
Oracle9i Enterprise Edition

System Administration Guide

Release 2 (9.2.0.1.0) for OS/390

May 2002

Part No. A97313-01

Oracle9i Enterprise Edition System Administration Guide, Release 2 (9.2.0.1.0) for OS/390

Part No. A97313-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Author: Enterprise Platforms Division

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Transparent Gateway, Oracle7, Oracle8, Oracle8i, Oracle9i,
PL/SQL, Pro*C, Pro*C++, Pro*COBOL, Pro*FORTRAN, Pro*PL/1, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

1 Introduction to OSDI Architecture

Overview .. 1-2
Benefits of OSDI... 1-2
OSDI Architecture .. 1-3

2 Configuring and Initializing the Subsystem

Overview .. 2-2
Choosing a Subsystem Name and Command Prefix ... 2-2
The Subsystem Parameter File ... 2-2
OSDI Commands in the Subsystem Parameter File .. 2-4
Initializing the Subsystem .. 2-5
Examples... 2-6
After Initializing the Subsystem ... 2-7

3 Configuring a Database Service and Creating a New Database

Overview .. 3-3
Database Service Definition... 3-3
Database Region JCL ... 3-6
Database Region Parameters .. 3-10
Oracle Initialization Parameter Considerations ... 3-15
 iii

Database Logical Blocksize... 3-20
Pre-Allocating Database Files .. 3-21
Configuring OS/390 Security.. 3-21
Configuring for Shared Servers ... 3-22
Creating the Database .. 3-22
Configuring a Database Service Using ISPF Panels .. 3-27

4 Defining OS/390 Data Sets for the Oracle Database

Oracle Database Files ... 4-2
Tablespaces and OS/390 Space Management .. 4-4
Server File Name Syntax ... 4-6
Server File Management Parameters... 4-8
Pre-allocating Database Files.. 4-14
Oracle Managed Files on OS/390 ... 4-15

5 Operating a Database Service

Starting and Stopping the Database Service ... 5-2
Oracle Database Instance Startup and Shutdown.. 5-3
Other Database Service Commands.. 5-5

6 Database Backup and Recovery

Overview .. 6-2
Logging and Recovery.. 6-2
Backup and Recovery without Recovery Manager .. 6-4
Recovery Manager on OS/390... 6-6
Tablespace Point-in-Time Recovery .. 6-16
Oracle9i Data Guard .. 6-18

7 Oracle9i Utilities

Overview .. 7-2
General Considerations ... 7-2
SQL*Plus on OS/390 ... 7-4
Recovery Manager (RMAN) on OS/390.. 7-4
Oracle Password Utility (ORAPWD) on OS/390... 7-6
iv

Offline Database Verification Utility (DBV) on OS/390 ... 7-7

8 Security Considerations

Overview .. 8-2
Controlling Access to OSDI Subsystem Commands... 8-2
Controlling Access to OSDI Services ... 8-3
Controlling Access to Database SYSDBA and SYSOPER Privileges 8-4
Database Service Actions Subject to OS/390 Authorization .. 8-6
External Data Mover Actions Subject to OS/390 Authorization ... 8-7
Oracle Net Actions Subject to OS/390 Authorization.. 8-8
Authorizing Oracle Logon .. 8-8

9 Oracle SMF Data

Preparing to Record SMF Information ... 9-2
Events that Generate SMF Records ... 9-3
SMF Recording under CICS ... 9-3
Interpreting an Oracle SMF Record .. 9-4
Oracle Net Network Information Vector Overview... 9-8
Sample Formatting Program for SMF Records ... 9-10
Auditing Database Use .. 9-12

10 Oracle Net

Overview .. 10-2
OSDI Listener Architecture ... 10-2
OSDI Listener Filenames ... 10-3
Configuring the OSDI Listener .. 10-4
Operating the OSDI Listener ... 10-9
Formatting OSDI Listener Trace Files .. 10-10
Oracle Advanced Security Option Encryption ... 10-11
Generic Listener Architecture .. 10-13
Generic Listener Configuration Steps ... 10-14

11 Oracle Access Manager for CICS

Overview .. 11-2
 v

Oracle Access Manager for CICS Applications .. 11-2
Oracle Access Manager for CICS Configuration .. 11-2
Configuration Steps ... 11-5
Post-Configuration Steps .. 11-21
Multiple Versions in the Same CICS Region .. 11-22
Recovery Considerations ... 11-23
Two-Phase Commit Processing under CICS.. 11-24
Shutting Down Oracle Access Manager for CICS with FORCE ... 11-26
CEDF Support.. 11-27
Oracle Access Manager for CICS Command Usage... 11-27
DISPLAY ... 11-27
START ... 11-31
STOP.. 11-33

12 Oracle Access Manager for IMS TM

Oracle Access Manager for IMS TM Applications .. 12-2
Integration with IMS.. 12-2
Configuration Overview ... 12-3
Configuring Oracle Access Manager for IMS TM ... 12-14
Configuration Steps ... 12-15
IMS External Subsystems.. 12-32
Starting and Stopping Oracle Access Manager for IMS TM ... 12-33
Failures and Recovery .. 12-34

13 Oracle Enterprise Manager Intelligent Agent and Data Gatherer

Overview .. 13-2
Running the Customization Script.. 13-2
Updating the Parameter Files ... 13-3

14 Oracle9i Real Application Clusters

Overview .. 14-2
Setting Up Real Application Clusters... 14-3
Cross System Communication Facility (XCF) .. 14-5
OS/390 Resource Name Usage .. 14-6
vi

15 Oracle Programmer

Oracle Programmer INCLUDE Files ... 15-2
ASID and Task Considerations.. 15-2
Program Status Word Protect Key ... 15-3
PSW State ... 15-3
Multiple Executions under a TCB ... 15-3
Cross Memory Mode .. 15-4
APF Authorization.. 15-4

16 Oracle9i Performance

CPU Usage.. 16-2
Memory Requirements .. 16-4
Oracle Server Storage Requirements .. 16-6
Oracle Tuning .. 16-13
Minimizing I/O Bottlenecks ... 16-20
OS/390 Tuning ... 16-21
PL/SQL and Java ... 16-29
Oracle Parallel Execution .. 16-31
Applications Performance Diagnosis ... 16-34
Oracle Access Manager for CICS .. 16-38
Oracle Access Manager for IMS .. 16-43

17 Error Diagnosis and Reporting

Oracle Support Services .. 17-2
Providing Error Documentation .. 17-2
General Documentation Requirements ... 17-2
Error Diagnosis.. 17-3
System Dumps .. 17-9
GTF .. 17-10

18 Migration and Upgrade Considerations

Overview .. 18-2
Differences Between MPM/TNS and OSDI ... 18-3
OSDI Changes in Oracle9i, Release 2 .. 18-7
 vii

Moving from MPM/TNS to OSDI ... 18-8
Coexistence and Compatibility ... 18-19
Oracle for OS/390 Migration and Upgrade .. 18-22
CFUTIL (Convert File Utility) Reference ... 18-35

A OSDI Subsystem Command Reference

OSDI Command Reference .. A-2
Command Types and Processing ... A-2
System Symbols in Commands ... A-2
Definition Commands ... A-3
Structures .. A-3
Service Group Definition Commands .. A-4
Service Definition Commands ... A-6
Operating Commands .. A-11
Available Commands ... A-11
Commands.. A-12
OSDI Command Keyword Abbreviations... A-15

B Operating System Dependent Variables

Initialization Parameters with OS/390-Specific Defaults or Limits.. B-2
Database Limits .. B-2
SQL Language Parameters ... B-3
Storage Parameters ... B-4

C Oracle9i for OS/390 System Symbols

System Symbols .. C-2

D National Language Support

Overview .. D-2
Supported Languages ... D-2
Overview of Character Set Support .. D-4
Server-Side NLS .. D-4
Default Character Set Changed .. D-6
Client-Side NLS ... D-8
viii

Message Availability ... D-10
Customized Character Sets (LXINST) ... D-10
NLS Calendar Utility (LXEGEN) ... D-12

Index
 ix

x

Send Us Your Comments

Oracle9i Enterprise Edition System Administration Guide, Release 2 (9.2.0.1.0) for OS/390

Part No. A97313-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, then where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement of the documentation, please
indicate the document title and part number, and the chapter, section, and page number (if avail-
able). You can send comments to us at the following e-mail address:

infoibm_us@oracle.com

If you would like a reply, please include your name, address, telephone number, and e-mail address.

 If you have technical problems with the software, please contact Oracle Support Services.
 xi

xii

Preface

Intended Audience
Read this guide if you are responsible for performing tasks such as:

■ Administering Oracle9i Enterprise Edition for OS/390

■ Maintaining OS/390 data sets and Oracle system files

■ Managing backups, recovery, memory, and storage on OS/390

■ Diagnosing and reporting errors

■ Issuing OSDI subsystem commands

This guide provides information only for Oracle products and their interactions
with OS/390. A thorough understanding of the fundamentals of OS/390 is
necessary before attempting to use this software.
Preface-xiii

Product Name
The complete name for the product described in this book is Oracle9i Enterprise
Edition for OS/390. To maintain readability and conciseness in this document, the
product is also referred to as Oracle9i for OS/390.

Related Documents
The documentation set has two parts: OS/390-specific documentation and
product-specific documentation. Your site automatically receives both for the
Oracle products that you have purchased. The product-specific documentation is
intended to assist you in learning how to use a product, and the OS/390-specific
documentation will provide assistance regarding special requirements or
restrictions for using that product under System/390.

OS/390-Specific Documentation

The OS/390-specific documentation set is used to install, maintain, and use Oracle9i
for OS/390 products, and consists of:

■ Oracle9i Enterprise Edition Installation Guide for OS/390

■ Oracle9i Enterprise Edition Messages Guide for OS/390

■ Oracle9i Enterprise Edition Release Notes for OS/390

■ Oracle9i Enterprise Edition System Administration Guide for OS/390

■ Oracle9i Enterprise Edition User’s Guide for OS/3900

Product-Specific Documentation

Product-specific documentation describes how to use the Oracle9i products. The
information in the product-specific books applies to all operating systems under
which the products run.
Preface-xiv

Conventions
Examples of input and output to the system are shown in a special font:

//SYSIN DSN=oran.orav.INSTJCL(member)

All output is shown as it actually appears. For input, the following conventions
apply:

Commands, reserved words, and keywords appear in uppercase in both examples
and text. A fileid can appear with both uppercase and lowercase text. When
portions of a fileid appear in italics, the use of italic characters indicates that those
portions can vary. Reserved words and keywords must always be entered as is,
because they have reserved meanings within Oracle.

Convention Meaning

italic font indicates that a word or phrase of your choice must be substituted
for the term in italic font, such as the actual member name. For
example: member

oran.orav is the standard example for high-level and second-level data set
name qualifiers. Substitute your system’s actual high-level and
second-level qualifiers. These qualifiers may appear in lowercase
or in UPPERCASE typeface.

<> Angle brackets indicate that the enclosed arguments are required and at least one
of the arguments must be entered. Do not enter the brackets
themselves.

[] Square brackets indicate that the enclosed arguments are optional. Do not enter the
brackets themselves.

{} Braces indicate that one of the enclosed arguments is required. Do not
enter the braces themselves.

| Vertical lines separate choices.

... Ellipses indicate that the preceding item can be repeated. You can enter an
arbitrary number of similar items.

Other punctuation must be entered as shown unless otherwise specified. For example,
commas and quotes.
Preface-xv

Storage Measurements
Storage measurements use the following abbreviations:

■ K, for kilobyte, which equals 1,024 bytes

■ M, for megabyte, which equals 1,048,576 bytes

■ G, for gigabyte, which equals 1,073,741,824 bytes

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Documents Referenced in this Guide

Oracle OS/390 Books

Oracle9i Enterprise Edition Installation Guide for OS/390

Oracle9i Enterprise Edition Messages Guide for OS/390

Oracle9i Enterprise Edition Release Notes for OS/390

Oracle9i Enterprise Edition User’s Guide for OS/390
Preface-xvi

http://www.oracle.com/accessibility/

Other Oracle Books

Oracle Advanced Security Administrator’s Guide

Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle9i Application Developer’s Guide - Fundamentals

Oracle9i Application Developer’s Guide - Large Objects

Oracle9i Data Guard Concepts and Administration

Oracle9i Database Administrator’s Guide

Oracle9i Database Concepts

Oracle9i Database Globalization Support Guide

Oracle9i Database Migration: Release 2 (9.2)

Oracle9i Database Performance Book Set

Oracle9i Database Reference

Oracle9i Database Utilities

Oracle9i Net Services Book Set

Oracle9i Real Application Clusters Book Set

Oracle9i Recovery Manager User's Guide

Oracle9i SQL Reference

Oracle9i User-Managed Backup and Recovery Guide

IBM Books

DFSMS/MVS Access Method Services for ICF

IMS/ESA System Definition Reference

OS/390 Initialization and Tuning Reference

OS/390 MVS Planning: Workload Management

Setting Up a Sysplex

USS Planning Guide
Preface-xvii

Preface-xviii

Introduction to OSDI Arc
1

Introduction to OSDI Architecture

OSDI (Operating System Dependent Interface) is a platform architecture for Oracle
products running on OS/390. This chapter provides a broad overview of OSDI and
introduces concepts and terminology used throughout this book.

The following topics are included:

■ Overview on page 1-2

■ Benefits of OSDI on page 1-2

■ OSDI Architecture on page 1-3
hitecture 1-1

Overview
Overview
Oracle9i for OS/390 is based on OSDI, an execution environment for Oracle
products on OS/390, which was introduced with Oracle8i for OS/390, release 3
(8.1.7). The Oracle8i products on OS/390 were released in two forms: one based on
the older MPM and TNS subsystems and another based on OSDI. In Oracle9i,
MPM and TNS have been desupported, and products on OS/390 are available only
with the new OSDI architecture.

OSDI represents a significant change from the old subsystems in terms of how
Oracle products interact with the OS/390 operating system. These changes do not
generally affect Oracle product behavior and the interfaces used by customer
applications, but they do affect the installation, configuration, and administration of
these products on OS/390.

If you are already an Oracle for OS/390 customer with existing MPM or TNS
subsystems, you will need to read this manual carefully to understand the OSDI
differences. Of particular importance is Chapter 18, "Migration and Upgrade
Considerations", which covers considerations for moving from the old subsystems
to OSDI.

If you are a new Oracle for OS/390 customer, you can proceed directly to installing
the software and configuring Oracle9i products. Before doing so, we recommend
that you read the first three chapters of this manual.

Benefits of OSDI
Principal benefits of OSDI are:

■ Virtual storage constraint relief

Before OSDI, an Oracle database instance on OS/390 ran in a single address
space and was, therefore, constrained by the System/390 architectural limit of
2 gigabytes of addressable virtual memory. This limit makes it difficult or
impossible to support very large client populations with a single server.

OSDI, however, allows a database server to utilize multiple OS/390 address
spaces, all operating as a single Oracle instance. Up to 255 address spaces can
be configured for a single database instance.

■ Enhanced client workload management

Oracle9i for OS/390 with OSDI can set the importance or priority of network
client requests relative to each other and relative to all other work in the OS/390
system. Database requests from remote (network) clients of an OSDI server are
1-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OSDI Architecture
executed using preemptable enclave SRBs (service request blocks), a
lightweight OS/390 dispatching mechanism. Network clients are subject to
installation-controlled classification in OS/390 Workload Manager (WLM)
terms.

■ Improved performance and throughput

OSDI provides new implementations of a number of the fundamental operating
system services that are required by the Oracle database and network products.
Many of these implementations have shorter CPU instruction paths, reduced
serialization, and/or fewer artificial limits than previous facilities.

■ Improved reliability, availability, and serviceability (RAS)

Extensive recovery mechanisms and improved diagnostic facilities in OSDI
reduce the likelihood of problems associated with software or hardware failure
and increase the probability of diagnosing failures on the first occurrence.
Consumption of cross-memory global resources (ASIDs and linkage indexes)
that can lead to an IPL is reduced. Strict segregation of Oracle product code
from the supporting OSDI infrastructure code improves fix isolation and
granularity.

OSDI Architecture
OSDI consists of several well-defined components. The first of these components is
a common management layer that is shared by all Oracle products that are
implemented under OSDI. Below this, separate components are provided for each
Oracle product or type of product. OSDI currently has two product implementation
components, one for the Oracle RDBMS and one for Oracle Net.

Subsystem
The common management layer of OSDI is implemented as a formal OS/390
subsystem. It is not associated with any single Oracle product or product instance.
One OSDI subsystem can support multiple Oracle database instances and multiple
Oracle Net services. The term service group refers to a collection of database
instances and network services that are managed by an OSDI subsystem.

The OSDI subsystem has no associated address space. When the subsystem is
initialized (normally during OS/390 IPL), its program code is loaded into system
common storage and a few data structures are built, but no address spaces are
started. Subsequent interaction with the subsystem is accomplished via OS/390
system operator commands and via programmatic requests issued over the
Introduction to OSDI Architecture 1-3

OSDI Architecture
subsystem interface (SSI). No address spaces are created until Oracle products are
started.

The OSDI subsystem is what OS/390 calls a dynamic subsystem. This means that it
does not have to be initialized at system IPL: it can be initialized at any time using
the SETSSI ADD system operator command. Once initialized, the OSDI subsystem
is present in the OS/390 system until the next IPL. Because the OSDI subsystem is a
dynamic subsystem, it can be deactivated (SETSSI DEACTIVATE) and activated
(SETSSI ACTIVATE) at will. When a subsystem is deactivated, no commands can
be issued to it, no new Oracle product address spaces can be started, and no new
client connections can be made to product instances currently running.
Currently-running product instances and any existing client connections are not
disturbed.

Figure 1–1 OSDI Architecture

Services
The primary role of the subsystem is to manage services. A service is a named,
configured instance of an Oracle product. Each Oracle database instance and each
network service that you run under OSDI will be a separate service. One subsystem
can manage as many services as you desire. It is not necessary to create multiple
OSDI subsystems in order to run multiple database instances or to run multiple
network services.

Services must be defined to the subsystem. This is done with an OSDI DEFINE
command. While OSDI commands can be issued from an OS/390 system console

SUBSYSTEM OSG1

RDBMS
ORA1

RDBMS
ORA2

Net
Net1

RDBMS
TESTSRV

SERVICES
1-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OSDI Architecture
(or similar interfaces such as TSO SDSF or Netview), service definition commands
are fairly lengthy and change infrequently. A significant advantage is gained by
placing service definition commands in the parameter file that is read during OSDI
subsystem initialization. Among the items that are specified when a service is
defined are the user-selected service name, the type of Oracle product, and the
name of the JCL procedure that is invoked to start an address space for the service.
After a service is defined, the definition persists for the life of the IPL. The service
cannot be deleted or renamed, but it is possible to change certain parts of the service
definition using an OSDI ALTER command. The OSDI database service name is
restricted to 6 characters or less.

Defining or altering services manipulates only data structures that belong to the
subsystem. These actions do not cause the execution of any Oracle products. In
order to run a product that is configured as a service, an OSDI START command
must be issued. The OSDI START command is similar to the OS/390 command of
the same name: it causes a specified service to begin execution in an OS/390
address space using the JCL procedure specified in the service definition. You must
use the OSDI START command (not the OS/390 command) to start services.
OSDI-managed services cannot be executed as OS/390 batch jobs or as independent
started tasks or STCs.

After a service is started, its behavior and operation depend on the Oracle product
and how that product is configured. In general, the subsystem keeps track of the
operating state of each service. The primary operating states are inactive, starting,
active, and stopping. A service is normally in starting and stopping states only
briefly, from the time it is started until initialization is complete (the service
becomes active) and from the time termination begins until it actually ends (the
service becomes inactive). Only services that are active are available for
applications to use. You can display the state of a service using the OSDI DISPLAY
command.

Connections
The subsystem is responsible for processing OSDI-specific commands and for
managing the definition and operation of services. It also is responsible for
managing connections between OS/390 address spaces, specifically between clients
and services. In this context, the term client differs from the usual Oracle usage of
the term. A client is any OS/390 address space that issues requests to an
OSDI-managed service via OS/390 cross-memory services. This includes
applications that you normally think of as clients, such as an Oracle application or
utility that connects to a local OS/390 Oracle database instance. It also includes
applications that are less obvious: when the Oracle network service connects an
Introduction to OSDI Architecture 1-5

OSDI Architecture
inbound remote client to an OS/390 Oracle database, the network service address
space is a client of the database service in OSDI terms. Conversely, when a local
OS/390 database user accesses a remote Oracle database via an Oracle database
link, the local database address space operates as a client of the network service
when the local database address space requests a connection to the remote database.

OSDI calls this process of connecting a client address space to a service address
space a bind. Bind processing is internal to Oracle product operation and is not
directly visible to applications or users. The bind request uses the OS/390
subsystem interface (IEFSSREQ macro), which is why deactivating a subsystem
makes its services inaccessible to new client connections, or in other words, to new
binds. OSDI has two types of bind requests. One type is used only by Oracle
products that have special requirements for managing connections to services,
including Oracle Net and the Oracle Access Manager products. The other type of
bind is a normal application bind used by customer applications and by Oracle
tools and utilities running in TSO, batch, and Unix System Services (USS) address
spaces. While bind is not an external mechanism, security considerations that are in
bind processing are both visible and important. Security considerations are
described in the following section.

Security
OSDI has several integrated security features. They are implemented using the
OS/390 RACROUTE interface, which provides program access to the OS/390
System Authorization Facility, or SAF. The discussions and examples in this
manual are based on IBM’s OS/390 Security Server (RACF) product, but any
product that fully supports SAF can be used.

OSDI provides security processing at four points:

1. when an OSDI command is issued

2. when an address space binds to an OSDI-managed service

3. when a user requests a connection to an Oracle RDBMS instance with SYSOPER
or SYSDBA privileges

4. when certain types of users log on to an Oracle RDBMS instance for normal
application processing

Command and bind authorization checking are part of the subsystem. When an
OSDI command is processed, the subsystem performs a check to see if the user or
console that is issuing the command is authorized to do so. The check is based on a
resource name consisting of the subsystem name and the command verb. Similarly,
1-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OSDI Architecture
subsystem bind processing checks to make sure that the user, address space, or task
that is issuing the bind is authorized to access the target OSDI service that is
specified in the bind request. The bind authorization check distinguishes between
the two different types of bind discussed in the previous section. This is because
the managed connection type of bind carries certain privileges that should not be
made available to normal applications.

The SYSOPER/SYSDBA authorization check is performed by the database instance
to which the connection is being made and is performed in addition to any bind
authorization check made by the subsystem. This check uses a resource name
consisting of the OSDI subsystem name, the database service name, and a fixed
suffix string (either OPER or DBA).

In the first three of these authorization tests, if the SAF response is an indication
that the associated resource is not defined, then the request is allowed. This means
that RACF (or comparable) resource definitions are mandatory if command, bind,
and Oracle SYSOPER/SYSDBA access are to be subject to SAF-based authorization
controls.

In the fourth of these authorization tests, Oracle provides optional SAF-based
password authentication at Oracle logon time for certain types of users.

Database Service
Starting an Oracle database service with an OSDI START command creates an
OS/390 address space and executes the JCL procedure that is specified in the
service definition. In OS/390 terms, the service runs as a system address space
(similar to a started task or STC). The JCL procedure contains a single step that
executes the OSDI database region control program. A few JCL DD statements are
required. The region control program reads an input parameter file that specifies
the name of the Oracle RDBMS kernel load module and several OSDI-specific
operating parameters. The region control program then loads the Oracle kernel
code into the address space and initializes various internal facilities.

If the database service has been defined to use multiple address spaces, and if the
operating parameters indicate that additional address spaces are to be started
immediately, then those address spaces are started automatically when initialization
of the first address space is complete. Each auxiliary address space appears as a
new STC executing the same JCL procedure as the first address space. Depending
on how the service was defined, the new address spaces may have the same
jobname as the first, or each may have a distinct jobname containing a 3-digit suffix
number. In addition to being started automatically, auxiliary address spaces can be
started manually by issuing repeated OSDI START commands for the service. Each
Introduction to OSDI Architecture 1-7

OSDI Architecture
START command (after the first one) starts one more auxiliary address space, up to
a maximum number that was specified when the service was defined.

When a database service uses multiple address spaces, client sessions are
distributed more or less uniformly across those spaces. Service address space
selection is performed by the subsystem during the processing of a client bind
request. This is completely transparent to client software. No mechanism exists for
a client bind request to designate or control the server address space to which it is
assigned. Once a client session is bound to a given address space, the client remains
there until it either disconnects from the database or terminates. If multiple
database connections are made from a single client address space (in, for example, a
multi-tasking application or in one of the Oracle Access Manager products), then
those connections are distributed among the service address spaces just as though
they had come from different client address spaces.

The auxiliary address spaces of a multi-address-space service do not respond to
operator commands. All command interaction with the service is through the first
address space, referred to as AS1. After auxiliary address spaces are started, they
cannot be stopped individually. The auxiliary address spaces terminate when the
entire service is terminated. Operator interaction with a running database service
uses the OSDI STOP command and the OS/390 STOP (P) and MODIFY (F) system
commands, which are processed only by AS1.

OSDI initialization of a database service does not include the generic Oracle
database startup. With OSDI, that step (which is required to make the database
instance usable by applications) is performed separately. After the service address
space, or spaces, are fully initialized, Oracle SQL*Plus (or a comparable mechanism)
must issue an Oracle startup request to complete the instance startup processing.
Only one startup request is required regardless of the number of address spaces the
service is using.

Database service address spaces can persist over multiple Oracle startup and/or
shutdown requests. In other words, OSDI does not terminate the database address
spaces when an Oracle database shutdown is performed.

Network Service
Like the database, an Oracle Net network service is started with an OSDI START
command and executes as a system address space. It uses a different JCL procedure
from the database service, executes a different program, and has different JCL DD
statement requirements. The network service runs in a single address space only
and does not require a separate startup step as is required by the database service.
When the network service address space starts, it initializes network protocol tasks
1-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OSDI Architecture
and other internal facilities and initiates listen operations for inbound clients on
designated network endpoints.

The network service must be running to support both inbound (remote) client
connections to OS/390 servers as well as outbound connection requests from local
OS/390 clients that want to connect to remote Oracle servers. Some important
changes exist, however, in the way that inbound connections to OS/390 servers are
processed.

OSDI simplifies the networking implementation on OS/390 and makes it behave in
a manner more similar to Oracle Net on other platforms. Regardless of which
OS/390 database servers are to be accessed, the network service listens for inbound
clients on a single endpoint for each protocol. Clients that are connecting via a
given protocol specify the target OS/390 server using a SID parameter that is part of
the Oracle network address string. The network service does not need to know in
advance which servers will be accessed by inbound clients because the network
service locates servers using the SID. Nothing needs to be done to a database server
to prepare it for access by network clients.
Introduction to OSDI Architecture 1-9

OSDI Architecture
1-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring and Initializing the Su
2

Configuring and Initializing the Subsystem

This chapter describes how you create an OS/390 subsystem for OSDI. The
following topics are included:

Overview, on page 2-2

■ Choosing a Subsystem Name and Command Prefix on page 2-2

■ The Subsystem Parameter File on page 2-2

■ OSDI Commands in the Subsystem Parameter File on page 2-4

■ Initializing the Subsystem on page 2-5

■ Examples on page 2-6
bsystem 2-1

Overview
Overview
To run any Oracle products under OSDI, you must first create an OS/390
subsystem. The subsystem provides the internal interfaces that OSDI uses to
process operator commands, to manage the execution of database and network
services, and to manage connections between address spaces. One OSDI subsystem
can support any number of distinct database instances and network services.

Chapter 18, "Migration and Upgrade Considerations", covers issues related to
compatibility of OSDI with previous releases of Oracle7 and Oracle8.

Choosing a Subsystem Name and Command Prefix
The subsystem name is a 1-character to 4-character identifier. OS/390 requires that
subsystem names begin with an alphabetic or national character, while subsequent
characters can be alphanumeric or national. The name must be unique.

The subsystem requires a unique character string prefix to distinguish commands
issued to it from system consoles and other system command sources. By default,
OSDI will use the subsystem name as the command prefix. You can override this
default if you wish, and specify a special character or a different alphanumeric
string. Any character string prefix that you choose must not duplicate, or be a
leading subset of, the command prefix of any other subsystem. Also, the character
string prefix must not match any native OS/390 system command name or
abbreviation. Oracle Corporation recommends using the subsystem name for the
command prefix.

The Subsystem Parameter File
During initialization, the subsystem opens and reads a sequential data set to obtain
bootstrap initialization parameters and, optionally, any OSDI commands that are to
be issued immediately after the subsystem is initialized. The file is usually a
member of a PDS, and is created, viewed, and edited with TSO ISPF or a similar
tool. It can have either fixed-length or variable-length records. If fixed-length
records are used, then sequence numbers in the rightmost record positions (for
example, columns 73-80 of 80-byte records) are ignored.

Oracle Corporation recommends creating a PDS specifically for OSDI parameters
and using it for subsystem parameters as well as for parameter files that are used by
other components. Ten tracks of primary disk space, three tracks of secondary
space, and eight directory blocks should be sufficient for most installations. This
2-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

The Subsystem Parameter File
data set must be accessible for the subsystem to initialize, so it should not be subject
to HSM migration or similar involuntary moves.

Only a single record, called the INIT record, is required in the subsystem
initialization file. The INIT record has the following format:

INIT (ORASSI[,cmd-prefix][,cmd-class][,bind-class])

■ INIT

The word INIT can begin in position 1 or can be preceded by one or more
blanks. It must be followed by one or more blanks and then by one to four
positional parameters separated by commas and enclosed in a single pair of
parentheses. The parentheses are required even if only the first positional
parameter is coded. Do not include blanks in or among the positional
parameters. If an optional positional parameter is not used, but a following one
is, then a comma must be included for the unused parameter.

■ First positional parameter

The first positional parameter is the name of the OSDI subsystem load module
that was copied to a system linklist library during installation. This will
normally be ORASSI, exactly as shown. This parameter is required.

■ Second positional parameter (cmd-prefix)

The second positional parameter is the command prefix for the subsystem. Any
characters that are legal in a command prefix (except the comma and the left or
right parenthesis) can be included. Do not enclose the prefix in apostrophes or
quotes unless those are part of the prefix. The command prefix can be up to
8 characters in length. If you omit this parameter, then the command prefix is
assumed to be the subsystem name.

■ Third positional parameter (cmd-class)

The third positional parameter is the System Authorization Facility (SAF)
resource class name that is to be used when authorizing access to OSDI
commands. This parameter should be specified if you have created a specific
resource class for command authorization as discussed in the "Pre-Installation
Activities" chapter of the Oracle9i Enterprise Edition Installation Guide for OS/390.
If you omit this parameter, then OSDI uses the FACILITY class for command
authorization requests.
Configuring and Initializing the Subsystem 2-3

OSDI Commands in the Subsystem Parameter File
■ Fourth positional parameter (bind-class)

The fourth positional parameter is the SAF resource class name that is to be
used when authorizing client address spaces during bind to a service and when
authorizing a local database connection with SYSOPER or SYSDBA privileges.
This parameter should be specified if you have created a specific resource class
for bind and connect authorization as discussed in the "Pre-Installation
Activities" chapter of the Oracle9i Enterprise Edition Installation Guide for OS/390.
If you omit this parameter, then OSDI uses the FACILITY class for bind and
connect authorization requests.

The following INIT record provides an example in which the SAF resource class
names have been specified while the command prefix is allowed to default:

INIT (ORASSI,,$ORACMD,$ORACONN)

OSDI Commands in the Subsystem Parameter File
The INIT record is the only item that is required to be in the subsystem initialization
file. As a convenience, however, you can include OSDI commands in the
initialization file immediately after the INIT record. Usually, you will have a
number of OSDI DEFINE commands there. You might also have OSDI START
commands for any services that you always want started as soon as possible during
an IPL. Oracle Corporation recommends that you place into the parameter file both
the DEFINE SERVICEGROUP command and the DEFINE SERVICE commands for
commonly-used services.

The purpose and complete syntax of all OSDI commands is covered in Appendix A,
"OSDI Subsystem Command Reference". You should consider the following items
regarding commands that are supplied in the subsystem parameter file:

■ Do not include the subsystem command prefix. All commands in the
subsystem parameter file apply to the subsystem which is being initialized and
is reading the file.

■ Each command must begin on a new record. The command verb can begin in
position 1 or it can be preceded by blanks.

■ A command can be continued by including a hyphen (or minus sign) as the last
non-blank character on a record (excluding any sequence number). The
continuation can begin in position 1 of the next record or it can be preceded by
blanks. You cannot continue (split across records) a command parameter that is
enclosed in apostrophes. The continuation hyphen is not interpreted as part of
the command.
2-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Initializing the Subsystem
As commands in the parameter file are processed by the subsystem, the command
images are not displayed on the console log, but the subsystem response messages
appear as if the commands were entered at a console.

Initializing the Subsystem
Before attempting to initialize the subsystem, the required OSDI subsystem
modules must reside in the system linklist. Refer to job ORIJC00 in the Oracle9i
Enterprise Edition Installation Guide for OS/390 for information about copying
modules to the Linklist Library.

The subsystem can be initialized in either of two ways:

1. At system IPL, based on an entry that you add to the IEFSSNxx member of
SYS1.PARMLIB

2. At any other time by using the SETSSI ADD system operator command

Oracle Corporation recommends that you add regularly-used subsystems to the
IEFSSNxx member so that they are initialized correctly and automatically at every
IPL. Use the SETSSI ADD system operator command when necessary, such as
when you first install OSDI and want to try bringing up a subsystem without
having to IPL.

Because OSDI uses OS/390 dynamic subsystem interfaces, the IEFSSNxx entry for
an OSDI subsystem must use the newer keyword parameter format, not the old
positional format.

Assuming that you have chosen ORSS as your OSDI subsystem name and that the
subsystem parameter file is member SSP01 of the data set ORAN.ORAV.PARMLIB,
an appropriate IEFSSNxx entry would be similar to the following:

SUBSYS SUBNAME(ORSS) INITRTN(ORASSINI)
 INITPARM(’ORAN.ORAV.PARMLIB(SSP01)’)

In the above example, ORASSINI is the name of the subsystem’s initialization
routine. This module was copied to a system linklist library during OSDI
installation. It must be specified exactly as shown.

The subsystem parameter string (INITPARM keyword) must specify the data set
name and, if applicable, the member name of the subsystem parameter file
containing the INIT record and optional commands. If no member name is
supplied, then this must be a sequential (DSORG=PS) data set.

After updating IEFSSNxx, an IPL is necessary to process the added entry. If you do
not want to wait for an IPL, or if other circumstances exist in which a subsystem
Configuring and Initializing the Subsystem 2-5

Examples
must be created without an IPL, then you can use a SETSSI ADD system operator
command equivalent to the following:

SETSSI ADD,S=ORSS,I=ORASSINI,P=’ORAN.ORAV.PARMLIB(SSP01)’

This example uses the minimal keyword abbreviations. The longer forms,
SUBNAME (for S), INITRTN (for I), and INITPARM (for P), can be used if desired.

Examples
The following code represents the contents of a subsystem initialization file that
includes OSDI commands to define the service group and several services. The file
ends with an OSDI SHOW command that will display the definitions in the system
log.

INIT (ORASSI,ORSS)
DEFINE SERVICEGROUP SSID(ORSS) DESC(’Oracle OSDI Subsystem’)
DEFINE SERVICE ORAPROD DESC(’Oracle Production DB’) -
 TYPE(ORA) PROC(ORADB01) JOBNAME(OPROD*) MAXAS(8) -
 SID(ORA1) PARM(’ORAN.ORAV.PARMLIB(ORAPROD1)’)
DEFINE SERVICE ORATEST DESC(’Oracle Test DB’) TYPE(ORA) -
 PROC(ORADB01) SID(ORAT) -
 PARM(’ORAN.ORAV.PARMLIB(ORATEST)’)
DEFINE SERVICE ORANET DESC(’Oracle Net’) -
 TYPE(NET) PROC(ORANET01) -
 PARM(’HPNS PORT(1521)’)
SHOW SERVICEGROUP LONG

Consider this file to be member SSP01 of ORAN.ORAV.PARMLIB as in the earlier
examples, and assume that the subsystem will be initialized with a SETSSI ADD
command using subsystem name ORSS. The OS/390 system log that results from
the SETSSI ADD command would be similar to the following:

SETSSI ADD,S=ORSS,I=ORASSINI,P=’ORAN.ORAV.PARMLIB(SSP01)’
IEF196I IEF237I 0C9A ALLOCATED TO SYS00049
MIS0012I INITIALIZATION OF ORACLE SUBSYSTEM ORSS COMPLETE 500
MIS0196I Service group ORSS defined 501

Caution: Oracle Corporation recommends that you use caution
when entering the SETSSI ADD command. If you make a mistake
in the parameter string (such as misspelling the data set or member
name), then the subsystem will fail to initialize, and the subsystem
name that you specified will be unusable until the next IPL.
2-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

After Initializing the Subsystem
MIS0198I Service ORAPROD defined 502
MIS0198I Service ORATEST defined 503
MIS0198I Service ORANET defined 504
MIS0195I Service group ORSS (Oracle OSDI Subsystem) 505
 Mode=*SYS , Systems=*ALL
 Service ORANET Type NET (Oracle Net)
 Service ORATEST Type ORA (Oracle Test DB)
 Service ORAPROD Type ORA (Oracle Production DB)
IEF196I IEF285I ORAN.ORAV.PARMLIB KEPT
IEF196I IEF285I VOL SER NOS= WHODAT.
IEFJ022I SETSSI ADD COMMAND FOR SUBSYSTEM ORSS COMPLETED 508
SUCCESSFULLY

At this point, a subsystem has been initialized, and three services have been
defined. Configuring and operating a database service and network service are
described in Chapter 3, "Configuring a Database Service and Creating a New
Database" and Chapter 10, "Oracle Net".

After Initializing the Subsystem
When you have successfully initialized the subsystem, you can proceed to configure
and start Oracle products that will run under its control. Before doing so, you may
want to enable security mechanisms that the subsystem provides. These security
mechanisms control access to subsystem commands, and they control program
access to the services that you define in the subsystem. Refer to Chapter 8, "Security
Considerations", for information about these and other security features.
Configuring and Initializing the Subsystem 2-7

After Initializing the Subsystem
2-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring a Database Service and Creating a New D
3

Configuring a Database Service and

Creating a New Database

After you have created an OSDI subsystem, you can configure and initialize one or
more Oracle databases to run under that subsystem. This chapter describes how to
set up OSDI definitions, JCL procedures, parameter files, and other OS/390-specific
items required by an Oracle database instance. The three chapters, Chapter 4,
"Defining OS/390 Data Sets for the Oracle Database", Chapter 5, "Operating a
Database Service", and Chapter 6, "Database Backup and Recovery", provide
additional details on Oracle database files, database service operation, and database
backup and recovery. We suggest that you read these chapters before configuring a
new database service, and that you review Chapter 8, "Security Considerations", for
information about OS/390 security features that affect an Oracle database service.

If you are migrating an existing Oracle for OS/390 database to Oracle9i, you will
not be creating a new database as described in this chapter. Refer to Chapter 18,
"Migration and Upgrade Considerations", for details on migrating your existing
database. If you are new to OSDI, read this chapter to learn how OSDI differs from
the MPM subsystem as far as database configuration is concerned.

The following topics are included:

■ Overview on page 3-3

■ Database Service Definition on page 3-3

■ Database Region JCL on page 3-6

■ Database Region Parameters on page 3-10

■ Oracle Initialization Parameter Considerations on page 3-15

■ Database Logical Blocksize on page 3-20

■ Pre-Allocating Database Files on page 3-21
atabase 3-1

■ Configuring OS/390 Security on page 3-21

■ Configuring for Shared Servers on page 3-22

■ Creating the Database on page 3-22

■ Configuring a Database Service Using ISPF Panels on page 3-27
3-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Database Service Definition
Overview
To create an Oracle database instance under OSDI, you must first define the
instance as a service using the OSDI DEFINE SERVICE command. In addition to
defining the service, some other items must be set up before the service can be
started: a JCL procedure, several parameter files, and possibly security resource
definitions.

After you have defined the instance as a service and set up the additional items, you
can start the service, which creates one or more OS/390 address spaces based on
controls that you have specified. After the address spaces are initialized, you must
run Oracle SQL*Plus (or a similar tool) to perform the Oracle database startup
function. When the startup is complete, you can use the same tool to issue the
CREATE DATABASE SQL statement. This statement causes the Oracle server to
create the VSAM linear data sets that comprise a database (if you chose not to
pre-allocate them) and to initialize their contents. After the database is created, a
series of SQL scripts is executed to create the Oracle server’s internal database
objects (tables, views, stored PL/SQL procedures, and so forth). After the execution
of the scripts is complete, your database is ready to use.

An ISPF panel-driven configuration process is included in this chapter on page 3-27.

Database Service Definition
The OSDI DEFINE SERVICE command is described completely in Appendix A,
"OSDI Subsystem Command Reference". Here, we cover DEFINE parameter
considerations that are specific to an Oracle database service.

Service Name

The service name for a database can be anything that you want within the content
limitations described in Appendix A. By default, OSDI will use the service name as
the SID for the service. (The SID is an identifier that end users or application
developers must supply to connect an application to a particular database.) The
SID can be specified separately, however, and is not required to be the same as the
service name.
Configuring a Database Service and Creating a New Database 3-3

Database Service Definition
TYPE

The TYPE parameter for a database service must be specified as ORA.

PROC

This parameter specifies the name of a service JCL procedure that you will place in
one of your system procedure libraries. The procedure need not exist when
DEFINE SERVICE is issued, but it must be in place before the service is started. The
procedure name can be anything that you choose or that the naming standards of
your installation require. The requirements for this procedure are discussed in
section "Database Region JCL" on page 3-6.

PARM

The PARM for a database service specifies the name of an OS/390 data set
containing service initialization parameters. These are OS/390-specific parameters
(not the Oracle RDBMS init.ora startup parameters) and are described in the section
"Database Region Parameters" on page 3-10. Typically, PARM will specify a
member of a PDS (Partitioned Data Set) that is used for various Oracle parameter
files. If no member name is included in the PARM string, then the specified data set
must be sequential (DSORG=PS).

MAXAS

If you want to exploit the multiple-address-space server features of OSDI, then you
should specify the MAXAS parameter on DEFINE SERVICE with a value greater

Note: If you specify a service name that is the same as any existing subsystem
name in your system (Oracle database or otherwise), then you must also specify a
JOBNAME parameter that is not the same as any existing subsystem. If you do not
use unique names, then OSDI starts the service using the service name as the job
identifier. When OS/390 processes a start for an address space whose job name or
job identifier matches a known subsystem, the job runs under control of the master
subsystem instead of under control of JES.

Warning: Running OSDI services under the master subsystem is not supported.
This situation must be avoided by making sure that the service runs with a job
name or a job identifier that is not the same as any subsystem name.
3-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Database Service Definition
than the default of 1. This sets the maximum number of address spaces for the
service, which may be greater than the number started when the service is first
brought up. (The number of address spaces to start initially is a database region
parameter.) This parameter can be altered with OSDI commands as long as the
database service is not active.

JOBNAME

When you run a database service with multiple address spaces, the JOBNAME
parameter of DEFINE SERVICE can be used to cause each address space to have a
distinct jobname. Although this is not required, it may be desirable if you use
OS/390 facilities (such as RMF) that distinguish address spaces by jobname. To do
this, specify JOBNAME(name*), where name is a 1-character to 5-character jobname
prefix followed by an asterisk, as shown. As each address space is started, OSDI
substitutes a 3-digit address space counter for the asterisk (001, 002, and so on) to
produce the final jobname. You can also use JOBNAME to cause the service to run
with a jobname different from the service name (which is used by default).

As discussed in the "Note" on page 3-4, you must specify a JOBNAME parameter if
the service name matches any existing subsystem name in your OS/390 system.

SID

The SID parameter specifies a unique identifier for the service. It is a critical
element in the process that is used by Oracle database applications to specify the
instance to which they need to connect. (Inbound network clients specify a SID in
the Oracle database network address string that must match the SID that is
specified in DEFINE SERVICE. Local OS/390 clients connecting via cross-memory
specify the SID in any of several ways.) Although the SID can be up to 8 characters
long, you may want to specify a SID that is 4 characters or less in order to enable an
OS/390-specific feature that local OS/390 clients can use to specify a target
database. This feature relies on a dummy JCL DD statement (or TSO allocation)
whose DD name begins with "ORA@" and ends with a 1-character to 4-character
SID of the target database instance. If you choose a SID longer than 4 characters (or
allow it to default to a service name that is longer than 4 characters), this feature is
not usable.

Although you can issue the OSDI DEFINE SERVICE command via an OS/390
system console or similar facility, you should put definition commands for services
that you use regularly into the OSDI subsystem parameter file, after the DEFINE
SERVICEGROUP command. This ensures that the service is always defined
correctly and automatically when the subsystem is initialized (normally at system
Configuring a Database Service and Creating a New Database 3-5

Database Region JCL
IPL). In our sample database DEFINE SERVICE command below, the command
prefix has been omitted and continuation hyphens have been included as though
the command were in the subsystem parameter file:

 DEFINE SERVICE ORADB01 TYPE(ORA) PROC(ORADB01) -
 DESC(’Oracle Test Database’) MAXAS(3) -
 JOBNAME(ODB1*) PARM(’ORAN.ORAV.PARMLIB(ODB1P)’) -
 SID(ODB1)

Database Region JCL
Defining a database service requires you to specify a JCL procedure name in a
system procedure library. You must create the procedure before you try to start the
service, and the procedure must invoke the OSDI database region program with an
EXEC statement such as the following:

// EXEC PGM=ORARASC,REGION=0M

REGION=0M is specified to ensure that the server can allocate as much private
virtual memory as it needs. Some OS/390 systems may prohibit or alter a REGION
parameter such as this, so you might want to check with your systems programmer
to make sure that the system will accept your REGION parameter.

Note that no other EXEC statement parameters are needed. The PARM parameter
of EXEC is not used by the database region program.

In addition to the EXEC statement, the procedure will need several DD statements,
as follows:

ORA$ENV: This DD statement is optional. When used, it specifies a sequential file
or PDS member containing environment variable assignment statements.
Environment variables are used to supply operating parameters to certain Oracle
database product features. Reliance on environment variables and considerations
for setting them are discussed in feature-specific chapters of this manual as well as
in the Oracle9i Enterprise Edition User’s Guide for OS/390. The data specified by
ORA$ENV is read only at database service startup. Therefore, in order for changes
to the data set to take effect, the service must be stopped and started.
3-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Database Region JCL
ORA$FPS: This DD statement specifies a sequential file or PDS member
containing OS/390-specific parameters that control data set processing in the Oracle
server. These parameters are organized by type of file (such as tablespace, control,
online log, and so forth), and they primarily pertain to creation processing when the
Oracle server invokes the IDCAMS utility or dynamic allocation to create an
OS/390 data set. Considerations and syntax rules for the ORA$FPS parameter file
are covered in "Server File Management Parameters" on page 4-8. The ORA$FPS
DD is optional. If you omit it, then server file creation operations may fail unless
your installation has DF/SMS ACS routines that supply defaults for data set
creation parameters. At database service startup, data specified by ORA$FPS is
read and checked. Any errors are reported and ignored. Valid entries are loaded as
server file management parameters. After database service startup, a new set of
server file management parameters can be loaded from the updated ORA$FPS
specification by using the REFRESH FPS command on page 5-7.

ORA$LIB: This DD statement specifies a non-authorized load library from which
non-executable (data) modules are fetched. The modules contain NLS data objects
and messages that are associated with Oracle NLS internationalization features.
Normally these modules are installed in the OSDI MESG data set, for example
ORAN.ORAV.MESG. The ORA$LIB DD statement is optional: if you omit it, then
the Oracle server attempts to fetch messages and NLS data objects modules from
STEPLIB. Do not concatenate a non-APF-authorized MESG data set to STEPLIB in
lieu of specifying ORA$LIB.

Note: The ORACLE_HOME environment variable (referring to
the ORACLE_HOME directory name under HFS, specified during
installation) is required for OS/390 Unix System Services (USS)
components such as Oracle9i JVM, Oracle9i Text, and the time zone
feature.

Note: When this DD statement is omitted, an IEC130I message
may appear in the system log during service address space
initialization. This is normal.

Note: When this DD statement is omitted, an IEC130I message
may appear in the system log during service address space
initialization. This is normal.
Configuring a Database Service and Creating a New Database 3-7

Database Region JCL
ORAPASSW: This DD statement is optional. It specifies a VSAM linear data set
that has been initialized with the ORAPWD utility. This file contains encrypted
passwords and is used only to authenticate a client who is connecting as SYSDBA or
SYSOPER. The use of this file is described in "Controlling Access to Database
SYSDBA and SYSOPER Privileges" on page 8-4 and the ORAPWD utility is
discussed in Chapter 7, "Oracle9i Utilities".

SNAPCF: This DD statement is optional. When used, it specifies a VSAM linear
data set that contains a copy of the database control file. The considerations for this
file are discussed in Chapter 6, "Database Backup and Recovery".

SQLBSQ: This DD statement specifies an input file containing the Oracle database
"bootstrap" SQL script. It is read only during an Oracle database cold start
(CREATE DATABASE SQL statement) and is therefore required only when a cold
start is planned. When specified, it usually designates the SQLBSQ member of a
partitioned data set dedicated to SQL scripts. This data set was created during
Oracle product installation.

SQLNET: This DD statement specifies an input file containing Oracle Net
parameters. It is required if the Oracle instance uses any of the following:

■ network data encryption

■ network activity tracing

■ altering of default Oracle Net file names

■ outbound database links whose Oracle Net addressing requires access to an
Oracle database Names server

Refer to Chapter 10, "Oracle Net", for additional information.

SQLNETLG: This DD statement is the default destination for network error
messages. It is required if the Oracle instance uses Oracle Net services, either
inbound (remote clients connecting to the instance) or outbound (database links to
remote Oracle database instances). SYSOUT or a sequential disk data set can be
specified.

STEPLIB: This DD statement must specify the APF-authorized Oracle
AUTHLOAD library that was populated during installation. The IBM LE/370
runtime library must be concatenated to it unless your installation has put LE/370
runtime into the system linklist. A typical name for the LE/370 runtime library is
SYS1.SCEERUN, but it may have a different name in your system.
3-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Database Region JCL
SYSPRINT: This DD statement is optional. When used, the Oracle database
instance alert log is written to it. The alert log is a sequential text file containing
status messages that are related to the operation of the database instance, including
startup and shutdown information, log file switches, archive operations, and certain
types of error condition. The alert log is also used to log some OS/390-specific
events, including IDCAMS utility output associated with database file creation and
deletion. Regardless of the number of server address spaces, an Oracle database
instance has only one alert log, which is opened by the first server address space
(AS1). Alerts that are generated by sessions in other address spaces are routed to
AS1.

You can specify a disk data set or a spool file (SYSOUT) for the alert log. If you omit
the SYSPRINT DD, then OSDI dynamically allocates a spool file (using SYSOUT=*)
for the alert log during service startup and writes a message to the system log
identifying the system-generated DDname for the allocation. If you specify a disk
data set for SYSPRINT, and if an error occurs while it is being written (including an
out-of-space condition), then OSDI closes SYSPRINT, dynamically allocates a spool
file, and begins writing to it. The amount of space required for the alert log
depends on database activity and on how long the service address space runs.

TNSNAMES: This DD statement specifies an input sequential file or PDS member
containing Oracle Net name/address assignments. It is required if the Oracle
instance uses database links (connections to other Oracle database instances) whose
USING clause specifies an Oracle Net service name rather than an explicit Oracle
Net address. If you are using external routines or shared servers, refer to
"Step 2: Create and Modify the Tnsnames.ora File" on page 10-15 to add the correct
entries.

Sample Database Region JCL Procedure The following is an example of a JCL
procedure for a database region:

//ORADB01 PROC
//ORACLE EXEC PGM=ORARASC,REGION=0M
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.AUTHLOAD
// DD DISP=SHR,DSN=SYS1.SCEERUN
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//ORA$FPS DD DISP=SHR,DSN=ORAN.ORAV.PARMLIB(FPS01)
//ORA$ENV DD DISP=SHR,DSN=ORAN.ORAV.PARMLIB(ENV01)
//SQLNETLG DD SYSOUT=*
//TNSNAMES DD DISP=SHR,DSN=ORAN.ORAV.PARMLIB(TNS01)
//SQLBSQ DD DISP=SHR,DSN=ORAN.ORAV.SQL(SQLBSQ)
//ORAPASSW DD DISP=SHR,DSN=ORAN.ORAV.DB01.ORAPWD
Configuring a Database Service and Creating a New Database 3-9

Database Region Parameters
Database Region Parameters
OSDI database region parameters are supplied in a data set whose name is specified
as the PARM string in the service definition. This will typically be a member of a
PDS. Because the data set name is supplied via the service PARM mechanism, no
DD statement is coded in the region JCL. The data set is dynamically allocated,
opened, and read when the service is started. Changing parameters in the data set
has no effect until the service is stopped and restarted.

The OSDI database region parameters consist of a parameter name followed by the
parameter value in parentheses. Each parameter has a long descriptive name and a
shorter name of eight characters or less. Each record may contain only one
parameter. No continuation is allowed. Records beginning with an asterisk (*) are
treated as comments and are ignored. Embedded spaces and all characters after the
closing parenthesis are ignored.

DSN_PREFIX_DB | ORAPREFD

The DSN_PREFIX_DB parameter supplies a constant string that is associated with
the &ORAPREFD system symbol. The &ORAPREFD system symbol can be used to
form the high-level (leftmost) qualifier of OS/390 data set names generated by the
Oracle server. The format of the DSN_PREFIX_DB parameter is as follows:

DSN_PREFIX_DB (dsn_prefix)

where dsn_prefix is a valid 1- to 8-character data set name qualifier that
conforms to your installation’s requirements. In most cases, this will be the qualifier
that is used for all Oracle database files associated with this instance. For example:

DSN_PREFIX_DB(ORADB01)

DSN_PREFIX_DB has no default value. If you omit this parameter, certain
situations in which the Oracle server generates "default" filenames will produce
errors. Refer to Chapter 4, "Defining OS/390 Data Sets for the Oracle Database", for
more information.

INIT_ADR_SPACES | INTADSPC

INIT_ADR_SPACES controls how many auxiliary address spaces are started, as
follows:

INIT_ADR_SPACES (number_of_address_spaces)

where number_of_address_spaces is the number of address spaces to start.
The default is 1, which starts only the control address space (AS1). The maximum is
3-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Database Region Parameters
the number that was specified for MAXAS on the associated DEFINE SERVICE
command for the database service.

INIT_SESSIONS | INITSESS

The INIT_SESSIONS parameter specifies how many sessions to start in an address
space, as follows:

INIT_SESSIONS (number_of_sessions)

where number_of_sessions is the number of sessions to start in an address
space. The default is zero. The default of zero should normally be used.

INIT_STACK_SIZE | INTSTKSZ

INIT_STACK_SIZE controls the size of the C stack that is allocated for each session,
as follows:

INIT_STACK_SIZE (init_size)

where init_size determines the initial size of the C stack. This value can be
specified as n or nK. The default is 128K. For more information on
INIT_STACK_SIZE, refer to "The User Stack Area in OS/390" on page 16-10.

If the RDBMS Java system will be initialized, and if Java stored procedures will be
used, then the value of init_size should be at least 256K.

JAVA_STACK_SIZE | JAVASKSZ

JAVA_STACK_SIZE controls the size of the C stack used when executing Java
threads as follows:

JAVA_STACK_SIZE (java_thread_size)

where java_thread_size determines the size of the C stack used for all Java
threads except the main thread. The default is 256K. Because the Java thread stacks
are not automatically extended as normal C stacks are, this value needs to be large
enough to handle all Java thread requirements.

LOGON_AUTH | LGNAUTH

LOGON_AUTH specifies how the Oracle server interacts with a SAF-based
external security product when processing Oracle logons for users defined as
IDENTIFIED EXTERNALLY. The syntax is:

LOGON_AUTH (auth)
Configuring a Database Service and Creating a New Database 3-11

Database Region Parameters
where auth is:

If exitname is specified, it must reside in the system linklist or in an
APF-authorized library that is part of the server region STEPLIB concatenation. The
default is NONE.

Examples:

LOGON_AUTH(NONE)
LOGON_AUTH(RACFSMPO)

For more information about Oracle logon authorization, refer to Chapter 8,
"Security Considerations".

MAX_SESSION_MEM | MAXSMEM

The MAX_SESSION_MEM parameter specifies a hard limit on the amount of
virtual memory that a single database session can allocate, as follows:

MAX_SESSION_MEM (session_memory)

where session_memory is the maximum amount of virtual memory that a single
database session can allocate. This value can be specified as n, nK (denoting a
multiplier of 1024), or nM (denoting a multiplier of 1,048,576). The default is zero
(0), which means no session limit is imposed.

This parameter is useful for stopping a "runaway" session that is allocating
excessive amounts of memory due, perhaps, to problems with application design.
This pertains only to session-private C stack and "heap" memory allocated during
Oracle server processing. It does not include Oracle SGA memory used by a session
nor internal memory allocations done by the implementation.

Care must be taken in choosing a limit, particularly where certain database
administration operations might be affected. The "catalog build" step of new
database creation requires as much as 64M of session memory and may fail if this

NONE IDENTIFIED EXTERNALLY not allowed (no
interaction)

SAF perform built-in SAF RACROUTE
verification

exitname call an installation-supplied logon exit;
exitname is the 1- to 8- character load
module name of the exit
3-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Database Region Parameters
parameter is set to a lower value. Omit this parameter or set it to a higher value
during new database creation; you can change it to a lower value afterward if
desired. In the current product release a normal database STARTUP requires up to
16M of session memory, so do not set this parameter to a value less than 16M.

MAX_SESSIONS | MAXSESS

The MAX_SESSIONS parameter limits the number of sessions that can be scheduled
in an address space, as follows:

MAX_SESSIONS (number_of_sessions)

where number_of_sessions is the maximum number of sessions per address
space. This value can be specified as n or nK. The default is 1024. The number of
sessions that can be supported in an address space depends on the complexity of
the work. Limiting the number of sessions per address space reduces the chances of
session failure due to exhaustion of virtual storage. Refer to "Database Server
Address Space Configuration" on page 16-6 for more information.

REGION_MEM_RESERVE | REGMRES

The REGION_MEM_RESERVE parameter specifies the amount of private area
memory in the server address space to be "reserved" for implementation and
OS/390 use (not available for the Oracle SGA and Oracle session-private purposes),
as follows:

REGION_MEM_RESERVE (region_memory)

where region_memory is the amount of private area memory reserved. This value
can be specified as n, nK (denoting a multiplier of 1024), or nM (denoting a
multiplier of 1,048,576).

During initialization, each server address space calculates the total available private
area memory and subtracts the reserve amount from it. The result is the aggregate
limit for the Oracle SGA and for all session memory requests in that address space.

The default is zero (0), which means that no aggregate limit applies. In this case, it is
possible for Oracle SGA and session memory requests to exhaust the available
private area of the address space, leading to unpredictable failures.

Thus, the reserve amount must be sufficient to accommodate internal
implementation memory requrements as well as memory required by OS/390
services used by Oracle, particularly Local System Queue Area (LSQA) memory,
which is used by all database I/O operations. Because it is difficult to predict this
amount for any given workload, the best strategy is to specify a relatively large
Configuring a Database Service and Creating a New Database 3-13

Database Region Parameters
reserve amount, such as 50M or more. This has the effect of reducing slightly the
number of sessions that can be accommodated in a server address space. However,
additional address spaces can be started, if necessary.

SERVER_LOADMOD | SRVRLMOD

SERVER_LOADMOD specifies the name of the service load module, as follows:

SERVER_LOADMOD (loadmod)

where loadmod is the name of the load module to load. For the Oracle RDBMS,
this is usually ORACLE. This parameter is required.

SMF_STAT_RECNO | SMFSTRCN

SMF_STAT_RECNO specifies the SMF record number to use, as follows:

SMF_STAT_RECNO (record_number)

where record_number is the number of the desired record of Oracle SMF statistics.
The default is zero (0). Otherwise, the value must be specified between 128 and 255
for this parameter. Example:

SMF_STAT_RECNO(204)

The collection and writing of Oracle SMF statistics records is controlled by this
single parameter in the OSDI service parameter file. A zero (0) for this parameter
indicates that no SMF statistics record is to be written. The SMF record number that
is chosen must not be the same as the number that is used by any other OS/390
software.

If this parameter is not specified, or if zero is specified, then no SMF statistics
collection or recording is done. This saves some CPU overhead and saves the
overhead of the SMF write itself (which is mostly asynchronous work done by the
SMF address space, the in-line overhead is mainly just moving data into SMF
buffers). For more information about SMF, refer to Chapter 9, "Oracle SMF Data".

TRACE_DSNAME | TDSN

TRACE_DSNAME specifies the destination for Oracle RDBMS trace files. This
includes normal traces requested by setting the session SQL_TRACE option to
TRUE, as well as diagnostic traces generated automatically in certain error
situations. The format of the parameter is as follows:

TRACE_DSNAME (filespec)
3-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Initialization Parameter Considerations
where filespec is either a SYSOUT specification (including class, form, and JES
destination) or a data set name.

A SYSOUT specification is of the form:

//SYSOUT:class,form,dest

as described in "Server File Name Syntax" on page 4-6. When this is used, trace
files are dynamically allocated SYSOUT data sets. In a multi-address space service,
the trace file for a given database session is allocated in the address space that hosts
the session. Thus, SYSOUT trace files can appear in all server address spaces. For
example, traces written to SYSOUT class X, form AA01, would be written as:

TRACE_DSNAME(//SYSOUT:X,AA01)

As an alternative to a SYSOUT specification, you can specify a data set name.
Because each trace file created as a data set must have a unique data set name, the
supplied value must include system symbols that guarantee uniqueness. Refer to
Appendix C, "Oracle9i for OS/390 System Symbols" for more information.

To guarantee uniqueness, use some combination of the session identifier
(&ORASESST) system symbol, date (&LYYMMDD), and time (&LHHMMSS). Also
use high-level qualifier(s) that are appropriate for your installation. This will avoid
the possibility of duplicating trace data set names generated in other Oracle
instances you run. All components of the string must resolve to produce a name
that is valid for an OS/390 sequential data set. For example:

TRACE_DSNAME(ORA3A.TRACE.D&LYYMMDD..T&LHHMMSS..&ORASESST)

The allocation parameters for Oracle trace data sets are obtained from the DBTR file
group of the server file management parameters, discussed in Chapter 4, "Defining
OS/390 Data Sets for the Oracle Database".

If this parameter is omitted or fails to produce a valid, unique data set name, all
Oracle trace files are written to the default SYSOUT class associated with the server
region.

Oracle Initialization Parameter Considerations
As an Oracle instance starts up, Oracle initialization parameters are read as follows:

■ If PFILE is specified in the STARTUP statement, initialization parameters are
read from the specified PFILE. The PFILE can refer to a sequential data set or
member of a PDS. It cannot refer to a file in the HFS.
Configuring a Database Service and Creating a New Database 3-15

Oracle Initialization Parameter Considerations
■ If PFILE is not specified in the STARTUP statement the server will read from a
server parameter file (SPFILE). If no server parameter file exists, the server will
read from /DD/INITORA, which can refer to a sequential data set or member
of a PDS. For more information on the SPFILE parameter, refer to the
description on page 3-19.

Considerations for most of the initialization parameters in this file are the same
regardless of the operating system on which the associated Oracle database instance
runs. A few of them have OS/390-specific considerations as discussed here. Use
this section together with other Oracle9i documentation when choosing
initialization parameters for an Oracle server on OS/390.

BACKGROUND_CORE_DUMP, BACKGROUND_DUMP_DEST

These parameters are ignored on an OS/390 Oracle server.

CONTROL_FILES

The CONTROL_FILES parameter specifies the name, or names, of one or more
database control files that are specified using the file name syntax discussed in
Chapter 4, "Defining OS/390 Data Sets for the Oracle Database". When you are first
creating a database, if you choose to let the Oracle server allocate your control files
(instead of pre-allocating them yourself), this parameter will specify the VSAM
linear data set names that do not yet exist but will be created during processing of
the CREATE DATABASE command.

The following is a sample CONTROL_FILES parameter for OS/390 using the full
file name syntax:

CONTROL_FILES = "//’ORAPROD.ORADB1.CTL1’", "//’ORAPROD.ORADB1.CTL2’"

DB_BLOCK_SIZE

The DB_BLOCK_SIZE parameter is used as the default logical database blocksize
for all tablespaces that do not request a different logical blocksize with the
BLOCKSIZE option of CREATE TABLESPACE. DB_BLOCK_SIZE can be specified
as 4096 (4K), 8192 (8K), 16384 (16K), or 32768 (32K).

The default for this parameter on OS/390 is 4096. Regardless of what logical
blocksize you use, Oracle database files on OS/390 always have a physical blocksize
of 4096 bytes.
3-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Initialization Parameter Considerations
DB_CREATE_FILE_DEST
DB_CREATE_ONLINE_LOG_DEST_n

These parameters are associated with Oracle Managed Files (OMF). OMF simplifies
database administration by making the Oracle server responsible for naming,
creating, and deleting the VSAM linear data sets comprising a database. Refer to
"Oracle Database Files" on page 4-2 and the Oracle9i Database Administrator’s Guide
for more information on OMF.

On OS/390, these parameters supply character strings that are used as the left-hand
portion of the data set names generated by the server when an OMF file is created.
Valid OS/390 and Oracle-specific system symbols can be included. The maximum
length permitted after any system symbols are resolved is 23 characters for
DB_CREATE_FILE_DEST and 29 characters for
DB_CREATE_ONLINE_LOG_DEST_n. To be usable for OS/390 data set name
generation these strings must end with a period after any symbol substitution has
been done. The following are some examples:

DB_CREATE_FILE_DEST = "ORACLE.ORADB01."
DB_CREATE_ONLINE_LOG_DEST_1 = "&ORAPREFD..&ORASRVN..M1."
DB_CREATE_ONLINE_LOG_DEST_2 = "&ORAPREFD..&ORASRVN..M2."

DB_FILE_NAME_CONVERT
LOG_FILE_NAME_CONVERT

These parameters are used in conjunction with the standby database availability
feature and in certain point-in-time recovery situations. They cause the server to
convert database and log file names that are read from the control file by replacing a
portion of the original file name with another value.

To use the standby feature and the DB_FILE_NAME_CONVERT parameters, your
database data file data set names must share a common naming convention. The
easiest way to meet this requirement is to use the same high-level qualifier (or
qualifiers) for all database data file names. The same logic applies to the LOG_
FILE_NAME_CONVERT for the redo log files.

For example, if all of your primary database data files have data set names
beginning with "ORA5.DBPRIM." and you choose "ORA5.DBSTNDBY." as the
prefix for database files in your standby database, then to effect the name
conversion for the standby database, you would specify:

DB_FILE_NAME_CONVERT=(ORA5.DBPRIM,ORA5.DBSTNDBY)
Configuring a Database Service and Creating a New Database 3-17

Oracle Initialization Parameter Considerations
Information on the standby database feature can be found in Oracle9i Data Guard
Concepts and Administration.

LOCK_SGA

The LOCK_SGA parameter is ignored on OS/390. Buffers in the Oracle SGA
(System Global Area) are pagefixed during I/O operations, only; otherwise, the
SGA on OS/390 is pageable.

LOG_ARCHIVE_

The parameters whose names begin with "LOG_ARCHIVE_" control Oracle
database processing of filled database log files when the database runs in
ARCHIVELOG mode. These parameters changed in Oracle 8.1 to allow more than
two copies of archived logs and to support transmitting logs to a remote standby
database. The old parameter forms are still supported in Oracle 9.0, but the new
forms must be used to allow for more than two log destinations or to use remote
standby logging.

With an OS/390 server, LOG_ARCHIVE_DEST and
LOG_ARCHIVE_DUPLEX_DEST (the old parameters) or the LOCATION
component of each LOG_ARCHIVE_DEST_n parameter are used to specify only the
left-hand portion of a full OS/390 data set name. This will be the high-level data set
name qualifier, or qualifiers, for all logs archived to this destination. The remainder
of the data set name is specified using LOG_ARCHIVE_FORMAT, which should
contain the log thread and sequence number substitution indicators (%T and %S) to
ensure that each archived log data set name is unique. The destination string must
end with a period, or the format string must begin with one in order to form a
proper OS/390 data set name. The following example uses the newer parameters:

LOG_ARCHIVE_FORMAT = "T%T.S%S"
LOG_ARCHIVE_MIN_SUCCEED_DEST=1
LOG_ARCHIVE_DEST_1=’LOCATION=ORA5.ARCHLOG1. MANDATORY REOPEN=5’
LOG_ARCHIVE_DEST_2=’LOCATION=ORA5.ARCHLOG2. MANDATORY REOPEN=5’
LOG_ARCHIVE_DEST_STATE_1=enable
LOG_ARCHIVE_DEST_STATE_2=enable

With these example settings, archived logs will have data set names of the form
ORA5.ARCHLOG1.Tnnn.Snnn and ORA5.ARCHLOG2.Tnnn.Snnn with the nnn
parts replaced by log thread and sequence numbers.
3-18 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Initialization Parameter Considerations
MAX_DUMP_FILE_SIZE

This parameter is ignored on an OS/390 Oracle server.

ORACLE_TRACE_

The "otrace" facility is not implemented on OS/390. All parameters whose names
begin with "ORACLE_TRACE_" are ignored on an OS/390 Oracle server.

SHADOW_CORE_DUMP

This parameter is ignored on an OS/390 Oracle server.

STANDBY_ARCHIVE_DEST

This parameter is used in conjunction with the standby database availability feature
to perform database recovery. It is used along with the LOG_ARCHIVE_FORMAT
parameter to generate the fully qualified standby database log filenames, which are
then stored in the standby database control file. For more information on the
standby database availability feature, refer to Oracle9i Data Guard Concepts and
Administration.

With an OS/390 server, the STANDBY_ARCHIVE_DEST parameter is used to
specify only the left-hand portion of a full OS/390 data set name. This will be the
high-level data set name qualifier, or qualifiers, for all logs archived to this
destination. The remainder of the data set name is specified using
LOG_ARCHIVE_FORMAT, which should contain the log thread and sequence
number substitution indicators (%T and %S) to ensure that each archived log data
set name is unique. The destination string must end with a period, or the format
string must begin with one in order to form a proper OS/390 data set name. The
following is an example:

LOG_ARCHIVE_FORMAT = "T%T.S%S"
STANDBY_ARCHIVE_DEST=’ORA5.ARCHLOG.’

SPFILE

The SPFILE (server parameter file) parameter refers to the VSAM linear data set
managed by the instance. The default name of the SPFILE data set is the following
concatenation: &ORAPREFD..&ORASRVN..SPFILE.ORA.

When creating the server parameter file, the PFILE parameter in the CREATE
SPFILE statement must be a file in the HFS; this PFILE can be created with a text
Configuring a Database Service and Creating a New Database 3-19

Database Logical Blocksize
editor, or by copying your initialization parameters to the HFS using TSO OPUT or
an equivalent method.

USER_DUMP_DEST

This parameter is ignored on an OS/390 Oracle server.

Database Logical Blocksize
The term logical blocksize means that the Oracle server reads and writes the files in
chunks of the given size. The files themselves continue to be VSAM linear data set
clusters with a 4K CI size and 4K physical block size. Logical blocksizes greater
than 4K are required for certain database structures (such as indexes with very large
keys) and they may provide I/O performance benefits in certain situations.

There are two ways to use a blocksize other than 4K. One is to specify a different
blocksize in your init.ora (DB_BLOCK_SIZE parameter) when doing a coldstart. It
must be one of the four supported values expressed as a full integer, as in the
following:

DB_BLOCK_SIZE=16384

The specified blocksize is used for the control file(s) and as the default for all
tablespace data files. (Log files are always written in 4K units, regardless of the
value of DB_BLOCK_SIZE.) Note that DB_BLOCK_SIZE cannot be changed after
CREATE DATABASE.

You also can specify logical blocksize at the tablespace level in the CREATE
TABLESPACE statement. This is more flexible as it allows blocksize tailoring by
application. Using this feature requires changes to the init.ora parameters that
govern the database buffer portions of the SGA.

First, the old DB_BLOCK_BUFFERS parameter, which specifies the number of
default-sized (DB_BLOCK_SIZE) SGA buffers, must be changed to the new
DB_CACHE_SIZE parameter. The new parameter has the same effect as the old one
but it is expressed as an amount of memory (with a K, M, or G multiplier if desired)
instead of as a number of buffers. To convert a DB_BLOCK_BUFFERS parameter to
the equivalent DB_CACHE_SIZE, multiply DB_BLOCK_BUFFERS by the logical
blocksize. For example, if DB_BLOCK_SIZE is 4096 and DB_BLOCK_BUFFERS is
5000, then you would specify the following:

DB_CACHE_SIZE=20000K
3-20 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring OS/390 Security
To enable the use of tablespace logical blocksizes other than your DB_BLOCK_SIZE,
you must specify a separate buffer cache amount for each size to be used. The
init.ora parameters that do this are named DB_nK_CACHE_SIZE where n is 4, 8, 16,
or 32 for the respective logical blocksize. These parameters are used only for
blocksizes that differ from DB_BLOCK_SIZE. Specifying one of these when you
have no tablespaces that use the corresponding blocksize does no harm, but the
associated SGA space sits idle.

Example 1 This example shows part of an init.ora file for a database whose default
blocksize is 8K and which provides additional buffer cache areas for tablespaces
with a 4K and 32K logical blocksize. A total of 84M of buffer memory is divided
among the three blocksizes.

DB_BLOCK_SIZE = 8192
DB_CACHE_SIZE = 48M
DB_4K_CACHE_SIZE = 12M
DB_32K_CACHE_SIZE = 24M

Example 2 This example is a SQL statement which creates a tablespace with a
logical blocksize of 32K. An AUTOEXTEND clause is included to enable the
tablespace to be enlarged dynamically.

CREATE TABLESPACE TS32K DATAFILE ’ORACLE.WFM1O9.TS32K.DBF1’
 SIZE 60M AUTOEXTEND ON NEXT 8M MAXSIZE 192M BLOCKSIZE 32K;

Pre-Allocating Database Files
You can allow the Oracle server to create the database VSAM clusters during
CREATE DATABASE processing, or you can pre-allocate them yourself using
OS/390 IDCAMS. If you choose to use OS/390 IDCAMS, now is the time to do it.
Considerations for defining database files are covered in Chapter 4, "Defining
OS/390 Data Sets for the Oracle Database". If you are going to let the server create
any files, then be sure to provide creation parameters for the associated file types
via the server ORA$FPS DD statement as described in Chapter 4.

Configuring OS/390 Security
If you plan to use any of the SAF-based security features discussed in Chapter 8,
"Security Considerations", you may want to configure them now. OSDI subsystem
command security affects the service START command that you will issue to start
the database service address spaces. Both OSDI bind security and protection of the
Configuring a Database Service and Creating a New Database 3-21

Configuring for Shared Servers
database SYSDBA or SYSOPER privilege affect the connection that you will make to
startup Oracle and create the database.

Even if you do not utilize any of these features, you must ensure that the database
service address space is authorized to access resources (such as data sets) that might
be protected by default in your system. Refer to Chapter 8 for information on
database service interaction with OS/390 security.

Configuring for Shared Servers
Shared servers on Oracle9i for OS/390 are supported by the generic listener
running under OS/390 Unix System Services (USS). For information on configuring
the generic listener for shared servers, refer to Chapter 10, "Oracle Net". For more
information about shared servers, refer to the Oracle9i Net Services Administrator’s
Guide.

Creating the Database
When the OSDI service has been defined, all required JCL procedures and
parameter files have been prepared, and any database files that you want
pre-allocated have been defined, then you are ready to create the Oracle database.

First, start the OSDI service with an OSDI START command. This is described in
Chapter 5, "Operating a Database Service", and in Appendix A, "OSDI Subsystem
Command Reference". Check the OS/390 system log to make sure that the service
starts successfully, as indicated by message MIR0002I. If problems occur, the service
address space(s) will terminate. In this case, correct the problems and issue another
OSDI START command.

After the database service is started, you can use SQL*Plus or a similar tool to
perform Oracle startup and database creation. OS/390 considerations for running
SQL*Plus are covered in the Oracle9i Enterprise Edition User’s Guide for OS/390.
SQL*Plus can be run as a batch job or as a TSO command.

Before issuing STARTUP or CREATE DATABASE, the tool must connect to the
running database service. The form of CONNECT command that is used when
starting the database is special and does not specify an Oracle userid:

CONNECT / AS SYSDBA

This command connects the tool as Oracle userid SYS. If you configured SAF-based
OSDI bind authorization as discussed in Chapter 8, "Security Considerations", the
OS/390 userid associated with the TSO session or batch job must be authorized for
3-22 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Creating the Database
the UBIND resource associated with the database service. If you configured
SAF-based protection of the SYSDBA and SYSOPER privileges as discussed in
Chapter 8, "Security Considerations", the userid must also be authorized for the
DBA or OPER resource associated with the database service.

When SQL*Plus processes the CONNECT, it must determine the target database
service. In OS/390, you can specify the target service in several ways, all based on
the SID that is specified in DEFINE SERVICE. These methods of specification are
described in detail in the Oracle9i Enterprise Edition User’s Guide for OS/390. In our
examples, we have used the dummy ORA@sid DD statement to specify the target
service.

If CONNECT fails, the subsequent STARTUP and CREATE statements will fail as
well. This does not affect the running service. You can simply correct the
CONNECT problem and try again.

After CONNECT, you must issue STARTUP with the NOMOUNT option to cause
the Oracle instance to initialize without attempting to open any database files.
STARTUP also specifies your init.ora file via the PFILE= keyword. The Oracle tools
on OS/390 use different file notation for data sets than the server uses. In our
example, the init.ora file has been specified as a DD name. The file is opened and
read by the tool, not the target server, the DD statement is therefore included in the
tool JCL.

If STARTUP fails (because of an error in your init.ora file, for example), the
subsequent CREATE will fail as well. In addition to any messages displayed by the
tool, messages might be in the instance alert log (usually, though not necessarily, a
SYSOUT file). In general, you can correct errors and retry the whole sequence
without stopping and restarting the service.

After STARTUP is successful, you can issue CREATE DATABASE. This is a SQL
statement and is therefore documented in Oracle9i SQL Reference. (CONNECT and
STARTUP are commands, not SQL statements, and are described in the SQL*Plus
tool documentation.) There are few OS/390-specific considerations for CREATE
DATABASE. The syntax conventions for file names that are specified to the server
are covered in Chapter 4, "Defining OS/390 Data Sets for the Oracle Database".

