LNAME, 7-9, 7-11
MESSAGE_LENGTH, 7-12
ONAME, 7-9, 7-10
Oracle Access Manager for IMS TM

configuration, 7-7
ORECLEN, 7-9
OS/390 field, 7-10
redirection, 7-10

redirecting, 3-6, 3-7, 5-3, 5-6
SQL*Loader

ATTEMPTS, 6-6
DCB BUFNO, 6-9
LOG, 6-3

SQL*Plus DUMMY, 9-5
PARFILE

instream data, 5-3, 5-6
PARM field

Oracle Net, 9-4
OS/390 UNIX System Services, 4-6
SQL*Loader, 6-5

partitioned data set See PDS
PATH environment variable, OS/390 UNIX System

Services, 4-6
PDS

concurrent use, 3-19
unqualified file names, 3-5

performance, SQL*Loader, 6-8
PLB filetype suffix, 3-8
PLPA, 2-5

Oracle Precompilers, 7-18
PL/SQL, 1-9

PLB filetype, 3-8
wrapper under OS/390 UNIX System

Services, 4-8
Index-19

POSIX
naming rules, 4-6
OS/390 UNIX System Services, 4-13

preallocated data sets, attribute keywords, 3-19
precompiling Oracle Precompilers, 7-10
prelinkers, C/370, 4-12
PRIMary attribute keyword, 3-17
privileges, restricting, 9-8
Pro*C, 1-9, 7-13

OCI, 8-1
Oracle Precompiler, ORAC JCL procedure, 2-7
Oracle Precompilers

object support, 7-13
OS/390 UNIX System Services, 4-12
programs

CICS, 7-3
IMS TM, 7-5

Pro*COBOL, 1-9
compiler support, 7-11
INTEGER values, 7-12
Oracle Precompiler

ORACB2 JCL procedure, 2-7
ORACOB JCL procedure, 2-7

Oracle Precompilers, 7-12
programs

CICS, 7-3
IMS TM, 7-5

RETURN-CODE special register, 7-12
Pro*FORTRAN

Oracle Precompiler, ORAFOR JCL
procedure, 2-7

Pro*PL/1
Oracle Precompiler, 7-13
restrictions, 7-13

PROC load module, Oracle Precompilers, 7-8
procedures

JCL
ORAC, 2-7
ORACB2, 2-7
ORACOB, 2-7
ORADBV, 2-7
ORAEXP, 2-7, 5-2
ORAFOR, 2-7
ORAIMP, 2-7, 5-5
ORALDR, 2-7, 6-4

ORAOTT, 2-7
ORARMN, 2-7
ORASQL, 2-7, 9-4
ORASQL catalog, 2-9
requirements, 6-5

ORASQL, 2-9
processing

errors
OCI, 8-5
Oracle Precompilers, 7-6

OCI
batch, 8-2
CICS, 8-2
errors, 8-5
IMS TM, 8-2
messages, 8-3
TSO, 8-2

Oracle Precompilers, 7-2
batch, 7-2
errors, 7-6
interactive, 7-2
message, 7-5
SQL, 7-6
transaction, 7-2

states, SQL*Plus, 9-3
PROCOB load module, Oracle Precompilers, 7-9
PROCOB18 load module, Oracle Precompilers, 7-9
product name

Oracle9i Enterprise Edition for OS/390, 1-1
Oracle9i Enterprise Edition with OSDI for

OS/390, xvii
Oracle9i for OS/390, xvii, 1-1

PRODUCT_USER_PROFILE table, SQL*Plus, 9-8
PROFILE PREFIX TSO command, 3-10, 3-16
profiles, SQL*Plus, 9-5
programs

batch monitor, IKJEFT01, 3-16
CICS

OCI, 8-3
Oracle Precompilers, 7-3
Pro*C, 7-3
Pro*COBOL, 7-3

IMS TM
C programming language, 7-5
COBOL, 7-5
Index-20

OCI, 8-3, 8-9
Pro*C, 7-5
Pro*COBOL, 7-5

OCI
batch, 8-7, 8-8
C programming language, 8-1
CICS, 8-3
compiling, 8-5
IMS TM, 8-3, 8-8, 8-9
linking, 8-6
Oracle Access Manager for IMS TM, 8-3
running, 8-8
TSO, 8-2, 8-7, 8-8

