
Oracle9 i Database

Globalization Support Guide

Release 2 (9.2)

March 2002

Part No. A96529-01

Oracle9i Database Globalization Support Guide, Release 2 (9.2)

Part No. A96529-01

Copyright © 1996, 2002, Oracle Corporation. All rights reserved.

Primary Author: Cathy Baird

Contributors: Dan Chiba, Winson Chu, Jessica Fan, Claire Ho, Simon Law, Geoff Lee, Peter Linsley,
Keni Matsuda, Tamzin Oscroft, Shige Takeda, Linus Tanaka, Makoto Tozawa, Barry Trute, Mayumi
Tsujimoto, Ying Wu, Michael Yau, Tim Yu, Chao Wang, Simon Wong, Weiran Zhang, Lei Zheng, Yan Zhu

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle7, Oracle8, Oracle8i, Oracle9i, Pro*COBOL,
SQL*Plus, PL/SQL, Pro*C, and Pro*C/C++ are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xv

Preface ... xvii

What’s New in Globalization Support? ... xxvii

1 Overview of Globalization Support

Globalization Support Architecture ... 1-2
Locale Data on Demand .. 1-2
Architecture to Support Multilingual Applications .. 1-4
Using Unicode in a Multilingual Database... 1-6

Globalization Support Features... 1-6
Language Support .. 1-7
Territory Support.. 1-7
Date and Time Formats ... 1-8
Monetary and Numeric Formats.. 1-8
Calendars Feature... 1-8
Linguistic Sorting.. 1-8
Character Set Support .. 1-9
Character Semantics ... 1-9
Customization of Locale and Calendar Data.. 1-9
Unicode Support... 1-9
iii

2 Choosing a Character Set

Character Set Encoding .. 2-2
What is an Encoded Character Set?.. 2-2
Which Characters Are Encoded?.. 2-3
What Characters Does a Character Set Support? ... 2-5
How are Characters Encoded?.. 2-9
Naming Convention for Oracle Character Sets.. 2-11

Length Semantics .. 2-12
Choosing an Oracle Database Character Set ... 2-14

Current and Future Language Requirements... 2-16
Client Operating System and Application Compatibility .. 2-16
Character Set Conversion Between Clients and the Server .. 2-16
Performance Implications of Choosing a Database Character Set 2-17
Restrictions on Database Character Sets ... 2-17
Choosing a National Character Set .. 2-18
Summary of Supported Datatypes... 2-19

Changing the Character Set After Database Creation ... 2-20
Monolingual Database Scenario .. 2-20

Character Set Conversion in a Monolingual Scenario... 2-21
Multilingual Database Scenarios... 2-23

Restricted Multilingual Support... 2-24
Unrestricted Multilingual Support... 2-25

3 Setting Up a Globalization Support Environment

Setting NLS Parameters ... 3-2
Choosing a Locale with the NLS_LANG Environment Variable .. 3-4

Specifying the Value of NLS_LANG ... 3-6
Overriding Language and Territory Specifications... 3-7
Should the NLS_LANG Setting Match the Database Character Set?.................................... 3-8

NLS Database Parameters ... 3-9
NLS Data Dictionary Views .. 3-9
NLS Dynamic Performance Views... 3-9
OCINlsGetInfo() Function... 3-10

Language and Territory Parameters... 3-10
NLS_LANGUAGE.. 3-10
iv

NLS_TERRITORY... 3-13
Date and Time Parameters .. 3-17

Date Formats ... 3-18
Time Formats... 3-21

Calendar Definitions .. 3-26
Calendar Formats ... 3-26
NLS_CALENDAR .. 3-29

Numeric Parameters ... 3-30
Numeric Formats.. 3-30
NLS_NUMERIC_CHARACTERS .. 3-30

Monetary Parameters ... 3-32
Currency Formats ... 3-32
NLS_CURRENCY... 3-32
NLS_ISO_CURRENCY .. 3-34
NLS_DUAL_CURRENCY... 3-35
Oracle Support for the Euro.. 3-37
NLS_MONETARY_CHARACTERS .. 3-38
NLS_CREDIT .. 3-38
NLS_DEBIT ... 3-38

Linguistic Sort Parameters .. 3-39
NLS_SORT... 3-39
NLS_COMP ... 3-41
NLS_LIST_SEPARATOR... 3-41

Character Set Conversion Parameter .. 3-42
NLS_NCHAR_CONV_EXCP ... 3-42

Length Semantics.. 3-42
NLS_LENGTH_SEMANTICS... 3-42

4 Linguistic Sorting

Overview of Oracle’s Sorting Capabilities .. 4-2
Using Binary Sorts .. 4-2
Using Linguistic Sorts.. 4-3

Monolingual Linguistic Sorts.. 4-3
Multilingual Linguistic Sorts .. 4-4
Multilingual Sorting Levels... 4-5
v

Linguistic Sort Examples ... 4-7
Linguistic Sort Features ... 4-8

Base Letters .. 4-9
Ignorable Characters .. 4-9
Contracting Characters .. 4-9
Expanding Characters.. 4-10
Context-Sensitive Characters .. 4-10
Canonical Equivalence... 4-10
Reverse Secondary Sorting.. 4-11
Character Rearrangement for Thai and Laotian Characters .. 4-11
Special Letters.. 4-11
Special Combination Letters ... 4-11
Special Uppercase Letters.. 4-12
Special Lowercase Letters.. 4-12

Using Linguistic Indexes ... 4-12
Linguistic Indexes for Multiple Languages .. 4-13
Requirements for Using Linguistic Indexes.. 4-14

Improving Case-Insensitive Searches with a Function-Based Index 4-16
Performing a Generic Base Letter Search ... 4-16

5 Supporting Multilingual Databases with Unicode

Overview of Unicode ... 5-2
What is Unicode?... 5-2

Supplementary Characters .. 5-3
Unicode Encodings... 5-3
Oracle’s Support for Unicode.. 5-5

Implementing a Unicode Solution in the Database... 5-6
Enabling Multilingual Support with Unicode Databases... 5-7
Enabling Multilingual Support with Unicode Datatypes... 5-8
How to Choose Between a Unicode Database and a Unicode Datatype Solution............ 5-10
Comparing Unicode Character Sets for Database and Datatype Solutions....................... 5-12

Unicode Case Studies... 5-16
Designing Database Schemas to Support Multiple Languages .. 5-18

Specifying Column Lengths for Multilingual Data ... 5-19
Storing Data in Multiple Languages .. 5-19
vi

Storing Documents in Multiple Languages in LOBs... 5-21
Creating Indexes for Searching Multilingual Document Contents..................................... 5-22

6 Programming with Unicode

Overview of Programming with Unicode.. 6-2
Database Access Product Stack and Unicode... 6-2

SQL and PL/SQL Programming with Unicode ... 6-4
SQL NCHAR Datatypes .. 6-5
Implicit Datatype Conversion Between NCHAR and Other Datatypes 6-7
Exception Handling for Data Loss During Datatype Conversion .. 6-7
Rules for Implicit Datatype Conversion.. 6-8
SQL Functions for Unicode Datatypes .. 6-9
Other SQL Functions.. 6-11
Unicode String Literals .. 6-11
Using the UTL_FILE Package with NCHAR Data .. 6-12

OCI Programming with Unicode... 6-13
OCIEnvNlsCreate() Function for Unicode Programming.. 6-13
OCI Unicode Code Conversion .. 6-15
When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI 6-18
Binding and Defining SQL CHAR Datatypes in OCI ... 6-18
Binding and Defining SQL NCHAR Datatypes in OCI .. 6-20
Binding and Defining CLOB and NCLOB Unicode Data in OCI.. 6-21

Pro*C/C++ Programming with Unicode... 6-22
Pro*C/C++ Data Conversion in Unicode ... 6-22
Using the VARCHAR Datatype in Pro*C/C++... 6-23
Using the NVARCHAR Datatype in Pro*C/C++.. 6-24
Using the UVARCHAR Datatype in Pro*C/C++.. 6-24

JDBC and SQLJ Programming with Unicode ... 6-25
Binding and Defining Java Strings in Unicode .. 6-26
Java Data Conversion in Unicode .. 6-27

ODBC and OLE DB Programming with Unicode .. 6-29
Unicode-Enabled Drivers in ODBC and OLE DB.. 6-30
OCI Dependency in Unicode .. 6-30
ODBC and OLE DB Code Conversion in Unicode .. 6-30
ODBC Unicode Datatypes... 6-32
vii

OLE DB Unicode Datatypes.. 6-33
ADO Access ... 6-34

7 SQL and PL/SQL Programming in a Global Environment

Locale-Dependent SQL Functions with Optional NLS Parameters ... 7-2
Default Values for NLS Parameters in SQL Functions.. 7-3
Specifying NLS Parameters in SQL Functions ... 7-3
Unacceptable NLS Parameters in SQL Functions .. 7-5

Other Locale-Dependent SQL Functions ... 7-5
The CONVERT Function ... 7-6
SQL Functions for Different Length Semantics.. 7-6
LIKE Conditions for Different Length Semantics .. 7-8
Character Set SQL Functions... 7-9
The NLSSORT Function... 7-10

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment 7-13
SQL Date Format Masks .. 7-13
Calculating Week Numbers .. 7-14
SQL Numeric Format Masks... 7-14
The Concatenation Operator... 7-15
Loading External BFILE Data into LOBs... 7-15

8 OCI Programming in a Global Environment

Using the OCI NLS Functions .. 8-2
Specifying Character Sets in OCI .. 8-2

OCIEnvNlsCreate()... 8-2
Getting Locale Information in OCI ... 8-6

OCINlsGetInfo().. 8-7
OCI_NLS_MAXBUFSZ.. 8-9
Example: Getting Locale Information in OCI... 8-10
OCINlsCharSetNameTold() .. 8-10
OCINlsCharSetIdToName().. 8-11
OCINlsNumericInfoGet() .. 8-12
OCINlsEnvironmentVariableGet()... 8-13

Mapping Locale Information Between Oracle and Other Standards 8-14
OCINlsNameMap() .. 8-14
viii

Manipulating Strings in OCI ... 8-15
OCIMultiByteToWideChar() .. 8-18
OCIMultiByteInSizeToWideChar().. 8-19
OCIWideCharToMultiByte() .. 8-20
OCIWideCharInSizeToMultiByte().. 8-21
OCIWideCharToLower()... 8-22
OCIWideCharToUpper()... 8-22
OCIWideCharStrcmp() .. 8-23
OCIWideCharStrncmp().. 8-24
OCIWideCharStrcat()... 8-25
OCIWideCharStrncat() .. 8-26
OCIWideCharStrchr() .. 8-26
OCIWideCharStrrchr()... 8-27
OCIWideCharStrcpy() ... 8-28
OCIWideCharStrncpy() ... 8-28
OCIWideCharStrlen() .. 8-29
OCIWideCharStrCaseConversion() ... 8-30
OCIWideCharDisplayLength()... 8-31
OCIWideCharMultiByteLength()... 8-31
OCIMultiByteStrcmp()... 8-32
OCIMultiByteStrncmp() .. 8-33
OCIMultiByteStrcat() ... 8-34
OCIMultiByteStrncat() ... 8-35
OCIMultiByteStrcpy() .. 8-35
OCIMultiByteStrncpy().. 8-36
OCIMultiByteStrlen() ... 8-37
OCIMultiByteStrnDisplayLength().. 8-38
OCIMultiByteStrCaseConversion() ... 8-38
Example: Manipulating Strings in OCI ... 8-39

Classifying Characters in OCI.. 8-40
OCIWideCharIsAlnum() ... 8-41
OCIWideCharIsAlpha()... 8-41
OCIWideCharIsCntrl()... 8-42
OCIWideCharIsDigit()... 8-42
OCIWideCharIsGraph() .. 8-43
ix

OCIWideCharIsLower()... 8-43
OCIWideCharIsPrint() ... 8-44
OCIWideCharIsPunct().. 8-44
OCIWideCharIsSpace().. 8-45
OCIWideCharIsUpper()... 8-45
OCIWideCharIsXdigit() ... 8-46
OCIWideCharIsSingleByte() ... 8-47
Example: Classifying Characters in OCI ... 8-47

Converting Character Sets in OCI ... 8-48
OCICharSetToUnicode().. 8-48
OCIUnicodeToCharSet().. 8-49
OCINlsCharSetConvert()... 8-50
OCICharSetConversionIsReplacementUsed().. 8-52
Example: Converting Character Sets in OCI .. 8-52

OCI Messaging Functions ... 8-53
OCIMessageOpen() .. 8-54
OCIMessageGet().. 8-55
OCIMessageClose() .. 8-56
Example: Retrieving a Message from a Text Message File ... 8-57
lmsgen Utility .. 8-57

9 Java Programming in a Global Environment

Overview of Oracle9i Java Support... 9-2
Globalization Support for JDBC Drivers... 9-3

Accessing SQL CHAR Datatypes Using JDBC... 9-4
Accessing SQL NCHAR Datatypes Using JDBC ... 9-7
Using the oracle.sql.CHAR Class ... 9-8
Restrictions on Accessing SQL CHAR Data with JDBC ... 9-11

Globalization Support for SQLJ .. 9-14
Using Unicode Characters in SQLJ programs .. 9-15
Using the oracle.sql.NString class .. 9-16

Globalization Support for Java Virtual Machine ... 9-16
Globalization Support for Java Stored Procedures .. 9-18
Configurations for Multilingual Applications.. 9-20

Configuring a Multilingual Database .. 9-20
x

Globalization Support for Java Stored Procedures.. 9-21
Clients with Different Languages .. 9-22

A Multilingual Demo Application in SQLJ .. 9-23
Database Schema for the Multilingual Demo Application... 9-23
Java Stored Procedures for the Multilingual Demo Application .. 9-24
The SQLJ Client for the Multilingual Demo Application ... 9-27

10 Character Set Migration

Overview of Character Set Migration... 10-2
Data Truncation .. 10-2
Character Set Conversion Issues .. 10-4

Changing the Database Character Set of an Existing Database .. 10-7
Migrating Character Data Using a Full Export and Import ... 10-8
Migrating Character Data Using the ALTER DATABASE CHARACTER SET

Statement ... 10-8
Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement

and Selective Imports... 10-10
Migrating to the Oracle9i NCHAR Datatypes .. 10-11

Migrating Oracle8 NCHAR Columns to Oracle9i ... 10-11
Changing the National Character Set .. 10-12
Migrating CHAR Columns to NCHAR Columns in an Oracle9i Database..................... 10-12

Tasks to Recover Database Schema After Character Set Migration 10-16

11 Character Set Scanner

What is the Character Set Scanner? ... 11-2
Conversion Tests on Character Data ... 11-2
Access Privileges... 11-3
Restrictions .. 11-3
Database Containing Data From Two or More Character Sets.. 11-4
Database Containing Data Not From the Database Character Set...................................... 11-4

Scan Modes in the Character Set Scanner.. 11-4
Full Database Scan.. 11-4
User Scan.. 11-5
Table Scan .. 11-5

Using The Character Set Scanner .. 11-5
xi

Before Using the Character Set Scanner .. 11-5
Character Set Scanner Compatibility ... 11-6
Invoking the Character Set Scanner ... 11-6
Getting Online Help for the Character Set Scanner... 11-7
The Parameter File.. 11-8

Character Set Scanner Parameters ... 11-9
ARRAY Character Set Scanner Parameter .. 11-9
BOUNDARIES Character Set Scanner Parameter.. 11-10
CAPTURE Character Set Scanner Parameter ... 11-10
EXCLUDE Character Set Scanner Parameter ... 11-11
FEEDBACK Character Set Scanner Parameter... 11-11
FROMCHAR Character Set Scanner Parameter... 11-12
FROMNCHAR Character Set Scanner Parameter ... 11-12
FULL Character Set Scanner Parameter .. 11-12
HELP Character Set Scanner Parameter.. 11-12
LASTRPT Character Set Scanner Parameter... 11-13
LOG Character Set Scanner Parameter.. 11-13
MAXBLOCKS Character Set Scanner Parameter ... 11-13
PARFILE Character Set Scanner Parameter.. 11-14
PRESERVE Character Set Scanner Parameter .. 11-14
PROCESS Character Set Scanner Parameter... 11-15
SUPPRESS Character Set Scanner Parameter ... 11-15
TABLE Character Set Scanner Parameter ... 11-15
TOCHAR Character Set Scanner Parameter... 11-16
TONCHAR Character Set Scanner Parameter.. 11-16
USER Character Set Scanner Parameter .. 11-16
USERID Character Set Scanner Parameter.. 11-16

Examples: Character Set Scanner Sessions .. 11-17
Example: Full Database Scan .. 11-17
Example: User Scan .. 11-18
Example: Single Table Scan... 11-19

Character Set Scanner Reports ... 11-20
Database Scan Summary Report .. 11-20
Individual Exception Report ... 11-27

Storage and Performance Considerations in the Character Set Scanner 11-29
xii

Storage Considerations .. 11-29
Performance Considerations... 11-31

Character Set Scanner Views and Messages.. 11-31
Character Set Scanner Views .. 11-31
Character Set Scanner Error Messages .. 11-34

12 Customizing Locale Data

Overview of the Oracle Locale Builder Utility ... 12-2
Configuring Unicode Fonts for the Oracle Locale Builder... 12-2
The Oracle Locale Builder User Interface ... 12-3
Oracle Locale Builder Screens and Dialog Boxes... 12-4

Creating a New Language Definition with the Oracle Locale Builder 12-8
Creating a New Territory Definition with the Oracle Locale Builder 12-11

Customizing Time Zone Data... 12-17
Customizing Calendars with the NLS Calendar Utility ... 12-17

Displaying a Code Chart with the Oracle Locale Builder .. 12-18
Creating a New Character Set Definition with the Oracle Locale Builder 12-23

Character Sets with User-Defined Characters.. 12-24
Oracle Character Set Conversion Architecture .. 12-25
Unicode 3.1 Private Use Area ... 12-26
User-Defined Character Cross-References Between Character Sets 12-26
Guidelines for Creating a New Character Set from an Existing Character Set 12-27
Example: Creating a New Character Set Definition with the Oracle Locale Builder 12-27
Supporting User-Defined Characters in Java ... 12-32

Creating a New Linguistic Sort with the Oracle Locale Builder ... 12-35
Changing the Sort Order for All Characters with the Same Diacritic 12-38
Changing the Sort Order for One Character with a Diacritic .. 12-41

Generating and Installing NLB Files .. 12-43

A Locale Data

Languages... A-2
Translated Messages... A-4
Territories ... A-5
Character Sets .. A-6

Asian Language Character Sets .. A-8
xiii

European Language Character Sets ... A-9
Middle Eastern Language Character Sets .. A-15
Universal Character Sets... A-18
Character Set Conversion Support.. A-18
Subsets and Supersets ... A-19

Linguistic Sorting... A-22
Calendar Systems... A-25
Obsolete Locale Data... A-27

AL24UTFFSS Character Set Desupported.. A-29
Bengali Language Definition Deprecated .. A-29
Czechoslovakia Territory Definition Deprecated ... A-30

B Unicode Character Code Assignments

Unicode Code Ranges .. B-2
UTF-16 Encoding ... B-3
UTF-8 Encoding ... B-4

Glossary

Index
xiv

Send Us Your Comments

Oracle9 i Database Globalization Support Guide, Release 2 (9.2)

Part No. A96529-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xv

xvi

Preface

This manual describes Oracle’s globalization support and how to use its

capabilities.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xvii

Audience
Oracle9i Database Globalization Support Guide is intended for database

administrators, system administrators, and database application developers who

perform the following tasks:

■ Set up a globalization support environment

■ Choose, analyze, or migrate character sets

■ Sort data linguistically

■ Customize locale data

■ Write programs in a global environment

■ Use Unicode

To use this document, you need to be familiar with relational database concepts,

basic Oracle server concepts, and the operating system environment under which

you are running Oracle.