If you pre-allocated any of the database files, be sure to specify REUSE in the
appropriate clauses. For files that you want the server to create, omit REUSE and,
except for the control files, specify SIZE. Oracle automatically calculates SIZE for
the control files based on other parameters in CREATE DATABASE. With Oracle9i,
you can take advantage of the Oracle Managed Files feature and allow the server to
generate names for data sets created during CREATE DATABASE. Pay careful
attention to the CREATE DATABASE parameters whose names begin with "MAX",
Configuring a Database Service and Creating a New Database 3-23

Creating the Database
because these parameters specify limits that cannot be changed later without
recreating the control file.

As CREATE DATABASE is processing in the server, it reads the Oracle bootstrap
SQL file, usually referred to as sql.bsq. On OS/390, this file must be specified via a
SQLBSQ DD statement in the service JCL procedure as described in "Database
Region JCL" on page 3-6. This file is read only during processing of a CREATE
DATABASE, and the DD statement can therefore be removed from the procedure if
desired. It does no harm to leave it in, however.

After CREATE DATABASE, you must run Oracle-supplied SQL scripts to build the
Oracle dictionary, stored PL/SQL procedures, and related structures. Although this
can be done immediately after CREATE DATABASE (in the same tool session), we
chose to run it separately in our examples. CREATE DATABASE is therefore the
last statement in this part of the example.

Our example of OS/390 database creation is presented as a batch job that uses
SQL*Plus. We have pre-allocated four log files and a single file for the SYSTEM
tablespace, but we are going to let the server create the control files (whose names
are specified in the init.ora parameter file, which is supplied via the INITORA DD
in this job). The SID of the target instance is ORA1. The /NOLOG in the SQL*Plus
PARM prevents SQL*Plus prompting for an Oracle userid and password.

//ORACRDB JOB 1,’Create Database’
//PLUS EXEC PGM=SQLPLUS,PARM=’/NOLOG’,REGION=4M
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//ORA@ORA1 DD DUMMY
//INITORA DD DISP=SHR,DSN=ORAN.ORAV.PARMLIB(INITORA1)
//SYSIN DD *
CONNECT / AS SYSDBA
STARTUP NOMOUNT PFILE=/DD/INITORA
CREATE DATABASE ORADB1 ARCHIVELOG
 MAXLOGFILES 16 MAXLOGMEMBERS 2 MAXDATAFILES 1024
 LOGFILE ’ORAPROD.ORADB1.LOG1’ REUSE,
 ’ORAPROD.ORADB1.LOG2’ REUSE,
 ’ORAPROD.ORADB1.LOG3’ REUSE,
 ’ORAPROD.ORADB1.LOG4’ REUSE
 DATAFILE ’ORAPROD.ORADB1.SYSTEM.DBF1’ REUSE;
EXIT
/*
3-24 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Creating the Database
The job may run for a while depending on the number and sizes of the files that are
specified. Oracle formats all of the primary space for all control, log, and data files.

Populating the SYSTEM Tablespace

After the CREATE DATABASE completes successfully, your database is mounted
and open. Before you can create application tables, users, and so forth, you must
create the Oracle dictionary tables, stored procedures, and other internal structures.
SQL scripts for this purpose are placed in a PDS during Oracle installation. As with
database creation, you can use SQL*Plus to process these scripts against your new
database.

For a new database, members CATALOG and CATPROC from the SQL PDS must
be run, in that order. Both can be done in a single tool execution as in our example.
Because these scripts contain embedded references to other scripts that are members
of the same PDS, you must use FNA to control file name processing in the tool.
(FNA is explained in the Oracle9i Enterprise Edition User’s Guide for OS/390.) As with
our previous example, the target database service is identified by an ORA@sid DD
statement. We are using the same CONNECT statement as the create job.

//ORACATLG JOB 1,’Build Catalog’
//PLUS EXEC PGM=SQLPLUS,PARM=’/NOLOG’,REGION=0M
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//ORA$FNA DD *
 FSA(FTYPE(SQL) FNAME(’/DD/LIB(+)’))
 FSA(FTYPE(PLB) FNAME(’/DD/LIB(+)’))
/*
//LIB DD DISP=SHR,DSN=ORAN.ORAV.SQL
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//ORA@ORA1 DD DUMMY
//SYSIN DD *
CONNECT / AS SYSDBA
@CATALOG
@CATPROC
EXIT
/*

The "@" symbols that are used in SYSIN in the example above are SQL*Plus
shorthand notation for reading an alternate input file of commands or SQL
statements. Following each "@" is a member name in the SQL PDS. The FNA
controls (ORA$FNA DD statement) are used to notify the tool that the names
Configuring a Database Service and Creating a New Database 3-25

Creating the Database
following the "@" are members in the PDS that is identified by the LIB DD
statement.

These two scripts are large and will therefore run for quite a while. Because the
scripts create and load data into tables, log file data is generated as they execute. If
you specified ARCHIVELOG in your CREATE DATABASE statement (as in our
example), logs may fill and require archiving while CATALOG and CATPROC run.
You may want to avoid this complication because you are not likely to attempt a
recovery of a brand new database: in the event of problems, both CATALOG and
CATPROC can simply be rerun. To avoid log archiving during catalog creation,
specify NOARCHIVELOG in your CREATE DATABASE, and then use ALTER
DATABASE to switch to ARCHIVELOG mode later.

Be sure to check the output of the catalog build job carefully. Because the scripts are
designed to be rerunnable, they contain DROP statements that produce errors the
first time they are run. These errors are normal. Other errors must be investigated
and resolved to complete initialization of the database.

Depending on other Oracle products or features that you may use, you may need to
run additional scripts against your new database to enable those products or
features. Refer to the product-specific documentation for more details.

After CATALOG and CATPROC have run, your database is ready for use. If you
created your database with NOARCHIVELOG to avoid archiving logs during
catalog build, then return it to ARCHIVELOG mode by shutting down Oracle,
starting it back up with the MOUNT and EXCLUSIVE options, and issuing ALTER
DATABASE ARCHIVELOG then ALTER DATABASE OPEN. This also is a good
time to change the passwords of the Oracle userids SYS and SYSTEM, which are set
up with default passwords during CREATE DATABASE. (This should be done
regardless of whether you are changing ARCHIVELOG mode.) Both of these
actions are shown in the following example.

//ORAALOG JOB 1,’Database Control’
//PLUS EXEC PGM=SQLPLUS,PARM=’/NOLOG’,REGION=4M
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG

Note: The database session which executes the catalog build
requires up to 64M of session-private memory. If you have limited
session memory to less than 64M with the database region
MAX_SESSION_MEM parameter, catalog build may fail with an
ORA-04030 error, an LE/370 U4088 ABEND, or other errors.
3-26 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring a Database Service Using ISPF Panels
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//ORA@ORA1 DD DUMMY
//INITORA DD DISP=SHR,DSN=ORAN.ORAV.PARMLIB(INITORA1)
//SYSIN DD *
CONNECT / AS SYSDBA
SHUTDOWN
STARTUP MOUNT EXCLUSIVE PFILE=/DD/INITORA
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;
ALTER USER SYS IDENTIFIED BY SECRET1;
ALTER USER SYSTEM IDENTIFIED BY SECRET2;
EXIT
/*

You can now proceed with creating ids for Oracle users, adding tablespaces and
tables for applications, and so forth.

Configuring a Database Service Using ISPF Panels

Database Customization
The following steps guide you through the process of setting up your user
environment to run the Oracle Installation Dialog Facility to configure an Oracle
database. The Oracle software for this release must have already been installed.

Step 1: Selecting Oracle ISPF Profile Files

The Oracle installation and customization process uses two ISPF profile files: the
tso_userid.ORISPF.O022PROF sequential data set and the O022PROF member of
the tso_userid.ISPF.ISPPROF PDS. Both of these files are created automatically if
they do not exist when you invoke the Oracle installation and customization
process. However, if you are going to configure an Oracle database after someone
else performed the product installation, you must use the profile files of the person
who performed the product installation.

If you performed the Oracle product installation under the same TSO userid that
you are using for the other customization, then proceed to Step 2.

If you did not perform the Oracle product installation under the same TSO userid
that you are using for the other customization, then you must:
Configuring a Database Service and Creating a New Database 3-27

Configuring a Database Service Using ISPF Panels
■ Copy the O022PROF member from tso_userid.ISPF.ISPPROF of the TSO userid
under which the Oracle product installation was performed to the
tso_userid.ISPF.ISPPROF of the TSO userid under which you are performing
the other customization.

■ Copy or rename sequential data set tso_userid.ORISPF.O022PROF of the TSO
userid under which the Oracle product installation was performed to a
sequential data set named tso_userid.ORISPF.O022PROF of the TSO userid
under which you are performing the other customization.

Step 2: Execute ISPF and Invoke the Oracle Installation and Customization Process

Invoke ORIPO01 to start the customization process.

To invoke the ORIPO01 CLIST, logon to TSO, enter ISPF, and select option 6 (TSO
Command Processor) from the main ISPF menu. From option 6, use the EXEC
command to invoke the ORIPO01 CLIST from the ISPCLIB data set created in
Step 2:

 ------------------------ ISPF COMMAND SHELL ------------------------
 Enter TSO or Workstation commands below:
 ===➔ EXEC ‘oran.orav.ISPCLIB(ORIPO01)’

If you are using the correct ISPF profile files, panel OR@PRIM should be displayed
immediately. Proceed to "Step 3: Select Product Set to install (Panel OR@PRIM)".

 If you see prompts on the screen prior to the display of OR@PRIM (prompts that
are asking for data set name qualifiers), then you did not get the correct ISPF profile
files. Return to "Step 1: Selecting Oracle ISPF Profile Files".

Step 3: Select Product Set to install (Panel OR@PRIM)

Place an S in front of "Oracle9i Server", leaving the high-level and second-level
qualifiers that were used during the product installation process as they are.

When you select "Oracle9i Server" on panel OR@PRIM and press [Enter], panel
OR@INST is displayed. You are led through a series of panels that let you select
and customize the Oracle server and tools for your installation.

Step 4: Select Installation/Customization Option to be Performed (Panel OR@INST)

Different installation and customization options may be performed from this panel.
These options go in pairs: a definition option which takes you through a series of
ISPF panels and a generate option which produces a job stream based on the
information provided on the ISPF panels to further populate the Oracle INSTLIB
3-28 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring a Database Service Using ISPF Panels
library. (The generate option is typically followed by other tasks to complete the
installation or customization that you are performing.)

From the Oracle Primary Option Menu, select option 3 "Define New Oracle
Database Parameters".

Step 5: Begin Database Parameter Definition (Panel ORNEWDB)

After selecting the "Define New Oracle Database Parameters" definition option from
the Primary Option Menu, you will see panel ORNEWDB. This panel shows a list
of the various database customization parameters that must be provided in order to
complete the customization process.

To begin the new database definition process, press [Enter] to begin with option 1.
The steps that follow describe the procedure and the customization panels that you
encounter.

The following rules apply to the customization panels:

■ Most customization parameters have default values you can change by typing
in a new value in place of the default value. Other required parameters have no
default values, and you must supply values for them before proceeding to the
next panel.

■ You can move forward from one panel to the next by entering C on the
command line.

■ Most panels allow you to return to the previous panel by pressing the [PF3] key.

Step 6: Specify Oracle Database Name and VSAM Qualifiers (Panel ORDBIP10)

1. Oracle Database Name

Enter the name of the Oracle database that you want to create. The value that is
specified here will be used as the database name in the generated initora file and the
OSDI database service name. This defaults to ORDB to provide an example. It may
be changed to any valid database name of your choosing.

2. Oracle Database System Identifier (SID)

Enter the service identifier for the database that you want to create. The value that
is specified here will be used as the OSDI database service identifier. The SID is
limited to 4 characters because it is used to generate PDS member names in the
INSTLIB and PARMLIB libraries for jobs and parameter files that are used later in
the database customization process.

3. Oracle VSAM Qualifiers
Configuring a Database Service and Creating a New Database 3-29

Configuring a Database Service Using ISPF Panels
Enter the high-level qualifier (up to 8 characters) and second-level qualifier (up to
17 characters, including periods) that you want to use for the database data, control,
and redo log files.

When the information in this panel is correct, enter C to continue to the next panel.

Step 7: Specify Database Region Parameters (Panel ORDBIP15)

1. Maximum Number of Address Spaces

Enter the maximum number of address spaces to be allowed for the database
service. Refer to "MAXAS" on page 3-4 for information about the MAXAS database
service parameter.

2. Initial Number of Address Spaces

Enter the number of address spaces that you want to start each time the OSDI
database service is started. Refer to "INIT_ADR_SPACES | INTADSPC" on
page 3-10 for information about the INIT_ADR_SPACES database region parameter.

3. Maximum Number of Sessions per Address Space

Enter the maximum number of sessions that are allowed to run in this database
address space. Refer to "MAX_SESSIONS | MAXSESS" on page 3-13 for
information about the MAX_SESSIONS database region parameter.

4. Initial Size of the C Stack

Enter the size of the C stack to be allocated initially for each session. Refer to
"INIT_STACK_SIZE | INTSTKSZ" on page 3-11 for information about the
INIT_STACK_SIZE database region parameter.

When the information in this panel is correct, enter C to continue to the next panel.

Step 8: Specify the Database, Control, and Redo Log Files
(Panel ORDBIP20, Panel ORDBIP25, Panel ORDBIP30)

These panels allow you to specify the size and volume of the database, control, and
redo log files. If you want to change the default information, then enter the correct
information for your installation in each panel. You can also select the space
allocation unit in these panels. Records, tracks, or cylinders can be specified.

Note: Although the Oracle instance alert log file is not a VSAM
file, it will be allocated using the same qualifiers as the VSAM files
that are specified in this step.
3-30 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring a Database Service Using ISPF Panels
The database, control, and redo log files are created with the high-level and
second-level qualifiers specified in panel ORDBIP10.

The file list on each of these panels is an ISPF table that you can scroll forward and
backward using the [PF8] and [PF7] keys. When you press the [Enter] key, the
screen scrolls forward, and the first entry is no longer displayed. To display the first
entry again, press [PF7] to scroll backward.

Recommendations

There must be at least two redo log files. Oracle Corporation also recommends
using a minimum of two files for database information and two files for control
information.

You need a minimum of two database files to segregate user tables and data
information from the Oracle data dictionary.

Without this segregation, you might not be able to recover user data, because the
SYSTEM tablespace can never be taken offline. The installation process defaults to
include a user tablespace. If you do not want to use it, then delete the user
tablespace row on the panel.

You need a minimum of two control files in case one becomes damaged. Also,
Recovery Manager (RMAN) requires a snapshot control file that is separate from
the control files that are used by the Oracle9i server. Each control file needs to be on
a different storage device. Oracle cannot initialize without a control file.

Refer to "Providing a Snapshot Control File" on page 6-8 for more information about
using RMAN.

Step 9: Specify File Processing Parameters (Panel ORDBIP35)

This panel allows you to specify the file management parameters for the default file
group (DFLT). Refer to "Server File Management Parameters" on page 4-8 for
information about these parameters.

 When the information in this panel is correct, enter C to continue to the next panel.

Step 10: INSTLIB/ISPSLIB File Tailoring Information (panel ORDBIP40)

1. Oracle ISPSLIB (skeleton) Library member

This item is showing the file tailoring skeleton member that will be used during the
generate step. You cannot change this value.

2. Oracle Installation Library
Configuring a Database Service and Creating a New Database 3-31

Configuring a Database Service Using ISPF Panels
Provide information about the INSTLIB library in which the installation jobs are
built. This is normally the same data set that is created when the first file is
downloaded from the Oracle distribution tapes (in "Installation Set Up and
Initialization" Step 1 in the Oracle9i Enterprise Edition Installation Guide for OS/390).
However, you may change the Oracle INSTLIB library name if required. Enter
NEW or SHR for DATA SET DISPOSITION. The DATA SET DISPOSITION defaults
to SHR. If the data set is new, then specify a VOLUME SERIAL and DEVICE TYPE.

When the information in this panel is correct, enter C to continue to the next panel.

Step 11: Define JOB card for database jobs (panel ORDBIP50)

This panel allows you to define the JOB card structure to be used with each of the
generated database jobs. The additional lines can be used to add JES subsystem
control cards or similar requirements. The JOBNAME and the NOTIFY parameter
default to your TSO logon userid. Change the default information as needed.

When the information in this panel is correct, enter C to continue to the next panel.

Step 12: New Database Definition Complete (panel ORDBIP90)

The appearance of this panel indicates that you have completed the New Database
Definition process. You may use [PF3] to back up through the previous panels to
make any corrections that you need. Or if you are satisfied with all the parameter
values in the customization panels, you may use [PF4] to return to the Primary
Option Menu panel.

Step 13: Generate Database Job

Select option 4 (Generate Database job) from the Oracle Primary Option Menu
panel. The installation CLISTs generate a jobstream in a new member, ORDJA01, in
the Oracle INSTLIB library.

The output displays as the generate step is executing. When you see the
GENERATION PROCESS COMPLETED message, press [Enter] to return to the
Oracle Primary Option Menu. Then press [PF3] to exit the install dialog.

Step 14: Run the Database Job (ORDJA01)

You do not need to edit the generated job, ORDJA01, although you might want to
change the jobname. Submit this job after you have made any changes appropriate
for your site.
3-32 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring a Database Service Using ISPF Panels
Job ORDJA01 creates multiple members in the INSTLIB library, including a series of
installation jobs with member names sidJB00 through sidJH00 where sid is the
database service identifier that was specified on panel ORDBIP10.

Examine the output from the ORDJA01 job to confirm its successful execution. The
return code from ORDJA01 should be 0, indicating successful execution.

Step 15: Run the Generated Database Jobs

Submit each job in the order shown here in the following sections (sidJB00, followed
by sidJC00, and so on).

Even if the basic JOB card and related data are specified properly in the associated
customization panel, you might need to change information such as the jobname in
each job before submitting it for execution.

The following list of jobs describes the purpose of each job and any special
considerations for its execution.

sidJB00

This job uses the IBM IDCAMS utility to define the database, control, and redo log
files. The DASD volumes and allocation quantities for these data sets were
supplied during the ISPF customization process.

This job also creates the Oracle instance Alert log file.

sidJC00

This job copies customized parameter members to the Oracle PARMLIB library.
These members include:

where sid is the database service identifier specified during the database
customization process.

These parameter files should be reviewed and modified as necessary for your
installation, because some of the default values that are used may not be
appropriate for your site.

sidINIT database init.ora parameter file

sidPARM OSDI database region parameter file

sidSVC OSDI database service parameter file

sidFPS database file processing parameter file
Configuring a Database Service and Creating a New Database 3-33

Configuring a Database Service Using ISPF Panels
The sidSVC PARMLIB member contains the OSDI DEFINE SERVICE and START
commands for the database service. This member is not intended to be used as is.
You should copy the contents of this member into your OSDI subsystem parameter
file so that the database service will be defined and started every time the OSDI
subsystem is initialized.

The sidINIT PARMLIB library member has the COMPATIBLE parameter set to the
current release number (9.2.0). If you need to run with COMPATIBLE set to an
earlier release, then you might not be able to use all Oracle9i features. Refer to
"Oracle Initialization Parameter Considerations" on page 3-15 for more information
about init.ora parameters and Oracle9i for OS/390.

The sidFPS PARMLIB library member contains only a Default file group entry. If
the Default file group parameters are not suitable for all the file groups, you may
add to this member the other file groups with the parameters that you need. Refer
to "Server File Management Parameters" on page 4-8 for more information.

This job also copies a customized database procedure to the system procedure
library that was specified during the product installation process. The procedure is
named ORAsid where sid is the database service ID that was specified during the
database customization process.

sidJD00

This job invokes the SQL*Plus utility to create the new database and data dictionary
using the VSAM files created by job sidB00. No other jobs should be run against
this database while this job is running.

Prior to running this job, you must have initialized the OSDI subsystem and
defined and started the database service. Refer to Chapter 2, "Configuring and
Initializing the Subsystem" and to the earlier part of this chapter for more
information.

If you have not already initialized your OSDI subsystem, you may do so now. If
you have put the service definitions and start commands in your OSDI subsystem
parameter file, then the database and net services that you have customized to this
point for the current OSDI subsystem will be defined and started as part of the
subsystem initialization.

If you have initialized your OSDI subsystem, then you will need to manually enter
OSDI commands to define and start your database service in order to be able to use
it.
3-34 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring a Database Service Using ISPF Panels
sidJD01

This job will set up the database for running Java.

This job requires that the Oracle9i database started task has authority to access
OMVS services. For more information about setting up a default OMVS segment,
refer to IBM document SC28-1890-8, USS Planning Guide.

sidJE00 (for SQL*Plus)

This job loads the SQL*Plus help data into the database. The database must be
running when this job is run. You can omit this job if you do not want online help
or if you have limited database space.

You might receive messages indicating that a synonym, table, or view does not
exist. These messages are normal and do not indicate an error condition. Examine
the output for other error messages, if any.

sidJF00

This job creates the user and demonstration tables used in the Oracle
documentation: the SCOTT userid and the EMP, DEPT, SALGRADE, and BONUS
tables. The database must be running when this job is run. You can omit this job if
you do not want the demonstration tables installed or if you have limited database
space.

You might receive messages indicating that a synonym, table, or view does not
exist. These messages are normal and do not indicate an error condition. Examine
the output for other error messages, if any.

sidJH00 (for Oracle9i Text)

This job sets up the database for the use of the Oracle9i Text feature. It creates the
user CTXSYS and the database objects that are required by Oracle9i Text. User
CTXSYS is created with the password CTXSYS, which you can change after this job
completes by using the SQL command ALTER USER. The database must be
running when this job is run.
Configuring a Database Service and Creating a New Database 3-35

Configuring a Database Service Using ISPF Panels
3-36 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Defining OS/390 Data Sets for the Oracle D
4

Defining OS/390 Data Sets for the Oracle

Database

This chapter describes OS/390-specific considerations for the files used by an
Oracle9i database. In general, what Oracle product literature refers to as "files" will
be data sets in your OS/390 system. Some Oracle product features access files that
are part of the hierarchical file system of OS/390 Unix System Services (USS) rather
than OS/390 data sets. However, the files that make up an Oracle database are all
OS/390 data sets.

Refer to Oracle9i Database Concepts and the Oracle9i Database Administrator’s Guide to
learn about the uses and relationships among Oracle databases, tablespaces, and
operating system files. Refer to the Oracle9i Enterprise Edition User’s Guide for
OS/390 for a discussion of the interaction between Oracle database tools and
OS/390 data sets.

The following topics are included:

■ Oracle Database Files on page 4-2

■ Tablespaces and OS/390 Space Management on page 4-4

■ Server File Name Syntax on page 4-6

■ Server File Management Parameters on page 4-8

■ Pre-allocating Database Files on page 4-14

■ Oracle Managed Files on OS/390 on page 4-15
atabase 4-1

Oracle Database Files
Oracle Database Files
A number of files are used by an Oracle database instance. Some of these files are
not an intrinsic part of the database. These include input parameter files, trace or
diagnostic log files, and other similar files. Most of these will be sequential data
sets, PDS members, or JES spool (SYSOUT) files on your OS/390 system.

Of greater interest here are the files that comprise the database and that contain
application data and the internal Oracle database structures required to manage this
data. Every Oracle database consists of at least four such files: one control file, one
database file for the SYSTEM tablespace, and two redo log files. This is an
absolute minimum. Normally, a database contains many more files than four.
When you first create a database, you will specify an initial group of files. Later, as
applications are added and as operating needs change, you may add or remove files
according to need.

All of the files comprising an Oracle database are VSAM linear data set (LDS)
clusters on OS/390. (For compatibility with past releases, VSAM Entry-Sequenced
Data Sets with a control interval size of 4K are also accepted.) The Oracle server can
create these data sets for you by internally invoking the OS/390 IDCAMS utility
and passing it DEFINE CLUSTER commands. This is done automatically during
processing of SQL statements that create or add to the database structure, including
CREATE DATABASE, CREATE TABLESPACE, and certain ALTER…ADD
statements.

In most cases, it also is possible to pre-allocate Oracle database files by invoking
IDCAMS yourself and issuing your own DEFINE CLUSTER commands prior to
issuing SQL statements that add the files to the database. The main advantage to
pre-allocation is that it gives you more control over physical data set placement.

If you omit file specifications on a CREATE DATABASE request, Oracle normally
creates a minimal set of files using default data set names discussed in the following
sections. This practice is not recommended for production databases. An optional
facility called Oracle Managed Files (OMF) provides a different default naming
scheme that is aimed at production database use. OMF is discussed in "Oracle
Managed Files on OS/390" on page 4-15.

Control File
The control file is a relatively small file used to record Oracle database instance
control information. Control file availability is critical for overall database
availability, and the Oracle database will therefore maintain multiple mirror-image
copies of the control file if told to do so. Oracle Corporation recommends using at
4-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Database Files
least two control file copies for any production database. The control file copies
should be on separate physical storage devices and, if possible, on separate I/O
paths in order to minimize the risk of losing both (or all) of them to media or path
failure. You specify the data set name(s) of the control files in the init.ora parameter
file that you supply to the Oracle database STARTUP command.

If you do not specify a name for the control file and you are not using OMF, the
following default file name will be used:

"&ORAPREFD..&ORASRVN..DFLCNTL.DBF"

The system symbols &ORAPREFD and &ORASRVN are discussed in Appendix C,
"Oracle9i for OS/390 System Symbols".

Database Files
The database files contain all the database data, both application tables, indexes and
the like, and the Oracle database server’s internal dictionary objects. Each
tablespace in your database contains at least one database file. The SYSTEM
tablespace, where the Oracle database keeps its internal dictionary structures and
stored PL/SQL procedures, is created automatically when you issue CREATE
DATABASE.

The names of one or more files to be used for the SYSTEM tablespace are supplied
in the CREATE DATABASE statement or generated by the Oracle server using
Oracle Managed Files. Normally, you will not store application data in the SYSTEM
tablespace: after your database is created, you will create one or more additional
tablespaces for application data. The CREATE TABLESPACE statement supplies
the names of files to be used when adding a new tablespace, or the names can be
generated by the Oracle server using Oracle Managed Files.

If you do not specify names for the database files and you are not using OMF, the
following default file names will be used:

"&ORAPREFD..&ORASRVN..DFLDBS1.DBF" (default database file)

"&ORAPREFD..&ORASRVN..DFLTEMP.DBF" (default temporary tablespace file)

The system symbols &ORAPREFD and &ORASRVN are discussed in Appendix C,
"Oracle9i for OS/390 System Symbols".

Redo Log Files
The redo log files record changes to database data (both application data and
internal control data) and are critical for restart and recovery. An Oracle database
Defining OS/390 Data Sets for the Oracle Database 4-3

Tablespaces and OS/390 Space Management
instance must have at least two redo log files. Redo data is written to the log more
or less sequentially from the beginning of the file to the end. Like control files, the
Oracle server can write multiple mirror images of a log to reduce the risk of data
loss due to media failure.

The term "log file group" refers to one or more mirror-image copies of a given log.
When a log file (or group) is filled, the Oracle server automatically switches log
writing to the next available log file or group. The frequency of this switching is a
function of the size of the redo log files and the amount of database update activity.

The data set names of the log files can be supplied in the CREATE DATABASE
statement, or generated by the Oracle server using Oracle Managed Files. In
addition, log files can be added to a database later, using ALTER
DATABASE…ADD LOGFILE.

If you do not specify names for the redo log files and you are not using OMF, the
following default file names will be used:

"&ORAPREFD..&ORASRVN..DFLLOG1.DBF" (default redo log file # 1)

"&ORAPREFD..&ORASRVN..DFLLOG2.DBF" (default redo log file # 2)

The system symbols &ORAPREFD and &ORASRVN are discussed in Appendix C,
"Oracle9i for OS/390 System Symbols".

Archive Log
When you operate the database in ARCHIVELOG mode (normally the case for all
production databases), the Oracle server copies filled logs to another
(newly-created) file in order to make the filled log available for reuse. The new file
that is created by such an operation is called an archive log. The data set names of
archive logs are generated using a pattern that you specify in your init.ora
parameters. This name includes components that are distinct for each log, ensuring
a unique data set name for each archive. This is one case where file pre-allocation is
not possible: archive logs are always created by the Oracle server via internal
IDCAMS call. Archive logs usually are required (read) during recovery, after
restoring database files from backups. For more information, refer to Chapter 6,
"Database Backup and Recovery".

Tablespaces and OS/390 Space Management
Tablespaces can be enlarged in two ways. If the file(s) comprising the tablespace
were specified with the AUTOEXTEND clause of CREATE or ALTER
4-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Tablespaces and OS/390 Space Management
TABLESPACE, the Oracle server will attempt to extend one or more files
automatically when the tablespace becomes full. If AUTOEXTEND was not
specified, or automatic file extension fails, or if you want to enlarge a tablespace
manually (in advance of a large addition of data), you can use the SQL statement
ALTER TABLESPACE...ADD DATAFILE to add one or more new files to the
tablespace.

When you create a tablespace, its initial size is the sum of the sizes of all datafiles
you specify on the CREATE TABLESPACE statement. These are the actual sizes of
the data sets, if you are using preallocated data sets or reusing existing files, or the
amounts specified with the SIZE keyword if the server is creating the files. In the
latter case, the Oracle server uses only the SIZE amount, and some unused space
(overallocation) may be present due to VSAM allocation rounding (discussed
below). The unused space is never more than one cylinder per file, but you should
be aware of this rounding when planning your Oracle server disk space needs.

A tablespace can be enlarged in two ways: by extending existing files of the
tablespace or by adding new files. Existing files can be extended both automatically,
on demand as data is added, and explicitly with a DDL SQL statement. Automatic
file extension is enabled when the AUTOEXTEND clause is included in the file
specification of CREATE or ALTER TABLESPACE. Automatic file extension is
attempted when a database insert or update requires more free space than is
currently available in the tablespace. This can be triggered by any user session; no
special privileges are required. Explicit extension is requested with an ALTER
DATABASE DATAFILE...RESIZE statement using SQL*Plus or a similar interface,
and must be done from a session with ALTER DATABASE authority (normally a
database administrator).

Adding new files to a tablespace is only done manually, by issuing an ALTER
TABLESPACE ADD DATAFILE statement using SQL*Plus or a similar interface.

There are several OS/390-specific considerations with file extension and
AUTOEXTEND. When a tablespace consists of multiple datafiles, all specified with
AUTOEXTEND, you cannot control which data set the Oracle server extends in a
given situation. Second, the amount by which to extend a file is governed by the
NEXT amount from the AUTOEXTEND clause, never by a secondary space
quantity in the data set’s ICF catalog entry. (Secondary space is not included on
server-generated DEFINE CLUSTER commands. Secondary space that you specify
on the DEFINE CLUSTER for a preallocated database file is ignored except for the
influence it exerts on CA size and rounding.)

VSAM space allocation always rounds an allocation amount to a Control Area (CA)
multiple, and that can distort the way the AUTOEXTEND NEXT amount is
handled. CA size is not specified explicitly but is derived from other DEFINE
Defining OS/390 Data Sets for the Oracle Database 4-5

Server File Name Syntax
CLUSTER parameters: it is the lesser of the primary space quantity, the secondary
space quantity (if any), and the device cylinder size, but never less than one whole
track. When the Oracle server issues DEFINE CLUSTER it does not include a
secondary space quantity, so CA size is one cylinder unless your SIZE is very small
(less than a cylinder). You can control CA size on preallocated database files by
specifying a secondary space amount that is less than a cylinder; although the
secondary amount is not used by the Oracle server, it does determine CA size as
described here.

The Oracle server is not aware of VSAM space rounding, so if your NEXT amount is
less than one CA, the space added by CA rounding is not used. It does get used,
however, when the file is extended again. In some cases, file extension is satisfied
entirely with existing allocated but unused space, without invoking VSAM
secondary allocation. Be aware of VSAM space rounding behavior when choosing a
NEXT amount for a datafile.

One last consideration with file extension concerns Oracle servers that are
configured to run in multiple address spaces (where the DEFINE SERVICE
command specifies a MAXAS number greater than one). The OS/390-specific logic
for file extension requires establishing two concurrent "opens" to a file that is
accessed from multiple server address spaces. This in turn requires that the VSAM
cluster be defined with cross-region shareoption 3. The cross-system shareoption is
irrelevant.

If you preallocate a data set for use as a tablespace file and you want to specify
AUTOEXTEND for it, you must specify SHR(3,3) in your DEFINE CLUSTER
command. If you let the server create the file for you, you must use the
SHAREOPTION file management parameter to specify that cross-region
shareoption 3 be included on the server’s DEFINE CLUSTER command. (Server file
management parameters are discussed in "Server File Management Parameters" on
page 4-8.) This is required only for Oracle servers whose MAXAS is greater than
one, and is so even if only one address space is actually started. If your Oracle
server is defined with MAXAS(1) (which is the default), AUTOEXTEND processing
does not require SHR(3,3).

Server File Name Syntax
When specifying files to an Oracle server on OS/390 (in init.ora parameters, SQL
statements, and so forth), you use an extended version of the file name syntax used
by IBM C/C++ and LE/370. IBM syntax encompasses OS/390 data sets that are
specified by data set name or DD name, as well as Hierarchical File System (HFS)
4-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Server File Name Syntax
files that are specified by full or relative path name. OSDI extends LE/370 file
syntax slightly with a specific notation for spool (SYSOUT) output files.

Data Sets

The full OSDI syntax for OS/390 data sets is:

//’dsname’

where dsname is a 1-character to 44-character data set name that conforms to
OS/390 rules, except for letter case (lowercase letters are converted to uppercase by
OSDI). Simpler forms are also accepted, but they are converted to the full form
during processing. Inside the Oracle server, all of the following are equivalent to
the full OSDI syntax for OS/390 data sets:

//dsname
dsname
’dsname’

If you use the file name forms that include apostrophes in a SQL statement such as
CREATE DATABASE or ALTER TABLESPACE, then the entire file name string is
enclosed in apostrophes, and the embedded apostrophes must be doubled.

Non-VSAM input files (usually parameter files) can include a PDS member name in
the file name string as in:

//’dsname(member)’

The same simpler name formats are also supported. Note that VSAM files and
non-VSAM files that are used for output (for example, trace files) cannot include a
member name.

Data sets can also be specified by DD name using the full syntax:

//DD:name

where name is the 1-character to 8-character DD statement name. A simpler form
without the leading slashes is also permitted.

In general, Oracle Corporation recommends that files be specified to the server
using data set names rather than DD names. The use of data set names allows files
to be added to the database without requiring changes to the service JCL procedure,
which requires stopping and restarting the service. Even when a file is specified
using DD:, the Oracle database might retrieve the data set name from the associated
DD statement and use that for subsequent accesses to the file. This eliminates any
flexibility that might be gained by specifying files using DD names.
Defining OS/390 Data Sets for the Oracle Database 4-7

Server File Management Parameters
The following sample SQL statement adds a new file to an existing tablespace:

alter tablespace tbolap3 add
datafile ’//’’oracle.tbolap3.dbf6’’’ size 450m;

SYSOUT Support

OSDI extends LE/370 file syntax to provide direct use of SYSOUT files. SYSOUT
can be used anywhere that the server requires a sequential (non-VSAM)
output-only data set. This is a convenient vehicle for items such as trace files. The
syntax for a SYSOUT file is:

//SYSOUT:c,form,dest

where c is a SYSOUT class, form is a forms identifier, and dest specifies a
destination. All three positional parameters are optional and default to whatever
defaults are established for the server address space. Note that the default class is
equivalent to specifying SYSOUT=*. The leading slashes can be omitted, and the
word SYSOUT can be abbreviated to just the letter S.

The following are all examples of valid SYSOUT file specifications:

S:
//SYSOUT:*
//S:X,,NPFPRINT
SYSOUT:*,STD

Server File Management Parameters
To create a new database or add files to an existing database, you issue a SQL
CREATE or ALTER statement to the Oracle server. This statement allows you to
specify whether a file is pre-allocated or, if not, the size with which the new file
should be created by the server. There is no provision in Oracle SQL for supplying
additional OS/390-specific parameters for creating the associated data set. Instead,
you can supply file management parameters, using the ORA$FPS DD statement in
the database service JCL procedure, to control most of the parameters in the

Note: The outer apostrophes surrounding the file name are part of
the ALTER TABLESPACE SQL statement syntax. The inner
(doubled) apostrophes are part of the file name. The SQL parser
converts the doubled apostrophes to single apostrophes.
4-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Server File Management Parameters
IDCAMS DEFINE CLUSTER command that the Oracle server issues to create a new
file.

File management parameters are also used for certain non-VSAM files, including
the sequential backup data sets created and read with an RMAN External Data
Mover (EDM). In the EDM case the parameters are read and used by the ORAEDM
program running in a separate address space instead of the Oracle server.

In the Oracle server, the ORA$FPS file management parameters are meaningful
mainly for files for which the Oracle server issues the IDCAMS DEFINE CLUSTER
command. As discussed in the section "Oracle Database Files" on page 4-2, you
may have the option of pre-allocating database files by issuing your own DEFINE
CLUSTER command. The DEFINE CLUSTER command is discussed in
"Pre-allocating Database Files" on page 4-14. This command gives you complete
control over most of the DEFINE parameters, which may be desirable when
creating the permanent parts of a production database.

Oracle server archive log files cannot be pre-allocated, however. Assuming that you
are running your database instance in ARCHIVELOG mode, these files are created
by the Oracle server whenever an online log fills and is archived. They are created
using a generated data set name whose pattern you control with init.ora
parameters. Because these files must be created by the server, the file management
parameters for the DBAL group are critical for proper operation of the database.

Server file management parameters are read during service startup. You can
change the parameters and cause the server to reread them without stopping and
restarting the service, by using a MODIFY command. This is discussed in the
section "Other Database Service Commands" on page 5-5.

File Group Names
File management parameters are organized by file group, with each group having a
distinct 4-character name. The current valid file group names for an Oracle server
are:

■ DBAL - database archive log file

■ DBBA - archive log backup piece (RMAN backup to disk)

■ DBBI - datafile incremental backup piece (RMAN backup to disk)

■ DBBK - datafile backup piece (RMAN backup to disk)

■ DBCP - datafile copy

■ DBCT - database control file
Defining OS/390 Data Sets for the Oracle Database 4-9

Server File Management Parameters
■ DBDB - database data file (one that is part of a tablespace)

■ DBDR - disaster recovery configuration file

■ DBOL - database redo log file

■ DBMI - miscellaneous file

■ DBPM - text (non-VSAM) parameter file, including PFILE

■ DBSP - server parameter file (SPFILE)

■ DBST - database internal trace file

■ DBTR - database trace file

■ NTPM - network parameter file

■ NTTR - network trace file (non-VSAM)

■ Pnnn - RMAN EDM backup file (non-VSAM; "nnn" is POOL number)

In addition to the above, the file group name DFLT can be specified to supply
default parameters. Default parameters are used for any group that you do not
specify explicitly.

File Management Parameters in an External Data Mover
The External Data Mover (EDM), discussed in Chapter 6, "Database Backup and
Recovery", executes in a separate address space from the Oracle server and
supports database file backup and restore operations under control of the RMAN
utility. EDM uses file management parameters to control creation of non-VSAM
sequential backup data sets on disk or tape.

In this case, the ORA$FPS DD statement in the EDM JCL procedure supplies the
parameters. The file groups for EDM backups all have names of the form "Pnnn"
where "nnn" is the storage pool number from an RMAN BACKUP request. Certain
parameters are specific to EDM and are ignored when specified for file groups used
by the Oracle server.

File Management Parameters and Syntax
The ORA$FPS parameter file contains file group definitions which are specified
using keyword(value) syntax. Each definition must start with the keyword
FILE_GROUP(name) and continues until the next FILE_GROUP keyword is
encountered. Comments must start with an asterisk (*) and can begin in any
4-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Server File Management Parameters
column as long as comments (that are on the same line as keywords) are separated
from the last keyword by at least one blank.

Keywords can be coded one per line or strung together on the same line separated
by at least one blank, but a keyword (value) pair cannot be split across two lines.
No defaults are defined for the parameters. If a keyword is not coded, then it will
not be used on the DEFINE CLUSTER or dynamic allocation that is used to create
data sets in the associated group. The only parameter that can be overridden or
supplied from the SQL command line is SPACE, which Oracle server supports via
the SIZE keyword in SQL statements that specify files. The default file group
(DFLT) supplies parameters for any file group that is completely omitted from the
file management parameters.

.
BUFNO(nnn) Specifies the number of I/O buffers to be allocated by

EDM for use during backup and restore operations,
where nnn is a decimal number from 1 to 255. Each
buffer is equal in size to the block size of the associated
backup data set. The entire buffer requirement
allocated is above the 16MB line.

BUFNO(3) is the default.

CREATE_MODELDSN(dsn) Specifies a data set name to use as a MODEL in
IDCAMS DEFINE CLUSTER commands. This value is
mutually exclusive with the SMS class name
parameters. CREATE_MODELDSN can be abbreviated
MODEL.

DATACLAS(classname) Specifies an SMS data class name to be specified on
DEFINE CLUSTER or dynamic allocation requests to
create new data sets. DATACLAS can be abbreviated
DATACL.

DEFAULT_SPACE(primary
secondary)

Specifies default primary and secondary space
quantities for a data set that is being created. The
primary quantity applies only in situations where the
Oracle server has not indicated the desired file size.
The secondary quantity is optional and is ignored at
this time. Both values must be numbers and are
expressed in kilobyte (1024-byte) units.
DEFAULT_SPACE can be abbreviated SPA.
Defining OS/390 Data Sets for the Oracle Database 4-11

Server File Management Parameters
EXPIRATION_DATE(yyyyddd
| yyddd)

Specifies a data set expiration date to be used for
allocation during EDM backup data set creation or
restoration, where yyyyddd is a 4 digit year and 3 digit
day of the year, and yyddd is a 2 digit year and 3 digit
day of the year. EXPIRATION_DATE can be
abbreviated EXPDT.

FILE_GROUP(name) Specifies the file group to which the file management
parameters belong, where name is one of the allowed
4-letter file group names. This ends any in-progress file
group definition and begins a new one. FILE_GROUP
can be abbreviated FILE.

MGMTCLAS(classname) Specifies an SMS management class name to be
specified on DEFINE CLUSTER or dynamic allocation
requests to create new data sets. MGMTCLAS can be
abbreviated MGMTCL.

RECALL(ALL | NONE) Specifies whether migrated data sets may be recalled
during backup data set allocation for an EDM restore
operation. ALL indicates that the recall of migrated
data sets is allowed during backup data set allocation.
NONE indicates the recall of migrated data sets is not
allowed during backup data set allocation.
RECALL(NONE) is the default.

SHAREOPTION(n) Specifies the VSAM cross-region shareoption to be
used on DEFINE CLUSTER. SHAREOPTION(1) is the
default. It must be specified as SHAREOPTION(3) if the
associated data set is to use the AUTOEXTEND feature
in a server configured to run in multiple address
spaces. See the discussion of AUTOEXTEND and
OS/390 space management under "Tablespaces and
OS/390 Space Management" on page 4-4.
SHAREOPTION can be abbreviated SHR.

STORCLAS(classname) Specifies an SMS storage class name to be specified on
DEFINE CLUSTER or dynamic allocation requests to
create new data sets. STORCLAS can be abbreviated
STORCL.
4-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Server File Management Parameters
Example

Storage management parameter example:

* Oracle server file management parameters
* Tablespace data files
FILE_GROUP(DBDB)
DEFAULT_SPACE(10000) * a comment
CREATE_MODELDSN(ORBL.ORAV8.DB1)
* Archive logs
FILE_GROUP(DBAL)
DEFAULT_SPACE(11100 9000)
DATACLAS(OSDIDC2) MGMTCLAS(OSDIMC2) * 2 keywords on one line
* Default for groups not specified
FILE_GROUP(DFLT)
DEFAULT_SPACE(10000 5000)
UNIT(SYSDA) VOL(TEMP01)

UNIT(unitname) Specifies an allocation unit name to use in dynamic
allocation requests that create new non-VSAM data
sets. This parameter is intended for future use when
non-VSAM files use file management parameters.

VOLUMES(volser) Specifies a volume serial number to use in IDCAMS
DEFINE CLUSTER commands for VSAM data sets or
in dynamic allocation requests that create non-VSAM
data sets.

Only a single volume serial can be specified. Because
of this limitation, it is recommended that you use
storage management class parameters instead of
explicit volumes. VOLUMES can be abbreviated VOL.

VOLUME_COUNT(nnn) Specifies a volume count to be used for allocation
during EDM backup data set creation, where nnn is a
decimal number between 1 and 255. This parameter is
normally used when the backup data set is to reside on
tape. VOLUME_COUNT can be abbreviated COUNT.
Defining OS/390 Data Sets for the Oracle Database 4-13

Pre-allocating Database Files
Pre-allocating Database Files
If you choose to pre-allocate Oracle server control, log, or database files, then you
execute the OS/390 IDCAMS utility, and you supply one or more DEFINE
CLUSTER commands. Alternatively, DEFINE CLUSTER can be issued directly in a
TSO session. For details on the DEFINE CLUSTER command, refer to DFSMS/MVS
Access Method Services for ICF. This section discusses DEFINE CLUSTER
requirements specific to Oracle database files.

You can give an Oracle database file any data set name that conforms to your
installation’s naming standards and/or security requirements. You will specify this
name to the Oracle server later (in a SQL statement or, in the case of control files, in
the init.ora parameter file) using the file name syntax discussed earlier in this
chapter.

The amount of space to allocate to a file depends on how the file is used and on
your requirements. Refer to the Oracle9i Database Administrator’s Guide for
discussion of database file sizing for each type of file. The IDCAMS DEFINE
command can specify space in any of several different units. Choose the unit that is
easiest for you. The Oracle server has no preference for space allocation units.
Space can be specified in tracks, cylinders, megabytes, kilobytes, or records. Any
secondary space quantity in your DEFINE is ignored by the Oracle server.

When you specify the pre-allocated file to the Oracle server in a SQL CREATE or
ALTER statement, you must omit the SIZE keyword and specify REUSE, indicating
that the file already exists. Except in the case of control files, the Oracle server will
use all of the primary space that you pre-allocated. (With control files, the Oracle
server uses exactly the amount of space it needs to contain the internal control
structures, whose size depends on some of the other parameters of CREATE
DATABASE. This might be less than the space that you pre-allocated.)

Multivolume VSAM clusters are not supported in an Oracle database. If you need
to add space to a database in multiple volume increments, or if you want to "stripe"
a tablespace across volumes, then create a separate cluster on each volume and
specify them as multiple files in the SQL CREATE or ALTER statement.

Note: Oracle Corporation recommends using a consistent set of
qualifiers for the left-hand portion of all data set names associated
with a given database. Certain Oracle database features,
particularly the standby database features, are usable only when all
data sets comprising the database share a common set of leftmost
data set name qualifiers.
4-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Managed Files on OS/390
The DEFINE command must specify the LINEAR keyword, indicating that a
VSAM linear data set (LDS) is being created. An LDS always has a control interval
size of 4K and does not contain VSAM logical record structures. DEFINE
parameters such as CONTROLINTERVALSIZE and RECORDSIZE are therefore not
used. (If space is specified using RECORDS, then IDCAMS assumes that each
record equates to one 4K CI.) The VSAM SHAREOPTIONS default of SHR(1,3) is
recommended for all database files except when the server is configured for
multiple address space (MAXAS is greater than one). In this case, if automatic file
extension is desired (using the AUTOEXTEND clause of the CREATE/ALTER
TABLESPACE command), SHR(3,3) is required.

Depending on the standards of your installation, you may need to specify
VOLUMES or one or more of the SMS parameters (STORAGECLASS,
MANAGEMENTCLASS, and DATACLASS) in the DEFINE command.

The following is an example DEFINE command for an Oracle database file:

DEFINE CLUSTER(-
NAME(VSAM.QUALS.SYSTEM.DBF2)-
LINEAR -
STORAGECLASS(OSCM3A) -
MANAGEMENTCLASS(OMCM3A) -
MEGABYTES(150))

No other preparation, loading, or formatting is required before a pre-allocated file is
added to the database. When you specify the new file in a SQL statement (such as
ALTER DATABASE or CREATE TABLESPACE), the server will format all of the
primary space of the data set. Adding a large file to the database will therefore
incur a noticeable delay while formatting is done. (This is true whether files are
pre-allocated or created by the server.)

Oracle Managed Files on OS/390
The Oracle Managed Files (OMF) feature of Oracle9i simplifies database
administration by eliminating the need to specify the names of database files
(control, log, and tablespace files) and to delete underlying files when the owning
database element is logically dropped.

When you use OMF, you can omit the single-quoted filenames in the
CREATE/ALTER DATABASE and CREATE/ALTER TABLESPACE statements
because the Oracle server generates unique names for each file. When you drop an
OMF log file or a tablespace comprising OMF files, the Oracle server deletes the
Defining OS/390 Data Sets for the Oracle Database 4-15

Oracle Managed Files on OS/390
files. In the case of DROP TABLESPACE, you can omit the INCLUDING
CONTENTS AND DATAFILES clause.

To use OMF, you must do the following:

■ Specify certain init.ora parameters involved in name generation

■ Omit the single-quoted filename(s) from CREATE or ALTER SQL statements

The init.ora parameters for OMF are DB_CREATE_FILE_DEST and
DB_CREATE_ONLINE_LOG_DEST_n. On OS/390, these parameters supply the
left-hand portion of a data set name (high-level qualifier and possibly other
qualifiers) and they must end with a period. The OMF parameters can be reset or
changed without shutting down, using ALTER SYSTEM or ALTER SESSION. For
OS/390-specific details on the OMF parameters, see "Oracle Initialization Parameter
Considerations" on page 3-15. For general information on OMF, refer to the
Oracle9i Database Administrator’s Guide.

Even when you specify OMF parameters you can continue to specify explicit file
names in CREATE and ALTER statements. In fact, it is necessary to do so when you
want to use a preallocated file or reuse an existing file.

Oracle tablespace names can be up to 30 characters long. If you want to be able to
associate an OMF-created data set with its owning tablespace, you must use
tablespace names that are distinct in the first 8 characters.

The right-hand portion of an OMF-generated filename depends on the type of file
and includes an encoded timestamp value for uniqueness. The complete data set
name format for OMF files is shown in the following example:

control files: destOMC.Attttttt
log files: destOMLnnn.Attttttt
permanent tablespace files: destOMD.tsn.Attttttt
temporary tablespace files: destOMT.tsn.Attttttt

where:

Oracle allows underscores ("_") in a tablespace name, and any that are present are
changed to "@" for use in the generated data set name.

dest is the destination string (_DEST) in the OMF parameter

nnn is a 3-digit log group number

tsn is up to 8 characters of the tablespace name

ttttttt is the encoded timestamp (which looks like a random mix of
letters and numerals)
4-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Managed Files on OS/390
Given the 44-character limit on OS/390 data set names, the above data set name
formats impose a limit of 29 characters on DB_CREATE_ONLINE_LOG_DEST_n
and 23 characters on DB_CREATE_FILE_DEST (assuming a tablespace name of 8
characters or more).

You can use Oracle-specific and OS/390 system symbols in the OMF parameters.
The destination string must end with a period after any symbol substitutions have
been performed.

SQL statements that exploit OMF are generally the same as their non-OMF
counterparts except that single-quoted filenames are missing. REUSE is not
recognized for OMF and you can omit SIZE, which defaults to 100M for all types of
files.

The following is an example of a CREATE DATABASE command that uses OMF for
both log files and for the SYSTEM tablespace:

CREATE DATABASE W1O9
 MAXINSTANCES 1
 MAXDATAFILES 1000
 MAXLOGFILES 10
 MAXLOGMEMBERS 1
 MAXLOGHISTORY 100
 LOGFILE SIZE 40M, SIZE 40M, SIZE 40M
 DATAFILE SIZE 128M AUTOEXTEND ON NEXT 32M MAXSIZE 256M;

The repeated "SIZE 40M" results in 3 log files of 40 megabytes each. You can leave
the LOGFILE clause off completely and the Oracle server will create two log files (or
log file groups) of the default 100M size. Similarly, the DATAFILE clause can be
omitted if the 100M size is acceptable and no autoextension is required for the
SYSTEM tablespace. In fact, if you accept all the defaults, it is possible to specify
the CREATE DATABASE command as follows:

 CREATE DATABASE W1O9;

Likewise, you can do the same with the CREATE TABLESPACE command.

OMF files are distinguished internally by the presence of ".OMC", ".OML", ".OMT",
or ".OMD" in the data set name. To avoid conflict with OMF, avoid using data set
names containing these qualifiers in non-OMF operations.
Defining OS/390 Data Sets for the Oracle Database 4-17

Oracle Managed Files on OS/390
4-18 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Operating a Database
5

Operating a Database Service

This chapter describes the OS/390-specific details of how to start and stop an Oracle
database instance on OS/390. Use this chapter in conjunction with the information
in the Oracle9i Database Administrator’s Guide to establish Oracle database server
operating practices in your installation.

The following topics are included:

■ Starting and Stopping the Database Service on page 5-2

■ Oracle Database Instance Startup and Shutdown on page 5-3

■ Other Database Service Commands on page 5-5
 Service 5-1

Starting and Stopping the Database Service
Starting and Stopping the Database Service
As discussed in the Oracle9i Database Administrator’s Guide and in the following
section, you make an Oracle database instance available for use by issuing the
Oracle database STARTUP command via Oracle SQL*Plus or a comparable Oracle
utility. Before you can do this on OS/390, the OSDI-defined database service must
be started. You start a database service using the OSDI START command
documented in Appendix A, "OSDI Subsystem Command Reference". This will
create one or more OS/390 address spaces according to the INIT_ADR_SPACES
value in the server region parameters. These address spaces are what OS/390 calls
"system address spaces", and they are similar to OS/390 started tasks (STCs). Each
address space executes the JCL procedure that you specified via the PROC
parameter of DEFINE SERVICE. The OSDI START command can be included in the
subsystem parameter file so that the service is always started during IPL.

After the service is started, additional OSDI START commands can be issued to
create additional address spaces for the service, up to the MAXAS limit that was
specified in DEFINE SERVICE. Each additional START command adds one address
space to the service. Added address spaces increase the amount of virtual memory
available for database application sessions. Address spaces can be added before or
after the Oracle database STARTUP command is issued. No Oracle
database-specific action (such as the STARTUP command) is needed when adding
address spaces.

Other than stopping the database service, which terminates all of the service
address spaces, there is no way to reduce the number of address spaces of a running
service. Database service address spaces cannot be stopped individually.

When you perform an Oracle database shutdown (by issuing the SHUTDOWN
command via Oracle SQL*Plus), the associated service address spaces continue to
run. You can startup and shutdown an Oracle database instance as many times as
you want using the same set of service address spaces. The only situations that
dictate stopping the service (terminating its address spaces) are:

■ to effect a change to one of the service parameter files that is read only at service
start: ORAFPS, ORAENV, or the main service parameters (data set specified
using the OSDI PARM string);

■ to effect a fix or upgrade to software modules (Oracle software, or IBM software
that is fetched into the address space such as LE/370);

■ to resolve a problem that has rendered the address spaces unusable in some
way.
5-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Database Instance Startup and Shutdown
With this in mind, it may be best to think of the database service address spaces as
more or less permanent fixtures. In fact, the OSDI START command can be
included in the subsystem parameter file so that the service is always started during
OSDI subsystem initialization (normally during system IPL). This will help to
ensure that the service is always ready and available for Oracle database startup
processing.

You can stop a database service with the OSDI STOP command (described in
Appendix A, "OSDI Subsystem Command Reference") or the native OS/390 STOP
(or P) command. Stopping a service terminates all of its address spaces. The
command takes effect immediately regardless of the operating state of the
associated Oracle database instances. If you stop a database service without first
performing an Oracle database shutdown via SQL*Plus, then active client requests
may be abnormally terminated. The subsequent Oracle database server startup of a
database stopped in this fashion will take longer because of the requirement to read
log files and perform recovery for transactions that were in progress at the time of
termination.

Oracle Database Instance Startup and Shutdown
After the database service is successfully started, you can issue the Oracle database
STARTUP command to make the database instance available to applications. Any
of several different Oracle database utilities, including SQL*Plus and Recovery
Manager, can be used to issue this command. You can execute the utility on the
same OS/390 system as the database that you are starting, or you can execute it on a
different system, even one that is not OS/390. In the latter case, you must have
configured and started the Oracle Net network service, and some special security
considerations come into play. These special security considerations are discussed
in Chapter 8, "Security Considerations". For simplicity, the balance of this section
assumes that you are running SQL*Plus on the same OS/390 image as the database
instance that you are managing.

On OS/390, all of the Oracle database utilities can be executed as TSO commands or
noninteractively as batch jobs or started task address spaces. Most installations will
find it convenient to set up started task procedures or operator-startable jobs for
executing Oracle database STARTUP and SHUTDOWN commands so that these
functions are accessible to the system operator. For detailed information on
executing SQL*Plus on OS/390, refer to the Oracle9i Enterprise Edition User’s Guide
for OS/390.

Before the utility can issue STARTUP, it must establish a connection to the target
instance with a CONNECT statement. Special rules apply to this CONNECT
Operating a Database Service 5-3

Oracle Database Instance Startup and Shutdown
because it is processed before the Oracle database data dictionary (where Oracle
database userid information resides) is open. Prior to Oracle9i, the statement
"CONNECT INTERNAL" could be used to make this connection. In Oracle9i, the
new form "CONNECT / AS SYSDBA" must be used.

Special security processing is performed on OS/390 to authenticate the OS/390 job
or the TSO user who makes the connection. This processing uses a SAF-based
(RACROUTE) test, discussed in Chapter 8, "Security Considerations". If your
installation has enabled this processing, then the userid that runs SQL*Plus must
have been granted the proper authority; otherwise, CONNECT / AS SYSDBA will
fail, as will the following STARTUP command. Refer to Chapter 8 for more details.

You must ensure that the utility CONNECT statement connects to the correct
database service. When you are running the utility on OS/390, several different
methods exist to indicate the target service for a CONNECT, all of which utilize the
SID associated with the service. These methods are documented in the Oracle9i
Enterprise Edition User’s Guide for OS/390. In most of our examples here, we use the
ORA@sid DD statement to specify the target service.

When using multiple server address spaces, the STARTUP command must be
issued from a session that is connected to the first service address space. There is no
explicit mechanism for requesting connection to the first address space, but this
condition is always met when there are no other users connected to the service,
which is normally the case when you are running STARTUP.

When the STARTUP command is processed, Oracle database initialization takes
place in the server as described in Oracle9i Database Concepts and in the Oracle9i
Database Administrator’s Guide. The init.ora parameters are read by the utility and
are passed to the server, the Oracle server System Global Area (SGA) is allocated in
the server address space(s), and the Oracle server background processes are started.
(These run as OS/390 tasks in the first server address space.) The Oracle server
does not normally issue any messages to the OS/390 system log or console during
this process. The utilities generally display progress messages during STARTUP
processing. After a normal STARTUP command completes successfully, the Oracle
database is available for application connections and processing. The utility that
was used to issue the STARTUP command can exit or terminate at this point,
leaving the database up.

The following is an example Oracle database startup that has been set up as an
OS/390 batch job using SQL*Plus. The target service has the SID "ORA1", which
has been specified using the ORA@ dummy DD statement in the job. The init.ora
file is a member of a PDS. The STARTUP command has defaulted the MOUNT and
OPEN options, and the database will therefore be opened and made usable to
applications.
5-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Other Database Service Commands
//ORASTART JOB 1,’Oracle ORA1 Startup’
//PLUS EXEC PGM=SQLPLUS,PARM=’/NOLOG’
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SQLLOGIN DD DUMMY
//ORA@ORA1 DD DUMMY
//INITORA DD DISP=SHR,DSN=ORAN.ORAV.PARMLIB(ORA1INIT)
//SYSIN DD *
CONNECT / AS SYSDBA
STARTUP PFILE=/DD/INITORA
EXIT
/*

The database is shut down in the normal Oracle database fashion, by connecting
with SQL*Plus and issuing the SHUTDOWN command. Shutting down the
database does not terminate service address spaces.

Oracle Corporation does not recommend using SHUTDOWN ABORT or STARTUP
FORCE with OS/390 database instances. These commands attempt to forcibly
terminate all processes that are accessing the instance, which usually is not a
desirable action. In situations where other forms of Oracle database shutdown do
not appear to be working, or when you are unable to connect to the server to issue a
shutdown command, the best course of action is to stop and restart the database
service, then proceed with STARTUP.

Other Database Service Commands
Aside from a stop command, three other commands currently can be issued to a
running database service: DISPLAY SESSION, DUMP SESSION, and REFRESH FPS.
These commands use the OS/390 MODIFY (or F) command mechanism. To issue
these commands, enter the OS/390 system command:

F id,command

where id is the service jobname or identifier, and command is the command image
as described below.
Operating a Database Service 5-5

Other Database Service Commands
DISPLAY SESSION
The DISPLAY SESSION command displays information for active sessions within an
ORA8 service. All keywords and values are required.

DISPLAY SESSION JOBNAME(job_filter)

Abbreviations: D, SESS, JOB

job_filter:

Specify up to 8 characters. The value may be suffixed with an ’*’ or may consist of
only an ’*’ to indicate wildcarding.

Examples:

F MYORA8,DISPLAY SESSION JOBNAME(JAOTT3)

The above command displays information for sessions initiated by clients with a job
name of ’JAOTT3’.

F MYORA8,D SESS JOB(JAOTT*)

The above command displays information for sessions initiated by clients with a job
name beginning with ’JAOTT’.

DUMP SESSION
The DUMP SESSION command creates a machine-readable dump of the address
space, or spaces, that are associated with a given session within an ORA8 service.
All keywords and values are required.

DUMP SESSION(sessid) DSN(dataset_name)

Abbreviations: SESS, DA

sessid:

The Session ID is an identifier of the relevant session in the form of 8 hexadecimal
characters. Session IDs may be discovered with the DISPLAY SESSION command.

dataset_name:

This identifier is the fully-qualified name of the data set that will contain the dump,
and it may be up to 44 characters in length. The data set cannot exist at the time
that the DUMP command is entered.

Example:

F MYORA8,DUMP SESS(00010010) DSN(OSDI.SESSION.DUMP)
5-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Other Database Service Commands
The above command dumps the address spaces associated with session ’00010010’
to a data set of the name ’OSDI.SESSION.DUMP’.

REFRESH FPS
The REFRESH FPS command is used to reload the server file management
parameters defined on page 4-8. As during database service startup, the file
specified by the ORA$FPS DD statement is read to obtain the parameters. Unlike
service startup, any error encountered while processing the file contents will cancel
the attempted refresh.

REFRESH FPS

Abbreviations: REFR

Example:

F MYORA8,REFR FPS
Operating a Database Service 5-7

Other Database Service Commands
5-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Database Backup and R
6

Database Backup and Recovery

This chapter provides OS/390-specific details on Oracle features and techniques
that are used to ensure database availability and correctness.

The following topics are included:

■ Overview on page 6-2

■ Logging and Recovery on page 6-2

■ Backup and Recovery without Recovery Manager on page 6-4

■ Recovery Manager on OS/390 on page 6-6

■ Tablespace Point-in-Time Recovery on page 6-16

■ Oracle9i Data Guard on page 6-18
ecovery 6-1

Overview
Overview
Before planning or attempting database backup or recovery, you should be familiar
with the organization of an Oracle database as described in Oracle9i Database
Concepts, with common database administration procedures covered in the Oracle9i
Database Administrator’s Guide, and with basic Oracle backup and recovery practices
documented in Oracle9i User-Managed Backup and Recovery Guide.

If you decide to use Oracle Recovery Manager (RMAN) for database backup and
recovery, which is highly recommended, read the Oracle9i Recovery Manager User's
Guide. Finally, if you plan to implement a standby database, refer to Oracle9i Data
Guard Concepts and Administration before reading the related material in this chapter.

Logging and Recovery
Recovery is the process of applying or reapplying database changes to reflect
transactions which have been committed. Critical to the recovery process is the
Oracle database redo log (or online log) of database changes that is written by the
server as transactions are processed. As each log file or log file group is filled, the
Oracle database switches to the next file or group in turn. When you run the
database in NOARCHIVELOG mode, the process eventually wraps back around to
the first log file or group, overlaying the data in that file. Most production Oracle
databases run in ARCHIVELOG mode, which requires that filled logs be archived
(copied to another file, called an archive log) before they can be reused. The archive
logs are opened and read by the server in certain recovery situations.

Two circumstances can occur in which an Oracle database performs recovery
operations to update the database to a correct state. One circumstance occurs
during Oracle database server normal startup and occurs automatically if the
database instance was not shut down cleanly with an Oracle SHUTDOWN
command. (This includes cases in which the entire system failed and cases in which
you bring an Oracle database down by stopping the OSDI service without
performing an Oracle database shutdown.) Except in very unusual circumstances,
the recovery obtains all required data from the online logs and rollback segments. It
does not involve backups or archive logs and does not require any special action on
your part.

The other circumstance occurs when media recovery is required after restoring all
or part of the database from backups. This usually is a consequence of losing all or
part of a database to physical (hardware) failure or to some kind of logical
(software-induced) corruption. This situation involves action on your part,
including taking regular backups of your database. During media recovery, the
6-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Logging and Recovery
Oracle server must read all log data written since the backup (which you restored)
was taken. In most media recovery situations, archived redo logs, as well as online
redo logs, will be required to complete the recovery.

The work of archiving logs is always done in the Oracle database server, which
means that the database instance must be started for logs to be archived. You have
two choices for scheduling log archive operations: manual or automatic. If you
choose manual archiving, then you run SQL*Plus and issue an ARCHIVE LOG
command to cause the server to copy a filled log to an archive. Manual archiving
gives you direct control over when archiving occurs, but it has this drawback: if
you fail to archive your filled logs and all logs fill up, then the Oracle server
suspends update transactions until an archive occurs.

The alternative to manual archiving is automatic archiving, usually indicated by
specifying LOG_ARCHIVE_START=TRUE in the init.ora parameter file. With this
option, the Oracle server runs an additional background process named ARCH, and
that process automatically archives logs as soon as they are filled. As you might
expect, most production Oracle databases utilize automatic archiving.

On OS/390, archive logs are VSAM linear data sets (LDS) similar to the other
database files. Unlike control, database, and online log files, they cannot be
pre-allocated and are always created by the server via invocation of the IDCAMS
utility. This means that the server file parameters governing creation of archive logs
(the DBAL file group specified in the ORA$FPS parameter file) are particularly
important: these parameters must be specified so that archive logs can be created
readily as needed. For additional information on the ORA$FPS parameter file, refer
to "Server File Management Parameters" on page 4-8.

The naming of archive log data sets is controlled by several init.ora parameters
whose OS/390-specific details are discussed in "Oracle Initialization Parameter
Considerations" on page 3-15 in Chapter 3, "Configuring a Database Service and
Creating a New Database". You can specify that multiple archive copies are to be
created in order to reduce the chances of losing an archive to media failure. The
parameter conventions require you to supply one or more leading (left-hand) data
set name prefixes, one for each copy. When you elect to create multiple copies, the
respective prefixes must differ to avoid duplicate data set names, for example,
"ORA1.ARCHLOG1." and "ORA1.ARCHLOG2.". A single additional parameter
supplies a template for a data set name suffix that is used on all copies. Normally

Note: This means that media recovery is generally available only
for databases that run in ARCHIVELOG mode.
Database Backup and Recovery 6-3

Backup and Recovery without Recovery Manager
this suffix contains substitution symbols that are replaced with the logical log
thread and sequence number, ensuring a unique data set name for each archive.

In addition to normal archiving to a data set, Oracle9i will let you archive logs to a
standby Oracle database on the same (or a different) OS/390 system. These
archives are not used for normal recovery. They are used to update the standby
database. For further information refer to Oracle9i Data Guard Concepts and
Administration.

Backup and Recovery without Recovery Manager
As discussed in the Oracle9i User-Managed Backup and Recovery Guide, there are
several approaches to backing up and restoring all or parts of an Oracle database
independent of the Oracle server, using platform-specific utilities of your choice.
On OS/390, this can be accomplished using a fast data mover such as IBM
DFSMSdss or a comparable product. The Oracle database server requirements are
met by any software that can backup and restore a VSAM linear data set without
disturbing the contents or organization of the data. The restore can be to a different
disk volume and physical location than was originally backed up, but it must create
a valid ICF catalog entry for the cluster with the same high-allocated and high-used
RBA characteristics as the original data set.

The key to performing independent backup of Oracle database data is making sure
that the correct group of VSAM linear data sets is backed up as a logical set. Which
data sets should be copied during backup depends on the type of backup you are
doing. The various types of backups and the Oracle database files which comprise
them are discussed in the Oracle9i User-Managed Backup and Recovery Guide.

One of the most common forms of independent backup is a tablespace backup, in
which all of the files that make up a given tablespace are backed up as a set. This
kind of backup can be performed while the Oracle server is running and has the
tablespace online and in use. It therefore does not interfere with database
availability and has little impact on application performance. When done in this
fashion (called a "hot backup"), you must notify the Oracle database server of your
actions immediately before and after the backup. This notification is done using
SQL ALTER TABLESPACE statements. The easiest way to accomplish this is to
implement the backup as a 3-step batch job in which the first and last steps execute
SQL*Plus to issue the requisite SQL, and the middle step executes the data move.
The data move step should be conditioned on successful execution of the first step,
as shown in the following example:
6-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Backup and Recovery without Recovery Manager
//ORABKTS1 JOB 1,’Oracle Backup’
//PLUS1 EXEC PGM=SQLPLUS,PARM=’/NOLOG’,REGION=4M
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//ORA@ORA1 DD DUMMY
//SYSIN DD *
WHENEVER SQLERROR EXIT FAILURE
WHENEVER OSERROR EXIT FAILURE
CONNECT / AS SYSDBA
ALTER TABLESPACE ARREQ1 BEGIN BACKUP;
EXIT
/*
//BACKUP EXEC PGM=ADRDSSU,COND=(0,NE,PLUS1)
//SYSPRINT DD SYSOUT=*
//BKUPDS DD DISP=(,CATLG,DELETE),
// DSN=ORAPROD.ORADB1.ARREQ1.BKF,
// UNIT=(TAPE,,DEFER)
//SYSIN DD *
 DUMP DATASET(INCLUDE(ORAPROD.ORADB1.ARREQ1.DBF*)) -
 OUTDD(BKUPDS)
/*
//PLUS2 EXEC PGM=SQLPLUS,PARM=’/NOLOG’,REGION=4M,COND=EVEN
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//ORA@ORA1 DD DUMMY
//SYSIN DD *
CONNECT / AS SYSDBA
ALTER TABLESPACE ARREQ1 END BACKUP;
EXIT
/*

In a recovery situation (following a media failure, for example), the Oracle server
must not be accessing the logical structure that is being recovered. In the case of
tablespace or individual datafile recovery not involving the SYSTEM tablespace, the
server can be up and running, but the affected tablespace must be offline. For
recovery of the SYSTEM tablespace or for full database recovery, the Oracle
database instance must be shut down. You should restore all data sets comprising
the entity that you are recovering, for example: all tablespace files for a tablespace
Database Backup and Recovery 6-5

Recovery Manager on OS/390
that is to be recovered. Normally, you will restore using the original data set names
of the files. If you change the data set names during restore, you will have to start
the Oracle database server without opening the database (using STARTUP
MOUNT) and issue ALTER DATABASE RENAME statements to update the Oracle
database control file with the new names.

When all restores are completed and any required renaming has been done, you are
ready to begin recovery as described in the Oracle9i User-Managed Backup and
Recovery Guide. During recovery, the Oracle server will open and read all log data
that has been written since the backup (that you restored) was taken. Usually this
involves both archive logs and online logs. All of the required archive logs must be
available during recovery. If you allow archive logs to be migrated by a product
such as IBM DFSMShsm, then you must recall them to disk before Oracle attempts
to open them.

Recovery Manager on OS/390
The Recovery Manager (RMAN) utility automates or facilitates various aspects of
both backup and recovery and reduces the chances of problems due to human error.
It also provides capabilities not available with independent utilities, such as
block-level incremental backup.

With RMAN, you create scripts which direct backup and restore and/or recovery
processing. RMAN can optionally store scripts and data to support backup and/or
recovery processing in an Oracle database. The set of tables that RMAN uses are
referred to as the recovery catalog and should reside in a different database than the
one being backed up and recovered. If you do not wish to maintain a separate
database to support RMAN, it can operate without a recovery catalog. In this case,
it records some of the data that it requires in the control files of the database that is
backed up and recovered.

Although RMAN runs as a separate utility (in TSO or batch, or even remotely on
another platform), it connects to the database instance that is backed up or restored
(called the target instance), and the actual data movement is performed by that
instance. The RMAN utility is the same on all Oracle database server platforms, but
the data movement particulars in an OS/390 server are quite different from other
platforms. For a complete description of RMAN, refer to the Oracle9i Recovery
Manager User’s Guide. The following sections discuss OS/390 particulars of RMAN.
6-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Recovery Manager on OS/390
External Data Mover
OS/390 provides an External Data Mover (EDM) implementation for performing
RMAN-initiated data movement and backup maintenance activity. EDM runs as a
separate OS/390 address space, freeing the Oracle server address space from system
resource conflicts (such as tape device allocation and mounting) and from the
processing demands of bulk data movement that are associated with backup and
restore operations. Priorities or WLM (Workload Manger) goals of the EDM
address spaces can be set as desired, separate from those of Oracle server address
spaces.

Starting and stopping EDM is done automatically by the Oracle server that hosts an
RMAN session. Each RMAN ALLOCATE CHANNEL command starts a separate
EDM address space on the same OS/390 system as the host server. The EDM
address spaces are system address spaces (similar to started tasks). Each EDM
address space executes the Oracle EDM program ORAEDM.

RMAN backup, restore, and maintenance requests that are directed to the server are
routed to EDM for processing by using cross-memory communication. Each EDM
channel can read or write a single copy of a single backup piece at one time. If
multiple channels are allocated in one RMAN script, then multiple EDM address
spaces are started when the script runs. If the backup or restore involves multiple
backup pieces or copies, then RMAN distributes the operations over the channels,
which improves concurrency. The EDM address spaces persist until RMAN
deallocates the corresponding channel, until the RMAN session terminates, or until
the Oracle server is shut down. It also is possible to terminate an EDM address
space with an OS/390 CANCEL command, if necessary.

RMAN ALLOCATE CHANNEL commands must specify "EDM0" as the channel
type to start an EDM address space. The only other RMAN channel type allowed
with an OS/390 server is DISK. Allocating a DISK channel does not start an EDM
address space. A DISK channel can create and read only VSAM Linear Data Set
(LDS) backups on direct access storage devices, and the processing occurs entirely
within the Oracle server address space. An EDM channel can process backups that
are physical sequential (DSORG=PS) data sets on either tape or direct access
storage.

The RMAN channel type "SBT_TAPE" that is used on other platforms is not
supported on OS/390.
Database Backup and Recovery 6-7

Recovery Manager on OS/390
Preparing to Use RMAN with an OS/390 Server
Before you can use RMAN to perform EDM-type operations on an OS/390 system,
you must set up a JCL procedure for running EDM address spaces. This procedure
must be installed in a system procedure library. The JCL EXEC and DD statement
requirements for this procedure are discussed in the section "EDM JCL and
Parameters" below. You can give the procedure any name that you desire, as long
as it does not conflict with another procedure or with any subsystem that is defined
to OS/390. You will need to know the name when you code an RMAN ALLOCATE
CHANNEL command.

You might need to discuss EDM security requirements with your system security
administrator. The EDM address spaces must be able to create and open backup
data sets using data set names that you specify as part of an RMAN script. This
might dictate taking actions to associate an OS/390 authorization id with the EDM
procedure.

Providing a Snapshot Control File
Certain RMAN synchronization functions require a snapshot control file, which is
basically a copy of the Oracle database control file that you create with an ALTER
DATABASE statement. By default, an OS/390 Oracle server expects this file to be
specified via a SNAPCF DD statement in the server region JCL. Of course, you
cannot supply this DD statement until the associated OS/390 data set exists, so if
you want to rely on the default snapshot identification, then you must go through a
2-step process as described here. (Alternatively, you can use the SET SNAPSHOT
CONTROLFILE NAME command in an RMAN session to specify the snapshot file
by its data set name rather than by a DD name.)

To create the snapshot control file, start up the Oracle server and issue an ALTER
DATABASE command similar to the following:

ALTER DATABASE BACKUP CONTROL FILE TO ’oran.orav.SNAP.CTL’;

You can use any valid data set name (inside the single quotes) that conforms to the
standards of your installation. In most cases, you will want to use the same
high-level qualifiers that you use for other files that are part of this database. After
this statement completes successfully, you will have created a snapshot control file
with the specified data set name. Note that the file management parameters for the
DBCT group (specified via the ORA$FPS DD statement) affect the way that this
data set is created by the server. If you wish, you can pre-allocate the snapshot
control file with your own invocation of IDCAMS. If you do so, make it the same
6-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Recovery Manager on OS/390
size as your existing control file and include the word REUSE after the quoted name
in the ALTER DATABASE statement.

Now shut down the Oracle database server, stop the associated OSDI service, and
add a SNAPCF DD statement (similar to the following) to the service JCL
procedure:

//SNAPCF DD DISP=SHR,DSN=oran.orav.SNAP.CTL

Start the OSDI service and startup the Oracle database server. Now your instance
has a snapshot control file with the expected default identification.

Identifying Backups
Backups created with RMAN, using an EDM channel, are cataloged OS/390
physical sequential data sets. A separate data set is produced for each copy of each
backup piece. You specify the data set name for each backup using the FORMAT
parameter of the RMAN BACKUP command.

Although you can specify a fixed OS/390 data set name for FORMAT, the
parameter is designed to be used as a template: various substitution variables
(identified by a "%" prefix) can be included in the FORMAT string, and these are
replaced with specific values each time the RMAN script executes.

You can use any of the substitution variables shown in Table 6–1 as portions of a
template data set name in order to form distinct, valid OS/390 data set names:

Table 6–1 FORMAT Parameter Substitution Variables

VARIABLE DESCRIPTION

%c specifies the copy number of the backup piece within a set of
duplexed backup pieces. If you did not issue the set duplex
command, then this variable will be 1. If you issued set duplex, the
variable identifies the copy number: 1, 2, 3, or 4.
Database Backup and Recovery 6-9

Recovery Manager on OS/390
%d specifies the database name. Note: The database name substitution
variables (%d and %n) use the database name specified in the
CREATE DATABASE command (or in the init.ora file). The
database name can be up to 8 characters long and must start with a
letter (or #, $, or @) and only contain letters, numbers, the special
characters #, $, @ or the hyphen (’-’) in the second and subsequent
positions to be valid as a standalone part of a data set name (as in
’ORACLE.BACKUP.%d’). If the database name starts with a number
but is otherwise valid and is less than 8 characters long, a letter (or #,
$, or @) can be placed in the pattern before the %d (as in
’ORACLE.BACKUP.X%d’). Thus, if the %d will be used in the
FORMAT string, care should be taken in choosing the database name
in the CREATE DATABASE command to ensure that it is valid in an
OS/390 data set name.