Oracle Precompilers
batch, 7-14, 7-18
C programming language, 7-2, 7-3
CICS, 7-3, 7-13, 7-14, 7-19
COBOL, 7-2, 7-3, 7-12
compiling, 7-13
IMS TM, 7-5, 7-14, 7-19
linking, 7-13
Oracle Access Manager for IMS TM, 7-6
precompiling, 7-10
Pro*C, 7-5, 7-13
Pro*COBOL, 7-5, 7-11
running, 7-15
TSO, 7-3, 7-14, 7-18

protocol
cross-memory, 2-2, 4-2, 11-1

protocols for Oracle Net
cross memory driver, 1-15
IBM TCP/IP HPNS, 1-15

PSB IMS name, Oracle Precompilers, 7-5

Q
QSAM buffers, 6-8
QUIT command, 9-8

R
RBA, 6-7
Recovery Manager utility, 1-12

ORADBV JCL procedure, 2-7
ORARMN JCL procedure, 2-7

redirecting
files, 3-6

recommendations, 3-7
symbols, 3-6

parameters, 3-6, 3-7
redirection parameter, 7-10
region error option — See REO
regions

CICS
Oracle Precompilers, 7-4

IMS
BMP, 8-3
IFP, 8-3
MPP, 8-3

IMS TM
IFP, 7-5
IMS, 7-5
MPP, 7-5
OCI, 8-3
Oracle Precompilers, 7-5

SQL*Loader, 6-9
relative byte address — See RBA
RELEASE request for OCI, 8-2
RELEASE_CURSOR, 7-4
REO, 7-7, 8-5

OCI, 8-5
Oracle Access Manager for IMS TM, 7-7
Oracle Precompilers, 7-7

requirements
FNA facility control files, 3-14
ORALDR JCL procedure, 6-5

Restrictions
Pro*PL/1, 7-13

restrictions
OCI

callback, 8-5, 8-6
functions, 8-3

Oracle Precompilers, SQL statement, 7-6
return codes

EXIT command, 9-8
Export utility, 5-4
Import utility, 5-6
Oracle Precompilers, 7-11
SQL*Loader, 6-5

RETURN-CODE special register, Oracle
Index-21

Precompilers, 7-12
RMODE

Oracle Precompilers, 7-14
ROLLBACK statement, 7-6
RRDS, 6-7
RRDS clusters, 6-5, 6-8
RUNFORM

command, 9-10
function, 9-10

running
batch, SQL*Loader, 6-3
OCI, 8-8

in batch, 8-8
in IMS TM, 8-9
in TSO, 8-8

Oracle Precompilers, 7-15
in CICS, 7-19
in IMS TM, 7-19

runtime libraries
OCI, 8-7
Oracle Precompilers, 7-9

S
SAVE SQL*Plus command, 3-4
SECondary attribute keyword, 3-17
security OCI calls

unavailable for Oracle Access Manager for IMS
TM, 8-4

SET NEWPAGE 0 function, 9-10
SET TIMING SQL*Plus command, 9-7
shell scripts, 4-5
SHR attribute keyword, 3-17
SKIP

counts, SQL*Loader, 6-7
spawn(), 4-4
special characters, Export utility, 5-3
specifying

files, 3-3
by DDname, 3-3
by full data set name, 3-4
by unqualified data set name, 3-5
methods, 3-2
using DDname, 3-3
using unqualified data set names, 3-5

SPOOL
command, 3-10, 9-8

SPOOL OUT function, 9-10
SQL, 1-9

concatenation string, 9-9
EBCDIC values, 9-10
files, 3-20
filetype suffix, 3-8
functions

ASCII, 9-10
CHR, 9-10
CONCAT, 9-9
unsupported, 9-10
unsupported RUNFORM, 9-10
unsupported SET NEWPAGE 0, 9-10
unsupported SPOOL OUT, 9-10

interfaces
Oracle Precompilers, 7-15, 7-18

processing, Oracle Precompilers, 7-6
restrictions, Oracle Precompilers, 7-4
standard, Oracle Precompilers, 7-12
statements, 7-2, 7-3

CREATE TABLE, 7-6
DCL, 7-5, 7-6, 8-3
DDL, 7-5, 7-6, 8-3
DML, 7-4, 7-6, 8-3
GRANT, 7-6
Oracle Precompilers, 7-5
restrictions for Oracle Precompilers, 7-6