Organization
This document contains:

Chapter 1, "Overview of Globalization Support"
This chapter contains an overview of globalization and Oracle’s approach to

globalization.

Chapter 2, "Choosing a Character Set"
This chapter describes how to choose a character set.

Chapter 3, "Setting Up a Globalization Support Environment"
This chapter contains sample scenarios for enabling globalization capabilities.

Chapter 4, "Linguistic Sorting"
This chapter describes linguistic sorting.

Chapter 5, "Supporting Multilingual Databases with Unicode"
This chapter describes Unicode considerations for databases.
xviii

Chapter 6, "Programming with Unicode"
This chapter describes how to program in a Unicode environment.

Chapter 7, "SQL and PL/SQL Programming in a Global Environment"
This chapter describes globalization considerations for SQL programming.

Chapter 8, "OCI Programming in a Global Environment"
This chapter describes globalization considerations for OCI programming.

Chapter 9, "Java Programming in a Global Environment"
This chapter describes globalization considerations for Java.

Chapter 10, "Character Set Migration"
This chapter describes character set conversion issues and character set migration.

Chapter 11, "Character Set Scanner"
This chapter describes how to use the Character Set Scanner utility to analyze

character data.

Chapter 12, "Customizing Locale Data"
This chapter explains how to use the Oracle Locale Builder utility to customize

locales. It also contains information about time zone files and customizing calendar

data.

Appendix A, "Locale Data"
This chapter describes the languages, territories, character sets, and other locale

data supported by the Oracle server.

Appendix B, "Unicode Character Code Assignments"
This chapter lists Unicode code point values.

Glossary
The glossary contains definitions of globalization support terms.

Related Documentation
For more information, see these Oracle resources:
xix

■ Oracle9i SQL Reference

■ Oracle9i Application Developer’s Guide - Fundamentals

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems
xx

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.
xxi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf

9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;
xxii

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and

provides examples of their use.

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

Convention Meaning Example
xxiii

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/ password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_
NAMETNSListener

Convention Meaning Example
xxiv

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
instal the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn , where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xxv

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xxvi

What’s New in Globalization Support?

This section describes new features of globalization support in Oracle9i release 2

(9.2) and provides pointers to additional information.

The following section describes the new features in Oracle globalization support:

■ Oracle9i Release 2 (9.2) New Features in Globalization Support
xxvii

Oracle9 i Release 2 (9.2) New Features in Globalization Support
■ Unicode 3.1 support

Oracle9i release 2 (9.2) supports Unicode 3.1.

■ ALTER TABLE MODIFY statement

The ALTER TABLE MODIFY statement can be used to change column

definitions from the CHARdatatypes to the NCHARdatatypes. It also converts the

data in the columns from the CHAR datatypes to the NCHAR datatypes.

■ Oracle Locale Builder enhancements

You can view and print code charts with Oracle Locale Builder.

Characters with diacritics can now be viewed in collation trees.

■ Character Set Scanner enhancements

Two new parameters have been added to the Character Set Scanner: EXCLUDE
and PRESERVE.

The TABLE parameter has been extended to support multiple tables.

Convertible and exceptional data dictionary data are documented in the new

"Data Dictionary Individual Exceptions" of the Individual Exception Report.

See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode"

See Also: "Using the ALTER TABLE MODIFY Statement to

Change CHAR Columns to NCHAR Columns" on page 10-13

See Also:

■ "Displaying a Code Chart with the Oracle Locale Builder" on

page 12-18

■ "Creating a New Linguistic Sort with the Oracle Locale Builder"

on page 12-35

See Also:

■ "Character Set Scanner Parameters" on page 11-9

■ "Individual Exception Report" on page 11-27
xxviii

■ Change in euro support

The members of the European Monetary Union (EMU) use the euro as their

currency as of January 1, 2002. Setting NLS_TERRITORY to correspond to a

country in the EMU (Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain) results in the

default values for NLS_CURRENCY and NLS_DUAL_CURRENCY being set to

EURO. Beginning with Oracle9i release 2 (9.2), the value of NLS_ISO_CURRENCY
results in the ISO currency symbol being set to EUR for EMU member countries.

■ OCIEnvNlsCreate() function

Use the OCIEnvNlsCreate function to specify client-side database and

national character sets when the OCI environment is created.This function

allows users to set character set information dynamically in applications,

independent of the NLS_LANG and NLS_CHAR initialization parameter settings.

In addition, one application can initialize several environment handles for

different client environments in the same server environment.

■ OCINlsCharSetConvert() function

This function converts a string from one character set to another.

■ OCINlsCharSetNameTold() function

This function returns the Oracle character set ID for the specified Oracle

character set name.

■ OCINlsCharSetIdToName() function

This function returns the Oracle character set name from the specified character

set ID.

See Also: "Oracle Support for the Euro" on page 3-37

See Also: "OCIEnvNlsCreate()" on page 8-2

See Also: "OCINlsCharSetConvert()" on page 8-50

See Also: "OCINlsCharSetNameTold()" on page 8-10

See Also: "OCINlsCharSetIdToName()" on page 8-11
xxix

■ OCINlsNumericInfoGet() function

This function generates numeric language information specified by item from

the OCI environment handle into an output number variable.

■ OCINlsNameMap() function

This function maps Oracle character set names, language names, and territory

names to and from IANA and ISO names.

■ DBMS_LOB.LOADBLOBFROM FILE and DBMS_LOB.LOADCLOBFROM
FILE

These APIs allow the user to specify the character set ID of BFILE data by using

a new parameter. The APIs convert the data from the specified BFILE character

set into the database character set for CLOBs or the national character set for

NCLOBs.

■ Generic base letter search

You can perform a search that ignores case and diacritics.

■ Change in Object Types support for NCHAR datatypes and character
semantics

Object Types now support NCHAR datatypes and character semantics.

See Also: "OCINlsNumericInfoGet()" on page 8-12

See Also: "OCINlsNameMap()" on page 8-14

See Also: "Loading External BFILE Data into LOBs"‘ on page 7-15

See Also: "Performing a Generic Base Letter Search" on page 4-16

See Also:

■ "Length Semantics" on page 2-2

■ "Summary of Supported Datatypes" on page 2-19

■ Oracle9i Application Developer’s Guide - Object-Relational Features
xxx

Overview of Globalization Su
1

Overview of Globalization Support

This chapter provides an overview of Oracle globalization support. It includes the

following topics:

■ Globalization Support Architecture

■ Globalization Support Features
pport 1-1

Globalization Support Architecture
Globalization Support Architecture
Oracle's globalization support enables you to store, process, and retrieve data in

native languages. It ensures that database utilities, error messages, sort order, and

date, time, monetary, numeric, and calendar conventions automatically adapt to any

native language and locale.

In the past, Oracle’s globalization support capabilities were referred to as National

Language Support (NLS) features. National Language Support is a subset of

globalization support. National Language Support is the ability to choose a national

language and store data in a specific character set. Globalization support enables

you to develop multilingual applications and software products that can be

accessed and run from anywhere in the world simultaneously. An application can

render content of the user interface and process data in the native users’ languages

and locale preferences.

Locale Data on Demand
Oracle's globalization support is implemented with the Oracle NLS Runtime

Library (NLSRTL). The NLS Runtime Library provides a comprehensive suite of

language-independent functions that allow proper text and character processing

and language convention manipulations. Behavior of these functions for a specific

language and territory is governed by a set of locale-specific data that is identified

and loaded at runtime.

The locale-specific data is structured as independent sets of data for each locale that

Oracle supports. The data for a particular locale can be loaded independent of other

locale data. The advantages of this design are as follows:

■ You can manage the memory consumption of Oracle9i by choosing the set of

locales that you need.

■ You can add and customize locale data for a specific locale without affecting

other locales.

Figure 1–1 shows that locale-specific data is loaded at runtime. In this example,

French data and Japanese data are loaded into the multilingual database, but

German data is not.
1-2 Oracle9i Database Globalization Support Guide

Globalization Support Architecture
Figure 1–1 Loading Locale-Specific Data to the Database

The locale-specific data is stored in a directory specified by the ORA_NLS*
environment variable. There is a different ORA_NLS data directory for different

releases of the Oracle database server. For Oracle9i, the ORA_NLS33 directory is

used. Table 1–1 shows the environment variable that specifies the location of

locale-specific data for different releases of the Oracle database server.

When the ORA_NLS* environment variable is not defined, then the default value

relative to the Oracle home directory is used to locate the locale-specific data. The

default location of locale data is $ORACLE_HOME/ocommon/nls/admin/data in

all releases. In most cases, the default value is sufficient. The ORA_NLS* variable

should be defined only when the system has multiple Oracle homes that share a

single copy of NLS datafiles.

Table 1–1 Environment Variable that Specifies Location of Locale-Specific Data by
Release

Release Environment Variable

7.2 ORA_NLS

7.3 ORA_NLS32

8.0, 8.1, 9.0.1, 9.2 ORA_NLS33

Multilingual
Database

French

Data

Ja
pa

ne
se

Dat
a

French
Data

German
Data

Japanese
Data
Overview of Globalization Support 1-3

Globalization Support Architecture
A boot file is used to determine the availability of the NLS objects that can be

loaded. Oracle supports both system and user boot files. The user boot file gives

you the flexibility to tailor what NLS locale objects are available for the database.

Also, new locale data can be added and some locale data components can be

customized.

Architecture to Support Multilingual Applications
The Oracle9i database is implemented to enable multitier applications and

client/server applications to support languages for which the database is

configured.

The locale-dependent operations are controlled by several parameters and

environment variables on both the client and the database server. On the database

server, each session started on behalf of a client may run in the same or a different

locale as other sessions, and have the same or different language requirements

specified.

The database has a set of session-independent NLS parameters that are specified

when the database is created. Two of the parameters specify the database character

set and the national character set, an alternate Unicode character set that can be

specified for NCHAR, NVARCHAR2, and NCLOB data. The parameters specify the

character set that is used to store text data in the database. Other parameters, like

language and territory, are used to evaluate check constraints.

If the client session and the database server specify different character sets, then the

Oracle9i database converts character set strings automatically.

From a globalization support perspective, all applications are considered to be

clients, even if they run on the same physical machine as the Oracle instance. For

example, when SQL*Plus is started by the UNIX user who owns the Oracle software

from the Oracle home in which the RDBMS software is installed, and SQL*Plus

connects to the database through an adapter by specifying the ORACLE_SID
parameter, SQL*Plus is considered a client. Its behavior is ruled by client-side NLS

parameters.

Another example of an application being considered a client occurs when the

middle tier is an application server. The different sessions spawned by the

application server are considered to be separate client sessions.

See Also: Chapter 12, "Customizing Locale Data" for more

information about customizing locale data
1-4 Oracle9i Database Globalization Support Guide

Globalization Support Architecture
When a client application is started, it initializes the client NLS environment from

environment settings. All NLS operations performed locally are executed using

these settings. Examples of local NLS operations are:

■ Display formatting in Oracle Developer applications

■ User OCI code that executes NLS OCI functions with OCI environment handles

When the application connects to a database, a session is created on the server. The

new session initializes its NLS environment from NLS instance parameters specified

in the initialization parameter file. These settings can be subsequently changed by

an ALTER SESSION statement. The statement changes only the session NLS

environment. It does not change the local client NLS environment. The session NLS

settings are used to process SQL and PL/SQL statements that are executed on the

server. For example, use an ALTER SESSION statement to set the NLS_LANGUAGE
initialization parameter to Italian:

ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SET-97 962.5
Urman 07-MAR-98 975
Popp 07-DIC-99 862.5

Note that the month name abbreviations are in Italian.

Immediately after the connection has been established, if the NLS_LANG
environment setting is defined on the client side, then an implicit ALTER SESSION
statement synchronizes the client and session NLS environments.

See Also:

■ Chapter 8, "OCI Programming in a Global Environment"

■ Chapter 3, "Setting Up a Globalization Support Environment"
Overview of Globalization Support 1-5

Globalization Support Features
Using Unicode in a Multilingual Database
Unicode is a universal encoded character set that enables you to store information

in any language, using a single character set. Unicode provides a unique code value

for every character, regardless of the platform, program, or language.

When Unicode is used in an Oracle9i database, it has the following advantages:

■ Simplifies character set conversion and linguistic sort functions

■ Improves performance compared with native multibyte character sets

■ Supports the Unicode datatype based on the Unicode standard

Globalization Support Features
Oracle's standard features include:

■ Language Support

■ Territory Support

■ Date and Time Formats

■ Monetary and Numeric Formats

■ Calendars Feature

■ Linguistic Sorting

■ Character Set Support

■ Character Semantics

■ Customization of Locale and Calendar Data

■ Unicode Support

See Also:

■ Chapter 5, "Supporting Multilingual Databases with Unicode"

■ Chapter 6, "Programming with Unicode"

■ "Enabling Multilingual Support with Unicode Datatypes" on

page 5-8
1-6 Oracle9i Database Globalization Support Guide

Globalization Support Features
Language Support
The Oracle9i database enables you to store, process, and retrieve data in native

languages. The languages that can be stored in an Oracle9i database are all

languages written in scripts that are encoded by Oracle-supported character sets.

Through the use of Unicode databases and datatypes, Oracle9i supports most

contemporary languages.

Additional support is available for a subset of the languages. The Oracle9i database

knows, for example, how to display dates using translated month names or how to

sort text data according to cultural conventions.

When this manual uses the term language support, it refers to the additional

language-dependent functionality (for example, displaying dates or sorting text),

not to the ability to store text of a specific language.

For some of the supported languages, Oracle provides translated error messages

and a translated user interface of the database utilities.

Territory Support
The Oracle9i database supports cultural conventions that are specific to

geographical locations. The default local time format, date format, and numeric and

monetary conventions depend on the local territory setting. By setting different NLS

parameters, the database session can use different cultural settings. For example,

you can set British pound sterling (GBP) as the primary currency and the Japanese

yen (JPY) as the secondary currency for a given database session even when the

territory is defined as AMERICA.

See Also:

■ Chapter 3, "Setting Up a Globalization Support Environment"

■ "Languages" on page A-2 for a complete list of Oracle language

names and abbreviations

■ "Translated Messages" on page A-4 for a list of languages into

which Oracle messages are translated

See Also:

■ Chapter 3, "Setting Up a Globalization Support Environment"

■ "Territories" on page A-5 for a list of territories that are

supported by the Oracle server
Overview of Globalization Support 1-7

Globalization Support Features
Date and Time Formats
Different conventions for displaying the hour, day, month, and year can be handled

in local formats. For example, in the United Kingdom, the date is displayed using

the DD-MON-YYYY format, while Japan commonly uses the YYYY-MM-DD format.

Time zones and daylight saving support are also available.

Monetary and Numeric Formats
Currency, credit, and debit symbols can be represented in local formats. Radix

symbols and thousands separators can be defined by locales. For example, in the

US, the decimal point is a dot (.), while it is a comma (,) in France. Therefore, the

amount $1,234 has different meanings in different countries.

Calendars Feature
Many different calendar systems are in use around the world. Oracle supports

seven different calendar systems: Gregorian, Japanese Imperial, ROC Official

(Republic of China), Thai Buddha, Persian, English Hijrah, and Arabic Hijrah.

Linguistic Sorting
Oracle9i provides linguistic definitions for culturally accurate sorting and case

conversion. The basic definition treats strings as sequences of independent

characters. The extended definition recognizes pairs of characters that should be

treated as special cases.

See Also:

■ Chapter 3, "Setting Up a Globalization Support Environment"

■ Oracle9i SQL Reference

See Also: Chapter 3, "Setting Up a Globalization Support

Environment"

See Also:

■ Chapter 3, "Setting Up a Globalization Support Environment"

■ "Calendar Systems" on page A-25 for a list of supported

calendars
1-8 Oracle9i Database Globalization Support Guide

Globalization Support Features
Strings that are converted to upper case or lower case using the basic definition

always retain their lengths. Strings converted using the extended definition may

become longer or shorter.

Character Set Support
Oracle supports a large number of single-byte, multibyte, and fixed-width encoding

schemes that are based on national, international, and vendor-specific standards.

Character Semantics
Oracle9i introduces character semantics. It is useful for defining the storage

requirements for multibyte strings of varying widths in terms of characters instead

of bytes.

Customization of Locale and Calendar Data
You can customize locale data such as language, character set, territory, or linguistic

sort using the Oracle Locale Builder.

You can customize calendars with the NLS Calendar Utility.

Unicode Support
You can store Unicode characters in an Oracle9i database in two ways:

■ You can create a Unicode database that enables you to store UTF-8 encoded

characters as SQL CHAR datatypes.

See Also: Chapter 4, "Linguistic Sorting"

See Also:

■ Chapter 2, "Choosing a Character Set"

■ "Character Sets" on page A-6 for a list of supported character

sets

See Also: "Length Semantics" on page 2-12

See Also:

■ Chapter 12, "Customizing Locale Data"

■ "Customizing Calendars with the NLS Calendar Utility" on

page 12-17
Overview of Globalization Support 1-9

Globalization Support Features
■ You can support multilingual data in specific columns by using Unicode

datatypes. You can store Unicode characters into columns of the SQL NCHAR
datatypes regardless of how the database character set has been defined. The

NCHAR datatype has been redefined in Oracle9i to be an exclusively Unicode

datatype.