%n specifies the database name, padded on the right with ’X’ characters
to a total length of 8 characters. For example, if PROD1 is the
database name, then PROD1XXX is the padded database name. (See
the note under %d, above.)

%p specifies the backup piece number within the backup set. This value
starts at 1 for each backup set and is incremented by 1 as each
backup piece is created. The number will never exceed 4 digits (9999
maximum).

%s specifies the backup set number. This number is a counter in the
control file that is incremented for each backup set. The counter
value starts at 1 and is unique for the lifetime of the control file. If
you restore a backup control file, then duplicate values can result.
Also, CREATE CONTROLFILE initializes the counter back to 1. If
this value exceeds 9,999,999, only the right 7 digits of the number
will be used. The number will be from 1 to 7 digits long.

Table 6–1 FORMAT Parameter Substitution Variables

VARIABLE DESCRIPTION
6-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Recovery Manager on OS/390
%t specifies the backup set timestamp, which is a 4-byte binary
unsigned integer value derived as the number of seconds elapsed
since a fixed reference time. The combination of %s and %t can be
used to form a unique name for the backup set. The unsigned binary
integer is formatted into a string in this format: Tsssssss. The sssssss
is a base-32 representation of the number using the letters A-V and
the numbers 0-9. The generated value will always be 8 characters in
length.

%u specifies an 8-character name constituted by compressed
representations of the backup set number and the time the backup
set was created. This will always be 8 characters in length and it will
start with a letter so it will be valid within an OS/390 data set name.
Note: In Oracle8i, the variable was ’.*%u’ which generated
’.Axxxx.Axxxx’. The ’.*%u’ is still accepted, but now generates
’.xxxxxxxx’ (just as if ’.%u’ were specified).

%D specifies the current day of the month from the Gregorian Calendar
in DD format.

%F specifies that dbid (a numeric value that identifies an Oracle
database), year, month, day and sequence be combined so that the
generated name is unique and repeatable. The generated format is:
Iiiiiiii.Dyymmdd.Sss. The iiiiiii is a base-32 representation of the
dbid using the letters A-V and the numbers 0-9 and will always be 7
characters. The yy, mm, and dd are the year, month and day,
respectively. The ss is a hexadecimal representation of the sequence.

%M specifies the current month from the Gregorian Calendar in MM
format.

%T stands for year, month and day in the format YYMMDD. This will
always be 6 characters in length. The first two characters of year are
dropped (2008 becomes 08).

%U specifies a convenient shorthand for
&ORAPREFD..&ORASRVN..ORABKUP.%u.P%p.C%c that
guarantees uniqueness in generated backup filenames. If you do not
specify a format, RMAN uses %U by default. Note: For more
information on &ORAPREFD and &ORASRVN, see Appendix C,
"Oracle9i for OS/390 System Symbols".

Table 6–1 FORMAT Parameter Substitution Variables

VARIABLE DESCRIPTION
Database Backup and Recovery 6-11

Recovery Manager on OS/390
You can also use Oracle9i for OS/390 system symbols (identified by a "&" prefix) to
form parts of the data set name. This allows a single FORMAT string to produce
distinct backup data set names over multiple pieces and copies, and over multiple
uses of the same RMAN script. Refer to Appendix C, "Oracle9i for OS/390 System
Symbols", for more information.

When you code the FORMAT parameter, you should combine appropriate
high-level data set name qualifiers, %u, other RMAN substitution variables, and
Oracle9i for OS/390 system symbols to form a complete, meaningful data set name.
Both RMAN substitution variables and Oracle9i for OS/390 system symbols are
translated into their current values as the BACKUP command is processed at the
server. The Oracle server saves the names of backups in the RMAN catalog or in
the database control file, so you do not need to supply, or even know, the names of
backups in order to perform an RMAN RESTORE.

The following example is a more complex FORMAT parameter for an OS/390
server:

FORMAT ’&ORAPREFD..BKUP.%d.%u.P%p.C%c’

where:

%Y specifies the current year from the Gregorian Calendar in YYYY
format.

%% stands for % (i.e. %%Y is actually the string %Y).

Note: Several of the substitution variables generate numbers only,
and should not be used immediately after a period in the FORMAT
string, or an invalid data set name will result. For example, %s
generates a 1 to 7 digit number. In a FORMAT string, a period and
a letter (or #, $, or @) have to precede the %s to make it valid in a
data set name (for example, ’ORACLE.BACKUP.S%s’).

&ORAPREFD. is replaced with the default data set name prefix (a server
region parameter). Note that the system symbol,
"&ORAPREFD.", has the required period terminator.

%d is replaced with the Oracle database name.

Table 6–1 FORMAT Parameter Substitution Variables

VARIABLE DESCRIPTION
6-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Recovery Manager on OS/390
A data set name that is produced from this format specification might look as
follows:

ORA3ADBF.BKUP.ORA3DB.G6ENPJ03.P3.C1

The data set name of a successfully-created RMAN backup is always cataloged in
the OS/390 system catalog structure. When RMAN is told to delete a backup that is
no longer needed, EDM invokes the OS/390 IDCAMS utility and passes it a
DELETE command for the data set. If the backup is a disk data set, then DELETE
uncatalogs the data set and scratches it from the disk volume. If it is a tape data set,
then DELETE only uncatalogs the data set. If the backup was a disk data set, and if
it has been migrated by DFSMShsm, then the DELETE command logically deletes
the migrated copy without recalling it to disk.

When backups are taken directly to tape, the tape volumes must not be reused as
long as the backup remains known to RMAN, in other words, as long as the backup
is cataloged. The easiest way to ensure this, if you use OS/390 tape management
software, is to specify "catalog retention" for tape backups. In this case, the tape
management system will not recycle the tape volumes as long as they are associated
with a cataloged data set name. How you specify catalog retention for a tape data
set depends on the tape management software that you are using. If you are using
IBM’s DFSMSrmm, catalog retention is specified as a retention policy. Such policies
can be imposed based on the data set name or on a DFSMS management class. For
further information, refer to IBM DFSMSrmm documentation or to the
documentation for the tape management software that your system uses.

Backup Allocation Parameters
OS/390-specific parameters for backup data sets are specified indirectly in an
RMAN BACKUP command using the POOL parameter. The actual parameters are
supplied in the EDM procedure in a file identified by an ORA$FPS DD statement.
These parameters are coded the same as those for the database server region,
discussed in "Server File Management Parameters" on page 4-8. The ORA$FPS
parameter file that you use with EDM will contain different file groups with
different parameter settings than those used in the database server.

The file group identifier (in the EDM case) consists of the letter "P" followed by a
3-digit decimal pool number. For example, if your backup script specifies

%u is replaced by a unique, 8-byte string.

%p is replaced by the backup piece number.

%c is replaced by the backup copy number.
Database Backup and Recovery 6-13

Recovery Manager on OS/390
"POOL 6", EDM searches the ORA$FPS file for parameters associated with file
group P006. The POOL parameter defaults to zero, and EDM will therefore search
for file group P000 if no POOL is coded in the script.

As with the database server, if the matching group cannot be found, then EDM will
use parameters specified for the DFLT (default) group if they are included in the
EDM’s ORA$FPS file. If no DFLT group exists, then EDM will attempt to create the
backup file with only a data set name, disposition, and (possibly) space parameters.
This is likely to fail unless your installation uses automatic classification (ACL) logic
to set suitable allocation parameters.

Additional details and an example ORA$FPS file are included in the section "EDM
JCL and Parameters" below. The full description of ORA$FPS keywords and syntax
is in "Database Region JCL" in Chapter 3, "Configuring a Database Service and
Creating a New Database".

ALLOCATE CHANNEL Considerations
For an OS/390 target server, the ALLOCATE CHANNEL command must specify
the channel TYPE as either DISK or "EDM0". The full quotes must be included
when the EDM0 type is used. A DISK channel can be used to create and read only
backups or copies that are VSAM Linear Data Sets (LDS). This processing takes
place within the target database server address space and does not involve EDM.
Allocating a TYPE "EDM0" channel starts an EDM address space that can create and
read backups that are physical sequential (DSORG=PS) data sets on disk or tape.

The EDM JCL procedure is identified using the PARMS parameter of ALLOCATE
CHANNEL. At minimum, PARMS must specify the 1-character to 8-character JCL
procedure name for your EDM JCL procedure. The PARMS string can also include
other fields that are valid for an OS/390 START command, including a job
identifier, JOBNAME or SUBSYS keywords, and procedure-specific JCL symbolic
keywords. This string is case-sensitive and generally must be supplied in all
uppercase letters. If apostrophes are required around a JCL symbolic parameter,
then they must be doubled inside the outer apostrophes that are part of RMAN’s
PARMS parameter syntax.

The following example is an ALLOCATE CHANNEL command for an EDM whose
JCL procedure, ORAEDM1, includes a procedure-specific keyword parameter FPS.
A job identifier (EDMC1) is also included:

ALLOCATE CHANNEL C1 TYPE "EDM0" PARMS ’ORAEDM1.EDMC1,FPS=’’FPS1’’’;

The PARMS parameter defaults to an empty string. If you omit PARMS on an EDM
channel allocation for an OS/390 server, then the command will fail.
6-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Recovery Manager on OS/390
If your backup script creates multiple backup pieces or copies, or if a restore script
is going to call for multiple pieces or copies, then consider allocating multiple EDM
channels to improve concurrency. Each ALLOCATE command can specify the same
EDM procedure name. If you specify a job identifier (or the JOBNAME parameter),
Oracle Corporation recommends using a distinct identifier or jobname for each
EDM channel in the script.

BACKUP Considerations
The BACKUP command parameters with OS/390-specific considerations are
FORMAT and POOL. As discussed earlier, FORMAT must specify a string that will
produce a valid, distinct OS/390 data set name for each backup piece and copy after
RMAN metasymbol and OS/390 system symbol substitutions have been
performed. FORMAT can also be specified in the ALLOCATE CHANNEL
command, in which case the specified string applies to all backups that are created
using the associated channel.

The POOL parameter is used to select backup file creation parameters that are
supplied via the ORA$FPS DD statement in the EDM JCL procedure. The 3-digit
pool number (padded on the left with zeroes if necessary) is appended to the letter
"P" to form the 4-character file group identifier that is looked up in the EDM’s
ORA$FPS file. If POOL is omitted, it defaults to zero, which means EDM will
attempt to locate parameters for file group P000.

Example RMAN Backup Script
run {
 allocate channel c1 type "EDM0" parms ’ORAEDM.EDM1’;
 allocate channel c2 type "EDM0" parms ’ORAEDM.EDM2’;
 backup database format ’ORA1.BKUPDB.%u.P%p.C%c’ pool 6;
 }

EDM JCL and Parameters
To use EDM, you must have a JCL procedure in a system procedure library.

For example:

//EDMPROC PROC,FPS=EDMFPS
//EDMPROC EXEC PGM=ORAEDM,REGION=0M
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.AUTHLOAD
//ORA$FPS DD DISP=SHR,DSN=ORAN.ORAV.PARMLIB(&FPS)
Database Backup and Recovery 6-15

Tablespace Point-in-Time Recovery
//SYSPRINT DD SYSOUT=*
//PXYPRINT DD SYSOUT-*

where:

Tablespace Point-in-Time Recovery
This section supplements tablespace point-in-time recovery (TSPITR) information in
the Oracle9i User-Managed Backup and Recovery Guide. The most complicated task
involved in TSPITR is configuring the parameters for the auxiliary instance, which
is set up as a separate OSDI database service in the same or a different OSDI
subsystem.

Assuming that ORA1 is the target database service and that ORA2 is the auxiliary
database service, the following are examples of init.ora parameters for the auxiliary
instance:

CONTROL_FILES refers to the name of the control file for the auxiliary instance.
Because the auxiliary instance does not really contain any user data, one control file
is used for simplicity.

DB_FILE_NAME_CONVERT This parameter is used to update the auxiliary
instance control file with the location of the auxiliary instance files.

DB_NAME must be set to the same value as the target database name.

LOCK_NAME_SPACE must be set to a unique value such as underscore, followed
by the target database name. It allows the auxiliary instance to start up even
though it has the same name as the primary database.

PGM=ORAEDM identifies the External Data Mover program.

//STEPLIB is normally included. It identifies the Oracle AUTHLOAD
data set containing ORAEDM.

//ORA$FPS is recommended. It specifies parameters that allow control
over the creation, attributes, and processing of backup data
sets by EDM. If omitted, internal and system defaults are
used.

//SYSPRINT is required. Normally a JES spool data set, it receives
informational and error messages generated by EDM.
6-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Tablespace Point-in-Time Recovery
LOG_FILE_NAME_CONVERT This parameter is used to update the auxiliary
instance control file with the location of the log files.

The other parameters are to be the same as those for the target database.

The control files, database, data files, and online log files for the auxiliary instance
can be pre-allocated, or you can rely on the ORA$FPS parameters of the auxiliary
service to govern file creation. The auxiliary instance is to be started, but
unmounted: (START NOMOUNT).

The init.ora example is as follows:

CONTROL_FILES = "//’ORA2.CONTROL1’"
SHARED_POOL_SIZE = 4000000
DB_BLOCK_BUFFERS = 500
DB_FILES = 256
DB_NAME = ORA1
LOG_BUFFER = 65536
LOG_CHECKPOINT_INTERVAL = 3000
OPEN_CURSORS = 120
TRANSACTIONS = 55
SESSIONS = 55
PROCESSES = 50
DML_LOCKS = 220
COMPATIBLE = 8.0.0
NLS_DATE_FORMAT=’MON DD YYYY HH24:MI:SS’
LOCK_NAME_SPACE = _ORA1
DB_FILE_NAME_CONVERT=("//’ORA1","//’ORA2")
LOG_FILE_NAME_CONVERT=("//’ORA1","//’ORA2")

Tablespace Point-in-Time Processing Using Recovery Manager
Tablespace point-in-time recovery involves using the Recovery Manager HOST
command to run EXP (Oracle Export) and IMP (Oracle Import) modules. EXP and
IMP require the opening of SYSIN DDname, and you therefore must use the
Recovery Manager CMDFILE parameter to designate Recovery Manager
commands instead of SYSIN. For example:

Note: In order to do meaningful time-based recovery, the init.ora
of the target instance also must contain the parameter
NLS_DATE_FORMAT=’MON DD YYYY HH24:MI:SS’.
Database Backup and Recovery 6-17

Oracle9i Data Guard
//ORARMN EXEC PGM=RMAN,REGION=6M,PARM=’++/DD/SYSPARM’
//STEPLIB DD DSN=...
//ORA$LIB DD DSN=...
//BSQ DD DISP=SHR,DSN=oran.orav.SQL
//SYSERR DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
//SYSOUT DD SYSOUT=*
//ORAPRINT DD SYSOUT=*
//TNSNAMES DD DSN=...
//SYSIN DD DUMMY
//SYSPARM DD *
TARGET INTERNAL/X@ORA1 CATALOG RMAN/RMAN@ORAR
CMDFILE "MYGROUP.RMANCMD(TBPITSQL)"
/*

This case assumes that ORAR is the recovery catalog database tnsname alias, ORA1
is the target database tnsname, and MYGROUP.RMANCMD(TBPITSQL) contains
the following:

CONNECT AUXILIARY INTERNAL/X@ORA2;
RUN {
ALLOCATE AUXILIARY CHANNEL C1 TYPE DISK;
ALLOCATE CHANNEL C2 TYPE DISK;
RECOVER TABLESPACE USER2 UNTIL TIME ’DEC 29 1998 13:35:00’;
}

This example is created with the assumption that ORA2 is the auxiliary instance
tnsname alias, and that USER2 is the tablespace that you want to recover to a
point-in-time. For details about tablespace point-in-time recovery, refer to the
Oracle9i User-Managed Backup and Recovery Guide.

Oracle9i Data Guard
Data Guard and DMON processes use the Oracle database instance name for some
operations. Oracle9i for OS/390 uses the OSDI database service name as the Oracle
database instance name. The OSDI service name is restricted to 6 characters or less.

Note: The term "Oracle Net service name," as it is used in the
Oracle9i Data Guard Concepts and Administration guide, refers to the
Oracle Net TNSNAMES alias name and not the OSDI Net service
name.
6-18 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i Data Guard
One way to create a standby database is to use an operating system utility to copy
Oracle database files. Two different methods are described below.

Example 1 This method uses DFSMSdss to copy two tablespaces, system and
rollback. It works only for standby when the two systems share DASD.

//STEP2 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=*
//DASD DD UNIT=SYSDA, SPACE=(CYL, (300,100)),
// DISP=(NEW,DELETE,DELETE),DSN=&&TMPNAME
//SYSIN DD *
 COPY TOL(ENQF) CATALOG -
 OUTDDNAME (DASD) -
 DS(INCLUDE(-
 ORAF.V900.SYSTEM.DB1 -
 ORAF.V900.SYSTEM.RBS -
)) -
 RENAMEU(-
 (ORAF.V900.SYSTEM.DB1,ORBN.V900.SYSTEM.DB1) -
 (ORAF.V900.SYSTEM.RBS,ORBN.V900.SYSTEM.RBS) -
)
//*

Example 2 This method uses the IDCAMS Export/Import utility to copy the
system tablespace. It is useful when the file needs to be transmitted to another
system. You can use FTP to send the output file from Export to the remote system
and then read it with Import to recreate the file. This method can be used for any
database file (control files, log files, and tablespaces).

//EXPORTCL EXEC PGM=IDCAMS,REGION=1024K
//SYSPRINT DD SYSOUT=*
//DISKOUT DD DSN=EXPORT.VSAM,DISP=(,CATLG),
 UNIT=SYSDA,SPACE=(CYL,(50,50),RLSE)
//SYSIN DD *
 EXPORT -
 ORAF.V900.SYSTEM.DB1 -
 OUTFILE(DISKOUT) -
 TEMPORARY
/*

Now transmit to the remote system the EXPORT.VSAM data set, using a method
such as FTP.
Database Backup and Recovery 6-19

Oracle9i Data Guard
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 IMPORT IDS(EXPORT.VSAM) -
 ODS (ORBN.V900.SYSTEM.DB1) -
 OBJECTS -
 ((ORAF.V900.SYSTEM.DB1 -
 NEWNAME(ORBN.V900.SYSTEM.DB1) -
) -
 (ORAF.V900.SYSTEM.DB1.DATA -
 NEWNANE(ORBN.V900.SYSTEM.DB1.DATA) -
) -
)
6-20 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9
7

Oracle9i Utilities

This chapter provides OS/390-specific information for running Oracle utilities that
are specific to database administration and are therefore not covered in the Oracle9i
Enterprise Edition User’s Guide for OS/390.

The following topics are included:

■ Overview on page 7-2

■ General Considerations on page 7-2

■ SQL*Plus on OS/390 on page 7-4

■ Recovery Manager (RMAN) on OS/390 on page 7-4

■ Oracle Password Utility (ORAPWD) on OS/390 on page 7-6

■ Offline Database Verification Utility (DBV) on OS/390 on page 7-7

■ Overview on page 7-2
i Utilities 7-1

Overview
Overview
The Oracle utilities that are specific to database administration include Recovery
Manager (RMAN), the Oracle Password utility (ORAPWD), and the Offline
Database Verification utility (DBV). In Oracle9i, the functions of Server Manager
(SVRMGRL) have been incorporated into SQL*Plus. Refer to the Oracle9i Enterprise
Edition User’s Guide for OS/390 for OS/390-specific details on running SQL*Plus,
Oracle Export and Import, and other utilities that are used by non-administrative
users. Certain OS/390 facilities that are common to all Oracle utilities, such as
PARM field processing and FNA, are also covered in the Oracle9i Enterprise Edition
User’s Guide for OS/390.

General Considerations
Each of the Oracle utilities can be invoked as a TSO command, as a batch or started
task jobstep, or via TSO CALL. When invoked as a TSO command, parameters are
specified on the command line in the usual manner for TSO command processors.
For batch or CALL invocation, parameters are supplied within the PARM string.
When usage requires more parameter data than will fit in a 100-character PARM,
the "++" notation that is described in the Oracle9i Enterprise Edition User’s Guide for
OS/390 can be used to specify that PARM data be read from a data set.

The syntax with which OS/390 data sets are specified to Oracle utilities differs from
the syntax that is used in the Oracle server (described in Chapter 4, "Defining
OS/390 Data Sets for the Oracle Database"). The primary differences include the
use of "/DD/" and "/DSN/" as prefixes to indicate whether a DD name or data set
name is used and the availability in utilities of FNA. FNA is a facility for
manipulating simple (single-level) file names so that they are treated as PDS
(Partitioned Data Set) member names or as other OS/390-specific identifiers. Refer
to the Oracle9i Enterprise Edition User’s Guide for OS/390 for a complete discussion of
file name syntax and FNA processing.

The Oracle installation process will, optionally, install JCL procedures for
commonly-used utilities. To facilitate having multiple different release levels of
Oracle software, the installation allows you to specify a distinct 2-character suffix
that is appended to the basic name of each such JCL procedure. The detailed utility
descriptions on the following pages mention the procedure name for each utility
that has one. The name is given with lower-case "xx" on the right-hand end,
signifying the optional suffix that is specified at installation time. Refer to your
installation records to determine whether these procedures were installed and to
determine their exact names.
7-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

General Considerations
The following DD statement considerations are common to all Oracle utilities on
OS/390:

STEPLIB

Specify a STEPLIB DD in a batch job or TSO command invocation if the Oracle
utility that is being invoked is not in a linklist library or OS/390 LPA. Usually
STEPLIB designates the Oracle CMDLOAD or AUTHLOAD data set that was
created during installation.

ORA$LIB

Specify an ORA$LIB DD statement if your STEPLIB or linklist does not contain the
modules that were dynamically loaded by Oracle code, including the Oracle
program interface and message and NLS data modules that are used by Oracle
localization features.

SYSERR

Required in a non-TSO environment, SYSERR is a sequential output file to which
runtime environment error messages are written. Usually this is specified as a
SYSOUT data set. In a TSO environment, if no SYSERR DD is allocated to the
session, runtime error messages are displayed at the terminal.

SYSOUT

Required in a non-TSO environment, SYSOUT is a sequential output file to which
normal tool or utility messages and other output are written. Usually this is
specified as a SYSOUT data set. In a TSO environment, if no SYSOUT DD is
allocated to the session, then normal output is displayed at the terminal.

SYSIN

Required in a non-TSO environment, SYSIN is a sequential input file which the tool
or utility reads for input commands or data. Usually this is specified as an instream
(DD *) data set or as a member of a PDS. When creating or editing a PDS member
that will be used as SYSIN for an Oracle tool or utility, do not allow the editor to put
sequence numbers or other nonblank data into the rightmost positions of each
record. In a TSO environment, if no SYSIN DD is allocated to the session, tool, or
utility, then input is read from the terminal.
Oracle9i Utilities 7-3

SQL*Plus on OS/390
Some utilities receive all of their input from the command line or JCL PARM field.
A batch execution of such utilities must include a SYSIN DD statement, but it can be
coded as DUMMY.

SQL*Plus on OS/390
In Oracle9i, SQL*Plus is used for most database administration tasks, including
Oracle startup and shutdown. All of the functions that were previously provided in
line-mode Server Manager are available in SQL*Plus.

A version of SQL*Plus for the OS/390 Unix System Services (USS) environment is
also supplied. You can invoke this version of SQL*Plus in a USS shell environment
and utilize input and output files that are in the USS Hierarchical File System (HFS).

Considerations for using Oracle tools and utilities, including SQL*Plus, are
discussed in the Oracle9i Enterprise Edition User’s Guide for OS/390.

Recovery Manager (RMAN) on OS/390
Oracle9i Recovery Manager can be invoked in batch or TSO using the name RMAN.
If you installed the Oracle JCL procedures, then you can execute the ORARMNxx
procedure to invoke RMAN.

RMAN has some special processing requirements. First, it must be able to read the
recover.bsq script during its initialization. (This script is member RECOVER of the
SQL data set created during Oracle installation.) RMAN expects a BSQ DD
statement that specifies the SQL data set but no member name, as in the following:

//BSQ DD DISP=SHR,DSN=ORAN.ORAV.SQL

If you use the ORARMNxx procedure, this DD statement is already included.

Depending on how it is used, RMAN may need to connect to as many as three
distinct Oracle database instances: one for its catalog (the "catalog instance"), one
for the database that is being backed up or recovered (the "target instance"), and,
during certain types of point-in-time recovery, an "auxiliary instance" that
participates in recovery processing.

The requirement to connect to multiple instances indicates that you cannot rely
entirely on one of the singular mechanisms (the ORA@sid DD statement or the
ORACLE_SID or TWO_TASK environment variables) to specify the instance. You
can use one of those mechanisms for any one of your RMAN connections, but the
other connection(s), if required, must use a tnsnames.ora file or explicit Oracle Net
address strings. Oracle Corporation recommends using a tnsnames.ora file, which
7-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Recovery Manager (RMAN) on OS/390
is specified via a TNSNAMES DD statement on OS/390. Refer to the Oracle9i Net
Services Book Set and to Chapter 10, "Oracle Net", for a discussion of this file.

The RMAN CONNECT statements that do not rely on ORA@sid, ORACLE_SID, or
TWO_TASK will need to supply the tnsnames.ora identifier for the instance. In the
example batch RMAN job which follows, we have used ORA@sid to access the
catalog instance at SID ’ORMC’ and have used a tnsnames.ora identifier to access
the target instance at SID ’ORA1’. Only the RMAN CONNECT statements are
shown.

//ORARMAN JOB 1,’Oracle Recovery Mgr’
//RMAN EXEC PGM=RMAN
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//BSQ DD DISP=SHR,DSN=ORAN.ORAV.SQL
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//ORA@ORMC DD DUMMY
//TNSNAMES DD *
DBORA1=(DESCRIPTION=(ADDRESS=(PROTOCOL=XM)(SID=ORA1)))
/*
//SYSIN DD *
connect catalog rman/rman
connect target /@DBORA1
...
/*

On OS/390, RMAN sets return code zero if all input statements are processed
without error. If any errors occur, a return code of 8 is produced.
Oracle9i Utilities 7-5

Oracle Password Utility (ORAPWD) on OS/390
Oracle Password Utility (ORAPWD) on OS/390
The Oracle password utility, ORAPWD, is used to initialize a password file that the
database server uses to validate certain types of Oracle logon. Usage considerations
for a password file (which is optional) are discussed in Chapter 8, "Security
Considerations" and in the Oracle9i Database Administrator’s Guide.

ORAPWD can be run in batch or as a TSO command. Because it is used
infrequently, no JCL procedure is provided. The password file must be
pre-allocated as a VSAM LDS prior to executing ORAPWD. The IDCAMS DEFINE
CLUSTER considerations for this file are exactly the same as those for Oracle
database files, discussed in Chapter 4, "Defining OS/390 Data Sets for the Oracle
Database". Refer to the Oracle9i Database Administrator’s Guide for information on
sizing this file.

All input to ORAPWD comes from the PARM field or TSO command line
parameters. A SYSIN DD statement must be supplied, but it can be coded as
DUMMY. When you specify the FILE= parameter to ORAPWD, use only the data
set name of the VSAM LDS. Do not include apostrophes or any "/DSN/" prefix.
The OS/390 userid that is associated with the batch job or TSO session must have
update authority on the data set. Following is an example batch job that creates the
password data set using IDCAMS and then initializes the password data set using
ORAPWD.

//ORAPW JOB 1,’Oracle Administration’
//AMS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER(NAME(ORAPROD.ORADB1.PWD) LINEAR -
 RECORDS(16) STORAGECLASS(PRODSC1) MANAGEMENTCLASS(PRODMC1))
/*
//OPW EXEC PGM=ORAPWD,COND=(0,NE),
// PARM=’FILE=ORAPROD.ORADB1.PWD PASSWORD=SECRET3 ENTRIES=32’
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD DUMMY
//

On OS/390, ORAPWD sets return code zero if the file is initialized without errors.
If any errors occur, a nonzero return code is produced.
7-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Offline Database Verification Utility (DBV) on OS/390
Offline Database Verification Utility (DBV) on OS/390
DBV (Database Verification Utility) examines the physical and logical structure of
an offline Oracle database file or a (backup) copy of a database file. General
considerations for using DBV are discussed in the Oracle9i User-Managed Backup and
Recovery Guide.

DBV can be run as a TSO command or as a batch job. Because it is used
infrequently, no JCL procedure is provided. All input to the utility is via command
line parameters or the PARM field. A SYSIN DD statement is required, but it can be
coded as DUMMY. The FILE= parameter for DBV must be specified as a DD name
with a "/DD/" prefix, as shown in the following example. Do not use the
BLOCKSIZE and FEEDBACK parameters on OS/390.

//ORADBV JOB 1,’Oracle DBVerify’
//DBV EXEC PGM=DBV,
// PARM=’FILE=/DD/DBFILE START=1 END=50’
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//DBFILE DD DISP=SHR,DSN=ORAPROD.ORADB1.SYSTEM.BKUP.DBF1
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD DUMMY
//

On OS/390, DBV produces a zero return code if processing was successful and if no
logical or physical errors were detected. Otherwise, return code 8 is produced.
Oracle9i Utilities 7-7

Offline Database Verification Utility (DBV) on OS/390
7-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Security Consid
8

Security Considerations

This chapter describes post-installation and operational OS/390 security issues in
Oracle9i, Oracle Net, and associated products and features on OS/390. The
information is presented with the assumption that IBM OS/390 Security Server
(RACF) is being used, but any OS/390 product that fully implements IBM’s System
Authorization Facility (SAF) can be used. If your installation does not use RACF,
please refer to your security product’s documentation for matters presented here in
RACF terms.

The following topics are included:

■ Overview on page 8-2

■ Controlling Access to OSDI Subsystem Commands on page 8-2

■ Controlling Access to OSDI Services on page 8-3

■ Controlling Access to Database SYSDBA and SYSOPER Privileges on page 8-4

■ Database Service Actions Subject to OS/390 Authorization on page 8-6

■ External Data Mover Actions Subject to OS/390 Authorization on page 8-7

■ Oracle Net Actions Subject to OS/390 Authorization on page 8-8

■ Authorizing Oracle Logon on page 8-8
erations 8-1

Overview
Overview
Oracle products and OSDI interface in a number of places with native OS/390
security features. Some of the resulting interactions are discussed as installation
topics in the Oracle9i Enterprise Edition Installation Guide for OS/390. These topics
include RACF resource class considerations, Program Properties and APF
authorization requirements for Oracle product modules, and requirements for
associating OS/390 userids with OSDI-defined services.

Controlling Access to OSDI Subsystem Commands
OSDI subsystem command processing includes an authorization check to confirm
that the console or the user is allowed to issue the command. You control access to
commands by defining resource profiles to the security subsystem and then by
granting access (for specific consoles and users) to those resources. If you do not
define resource profiles, then the authorization check returns a "resource unknown"
indication to OSDI, and OSDI then allows the command to be processed. Thus, the
default behavior (in the absence of any profile definitions) is that any command is
allowed from any source. This is not chaotic, as it may sound, because access to
command-issuing mechanisms themselves (such as consoles) is usually controlled
in most OS/390 installations. Base your decision to define profiles and to activate
the authorization mechanism upon the security standards and procedures at your
installation.

The resource profiles that are used to protect commands should be defined in the
resource class that you chose when installing Oracle software, as discussed in
Oracle9i Enterprise Edition Installation Guide for OS/390. If you elected to accept the
default, then this will be the FACILITY class. Otherwise it will be a class name that
you chose and configured for your SAF-compliant security software.

The command authorization resource names are of the form:

ssn.cmdverb

where ssn is the OSDI subsystem name, and cmdverb is the full-length OSDI
command verb. (Verb abbreviations, such as DEF for DEFINE, must not be used in
the resource name.)

The level of authorization that must be granted to users or to consoles in order to
enable commands depends on the command. The following table lists all of the
command verbs and the authorization level required for each:
8-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Controlling Access to OSDI Services
Controlling Access to OSDI Services
OSDI bind processing, which establishes connections between OS/390 address
spaces, performs an authorization check to confirm that the binding address space
(the "client") is allowed to access the target service. The target service can be an
Oracle9i instance or an Oracle Net network service running on OS/390. The
possible client address spaces are:

■ a TSO or batch address space running an Oracle tool or an Oracle utility or a
customer-written Oracle application

■ a CICS or IMS region running transactions which access an Oracle database

■ a local Oracle database instance that is accessing another local or remote Oracle
instance via a database link

■ the Oracle network service accessing a local Oracle instance on behalf of remote
(inbound) client applications or database links

The bind authorization check applies in all of these cases. In order for the check for
a given target service to be meaningful, resource profiles must be defined to a
SAF-compliant security server such as RACF. The profile names incorporate the
OSDI service name so that access to each service is separately controlled. When
profiles are defined, the OS/390 userid that is associated with the client address
space must have READ authorization on the target service’s profile in order for the
bind to be allowed. Two profiles are defined for each service: one for normal
application binds (used by TSO and batch Oracle tools or applications) and one for

Verb Authorization Level

DEFINE Update

ALTER Control

SHOW Read

START Read

DISPLAY Read

DRAIN Read

RESUME Read

STOP Read
Security Considerations 8-3

Controlling Access to Database SYSDBA and SYSOPER Privileges
managed binds (used by CICS and IMS, and by the Oracle server and Oracle Net
when operating as clients as described above).

If you do not define resource profiles for a service, then all binds from all address
spaces are permitted. Oracle Corporation recommends that you define resource
profiles for all services so that bind access is controlled via standard OS/390
security mechanisms.

The resource profiles that are used to protect binds should be defined in the
resource class that you chose when installing Oracle software, as discussed in
Oracle9i Enterprise Edition Installation Guide for OS/390. If you elected to accept the
default, then this will be the FACILITY class. Otherwise it will be a class name that
you chose and configured for your SAF-compliant security software.

■ The name structure for the normal application bind resource profile is:

ssn.service.UBIND

where ssn is the OSDI subsystem name, service is the target service name,
and UBIND is a constant indicating application binds.

■ The name structure for the managed binds used by CICS, IMS, Oracle database
links, and Oracle Net is:

ssn.service.ABIND

where ssn is the OSDI subsystem name, service is the target service name,
and ABIND is a constant indicating managed binds.

Controlling Access to Database SYSDBA and SYSOPER
Privileges

SYSOPER and SYSDBA are access privileges that are associated with an Oracle
database instance. A database session with these privileges can perform operating
functions such as starting up and shutting down the database and can perform DBA
activities such as managing database and tablespace definitions. The privileges can
be requested by including "AS SYSOPER" or "AS SYSDBA" in a CONNECT
statement issued to a tool such as SQL*Plus.

Note: In addition to subsystem-level authentication of binds, an
OSDI database instance uses SAF to control access to the Oracle
database server’s SYSOPER and SYSDBA system privileges. This
mechanism is discussed in the following section.
8-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Controlling Access to Database SYSDBA and SYSOPER Privileges
For local clients connecting from TSO, batch, or USS address spaces via
cross-memory, access to the SYSDBA and SYSOPER privileges is controlled using
SAF-defined resources on OS/390. These must be defined in the same resource
class that you use for binds, as discussed in the previous section. You chose this
class when installing Oracle software, as discussed in the Oracle9i Enterprise Edition
Installation Guide for OS/390. If you elected to accept the default during installation,
then this will be the FACILITY class. Otherwise, it will be a class name that you
chose and configured for your SAF-compliant security software. The form of the
resource names is:

ssn.service.OPER
ssn.service.DBA

where:

After the resources are defined, granting "read" authorization on a resource to a
given OS/390 userid allows a job or TSO session with that userid to connect to the
database with the given privilege. You must grant read authority on the OPER
resource to the OS/390 userids that will startup and shutdown the database.

If you do not define these resource names for a given database instance, then any
userid is allowed to connect with SYSOPER or SYSDBA privileges. Oracle
Corporation recommends that you define these resources so that the use of Oracle
database system privileges is controlled.

If you want remote clients to have access to SYSDBA and SYSOPER privileges, you
must create an Oracle password file using the ORAPWD utility described in
Chapter 7, "Oracle9i Utilities". SAF authorization cannot be used for remote clients
because the user’s OS userid cannot be verified and might not even be compatible
with SAF expectations.

A separate file is used to provide password verification for remote users because the
database may not be mounted or open when the connection is requested. (This
occurs when the remote user connects in order to issue STARTUP, for example.)

To use an Oracle password file to control remote client access to SYSOPER and
SYSDBA privileges, follow these steps:

ssn is the OSDI subsystem name

service is the database service name

OPER is a suffix to be entered exactly as shown

DBA is a suffix to be entered exactly as shown
Security Considerations 8-5

Database Service Actions Subject to OS/390 Authorization
1. Create and initialize a password file as described in the section "Oracle
Password Utility (ORAPWD) on OS/390" on page 7-6.

2. Add an ORAPASSW DD statement to the database service region JCL
procedure. Specify the dsname of the VSAM linear data set created in step 1,
and specify DISP=SHR.

3. Shut down the Oracle instance and stop the associated service.

4. Set the REMOTE_LOGIN_PASSWORD_FILE parameter to EXCLUSIVE in the
instance’s init.ora file.

5. Restart the database service (with the updated JCL procedure) and startup the
Oracle instance.

Database Service Actions Subject to OS/390 Authorization
When a database service runs on OS/390, some of its interactions with the
operating system may be subject to authorization checks. These checks are
performed by the operating system, not by Oracle software, and generally are based
on the OS/390 userid associated with the service address space. The Oracle9i
Enterprise Edition Installation Guide for OS/390 describes the OS/390 mechanisms that
are used to associate a particular userid with a service address space. This section
describes the actions that the Oracle server and the OSDI infrastructure take that
might be subject to authorization checks on your system. It is your responsibility to
make sure that an OS/390 userid is associated with a database service, if necessary,
and that it has the correct authorizations for the functions it must perform.

Data Set Creation and Deletion

The Oracle server can invoke the OS/390 IDCAMS utility to create and to delete
VSAM linear data set (LDS) files. Details regarding when this occurs and how you
control it are provided in Chapter 4, "Defining OS/390 Data Sets for the Oracle
Database". If your server will be creating or deleting files, make sure that the
associated OS/390 userid has the necessary authorization to do so with the data set
name structure that you are using.

Data Set Open

The Oracle server performs an update-type open on the VSAM LDS files
comprising the database. It also opens the alert log and other diagnostic logs for
output and opens various parameter and SQL files (such as the SQLBSQ and
8-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

External Data Mover Actions Subject to OS/390 Authorization
ORA$FPS DDs) for input. The associated OS/390 userid must have the required
authorization for these opens.

OSDI Bind Authorization

Database links are Oracle’s mechanism for distributed database access. When an
Oracle application uses a database link, a connection is made from one Oracle
database instance to another. When this happens on OS/390, an OSDI bind is
issued from the first instance to the second (if the second instance is on the same
OS/390 system) or from the first instance to an Oracle Net network service (if the
second Oracle instance is remote). If you are using OSDI bind authorization
checking as described previously in the section "Controlling Access to OSDI
Services", the OS/390 userid that is associated with the first instance must be
authorized to bind to the second instance or to Oracle Net.

Unix System Services Access

Certain Oracle9i features (such as the UTL_FILE and UTL_HTTP packages,
Oracle9i JVM, and the Oracle external table feature) use OS/390 Unix System
Services (USS). To use USS, the database service must have an associated OS/390
userid, and that userid must have a default OMVS segment defined to the security
system. If either of these conditions is not met, then message MIR0110W is issued
during service address space initialization, and the features which rely on USS are
inoperative in that Oracle instance.

External Data Mover Actions Subject to OS/390
Authorization

When you use Oracle9i Recovery Manager (RMAN) to perform backup or recovery
actions on an OS/390 server, one or more separate External Data Mover (EDM)
address spaces may be started to perform data movement and backup management
tasks. The details of this activity are in Chapter 6, "Database Backup and Recovery".
Although it is not defined as an OSDI service, the EDM runs as a system address
space and can have an associated OS/390 userid via the same mechanisms as OSDI
services.

The EDM address space must have the necessary authorization to open sequential
backup file data sets for output (during backup) or for input (during recovery).
Certain RMAN backup maintenance activities cause the EDM to delete backup data
sets via an IDCAMS DELETE command, so the EDM that is used during backup
maintenance should have that authorization as well.
Security Considerations 8-7

Oracle Net Actions Subject to OS/390 Authorization
Oracle Net Actions Subject to OS/390 Authorization
The Oracle Net network service JCL procedure name must have an associated
OS/390 userid. The associated OS/390 userid must have an OMVS RACF segment
(or equivalent, if a product other than RACF is used) if the installation is not using a
default OMVS segment.

Authorizing Oracle Logon
When an Oracle userid is defined as IDENTIFIED EXTERNALLY it means the user
is authenticated by operating system facilities rather than by Oracle. On OS/390
this mechanism works in one of two ways:

■ The user logs on to the operating system and is authenticated by normal
operating system security. When the user runs an Oracle tool or application, it
logs on to Oracle with "/" (a single forward slash) instead of specifying an
Oracle userid and password. Oracle takes the user’s OS/390 userid as the
Oracle userid (possibly with a prefix, specified as the OS_AUTHENT_PREFIX
init.ora parameter). This means the user can access Oracle only with OS/390
userids for which the password is known. This technique is normally used only
when the user is running on the same OS/390 system as the Oracle server being
accessed. Although it can be enabled for use over Oracle Net, doing so is not
considered secure because the server cannot guarantee that the associated
userid was authenticated.

■ The user runs an Oracle tool or application that logs on to the Oracle server
with an explicit userid/password. The verification of the userid and password
is controlled by the LOGON_AUTH database region parameter, which can
specify one of three verification choices:

No SAF check If a user defined to Oracle as IDENTIFIED EXTERNALLY attempts
to logon with an explicit userid/password, the logon is rejected.

Built-in SAF check This built-in SAF check verifies that the userid and password
that are provided on the logon are valid. The user need not be logged on to OS/390

Note: Be aware that for backup and restore operations, the EDM
address space does not open or access the associated Oracle
database (VSAM LDS) files. Those files are accessed only in the
Oracle server address space.
8-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Authorizing Oracle Logon
with the same userid and in fact may be running on a non-OS/390 platform
(connecting via Oracle Net). The Oracle userid must be defined to the OS/390
security subsystem and the given password must be correct for the logon to
succeed. A RACROUTE VERIFY function is performed by the OSDI code, but no
logon exit is called in this case. SAF interfaces with any security manager that you
have installed (IBM’s RACF, CA’s Top Secret or ACF2, an internally developed
security manager, or another third-party security manager). This SAF check is
designed to work with virtually any security manager and eliminates the need for
an external logon exit, unless you want to modify the normal RACROUTE VERIFY
of a userid and password.

External logon exit This method calls an external, dynamically loaded logon exit.
Oracle Corporation supplies a sample logon exit (which does what the built-in SAF
check does), or you can write your own. This exit performs the actions that you
specify and then returns success or failure of the validation.

The "Built-in SAF check" and the "External logon exit" are called only for users that
are IDENTIFIED EXTERNALLY. These checks are not performed for a user who
is defined to Oracle (IDENTIFIED BY <password>), because these users can be
resolved internally within Oracle.

The type of validation done for users that are IDENTIFIED EXTERNALLY is
indicated in the OSDI service parameters. A single parameter controls this
validation. The syntax is:

LOGON_AUTH (auth)

where auth is:

NONE - IDENTIFIED EXTERNALLY not allowed

SAF - perform built-in SAF check

exitname - call logon exit

The default (if nothing is specified) is NONE.

For example:

Note: The supplied sample logon exit and the built-in SAF check
are functionally equivalent. Unless site-specific changes to the
sample logon exit are needed, the built-in SAF check should be
used because it is more efficient.
Security Considerations 8-9

Authorizing Oracle Logon
LOGON_AUTH(NONE)
LOGON_AUTH(SAF)
LOGON_AUTH(RACFSMPO)

The logon exit must reside in the STEPLIB or JOBLIB concatenation or in the
linklist, and it must be in an authorized library.

A sample user logon exit is provided in Oracle SRCLIB library member
RACFSMPO. It uses the OS/390 SAF interface to invoke the OS/390 security
manager. If the OS/390 security manager does not support the SAF interface, then
the calls to RACROUTE in the exit must be replaced with the equivalent calls
appropriate for the OS/390 security manager.

The calling sequence for the logon exit uses standard OS/390 assembler calling
conventions. R15 is the entry point, R14 is the return address, R13 points to a
standard 72 byte save area, and R1 is the address of a parameter list. The parameter
list consists of a list of addresses of each parameter (all values are passed by
reference, not by value), and the last parameter has the high-order bit set.

When returning, R15 should be set to 0 to indicate a successful verification of the
userid and password that were supplied, and should be set to any nonzero value to
indicate any type of failure (4 would be an appropriate value).

The exit is called in 31 bit addressing mode, supervisor state, storage protection
key 7, and in an authorized address space. The exit will be running in TCB mode
with no locks held and with no ARRs, FRRs, or EUT-style FRRs set. The exit is
called in primary addressing mode with HASN=PASN=SASN (home, not cross
memory mode).

The logon exit should be fully reentrant code.

The parameter list that is passed contains pointers to the following parameters, all
of which are input only:

Table 8–1 Input-Only Parameters

Field Type/Length Description

work area char/4k set to all x’00’ before every call to the exit

userid char/1+ userid to be validated (number of bytes
varies)

userid length bin/2 length of userid

password char/1+ password to be validated (number of bytes
varies)
8-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Authorizing Oracle Logon
The only output of the logon exit is the R15 return code. No other value that is
passed in the parameter list should be modified except the first one.

The first parameter is a 4096-byte work area that is set to all x’00’ before every
call to the logon exit. The logon exit can use this storage for anything that it needs.
It should not be freed.

The logon exit can do any of the following:

password length bin/2 length of password

OS/390 jobname char/8 OS/390 jobname from JOB card of client

ASID bin/2 address space id of client address space

OSDI session id bin/4 a unique OSDI session id

OS username char/8 the operating system username (batch, TSO,
CICS, and IMS only)

terminal name char/8 terminal name

program name char/8 program name

RACF group name char/8 RACF group name

connection type char/8 connection type (BATCH, TSO, CICS, IMS,
TCP/IP, VTAM) to indicate environment of
client

JES jobid char/8 JES job identifier (such as JOB08237)

job card entry time bin/4 entry (submission) time of job. Binary
hundredths of a second since midnight

job card entry date packed/4 entry (submission) date of job. Packed
decimal 0CYYDDDF, where C=0 FOR 19, C=1
FOR 20, YY=year, DDD=day number within
the year (Jan 1=1)

job card accounting
info

char/145 from jobcard

network data (high
bit set in parameter
list)

char/2+ variable length NIV data (refer to Chapter 9,
"Oracle SMF Data")

Table 8–1 Input-Only Parameters

Field Type/Length Description
Security Considerations 8-11

Authorizing Oracle Logon
■ call a security manager (SAF calls, RACF, Top Secret, ACF2, and so forth)

■ get and free storage using the STORAGE macro (the exit must keep track of all
acquired storage and must make certain to free it before exiting)

■ call SMF to write SMF records

■ call WTO to write messages to the console

The logon exit should not do anything that would cause it to wait for any
significant period of time (more than one tenth of a second, for example). Avoid
opening data sets, writing to the operator with a reply (WTOR), and creating
enqueues.

Any resources that are acquired in the logon exit must be freed before it returns.
There is no cleanup call made to the logon exit, so any resources that are not
released will accumulate in the address space and could eventually cause resource
shortages.
8-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle S
9

Oracle SMF Data

The IBM System Management Facility (SMF) provides a facility for users to collect
and record a variety of system and job-related information. SMF formats the
information into a number of different records. By creating analysis and report
routines, installations can use the information in SMF records to track system usage.

The Oracle server uses the standard SMF interface to write user records to the SMF
data sets. These user records contain Oracle server accounting and Oracle auditing
information allowing Oracle installation sites to charge individual users for the
resources they use.

The following topics are included:

■ Preparing to Record SMF Information on page 9-2

■ Events that Generate SMF Records on page 9-3

■ SMF Recording under CICS on page 9-3

■ Interpreting an Oracle SMF Record on page 9-4

■ Oracle Net Network Information Vector Overview on page 9-8

■ Sample Formatting Program for SMF Records on page 9-10

■ Auditing Database Use on page 9-12
MF Data 9-1

Preparing to Record SMF Information
Preparing to Record SMF Information
SMF recording is activated by updating the SMFPRMxx member of SYS1.PARMLIB
using the SYS or SUBSYS option to allow recording of the Oracle user record type.
If the SUBSYS option is used, then the SUBSYS name must match the OSDI
subsystem name that hosts the database service. Refer to the IBM guide on System
Management Facilities for information about implementing SMF.

Specifying the Oracle Record Type
The default Oracle user record type is 0 (zero). A zero for this parameter indicates
that no SMF statistics record is to be written. You can override the default to any
value between 128 and 255 by adding the SMF_STAT_RECNO (abbreviation is
SMFSTRCN) to the OSDI database region parameter file. The SMF record number
that is chosen must not be the same as the number that is used by any other OS/390
software.

Oracle Corporation recommends using SMF record number 204, but any available
record number between 128 and 255 may be used.

If this parameter is not specified, or if zero is specified, then no SMF statistics
collection or recording is done. This saves some CPU overhead and saves the
overhead of the SMF write itself (which is mostly asynchronous work done by the
SMF address space, and the in-line overhead is mostly just moving data into SMF
buffers).

Using the OSDI SMF_STAT_RECNO Parameter

SMF_STAT_RECNO | SMFSTRCN

SMF_STAT_RECNO can be added as an OSDI parameter to the OSDI database
region parameter data set to override the default record number 0. In the following
example, 204 is the new SMF record type:

SMF_STAT_RECNO(204)

Starting SMF Recording of Oracle Records
SMF recording of Oracle accounting information starts automatically at startup if
SMF is activated and if the Oracle record number is specified.

Because the standard system default record types activated for SMF are 128 through
255, and because the recommended number for the Oracle server (204) is within this
9-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

SMF Recording under CICS
range, many sites automatically begin SMF recording of Oracle records when Oracle
is installed, and the SMF_STAT_RECNO parameter is supplied.

The service must be stopped and restarted for this parameter to take effect.

Stopping SMF Recording of Oracle Records
The OSDI SMF_STAT_RECNO parameter can be used to stop SMF recording for
Oracle. To stop SMF recording for Oracle regardless of what your system tables
specify, use:

SMF_STAT_RECNO (0)

or take the default of 0. The service must be stopped and restarted for this
parameter to take effect.

Events that Generate SMF Records
After SMF recording is turned on, an SMF record is written each time a user logs off
(normal termination or SMFINV=SMFNORM), provided SMF was activated when
the user logged on.

SMF records are also written on an abend or cancellation of a job if
SMFINV=SMFABORT

If the OS/390 system crashes, then SMF records are not written, and the information
is lost.

SMF Recording under CICS
When Oracle Access Manager for CICS transactions are used to access data on your
local Oracle9i for OS/390 server, a single thread can be shared by many CICS users.
When SMF recording is activated, an SMF record is written for a single thread when
the thread is dropped. However, SMF recording is not supported when these
transactions are used to access data on a remote Oracle server. If a thread is defined
with PROTECT set to NO, then the thread is dropped after being idle for 30
seconds.

If a thread is defined with PROTECT set to YES, then the thread is dropped when
Oracle Access Manager for CICS is stopped with the STOP command. Refer to
Chapter 11, "Oracle Access Manager for CICS", for more information on the STOP
command.
Oracle SMF Data 9-3

Interpreting an Oracle SMF Record
For Oracle Access Manager for CICS, SMF accounting information is based on the
Oracle userid for the CICS transaction.

The following is a sample thread definition table:

ORACICS TYPE=THREAD,
AUTH=TRANSID,
PROTECT=NO,
TRANSAC=(PGM1,PGM2)

If the above thread definition is used, then a sample session is as follows:

PGM1
PGM2
PGM1

The thread is dropped after being idle for 30 seconds, and two SMF records are
written. One of the records summarizes statistics for all PGM1 transactions, and the
other record summarizes statistics for all PGM2 transactions.

Refer to Chapter 11, "Oracle Access Manager for CICS" for instructions for
configuring thread definition tables in Oracle Access Manager for CICS.

Interpreting an Oracle SMF Record
To interpret an Oracle SMF record, you first need to dump the SMF data set to a
sequential data set. You can then write a program that does all of the following:

■ Reads the sequential data set

■ Selects only records with the Oracle record number

■ Accesses the Oracle SMF record fields using the provided DSECT

■ Prints the statistics

A sample program named ORAFMTO is provided in the SRCLIB library that you
can customize for your installation. Refer to "Sample Formatting Program for SMF
Records" on page 9-10.

The Assembler copy file, ORASMFO, contains DSECTS that map and document the
Oracle SMF record fields. The ORASMFO data set member resides in the Oracle
SRCLIB library.

The ORASMFO file is divided into these sections:

■ The standard record header section, which contains offsets and lengths of the
Net and accounting sections
9-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Interpreting an Oracle SMF Record
■ The correlation section

■ The OSDI section

■ The database engine section

■ The Net section (if applicable), which contains information about the network
origin of clients on an Oracle Net for OS/390 TCP/IP protocol network (IBM or
SNS/TCPaccess)

■ The OS/390 accounting section (if applicable)

Not all sections are present in all SMF records. For example, the OS/390 accounting
section is present only in SMF records for batch and TSO users. When a section is
present, the SMF record header contains the correct length for that section, which
might be release dependent. The length field for non-existent sections contains
0 (zero).

Contents of the SMF Header Section
Table 9–1 contains brief descriptions for the labels in the SMF header section. For a
complete layout of the contents of the SMF header section, refer to the DSECT.

Table 9–1 Contents of the SMF Header Section

ORASMF0 Label Description

SMFHDR Standard SMF header

SMFHLEN Total length of SMF record

SMFHSEG Segment descriptor = 0

SMFHSIN SYS IND = X’80’ Subsystem info to follow

SYS IND = x’40’ Subtype format record

SMFHREC Record type recommended = 204 (decimal)

SMFHTIM Timestamp, time binary (0.01 seconds since midnight)

SMFHDAT Timestamp, date (0cyyydddf) c=0 for 19xx. c=1 for 20xx

SMFHSYS System id

SMFHSSI OSDI Subsystem id

SMFHSUB Record subtype; 1 = accounting record

SMFSRVC OSDI service name
Oracle SMF Data 9-5

Interpreting an Oracle SMF Record
Contents of the SMF Correlation Section
Table 9–2 contains brief descriptions for the labels in the SMF correlation section.

SMFSESID OSDI session id

SMFHRSV1 Reserved

SMFNETO Offset to Net section

SMFACTO Offset to OS/390 accounting section

SMFHRV2 Reserved

SMFNETL Length of Net section

SMFACTL Length of OS/390 accounting section

SMFHRV3 Reserved

Table 9–2 Contents of the SMF Correlation Section

ORASMF0 Label Description

SMFAUTH Authorization id =
TSO logon id
Batch user id on jobcard
CICS USERID, TERM-ID,TRANS-ID,
PROGRAM-ID, or OPID

SMFCORI Correlation id =
TSO logon id
Batch jobname
CICS jobname
Not valid for Oracle Net

SMFCONN Connection type (TSO,BATCH,CICS,VTAM,TCP/IP, IMS)

SMFASID Users address space id (not valid for Oracle Net)

SMFOUSR Oracle logon id

SMFTNAME Originating terminal id (if available)

SMFPNAME Originating program name (if available)

SMFGRPN RACF group name (if available)

SMFJBID JES job identifier

Table 9–1 Contents of the SMF Header Section (Cont.)

ORASMF0 Label Description
9-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Interpreting an Oracle SMF Record
Contents of the SMF OSDI Data Section
Table 9–3 contains brief descriptions for the labels in the SMF OSDI data section.

Contents of the SMF Database Engine Data Section
Table 9–4 contains brief descriptions for the labels in the SMF database engine
section.

SMFENTRY RDR jobcard entry time (batch and TSO only). This field is
equivalent to the SMF5RST field in the SMF job termination (type
5) record.

SMFEDATE RDR jobcard entry date (batch and TSO only). This field is
equivalent to the SMF5RSD field in the SMF job termination
(type 5) record.

Table 9–3 Contents of the SMF OSDI Data Section

ORASMF0 Label Description

SMFTIM Beginning timestamp, time binary (0.01 second since midnight)

SMFDAT Beginning timestamp, date (0cyyydddf), ending time and date
in header c=0 for 19xx. c=1 for 20xx

SMFDTAI Data in

SMFDTAO Data out

SMFXMCPU Cross memory CPU time (TOD format)

SMFRPCS RPC count

SMFHWST High-water mark of storage used

SMFINV Reason for invocation

SMFNORM Normal termination

SMFABORT Clean up done

Table 9–2 Contents of the SMF Correlation Section (Cont.)

ORASMF0 Label Description
Oracle SMF Data 9-7

Oracle Net Network Information Vector Overview
Contents of the SMF Net Data Section
Table 9–5 contains brief descriptions for the labels in the SMF Net data section.

Oracle Net Network Information Vector Overview
Oracle Net constructs a Network Information Vector (NIV) list containing
information about the network origin of an incoming client connection. This
information is available to the Logon User Exit and is also written out in the SMF
record for each user.

The vector list is preceded by a 2-byte length field indicating the length of the entire
list including the length field itself. The individual vectors in the list consist of a
1-byte length field indicating the length of the vector, a 1-byte vector ID field
identifying the vector, and a variable number of vector-specific data bytes. The first
NIV in the list is always a protocol identification NIV, which will identify the Net
protocol being used as well as the network location of the client.

Table 9–4 Contents of the SMF Database Engine Section

ORASMF0 Label Description

SMFLRC Logical read count

SMFPRC Physical read count

SMFLWC Logical writes

SMFDMC DML COMMITs

SMFDMR DML ROLLBACKs

SMFDED DEADLOCKs

SMFHDLN Length of SMF header

Table 9–5 Contents of the SMF Oracle Net Data Section

ORASMF0 Label Description

SMFNET Net section header

SMFNETL Length of Net NIV information. The information contained in
this section is specific to the Net driver in use. This information
is variable length.

SMFNETA Start of variable length information. Refer to next section,
"Oracle Net Network Information Vector Overview".
9-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Net Network Information Vector Overview
Currently, only the protocol identification NIV is built. Other NIVs may be added
in the future as required. The following tables describe the NIV list and the
individual NIV formats.

NIV List Format

The following table describes the NIV list:

General NIV Format

The following table describes the general NIV format:

Protocol Identification NIV
The following table describes the protocol identification NIV:

Oracle Net TCP/IP Identification NIV

The following table describes the Oracle Net TCP/IP identification NIV format:

Byte Contents

0 through 1 total length of NIV list including bytes 0 and 1

2 through m first NIV

m+1 through n second NIV

n+1 through

.. .-x

x+1 through y last NIV

Byte Contents

0 total length of NIV including byte 0

1 ID of NIV

2 through p NIV data

Byte Contents

0 NIV length = x’08’
Oracle SMF Data 9-9

Sample Formatting Program for SMF Records
Contents of the SMF OS/390 Accounting Data Section
Table 9–6 contains brief descriptions for the labels in the SMF OS/390 accounting
data section.

Sample Formatting Program for SMF Records
A sample program, ORAFMTO, is provided with the Oracle SMF interface to
format Oracle SMF records. ORAFMTO is an Assembler program that reads and
formats SMF accounting records with the default Oracle type of 204. It reads
records from a variable-blocked sequential data set and writes the formatted
records to a fixed-block sequential data set with a logical record length of 133.

The sample ORAFMTO program is in the Oracle SRCLIB library. These members
are included:

1 NIV ID = x’03’

2 through 3 TCP port number from which client originated

4 through 7 Internet address on which client resides (hex format)

Table 9–6 Contents of the SMF OS/390 Accounting Data Section

ORASMF0 Label Description

SMFACT OS/390 accounting section header.

SMACTNF Number of accounting fields. This field is equivalent to the
SMF5ACTF field in the SMF job termination (type 5) record.

SMFACTA OS/390 accounting information. This field is equivalent to the
SMF5JSAF field in the SMF job termination (type 5) record.

SMFACLN Length of OS/390 accounting section.

ORAFMTCL contains sample JCL to assemble and link ORAFMTO.

ORAFMTGO contains sample JCL to run ORAFMTO.

ORAFMTO extracts and prints values from the Oracle SMF records.

Byte Contents
9-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Sample Formatting Program for SMF Records

If any of the values are too large for the precision their column allows, then they are
shown as a series of asterisks.

Sample output from the ORAFMTO program:

SSN SERVICE SMFAUTH SMFCONN ORACLE ID DATE TIME CPU SECONDS LOG READS PHY READS LOG WRITES DMC DMR DED HI STG
---- -------- -------- -------- -------------- ------ ----------- -------------- ---------- ---------- ---------- --- --- --- ------
ORA1 ORA1O8 MJJONES BATCH SYS 00.259 08:06:25.82 1.258847 5396 220 33 0 0 0 955K
ORA1 ORA1O8 MJJONES TSO SCOTT 00.259 08:07:16.43 1.604269 1611 1037 8 0 0 0 673K
ORA1 ORA1O8 MJJONES TSO SYSTEM 00.259 08:10:35.49 .318189 614 17 97 3 1 0 675K
ORA1 ORA1O8 MJJONES BATCH SCOTT 00.259 10:12:33.04 .580421 3006 96 23 0 0 0 772K

Table 9–7 SMF Record Values

Value Description

SSN OSDI Subsystem name

SERVICE OSDI Service name

SMFAUTH Authorization id =
TSO logon id
Batch user id on jobcard
CICS USERID, TERM-ID,TRANS-ID,
PROGRAM-ID, or OPID

SMFCONN Connection type (TSO,BATCH,CICS,VTAM,TCP/IP, IMS)

Oracle ID Oracle user id. (This field is blank if the connection is not
associated with a user id.)

DATE Start date of Oracle session

TIME Start time of Oracle session

CPU SECONDS Total CPU seconds used in the Oracle address space
(SMFXMCPU)

LOG READS Count of logical reads

PHY READS Count of physical reads

LOG WRITES Count of logical writes

DMC Data Manipulation Language Commits

DMR Data Manipulation Language Rollbacks

DED Deadlocks

HI STG High-water mark of main storage used by the session
Oracle SMF Data 9-11

Auditing Database Use
Auditing Database Use
Oracle9i allows system-wide audit records to be written to operating system audit
trails. Oracle9i for OS/390 uses the System Management Facility (SMF) as its
operating system audit trail. This section describes OS/390-specific considerations
for defining and using an operating system audit trail. Refer to Oracle9i Database
Concepts and Oracle9i Database Administrator’s Guide for additional information on
auditing.

Preparing To Record Oracle9i Audit information
Two steps must be performed before SMF audit recording can take place:

1. Two INITORA parameters must be specified.

2. SMF recording by the Oracle9i instance must be enabled.

Until both steps are completed no SMF auditing will occur.

The first step is to specify INITORA parameters AUDIT_TRAIL and
AUDIT_FILE_DEST. AUDIT_TRAIL=OS is required to inform Oracle9i that
operating system auditing is desired. AUDIT_FILE_DEST is required to indicate
the desired SMF record number.

When specifying a record type, you must select a user SMF record type not
conflicting with any other user record types. This includes the Oracle9i record type
described in "Specifying the Oracle Record Type", earlier in this chapter. For
example, specifying AUDIT_FILE_DEST=205 causes Oracle9i audit records to be
written to SMF record type 205.

SMF recording of Oracle accounting information starts automatically at startup if
SMF is activated and if the Oracle record number is specified.

Because the standard system default record types activated for SMF are 128 through
255, and because the recommended number for the Oracle server (204) is within this
range, many sites automatically begin SMF recording of Oracle records when Oracle
is installed, and the SMF_STAT_RECNO parameter is supplied.

The service must be stopped and restarted for this parameter to take effect.

The second step is to enable SMF recording by the Oracle9i instance. You have two
ways to accomplish this:

1. You can use the SMFPRMxx member of SYS1.PARMLIB; or

2. You can use the OS/390 SETSMF command.
9-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Auditing Database Use
For example, issuing the following SETSMF command would cause subsystem
ORA1 to begin writing SMF records to user type 205.

SETSMF SUBSYS(ORA1,TYPE(205))

Continuing the example, if you decide also to write Oracle9i accounting records to
SMF and use the recommended SMF record type of 204 for those records, then the
following SETSMF command activates SMF recording for both record types.

SETSMF SUBSYS(ORA1,TYPE(204,205))

Interpreting Oracle9i Audit Records
To interpret Oracle audit SMF records, you first need to dump the SMF data set to a
sequential data set. You can then write a program to read the sequential data set
and extract the desired records from it. A sample program to extract and print the
audit records is provided in member ORAFMTAO of the installed Oracle9i SRCLIB
data set. It refers to the copy file ORASMFAO, containing DSECTS that map and
document the Oracle audit SMF record fields. The contents of the Oracle audit data
are defined by Oracle.

You can customize ORAFMTAO for use in your installation. If you select an SMF
record type other than 205, then update the value of the ORAREC constant to match
your chosen SMF record type and reassemble the program. SRCLIB member
ORAFTACL contains sample JCL to assemble and link ORAFMTAO. Sample JCL to
run ORAFMTAO is provided in SRCLIB member ORAFTAGO.
Oracle SMF Data 9-13

Auditing Database Use
9-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Ora
10

Oracle Net

Oracle Net for OS/390 supports network communications between Oracle
applications and Oracle database systems across different OS/390 systems and
different operating systems. Oracle provides two listeners on OS/390, an OSDI
listener (ORANET) and a generic listener (TNSLSNR). This chapter describes the
two listeners and how to configure them. For more information on Oracle Net, refer
to the Oracle9i Net Services Book Set.

The following topics are included:

■ Overview on page 10-2

■ OSDI Listener Architecture on page 10-2

■ OSDI Listener Filenames on page 10-3

■ Configuring the OSDI Listener on page 10-4

■ Operating the OSDI Listener on page 10-9

■ Formatting OSDI Listener Trace Files on page 10-10

■ Oracle Advanced Security Option Encryption on page 10-11

■ Generic Listener Architecture on page 10-13

■ Generic Listener Configuration Steps on page 10-14
cle Net 10-1

Overview
Overview
Oracle provides two listeners on OS/390, an OSDI listener and a generic listener.

The OSDI listener (ORANET), also referred to as the Net service, runs as a service
under an OSDI subsystem. In Oracle8i, Release 8.1.7 and Oracle9i, Release 1, all
TCP and LU62 connections by Oracle applications, both client and server, were
performed through the Net or Net8 service. Now, all Oracle clients on OS/390 open
their own sockets.

The OSDI listener’s primary function is to listen for inbound remote connections to
an Oracle instance. For compatibility purposes, the OSDI listener still provides
outbound connectivity services for Oracle9i, R1 and Oracle8i, 8.1.7 Oracle clients.

The generic listener is the Oracle listener (TNSLSNR) that runs on USS. It provides
additional functionality that is not present in the OSDI listener. In particular, it
provides support for external routines and shared servers. Although shared servers
is not the preferred method for connecting to an Oracle instance running on
OS/390, certain services such as XML DB, FTP, and HTTP require a shared servers
connection.

OSDI Listener Architecture
On OS/390, Oracle Net is implemented as an OS/390 OSDI service running in its
own address space separate from the Oracle service. The OSDI service acts as a
listener for the Oracle instances. All protocol-specific code runs inside the OSDI
listener.

Remote clients that access an OSDI server through an OSDI listener are dispatched
on a lightweight unit of work called an enclave SRB. An enclave is created either
once per session or for each SRB depending on the ENCLAVE keyword (described
under "PARM" on page 10-4). An SRB is scheduled each time work is required to be
done by the kernel. The enclave is deleted when the SRB completes. The OS/390
Workload Manager component may be used to control the execution characteristics
of these enclave SRBs. Refer to "OS/390 Tuning" on page 16-21 of Chapter 16,
"Oracle9i Performance", for further details.

For client and server support, OSDI listener TCP/IP uses the IBM macro
implementation and a TCP/IP network to support network communications
between the Oracle server and any remote OSDI listener TCP/IP client or server.
For more information, refer to "TCP/IP Network Considerations" on page 10-7.
10-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OSDI Listener Filenames
OSDI Listener Filenames
The product documentation, Oracle9i Net Services Book Set, refers to files in the
following form:

basename.extension

where:

An example of this form is SQLNET.ORA.

These files are then converted to DDnames. The following DDnames are
implemented under OS/390:

basename is the product name.

extension is the extension.

SQLNET defines a data set containing any SQLNET.ORA diagnostic,
ASO, or Oracle names parameters. It is not necessary to
allocate this DD unless these features are desired. Refer to
Oracle9i Net Services Book Set or the Oracle Advanced Security
Administrator’s Guide for more information.

SQLNETTC defines a data set into which trace output is written. It is
recommended that this be defined as a SYSOUT data set in a
held output class.

SQLNETLG defines a data set into which any logging output is written. It
is recommended that this be defined as a SYSOUT data set in
a held output class.

TNSNAMES defines a data set containing all the TNS connect descriptors
and aliases for your installation. For further information on
TNS connect descriptors, refer to the Oracle9i Net Services Book
Set. This DDname is not necessary on server JCL unless
DBLINKS originates from the server.

LDAP defines the location of the LDAP server.

TNSNAV TNS client navigation. (Generally not used on OS/390.)

INTCHG Interchange. (Generally not used on OS/390.)
Oracle Net 10-3

Configuring the OSDI Listener
Configuring the OSDI Listener
To create a listener under OSDI, you must first define the OSDI listener as a service
using the OSDI DEFINE SERVICE command. In addition to defining the service,
two other items that must be set up before the service can be started are: a JCL
procedure, and network protocol-specific (TCP/IP) configuration. After you have
defined OSDI listener as a service and have set up the additional items, you can
start the service, which creates OS/390 address spaces based on controls that you
have specified.

Network Service Definition
The OSDI DEFINE SERVICE command is described completely in Appendix A,
"OSDI Subsystem Command Reference". Here, we describe DEFINE parameter
considerations that are specific to the OSDI listener.

Service Name
The service name for OSDI listener can be anything that you want within the
content limitations described in Appendix A.

TYPE
The TYPE parameter for a database service must be specified as Net.

PROC
This procedure specifies the name of a service JCL procedure that you will place in
one of your system procedure libraries. The procedure need not exist when
DEFINE SERVICE is issued, but it must be in place before the service is started. The
procedure name can be anything that you choose or that the naming standards of
your installation require. The requirements for this procedure are discussed in
section "OSDI Listener Region JCL" on page 10-5.

PARM
The PARM string is used to specify additional initialization parameters that are
specific to the OSDI listener. These parameters are in the form of keywords and
determine which protocols are initialized at OSDI listener startup as well as
configuration and debugging features.
10-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring the OSDI Listener
A description of the OSDI listener keywords follows:

Example of OSDI Listener Definition
DEFINE SERVICE NET TYPE(NET) PROC(NET) -
DESC(’Oracle Network Service’) -
SID(NET) -
PARM(’HPNS GTF PORT(1521) DUMP(ORACLE.TRANDMP)’)

OSDI Listener Region JCL
As with a database service, a JCL procedure must be placed in a system procedure
library prior to attempting a start of the service. The EXEC card of the JCL must be
equivalent to the following:

HPNS specifies support for the TCP/IP protocol.

ENCLAVE(SESS|CALL) specifies the duration of the enclave. When SESS is
specified the enclave is created at logon and deleted
at logoff. When CALL is specified the enclave is
created when the server is sent a request, and is
deleted when the server waits for a receive.

PORT(nnnn) specifies the TCP/IP port number(nnnn) on which
to listen for incoming connections. The default
is 1521.

GTF may be specified at the request of Oracle Support
Services. This allows the OSDI listener internal trace
to be captured to the OS/390 Generalized Trace
Facility.

DUMP(nodename) specifies the high level node, or nodes, of transaction
dump data set names. The character string can be
up to 26 characters in length, must follow the rules
for OS/390 data set names, and must not end with a
period. When an OSDI listener transaction dump
occurs, then the value defined here will be prefixed
to a string that includes a time and date stamp to
generate a unique data set name. The default is
ORACLE.TRANDMP.

Note: The entire PARM() string must be on one line.
Oracle Net 10-5

Configuring the OSDI Listener
//NET EXEC PGM=ORANET,REGION=0M

REGION=0M is specified to ensure that the service can allocate as much private
virtual memory as it needs. Some OS/390 systems may prohibit or alter a REGION
parameter such as this, so you might want to check with your systems programmer
to determine if any changes must be made to allow the system to accept your
REGION parameter. In addition, the following DD statements are required:

STEPLIB: This DD statement should be the same as specified for the database
service. Refer to "Database Region JCL" on page 3-6.

NET8LOG: Connection-related informational messages, warning messages, and
error messages are written to this sequential output file. Oracle Corporation
recommends that it also be assigned to a JES spool file.

Example of OSDI Listener Procedure JCL
//NET EXEC PGM=ORANET,REGION=0M
//STEPLIB DD DSN= ORAN.ORAV.AUTHLOAD,DISP=SHR
//NET8LOG DD SYSOUT=X

Example of NET8LOG output
2000034 09:50:35.0 MIN0017I message service subtask initialized
2000034 09:50:35.0 MIN0016I command service subtask initialized
2000034 09:50:35.1 MIN0018I bind/unbind service subtask initialized
2000034 09:50:35.2 MIN0026I timer service subtask initialized
2000034 09:50:35.2 MIN0002I networking service NETC initialization complete
2000034 09:50:35.2 MIN0005I global vector is at 19F0A000
2000034 09:50:35.2 MIN0024I connected to WLM subsystem OSDI
2000034 09:50:50.4 MIN0700I HPNS INITAPI call performed. RC=0000, EC=00000
2000034 09:50:50.5 MIN0724I HPNS GHBY INITAPI call performed. RC=0000, EC=00000
2000034 09:50:51.1 MIN0728I HPNS KID INITAPI call performed. RC=0000, EC=00000
2000034 09:50:51.1 MIN0728I HPNS KID INITAPI call performed. RC=0000, EC=00000
2000034 09:50:51.1 MIN0728I HPNS KID INITAPI call performed. RC=0000, EC=00000
2000034 09:50:51.2 MIN0728I HPNS KID INITAPI call performed. RC=0000, EC=00000
2000034 09:50:51.2 MIN0728I HPNS KID INITAPI call performed. RC=0000, EC=00000
2000034 09:50:51.2 MIN0728I HPNS KID INITAPI call performed. RC=0000, EC=00000
2000034 09:50:51.2 MIN0713I I am listening on port 01522 socket 00000
2000034 10:05:58.8 MIN0733I Socket 0000 connected Subtask Kid1, IP 144.025.040.217, Port 01129.
2000034 10:05:58.8 MIN0733I Socket 0000 connected Subtask Kid2, IP 144.025.040.217, Port 01130.
2000034 12:00:13.9 MIN0098I networking service NETC termination in progress

Note: If the IBM TCP/IP protocol is used, the OSDI listener JCL
procedure name must have an associated OS/390 userid. Refer to
the next topic, "TCP/IP Network Considerations", for details.
10-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuring the OSDI Listener
2000034 12:00:18.9 MIN0722I HPNS Kid #003 shut down.
2000034 12:00:18.9 MIN0722I HPNS Kid #001 shut down.
2000034 12:00:18.9 MIN0722I HPNS Kid #006 shut down.
2000034 12:00:18.9 MIN0722I HPNS Kid #002 shut down.
2000034 12:00:18.9 MIN0722I HPNS Kid #005 shut down.
2000034 12:00:18.9 MIN0722I HPNS Kid #004 shut down.
2000034 12:00:18.9 MIN0723I HPNS Gethostbyname subtask ended.
2000034 12:00:18.9 MIN0721I HPNS shut down, GoodBye.
2000034 12:00:18.9 MIN0091I timer service subtask terminated
2000034 12:00:18.9 MIN0095I bind/unbind service subtask terminated
2000034 12:00:18.9 MIN0093I command service subtask terminated
2000034 12:00:18.9 MIN0094I message service subtask terminated
MIN0000I End of Net8 Log.

TCP/IP Network Considerations
The OSDI listener uses the MACRO API interface for TCP/IP, and distributes the
communications processing workload across multiple tasks in the OSDI listener
address space.

If the IBM stack is being used, then particular attention must be paid to the
MAXFILEPROC and MAXSOCKETS parameters (under AF_INET) in the
BPXPRMxx member of SYS1.PARMLIB. These parameters must be set high enough
to support the expected connection load. Both of these parameters can limit the
number of connections that the OSDI listener will be able to open. Also, the OSDI
listener JCL procedure name must have an associated OS/390 userid in order to use
TCP/IP, which is controlled by OS/390 UNIX System Services (USS). The userid
must have an OMVS RACF segment (or equivalent, if a product other than RACF is
used) if the installation is not using a default OMVS segment.

In addition, the interface resolves names through the standard GETHOSTBYNAME
API. Thus the resolution depends on how IBM TCP/IP is configured. If a DNS is
defined to TCP/IP, then it will be used. Otherwise, TCP/IP will default the
processing to its SITEINFO file. Also, IBM’s Language Environment runtime
library (LE) must be available through a STEPLIB DD or linklist to the OSDI listener
address space in order for GETHOSTBYNAME to work. This is an IBM
requirement. TNS does a GETHOSTBYNAME call at startup to test the function.
This call may take minutes to complete if a busy name server is involved. The
interface is not ready for work until the MIN0713I message is displayed on the
system console. For more information on the GETHOSTBYNAME API, refer to the
relevant IBM documentation on TCP/IP.
Oracle Net 10-7

Configuring the OSDI Listener
Client-Server Access Using the OSDI Listener

Remote Clients

Remote (inbound) clients access Oracle database instances through the OSDI
listener, as follows:

1. The OSDI listener listens on a single endpoint (network address) for each
protocol. All remote clients that go through a particular OSDI listener with a
particular protocol use the same network address regardless of which database
instance they want to access. All TCP/IP clients specify the same hostname (or
IP) and port number.

2. Clients indicate the target database instance that they want with the
’(CONNECT_DATA=(SID=ssss))’ clause in the OSDI listener address
string.

Oracle clients on OS/390 are also able to use an Oracle Names or LDAP server
running on another platform to resolve connection requests. The following samples
of the OSDI listener configuration file are required to make use of this service.

Name Server

SQLNET DD or SQLNET.ORA Definitions

###############
Names: (CONNECT_TIMEOUT = 0) -MUST- be specified
###############
NAMES.DEFAULT_DOMAIN = world
NAMES.DEFAULT_ZONE = my.domain.com
NAMES.DIRECTORY_PATH = (TNSNAMES,ONAMES,LDAP)
NAMES.PREFERRED_SERVERS =
 (ADDRESS_LIST =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = names_host)
 (Port = 1575)
)
 (CONNECT_TIMEOUT = 0)
)
)

10-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Operating the OSDI Listener
LDAP Server

LDAP DD or LDAP.ORA Definitions

A sample LDAP.ORA file:

DEFAULT_ADMIN_CONTEXT = "c=us"
DIRECTORY_SERVERS = (hostname:389:636)
DIRECTORY_SERVER_TYPE = OID

LDAP.ORA can be generated using the NETCA utility.