SQL*Loader
Alternate Index Path, 6-7
CPU usage, 6-9
data load rate, 6-9
data sets, TESTDATA.CTL, 6-2
DB2 Load Utility/DXT control file syntax, 1-12
DCB attributes, 6-3
default file name, 6-3
DIRECT option, 6-8
direct path, 6-8
file

attributes, 6-3
names, 6-2

files, 6-2
BAD, 6-2, 6-8
CTL, 6-2
Index-22

DAT, 6-2
DSC, 6-2, 6-8
LOG, 6-2

filetype extensions
BAD, 6-2
CTL, 6-2
DAT, 6-2
DSC, 6-2
LOG, 6-2

filetypes
BAD, 3-8, 6-3
CTL, 3-8
DAT, 3-8
DSC, 3-8
LOG, 3-8

FNA facility, 6-2, 6-4
keywords

INDDN, 6-6
INFILE, 6-6

LOAD counts, 6-7
memory, 6-9
ORA$FNA DD statement, 6-4
ORALDR JCL procedure, 2-7
overview, 6-1
parameters

ATTEMPTS, 6-6
DCB BUFNO, 6-9
LOG, 6-3

PDSs, 1-12
performance, 6-8
return codes, 6-5
running

in batch, 6-3, 6-4
in TSO, 6-2

SKIP counts, 6-7
unspecified files, 6-3
utility, 1-12
VSAM

CLOSE failure, 6-8
cluster read password, 6-6
errors, 6-7
file support for loading Oracle tables, 6-5
files, 1-12
GET failure, 6-8
input, 6-8

input requirements, 6-8
OPEN failure, 6-7
processing considerations, 6-7
specifying input, 6-6

SQL*Plus, 1-15
attention processing, 9-3
batch

processing, 9-4
running, 9-4

commands
DEFINE_EDITOR, 9-7
EXIT, 9-8
EXIT return codes, 9-8
HOST, 3-4, 9-5, 9-6
QUIT, 9-8
SAVE, 3-4
SET TIMING, 9-7
SPOOL, 3-10, 9-8
START, 3-4, 3-5, 3-12, 3-13, 3-19
TIMING, 9-6

data sets
enqueuing, 9-7
ISPF enqueue convention, 9-7

DUMMY parameter, 9-5
filetypes

BUF, 3-8
LST, 3-8
SQL, 3-8

function keys, 9-3
input line truncation, 9-9
invoking CLIST, 9-6
ISPF editor, 9-7
ISPLINK interface, 9-7
negation, 9-9
ORASQL JCL procedure, 2-7
OS/390, accessing editors, 9-7
overview, 9-1
processing states, 9-3
PRODUCT_USER_PROFILE table, 9-8
profile, 9-5
restricting privileges, 9-8
special characters, 9-9
spooling output, 9-8
statements

ORA@sid DD, 9-4
Index-23

SQLLOGIN DD, 9-5
SYSIN DD, 9-4

timing statistics, 9-6
TMP, 9-5
TSO

commands, 9-6
HOST command, 9-6
running, 9-2, 9-6

sqlldr
see MVS data sets, 4-6

SQLLDR SQL*Loader command, alias for
SQLLOAD, 6-2

SQLLIB
libraries, 2-4

SQLLOGIN DD statement (SQL*Plus), 9-5
SQLSTUB stub

Oracle Precompilers, 7-14
SRCLIB

library, 7-13
standard files, 3-6
START

command, 3-13
SQL*Plus command, 3-4, 3-5, 3-12, 3-13, 3-19

state, 7-5
statements

COBOL CALL, 7-13
CREATE TABLE, OCI, 8-3
DCL SQL, OCI, 8-3
DD

INFIL, 3-7
ORA$ENV, 2-5, 2-10
ORA$FNA, 3-14
ORA$LIB, 2-5
ORA@sid, 9-4
ORA@ssn, 2-5, 2-9
SQLLOGIN, 9-5
STEPLIB, 2-5, 2-8
SYSERR, 3-18, 6-7
SYSIN, 2-9, 9-4
SYSLIN, 7-9, 8-7
SYSOUT, 2-8
SYSPARM, 7-9
SYSUT1, 7-9
SYSUT2, 7-9