See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode"
1-10 Oracle9i Database Globalization Support Guide

Choosing a Charact
2

Choosing a Character Set

This chapter explains how to choose a character set. It includes the following topics:

■ Character Set Encoding

■ Length Semantics

■ Choosing an Oracle Database Character Set

■ Changing the Character Set After Database Creation

■ Monolingual Database Scenario

■ Multilingual Database Scenarios
er Set 2-1

Character Set Encoding
Character Set Encoding
When computer systems process characters, they use numeric codes instead of the

graphical representation of the character. For example, when the database stores the

letter A, it actually stores a numeric code that is interpreted by software as the letter.

These numeric codes are especially important in a global environment because of

the potential need to convert data between different character sets.

This section includes the following topics:

■ What is an Encoded Character Set?

■ Which Characters Are Encoded?

■ What Characters Does a Character Set Support?

■ How are Characters Encoded?

■ Naming Convention for Oracle Character Sets

What is an Encoded Character Set?
You specify an encoded character set when you create a database. Choosing a

character set determines what languages can be represented in the database. It also

affects:

■ How you create the database schema

■ How you develop applications that process character data

■ How the database works with the operating system

■ Performance

A group of characters (for example, alphabetic characters, ideographs, symbols,

punctuation marks, and control characters) can be encoded as a character set. An

encoded character set assigns unique numeric codes to each character in the

character repertoire. The numeric codes are called code points or encoded values.

Table 2–1 shows examples of characters that have been assigned a numeric code

value in the ASCII character set.

Table 2–1 Encoded Characters in the ASCII Character Set

Character Description Code Value

! Exclamation Mark 21

Number Sign 23
2-2 Oracle9i Database Globalization Support Guide

Character Set Encoding
The computer industry uses many encoded character sets. Character sets differ in

the following ways:

■ The number of characters available

■ The available characters (the character repertoire)

■ The scripts used for writing and the languages they represent

■ The code values assigned to each character

■ The encoding scheme used to represent a character

Oracle supports most national, international, and vendor-specific encoded character

set standards.

Which Characters Are Encoded?
The characters that are encoded in a character set depend on the writing systems

that are represented. A writing system can be used to represent a language or group

of languages.Writing systems can be classified into two categories:

■ Phonetic Writing Systems

■ Ideographic Writing Systems

$ Dollar Sign 24

1 Number 1 31

2 Number 2 32

3 Number 3 33

A Uppercase A 41

B Uppercase B 42

C Uppercase C 43

a Lowercase a 61

b Lowercase b 62

c Lowercase c 63

See Also: Appendix A, "Locale Data" for a complete list of

character sets that are supported by Oracle

Table 2–1 Encoded Characters in the ASCII Character Set (Cont.)

Character Description Code Value
Choosing a Character Set 2-3

Character Set Encoding
This section also includes the following topics:

■ Punctuation, Control Characters, Numbers, and Symbols

■ Writing Direction

Phonetic Writing Systems
Phonetic writing systems consist of symbols that represent different sounds

associated with a language. Greek, Latin, Cyrillic, and Devanagari are all examples

of phonetic writing systems based on alphabets. Note that alphabets can represent

more than one language. For example, the Latin alphabet can represent many

Western European languages such as French, German, and English.

Characters associated with a phonetic writing system can typically be encoded in

one byte because the character repertoire is usually smaller than 256 characters.

Ideographic Writing Systems
Ideographic writing systems consist of ideographs or pictographs that represent the

meaning of a word, not the sounds of a language. Chinese and Japanese are

examples of ideographic writing systems that are based on tens of thousands of

ideographs. Languages that use ideographic writing systems may also use a

syllabary. Syllabaries provide a mechanism for communicating additional phonetic

information. For instance, Japanese has two syllabaries: Hiragana, normally used

for grammatical elements, and Katakana, normally used for foreign and

onomatopoeic words.

Characters associated with an ideographic writing system typically must be

encoded in more than one byte because the character repertoire has tens of

thousands of characters.

Punctuation, Control Characters, Numbers, and Symbols
In addition to encoding thescript of a language, other special characters need to be

encoded:

■ Punctuation marks such as commas, periods, and apostrophes

■ Numbers

■ Special symbols such as currency symbols and math operators

■ Control characters such as carriage returns and tabs
2-4 Oracle9i Database Globalization Support Guide

Character Set Encoding
Writing Direction
Most Western languages are written left to right from the top to the bottom of the

page. East Asian languages are usually written top to bottom from the right to the

left of the page, although exceptions are frequently made for technical books

translated from Western languages. Arabic and Hebrew are written right to left

from the top to the bottom.

Numbers reverse direction in Arabic and Hebrew. Although the text is written right

to left, numbers within the sentence are written left to right. For example, "I wrote

32 books" would be written as "skoob 32 etorw I". Regardless of the writing

direction, Oracle stores the data in logical order. Logical order means the order that

is used by someone typing a language, not how it looks on the screen.

Writing direction does not affect the encoding of a character.

What Characters Does a Character Set Support?
Different character sets support different character repertoires. Because character

sets are typically based on a particular writing script, they can support more than

one language. When character sets were first developed in the United States, they

had a limited character repertoire. Even now there can be problems using certain

characters across platforms. The following CHAR and VARCHAR characters are

represented in all Oracle database character sets and can be transported to any

platform:

■ Uppercase and lowercase English characters A through Z and a through z

■ Arabic digits 0 through 9

■ The following punctuation marks: % ‘ ' () * + - , . / \ : ; < > = ! _ & ~ { } | ^ ? $ #

@ " []

■ The following control characters: space, horizontal tab, vertical tab, form feed

If you are using characters outside this set, then take care that your data is

supported in the database character set that you have chosen.

Setting the NLS_LANG initialization parameter properly is essential to proper data

conversion. The character set that is specified by the NLS_LANG initialization

parameter should reflect the setting for the client operating system. Setting NLS_
LANG correctly enables proper conversion from the client operating system code

page to the database character set. When these settings are the same, Oracle

assumes that the data being sent or received is encoded in the same character set as

the database character set, so no validation or conversion is performed. This can

lead to corrupt data if conversions are necessary.
Choosing a Character Set 2-5

Character Set Encoding
During conversion from one character set to another, Oracle expects data to be

encoded in the character set specified by the NLS_LANG initialization parameter. If

you put other values into the string (for example, by using the CHR or CONVERT
SQL functions), then the values may be corrupted when they are sent to the

database because they are not converted properly. If you have configured the

environment correctly and if the database character set supports the entire

repertoire of character data that may be input into the database, then you do not

need to change the current database character set. However, if your enterprise

becomes more global and you have additional characters or new languages to

support, then you may need to choose a character set with a greater character

repertoire. Oracle Corporation recommends that you use Unicode databases and

datatypes in these cases.

ASCII Encoding
The ASCII and EBCDIC character sets support a similar character repertoire, but

assign different code values to some of the characters. Table 2–2 shows how ASCII

is encoded. Row and column headings denote hexadecimal digits. To find the

encoded value of a character, read the column number followed by the row number.

For example, the value of the character A is 0x41.

See Also:

■ Chapter 5, "Supporting Multilingual Databases with Unicode"

■ Oracle9i SQL Reference for more information about the CHR and

CONVERT SQL functions

■ "Displaying a Code Chart with the Oracle Locale Builder" on

page 12-18

Table 2–2 7-Bit ASCII Character Set

- 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ' p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v
2-6 Oracle9i Database Globalization Support Guide

Character Set Encoding
Character sets have evolved to meet the needs of users around the world. New

character sets have been created to support languages besides English. Typically,

these new character sets support a group of related languages based on the same

script. For example, the ISO 8859 character set series was created to support

different European languages. Table 2–3 shows the languages that are supported by

the ISO 8859 character sets.

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 TAB EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

Table 2–2 7-Bit ASCII Character Set (Cont.)

- 0 1 2 3 4 5 6 7
Choosing a Character Set 2-7

Character Set Encoding
Character sets evolved and provided restricted multilingual support. They were

restricted in the sense that they were limited to groups of languages based on

similar scripts. More recently, universal character sets have been regarded as a more

useful solution to multilingual support. Unicode is one such universal character set

that encompasses most major scripts of the modern world. The Unicode character

set supports more than 94,000 characters.

Table 2–3 lSO 8859 Character Sets

Standard Languages Supported

ISO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Faeroese,
Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian, Latin, Luxemburgish,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish)

ISO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian, Latin, Polish,
Romanian, Slovak, Slovenian, Serbian)

ISO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, Turkish)

ISO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic, Latin,
Latvian, Lithuanian, Norwegian, Sámi, Slovenian, Swedish)

ISO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian, Russian, Serbian,
Ukrainian)

ISO 8859-6 Arabic

ISO 8859-7 Greek

ISO 8859-8 Hebrew

ISO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish, Dutch, English,
Finnish, French, Frisian, Galician, German, Greenlandic, Irish Gaelic, Italian, Latin,
Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish,
Swedish, Turkish)

ISO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German, Greenlandic,
Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sámi, Slovenian, Swedish)

ISO 8859-13 Baltic Rim (English, Estonian, Finnish, Latin, Latvian, Norwegian)

ISO 8859-14 Celtic (Albanian, Basque, Breton, Catalan, Cornish, Danish, English, Galician, German,
Greenlandic, Irish Gaelic, Italian, Latin, Luxemburgish, Manx Gaelic, Norwegian,
Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish, Welsh)

ISO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Estonian,
Faroese, Finnish, French, Frisian, Galician, German, Greenlandic, Icelandic, Irish Gaelic,
Italian, Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic,
Spanish, Swedish)
2-8 Oracle9i Database Globalization Support Guide

Character Set Encoding
How are Characters Encoded?
Different types of encoding schemes have been created by the computer industry.

The character set you choose affects what kind of encoding scheme is used. This is

important because different encoding schemes have different performance

characteristics. These characteristics can influence your database schema and

application development. The character set you choose uses one of the following

types of encoding schemes:

■ Single-Byte Encoding Schemes

■ Multibyte Encoding Schemes

Single-Byte Encoding Schemes
Single-byte encoding schemes are the most efficient encoding schemes available.

They take up the least amount of space to represent characters and are easy to

process and program with because one character can be represented in one byte.

Single-byte encoding schemes are classified as one of the following:

■ 7-bit encoding schemes

Single-byte 7-bit encoding schemes can define up to 128 characters and

normally support just one language. One of the most common single-byte

character sets, used since the early days of computing, is ASCII (American

Standard Code for Information Interchange).

■ 8-bit encoding schemes

Single-byte 8-bit encoding schemes can define up to 256 characters and often

support a group of related languages. One example is ISO 8859-1, which

supports many Western European languages. Figure 2–1 illustrates a typical

8-bit encoding scheme.

See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode"
Choosing a Character Set 2-9

Character Set Encoding
Figure 2–1 8-Bit Encoding Scheme

Multibyte Encoding Schemes
Multibyte encoding schemes are needed to support ideographic scripts used in

Asian languages like Chinese or Japanese because these languages use thousands of

characters. These encoding schemes use either a fixed number or a variable number

of bytes to represent each character.

■ Fixed-width multibyte encoding schemes

In a fixed-width multibyte encoding scheme, each character is represented by a

fixed number of bytes. The number of bytes is at least two in a multibyte

encoding scheme.

■ Variable-width multibyte encoding schemes

A variable-width encoding scheme uses one or more bytes to represent a single

character. Some multibyte encoding schemes use certain bits to indicate the

number of bytes that represents a character. For example, if two bytes is the

maximum number of bytes used to represent a character, the most significant

bit can be used to indicate whether that byte is a single-byte character or the

first byte of a double-byte character.

■ Shift-sensitive variable-width multibyte encoding schemes
2-10 Oracle9i Database Globalization Support Guide

Character Set Encoding
Some variable-width encoding schemes use control codes to differentiate

between single-byte and multibyte characters with the same code values. A

shift-out code indicates that the following character is multibyte. A shift-in code

indicates that the following character is single-byte. Shift-sensitive encoding

schemes are used primarily on IBM platforms. Note that ISO-2022 character sets

cannot be used as database character sets, but they can be used for applications

such as a mail server.

Naming Convention for Oracle Character Sets
Oracle uses the following naming convention for character set names:

<language or region><number of bits representing a character><standard character
set name>[S | C]

The optional S or C is used to differentiate character sets that can be used only on

the server (S) or only on the client (C).

The following are examples of Oracle character set names.

Note: UTF8 and UTFE are exceptions to the naming convention.

Note: Use the server character set (S) on the Macintosh platform.

The Macintosh client character sets are obsolete. On EBCDIC

platforms, use the server character set (S) on the server and the

client character set (C) on the client.

Oracle
Character Set
Name Description Region

Number of
Bits Used to
Represent a
Character

Standard
Character Set
Name

US7ASCII U.S. 7-bit ASCII US 7 ASCII

WE8ISO8859P1 Western European 8-bit
ISO 8859 Part 1

WE
(Western
Europe)

8 ISO8859 Part 1

JA16SJIS Japanese 16-bit Shifted
Japanese Industrial
Standard

JA 16 SJIS
Choosing a Character Set 2-11

Length Semantics
Length Semantics
In single-byte character sets, the number of bytes and the number of characters in a

string are the same. In multibyte character sets, a character or code unit consists of

one or more bytes. Calculating the number of characters based on byte lengths can

be difficult in a variable-width character set. Calculating column lengths in bytes is

called byte semantics, while measuring column lengths in characters is called

character semantics.

Oracle9i introduces character semantics. It is useful for defining the storage

requirements for multibyte strings of varying widths. For example, in a Unicode

database (AL32UTF8), suppose that you need to define a VARCHAR2 column that

can store up to five Chinese characters together with five English characters. Using

byte semantics, this column requires 15 bytes for the Chinese characters, which are

three bytes long, and 5 bytes for the English characters, which are one byte long, for

a total of 20 bytes. Using character semantics, the column requires 10 characters.

The following expressions use byte semantics:

■ VARCHAR2(20 BYTE)

■ SUBSTRB(string , 1, 20)

Note the BYTE qualifier in the VARCHAR2 expression and the B suffix in the SQL

function name.

The following expressions use character semantics:

■ VARCHAR2(10 CHAR)

■ SUBSTR(string , 1, 10)

Note the CHAR qualifier in the VARCHAR2 expression.

The NLS_LENGTH_SEMANTICS initialization parameter determines whether a new

column of character datatype uses byte or character semantics. The default value of

the parameter is BYTE. The BYTE and CHAR qualifiers shown in the VARCHAR2
definitions should be avoided when possible because they lead to mixed-semantics

databases. Instead, set NLS_LENGTH_SEMANTICSin the initialization parameter file

and define column datatypes to use the default semantics based on the value of

NLS_LENGTH_SEMANTICS.

Byte semantics is the default for the database character set. Character length

semantics is the default and the only allowable kind of length semantics for NCHAR
datatypes. The user cannot specify the CHAR or BYTE qualifier for NCHAR
definitions.
2-12 Oracle9i Database Globalization Support Guide

Length Semantics
Consider the following example:

CREATE TABLE emp
(empno NUMBER(4)
, ename NVARCHAR2(10)
, job NVARCHAR2(9)
, mgr NUMBER(4)
, hiredate DATE
, sal NUMBER(7,2)
, deptno NUMBER(2)
) ;

When the NCHAR character set is AL16UTF16, ename can hold up to 10 Unicode

code units. When the NCHAR character set is AL16UTF16, ename can hold up to 20

bytes.

Figure 2–2 shows the number of bytes needed to store different kinds of characters

in the UTF-8 character set. The ASCII characters requires one byte, the Latin and

Greek characters require two bytes, the Asian character requires three bytes, and the

supplementary character requires four bytes of storage.

Figure 2–2 Bytes of Storage for Different Kinds of Characters

Greek

Asian

ASCII

ASCII
Latin

ASCII

Latin

Supplementary character

Characters

Byte Storage
for UTF-8

63 C3 91 74 E4 BA 9C F0 9D 84 9E 64 C3 B6 D0 A4

1
byte

2
bytes

1
byte

3
bytes

4
bytes

1
byte

2
bytes

2
bytes
Choosing a Character Set 2-13

Choosing an Oracle Database Character Set
Choosing an Oracle Database Character Set
Oracle uses the database character set for:

■ Data stored in SQL CHAR datatypes (CHAR, VARCHAR2, CLOB, and LONG)

■ Identifiers such as table names, column names, and PL/SQL variables

■ Entering and storing SQL and PL/SQL source code

The character encoding scheme used by the database is defined as part of the

CREATE DATABASE statement. All SQL CHAR datatype columns (CHAR, CLOB,
VARCHAR2, and LONG), including columns in the data dictionary, have their data

stored in the database character set. In addition, the choice of database character set

determines which characters can name objects in the database. SQL NCHARdatatype

columns (NCHAR, NCLOB, and NVARCHAR2) use the national character set.

After the database is created, you cannot change the character sets, with some

exceptions, without re-creating the database.

Consider the following questions when you choose an Oracle character set for the

database:

■ What languages does the database need to support now?

■ What languages will the database need to support in the future?

See Also:

■ "SQL Functions for Different Length Semantics" on page 7-6 for

more information about the SUBSTR and SUBSTRB functions

■ "Length Semantics" on page 3-42 for more information about

the NLS_LENGTH_SEMANTICS initialization parameter

■ Chapter 5, "Supporting Multilingual Databases with Unicode"

for more information about Unicode and the NCHAR datatype

■ Oracle9i SQL Reference for more information about the SUBSTRB
and SUBSTR functions and the BYTE and CHAR qualifiers for

character datatypes

Note: CLOB data is encoded as UCS-2 if the database character set

is multibyte. If the database character set is single-byte, then CLOB

data is stored in the database character set.
2-14 Oracle9i Database Globalization Support Guide

Choosing an Oracle Database Character Set
■ Is the character set available on the operating system?

■ What character sets are used on clients?

■ How well does the application handle the character set?

■ What are the performance implications of the character set?

■ What are the restrictions associated with the character set?

The Oracle character sets are listed in Appendix A, "Locale Data". They are named

according to the languages and regions in which they are used. Some character sets

that are named for a region are also listed explicitly by language.