Operating the OSDI Listener
The OSDI listener is started by the OSDI subsystem start command, for example:

ORSS START NET

This command would start the OSDI listener defined in the earlier example for
"Example of OSDI Listener Definition" on page 10-5 if the subsystem were named
’ORSS’. You should then see the OSDI listener PROC start up followed by the
following messages from the OSDI listener address space:

MIN0001I networking service initializing
MIN0002I networking service NET8 initialization complete
MIN0713I I am listening on port 01521 socket 00000

Additional messages are written to the NET8LOG DD, but message traffic to the
console is limited to error and warning messages.

Several commands are available for communicating with a running Net service.
Commands are issued using the OS/390 MODIFY (or F) system operator command
with the general format:

F name,cccc pppppp

where:

name is the jobname or identifier of the OSDI listener

cccc is a command verb from the table below

pppppp represents an appropriate parameter for that command
Oracle Net 10-9

Formatting OSDI Listener Trace Files
The OSDI listener can be stopped with the OS/390 stop command (STOP or P), as in
’p net’, or via the OSDI subsystem stop command, as in ’ORSS STOP NET’. In
either case, the following messages will be seen on the console, assuming both
protocols were active:

MIN0098I networking service NET termination in progress
MIN0721I HPNS shut down, GoodBye.
MIN0099I networking service termination complete

The OSDI listener will also respond to the OSDI subsystem ’display’ and
’display long’ commands with appropriate information from the address
space. Finally, the OSDI subsystem ’drain’ command will prevent any new
connections on either protocol. Existing connections will not be affected. The OSDI
subsystem ’RESUME’ command will restore the ability of clients to establish new
connections through the OSDI listener.

Formatting OSDI Listener Trace Files
The OSDI listener provides a utility program called TRCASST that formats the trace
files the OSDI listener can produce. You may be asked to run TRCASST to help
gather diagnostic information required by Oracle Support Services. Sample JCL for
TRCASST is provided in oran.orav.SRCLIB(TRCASST).

Before you use TRCASST, ensure that the trace files have not been created with
carriage control. TRCASST will be unable to process such files.

When TRCASST runs, the TNSUSMSG DDname must point to a PDS containing a
TNSUS message file. This file was placed into oran.orav.MESG(TNSUS) during
OSDI listener installation.

Table 10–1 Command Verbs for OS/390 MODIFY (or F) System Operator Command

start hpns Starts support for the specified
protocol in the OSDI listener.

stop hpns Stops support for the specified
protocol.

dis tcp | all | pool Display information about existing
connections for the specified
protocol or storage pool statistics.
10-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Advanced Security Option Encryption
Oracle Advanced Security Option Encryption
The OSDI listener supports CHECKSUM and encryption algorithms. The following
sections describe a basic method of verifying this feature, if it is to be used by your
site. The easiest way to tell if Oracle Advanced Security Option (ASO) encryption is
attempting to work is to deliberately set wrong configuration parameters and
attempt a connection between the server and client. Incorrect parameters cause the
connection to fail.

After receiving the expected failure message, set the configuration parameters to the
correct settings and try the connection again. ASO encryption is working properly
if no further error messages are received.

The following procedures test ASO encryption by this method. The incorrect
parameter settings produce error 12660.

Setting Up ASO Encryption for Test

Checklist for Setting Up ASO Encryption

1. Set ASO encryption parameters for the server

2. Set ASO encryption parameters for the client

Step 1: Set ASO Encryption Parameters for the Server

Use ISPF to edit the OSDI listener configuration file on the OS/390 system (server
system) to add the following parameters and values. If the server is remote (not
OS/390), then use the appropriate editor for the server platform to change
SQLNET.ORA.

SQLNET.CRYPTO_CHECKSUM_SERVER = REJECTED
SQLNET.ENCRYPTION_SERVER = REJECTED
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER = (MD5)
SQLNET.ENCRYPTION_TYPES_SERVER = (DES40,RC4_40)
SQLNET.CRYPTO_SEED = "abcdefg"

The value shown for SQLNET.CRYPTO_SEED is only an example. Set it to the
value you want. Refer to the Oracle Advanced Security Administrator’s Guide for more
information.
Oracle Net 10-11

Oracle Advanced Security Option Encryption
Step 2: Set ASO Encryption Parameters for the Client

Edit the OSDI listener configuration file on the client system to add the following
parameters:

SQLNET.CRYPTO_CHECKSUM_CLIENT = REQUIRED
SQLNET.ENCRYPTION_CLIENT = REQUIRED
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT = (MD5)
SLQNET.ENCRYPTION_TYPES_CLIENT = (DES40,RC4_40)
SQLNET.CRYPTO_SEED = "abcdefg"

The value shown for SQLNET.CRYPTO_SEED is only an example. Set it to the
same value used on the server system.

Testing ASO Encryption
After completing Steps 1 and 2 of the configuration procedure, you are ready to test
the operation of the ASO encryption.

Checklist for Testing ASO Encryption

1. Connect client and server

2. Reset configuration parameters on server

Step 1: Connect Client and Server

Attempt a connection between the server and client systems. You receive the
following error message:

ORA-12660: Encryption or crypto-checksumming parameters incompatible

Step 2: Reset Configuration Parameters on Server

Change the ASO encryption parameters on the server to:

SQLNET.CRYPTO_CHECKSUM_SERVER = REQUIRED
SQLNET.ENCRYPTION_SERVER = REQUIRED

Attempt the connection between the client and server again. If no error message is
returned and the connection completes, then ASO encryption is working properly.
10-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Generic Listener Architecture
Generic Listener Architecture
The generic listener runs under OS/390 Unix System Services (USS). It listens for
incoming client connection requests and manages traffic to the server. When a client
requests a network session with a database server, the generic listener receives the
actual request. If the client information matches the generic listener information,
then the generic listener grants a connection to the database server.

Connections to the database are only supported through shared servers (formerly
multi-threaded servers, or MTS). The Oracle instance must register its shared
servers with the generic listener. For more information about the generic listener,
refer to the Oracle9i Net Services Administrator’s Guide.

Oracle External Routines
Oracle external routines (previously known as external procedures) are functions or
procedures written in a third-generation language that can be called from PL/SQL
code. The supported languages are C and Java. The user-written applications must
be invoked under OS/390 Unix System Services (USS) and must be in DLL
(dynamic loadable library) form. The use of external routines requires the generic
listener to listen for external routine calls. For information on configuring the
generic listener for external routines, refer to "Generic Listener Configuration Steps"
on page 10-14. For more information about external routines, refer to the Oracle9i
Application Developer’s Guide - Fundamentals.

Oracle Shared Servers
A shared server is a database server that is configured to allow many client
processes to share very few server processes. With shared server architectures, client
processes ultimately connect to a dispatcher, which handles multiple incoming
network session requests to shared server processes. The process monitor (PMON)
process registers the location and load of the dispatchers with the generic listener,
enabling the generic listener to forward requests to the least loaded dispatcher.
Certain Oracle functionality (XML DB, FTP, HTTP) is only provided using shared
servers. Oracle shared servers are supported on OS/390 through the generic
listener running on USS. For information on configuring the generic listener for
shared servers, refer to "Generic Listener Configuration Steps" on page 10-14. For
more information about shared servers, refer to the Oracle9i Net Services
Administrator's Guide.
Oracle Net 10-13

Generic Listener Configuration Steps
Generic Listener Configuration Steps
The following steps describe how to configure the generic listener for external
routines and shared servers under USS.

The command examples in this section were created with the assumption that you
are connected under TSO. If you are connected via rlogin, then you may be using
native UNIX commands, and you will need to modify the statements that have been
provided in this chapter.

The user-written applications stored in the DLL are invoked by the Oracle server by
issuing a TCP connection to the generic listener. The generic listener then executes
the user-written application from the DLL.

The generic listener configuration steps are as follows:

■ Step 1: Add the Init.ora Parameter on page 10-14

■ Step 2: Create and Modify the Tnsnames.ora File on page 10-15

■ Step 3: Create and Modify the Listener.ora File on page 10-16

■ Step 4: Start the Generic Listener on page 10-17

Step 1: Add the Init.ora Parameter
This step is required for shared servers, only. If you are configuring the generic
listener for external routines, skip to the next step.

For shared servers, the Oracle instance must be configured with the following
init.ora parameter:

DISPATCHERS ="(ADDRESS=
(PROTOCOL=TCP) (PORT=port_nurnber_l))
 (LISTENER=tnsname_entry))"
DISPATCHERS ="(ADDRESS= (PROTOCOL=TCP) (PORT=port_number_2))
 (LISTENER=tnsname_entry))"
MAX_DISPATCHERS =xx
MAX_SHARED_SERVERS =yy

Note: As with other USS components, you will need to set your
environment variables correctly, including $PATH, $LIBPATH, and
$TNS_ADMIN. Refer to the Oracle9i Enterprise Edition User’s Guide
for OS/390 for more information.
10-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Generic Listener Configuration Steps
where

Step 2: Create and Modify the Tnsnames.ora File
Edit the tsnames.ora file for the Oracle server for either external routines or shared
servers, as described in the following sections.

For External Routines

Add to the tnsnames.ora file an entry similar to the following:

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION=
(ADDRESS=(PROTOCOL=TCP)(HOST=hostname)(PORT=nnnn))
 (CONNECT_DATA=(SID=EXTPROC))
)

where:

For Shared Servers

Add to the tnsnames.ora file an entry similar to the following:

TNSNAME_ENTRY =
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP) (HOST=hostname) (PORT=listener_port))
)

port_number_n is the port number that the dispatcher will listen on

tnsnames_entry is the connect string name used to locate the appropriate
tnsnames.ora entry

xx is the number of dispatchers

yy is the number of servers

hostname is the name of the OS/390 machine where the OSDI
RDBMS is running

port=nnnn is the TCP port number on which the network listener
will listen (refer to "Step 3: Create and Modify the
Listener.ora File" in the following section.)
Oracle Net 10-15

Generic Listener Configuration Steps
where:

Step 3: Create and Modify the Listener.ora File
Create the listener.ora file by issuing the following edit statement:

oedit $ORACLE_HOME/network/admin/listener.ora

Modify the listener.ora file for either external routines or shared servers, as
described in the following sections.

For External Routines

Add to the listener.ora file an entry similar to the following:

listener =
 (address_list =
 (address=(protocol=tcp) (host=hostname) (port=nnnn))
)

sid_list_listener =
 (sid_list =
 (sid_desc =
 (sid_name = extproc)
 (oracle_home = $ORACLE_HOME)
 (program = extproc)
)
)

where:

tnsnaxne_entry is the tnsname_entry specified in the init.ora
file

hostname is the node name of the listener

listener_port is the port number specified in listener.ora for the listener

hostname is the name of the OS/390 machine where the OSDI
RDBMS is running

port=nnnn is the TCP port number on which the generic listener will
listen
10-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Generic Listener Configuration Steps
At this point in the configuration process, make sure that your database and
network services are running.

For Shared Servers

Add to the listener.ora file an entry similar to the following:

listener = (description=
 (address_list=
 (address=(protocol=tcp)(host=hostname)(port=listener_port))
)
)
LOGGING_LISTENER = ON
LOG_DIRECTORY_LISTENER = /oracle_home/ log!
TRACE_LEVEL_LISTENER = 16
TRACE_DIRECTORY_LISTENER = /oracle_home/ trace!
DIRECT_HANDOFF_LISTENER = NO

where:

At this point in the configuration process, make sure that your database and
network services are running.

Step 4: Start the Generic Listener
Perform the following steps to start the generic listener:

Note: The oracle_home entry in the example above must be
given explicitly, not as $ORACLE_HOME. It must, however, match
the value of $ORACLE_HOME.

hostname is the node name of the generic listener

listener_port is port on which the generic listener is listening

Note: On OS/390 "DIRECT_HANDOFF_LISTENER=NO" is a
required parameter.
Oracle Net 10-17

Generic Listener Configuration Steps
a. Verify that the ORACLE_HOME environment variable is set to the same
value that was used when you extracted the contents of the Oracle9i Text
tar file.

b. Run the generic listener control program by entering "lsnrctl" from the USS
environment.

c. When prompted with the LSNRCTL> prompt, enter "start" to start the
generic listener.

d. After you see the messages about the generic listener starting, enter "quit"
to exit from the generic listener control program.

The following sample dialogue is typical of what you should expect when you run
lsnrctl. Output is prefixed with the character ">". The character ">" will not appear
on your screen. Everything else, such as "listen" and "start", is typed at the
keyboard.

lsnrctl
> LSNRCTL for OE390: Version 9.0.1.0.0 - Production on dd-Mon-yyyy hh:mm:ss
> (c) Copyright 1991, 2001, Oracle Corporation. All rights reserved.
> Welcome to LSNRCTL, type "help" for information.
> LSNRCTL>
start
> Starting $ORACLE_HOME/bin/tnslsnr: please wait...
> TNSLSNR for OE390: Version 9.0.1.0.0 - Production
> System parameter file is $ORACLE_HOME/network/admin/listener.ora
> Log messagss written to $ORACLE_HOME/network/log/listener.log
> Trace inforamtion written to $ORACLE_HOME/network/trace/listener.trc
> Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=hostname)(PORT=nnnn)))
> Connecting to (address=(protocol=tcp)(host=mvs02)(port=nnnn))
> STATUS of the LISTENER
> ------------------------
> Alias LISTENER
> Version TNSLSNR for OE390: Version 9.0.1.0.0 - Production
> Start Date DD-Mon-yyyy hh:mm:ss
> Uptime 0 days 0 hr. 0 min. 1 sec
> Trace Level support
> Security OFF
> SNMP OFF
> Listener Parameter File $ORACLE_HOME/network/admin/listener.ora
> Listener Log File $ORACLE_HOME/network/log/listener.log
> Listener Trace File $ORACLE_HOME/network/trace/listener.trc
> Listening Endpoints Summary...
> (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=hostname)(PORT=nnnn)))
> Services Summary
> Service "extproc" has 1 instance(s).
 Instance "extproc", status UNKNOWN, has 1 handler(s) for this service.
>..
10-18 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Generic Listener Configuration Steps
> The command completed successfully
> LSNRCTL>
quit

The listener should now be running.
Oracle Net 10-19

Generic Listener Configuration Steps
10-20 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Access Manager fo
11

Oracle Access Manager for CICS

This chapter discusses how to configure and operate the Oracle Access Manager for
CICS. The following topics are included:

■ Oracle Access Manager for CICS Applications on page 11-2

■ Oracle Access Manager for CICS Configuration on page 11-2

■ Configuration Steps on page 11-5

■ Post-Configuration Steps on page 11-21

■ Recovery Considerations on page 11-23

■ Two-Phase Commit Processing under CICS on page 11-24

■ Shutting Down Oracle Access Manager for CICS with FORCE on page 11-26

■ CEDF Support on page 11-27

■ Oracle Access Manager for CICS Command Usage on page 11-27

■ Oracle Access Manager for CICS Command Usage on page 11-27
r CICS 11-1

Overview
Overview
Oracle Access Manager for CICS communicates with an OSDI local database server
(but not an MPM database server), or it communicates with a remote Oracle
database (but not an MPM database). The target service or remote database is
defined in a TNSNAMES entry that is used as input when the thread table is
created. Each instance of Oracle Access Manager for CICS communicates directly
with one OSDI service or one remote database.

All OSDI clients connect to a service address space using the bind mechanism.
Oracle Access Manager for CICS connects to a service address space at startup time
using an OSDI special purpose bind that is specific to multi-connection
environments. This provides efficiencies when subsequent connections are created
to service any requests from Oracle transactions in the CICS region.

Connections for Oracle CICS transactions, whether to a local or remote database, are
created and reused based on criteria defined in the thread table, and they are
assigned to a CICS transaction the first time that it accesses Oracle.

When the CICS transaction request requires work to be done in the Oracle database,
processing is switched to a CICS subtask which contains an IBM Language
Environment (LE) environment prepared for executing the Oracle client code
(LIBCLNTS). The Oracle client code communicates with a local Oracle server via
cross-memory services or with a remote server via Oracle networking socket calls to
satisfy the request.

Oracle Access Manager for CICS Applications
You can run applications built with these Oracle products for OS/390 under Oracle
Access Manager for CICS:

■ Pro*COBOL

■ Pro*C

■ Pro*PL/I

Oracle Access Manager for CICS Configuration
The following figure shows the relationship between an application program and
Oracle Access Manager for CICS.
11-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Access Manager for CICS Configuration
Figure 11–1 CICS Adapter for an Application Program

In the figure, ORA0 is the example adapter name. It is assigned on the CICS side
when Oracle Access Manager for CICS is started. Refer to "Step 8: Start Oracle
Access Manager for CICS Adapter" on page 11-17 and the START command details
on page 11-31 for more information on the adapter name. An adapter name gets
associated with an application program when it is linked with an ORACSTUB stub.
Refer to "Step 6: Generate the ORACSTUB Stub for CICS" on page 11-16 for details
on generating an ORACSTUB stub.

2.

Application

1.

ORA0

CICS Adapter Application Program

ORACSTUB
NAME ORA0
Oracle Access Manager for CICS 11-3

Oracle Access Manager for CICS Configuration
Configuration Checklist
Oracle Access Manager for CICS must be installed successfully before you can
configure it. Refer to the Oracle9i Enterprise Edition Installation Guide for OS/390, for
more information.

Configuration Steps

❏ Step 1: Define and Assemble Thread Definition Table

❏ Step 2: Define the MESG Library to CICS

❏ Step 3: Copy Access Manager for CICS Modules to CICS Libraries

❏ Step 4: Define CICS to Oracle and Grant Privileges

❏ Step 5: Set INITORA Parameter and Prepare Host

❏ Step 6: Generate the ORACSTUB Stub for CICS

❏ Step 7: Update CICS Tables to Include Oracle Access Manager for CICS

❏ Step 8: Start Oracle Access Manager for CICS Adapter

❏ Step 9: Set Up Automatic Initialization for Oracle Access Manager for CICS

Post-Configuration Steps

❏ Step 1: Modify the Sample Compilation Procedures

❏ Step 2: Use the SRCLIB Member OSAMPLE
11-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
Configuration Steps

Step 1: Define and Assemble Thread Definition Table
A table, defined and assembled as a load module, defines threads and their
characteristics to Oracle Access Manager for CICS. When you create the thread
definition table, configure the threads to match the expected workload and
priorities for Oracle Access Manager for CICS users and applications.

A thread represents a connection to the database. It is maintained by Oracle Access
Manager for CICS. All active CICS transactions that communicate with an Oracle
server database use a thread.

Before defining your table, select a table name appropriate for your installation.
The table name is specified to Oracle Access Manager for CICS at startup in the
Oracle Access Manager for CICS START command.

Complete these steps to build the thread definition table.

Step 1.1: Determine the Requirements for Each Transaction

Consider these criteria in determining the requirements for each transaction:

■ The authorization assignment specified in the AUTH parameter

■ The peak and average rates of the transaction

■ Whether the transaction requires dedicated threads

■ Whether Oracle COMMIT processing or CICS SYNCPOINT is to be used for
commit and rollback functions. For more information, refer to "Recovery
Considerations" on page 11-23.

Note: The thread table must be reassembled for the current release
of Oracle Access Manager for CICS.

Note: You can also use the thread definition table to create
automatic startup and shutdown (PLTPI and PLTSD) programs.
Oracle Access Manager for CICS 11-5

Configuration Steps
Step 1.2: Define the Thread Requirements in the Thread Definition
Table

When you define a thread table:

■ Use the TRANSAC parameter to group transactions according to similar
characteristics. If a transaction requires dedicated threads, then you should be
sure to give it a separate definition.

■ Use the COPIES parameter to specify the number of threads you need to define
for each group.

■ Base the thread definition on the peak and average rates of the transaction. The
specified value must be large enough to handle a workload for the number of
transactions specified in the TRANSAC parameter.

■ Use the PROTECT parameter to specify how to protect the threads defined in
the COPIES parameter. The session is not dropped, even if the IDLE TIME has
expired.

■ Use the WAIT parameter to specify the action to take if no thread is available.

Thread Definition Table Parameters
This list describes the thread definition table parameters:

AM4COID is used, if specified, as the Oracle user id for the control thread. It
must be a constant character string of 30 characters or less, and
requires the AM4CAUTH parameter. If omitted, then the CICS
applid is used for autologon. This parameter is specified on the
TYPE=START statement and requires that at least one thread be
defined using the OID and AUTH parameters.

AM4CAUTH is the authentication string (password) for the Oracle user id
specified in the AM4COID parameter. It must be a constant
character string of 30 characters or less. This parameter is specified
on the TYPE=START statement.

AUTH determines how the Oracle user id is derived without an explicit
connect statement. The Oracle userid is also used for SMF accounting.

A maximum of three values can be specified for AUTH. Valid values
are:

OPID based on the operator id.

PROGRAM causes the Oracle user id to be derived from the
program name.
11-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
TERMID causes the Oracle user id to be derived from the
terminal identification.

TRANSID causes the Oracle user id to be derived from the
transaction id.

USERID causes the Oracle user id to be derived from the
CICS user id.

authorization
string

causes the Oracle user id to be the specified
constant character string. The implied Oracle
user id is derived by prefixing the string OPS$ to
the value specified by this AUTH parameter.

If the OID parameter is specified, then this is the
authentication string (password) used for that
Oracle user id. OPS$ will not be prefixed to this
string.

For example, by specifying AUTH=’SCOTT’,
OPS$SCOTT is used as the Oracle user id.

CINTERVL specifies the control transaction time interval. This interval is used to
determine how frequently unprotected idle threads are dropped.
Idle threads defined with PROTECT=YES are not affected by the
setting of CINTERVL. The interval also affects the length of time it
can take Oracle Access Manager for CICS to invoke emergency
shutdown when the Oracle server cannot be contacted. The value is
expressed in minutes and seconds, and valid values range from 0000
to 5959. The default value is 0030 (00 minutes, 30 seconds).

COMMIT specifies whether to use Oracle COMMIT processing or CICS
SYNCPOINT for commit and rollback functions.

Valid values are CICS and ORACLE. The default is ORACLE. This
parameter can also be specified on the TYPE set to START statement
or the Oracle Access Manager for CICS START command.

COPIES indicates the number of threads this definition generates.

DESC defines the OS/390 descriptor code used for the console message.
Valid values are numeric. The default is 11. DESC is an optional
parameter.
Oracle Access Manager for CICS 11-7

Configuration Steps
ENAME is used in conjunction with TYPE=ENV to specify environment
variables for Oracle Access Manager for CICS. It is useful for setting
the NLS environment variables to values appropriate for your
environment. The syntax is:

ENAME=(var=val, ...)

where var is the name of the environment variable you wish to set,
and val is the value you wish to give to var. You can specify
several var=val pairs separated by commas in a single ENAME
parameter, or a separate TYPE=ENV can be coded for each variable.
Do not enclose the names or values in quotes.

The following example shows a single ENAME parameter being
used to specify NLS_LANG and NLS_DATE_FORMAT:

ORACICS TYPE=START,SSN=ORA0
ORACICS TYPE=THREAD,COPIES=30,PROTECT=NO, X
 TRANSAC=*
ORACICS TYPE=ENV, X
 ENAME=(NLS_LANG=AMERICAN_AMERICA.WE8EBCDIC37C, X
 NLS_DATE_FORMAT=DD-MON-RR)

FREESPC defines the amount of free space to be allocated for later additions.
This parameter is not implemented.

MAXCRSR defines the maximum number of cursors used. The MAXCRSR
parameter is patterned after the precompiler option
MAXOPENCURSORS. Refer to the Pro*C/C++ Precompiler
Programmer’s Guide for more information about the
MAXOPENCURSORS option. The default is 10.

MAXTHRD defines the maximum number of threads allocated for this table
definition. If the total threads for the table exceed this value, then the
MAXTHRD value is adjusted. The default is 10.

NAME identifies the adapter you want started. If NAME is not specified,
then the started adapter name defaults to the thread table name.
This parameter only applies if TYPE is set to PLTPI.

OID is used, if specified, as the Oracle user id for this thread definition,
including all threads generated with the COPIES parameter. It must
be a constant character string of 30 characters or less. When
specified, the value in the AUTH parameter is used as the associated
authentication string.

PRIORITY specifies whether Oracle Access Manager for CICS subtasks are run
at a higher or lower priority than the current dispatching priority
when subtasking is used. Valid values are HIGH and LOW. If HIGH
is specified, then Oracle Access Manager for CICS subtasks are run at
a higher dispatching priority. If LOW is specified, then Oracle
Access Manager for CICS subtasks run at a lower dispatching
priority. LOW is the default.
11-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
PROGRAM specifies the name of the program used with the Oracle Access
Manager for CICS transaction. ORACICS is the default. This
parameter only applies if TYPE is set to PLTSD.

PROTECT specifies whether a thread is protected. Valid values are YES, NO,
and nn, where nn is the number of protected threads when used with
the COPIES parameter. A value of YES indicates the thread must be
protected. (The session is not dropped, even if IDLE TIME has
expired.) A value of NO indicates the thread does not need to be
protected. NO is the default.

ROUTCDE defines the OS/390 route code to use when writing messages to the
OS/390 operator console. The default is 11.

SSN specifies the alias name used for the Oracle Net connection (as
specified in the TNSNAMES entry used as input to the CIN step of
the TBLJCLN job in SRCLIB) for database access.

The alias must be four characters or fewer.

START specifies the name of the program for CICS PLTPI processing when
TYPE is set to PLTPI.

STOP specifies the name of the adapter stopped during PLTSD shutdown
processing. This name corresponds to the value of the NAME
parameter used if shutdown processing is performed manually with
the STOP command.

TRANSAC specifies the transaction codes eligible to use the thread. A value of *
indicates the thread is to be used as a default and no other definitions
apply.

TYPE is a parameter specifying the type of entry being defined. Valid values
are:

CONTINUE indicates the previous definition is being
continued.

ENV is used in conjunction with the ENAME
parameter to specify environment variables for
Oracle Access Manager for CICS.

END indicates the end of a table.

START indicates the beginning of the table and sets
default values.

THREAD indicates a thread is being defined.
Oracle Access Manager for CICS 11-9

Configuration Steps
Sample Thread Definition Table

This sample thread definition table resides in the SRCLIB library in the ORACICSD
member:

ORACICS TYPE=START, X
 SSN=ORA0, X
 MAXTHRD=30, X
 MAXCRSR=5
ORACICS TYPE=THREAD, X
 COPIES=4, X
 PROTECT=2, X
 TRANSAC=(TTRN,TRN2,TRN3)
ORACICS TYPE=CONTINUE, X
 TRANSAC=(TRN9,TRNA)
ORACICS TYPE=THREAD, X
 COPIES=4, X
 PROTECT=NO, X

PLTPI indicates PLTPI generation. For PLTPI
generation, the only valid value is PLTPI. A
value of PLTPI indicates this definition generates
the PLTPI program for Oracle Access Manager
for CICS. Refer to "Step 9.1: Generate the PLTPI
Program" for an example of a PLTPI generation
statement. You must perform PLTPI generation
separately from the thread table and PLTSD
generation.

PLTSD indicates PLTSD generation. For PLTSD
generation, the only valid value is PLTSD. A
value of PLTSD indicates this definition
generates the PLTSD program for Oracle Access
Manager for CICS. Refer to "Step 9.2: Generate
the PLTSD Program" for an example of a PLTSD
generation statement. You must perform PLTSD
generation separately from the thread table and
PLTPI generation.

WAIT specifies the action to be taken when all threads specified for a
transaction are in use. Valid values are YES, NO, and POOL. YES
indicates the transaction is placed in a CICS WAIT state until a thread
is available. NO indicates a return code is set indicating no threads
are available. POOL indicates the general thread pool (TRANSAC=*)
is used. YES is the default.
11-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
 TRANSAC=(TRN1,TRNT,TRN4), X
 AUTH=(USERID,’STRING’)
ORACICS TYPE=THREAD, X
 COPIES=4, X
 PROTECT=NO, X
 TRANSAC=(TRN5,TRN6,TRN7), X
 AUTH=’AUTHORIZATION_STRING’
ORACICS TYPE=THREAD, X
 COPIES=4, X
 PROTECT=NO, X
 TRANSAC=TRN8
ORACICS TYPE=THREAD, X
 COPIES=4, X
 PROTECT=NO, X
 TRANSAC=*
ORACICS TYPE=END
 END

Special Considerations

These conditions apply to thread table definitions:

■ If a transaction code does not have an associated thread table definition, then
the general thread pool definitions (TRANSAC=*) are used.

■ If all threads for a transaction are in use and the WAIT parameter specifies
POOL, then the thread used has all the characteristics defined in the
TRANSAC=* definition. The transaction thread characteristic is not carried
over to the pool thread.

■ Use AUTH=’authorization_string’ to define threads using a constant
character string. AUTH=’authorization_string’ derives the Oracle user id
and provides the highest level of thread sharing and throughput. AUTH set to
TRANSID or AUTH set to PROGRAM performs equally only if one TRANSID
or PROGRAM uses a thread definition.

Note: To use an explicit Oracle id for the control thread, use the
AM4COID and AM4CAUTH parameters on the TYPE=START. To
define threads to use an explicit Oracle id, use the OID and AUTH
parameters on the TYPE=THREAD entry.
Oracle Access Manager for CICS 11-11

Configuration Steps
Step 1.3: Assemble and Link Thread Table

1. Assemble and link the table using one of the following methods.

2. Assemble the table for database access. The sample JCL in SRCLIB library
member TBLJCLN assembles and links the input table.

Oracle Net allows variable block TNSNAMES files. Oracle Access Manager
requires fixed block of 80. In addition, Oracle Net allows free format. Oracle
Access Manager must have its entry as the only entry and cannot have any
extra spaces.

In the INFILE DD statement in the first step (CIN), specify your TNSNAMES
data set containing your TNS connect descriptor and alias for CICS. The alias
name for CICS must be four characters or fewer and must match the SSN
parameter specified in the thread table definition or the SSN override parameter
on the START command. There must be only one entry used by CICS. You
might need to create a separate PDS member from one of the TNSNAMES
entries for the CICS. The service name or alias must be on a separate line from
the rest of the connect descriptor. A TNSNAMES specification for Oracle
Access Manager might be similar to:

ORA0=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQUNIX)
 (PORT=1533)
 (CONNECT_DATA=
 (SID=O803)))

For a local database, the specification might be similar to:

ORA0=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=xm)
 (SID=ORA0)))

Note: If you are configuring Oracle Access Manager for both local
and remote access, then you must assemble the remote thread table
with a different name than the local thread table.
11-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
"OSDI Listener Filenames" on page 10-3 also contains a description of
TNSNAMES.

In the SYSLMOD DD statement, specify the name of the data set where the
table load module resides.

Step 1.4: Installing a Revised Thread Table with CICS Executing

If you want to install a revised thread table while CICS is executing, then perform
these steps:

1. Ensure that you have reassembled the table as described in "Step 1.3: Assemble
and Link Thread Table".

2. Issue the STOP command for the adapter.

3. Define the thread definition table to CICS using the CEDA command:

CEDA DEFINE PROGRAM(tablename) LANG(ASSEMBLER) GROUP(groupname)

where:

4. Issue the CICS master terminal command to install the revised thread table
where tablename is the name of the revised thread definition table:

CEMT SET PRO(tablename) NEW

5. Issue the START command for the adapter.

Step 2: Define the MESG Library to CICS
You can make the MESG Library available to CICS in one of two ways:

■ Add an ORA$LIB DD statement to the CICS JCL specifying the MESG library
data set name.

■ Concatenate the MESG library data set name to the CICS STEPLIB DD
concatenation.

tablename is the name of your thread definition table.

groupname is the name of the group, typically ORACLE.

Note: This library must be authorized to be in CICS STEPLIB.
Oracle Access Manager for CICS 11-13

Configuration Steps
Step 3: Copy Access Manager for CICS Modules to CICS Libraries
■ Copy the ORACICSC and LIBCLNTS modules from the Oracle CMDLOAD

library to an authorized library in the CICS STEPLIB concatenation. This library
must be a PDSE library.

■ Copy the ORACICS and CICADPX modules from the Oracle CMDLOAD
library to a library in the CICS DFHRPL concatenation or alternatively, add the
Oracle CMDLOAD library to the CICS DFHRPL concatenation.

Step 4: Define CICS to Oracle and Grant Privileges
Oracle Access Manager for CICS establishes a database connection at startup

■ to perform recovery when CICS syncpoint is used,

■ to manage idle connections,

■ and to verify that Oracle services are available during execution.

You must define Oracle Access Manager for CICS as an Oracle user by one of the
following methods:

■ If you are using AM4COID and AM4CAUTH in the thread table, then the
userid is the value specified in the AM4COID parameter. For example, if
AM4COID=AM4CICS and AM4CAUTH=AMTHREAD, then the following
statements would be used to define Oracle Access Manager for CICS:

CREATE USER AM4CICS IDENTIFIED BY AMTHREAD;
GRANT CREATE SESSION TO AM4CICS;

■ If you are not using AM4COID and AM4CAUTH, then the Oracle Access
Manager control thread uses OS authenticated logon based on the CICS applid.
Refer to the Oracle9i Database Administrator’s Guide for more information about
OS authenticated logins. The OS_AUTHENT_PREFIX initora parameter is
prefixed to the CICS applid to create the Oracle userid. For example, if
OS_AUTHENT_PREFIX = "" (null prefix), and if the CICS applid is CICSAPPL,
then the following statements would be used to define Oracle Access Manager
for CICS:

CREATE USER CICSAPPL IDENTIFIED EXTERNALLY;
GRANT CREATE SESSION TO CICSAPPL; ‘‘‘‘‘‘‘‘‘‘‘‘
11-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
To enable FORCE and SELECT privileges for recovery processing if COMMIT is set
to CICS (that is, if CICS SYNCPOINT processing is used instead of Oracle
COMMIT), then you must issue the following statements, where userid is the
Oracle Access Manager for CICS userid from above:

GRANT FORCE ANY TRANSACTION TO userid;
GRANT SELECT ON SYS.PENDING_TRANS$ TO userid;
GRANT SELECT ON SYS.PENDING_SESSIONS$ TO userid;

Step 5: Set INITORA Parameter and Prepare Host
You must complete the following steps on the server for Oracle Access Manager for
CICS. For additional information, refer to the Oracle server installation
documentation.

Step 5.1: Set DISTRIBUTED_TRANSACTIONS

Set the INITORA parameter DISTRIBUTED_TRANSACTIONS to a value equal to
or greater than the number of concurrently executing Oracle transactions under
CICS. Consider other distributed transactions that are executing concurrently
under the Oracle server when setting this value.

If you are using the default Oracle user id for the control thread (the CICS applid),
then you must perform the following:

Step 5.2: Set REMOTE_OS_AUTHENT_TRUE

If you are preparing a remote host for Oracle Access Manager for CICS, and if OS
authenticated logon is being used, then set the INITORA parameter
REMOTE_OS_AUTHENT to TRUE on the remote database.

Step 5.3: Set OS_AUTHENT_PREFIX

If OS authenticated logon is being used, then ensure that the value of the INITORA
parameter OS_AUTHENT_PREFIX on the remote database is used in the GRANT
statements in "Step 4: Define CICS to Oracle and Grant Privileges".

Note: If a local database is accessed and the CICS applid is used, it
is important to review the LOGON_AUTH setting in the Database
Service definition.
Oracle Access Manager for CICS 11-15

Configuration Steps
Step 6: Generate the ORACSTUB Stub for CICS
To generate the ORACSTUB stub for CICS:

1. Determine your CICS adapter name.

2. Create the generation statement. Refer to SRCLIB library member ORACICSD
for an example.

3. Generate ORACSTUB. Refer to SRCLIB library member ORACJCL for an
example.

4. Relink your Oracle Precompiler and OCI programs with the generated
ORACSTUB. Place the library containing ORACSTUB in the SYSLIB
concatenation of the link JCL and insure the SYSLIN DD contains an INCLUDE
SYSLIB (ORACSTUB) statement.

Step 7: Update CICS Tables to Include Oracle Access Manager for
CICS

If you are running CICS release 2.2 or less, then complete Steps 7.1 through 7.3.

If you are running CICS release 3.0 or higher, then do not perform Step 7. Instead,
use the RDO definition statements in member ORACSD of the Oracle SRCLIB
library as SYSIN for JCL to invoke DFHCSDUP. Before you submit the job, remove
all comments. Change the appropriate data set names in the DD statements as
appropriate for your site.

After successful completion, issue this RDO command to install the CICS tables:

CEDA INSTALL GROUP (ORACLE)

Proceed to "Step 8: Start Oracle Access Manager for CICS Adapter".

Step 7.1: Define Oracle Access Manager for CICS Programs to
CICS

Before you can use Oracle Access Manager for CICS, you must define several
resources to CICS by specifying CICS CEDA transactions.

Note: You must regenerate the stub for CICS and relink
applications with the new stub. Use of an older stub will result in
an ORAP application abend.
11-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
Normally definitions for resources used by CICS, such as programs and
transactions, are contained in GROUPS containing logically related resources. A
GROUP is created when it is first specified in a CEDA DEFINE command. In these
examples, the assigned GROUP name is ORACLE.

Issue these commands to define the programs used by Oracle Access Manager for
CICS to CICS:

CEDA DEFINE PROGRAM(ORACICS) GROUP(ORACLE) LANGUAGE(ASSEMBLER)
CEDA DEFINE PROGRAM(CICADPX) GROUP(ORACLE) LANGUAGE(ASSEMBLER)

After executing each CEDA DEFINE command, CICS displays the message DEFINE
SUCCESSFUL at the bottom of a full screen panel.

To end a current CEDA transaction before entering a new command, press the [PF3]
and [Clear] keys.

Step 7.2: Define Oracle Access Manager for CICS Transactions to
CICS

Once you have specified the programs, define the Oracle Access Manager for CICS
control transaction with this command. Enter the command string on one line:

CEDA DEFINE TRANSACTION(xxx) GROUP(ORACLE) TWASIZE(0) PROGRAM(ORACICS)

where xxx is the name of the transaction you use as the Oracle Access Manager for
CICS control transaction.

Step 7.3: Install Oracle Access Manager for CICS Resources

After you have defined the programs and transactions, install the newly created
Oracle group. In this example, the group name is ORACLE. Use this command to
install the new group:

CEDA INSTALL GROUP (ORACLE)

Step 8: Start Oracle Access Manager for CICS Adapter
To make Oracle Access Manager for CICS available to CICS transactions, you must
start the Oracle Access Manager for CICS adapter. An adapter is a CICS program

Note: The Oracle Access Manager control transaction also
requires you to specify the TASKDATAKEY(CICS) parameter.
Oracle Access Manager for CICS 11-17

Configuration Steps
that interfaces between transactions and a system such as Oracle. To start the
adapter, you can use:

transaction START MOD(module)

where:

For example, if the control transaction is ORA2 and the assembled thread definition
table name is ORA0, you issue the command:

ORA2 START MOD(ORA0)

If the START command is successfully executed, the connection between CICS and
Oracle is successfully established.

Step 9: Set Up Automatic Initialization for Oracle Access Manager for
CICS

If you want to initialize Oracle Access Manager for CICS automatically at CICS
initialization time and automatically shutdown Oracle Access Manager for CICS at
CICS termination, then the Oracle Access Manager for CICS control program must
be invoked during CICS startup and shutdown. This step is optional. These steps
describe how to generate the control program with the ORACICS macro.

Step 9.1: Generate the PLTPI Program

The ORACICS macro generates a command level CICS program that is added to the
CICS PLTPI table for automatic initialization during CICS startup. An example of
the command to generate the PLTPI program is:

ORACICS TYPE=PLTPI,START=ORA0,TRANSAC=ORA2

In this example, ORA0 is the thread table definition and ORA2 is the Oracle Access
Manager for CICS control transaction. This command is equivalent to issuing one
of these commands from a terminal:

ORA2 START MOD(ORA0)

or

module is the name of the assembled thread definition table
containing the Oracle Access Manager for CICS control
transaction.

transaction is the Oracle Access Manager for CICS control transaction.
11-18 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
ORA2 START ORA0

The ORACICS TYPE=PLTPI statement is used as input to the assembly procedure
and produces an assembler language CICS command-level program.

Use the following JCL to create the PLTPI program:

//ORAPLTPI JOB (ORA),’Oracle PLTPI PROGRAM’
//CIN EXEC PGM=CINAMES,REGION=4000K
//*
//STEPLIB DD DSN=oran.orav.CMDLOAD,DISP=SHR
//SYSIN DD DUMMY
//SYSOUT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//* REPLACE INFILE WITH USER TNSNAMES SOURCE TO BE USED FOR CICS
//INFILE DD DISP=SHR,DSN=tnsnames
//OUTFILE DD DSN=&&TEMPPDS(CINAMES),
// UNIT=SYSDA,DISP=(,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
// SPACE=(400,(100,100,5))
//ASM EXEC PGM=IEV90,REGION=4000K
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=&&TEMPPDS,DISP=(OLD,DELETE)
// DD DSN=oran.orav.MACLIB,DISP=SHR
// DD DSN=CICS.MACLIB,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,5))
//SYSPUNCH DD ***dataset for assembler pltpi source program
//SYSIN DD *
 ORACICS TYPE=PLTPI,START=ORA0,TRANSAC=ORA2
/*

Step 9.2: Generate the PLTSD Program

The ORACICS macro generates a command-level program that is added to the CICS
PLTSD table for automatic shutdown during CICS termination. An example of the
command to generate the PLTSD program is:

ORACICS TYPE=PLTSD,PROGRAM=ORACICS,STOP=ORA0

In this example, ORACICS is the name of the Oracle Access Manager for CICS
control program and ORA0 is the name of the CICS adapter to be stopped. This
command is equivalent to issuing the terminal command:
Oracle Access Manager for CICS 11-19

Configuration Steps
ORA2 STOP NAME(ORA0)

The ORACICS TYPE=PLTSD statement is used as input to the assembly procedure
and produces an assembler language CICS command-level program.

Use the following JCL to create the PLTSD program:

//ORAPLTSD JOB (ORA),’Oracle PLTSD PROGRAM’
//CIN EXEC PGM=CINAMES,REGION=4000K
//*
//STEPLIB DD DSN=oran.orav.CMDLOAD,DISP=SHR
//SYSIN DD DUMMY
//SYSOUT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//* REPLACE INFILE WITH USER TNSNAMES SOURCE TO BE USED FOR CICS
//INFILE DD DISP=SHR,DSN=tnsnames
//OUTFILE DD DSN=&&TEMPPDS(CINAMES),
// UNIT=SYSDA,DISP=(,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
// SPACE=(400,(100,100,5))
//ASM EXEC PGM=IEV90,REGION=4000K
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=&&TEMPPDS,DISP=(OLD,DELETE)
// DD DSN=oran.orav.MACLIB,DISP=SHR
// DD DSN=CICS.MACLIB,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,5))
//SYSPUNCH DD ***dataset for assembler pltsd source program
//SYSIN DD *
 ORACICS TYPE=PLTSD,PROGRAM=ORACICS,STOP=ORA0
/*

Step 9.3: Input PLTSD and PLTPI to the CICS DFHEITAL Procedure

Use the generated assembler language CICS command-level programs (PLTSD and
PLTPI) as input to the CICS DFHEITAL procedure.

Step 9.4: Add the User-Defined Name to the PLTPI Table

Add the user-defined name of the load module containing the generated program
for PLTPI (output of the DFHEITAL procedure) to the PLTPI table. If your output
from DFHEITAL is named ORAPLTI, then you can also name your load module
ORAPLTI. For example:
11-20 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Post-Configuration Steps
CEDA DEFINE PROGRAM(ORAPLTI) GROUP(ORACLE) LANGUAGE(ASSEMBLER)

Define the load module to CICS with a CEDA DEFINE command. The generated
program can be modified to include override parameters.

For CICS release 3.1.1, this program must be placed after PROGRAM=DFHDELIM
in the CICS PLTPI table.

Step 9.5: Add the User-Defined Name to the PLTSD Table

Add the user-defined name of the load module containing the generated program
for PLTSD (output of the DFHEITAL procedure) to the CICS PLTSD table. If your
output from DFHEITAL is named ORAPLTS, then you can name your load module
ORAPLTS. For example:

CEDA DEFINE PROGRAM(ORAPLTS) GROUP(ORACLE) LANGUAGE(ASSEMBLER)

Define the load module as a program to CICS with a CEDA DEFINE command.

Step 9.6: Make Generated Programs Available

Ensure the generated programs are available in a library included in the CICS
DFHRPL.

While using the PLTPI and PLTSD programs, status messages are issued to the
system console.

Post-Configuration Steps
The following steps are optional.

Step 1: Modify the Sample Compilation Procedures
The Oracle SRCLIB library contains these procedures for preparing high-level
language programs. Modify these procedure names according to your site’s
naming conventions and move them to an appropriate procedure library if
necessary.

CICSPCCC for IBM SAA AD/Cycle COBOL/370 programs

CICSPCC2 for VS COBOL II programs

CICSPCCI for IBM C/370 programs
Oracle Access Manager for CICS 11-21

Multiple Versions in the Same CICS Region
Step 2: Use the SRCLIB Member OSAMPLE
SRCLIB member OSAMPLE is a COBOL II program that displays an employee
name from the EMP table. To use the sample program, you must:

1. Ensure the EMP table is on the database.

2. Ensure SCOTT/TIGER is a valid logon id on the database. Also ensure SCOTT
/TIGER has access to the EMP table.

3. Ensure "Step 6: Generate the ORACSTUB Stub for CICS", is completed.

4. Tailor the JCL in SRCLIB member CICSPCC2 for your installation. Then
execute CICSPCC2 to compile OSAMPLE. This places OSAMPLE into a library
in the CICS DFHRPL concatenation.

5. Define the program OSAMPLE to CICS by using standard RDO procedures.

6. Define a transaction to CICS (for example, OSAM) using standard RDO
procedures and associate it with the OSAMPLE program.

7. Once the START command is issued for Oracle Access Manager for CICS, you
can invoke the transaction.

Multiple Versions in the Same CICS Region
Multiple versions of Oracle Access Manager for CICS can coexist in the same CICS
region as long as the release levels are compatible. For example, release 9.0.1 could
co-exist with another release 9.0.x version but not with a release 8.1.x version.

To configure a second version, perform the following steps:

1. (This step is required only if both versions will be executing concurrently. If
not, go to Step 2.) If both versions will be executing concurrently, create an
ORACSTUB stub specifying the adapter name that has been chosen for the 9.2.0
version. This will be linked with applications programs accessing the 9.2.0
version.

2. This version uses the ORACICS load module. Both versions have an
ORACICN load module. If a prior version uses the ORACICN load module
name as distributed, there is no conflict.

3. Define a second control transaction to CICS, associating this transaction with
the ORACICS program.

CICSPCCS for SAS/C programs
11-22 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Recovery Considerations
Recovery Considerations
Resource recovery is determined by whether COMMIT (CICS) or COMMIT (Oracle)
was designated to Oracle Access Manager for CICS as the recovery choice in the
thread definition table parameter COMMIT.

Using COMMIT (CICS)
CICS maintains and recovers its own protected resources (that is, VSAM data sets,
DL/I databases, and so forth) with the use of the SYNCPOINT and ROLLBACK
commands. Use SYNCPOINT to indicate a logical unit of work is complete and
does not need to be backed out in case of failure. Use ROLLBACK to indicate a
logical unit of work is incomplete and changes need to be backed out in case of
failure.

When a CICS transaction syncpoints explicitly by issuing an EXEC CICS
SYNCPOINT or implicitly at transaction end, Oracle Access Manager for CICS
ensures all Oracle server updates in the logical unit of work (LUW) are committed
or backed out. Use the Oracle two-phase commit support to accomplish this.

An Oracle error occurs if you specify the CICS option and an Oracle EXEC SQL
COMMIT or EXEC SQL ROLLBACK is issued.

Using COMMIT (Oracle)
Oracle has its own recovery mechanism, independent of CICS, and utilizes the
COMMIT and ROLLBACK SQL commands to control it. To commit or rollback
Oracle changes, an application must issue an EXEC SQL COMMIT or EXEC SQL
ROLLBACK. If an application does not issue a COMMIT or ROLLBACK SQL
command, then all outstanding Oracle database updates are rolled back at the end
of the CICS transaction.

A CICS SYNCPOINT also does not perform a SQL COMMIT, nor does a SQL
COMMIT perform a CICS SYNCPOINT. If an application is performing update
operations on both CICS protected resources and Oracle tables, then the application
must issue both a CICS SYNCPOINT and a SQL COMMIT to affect both sets of
resources.
Oracle Access Manager for CICS 11-23

Two-Phase Commit Processing under CICS
Two-Phase Commit Processing under CICS
When CICS syncpoint processing is selected as the resource commit or recovery
choice, Oracle Access Manager for CICS can participate in two-phase commit
processing under CICS.

CICS serves as the coordinator and Oracle Access Manager for CICS uses the
two-phase commit protocol to interface with the Oracle server.

This process is transparent to the transaction. Oracle Access Manager for CICS
implements the CICS syncpoint resource manager interface, enabling Oracle
resources to participate in CICS distributed transactions and removing the
requirement that Oracle COMMIT and ROLLBACK commands be issued in
addition to the CICS SYNCPOINT command.

To use the CICS syncpoint resource manager interface, you must specify CICS as the
recovery choice in the thread table or as a startup option. You can specify the
option by:

■ Using the COMMIT thread table parameter

For more information, refer to the "Thread Definition Table Parameters" on
page 11-6.

■ Using the COMMIT parameter on the START command

For more information, refer to the START command description on page 11-31.

First Phase
In the first phase of the two-phase commit protocol, the CICS syncpoint manager
presents a PREPARE request, which requests a promise to commit or rollback the
transaction to Oracle Access Manager for CICS. Oracle Access Manager for CICS
communicates with the Oracle server Sand returns one of three responses to the
CICS syncpoint manager:

ABORT indicates the Oracle server could not complete the CICS
PREPARE request.

PREPARED indicates the Oracle server has all resources necessary to
subsequently commit and rollback the transaction. When the
prepare phase is completed, the transaction is said to be
in-doubt.
11-24 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Two-Phase Commit Processing under CICS
Second Phase
The second phase of two-phase commit processing is the commit phase. The CICS
syncpoint manager presents a COMMIT/ROLLBACK request to Oracle Access
Manager for CICS. Oracle Access Manager for CICS then communicates with the
Oracle server to complete the processing.

Failures can result during two-phase commit processing. These items are in-doubt
resolutions:

■ CICS warm or emergency restart

■ Oracle server restart

■ Manual recovery

CICS Warm or Emergency Restart

In this case, CICS has access to a log of in-doubt LUWs. When Oracle Access
Manager for CICS starts, it resynchronizes with CICS and the Oracle server to
obtain the transactions that are in-doubt, and communicates with the Oracle server
to complete two-phase commit processing.

LUWs that include Oracle and other CICS recoverable resources can be lost in the
case of a CICS cold start and might require manual resolution.

Oracle Server Restart

When Oracle Access Manager for CICS detects an Oracle server restart, it
resynchronizes in-doubt Oracle server LUWs with CICS and communicates with
the Oracle server to complete two-phase commit processing.

READ-ONLY indicates no data has been modified so no PREPARE is
necessary.
Oracle Access Manager for CICS 11-25

Shutting Down Oracle Access Manager for CICS with FORCE
Manual Recovery

Oracle in-doubt CICS transactions should not be manually committed or rolled
back using the FORCE command. However, some situations, such as a CICS cold
start, might require manual intervention. The Oracle server maintains a pending
transaction view, DBA_2PC_PENDING. The GLOBAL_TRAN_ID in
DBA_2PC_PENDING for CICS transactions is the concatenation of these fields in
the order shown:

For more information about the OPS$applid and adapter name fields, refer to
"Configuration Steps" in this chapter on page 11-5. For additional information
about using DBA_2PC_PENDING for manual recovery, refer to Oracle9i Database
Administrator’s Guide.

Shutting Down Oracle Access Manager for CICS with
FORCE

To shut down Oracle Access Manager for CICS forcibly, use the STOP command
with the IMMEDIATE FORCE parameter. When the IMMEDIATE FORCE
parameter is used with the STOP command, Oracle Access Manager for CICS
terminates all threads and shuts down. Caution must be used with this parameter.
The shutdown is not an orderly shutdown. For more information, refer to the STOP
command on page 11-33.

If you start Oracle Access Manager for CICS after you start the Oracle server, then
automatic restart takes effect when Oracle terminates. When the Oracle server is
restarted, Oracle Access Manager for CICS automatically restarts and
resynchronizes any in-doubt logical units of work. If you start Oracle Access
Manager for CICS before the Oracle server, then you must perform the initial start
of Oracle Access Manager for CICS manually.

OPS$applid is the eight character CICS applid, or the value of
AM4COID in the thread table.

adapter name is the four-character name of an Oracle Access Manager for
CICS adapter.

logical unit
of work

is eight characters and represents the value of the logical
unit of work obtained form CICS.
11-26 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

DISPLAY
CEDF Support
Use CICS EDF to debug Oracle Access Manager by transaction. SQL statements are
shown on the EDF screen before and after each transaction is run. To begin an EDF
session, start the adapter and include the keyword EDF. For example:

ORA2 START MOD(ORA0) EDF
You must be running Oracle Access Manager for CICS Version 4.1 or higher
to use the Execution Diagnostic Facility.

Oracle Access Manager for CICS Command Usage
Oracle Access Manager for CICS commands are entered with the transaction id
followed by the Oracle Access Manager for CICS command. The general format is:

trans_id command parms

where:

Oracle Access Manager for CICS commands can be entered in two ways:

■ You can enter the CICS transaction id (usually ORA2) followed by the
command. For example:

ORA2 DISPLAY NAME(ORA0)

In this case, the control transaction sends the display to the terminal.

■ You can enter only the transaction id for the control transaction. In this case, the
control transaction prompts you for a command.

Use the [PF3] key to exit from the control transaction.

DISPLAY

Options
DISPLAY NAME, DISPLAY TRAN NAME, DISPLAY STATUS NAME

trans_id is the Oracle Access Manager for CICS transaction id (usually
ORA2).

command is the Oracle Access Manager for CICS command.

parms is one or more parameters for the command.
Oracle Access Manager for CICS 11-27

DISPLAY
Syntax
DISPLAY NAME(adapter)
DISPLAY TRAN NAME(adapter)
DISPLAY STATUS NAME(adapter)

where adapter is the name of an Oracle Access Manager for CICS adapter.

Purpose
This command allows you to monitor your Oracle Access Manager for CICS
system. The screen displayed varies according to which DISPLAY command is
issued.

DISPLAY NAME EXAMPLE
DISPLAY NAME displays a screen showing general information about an Oracle
Access Manager for CICS system.

When the command:

ORA2 DISPLAY NAME(ORA0)

is issued (where ORA2 is the name of the transaction defined to control Oracle
Access Manager for CICS and ORA0 is the name of the Oracle Access Manager for
CICS adapter), the screen is displayed:

DISPLAY TRAN NAME EXAMPLE
DISPLAY TRAN NAME displays a screen showing all the transactions defined in a
thread definition table.

When the command:

ORA2 DISPLAY TRAN NAME(ORA0)

is issued (where ORA2 is the name of the transaction defined to control Oracle
Access Manager for CICS and ORA0 is the name of the Oracle Access Manager for
CICS adapter), the screen is displayed

Pressing the [Enter] key refreshes the display, pressing the [PF7] key scrolls
backward, and pressing the [PF8] key scrolls forward.

The status codes and the thread characteristics they indicate for the DISPLAY TRAN
NAME display are:
11-28 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

DISPLAY
The status code can contain more than one meaningful value. For example, a value
of 60 (40 + 20) indicates transactions use threads, are running on worker tasks, and
if no threads are available, a pool thread is used.

You can display all the active threads used for a particular transaction by entering S
to the left of a transaction displayed in the DISPLAY TRAN NAME display:

Pressing the [Enter] key refreshes the display, pressing the [PF7] key scrolls
backward, and pressing the [PF8] key scrolls forward.

In this display, the value 1 in the EXEC SQL column indicates one SQL call has
been performed. The columns in this display are:

Status Code Thread Characteristic

20 reserved

40 use general pool thread (WAIT=POOL)

80 wait for available thread (WAIT=YES)

THREAD thread number

TASK CICS task number

TERM CICS terminal id

PROGRAM program name

EXEC SQL number of SQL calls performed

COMMIT number of SQL commits performed if using ORACLE
COMMIT

ROLLBACK number of SQL rollback calls performed if using ORACLE
ROLLBACK

ERROR current error code value
Oracle Access Manager for CICS 11-29

DISPLAY
DISPLAY STATUS NAME EXAMPLE
DISPLAY STATUS NAME displays a screen showing all active threads. An active
thread is one currently in use by a CICS transaction.

When the command:

ORA2 DISPLAY STATUS NAME(ORA0)

is issued (where ORA2 is the name of the transaction defined to control Oracle
Access Manager for CICS and ORA0 is the name of the Oracle Access Manager for
CICS adapter), the screen is displayed

Pressing the [Enter] key refreshes the display, pressing the [PF7] key scrolls
backward, and pressing the [PF8] key scrolls forward.

The columns in this display are:

The status codes and the thread characteristics they indicate for the DISPLAY
STATUS NAME display are:

THREAD thread number

TASK CICS task number

TRAN CICS transaction id

TERM CICS terminal id

PROGRAM program name

LOGONID thread user’s logon id

STATUS status code

Status Code Thread Characteristic

00 no values set

08 reserved

20 high priority thread (for subtasks only, PRIORITY set to
HIGH)

40 pool thread

80 protected
11-30 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

START
The status code can contain more than one meaningful value. Some codes are not
listed and can be ignored because they are for diagnostic purposes.

To purge a transaction or thread from within the DISPLAY STATUS NAME display,
enter P to the left of the transaction or thread. You receive one of the following
responses indicating the outcome of the purge operation:

START

Syntax
START MOD(modname) [MAX(threads) SSN(ssn) NAME(adapter) COMMIT(option)]

where:

Note: All the status codes except code 20 apply to the display of
both local and remote Oracle data. Status code 20 applies only to
local Oracle data.

* indicates the purge was successful.

E indicates the purge was not successful.

? indicates the current transaction was completed before the
purge was attempted.

Caution: The purge facility performs cleanup, and issues an
ORAP application abend for the transaction.

modname is the name of the load module for the Oracle Access Manager for
CICS thread definition table. If the NAME parameter is not
specified, then this is used as the name of the Oracle Access
Manager for CICS adapter.

threads is the maximum number of threads supported by this adapter.
This overrides the value specified in the ORACICS macro.
Oracle Access Manager for CICS 11-31

START
Purpose
This command starts the Oracle Access Manager for CICS adapter.

The parameter values specified in the START command override any values
specified in the load module named in the MOD parameter.

Because the load module specified in the MOD parameter contains thread
definitions, starting the adapter with only the MOD parameter is normally
sufficient.

START EXAMPLE
This example provides only the load module and adapter names:

ORA2 START MOD(ORA0) NAME(ORA0)

where:

In this example, an override is specified for the Oracle Access Manager for CICS
adapter name.

ssn is the name of the Oracle subsystem corresponding to this
adapter, if the Oracle Access Manager for CICS transaction is
accessing local Oracle data. If the transaction is accessing remote
Oracle data, then the ssn is the four-character alias name used in
the CICS TNSNAMES entry.

adapter is the name of the CICS adapter. If this parameter is not
specified, then the modname is used as the name for the CICS
adapter.

option is the recovery choice. This overrides the value specified in the
ORACICS macro. The two valid values for option are:

CICS to use CICS SYNCPOINT

ORACLE to use Oracle COMMIT/ROLLBACK

ORA2 is the Oracle Access Manager for CICS control transaction

ORA0 is the name of the load module

ORA0 is the name of the thread definition table. Subsystem name
and thread definitions are taken from the ORA0 table.
11-32 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

STOP
STOP

Syntax
STOP NAME(adapter) [IMMEDIATE] [FORCE] [WAIT]

where:

Purpose
This command stops an Oracle Access Manager for CICS adapter started with the
START command. When the FORCE option is used with the STOP command,
Oracle Access Manager for CICS abends all currently running transactions and
forcibly shuts down.

STOP FORCE EXAMPLE
This example shows the STOP command with IMMEDIATE FORCE:

ORA2 STOP NAME(ORA0) IMMEDIATE FORCE

where ORA2 is the Oracle Access Manager for CICS control transaction and ORA0
is the Oracle Access Manager for CICS adapter name.

adapter is the name of an Oracle Access Manager for CICS adapter
started with the START command.

IMMEDIATE is an optional parameter that rejects all requests but does not
shut down until the system quiesces.

FORCE is an optional parameter that terminates all threads and shuts
down. Any active transactions will receive an ORAP
application abend on the next Oracle access. When there are
no active Oracle transactions, the adapter will shut down.

WAIT is an optional parameter that waits for the adapter to shut
down before returning control to the terminal.
Oracle Access Manager for CICS 11-33

STOP
11-34 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Access Manager for I
12

Oracle Access Manager for IMS TM

This chapter discusses how to configure and operate the Oracle Access Manager for
IMS TM. It also describes how the product is integrated with IMS.

The following topics are included:

■ Oracle Access Manager for IMS TM Applications on page 12-2

■ Integration with IMS on page 12-2

■ Configuration Overview on page 12-3

■ Configuring Oracle Access Manager for IMS TM on page 12-14

■ Configuration Steps on page 12-15

■ IMS External Subsystems on page 12-32

■ Starting and Stopping Oracle Access Manager for IMS TM on page 12-33

■ Failures and Recovery on page 12-34
MS TM 12-1

Oracle Access Manager for IMS TM Applications
Oracle Access Manager for IMS TM Applications
You can run applications built with the following Oracle products for OS/390 under
Oracle Access Manager for IMS TM:

■ Pro*COBOL

■ Pro*C

■ Pro*PL/1

■ Oracle Call Interface

Refer to Oracle9i Enterprise Edition User’s Guide for OS/390 for additional information
about using Oracle Precompilers and Oracle Call Interface.

Integration with IMS
Oracle Access Manager for IMS TM is based on the IMS External Subsystem
Attachment Facility (ESAF), a published IMS interface for incorporating external
resources into IMS transaction management. ESAF defines program interfaces
(exits) that IMS invokes for:

■ Initialization and connection

■ Signon and signoff

■ Thread creation

■ Synchronization

■ Termination functions

Some aspects of Oracle Access Manager for IMS TM installation, configuration, and
operation are specific to the ESAF architecture. This guide provides some
information on ESAF; however, IBM IMS documentation is the definitive source for
ESAF information.

Although ESAF is named and discussed as subsystems, Oracle Access Manager for
IMS TM does not run as a subsystem in a separate address space. When Oracle
Access Manager for IMS TM is configured, IMS region initialization loads the main
body of Oracle Access Manager for IMS TM code into the control region and into
each dependent region accessing an Oracle database. IMS calls the various ESAF
exits under the application management task (dependent regions) or the ESI task
(control region). No additional tasks are created by or for Oracle Access Manager
for IMS TM. Processing in the control region is primarily for recovery activities.
Processing in the dependent region is for Oracle requests issued by transactions
12-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Overview
running in the region. The control region must connect to Oracle successfully
before any dependent region is allowed to connect.

Oracle Access Manager for IMS TM Design
Oracle Access Manager for IMS TM minimizes resource consumption for processor
utilization, memory utilization, and activities that can be serialized. One connection
is maintained between an IMS region and a given target Oracle database, regardless
of the number of distinct transactions or security contexts (Oracle user ids) the
region hosts over time. Oracle Access Manager for IMS TM logically maps the
combination of IMS thread and Oracle user id to the generic Oracle server session
mechanism. The sessions are created and managed dynamically. They are based on
the stream of transactions created by users and configuration parameters set by the
installation.

The Oracle Access Manager for IMS TM code runs in 31-bit addressing mode and
resides above the 16M address line. All dynamically acquired virtual memory is
also above the 16M line. Oracle Access Manager for IMS TM is completely
reentrant. If the installation prefers, all IMS regions accessing Oracle databases can
share a single copy of the code. Each instance of Oracle Access Manager for IMS
TM (that is, each distinct Oracle database to be accessed) requires allocation of less
than 4K of global (ECSA) virtual memory.

Configuration Overview
You must install Oracle for OS/390 including the Oracle Access Manager
successfully before you configure the product by:

■ Placing the main Oracle Access Manager for IMS TM code and supporting
modules into the IMS RESLIB or another data set concatenated to RESLIB in the
IMS region JCL

■ Ensuring Oracle Access Manager for IMS TM code and supporting modules are
available to STEPLIB and DFSESL DD statements

■ Installing the linking stub module AMILS (used to link Oracle Access Manager
for IMS TM client transaction programs) in a load library accessible to
application developers

■ Placing Oracle Access Manager for IMS TM macros (used to define the product
configuration) in an appropriate Assembler language macro source code library
Oracle Access Manager for IMS TM 12-3

Configuration Overview
■ Installing the sample programs and material related to installation verification
(this material is not required to configure the product)

These steps are specific to Oracle Access Manager for IMS TM. The installation
process can also involve other components of Oracle9i for OS/390 or Oracle8i
packages.

You must configure an instance of Oracle Access Manager for IMS TM for each
distinct Oracle database that is accessed by transactions in an IMS subsystem. IMS
(ESAF) requires two identifying characteristics for each instance:

■ Subsystem identifier (SSM)

■ Language interface token (LIT)

 Each is a one-character to four-character identifier you choose. The subsystem
identifier is specific to Oracle Access Manager for IMS TM. It is not the subsystem
identifier associated with the OSDI subsystem.

The LIT and SSM
The LIT is embedded in transaction programs using an instance of Oracle Access
Manager for IMS TM. When a transaction program runs, IMS associates its LIT
with a given subsystem identifier through an entry in the IMS subsystem parameter
file, referred to as an SSM member of IMS PROCLIB. The SSM member is an IMS
region parameter file defining each external subsystem that can be accessed from
that region.

Different IMS regions can have different SSM members. The control region SSM
must specify every external subsystem instance (Oracle Access Manager for IMS
TM, DB2 for OS/390, or others) that the IMS subsystem can access. Dependent
regions can access any external subsystem defined in the control region SSM by
default. To limit the external subsystems available to a dependent region or vary
the parameters for one or more subsystems from what is specified for the control
region, create a separate SSM for the dependent region. To prevent access to all
external subsystems from a region, specify a dummy (empty) SSM. You are
responsible for ensuring that each dependent region SSM allows access to the
external subsystems required by the transactions scheduled in that region.

Resource Translation Table
IMS designates the data that can be coded in an SSM entry. The few defined
parameters are not sufficient for implementation of Oracle Access Manager for IMS
TM. The SSM does allow you to specify an additional subsystem parameter
12-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Overview
module called a resource translation table (RTT) whose contents are not specified by
IMS. IMS loads the module during region initialization and passes its address to
Oracle Access Manager for IMS TM as part of the ESAF exit interface.

Oracle Access Manager for IMS TM uses the RTT to specify most of its parameters
and options. At least one RTT is required for each Oracle Access Manager for IMS
TM instance. You generate an RTT by coding S/370 Assembler language macros
(examples provided with Oracle Access Manager for IMS TM) that create the
needed parameter structures. These structures are queried by Oracle Access
Manager for IMS TM at runtime.

Although the RTT is a generic ESAF entity, its contents are specific to the external
subsystem being accessed. Therefore, the Oracle RTT bears no resemblance to the
one used by DB2, for example, and serves a different purpose.

The installation codes macro parameters that specify:

■ The Oracle Net address of the target database

■ Characteristics of IMS transactions

■ How target database sessions are managed

■ Other details
Oracle Access Manager for IMS TM 12-5

Configuration Overview
The macro calls are assembled and linked to produce a load module. The load
module is placed in (or concatenated to) the IMS RESLIB. The module’s name must
be specified as the RTT parameter for the Oracle Access Manager for IMS TM
instance in the control region SSM. For additional details, refer to "Configuration
Steps" on page 12-15.

Different RTT modules can be created for the same target Oracle database to vary
Oracle Access Manager for IMS TM behavior from region to region. The RTT
specified in the control region SSM entry for the database is considered the master
RTT. It specifies parameters that cannot be varied among the dependent regions,
such as the address of the target Oracle database. All of its parameters apply in
dependent regions that do not have a separate RTT. The additional RTT modules
are specified in the dependent region SSM.

Distributed Option Considerations
If the target Oracle database does not have the distributed option installed, then
IMS transactions are not allowed to update any data in that database.

Security Considerations
Oracle and IMS/MVS security differ in some respects. Oracle database user ids can
be up to 30 characters. OS/390 user ids are limited to seven or eight characters.
You have a choice of security schemes when creating user ids for Oracle Access
Manager for IMS TM. You can:

■ Create new Oracle user ids specifically for Oracle Access Manager for IMS
TM-based applications

■ Replicate the OS/390 user ids on the Oracle side and adhere to a single user id
view

■ Use existing Oracle user ids or schema names that differ from what is being
used in OS/390
12-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Overview
Determining the Oracle User id

Oracle Access Manager for IMS TM accommodates these differences by providing a
flexible way to determine the Oracle user id for a given transaction. Oracle user ids
are controlled by parameters generated in the RTT. In the RTT, you can specify the
type of Oracle user id an IMS application can have:

1. The IMS user id

For terminal-oriented transactions, this is the signon id if the terminal is signed
on. Otherwise it is the IMS LTERM name. For non-message driven batch
message processing (BMP), the IMS user id is one of a hierarchy of choices
defined by IMS. In many IMS installations, the IMS user id is authenticated by
RACF or a similar security product.

2. The IMS program specification program (PSB) name

The IMS PSB name identifies the IMS application.

3. The application program (load module) name

4. A specific (constant) Oracle user id up to 30 characters

This choice makes it possible for Oracle Access Manager for IMS TM to
accommodate use of any Oracle user id.

If you want to replicate the IMS/MVS user id structure in Oracle, then choose the
IMS user id. You can also choose the IMS PSB name and the application program if
they fit your installation. You can specify choices on a PSB-by-PSB basis in the RTT
generation, and you can designate a default choice for PSBs not explicitly specified.

Session Authentication

An Oracle session created for an IMS transaction using Oracle Access Manager for
IMS TM is subject to Oracle’s normal authentication mechanisms. These
mechanisms are generally controlled by the Oracle database administrator or by
system security staff. Oracle supports two kinds of session authentication:

■ Password

Password authentication requires the client (Oracle Access Manager for IMS TM
in this case) to supply a password when establishing an Oracle session for a
user id.

■ EXTERNAL

EXTERNAL authentication requires the client interface software to verify the
user is already authenticated by the client operating environment.
Oracle Access Manager for IMS TM 12-7

Configuration Overview
A given Oracle user id is subject to one or the other of the authentication
mechanisms, as specified by the DBA or security staff in the CREATE USER or
ALTER USER SQL statement. In addition to individual user id specifics, the DBA
can specify whether the Oracle instance allows EXTERNAL authentication of
sessions coming through Oracle Net. If remote clients (including Oracle Access
Manager for IMS TM) are prohibited, then they can use only
password-authenticated user ids.

Without this restriction, Oracle Access Manager for IMS TM supports both forms of
authentication. It specifies actual Oracle passwords for user ids and supports the
client mechanics of EXTERNAL authentication when required by the intended
Oracle user id. Oracle Access Manager for IMS TM does not invoke the OS/390
SAF/RACF interface to authenticate the user id before using it with Oracle
EXTERNAL authentication. The validity of the user id is an installation
responsibility.

Oracle Access Manager for IMS TM does not automatically know an Oracle user id
authentication mechanism or password. You specify these on a individual user id
basis in the Oracle Access Manager for IMS TM RTT generation. You can provide a
default choice for all unspecified user ids.

Oracle Access Manager for IMS TM does not store Oracle passwords in clear text.
Oracle server release 7.1 and above transmits logon data (user id and possible
password) to the target database in encrypted form.

Error Processing
IMS defines a characteristic called a region error option (REO), which specifies how
an ESAF implementation handles non-application processing errors, such as a loss
of communications with the external subsystem. The REO has one of three
one character values:

R specifies error code associated with the failure are returned to
the application program

Q specifies the application program is terminated with an abend
code U3044. The input transaction is requeued to be
processed when access to the subsystem is restored.
12-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Overview
Oracle Access Manager for IMS TM also provides a mechanism so that you can
specify the REO at the application level on the basis of PSB name. An REO
specified at the PSB level overrides whatever REO is given or defaulted for the
region.

Recovery Considerations
ESAF allows automated recovery after an outage by providing a two-phase commit
interface for synchronizing updates. It also provides a process for resolving
partially-committed (in-doubt) transactions when connections are reestablished.
The IMS control region resolves in-doubt transactions with participation of all
ESAF-defined external resources.

To support this recovery, an Oracle Access Manager for IMS TM instance establishes
a connection from the control region to the target Oracle database and executes
functions to forcibly commit or rollback pending transactions as directed by IMS.
The Oracle Access Manager for IMS TM RTT generation must specify a valid Oracle
user id under which these recovery actions are performed. The user id does not
have full DBA privileges, but does require several privileges that are part of the
Oracle DBA role. You can create a new Oracle user id for this purpose or use an
existing user id with the required privileges. The RTT generation must provide
authentication specifications allowing the recovery user id to connect to Oracle.

A specifies the application program is terminated with an abend
code U3983. The input transaction is discarded.

Oracle Access Manager for IMS TM supports all three REO
processing options. IMS allows you to specify the REO at the
region level in the IMS PROCLIB member defining external
subsystems. If you omit the REO, IMS assumes a default
value of R.
Oracle Access Manager for IMS TM 12-9

Configuration Overview
Clarification of Cursor Close Behavior
The Oracle server’s normal behavior leaves cursors open across COMMIT and
ROLLBACK operations. You can use the precompiler MODE option to request
application behavior closer to current ANSI standards, including closing of cursors
on commit or rollback. The Oracle Access Manager for IMS TM supports this
behavior and IMS-initiated commit (GU or SYNC) and rollback (ROLL or ROLB). If
MODE is set to ANSI or one of its variations is not specified at precompile time,
then Oracle cursors remain open across IMS-initiated commit or rollback. However,
if the application is defined in the RTT AMITRANS macro as OID=IMSID and the
beginning of a new transaction causes a change in the user id, then cursors are
closed and database session state is lost before the new transaction begins. A
change in Oracle user id forces the current Oracle session to be deleted and a new
one created. It is the responsibility of the application to be aware of this condition
and act accordingly.

This situation cannot arise if the AMITRANS macro specifies PSB, PGM, or a fixed
user id string as the Oracle user id. It also does not occur if the AMITRANS macro
has OID set to IMSID and a new transaction does not convey a change of user id,
which might occur when the new input message comes from the same user,
LTERM, or from a BMP.

Handling Oracle Unavailable Situations
Oracle unavailable refers to any situation in which the Oracle Access Manager for
IMS TM cannot access the target Oracle server. This situation might result from
shutdown or failure of a variety of system components including:

■ The target Oracle instance

■ Oracle Net for OS/390 or a specific protocol adapter

■ Other network software (for example, TCP/IP, VTAM)

■ Physical network components (routers, for example)

■ Remote Oracle Net listener

Oracle Access Manager for IMS TM makes no operational distinction among these
situations. It recognizes Oracle is unavailable, perhaps temporarily. There is a
difference, however, in whether the condition is detected on the Oracle Access
Manager for IMS TM initial connection attempt versus a loss of Oracle access after
normal connections are established.
12-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Overview
Initial Connection Failure

When IMS starts, if the RTT AMIRT macro CONNECT parameter is set to START,
then the control region immediately attempts a connection to the target Oracle
server. An Oracle-unavailable condition is detected immediately. On the other
hand, if the CONNECT parameter is set to DEFER or defaulted, then the control
region waits for the first dependent region to make an Oracle request before
attempting its own connection. If the control region is unable to connect to Oracle,
then Oracle Access Manager for IMS TM instance is placed in a logical stopped
state.

When Oracle Access Manager for IMS TM is in a stopped state after failure of its
initial connections, all applications issuing requests for that Oracle Access Manager
for IMS TM instance receive a U3049 pseudo-abend and are requeued for later
processing. This occurs regardless of the REO option. Even when REO is set to R,
an application does not receive an Oracle error when the Oracle Access Manager for
IMS TM initial connection attempt fails.

When an Oracle Access Manager for IMS TM instance is placed in the stopped state,
it must be started with the IMS command /START SUBSYS after the target Oracle
server becomes accessible. This state causes Oracle Access Manager for IMS TM to
reinitialize and reattempt a connection to Oracle. If the connection attempt is
successful, then queued transactions and new transactions process normally. IMS
remembers a subsystem is in stopped state over a warm start. Even if IMS is
shutdown and restarted, the /START SUBSYS command is required.

Failure After Initial Connection

If the Oracle Access Manager for IMS TM initial connection attempt from the
control region is successful, then a subsequent loss of access is handled without
placing the instance in the stopped state. The failure is likely to be detected during
execution of an application making Oracle requests. Application behavior in this
case is governed by the REO in effect for the transaction, if coded on the
AMITRANS macro, or the region from the SSM entry.

If REO is set to R (or taken as a default), then the Oracle error code associated with
the lost connection is returned to the application. Applications that use option R
must be careful to check SQLCODE or the return code from an OCI call. If the
application fails to detect the error and issues another Oracle request, then a loop
between IMS and Oracle Access Manager for IMS TM can result. Refer to IBM IMS
documentation for more information.
Oracle Access Manager for IMS TM 12-11

Configuration Overview
With REO set to Q, an application is abended with U3044, requeued, and the
transaction is placed in PSTOP status. With option A, the application receives a
U3983 abend and the input transaction is discarded. These abends might cause IMS
to invoke Oracle Access Manager for IMS TM to resolve in-doubt processing in the
control region. This process also fails if Oracle has become unavailable and IMS
holds the associated recovery tokens to be processed later.

These circumstances do not place the Oracle Access Manager for IMS TM instance
in the stopped state. Instead, Oracle Access Manager for IMS TM remains active
and attempts to reestablish a connection to Oracle when another application makes
an Oracle request. If the connection attempt is successful, then Oracle Access
Manager for IMS TM resumes normal operation. If it fails, then the application is
processed according to the REO in effect.

Each attempt to reestablish the connection to Oracle results in some message traffic
to the system console or master terminal operator (MTO) console. A high frequency
of failing attempts might result in an excessive message load. A RECONTM
parameter on the AMIRT macro can specify the MAXIMUM frequency of reconnect
attempts in elapsed second terms. The default for RECONTM is 60 seconds: Oracle
Access Manager for IMS TM does not attempt to reconnect on behalf of an
application if fewer than 60 seconds have passed since the last attempt. If
RECONTM is 0, then every application making an Oracle request causes an attempt
to reconnect.

Oracle Environment Variables
Environmental variables control aspects of Oracle product behavior. Environment
variables are distinctly-named parameters, set by a mechanism external to the
product. Oracle NLS support relies on environment variables to determine the
user’s preferred message language, character set encoding, and other
locale-sensitive attributes.