DDL SQL, OCI, 8-3

EXEC, 3-6, 6-5
GRANT OCI, 8-3
JCL JOB, 2-8
MESG

Oracle Precompilers, 7-18
OCI

linkage editor, 8-7
SYSLIN DD, 8-7, 8-8

Oracle Precompilers
CLOSE, 7-4
COMMIT, 7-6
COMMIT WORK RELEASE, 7-4
CONNECT, 7-3, 7-5
EXEC ORACLE OPTION, 7-10
EXEC SQL, 7-13
EXEC SQL COMMIT WORK RELEASE, 7-3
EXEC SQL ROLLBACK WORK

RELEASE, 7-3
JOBLIB, 7-18
ORA$LIB, 7-18
ROLLBACK, 7-6
SQL, 7-2, 7-3, 7-5
STEPLIB, 7-18
SYSIN DD, 7-10
SYSLIN DD, 7-14
SYSPRINT DD, 7-11
SYSPUNCH DD, 7-10

OS/390 UNIX System Services, 4-6
SQL

CREATE TABLE, 7-5, 7-6
DCL, 7-5, 7-6
DDL, 7-5, 7-6
DML, 7-4, 7-6, 8-3
GRANT, 7-6
Oracle Precompilers, 7-2
restrictions, 7-6

SQL*Loader
EXEC, 6-5
LOAD DATA, 6-6
ORA$FNA DD, 6-4
SYSERR DD, 6-7

SQL*Plus
ORA@sid DD, 9-4
ORA@ssn DD, 9-4
SQLLOGIN DD, 9-5
Index-24

SYSIN, 9-4
SYSIN DD, 9-4

STAX macroinstruction, 2-10
STAX service

TSO/E, 2-10
STEPLIB

data set, 2-8
DD statement, 2-5, 2-8

stubs
HLISTUBC, OCI, 8-8
interface

OCI, 8-2, 8-6
Oracle Precompilers, 7-2, 7-4, 7-13, 7-15

OCI
AMILS, 8-8
interface, 8-2
ORACSTUB, 8-8
ORASTBL, 8-7, 8-8
orastubs, 8-8
routine, 8-8

Oracle Precompilers
AMILS, 7-14, 7-15
interface, 7-2, 7-13, 7-15
ORACSTUB, 7-4, 7-14, 7-15
ORASTBL, 7-14, 7-15
routine, 7-14, 7-15
SQLSTUB, 7-14

ORACSTUB
Oracle Precompilers, 7-4, 7-14

ORASTBL
Oracle Precompilers, 7-15

routines
OCI, 8-8
Oracle Precompilers, 7-14, 7-15

SQLCICS
OCI, 8-8
Oracle Precompilers, 7-15

SQLSTUB
OCI, 8-8
Oracle Precompilers, 7-14

subsystems
connecting to, 2-2, 4-2

suffixes, 3-5, 3-8
symbols

file redirection, 3-6

redirection, 3-6
SYNC IMS function

Oracle Precompilers, 7-6
SYSERR DD statement, 3-18, 6-7
SYSIN

data stream, 3-16
DD statement, 2-9

Oracle Precompilers, 7-10
SQL*Plus, 9-4

SYSLIN DD statement
OCI, 8-7
Oracle Precompilers, 7-9

SYSOUT
class, 3-4
data set, 7-11
DD statement, 2-8

SYSPRINT DD statement, 7-11
SYSPUNCH DD statement, 7-10
system calls

fork() and spawn(), 4-4
SYSUT1 DD statement, 7-9
SYSUT2 DD statement, 7-9

T
tables

FSA, 3-10
loading Oracle from VSAM, 6-5
SQL*Plus PRODUCT_USER_PROFILE, 9-8

target environment design considerations
OCI, 8-2, 8-3
Oracle Precompilers, 7-3

TCP/IP, 10-1
TCP/IP syntax, 10-4
terminal monitor program — See TMP facility
terminology

file, 3-1
filetype extension, 3-5

TESTDATA.CTL data set, 6-2
thread OCI calls

unavailable for Oracle Access Manager for IMS
TM, 8-4

TIMING SQL*Plus command, 9-6
timing statistics, SQL*Plus, 9-6, 9-7
TMP
Index-25

facility, 2-9
SQL*Plus, 9-5

TNSNAMES
example connect string, 10-5

TNSPING, 4-11
tools

accessed through CLIST, 2-6
as CALL programs, 2-6
as command processors, 2-6
CLIST operation, 2-5
exiting, 2-9
invoking in TSO, 2-5
ISPF operation, 2-5
supplied batch procedures, 2-7
using, 2-5