If you want to see the characters that are included in a character set, then:

■ Check national, international, or vendor product documentation or standards

documents

■ Use Oracle Locale Builder

This section contains the following topics:

■ Current and Future Language Requirements

■ Client Operating System and Application Compatibility

■ Character Set Conversion Between Clients and the Server

■ Performance Implications of Choosing a Database Character Set

■ Restrictions on Database Character Sets

■ Choosing a National Character Set

■ Summary of Supported Datatypes

See Also:

■ "UCS-2 Encoding" on page 5-4

■ "Choosing a National Character Set" on page 2-18

■ "Changing the Character Set After Database Creation" on

page 2-20

■ Appendix A, "Locale Data"

■ Chapter 12, "Customizing Locale Data"
Choosing a Character Set 2-15

Choosing an Oracle Database Character Set
Current and Future Language Requirements
Several character sets may meet your current language requirements. Consider

future language requirements when you choose a database character set. If you

expect to support additional languages in the future, then choose a character set

that supports those languages to prevent the need to migrate to a different character

set later.

Client Operating System and Application Compatibility
The database character set is independent of the operating system because Oracle

has its own globalization architecture. For example, on an English Windows

operating system, you can create and run a database with a Japanese character set.

However, when the client operating system accesses the database, the client

operating system must be able to support the database character set with

appropriate fonts and input methods. For example, you cannot insert or retrieve

Japanese data on the English Windows operating system without first installing a

Japanese font and input method. Another way to insert and retrieve Japanese data

is to use a Japanese operating system remotely to access the database server.

Character Set Conversion Between Clients and the Server
If you choose a database character set that is different from the character set on the

client operating system, then the Oracle database can convert the operating system

character set to the database character set. Character set conversion has the

following disadvantages:

■ Increased overhead

■ Potential data loss

Character set conversions can sometimes cause data loss. For example, if you are

converting from character set A to character set B, then the destination character set

B must have the same character set repertoire as A. Any characters that are not

available in character set B are converted to a replacement character. The

replacement character is often specified as a question mark or as a linguistically

related character. For example, ä (a with an umlaut) may be converted to a. If you

have distributed environments, consider using character sets with similar character

repertoires to avoid loss of data.

Character set conversion may require copying strings between buffers several times

before the data reaches the client. The database character set should always be a

superset or equivalent of the native character set of the client's operating system.
2-16 Oracle9i Database Globalization Support Guide

Choosing an Oracle Database Character Set
The character sets used by client applications that access the database usually

determine which superset is the best choice.

If all client applications use the same character set, then that character set is usually

the best choice for the database character set. When client applications use different

character sets, the database character set should be a superset of all the client

character sets. This ensures that every character is represented when converting

from a client character set to the database character set.

Performance Implications of Choosing a Database Character Set
For best performance, choose a character set that avoids character set conversion

and uses the most efficient encoding for the languages desired. Single-byte

character sets result in better performance than multibyte character sets, and they

also are the most efficient in terms of space requirements. However, single-byte

character sets limit how many languages you can support.

Restrictions on Database Character Sets
ASCII-based character sets are supported only on ASCII-based platforms. Similarly,

you can use an EBCDIC-based character set only on EBCDIC-based platforms.

The database character set is used to identify SQL and PL/SQL source code. In

order to do this, it must have either EBCDIC or 7-bit ASCII as a subset, whichever is

native to the platform. Therefore, it is not possible to use a fixed-width, multibyte

character set as the database character set. Currently, only the AL16UTF16 character

set cannot be used as a database character set.

Restrictions on Character Sets Used to Express Names
Table 2–4 lists the restrictions on the character sets that can be used to express

names.

See Also: Chapter 10, "Character Set Migration"

Table 2–4 Restrictions on Character Sets Used to Express Names

Name Single-Byte
Variable
Width Comments

column names Yes Yes -

schema objects Yes Yes -

comments Yes Yes -
Choosing a Character Set 2-17

Choosing an Oracle Database Character Set
For a list of supported string formats and character sets, including LOB data (LOB,

BLOB, CLOB, and NCLOB), see Table 2–6 on page 2-19.

Choosing a National Character Set
A national character set is an alternate character set that enables you to store

Unicode character data in a database that does not have a Unicode database

character set. Other reasons for choosing a national character set are:

■ The properties of a different character encoding scheme may be more desirable

for extensive character processing operations

■ Programming in the national character set is easier

SQL NCHAR, NVARCHAR2, and NCLOB datatypes have been redefined to support

Unicode data only. You can store the data in either UTF-8 or UTF-16 encodings.

database link names Yes No -

database names Yes No -

file names (datafile, log file, control
file, initialization parameter file)

Yes No -

instance names Yes No -

directory names Yes No -

keywords Yes No Can be expressed in
English ASCII or EBCDIC
characters only

Recovery Manager file names Yes No -

rollback segment names Yes No The ROLLBACK_SEGMENTS
parameter does not support
NLS

stored script names Yes Yes -

tablespace names Yes No -

See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode"

Table 2–4 Restrictions on Character Sets Used to Express Names (Cont.)

Name Single-Byte
Variable
Width Comments
2-18 Oracle9i Database Globalization Support Guide

Choosing an Oracle Database Character Set
Summary of Supported Datatypes
Table 2–5 lists the datatypes that are supported for different encoding schemes.

Table 2–6 lists the SQL datatypes that are supported for abstract datatypes.

You can create an abstract datatype with the NCHAR attribute as follows:

SQL> CREATE TYPE tp1 AS OBJECT (a NCHAR(10));
Type created.
SQL> CREATE TABLE t1 (a tp1);
Table created.

Table 2–5 SQL Datatypes Supported for Encoding Schemes

Datatype Single Byte Multibyte Non-Unicode Multibyte Unicode

CHAR Yes Yes Yes

VARCHAR2 Yes Yes Yes

NCHAR No No Yes

NVARCHAR2 No No Yes

BLOB Yes Yes Yes

CLOB Yes Yes Yes

LONG Yes Yes Yes

NCLOB No No Yes

Note: BLOBs process characters as a series of byte sequences.

The data is not subject to any NLS-sensitive operations.

Table 2–6 Abstract Datatype Support for SQL Datatypes

Abstract Datatype CHAR NCHAR BLOB CLOB NCLOB

Object Yes Yes Yes Yes Yes

Collection Yes Yes Yes Yes Yes

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information about objects and collections
Choosing a Character Set 2-19

Changing the Character Set After Database Creation
Changing the Character Set After Database Creation
You may wish to change the database character set after the database has been

created. For example, you may find that the number of languages that need to be

supported in your database has increased. In most cases, you need to do a full

export/import to properly convert all data to the new character set. However, if,

and only if, the new character set is a strict superset of the current character set, it is

possible to use the ALTER DATABASE CHARACTER SET statement to expedite the

change in the database character set.

Monolingual Database Scenario
The simplest example of a database configuration is a client and a server that run in

the same language environment and use the same character set. This monolingual

scenario has the advantage of fast response because the overhead associated with

character set conversion is avoided. Figure 2–3 shows a database server and a client

that use the same character set.

Figure 2–3 Monolingual Database Scenario

The Japanese client and the server both use the JA16EUC character set.

You can also use a multitier architecture. Figure 2–4 shows an application server

between the database server and the client. The application server and the database

server use the same character set in a monolingual scenario.

See Also:

■ Chapter 10, "Character Set Migration"

■ Oracle9i Database Migration for more information about

exporting and importing data

■ Oracle9i SQL Reference for more information about the ALTER
DATABASE CHARACTER SET statement

Unix
(JA16EUC)

Japanese
Server

(JA16EUC)
2-20 Oracle9i Database Globalization Support Guide

Monolingual Database Scenario
Figure 2–4 Multitier Monolingual Database Scenario

The server, the application server, and the client use the JA16EUC character set.

Character Set Conversion in a Monolingual Scenario
Character set conversion may be required in a client/server environment if a client

application resides on a different platform than the server and if the platforms do

not use the same character encoding schemes. Character data passed between client

and server must be converted between the two encoding schemes. Character

conversion occurs automatically and transparently via Oracle Net.

You can convert between any two character sets. Figure 2–5 shows a server and one

client with the JA16EUC Japanese character set. The other client uses the JA16SJIS

Japanese character set.

BrowserJapanese
Server

(JA16EUC)

Application
Server

(JA16EUC)
Choosing a Character Set 2-21

Monolingual Database Scenario
Figure 2–5 Character Set Conversion

When a target character set does not contain all of the characters in the source data,

replacement characters are used. If, for example, a server uses US7ASCII and a

German client uses WE8ISO8859P1, the German character ß is replaced with ? and

ä is replaced with a.

Replacement characters may be defined for specific characters as part of a character

set definition. When a specific replacement character is not defined, a default

replacement character is used. To avoid the use of replacement characters when

converting from a client character set to a database character set, the server

character set should be a superset of all the client character sets.

Figure 2–6 shows that data loss occurs when the database character set does not

include all of the characters in the client character set.

Unix
(JA16EUC)

Windows
(JA16SJIS)

Character
Conversion

Japanese
Server

(JA16EUC)
2-22 Oracle9i Database Globalization Support Guide

Multilingual Database Scenarios
Figure 2–6 Data Loss During Character Conversion

The database character set is US7ASCII. The client’s character set is

WE8MSWIN1252, and the language used by the client is German. When the client

inserts a string that contains ß, the database replaces ß with ?, resulting in lost data.

If German data is expected to be stored on the server, then a database character set

that supports German characters should be used for both the server and the client

to avoid data loss and conversion overhead.

When one of the character sets is a variable-width multibyte character set,

conversion can introduce noticeable overhead. Carefully evaluate your situation

and choose character sets to avoid conversion as much as possible.

Multilingual Database Scenarios
Multilingual support can be restricted or unrestricted. This section contains the

following topics:

■ Restricted Multilingual Support

■ Unrestricted Multilingual Support

German
Windows

(WE8MSWIN1252)

Character
Conversion

American
Database

Server
(US7ASCII)

?

Choosing a Character Set 2-23

Multilingual Database Scenarios
Restricted Multilingual Support
Some character sets support multiple languages because they have related writing

systems or scripts. For example, the WE8ISO8859P1 Oracle character set supports

the following Western European languages:

Catalan

Danish

Dutch

English

Finnish

French

German

Icelandic

Italian

Norwegian

Portuguese

Spanish

Swedish

These languages all use a Latin-based writing script.

When you use a character set that supports a group of languages, your database has

restricted multilingual support.

Figure 2–7 shows a Western European server that used the WE8ISO8850P1 Oracle

character set, a French client that uses the same character set as the server, and a

German client that uses the WE8DEC character set. The German client requires

character conversion because it is using a different character set than the server.
2-24 Oracle9i Database Globalization Support Guide

Multilingual Database Scenarios
Figure 2–7 Restricted Multilingual Support

Unrestricted Multilingual Support
If you need unrestricted multilingual support, use a universal character set such as

Unicode for the server database character set. Unicode has two major encoding

schemes:

■ UTF-16: Each character is either 2 or 4 bytes long.

■ UTF-8: Each character takes 1 to 4 bytes to store.

The Oracle9i database provides support for UTF-8 as a database character set and

both UTF-8 and UTF-16 as national character sets.

Character set conversion between a UTF-8 database and any single-byte character

set introduces very little overhead.

Conversion between UTF-8 and any multibyte character set has some overhead.

There is no data loss from conversion with the following exceptions:

■ Some multibyte character sets do not support user-defined characters during

character set conversion to and from UTF-8.

■ Some Unicode characters are mapped to more than character in another

character set. For example, one Unicode character is mapped to three characters

German
(WE8DEC)

French
(WE8ISO8859P1)

Western
European

Server

Character
Conversion

(WE8ISO8859P1)
Choosing a Character Set 2-25

Multilingual Database Scenarios
in the JA16SJIS character set. This means that a round-trip conversion may not

result in the original JA16SJIS character.

Figure 2–8 shows a server that uses the AL32UTF8 Oracle character set that is based

on the Unicode UTF-8 character set.

Figure 2–8 Unrestricted Multilingual Support Scenario in a Client/Server
Configuration

There are four clients:

■ A French client that uses the WE8ISO8859P1 Oracle character set

■ A German client that uses the WE8DEC character set

■ A Japanese client that uses the JA16EUC character set

Japanese
Client

(JA16SJIS)

German
Client

(WE8DEC)

French
Client

(WE8ISO8859P1)

Japanese
Client

(JA16EUC)

Character
Conversion

Character
Conversion

Character
Conversion

Character
Conversion

Unicode
Database

(UTF8)
2-26 Oracle9i Database Globalization Support Guide

Multilingual Database Scenarios
■ A Japanese client that used the JA16SJIS character set

Character conversion takes place between each client and the server, but there is no

data loss because AL32UTF8 is a universal character set. If the German client tries to

retrieve data from one of the Japanese clients, all of the Japanese characters in the

data are lost during the character set conversion.

Figure 2–9 shows a Unicode solution for a multitier configuration.

Figure 2–9 Multitier Unrestricted Multilingual Support Scenario in a Multitier
Configuration

The database, the application server, and each client use the AL32UTF8 character

set. This eliminates the need for character conversion even though the clients are

French, German, and Japanese.

See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode"

Browser

German
Client

Browser

Japanese
Client

Browser

French
Client

Unicode
Database

(UTF8)

Application
Server
(UTF8)

UTF8

UTF8

UTF8
Choosing a Character Set 2-27

Multilingual Database Scenarios
2-28 Oracle9i Database Globalization Support Guide

Setting Up a Globalization Support Environ
3

Setting Up a Globalization Support

Environment

This chapter tells how to set up a globalization support environment. It includes the

following topics:

■ Setting NLS Parameters

■ Choosing a Locale with the NLS_LANG Environment Variable

■ NLS Database Parameters

■ Language and Territory Parameters

■ Date and Time Parameters

■ Calendar Definitions

■ Numeric Parameters

■ Monetary Parameters

■ Linguistic Sort Parameters

■ Character Set Conversion Parameter

■ Length Semantics
ment 3-1

Setting NLS Parameters
Setting NLS Parameters
NLS parameters determine the locale-specific behavior on both the client and the

server. NLS parameters can be specified in the following ways:

■ As initialization parameters on the server

You can include parameters in the initialization parameter file to specify a

default session NLS environment. These settings have no effect on the client

side; they control only the server's behavior. For example:

NLS_TERRITORY = "CZECH REPUBLIC"

■ As environment variables on the client

You can use NLS parameters to specify locale-dependent behavior for the client

and also to override the default values set for the session in the initialization

parameter file. For example, on a UNIX system:

% setenv NLS_SORT FRENCH

■ With the ALTER SESSION statement

NLS parameters that are set in an ALTER SESSION statement can be used to

override the default values that are set for the session in the initialization

parameter file or set by the client with environment variables.

ALTER SESSION SET NLS_SORT = FRENCH;

■ In SQL functions

NLS parameters can be used explicitly to hardcode NLS behavior within a SQL

function. Doing so will override the default values that are set for the session in

the initialization parameter file, set for the client with environment variables, or

set for the session by the ALTER SESSION statement. For example:

TO_CHAR(hiredate, 'DD/MON/YYYY', 'nls_date_language = FRENCH')

Table 3–1 shows the precedence order of the different methods of setting NLS

parameters. Higher priority settings override lower priority settings. For example, a

See Also: Oracle9i SQL Reference for more information about the

ALTER SESSION statement

See Also: Oracle9i SQL Reference for more information about SQL

functions, including the TO_CHAR function
3-2 Oracle9i Database Globalization Support Guide

Setting NLS Parameters
default value has the lowest priority and can be overridden by any other method.

Another example is that setting an NLS parameter within a SQL function overrides

all other methods of setting NLS parameters.

Table 3–2 lists the NLS parameters available with the Oracle server.

Table 3–1 Methods of Setting NLS Parameters and Their Priorities

Priority Method

1 (highest) Explicitly set in SQL functions

2 Set by an ALTER SESSION statement

3 Set as an environment variable

4 Specified in the initialization parameter file

5 Default

Table 3–2 NLS Parameters

Parameter Description Default

Scope:

I = Initialization Parameter File
E = Environment Variable
A = ALTER SESSION

NLS_CALENDAR Calendar system Gregorian I, E, A

NLS_COMP SQL, PL/SQL operator
comparison

BINARY I, E, A

NLS_CREDIT Credit accounting symbol Derived from
NLS_TERRITORY

 E

NLS_CURRENCY Local currency symbol Derived from
NLS_TERRITORY

I, E, A

NLS_DATE_FORMAT Date format Derived from
NLS_TERRITORY

I, E, A

NLS_DATE_LANGUAGE Language for day and
month names

Derived from
NLS_LANGUAGE

I, E, A

NLS_DEBIT Debit accounting symbol Derived from
NLS_TERRITORY

E

NLS_ISO_CURRENCY ISO international currency
symbol

Derived from
NLS_TERRITORY

I, E, A
Setting Up a Globalization Support Environment 3-3

Choosing a Locale with the NLS_LANG Environment Variable
Choosing a Locale with the NLS_LANG Environment Variable
A locale is a linguistic and cultural environment in which a system or program is

running. Setting the NLS_LANG environment parameter is the simplest way to

specify locale behavior. It sets the language and territory used by the client

NLS_LANG

See Also: "Choosing a
Locale with the NLS_LANG
Environment Variable" on
page 3-4

Language, territory,
character set

AMERICAN_
AMERICA.
US7ASCII

 E

NLS_LANGUAGE Language Derived from
NLS_LANG

I, A

NLS_LENGTH_SEMANTICS How strings are treated BYTE I, A

NLS_LIST_SEPARATOR Character that separates
items in a list

Derived from
NLS_TERRITORY

E

NLS_MONETARY_
CHARACTERS

Monetary symbol for
dollar and cents (or their
equivalents)

Derived from
NLS_TERRITORY

E

NLS_NCHAR_CONV_EXCP Reports data loss during a
character type conversion

FALSE I, A

NLS_NUMERIC_
CHARACTERS

Decimal character and
group separator

Derived from
NLS_TERRITORY

I, E, A

NLS_SORT Character sort sequence Derived from
NLS_LANGUAGE

I, E, A

NLS_TERRITORY Territory Derived from
NLS_LANG

I, A

NLS_TIMESTAMP_FORMAT Timestamp Derived from
NLS_TERRITORY

I, E, A

NLS_TIMESTAMP_TZ_
FORMAT

Timestamp with time zone Derived from
NLS_TERRITORY

I, E, A

NLS_DUAL_CURRENCY Dual currency symbol Derived from
NLS_TERRITORY

I, E, A

Table 3–2 NLS Parameters (Cont.)