In a non-IMS batch job or TSO session, the Oracle9i for OS/390 products read a
sequential file containing environment variable settings. However, IMS
environments prefer different environment variable settings from one transaction to
the next in the same region. Sequential file processing might negatively affect
performance. Oracle Access Manager for IMS TM specifies environment variables
in the RTT generation.
12-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Overview
Environment variables are defined in groups in the RTT. Each group is associated
with specific transactions (PSBs), specific Oracle user ids, or with the RTT as a
whole by coding the group name on the transaction, session, or main RTT definition
macros. When an Oracle software component requests the value for a particular
variable, Oracle Access Manager for IMS TM checks environment variable groups
for:

■ Current transaction definition

■ Current session definition

■ RTT default

These groups are checked in this order to locate a value. The transaction-level
specification of a variable has highest priority, followed by a session-level
specification, followed by the RTT default.

It is not necessary to provide environment variable definitions at any level if the
normal Oracle9i for OS/390 defaults are acceptable. The Oracle Access Manager
environment does not use the CONNSTR variable, and all variables whose names
begin with CRTL_. If these variables are specified, then they are ignored.
Oracle Access Manager for IMS TM 12-13

Configuring Oracle Access Manager for IMS TM
Configuring Oracle Access Manager for IMS TM
Oracle Access Manager for IMS TM must be installed successfully before you can
configure it. Refer to the Oracle9i Enterprise Edition Installation Guide for OS/390, for more
information.

Oracle Access Manager for IMS TM Configuration Checklist
❏ Step 1: Define an OS/390 Subsystem Identifier for the Instance

❏ Step 2: Choose a Value for the Instance and Generate the LIT

❏ Step 3: Create a User Id in the Target Oracle Database Used to Conduct
Recovery

❏ Step 4: Determine the Oracle User Id, Authentication, and Environment
Variable

❏ Step 5: Code and Generate the Control Region and Dependent Region RTT

❏ Step 6: Add a Control Region and Dependent Region SSM Entry for the
Instance

❏ Step 7: If a New SSM Member is Created for Any Region, Specify the Member
to IMS

❏ Step 8: Make the Oracle Access Manager Code and Modules Available to IMS
Regions

❏ Step 9: Shutdown and Restart IMS

When IMS is restarted, the control region reports the status of Oracle Access
Manager for IMS TM initialization. The control region automatically initializes
Oracle Access Manager for IMS TM in the dependent regions used. Actual
connection to the target Oracle database might occur, depending on options
specified in the RTT (for example, one option is to defer connection until a
transaction actually issues an Oracle request). Transaction programs prepared for
use with Oracle Access Manager for IMS TM can execute.
12-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
Configuration Steps
Be sure you have read "Integration with IMS" and "Configuration Overview" earlier
in this chapter, before beginning the steps in this section.

Step 1: Define an OS/390 Subsystem Identifier for the Instance
Oracle Access Manager for IMS TM requires an OS/390 subsystem id. The id is
used as part of an internal communication mechanism. Any valid one to four
character subsystem id known to OS/390 can be used as long as it is not used by
another subsystem or another instance of Oracle Access Manager for IMS TM.

An IPL normally is required to add new subsystem identifiers to OS/390. However,
if the subsystem name you assign is not formally defined, Oracle Access Manager
for IMS TM dynamically creates its own entry on the OS/390 subsystem control
table (SSCT) chain. It creates the entry by using RTT macro AMIRT DYNSUBS set
to YES, which is the default. This entry allows the product to be configured and
used without requiring an OS/390 IPL. The interface for adding an SSCT entry is
not a published OS/390 interface. If you prefer, you can specify that Oracle Access
Manager for IMS TM is not to dynamically create its own SSCT. This is done by
specifying the RTT macro AMIRT DYNSUBS be set to NO. In this case, Oracle
Access Manager for IMS TM is not able to run until the subsystem name is added
and OS/390 is re-IPLed.

Step 2: Choose a Value for the Instance and Generate the LIT
The LIT is a four-character identifier. It is generated using an Assembler language
macro (AMILI) and embedded at linkedit time in each IMS transaction program
using the associated instance of Oracle Access Manager for IMS TM. The LIT you
choose must be unique within the IMS subsystem. It cannot duplicate the LIT of
another Oracle Access Manager for IMS TM instance or the LITs associated with
other external resources.

The LIT can be identical to the subsystem id. However, an identical LIT can cause
problems if you expect to vary the LIT subsystem configuration in the future. For
example, if you change the SSM so an existing LIT is associated with a new
subsystem, the new LIT might be confused with the old subsystem identifier.

LIT generation is performed by coding and assembling an AMILI macro instruction
as follows:

[name]AMILI [LIT=lit]
Oracle Access Manager for IMS TM 12-15

Configuration Steps
where:

name is the CSECT name to use for this LIT generation. If the name is
omitted, then the name AMILI000 is used by default. If a name
is specified, then ensure it does not conflict with external names
occurring in transaction programs. Because only one Oracle
Access Manager for IMS TM LIT can be linked into an
application, it does not matter if the same CSECT name is used in
LITs for different Oracle Access Manager for IMS TM instances.

LIT=lit specifies the one to four character LIT. The value can be enclosed
in apostrophes. It must conform to IMS ESAF requirements,
such as alphanumeric characters. If this parameter is omitted, a
LIT value of ORA1 is generated.

Assembly of the LIT requires access to the Oracle Access
Manager for IMS TM macros. The resulting object code can be
linkedited into a load module library or saved as an object deck.
It must be included in the linkedit of IMS transaction programs
using the associated instance of Oracle Access Manager for IMS
TM. The LIT contains no executable code and does not have
addressing mode (AMODE) or residency mode (RMODE)
limitations.

A sample LIT generation job:

//AMILIT1 JOB (ORA),’ORACLE LIT GEN’
// EXEC ASMCL,PARM.LKED=’LIST,RMODE=ANY’
//ASM.SYSLIB DD DSN=oran.orav.MACLIB,
// DISP=SHR
//ASM.SYSIN DD *
ORA3LIT AMILI LIT=ORA3
 END
/*
//LKED.SYSLMOD DD DSN=IMS1.DEV.LIB(ORA3LIT),
// DISP=SHR
//
12-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
Step 3: Create a User Id in the Target Oracle Database Used to
Conduct Recovery

Oracle Access Manager for IMS TM requires a user id in the target Oracle database
so recovery sessions can be established when needed by the control region.
Although you can use an existing Oracle user id with the appropriate privileges,
Oracle Corporation recommends creating a distinct user id dedicated to this
purpose. The user id must have or be granted these privileges:

■ CREATE SESSION (system privilege)

■ FORCE ANY TRANSACTION (system privilege)

■ SELECT ON SYS.PENDING_SESSIONS$ (object privilege)

■ SELECT ON SYS.PENDING_TRANS$ (object privilege)

No other privileges are required. If you are creating a user id dedicated to Oracle
Access Manager for IMS TM recovery purposes, then Oracle Corporation
recommends only these privileges be granted to the user id.

The recovery user id does not create data in the target database. Therefore,
RESOURCE privileges and user id tablespace defaults and quotas are unimportant.
The user id profile is important because the recovery user id must not be subject to
Oracle resource limits that could cause an interruption of recovery activity. Such
activity includes the profile IDLE_TIME limit because the recovery session can
stand idle for a long time.

The authentication method for the recovery user id can be password or
EXTERNAL. When creating a new user id, choose an authentication method based
on your Oracle and IMS security practices. The recovery user id is coded explicitly
in the RTT; it is not derived from an RTT transaction specification. The control
region RTT must contain a session authentication entry allowing the recovery id to
connect successfully to Oracle. This entry can be the default session entry if the
default authentication method applies to the recovery id. If it does not, an explicit
session entry for the recovery user id must be included in the RTT.

If you plan to access a particular Oracle database from more than one IMS
subsystem, all IMS subsystems can use the same recovery user, assuming the user
id’s profile allows at least one session per IMS. However, Oracle Corporation
recommends you create a distinct recovery user id for each distinct IMS subsystem.
This allows better activity tracking in the Oracle server and simplifies problem
resolution.
Oracle Access Manager for IMS TM 12-17

Configuration Steps
SQL statements for creating a recovery user id are shown in the following example.
They are suitable for use in a Server Manager or SQL*Plus session:

CONNECT SYS/CHANGE_ON_INSTALL
CREATE USER IMS1RECO IDENTIFIED BY RECO1PW PROFILE NO_LIMIT;
GRANT CREATE SESSION, FORCE ANY TRANSACTION TO IMS1RECO;
GRANT SELECT ON PENDING_SESSIONS$ TO IMS1RECO;
GRANT SELECT ON PENDING_TRANS$ TO IMS1RECO;

The example assumes a profile named NO_LIMIT is already defined to Oracle. The
GRANT SELECT statements specify unqualified table names because the
connection is with user id SYS, which owns the PENDING_TRANS$ and
PENDING_SESSIONS$ tables.

Step 4: Determine the Oracle User Id, Authentication, and
Environment Variable

Review the transaction programs you plan to run with this Oracle Access Manager
for IMS TM instance to choose the method for determining the Oracle user id for
each transaction. When you know what Oracle user ids to use, establish the
authentication method for their Oracle sessions. If you are creating new Oracle user
ids for Oracle Access Manager for IMS TM applications, you can choose whichever
authentication method is appropriate for your installation’s security practices.

Finally, consider the user and transaction management requirements to determine
environment variable settings at the RTT, session, and transaction level.

Step 5: Code and Generate the Control Region and Dependent
Region RTT

Four macros are used to code the RTT:

■ AMIRT

■ AMITRANS

■ AMISESS

■ AMIENV

For a summary of RTT macro parameters governing session cache, refer to
"Clarification of Cursor Close Behavior" on page 12-10.
12-18 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
AMIRT

The AMIRT macro is invoked once or twice in an RTT definition. The first
invocation specifies the connection string for the target Oracle database and other
options with subsystem-wide or region-wide scope. The connection string for the
target Oracle database is meaningful only in the RTT used by the control region.
The address can be omitted in a dependent region RTT. If it is specified, then it
must be identical to the one specified for the control region. Otherwise, Oracle
Access Manager for IMS TM initialization for the dependent region fails.

The AMIRT macro is coded using this syntax:

[name] AMIRT [DBADDR=’string’]
[CONNECT={START|DEFER}]
[RECOID=’string’]
[DYNSUBS={YES|NO}]
[ENVTAB=envname]
[END={YES|NO}]

where:
Oracle Access Manager for IMS TM 12-19

Configuration Steps
name can be any name allowed by the assembler. It
is ignored.

DBADDR=’string’ specifies the Oracle connection string of the
target Oracle database. This string must be a
complete address string (not a TNSNAMES
alias identifier). Refer to the example in the
note at the end of this DBADDR=’string’
description. The address is normally enclosed
in apostrophes because it can contain special
characters such as blanks and parentheses.
This parameter can be omitted in a dependent
region RTT and when coding AMIRT END set
to YES to conclude an RTT definition.

If accessing a remote database, Oracle Net
address strings can be lengthy. You need to
code continuations of the line on which
DBADDR is specified. Remember the
assembler normally requires a nonblank
continuation indicator in position 72 and the
continuation begins in position 16 of the next
record. Positions 1-15 must be blank.

The easiest way to determine what to specify
for an Oracle Net address string is to look in an
existing TNSNAMES configuration file. Refer
to Chapter 10, "Oracle Net", for more
information.

Note: The DESCRIPTION keyword is required.
For example, for a local database:

AMIRT DBADDR=’(DESCRIPTION=
(ADDRESS=(PROTOCOL=XM)(SID=QA74)))’

or, for a remote database:

AMIRT DBADDR=’(DESCRIPTION=(ADDRESS=
(PROTOCOL=TCP) (HOST=144.25.40.217)
(PORT=1521) (SSN=TNS)
(CONNECT_DATA=(SID=QA74))))’
12-20 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
CONNECT={START|DEFER
}

specifies whether the region is to establish the
connection to Oracle at region startup (START)
or wait until the first Oracle access request is
made by a transaction program (DEFER). The
default is DEFER.

This option applies to both control and
dependent (MPP) regions. However, the
control region is required to establish a
connection before any dependent region can
connect. CONNECT set to DEFER for the
control region serves no purpose if any
dependent region immediately uses
CONNECT set to START.

This parameter is ignored for BMP and IMS
fast path (IFP) regions, which always operate
with the equivalent of CONNECT set to
DEFER.

RECOID=’string’ specifies the Oracle user id used for IMS
recovery activity. During Oracle Access
Manager for IMS TM startup processing, the
control region accesses Oracle using this id if
there are pending uncommitted transactions.
An AMISESS macro specifying this id or a
default entry allowing this id to logon to
Oracle, must be included in the control region
RTT. This parameter is ignored in a dependent
region RTT.

DYNSUBS={YES|NO} specifies whether Oracle Access Manager
initialization for the control region is permitted
to create the Oracle Access Manager subsystem
name entry if the name is not defined formally
to OS/390. (Refer to the discussion of this
topic in "Step 1: Define an OS/390 Subsystem
Identifier for the Instance" on page 12-15.) The
default for this parameter is YES. The
parameter is ignored in a dependent region
RTT.
Oracle Access Manager for IMS TM 12-21

Configuration Steps
AMITRANS

The AMITRANS macro assigns characteristics to IMS applications by PSB names. It
determines the Oracle user id that causes a transaction’s Oracle access. The Oracle
user id assignment can be a fixed value (for example, SCOTT) or it can be one of
three dynamic values associated with the transaction instance. You can assign
different PSB names to different user id determinations. A default determination
can be specified for PSB names that do not have an individual entry.

An RTT definition does not need to include AMITRANS macros. The RTT
definition assumes a single default user id determination method for all
transactions that run in a region without macros. AMITRANS macros used in an
RTT definition, must appear after the first AMIRT macro. AMIRT with END set to
YES must also appear at the end of the RTT definition.

The characteristics of one or more individual transactions can be specified in a
single use of AMITRANS.

ENVTAB=envname specifies the name field of an AMIENV macro
coded in the same RTT generation. It must
conform to Assembler name syntax
requirements. The environment variable
specifications in the named AMIENV are used
in all Oracle Access Manager processing unless
overridden by an AMIENV set specified in an
AMITRANS or AMISESS macro in this RTT
generation.

END={YES|NO} specifies the end of the RTT definition. When
the RTT contains one or more uses of the
AMITRANS or AMISESS macros, the AMIRT
macro is invoked once at the beginning (where
DBADDR is specified) and once at the end
with only END set to YES specified. In an RTT
definition containing no AMITRANS or
AMISESS macros, AMIRT can be invoked a
single time with parameters and END set to
YES combined.
12-22 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
The AMITRANS macro is coded as:

[name] AMITRANS PSB=(psb1,...)
 OID={IMSID|PSB|PGM|’string’}
 [REO=c]
 [ENVTAB=envname]

where:

name can be any name allowed by the
assembler. It is ignored.

PSB=(psb1...) specifies the IMS PSB names of the
applications to which a common set of
characteristics are being assigned. A
name specification of * designates a
default for transactions for which no
specific entry is given in any
AMITRANS macro. The * can be
included on an AMITRANS call also
listing specific PSB names. No more
than one * entry can be created in a
single RTT definition and no specific
PSB name can be repeated in an RTT.

OID={IMSID|PSB|PGM|string
}

specifies the method of determining the
Oracle user id for the transactions listed.
The choices are:

 IMSID is the OS/390 and IMS authorization id
(or a substitute) used.

 PSB is the IMS PSB name used.

 PGM is the program name used.

 string is the fixed character string used. This
value can be enclosed in apostrophes. It
must be a valid user id in the target
Oracle database and must conform to
the content rules for Oracle user ids.
Oracle Access Manager for IMS TM 12-23

Configuration Steps
When OID is set to IMSID, determination of the user id varies with the
environment. For message-driven transactions:

■ Use the RACF-validated signon id if the terminal originating the transaction is
signed on.

■ Use the LTERM id if the terminal is not signed on

In a non-message-driven region:

■ If the address space is present, use the ASXBUSER field.

■ If the address space is not present, use the IMS PSB name.

If an RTT contains no AMITRANS macros, the region operates with this default:

AMITRANS PSB=*,OID=IMSID

This statement specifies that all transactions use the MVS/IMS user id (or a
substitute) as the Oracle logon id. If the RTT contains any AMITRANS macros, this
default is not assumed. If the RTT contains one or more AMITRANS macros and
you also want to specify default transaction characteristics, you must add an
AMITRANS for PSB=* or * to the PSB list of an existing AMITRANS macro call in
the RTT definition.

REO=c specifies the IMS region error option
used with the associated transactions.
This option is coded as a single letter.
Permissible values and their meanings
are discussed in Error Processing.

ENVTAB=envname specifies the name of an AMIENV
macro coded in the same RTT
generation. It must conform to
Assembler name syntax requirements.
The environment variable specifications
in the named AMIENV are used in all
Oracle Access Manager processing for
the indicated transactions. They take
precedence over specifications of the
same variable in environment tables
associated with the AMISESS and
AMIRT macros.
12-24 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
AMISESS

The AMISESS macro is used to indicate, by Oracle user id, the type of logon
authentication to use and, if required, the Oracle logon password.

An RTT definition does not need to include any AMISESS macros. In this case, a
default set of session characteristics is assumed for all sessions created by the
region. If any AMISESS macros are used in an RTT definition, they must appear
after the first AMIRT macro. A second use of AMIRT with END set to YES is
required at the end of the RTT definition.

The session characteristics of one or more Oracle user ids can be specified in a single
use of AMISESS.

The AMISESS macro is coded as:

[name] AMISESS OID=(’string’ [,’string’...])
 AUTH={EXTERNAL|’string’}
 [ENVTAB=envname]

where:

name can be any name allowed by the assembler. It is
ignored.

OID=(’string’

[,’string...])

specifies the Oracle user ids whose session
characteristics are being described. A user id
specification of * designates a default for user ids for
which no specific entry is given. The * can be
included on an AMISESS call also listing specific user
ids. No more than one * entry can be created in a
single RTT definition.
Oracle Access Manager for IMS TM 12-25

Configuration Steps
If an RTT contains no AMISESS macros, the region operates with this default:

AMISESS OID=*,AUTH=EXTERNAL

This default specifies that all transactions connect to an Oracle instance using the
external authentication mechanism. Whatever Oracle user id that a transaction uses
must be known to the target Oracle instance and have the IDENTIFIED
EXTERNALLY attribute. If the connection uses Oracle Net, the target Oracle

AUTH={EXTERNAL|

’string’}

specifies how the user id is authenticated at Oracle
logon. EXTERNAL indicates Oracle is to assume the
user is already authenticated by IMS or OS/390. In
this case, no password is sent to Oracle at logon time.
Oracle verifies the user id is known and is created
with the IDENTIFIED EXTERNALLY option. If the
connection to Oracle is through Oracle Net, the Oracle
instance must be configured to allow such connections
through Oracle Net.

Note: If EXTERNAL is specified, it is important to
review the LOGON_AUTH setting in the Database
Service definition.

The alternative to EXTERNAL is to specify the Oracle
logon password. The value specified can be enclosed
in apostrophes and must match the Oracle user id
password. Only one password can be specified per
AMISESS macro, so an AMISESS macro with more
than one OID value associates the same password
with all of the user id.

Note: RTT passwords are stored in an encrypted form
that can be decrypted. It is the user’s responsibility to
secure the RTT module, for example, by
RACF-protecting the RESLIB library in which the RTT
is stored.

ENVTAB=envname specifies the name field of an AMIENV macro coded
in the same RTT generation. It must conform to
Assembler name syntax requirements. The
environment variable specifications in the named
AMIENV are used in all Oracle Access Manager
processing for the indicated sessions unless
overridden at the AMITRANS level.
12-26 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
instance must be configured to permit externally authenticated logons through
Oracle Net.

If the RTT contains any AMISESS macros, this default is not assumed. If the RTT
contains one or more AMISESS macros and you also want to specify default session
characteristics, you must add an AMISESS for OID=* or * to the OID list of an
existing AMISESS macro call in the RTT definition.

AMIENV

The AMIENV macro defines values for various Oracle software environment
variables, particularly NLS support. One AMIENV macro call defines a distinct set
of variable name and value pairs. The AMIRT, AMITRANS, and AMISESS
ENVTAB parameters allow a given set to be associated at the region, transaction, or
session level. When a variable is specified at multiple levels, the order of
precedence is AMITRANS, AMISESS, AMIRT.

AMIENV allows you to specify any environment variable names. The names and
values are not validated during the RTT generation. Do not misspell the name of a
variable because AMIENV treats it as though the variable is not specified. An
erroneous value for an environment variable becomes apparent at runtime when
the software attempts to use the value. How the error is reported depends on the
variable and specified value.

In the RTT generation, all AMIENV macros must appear after the first AMIRT
macro. They can be mixed with AMITRANS and AMISESS macros and, unlike
AMITRANS and AMISESS, also can appear after the END set to YES call to AMIRT.

The AMIENV macro is coded as:

name AMIENV (n1,v1,...)

where:

name is a name field conforming to Assembler rules. The name field is
required and uniquely identifies the set of variables within the
RTT. It is specified as the ENVTAB parameter of an AMIRT,
AMITRANS, or AMISESS macro in the RTT.

n1 is an environment variable name, optionally enclosed in
apostrophes. Environment variable names used by Oracle
products are generally all uppercase.
Oracle Access Manager for IMS TM 12-27

Configuration Steps
Step 6: Add a Control Region and Dependent Region SSM Entry for
the Instance

If you access external subsystems from IMS, then you already have an SSM
parameter file. If not, you must create one. The parameter file is a member of the
IMS PROCLIB data set. Its member name is in the form:

<imsid><SSM_suffix>

where:

IMS TM Version 4.1 introduces a new keyword syntax for SSM entries. This syntax
is not supported by Oracle Access Manager for IMS TM. You must code the SSM
entry using IMS/DC Version 3.1 positional syntax, which is accepted by both IMS
versions.

An Oracle Access Manager for IMS TM entry in the parameter file such as
IMSLORA0, is a single logical record:

ssn,lit,ORAESSD,rtt,reo,crc

where:

v1 is the value assigned to the environment variable, optionally
enclosed in apostrophes. The apostrophes are required if the value
includes characters such as blanks or punctuation that are not part
of the Assembler’s name syntax.

Up to 256 name and value pairs can be specified within the
parentheses. A given variable name can appear no more than once
in a single AMIENV macro.

<imsid> is the IMS system id.

<SSM_suffix> is a one to four character suffix you choose. The suffix is
passed to IMS using the SSM startup region parameter.

ssn is the one to four character subsystem id for this Oracle
Access Manager for IMS TM instance. This parameter is
required and must begin in the first position of the record.

lit is the one to four character LIT for this Oracle Access
Manager for IMS TM instance. This parameter is required.
12-28 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
ORAESSD is the name of Oracle Access Manager for IMS TM external
subsystem module table (ESMT). This parameter is
required and must be specified as shown.

rtt is the load module name for the generated Oracle Access
Manager for IMS TM RTT. This module is placed in the
IMS RESLIB or in a data set concatenated to RESLIB. This
parameter is required in the control region SSM and
optional in a dependent region SSM. If omitted in a
dependent region SSM, the region uses the RTT specified
for the control region.

reo is the region error option, a one character value specifying
how Oracle Access Manager for IMS TM is to handle
external subsystem failures during application request
processing. It includes the situation where an application
issues a request before a connection to the external
subsystem can be made. This parameter is optional. If
omitted, the IMS default is R. Oracle Access Manager for
IMS TM also allows the REO to be specified on a
PSB-by-PSB basis in the RTT. The REO specified at the PSB
level overrides this REO.

The allowed values are:

• R returns an Oracle error code to the application

• Q abnormally terminates the application with a U3044
abend code. The input transaction is requeued to be
processed when an external subsystem connection
becomes possible.

• A abnormally terminates the application with a U3983
abend code. The input transaction is discarded.

crc is an optional command recognition character. This
parameter is not used and can be omitted.
Oracle Access Manager for IMS TM 12-29

Configuration Steps
Step 7: If a New SSM Member is Created for Any Region, Specify the
Member to IMS

If in Step 6 you created a new SSM member, you must specify the member to IMS.
Both the control and dependent regions use the SSM keyword parameter for this
purpose. The value for the parameter is the one to four character <SSM_suffix>
discussed in Step 6.

The SSM parameter can be specified in the execute procedures for the control region
or dependent regions and can be specified in the JCL for batch message processing
jobs. For IMS Version 4 or higher, it can be included in the operator command for
/START SUBSYS. Refer to the IBM IMS/ESA System Definition Reference for more
information on the coding of the SSM parameter.

Step 8: Make the Oracle Access Manager Code and Modules Available
to IMS Regions

If this is the first Oracle Access Manager instance you have configured for this IMS
subsystem, you must make the Oracle Access Manager load modules available to
the IMS control and dependent regions. Place the Oracle Access Manager modules
in the concatenation path of two DD statements in each region: STEPLIB and
DFSESL. The DFSESL concatenation must consist of APF authorized libraries and
must include the IMS RESLIB data set in addition to the data set containing Oracle
Access Manager for IMS TM modules.

All RTTs must be in a data set that is part of STEPLIB and DFSESL.

You must copy the AUTHLOAD and MESG modules that are required by the
Oracle Access Manager to another authorized library that is part of each region’s
STEPLIB and DFSESL. Oracle's AUTHLOAD cannot be used because IMS does not
support the PDSE format.

In addition to your generated RTTs, the following modules are required:

■ ORAAMSD (main code module)

■ ORAESSD (external subsystem module table)

You must also copy the following members from Oracle’s MESG library:

■ AMIxx (Oracle Access Manager messages)

■ ORAxx (Oracle server messages)

■ SQLxx (Precompiler runtime messages)
12-30 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Configuration Steps
■ OCIxx (Oracle call interface messages)

■ LXxxxxx (character set data objects, where xxxxx corresponds to different types
of data objects. All must be copied.)

■ TNSxx (TNS messages)

In addition, if you are accessing a remote Oracle instance through Oracle Net, you
need the NLxx message modules.

The xx appearing in the message module names is a language indicator. For
American English messages, xx is US. If you are using the NLS_LANG
environment variable to choose other languages, you must include the appropriate
message modules for those languages. Refer to Appendix D, "National Language
Support" for a discussion of NLS considerations.

Step 9: Shutdown and Restart IMS
When appropriate, follow your installation’s normal procedure to shutdown and
restart the IMS subsystem. You can use a warm start or cold start.

If your configuration is successful, you see message AMI-0108 displayed at the IMS
MTO console once for each region that is permitted to access the new Oracle Access
Manager instance. If the RTT for a region specifies CONNECT set to START (on the
AMIRT macro), you also see message AMI-0113 indicating a connection is
established to the target Oracle instance. Otherwise, IMS delays the connection
attempt until a transaction issues a request.

If the connection attempt fails for any reason, an error message is displayed and
IMS places the Oracle Access Manager instance in a stopped state. Once you have
corrected the problem, you can restart the Oracle Access Manager instance by
issuing the IMS /START SUBSYS <ssn> command.

For more information on operating the Oracle Access Manager, refer to "Starting
and Stopping Oracle Access Manager for IMS TM" on page 12-33.

Note: Access Manager for IMS messages are only available in
American English. If NLS_LANG is not American English, the
message number for the Access Manager for IMS message is used
without text.
Oracle Access Manager for IMS TM 12-31

IMS External Subsystems
IMS External Subsystems
IMS refers to Oracle Access Manager for IMS TM as an external subsystem. IMS
requires an OS/390 subsystem identifier for each instance of Oracle Access
Manager for IMS TM you configure. However, the product does not run as a
separate OS/390 address space. Instead, the Oracle Access Manager code runs
inside the IMS control region and in each dependent region that accesses Oracle
data. A separate address space is required for an Oracle9i for OS/390 database or
for Oracle Net for OS/390. Oracle9i for OS/390 or Oracle Net for OS/390 is used
when running Oracle Access Manager for IMS TM. Refer to Chapter 10, "Oracle
Net" for Oracle Net for OS/390 operating considerations.

The IMS control region is responsible for monitoring the status of all external
subsystems, including all configured instances of Oracle Access Manager for IMS
TM. It views each instance as being stopped or started. You can query IMS to
determine the status of a subsystem using the IMS operator command DISPLAY
SUBSYSTEM. Refer to IBM IMS documentation for a detailed description of the
DISPLAY SUBSYSTEM command.

For example, to request the status of a subsystem with the identifier AMI1, issue the
IMS command:

/DIS SUBSYS AMI1

from the IMS master terminal operator (MTO) or OS/390 system console. IMS
might respond with something like:

DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS
DFS000I AMI1 # NOT CONN

In this example, the Oracle Access Manager for IMS TM instance AMI1 is not
currently connected to the target database. If the subsystem is started and active in
several regions, then the display might look like:

DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS
DFS000I AMI1 # 1 PRGL08 HN1LN006 CONN
DFS000I AMI1 # 3 PRGL15Q HN1LN083 CONN
DFS000I AMI1 # 4 PSVB HN0LN19A CONN
DFS000I AMI1 # 12 PRGNQ HN1LN072 CONN
DFS000I AMI1 # 14 PBNC2UP CONN
12-32 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Starting and Stopping Oracle Access Manager for IMS TM
Although Oracle Access Manager for IMS TM does not have a display command, it
does display status messages under circumstances such as:

■ Startup

■ Termination

■ Recovery activities

■ Errors

These messages always begin with the prefix AMI- followed by a unique message
number. The complete set of Oracle Access Manager for IMS TM messages are
documented in the Oracle9i Enterprise Edition Messages Guide for OS/390.

All Oracle Access Manager for IMS TM messages are written to the operator console
and the MTO.

Starting and Stopping Oracle Access Manager for IMS TM
When the IMS control region is started, IMS attempts to initialize all external
subsystems configured for that region. This means initializing all external
subsystems the IMS subsystem can access. Dependent regions can initialize fewer
or even no subsystems, depending on how they are configured.

Initialization of Oracle Access Manager for IMS TM in a given region validates
configuration data and allocates virtual memory for required data structures. It
does not necessarily attempt to make a connection to the target Oracle server. An
Oracle Access Manager for IMS TM configuration option can specify connection to
the server be deferred until an IMS application makes a request for Oracle data.
This option can be set on a region-by-region basis.

There are connection dependencies. IMS requires the control region establish a
connection before any dependent region connection is allowed. If the deferred
connection option is used for the control region but a dependent region starting
immediately does not defer connection, then the control region is forced to connect
immediately.

Regardless of whether connection is made immediately or deferred until the first
Oracle request, there are a variety of reasons why the Oracle Access Manager for
IMS TM connection process might fail. The target Oracle server might be down. If
the target server is remote, then any of a number of required components, such as
Oracle Net for OS/390, networking software or hardware, or Oracle Net on the
target platform, might be down.
Oracle Access Manager for IMS TM 12-33

Failures and Recovery
If the connection process fails, then Oracle Access Manager for IMS TM displays
error information and informs IMS. IMS places the subsystem in the logical
stopped state. If the connection is deferred and is associated with an application
request for data, then IMS terminates and requeues the requesting transaction.

When Oracle Access Manager for IMS TM connection fails and the subsystem is
stopped, it remains so until the operator issues IMS command START SUBSYSTEM.

Oracle Access Manager for IMS TM does not automatically notify IMS to start when
the cause of connection failure is resolved. When the START SUBSYSTEM
command is issued, Oracle Access Manager for IMS TM reinitializes in each region.
Connection to the target Oracle server is attempted or deferred as indicated in
configuration data, just as in the original region startup.

Failures and Recovery
Normal IMS and Oracle Access Manager processing can be interrupted by a failure
of any of the hardware and software components involved. Because Oracle Access
Manager for IMS TM supports IMS two-phase commit synchronization, active
transactions at the time of a failure are one of the following:

■ Completely committed

■ Completely rolled back

■ Left in a recoverable state called in-doubt

When problems are rectified and normal IMS and Oracle Access Manager for IMS
TM processing resumes, the IMS control region performs a resolve in-doubt process.
This process determines the status of each in-doubt transaction and commits it or
rolls it back accordingly. Oracle Access Manager for IMS TM displays messages
during this process, indicating the action taken with each in-doubt transaction.

IMS also performs resolve in-doubt processing any time an application abnormally
terminates. Therefore, the same messages can be expected after an abend in a
transaction using Oracle Access Manager for IMS TM.

From the Oracle server side, transaction activity from Oracle Access Manager for
IMS TM falls into the same general class as Oracle distributed transactions. The
same internal Oracle tables and views record the status of all such transactions.
Transactions that originated in Oracle Access Manager for IMS TM can be identified
by their parent database id. Oracle Access Manager for IMS TM constructs a parent
database id using a combination of the IMS id and the Oracle Access Manager for
IMS TM subsystem id. Detailed information on these tables and views can be
found in Oracle9i Database Reference.
12-34 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Enterprise Manager Intelligent Agent and Data G
13

Oracle Enterprise Manager Intelligent Agent

and Data Gatherer

This chapter introduces you to Oracle Enterprise Manager Intelligent Agent and
Data Gatherer for OS/390, and provides configuration information.

The following topics are included:

■ Overview on page 13-2

■ Running the Customization Script on page 13-2

■ Updating the Parameter Files on page 13-3
atherer 13-1

Overview
Overview
The Oracle Enterprise Manager Intelligent Agent and Data Gatherer for OS/390 is a
component of the Oracle9i for OS/390 product set. It runs jobs and events sent by
the Oracle Enterprise Manager and can start up and shut down a database.
Additionally, it can function regardless of the status of the network connection, and
it can run even if the database is down.

The Oracle Enterprise Manager Intelligent Agent and Data Gatherer for OS/390 is
implemented as a command under OS/390 Unix System Services (USS).

Although an Oracle server is not required to run Oracle Enterprise Manager
Intelligent Agent and Data Gatherer for OS/390, the agent’s primary function is to
monitor an Oracle server or servers. Oracle Enterprise Manager Intelligent Agent
and Data Gatherer for OS/390 can monitor only servers that are running Oracle8
release 8.0.4 or later. Chapter 18, "Migration and Upgrade Considerations", covers
issues related to the compatibility of Oracle9i for OS/390 with previous releases.

Running the Customization Script
If you chose to install Oracle Enterprise Manager Intelligent Agent and Data
Gatherer for OS/390, you will need to run an interactive script named customize.sh.
The script can be run at any time after the installation by performing the following
steps:

1. Set your $ORACLE_HOME environment variable to the value specified at
installation. Refer to the Oracle9i Enterprise Edition Installation Guide for OS/390
for more information.

2. Issue the following commands:

> cd $ORACLE_HOME
> ./customize.sh

Note: $ORACLE_HOME must have the correct value before customize.sh is run.
Note also that several product directories might contain scripts named
customize.sh. The version located in $ORACLE_HOME is the correct one.
13-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Updating the Parameter Files
3. You will be prompted to set up the OEM backup utility. If you answer Yes (Y),
then:

a. You will be prompted to provide the data set high-level qualifier of your
database.

b. You will be prompted to provide a dsname that will be used for creating
temporary RMAN cmdfile data sets.

c. You will be prompted to provide a dsname that will be used to store the
TSO REXX data set.

4. The customize.sh script generates several export statements that can be used to
set all environment variables necessary for running the Intelligent Agent and
Data Gatherer. You will be prompted by the customize.sh script to choose
whether these exports are to be added to your .profile, or written to a separate
file for you. You must ensure that the specified environment variables are set
before you run the Intelligent Agent and Data Gatherer.

Updating the Parameter Files
After you have run the script, you must configure Oracle Enterprise Manager
Intelligent Agent and Data Gatherer for OS/390 to access the databases you wish to
manage. You do this by updating several parameter files that are placed on your
system by the install process. A working copy of these files is placed into the
$ORACLE_HOME/network/admin directory, and a backup copy is placed in the
$ORACLE_HOME/network/admin/sample directory. Leave the backup copy
unchanged, and edit only the working copy in the
$ORACLE_HOME/network/admin directory. The contents of all of these files are
documented in the Oracle9i Net Services Book Set.

To simplify the configuration process, the installed parameter files use several
easily-located character strings to indicate places where you must provide
installation-specific information. To configure the Agent, edit each of the parameter
files in turn, issue global change commands with your editor to update each of the
strings, and save the updated file. The agent reads the parameter files as it starts up
and in this way manages the specified databases. Note that the parameter files as
installed are designed to manage only a single Oracle instance; refer to the Oracle9i
Net Services Book Set to learn how to update the parameter files to manage multiple
instances. If you make any changes to the contents of these files, the Agent will
need to be stopped and restarted before the changes will take effect.
Oracle Enterprise Manager Intelligent Agent and Data Gatherer 13-3

Updating the Parameter Files
The strings used in the parameter files are as follows:

After the configuration files in $ORACLE_HOME/network/admin have been
updated, test the Agent. First, run the export statements created by the
customize.sh script to set the environment variables as required. Then, test
connectivity with the tnsping command; only when tnsping is successful should
you attempt to use the Oracle Enterprise Manager Intelligent Agent and Data
Gatherer for OS/390.

Controlling Operations of the OS/390 Agent
The Oracle service (OS/390 started task) must be started prior to starting the agent.
The Oracle Enterprise Manager Intelligent Agent and Data Gatherer requires an
additional tnsnames.ora entry for cross memory database access. That entry is
included in the sample tnsnames.ora file and must be updated to include the correct
subsystem ID and service name.

%DB% is the Oracle SID of the Oracle for OS/390 instance that you
wish to access.

%DBH% is the host name of the managed Oracle for OS/390 instance.
This value can be different from %HOST%.

%DBP% is the port number of the Oracle for OS/390 instance you are
managing.

%DBT% is the Net service name for the TCP connect descriptor.

%DBX% is the Net service name for the cross memory connect
descriptor.

%HOST% is the host name where the listener is running.

%PORT% is the port number of the listener.

%SERV% is the service name for the Oracle for OS/390 instances you
wish to access.

%SS% is the subsystem ID of the Oracle for OS/390 instances that
you wish to access. It must match the value that is specified
for SUBNAME on the SETSSI command for your OSDI
subsystem.

%TNS_ADMIN% is the value of $ORACLE_HOME with /network/admin
subdirectories appended to it. Be sure to supply the value of
$ORACLE_HOME rather than the literal string.
13-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Updating the Parameter Files
Note: The value of the HOST parameter in both listener.ora and tnsnames.ora
must be a host name, not an IP address. While other utilities, such as tnsping, will
accept either a host name or an IP address, the agent parses entries in listener.ora,
tnsnames.ora, and oratab to create services.ora, which contains the list of all valid
entries. If your HOST parameter values are all IP addresses, your services.ora will
be empty, and the agent will fail trying to allocate 0 bytes of memory.

Caution: Do not modify the TCL scripts (job and event scripts written in Tool
Command Language) that come with the agent. If you want to submit a job
different than the ones that are predefined with the agent, then use the TCL job
where you are allowed to pass in arbitrary scripts and have the agent run them.
Oracle Enterprise Manager Intelligent Agent and Data Gatherer 13-5

Updating the Parameter Files
13-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i Real Application C
14

Oracle9i Real Application Clusters

This chapter provides guidelines for configuring Oracle9i Real Application Clusters
after installing Oracle9i for OS/390. The following topics are included:

■ Overview on page 14-2

■ Setting Up Real Application Clusters on page 14-3

■ Cross System Communication Facility (XCF) on page 14-5

■ OS/390 Resource Name Usage on page 14-6
lusters 14-1

Overview
Overview
With the Oracle9i Real Application Clusters option, separate Oracle9i for OS/390
instances run simultaneously on one or more nodes (OS/390 images) and share a
single physical database.

It is important to note that the OS/390 implementation follows the Oracle9i Real
Application Clusters design guidelines. The only difference is the use of OS/390
filetypes. For more information, refer to the Oracle9i Real Application Clusters Book
Set.

Oracle9i Real Application Clusters has the following characteristics:

■ One or more instances of Oracle9i Real Application Clusters can be started on a
given node in the parallel sysplex.

■ Each instance has a separate SGA and set of background processes.

■ All instances share the same data files and control files of a given database.

■ All instances can execute transactions concurrently against the same database
and each instance can have multiple users executing transactions.

■ Row level locking is preserved across the instances.

Applications accessing the database can run on the same nodes as multiple
instances of Oracle9i Real Application Clusters, or on separate nodes of a parallel
sysplex, or on distributed systems using the client/server architecture. Oracle9i
Real Application Clusters can be part of a distributed database system. Distributed
transactions access the data in a remote database in the same way, regardless of
whether the data files are owned by an Oracle9i for OS/390 server (in exclusive
mode) or an Oracle9i Real Application Clusters instance (in exclusive or parallel
mode).

Other non-Oracle workload can run on each node of the sysplex or you can dedicate
the entire sysplex or part of the sysplex to the Oracle server. For example, an
Oracle9i Real Application Clusters instance and its applications might occupy three
nodes of a five-node sysplex, while the other two nodes are used for non-Oracle
applications.

Refer to the Oracle9i Real Application Clusters Book Set for more information about the
Oracle9i Real Application Clusters environment. Refer to the concepts in the
Oracle9i Real Application Clusters Book Set, especially the discussions on compatibility
issues, restrictions, and database design guidelines.
14-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Setting Up Real Application Clusters
Setting Up Real Application Clusters
The following steps describe important tasks you must perform when setting up an
Oracle9i Real Application Clusters system, but they do not include all the tasks you
might need to do for your site. Before performing these steps, review the concepts
manual in the Oracle9i Real Application Clusters Book Set for more information.

Checklist for Setting Up Oracle9i Real Application Clusters:

1. Review and set options in the CREATE DATABASE statement

2. Set up additional threads of redo log files and rollback segments

3. Share all non-VSAM data sets

4. Set up the common OSDI parameters

5. Set up the common Oracle9i Real Application Clusters initialization parameters

6. Set up the instance-specific Oracle9i Real Application Clusters initialization
parameters

7. Create the startup JCL

Step 1: Review and Set Options in the CREATE DATABASE
Statement

Review and set the following options to allow multiple instances of Oracle9i Real
Application Clusters to function properly. For a complete description of the
CREATE DATABASE and ALTER DATABASE statements and options, refer to the
Oracle9i Database Administrator’s Guide and the Oracle9i SQL Reference.

MAXDATAFILES The MAXDATAFILES option of CREATE DATABASE
determines the number of data files a database can have. With Oracle9i Real
Application Clusters, databases tend to have more data files and log files than an
exclusive mounted database.

MAXINSTANCES The MAXINSTANCES option of CREATE DATABASE limits the
number of instances that can access a database concurrently. The default value for
this option under OS/390 is 15. Set MAXINSTANCES to a value greater than the
maximum number of instances you expect to run concurrently.

MAXLOGFILE and MAXLOGMEMBERS The MAXLOGFILES option of CREATE
DATABASE specifies the maximum number of redo log groups that can be created
Oracle9i Real Application Clusters 14-3

Setting Up Real Application Clusters
for the database. The MAXLOGMEMBERS option specifies the maximum number
of members or number of copies per group. Set MAXLOGFILES to the maximum
number of instances you plan to run concurrently multiplied by the maximum
anticipated number of groups per thread.

MAXLOGHISTORY The MAXLOGHISTORY option of CREATE DATABASE
specifies the maximum number of redo log files that can be recorded in the log
history of the control file. The log history is used for automatic media recovery of
Oracle9i Real Application Clusters.

For Oracle9i Real Application Clusters, set MAXLOGHISTORY to a large value,
such as 100. The control file can then store information about this number of redo
log files. When the log history exceeds this limit, the Oracle server overwrites the
oldest entries in the log history. The default for MAXLOGHISTORY is 0 (zero),
which disables log history.

Step 2: Set Up Additional Threads of Redo Log Files and Rollback
Segments

Each Oracle9i Real Application Clusters instance requires its own redo log threads
and rollback segments. Refer to the concepts manual of the Oracle9i Real Application
Clusters Book Set for how to plan, create, and assign threads of redo and rollback
segments to each instance.

Step 3: Share All Non-VSAM Data Sets

Because non-VSAM data sets will be used by multiple instances, ensure that the
data sets used in the startup JCL of Oracle9i Real Application Clusters instances are
specified with a DISP=SHR JCL parameter.

Step 4: Set Up the Database Region Parameters

Review and modify the OSDI database region parameters that apply to individual
Oracle9i instances in one of the members of PARMLIB (for example, sidPARM,
where sid is the database service identifier). OSDI database region parameters are
described in "Database Region Parameters" on page 3-10. These parameters are
required to start individual Oracle9i instances. There are no Oracle9i Real
Application Clusters-specific database region parameters.
14-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Cross System Communication Facility (XCF)
Step 5: Set Up the Common Oracle9i Real Application Clusters
Initialization Parameters

Review and modify the Oracle9i Real Application Clusters initialization parameters
that apply to all instances in the sidINIT member of PARMLIB. The sidINIT member
might also contain other parameters which are not directly applicable to Oracle9i
Real Application Clusters but apply to all instances. For a complete list of
parameters common or identical across all instances, refer to the Oracle9i Real
Application Clusters Book Set.

Step 6: Set Up the Instance-specific Oracle9i Real Application
Clusters Initialization Parameters

Create the Oracle9i Real Application Clusters initialization parameters that must be
unique for each instance in a new member of PARMLIB. You may create as many of
these members for as many instances as you plan to run mounting the same
database. Each of these members also should specify the common initialization
parameter file using the IFILE parameter.

Alternately all parameters can be specified in one member of PARMLIB. For syntax
and notation required for using one initialization parameter file, please refer to the
Oracle9i Real Application Clusters Book Set.

At a minimum, the INSTANCE_NUMBER, INSTANCE_NAME, and THREAD
parameters are recommended for each instance.

 Step 7: Operating an OSDI Database Service

Each instance of Oracle9i Real Application Clusters executes in a manner similar to
a single OSDI-based database service. For more information, refer to Chapter 3,
"Configuring a Database Service and Creating a New Database" and Chapter 5,
"Operating a Database Service".

Before starting or stopping Oracle9i Real Application Clusters instances or doing
backup and recovery operations, refer to the information about these topics in the
Oracle9i Real Application Clusters Book Set.

Cross System Communication Facility (XCF)
Oracle9i Real Application Clusters requires the Cross System Communication
Facility, commonly known as XCF. For more information about configuring XCF,
please refer to the IBM document Setting Up a Sysplex, GC28-1779.
Oracle9i Real Application Clusters 14-5

OS/390 Resource Name Usage
OS/390 Resource Name Usage
Oracle9i Real Application Clusters instances will, by default, make use of the
following OS/390 resource names. If these names conflict with other software on
your system and this cannot be changed, contact Oracle Worldwide Support for
assistance.

XCF Group Names

Each instance will create and join XCF groups with names of the format Onnnxxxx,
where nnn is an internally generated 3 character alphanumeric string to uniquely
identify a cluster, and xxxx is a 4 character alphanumeric string to identify the type
of XCF group. The following is an example using XCF names for the first Oracle9i
Real Application Clusters instance:

XCF group for IPC Messages: O001ORAM
XCF group for Node Monitor: O001ORAN
Oracle Groups: O001Gmmm

In the above example, the mmm are Oracle group numbers and are assigned serially.

OS/390 ENQ Names

Each instance will also take out global (sysplex-wide) enqueues on resources with
names in the format:

Qname : OnnnORAG

where Qname is the queue name to be used for ENQs used by this cluster.

Rname : OnnnGxxx#yyy….yyy

where Rname is the resource name used by ENQs consisting of xxx (a three
character alphanumeric string) and yyy…yyy (a variable length alphanumeric
string, up to 18 characters).

For example, for the first Oracle9i Real Application Clusters instance with the
database name ORACLE9I, the following name will be used:

O0001ORAG.O001G001#DBORACLE9I
14-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Progr
15

Oracle Programmer

Oracle Programmer under OS/390 includes OS/390 task and program requirements
that must be considered for Oracle applications running in special environments.

Most Oracle applications run as conventional CICS transactions, TSO CALLs, TSO
commands, or batch jobs. The OS/390 task and program requirements are usually
only an issue for applications that use:

■ Multitasking

■ Cross memory services

■ Authorized OS/390 functions

■ Execution in supervisor state

■ Execution in a PSW key other than 8

Some examples of system software facilities that use special environments are
subsystem-based products, exits from OS/390 system functions, and transaction
processing monitors.

The following topics are included:

■ Oracle Programmer INCLUDE Files on page 15-2

■ ASID and Task Considerations on page 15-2

■ Program Status Word Protect Key on page 15-3

■ PSW State on page 15-3

■ Multiple Executions under a TCB on page 15-3

■ Cross Memory Mode on page 15-4

■ APF Authorization on page 15-4
ammer 15-1

Oracle Programmer INCLUDE Files
Oracle Programmer INCLUDE Files
Oracle Corporation provides several INCLUDE files in the H library for use in the
Oracle Precompiler and Oracle Call Interface programs. You do not have to specify
the member name that includes the language suffix in your source program.
However, Oracle Corporation recommends you specify the data structure name,
such as SQLCA, in your source program. The Oracle Precompilers includes the
appropriate member name based on the Oracle Precompiler language.

For more information about data structures, refer to the product-specific Oracle
Programmer documentation.

ASID and Task Considerations
A connection to the OSDI-managed Oracle database service has affinity to the
address space and OS/390 task (TCB) under which it originated. An OS/390 task
can establish and maintain multiple connections to Oracle, but no connection can
migrate to another OS/390 task or address space. If Oracle activity is to move from
one task to another, then these steps must take place:

1. The first task must terminate all Oracle connections. This can be accomplished
with an EXEC SQL COMMIT or EXEC SQL ROLLBACK using the RELEASE
option.

2. The second task must logon to Oracle. This is considered a new session for
Oracle and SMF accounting purposes.

Table 15–1 Data Structures for Oracle Precompiler and Call Interface programs

Language Member Name Data Structure

C SQLCAC SQLCA

C ORACAC ORACA

C SQLDAC SQLDA

COBOL SQLCACOB SQLCA

COBOL ORACACOB ORACA

FORTRAN ORACAFOR ORACA

FORTRAN SQLCAFOR SQLCA

PL/I ORACAPLI ORACA

PL/I SQLCAPLI SQLCA
15-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Multiple Executions under a TCB
3. The second task must reparse all the SQL statements and reestablish the
connection environment of the first task.

When an Oracle connection is initiated from TSO, the interface routine attaches a
subtask to process break signals when the user presses the [Attn] key. This is
necessary because TSO does not allow a task to field a break signal while it is
running in Oracle in cross memory mode. The subtask is responsible for setting
and maintaining a functional STAX (attention exit) environment for the connection.

Program Status Word Protect Key
Connections to Oracle can be established in any supported OS/390 protect key, in
addition to the normal problem state key of 8. Oracle notes the protect key from the
program status word (PSW) at the time of the initial connection. All subsequent
calls to Oracle by that connection must be performed using the same protect key.

The application-side virtual storage into which Oracle moves the results of database
operations must be modifiable under that protect key. Normally this
application-side virtual storage is acquired by the ORADRV interface routines.
When these routines are invoked in problem state, they acquire storage in the
default subpool zero. When these routines are invoked in supervisor state, they
request storage in subpool 250, which assigns storage from subpool zero with the
task protect key (TCBPFK field of the TCB).

For system integrity reasons, Oracle Corporation strongly discourages the use of
PSW key 0 for Oracle connections.

PSW State
An Oracle connection can be established in either problem state or supervisor state.
However, the same state needs to be maintained for all subsequent Oracle calls.
Oracle interface routines always return control in the same state and key in which
they were invoked.

Multiple Executions under a TCB
If an Oracle application or tool is invoked multiple times under the same TCB, then
unpredictable results might occur.
Oracle Programmer 15-3

Cross Memory Mode
Cross Memory Mode
Calls made to Oracle while in cross memory mode are not supported. Cross
memory mode is defined as:

■ Primary ASID does not equal home ASID

■ Secondary ASID does not equal home ASID

■ Secondary-addressing bit (PSW S-bit) is on

APF Authorization
A task connecting to Oracle can be APF-authorized. The connection is the same as
non-authorized connections except for differences in the behavior of certain OS/390
facilities, such as security products.
15-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i Perfor
16

Oracle9i Performance

The performance of your Oracle server depends on a number of factors. This
chapter describes some of those factors and provides recommendations for
improving and tuning your system to promote better Oracle performance.

The following topics are included:

■ CPU Usage on page 16-2

■ Memory Requirements on page 16-4

■ Oracle Server Storage Requirements on page 16-6

■ Oracle Tuning on page 16-13

■ Minimizing I/O Bottlenecks on page 16-20

■ OS/390 Tuning on page 16-21

■ PL/SQL and Java on page 16-29

■ Oracle Parallel Execution on page 16-31

■ Applications Performance Diagnosis on page 16-34

■ Oracle Access Manager for CICS on page 16-38

■ Oracle Access Manager for IMS on page 16-43
mance 16-1

CPU Usage
CPU Usage
Under the OSDI environment, an Oracle9i for OS/390 database server can be
configured to use multiple address spaces. This greatly expands the amount of
virtual memory available to support higher workload levels, especially in the form
of additional users. The first address space that is created is known as the AS1 or
Control Address Space. The additional address spaces are Auxiliary Address
Spaces. After the Oracle instance startup is completed, the user sessions are evenly
distributed among the configured address spaces, or regions, based on available
virtual memory.

Oracle Server Regions
The Oracle regions will consume CPU resources as users communicate with the
database service to establish or terminate a session and to perform other special
activities belonging to the Oracle regions, such as such as opening and closing files,
database file I/O, and network connections. Additionally, the Control Address
Space owns the Oracle background tasks, which consume CPU resources when they
are active.

Background tasks in the Control Address Space use small amounts of CPU
resources to perform normal background processing, such as:

■ writing out to disk database and log file blocks from the buffer areas

■ cleaning up after abnormal termination of user connections to the instance

■ performing recovery operations

■ synchronizing two-phase commit operations

■ keeping critical data for instance recovery in the control files

■ updating database file headers during checkpoints

■ archiving closed redo log files

Typically, the Oracle regions consume very moderate CPU resources compared with
those of the client regions. In a special case, however, the Oracle regions can use
significant amounts of CPU resources. This situation occurs when a client uses the
Oracle parallel execution feature. When this feature is used, the portion of database
work that is parallelized (executed in parallel) will be performed by parallel
execution slaves in the form of special subtasks within the Oracle regions, whereas
the portion of work that is not parallelized (not executed in parallel) will be
performed by the client task, as normally occurs. For details on how and where
16-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

CPU Usage
these parallel slaves are created, please refer to "Oracle Parallel Execution" on
page 16-31.

Client Regions
When executing database operations in normal mode (in other words, without
parallel execution), most resources are charged to the client address space, whether
it is a TSO, batch, CICS, IMS, or Oracle Net address space. The first four examples
represent clients executing locally in the OS/390 image. The last example is the case
of a remote user accessing the Oracle9i for OS/390 server from another node in a
network by using Oracle Net services.

Under OSDI, the Oracle Net address space performs both the protocol related
networking function and the actual, non-parallel-executed database work on behalf
of the remote user.

Oracle Net Client Processing
Network clients are dispatched within the Net region as preemptable SRBs. An SRB
is a lightweight OS/390 facility to dispatch processes. When used in conjunction
with a new mechanism for prioritizing work, this scheme provides a very efficient
and manageable means of execution.

Further, a preemptable SRB can be associated with an enclave, an artifice that
assigns priority to a unit of work independent of any specific OS/390 address space
or process. Multiple processes (both tasks and preemptable SRBs) can be executed
on behalf of an enclave and are granted resources according to installation-defined
goals for the associated work.

An OS/390 system component called Workload Manager (WLM) monitors work
that is executed under this scheme, and dynamically adjusts task and preemptable
SRB dispatching priorities and other factors to ensure that defined goals are met.
Refer to "Dispatching Priority" on page 16-22 for a detailed description of how to
handle Oracle dispatching priorities for both local and remote clients.

A Net service under OSDI creates enclave SRBs for dispatching all network client
requests. The CPU time associated with their database work is therefore attributed
to the Net address space. Using WLM in goal mode, the Net region can run at a
high dispatching priority to ensure good performance for the networking service,
whereas the dispatching priority of the remote client database requests can be
managed separately according to their own needs.
Oracle9i Performance 16-3

Memory Requirements
Memory Requirements

Above and Below the 16M Line
The Oracle server allocates nearly all storage areas above the 16M line. Only one
small data area and a few load modules are allocated below the line. All other data
areas, including the SGA, PGA, context areas, sort work areas, working storage, and
most Oracle load modules are located above the 16M line. The sizes of these data
areas depend on the settings of various INITORA and OSDI parameters and on the
user workload.

IEFUSI Exit

An OS/390 exit called IEFUSI might be installed on your system. The IEFUSI exit
prevents started tasks or batch jobs from getting the maximum region size when
REGION=0M is specified. If an IEFUSI exit is implemented, it is specified in the
SMFPRMxx member of SYS1.PARMLIB that is used during OS/390 initialization.
To effectively run Oracle with an IEFUSI exit installed, ensure that the exit is coded
to allow batch jobs or started tasks with the names of your Oracle regions to allocate
a large amount of virtual memory above the 16M line.

Because Oracle allocates only the amount of memory it needs, you can safely allow
Oracle to allocate any amount of memory up to the two gigabyte limit per address
space that is imposed by 31-bit addressing conventions.

Reducing Real Storage Requirements
An excellent method for reducing the real storage requirements for Oracle is to
place reentrant modules in OS/390 link pack areas. Most Oracle modules are
link-edited with AMODE set to 31 and RMODE set to ANY. Place such modules in
the extended pageable link pack area (EPLPA) above the 16M line. Some modules
are linked with RMODE set to 24. Place them in the pageable link pack area (PLPA)
below the 16M line. Current versions of OS/390 automatically load modules from
the link pack area libraries into the appropriate link pack areas.

Keep in mind that under the current OS/390 implementation, placing modules into
LPA reduces the private area of every address space in the system. In other words,
there is a trade-off between code sharing and virtual memory availability.
16-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Memory Requirements
LPA Considerations for Database and Net Regions

Only the subsystem code module (ORASSI) is automatically shared, and it is shared
by all Oracle subsystems and services.

The Oracle database and Net regions run different programs from the Oracle
AUTHLOAD library. Each Oracle database address space has its own copy of
ORARASC and a few other modules, and the Net address space has ORANET8 and
several others modules as well. There is no sharing of this code, even between
address spaces of the same database service. Due to an operating system
restriction, you cannot put ORARASC into LPA -- doing so makes it impossible to
run any other copy of ORARASC (for example, an ORARASC at a different
maintenance level), whether from LPA or not. ORARASC is also quite small in size,
so it is not necessary for it to be shared. The Net modules, such as ORANET8, are
also quite small in size. In addition, because a single Net service can be used to
access multiple database services, typically only one Net service will be deployed.
As a result, sharing of Net code is also typically unnecessary.

If you are running multiple Oracle database regions (from either the same or
different instances), an excellent candidate for LPA usage is the Oracle kernel (in
other words, the ORACLE module), because it is quite large in size. As described
above, prior consideration should be given to the impact on any non Oracle
workloads that may be constrained by virtual storage.

LPA Considerations for Local Oracle Users

If your installation will run multiple concurrent local users, you can place the
following modules from the Oracle CMDLOAD into the link pack:

■ LIBCLNTS

LIBCLNTS contains the interface routines for all Oracle client accesses. This
includes tools, utilities, precompilers, precompiler applications and Access
Managers. LIBCLNTS is an excellent candidate because of it’s relatively large
size. Place it in the EPLPA above the 16M line.

Note: If you choose to take advantage of this OS/390 feature, be
aware that any STEPLIB/JOBLIB definition in the JCL has
precedence over the placed modules of any link pack areas. Make
sure that such modules do not exist in the STEPLIB/JOBLIB
libraries so that the link pack area copy will be used instead.
Oracle9i Performance 16-5

Oracle Server Storage Requirements
■ SQLPLUS

SQLPLUS is the primary Oracle batch and interactive SQL processor. It is used
for user database queries, updates, table creates and drops, and so forth. In
many systems, this module is used heavily enough to warrant link pack area
placement. Place it in the ELPA.

Do not place other load modules from the Oracle libraries into the link pack area,
because they are referenced infrequently, link edited RMODE 24, or not reentrant.

Oracle Server Storage Requirements
The Oracle server makes static-fixed, static-variable, and dynamic virtual memory
allocations as the Oracle regions are started up and begin providing database
services to users. Static-fixed memory allocations are storage areas that are always
allocated in the regions including space for the Oracle load modules, working
storage, and OS/390 data areas. Static-variable memory -- mainly the SGA -- differ
from one warm start of the server to the next, depending on initialization parameter
values. Dynamic memory allocations occur as users connect to the instance and
access information that is stored in the server. The primary factors determining the
number of concurrent Oracle users that can be supported under OS/390 are the
user memory allocation requirements (depending on the application design), the
INITORA and OSDI parameter values, the amount of virtual memory that Oracle
regions are allowed to allocate, and the amount of central storage that is available
for use by the Oracle regions.

Database Server Address Space Configuration
Exhausting virtual memory in an address space will lead to any of a number of
types of failures, because it is impossible to predict which system activity requests
for memory are going to be denied.

This scenario is best avoided by configuring a database instance with enough
address spaces to contain the largest expected workload in terms of memory
required. Doing this requires an understanding of the workload as well as of the
database address space topography on OS/390.

In addition to carefully configuring server address spaces, you can use certain
database region parameters that provide controls designed to reduce the likelihood
of exhausting address space memory. These are discussed in "Limiting Sessions in a
Server Address Space" on page 16-11, and "Limiting Memory Allocations in a Server
Address Space" on page 16-11.
16-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Server Storage Requirements
Determining the Number of Oracle Address Spaces

Each database address space starts out with a given amount of private virtual
memory: 2048 megabytes less the memory that is used or reserved by OS/390 for
shared access by all address spaces: SQA, CSA, LPA, and the OS/390 nucleus and
related data. The sizes of these spaces, and thus the amount of private memory
remaining in each address space, varies from one OS/390 system to another. You
may need to consult with your systems staff to determine the available private area
size on your system.

Once you know the private area size of your system, you must subtract from it the
amount of memory that will be allocated in each address space for purposes other
than Oracle sessions. This memory allocation includes the Oracle SGA, the Oracle
kernel -- usually named ORACLE -- and other minor load modules (ORARASC,
ORARSSRB, ORADIE), and the load modules and data structures of the OS/390
Oracle infrastructure, including the IBM Language Environment (LE) interface. The
size of the Oracle SGA is determined primarily by parameters that you specify in
the INITORA file and is displayed during Oracle startup. (For additional
discussion of the SGA, refer to section "The Oracle SGA on OS/390" on page 16-9.)
The size of the Oracle kernel and other modules can be determined using ISPF
browse on the load library that contains it.

After the foregoing are subtracted, the remaining private memory in each server
address space is available for Oracle sessions. The maximum amount of memory
that is required by a given session depends mainly on the behavior of the
application: the number of cursors opened, the specific SQL statements used,
PL/SQL and/or Java requirements (if any), and so forth. In addition, there are
several INITORA parameters (SORT_AREA_SIZE, HASH_AREA_SIZE, and so
forth) and a database region parameter (INIT_STACK_SIZE) that affect the memory
resources that are allocated during each session execution. This can be quite
difficult to estimate in advance of running the application. The most reliable way to
determine memory requirements is to review the Oracle session SMF records
(which contain a session memory high-water mark) and analyze them to determine
the average peak session memory. For more information on Oracle SMF records
refer to "Interpreting an Oracle SMF Record" on page 9-4.
Oracle9i Performance 16-7

Oracle Server Storage Requirements
Once you know the average session memory requirement you can calculate the
number of sessions that will fit in one address space as:

N = P / S

where:

If we let T be the total number of concurrent Oracle sessions to be supported then
you need (T / N) server address spaces. This number should be rounded to the next
higher whole number, and to allow for reasonable variability in workload level, it
may be advisable to add one more address space. In doing so, keep in mind that an
SQA cost is associated with starting additional address spaces, which is discussed
in the section "The Oracle SGA on OS/390" on page 16-9.

Oracle Corporation recommends that you specify the number of address spaces
calculated here as the INIT_ADR_SPACES parameter (so the address spaces all start
when the service is started). A somewhat higher number can be specified as
MAXAS (maximum address spaces) on the DEFINE SERVICE command. This
makes it possible to start additional address spaces dynamically if the initial
estimate proves to be low. There is no cost for having additional address spaces in
the MAXAS parameter until those address spaces are actually started. Note that
MAXAS must be equal to or greater than INIT_ADR_SPACES. Care should be
taken to specify a high enough value to accommodate unpredictable workload
growth or spikes.

Note that using more than one address space results in the Oracle server becoming
a "cross-memory address space" in OS/390 terms. These address spaces are not
available for reuse when the Oracle server terminates. The OS/390 PARMLIB
parameter RSVNONR specifies the number of address space numbers to reserve for
use as they become unavailable. If you use multiple address spaces for the Oracle
server, then you should increase the value specified for this parameter. Specifying
too small a value, or letting RSVNONR take the default value could result in an
unscheduled IPL if the number of address space IDs becomes exhausted. For
example, you could stop the Oracle server for maintenance and then become unable
to restart without an IPL. For more information, refer to the OS/390 Initialization and
Tuning Reference, SG28-1752.

N is the desired result

P is the available private memory per address space

S is the average peak session memory
16-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Server Storage Requirements
The Oracle SGA on OS/390

An Oracle server instance has a single System Global Area (SGA) regardless of the
number of address spaces or regions configured. The Oracle SGA is shared across
all of regions of a server using an OS/390 service called IARVSERV that allows one
address space to "view" a range of private virtual memory that belongs to another
address space. The Oracle SGA belongs to the first server address space (primary
region) and is viewed (shared) by any other regions that are configured for that
server. The virtual address range of the Oracle SGA must be reserved in each of the
auxiliary regions to support the viewing mechanism. This is why the Oracle SGA
size is subtracted from the private area size in every server address space of a given
instance (not just the primary region) in the memory calculations of the previous
section, "Determining the Number of Oracle Address Spaces".

Sizing the Oracle SGA and, most significantly, sizing the database buffer cache and
the shared pool, are important instance tuning activities. The numerous INITORA
parameters that do this and the general considerations for specifying their
appropriate values are covered in the Oracle9i Database Reference and the Oracle9i
Database Performance Book Set. A few guidelines for configuring some critical
INITORA performance parameters are also presented in section "INITORA
Parameters" on page 16-13. The following paragraphs describe some
OS/390-specific issues to be aware of when tuning the Oracle SGA.

Because the SGA is not permanently pagefixed on OS/390 as it is on some other
systems, there is little benefit in reserving SGA expansion space with the
SGA_MAX_SIZE parameter. When you specify SGA_MAX_SIZE, the indicated
maximum size is reserved (in virtual memory) in all server address spaces even if it
is not all used.

Keep in mind that the Oracle SGA is mapped in all of the server address spaces of a
given instance as discussed above. This means that increasing a server’s SGA size
reduces the virtual memory available for Oracle sessions in every server region for
that instance. If you do this, you may need to increase the number of regions in
order to support your peak workload. The relationship is not linear. A 25%
increase in SGA size may require more than a 25% increase in the number of server
regions. When you make a significant change in the Oracle SGA size, repeat the
calculations described in the previous section to determine the number of server
address spaces that you need.

Another factor in Oracle SGA sizing is the overhead of the IARVSERV memory
sharing mechanism. Currently, OS/390 must reserve 32 bytes of ESQA (Extended
System Queue Area) for each "view" of each 4K page of memory shared. SQA is an
expensive resource because it is page-fixed (always backed by real memory) and
Oracle9i Performance 16-9

Oracle Server Storage Requirements
because it is globally addressable, using up an address range that would otherwise
be part of the private area of each address space. Exhausting OS/390 SQA is a
situation best avoided, so you should calculate the SQA overhead for your Oracle
SGA and discuss this with your OS/390 systems staff before attempting to start the
server.

As an example, an Oracle server configured to run in 10 address spaces with a
512 megabyte SGA requires

32 x 10 x ((512 x 1024 x 1024) / 4096) bytes

or 40 Megabytes, of SQA, a significant amount.

The User Stack Area in OS/390

Each Oracle server user requires some extent of private memory to be used as a
save area during normal execution. This area is known as the user stack.

When a user session is initiated, the connection is routed to a particular Oracle
region. This region will then acquire a stack area based on the INIT_STACK_SIZE
parameter. If the user requires more stack, additional extents are dynamically
allocated and freed when they are no longer required. The actual stack requirement
is dependent on the type of database call being used (SQL, PL/SQL, Java, OCI) and
its complexity.

To fine tune this parameter, you might want to use the Oracle session SMF records
analysis method described in the "Database Server Address Space Configuration"
section (that was presented earlier in this chapter), or you can run your workload
by varying the INIT_STACK_SIZE settings and then comparing the CPU usage of

Note: The total amount of SQA to reserve for all uses is an
OS/390 system initialization parameter and cannot be changed
without an IPL.

Note: The IARVSERV SQA overhead occurs only when running
Oracle servers in two or more address spaces. When a server is
configured to run in a single address space only, IARVSERV is not
used, and no SQA requirement is imposed. The current IARVSERV
implementation provides page-level (4K unit) sharing granularity
with a rather high cost in real memory overhead (on the order of
3% of all aggregated virtual views) for mapping tables.
16-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Server Storage Requirements
the various tests. The lower the INIT_STACK_SIZE value, the higher the potential
CPU overhead that is caused by dynamic stack expansion.

As a starting point, you can use the Oracle Corporation recommended minimum
value of 128K.

Limiting Sessions in a Server Address Space
The MAX_SESSIONS parameter also plays a role in managing virtual memory use.
This is a hard limit on the number of sessions that can be active in one server
address space, and it defaults to 1024 sessions. If a new bind (client connection) is
routed to an address space that is at the MAX_SESSIONS limit, the server waits
until some existing session unbinds (disconnects) before accepting the new session.

The idea behind MAX_SESSIONS is to keep the address space from accepting so
many sessions that virtual memory is exhausted and unpredictable failures occur.
The assumption is that it is better not to let an application connect and get started
than to let it connect and incur transaction failure partway through its processing.
A good value to use for MAX_SESSIONS is the value N (maximum sessions per
address space) that was calculated in the section "Database Server Address Space
Configuration" on page 16-6.

Both INITORA and database region parameter values must be set high enough to
allow the required number of users to connect to the server. Please refer to the
discussion about the INITORA PROCESSES parameter in section "PROCESSES" on
page 16-16.

Limiting Memory Allocations in a Server Address Space
Two more database region parameters provide additional control over memory
consumption in a server address space. The MAX_SESSION_MEM parameter
allows you to impose a limit on the total virtual memory allocated to any single
session in the Oracle server. This applies to all session-private memory requests
made by the server, including the C stack and "heap" areas.

The limit is imposed on all sessions, including background processes and even
parallel query slaves. If a session requests memory that would take it over the limit,
the session receives an error (usually an ORA-04030) and the current transaction is
rolled back.

Care should be taken not to choose too small a session limit. STARTUP processing
in the current Oracle release requires about 10 megabytes of session memory. Note
Oracle9i Performance 16-11

Oracle Server Storage Requirements
that session memory usage is reported in the Oracle SMF record, which can be used
to help determine an appropriate limit amount.

Another parameter, REGION_MEM_RESERVE, allows you to limit the total
memory allocated to all sessions and the Oracle SGA in an address space before
exhausting address space private area. The "reserve" amount you specify remains
available for internal implementation and OS/390 system function use.

Specifying an adequate reserve amount prevents the situation of exhausting address
space memory and significantly reduces the impact of memory consumption
problems. Requests for memory that would exceed the aggregate limit are rejected,
resulting in an error and transaction rollback in the affected session.

Real Storage: Working Set
The amount of real storage ("working set size") that is required by the Oracle
regions is very workload dependent, varying significantly with transaction
complexity and rate, user concurrency, and locality of program and data reference.
A lightly-loaded instance might require only 50K of working set for every megabyte
of virtual memory that is allocated, while an instance that is supporting a much
higher workload might require 750K of working set for every megabyte of virtual
memory that is allocated. In general, Oracle load modules and the SGA remain in
central storage while the context areas, sort work areas, and other individual
session-related areas are more likely to be paged out to expanded or auxiliary
storage when they are not heavily used.

Virtual Memory Allocation
The amount of virtual memory that is consumed by the server regions may vary
significantly at run time because memory usage levels are very dynamic and
fluctuate according to user workload. This is especially true when users connect
and/or disconnect frequently or when users execute applications that open and
close a large number of cursors, and when sorts are performed. Region size
limitations can therefore become important, even with a small number of users
connected to the instance. A region size limit that is too small prevents users from
connecting to the server or from accessing information. Oracle Corporation
recommends that you allow the server to allocate as much virtual memory as
required and that you avoid imposing any region size limitations on the software.
Other OS/390 facilities can be used to control the amount of central and expanded
storage that is used by the server. The easiest way to allow Oracle9i to use the
maximum amount of virtual storage is to specify the REGION=0M keyword
16-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Tuning
parameter on the EXEC statement in the region startup JCL. Refer to "IEFUSI Exit"
on page 16-4.

Oracle Tuning
This section deals with methods of optimizing your Oracle performance under
OS/390. Before tuning your Oracle server specifically for running on OS/390, you
should tune it for optimal performance independent of the operating system. For
information on tuning methods that are independent of the operating system, refer
to the Oracle9i Database Performance Book Set.

INITORA Parameters
Certain INITORA parameters can be used to optimize Oracle performance. Some of
these parameters are discussed here, including:

■ CURSOR_SHARING

■ DB_CACHE_SIZE, DB_nK_CACHE_SIZE

■ FAST_START_IO_TARGET

■ FAST_START_MTTR_TARGET

■ JAVA_POOL_SIZE

■ LOG_CHECKPOINT_INTERVAL

■ PROCESSES

■ SESSION_CACHED_CURSORS

■ SESSIONS

■ SHARED_POOL_SIZE

■ SORT_AREA_RETAINED_SIZE

■ SORT_AREA_SIZE

■ TRANSACTIONS

CURSOR_SHARING

Oracle compares SQL statements and PL/SQL blocks that are issued directly by
users and applications, as well as recursive SQL statements that are issued
internally by Oracle. If two identical statements are issued, then the SQL or
Oracle9i Performance 16-13

Oracle Tuning
PL/SQL area that is used to process the first occurrence of the statement is shared.
This means that it is used for the subsequent executions of all identical statements
(no matter which users they belong to), thus reducing memory usage and
improving performance.

To promote or maximize statement reusability and shareability, different execution
arguments can be passed at run time by using bind variables. But even with bind
variables, two SQL statements that are doing exactly the same job may not be
considered identical. In addition to being identical, character-by-character in the
SQL text, the bind variables in the SQL statements must match in name and data
type. For example, the following two statements cannot use the same shared SQL
area:

 SELECT * FROM emp WHERE deptno = :department_no;
 SELECT * FROM emp WHERE deptno = :d_no;

Generally, therefore, only truly identical statements can be shared. However,
non-identical statements that are considered "similar" can also share SQL areas
when the CURSOR_SHARING parameter is set to FORCE, frequently solving
shared pool memory allocation problems and minimizing statement parsing
overhead. Two separate occurrences of a SQL statement or a PL/SQL block are
considered "similar" and can use a shared SQL area if they differ only in the literals.
For example, the following two statements are considered similar:

 INSERT INTO T VALUES(1, ’foo’, 4)
 INSERT INTO T VALUES(2, ’bar’, 7)

The CURSOR_SHARING parameter may solve some performance problems. It has
the following values: FORCE, SIMILAR, and EXACT (default). Setting
CURSOR_SHARING to FORCE or SIMILAR will force similar statements to share
SQL by replacing literals with system-generated bind variables. Replacing literals
with bind variables improves cursor sharing with reduced memory usage, faster
parses, and reduced latch contention.

DB_CACHE_SIZE, DB_nK_CACHE_SIZE

The size of the buffer cache is one of the most significant tuning adjustments
controlling Oracle performance. Although these tuning parameters are very

Note: Shared SQL may be less appropriate for data warehousing
applications. Also, setting CURSOR_SHARING to FORCE or
SIMILAR may affect the execution plans of the statements. Refer to
the Oracle9i Database Performance Book Set for further details.
16-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Tuning
dependant on the application, the following two guidelines are for adjusting buffer
cache size:

■ Increase the cache size until 85 to 95 percent of your applications’ requests for
Oracle data are satisfied from the buffer cache. Note that for some applications
that have large, randomly retrieved table data, you may not be able to get a
high buffer hit ratio. Also, some smaller tables may be assigned a separate
buffer pool that guarantees a 100% hit ratio. Refer to the use of multiple buffer
pools in the Oracle9i Database Performance Book Set.

■ Do not allow the instance to use so much memory that you impact the
performance of everything running on the system.

The first guideline is easy to follow. The Oracle9i Database Performance Book Set
describes a method for estimating the optimal number of buffers for an instance.
Alternatively, you can simply increase the DB_CACHE_SIZE parameter value until
you get the preferred hit ratio while your user applications are running.

The second guideline establishes limits for the size of the buffer cache. As Oracle
memory usage increases, paging and swapping rates might increase as well, until
OS/390 is so busy paging that it cannot complete any useful work. In general,
maximum throughput first increases, then decreases, as the buffer cache size is
increased. Throughput increases as the cache hit ratio improves, but decreases as
Oracle uses too much memory and as the system paging rate goes up. These two
trends balance at a point of optimal performance that is different for every Oracle
instance and for every OS/390 installation.

Because the buffer cache is an architectural feature for avoiding disk I/O
operations, you can, to some extent, trade off cache size for I/O rate. An instance
with a small cache and a high performance I/O environment might perform as well
as an instance with a large cache and a poorly performing I/O environment. Disk
environments supported by storage processors with ample cache and high DASD
cache hit rates can provide superior I/O performance that can alleviate some of the
performance penalty of low buffer cache hit rates. On OS/390 systems with a lot of
I/O capacity but with little central and expanded storage available, concentrate on
obtaining optimal Oracle I/O performance by adjusting the layout of the database
files to minimize device and path contention, and to maximize DASD cache hit
rates. On systems with adequate memory, you can increase the size of the buffer
cache to achieve an 85 to 95 percent hit ratio.
Oracle9i Performance 16-15

Oracle Tuning
FAST_START_IO_TARGET
FAST_START_MTTR_TARGET
LOG_CHECKPOINT_ INTERVAL

Be aware that Oracle9i performs both full and incremental checkpoints, and
therefore, care should be exercised to properly size ALL log files. The size of the
smallest redo log is one of the key factors in determining the incremental
checkpoint frequency. Ensure, therefore, that all log files are evenly sized so that
checkpoint overhead can be effectively controlled. Also, fewer (but larger) log files
are preferred to many (but smaller) log files.