TRK attribute keyword, 3-17
TSO

attention processing, 2-10
commands

ALLOC, 3-1, 3-3, 3-4, 3-19, 6-4, 6-7, 6-9
CALL, 2-6, 7-3, 8-2
PROFILE PREFIX, 3-10, 3-16

continuing commands, 2-6
invoking tools, 2-5
linking

OCI, 8-7
processing

OCI, 8-2
Oracle Precompilers, 7-2

programs
OCI, 8-2, 8-7, 8-8
Oracle Precompilers, 7-3, 7-14, 7-18

region size, 2-5
running

Export utility, 5-2
Import utility, 5-5
OCI, 8-8
SQL*Loader, 6-2
SQL*Plus, 9-2
SQL*Plus commands, 9-6

SQL
unsupported function SPOOL OUT, 9-10

SQL*Plus
accessing editor, 9-7

target environment design considerations

OCI, 8-2
TEST processor, 7-3

OCI, 8-2
Oracle Precompilers, 7-3

TSO/E
STAX service, 2-10, 9-3

TSO/E installation, 2-5
TWO_TASK environment variable, 2-12

connection specifiers and precedence, 11-5
specifying a target instance, 2-3, 4-3, 4-5

types of file specifications, 3-2
TZ environment variable, 2-12

U
unavailable calls

OCI for Oracle Access Manager for IMS TM, 8-4
UNIT attribute keyword, 3-17
usage notes

for FSA entries, 3-16
for specifying files by DDname, 3-4
for specifying files by full data set name, 3-5
for specifying files by unqualified data set

name, 3-6
input line truncation, 9-9
OCI sample linking JCL, 8-7
Oracle Precompilers and JCL, 7-8
special characters, 9-9
SQL

ASCII function, 9-10
string concatenation, 9-9

SQL*Plus, 9-9
input line truncation, 9-9
special characters, 9-9

string concatenation, 9-9
USS

accessing MVS data sets, 4-6
utilities

Enterprise Manager, 1-13
exiting, 2-9
Export, 1-12, 5-1

ASCII translation, 5-4
EBCDIC translation, 5-4
ending, 5-2
EOF, 5-2
Index-26

incremental, 5-1
media compatibility, 5-4
parameters, 5-2
return codes, 5-4
running in batch, 5-2
running in TSO, 5-2
to non-OS/390 systems, 5-4

IBM, IDCAMS, 3-2
Import, 1-12, 5-1, 5-4

ASCII translation, 5-4, 5-7
EBCDIC translation, 5-7
from non-OS/390 systems, 5-7
media compatibility, 5-7
parameters, 5-5
return codes, 5-6
utility, running in batch, 5-5

migration, 1-12
Oracle9i for OS/390, 1-11

Enterprise Manager, 1-13
Export, 1-12
Import, 1-12
migration, 1-12
Recovery Manager, 1-12
SQL*Loader, 1-12

Recovery Manager, 1-12
running Oracle on OS/390 UNIX, 4-4
SQL*Loader, 1-12

V
V DCB record format keyword, 3-17
VA DCB record format keyword, 3-17
values for SQL, EBCDIC, 9-10
variables

environment, 2-10
CLASSPATH, 4-9
NLS_LANG, OS/390 UNIX System

Services, 4-5
ORACLE_HOME, 4-4, 4-5
PATH, 4-6
PDS, 2-10
sequential files, 2-10

VB DCB record format keyword, 3-18
VBA DCB record format keyword, 3-18
VOLume attribute keyword, 3-17

VSAM
cluster, 6-5, 6-6, 6-7
data set, 6-5
files, 3-2

Oracle Precompilers, 7-3
SQL*Loader

CLOSE failure, 6-8
errors, 6-7
GET failure, 6-8
input, 6-8
input requirements, 6-8
OPEN failure, 6-7
processing considerations, 6-7
specifying input, 6-6

SQL*Loader file support, 6-5
transactions

Oracle Precompilers, 7-3

W
Wallet Manager, 4-10
Index-27

Index-28

	Contents
	Send Us Your Comments
	Preface
	Structure
	Related Documents
	Product Name
	Tool and Utility Prompts
	Storage Measurements
	Conventions
	Documentation Accessibility
	Documents Referenced in this Guide