Parameter Description Default

Scope:

I = Initialization Parameter File
E = Environment Variable
A = ALTER SESSION
3-4 Oracle9i Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable
application. It also sets the client’s character set, which is the character set for data

entered or displayed by a client program.

The NLS_LANG parameter has three components: language, territory, and character

set. Specify it in the following format, including the punctuation:

NLS_LANG = language_territory.charset

For example, if the Oracle Installer does not populate NLS_LANG, then its value is

AMERICAN_AMERICA.US7ASCII. The language is AMERICAN, the territory is

AMERICA, and the character set is US7ASCII .

Each component of the NLS_LANG parameter controls the operation of a subset of

globalization support features:

■ language

Specifies conventions such as the language used for Oracle messages, sorting,

day names, and month names. Each supported language has a unique name; for

example, AMERICAN, FRENCH, or GERMAN. The language argument specifies

default values for the territory and character set arguments. If the language is

not specified, then the value defaults to AMERICAN.

■ territory

Specifies conventions such as the default date, monetary, and numeric formats.

Each supported territory has a unique name; for example, AMERICA, FRANCE,
or CANADA. If the territory is not specified, then the value is derived from the

language value.

■ charset

Specifies the character set used by the client application (normally that of the

user's terminal). Each supported character set has a unique acronym, for

example, US7ASCII , WE8ISO8859P1, WE8DEC, WE8MSWIN1252, or JA16EUC.

Each language has a default character set associated with it.

Note: All components of the NLS_LANG definition are optional;

any item left out will default. If you specify territory or character

set, you must include the preceding delimiter [underscore (_) for

territory, period (.) for character set]. Otherwise, the value will be

parsed as a language name.
Setting Up a Globalization Support Environment 3-5

Choosing a Locale with the NLS_LANG Environment Variable
The three arguments of NLS_LANG can be specified in many combinations, as in the

following examples:

NLS_LANG = AMERICAN_AMERICA.WE8MSWIN1252

NLS_LANG = FRENCH_CANADA.WE8DEC

NLS_LANG = JAPANESE_JAPAN.JA16EUC

Note that illogical combinations can be set but do not work properly. For example,

the following specification tries to support Japanese by using a Western European

character set:

NLS_LANG = JAPANESE_JAPAN.WE8DEC

Because the WE8DEC character set does not support any Japanese characters, you

cannot store Japanese data if you use this definition for NLS_LANG.

The rest of this section includes the following topics:

■ Specifying the Value of NLS_LANG

■ Overriding Language and Territory Specifications

Specifying the Value of NLS_LANG
Set NLS_LANGas an environment variable at the command line. For example, in the

UNIX operating system, specify the value of NLS_LANG by entering a statement

similar to the following:

% setenv NLS_LANG FRENCH_FRANCE.WE8DEC

Because NLS_LANG is an environment variable, it is read by the client application at

startup time. The client communicates the information defined by NLS_LANG to the

server when it connects to the database server.

The following examples show how date and number formats are affected by the

NLS_LANG parameter.

Example 3–1 Setting NLS_LANG to American_America.WE8ISO8859P1

Set NLS_LANG so that the language is AMERICAN, the territory is AMERICA, and the

Oracle character set is WE8ISO8859P1:

See Also: Appendix A, "Locale Data" for a complete list of

supported languages, territories, and character sets
3-6 Oracle9i Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable
% setenv NLS_LANG American_America.WE8ISO8859P1

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SEP-97 962.5
Urman 07-MAR-98 975
Popp 07-DEC-99 862.5

Example 3–2 Setting NLS_LANG to French_France.WE8ISO8859P1

Set NLS_LANG so that the language is FRENCH, the territory is FRANCE, and the

Oracle character set is WE8ISO8859P1:

% setenv NLS_LANG French_France.WE8ISO8859P1

Then the query shown in Example 3–1 returns the following output:

LAST_NAME HIRE_DAT SALARY
------------------------- -------- ----------
Sciarra 30/09/97 962,5
Urman 07/03/98 975
Popp 07/12/99 862,5

Note that the date format and the number format have changed. The numbers have

not changed, because the underlying data is the same.

Overriding Language and Territory Specifications
The NLS_LANG parameter sets the language and territory environment used by

both the server session (for example, SQL command execution) and the client

application (for example, display formatting in Oracle tools). Using this parameter

ensures that the language environments of both the database and the client

application are automatically the same.

The language and territory components of the NLS_LANG parameter determine the

default values for other detailed NLS parameters, such as date format, numeric

characters, and linguistic sorting. Each of these detailed parameters can be set in the

client environment to override the default values if the NLS_LANG parameter has

already been set.
Setting Up a Globalization Support Environment 3-7

Choosing a Locale with the NLS_LANG Environment Variable
If the NLS_LANG parameter is not set, then the server session environment remains

initialized with values of NLS_LANGUAGE, NLS_TERRRITORY, and other NLS

instance parameters from the initialization parameter file. You can modify these

parameters and restart the instance to change the defaults.

You might want to modify the NLS environment dynamically during the session. To

do so, you can use the ALTER SESSION statement to change NLS_LANGUAGE, NLS_
TERRITORY, and other NLS parameters.

The ALTER SESSION statement modifies only the session environment. The local

client NLS environment is not modified, unless the client explicitly retrieves the

new settings and modifies its local environment.

Should the NLS_LANG Setting Match the Database Character Set?
The NLS_LANG character set should reflect the setting of the operating system

client. For example, if the database character set is UTF8 and the client has a

Windows operating system, you should not set UTF8 as the client character set

because there are no UTF8 WIN32 clients. Instead the NLS_LANG setting should

reflect the code page of the client.

NLS_LANG is set as a local environment variable on UNIX platforms.

NLS_LANG is set in the registry on Windows platforms. For example, on an English

Windows client, the code page is WE8MSWIN1252. An appropriate setting for NLS_
LANG is AMERICAN_AMERICA.WE8MSWIN1252.

Setting NLS_LANG correctly allows proper conversion from the client operating

system code page to the database character set. When these settings are the same,

Oracle assumes that the data being sent or received is encoded in the same

character set as the database character set, so no validation or conversion is

performed. This can lead to corrupt data if the client code page and the database

character set are different and conversions are necessary.

Note: You cannot modify the setting for the client character set

with the ALTER SESSION statement.

See Also:

■ "Overriding Default Values for NLS_LANGUAGE and NLS_
TERRITORY During a Session" on page 3-16

■ Oracle9i SQL Reference
3-8 Oracle9i Database Globalization Support Guide

NLS Database Parameters
NLS Database Parameters
When a new database is created during the execution of the CREATE DATABASE
statement, the NLS database environment is established. The current NLS instance

parameters are stored in the data dictionary along with the database and national

character sets. The NLS instance parameters are read from the initialization

parameter file at instance startup.

You can find the values for NLS parameters by using:

■ NLS Data Dictionary Views

■ NLS Dynamic Performance Views

■ OCINlsGetInfo() Function

NLS Data Dictionary Views
Applications can check the session, instance, and database NLS parameters by

querying the following data dictionary views:

■ NLS_SESSION_PARAMETERS shows the NLS parameters and their values for

the session that is querying the view. It does not show information about the

character set.

■ NLS_INSTANCE_PARAMETERSshows the current NLS instance parameters that

have been explicitly set and the values of the NLS instance parameters.

■ NLS_DATABASE_PARAMETERS shows the values of the NLS parameters that

were used when the database was created.

NLS Dynamic Performance Views
Applications can check the following NLS dynamic performance views:

■ V$NLS_VALID_VALUES lists values for the following NLS parameters: NLS_
LANGUAGE, NLS_SORT, NLS_TERRITORY, NLS_CHARACTERSET

■ V$NLS_PARAMETERS shows current values of the following NLS parameters:

NLS_CALENDAR, NLS_CHARACTERSET, NLS_CURRENCY, NLS_DATE_FORMAT,

NLS_DATE_LANGUAGE, NLS_ISO_CURRENCY, NLS_LANGUAGE, NLS_

See Also: Oracle9i Database Installation Guide for Windows for more

information about commonly used values of the NLS_LANG
parameter in Windows
Setting Up a Globalization Support Environment 3-9

Language and Territory Parameters
NUMERIC_CHARACTERS, NLS_SORT, NLS_TERRITORY, NLS_NCHAR_
CHARACTERSET, NLS_COMP, NLS_LENGTH_SEMANTICS, NLS_NCHAR_CONV_
EXP, NLS_TIMESTAMP_FORMAT, NLS_TIMESTAMP_TZ_FORMAT, NLS_TIME_
FORMAT, NLS_TIME_TZ_FORMAT

OCINlsGetInfo() Function
User applications can query client NLS settings with the OCINlsGetInfo()
function.

Language and Territory Parameters
This section contains information about the following parameters:

■ NLS_LANGUAGE

■ NLS_TERRITORY

NLS_LANGUAGE

NLS_LANGUAGE specifies the default conventions for the following session

characteristics:

■ Language for server messages

■ Language for day and month names and their abbreviations (specified in the

SQL functions TO_CHAR and TO_DATE)

■ Symbols for equivalents of AM, PM, AD, and BC. (A.M., P.M., A.D., and B.C.

are valid only if NLS_LANGUAGE is set to AMERICAN.)

■ Default sorting sequence for character data when ORDER BY is specified.

(GROUP BY uses a binary sort unless ORDER BY is specified.)

See Also: Oracle9i Database Reference

See Also: Chapter 8, "OCI Programming in a Global

Environment" for the description of OCINlsGetInfo()

Parameter type: String

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: Derived from NLS_LANG

Range of values: Any valid language name
3-10 Oracle9i Database Globalization Support Guide

Language and Territory Parameters
■ Writing direction

■ Affirmative and negative response strings (for example, YES and NO)

The value specified for NLS_LANGUAGE in the initialization parameter file is the

default for all sessions in that instance. For example, to specify the default session

language as French, the parameter should be set as follows:

NLS_LANGUAGE = FRENCH

When the language is French, the server message

ORA-00942: table or view does not exist

appears as

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in the

$ORACLE_HOME/product_name /mesg directory, or the equivalent for your

operating system. Multiple versions of these files can exist, one for each supported

language, using the following filename convention:

<product_id ><language_abbrev >.MSB

For example, the file containing the server messages in French is called ORAF.MSB,
because F is the language abbreviation for French.

Messages are stored in these files in one specific character set, depending on the

language and the operating system. If this character set is different from the

database character set, then message text is automatically converted to the database

character set. If necessary, it will then be converted to the client character set if the

client character set is different from the database character set. Hence, messages will

be displayed correctly at the user's terminal, subject to the limitations of character

set conversion.

The default value of NLS_LANGUAGE may be specific to the operating system. You

can alter the NLS_LANGUAGE parameter by changing its value in the initialization

parameter file and then restarting the instance.

All messages and text should be in the same language. For example, when you run

an Oracle Developer application, the messages and boilerplate text that you see

originate from three sources:

See Also: Your operating system-specific Oracle documentation

for more information about the default value of NLS_LANGUAGE
Setting Up a Globalization Support Environment 3-11

Language and Territory Parameters
■ Messages from the server

■ Messages and boilerplate text generated by Oracle Forms

■ Messages and boilerplate text generated by the application

NLS determines the language used for the first two kinds of text. The application is

responsible for the language used in its messages and boilerplate text.

The following examples show behavior that results from setting NLS_LANGUAGE to
different values.

Example 3–3 NLS_LANGUAGE=ITALIAN

Use the ALTER SESSION statement to set NLS_LANGUAGE to Italian:

ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SET-97 962.5
Urman 07-MAR-98 975
Popp 07-DIC-99 862.5

Note that the month name abbreviations are in Italian.

Example 3–4 NLS_LANGUAGE=GERMAN

Use the ALTER SESSION statement to change the language to German:

SQL> ALTER SESSION SET NLS_LANGUAGE=German;

Enter the same SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY

See Also: "Overriding Default Values for NLS_LANGUAGE and

NLS_TERRITORY During a Session" on page 3-16 for more

information about using the ALTER SESSION statement
3-12 Oracle9i Database Globalization Support Guide

Language and Territory Parameters
------------------------- --------- ----------
Sciarra 30-SEP-97 962.5
Urman 07-MÄR-98 975
Popp 07-DEZ-99 862.5

Note that the language of the month abbreviations has changed.

NLS_TERRITORY

NLS_TERRITORY specifies the conventions for the following default date and

numeric formatting characteristics:

■ Date format

■ Decimal character and group separator

■ Local currency symbol

■ ISO currency symbol

■ Dual currency symbol

■ First day of the week

■ Credit and debit symbols

■ ISO week flag

■ List separator

The value specified for NLS_TERRITORY in the initialization parameter file is the

default for the instance. For example, to specify the default as France, the parameter

should be set as follows:

NLS_TERRITORY = FRANCE

When the territory is FRANCE, numbers are formatted using a comma as the

decimal character.

Parameter type: String

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: Derived from NLS_LANG

Range of values: Any valid territory name
Setting Up a Globalization Support Environment 3-13

Language and Territory Parameters
You can alter the NLS_TERRITORY parameter by changing the value in the

initialization parameter file and then restarting the instance. The default value of

NLS_TERRITORY can be specific to the operating system.

If NLS_LANG is specified in the client environment, then the value of NLS_
TERRITORY in the initialization parameter file is overridden at connection time.

The territory can be modified dynamically during the session by specifying the new

NLS_TERRITORY value in an ALTER SESSION statement. Modifying NLS_
TERRITORYresets all derived NLS session parameters to default values for the new

territory.

To change the territory to France during a session, issue the following ALTER
SESSION statement:

ALTER SESSION SET NLS_TERRITORY=France;

The following examples show behavior that results from different settings of NLS_
TERRITORY and NLS_LANGUAGE.

Example 3–5 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA

Enter the following SELECT statement:

SQL> SELECT TO_CHAR(salary,’L99G999D99’) salary FROM employees;

When NLS_TERRITORYis set to AMERICAand NLS_LANGUAGEis set to AMERICAN,
results similar to the following should appear:

SALARY

$24,000.00
$17,000.00
$17,000.00

Example 3–6 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=GERMANY

Use an ALTER SESSION statement to change the territory to Germany:

ALTER SESSION SET NLS_TERRITORY = Germany;
Session altered.

Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR(salary,’L99G999D99’) salary FROM employees;

You should see results similar to the following:
3-14 Oracle9i Database Globalization Support Guide

Language and Territory Parameters
SALARY

€24.000,00
€17.000,00
€17.000,00

Note that the currency symbol has changed from $ to €. The numbers have not

changed because the underlying data is the same.

Example 3–7 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=GERMANY

Use an ALTER SESSION statement to change the language to German:

ALTER SESSION SET NLS_LANGUAGE = German;
Sitzung wurde ge ändert.

Note that the server message now appears in German.

Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR(salary,’L99G999D99’) salary FROM employees;

You should see the same results as in Example 3–6:

SALARY

€24.000,00
€17.000,00
€17.000,00

Example 3–8 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=AMERICA

Use an ALTER SESSION statement to change the territory to America:

ALTER SESSION SET NLS_TERRITORY = America;
Sitzung wurde ge ändert.

Enter the same SELECT statement as in the other examples:

SQL> SELECT TO_CHAR(salary,’L99G999D99’) salary FROM employees;

You should see output similar to the following:

SALARY

See Also: "Overriding Default Values for NLS_LANGUAGE and

NLS_TERRITORY During a Session" on page 3-16 for more

information about using the ALTER SESSION statement
Setting Up a Globalization Support Environment 3-15

Language and Territory Parameters

$24.000,00
$17.000,00
$17.000,00

Note that the currency symbol changed from € to $ because the territory changed

from Germany to America.

Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a
Session
Default values for NLS_LANGUAGE and NLS_TERRITORY can be overridden during

a session by using the ALTER SESSION statement.

Example 3–9 NLS_LANG=ITALIAN_ITALY.WE8DEC

Set the NLS_LANG environment variable so that the language is Italian, the territory

is Italy, and the character set is WE8DEC:

% setenv NLS_LANG Italian_Italy.WE8DEC

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see output similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SET-97 962,5
Urman 07-MAR-98 975
Popp 07-DIC-99 862,5

Note the language of the month abbreviations and the decimal character.

Example 3–10 Change Language, Date Format, and Decimal Character

Use ALTER SESSION statements to change the language, the date format, and the

decimal character:

SQL> ALTER SESSION SET NLS_LANGUAGE=german;

Session wurde geändert.

SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD.MON.YY';
3-16 Oracle9i Database Globalization Support Guide

Date and Time Parameters
Session wurde geändert.

SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS='.,';

Session wurde geändert.

Enter the SELECT statement shown in Example 3–9:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see output similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30.SEP.97 962.5
Urman 07.MÄR.98 975
Popp 07.DEZ.99 862.5

Note the language of the month abbreviations, the date format, and the decimal

character.

The behavior of the NLS_LANG environment variable implicitly determines the

language environment of the database for each session. When a session connects to

a database, an ALTER SESSION statement is automatically executed to set the

values of the database parameters NLS_LANGUAGE and NLS_TERRITORY to those

specified by the language and territory arguments of NLS_LANG. If NLS_LANG
is not defined, no implicit ALTER SESSION statement is executed.

When NLS_LANG is defined, the implicit ALTER SESSION is executed for all

instances to which the session connects, for both direct and indirect connections. If

the values of NLS parameters are changed explicitly with ALTER SESSIONduring a

session, then the changes are propagated to all instances to which that user session

is connected.

Date and Time Parameters
Oracle enables you to control the display of date and time. This section contains the

following topics:

■ Date Formats

■ Time Formats
Setting Up a Globalization Support Environment 3-17

Date and Time Parameters
Date Formats
Different date formats are shown in Table 3–3.