To minimize checkpoint activity, set LOG_CHECKPOINT_INTERVAL to a large
value, such as 5,000,000. This value should not be lower than the number of 4K
blocks in your largest log file. Also set both FAST_START_IO_TARGET and
FAST_START_MTTR_TARGET to zero to reduce incremental checkpoints to a
minimum. This way, checkpoint overhead is practically limited to those times
when LGWR switches from one log file to the next. This might, however, increase
database recovery time by requiring more data to be processed upon recovery. For
more information about minimizing checkpoint activity, refer to the Oracle9i
Database Performance Book Set.

JAVA_POOL_SIZE

This parameter defaults to a value of 25,165,824 bytes, or 24M. If you do not use
Java at the Oracle kernel level, then you can reduce your SGA size considerably by
specifying the minimum value, 0.

PROCESSES

The PROCESSES parameter needs to be set as accurately as possible to get the best
performance from your instance. Many internal operational values that control
Oracle performance are derived from the PROCESSES value. You can monitor the
actual use of this and other Oracle resources to fine-adjust the SGA size and to
optimize its performance by querying the V$RESOURCE_LIMIT view.

In general, if [the database region parameter MAX_SESSIONS] multiplied by [the
number of Oracle address spaces started] is greater than [the PROCESSES
parameter value], then you will never hit MAX_SESSIONS, because the instance

Note: In Oracle9i, the LOG_CHECKPOINT_INTERVAL and
FAST_START_IO_TARGET parameters have been deprecated in
favor of the FAST_START_MTTR_TARGET parameter.
16-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Tuning
specified PROCESSES limit will be reached first. When this occurs, any attempt to
create a new session will immediately receive an Oracle kernel error message
indicating that there is no more room for sessions. It will then be the user’s
responsibility to reschedule those requests for later. On the other hand, if
PROCESSES is greater than the OSDI controlled limit (the number of address spaces
times MAX_SESSIONS), an Oracle region might hit MAX_SESSIONS. If this
happens, any additional session request will be put on hold without getting an
error. In this case, the server waits until some existing session unbinds
(disconnects) and then automatically accepts the new session.

From the perspective of virtual memory allocation, all of the user infrastructure at
the OSDI level, such as LE context, is created for each session when it is first used,
and the session ID translation table is allocated dynamically as needed. However,
the INITORA PROCESSES, SESSIONS, and TRANSACTIONS parameters do cause
resources to be statically allocated in the SGA, and the PMON background process
scans the whole list many times during each housekeeping interval. The best
strategy is therefore to keep INITORA PROCESSES small and to set
MAX_SESSIONS appropriately, depending on the desired effect.

SESSION_CACHED_CURSORS

SQL and PL/SQL are extremely complex and powerful languages for database
processing, requiring a statement to prepare for execution. This is known as "cursor
parsing". To help an application run optimally, it is necessary to analyze how
parsing works.

Two kinds of parse calls exist, hard and soft. A "hard parse" occurs when the SQL
or PL/SQL statement is not found in the shared SQL area (shared pool), so a
complete parsing is required (for example, retrieving object descriptions from the
data dictionary, checking the user’s privileges on those objects, calling the optimizer
to generate the execution plan, and so forth). This is the most expensive kind of
parsing, and should be minimized for repeated execution. This is automatically
done, provided there is enough space in the shared pool to keep the parsed
representation between executions. As a result of a hard parse, the private portion
of a SQL statement (in the session’s heap memory) as well as the shared portion (in
the shared pool) are created. The private portion is linked to the shared portion.
This is called "a statement cursor" or simply "a cursor". To execute any SQL
statement in the shared pool, a cursor is always required.

The other type of parse call is known as a "soft parse", and is performed when the
statement is already in the shared pool, but the session has lost the "link" to the
shared portion, so that the private portion must be rebuilt and linked to its shared
portion again. This happens when the cursor was closed for whatever reason. Of
Oracle9i Performance 16-17

Oracle Tuning
course, this soft parse is not as expensive as a full or hard parse, but still requires
some processing. The user must be authenticated again to run the SQL statement,
and all name translations must be done once more. All system statistics, including
hard and soft parse call activity, are maintained by Oracle and can be displayed
from the V$SYSSTAT view.

To eliminate soft parsing in COBOL, C, or other 3GL applications, the precompiler
option HOLD_CURSOR=YES should be used. Other options, such as
RELEASE_CURSOR and MAXOPENCURSORS, can be used in conjunction with
this to achieve optimal results. Refer to the appropriate Precompiler Programmer’s
Guide for details.

For non-3GL programs (when you do not have the same degree of control over
cursors) such as Oracle Forms, the cursors will automatically be closed when a new
form is called. So if you subsequently return to the caller, at least a soft parse will
be performed for each cursor. Other third-party tools may produce the same effect.

In this case, you should enable a special cursor caching mechanism that will keep a
copy of the user’s cursors even though they are closed. You can specify
SESSION_CACHED_CURSORS=50 in the INITORA as a starting point and check
the statistic ’session cursor cache hits’ from V$SYSSTAT to see your gains, and you
can make further adjustment if necessary. For every hit that you get, you save one
soft parse call. But be aware that this is done at the expense of increased memory
allocation for every session in the SGA.

SESSIONS

This parameter does not generally need to be set, because a good default value is
computed from the PROCESSES parameter value. Oracle Corporation recommends
that you set PROCESSES accurately and let this parameter assume its default value
unless auditing is enabled. Refer to the Oracle9i Database Performance Book Set for
more information.

SHARED_POOL_SIZE

Shared pool requirements are dependent on a number of factors, primarily the
number and complexity of SQL (and PL/SQL) statements executed by users who
are logged on. But there is also a per-user per-cursor memory cost even for shared
cursors (statements), so the requirements depend on the number of concurrent users
as well. You will need approximately 250 bytes of memory in the shared pool, per
concurrent user, for each open cursor that the user has, whether the cursor is shared
or not. This is in addition to the actual SQL (and PL/SQL) context areas.
16-18 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Tuning
Having a shared pool that is configured with insufficient space might lead to poor
or erratic response times and to increased CPU costs during application execution.

On the other hand, the shared pool should not normally be over-allocated.
Maintaining an unnecessarily large code inventory will incur CPU overhead and
will increase the SGA size. Shared pool tuning is a continuous and iterative
process. Your requirements will vary as the SQL and PL/SQL workload evolves.

All the SGA-related structures, including the shared pool, can be displayed by
querying the V$SGASTAT view. In particular, this view shows the amount of free
memory in the shared pool, so it can be used to monitor the shared pool usage at
regular intervals for tuning purposes. For a detailed discussion on the effect of the
SHARED_POOL_SIZE parameter on your application performance, and how to
size it properly, refer to the Oracle9i Database Performance Book Set.

SORT_AREA_SIZE
SORT_AREA_RETAINED_SIZE

Sort operations are extremely common in a vast majority of applications and
database activities, so a careful tuning of the SORT_AREA_SIZE parameter is very
desirable. This value determines the maximum amount of memory that can be
allocated by a single sort operation within an instance. If additional memory (over
and above SORT_AREA_SIZE) is required, then the sorted rows are written to disk,
in other words, temporary segments are created. Even though the sort areas are
allocated out of the Oracle region private memory, they are assigned to the
allocating session heap memory, and they are not shared among users. When a sort
is completed, the memory retained by that process for another sort is reduced to the
value specified by the SORT_AREA_RETAINED_SIZE parameter, both for
in-memory and for on-disk sorts. The released (if any) portion is made available for
other purposes within the same session, such as regular statement execution. Be
aware that some extent of a sort area can be retained after sort completion to hold
the sorted data as long as the cursor is kept open for subsequent result fetch.
Finally, sort areas are not completely released and returned to the operating system
for allocation by other users until the owner’s session is closed.

On a regular basis, for monitoring purposes as well as every time
SORT_AREA_SIZE is adjusted, you should check the ’sorts (disk)’ and ’sorts
(memory)’ statistics in the V$SYSSTAT view. The goal is to minimize the temporary
table usage without incurring excessive memory contention. Please refer to "Index
Oracle9i Performance 16-19

Minimizing I/O Bottlenecks
Creation" on page 16-26 and "Sort Area Size" on page 16-33 for additional
recommendations that apply to general users.

TRANSACTIONS

This parameter does not generally need to be set, because a good default value is
computed from the PROCESSES parameter value. Oracle Corporation recommends
that you set PROCESSES accurately and let this parameter assume its default value.

Minimizing I/O Bottlenecks

Access Methods
I/O operations are performed using an OS/390 facility called the Media Manager.
This multiblock I/O facility utilizes the extended count key data channel command
set, and is generally the fastest access method for performing disk I/O available in
OS/390. Another advantage of the Media Manager is that it requires only a small
amount of SQA memory.

Log Files
The Oracle logs are moderately active files, sustaining a variable I/O rate
depending on the DML work being performed by the users of the database. In
general, high levels of DML activity cause frequent I/O operations to the log file.
These I/O operations are sequential writes. Other I/O activity on the same device
can elongate the device response times by adding head seek time, which otherwise
would not occur. Do not place your log files on devices with other actively accessed
data sets unless your database is primarily accessed by retrieval operations (which
do not cause I/O to the log files).

Relieving Log File I/O Bottlenecks

Log files are more likely to restrict Oracle performance if a single, poorly designed,
DML intensive batch program is running in your system.

Note: For optimal results, it is recommended that you let the
system automatically adjust the size of the session’s working
memory (including SORT_AREA_SIZE). Refer to the Oracle9i
Database Performance Book Set for details on enabling this feature.
16-20 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OS/390 Tuning
A simple application design change relieves the single-user log file I/O type of
bottleneck. A batch program that is designed to commit numerous one-row DML
operations at once will generate a lower I/O rate to the redo log file and can allow
the database to sustain more DML operations per second than a batch program that
commits one such operation at a time.

Archiving
When log archiving is enabled, configure Oracle to use a minimum of four log files.
These log files need to be allocated on two different DASD volumes in flip-flop
fashion, with files one and three allocated on one volume, and files two and four
allocated on the other volume.

This arrangement avoids I/O contention between the Log Writer (LGWR) and the
log archive batch job. With all log files on one volume, LGWR and the archive job
both access the volume at the same time, potentially causing an I/O bottleneck. By
allocating the files across two volumes, LGWR writes to one volume while the
archive job reads from the other volume.

System Tablespace
The system tablespace can become an I/O bottleneck when all rollback segments
and temporary tables are allocated in the system tablespace. This occurs if you
place a significant update-intensive or disk-sort-intensive workload on your Oracle
instance without a properly laid out database.

You can avoid this bottleneck by creating additional database files using new
tablespaces to contain these heavily accessed objects. You also need to configure
Oracle properly by recreating the rollback segments in the desired tablespaces, and
you need to ALTER your users to change their temporary tablespace assignments
from the system tablespace to your newly created temporary tablespaces.
Configure these tablespaces to allocate space in large extents (using the DEFAULT
STORAGE clause) to minimize space management overhead. For more
information, refer to the sections on rollback segments, temporary tablespaces, and
tuning sorts in the Oracle9i Database Performance Book Set.

OS/390 Tuning
The Workload Manager (WLM) is an OS/390 facility that allows installations to
effectively manage their Oracle as well as non-Oracle workloads based on business
priorities. Goals can be defined to reflect business priorities. The system manages
Oracle9i Performance 16-21

OS/390 Tuning
the amount of resources, such as CPU and storage that are necessary for a given
workload, to achieve its goal.

Like other WLM managed workloads, Oracle workloads should be assigned to
appropriate service classes based on attributes such as subsystem name, service
name, user name, and transaction name. Service class structure and importance are
determined by the business needs of an installation. Workloads should also be
classified into report classes to facilitate monitoring and validation of an
installation’s workload management policies.

Oracle Regions
Service classes allow you to control the priority of your Oracle instances relative to
other workloads. Service classes should be defined for your Oracle instances based
on the performance requirements of the instances. You usually do not need to
define a service class for each Oracle instance, because multiple Oracle instances
with similar performance requirements can typically be mapped to a given service
class (production instances versus test and development instances, for example).
Report classes provide more granular reporting capability for different Oracle
instances within a given service class and should be used where necessary to
monitor CPU, memory, and I/O resources that are consumed by individual Oracle
instances in the reports that are generated by SMF/RMF and other measurement
subsystems.

Dispatching Priority

The service class of the Oracle regions determines the relative dispatching priority
of the background processes and other special tasks within the Oracle instances.
The Oracle regions typically consume very moderate amounts of CPU resources.
Normally, the bulk of the CPU resources that are consumed to process database
requests are incurred by the client address spaces for local requests (and Oracle Net
SRB enclaves in the case of remote requests) and should be managed accordingly
(refer to "Local Clients" on page 16-24 and "Remote Clients" on page 16-26). Oracle,
therefore, typically does not need to run at a high priority, but you may want to
consider the special conditions that are associated with the parallel execution
feature that is discussed below in the last paragraph of this section.

In general, the Oracle regions can be configured for lower dispatching priority (or
lower importance) than high priority CICS and TSO workloads, and at about the
same priority as high importance (or non-discretionary) batch workload. For
example, CICS users for a given Oracle instance should be configured for higher
priority (or importance) than the corresponding regions of the Oracle instance.
16-22 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OS/390 Tuning
Similarly, in the case of TSO, higher priority (or importance) should be assigned to
first or second period TSO workloads than to the Oracle regions.

If the Oracle dispatching priority is set too low, and if the system suffers from
significant CPU contention (indicated by high processor delay in the Oracle
regions), then some important Oracle internal requests might not get immediately
processed, or the background tasks might not get dispatched often enough to
perform the required work. For example, the buffer pool might become filled with
modified buffers, and users might need to wait for Oracle to get dispatched and
write out some database blocks to allow user processing to continue. The following
scenario illustrates this situation:

You see the ’free buffer waits’ event (from a UTLBSTAT/UTLESTAT,
STATSPACK, or similar report) showing a significant total value (the unit is
hundredths of second) relative to the report interval during a DML-intensive period
(update, delete, or insert operations). First, consider enlarging the buffer pool, or
pools, to trade memory for I/O requests (you can have multiple buffer pools in
Oracle9i). Assuming that no significant I/O bottlenecks are affecting the database
files (fix them first if any occur), and if the AS1 or Control Address Space CPU delay
is low, then it might be necessary to increase DB_WRITER_PROCESSES to schedule
more parallel I/O. If the AS1 CPU delay is significant, however, you probably need
to set the dispatching priority to a higher value first. Be aware that checkpoint
activity also forces modified buffers to disk, adding to the I/O stress. You should
also compare the ’physical writes’ and ’physical writes non
checkpoint’ statistics from your report to make sure that the write activity is
not being unnecessarily inflated by a poorly tuned checkpoint mechanism. Refer to
the LOG_CHECKPOINT_INTERVAL discussion in section "INITORA Parameters"
on page 16-13 and to the Oracle9i Database Performance Book Set for information on
minimizing checkpoint overhead and for information on the
UTLBSTAT/UTLESTAT and STATSPACK script utilities.

On the other hand, whenever users take advantage of the parallel execution feature
that runs under special subtasks in the Oracle regions, the dispatching priority of
the Oracle regions becomes an increasingly important tuning issue. In this case,
Oracle dispatching priority determines how quickly these special requests are
serviced and how much those Oracle users impact the overall throughput of the
OS/390 system.

Memory Control

Because the Oracle regions run non-swappable, all workload controls that impact
swapping or multiprogramming levels will have no effect on these regions.
Oracle9i Performance 16-23

OS/390 Tuning
Local Clients

TSO

The following considerations apply to resource intensive Oracle workloads within a
TSO environment:

1. Increase the relative importance levels of TSO first and second periods. This
supports transactions requiring greater resources and may result in a larger
percentage of all transactions being completed in the first and second periods.

2. Consider adding a fourth or fifth performance period to account for extremely
resource intensive TSO transactions.

3. Establish separate service classes for Oracle users. Use the service classes to
reflect goals and relative importance of different TSO workloads that are
classified by user attributes such as userid or accounting information.

CICS and IMS

CICS and IMS workloads can be managed using service classes and can be
classified using attributes such as userid, transaction name, luname, and subsystem
instance name.

Batch

Because batch workloads are typically discretionary in nature, Oracle batch jobs do
not need to be separately classified. However, Oracle batch jobs can be
distinguished from other batch jobs by establishing separate service classes, as
described for the TSO environment.

When Oracle batch jobs are run under a certain service class, consider their priority
relative to other Oracle and non-Oracle workloads. In a normal to heavily loaded
system, if Oracle batch jobs run at a lower priority than others, the Oracle jobs
might be swapped out for lengthy periods. If an Oracle job is swapped out while
holding a critical latch, it may adversely impact the performance of other Oracle
users.

Special Needs Functions
Special services classes should be considered for privileged users or special jobs
such as those described below.
16-24 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OS/390 Tuning
DBA Accounts

The database administrator (DBA) frequently needs priority access to the database
in order to perform functions on behalf of all Oracle users. Granting higher relative
importance to these types of work shortens the elapsed time for these functions to
the benefit of all users. Except for database import and export, DBA functions
generally do not require large amounts of Oracle and system resources compared to
those of the user community.

Database Imports and Exports

Import and export functions are good candidates for higher relative importance
when they involve the entire database. If the performance parameters of your
system force swapping among long running batch jobs, you might want to consider
non-swappable status for import and export.

Import and export performance can be optimized by maximizing the size of the
buffer that is used to transfer rows to and from the export file. The buffer needs to
be large enough to hold approximately 1000 table rows to get the best performance
from these utilities. In addition, you can improve performance by increasing the
number of buffers that are available for reading and writing the export file. Use the
DCB BUFNO JCL parameter to increase the number of buffers. The I/O operations
that are issued by QSAM and BSAM will not generate a channel program using
more than 30 buffers or more than approximately 240 KB. For I/O bound processes
such as Export and Import, you should specify a BUFNO that allocates
approximately 480 KB of buffers. This value will give you the maximum amount of
overlap between two maximum I/O channel programs. Refer to Oracle9i Database
Utilities for more information.

Data Loading

The direct path in SQL*Loader is much more efficient than the conventional path.
When using the DIRECT option, SQL*Loader is generally I/O bound on the input
data file. To reduce the elapsed time that is required for a load operation, you need
to increase the number of buffers that are available for reading the input file by
adding a DCB BUFNO parameter to the input file allocation. Performance
improvements occur as the number of buffers is increased to 200, although
48 buffers yield a significant improvement in the data load rate.

If you cannot use the DIRECT option, then specify the largest bind array size (using
the ROWS parameter) that you can. An array size of approximately 1000 rows
improves performance significantly over the default size of 64 rows.
Oracle9i Performance 16-25

OS/390 Tuning
Index Creation

The creation of indexes on large tables can consume significant resources. Consider
higher relative importance and non-swappable status for these functions.

In addition to OS/390 tuning parameters, you need to consider special session
settings to support index creation in large tables. Increasing the SORT_AREA_SIZE
parameter value can substantially reduce the elapsed times of index creation jobs.
This can be done selectively at the session level by using the ALTER SESSION SQL
command so that other non-critical jobs will still use the INITORA specified value.

 Sorting Data by Key Before Loading

You can use SYNCSORT, DFSORT, or another OS/390 sort utility to sort the data by
key before loading it into Oracle. Once the data is sorted, load the data into Oracle
and create the index with the NOSORT option. For large data loads, this technique
can save significant amounts of time when loading data and creating the index.

Remote Clients
Remote clients that access an Oracle server through the Oracle Net service are
dispatched on a lightweight unit of work called an enclave SRB within the Net
address space. The performance characteristics of such work can be effectively
managed when used with WLM in goal mode. Enclave transactions are managed
separately from one another as well as from the Oracle Net address space they run
in.

The Net startup option ENCLAVE (CALL|SESS) controls how the database request
from the client is handled (described under "PARM" on page 10-4). With
ENCLAVE(SESS) specified in the PARM value used at Net startup, classification of
the work is done once when a new remote connection is made. Oracle Net presents
WLM with attributes for workload classification. Some of the network specific
attributes that can be used for classification include protocol, host name, or IP
address. The list of WLM attributes available for classification is shown in
Table 16–1, "Workload Manager Attributes and Values". The enclave will be deleted
at session termination (logoff) time. Because the classification happens only once
per session, only velocity goals are appropriate for the enclave’s service class.

If ENCLAVE(CALL) is specified in the PARM value used at Net startup, then the
enclave is deleted when the request from the client is finished (when Net needs
more data from the client). Deleting the enclave reports the transaction completion
to WLM, providing response time and transaction counts to any workload monitors
such as RMF. The next request arriving from the client will be classified into a new
16-26 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OS/390 Tuning
enclave. The values available for classification are the same as with
ENCLAVE(SESS) above, and are shown in Table 16–1, "Workload Manager
Attributes and Values". Because the classification is done for each network request,
response time goals should be used for the enclave’s service class.

If there is no WLM policy active, then all of the Oracle Net work will be dispatched
in SRBs that will be executed using the dispatching priority of the Oracle Net
address space. If you are running in WLM compatibility mode but have a WLM
policy active, it is possible to manage the enclaves in a performance group (PGN)
distinct from Oracle Net by adding the SRVCLASS= parameter to the IEAICSxx
member of PARMLIB. However, since you must still build a WLM policy and
activate it in order to get this capability, it is recommended that you run in goal
mode.

"Subsystem Type" is not strictly an attribute. WLM has several predefined
subsystem types (JES for example). You must define a new subsystem type of
"OSDI" to WLM if you desire WLM monitoring of OSDI work. Please refer to the
IBM manual, OS/390 MVS Planning: Workload Management, C28-1761, for
information on how to do this, and for information on how to utilize the attributes

Table 16–1 Workload Manager Attributes and Values

ATTRIBUTE VALUE

Subsystem Type C’OSDI’

SI OSDI subsystem name, for example, WFM1

UI User ID from connect

NET first 8 characters of dotted IP address
(example: 100.024.)

LU last 7 characters of dotted IP address
(example: 020.003)

CT Protocol from connect ’TCP’

SPM position 1-8: Oracle database service name

SPM position 9-89: TCP/IP hostname (left justified)

Note: Leading zero characters must be used in the nodes of the
dotted IP address.
Oracle9i Performance 16-27

OS/390 Tuning
listed above to manage work. Generally, WLM is configured using ISPF and the
IWMARIN0 REXX exec.

If you choose to run in goal mode without a policy active, or run without a section
in the policy for the OSDI subsystem, then the client work will be assigned the
service class SYSOTHER, which has a discretionary goal. Performance is likely to be
unsatisfactory. Running in compatibility mode will result in the enclave running in
a preemptable SRB at the dispatching priority of Oracle Net. Note that this means
the CPU time for the user client work will be charged to the Oracle Net address
space as SRB time.

The following is an example of a WLM classification rules ISPF panel:

Subsystem-Type Xref Notes Options Help
--
 Modify Rules for the Subsystem Type Row 1 to 4 of 4
Command ===> __ SCROLL ===> PAGE
Subsystem Type . : OSDI Fold qualifier names? Y (Y or N)
Description . . . OSDI SubSystem Type

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 -------Qualifier------------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: ORACLES ________
 ____ 1 SI ORAC ___ ________ ________
 ____ 2 NET 010.100 ___ ________ ________
 ____ 3 LU 001.080 ___ ORACLEM ________
 ____ 3 LU 001.081 ___ ORACLEH ________

**********************************BOTTOM OF DATA *******************************

This rule assigns the service class ORACLEM to all work arriving from a client at IP
address 10.100.1.80, and assigns ORACLEH to all work from the client at IP address
10.100.1.81. Note that the service class ORACLES is assigned as the default service
class to Net workloads that cannot be classified by the above rules. It is very
important to specify a default service class. Without a default service class, an error
in the classification rules could result in no rules matching. In this case, the request
will be assigned service class SYSOTHER, which has a discretionary goal. This will
result in undesirable performance characteristics.

If ENCLAVE(CALL) is specified in the PARM value at Net startup, you should
specify response goals, or percentile response goals for the service classes used by
Oracle enclaves.
16-28 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

PL/SQL and Java
The following shows a sample screen defining a service class with three periods.
The first period has a response time goal of 15 ms. at importance 1. This gives short
requests high priority access to the CPU. If the request takes more than 50 CPU
service units, the enclave is migrated to a second period at importance 3. If the
request is still running after 500 service units, it is then migrated to a third period at
importance 5. This design of service class goals is only feasible if the
ENCLAVE(CALL) parameter is used. It has the advantage of providing fast, high
priority response to short requests, while treating longer requests at low, batch-like
priorities.

 Service-Class Xref Notes Options Help
 --
Modify a Service Class Row 1 to 2 of 2
 Command ===> ___

 Service Class Name : ORACLEH
 Description Oracle Mid Tier #1
 Workload Name ORACLE (name or ?)
 Base Resource Group ________ (name or ?)

 Specify BASE GOAL information. Action Codes: I=Insert new period,
 E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal---------------------
 Action # Duration Imp. Description
 __
 __ 1 50 1 Average response time of 00:00:00.015
 __ 2 500 3 Average response time of 00:00:00.500
 __ 3 5 Execution velocity of 10
 ******************************* Bottom of data **********************

PL/SQL and Java
Oracle supports two major programming languages in the database: PL/SQL and
Java. A large portion of Oracle customers use both PL/SQL and Java to build
database applications. By adding Java to the server, Oracle Corporation has opened
up the range of things that can be done in the server. Note that computational
operations were typically being done outside the server on clients using C/C++.
Now, much of that logic can be moved into the server with the benefits of reduced
network latency and round trips, improved performance, and portability.
Oracle9i Performance 16-29

PL/SQL and Java
Choosing JAVA and PL/SQL
How do you decide whether to use PL/SQL or Java? Because PL/SQL and Java are
two fundamentally different languages, the relative performance of the two is
difficult to compare. The results of such a comparison will depend on the specific
conditions of customer applications. Two important ideas, from a performance
point of view, are: PL/SQL and JAVA can coexist, and both languages have been
built around different design points and are therefore better suited for different
tasks.

PL/SQL Optimized for SQL Processing and Distributed Data

For SQL intensive applications, PL/SQL is generally faster than Java. This is
especially true when applications execute tight loops around SQL, when a large
amount of data needs to be converted from SQL types to Java types, or when
PL/SQL can use bulk operations. Similarly, for applications (such as triggers) that
are characterized more by the speed of entry into the PL/SQL or Java engines than
by the execution speed of the application, PL/SQL is generally faster. PL/SQL was
also optimized in Oracle8i to perform some string operations, such as
concatenation. PL/SQL is significantly faster both transparently (from internal
optimizations) and via new features (such as bulk SQL). Applications (or parts
thereof) that are highly SQL intensive should be written in PL/SQL.

Java Optimized for Computation and Open Distributed Computing

Java is a general purpose object-oriented programming language with a rich type
system, a component model, and other facilities that supports multi-tier distributed
computing standards (CORBA and EJB). In contrast with PL/SQL, which shares
the same type system as SQL, Java has a much more general purpose and richer
type system that was designed to represent arbitrarily complex data structures such
as multi-dimensional arrays, graphs, and so forth. Because it is an object-oriented
language, Java provides elegant facilities to inherit from existing Java types and to
build complex class hierarchies and arbitrarily deep nested hierarchies quite easily.
Further, the Java VM is much better tuned to execute programs which have little or
no SQL, and it can use native numeric machine data types rather than the more
precise (but often slower) Oracle SQL data types that are used by PL/SQL.

For applications that involve complex object-oriented or highly CPU-intensive
"number-crunching" operations, Java can be faster than PL/SQL. For example, Java
has native support for floating point operations whereas PL/SQL uses SQL
numbers. Furthermore, when natively compiled using the Java compiler (NCOMP),
Java’s performance can be improved significantly.
16-30 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Parallel Execution
Summary

For computation intensive programs, pure Java execution (method calls, data
manipulation, algorithmic operations, and so forth) can be faster than PL/SQL. On
the other hand, PL/SQL is generally more optimized for SQL access. As a net
result, the overall performance of the application will depend to some extent on the
relative balance between computational operations and SQL access. Finally, if the
run-time performance of your application is dominated by long running SQL
statements, then the choice between PL/SQL and Java will not make a significant
difference to the overall run time. Nevertheless, if you are primarily doing SQL
access, PL/SQL is a simpler and more efficient choice.

Oracle Parallel Execution
The Oracle parallel execution feature enables multiple server tasks to process a
single piece of work concurrently. Except for the Parallel SQL*Loader special case,
these parallel execution slaves run as subtasks within the Oracle regions. The
parallel execution feature enables all of the following:

■ multiple jobs to load concurrently into the same table using SQL*Loader with
DIRECT_PATH set to TRUE

■ multiple tasks to perform create index (scan and sort by separate tasks)

■ multiple tasks to perform a create table as select from another table

■ multiple tasks to perform query (separate tasks can coordinate, scan, or sort)

■ other parallelized operations such as parallel DML

CPU Utilization
The parallel execution feature can dramatically reduce elapsed time for a given
workload, as long as the necessary CPU capacity is available.

Although the percent increase in CPU time on a SQL statement basis is typically
small due to some overhead that is required to parallelize, the elapsed time during
which the CPU is consumed is much shorter than for non-parallel operation. This
means that the percent of the machine that is used is significantly greater for a
shorter time interval. For example, a non-parallel query might use 10 percent of the
CPU for a period of 60 seconds, while a parallel query for the same query might use
99 percent of the CPU for a period of approximately 6 seconds. Monitoring and
managing overall CPU utilization is therefore an important part of the tuning effort.
Oracle9i Performance 16-31

Oracle Parallel Execution
Parallel Execution Slaves
Any Oracle region is capable of starting parallel slaves as needed, within the limits
specified by certain INITORA parameters and depending on user requests. The
number of slaves (if any) that are specified in PARALLEL_MIN_SERVERS is
automatically created in the AS1 during normal instance startup. These AS1 slaves
can do parallel work for any database user, regardless of the particular region to
which the session in question is assigned. Additional slaves, up to the
PARALLEL_MAX_SERVERS value, will be dynamically added as required. Even
though these on-demand started slaves can be created anywhere, depending on the
requesting region (not necessarily AS1), they all are part of the parallel slave pool
and can provide service to users in any instance region upon completion of the
work for which they were originally created.

The OSDI DISPLAY SESSION command can be used to display the parallel
execution slaves that are started in an Oracle instance.

Example:

F MYORA8,DISPLAY SESSION JOBNAME(P*)

or

F MYORA8,D SESS JOB(P*)

The parallel execution slaves are identified by a JOBNAME in the ’Pnnn’ form
where nnn is a number in the 000 to 999 range.

File Layout Considerations
The parallel execution feature works best on files that are allocated across many
disk drives. This allows the parallel execution slaves to maximize concurrent access
to the data files and to minimize device contention. The temporary tablespace that
is used for sorting (queries and index creation) should also be allocated across
several disks. This tablespace should be defined so that its space is allocated in
large extents to minimize space management overhead. Note that the above
technique is sometimes referred to as "Striping" and should not be confused with
the OS/390 feature known as Extended Facility Striped Data Sets.

Often, the best method for determining the optimal degree of parallelism is to:

1. select a degree of parallelism

2. determine the CPU time and the elapsed time
16-32 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Parallel Execution
3. compare those times with the times for several higher and lower degrees of
parallelism

For the initial estimate of degree of parallelism for a single user, use one or two
times the number of system CPUs, depending on the available system capacity.
This is a good estimate for sort-intensive operations because they tend to be CPU
bound. If the operation is I/O intensive (that is, more scanning of the data than
sorting), the number of disk drives involved in the scans is a good starting point.

Sort Area Size
If memory is abundant, setting SORT_AREA_SIZE to a large value can be beneficial.

For example:

SORT_AREA_SIZE=1024000

Using a sort area much larger than 1M, however, may not provide a significant
benefit unless it is large enough to completely eliminate the need of a temporary
table on disk. Also be aware that a parallel operation using a sort will acquire as
many sort areas as the parallel degree that is specified.

If memory is a concern on the system (insufficient memory or high paging), you
might want to decrease the SORT_AREA_SIZE.

Memory use increases with sorting (for example, with certain selects and create
index). This increase can be substantial and is dependent upon the value of
SORT_AREA_SIZE and the degree of parallelism. However, this increase is over a
shorter period of time, typically resulting in lower main storage occupancy
(working set X elapsed time) and lower average overall storage use by Oracle.
Paging rate variability can increase and must be monitored.

Verifying Parallelism
The V$PQ_SESSTAT, V$PQ_SLAVE, and V$PQ_SYSSTAT views can be used to view
statistics on parallel workloads. Set RELEASE_CURSOR=YES in precompiled
programs for parallel queries. This prevents parallel server tasks from being
retained by a cursor when the query is complete.

The resource trade-off with the parallel query option is CPU and memory versus
elapsed time and throughput. The goal is maximum gain in elapsed time or
throughput with minimum cost of CPU or memory.
Oracle9i Performance 16-33

Applications Performance Diagnosis
Parallel Execution Recommendations
Ideal candidates for parallel execution are:

■ multiple CPUs

■ low average system CPU utilization

■ sufficient memory to devote to sorting space

■ well-striped data

■ table scans of tables too large to be cached

■ overnight batch-window work (for example, parallel SQL*Load or index build)

■ any workload with a limited transaction volume but a high performance
requirement

Candidates that might be unsuitable for parallel execution are:

■ unstriped data with multiple concurrent access

■ data on volumes with poor response time

■ systems with high memory and CPU utilization

Applications Performance Diagnosis

Identifying and Tuning High Load SQL
Whether you are writing new SQL statements or tuning problematic statements in
an existing application, your methodology for tuning database operations
essentially concerns CPU and disk I/O resources.

■ Step 1: Find the Statements that Consume the Most Resources

■ Step 2: Tune These Statements to Use Fewer Resources

Step 1: Find the Statements that Consume the Most Resources

Focus your tuning efforts on statements where the benefit of tuning demonstrably
exceeds the cost of tuning. Use tools such as TKPROF, the SQL trace facility, SQL
Analyze, Oracle Trace, and the Enterprise Manager Tuning Pack to find the problem
statements and stored procedures. In addition, you can query the V$SORT_USAGE
view to see the session and SQL statement associated with a temporary segment.
16-34 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Applications Performance Diagnosis
The statements with the most potential to improve performance, if tuned, include:

■ Those consuming greatest resource overall.

■ Those consuming greatest resource per row.

■ Those executed most frequently.

In the V$SQLAREA view, you can find those statements still in the cache that have
done a great deal of disk I/O and buffer gets. (Buffer gets show approximately the
amount of CPU resource used.)

Step 2: Tune These Statements to Use Fewer Resources

Remember that application design is fundamental to performance. No amount of
SQL statement tuning can make up for inefficient application design. If you
encounter SQL statement tuning problems, then perhaps you need to change the
application design.

You can use two strategies to reduce the resources consumed by a particular
statement:

■ Get the statement to use fewer resources.

■ Use the statement less frequently.

Statements may use more resources because they do the most work, or because they
perform their work inefficiently—or they may do both. However, the lower the
resource used per unit of work (per row processed), the more likely it is that you
can significantly reduce resources used only by changing the application itself. That
is, rather than changing the SQL, it may be more effective to have the application
process fewer rows, or process the same rows less frequently.

These two approaches are not mutually exclusive. The former is clearly less
expensive, because you should be able to accomplish it either without program
change (by changing index structures) or by changing only the SQL statement itself
rather than the surrounding logic.

For more information on identifying and tuning problematic SQL statements, refer
to the Oracle9i Database Performance Book Set.

SQL TRACE Facility
The SQL trace facility provides performance information about individual SQL
statement execution. It can provide event-based statistics (parses, executions,
fetches, physical and logical reads, row counts, and so forth) as well as time-based
Oracle9i Performance 16-35

Applications Performance Diagnosis
statistics (CPU and elapsed times). When a trace data set is processed by the
TKPROF utility to convert it to a readable format, the SQL statement execution plan
is also reported. In addition to enabling the SQL trace facility, you should activate
the timed statistics gathering to make the trace data more meaningful for tuning
purposes.

One of the methods to enable the SQL trace facility (including time-based data) is to
place the following statements in the INITORA file:

SQL_TRACE=TRUE
TIMED_STATISTICS=TRUE

When the SQL trace facility is enabled this way, it takes effect at the instance level so
that a trace data set is generated each time that a user logs on to the instance or each
time that a program is executed. Trace data sets can be generated in the form of
spool files belonging to a particular Oracle region or can be written directly into
regular disk data sets. After a session is finished, its corresponding trace data set is
closed and made available for processing.

If you do not want to log trace data for every user, you can issue the following SQL
commands in the session for which you want to gather data,

ALTER SESSION SET SQL_TRACE=TRUE;
ALTER SYSTEM SET TIMED_STATISTICS=TRUE;

and omit these parameters from the INITORA definition. Other methods are
available to enable a SQL trace for a given session from another user’s session. For
more information about the SQL trace facility, refer to the Oracle9i Database
Performance Book Set.

Preparing a File for TKPROF Processing

If the Oracle trace files destination is SYSOUT (see the TRACE_DSNAME database
region parameter), the following considerations apply. Otherwise, the trace data
sets can be processed directly by TKPROF.

Note: You must have ALTER SYSTEM system privilege to enable
the timed statistics dynamically. The ALTER SYSTEM command
can be executed from any session, because these statistics are
enabled or disabled at the instance level only. The setting stays in
effect as long as the database is mounted, or until it is reset by a
new command.
16-36 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Applications Performance Diagnosis
A trace file in the spool queue needs to be prepared for the subsequent TKPROF
processing by copying the trace data (using SDSF) into a regular sequential file
without the ASA control characters present in spool files. This is required because
TKPROF cannot read an output file directly from the spool, nor can it recognize
ASA control characters.

The ASA control characters can be eliminated by "printing" the trace data to a
pre-allocated DD name instead of to a dsname. In this case, SDSF copies the data as
is and does not keep control characters.

Example:

From ISPF option 6 (or the TSO READY prompt), issue:

ALLOC F(trc) DA(trace.dataset) NEW CAT LRECL(136) RECFM(V,B) -
SPACE(2 2) TRACKS BLKSIZE(4096)

Then enter ISPF/SDSF and browse the trace file you want to copy. From the
command line, issue:

 PT F trc
 PT
 PT CLOSE
 TSO FREE F(trc)

TKPROF

The TKPROF program translates the Oracle trace data set into readable form. To
invoke the TKPROF program from ISPF option 6, use:

CALL ’oran.orav.CMDLOAD(TKPROF)’ ’/DSN/trace.dataset
/DSN/output.dataset [options]’

where:

The trace.dataset and output.dataset are not subject to FNA processing.
The full data set names must be specified using /DSN/ notation. For more
information about the TKPROF utility, refer to the Oracle9i Database Performance Book
Set.

Alternatively, you can invoke the TKPROF utility in batch mode, as follows:

trace.dataset is the name of the trace data set that you are translating.

output.dataset is the name of the file where the translated trace data is
written.

options are any optional TKPROF arguments that you can specify.
Oracle9i Performance 16-37

Oracle Access Manager for CICS
//MYSTEP EXEC PGM=TKPROF,
// PARM=’/DD/IN /DD/OUT [options]’
//STEPLIB DD DISP=SHR,DSN=oran.orav.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=oran.orav.MESG
//SYSUDUMP DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(LRECL=350,BLKSIZE=3500,RECFM=VB)
//SYSERR DD SYSOUT=*,DCB=(LRECL=350,BLKSIZE=3500,RECFM=VB)
//ORA@sid DD DUMMY
//ORAPRINT DD SYSOUT=*
//IN DD DISP=SHR,DSN=trace.dataset
//OUT DD SYSOUT=*,DCB=(LRECL=350,BLKSIZE=3500,RECFM=VB)
//SYSIN DD DUMMY

Oracle Access Manager for CICS
This section discusses how performance of Oracle Access Manager for CICS is
affected by the following:

■ Thread definition parameters

■ Storage requirements for base code, thread table, and connected thread

■ Tool stack requirements

Thread Definition Parameters
Several Oracle Access Manager for CICS thread definition parameters can
significantly impact the performance of certain transactions connecting to an Oracle
database instance from CICS.

Impacted transactions include:

■ User transactions

User transactions occur whenever a CICS user presses a program function [PF]
key or the [Enter] key on their terminal.

■ CICS transactions

CICS transactions occur whenever a CICS user initiates a transaction to CICS by
typing a transaction identifier in the upper left corner of the terminal screen and
pressing a [PF] key or [Enter]. For pseudo-conversational CICS transactions,
each user transaction is a CICS transaction. A CICS transaction can have Oracle
database transactions imbedded within it.
16-38 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Access Manager for CICS
■ Oracle database transactions

– When ORACLE COMMIT processing is selected as the recovery choice,
Oracle database transactions are sequences of one or more SQL statements
committed to or rolled back from the database together.

Oracle database transactions explicitly terminate when the user issues a
COMMIT or ROLLBACK SQL statement, and implicitly terminate when the
user disconnects from the instance. Oracle database transactions can be
imbedded within a CICS transaction.

Only use Oracle COMMIT when coordinated recovery between non-Oracle
and Oracle database resources is not a requirement.

– When CICS is selected as the recovery choice, Oracle database transactions
are included in the logical unit of work for the CICS transaction.

Thread Sharing

Threads are assigned to CICS transactions for the duration of the transaction. Some
types of Oracle database transactions can continue for a long time, preventing
multiple users from using the same thread.

Multiple users of pseudo-conversational CICS transactions (normally programmed
in Pro*COBOL or Pro*C) can effectively share threads because each user transaction
corresponds to one CICS transaction and one Oracle database transaction. When
the user transaction completes, the Oracle database transaction completes and the
thread that was in use is released. Each pseudo-conversational transaction user
spends more time outside transactions than actually running transactions (that is,
think time is higher than response time). Therefore, each thread generally supports
multiple users of this type of application program.

When a user enters a conversational CICS transaction, the CICS transaction is not
terminated until the user leaves the environment. A CICS transaction of this type
generally consists of multiple user inputs for multiple Oracle database transactions.
Therefore, each conversational transaction obtains a thread for a longer duration.
This must be taken into account when defining the number of threads.

Subtask Sharing

A CICS transaction runs under the same CICS subtask for the duration of the
transaction. For pseudo-conversational Pro*COBOL or Pro*C CICS transactions,
threads using CICS subtasking are efficient. Each CICS transaction gets assigned to
a thread, executes under a CICS subtask, and then frees the thread when the
Oracle9i Performance 16-39

Oracle Access Manager for CICS
transaction ends. However, conversational CICS transactions are assigned to the
same thread until the user ends the transaction by exiting it. This implies that each
conversational transaction monopolizes a CICS subtask until the transaction ends.
In other words, each thread supports only 1 to 1.5 conversational transactions
depending on how often the users exit the transaction.

Authorization

Some CPU resources are required to connect Oracle Access Manager for CICS
threads to the Oracle database instance. For the best performance, minimize the
number of connections by setting up your thread definitions to use the autologon
facility. This facility is implemented with the AUTH thread definition parameter.
Pre-authorized threads improve transaction performance.

The most efficient way to define thread authorization is by using the AUTH option
authorization string, protecting the threads from being torn down by
setting PROTECT to YES and specifying only transaction codes in the TRANSAC
parameter that can use the authorization string. In this situation, the threads are
connected to the instance when the Oracle Access Manager for CICS adapter is
started, and do not have to reconnect until the next startup.

The second most efficient thread authorization scheme is to use the program or
transid AUTH options, protect the threads from tear-down, and define the
threads only for the program or transaction code specified. This scheme causes the
thread to connect to the instance when the first transaction is assigned to the thread.
All subsequent transactions use the same connection because they have the same
transaction code or program name.

The least efficient way to define threads is without an AUTH parameter so the
transactions explicitly connect to the instance. Oracle Access Manager for CICS
thread logon processing is more efficient than explicit SQL CONNECT statement
processing, especially when the same connection can be used by multiple CICS
transactions.

Note: The autologon facility is not supported when connecting
Oracle Access Manager for CICS threads to a remote Oracle
database instance.
16-40 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Access Manager for CICS
PROTECT

Threads defined with PROTECT set to YES remain connected as long as the Oracle
Access Manager for CICS adapter is started. CPU resources are required to connect
threads, so thread protection can reduce overall CPU requirements.

Thread protection can cause the Oracle Access Manager for CICS adapter to use
more memory in the CICS region. Protected threads remain connected even when
they are not in use by a CICS transaction, and connected threads require slightly
more memory than disconnected threads.

In general, protect threads that are used frequently and that are automatically
connected using the autologon facility. There is no performance advantage to
protecting threads that are not pre-authorized because thread protection simply
maintains the connection to the Oracle database instance.
Oracle9i Performance 16-41

Oracle Access Manager for CICS
Base Code Storage Requirements
Table 9-3 shows the base code storage requirements for Oracle Access Manager for
CICS.

Adapter Storage Requirements
Table 9-4 shows the adapter storage requirements for Oracle Access Manager for
CICS, which are the same for both the local and remote configurations. The total
variable storage requirement per active Oracle server/CICS transaction is 30,748
bytes.

Thread Table Storage Requirements
For the thread table, a fixed amount of storage is used. This calculation is used to
determine a thread table’s fixed storage requirements (located above the 16M line):

8176 bytes + (1128 bytes x MAXTHRDS)

Use the same calculation for both the local and remote configurations.

Table 16–2 Base Code Storage Requirements for Configuration

Usage Below 16M Above 16M

ORACICS 0 bytes 28K

CICADPX 24 bytes 0K

LIBCLNTS 0 bytes 24M*

* Note: LIBCLNTS is loaded in above-the-line storage, not managed by CICS.

Table 16–3 Adapter Storage Requirements for Local and Remote Configurations

Type of
Storage Usage Area Below 16M Above 16M

Fixed Per active Access
Manager for CICS
adapter

Global Exit
Area

1344 bytes 0 bytes

Variable Per active Oracle
database/CICS
transaction

Local Exit
Area

432 bytes 0 bytes
16-42 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle Access Manager for IMS
Connected Thread Storage Requirements
Table 16–4 shows the connected thread storage requirements for Oracle Access
Manager for CICS.

All buffer storage for connected threads under CICS release 4.1 or higher is
obtained above the 16M line.

Oracle Access Manager for IMS
This section describes the storage requirements for Oracle Access Manager for IMS
TM.

Access Manager for IMS TM Base Code Storage Requirements

All CSA allocations are ECSA (above 16M).

Table 16–4 Connected Thread Storage Requirements

Type of
Storage Usage Area Below 16M Above 16M

Variable Per active Oracle
database/CICS
transaction

Oracle client
storage

0 bytes 100K bytes*

*Note: This is above-the-line storage, not managed by CICS.

Table 16–5 Access Manager for IMS TM Base Code Storage Requirements

CSA Storage

Base requirement 500 Bytes

Control region RTT and
Dependent region RTT

Varies according to customer definition

Total 500 Bytes + RTT size
Oracle9i Performance 16-43

Oracle Access Manager for IMS
Access Manager for IMS TM Adapter Storage Requirements

All control region allocations are extended private (above 16M).

All dependent region allocations are extended private (above 16M).

Table 16–6 Adapter Storage Requirements, Control Region

Control Region Storage

Base requirement 7524K

Table 16–7 Adapter Storage Requirements, Dependent Region

Dependent Region Storage

Base requirement 7524K

Total 7524K + application storage
16-44 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Error Diagnosis and Re
17

Error Diagnosis and Reporting

This chapter discusses the diagnosis of suspected Oracle database errors and the
requirements for documenting these errors to Oracle Support Services. Specific
topics in this chapter include documentation requirements, categorization of errors,
system dump requirements, and methods of reporting to Oracle Support Services.

For information on OS/390-specific error messages, refer to the Oracle9i Enterprise
Edition Messages Guide for OS/390.

The following topics are included:

■ Oracle Support Services on page 17-2

■ Providing Error Documentation on page 17-2

■ General Documentation Requirements on page 17-2

■ Error Diagnosis on page 17-3

■ System Dumps on page 17-9

■ GTF on page 17-10
porting 17-1

Oracle Support Services
Oracle Support Services
Oracle Support Services acts as the interface to the Oracle database user
community. Refer to the applicable Oracle Support Services publications for a
discussion of policies and procedures for using their services.

Providing Error Documentation
During the error resolution cycle, Oracle Support Services might request you
provide them with machine readable data. Send machine readable data, not
formatted or printed data. Magnetic tape is the most convenient form for sending
large amounts of data.

If you are requested to send data to Oracle Support Services, then follow the
documentation requirements provided in "General Documentation Requirements"
later in this chapter. Failure to follow these requirements might result in the
inability to process your tape. This could delay the resolution of any errors you are
reporting.

Tape Format
Data must be sent on tape cartridges for the IBM 3480 or 3490 tape subsystem.
Multiple files can be sent on a single volume. Each tape can be in standard label or
no label format. In either case, include this written documentation with each tape:

■ Volume serial, if it is a standard label tape

■ Data Set name and label number for each file on each tape

■ DCB characteristics of each data set

Tape Return
Oracle Support Services does not return tapes unless specifically requested to do so.
The sending party must provide a return address on the tape and request that the
tape be returned.

General Documentation Requirements
When you report a suspected error, you might be asked to describe the Oracle
database subsystem and OS/390 operating system environments in detail. Provide
17-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Error Diagnosis
the full version number of each component that has an error. The full version
number includes important PUT levels for your OS/390 system.

Before you contact Oracle Support Services, ensure this information is available:

■ Oracle database library naming conventions

■ Method of accessing the Oracle database utilities (batch or TSO)

■ Oracle database subsystem name

■ Full version of the Oracle database kernel

■ Full version of the Oracle database utility

■ OS/390 release level

■ PUT level

■ RMID of any relevant OS module

In addition to describing the Oracle database operational environment, detailed
documentation specific to the error might be required. This might include:

■ Console logs

■ Utility SYSOUT

■ Utility input files

■ System diagnostic messages

■ Oracle database error messages

■ System dumps

■ Database engine trace data sets

Keep in mind that often more than one error is associated with a single failure.
Describe all errors for the failure being reported. If your application uses Pro*C,
Pro*COBOL, or another Oracle database Precompiler, then ensure your application
displays or prints out all errors it encounters. Without a complete and consistent set
of information, diagnosing the problem can be impossible.

Error Diagnosis
When investigating a potential Oracle server error, start by determining which
component is failing, where it is failing, and the error category.
Error Diagnosis and Reporting 17-3

Error Diagnosis
Components
When reporting a problem to Oracle Support Services, identify the component
suspected of failure, along with its full version and correct release level. A list of
components and their version numbers is documented in the Oracle9i Enterprise
Edition Installation Guide for OS/390 and any maintenance tape release bulletin.

Error Categories
Use these error categories to describe the error:

■ Documentation

■ Incorrect output

■ Oracle database external error

■ Abend

■ Program loop

■ Performance

■ Missing functionality

■ Wait state

Documentation

When reporting documentation errors, you are asked to provide this information:

■ Document name

■ Document part number

■ Date of publication

■ Page number

Describe the error in detail.

Documentation errors can include both erroneous documentation and omission of
required information.

Incorrect Output

In general, an incorrect output error exists whenever an Oracle database utility
produces a result that differs from written Oracle documentation. When describing
17-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Error Diagnosis
errors of incorrect output, you need to describe, in detail, the operation of the
function in error. Be prepared to describe your understanding of the proper
function, the specific Oracle documentation that describes the proper operation of
the function, and a detailed description of the incorrect operation.

If you think you have found a software bug, then be prepared to answer these
questions:

■ Does the problem occur in more than one Oracle tool? (Examples of Oracle tools
are SQL*Plus and Oracle Developer/2000).

■ What are the exact SQL statements used to reproduce the problem?

■ What are the full version numbers of the Oracle database and related Oracle
software?

■ What is the problem and how is it reproduced?

Oracle Database External Error

Oracle database error messages are produced whenever an Oracle database utility
or the Oracle database kernel detects an error condition. Depending on the
circumstances, error messages might be fatal or nonfatal to the utility or kernel.

Be prepared to identify the exact error message and message number received and
the complete circumstances surrounding the error.

Abend

Any program check in an Oracle database utility or the Oracle database kernel
address is considered an error. A system dump is required as documentation in the
event of a program check.

Ensure the system dump contains all of the private area of the Oracle database
address space. Without it, diagnosis is sometimes impossible.

System abends might or might not indicate a failure of the Oracle database
subsystem depending upon circumstances.
Error Diagnosis and Reporting 17-5

Error Diagnosis
The following abends are not considered Oracle database failures:

■ 013 - open failure

■ 122 - cancelled by operator

■ 222 - cancelled by operator

■ 322 - CPU time exceeded

■ 722 - SYSOUT lines exceeded

Program Loop

A program loop is evident when the Oracle server task consumes CPU time, but no
actual work is performed. This situation is substantially different from an Oracle
server task that performs most of its operations in cache (also known as a CPU
bound job). CPU bound operations might include large batch sorts, sort merge
joins, nested loop joins where the driving table is small enough to fit into the SGA,
and so forth.

Any program loop that occurs within an Oracle server or utility address space is
considered an Oracle database failure. Loop conditions are rarely experienced and
are considered serious errors. The initial diagnostic approach with a loop consists
of a system dump. If a task is in a program loop, then ensure the system dump
includes all of the private area of the Oracle database address space.

Further diagnosis might be required using OS/390 SLIP commands. Oracle
Support Services furnishes specific instructions on the use of SLIP depending upon
circumstances.

Performance

Oracle database system performance is determined by many factors, most of which
are not within the control of Oracle Corporation. Considerations such as system
load, I/O topology, and database design make the documentation of performance
errors difficult.

Provide detailed information about the state of your environment when reporting
an error.
17-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Error Diagnosis
Specific documentation might include:

■ CPU type and memory configuration

■ Database topology

■ I/O topology

■ System workload by type

■ Oracle database workload characterization

■ Query execution plans

Missing Functionality

Enhancement requests can be opened with Oracle Support Services to request the
inclusion of functions and features that Oracle products do not currently have.
When opening an enhancement request, describe the specific feature or function to
be added to the product and provide a business case to justify the enhancement.

Wait State

A wait state occurs whenever a required system resource (for example, an enqueue)
is unavailable. Because the task requiring the resource is in a blocked or wait state,
little or no CPU time is consumed. However, wait states are not limited to a lack of
operating system resources. A wait state can occur within the Oracle server due to
an incompatible lock request, high contention on an internal latch, an archive task
that halts, and so forth.

A wait state in an Oracle database utility might or might not be considered an
Oracle database error. A wait state that occurs due to operating system resource
conflicts (for example, multiple requests for a tape mount) is not considered an
Oracle database error. If a wait state occurs within an Oracle database utility, then a
system dump is required of both the utility and kernel address spaces. If a wait
state occurs in the Oracle server address space, then a system dump is required of
that address space.
Error Diagnosis and Reporting 17-7

Error Diagnosis
Diagnosing Wait State Problems
Before you contact Oracle Support Services, try these recommended approaches:

■ Check the Oracle database alert log and system console logs for any error
messages.

■ Query the V$LOCKS dynamic view to determine whether there are any lock
conflicts.

■ For a high volume online transaction processing (OLTP) system, query the
V$WAITSTAT dynamic view to determine whether there is contention for a
class of data blocks. To perform this query, invoke SQL*Plus and enter these
commands:

SQL> CONNECT / AS SYSDBA
SQL> SELECT * FROM V$WAITSTAT;

For more information about the V$WAITSTAT view, refer to the Oracle9i
Database Reference.

■ If your database is in ARCHIVELOG mode, then ensure your archive data set
destination is not full. If the destination is full, then the archiver task cannot
copy any more full redo log data sets, thus preventing any further changes to
the database. In this case, all tasks attempting to make changes are eventually
placed in a wait state.

If you cannot diagnose the wait state problem using the previous suggestions, then
first obtain these dumps and contact Oracle Support Services:

■ An SVC system dump that includes all of the private area of the Oracle
database address space.

■ A SYSTEMSTATE dump from within Oracle database. When you contact
Oracle Support Services, tell them you performed this task.

To obtain a SYSTEMSTATE dump, invoke SQL*Plus and perform these
commands:

SQL> CONNECT / AS SYSDBA
SQL> ALTER SESSION SET EVENTS
’immediate trace name systemstate level 10‘;

Be sure to replace the immediate trace name with a value suitable for
your task.

A SYSTEMSTATE dump can be quite large, depending on the number of
concurrent connections to the Oracle server, the number of resources each
17-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

System Dumps
connection holds or requests in any mode, and the size of the SGA. The current
cursor and object state for each concurrent connection is also included in the
SYSTEMSTATE dump. The size of these dumps can easily be in the multiple of
megabytes. A SYSTEMSTATE dump is synonymous with a SYSTEMSTATE
trace data set.

System Dumps
When providing documentation on suspected Oracle database failures, it might be
necessary for you to provide a system dump of the Oracle server or utility address
spaces. Dumps are initiated through the OS/390 operator interface using the
DUMP and SLIP commands, or automatically by Oracle database if it detects a
problem.

Dumps sent to Oracle Support Services as documentation for suspected errors must
not be formatted. Formatted dumps will not be accepted.

When specifying dump parameters in response to an OS/390 DUMP COMM=(’ ’)
command, you must include this specification:

PSA,TRT,RGN

Additional parameters may be required.

System Dump Data Sets
Once a SYS1.DUMPxx data set is created, the system operator is notified whenever
a dump to that data set occurs. Because all Oracle database abends are dumped to
SYS1.DUMP data sets and are not dynamically allocated, you must ensure a
SYS1.DUMP data set is always available.

You must also ensure the SYS1.DUMP data set is large enough to accommodate a
dump of two address spaces (the Oracle database address space and the client
address space). This allows for a complete dump if an Oracle database utility
abends while in cross memory mode. Refer to "Oracle Server Storage
Requirements" on page 16-6 in Chapter 16, "Oracle9i Performance", for more
information about estimating the size of an Oracle database address space.

If a SYS1.DUMP data set is not available, then a dump might be lost.

Operator Initiated Dumps
Operator initiated dumps are accomplished with the OS/390 DUMP command:
Error Diagnosis and Reporting 17-9

GTF
DUMP COMM=(text)

where text is the title you want the dump to have.

After the DUMP command has been issued, you must respond to the system WTOR
with the following:

R xx,[JOBNAME=(jobn)|ASID=(nnn),]SDATA=(PSA,TRT,RGN)

where:

New operands can be requested.

SLIP
Proper documentation of an Oracle database error might require the setting of a
SLIP trap. If this is the case, then contact Oracle Support Services for specific
instructions.

TSO System Dumps
TSO symptom dumps provide a preliminary view of an abend condition in an
Oracle database utility. A symptom dump is available by issuing the TSO
command:

PROFILE WTPMSG

The effect of this command is permanent until you issue the command:

PROFILE NOWTPMSG

GTF
You might need to use GTF as a diagnostic tool under certain circumstances. Oracle
Support Services provides specific instructions if this is the case.

xx is the reply identification number.

jobn is the name of the started task or batch job.

nnn is the hexadecimal address space identifier of the address
space you want to dump.
17-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Migration and Upgrade Conside
18

Migration and Upgrade Considerations

This chapter addresses OS/390-specific considerations in converting existing Oracle
for OS/390 database instances, TNS or Oracle Net services, and Oracle Access
Managers to Oracle9i, Release 2 for OS/390. It supplements the generic product
manual Oracle9i Database Migration: Release 2 (9.2). Migration and upgrade
considerations for OS/390-based Oracle application programs, tools, and utilities
are covered in the Oracle9i Enterprise Edition User’s Guide for OS/390.

Your existing Oracle for OS/390 database may be MPM-based, meaning that it uses
the MPM subsystem for the database server and the TNS subsystem for SQL*Net or
Oracle Net services. Oracle7 for OS/390 and Oracle8, Release 8.0 for OS/390 were
provided only as MPM/TNS implementations. Oracle8i for OS/390 was delivered
in both MPM/TNS and OSDI implementations. Oracle9i, Release 1 for OS/390 was
delivered only as an OSDI implementation. It is important to note that moving
from MPM/TNS to OSDI involves additional considerations covered only in this
manual and in the Oracle9i Enterprise Edition User’s Guide for OS/390.

The following topics are included:

■ Overview on page 18-2

■ Differences Between MPM/TNS and OSDI on page 18-3

■ OSDI Changes in Oracle9i, Release 2 on page 18-7

■ Moving from MPM/TNS to OSDI on page 18-8

■ Coexistence and Compatibility on page 18-19

■ Oracle for OS/390 Migration and Upgrade on page 18-22

■ CFUTIL (Convert File Utility) Reference on page 18-35
rations 18-1

Overview
Overview
Oracle uses the terms "migration" and "upgrade" to distinguish two categories of
database conversion to a new software release. In an upgrade, you shut down the
database, start it up with the new software release, and then execute provided SQL
and PL/SQL scripts to update Oracle’s internal dictionary tables and other objects.
On successful completion of the scripts, your conversion is complete. In most
upgrade situations Oracle also supplies "downgrade" scripts which can be run to
return the dictionary to its original structure. Thus, an upgrade is relatively simple
and, if there are problems with the new release, there is an easy fallback path.

A major release change may require changes to the structure of the Oracle control
file. This conversion involves additional steps to extract data from your current
control file and use it to build new control files when starting up with the new
release. This scenario is called migration and is slightly more complex than an
upgrade. Like an upgrade, migration also requires running scripts to update Oracle
dictionary objects. Unlike an upgrade, however, migration usually does not
provide a direct downgrade procedure for fallback: you must back up your
database prior to the migration and restore the backup in a fallback situation.

If you are converting an Oracle7 database to Oracle9i, R2, your conversion is a
migration: you will be replacing your Oracle7 control files with new Oracle9i, R2
control files. This migration requires that your Oracle7 database be at release
7.3.3.6.3 or higher; if it is an older release, you must upgrade to release 7.3.3.6.3
before beginning your migration to Oracle9i, R2. Since Oracle7 was provided only
in an MPM implementation, you will also be moving from the MPM/TNS
implementation to OSDI.

If your existing database is Oracle8, Release 8.0.6, Oracle8i, Release 8.1.7, or
Oracle9i,R1, your conversion is an upgrade. A simple downgrade procedure is
available for returning to Oracle8i, Release 8.1.7, or Oracle9i, R1; this is not available
for 8.0.6. If the existing database is Oracle8, Release 8.0 or the MPM-based Oracle8i,
Release 8.1.7, you are also moving from MPM/TNS to OSDI. Otherwise, you are
already using OSDI and do not have to be concerned with MPM-OSDI transition
issues.

Note: Oracle9i Database Migration: Release 2 (9.2) states that an
Oracle7 database must be at release 7.3.4 to be migrated to Oracle9i.
This is not so on OS/390. The migration preparation fixes from
release 7.3.4 were backported to release 7.3.3.6 on OS/390.
18-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Differences Between MPM/TNS and OSDI
Differences Between MPM/TNS and OSDI
OSDI provides a different OS/390 architecture and "internals" for executing the
Oracle database server and Oracle Net components. This changes a number of
OS/390-specific aspects of how these components are configured, started, and
managed. Highlights of these differences are as follows.

One Subsystem, Many Services
With MPM, each Oracle instance and each TNS service is a separate OS/390
subsystem with a single associated address space. The OSDI subsystem has no
dedicated address space of its own and it manages multiple Oracle database
instances and Oracle Net services--as many as you choose to configure and run.
While you can have multiple OSDI subsystems on one OS/390 image, there usually
is no need to.

You must create at least one OSDI subsystem, and within it you must define and
configure the database and/or network services you want to run. These definitions
use the OSDI DEFINE SERVICE command and each specifies the particulars of the
service, including a service name and the JCL procedure used to start a service
address space.

Services Operate Differently
With MPM, Oracle database instances and TNS services could be started with an
OS/390 START command (so they ran as started tasks or STCs) or they could be
submitted to run as batch jobs. With OSDI, database and network services must be
started with an OSDI START command and they execute as OS/390 "system
address spaces." This mechanism relies on JCL procedures in a system procedure
library. These procedures differ from the JCL you used for MPM and TNS.

All of the MPM- and TNS-specific operator commands and SYSLOG messages are
gone with OSDI. There is a small set of OSDI subsystem operator commands for
defining, altering, displaying, starting, and stopping database and network services.
Individual database and network services also respond to OS/390 STOP (P) and
MODIFY (F) operator commands. OSDI operator commands are issued through
standard OS/390 command interfaces such as a system console, Netview, TSO
SDSF, or MGCR (SVC 34). OSDI has no equivalent to the MPMCMD program.
Relatively few SYSLOG messages are issued by OSDI database and network
services. Those that are use the message id prefixes MIR and MIN, respectively.
Messages from the OSDI subsystem component use prefix MIS. All of these "MI"
messages are provided in US English only.
Migration and Upgrade Considerations 18-3

Differences Between MPM/TNS and OSDI
Database services under OSDI can execute as multiple OS/390 address spaces to
increase available server virtual memory beyond the 2 gigabyte architectural limit.
Additional address spaces beyond the first, called auxiliary address spaces, appear
as distinct system address spaces similar to the first address space. Depending on
how you configure the service, auxiliary address spaces are started automatically
when the service is first started or they can be started manually (with an OSDI
START command) any time after the first address space has initialized. Auxiliary
address spaces do not respond to operator commands and cannot be terminated
individually; they terminate only when the entire service is stopped.

Oracle database startup and shutdown are independent of database service start
and stop with OSDI. With MPM, database startup could be invoked automatically
within the MPM address space and database shutdown always caused termination
of the MPM address space. Neither of these is so with OSDI: database startup is
done independently of starting the database service address space(s) and database
shutdown does not cause the address spaces to terminate. Stopping and restarting
of database service address spaces is not required except when performing software
maintenance, modifying the service JCL, and in certain failure situations.

Network Architecture Changed
With MPM and TNS, a separate network "listen" was initiated for each Oracle
database instance that a remote client could access. This required executing an
additional task called MPMTNS in each MPM/Oracle address space. Since each
listen was on a distinct network endpoint (TCP/IP hostname and port), remote
clients had to specify the correct endpoint address for the OS/390 database instance
they wanted to access.

With OSDI, the network service listens on a single network endpoint for all
database instances. Remote clients specify this endpoint address regardless of
which OS/390 database instance they want to access. The client’s target database
instance is identified by a logical name called a SID; each OSDI database instance on
a given OS/390 image has a distinct SID. Database instances do not need special
configuration or a special task like MPMTNS in order to be accessed by a remote
client. Unless prevented with the SAF mechanism discussed below, all OSDI
database instances are accessible to remote clients who can supply a valid Oracle
logon.

With MPM, network client database requests were executed using MPM worker
tasks that were subtasks of the MPM jobstep program. With OSDI, network client
requests are executed using preemptable enclave SRBs created by the network
service address space. OSDI network client connections are subject to OS/390
18-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Differences Between MPM/TNS and OSDI
Workload Manager (WLM) classification and can be independently prioritized
relative to each other and to other work in the system.

Security Changes
OSDI provides built-in System Authorization Facility (SAF) checks at various
points. Enabling these checks involves defining resources to your security
subsystem (e.g. RACF) and granting access to those resources to the appropriate
OS/390 userids. Checks are provided for:

■ OSDI Operator Commands This controls which OS/390 consoles or users can
issue various OSDI subsystem commands. (The OS/390 STOP and MODIFY
commands used with OSDI services are controlled by existing OS/390
mechanisms.)

■ OSDI Bind Process This controls which OS/390 address spaces can establish
cross-memory connections to OSDI services. This check can be used to disable
Net access to a given Oracle database instance.

■ SYSOPER and SYSDBA This controls who can log on to an Oracle database
service using AS SYSDBA and AS SYSOPER, which enable Oracle operating
privileges such as STARTUP.

■ Oracle Logon The most common form of SAF-based Oracle logon
authentication, which was accomplished using an exit routine with MPM, is
built in to OSDI. Exit routine capability is still provided for installations that
have specific processing needs not provided by the built in feature.

Certain details of SAF- or exit-based Oracle logon authentication have changed with
OSDI relative to MPM. Support for the role processing exit (in conjunction with
init.ora OS_ROLES=TRUE) is discontinued with OSDI.

Parameter Changes
For Oracle database instances, all MPM parameters are gone. A small set of
parameters control the database service address space. Also, a separate parameter
file, called ORA$FPS, provides parameters related to creation and processing of
OS/390 data sets in the Oracle server.

The interpretation of certain Oracle RDBMS parameters (usually referred to as
INITORA or init.ora parameters) is changed with OSDI. Particularly important are
the parameters related to log archival processing.
Migration and Upgrade Considerations 18-5

Differences Between MPM/TNS and OSDI
Database File Processing Changes
The syntax for specifying Oracle control, log, tablespace, and other files used by the
server is changed with OSDI. (Backward compatibility is provided for syntax
commonly used with MPM.) As mentioned in the prior section, file processing
parameters are supplied in a separate parameter file rather than being appended to
the file name supplied in a SQL statement. All database files created by an OSDI
server--including archive logs--are VSAM Linear Data Set (LDS) clusters. Existing
VSAM ESDS clusters with 4K Control Interval size continue to be accepted for
compatibility, but may need to be converted to LDS in certain situations discussed
later. Archive logs created as sequential (DSORG=PS) data sets under MPM must
be converted to LDS to be used in recovery with an OSDI server.

Backup and Recovery Changes
Backup and recovery based on Oracle Recovery Manager (RMAN) is significantly
different with OSDI. Existing procedures based on the MPM implementation of
RMAN will require changes for OSDI.

SMF Record Changes
The formats of the Oracle session statistics SMF record and the Oracle audit trail
SMF record are changed with OSDI.

Unsupported Features in OSDI

IXCF Protocol

Support for Oracle Net PROTOCOL=IXCF has been discontinued. IBM’s TCP/IP
can be configured to use XCF connections between nodes in a sysplex, so
PROTOCOL=TCP provides a substitute mechanism.

Computer Associates or Interlink SNS/TCPaccess Support

SNS/TCPaccess is no longer supported as a separate Oracle Net driver, support is
provided via the HPNS interface of the IBM TCP/IP driver.
18-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OSDI Changes in Oracle9i, Release 2
OSDI Changes in Oracle9i, Release 2
Oracle9i, R2 introduces several OS/390 architectural changes described here. Read
this section if you are moving to Oracle9i, R2 from any earlier Oracle release,
including Oracle9i, R1.

Network Client Operations
Starting with Oracle9i, R2, OS/390 Oracle client programs that use Oracle Net open
network protocol connections directly rather than using the Oracle Net service.
This affects customer-written Oracle applications running in CICS/TM, TSO, and
batch and Oracle tools or utilities running in TSO and batch. It also affects
situations where an OS/390 database instance operates as a "network client",
including opening network database links and connections for the UTL_HTTP
PL/SQL package. It does not affect Oracle applications, tools, or utilities running in
the OS/390 USS environment: these programs are already using network protocol
services directly.

Previously, the network protocol interaction for non-USS applications was executed
by the network service address space on the client’s behalf. Now it is executed
directly from the client’s OS/390 address space and TCB. This change is expected to
improve performance and eliminate client operational dependence on the network
service. It has the following external considerations:

■ OMVS dubbing. IBM’s TCP/IP protocol makes use of OS/390 Unix System
Services (USS). An OS/390 address space that uses IBM TCP/IP must therefore
be a USS process or be capable of being "dubbed". Dubbing occurs
automatically when needed but it requires the OS/390 userid associated with
the address space to have a default USS segment defined in the security
subsystem (e.g. RACF). If dubbing fails, the network connection will not be
opened and the application probably will fail. You must ensure that all OS/390
clients that connect to remote Oracle servers can be dubbed. If in doubt, discuss
this with your OS/390 security administrator.

■ No client dependence on network service. With this change, stopping and
starting the Oracle network service has no effect on OS/390 client network
connections. OS/390 clients no longer require a TNS@xxx DD statement or
other specification o identify a network service to use, and they no longer
require OSDI bind authority to the network service. The network service is
now involved only with inbound network operations (clients on other systems
who are connecting to an OS/390 database instance).
Migration and Upgrade Considerations 18-7

Moving from MPM/TNS to OSDI
Clients Use Language Environment
Beginning with Oracle9i, R2, all Oracle client software on OS/390, including Oracle
tools, utilities, and the Oracle program interface code used by customer
applications, uses IBM Language Environment (LE) for C program runtime services.
LE replaces the MVS Oracle C runtime library in use since 1986. This change is
primarily internal in nature but it does affect a few externals, including the syntax
used to specify files and certain PARM and command line features. It also requires
that LE runtime (e.g. SYS1.SCEERUN) be available in the system linklist or
JOBLIB/STEPLIB when running Oracle tools, utilities, or customer-written
applications.

Detailed information on this change is provided in the Oracle for OS/390 User’s
Guide. Since Oracle database administration involves running Oracle tools and
utilities, refer to the Oracle9i Enterprise Edition User’s Guide for OS/390 as necessary
when performing administration tasks discussed in this manual.

Moving from MPM/TNS to OSDI
This section discusses OS/390-specific issues in moving existing MPM/TNS Oracle
databases, network services, and Access Managers to OSDI. It is intended to serve
more as a guide or checklist than as complete documentation: the actions discussed
here are taken in conjunction with the generic migration or upgrade steps covered
in the next major section and in Oracle9i Database Migration: Release 2 (9.2).

Configure OSDI Command Security
If you are going to use SAF-based OSDI command security, enable it by defining
appropriate resources in the security subsystem (e.g. RACF) and then granting
appropriate rights to OS/390 userids. Do this before initializing the subsystem if
you want command security to be in effect as soon as the subsystem is active. You
may need to coordinate this effort with your system security administrator.

For detailed information on OSDI command security, refer to Chapter 8, "Security
Considerations".

Configure the Subsystem
You will need to initialize at least one OSDI subsystem in order to configure and
run Oracle database instances and network services with OSDI. This can be done
any time prior to the point where an Oracle9i, R2 database or network service must
18-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Moving from MPM/TNS to OSDI
be started. If your installation permits it, the subsystem can be initialized without
an OS/390 IPL by using the SETSSI ADD operator command. Otherwise, you will
need to add a subsystem specification to SYS1.PARMLIB and IPL the system to
initialize the subsystem. If appropriate, work with your OS/390 system
administrator to coordinate this.

Choose a unique subsystem name for OSDI. Even if you are installing OSDI on a
different OS/390 system than the one where existing MPM and TNS services run,
avoid using the same subsystem name you used for an MPM or TNS instance.
Unlike MPM and TNS, OS/390 clients never need to know or specify the OSDI
subsystem name. OSDI clients use a SID, a unique name assigned to each service,
to identify an Oracle database instance to which they want to connect. Starting with
Oracle9i, R2, outbound OS/390 network clients (ones running on OS/390 and
connecting to a remote server) do not use the OSDI network service at all, so there is
no requirement to specify or identify the network service in client applications.

Part of OSDI subsystem initialization includes reading and processing OSDI
commands from a sequential file or PDS member. Normally this is where you will
place DEFINE SERVICEGROUP, DEFINE SERVICE, and possibly other commands
to configure the database and network services you will run. Therefore, read the
following section and its related material before trying to initialize your subsystem.
It is much easier to supply the OSDI definition commands in a file than to enter
them "live" at a system console.

For details on OSDI subsystem definition and initialization, refer to Chapter 2,
"Configuring and Initializing the Subsystem".

Configure Database Services
You must configure an OSDI database service for each MPM Oracle server you are
converting. Normally all such services are defined in the same OSDI subsystem,
but this is not required. Use the DEFINE SERVICE command of OSDI to create the
OSDI structures used to manage the service. Normally this command would be
placed in the data set read by OSDI subsystem initialization, but it can be issued at a
system console or comparable facility. In the latter case, processing of the command
is subject to SAF security checks if you have defined the appropriate resources to
the security subsystem. The DEFINE SERVICE command must be issued before
you can attempt to start the service.

Details on configuring a database service are found in Chapter 3, "Configuring a
Database Service and Creating a New Database". What follows are some specific
topics relevant to moving from MPM to OSDI.
Migration and Upgrade Considerations 18-9

Moving from MPM/TNS to OSDI
SID

When you define an OSDI service, a SID is specified or assigned by default. In the
case of a database service, the SID is the name that both local and remote clients use
to identify the Oracle instance to which they want to connect. Thus the SID serves a
purpose similar to the MPM subsystem name. In most cases you will want the SID
of a database service to be the same as the subsystem name of the MPM instance
you are converting. This is especially so if you have batch jobs or TSO scripts that
use an ORA@ssn DD statement to specify a target Oracle server. With OSDI, the
"ssn" part of this DD name is interpreted as the SID of the target database service, so
using a SID that matches the MPM subsystem name means those batch jobs or
scripts need not be changed.

If you do not specify a SID on your DEFINE SERVICE command, the SID defaults
to the service name. For complex reasons having to do with OS/390 subsystem
facilities, you do not want an OSDI service name to match the subsystem name of
any MPM, TNS, or other subsystem you might have. Therefore, to have a SID that
matches the MPM subsystem name, SID should be specified explicitly on your
DEFINE SERVICE command, and will differ from the service name. For example:

 DEFINE SERVICE ORADB1 TYPE(ORA) SID(ORA1) PROC(SORA1C) -
 DESC(’Oracle9i R2 Test Instance’) MAXAS(3) -
 PARM(’ORACLE.ORADB1.PARMLIB(SRVPARM1)’)

Database Region Parameters

Your DEFINE SERVICE command for a database service will specify as a PARM
string the name of a sequential data set or PDS member containing OSDI database
region parameters. Although logically equivalent to MPM parameters, these are
completely different and relatively few in number. The data set or PDS member
need not exist when the DEFINE SERVICE command is issued, but it must exist
when the database service is started with an OSDI START command. Details on
these parameters are covered in Database Region Parameters on page 3-10.

Database JCL Procedure

Your DEFINE SERVICE command must specify the name of a JCL procedure used
to start address spaces of the service. This procedure must be in a system procedure
library such as SYS1.PROCLIB or one that is concatenated to it in the JES subsystem.
The procedure need not be in place when DEFINE SERVICE is issued, but it must
be when you start the service with an OSDI START command.
18-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Moving from MPM/TNS to OSDI
The database service JCL procedure is completely different from that used with
MPM. It executes a different jobstep program and has different required and
optional DD statements. Details on this JCL procedure are found in "Database
Region JCL" on page 3-6.

Database File Processing

In the latter stage of your migration or upgrade, the Oracle9i, R2 server will mount
and open your database, causing the OS/390 data sets comprising the database to
be opened and accessed. Although the internal file access methods used by OSDI
differ from those used by MPM, the change is almost entirely internal and requires
no special action on your part. There are, however, some external considerations in
OSDI file processing.

Chief among these is the use of separate file processing parameters. With MPM,
certain parameters related to data set creation could be including in the file
specification string in a SQL statement such as CREATE DATABASE or ALTER
TABLESPACE ADD DATAFILE. This is no longer supported with OSDI: file
processing parameters, organized by Oracle file type, are supplied in a parameter
file, identified by an ORA$FPS DD statement, that is read by the OSDI database
region program. Depending on how a particular Oracle instance is configured and
used, you may need to establish parameters for one or more of the various Oracle
file types. Refer to Chapter 4, "Defining OS/390 Data Sets for the Oracle Database"
for details on Oracle database files and the ORA$FPS parameter file.