	1 Overview of Oracle9i Products
	Oracle9i for OS/390 Introduction
	Real Application Clusters
	Oracle Label Security
	Oracle Spatial
	Oracle Partitioning
	Oracle Advanced Security
	High-Performance Concurrency Control
	Web Integration
	SQL and PL/SQL Languages
	Application Development
	Server-Based Business Rules
	National Language Support
	Data Replication in Distributed Environments
	Advanced Queuing
	Oracle Objects
	Oracle Call Interface
	Oracle for OS/390 Java Support
	Java Database Connectivity (JDBC)
	SQL Embedded in Java (SQLJ)
	Oracle9i JVM
	XML Support

	Oracle9i for OS/390 Utilities
	Recovery Manager
	Export and Import
	Migration
	SQL*Loader
	Oracle Enterprise Manager
	UNIX System Services

	Oracle9i for OS/390 Additional Products
	Oracle Access Managers
	Oracle Access Manager for CICS
	Oracle Access Manager for IMS�TM

	Oracle Precompilers
	Oracle Net
	SQL*Plus

	Oracle9i for OS/390 Transparent Gateways
	Oracle Transparent Gateway for DB2
	Oracle Transparent Gateway for EDA/SQL�

	2 Using the OS/390 Database Instance
	Oracle Database Instance Overview
	Connecting to an Oracle Instance
	Enabling OS/390 Local Client Access
	Cross-Memory Protocol Address
	Specifying Connections

	Installation Information
	Oracle9i Server and Library Names
	Tool Syntax and Batch Procedures
	OS/390 Features

	Using Oracle Utilities
	Invoking Oracle Utilities from TSO
	Oracle Utilities as Command Processors
	Oracle Utilities as CALL Programs

	Oracle Utilities Accessed Through CLISTs
	Submitting a Batch Job
	Sample Cataloged Procedure
	Sample Batch Job
	Using the Batch TMP

	Exiting Utilities and Utilities in TSO
	Attention Processing

	OS/390 Environment Variables

	3 Oracle9i Utilities and OS/390 Files
	Using OS/390 Files
	General Notation for Specifying Files
	File Specification Types
	Summary of Filespecs
	Specifying Files by DDname (/DD/�)
	Specifying Files by Full Data Set Name (/DSN/)
	Specifying Files by Unqualified Data Set Name

	Redirecting Standard Files and Parameters
	Redirecting Files
	Redirecting Parameters

	Filetype Suffixes

	File Name/Attribute Augmentation (FNA) Facility
	FNA Controls and Operations
	FSA Table

	FNA File Name Construction
	Substitution
	Construction Procedure

	FNA Example
	Default FSA Entry

	User-Defined FNA Control Files
	Specifying an FNA Control File
	Creating an FNA Control File
	FSA Entries
	Attribute Keywords

	FNA Control File Error Handling
	FSA Keyword Usage Notes

	Examples Using FNA

	4 Accessing Oracle9i Under USS
	OS/390 UNIX System Services Overview
	Oracle Database Instance Overview
	Connecting to an Oracle Instance
	Enabling OS/390 Local Client Access
	Cross-Memory Protocol Address
	Specifying Connections
	Storing Connection Information

	Break Processing

	Running an Oracle Utility on OS/390 Under USS
	Environment Variables
	File Names in OS/390 UNIX System Services
	Accessing OS/390 Data Sets

	Utilities Available Under OS/390 USS
	PL/SQL Wrapper
	PL/SQL Server Page Loader
	Data Guard Command-line Utility
	OEM Intelligent Agent and Data Gatherer
	Oracle JDBC Thin Driver
	SQLJ Translator
	Loadjava/Dropjava Utilities
	Oracle Wallet Manager
	TNSPING
	Character Set Scanner
	Locale Builder

	Customer-Written Applications Under USS
	Child Process Restrictions
	POSIX Thread Support

	5 Export and Import Utilities
	Export
	Running Under UNIX System Services
	Running Under TSO
	Running in Batch
	Return Codes
	Exporting to Non-OS/390 Systems

	Import
	Running Under UNIX System Services
	Running Under TSO
	Running in Batch
	Return Codes
	Importing from Non-OS/390 Systems