This section includes the following parameters:

■ NLS_DATE_FORMAT

■ NLS_DATE_LANGUAGE

NLS_DATE_FORMAT

The NLS_DATE_FORMAT parameter defines the default date format to use with the

TO_CHAR and TO_DATE functions. The NLS_TERRITORY parameter determines the

default value of NLS_DATE_FORMAT. The value of NLS_DATE_FORMAT can be any

valid date format mask. The value must be surrounded by quotation marks. For

example:

NLS_DATE_FORMAT = "MM/DD/YYYY"

To add string literals to the date format, enclose the string literal with double

quotes. Note that every special character (such as the double quote) must be

preceded with an escape character. The entire expression must be surrounded with

single quotes. For example:

NLS_DATE_FORMAT = '\"Today\'s date\" MM/DD/YYYY'

Table 3–3 Date Formats

Country Description Example

Estonia dd.mm.yyyy 28.02.1998

Germany dd-mm-rr 28-02-98

Japan rr-mm-dd 98-02-28

UK dd-mon-rr 28-Feb-98

US dd-mon-rr 28-Feb-98

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default format for a particular territory

Range of values: Any valid date format mask
3-18 Oracle9i Database Globalization Support Guide

Date and Time Parameters
Example 3–11 Setting the Date Format to Display Roman Numerals

To set the default date format to display Roman numerals for the month, include

the following line in the initialization parameter file:

NLS_DATE_FORMAT = "DD RM YYYY"

Enter the following SELECT statement:

SELECT TO_CHAR(SYSDATE) currdate FROM dual;

You should see the following output if today’s date is February 12, 1997:

CURRDATE

12 II 1997

The value of NLS_DATE_FORMAT is stored in the internal date format. Each format

element occupies two bytes, and each string occupies the number of bytes in the

string plus a terminator byte. Also, the entire format mask has a two-byte

terminator. For example, "MM/DD/YY" occupies 12 bytes internally because there

are three format elements (month, day, and year), two one-byte strings (the two

slashes), and the two-byte terminator for the format mask. The format for the value

of NLS_DATE_FORMAT cannot exceed 24 bytes.

You can alter the default value of NLS_DATE_FORMAT by:

■ Changing its value in the initialization parameter file and then restarting the

instance

■ Using an ALTER SESSION SET NLS_DATE_FORMAT statement

If a table or index is partitioned on a date column, and if the date format specified

by NLS_DATE_FORMAT does not specify the first two digits of the year, then you

must use the TO_DATE function with a 4-character format mask for the year.

Note: The applications you design may need to allow for a

variable-length default date format. Also, the parameter value must

be surrounded by double quotes. Single quotes are interpreted as

part of the format mask.

See Also: Oracle9i SQL ReferenceOracle9i SQL Reference for more

information about date format elements and the ALTER SESSION
statement
Setting Up a Globalization Support Environment 3-19

Date and Time Parameters
For example:

TO_DATE('11-jan-1997', 'dd-mon-yyyy')

NLS_DATE_LANGUAGE

The NLS_DATE_LANGUAGEparameter specifies the language for the day and month

names produced by the TO_CHAR and TO_DATE functions. NLS_DATE_LANGUAGE
overrides the language that is specified implicitly by NLS_LANGUAGE. NLS_DATE_
LANGUAGE has the same syntax as the NLS_LANGUAGE parameter, and all

supported languages are valid values.

NLS_DATE_LANGUAGE also determines the language used for:

■ Month and day abbreviations returned by the TO_CHAR and TO_DATE
functions

■ Month and day abbreviations used by the default date format (NLS_DATE_
FORMAT)

■ Abbreviations for AM, PM, AD, and BC

Example 3–12 NLS_DATE_LANGUAGE=FRENCH, Month and Day Names

Set the date language to French:

ALTER SESSIONS SET NLS_DATE_LANGUAGE = FRENCH

Enter a SELECT statement:

SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy') FROM dual;

You should see output similar to the following:

TO_CHAR(SYSDATE,'DAY:DDMONTHYYYY')
--

See Also: Oracle9i SQL Reference for more information about

partitioning tables and indexes and using TO_DATE

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_LANGUAGE

Range of values: Any valid language name
3-20 Oracle9i Database Globalization Support Guide

Date and Time Parameters
Vendredi:07 Décembre 2001

When numbers are spelled in words using the TO_CHAR function, the English

spelling is always used. For example, enter the following SELECT statement:

SQL> SELECT TO_CHAR(TO_DATE('12-Oct-2001'),'Day: ddspth Month') FROM dual;

You should see output similar to the following:

TO_CHAR(TO_DATE('12-OCT-2001'),'DAY:DDSPTHMONTH')
--
Vendredi: twelfth Octobre

Example 3–13 NLS_DATE_LANGUAGE=FRENCH, Month and Day Abbreviations

Month and day abbreviations are determined by NLS_DATE_LANGUAGE. Enter the

following SELECT statement:

SELECT TO_CHAR(SYSDATE, 'Dy:dd Mon yyyy') FROM dual;

You should see output similar to the following:

TO_CHAR(SYSDATE,'DY:DDMO

Ve:07 Dec 2001

Example 3–14 NLS_DATE_LANGUAGE=FRENCH, Default Date Format

The default date format uses the month abbreviations determined by NLS_DATE_
LANGUAGE. For example, if the default date format is DD-MON-YYYY, then insert a

date as follows:

INSERT INTO tablename VALUES ('12-Fév-1997');

Time Formats
Different time formats are shown in Table 3–4.

See Also: Oracle9i SQL Reference

Table 3–4 Time Formats

Country Description Example

Estonia hh24:mi:ss 13:50:23

Germany hh24:mi:ss 13:50:23
Setting Up a Globalization Support Environment 3-21

Date and Time Parameters
This section contains information about the following parameters:

■ NLS_TIMESTAMP_FORMAT

■ NLS_TIMESTAMP_TZ_FORMAT

NLS_TIMESTAMP_FORMAT

NLS_TIMESTAMP_FORMAT defines the default timestamp format to use with TO_
CHAR and TO_TIMESTAMP functions. The value must be surrounded by quotation

marks as follows

NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF'

Example 3–15 Timestamp Format

SQL> SELECT TO_TIMESTAMP('11-nov-2000 01:00:00.336', 'dd-mon-yyyy hh:mi:ss.ff')
FROM dual;

You should see output similar to the following:

TO_TIMESTAMP('11-NOV-200001:00:00.336','DD-MON-YYYYHH:MI:SS.FF')

11-NOV-00 01:00:00.336000000

You can specify the value of NLS_TIMESTAMP_FORMAT by setting it in the

initialization parameter file. You can specify its value for a client as a client

environment variable.

You can also alter the value of NLS_TIMESTAMP_FORMAT by:

Japan hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

US hh:mi:ssxff am 1:50:23.555 PM

Parameter type: String

Parameter scope: Dynamic, Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid datetime format mask

Table 3–4 Time Formats (Cont.)

Country Description Example
3-22 Oracle9i Database Globalization Support Guide

Date and Time Parameters
■ Changing its value in the initialization parameter file and then restarting the

instance

■ Using the ALTER SESSION SET NLS_TIMESTAMP_FORMAT statement

NLS_TIMESTAMP_TZ_FORMAT

NLS_TIMESTAMP_TZ_FORMAT defines the default format for the timestamp with

time zone. It is used with the TO_CHAR and TO_TIMESTAMP_TZ functions.

You can specify the value of NLS_TIMESTAMP_TZ_FORMAT by setting it in the

initialization parameter file. You can specify its value for a client as a client

environment variable.

Example 3–16 Setting NLS_TIMESTAMP_TZ_FORMAT

The format value must be surrounded by quotation marks. For example:

NLS_TIMESTAMP_TZ_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

The following example of the TO_TIMESTAMP_TZ function uses the format value

that was specified for NLS_TIMESTAMP_TZ_FORMAT:

SQL> SELECT TO_TIMESTAMP_TZ('2000-08-20, 05:00:00.55 America/Los_Angeles',
'yyyy-mm-dd hh:mi:ss.ff TZR') FROM dual;

You should see output similar to the following:

TO_TIMESTAMP_TZ('2000-08-20,05:00:00.44AMERICA/LOS_ANGELES','YYYY-MM-DDHH:M

20-AOU-00 05:00:00.440000000 AMERICA/LOS_ANGELES

You can change the value of NLS_TIMESTAMP_TZ_FORMAT by:

See Also: Oracle9i SQL Reference for more information about the

TO_TIMESTAMP function and the ALTER SESSION statement

Parameter type: String

Parameter scope: Dynamic, Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid datetime format mask
Setting Up a Globalization Support Environment 3-23

Date and Time Parameters
■ Changing its value in the initialization parameter file and then restarting the

instance

■ Using the ALTER SESSION statement.

Time Zone Parameters for Databases You can create a database with a specific time

zone by specifying:

■ A displacement from UTC (Coordinated Universal Time, formerly Greenwich

Mean Time). The following example sets the time zone of the database to Pacific

Standard time (eight hours behind UTC):

CREATE DATABASE ... SET TIME_ZONE = '-08:00 ';

■ A time zone region. The following example also sets the time zone of the

database to Pacific Standard time in the United States:

CREATE DATABASE ... SET TIME_ZONE = 'PST ';

To see a list of valid region names, query the V$TIMEZONE_NAMES view.

The database time zone is relevant only for TIMESTAMP WITH LOCAL TIME ZONE
columns. Oracle normalizes all TIMESTAMP WITH LOCAL TIME ZONE data to the

time zone of the database when the data is stored on disk. If you do not specify the

SET TIME_ZONE clause, then Oracle uses the time zone of the operating system of

the server. If the operating system’s time zone is not a valid Oracle time zone, then

the rdatabase time zone defaults to UTC. Oracle’s time zone information is derived

from the public domain time zone data available at

ftp://elsie.nci.nih.gov/pub/ . Oracle’s time zone information may not

reflect the most recent time zone data available from this site.

After the database has been created, you can change the time zone by issuing the

ALTER DATABASE SET TIME_ZONE statement and then shutting down and starting

up the database. The following example sets the time zone of the database to

London time:

ALTER DATABASE SET TIME_ZONE = 'Europe/London ';

To find out the time zone of a database, use the DBTIMEZONE function as shown in

the following example:

SELECT dbtimezone FROM dual;

See Also: Oracle9i SQL Reference for more information about the

TO_TIMESTAMP_TZ function and the ALTER SESSION statement
3-24 Oracle9i Database Globalization Support Guide

Date and Time Parameters
DBTIME

-08:00

Time Zone Parameters for Sessions You can change the time zone parameter of a user

session by issuing an ALTER SESSION statement:

■ Operating system local time zone

ALTER SESSION SET TIME_ZONE = local;

■ Database time zone

ALTER SESSION SET TIME_ZONE = DBTIMEZONE;

■ An absolute time difference from UTC

ALTER SESSION SET TIME_ZONE = '-05:00';

■ Time zone for a named region

ALTER SESSION SET TIME_ZONE = 'America/New_York';

You can use the ORA_SDTZ environment variable to set the default client session

time zone. This variable takes input like DB_TZ, OS_TZ, time zone region, or

numerical time zone offset. If ORA_SDTZ is set to DB_TZ, then the session time zone

will be the same as the database time zone. If it is set to OS_TZ, then the session

time zone will be same as the operating system’s time zone. If ORA_SDTZis set to an

invalid Oracle time zone, then Oracle uses the operating system’s time zone as

default session time zone. If the operating system’s time zone is not a valid Oracle

time zone, then the session time zone defaults to UTC. To find out the time zone of a

user session, use the SESSIONTIMEZONE function as shown in the following

example:

SELECT sessiontimezone FROM dual;

SESSIONTIMEZONE

 -08:00

See Also: "Customizing Time Zone Data" on page 12-17
Setting Up a Globalization Support Environment 3-25

Calendar Definitions
Calendar Definitions
This section includes the following topics:

■ Calendar Formats

■ NLS_CALENDAR

Calendar Formats
The following calendar information is stored for each territory:

■ First Day of the Week

■ First Calendar Week of the Year

■ Number of Days and Months in a Year

■ First Year of Era

First Day of the Week
Some cultures consider Sunday to be the first day of the week. Others consider

Monday to be the first day of the week. A German calendar starts with Monday, as

shown in Table 3–5.

The first day of the week is determined by the NLS_TERRITORY parameter.

Table 3–5 German Calendar Example: March 1998

 Mo Di Mi Do Fr Sa So

- - - - - - 1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31 - - - - -

See Also: "NLS_TERRITORY" on page 3-13
3-26 Oracle9i Database Globalization Support Guide

Calendar Definitions
First Calendar Week of the Year
Some countries use week numbers for scheduling, planning, and bookkeeping.

Oracle supports this convention. In the ISO standard, the week number can be

different from the week number of the calendar year. For example, 1st Jan 1988 is in

ISO week number 53 of 1987. An ISO week always starts on a Monday and ends on

a Sunday.

■ If January 1 falls on a Friday, Saturday, or Sunday, then the ISO week that

includes January 1 is the last week of the previous year, because most of the

days in the week belong to the previous year.

■ If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the ISO

week is the first week of the new year, because most of the days in the week

belong to the new year.

To support the ISO standard, Oracle provides the IW date format element. It returns

the ISO week number.

Table 3–6 shows an example in which January 1 occurs in a week that has four or

more days in the first calendar week of the year. The week containing January 1 is

the first ISO week of 1998.

Table 3–7 shows an example in which January 1 occurs in a week that has three or

fewer days in the first calendar week of the year. The week containing January 1 is

the 53rd ISO week of 1998, and the following week is the first ISO week of 1999.

Table 3–6 First ISO Week of the Year: Example 1, January 1998

Mo Tu We Th Fr Sa Su ISO Week

- - - 1 2 3 4 First ISO week of 1998

5 6 7 8 9 10 11 Second ISO week of 1998

12 13 14 15 16 17 18 Third ISO week of 1998

19 20 21 22 23 24 25 Fourth ISO week of 1998

26 27 28 29 30 31 - Fifth ISO week of 1998

Table 3–7 First ISO Week of the Year: Example 2, January 1999

Mo Tu We Th Fr Sa Su ISO Week

- - - - 1 2 3 Fifty-third ISO week of 1998

4 5 6 7 8 9 10 First ISO week of 1999
Setting Up a Globalization Support Environment 3-27

Calendar Definitions
The first calendar week of the year is determined by the NLS_TERRITORY
parameter.

Number of Days and Months in a Year
Oracle supports six calendar systems in addition to Gregorian, the default:

■ Japanese Imperial—uses the same number of months and days as Gregorian,

but the year starts with the beginning of each Imperial Era

■ ROC Official—uses the same number of months and days as Gregorian, but the

year starts with the founding of the Republic of China

■ Persian—has 31 days for each of the first six months. The next five months have

30 days each. The last month has either 29 days or 30 days (leap year).

■ Thai Buddha—uses a Buddhist calendar

■ Arabic Hijrah—has 12 months with 354 or 355 days

■ English Hijrah—has 12 months with 354 or 355 days

The calendar system is specified by the NLS_CALENDAR parameter.

First Year of Era
The Islamic calendar starts from the year of the Hegira.

The Japanese Imperial calendar starts from the beginning of an Emperor's reign. For

example, 1998 is the tenth year of the Heisei era. It should be noted, however, that

the Gregorian system is also widely understood in Japan, so both 98 and Heisei 10

can be used to represent 1998.

11 12 13 14 15 16 17 Second ISO week of 1999

18 19 20 21 22 23 24 Third ISO week of 1999

25 26 27 28 29 30 31 Fourth ISO week of 1999

See Also: "NLS_TERRITORY" on page 3-13

See Also: "NLS_CALENDAR" on page 3-29

Table 3–7 First ISO Week of the Year: Example 2, January 1999 (Cont.)

Mo Tu We Th Fr Sa Su ISO Week
3-28 Oracle9i Database Globalization Support Guide

Calendar Definitions
NLS_CALENDAR

Many different calendar systems are in use throughout the world. NLS_CALENDAR
specifies which calendar system Oracle uses.

NLS_CALENDAR can have one of the following values:

■ Arabic Hijrah

■ English Hijrah

■ Gregorian

■ Japanese Imperial

■ Persian

■ ROC Official (Republic of China)

■ Thai Buddha

Example 3–17 NLS_CALENDAR=’Japanese Imperial"

Set NLS_CALENDAR to Japanese Imperial:

SQL> ALTER SESSIONS SET NLS_CALENDAR=’English Hijrah’;

Enter a SELECT statement to display SYSDATE:

SELECT SYSDATE FROM dual;

You should see output similar to the following:

SYSDATE

24 Ramadan 1422

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and ALTER
SESSION

Default value: Gregorian

Range of values: Any valid calendar format name

See Also: Appendix A, "Locale Data" for a list of calendar

systems, their default date formats, and the character sets in which

dates are displayed
Setting Up a Globalization Support Environment 3-29

Numeric Parameters
Numeric Parameters
This section includes the following topics:

■ Numeric Formats

■ NLS_NUMERIC_CHARACTERS

Numeric Formats
The database must know the number-formatting convention used in each session to

interpret numeric strings correctly. For example, the database needs to know

whether numbers are entered with a period or a comma as the decimal character

(234.00 or 234,00). Similarly, applications must be able to display numeric

information in the format expected at the client site.

Examples of numeric formats are shown in Table 3–8.

Numeric formats are derived from the setting of the NLS_TERRITORY parameter,

but they can be overridden by the NLS_NUMERIC_CHARACTERS parameter.

NLS_NUMERIC_CHARACTERS

Table 3–8 Examples of Numeric Formats

Country Numeric Formats

Estonia 1 234 567,89

Germany 1.234.567,89

Japan 1,234,567.89

UK 1,234,567.89

US 1,234,567.89

See Also: "NLS_TERRITORY" on page 3-13

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default decimal character and group separator for a
particular territory

Range of values: Any two valid numeric characters
3-30 Oracle9i Database Globalization Support Guide

Numeric Parameters
This parameter specifies the decimal character and group separator. The group

separator is the character that separates integer groups to show thousands and

millions, for example. The group separator is the character returned by the G

number format mask. The decimal character separates the integer and decimal parts

of a number. Setting NLS_NUMERIC_CHARACTERS overrides the values derived

from the setting of NLS_TERRITORY.

Any character can be the decimal or group separator. The two characters specified

must be single-byte, and the characters must be different from each other. The

characters cannot be any numeric character or any of the following characters: plus

(+), hyphen (-), less than sign (<), greater than sign (>). Either character can be a

space.

The characters are specified in the following format:

NLS_NUMERIC_CHARACTERS = "decimal_character group_separator "

Example 3–18 Setting NLS_NUMERIC_CHARACTERS

To set the decimal character to a comma and the grouping separator to a period,

define NLS_NUMERIC_CHARACTERS as follows:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ",.";

Both characters are single-byte and are different from each other.

SQL statements can include numbers represented as numeric or text literals.

Numeric literals are not enclosed in quotes. They are part of the SQL language

syntax and always use a dot as the decimal separator and never contain a group

separator. Text literals are enclosed in single quotes. They are implicitly or explicitly

converted to numbers, if required, according to the current NLS settings.