Another difference between MPM and OSDI is that with OSDI, all data sets created
by the server that are part of the database are VSAM LDS clusters. With MPM,
certain data sets, such as archive logs, were created as sequential non-VSAM
(DSORG=PS) data sets. Any non-Oracle processing of Oracle archive logs, such as
copying or migration procedures, should be examined to make sure that they will
operate as expected with VSAM LDS clusters. Archive logs created by an MPM
server must be converted to VSAM LDS before being used in recovery operations
with an OSDI server. Refer to the example under "CFUTIL (Convert File Utility)
Reference" on page 18-35 for further information on converting to VSAM LDS files.

Another topic in the area of file processing concerns the syntax for specifying
database files to Oracle in SQL and in parameter files such as init.ora. OSDI uses
IBM Language Environment syntax for specifying files and this syntax differs from
that used by the MPM implementation. The old MPM syntax continues to be
accepted: file specifications containing "/DSN/" and "/DD/" prefixes are accepted
in both SQL (e.g. CREATE TABLESPACE) and in init.ora parameters (e.g.
CONTROL_FILES). JCL-like keyword parameters coded after the data set name in
such specifications are tolerated but ignored. Oracle recommends that you begin
Migration and Upgrade Considerations 18-11

Moving from MPM/TNS to OSDI
using the new syntax described in Chapter 4, "Defining OS/390 Data Sets for the
Oracle Database". Compatibility for the MPM syntax will be dropped in a future
Oracle release.

Except for the name(s) of the control files themselves, the names of all files
comprising a database are stored in the control file. In the case of an MPM
database, this means they are stored in MPM syntax such as
"/DSN/ORA1.ORADB1.DBF". The compatibility feature mentioned above means
that these file names will be processed correctly when you start up Oracle9i, R2.
However, leaving the file names in the control file in this form can create problems
later: it can cause Oracle to fail to detect if you are mistakenly adding a file to the
database that is already part of the database. Because of this exposure, a special
OS/390 utility program called CFUTIL is supplied that will update the control file
so that all file names are in the new (OSDI or LE) syntax. During a migration or
upgrade that involves moving from MPM to OSDI, you will run CFUTIL against
your control file(s) to perform this update. In a fallback situation, where you are
returning to MPM after running OSDI, you must run CFUTIL again to restore the
old syntax: an MPM Oracle instance does not accept the new OSDI syntax.

The CFUTIL program also performs other file-related functions that are relevant to
an MPM to OSDI move. Details on this utility are found in "CFUTIL (Convert File
Utility) Reference" on page 18-35.

RDBMS Parameter Considerations

Since you are migrating or upgrading to a new release of Oracle, you should review
the database initialization parameters (commonly referred to as "init.ora"
parameters) in the Oracle9i Database Reference. Depending on the release you are
coming from there will be some number of new or changed parameters, so your
current set of parameters may need changes. In addition, the interpretation of a
couple of init.ora parameters is changed by OSDI:

CONTROL_FILES. If you are migrating from Oracle7, you will be creating new
control files, so the names specified here will change. Use data set names rather
than DD names to specify the control files. This parameter can be changed to use
the new LE-style syntax for file names, although the old syntax is still accepted.

LOG_ARCHIVE_. The interpretation of LOG_ARCHIVE_FORMAT,
LOG_ARCHIVE_DEST, and LOG_ARCHIVE_DUPLEX_DEST is changed with
OSDI. This is further complicated by the fact that generic Oracle9i has adopted new
parameters for log archiving: the old parameters are accepted for compatibility but
the new LOG_ARCHIVE_DEST_n and several related parameters provide
additional functionality. Whether you switch to the new parameters or not, moving
18-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Moving from MPM/TNS to OSDI
to OSDI dictates changing the values specified if log archiving is to work correctly.
Refer to the discussion in Chapter 3, "Configuring a Database Service and Creating
a New Database" and to the generic Oracle documentation for the old and new
parameters.

Database Backup and Recovery Procedures

Non-RMAN-based backup and recovery considerations are mostly unchanged by
OSDI. You should check to make sure that the use of VSAM LDS clusters (as
opposed to ESDS) does not affect whatever software you are using for backups. If
you have non-Oracle processing of Oracle archive logs, you will need to make sure
that processing accommodates the VSAM LDS clusters written by OSDI instead of
the sequential non-VSAM data sets written by MPM.

If you are using RMAN for backup and recovery of an MPM Oracle database, you
will find significant changes in OSDI. Backup information stored by MPM RMAN,
whether in the control file or an RMAN backup catalog, is not usable with OSDI.
Most RMAN scripts developed for MPM will require changes for OSDI.

With OSDI, RMAN backups to the DISK device type are created as VSAM LDS
clusters. Most installations that create DISK backups will need to add parameters to
the server ORA$FPS for the relevant file types. For non-DISK backups, OSDI
employs an External Data Mover (EDM) which runs in a separate OS/390 address
space from the server. Using EDM requires a JCL procedure in a system procedure
library and it changes (relative to MPM) what is specified in the RMAN
ALLOCATE CHANNEL statement. In addition, interpretation of backup file
specifications and various other backup and recovery considerations are different
with OSDI and EDM.

MPM RMAN users do not necessarily have to convert all of their RMAN
procedures prior to moving to OSDI, but they must do so before attempting RMAN
backup and recovery operations with OSDI. Oracle recommends that these
procedures be examined and modified as necessary as early in the conversion as
possible. Refer to Chapter 6, "Database Backup and Recovery" for details on the
OSDI implementation of RMAN.

Database Security Considerations

Several SAF-based OSDI security features relate directly to the database server.
Depending on whether your installation chooses to use these features, they must be
configured or activated before or during the move to OSDI. Complete details on
these features are provided in Chapter 8, "Security Considerations". Highlights of
the areas of interest follow.
Migration and Upgrade Considerations 18-13

Moving from MPM/TNS to OSDI
Bind Security This mechanism controls which OS/390 users are permitted to
establish cross-memory connections to an OSDI server. There are two categories of
bind: the normal application bind used by an OS/390 batch job, TSO user, or USS
process, and a "managed" bind used by Access Managers and by Oracle Net
(operating on behalf of incoming remote clients). The two bind schemes are
distinguished because the managed scheme carries special privileges that should
not be made available to normal applications.

MPM had no equivalent security mechanism, so there are no conversion issues per
se with bind security. If your installation elects to activate bind security (by
defining the required resources in a security subsystem such as RACF), appropriate
access rights must be granted to OS/390 userids that will connect to local Oracle
servers. This includes the OS/390 userid that will perform the Oracle STARTUP
during the migration or upgrade.

Note that beginning with Oracle9i, R2, OS/390 clients who connect to remote
Oracle instances via Oracle Net do not require bind authority to the Oracle Net
service.

SYSOPER/SYSDBA Security This mechanism controls which OS/390 users can
connect to a local Oracle server using the AS SYSOPER or AS SYSDBA option.
These options enable certain operating privileges such as the ability to perform an
Oracle STARTUP. This type of connection replaces the CONNECT INTERNAL
used in older Oracle releases. CONNECT INTERNAL is not supported in Oracle9i.

MPM, via the PRIVUSER parameter/command, maintained its own list of OS/390
userids that were permitted to CONNECT INTERNAL. With OSDI, the equivalent
control is implemented by defining resources in the security server (e.g. RACF) and
then granting access to the resource names. Examine your MPM instance’s
PRIVUSER list and discuss your requirements with your system security
administrator.

To bring up Oracle9i,R2 during migration or upgrade, an OS/390 user must connect
to the server using CONNECT / AS SYSDBA. Make sure that the required security
configuration work has been done before you reach that step.

Oracle Logon Authentication With MPM, Oracle logon password verification for
Oracle users defined as IDENTIFIED EXTERNALLY could be delegated to a
security subsystem such as RACF using an exit routine. Although the exit
capability is still provided with OSDI, the most common form of external
verification is provided as a built-in feature: no exit is required. The feature uses
RACROUTE REQUEST=VERIFY, a SAF request, which works with any
18-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Moving from MPM/TNS to OSDI
SAF-compatible security subsystem. You activate this check by specifying
LOGON_AUTH(SAF) in the OSDI database region parameter file.

If your installation requires additional processing beyond this RACROUTE check
during Oracle logon, you need to convert your MPM logon exit to OSDI. The logon
exit interface provided by OSDI is different from MPM’s, so you may find it easier
to move a portion of your old exit’s logic into the sample exit that is shipped with
OSDI (member RACFSMPO of the SRCLIB data set).

If you are using either the built-in SAF check or a converted logon exit, there are
differences in processing in OSDI that you need to be aware of. Foremost of these is
that the SAF check or logon exit is called only for userids defined to Oracle as
IDENTIFIED EXTERNALLY, and only when the user or application attempts to
connect with an explicit userid/password string. No SAF check is performed (or no
call is made to the exit) when such a user connects with a null userid and password
string, usually signified by a standalone slash (as in "CONNECT /"). In this case,
the assumption is that the user was authenticated when logging on to OS/390 and
need not be authenticated again.

Under MPM, if a logon exit was specified and the init.ora parameter
OS_AUTHENT_PREFIX=OPS$ was specified or taken as the default, then users
connecting with "/" (standalone slash) were logged on without the OPS$ prefix. For
example, if user JLSMITH was created in Oracle and was IDENTIFIED
EXTERNALLY, and then if a "CONNECT /" was used with the user logged onto
OS/390 as JLSMITH, then the user was logged on to Oracle as JLSMITH, ignoring
the OPS$ prefix which should have been used. With the OSDI, the
OS_AUTHENT_PREFIX setting is always used. In the example just given, Oracle
userid OPS$JLSMITH would have to be created (with IDENTIFIED EXTERNALLY),
and a "CONNECT /" would connect OS/390 user JLSMITH to Oracle as user
OPS$JLSMITH.

If this change in behavior presents a problem, then the init.ora parameter
OS_AUTHENT_PREFIX should be specified as OS_AUTHENT_PREFIX="" (an
empty string) to get the old behavior. With the parameter set in this manner, the
user would be created as JLSMITH and IDENTIFIED EXTERNALLY, and
"CONNECT /" would connect to Oracle as Oracle userid JLSMITH.

Another change in OSDI concerns any use of any non-null OS_AUTHENT_PREFIX
value, OPS$ or otherwise. If LOGON_AUTH(SAF), LOGON_AUTH(RACFSMPO),
or LOGON_AUTH(<user-written-exit-name>) is specified, and if a connect with an
explicit userid and password is attempted, the SAF check (for
LOGON_AUTH(SAF)) or the logon exit (for the other two cases) will be called with
the OS_AUTHENT_PREFIX value removed. For example, if user OPS$JLSMITH is
created and IDENTIFIED EXTERNALLY, and if a "CONNECT
Migration and Upgrade Considerations 18-15

Moving from MPM/TNS to OSDI
OPS$JLSMITH/SKIFFEL" is then used, then the SAF check or logon exit will be
called with JLSMITH as the userid.

Oracle SMF Recording Considerations

Like MPM, OSDI will write records to OS/390 System Management Facility (SMF)
for session statistics and for the database audit trail (when init.ora
AUDIT_TRAIL=OS is specified). The format of both types of records has changed,
however, as have the parameters used to control SMF recording.

MPM used the SMFRECN parameter to specify the record number for the session
statistics record, and SMFRECN defaulted to 199. OSDI uses the
SMF_STAT_RECNO database region parameter for this, and it defaults to zero
which means SMF session records are not written. You must specify
SMF_STAT_RECNO if you want session statistics records from an OSDI server. Do
not use the same record number you are using with MPM servers: the OSDI record
has a different format, so you need to be able to distinguish MPM records from
OSDI records.

For the database audit trail, when AUDIT_TRAIL=OS is specified, MPM obtains the
SMF record number from the AUDIT_FILE_DEST init.ora parameter. With OSDI,
the audit record number is a database region parameter SMF_AUDIT_RECNO. You
must specify a nonzero record number for this parameter to enable writing of server
audit trail records to SMF. As with the session statistics record, do not use the same
number you are using for MPM audit records. The format of the audit record is
changed with OSDI.

The changes in record formats mean that programs which process these records will
need changes for OSDI. Sample formatting programs are included in the SRCLIB
data set (members ORAFMTO and ORAFMTAO). For complete information on
Oracle SMF recording refer to Chapter 9, "Oracle SMF Data".

Configuring Network Service
Beginning with Oracle9i, R2, the OSDI network service is involved only in inbound
network operations, that is, when remote clients connect to an OS/390 Oracle
instance. Outbound clients on OS/390--ones who are connecting to remote Oracle
instances--interact directly with the TCP/IP protocol rather than using the network
service. This is true for all Oracle9i, R2 clients: TSO, batch, USS, Access Managers,
and even the Oracle database server when it operates as a client (e.g. when opening
database links). If you were using the TNS implementation of Oracle Net only for
outbound client operations, you may not need to configure and run OSDI network
18-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Moving from MPM/TNS to OSDI
service at all. You do need to run OSDI network service for inbound client support
and in some cases for providing backward compatibility.

The Oracle cross-memory protocols used by MPM and OSDI for local connections
between OS/390 address spaces are not compatible. This means that an MPM client
cannot connect via cross-memory to an OSDI server and an OSDI client cannot
connect via cross-memory to an MPM server. It also means that cross-memory
database links between MPM and OSDI servers are not supported. In these
situations, you may need to use OSDI and TNS network services to enable
connections between the dissimilar architectures...even within a single OS/390
system, where no real networking is involved. Refer to the section "Coexistence and
Compatibility" on page 18-19 to see if you need to run OSDI network service to
provide connection compatibility.

The OSDI network service is simple to configure. You must issue an OSDI DEFINE
SERVICE command with TYPE(NET) to create the OSDI data structures used to
manage the service. As with the database service, a JCL procedure must be
installed in a system procedure library at some point before you attempt to start the
service. Rather than reading a parameter data set, network service region
parameters are specified directly in the PARM string of DEFINE SERVICE. Only
TCP/IP is supported. A port number must be supplied; this is the port on which
the service listens for inbound remote clients.

Beginning with Oracle9i, R2, the SID of the network service is irrelevant because
outbound clients do not use the network service. If you have Oracle8i or Oracle9i,
R1 clients making outbound network connections, the network service SID is
significant since those clients must identify the network service they want to use.

As discussed earlier, OSDI database servers require no specific action or
configuration to be accessible to network clients. All remote clients specify the
same hostname (or IP address) and port number in the Oracle network address
string or tnsnames.ora entry. The target database instance is specified using the SID
parameter of CONNECT_DATA in the address string.

Configuring Oracle Access Managers
Oracle Access Managers for Oracle9i, R2 can access an Oracle9i, R2 local or remote
database server. When accessing a remote server, Oracle Access Managers utilize
the Oracle Net open network protocol with the OMVS dubbing requirement
described under "Network Client Operations" on page 18-7.

In the case where a local database server is upgraded to Oracle9iR2, earlier versions
of Oracle Access Managers can access the local database if the connection in the
Migration and Upgrade Considerations 18-17

Moving from MPM/TNS to OSDI
thread table (CICS) or RTT table (IMS TM) is changed from a local definition to a
remote definition using TCP/IP.

Oracle Access Manager for CICS

Oracle9i, R2 Access Manager for CICS thread definitions remain consistent with
earlier versions. To access this version, customer applications must be re-linked
with a new application stub (ORACSTUB). Refer to Chapter 11, "Oracle Access
Manager for CICS" for more information.

Operating Considerations
OSDI changes some of the fundamental operating considerations for Oracle
database instances and network services. Foremost is the fact that services must be
started with an OSDI START command and run as OS/390 system address spaces.
In one of the later steps in your migration or upgrade to Oracle9i, R2 you will start
the OSDI database service and then perform an Oracle STARTUP. This is
significantly different from the comparable operations with MPM, as discussed in
the following section.

Database STARTUP and SHUTDOWN

During migration or upgrade you will issue a STARTUP command to bring up the
new release of the Oracle server. Several aspects of database startup and shutdown
are different with OSDI. Some of these differences may require you to change
operating procedures you have been using with MPM.

First, the database service you defined to OSDI must be started with an OSDI
START command before you attempt an Oracle STARTUP. This will create the
address space (or spaces, if so configured) for running the Oracle server, but it will
not automatically perform an Oracle STARTUP as was possible with MPM. Oracle
STARTUP and SHUTDOWN are performed separately by executing a utility such
as SQL*Plus in batch, TSO, or USS. Normally the utility will connect to the service
via OS/390 cross-memory services, so it must execute on the same system as the
database service.

Since STARTUP and SHUTDOWN are performed from a separate utility process,
progress messages appear in the standard output of the utility (e.g. SYSOUT, or the
TSO terminal). They do not appear in the OS/390 system log as they did when
STARTUP and SHUTDOWN were executed internally by MPM. Moreover, no
OSDI messages are normally issued during Oracle STARTUP and SHUTDOWN, so
the system log is essentially quiet during this process.
18-18 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Coexistence and Compatibility
Unlike MPM, Oracle SHUTDOWN does not terminate the database service address
space(s). These can and should be left running so they are available for the next
Oracle STARTUP. You can STARTUP and SHUTDOWN Oracle as many times as
you like without ever stopping service address spaces. The only time service
address spaces must be stopped is when installing software maintenance, changing
the service JCL, and in certain problem or failure situations (such as when Oracle
SHUTDOWN is unable to complete).

Order of Database and Network Service Starts

Because of the architectural changes in OSDI, in particular the elimination of the
MPMTNS task, the order in which database and network services are started does
not matter. The network service must be started in order for remote clients to access
Oracle database instances on OS/390, but there is no dependence on the network
service in the Oracle server or in OS/390 clients.

Coexistence and Compatibility
This section discusses considerations in having both MPM/TNS and OSDI software
on the same OS/390 system. This is permitted, of course, but components from one
implementation may not work with components from the other.

Cross-Memory Protocol
The cross-memory protocol used between local clients and servers on OS/390 is not
compatible between MPM/TNS and OSDI. This means that clients running from a
pre-OSDI CMDLOAD library cannot connect to an OSDI database instance using
either SQL*Net V1 cross-memory (e.g. the "M:" and "Z:" drivers) or with SQL*Net
V2 or Net8 PROTOCOL=XM. It also means that client applications built with or
upgraded to OSDI libraries cannot connect to an MPM-based Oracle instance via
OSDI PROTOCOL=XM.

There are two ways to ensure compatibility for client applications. The simplest
approach, for applications that only need to connect to one or the other architecture,
is to have the client built with the correct architecture. In the case of a server
upgrade to OSDI, this means relinking customer-written applications with the OSDI
stub and running them with the OSDI version of the Oracle interface code (OSDI’s
CMDLOAD). For procedures or scripts that execute Oracle tools or utilities it just
means using the OSDI CMDLOAD.
Migration and Upgrade Considerations 18-19

Coexistence and Compatibility
The other approach is to switch the client from cross-memory protocol to TCP/IP.
This is easiest with applications that use a TNSNAMES file (e.g. TNSNAMES DD)
to obtain the address of the target server. Such applications can be switched to
TCP/IP by changing the relevant entry in the TNSNAMES file from
PROTOCOL=XM to PROTOCOL=TCP along with the correct hostname or IP
address, port number, and SID for the target OSDI server. If the connection address
data (including a SQL*Net V1 type of address such as "M:" or "Z:") is embedded in
the application program, or if the program relies only on an ORA@ssn DD
statement to designate the target server, it must be modified and recompiled to
switch it to TCP/IP.

Pre-OSDI applications that are switched to TCP/IP protocol can connect to both
OSDI and MPM database instances by varying the target server address in the
TNSNAMES file. When connecting to an MPM instance, the TNS subsystem must
be running. When connecting to an OSDI instance, both the TNS subsystem and the
OSDI network service must be running: the client goes out via TNS and comes in (to
the OSDI server) via OSDI net.

Refer to the Oracle9i Enterprise Edition User’s Guide for OS/390 for additional
information on migrating OS/390-based applications from MPM/TNS to OSDI.

Database Links
Database links are a special category of Oracle connection where the "client" is one
Oracle instance connecting to another. Database links use Oracle Net or SQL*Net
just like normal client-server connections and they are subject to the same
considerations. This means that cross-memory database link connections between
OSDI and MPM servers are not supported for the reasons discussed above.

To enable database links between the two architectures requires using TCP/IP
protocol for the link. If the database link’s USING clause specifies a TNSNAMES
identifier, only the entry in the associated server’s TNSNAMES file needs to be
changed to use TCP/IP. If the USING clause contains an explicit Oracle Net or
SQL*Net address, the database link must be dropped and recreated with a different
USING clause. In the latter case Oracle recommends changing to a TNSNAMES
identifier in the USING clause and using the server’s TNSNAMES file to control the
network address particulars of database link targets.

To use a TCP/IP database link in an MPM server to access an OSDI server, both the
TNS subsystem and OSDI network service must be running. To use one in an OSDI
server to access an MPM server only the TNS subsystem must be running: starting
with Oracle9i, R2, outbound network connections from the server do not use the
OSDI network service.
18-20 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Coexistence and Compatibility
Network Component Considerations
The Oracle Net components are closely coupled to the database server in
architectural terms. This means that the OSDI network service can connect inbound
remote clients only to OSDI database instances, and the TNS subsystem can connect
inbound remote clients only to an MPM database instance. Assuming you are
providing network client access to all OS/390 database instances, you must run
both TNS and the OSDI network service for as long as you have both MPM and
OSDI database instances.

The TNS subsystem also provides network services to outbound OS/390 clients,
including outbound database links from MPM database instances. You must
continue to run TNS as long as you have pre-OSDI client applications and/or MPM
databases that open network database links.

OSDI client applications prior to Oracle9i, R2 (that is, client applications from OSDI
Oracle8i and Oracle9i, R1) use the OSDI network service for outbound network
services. Similarly, outbound database link connections from OSDI Oracle8i and
Oracle9i, R1 use the OSDI network service. As long as you have either of these you
must run an OSDI network service. Clients running with Oracle9i, R2 libraries and
database links from Oracle9i, R2 servers no longer use the network service for
outbound operations. However, the OSDI network service shipped with Oracle9i,
R2 still contains the outbound services required by pre-Oracle9i, R2 clients and
servers. This means you can upgrade your network service to Oracle9i, R2 and still
support pre-Oracle9i, R2 OSDI clients and databases.

Access Managers
As with normal clients, the OSDI versions of the Access Manager products must be
used for cross-memory access to local OSDI servers and cannot access an MPM
server via cross-memory. As with other components, access between the different
architectures requires using TCP/IP protocol.

Oracle Enterprise Manager Intelligent Agent and Data Gatherer
The OSDI version of the Intelligent Agent and Data Gatherer supports local OSDI
Oracle instances only and is not compatible with local MPM Oracle instances. The
tnsnames.ora file should be updated with the appropriate TNSNAMES entry using
the PROTOCOL=XM specification to access local Oracle for OS/390 instances. The
customization script must be rerun to configure the Oracle Enterprise Manager
Intelligent Agent and Data Gatherer for OSDI.
Migration and Upgrade Considerations 18-21

Oracle for OS/390 Migration and Upgrade
Oracle for OS/390 Migration and Upgrade
This section describes OS/390-specific considerations in performing the migration
or upgrade process documented in Oracle9i Database Migration: Release 2 (9.2). If
your migration or upgrade includes a move from MPM/TNS to OSDI, all of the
preceding sections in this chapter must be read before beginning. Various aspects of
the move to OSDI are mentioned here but the details are not. If you are already
running an OSDI release of Oracle, you can disregard steps or considerations for
moving to OSDI.

Certain parts of this material pertain only to migration, which is the process of
converting from Oracle7 to Oracle9i, R2 as discussed at the beginning of this
chapter. If your Oracle database is Oracle8, Release 8.0 or higher, you can disregard
steps or considerations that pertain to migration.

Alternatives to Migration
Transforming an installed version of an Oracle7 database with MPM to Oracle9i, R2
with OSDI is possible by creating a new database under the new release, then
copying data from the old database to the new database using either of the
following two methods:

Export and Import

Export the desired data from the old database (using Oracle7 EXP) and import the
data into the new database (using Oracle9i, R2 IMP).

SQL*Plus COPY

Use the SQL*Plus COPY command to copy data from the old database to the new
one. This requires using Oracle Net to access either the old or new database,
because no version of SQL*Plus can connect to both MPM and OSDI servers using
cross-memory.

The advantage to these methods of transformation is that they do not disturb your
Oracle7 database. They do, however, require that the two databases exist
simultaneously, which might be a problem if your database is very large. Also, both
of the copying methods that are described above are relatively slow. Migration,
using the migrate (MIG) utility, does not move database data from one version to
another, and is therefore much faster. It does, however, require that you back up
your Oracle7 database completely.
18-22 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle for OS/390 Migration and Upgrade
Migration and Upgrade Steps

Step 1: Configure OSDI Database Service

Do this only if you are moving from MPM/TNS to OSDI. Refer to earlier sections
of this chapter and Chapter 2, "Configuring and Initializing the Subsystem",
Chapter 3, "Configuring a Database Service and Creating a New Database", and
Chapter 4, "Defining OS/390 Data Sets for the Oracle Database" for detailed
information on initializing an OSDI subsystem and configuring an OSDI database
service.

Step 2: Shutdown Your Old Oracle Instance Cleanly

Perform an Oracle SHUTDOWN NORMAL (or IMMEDIATE) and allow it to
complete. If it cannot complete because user sessions remain connected, do a
SHUTDOWN ABORT or forcibly terminate the MPM subsystem or OSDI service,
then do a fresh STARTUP followed by SHUTDOWN NORMAL. It is important for
SHUTDOWN NORMAL to complete, ensuring that no outstanding redo data
remains in the database.

If your old instance is OSDI, stop the associated service to cause its address space(s)
to terminate.

Step 3: Back Up the Database

This step is recommended, though not mandatory, for an upgrade from Oracle 8i,
Release 8.1.7.3 and Oracle9i, R1. It provides an extra measure of assurance that no
data can be lost in the upgrade process.

If you are migrating from Oracle7 or upgrading Oracle8, Release 8.0.6, a cold
backup is mandatory because there is no downgrade procedure. For an Oracle7
migration, the backup can be taken now, before running the MIG utility, or
afterward. There are slightly different considerations for this backup depending on
when the backup is done.

In particular, if you restore a backup taken after MIG is run (in order to fall back to
Oracle7), you must rerun the Oracle7 catalog scripts to build the Oracle dictionary
views, which MIG drops. Refer to Appendix D of Oracle9i Database Migration:
Release 2 (9.2) for details on backing up before or after running MIG.

If you are upgrading Oracle8, Release 8.0.6, the backup must be taken now, before
starting up Oracle9i, R2.
Migration and Upgrade Considerations 18-23

Oracle for OS/390 Migration and Upgrade
The backup should be of the entire database including control files, online log files,
and data files. The backup can be taken with a fast physical data mover such as
IBM’s DF/DSS. If you use DF/DSS, refer to the following example JCL:

//BACKUP EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=*
//DUMPDS DD DSN=ORACLE.ORA1BK.FULL,
// DISP=(NEW,CATLG,DELETE,)
// UNIT=3480,
// VOL=(,,,99,SER=(vol001,vol002,vol003....)),
// LABEL=(1,SL,EXPDT=98000)
//SYSIN DD *
DUMP DATASET(INCLUDE(ORACLE.ORA1.**)) -
OUTDD(DUMPDS)
/*

This example assumes that all of the Oracle7 database files begin
with"ORACLE.ORA1".

Step 4: Oracle7 Migration Steps (Oracle7 Migration Only)

Do this major step only if migrating from Oracle7 to Oracle9i, R2. Otherwise, skip
ahead to "Step 5: Prepare To Start the New Oracle Release".

The Oracle migrate (MIG) utility from the new release is run against your database
to extract data from your control files and write it to a file called a "convert" file
which is read later when starting up the new Oracle release. Refer to Appendix D
of Oracle9i Database Migration: Release 2 (9.2) for more information on the MIG utility
and its parameters. Here we cover only the OS/390-specific considerations in
running MIG.

Step 4.1: Change Oracle7 Control File(s) to VSAM LDS

If your Oracle7 control file(s) are VSAM ESDS clusters, you must change them to
VSAM Linear Data Set (LDS) clusters before running the MIG utility. You can
determine the cluster type of your control files by doing an IDCAMS LISTCAT ALL
on them. If NONINDEXED appears in the data component ATTRIBUTES section of
the catalog listing, the cluster is an ESDS and must be changed to an LDS. (The
access method MIG uses to read the control files requires this.)

The change to LDS is an ICF catalog update operation done with IDCAMS; it does
not move or modify any of the data in the control file. This operation cannot be
18-24 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle for OS/390 Migration and Upgrade
reversed--you can’t ALTER a cluster back to an ESDS--but having them be LDS does
not affect your ability to fallback to MPM.

Replace the names in the following example with the correct name(s) of your
control file(s).

//AMS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 ALTER ORACLE.ORA1.CONTROL1 TYPE(LINEAR)
 ALTER ORACLE.ORA1.CONTROL2 TYPE(LINEAR)
/*

Step 4.2: Preallocate the Convert File

The convert file is a VSAM LDS that will be written by the MIG utility. You can
preallocate it with an IDCAMS DEFINE as illustrated here or you can use JCL
allocation in the MIG job itself. Size requirements for the convert file are difficult to
estimate; making it at least twice the size of your control file and including a
secondary allocation quantity are recommended. The file can be deleted after
migration is complete.

This example is designed to be re-run: it deletes any existing convert file before
doing the DEFINE. Choose a data set name for the convert file that meets your
installation’s naming requirements and replace ’volser’ with a suitable DASD
volume serial, or replace the VOLUMES parameter with SMS parameters as
appropriate for your installation.

//AMS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (ORACLE.ORA1.CNVFILE)
 SET MAXCC=0
 DEFINE CLUSTER(LINEAR -
 NAME(ORACLE.ORA1.CNVFILE) -
 VOLUMES(volser) -
 TRACKS(100 10) -
 SHR(3 3))
/*
Migration and Upgrade Considerations 18-25

Oracle for OS/390 Migration and Upgrade
Step 4.3: Prepare Control File(s)

Migration from Oracle7 to Oracle9i, R2 replaces your control files: when you first
run the new release, an ALTER DATABASE CONVERT statement causes the
convert file to be read and new control file data to be written. These will be new
files--it is not possible to reuse (overwrite) your Oracle7 control files. The control
files used by Oracle9i, R2 are substantially larger (for an equivalent database) than
those used by Oracle7. You can reuse the same data set names for your control files
if you delete or rename your Oracle7 control files prior to starting up the new
release.

There is no option to preallocate the new control files in a migration; the server
creates them with a dynamic call to the IBM IDCAMS utility. This means the server
ORA$FPS file parameters for the DBCT (control file) group are critical for a
successful migration.

Make sure that either unit and volume serial or SMS classes are supplied for the
DBCT group so that allocation of the control files will succeed. Refer to Chapter 4,
"Defining OS/390 Data Sets for the Oracle Database" for details on ORA$FPS
parameters.

The name(s) of your control files are specified using the CONTROL_FILES init.ora
parameter. Make sure the init.ora parameters for the new release contain the data
set name(s) you want to use. If you were using "/DD/" notation for these in
Oracle7 you must change to data set names in the new release. The old (MPM) data
set name syntax is accepted for compatibility, but Oracle recommends using the
new LE-style syntax as in the following example:

CONTROL_FILES = "//ORACLE.ORA1.CONTROL1","//ORACLE.ORA1.CONTROL2"

If you are using conventional IBM-compatible DASD devices, where a given
volume serial equates to a single real device, Oracle recommends using at least two
control files and placing them on separate devices and, if possible, separate channel
and control unit paths. This separation can be difficult or impossible to arrange
when the server is generating the IDCAMS DEFINE CLUSTER commands. If your
control files end up on the same device, you can move one of them to another
volume after the migration using IDCAMS EXPORT/IMPORT or REPRO. You
must shut down the Oracle instance to do this.

Step 4.4: Prepare JCL for the MIG Utility

Refer to Appendix D of Oracle9i Database Migration: Release 2 (9.2) for general
documentation on the Oracle MIG utility. There are several aspects of the MIG
utility that are unique to OS/390, and those are covered here.
18-26 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle for OS/390 Migration and Upgrade
The MIG utility comes from the new Oracle release (the one to which you are
migrating) but it connects to your Oracle7 instance. Because the OSDI
cross-memory protocol is not compatible with MPM, MIG must use Oracle Net
TCP/IP to connect to the MPM instance. This means your Oracle7 instance must be
able to accept a TCP/IP connection. Both the Oracle7 instance and the TNS
subsystem it uses must be running, and the MPMTNS subtask initialized, when you
run the MIG job. Because Oracle9i, R2 clients do not use the network service for
outbound connections, the OSDI network service is not required when you run
MIG.

In the MIG utility JCL, supply a TNSNAMES file containing an address entry for
your Oracle7 instance. The entry will have a distinct TCP/IP port number since
that is how MPM/TNS distinguished target servers. The port number is that which
is specified in the MPMTNS parameter file in the MPM Oracle7 instance. You will
need to supply an environment variable, TWO_TASK, with the name of the
TNSNAMES entry when you run MIG.

The MIG utility also requires the password for Oracle userid SYS be supplied via
environment variable SYSPASSW. This, and the TWO_TASK environment variable
are both supplied via the ORA$ENV DD statement.

Other required DD statements for the MIG utility are:

ORA$LIB - specifies the MESG data set from Oracle9i, R2

INITORA - specifies your Oracle7 init.ora file parameters; this is the default unless
overridden with the MIG PFILE parameter

MIGRATE - specifies the MIGRATE SQL script from the new release (normally this
is the MIGRATE member of the .SQL PDS)

CNVFILE - specifies the convert file to be written

SYSIN - can be empty or DUMMY

In addition to the above, you must include with the MIG utility all Oracle database
file DD statements that you are currently using with your Oracle7 instance. This
includes any control file(s) specified in init.ora with "/DD/" prefixes and any
Oracle log and tablespace files that were added to the server using "/DD/"
notation. Refer to the JCL used by your MPM Oracle7 instance to see what database
file DD statements are supplied. These can be copied verbatim into the MIG job
JCL. If all of your control, log, and tablespace files were specified to your MPM
Migration and Upgrade Considerations 18-27

Oracle for OS/390 Migration and Upgrade
Oracle7 database using data set names instead of DD names, no additional DD
statements are required by MIG.

In our example MIG JCL, we have assumed that two control files and three log files
(and no tablespace files) are known to the Oracle7 server as "/DD/" files and that
the current password for Oracle user SYS is CHANGE_ON_INSTALL.

//MIG EXEC PGM=MIG,REGION=0M,
// PARM=’DBNAME=ORA1 MULTIPLIER=60 SPOOL=DD:SPOOL’
//STEPLIB DD DISP=SHR,DSN=ORACLE.V920.CMDLOAD
// DD DISP=SHR,DSN=SYS1.SCEERUN IBM LE Runtime
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V920.MESG
//INITORA DD DISP=SHR,DSN=ORAN.ORAV.PARMLIB(INITORA1)
//MIGRATE DD DISP=SHR,DSN=ORACLE.V920.SQL(MIGRATE)
//CNVFILE DD DISP=OLD,DSN=ORACLE.ORA1.CNVFILE
//SPOOL DD SYSOUT=*
//*** The following were copied from the Oracle7 (MPM) instance JCL:
//CONTROL1 DD DISP=SHR,DSN=ORACLE.ORA1.CONTROL1
//CONTROL2 DD DISP=SHR,DSN=ORACLE.ORA1.CONTROL2
//LOG1 DD DISP=SHR,DSN=ORACLE.ORA1.LOG1
//LOG2 DD DISP=SHR,DSN=ORACLE.ORA1.LOG2
//LOG3 DD DISP=SHR,DSN=ORACLE.ORA1.LOG3
//*** End of DDs from Oracle7 instance JCL.
//SYSIN DD DUMMY
//TNSNAMES DD *
ORA7MPM1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=TCP) (HOST=localhost) (PORT=1568)))
/*
//ORA$ENV DD *
TWO_TASK=ORA7MPM1
SYSPASSW="CHANGE_ON_INSTALL"
/*

Note: Only the Oracle7 control files are actually opened and
accessed by the MIG utility. The DD statements for Oracle log and
tablespace files are used to determine the underlying data set
names, which are required by the new Oracle instance.
18-28 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle for OS/390 Migration and Upgrade
Step 4.5: Prepare Your Oracle7 Database for the MIG Utility

The OS/390 version of MIG operates differently from that of other Oracle platforms:
it does not start up or shut down the Oracle7 database instance. Those operations
are done separately on OS/390.

Start up your Oracle7 instance using STARTUP RESTRICT to ensure that no normal
user sessions can be started. Ensure that the required TNS subsystem and
MPMTNS task are initialized so that MIG can make a TCP/IP connection to the
instance. Perform checks of various database components as discussed in Oracle9i
Database Migration: Release 2 (9.2). If you want, you can run MIG with
’CHECK_ONLY=true’ to check for sufficient space in your SYSTEM tablespace.

If you take any actions at this point to change the Oracle7 database in preparation
for migration, such as enlarging the SYSTEM tablespace or cleaning up pending
transactions found in DBA_2PC_PENDING, you must perform a clean
SHUTDOWN (NORMAL or IMMEDIATE) and another STARTUP RESTRICT of the
Oracle7 instance before running MIG.

Step 4.6: Run the MIG Utility

Run the MIG job with JCL as discussed in "Step 4.4: Prepare JCL for the MIG
Utility". The utility does not take long to run, even with large databases. Examine
the SPOOL output from the utility carefully for error messages. If there are
problems you must correct them, shut down the Oracle7 instance cleanly, start it
back up with STARTUP RESTRICT, and rerun MIG before proceeding to the next
step.

Step 4.7: Shut Down Oracle7

Bring down your Oracle7 instance and MPM address space with SHUTDOWN
NORMAL or IMMEDIATE. From this point you must not re-open the database
with Oracle7 before bringing up Oracle9i, R2. If you do start up Oracle7 with this
database you must go back and rerun the MIG utility, creating a new convert file,
before trying to bring up Oracle9i, R2.

Step 4.8: Back Up the Database

If you opted not to back up the database in "Step 3: Back Up the Database" (before
running MIG), you must do it now.
Migration and Upgrade Considerations 18-29

Oracle for OS/390 Migration and Upgrade
Step 4.9: Make the Convert File Available to the New Release

Modify the JCL procedure you created for the database service in "Step 1: Configure
OSDI Database Service" to include a CNVFILE DD statement that specifies the
convert file written by MIG. It should look exactly the same as the DD statement
included with the MIG utility, e.g.

//CNVFILE DD DISP=SHR,DSN=ORACLE.ORA1.CNVFILE

This DD will be used only during the migration startup of the new release and
should be removed from the procedure afterward.

Step 5: Prepare To Start the New Oracle Release

At this point you are about to do a STARTUP of the new release of Oracle. If your
old release was an MPM/TNS release, you configured the OSDI subsystem and
database service in"Step 1: Configure OSDI Database Service" and all of the things it
needs (JCL procedure, parameters, etc.) are ready. You will start the database
service for the first time in the next step.

If your old release was an OSDI release and the associated database service is still
active, stop it with an OSDI STOP command or an OS/390 STOP (P) command.
After the service terminates, you must modify the service to use the new release
code. There are two ways to do this:

1. Modify the existing JCL procedure for the service to specify the new release
library in STEPLIB.

2. Create a new JCL procedure for the service with a different name from the old
procedure, and use the OSDI ALTER SERVICE command to switch the service
to the new procedure. If you take this approach, make sure that the new
procedure will be assigned the correct OS/390 userid when started. If in doubt,
talk to your system security administrator.

It also is possible to define a new OSDI service (specifying a new JCL procedure)
and use this to bring up the new release. However, the new service can’t have the
same SID as the old (assuming both are on the same OS/390 system) because SIDs
must be unique. In most cases you will want the new release to run using the same
SID as the old.

Make sure that your init.ora parameter file for the new release is ready. If you are
upgrading from Oracle8i, Release 8.1.7 or Oracle9i, make sure you have specified
the COMPATIBLE parameter and replaced any "/DD/" CONTROL_FILES values
with control file data set names. If you are migrating from Oracle7, make sure that
your CONTROL_FILES parameter specifies the new data set names for your
18-30 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle for OS/390 Migration and Upgrade
Oracle9i, R2 control files. Refer to the section"RDBMS Parameter Considerations"
on page 18-12.

Step 6: Start the New Oracle Release

First, start the OSDI database service with an OSDI START command. Make sure
the service initializes successfully, signified by message MIR0002I in the system log.

Next, do an Oracle STARTUP using SQL*Plus from the new release. You can do this
using a batch job, from TSO, or from USS. Our examples use batch jobs and identify
the target instance with an ORA@sid DD statement. With OSDI, this DD supplies
an OSDI SID rather than an MPM subsystem name. However you choose to run
SQL*Plus, if you have configured OSDI security features the associated OS/390
userid must have the required authorizations: it must be authorized to bind to the
database service and it must be able to CONNECT using AS SYSDBA.

Specify RESTRICT on the STARTUP command, if desired, to prevent normal client
access to the database while you are completing the migration or upgrade.

Other details of this startup depend on whether you are migrating from Oracle7 or
upgrading a later release. In the migration case, the STARTUP must specify
NOMOUNT and is followed by two ALTER DATABASE statements that cause the
convert file to be read and processed, populating the new control files and
completing the migration:

//PLUS EXEC PGM=SQLPLUS,REGION=0M,PARM=’/nolog’
//STEPLIB DD DISP=SHR,DSN=ORACLE.V920.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V920.MESG
//INITORA DD DISP=SHR,DSN=ORACLE.V920.PARMLIB(INITORA1)
//ORA@ORA1 DD DUMMY <-- OSDI SID is ’ORA1’
//SYSIN DD *
CONNECT / AS SYSDBA
STARTUP PFILE=’//DD:INITORA’ RESTRICT NOMOUNT
ALTER DATABASE CONVERT;
ALTER DATABASE OPEN RESETLOGS MIGRATE;
/*

In the upgrade case, use STARTUP with the MIGRATE option, which mounts and
opens the database:

//PLUS EXEC PGM=SQLPLUS,REGION=0M,PARM=’/nolog’
//STEPLIB DD DISP=SHR,DSN=ORACLE.V920.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V920.MESG
//INITORA DD DISP=SHR,DSN=ORACLE.V920.PARMLIB(INITORA1)
Migration and Upgrade Considerations 18-31

Oracle for OS/390 Migration and Upgrade
//ORA@ORA1 DD DUMMY <-- OSDI SID is ’ORA1’
//SYSIN DD *
CONNECT / AS SYSDBA
STARTUP PFILE=’//DD:INITORA’ RESTRICT MIGRATE
/*

In either case, check the output from SQL*Plus to make sure that the STARTUP (and
ALTER statements, if migrating) ran successfully. Normally no messages are issued
to the system log during these operations, even if there are errors. If there are error
indications in the SQL*Plus output, it may be helpful to examine the instance alert
log. Unless you supplied a SYSPRINT DD statement in the database service JCL
procedure, the alert log is a SYSOUT data set that can be browsed with a tool like
TSO SDSF.

Errors during STARTUP or ALTER DATABASE must be diagnosed and corrected
before proceeding.

Step 7: Run Upgrade Scripts

Whether you are migrating from Oracle7 or upgrading a later release of Oracle, you
now need to run SQL scripts to upgrade the Oracle dictionary structures to the new
release. The scripts are provided in the .SQL data set installed with the new release;
which one you run depends on the Oracle release you are migrating or upgrading
from. Refer to Oracle9i Database Migration: Release 2 (9.2) to determine which
script(s) you must run.

Our example is JCL for a batch SQL*Plus job that executes the upgrade script to
complete a migration from Oracle7. This job uses the OS/390 FNA feature
provided with most Oracle tools and utilities to allow the various SQL scripts and
sub-scripts to be read as members of a PDS, which is how they are installed. In the
Oracle7 migration case, although you are migrating from Oracle7, Release 7.3.3.6,
the script named U0703040 is run. (There is no U0703030 script.) If you are
upgrading from a later Oracle release, specify the exact script(s) for your old release
as discussed in the Migration manual--do not run the U0703040 script. In all cases,
the release-specific upgrade script is followed by the CMPDBMIG script as shown
below.

//PLUS EXEC PGM=SQLPLUS,REGION=0M,PARM=’/nolog’
//STEPLIB DD DISP=SHR,DSN=ORACLE.V920.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V920.MESG
//SQL DD DISP=SHR,DSN=ORACLE.V920.SQL
//ORA@ORA1 DD DUMMY <-- OSDI SID is ’ORA1’
//ORA$FNA DD *
18-32 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle for OS/390 Migration and Upgrade
 FSA (FTYPE(SQL) FNAME(’//DD:SQL(+)’))
 FSA (FTYPE(PLB) FNAME(’//DD:SQL(+)’))
/*
//SYSIN DD *
CONNECT / AS SYSDBA
@U0703040
@CMPDBMIG
/*

Examine the SQL*Plus output from these scripts and the Oracle instance alert log
for significant error indications. Certain DROP statements in the scripts may
produce "object not found" errors which are not considered significant. Other
errors, particularly ORA-0060x (internal) errors, must be resolved before
proceeding.

Step 8: Shut Down and Restart the Instance

This is required at this point to perform internal housekeeping activities. On
conclusion of the STARTUP, your database is migrated or upgraded and is usable.
Do this STARTUP without RESTRICT, if desired, to enable normal client access.

If you migrated from Oracle7, you can edit the database service JCL procedure to
remove the CNVFILE DD statement. The convert file data set will remain allocated
to the service address space, however, until you stop and restart the service.

Our example is a SQL*Plus batch job:

//PLUS EXEC PGM=SQLPLUS,REGION=0M,PARM=’/nolog’
//STEPLIB DD DISP=SHR,DSN=ORACLE.V920.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V920.MESG
//INITORA DD DISP=SHR,DSN=ORACLE.V920.PARMLIB(INITORA1)
//ORA@ORA1 DD DUMMY <-- OSDI SID is ’ORA1’
//SYSIN DD *
CONNECT / AS SYSDBA
SHUTDOWN IMMEDIATE
STARTUP PFILE=’//DD:INITORA’
/*

Step 9: Recompile Database Procedures

Some number of stored procedures in the database will have been invalidated
during migration or upgrade due to changes in underlying database objects.
Although these will recompile dynamically as needed, Oracle recommends forcing
Migration and Upgrade Considerations 18-33

Oracle for OS/390 Migration and Upgrade
the recompiles now. This involves running a supplied script and using FNA, as in
the dictionary upgrade step:

//PLUS EXEC PGM=SQLPLUS,REGION=0M,PARM=’/nolog’
//STEPLIB DD DISP=SHR,DSN=ORACLE.V920.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V920.MESG
//SQL DD DISP=SHR,DSN=ORACLE.V920.SQL
//ORA@ORA1 DD DUMMY <-- OSDI SID is ’ORA1’
//ORA$FNA DD *
 FSA (FTYPE(SQL) FNAME(’//DD:SQL(+)’))
 FSA (FTYPE(PLB) FNAME(’//DD:SQL(+)’))
/*
//SYSIN DD *
CONNECT / AS SYSDBA
@UTLRP
/*

For additional information on this script refer to Oracle9i Database Migration: Release
2 (9.2).

Step 10: Run CFUTIL To Modify Control Files

Do this step only if you upgraded from an Oracle8 or Oracle8i MPM/TNS
implementation to OSDI. This step changes the syntax of all file names stored in the
control files from MPM "/DSN/" to OSDI LE-style. (If you migrated from Oracle7,
this change was made for you by the MIG utility.) Although the database will run
without this change, it must be done to enable certain file integrity checks in the
server. Refer to "CFUTIL Parameter Syntax for Control Files" on page 18-37 for
details.

Archive Logs and Recovery
This discussion pertains only to upgrades of Oracle8, Release 8.0 or the MPM/TNS
implementation of Oracle8i to OSDI. If you encounter a database recovery situation
under OSDI and you did not take a complete database backup during the upgrade,
then you may have archive logs created under MPM that must be processed under
OSDI. OSDI requires archive logs to be VSAM LDS data sets. For that reason, the
DSORG=PS archive logs that were created under MPM must be converted in order

Note: You must shut down the Oracle instance before running
CFUTIL. You can start it back up immediately afterward.
18-34 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

CFUTIL (Convert File Utility) Reference
to be usable. The conversion is done using the CFUTIL program documented in
section "CFUTIL (Convert File Utility) Reference" on page 18-35. Each archive log
that is called for during recovery must be converted before being specified to Oracle
database server.

Fallback and Downgrade Considerations
Problems in OSDI or in Oracle9i, R2 might force you to return to the MPM/Oracle
release that you were running. If that release was Oracle7, Release 7.3.3.6 or Oracle8,
Release 8.0.6, you must restore the backup of the database that was taken during
migration or upgrade. If your old database was Oracle8i, Release 8.1.7.3, then you
can fall back to that older release without restoring the database, provided you have
used the COMPATIBLE database parameter to prevent writing new data structures
into your database.

To fall back, first shut down the Oracle9i, R2 instance (if possible) and stop the OSDI
service, waiting for all service address spaces to terminate. When this is complete, if
you are falling back to the MPM implementation of Oracle8i, run CFUTIL to convert
database file names in the control file back to their MPM form. For more
information, refer to "CFUTIL (Convert File Utility) Reference" on page 18-35.
When CFUTIL has completed converting your control file, or files, to MPM format,
you can start the MPM address space and warmstart the instance. Use STARTUP
RESTRICT, because the database is not yet ready to use.

After starting the old release, you must run downgrade scripts to return Oracle
dictionary objects to their older state. Refer to Oracle9i Database Migration: Release 2
(9.2) for information on the sequence of scripts to run when downgrading.

If you have created archive logs or have added tablespace datafiles or additional
online log files to your database while running under OSDI, then a patch to your
MPM/Oracle kernel is required in order for those files to be usable under MPM.
Contact Oracle Support Services if you need this patch.

CFUTIL (Convert File Utility) Reference
OSDI requires that certain files be in a different format from MPM. When
converting an existing MPM-based Oracle database server to an OSDI database
server, or during fallback from an database server to an MPM-based Oracle
database server, CFUTIL is needed to convert files to the corresponding format.

One of the functions of the CFUTIL program is to convert database file names (that
are stored in Oracle8 MPM-based control files) to the form used by OSDI. This step
Migration and Upgrade Considerations 18-35

CFUTIL (Convert File Utility) Reference
is not required when migrating an Oracle7 instance to this release of OSDI database
server because control files are created and formatted during the migration step.
This utility can also convert OSDI-format control files back to MPM-format if
circumstances require you to fall back to the MPM implementation. Conversion is
"in-place" in either direction. If you want to preserve a copy of a control file before
conversion, you can use IDCAMS EXPORT or other system utilities such as DFDSS
to do so. The conversion is relatively non-invasive and easily reversed, so such
backups are usually unnecessary.

Although Oracle9i under OSDI is capable of running with unconverted
MPM-format control files, the presence of old-format file names in the control file
creates an integrity exposure because the Oracle database server may fail to
recognize a second attempt to add a file that is already part of the database. Oracle
recommends that you convert your control files.

CFUTIL can only process VSAM linear data set (LDS) clusters. If your control file(s)
are VSAM ESDS clusters you must change them to LDS before running CFUTIL.
This is done using the OS/390 IDCAMS utility ALTER command or by issuing
ALTER directly from TSO. The ALTER command does not move or change data in
the affected files; it only changes the associated ICF catalog entry. Once a cluster is
altered from ESDS to LDS, it cannot be altered back. If you want to preserve the
ESDS form of your control files, you must back them up with a facility that also
backs up the catalog entry, such as IDCAMS EXPORT. This is not necessary,
however, for fallback to Oracle7.

To convert an ESDS control file to LDS form, log on to TSO and issue the ALTER
command specifying the cluster name and TYPE(LINEAR). You can also execute
the IDCAMS utility in batch, as shown in the following example:

//MIGLDS JOB (0000,OR),’ORACLE INSTALL’
//AMS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 ALTER ORA3B.ORAV70A.CONTROL1 TYPE(LINEAR)
 ALTER ORA3B.ORAV70A.CONTROL2 TYPE(LINEAR)
/*
//

Note: In a fallback situation (from OSDI back to MPM), Oracle8
under MPM is not capable of running with OSDI-format control
files. Reverse conversion is mandatory during fallback.
18-36 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

CFUTIL (Convert File Utility) Reference
Run CFUTIL against your MPM-format control files after a successful normal
shutdown of the Oracle (MPM) system and before you attempt a warm start of
Oracle9i for OS/390. If your instance uses multiple copies of the control file, then
you must convert all copies. The control files must first be converted to VSAM
Linear Data Sets, as discussed above. After the files are converted, a warm start can
be performed under OSDI using the converted control files. If possible, the same
procedure (in other words, a normal shutdown followed by the CFUTIL run)
should be used when moving from OSDI back to MPM. If the circumstances that
cause you to fall back also prevent a normal shutdown under OSDI, then stop the
associated service and make sure that all of its address spaces have terminated
before attempting the conversion.

CFUTIL runs in three environments:

1. OS/390 Unix System Services (USS, formerly called OpenEdition)

2. TSO (using CALL)

3. Batch job

When CFUTIL is invoked as a command under USS, command parameters are
specified on the command line immediately after the command name. When
CFUTIL is invoked using TSO CALL, parameters are specified inside a pair of
apostrophes as the second positional parameter of CALL. When CFUTIL is run as a
batch job, parameters are specified in the PARM field of the EXEC statement. In all
cases, the parameter syntax is the same.

CFUTIL Parameter Syntax for Control Files
 CVTFOROSDI | CVTFORMPM
 control-file1 [control-file2 [... control-filen]]

where control-file1/2/n specifies the data set name, or names, of control
files to convert.

CVTFOROSDI specifies conversion of control files from MPM format to OSDI.

CVTFORMPM specifies conversion of control files from OSDI format to MPM.
Migration and Upgrade Considerations 18-37

CFUTIL (Convert File Utility) Reference
Under USS, the number of control files that can be listed is unlimited. With TSO
CALL and batch, the conversion type and data set names are specified using an
OS/390 PARM and are therefore limited to 100 characters total, including the type
keyword and the data set names. This limits the total number of data set names to
whatever will fit in the 100 characters after the type.

The letter case of the command and data set names is not significant. All data set
names are converted to uppercase characters before being used.

If the utility fails or is canceled while it is running, then it can safely be rerun until it
completes successfully. Any partial changes made in earlier attempts are accepted,
and the utility runs from that point to completion. The utility can even be run
again, and if the control files are already in the correct format, then no changes will
be made.

Examples

USS:
cfutil cvtforosdi oracle.orax.control1 oracle.orax.control2

TSO CALL:
CALL ’ORAN.ORAV.CMDLOAD(CFUTIL)’ -
 ’CVTFOROSDI ORACLE.ORAX.CONTROL1 ORACLE.ORAX.CONTROL2’

Notes: Before running CFUTIL, you must convert the input
control files to VSAM linear data set (LDS) files. Refer to the
example under "CFUTIL (Convert File Utility) Reference" on
page 18-35 for further information on converting to VSAM LDS
files.

To fall back to MPM using CVTFORMPM, you must be running
MPM/Oracle, Release 8.1.7.3 or higher.

If a warmstart is done with OSDI and the COMPATIBLE parameter
is set higher than 8.1.7.3, CVTFORMPM cannot be used.

The OS/390 userid in effect for the USS, TSO, or batch environment
must have read and write access to the control file data sets that are
to be updated.
18-38 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

CFUTIL (Convert File Utility) Reference
Batch:
//CFUEXEC EXEC PGM=CFUTIL,
// PARM=’CVTFOROSDI ORACLE.ORAX.CONTROL1 ORACLE.ORAX.CONTROL2’
//STEPLIB DD DISP=SHR,DSN=ORAN.ORAV.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORAN.ORAV.MESG
//SYSPRINT DD SYSOUT=* STDOUT OUTPUT
//SYSOUT DD SYSOUT=* STDERR OUTPUT

The following example shows a long, continued EXEC parameter with record
position indicators:

----5---10---15---20---25---30---35---40---45---50---55---60---65---70--
//CFUEXEC EXEC PGM=CFUTIL,PARM=’CVTFOROSDI ORACLE.ORAX.CONTROL1 ORACLE.*
// ORAX.CONTROL2’
----5---10---15---20---25---30---35---40---45---50---55---60---65---70--

CFUTIL for Archive Log Files
Another usage of CFUTIL is to convert archived logs that are generated under
MPM-based Oracle database server to the VSAM LDS format required by OSDI
database server before they can be accessed in a recovery situation. This is an
unlikely situation, but the utility is provided for the situation as a precaution. The
syntax is as follows:

UFUTIL CVTARCLOG <source_dsn> <target_dsn>

The source_dsn is an MPM-style physical sequential archive log, and the
target_dsn is a pre-allocated VSAM LDS.

Note: Because the PARM= field for this utility can easily be longer
than a line, you may need to split the parameter (up to
100 characters) across two or more lines. To do this, start the
PARM= on the first line with the opening apostrophe followed by
as much as will fit through record position 71. In position 72, put
any non-blank character. On the records that follow, put "//" in
positions one and two followed by 13 blanks, starting the
continuation in position 16.
Migration and Upgrade Considerations 18-39

CFUTIL (Convert File Utility) Reference
18-40 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OSDI Subsystem Command Re
A

OSDI Subsystem Command Reference

OSDI provides a set of system commands for defining and controlling instances of
Oracle products. This appendix is the primary reference for all OSDI commands.

The topics in this appendix include:

■ OSDI Command Reference on page A-2

■ Command Types and Processing on page A-2

■ System Symbols in Commands on page A-2

■ Definition Commands on page A-3

■ Structures on page A-3

■ Service Group Definition Commands on page A-4

■ Service Definition Commands on page A-6

■ Operating Commands on page A-11

■ Available Commands on page A-11

■ Commands on page A-12

■ OSDI Command Keyword Abbreviations on page A-15
ference A-1

OSDI Command Reference
OSDI Command Reference
OSDI provides a set of system commands for defining and controlling instances of
Oracle products. This appendix is the primary reference for all OSDI commands.

Command Types and Processing
Commands are broadly divided into two groups: definition and operating.

1. Definition commands are used to create and manipulate data structures that
describe service groups and services. These commands commonly appear in
the subsystem configuration file.

2. Operating commands are used to manage execution of services.

Three mechanisms exist for issuing OSDI commands:

1. Subsystem configuration file - processed during subsystem initialization.

2. OS/390 system operator command interfaces-system consoles, TSO SDSF,
SYS1.PARMLIB (COMMNDxx), Netview, and others.

3. OSDI program interface - used internally by Oracle products.

When an OSDI command is issued using an OS/390 system operator command
interface, the target subsystem is specified by using the command prefix associated
with the subsystem. When the program interface is used to issue an OSDI
command, the target is identified by its subsystem name rather than a command
prefix. Commands in the configuration file always apply to the subsystem (service
group) being initialized, and they must omit the prefix.

Commands generally result in synchronous response messages ranging from simple
acknowledgment to multiline displays. Responses to commands that are issued via
system operator facilities normally are directed to the issuing console. Various
operating commands can result in subsequent, asynchronous messages. These
messages are not necessarily directed to the console or session that issued the
original command.

System Symbols in Commands
In order to meet the requirement that the particulars of a service (that runs on
multiple systems in a sysplex) can be tailored by system, OS/390 system symbols
(alphanumeric names prefixed with the ampersand character, "&") can be used in
the specification of certain OSDI command parameters. These command
A-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Structures
parameters resolve to system-specific or IPL-specific values set by OS/390 or by the
installation. If a command parameter can include system symbols, this capability is
noted in the parameter description.

Definition Commands
Definition commands are used to create, modify, and display the data structures of
the service group. An initial set of commands in the configuration file directs the
building of these structures during subsystem initialization. Subsequent definition
commands can be used to add new service definitions, modify existing definitions,
and so forth. The overall data structure persists for the life of the IPL.

The definition commands operate only on data structures; they do not directly affect
the operation of services.

Three definition commands are supported:

■ DEFINE - Create a logical structure.

■ ALTER - Modify the definition of an existing logical structure.

■ SHOW - Display contents of an existing logical structure.

Structures
The definition commands operate on the following structures:

■ SERVICEGROUP - The primary structure of the subsystem.

■ SERVICE - A structure representing an instance of an Oracle product.

The various parts of these structures are generally referred to as attributes.
Definition commands use keywords to identify attributes being set or modified.

Note: SHOW deals with definition data only and is distinct from
the operating command, DISPLAY. Refer to "SHOW" on page A-5,
"SHOW" on page A-11, and "DISPLAY" on page A-13.
OSDI Subsystem Command Reference A-3

Service Group Definition Commands
Service Group Definition Commands

DEFINE

DEFINE SERVICEGROUP must be the first command issued to a newly-initialized
subsystem; normally it appears in the configuration file just after the bootstrap
(INIT) record. DEFINE SERVICEGROUP must be processed successfully in order
for any other OSDI commands or functions to be usable.

The command structure for defining a service group is shown in the following
example:

DEFINE SERVICEGROUP
 [SSID(string)]
 [DESCRIPTION(string)]
 [MODE(LOCAL | SYSPLEX | *SYS)]
 [SYSTEMS(sysname [sysname...] | *ALL)]

Define Parameters

SSID Specifies the 1-character to 4-character OS/390 subsystem
name associated with the service group. If coded, then it must
match the subsystem identifier specified in the IEFSSNxx
parmlib member or the SETSSI operator command. This
parameter defaults to the correct value. It is therefore coded
only to confirm that the correct configuration file is in use.
String cannot contain system symbols.

DESCRIPTION Specifies an arbitrary text string of up to 64 characters that
appears in certain displays associated with the service group.
This can be used to supply installation-specific identification
for the service group. The default value is ’Service
Group ssn’ where ssn is the subsystem name. String
can contain system symbols but should not contain
non-printable characters or control characters.

MODE This parameter is not yet supported.

SYSTEMS This parameter is not yet supported.
A-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Service Group Definition Commands
ALTER

ALTER SERVICEGROUP is used to modify attributes of a service group. It can be
included in the configuration file and it can be issued after initialization. Not all
attributes can be altered. The subsystem ID, for example, is constant for the life of
the IPL.

The command structure for altering a service group is shown in the following
example:

ALTER SERVICEGROUP
 [DESCRIPTION(string)]
 [MODE(LOCAL | SYSPLEX)]
 [SYSTEMS(sysname [sysname...] | *ALL)]

Alter Parameters

SHOW

SHOW SERVICEGROUP is used to display the current definition of the service
group. It can be included in the configuration file and it can be issued after
initialization. The command for displaying a service group definition is shown in
the following example:

SHOW SERVICEGROUP
 [LONG]

Show Parameters

DESCRIPTION Specifies an arbitrary text string of up to 64 characters that
appears in certain displays associated with the service group.
This can be used to supply installation-specific identification
for the service group. String can contain system symbols
but should not contain non-printable or control characters.

MODE This parameter is not yet supported.

SYSTEMS This parameter is not yet supported.

LONG Specifies that the name, type, and description of each service
in the service group be included in the display.
OSDI Subsystem Command Reference A-5

Service Definition Commands
Service Definition Commands

DEFINE

DEFINE SERVICE is used to create a structure for executing an installed Oracle
product. It can be included in the configuration file and it can be issued after
initialization. Once a service is defined, it can be started, stopped, etc. using
operating commands.

The command structure for defining a service is shown in the following example:

DEFINE SERVICE
 name
 TYPE(string)
 PROC(string)
 [DESCRIPTION(string)]
 [PARM(string)]
 [MAXAS(number)]
 [SID(string)]
 [JOBNAME(string)]
 [JOBACCT(string)]
 [MODE(SYSPLEX | LOCAL)]
 [SYSTEMS(sysname [sysname...] | *SVG)]

Define Parameters

name Specifies the name of the service. The name is used in other
commands that operate on the service or its definition and by
program functions that interact with the service. It must be
1 character to 8 characters long, must consist of upper case
alphabetic, numeric, and/or national characters, and must
begin with an alphabetic character. It must be unique within
the service group. Name cannot contain system symbols.

Note: Unless you specify JOBNAME, name is used as the
job identifier when the service is started. In this case, name
must not be the same as any subsystem name in your system.
A-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Service Definition Commands
TYPE Specifies the Oracle product being configured. String is a
1-character to 4-character alphabetic and/or numeric
identifier that designates an installed Oracle for OS/390
product managed under this architecture. Current supported
values are ORA (Oracle database) and NET (Oracle Net).
String cannot contain system symbols.

PROC Specifies the member name in a system JCL procedure library
used to start an address space for the service. Usually this is a
procedure that is created during installation of the associated
Oracle for OS/390 product. String cannot contain system
symbols.

DESCRIPTION Specifies an arbitrary text string of up to 64 characters that
appears in certain displays associated with the service. This
can be used to supply installation-specific identification for
the service. The default value is ’Service svc Type
type’, where svc is the service name and type is the type.
String can contain system symbols but should not contain
non-printable or control characters.

PARM Specifies a parameter string passed to the service when an
address space is started. String can be from 0 character to
64 characters. If it contains characters other than alphabetic,
numeric, and national characters, then it must be enclosed in
single apostrophes. To indicate a zero-length (empty)
parameter, specify PARM(’’). Content requirements for this
string depend on the service type and are discussed in
Chapter 3, "Configuring a Database Service and Creating a
New Database" and Chapter 10, "Oracle Net". The default is a
null string. The value specified can contain system symbols.

MAXAS Specifies the maximum number of address spaces that can be
started for the service. This is meaningful only for a database
(TYPE(ORA)) service. If specified for any other type, then
number must be 1. For a database service, number must be
between 1 and 255 inclusive. The default for this parameter
is 1. The value cannot include system symbols.
OSDI Subsystem Command Reference A-7

Service Definition Commands
SID Specifies a unique identifier for the service that is used in
client- or application-supplied service addressing. String is
a 1-character to 8-character identifier that conforms to the
same rules as those for service names. The value supplied
must be unique within the OS/390 image: it cannot duplicate
the SID of any other service in this or any other service group.
This parameter defaults to the service name. If you accept the
default, it means that the service name must be unique within
the OS/390 image.

Note: If you migrate an MPM-based database to OSDI and
are supporting pre-OSDI local client applications, you
probably want SID to match the subsystem name you were
using with MPM.

JOBNAME Specifies an OS/390 jobname to use when starting address
spaces for the service. String is either a 1-character to
8-character identifier that conforms to OS/390 jobname
requirements, or it is a 1-character to 5-character identifier
followed by an asterisk. The asterisk form can be used with
multiple address space services to provide unique jobnames;
it is replaced with a 3-digit address space counter (001, 002,
and so on) as each address space is started. The jobname
should conform to any rules or requirements specific to your
installation. This parameter has no default. If you omit it,
service address spaces are started without a jobname but with
the service name as the address space identifier. System
symbols cannot be used in this parameter.

JOBACCT Specifies an installation-specific string containing job
accounting fields. String can be from 1 character to
64 characters. If it contains characters other than alphabetic,
numeric, and national characters, then it must be enclosed in
single apostrophes. Use this parameter if your installation
requires job accounting data to be included with started tasks
(STCs). If this parameter is omitted or specified as a null
string (a pair of adjacent apostrophes), then no job accounting
data is supplied when service address spaces are started.
String can include system symbols.

MODE This parameter is not yet supported.
A-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Service Definition Commands
Refer to "Examples" on page 2-6.

ALTER

ALTER SERVICE is used to modify attributes of a defined service. It can be
included in the configuration file and it can be issued after initialization. The name,
type, maximum address spaces, and SID of a service cannot be altered.

OSDI does not prohibit altering the definition of a running service. This enables
some useful capabilities but it may also be harmful if misused. For example,
changing the JCL procedure of a running multiple address space service would
have unpredictable consequences when additional auxiliary address spaces are
started.

The command structure for altering a service is shown in the following example:

ALTER SERVICE
 name
 [DESCRIPTION(string)]
 [PROC(string)]
 [PARM(string)]
 [MAXAS(number)]
 [JOBNAME(string)]
 [JOBACCT(string)]
 [MODE(SYSPLEX | LOCAL)]
 [SYSTEMS(sysname [sysname...] | *SVG)]

Alter Parameters

SYSTEMS This parameter is not yet supported.

name Specifies the name of the service to be altered. It must be the
name of an existing service in the service group. Name cannot
contain system symbols.

Note: The name of a service cannot be altered.

DESCRIPTION Specifies an arbitrary text string of up to 64 characters that
appears in certain displays associated with the service. This
can be used to supply installation-specific identification for
the service. String can contain system symbols but should
not contain non-printable or control characters.
OSDI Subsystem Command Reference A-9

Service Definition Commands
PROC Specifies the member name in a system procedure library
used to start an address space for the service. Usually this is a
procedure that is created during installation of the associated
Oracle for OS/390 product. String cannot contain system
symbols.

Note: Altering PROC while a multiple address space or
multiple system service is running can have unpredictable
effects.

PARM Specifies a parameter string passed to the service when an
address space is started. Requirements for this string depend
on the service type and are discussed in the associated Oracle
for OS/390 product documentation. The value specified can
contain system symbols.

Note: Altering PARM while a multiple address space or
multiple system service is running can have unpredictable
effects.

MAXAS Specifies the maximum number of address spaces that can be
started for the service. This is meaningful only for a database
(TYPE(ORA)) service. MAXAS is accepted on an ALTER
SERVICE command only when the service is not active. If the
service is active, starting, or stopping, an ALTER SERVICE
command with MAXAS specified will be rejected.

JOBNAME Specifies a jobname to use when starting service address
spaces, as discussed under DEFINE SERVICE. You can nullify
(remove) a service jobname specification by coding
JOBNAME(’’). The value specified cannot contain system
symbols.

JOBACCT Specifies job accounting data to be included when service
address spaces are started, as discussed under DEFINE
SERVICE. You can nullify (remove) job accounting data by
coding JOBACCT(’’). The value specified can contain system
symbols.

MODE This parameter is not yet supported.

SYSTEMS This parameter is not yet supported.
A-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Available Commands
SHOW

The SHOW SERVICE command is used to display the current definition of a
service.

The command for displaying a service definition is shown in the following
example:

SHOW SERVICE
 name

Show Parameters

Operating Commands
Operating commands manage the execution of services. They are normally issued
via the OS/390 command interface, either automatically (for example, COMMNDxx
member of SYS1.PARMLIB) or by a real operator. They might also be issued
through the OSDI program interface by a management component such as Oracle
Enterprise Manager Agent. Operating commands are also permitted in the service
group configuration file.

Available Commands
Five operating commands are provided:

■ START - Start execution of a service.

■ DISPLAY - Display operating status of a service.

■ DRAIN - Place a service in quiescent state.

■ RESUME - Restore a service to normal operation.

■ STOP - Stop execution of a service (see note below).

All of the operating commands take a service name as the first positional parameter.
This service name must be the name of a defined service.

name Specifies the name of the service whose definition is to be
displayed. It must be the name of an existing service in the
service group. Name cannot contain system symbols.
OSDI Subsystem Command Reference A-11

Commands
Commands

START

The START command initiates execution of an address space for a specified service.
For a database service, this can be the first address space (service not previously
started) or an auxiliary address space (service previously started and initialized
successfully but not yet at its maximum address spaces). For other types of services
the service must not already be running.

The command structure for starting a service is shown in the following example:

START
 name
 [PARM(string)]

START Parameters

name Name specifies the name of the service to start. It must be a
defined service whose current state is inactive or, if active,
must not already have its maximum address spaces running.

PARM Specifies a parameter string passed to the service when an
address space is started. This overrides any PARM value
established by DEFINE or ALTER SERVICE. Requirements
for this string depend on the service type and are discussed in
Chapter 3, "Configuring a Database Service and Creating a
New Database" and Chapter 10, "Oracle Net". String can
contain system symbols.

Note: A PARM override must not be used when starting
auxiliary address spaces for a database service.
A-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Commands
DISPLAY

The DISPLAY command displays execution status information for services. OSDI
displays the current operating state of the service. If the service state is "active" or
"drained", then the command is also posted to the running service for further
processing at the service’s discretion.

The command structure for displaying a service is shown in the following example:

DISPLAY
 name
 [LONG]

DISPLAY Parameters

DRAIN

The DRAIN command places a running service in a quiescent state in which it no
longer accepts new connection (bind) requests. Existing connections or sessions are
not affected. The command is also posted to the running service for further
discretionary processing. This command has no effect when the service is not
running.

The command structure for draining a service is shown in the following example:

DRAIN
 name

DRAIN Parameters

name Specifies the name of the service to be displayed.

LONG Specifies that a more detailed display is desired. This
provides information about each active address space of the
service.

name Specifies the name of the service to be made quiescent. This
must be the name of a running service whose current state is
active.
OSDI Subsystem Command Reference A-13

Commands
RESUME

The RESUME command reverses the effect of a drain, allowing a service to begin
accepting new connection requests. The command is also posted to the running
service for further discretionary processing. This command has no effect when the
service is not running.

The command structure for resuming a service is shown in the following example:

RESUME
 name

RESUME Parameters

STOP

The STOP command requests termination of a running service. The normal mode
of stop changes the service state to stopping and posts the stop request to the
service; it is up to the service to comply, presumably after allowing current requests
to complete and performing required cleanup. A force option causes the service
address space(s) to be terminated involuntarily. The force form of stop requires that
a normal stop be issued first. This command has no effect when the service is not
running.

The command structure for stopping a service is shown in the following example:

STOP
 name
 [FORCE]

STOP Parameters

name Specifies the name of the service to be resumed. This must be
the name of a running service whose current state is drained.

name Specifies the name of the service to be stopped. This must be
the name of a running service whose current state is active,
drained, or (if the FORCE option is specified) stopping.

FORCE Specifies that an involuntary stop is requested.
A-14 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

OSDI Command Keyword Abbreviations
OSDI Command Keyword Abbreviations
The abbreviated or alternate forms that can be used for OSDI command verbs and
parameter keywords are as follows:

ALTER ALT
DEFINE DEF
DESCRIPTION DESC
DISPLAY DIS, D
DRAIN DR
FORCE (none)
JOBACCT ACCT
JOBNAME JOB
LONG L
MAXAS MXA
MODE MD
PARM P
PROCEDURE PROC
RESUME RES
SERVICE SRV, SVC
SERVICEGROUP SVG, SG
SHOW SH
SID IDENTIFIER, ID
SSID (none)
START ST, S
STOP P
SYSTEMS SYS
TYPE TY
OSDI Subsystem Command Reference A-15

OSDI Command Keyword Abbreviations
A-16 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Operating System Dependent V
B

Operating System Dependent Variables

This appendix contains the OS/390-specific allowed, default, and maximum values
for Oracle initialization and storage parameters. For a complete discussion of these
parameters, refer to the Oracle9i Database Reference. To find out which parameters
described in Oracle9i Database Reference are supported or not supported by Oracle9i
for OS/390, refer to the Oracle9i Enterprise Edition Installation Guide for OS/390.

The topics in this appendix include:

■ Initialization Parameters with OS/390-Specific Defaults or Limits on page B-2

■ Database Limits on page B-2

■ SQL Language Parameters on page B-3

■ Storage Parameters on page B-3
ariables B-1

Initialization Parameters with OS/390-Specific Defaults or Limits
Initialization Parameters with OS/390-Specific Defaults or
Limits

You can separate the keywords with commas or blanks.

Database Limits
Except for control files, Oracle database files (including log, tablespace, and other
files) are limited to 4 gigabytes each in size. Control files are limited to 20,000 logical
blocks of size DB_BLOCK_SIZE.

A maximum of 255 redo log files can be specified for a database.

A database can contain up to 65, 534 datafiles over all tablespaces. A single
tablespace is limited to 4094 datafiles.

Table B–1 Initialization Parameters

Parameter Default Maximum Minimum

COMMIT_POINT_STRENGTH 1 N/A N/A

DB_BLOCK_SIZE 4096 32768 4096

DB_FILE_MULTIBLOCK_READ_COUNT Derived 256 1

LOG_BUFFER 16384 Limited by
address space
size

N/A

NLS_LANGUAGE AMERICAN N/A N/A

NLS_TERRITORY AMERICA N/A N/A

PROCESSES Derived Limited by
address space
size

N/A

SORT_AREA_SIZE 65536 Limited by
available
session memory

N/A

TRANSACTIONS_PER_ROLLBACK_SEGMENT 5 34 N/A

Note: N/A means that the platform-specific value is the same as the generic value.
B-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

SQL Language Parameters
SQL Language Parameters

CREATE CONTROLFILE

CREATE DATABASE

Table B–2 CREATE CONTROL FILE Parameters

Parameter Default Maximum Minimum

MAXDATAFILES 32 65534* N/A

MAXINSTANCES 1 15 N/A

MAXLOGFILES 32 256 N/A

MAXLOGMEMBERS 2 5 N/A

MAXLOGHISTORY 100 65534 N/A

*Specifying MAXDATAFILES larger than 40,000 requires using a database default
blocksize (DB_BLOCK_SIZE INITORA parameter value) of 8K or larger.

Note: N/A means that the platform-specific value is the same as the generic value.

Table B–3 CREATE DATABASE Parameters

Parameter Default Maximum Minimum

DATAFILE Refer to "Oracle
Database Files"
on page 4-2.

N/A 16K or one VSAM
control area,
whichever is larger

LOGFILE Refer to "Oracle
Database Files"
on page 4-2.

N/A N/A

MAXDATAFILES 32 65534* N/A

MAXINSTANCES 1 15 N/A

MAXLOGFILES 32 256 2

MAXLOGMEMBERS 2 5 N/A

MAXLOGHISTORY N/A N/A N/A

*Specifying MAXDATAFILES larger than 40,000 requires using a database default
blocksize (DB_BLOCK_SIZE INITORA parameter value) of 8K or larger.

Note: N/A means that the platform-specific value is the same as the generic value.
Operating System Dependent Variables B-3

Storage Parameters
Storage Parameters
The maximum values for DATAFILE, MINEXTENTS, NEXT, OPTIMAL, and
PCTINCREASE are all limited by file size, which is limited by the size of the disk
device.
B-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Oracle9i for OS/390 System S
C

Oracle9i for OS/390 System Symbols

This appendix documents Oracle9i for OS/390 system symbols for use in
generating unique filenames.
ymbols C-1

System Symbols
System Symbols
Oracle9i for OS/390 system symbols can be incorporated into SQL scripts and
parameter files to guarantee that unique filenames are generated with values
specific to the server instance or session.

Symbol Description

&ORAPREFD A high level (leftmost) dsname qualifier for use in database
filenames. It is derived from the database region parameter
DSN_PREFIX_DB or ORAPREFD For more information,
refer to the description on page 3-10.

&ORASESST A distinct session identifier for use in data set names. It is
based on the OSDI pid (process id) in hexadecimal format.
However, if the hexadecimal representation of the pid begins
with 0-9, it is converted to G-P, respectively.

&ORASRVN The OSDI service name without trailing blanks.
C-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

National Language
D

National Language Support

This appendix documents the National Language Support (NLS) information
specific to Oracle9i for OS/390. Information about the product-specific operation of
language-specific features is provided in the Oracle9i Database Globalization Support
Guide.