	6 SQL*Loader
	Running Under UNIX System Services
	Running Under TSO
	SQL*Loader Files
	SQL*Loader File Names
	SQL*Loader File Attributes

	Running in Batch
	Return Codes
	SQL*Loader VSAM File Support
	Specifying VSAM Input to SQL*Loader
	SQL*Loader VSAM Processing Considerations
	BAD and DISCARD File Considerations with VSAM Input

	SQL*Loader Direct Path
	Performance

	7 Oracle Precompilers
	Oracle Precompilers Overview
	Target Environment Design Considerations
	TSO Programs
	CICS Programs
	Use of CONNECT...AT
	Synchronization of Oracle and CICS Updates
	Passing Control with CICS LINK or XCTL Commands
	Explicitly Opened Cursors
	Accessing Multiple Oracle9i Databases
	Additional SQL Statement Restrictions

	IMS�TM Programs
	CONNECT Not Supported
	Accessing Multiple Oracle9i Databases
	Additional SQL Statement Restrictions
	Accessing Oracle9i and DB2 Databases in a Single Transaction
	Controlling Oracle SQL Processing
	Processing of Oracle9i Errors by Your IMS�TM Program

	Sample JCL
	Usage Notes

	Precompiling Your Program
	Oracle Precompiler Options
	Return Codes
	Language-Specific Coding Considerations
	Compiler Support
	Pro*COBOL
	Pro*C
	Pro*PL/1

	Compiling Your Program
	CICS Programs

	Linking Your Program
	Batch and TSO Programs
	CICS Programs
	IMS�TM Programs

	Running Your Program
	UNIX System Services
	Administering Pro*COB Under UNIX System Services
	Administering Pro*C Under UNIX System Services
	Building Pro*C Programs
	Sample Programs

	Batch and TSO Programs
	CICS Programs
	IMS�TM Programs

	8 Oracle Call Interface
	Oracle Call Interface Overview
	Target Environment Design Considerations
	TSO Programs
	CICS Programs
	IMS�TM Programs
	Accessing Multiple Oracle9i Databases
	Additional Restricted OCI Functions
	Unavailable Calls
	Accessing Oracle9i and DB2 Databases in a Single Transaction
	Processing of Oracle9i Errors by Your IMS�TM Program

	Compiling Your Program
	Long Name Support
	Callback Restriction
	UNIX System Services

	Linking Your Program
	Sample Link JCL
	Usage Notes

	Batch and TSO Programs
	IMS�TM Programs

	Running Your Program
	Batch and TSO Programs
	IMS�TM Programs
	OCI Interface to Publish/Subscribe

	9 SQL*Plus
	Running Under UNIX System Services
	Running Under TSO
	Attention Processing
	Processing States
	Batch Processing

	Running in Batch
	SQL*Plus Profiles
	SQL*Plus HOST Command
	Running TSO/E Commands
	Calling CLISTs
	Calling OS/390 Editors
	Multiple SQL*Plus Processes

	SQL*Plus Time Usage Information
	TIMING Command
	SET TIMING Command

	Using OS/390 Editors from SQL*Plus
	ISPF Editor

	Data Set Enqueuing
	Restricting User’s Privileges in SQL*Plus
	Exiting SQL*Plus
	Spooling SQL*Plus Output

	Usage Notes
	Special Characters
	String Concatenation
	Input Line Truncation
	SQL ASCII Function

	Unsupported Functions
	SPOOL OUT
	SET NEWPAGE 0
	RUNFORM

	10 Oracle Net
	Oracle Net Overview
	Distributed Processing
	Distributed Database
	Oracle Net Terminology

	Remote Access to OS/390 Server Using Oracle Net
	Oracle Net for OS/390 Filenames
	Locating the Oracle Net Service
	Oracle Net Connect Descriptors for OS/390
	TCP/IP Addresses

	Examples
	Connecting to a Remote Server Using Oracle Net

	11 Migration Considerations
	Overview
	OS/390 Language Environment
	OS/390 Cross Memory Support
	Cross Memory Support
	MPM Compatibility

	TNSNAMES Connect Descriptors
	Database Links

	IXCF Support
	Remote Clients

	A API Short Name Support
	Method 1: Prelink and Link
	Method 2: Precompile and/or Compile with Name Mapping

	Index