Enter a SELECT statement:

SELECT TO_CHAR(4000, '9G999D99') FROM dual;

You should see output similar to the following:

TO_CHAR(4

 4.000,00

You can change the default value of NLS_NUMERIC_CHARACTERS by:

■ Changing the value of NLS_NUMERIC_CHARACTERS in the initialization

parameter file and then restart the instance
Setting Up a Globalization Support Environment 3-31

Monetary Parameters
■ Using the ALTER SESSION statement to change the parameter's value during a

session

Monetary Parameters
This section includes the following topics:

■ Currency Formats

■ NLS_CURRENCY

■ NLS_ISO_CURRENCY

■ NLS_DUAL_CURRENCY

■ NLS_MONETARY_CHARACTERS

■ NLS_CREDIT

■ NLS_DEBIT

Currency Formats
Different currency formats are used throughout the world. Some typical ones are

shown in Table 3–9.

NLS_CURRENCY

See Also: Oracle9i SQL Reference for more information about the

ALTER SESSION statement

Table 3–9 Currency Format Examples

Country Example

Estonia 1 234,56 kr

Germany 1.234,56€

Japan ¥1,234.56

UK £1,234.56

US $1,234.56

Parameter type: String
3-32 Oracle9i Database Globalization Support Guide

Monetary Parameters
NLS_CURRENCY specifies the character string returned by the L number format

mask, the local currency symbol. Setting NLS_CURRENCY overrides the setting

defined implicitly by NLS_TERRITORY.

Example 3–19 Displaying the Local Currency Symbol

Connect to the sample schema order entry schema:

SQL> connect oe/oe
Connected.

Enter a SELECT statement similar to the following:

SQL> SELECT TO_CHAR(order_total, 'L099G999D99') "total" FROM orders
WHERE order_id > 2450;

You should see output similar to the following:

total

 $078,279.60
 $006,653.40
 $014,087.50
 $010,474.60
 $012,589.00
 $000,129.00
 $003,878.40
 $021,586.20

You can change the default value of NLS_CURRENCY by:

■ Changing its value in the initialization parameter file and then restarting the

instance

■ Using an ALTER SESSION statement

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default local currency symbol for a particular territory

Range of values: Any valid currency symbol string

See Also: Oracle9i SQL Reference for more information about the

ALTER SESSION statement
Setting Up a Globalization Support Environment 3-33

Monetary Parameters
NLS_ISO_CURRENCY

NLS_ISO_CURRENCY specifies the character string returned by the C number

format mask, the ISO currency symbol. Setting NLS_ISO_CURRENCY overrides the

value defined implicitly by NLS_TERRITORY.

Local currency symbols can be ambiguous. For example, a dollar sign ($) can refer

to US dollars or Australian dollars. ISO specifications define unique currency

symbols for specific territories or countries. For example, the ISO currency symbol

for the US dollar is USD. For the Australian dollar, it is AUD.

More ISO currency symbols are shown in Table 3–10.

NLS_ISO_CURRENCY has the same syntax as the NLS_TERRITORY parameter, and

all supported territories are valid values.

Example 3–20 Setting NLS_ISO_CURRENCY

This example assumes that you are connected as oe/oe in the sample schema.

To specify the ISO currency symbol for France, set NLS_ISO_CURRENCY as follows:

ALTER SESSION SET NLS_ISO_CURRENCY = FRANCE;

Enter a SELECT statement:

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and ALTER
SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid territory name

Table 3–10 ISO Currency Examples

Country Example

Estonia 1 234 567,89 EEK

Germany 1.234.567,89 EUR

Japan 1,234,567.89 JPY

UK 1,234,567.89 GBP

US 1,234,567.89 USD
3-34 Oracle9i Database Globalization Support Guide

Monetary Parameters
SQL> SELECT TO_CHAR(order_total, 'C099G999D99') "TOTAL" FROM orders
WHERE customer_id = 146;

You should see output similar to the following:

TOTAL

EUR017,848.20
EUR027,455.30
EUR029,249.10
EUR013,824.00
EUR000,086.00

You can change the default value of NLS_ISO_CURRENCY by:

■ Changing its value in the initialization parameter file and then restarting the

instance

■ Using an ALTER SESSION statement

NLS_DUAL_CURRENCY

Use NLS_DUAL_CURRENCY to override the default dual currency symbol defined

implicitly by NLS_TERRITORY.

NLS_DUAL_CURRENCYwas introduced to support the euro currency symbol during

the euro transition period. Table 3–11 lists the character sets that support the euro

symbol.

See Also: Oracle9i SQL Reference for more information about the

ALTER SESSION statement

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default dual currency symbol for a particular territory

Range of values: Any valid name
Setting Up a Globalization Support Environment 3-35

Monetary Parameters
Table 3–11 Character Sets that Support the Euro Symbol

Character Set Name Description
Code Value of the Euro
Symbol

D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German 0x9F

DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish 0x5A

S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish 0x5A

I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian 0x9F

F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French 0x9F

WE8PC858 IBM-PC Code Page 858 8-bit West European 0xDF

WE8ISO8859P15 ISO 8859-15 West European 0xA4

EE8MSWIN1250 MS Windows Code Page 1250 8-bit East European 0x80

CL8MSWIN1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic 0x88

WE8MSWIN1252 MS Windows Code Page 1252 8-bit West European 0x80

EL8MSWIN1253 MS Windows Code Page 1253 8-bit Latin/Greek 0x80

WE8EBCDIC1047E Latin 1/Open Systems 1047 0x9F

WE8EBCDIC1140 EBCDIC Code Page 1140 8-bit West European 0x9F

WE8EBCDIC1140C EBCDIC Code Page 1140 Client 8-bit West European 0x9F

WE8EBCDIC1145 EBCDIC Code Page 1145 8-bit West European 0x9F

WE8EBCDIC1146 EBCDIC Code Page 1146 8-bit West European 0x9F

WE8EBCDIC1148 EBCDIC Code Page 1148 8-bit West European 0x9F

WE8EBCDIC1148C EBCDIC Code Page 1148 Client 8-bit West European 0x9F

EL8ISO8859P7 ISO 8859-7 Latin/Greek 0xA4

IW8MSWIN1255 MS Windows Code Page 1255 8-bit Latin/Hebrew 0x80

AR8MSWIN1256 MS Windows Code Page 1256 8-Bit Latin/Arabic 0x80

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish 0x80

BLT8MSWIN1257 MS Windows Code Page 1257 Baltic 0x80

VN8MSWIN1258 MS Windows Code Page 1258 8-bit Vietnamese 0x80

TH8TISASCII Thai Industrial 620-2533 - ASCII 8-bit 0x80

AL32UTF8 Unicode 3.1 UTF-8 Universal character set E282AC

UTF8 Unicode 3.0 UTF-8 Universal character set E282AC

AL16UTF16 Unicode 3.1 UTF-16 Universal character set 20AC
3-36 Oracle9i Database Globalization Support Guide

Monetary Parameters
Oracle Support for the Euro
The members of the European Monetary Union (EMU) now use the euro as their

currency as of January 1, 2002. Setting NLS_TERRITORY to correspond to a country

in the EMU (Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,

Luxembourg, the Netherlands, Portugal, and Spain) results in the default values for

NLS_CURRENCY and NLS_DUAL_CURRENCY being set to EUR.

During the transition period (1999 through 2001), Oracle support for the euro was

provided in Oracle8i and later as follows:

■ NLS_CURRENCY was defined as the primary currency of the country

■ NLS_ISO_CURRENCY was defined as the ISO currency code of a given territory

■ NLS_DUAL_CURRENCY was defined as the secondary currency symbol (usually

the euro) for a given territory

Beginning with Oracle9i release 2 (9.2), the value of NLS_ISO_CURRENCY results in

the ISO currency symbol being set to EUR for EMU member countries. For example,

suppose NLS_ISO_CURRENCY is set to FRANCE. Enter the following SELECT
statement:

SELECT TO_CHAR(TOTAL, ’C099G999D99’) "TOTAL" FROM orders WHERE customer_id=585;

You should see output similar to the following:

TOTAL

EUR12.673,49

Customers who must retain their obsolete local currency symbol can override the

default for NLS_DUAL_CURRENCY or NLS_CURRENCY by defining them as

parameters in the initialization file on the server and as environment variables on

the client.

UTFE UTF-EBCDIC encoding of Unicode 3.0 CA4653

ZHT16HKSCS MS Windows Code Page 950 with Hong Kong
Supplementary Character Set

0xA3E1

ZHS32GB18030 GB18030-2000 0xA2E3

WE8BS2000E Siemens EBCDIC.DF.04 8-bit West European 0x9F

Table 3–11 Character Sets that Support the Euro Symbol (Cont.)

Character Set Name Description
Code Value of the Euro
Symbol
Setting Up a Globalization Support Environment 3-37

Monetary Parameters
It is not possible to override the ISO currency symbol that results from the value of

NLS_ISO_CURRENCY.

NLS_MONETARY_CHARACTERS

NLS_MONETARY_CHARACTERS specifies the character that separates groups of

numbers in monetary expressions. For example, when the territory is America, the

thousands separator is a comma, and the decimal separator is a period.

NLS_CREDIT

NLS_CREDIT sets the symbol that displays a credit in financial reports. The default

value of this parameter is determined by NLS_TERRITORY. For example, a space is

a valid value of NLS_CREDIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCIGetNlsInfo() function.

NLS_DEBIT

Note: NLS_LANG must also be set on the client for NLS_
CURRENCY or NLS_DUAL_CURRENCY to take effect.

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any valid name

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any string, maximum of 9 bytes (not including null)

Parameter type: String

Parameter scope: Environment Variable
3-38 Oracle9i Database Globalization Support Guide

Linguistic Sort Parameters
NLS_DEBIT sets the symbol that displays a debit in financial reports. The default

value of this parameter is determined by NLS_TERRITORY. For example, a minus

sign (-) is a valid value of NLS_DEBIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCIGetNlsInfo() function.

Linguistic Sort Parameters
You can choose how to sort data by using linguistic sort parameters.

This section includes the following topics:

■ NLS_SORT

■ NLS_COMP

■ NLS_LIST_SEPARATOR

NLS_SORT

NLS_SORT specifies the type of sort for character data. It overrides the value that is

defined implicitly by NLS_LANGUAGE.

The syntax of NLS_SORT is:

NLS_SORT = BINARY | sort_name

BINARY specifies a binary sort. sort_ name specifies a linguistic sort sequence.

Default value: Derived from NLS_TERRITORY

Range of values: Any string, maximum of 9 bytes (not including null)

See Also: Chapter 4, "Linguistic Sorting"

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default character sort sequence for a particular language

Range of values: BINARY or any valid linguistic definition name
Setting Up a Globalization Support Environment 3-39

Linguistic Sort Parameters
Example 3–21 Setting NLS_SORT

To specify the linguistic sort sequence called German, set NLS_SORT as follows:

NLS_SORT = German

The name given to a linguistic sort sequence has no direct connection to language

names. Usually, however, each supported language has an appropriate linguistic

sort sequence that uses the same name. Oracle offers two kinds of linguistic sorts:

monolingual and multilingual. In addition monolingual sorts can be extended to

handle special cases. Extended monolingual sorts usually sort characters differently

than the ASCII values of the characters. For example, ch and ll are treated as only

one character in XSPANISH, the extended Spanish sort. In other words, the

SPANISH sort uses modern Spanish collation rules, while XSPANISH uses

traditional Spanish sorting rules.

You can alter the default value of NLS_SORT by:

■ Changing its value in the initialization parameter file and then restarting the

instance

■ Using an ALTER SESSION statement

Note: When the NLS_SORT parameter is set to BINARY, the

optimizer can, in some cases, satisfy the ORDER BY clause without

doing a sort by choosing an index scan.

When NLS_SORTis set to a linguistic sort, a sort is needed to satisfy

the ORDER BY clause if there is no linguistic index for the linguistic

sort specified by NLS_SORT.

If a linguistic index exists for the linguistic sort specified by NLS_
SORT, the optimizer can, in some cases, satisfy the ORDER BY clause

without doing a sort by choosing an index scan.

See Also:

■ "Multilingual Linguistic Sorts" on page 4-4

■ Oracle9i SQL Reference for more information about the ALTER
SESSION statement

■ Appendix A, "Locale Data" for a complete list of linguistic sort

definitions
3-40 Oracle9i Database Globalization Support Guide

Linguistic Sort Parameters
NLS_COMP

You can use NLS_COMP to avoid the cumbersome process of using NLS_SORT in
SQL statements. Normally, comparison in the WHERE clause and in PL/SQL blocks

is binary. To use linguistic comparison, you must use the NLSSORT SQL function.

Sometimes this can be tedious, especially when the linguistic sort has already been

specified in the NLS_SORT session parameter. You can use NLS_COMP to indicate

that the comparisons must be linguistic according to the NLS_SORT session

parameter. Do this by altering the session:

ALTER SESSION SET NLS_COMP = ANSI;

To specify that comparison in the WHEREclause is always binary, issue the following

statement:

ALTER SESSION SET NLS_COMP = BINARY;

When NLS_COMP is set to ANSI, a linguistic index improves the performance of the

linguistic comparison.

To enable a linguistic index, use the following syntax:

CREATE INDEX i ON t(NLSSORT(col, 'NLS_SORT=FRENCH'));

NLS_LIST_SEPARATOR

NLS_LIST_SEPARATOR specifies the character to use to separate values in a list of

values. Its default value is derived from the value of NLS_TERRITORY.

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable and ALTER
SESSION

Default value: Binary

Range of values: BINARY or ANSI

See Also: "Using Linguistic Indexes" on page 4-12

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any valid character
Setting Up a Globalization Support Environment 3-41

Character Set Conversion Parameter
The character specified must be single-byte and cannot be the same as either the

numeric or monetary decimal character, any numeric character, or any of the

following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>),

period (.).

Character Set Conversion Parameter
This section includes the following topic:

■ NLS_NCHAR_CONV_EXCP

NLS_NCHAR_CONV_EXCP

NLS_NCHAR_CONV_EXCP determines whether an error is reported when there is

data loss during an implicit or explicit character type conversion. The default value

results in no error being reported.

Length Semantics
This section includes the following topic:

■ NLS_LENGTH_SEMANTICS

NLS_LENGTH_SEMANTICS

Parameter type: String

Parameter scope: Initialization Parameter, ALTER SESSION, ALTER SYSTEM

Default value: FALSE

Range of values: TRUE, FALSE

See Also: Chapter 10, "Character Set Migration" for more

information about data loss during character set conversion

Parameter type: String

Parameter scope: Dynamic, Initialization Parameter, ALTER SESSION, and
ALTER SYSTEM

Default value: BYTE

Range of values: BYTE | CHAR
3-42 Oracle9i Database Globalization Support Guide

Length Semantics
By default, the character datatypes CHAR and VARCHAR2 are specified in bytes, not

characters. Hence, the specification CHAR(20) in a table definition allows 20 bytes

for storing character data.

This works well if the database character set uses a single-byte character encoding

scheme because the number of characters will be the same as the number of bytes. If

the database character set uses a multibyte character encoding scheme, then the

number of bytes no longer equals the number of characters because a character can

consist of one or more bytes. Thus, column widths must be chosen with care to

allow for the maximum possible number of bytes for a given number of characters.

You can overcome this problem by switching to character semantics when defining

the column size.

NLS_LENGTH_SEMANTICS enables you to create CHAR, VARCHAR2, and LONG
columns using either byte or character length semantics. NCHAR, NVARCHAR2, CLOB,
and NCLOB columns are always character-based. Existing columns are not affected.

You may be required to use byte semantics in order to maintain compatibility with

existing applications.

NLS_LENGTH_SEMANTICS does not apply to tables in SYS and SYSTEM. The data

dictionary always uses byte semantics.

See Also:

■ "Length Semantics" on page 2-12

■ Oracle9i Database Concepts for more information about length

semantics
Setting Up a Globalization Support Environment 3-43

Length Semantics
3-44 Oracle9i Database Globalization Support Guide

Linguistic S
4

Linguistic Sorting

This chapter explains how characters are sorted in an Oracle environment. It

contains the following topics:

■ Overview of Oracle’s Sorting Capabilities

■ Using Binary Sorts

■ Using Linguistic Sorts

■ Linguistic Sort Features

■ Using Linguistic Indexes

■ Improving Case-Insensitive Searches with a Function-Based Index

■ Performing a Generic Base Letter Search
orting 4-1

Overview of Oracle’s Sorting Capabilities
Overview of Oracle’s Sorting Capabilities
Different languages have different sort orders. In addition, different cultures or

countries that use the same alphabets may sort words differently. For example, in

Danish, Æ is after Z, while Y and Ü are considered to be variants of the same letter.

Sort order can be case-sensitive or case-insensitive. Case refers to the condition of

being uppercase or lowercase. For example, in a Latin alphabet, A is the uppercase

glyph for a, the lowercase glyph.

Sort order can ignore or consider diacritics. A diacritic is a mark near or through a

character or combination of characters that indicates a different sound than the

sound of the character without the diacritic. For example, the cedilla (,) in façade
is a diacritic. It changes the sound of c .

Sort order can be phonetic or it can be based on the appearance of the character. For

example, sort order can be based on the number of strokes in East Asian

ideographs. Another common sorting issue is combining letters into a single

character. For example, in traditional Spanish, ch is a distinct character that comes

after c , which means that the correct order is: cerveza, colorado, cheremoya. This

means that the letter c cannot be sorted until Oracle has checked whether the next

letter is an h.

Oracle provides the following types of sorts:

■ Binary sort

■ Monolingual linguistic sort

■ Multilingual linguistic sort

It can achieve a linguistically correct sort for a single language as well as a sort

based on the multilingual ISO standard (ISO-14651), which is designed to handle

many languages at the same time.

Using Binary Sorts
One way to sort character data is based on the numeric values of the characters

defined by the character encoding scheme. This is called a binary sort. Binary sorts

are the fastest type of sort. They produce reasonable results for the English alphabet

because the ASCII and EBCDIC standards define the letters A to Z in ascending

numeric value.
4-2 Oracle9i Database Globalization Support Guide

Using Linguistic Sorts
When characters used in other languages are present, a binary sort usually does not

produce reasonable results. For example, an ascending ORDER BY query returns the

character strings ABC, ABZ, BCD, ÄBC, when Ä has a higher numeric value than B in

the character encoding scheme. A binary sort is not usually linguistically

meaningful for Asian languages that use ideographic characters.