The topics in this appendix include:

■ Overview on page D-2

■ Supported Languages on page D-2

■ Overview of Character Set Support on page D-4

■ Server-Side NLS on page D-4

■ Default Character Set Changed on page D-6

■ Client-Side NLS on page D-8

■ Message Availability on page D-10

■ Customized Character Sets (LXINST) on page D-10

■ NLS Calendar Utility (LXEGEN) on page D-12
Support D-1

Overview
Overview
Oracle’s globalization support enables you to store, process, and retrieve data in
native languages. National Language Support (NLS) is a subset of globalization
support. It enables Oracle applications to interact with users in their native
language, using their specific cultural conventions for displaying data.

The Oracle NLS architecture is data-driven, enabling support for specific languages
and character encoding schemes to be added without requiring any changes in
source code.

Supported Languages
Oracle9i for OS/390 currently supports 24 languages. This table lists the languages
that are supported and the default territories for each.

Language Default Territory

American America

Arabic United Arab Emirates

Bengali Bangladesh

Brazilian Portuguese Brazil

Bulgarian Bulgaria

Canadian French Canada

Catalan Catalonia

Croatian Croatia

Czech Czechoslovakia

Danish Denmark

Dutch Netherlands

Egyptian Egypt

English United Kingdom

Estonian Estonia

Finnish Finland

French France

German Germany
D-2 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Supported Languages
German DIN Germany

Greek Greece

Hebrew Israel

Hungarian Hungary

Icelandic Iceland

Indonesian Indonesia

Italian Italy

Japanese Japan

Korean Korea

Latin American Spanish America

Latvian Latvia

Lithuanian Lithuania

Malay Malaysia

Mexican Spanish Mexico

Norwegian Norway

Polish Poland

Portuguese Portugal

Romanian Romania

Russian CIS

Simplified Chinese China

Slovak Czechoslovakia

Slovenian Slovenia

Spanish Spain

Swedish Sweden

Thai Thailand

Traditional Chinese Taiwan

Turkish Turkey

Ukranian Ukraine

Language Default Territory
National Language Support D-3

Overview of Character Set Support
Overview of Character Set Support
Oracle automatically converts these types of data as they transfer between client
and server, if required:

1. CHAR, VARCHAR, and LONG database columns

2. SQL and PL/SQL statements

3. host variables containing character data

Both the client and the server have associated character sets. The client declares its
character set before connecting to the server through the NLS_LANG environment
variable. On OS/390, this parameter is in the ORA$ENV DD statement.

If NLS_LANG is not specified, the default character set is assigned.

The character set for the server is declared when a database is created in Oracle and
it cannot be changed once established. The default database character set is
assigned if one is not explicitly declared.

When the client character set matches the server character set, character data is sent
between client and server without any conversion. If the two character sets differ,
all character data is converted from one character set to the other as it is transferred.
It is important to be aware that all data contained in a database, whether in
user-specified tables or in Oracle-specified data dictionary tables, is stored in the
database character set.

Server-Side NLS
The character set in which the data is stored in the Oracle database is specified in
the CHARACTER SET clause of the CREATE DATABASE statement. Refer to the
Oracle9i Database Administrator’s Guide for more information about the CREATE
DATABASE statement.

When creating a database, the character set you choose depends on the language(s)
to be supported and the character set(s) of the clients connecting to the server.
Many languages can be supported by the default OS/390 character set of
WE8EBCDIC1047, but many others cannot.

Vietnamese Vietnam

Language Default Territory
D-4 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Server-Side NLS
The following chart allows you to select an appropriate value for the CHARACTER
SET clause of the CREATE DATABASE statement, based on the language to be
supported and on the character set of the OS/390 client. If you need to support
languages that are not on this chart, please contact Oracle Support Services.

Language
OS/390 Client
Character Set

OS/390 Server Character
Set

Arabic AR8EBCDICX AR8EBCDIC420S

Baltic (1) BLT8EBCDIC1112 BLT8EBCDIC1112S

Cyrillic (1) CL8EBCDIC1025 CL8EBCDIC1025R*

Eastern European (1) EE8EBCDIC870 EE8EBCDIC870S

Greek EL8EBCDIC875 EL8EBCDIC875R*

Hebrew IW8EBCDIC424 IW8EBCDIC424S

Icelandic WE8EBCDIC871 WE8EBCDIC871S

Japanese JA16DBCS JA16DBCS (2)

Korean KO16DBCS KO16DBCS (2)

Simplified Chinese ZHS16DBCS ZHS16DBCS (2)

Thai TH8TISEBCDIC TH8TISEBCDICS

Traditional Chinese ZHT16DBCS ZHT16DBCS (2)

Turkish TR8EBCDIC1026 TR8EBCDIC1026S

Western European (a) (3) WE8EBCDIC1047

*OS/390 server character sets CL8EBCDIC1025S (Cyrillic) and
EL8EBCDIC875S (Greek) have some errors. Oracle Corporation
recommends converting from those character sets to CL8EBCDIC1025R and
EL8EBCDIC875R, respectively.
National Language Support D-5

Default Character Set Changed
Default Character Set Changed
With Oracle7 for MVS Version 7.3.2.3.50, the default character set changed from
WE8EBCDIC37C to WE8EBCDIC1047. The change and potential impact are
discussed here.

Reason for Change
Oracle Corporation changed the default character set from WE8EBCDIC37C to
WE8EBCDIC1047 to conform to prior changes in IBM standard character sets.

Two characters are changed in the transition from WE8EBCDIC37C to
WE8EBCDIC1047:

■ the circumflex, which is sometimes called caret or hat

■ the logical not, which is sometimes called step

This chart highlights the change:

Potential Impact

Databases Created by Oracle7 -- No Impact

A database created by releases of Oracle7 for OS/390 prior to Version 7.3.2.3.50 has
its character set assigned to WE8EBCDIC37C, assuming the default character set is
used to create the database. Even though the data is stored in WE8EBCDIC37C and
the Oracle kernel normally requires data to be stored in WE8EBCDIC1047, the
change to the character set is such that the newer kernel can successfully process an
existing Oracle database. However, clients accessing these databases might be
affected.

Databases Created by Oracle Version 6 and Migrated to Oracle
Version 7 -- Minimal Impact

A database created by Oracle Version 6 uses character set WE8EBCDIC500C. This
character set is slightly different from both WE8EBCDIC37C and WE8EBCDIC1047.

Circumflex Logical Not

WE8EBCDIC37C X’B0’ X’5F’

WE8EBCDIC1047 X’5F’ X’B0’
D-6 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Default Character Set Changed
When an Oracle Version 6 database migrates to Oracle7 using the migrate utility, the
database character set is forced to become WE8EBCDIC37C. If a database view was
created by Oracle Version 6 and was migrated to Oracle7, it can contain the obsolete
WE8EBCDIC500C form of a special delimiter character known as a newline.

The presence of this character can cause unwanted results in certain circumstances.
An attempt to import the view might cause an ORA-911 error if all of these are true:

1. The view was created in Oracle Version 6.

2. The view has never been exported and imported under an Oracle7 release prior
to Release 7.3.

The work-around for the ORA-911 problem is to recreate the views. If the views are
part of a larger export file (such as a user export), then only the views are affected.
All other data within the export file is properly imported.

OS/390 Clients Using Default NLS_LANG Value with Database
Character Set of WE8EBCDIC37C -- Moderate Impact

Any OS/390 client (whether precompiler, Oracle Call Interface (OCI), or SQL*Plus
application) that accepts the default NLS_LANG value can be impacted in one of
these ways:

■ If database columns contain one or both of the two changed characters (that is,
circumflex and the logical "not"), the change of default client character set
means that an attempt to insert a circumflex actually causes a logical "not" to be
inserted. Similarly, existing logical "nots" in the database are retrieved and
converted to circumflexes. If this occurs, specifying the database character set
WE8EBCDIC37C in NLS_LANG forces both client and server to declare the
same character set and thereby eliminate all conversion. Doing this reverts to
Oracle Version 7 behavior prior to release 7.3.2.3.50.

■ If neither of the two reassigned characters is used in an application, then proper
application function can be achieved by letting the client default. However,
adopting the default causes the client to specify WE8EBCDIC1047 and causes
the server to specify WE8EBCDIC37C, which triggers character conversion
where it was not used previously. In applications that move a considerable
amount of character data to or from the database, CPU use might increase.
Specifying the database character set WE8EBCDIC37C in NLS_LANG forces
both client and server to declare the same character set. This eliminates all
conversion overhead.

■ If one of the previous two factors requires addition of NLS_LANG, the entire
NLS_LANG parameter (language, territory, and character_set)
National Language Support D-7

Client-Side NLS
might have to be specified. If language and territory are omitted from
NLS_LANG, then they default to American and America, respectively, even if
the server specified a language or territory default in its initialization
parameters. If American and America are suitable defaults, then
NLS_LANG=.WE8EBCDIC37C can be used.

Client-Side NLS
The client character set is determined by the data that is sent to the Oracle server.
This is typically determined by the type of terminal that is used by the client. See
your system administrator for more information about the character set used by
your terminal.

Supported OS/390 Client Character Sets
The default client character set has changed from WE8EBCDIC37C to
WE8EBCDIC1047, but most existing Oracle7 for OS/390 databases are
WE8EBCDIC37C. When the client and server character sets differ, the CPU
overhead increases. If you set NLS_LANG so that the client and server character
sets match, the CPU overhead decreases.

The following character sets are supported for OS/390 clients:

Character Set Support

AR8EBCDICX XBASIC Code Page 420 Arabic

BLT8EBCDIC1112 EBCDIC Code Page 1112 Baltic/Multilingual

CL8EBCDIC1025 EBCDIC Code Page 1025 Cyrillic/Multilingual

D8EBCDIC273 EBCDIC Code Page 273 Austrian /German

DK8EBCDIC277 EBCDIC Code Page 277 Danish

EE8EBCDIC870 EBCDIC Code Page 870 East European

EL8EBCDIC875 EBCDIC Code Page 875 Greek

F8EBCDIC297 EBCDIC Code Page 297 French

I8EBCDIC280 EBCDIC Code Page 280 Italian

IW8EBCDIC424 EBCDIC Code Page 424 Hebrew

JA16DBCS EBCDIC DBCS Japanese
D-8 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Client-Side NLS
Setting the OS/390 Client NLS Parameters
Use the following language parameters and environment variables to specify the
OS/390 client NLS language, territory, and character set for the following
components and tools:

KO16DBCS EBCDIC DBCS Korean

S8EBCDIC278 EBCDIC Code Page 278 Swedish

TH8TISEBCDIC EBCDIC Code Page 838 Thai

TR8EBCDIC1026 EBCDIC Code Page ISO 8859 Turkish

WE8EBCDIC37 EBCDIC Code Page 37 West European

WE8EBCDIC37C EBCDIC Code Page 37 West European with
extensions

WE8EBCDIC284 EBCDIC Code Page 284 Spanish (Spain)

WE8EBCDIC285 EBCDIC Code Page 285 English, UK

WE8EBCDIC500 EBCDIC Code Page 500 West European

WE8EBCDIC871 EBCDIC Code Page 871 Icelandic

WE8EBCDIC1047 EBCDIC Code Page 1047 Latin 1/Open Systems

ZHS16DBCS EBCDIC DBCS Simplified Chinese

ZHT16DBCS EBCDIC DBCS Traditional Chinese

Component Parameter or Environment Variable

Export/Import NLS_LANG

Oracle Access Manager for CICS ENAME

Oracle Access Manager for IMS TM NLS_LANG

Server Manager NLS_LANG

SQL*Loader NLS_LANG

SQL*Plus NLS_LANG

Oracle Reports ORACLE.LANGUAGE and
NLS_LANG

Character Set Support
National Language Support D-9

Message Availability
ENAME Parameter

For Oracle Access Manager for CICS, specify the following thread table parameters:

TYPE=ENV,ENAME=(NLS_LANG=language_territory.charset)

This thread table specification is used for Oracle Access Manager for CICS messages
and messages from Oracle tools executing under Oracle Access Manager for CICS.

NLS_LANG Environment Variable

To specify the character set with the NLS_LANG environment variable, use the
following syntax:

NLS_LANG = "language_territory.charset"

Refer to the Oracle9i Enterprise Edition User’s Guide for OS/390 for more information
about environment variables.

ORACLE.LANGUAGE Environment Variable

To specify the character set with the ORACLE.LANGUAGE environment variable,
use the following syntax:

ORACLE.LANGUAGE = "language_territory.charset"

Message Availability
Availability of the supported language message modules depends on which
modules are installed in the Oracle9i for OS/390 product set. If you do not have
message modules for a particular language set installed, then specifying that
language with a language parameter does not display messages in the requested
language.

Refer to panel ORLANG in the Oracle9i Enterprise Edition Installation Guide for
OS/390 for a list of currently supported language message modules.

Customized Character Sets (LXINST)
This section provides OS/390-specific information required to customize your
character sets as described in Appendix B, "Customizing Locale Data" in Oracle9i
Database Globalization Support Guide. Customize a character set only if it is
absolutely necessary.
D-10 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Customized Character Sets (LXINST)
The process for customizing a character set is accomplished primarily on OS/390
Unix System Services. You will need to be familiar with OS/390 UNIX in general,
as well as the material in Appendix B of the Oracle9i Enterprise Edition User’s Guide
for OS/390 describing the particular environment variables that are required by
Oracle products in the OS/390 UNIX environment.

The OS/390 implementation of Oracle products uses the same file names and
directory structure that generic Oracle product documentation uses, so as you
review the "Customizing Locale Data" Appendix in the Oracle9i Database
Globalization Support Guide and plan for customizing your character sets. Log on to
your OS/390 UNIX environment and verify that you can locate the directories and
files described in the book. If you have any difficulty locating these files, ensure
that the ORACLE_HOME environment value is properly set and that the OS/390
UNIX products are properly installed. If the difficulty persists, contact Oracle
Support Services for assistance.

To customize your character set, follow the steps outlined in "Example of Character
Set Customization" in the Oracle9i Database Globalization Support Guide. When you
are directed to create text files by using "vi",

vi /tmp/lx0boot.nlt

you might find it more convenient to use the oedit command under OS/390 UNIX.
You can use "vi" if you rlogin to OS/390 UNIX. Bear in mind that UNIX is case
sensitive. Command, directory, and file names must be typed exactly as they
appear.

After you complete Step 5, "Generate and install the .nlb files", you must update the
.nlb files that are used by the OS/390 UNIX utilities as they run in the OS/390
UNIX environment.

Oracle products running in the traditional OS/390 environment will not access the
.nlb files that you have just created. To make these files available to the OS/390
environment, the nlb2mvs command must be executed.
National Language Support D-11

NLS Calendar Utility (LXEGEN)
To run nlb2mvs, the following environment variables must be set or must be
allowed to default to:

■ ORACLE_HOME

nlb2mvs will convert the value of this environment variable to a form suitable for
OS/390 and will use it as the high-level qualifier(s) of several OS/390 data sets
needed by nlb2mvs. For example, if ORACLE_HOME is "/oran/orav", the
value "ORAN.ORAV" will be used as the high-level qualifier. If your naming
conventions do not follow this assumption, then specify the rest of the following
environment variables:

Oracle Corporation recommends you thoroughly test your new NLS objects before
moving them into production.

NLS Calendar Utility (LXEGEN)
The setup for running this utility is similar to that for running customized character
sets (LXINST). Refer to the previous section, "Customized Character Sets (LXINST)"
on page D-10. Whereas the LXINST utility is used to customize character sets, the
LXEGEN utility is used in a similar manner to customize calendar data.

ORACLE_NLB_PDS overrides the name of the PDS used to hold the output NLS objects.
The default is $ORACLE_HOME.OCOMMON.NLS.ADMIN.DATA

ORACLE_NLB_OBJ overrides the name of a work data set. The default is
$ORACLE_HOME.OCOMMON.NLB.OBJ

ORACLE_NLB_LIST overrides the name of a work data set. The default is
$ORACLE_HOME.OCOMMON.NLB.LIST
D-12 Oracle9i Enterprise Edition System Administration Guide Release 2 (9.2.0.1.0) for OS/390

Index
Symbols
&ORAPREFD system symbol, 3-10, 4-3, 4-4, 6-11,

6-12, C-2
&ORASESST system symbol, C-2
&ORASRVN system symbol, 4-3, 4-4, 6-11, C-2

A
abend

error reporting, 17-5
ORAP, 11-16, 11-31, 11-33
SMF records, 9-3

access
controlling access to OSDI services, 8-3
controlling access to OSDI subsystem

commands, 8-2
controlling access to system privileges, 8-4
security, 1-7
SYSOPER and SYSDBA, 8-4

accounting information, 9-1
address spaces

AS1, the first address space, 1-8
auxiliary address spaces, 1-7
cross-memory, 16-8
multiple OS/390 address spaces, 1-2
OSDI subsystem startup, 1-3
when created for Oracle products, 1-4

ALTER DATABASE RENAME statement, 6-6
ALTER SERVICE, OSDI command, A-9
ALTER SERVICEGROUP, OSDI command, A-5
ALTER SESSION SQL command, 16-26
ALTER SYSTEM command, 16-36
ALTER, OSDI command, 1-5, A-3

ALTER, SQL statement, 4-8
AM4CAUTH, CICS startup, 11-14
AM4COID, CICS startup, 11-14
AMI-0108 message, on IMS MTO console, 12-31
AMI-0113 message, connection to target Oracle

instance, 12-31
AMODE, storage requirements, 16-4
application

and active services, 1-5
and bind processing, 1-6
and managed connection bind, 1-7
client address spaces, 8-3
migrating to OSDI, A-8
normal and managed binds, 8-3

ARCH background process for backup and
recovery, 6-3

architecture, OSDI, 1-3
archive log, 4-4
ARCHIVE LOG command, 6-3
ARCHIVELOG mode

backup and recovery, 6-2
operating a database, 4-4
Oracle RDBMS Parameter Considerations, 3-18

AS1
performance, dispatching priority, 16-23
performance, parallel execution, 16-32
SYSPRINT DD statement and alert log, 3-9
the first address space, defined, 1-8

ASO
checklist

for setting up ASO encryption, 10-11
for testing, 10-12

connect client and server, 10-12
encryption, 10-11
Index-1

reset configuration parameters on server, 10-12
set parameters for client, 10-12
set parameters for server, 10-11
testing, 10-12

auditing database use, 9-12
authorization check

for command processing, 8-2
SYSOPER/SYSDBA, 1-7

AUTOEXTEND clause, 4-4
automatic initialization, setting up, 11-18

B
BACKGROUND_CORE_DUMP parameter, 3-16
BACKGROUND_DUMP_DEST parameter, 3-16
backup and recovery, database

overview, 6-2
with RMAN, 6-6
without RMAN, 6-4

backup, tablespace, 6-4
bind

authorization check, 8-3
defined, 1-6

blocksize, logical, 3-20
BPXPRMxx member, 10-7
buffer cache, adjusting for optimal

performance, 16-15

C
catalog

retention, with tape backup, 6-13
caution

SETSSI ADD, OS/390 System command, 2-6
CEDA DEFINE TRANSACTION command, 11-17
CFUTIL (convert file utility)

CVTARCLOG, 18-39
CVTFORMPM, 18-37
CVTFOROSDI, 18-37
described, 18-35
parameter syntax for control files, 18-37
VSAM LDS, 18-36

checklist
configuring Oracle Access Manager for

CICS, 11-4

configuring Oracle Access Manager for IMS
TM, 12-14

setting up ASO, 10-11
testing ASO, 10-12

CICADPX load module, 11-14
CICS

Attach installation
copying LIBCLNTS, 11-14
copying ORACICSC, 11-14
defining transactions, 11-17
generating ORACSTUB stub, 11-16
setting up automatic initialization, 11-18

defining MESG library to, 11-13
DFHRPL library, 11-13
Oracle Access Manager for CICS

MPM restrictions, 11-2
profile for managed binds, 8-4
recovery procedures, 11-23
tables, 11-17
transaction

IAP, 11-17
ORAC, 11-17

CICS SYNCPOINT
choosing, 11-32
Oracle Access Manager for CICS, 11-24

CICS syncpoint, at startup, 11-14
client

special meaning defined, 1-5
command

ALTER SYSTEM, 16-36
COMMIT, 11-23
DISPLAY SUBSYSTEM, 12-32
IDCAMS

DELETE, 8-7
nlb2mvs, ".nlb" files for LXINST, D-11
OS/390 System

CANCEL, 6-7
DISPLAY SESSION, 5-6
DUMP SESSION, 5-6
MODIFY (F), 1-8, 10-9
MODIFY (or F), 5-5
REFRESH FPS, 5-7
SETSSI ACTIVATE, 1-4
SETSSI ADD, 1-4, 2-5, 2-6
SETSSI DEACTIVATE, 1-4
Index-2

STOP (P), 1-8, 10-10
OSDI

table of command verbs, 8-2
ALTER, 1-5, A-3
ALTER SERVICE, A-9
ALTER SERVICEGROUP, A-5
DEFINE, 1-4, 2-4, A-3
DEFINE SERVICE, 2-4, 3-34, A-6
DEFINE SERVICEGROUP, 2-4, A-4
DISPLAY, 1-5, 10-10, A-13
DISPLAY LONG, 10-10
DISPLAY SESSION, 16-32
DRAIN, 10-10, A-13
keyword abbreviations, A-15
list of commands, A-11
RESUME, 10-10, A-14
SETSSI ADD, 2-6
SHOW, 2-6, A-3
SHOW SERVICE, A-11
SHOW SERVICEGROUP, A-5
START, 1-5, 1-7, 1-8, 2-4, 3-34, 10-9, A-12
STOP, 1-8, 10-10, A-14

RMAN ALLOCATE CHANNEL, 6-7
ROLLBACK, 11-23
SQL

ALTER SESSION, 16-26
START, 3-21
START SUBSYSTEM, 12-34
STARTUP MOUNT, 6-6
SYNCPOINT, 11-23

COMMIT
choosing for CICS, 11-32
command, 11-23

COMMIT_POINT_STRENGTH parameter, B-2
COMMIT/ROLLBACK

Oracle Access Manager for CICS, 11-24
COMPATIBLE parameter, 3-34
control file, 4-2
CONTROL_FILES parameter, 3-16
controlling operations

Intelligent Agent, 13-4
CREATE DATABASE statement

CONNECT command and, 3-22
supplies data set names of log files, 4-4

CREATE SQL statement, 4-8

Cross System Communication Facility (XCF), 14-5
cross-memory address spaces, 16-8
CSA storage, 16-7, 16-43
cursor close behavior, 12-10
cursor parsing, defined, 16-17
CURSOR_SHARING parameter, 16-13
CVTARCLOG option, 18-39
CVTFORMPM option, 18-37
CVTFOROSDI option, 18-37

D
Data Gatherer for OS/390, 13-1
Data Guard, Oracle9i, 6-18
data structures

ORACA, 15-2
SQLCA, 15-2
SQLDA, 15-2

database
accounting information, 9-1
auditing use, 9-12
backup and recovery, 6-1
configuring, 3-1
file extension, 4-4
file size limit, B-2
initial, 3-1
limits, B-2
links, defined for security, 8-7
migration and upgrade, 18-1
region parameters, defined, 3-10
service, OSDI architecture, 1-7
starting and stopping, 5-2

DATAFILE parameter, B-3
DB_BLOCK_SIZE parameter, 3-16, B-2
DB_CACHE_SIZE parameter, 16-14
DB_CREATE_FILE_DEST parameter, 3-17
DB_CREATE_ONLINE_LOG_DEST_n

parameter, 3-17
DB_FILE_MULTIBLOCK_READ_COUNT

parameter, B-2
DB_FILE_NAME_CONVERT parameter, 3-17
DB_nK_CACHE_SIZE parameter, 16-14
DBAL file group, 6-3
DBV (Database Verification Utility), 7-7
DCB BUFNO JCL parameter, 16-25
Index-3

DD statement
NET8LOG, 10-6
ORA$ENV, 3-6
ORA$FPS, 3-7
ORA$LIB, 3-7
ORAPASSW, 3-8
SNAPCF, 3-8
SQLBSQ, 3-8
SQLNET, 3-8
SQLNETG, 3-8
STEPLIB, 3-8, 10-6
SYSPRINT, 3-9
TNSNAMES, 3-9

default record number for SMF, 9-2
DEFINE CLUSTER commands, 4-2
DEFINE command

defining services to the subsystem, 1-4
in the subsystem parameter file, 2-4
supported definition command, A-3

DEFINE SERVICE, OSDI command, 2-4, A-6
DEFINE SERVICEGROUP, OSDI command, 2-4,

A-4
defining a service, 1-5
definition commands, A-3
DFHRPL library, 11-13
DFSMSrmm, tape management software, 6-13
DFSORT utility, performance tuning, 16-26
DISPLAY LONG, OSDI command, 10-10
DISPLAY SESSION, command, 16-32
DISPLAY SESSION, OS/390 command, 5-6
DISPLAY SUBSYSTEM command, 12-32
DISPLAY, OSDI command

defined, A-13
display the state of a service, 1-5
with CICS, 11-27
with Oracle Net service, 10-10

distributed option, considerations, 12-6
documentation

errors, 17-4
product-specific, xiv

DRAIN, OSDI command
defined, A-13
preventing network connections, 10-10

DSN_PREFIX_DB parameter, 3-10
DUMP command (MVS), 17-9

DUMP keyword, Oracle Net, 10-5
DUMP SESSION, OS/390 command, 5-6

E
ECSA storage

Oracle Access Manager for IMS TM, 12-3, 16-43
EDM (External Data Mover), 6-7
empty parameter, A-7
Enabling CICS Attach adapter, 11-17
ENCLAVE keyword, Oracle Net, 10-5

CALL option and WLM, 16-26
SESS option and WLM, 16-26

enclave SRB, 18-4
network client requests, 16-3
Oracle Net architecture, 10-2

encryption, ASO, 10-11
entry sequenced data set (ESDS) files, 18-36
error

12660, 10-11
diagnosis

categories, 17-4
investigating a potential Oracle server

error, 17-3
IEC130I, 3-7
message traffic to the console, 10-9
messages for network region JCL, 10-6
ORA-12660, 10-12
ORA-911, D-7
processing, Oracle Access Manager for IMS

TM, 12-8
reporting

abend, 17-5
documentation, 17-2, 17-4
error categories, 17-4
GTF, 17-10
incorrect output errors, 17-5
Oracle error messages, 17-5
Oracle wait state, 17-7
program loop, 17-6
required documentation, 17-2
sending tapes, 17-2
SLIP, 17-10
system dump, 17-9
system dump data sets, 17-9
Index-4

tape return, 17-2
TSO symptom dumps, 17-10
wait state, 17-7
written documentation, 17-2

ESAF, 12-2
ESQA storage, 16-9
EXEC SQL COMMIT statement, 11-23
EXEC SQL ROLLBACK statement, 11-23
Extended Pageable Link Pack Area (EPLPA), storage

requirements, 16-4
extending database files, 4-4
External Data Mover (EDM), 6-7
external routines

configuring generic listener, 10-13
generic listener support, 10-2
modifying tnsnames.ora, 3-9

External Subsystem Attachment Facility, 12-2
external subsystems

IMS, 12-32
Oracle Access Manager for IMS TM, 12-32

external table feature, Oracle, 8-7

F
failure after initial connection, 12-11
FAST_START_IO_TARGET parameter, 16-16
FAST_START_MTTR_TARGET parameter, 16-16
file

entry sequenced data set (ESDS), 18-36
linear data set (LDS), 4-2, 4-15
OSDI subsystem parameter file, 2-2
size limit, database, B-2
valid file group names for an Oracle server, 4-9

FNA, 7-2
FORCE privileges for recovery processing, 11-15
FPS

ORA$FPS DD statement, 3-7
REFRESH FPS, OS/390 command, 5-7
sidFPS PARMLIB library member, 3-33

G
generic listener

architecture, 10-13
configuration steps, 10-14

for external routines, 10-13
for shared servers, 10-13
overview, 10-2
starting, 10-17

GETHOSTBYNAME API, Oracle Net IBM TCP/IP
HPNS, 10-7

granting access for consoles and users, 8-2
GTF (OS/390 Generalized Trace Facility)

as a diagnostic tool, 17-10
GTF keyword, Oracle Net, 10-5

H
hard parse, two kinds of parse calls, 16-17
HASH_AREA_SIZE parameter, 16-7
high-level data set name qualifier, xv
hot backup, 6-4
HPNS keyword, Oracle Net, 10-5

I
IAP transaction, 11-17
IBM DFSMSdss, database backup and

recovery, 6-4
IBM Language Environment (LE) interface, 11-2,

16-7
IBM LE/370 runtime library

database region JCL, 3-8
IDCAMS DELETE command, 8-7
IDCAMS utility

creating archive logs, 6-3
for security, 8-6
with Oracle database files, 4-2

IEC130I error, 3-7
IEFSSNxx member, 2-5
IEFSSREQ macro, 1-6
IMS

commands
DISPLAY SUBSYSTEM, 12-32
START SUBSYSTEM, 12-34

connection failure, 12-34
control region, 12-4, 12-32
dependent region, 12-4, 12-33
ESAF, 12-2
external subsystems, 12-32
Index-5

integration with Oracle Access Manager for IMS
TM, 12-2

Language Interface Token (LIT), 12-4
LTERM, 12-7
Master Terminal Operator, 12-33
PROCLIB, 12-4
profile for managed binds, 8-4
recovery, 12-34
recovery considerations, 12-9
REO, 12-8
RESLIB, 12-3
SSM member, 12-4

INCLUDE files, 15-2
incorrect output errors, 17-5
INIT record

example, 2-4
in the subsystem initialization file, 2-3

INIT_ADR_SPACES parameter
configuring a database service, 3-30
database region parameters, 3-10
performance tuning, 16-8

INIT_SESSIONS parameter, 3-11
INIT_STACK_SIZE

OSDI parameter
performance tuning, 16-7, 16-10

parameter
configuring a database service, 3-30
database region parameters, 3-11

initial connection failure, 12-11
initialization parameters, 3-15, B-2

See Also init.ora parameter file
initialization routine, ORASSINI, 2-5
init.ora parameter file

configuring for shared servers, 10-14
control files and, 4-3
migration and upgrade, 18-5, 18-12
optimizing Oracle performance, 16-13

INITORA parameters
See initialization parameters

Intelligent Agent, 13-1
internal dictionary structures in SYSTEM

tablespace, 4-3
IPL

initializing subsystems automatically, 2-5
initializing the OSDI subsystem, 2-5

OSDI subsystem initialization, 1-3
reduced need, 1-3
required

after updating IEFSSNxx, 2-5
service definition persists, 1-5
starting services via the subsystem parameter

file, 2-4

J
JAVA_POOL_SIZE parameter, 16-16
JAVA_STACK_SIZE parameter, 3-11
JCL, network region, 10-5
job

ORDJA01, 3-32
ORPIJG00, 2-5
sidJB00, 3-33
sidJC00, 3-33
sidJD00, 3-34
sidJD01, 3-35
sidJE00, 3-35
sidJF00, 3-35
sidJH00, 3-35

JOBNAME parameter, 3-5
JVM, Oracle9i, 8-7

K
keyword abbreviations, OSDI command, A-15

L
Language Environment runtime library (LE)

Oracle Net, 10-7
Language Interface Token, 12-4
LDAP.ORA file, sample, 10-9
LE (IBM Language Environment interface)

CICS transaction, 11-2
Oracle address spaces, 16-7
the PROCESSES parameter, 16-17

LIBCLNTS load module
copying to CICS libraries, 11-14
LPA considerations, 16-5

limits, database, B-2
linear data set (LDS) files, 4-2, 4-15
Index-6

linklist library, initializing the subsystem, 2-5
listen operations, network service, 1-9
listener

generic, See generic listener
OSDI, See OSDI listener

listener.ora file
creating for external routines, 10-16
modifying for external routines, 10-16
modifying for shared servers, 10-17

LIT
AMILI macro, 12-15
Language Interface Token, 12-4

LOCK_SGA parameter, 3-18
log file group, 4-4
log files, redo, 4-3, B-2
LOG_ARCHIVE_ parameter, 3-18
LOG_ARCHIVE_DEST_n parameter, 3-18
LOG_ARCHIVE_START=TRUE, database backup

and recovery, 6-3
LOG_BUFFER parameter, B-2
LOG_CHECKPOINT_ INTERVAL

parameter, 16-16
LOG_FILE_NAME_CONVERT parameter, 3-17
LOGFILE parameter, B-3
logical blocksize, 3-20
logon exit

functions, 8-11
R15 return code, 8-11

LOGON_AUTH parameter, 3-11, 8-8
LPA storage, 16-7
LXEGEN, NLS calendar utility, D-12
LXINST, NLS customized character sets, D-10

M
MACRO API interface, with Oracle Net, 10-7
macro, IEFSSREQ, 1-6
MAX_DUMP_FILE_SIZE parameter, 3-19
MAX_SESSION_MEM parameter, 16-11

database region parameters, 3-12
MAX_SESSIONS parameter, 16-11, 16-16

configuring a database service, 3-30
database region parameters, 3-13

MAXAS parameter
configuring a database service, 3-30

database region parameters, 3-11
database service definition, 3-4
performance tuning, 16-8

MAXDATAFILES parameter, B-3
MAXFILEPROC parameter, 10-7
MAXINSTANCES parameter, B-3
MAXLOGFILES parameter, B-3
MAXLOGHISTORY parameter, B-3
MAXLOGMEMBERS parameter, B-3
MAXSOCKETS parameter, 10-7
Media Manager, I/O operations, 16-20
member

BPXPRMxx, 10-7
IEFSSNxx, 2-5
ORACAC, 15-2
ORACACOB, 15-2
ORACAFOR, 15-2
SQLCAC, 15-2
SQLCACOB, 15-2
SQLCAFOR, 15-2
SQLDAC, 15-2
SSP01, 2-5

MESG library, 11-13
message

AMI-0108, IMS MTO console, 12-31
AMI-0113, connection to target Oracle

instance, 12-31
IEC130I, 3-7
MIR0110W, security fault, 8-7

MIG (migrate) utility, 18-22, 18-23, 18-24, 18-26,
18-29

migration and upgrade
CFUTIL reference, 18-35
coexistence and compatibility, 18-19
from MPM/TNS to OSDI, 18-8
migration vs. upgrade, 18-22
MPM/TNS vs. OSDI, 18-3
OSDI changes, 18-7
overview, 18-2

MIR0110W message, security fault, 8-7
mode

ARCHIVELOG, 6-2
NOARCHIVELOG, 6-2

MODIFY (F), OS/390 command
Index-7

communicating with a running Oracle Net
service, 10-9

operator interaction with a running database
service, 1-8, 5-5

MPM/TNS, migrating to OSDI from, 18-8
MVS Workload Manager

See Workload Manager

N
National Language Support

calendar utility, D-12
character sets, D-4
client-side, D-8
customized character sets, D-10
default character set changed, D-6
message availability, D-10
server-side, D-4
supported languages, D-2

National Language Support (NLS), D-1
Net service

See OSDI listener
NET8LOG DD statement, 10-6
Network Information Vector (NIV)

security, 9-8
network service, OSDI architecture, 1-8
NIV

See Network Information Vector
nlb2mvs command, ".nlb" files for LXINST, D-11
NLS

character set support, D-4
client-side, D-8
data objects, ORA$LIB DD statement, 3-7
default character set changed, D-6
message availability, D-10
server-side, D-4
supported languages, D-2

NLS (National Language Support), D-1
NLS_LANG environment variable, D-4
NLS_LANGUAGE parameter, B-2
NLS_TERRITORY parameter, B-2
NOARCHIVELOG mode, 6-2
NOMOUNT option, 3-23

O
OEM Intelligent Agent and Data Gatherer for

OS/390, 13-1
Offline Database Verification Utility (DBV) on

OS/390, 7-7
OMF

See Oracle Managed Files
operating states of services, 1-5
operator initiated dumps, 17-9
option

CVTARCLOG, 18-39
CVTFORMPM, 18-37
CVTFOROSDI, 18-37

OR@INST panel, 3-28
OR@PRIM panel, 3-28
ORA$ENV DD statement, 3-6
ORA$FPS DD statement

database region JCL, 3-7
file management parameters, 4-8
REFRESH FPS, 5-7

ORA$FPS parameter file, 6-3
ORA$LIB

DD statement, database region JCL, 3-7
defined, 7-3

ORA@ENV DD statement, D-4
ORA-12660 error, 10-12
ORA-911 error, D-7
ORAC transaction, 11-17
ORACA data structure, 15-2
ORACAC member, 15-2
ORACACOB member, 15-2
ORACAFOR member, 15-2
ORACICN load module, 11-22
ORACICS load module, 11-14, 11-22
ORACICS macro, 11-18
ORACICSC load module, 11-14
Oracle Access Manager for CICS

adapter storage requirements, 16-42
applications, 11-2
AUTH parameter, 16-40
base code storage requirements, 16-42
CICS SYNCPOINT, 11-24
commands

DISPLAY, 11-27
Index-8

START, 11-31
STOP, 11-33
syntax, 11-27
usage, 11-27

COMMIT/ROLLBACK, 11-24
configuration checklist, 11-4
connected thread storage requirements, 16-43
defining MESG library to, 11-13
MPM restrictions, 11-2
multiple versions coexisting, 11-22
performance, 16-38
recovery procedures, 11-23
restarting, 11-25
shutdown with force, 11-26
SMF recording, 9-3
subtask sharing, 16-39
thread authorization, 16-40
thread pool storage requirements, 16-42
thread protection, 16-41
thread sharing, 16-39
transaction ID, 11-27

Oracle Access Manager for IMS TM
31-bit addressing, 12-3
AMIENV macro, 12-27
AMIRT macro, 12-19
AMISESS macro, 12-25
AMITRANS macro, 12-23
authentication, 12-7
configuration

AMILS, 12-3
checklist, 12-14
IMS RESLIB, 12-3
overview, 12-3
steps, 12-14

control region, 12-32
CREATE SESSION, 12-17
CSA storage, 16-43
define an MVS subsystem, 12-15
dependent region, 12-3, 12-4, 12-33
ECSA storage, 16-43
environment variables, 12-12
error processing, 12-8
ESCA storage, 12-3
External Subsystem Attachment Facility

(ESAF), 12-2

external subsystems, 12-32
failure, 12-34
FORCE ANY TRANSACTION, 12-17
IMS

connection failure, 12-34
control region, 12-3, 12-4, 12-32, 12-33
dependent region, 12-3, 12-4
DISPLAY SUBSYSTEM command, 12-32
ESAF, 12-2
integration with, 12-2
Language Interface Token (LIT), 12-4
LTERM, 12-7
Master Terminal Operator, 12-33
PROCLIB, 12-4
recovery, 12-34
recovery considerations, 12-9
REO, 12-8
RESLIB, 12-4
SSM member, 12-4

in-doubt processing, 12-34
integration with IMS, 12-2
linking stub, AMILS, 12-3
LIT, AMILI macro, 12-15
Master Terminal Operator, 12-33
object privileges

SELECT ON SYS.PENDING_
SESSIONS$, 12-17

SELECT ON SYS.PENDING_TRANS$, 12-17
parent database id, 12-34
performance, 16-43
profiles, IDLE_TIME, 12-17
recovery, 12-34
recovery considerations, 12-9

control region, 12-9
ESAF, 12-9

REO character values, 12-8
RTT, 12-4

AMIENV macro, 12-18, 12-27
AMIRT macro, 12-18, 12-19
AMISESS macro, 12-18, 12-25
AMITRANS macro, 12-18, 12-22

sample SQL statements, 12-18
security, 12-6
SELECT ON SYS.PENDING_SESSIONS$, 12-17
SELECT ON SYS.PENDING_TRANS$, 12-17
Index-9

session authentication, EXTERNAL, 12-7
SSM member, 12-4
starting and stopping, 12-33
statements

ALTER USER, 12-8
CREATE USER, 12-8
GRANT SELECT, 12-18
NO_LIMIT, 12-18

storage requirements
adapter, 16-44
base code, 16-43

system authentication password, 12-7
system privileges

CREATE SESSION, 12-17
FORCE ANY TRANSACTION, 12-17

Oracle Access Manager, products, with multiple
database connections, 1-8

Oracle Advanced Security Option
See ASO

Oracle Enterprise Manager Intelligent Agent and
Data Gatherer for OS/390, 13-1

Oracle external table feature, 8-7
Oracle listener

See Generic Listener
Oracle Managed Files (OMF), 4-2, 4-15
Oracle Net

configuring generic listener, 10-14
configuring OSDI listener, 10-4
generic listener, 10-2
Network Information Vector (NIV)

security, 9-8
OSDI listener, 10-2
overview, 10-2
starting network service, 1-8

Oracle Password Utility (ORAPWD) on
OS/390, 7-6

Oracle precompilers, recovery under Oracle Access
Manager for CICS, 11-23

Oracle Programmatic Interfaces
See Oracle Programmer

Oracle Programmer
APF authorization, 15-4
ASID considerations, 15-2
break processing, 15-3
cross memory mode, 15-4

description, 15-1
INCLUDE files, 15-2
NOSTAX keyword, 15-3
PSW protect key, 15-3
PSW state, 15-3
task considerations, 15-2
use of ATTN key, 15-3

Oracle startup request, issuing, 1-8
Oracle subsystem

accounting information, 9-1
error reporting, 17-5
resource usage, 9-1
statistics, 9-1

Oracle Support Services
documentation requirements, 17-2
sending tapes, 17-2
tape return, 17-2
working with them, 17-2

Oracle System Global Area (SGA), 16-9
Oracle unavailable situations, 12-10
Oracle user record type, 9-2
ORACLE_HOME environment variable, 3-7
ORACLE_TRACE_ parameter, 3-19
Oracle9i Data Guard, 6-18
Oracle9i JVM, 8-7
Oracle9i Real Application Clusters, 14-1
ORACSTUB stub, 11-3, 11-16, 11-22
ORAEDM program, 6-7
ORAFMT program for SMF, 9-4, 9-10
ORAFMTCL sample JCL, 9-10
ORAFMTGO sample JCL, 9-10
ORAH transaction, 11-17
ORAN.ORAV, xv
ORAP application abend, 11-16, 11-31, 11-33
ORAPASSW DD statement, 3-8
ORAPWD

defined, 7-6
utility, with ORAPASSW DD statement, 3-8

ORASSI subsystem code module, 16-5
ORASSINI initialization routine, 2-5
ORDBIP10 panel, 3-29, 3-31, 3-33
ORDBIP15 panel, 3-30
ORDBIP20 panel, 3-30
ORDBIP25 panel, 3-30
ORDBIP30 panel, 3-30
Index-10

ORDBIP35 panel, 3-31
ORDBIP40 panel, 3-31
ORDBIP50 panel, 3-32
ORDBIP90 panel, 3-32
ORDJA01 job, 3-32
ORNEWDB panel, 3-29
ORPIJG00 job, 2-5
OS_AUTHENT_PREFIX initora parameter, 11-14
OS/390

CANCEL command, 6-7
documentation, xiv

OS/390 Unix System Services (USS)
CFUTIL, 18-37
customizing a character set (LXINST), D-11
external routines, 10-13
normal application bind, 1-6
OEM Intelligent Agent and Data Gatherer, 13-2
security, 8-7
Server Manager on OS/390, 7-4
with network service, 10-7

OS/390 Workload Manager
See Workload Manager

OSDI
architecture

connections, 1-5
database service, 1-7
general description, 1-3
network service, 1-8
security, 1-6
services, 1-4
subsystem, 1-3

command
examples to define service group and

services, 2-6
keyword abbreviations, A-15
SHUTDOWN, 6-2

DEFINE SERVICE command, 3-34
listener, 10-2
MESG data set, ORA$LIB DD statement, 3-7
migration to, 18-8
performance tuning, 16-7
START command, 3-34
subsystem initialization, 1-5
subsystem is present in the OS/390 system until

the next IPL, 1-4

OSDI listener
architecture, 10-2
ASO encryption, 10-11
client-server access, 10-8
configuring, 10-4
filenames, 10-3
initialization parameters, 10-4
JCL procedure, 10-5
operating, 10-9
TCP/IP, 10-7
trace files, 10-10

P
panel

OR@INST, 3-28
OR@PRIM, 3-28
ORDBIP10, 3-29, 3-31, 3-33
ORDBIP15, 3-30
ORDBIP20, 3-30
ORDBIP25, 3-30
ORDBIP30, 3-30
ORDBIP35, 3-31
ORDBIP40, 3-31
ORDBIP50, 3-32
ORDBIP90, 3-32
ORNEWDB, 3-29

parameter
ASO, setting for server, 10-11
BACKGROUND_CORE_DUMP, 3-16
BACKGROUND_DUMP_DEST, 3-16
COMMIT_POINT_STRENGTH, B-2
COMPATIBLE, 3-34
configuration, resetting on server, 10-12
CONTROL_FILES, 3-16
CURSOR_SHARING, 16-13
database region parameter

DSN_PREFIX_DB, 3-10
INIT_ADR_SPACES, 3-10, 3-30
INIT_SESSIONS, 3-11
INIT_STACK_SIZE, 3-11, 3-30
JAVA_STACK_SIZE, 3-11
LOGON_AUTH, 3-11, 8-8
MAX_SESSION_MEM, 3-12
MAX_SESSIONS, 3-13, 3-30
Index-11

MAXAS, 3-30
REGION_MEM_RESERVE, 3-13
SERVER_LOADMOD, 3-14
SMF_STAT_RECNO, 3-14
TRACE_DSNAME, 3-14

DATAFILE, B-3
DB_BLOCK_SIZE, 3-16, B-2
DB_CACHE_SIZE, 16-14
DB_CREATE_FILE_DEST, 3-17
DB_CREATE_ONLINE_LOG_DEST_n, 3-17
DB_FILE_MULTIBLOCK_READ_COUNT, B-2
DB_FILE_NAME_CONVERT, 3-17
DB_nK_CACHE_SIZE, 16-14
DCB BUFNO JCL, 16-25
encryption, 10-11, 10-12
FAST_START_IO_TARGET, 16-16
FAST_START_MTTR_TARGET, 16-16
HASH_AREA_SIZE, 16-7
INIT_ADR_SPACES, 16-8
INIT_STACK_SIZE, 16-7, 16-10
initialization, 3-15, B-2
init.ora file, 4-3, 10-14, 16-13, 18-5
JAVA_POOL_SIZE, 16-16
JOBNAME, 3-5
LOCK_SGA, 3-18
LOG_ARCHIVE_, 3-18
LOG_ARCHIVE_DEST_n, 3-18
LOG_BUFFER, B-2
LOG_CHECKPOINT_ INTERVAL, 16-16
LOG_FILE_NAME_CONVERT, 3-17
LOGFILE, B-3
MAX_DUMP_FILE_SIZE, 3-19
MAX_SESSION_MEM, 16-11
MAX_SESSIONS, 16-11, 16-16
MAXAS

database service parameter, 3-4
performance tuning, 16-8

MAXDATAFILES, B-3
MAXFILEPROC, 10-7
MAXINSTANCES, B-3
MAXLOGFILES, B-3
MAXLOGHISTORY, B-3
MAXLOGMEMBERS, B-3
MAXSOCKETS, 10-7
NLS_LANGUAGE, B-2

NLS_TERRITORY, B-2
ORACLE_TRACE_, 3-19
OS_AUTHENT_PREFIX initora, 11-14
PARM, 3-6
PROCESS, B-2
PROCESSES, 16-16
REGION

database region JCL, 3-6
network region JCL, 10-6

REGION=0M, 16-13
REGION_MEM_RESERVE, 16-12
SESSION_CACHED_CURSORS, 16-17
SESSIONS, 16-18
setting, for client, 10-12
SGA_MAX_SIZE, 16-9
SHADOW_CORE_DUMP, 3-19
SHARED_POOL_SIZE, 16-18
SID, 1-9
SMF_STAT_RECNO parameter, 9-2
SORT_AREA_RETAINED_SIZE, 16-19
SORT_AREA_SIZE, 16-7, 16-19, 16-26, B-2
SPFILE

defined, 3-19
STARTUP statement, 3-16

SQL language, B-3
STANDBY_ARCHIVE_DEST, 3-19
storage, B-4
TRANSACTIONS, 16-20
TRANSACTIONS_PER_ROLLBACK_

SEGMENT, B-2
TYPE, 3-4
USER_DUMP_DEST, 3-20
zero-length (empty), A-7

PARM parameter, 3-6
PARM string, OSDI listener, 10-4
performance

CICS subtask sharing, 16-39
CICS thread sharing, 16-39
Oracle Access Manager for CICS

AUTH parameter, 16-40
PROTECT parameter, 16-41

PFILE
in CREATE SPFILE statement, 3-19
in STARTUP statement, 3-15

PMON process, 16-17
Index-12

PORT keyword, Oracle Net, 10-5
PROC parameter of DEFINE SERVICE, 5-2
PROCESS parameter, B-2
PROCESSES parameter, 16-16
product-specific documentation, xiv
PROFILE WTPMSG, 17-10
program loop, reporting the error, 17-6
program, ORAEDM, 6-7
programmatic interfaces

See Oracle Programmer

Q
qualifiers, data set name, xv

R
R15 return code from logon exit, 8-11
RACF

authorization control, 1-7
IBM’s OS/390 Security Server, 1-6
SAF-compliant security server, 8-3
with network service, 10-7

RACROUTE interface, 1-6
READ authorization, controlling access to

services, 8-3
Real Application Clusters, Oracle9i, 14-1
recording SMF information, 9-2
recover.bsq script, needed by RMAN, 7-4
recovery

catalog, 6-6
CICS SYNCPOINT, 11-32
COMMIT/ROLLBACK, 11-32
defined (database backup and recovery), 6-2
manual, Access Manager for CICS, 11-26

Recovery Manager (RMAN)
backup and recovery with, 6-6
backup and recovery without, 6-4
invoking, 7-4
on OS/390, 7-4

redo log files, 4-3, B-2
REFRESH FPS, OS/390 command, 5-7
region error option (REO), 12-8
REGION parameter, 3-6, 10-6
REGION=0M keyword parameter, 16-12

REGION_MEM_RESERVE parameter, 16-12
database region parameters, 3-13

REO, character values, 12-8
Resource Translation Table, 12-4
resource usage, 9-1
restart, Oracle Access Manager for CICS, 11-25
RESUME command

defined, A-14
Oracle Net, 10-10

retention policy, with tape backup, 6-13
RMAN ALLOCATE CHANNEL command, 6-7
RMODE, storage requirements, 16-4
ROLLBACK command, 11-23
RTT

macro parameters, 12-18
resource translation table, 12-4

S
SAF

access provided by RACROUTE interface, 1-6
authorization control, 1-7
controlling access privileges, 8-5
controlling access to system privileges, 8-4
SAF-compliant security server, 8-3
subsystem parameter file, 2-3

samples
Oracle Access Manager for IMS TM

SQL statements, 12-18
SBT_TAPE, RMAN channel type NOT supported on

OS/390, 6-7
script,TCL, 13-5
second-level data set name qualifier, xv
security

Oracle Access Manager for IMS TM, 12-6
OSDI architecture, 1-6

SELECT privileges for recovery processing, 11-15
sending tapes to Oracle, 17-2
Server Manager, 7-4
Server Manager (SVRMGRL), 7-2
SERVER_LOADMOD parameter, 3-14
service

controlling access to OSDI services, 8-3
definition commands, A-6

where to place them, 1-5
Index-13

OSDI service defined, 1-4
service group

defined, 1-3
definition commands, A-4

service name, for a database, 3-3
service class

See Workload Manager
service name, OSDI database, 1-5
SESSION_CACHED_CURSORS parameter, 16-17
SESSIONS parameter, 16-18
SETSSI ACTIVATE command, 1-4
SETSSI ADD command, 1-4, 2-5, 2-6
SETSSI DEACTIVATE command, 1-4
SGA (System Global Area), Oracle, 16-9
SGA_MAX_SIZE parameter, 16-9
SHADOW_CORE_DUMP parameter, 3-19
shared servers

configuring for, 3-22
configuring generic listener, 10-13
generic listener support, 10-2
modifying tnsnames.ora, 3-9

SHARED_POOL_SIZE parameter, 16-18
SHOW SERVICE, OSDI command, A-11
SHOW SERVICEGROUP, OSDI command, A-5
SHOW, OSDI command, 2-6, A-3
SHUTDOWN ABORT command, not

recommended, 5-5
SHUTDOWN command, 6-2
shutdown, Oracle Access Manager for CICS, 11-26
SID

defined
database service name, 3-3

parameter
specifying a target OS/390 server, 1-9

sidJB00 job, 3-33
sidJC00 job, 3-33
sidJD00 job, 3-34
sidJD01 job, 3-35
sidJE00 job, 3-35
sidJF00 job, 3-35
sidJH00 job, 3-35
SITEINFO file, 10-7
SLIP, 17-10
SMF

abnormal terminations, 9-3

activating, 9-2
default record number, 9-2
interpreting records, 9-4
ORAFMT program, 9-4, 9-10, 9-11
record, with NIV, 9-8
recording

starting, 9-2, 9-12
stopping, 9-3

records, 9-1, 9-4
sample formatting program, 9-10
types of users, 9-2
user-defined data section, 9-10
when records are written, 9-3
with Oracle Access Manager for CICS, 9-3

SMF_STAT_RECNO parameter
database region parameters, 3-14

SMF_STAT_RECNO, OSDI service parameter, 9-2
SMFPRMxx member, 9-2
SNAPCF DD statement, 3-8
soft parse, two kinds of parse calls, 16-17
SORT_AREA_RETAINED_SIZE parameter, 16-19
SORT_AREA_SIZE parameter, 16-7, 16-19, 16-26,

B-2
SPFILE parameter

defined, 3-19
STARTUP statement, 3-16

SQA storage, 16-7, 16-8, 16-9, 16-10, 16-20
SQL ALTER TABLESPACE statement, 6-4
SQL parameters, B-3
SQL statement

ALTER, 4-8
CREATE, 4-8
EXEC SQL COMMIT, 11-23
EXEC SQL ROLLBACK, 11-23

SQLBSQ DD statement, 3-8
SQLCA data structure, 15-2
SQLCAC member, 15-2
SQLCACOB member, 15-2
SQLCAFOR member, 15-2
SQLDA data structure, 15-2
SQLDAC member, 15-2
SQLNET DD statement, 3-8
SQLNETLG DD statement, 3-8
SQLPLUS module, LPA considerations, 16-6
SRB (service request block)
Index-14

enhanced client workload management, 1-3
Oracle Net architecture, 10-2
preemptable enclave SRB, 16-3, 18-4
preemptable SRB, 16-3

SSP01 member, 2-5
standby database, 6-18
STANDBY_ARCHIVE_DEST parameter, 3-19
START

command, 3-21, 11-31
OSDI command

database service, 1-7
defined, A-12
in the subsystem parameter file, 2-4
manually starting auxiliary address

spaces, 1-7
Oracle Net network service, 1-8
running a service, 1-5
starting Oracle Net service, 10-9

SUBSYSTEM command, 12-34
started task (STC) address space, 1-7
starting and stopping the database, 5-2
STARTUP command, 3-15, 3-22
STARTUP FORCE command, not

recommended, 5-5
STARTUP MOUNT command, 6-6
statement

ALTER USER, 12-8
CREATE USER, 12-8
GRANT SELECT, 12-18
NO_LIMIT, 12-18
SQL, 12-18

ALTER, 4-8
CREATE, 4-8

static-fixed memory allocations, defined, 16-6
STEPLIB DD statement

database region JCL, 3-8
defined, 7-3
Oracle Net region JCL, 10-6

STOP
command, 11-33
OSDI command, 1-8, 10-10

defined, A-14
STOP (P) OS/390 System command, 1-8, 10-10
storage

measurements, xvi

parameters, B-4
stored PL/SQL procedures in SYSTEM

tablespace, 4-3
subsystem, OSDI

address space, 1-3
functions, 1-5
initialization file example, 2-6
initialization, OSDI, 1-5
OSDI architecture, 1-3
parameter file, 2-2
primary role, 1-4
security, 1-6
subsystem interface (SSI), 1-4

SYNCPOINT command, 11-23
SYNCSORT utility, performance tuning, 16-26
SYS1.DUMP data set, 17-9
SYS1.SCEERUN, LE/370 runtime library name, 3-8
SYSDBA, privileges, 8-4
SYSERR, defined, 7-3
SYSIN, defined, 7-3
SYSOPER, privileges, 8-4
SYSOPER/SYSDBA authorization check, 1-7
SYSOUT, defined, 7-3
SYSPRINT DD statement, 3-9
System Authorization Facility (SAF)

authorization control, 1-7
controlling access privileges, 8-5
controlling access to system privileges, 8-4
SAF-compliant security server, 8-3

system crashes, SMF, 9-3
system dump

data sets, 17-9
failure documentation, 17-9

System Global Area (SGA), Oracle, 16-9
system log, example, 2-6
system privileges

SYSDBA, 8-4
SYSOPER, 8-4

system symbols
&ORAPREFD, C-2
&ORASESST, C-2
&ORASRVN, C-2

system symbols, Oracle9i for OS/390, C-2
SYSTEM tablespace, 6-5
Index-15

T
tablespace point-in-time recovery, 6-16
tablespaces

backing up, 6-4
enlarging, 4-4

tapes
format, 17-2
sending to Oracle, 17-2

target instance, defined, for database backup and
recovery, 6-6

TCB, multiple executions under, 15-3
TCL script, 13-5
thread pool, storage requirements, 16-42
thread table, Oracle Access Manager for CICS, 11-2
thread, storage requirements, 16-43
TNSNAMES DD statement, 3-9
tnsnames.ora file

modifying for external routines, 10-15
modifying for shared servers, 10-15

Tool Command Language (TCL), 13-5
TRACE_DSNAME parameter, 3-14
TRANSACTIONS parameter, 16-20
TRANSACTIONS_PER_ROLLBACK_SEGMENT

parameter, B-2
TRCASST, Oracle Net utility program, 10-10
TSO

profile for application binds, 8-3
symptom dumps, 17-10

TYPE parameter, 3-4

U
user stack, 16-10
USER_DUMP_DEST parameter, 3-20
USING clause, with TNSNAMES DD

statement, 3-9
USS (OS/390 Unix System Services)

CFUTIL, 18-37
customizing a character set (LXINST), D-11
external routines, 10-13
OEM Intelligent Agent and Data Gatherer, 13-2
security, 8-7
Server Manager on OS/390, 7-4
with network service, 10-7

UTL_FILE PL/SQL package, 8-7
UTL_HTTP PL/SQL package, 8-7

V
virtual storage constraint relief, 1-2
VSAM entry sequenced data set (ESDS) files, 18-36
VSAM linear data set (LDS) files, 4-2, 4-15

W
wait state, reporting the error, 17-7
WLM

See Workload Manager
Workload Manager (WLM)

attributes and values for classification, 16-27
classification rules, 16-28
enhanced client workload management with

OSDI, 1-3
goal mode, 16-26, 16-27, 16-28
Oracle Net client processing, 16-3
Oracle Net for OS/390 architecture, 10-2
OS/390 tuning, 16-21
overview, 16-21
policy definition, 16-27
response time goals, 16-27
service class, 16-22, 16-28
velocity goals, 16-26
workload classification, 16-26

X
XCF (Cross System Communication Facility), 14-5

Z
zero-length parameter, A-7
z/OS Workload Manager

See Workload Manager
Index-16

	System Administration Guide
	Send Us Your Comments
	Preface
	1 Introduction to OSDI Architecture
	Overview
	Benefits of OSDI
	OSDI Architecture
	Subsystem
	Services
	Connections
	Security
	Database Service
	Network Service

	2 Configuring and Initializing the Subsystem
	Overview
	Choosing a Subsystem Name and Command Prefix
	The Subsystem Parameter File
	OSDI Commands in the Subsystem Parameter File
	Initializing the Subsystem
	Examples
	After Initializing the Subsystem

	3 Configuring a Database Service and Creating a New Database
	Overview
	Database Service Definition
	Service Name
	TYPE
	PROC
	PARM
	MAXAS
	JOBNAME
	SID

	Database Region JCL
	Database Region Parameters
	DSN_PREFIX_DB | ORAPREFD
	INIT_ADR_SPACES | INTADSPC
	INIT_SESSIONS | INITSESS
	INIT_STACK_SIZE | INTSTKSZ
	JAVA_STACK_SIZE | JAVASKSZ
	LOGON_AUTH | LGNAUTH
	MAX_SESSION_MEM | MAXSMEM
	MAX_SESSIONS | MAXSESS
	REGION_MEM_RESERVE | REGMRES
	SERVER_LOADMOD | SRVRLMOD
	SMF_STAT_RECNO | SMFSTRCN
	TRACE_DSNAME | TDSN

	Oracle Initialization Parameter Considerations
	BACKGROUND_CORE_DUMP, BACKGROUND_DUMP_DEST
	CONTROL_FILES
	DB_BLOCK_SIZE
	DB_CREATE_FILE_DEST DB_CREATE_ONLINE_LOG_DEST_n
	DB_FILE_NAME_CONVERT LOG_FILE_NAME_CONVERT
	LOCK_SGA
	LOG_ARCHIVE_
	MAX_DUMP_FILE_SIZE
	ORACLE_TRACE_
	SHADOW_CORE_DUMP
	STANDBY_ARCHIVE_DEST
	SPFILE
	USER_DUMP_DEST

	Database Logical Blocksize
	Pre-Allocating Database Files
	Configuring OS/390 Security
	Configuring for Shared Servers
	Creating the Database
	Populating the SYSTEM Tablespace

	Configuring a Database Service Using ISPF Panels
	Database Customization
	Recommendations
	sidJB00
	sidJC00
	sidJD00
	sidJD01
	sidJE00 (for SQL*Plus)
	sidJF00
	sidJH00 (for Oracle9i Text)

	4 Defining OS/390 Data Sets for the Oracle Database
	Oracle Database Files
	Control File
	Database Files
	Redo Log Files
	Archive Log

	Tablespaces and OS/390 Space Management
	Server File Name Syntax
	Data Sets
	SYSOUT Support

	Server File Management Parameters
	File Group Names
	File Management Parameters in an External Data Mover
	File Management Parameters and Syntax
	Example

	Pre-allocating Database Files
	Oracle Managed Files on OS/390

	5 Operating a Database Service
	Starting and Stopping the Database Service
	Oracle Database Instance Startup and Shutdown
	Other Database Service Commands
	DISPLAY SESSION
	DUMP SESSION
	REFRESH FPS

	6 Database Backup and Recovery
	Overview
	Logging and Recovery
	Backup and Recovery without Recovery Manager
	Recovery Manager on OS/390
	External Data Mover
	Preparing to Use RMAN with an OS/390 Server
	Providing a Snapshot Control File
	Identifying Backups
	Backup Allocation Parameters
	ALLOCATE CHANNEL Considerations
	BACKUP Considerations
	Example RMAN Backup Script
	EDM JCL and Parameters

	Tablespace Point-in-Time Recovery
	Tablespace Point-in-Time Processing Using Recovery Manager

	Oracle9i Data Guard

	7 Oracle9i Utilities
	Overview
	General Considerations
	STEPLIB
	ORA$LIB
	SYSERR
	SYSOUT
	SYSIN

	SQL*Plus on OS/390
	Recovery Manager (RMAN) on OS/390
	Oracle Password Utility (ORAPWD) on OS/390
	Offline Database Verification Utility (DBV) on OS/390

	8 Security Considerations
	Overview
	Controlling Access to OSDI Subsystem Commands
	Controlling Access to OSDI Services
	Controlling Access to Database SYSDBA and SYSOPER Privileges
	Database Service Actions Subject to OS/390 Authorization
	Data Set Creation and Deletion
	Data Set Open
	OSDI Bind Authorization
	Unix System Services Access

	External Data Mover Actions Subject to OS/390 Authorization
	Oracle Net Actions Subject to OS/390 Authorization
	Authorizing Oracle Logon

	9 Oracle SMF Data
	Preparing to Record SMF Information
	Specifying the Oracle Record Type
	Using the OSDI SMF_STAT_RECNO Parameter

	Starting SMF Recording of Oracle Records
	Stopping SMF Recording of Oracle Records

	Events that Generate SMF Records
	SMF Recording under CICS
	Interpreting an Oracle SMF Record
	Contents of the SMF Header Section
	Contents of the SMF Correlation Section
	Contents of the SMF OSDI Data Section
	Contents of the SMF Database Engine Data Section
	Contents of the SMF Net Data Section

	Oracle Net Network Information Vector Overview
	NIV List Format
	General NIV Format
	Protocol Identification NIV
	Oracle Net TCP/IP Identification NIV

	Contents of the SMF OS/390 Accounting Data Section

	Sample Formatting Program for SMF Records
	Auditing Database Use
	Preparing To Record Oracle9i Audit information
	Interpreting Oracle9i Audit Records

	10 Oracle Net
	Overview
	OSDI Listener Architecture
	OSDI Listener Filenames
	Configuring the OSDI Listener
	Network Service Definition
	Service Name
	TYPE
	PROC
	PARM
	Example of OSDI Listener Definition

	OSDI Listener Region JCL
	Example of OSDI Listener Procedure JCL
	Example of NET8LOG output

	TCP/IP Network Considerations
	Client-Server Access Using the OSDI Listener
	Remote Clients
	Name Server
	LDAP Server

	Operating the OSDI Listener
	Formatting OSDI Listener Trace Files
	Oracle Advanced Security Option Encryption
	Setting Up ASO Encryption for Test
	Checklist for Setting Up ASO Encryption
	Step�1:��Set ASO Encryption Parameters for the Server
	Step�2:��Set ASO Encryption Parameters for the Client

	Testing ASO Encryption
	Checklist for Testing ASO Encryption
	Step�1:��Connect Client and Server
	Step�2:��Reset Configuration Parameters on Server

	Generic Listener Architecture
	Oracle External Routines
	Oracle Shared Servers

	Generic Listener Configuration Steps
	Step�1:��Add the Init.ora Parameter
	Step�2:��Create and Modify the Tnsnames.ora File
	For External Routines
	For Shared Servers

	Step�3:��Create and Modify the Listener.ora File
	For External Routines
	For Shared Servers

	Step�4:��Start the Generic Listener

	11 Oracle Access Manager for CICS
	Overview
	Oracle Access Manager for CICS Applications
	Oracle Access Manager for CICS Configuration
	Configuration Checklist
	Configuration Steps
	Post-Configuration Steps

	Configuration Steps
	Step�1:��Define and Assemble Thread Definition Table
	Step�1.1:��Determine the Requirements for Each Transaction
	Step�1.2:��Define the Thread Requirements in the Thread Definition Table

	Thread Definition Table Parameters
	Sample Thread Definition Table
	Special Considerations
	Step�1.3:��Assemble and Link Thread Table
	Step�1.4:��Installing a Revised Thread Table with CICS Executing

	Step�2:��Define the MESG Library to CICS
	Step�3:��Copy Access Manager for CICS Modules to CICS Libraries
	Step�4:��Define CICS to Oracle and Grant Privileges
	Step�5:��Set INITORA Parameter and Prepare Host
	Step�5.1:��Set DISTRIBUTED_TRANSACTIONS
	Step�5.2:��Set REMOTE_OS_AUTHENT_TRUE
	Step�5.3:��Set OS_AUTHENT_PREFIX

	Step�6:��Generate the ORACSTUB Stub for CICS
	Step�7:��Update CICS Tables to Include Oracle Access Manager for CICS
	Step�7.1:��Define Oracle Access Manager for CICS Programs to CICS
	Step�7.2:��Define Oracle Access Manager for CICS Transactions to CICS
	Step�7.3:��Install Oracle Access Manager for CICS Resources

	Step�8:��Start Oracle Access Manager for CICS Adapter
	Step�9:��Set Up Automatic Initialization for Oracle Access Manager for CICS
	Step�9.1:��Generate the PLTPI Program
	Step�9.2:��Generate the PLTSD Program
	Step�9.3:��Input PLTSD and PLTPI to the CICS DFHEITAL Procedure
	Step�9.4:��Add the User-Defined Name to the PLTPI Table
	Step�9.5:��Add the User-Defined Name to the PLTSD Table
	Step�9.6:��Make Generated Programs Available

	Post-Configuration Steps
	Step�1:��Modify the Sample Compilation Procedures
	Step�2:��Use the SRCLIB Member OSAMPLE

	Multiple Versions in the Same CICS Region
	Recovery Considerations
	Using COMMIT (CICS)
	Using COMMIT (Oracle)

	Two-Phase Commit Processing under CICS
	First Phase
	Second Phase
	CICS Warm or Emergency Restart
	Oracle Server Restart
	Manual Recovery

	Shutting Down Oracle Access Manager for CICS with FORCE
	CEDF Support
	Oracle Access Manager for CICS Command Usage
	DISPLAY
	Options
	Syntax
	Purpose
	DISPLAY NAME EXAMPLE
	DISPLAY TRAN NAME EXAMPLE
	DISPLAY STATUS NAME EXAMPLE

	START
	Syntax
	Purpose
	START EXAMPLE

	STOP
	Syntax
	Purpose
	STOP FORCE EXAMPLE

	12 Oracle Access Manager for IMS TM
	Oracle Access Manager for IMS TM Applications
	Integration with IMS
	Oracle Access Manager for IMS TM Design

	Configuration Overview
	The LIT and SSM
	Resource Translation Table
	Distributed Option Considerations
	Security Considerations
	Determining the Oracle User id
	Session Authentication

	Error Processing
	Recovery Considerations
	Clarification of Cursor Close Behavior
	Handling Oracle Unavailable Situations
	Initial Connection Failure
	Failure After Initial Connection

	Oracle Environment Variables

	Configuring Oracle Access Manager for IMS TM
	Oracle Access Manager for IMS TM Configuration Checklist

	Configuration Steps
	Step�1:��Define an OS/390 Subsystem Identifier for the Instance
	Step�2:��Choose a Value for the Instance and Generate the LIT
	Step�3:��Create a User Id in the Target Oracle Database Used to Conduct Recovery
	Step�4:��Determine the Oracle User Id, Authentication, and Environment Variable
	Step�5:��Code and Generate the Control Region and Dependent Region RTT
	AMIRT
	AMITRANS
	AMISESS
	AMIENV

	Step�6:��Add a Control Region and Dependent Region SSM Entry for the Instance
	Step�7:��If a New SSM Member is Created for Any Region, Specify the Member to IMS
	Step�8:��Make the Oracle Access Manager Code and Modules Available to IMS Regions
	Step�9:��Shutdown and Restart IMS

	IMS External Subsystems
	Starting and Stopping Oracle Access Manager for IMS TM
	Failures and Recovery

	13 Oracle Enterprise Manager Intelligent Agent and Data Gatherer
	Overview
	Running the Customization Script
	Updating the Parameter Files
	Controlling Operations of the OS/390 Agent

	14 Oracle9i Real Application Clusters
	Overview
	Setting Up Real Application Clusters
	Checklist for Setting Up Oracle9i Real Application Clusters:
	Step 1: Review and Set Options in the CREATE DATABASE Statement
	Step 2: Set Up Additional Threads of Redo Log Files and Rollback Segments
	Step 3: Share All Non-VSAM Data Sets
	Step 4: Set Up the Database Region Parameters
	Step 5: Set Up the Common Oracle9i Real Application Clusters Initialization Parameters
	Step 6: Set Up the Instance-specific Oracle9i Real Application Clusters Initialization Parameters
	Step 7: Operating an OSDI Database Service

	Cross System Communication Facility (XCF)
	OS/390 Resource Name Usage
	XCF Group Names
	OS/390 ENQ Names

	15 Oracle Programmer
	Oracle Programmer INCLUDE Files
	ASID and Task Considerations
	Program Status Word Protect Key
	PSW State
	Multiple Executions under a TCB
	Cross Memory Mode
	APF Authorization

	16 Oracle9i Performance
	CPU Usage
	Oracle Server Regions
	Client Regions
	Oracle Net Client Processing

	Memory Requirements
	Above and Below the 16M Line
	IEFUSI Exit

	Reducing Real Storage Requirements
	LPA Considerations for Database and Net Regions
	LPA Considerations for Local Oracle Users

	Oracle Server Storage Requirements
	Database Server Address Space Configuration
	Determining the Number of Oracle Address Spaces
	The Oracle SGA on OS/390
	The User Stack Area in OS/390

	Limiting Sessions in a Server Address Space
	Limiting Memory Allocations in a Server Address Space
	Real Storage:�Working Set
	Virtual Memory Allocation

	Oracle Tuning
	INITORA Parameters
	CURSOR_SHARING
	DB_CACHE_SIZE, DB_nK_CACHE_SIZE
	FAST_START_IO_TARGET FAST_START_MTTR_TARGET LOG_CHECKPOINT_ INTERVAL
	JAVA_POOL_SIZE
	PROCESSES
	SESSION_CACHED_CURSORS
	SESSIONS
	SHARED_POOL_SIZE
	SORT_AREA_SIZE SORT_AREA_RETAINED_SIZE
	TRANSACTIONS

	Minimizing I/O Bottlenecks
	Access Methods
	Log Files
	Relieving Log File I/O Bottlenecks

	Archiving
	System Tablespace

	OS/390 Tuning
	Oracle Regions
	Dispatching Priority
	Memory Control

	Local Clients
	TSO
	CICS and IMS
	Batch

	Special Needs Functions
	DBA Accounts
	Database Imports and Exports
	Data Loading
	Index Creation
	Sorting Data by Key Before Loading

	Remote Clients

	PL/SQL and Java
	Choosing JAVA and PL/SQL
	PL/SQL Optimized for SQL Processing and Distributed Data
	Java Optimized for Computation and Open Distributed Computing
	Summary

	Oracle Parallel Execution
	CPU Utilization
	Parallel Execution Slaves
	File Layout Considerations
	Sort Area Size
	Verifying Parallelism
	Parallel Execution Recommendations

	Applications Performance Diagnosis
	Identifying and Tuning High Load SQL
	Step 1: Find the Statements that Consume the Most Resources
	Step 2: Tune These Statements to Use Fewer Resources

	SQL TRACE Facility
	Preparing a File for TKPROF Processing

	Oracle Access Manager for CICS
	Thread Definition Parameters
	Thread Sharing
	Subtask Sharing
	Authorization
	PROTECT

	Base Code Storage Requirements
	Adapter Storage Requirements
	Thread Table Storage Requirements
	Connected Thread Storage Requirements

	Oracle Access Manager for IMS
	Access Manager for IMS TM Base Code Storage Requirements
	Access Manager for IMS TM Adapter Storage Requirements

	17 Error Diagnosis and Reporting
	Oracle Support Services
	Providing Error Documentation
	Tape Format
	Tape Return

	General Documentation Requirements
	Error Diagnosis
	Components
	Error Categories
	Documentation
	Incorrect Output
	Oracle Database External Error
	Abend
	Program Loop
	Performance
	Missing Functionality
	Wait State

	Diagnosing Wait State Problems

	System Dumps
	System Dump Data Sets
	Operator Initiated Dumps
	SLIP
	TSO System Dumps

	GTF

	18 Migration and Upgrade Considerations
	Overview
	Differences Between MPM/TNS and OSDI
	One Subsystem, Many Services
	Services Operate Differently
	Network Architecture Changed
	Security Changes
	Parameter Changes
	Database File Processing Changes
	Backup and Recovery Changes
	SMF Record Changes
	Unsupported Features in OSDI
	IXCF Protocol
	Computer Associates or Interlink SNS/TCPaccess Support

	OSDI Changes in Oracle9i, Release 2
	Network Client Operations
	Clients Use Language Environment

	Moving from MPM/TNS to OSDI
	Configure OSDI Command Security
	Configure the Subsystem
	Configure Database Services
	SID
	Database Region Parameters
	Database JCL Procedure
	Database File Processing
	RDBMS Parameter Considerations
	Database Backup and Recovery Procedures
	Database Security Considerations
	Oracle SMF Recording Considerations

	Configuring Network Service
	Configuring Oracle Access Managers
	Oracle Access Manager for CICS

	Operating Considerations
	Database STARTUP and SHUTDOWN
	Order of Database and Network Service Starts

	Coexistence and Compatibility
	Cross-Memory Protocol
	Database Links
	Network Component Considerations
	Access Managers
	Oracle Enterprise Manager Intelligent Agent and Data Gatherer

	Oracle for OS/390 Migration and Upgrade
	Alternatives to Migration
	Export and Import
	SQL*Plus COPY

	Migration and Upgrade Steps
	Step 1: Configure OSDI Database Service
	Step 2: Shutdown Your Old Oracle Instance Cleanly
	Step 3: Back Up the Database
	Step 4: Oracle7 Migration Steps (Oracle7 Migration Only)
	Step 4.1: Change Oracle7 Control File(s) to VSAM LDS
	Step 4.2: Preallocate the Convert File
	Step 4.3: Prepare Control File(s)
	Step 4.4: Prepare JCL for the MIG Utility
	Step 4.5: Prepare Your Oracle7 Database for the MIG Utility
	Step 4.6: Run the MIG Utility
	Step 4.7: Shut Down Oracle7
	Step 4.8: Back Up the Database
	Step 4.9: Make the Convert File Available to the New Release
	Step 5: Prepare To Start the New Oracle Release
	Step 6: Start the New Oracle Release
	Step 7: Run Upgrade Scripts
	Step 8: Shut Down and Restart the Instance
	Step 9: Recompile Database Procedures
	Step 10: Run CFUTIL To Modify Control Files

	Archive Logs and Recovery
	Fallback and Downgrade Considerations

	CFUTIL (Convert File Utility) Reference
	CFUTIL Parameter Syntax for Control Files
	Examples
	CFUTIL for Archive Log Files

	A OSDI Subsystem Command Reference
	OSDI Command Reference
	Command Types and Processing
	System Symbols in Commands
	Definition Commands
	Structures
	Service Group Definition Commands
	DEFINE
	Define Parameters
	ALTER
	Alter Parameters
	SHOW
	Show Parameters

	Service Definition Commands
	DEFINE
	Define Parameters
	ALTER
	Alter Parameters
	SHOW
	Show Parameters

	Operating Commands
	Available Commands
	Commands
	START
	DISPLAY
	DRAIN
	RESUME
	RESUME Parameters
	STOP
	STOP Parameters

	OSDI Command Keyword Abbreviations

	B Operating System Dependent Variables
	Initialization Parameters with OS/390�Specific Defaults or Limits
	Database Limits
	SQL Language Parameters
	CREATE CONTROLFILE
	CREATE DATABASE

	Storage Parameters

	C Oracle9i for OS/390 System Symbols
	System Symbols

	D National Language Support
	Overview
	Supported Languages
	Overview of Character Set Support
	Server-Side NLS
	Default Character Set Changed
	Reason for Change
	Potential Impact

	Client-Side NLS
	Supported OS/390 Client Character Sets
	Setting the OS/390 Client NLS Parameters
	ENAME Parameter
	NLS_LANG Environment Variable
	ORACLE.LANGUAGE Environment Variable

	Message Availability
	Customized Character Sets (LXINST)
	NLS Calendar Utility (LXEGEN)

	Index