Using Linguistic Sorts
To produce a sort sequence that matches the alphabetic sequence of characters,

another sort technique must be used that sorts characters independently of their

numeric values in the character encoding scheme. This technique is called a

linguistic sort. A linguistic sort operates by replacing characters with numeric

values that reflect each character’s proper linguistic order.

Oracle offers two kinds of linguistic sorts: monolingual and multilingual.

This section includes the following topics:

■ Monolingual Linguistic Sorts

■ Multilingual Linguistic Sorts

■ Multilingual Sorting Levels

■ Linguistic Sort Examples

Monolingual Linguistic Sorts
Oracle compares character strings in two steps for monolingual sorts. The first step

compares the major value of the entire string from a table of major values. Usually,

letters with the same appearance have the same major value. The second step

compares the minor value from a table of minor values. The major and minor

values are defined by Oracle. Oracle defines letters with diacritic and case

differences as having the same major value but different minor values.

Each major table entry contains the Unicode code point and major value for a

character. The Unicode code point is a 16-bit binary value that represents a

character.

Note: In the ASCII standard, all uppercase letters appear before

any lowercase letters. In the EBCDIC standard, the opposite is true:

all lowercase letters appear before any uppercase letters.
Linguistic Sorting 4-3

Using Linguistic Sorts
Table 4–1 illustrates sample values for sorting a, A, ä, Ä, and b.

Multilingual Linguistic Sorts
Oracle9i provides multilingual linguistic sorts so that you can sort data in more

than one language in one sort. This is useful for regions or languages that have

complex sorting rules and for multilingual databases. Oracle9i supports all of the

sort orders defined by previous releases.

For Asian language data or multilingual data, Oracle provides a sorting mechanism

based on the ISO 14651 standard and the Unicode 3.1 standard. Chinese characters

are ordered by the number of strokes, PinYin, or radicals.

In addition, multilingual sorts can handle canonical equivalence and

supplementary characters. Canonical equivalence is a basic equivalence between

characters or sequences of characters. For example, ç is equivalent to the

combination of c and , . Supplementary characters are user-defined characters or

predefined characters in Unicode 3.1 that require two code points within a specific

code range. You can define up to 1.1 million code points in one multilingual sort.

For example, Oracle9i supports a monolingual French sort (FRENCH), but you can

specify a multilingual French sort (FRENCH_M). _M represents the ISO 14651

standard for multilingual sorting. The sorting order is based on the GENERIC_M
sorting order and can sort diacritical marks from right to left. Oracle Corporation

recommends using a multilingual linguistic sort if the tables contain multilingual

data. If the tables contain only French, then a monolingual French sort may have

better performance because it uses less memory. It uses less memory because fewer

characters are defined in a monolingual French sort than in a multilingual French

sort. There is a tradeoff between the scope and the performance of a sort.

Table 4–1 Sample Glyphs and Their Major and Minor Sort Values

Glyph Major Value Minor Value

a 15 5

A 15 10

ä 15 15

Ä 15 20

b 20 5

See Also: "Overview of Unicode" on page 5-2
4-4 Oracle9i Database Globalization Support Guide

Using Linguistic Sorts
Multilingual Sorting Levels
Oracle evaluates multilingual sorts at three levels of precision:

■ Primary Level Sorts

■ Secondary Level Sorts

■ Tertiary Level Sorts

Primary Level Sorts
A primary level sort distinguishes between base characters, such as the difference

between characters a and b. It is up to individual locales to define if a is before b, b
is before a, or they are equal. The binary representation of the characters is

completely irrelevant. If a character is an ignorable character, then it is assigned a

primary level order (or weight) of zero, which means it is ignored at the primary

level. Characters that are ignorable on other levels are given an order of zero at

those levels.

For example, at the primary level, all variations of bat come before all variations of

bet . The variations of bat can appear in any order, and the variations of bet can

appear in any order:

Bat
bat
BAT
BET
Bet
bet

Secondary Level Sorts
A secondary level sort distinguishes between base characters (the primary level

sort) before distinguishing between diacritics on a given base character. For

example, the character Ä differs from the character A only because it has a diacritic.

Thus, Ä and A are the same on the primary level because they have the same base

character (A) but differ on the secondary level.

See Also:

■ "Canonical Equivalence" on page 4-10

■ "Supplementary Characters" on page 5-3

See Also: "Ignorable Characters" on page 4-9
Linguistic Sorting 4-5

Using Linguistic Sorts
The following list has been sorted on the primary level (resume comes before

resumes) and on the secondary level (strings without diacritics come before strings

with diacritics):

resume
résumé
Résumé
Resumes
resumes
résumés

Tertiary Level Sorts
A tertiary level sort distinguishes between base characters (primary level sort),

diacritics (secondary level sort), and case (upper case and lower case). It can also

include special characters such as +, - , and * .

The following are examples of tertiary level sorts:

■ Characters a and A are equal on the primary and secondary levels but different

on the tertiary level because they have different cases.

■ Characters ä and A are equal on the primary level and different on the

secondary and tertiary levels.

■ The primary and secondary level orders for the dash character - is 0. That is, it

is ignored on the primary and secondary levels. If a dash is compared with

another character whose primary level order is nonzero, for example, u, then no

result for the primary level is available because u is not compared with

anything. In this case, Oracle finds a difference between - and u only at the

tertiary level.

The following list has been sorted on the primary level (resume comes before

resumes) and on the secondary level (strings without diacritics come before strings

with diacritics) and on the tertiary level (lower case comes before upper case):

resume
Resume
résumé
Résumé
resumes
résumés
Resumes
Résumés
4-6 Oracle9i Database Globalization Support Guide

Using Linguistic Sorts
Linguistic Sort Examples
The examples in this section demonstrate a binary sort, a monolingual sort, and a

multilingual sort. To prepare for the examples, create and populate a table called

test . Enter the following statements:

SQL> CREATE TABLE test (name VARCHAR2(20));
SQL> INSERT INTO test VALUES(’Diet’);
SQL> INSERT INTO test VALUES(’À voir’);
SQL> INSERT INTO test VALUES(’Freizeit’);

Example 4–1 Binary Sort

The ORDER BY clause uses a binary sort.

SQL> SELECT * FROM test ORDER BY name;

You should see the following output:

Diet
Freizeit
À voir

Note that a binary sort results in À voir being at the end of the list.

Example 4–2 Monolingual German Sort

Use the NLSSORT function with the NLS_SORT parameter set to german to obtain a

German sort.

SQL> SELECT * FROM test ORDER BY NLSSORT(name, ’NLS_SORT=german’);

You should see the following output:

À voir
Diet
Freizeit

Note that À voir is at the beginning of the list in a German sort.

Example 4–3 Comparing a Monolingual German Sort to a Multilingual Sort

Insert the character string shown in Figure 4–1 into test . It is a D with a crossbar

followed by ñ.
Linguistic Sorting 4-7

Linguistic Sort Features
Figure 4–1 Character String

Perform a monolingual German sort by using the NLSSORT function with the NLS_
SORT parameter set to german .

SQL> SELECT * FROM test ORDER BY NLSSORT(name, ’NLS_SORT=german’);

The output from the German sort shows the new character string last in the list of

entries because the characters are not recognized in a German sort.

Perform a multilingual sort by entering the following statement:

SQL> SELECT * FROM test ORDER BY NLSSORT(name, ’NLS_SORT=generic_m’);

The output shows the new character string after Diet , following ISO sorting rules.

Linguistic Sort Features
This section contains information about different features that a linguistic sort may

have:

■ Base Letters

■ Ignorable Characters

■ Contracting Characters

■ Expanding Characters

■ Context-Sensitive Characters

■ Canonical Equivalence

■ Reverse Secondary Sorting

■ Character Rearrangement for Thai and Laotian Characters

■ Special Letters

■ Special Combination Letters

See Also:

■ "The NLSSORT Function" on page 7-10

■ "NLS_SORT" on page 3-39 for more information about setting

and changing the NLS_SORT parameter
4-8 Oracle9i Database Globalization Support Guide

Linguistic Sort Features
■ Special Uppercase Letters

■ Special Lowercase Letters

You can customize linguistic sorts to include the desired characteristics.

Base Letters
Base letters are defined in a base letter table, which maps each letter to its base

letter. For example, a, A, ä, and Ä all map to a, which is the base letter. This concept

is particularly relevant for working with Oracle Text.

Ignorable Characters
Some characters can be ignored in a linguistic sort. These characters are called

ignorable characters. There are two kinds of ignorable characters: diacritics and

punctuation.

Examples of ignorable diacritics are:

■ ^ , so that rôle is treated the same as role

■ The umlaut, so that naïve is treated the same as naive

And example of an ignorable punctuation character is the dash character - . If it is

ignored, then multi-lingual can be treated that same as multilingual and

e-mail can be treated the same as email.

Contracting Characters
Sorting elements usually consist of a single character, but in some locales, two or

more characters in a character string must be considered as a single sorting element

during sorting. For example, in traditional Spanish, the string ch is composed of

two characters. These characters are called contracting characters in multilingual

linguistic sorting and special combination letters in monolingual linguistic sorting.

Do not confuse a composed character with a contracting character. A composed

character like á can be decomposed into a and ’ , each with their own encoding. The

difference between a composed character and a contracting character is that a

composed character can be displayed as a single character on a terminal, while a

See Also: Chapter 12, "Customizing Locale Data"

See Also: Oracle Text Reference
Linguistic Sorting 4-9

Linguistic Sort Features
contracting character is used only for sorting, and its component characters must be

rendered separately.

Expanding Characters
In some locales, certain characters must be sorted as if they were character strings.

An example is the German character ß (sharp s). It is sorted exactly the same as the

string SS. Another example is that ö sorts as if it were oe , after od and before of .

These characters are known as expanding characters in multilingual linguistic

sorting and special letters in monolingual linguistic sorting. Just as with

contracting characters, the replacement string for an expanding character is

meaningful only for sorting.

Context-Sensitive Characters
In Japanese, a prolonged sound mark that resembles an em dash — represents a

length mark that lengthens the vowel of the preceding character. The sort order

depends on the vowel that precedes the length mark. This is called context-sensitive

sorting. For example, after the character ka , the — length mark indicates a long a
and is treated the same as a, while after the character ki , the — length mark

indicates a long i and is treated the same as i . Transliterating this to Latin

characters, a sort might look like this:

kaa
ka— -- kaa and ka— are the same
kai -- kai follows ka- because i is after a
kia -- kia follows kai because i is after a
kii -- kii follows kia because i is after a
ki— -- kii and ki— are the same

Canonical Equivalence
One Unicode code point may be equivalent to a sequence of base character code

points plus diacritic code points, regardless of the locale. This is called the Unicode

canonical equivalence. For example, ä equals its base letter a and an umlaut. A

linguistic flag, CANONICAL_EQUIVALENCE=TRUE, indicates that all canonical

equivalence rules defined in Unicode 3.1 need to be applied. You can change this

flag to FALSEto speed up the comparison and ordering functions if all the data is in

its composed form.
4-10 Oracle9i Database Globalization Support Guide

Linguistic Sort Features
Reverse Secondary Sorting
In French, sorting strings of characters with diacritics first compares base characters

from left to right, but compares characters with diacritics from right to left. For

example, by default, a character with a diacritic is placed after its unmarked variant.

Thus Èdit comes before Edít in a French sort. They are equal on the primary level,

and the secondary order is determined by examining characters with diacritics from

right to left. Individual locales can request that the characters with diacritics be

sorted with the right-to-left rule. Set the REVERSE_SECONDARY linguistic flag to

TRUE to enable reverse secondary sorting.

Character Rearrangement for Thai and Laotian Characters
In Thai and Lao, some characters must first change places with the following

character before sorting. Normally, these types of character are symbols

representing vowel sounds, and the next character is a consonant. Consonants and

vowels must change places before sorting. Set the SWAP_WITH_NEXT linguistic flag

for all characters that must change places before sorting.

Special Letters
Special letters is a term used in monolingual sorts. They are called expanding
characters in multilingual sorts.

Special Combination Letters
Special combination letters is the term used in monolingual sorts. They are called

contracting letters in multilingual sorts.

See Also: "Creating a New Linguistic Sort with the Oracle Locale

Builder" on page 12-35 for more information about setting the

canonical equivalence flag

See Also: "Creating a New Linguistic Sort with the Oracle Locale

Builder" on page 12-35 for more information about setting the

reverse secondary flag

See Also: "Creating a New Linguistic Sort with the Oracle Locale

Builder" on page 12-35 for more information about setting the

SWAP_WITH_NEXT flag

See Also: "Expanding Characters" on page 4-10
Linguistic Sorting 4-11

Using Linguistic Indexes
Special Uppercase Letters
One lowercase letter may map to multiple uppercase letters. For example, in

traditional German, the uppercase letters for ß are SS.

These case conversions are handled by the NLS_UPPER, NLS_LOWER, and NLS_
INITCAP SQL functions, according to the conventions established by the linguistic

sort sequence. The UPPER, LOWER, and INITCAP SQL functions cannot handle these

special characters.

The NLS_UPPER SQL function returns all uppercase characters from the same

character set as the lowercase string. The following example shows the result of the

NLS_UPPER function when NLS_SORT is set to XGERMAN:

SELECT NLS_UPPER (’große’) "Uppercase" FROM DUAL;

Upper

GROSSE

Special Lowercase Letters
Oracle supports special lowercase letters. One uppercase letter may map to multiple

lowercase letters. An example is the Turkish uppercase I becoming a small, dotless

i: ı .

Using Linguistic Indexes
Linguistic sorting is language-specific and requires more data processing than

binary sorting. Using a binary sort for ASCII is accurate and fast because the binary

codes for ASCII characters reflect their linguistic order. When data in multiple

languages is stored in the database, you may want applications to sort the data

returned from a SELECT...ORDER BY statement according to different sort

sequences depending on the language. You can accomplish this without sacrificing

performance by using linguistic indexes. Although a linguistic index for a column

slows down inserts and updates, it greatly improves the performance of linguistic

sorting with the ORDER BY clause.

You can create a function-based index that uses languages other than English. The

index does not change the linguistic sort order determined by NLS_SORT. The index

See Also: "Contracting Characters" on page 4-9

See Also: Oracle9i SQL Reference
4-12 Oracle9i Database Globalization Support Guide

Using Linguistic Indexes
simply improves the performance. The following statement creates an index based

on a German sort:

CREATE TABLE my_table(name VARCHAR(20) NOT NULL)
/*NOT NULL ensures that the index will be used */
CREATE INDEX nls_index ON my_table (NLSSORT(name, 'NLS_SORT = German'));

After the index has been created, enter a SELECT statement similar to the following:

SELECT * FROM my_table ORDER BY name;

It returns the result much faster than the same SELECT statement without an index.

The rest of this section contains the following topics:

■ Linguistic Indexes for Multiple Languages

■ Requirements for Using Linguistic Indexes

Linguistic Indexes for Multiple Languages
There are three ways to build linguistic indexes for data in multiple languages:

■ Build a linguistic index for each language that the application supports. This

approach offers simplicity but requires more disk space. For each index, the

rows in the language other than the one on which the index is built are collated

together at the end of the sequence. The following example builds linguistic

indexes for French and German.

CREATE INDEX french_index ON employees (NLSSORT(employee_id, 'NLS_
SORT=FRENCH'));
CREATE INDEX german_index ON employees (NLSSORT(employee_id, 'NLS_
SORT=GERMAN'));

Oracle chooses the index based on the NLS_SORT session parameter or the

arguments of the NLSSORT function specified in the ORDER BY clause. For

example, if the NLS_SORT session parameter is set to FRENCH, Oracle uses

french_index . When it is set to GERMAN, Oracle uses german_index .

See Also:

■ Oracle9i Database Concepts

■ Oracle9i SQL Reference for more information about

function-based indexes
Linguistic Sorting 4-13

Using Linguistic Indexes
■ Build a single linguistic index for all languages. This requires a language

column (LANG_COL in "Example: Setting Up a French Linguistic Index" on

page 4-15) to be used as a parameter of the NLSSORT function. The language

column contains NLS_LANGUAGE values for the data in the column on which

the index is built. The following example builds a single linguistic index for

multiple languages. With this index, the rows with the same values for NLS_
LANGUAGE are sorted together.

CREATE INDEX i ON t (NLSSORT(col, 'NLS_SORT=' || LANG_COL));

Queries choose an index based on the argument of the NLSSORT function

specified in the ORDER BY clause.

■ Build a single linguistic index for all languages using one of the multilingual

linguistic sorts such as GENERIC_Mor FRENCH_M. These indexes sort characters

according to the rules defined in ISO 14651. For example:

CREATE INDEX i on t (NLSSORT(col, 'NLS_SORT=GENERIC_M');

Requirements for Using Linguistic Indexes
The following are requirements for using linguistic indexes:

■ Set QUERY_REWRITE_ENABLED to TRUE

■ Set NLS_COMP to ANSI

■ Set NLS_SORT Appropriately

■ Use the Cost-Based Optimizer With the Optimizer Mode Set to FIRST_ROWS

This section also includes:

■ Example: Setting Up a French Linguistic Index

Set QUERY_REWRITE_ENABLED to TRUE
The QUERY_REWRITE_ENABLED initialization parameter must be set to TRUE. This

is required for all function-based indexes. You can use an ALTER SESSION
statement to set QUERY_REWRITE_ENABLED to TRUE. For example:

ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE;

See Also: "Multilingual Linguistic Sorts" on page 4-4 for more

information about Unicode sorts
4-14 Oracle9i Database Globalization Support Guide

Using Linguistic Indexes
Set NLS_COMP to ANSI
The NLS_COMP parameter should be set to ANSI. There are several ways to set

NLS_COMP. For example:

ALTER SESSION SET NLS_COMP = ANSI;

Set NLS_SORT Appropriately
The NLS_SORT parameter should indicate the linguistic definition you want to use

for the linguistic sort. If you want a French linguistic sort order, NLS_SORT should

be set to FRENCH. If you want a German linguistic sort order, NLS_SORT should be

set to GERMAN.

There are several ways to set NLS_SORT. You should set NLS_SORT as a client

environment variable so that you can use the same SQL statements for all

languages. Different linguistic indexes can be used when NLS_SORT is set in the

client environment.

Use the Cost-Based Optimizer With the Optimizer Mode Set to FIRST_ROWS
Use the cost-based optimizer with the optimizer mode set to FIRST_ROWS, because

linguistic indexes are not recognized by the rule-based optimizer. The following is

an example of setting the optimizer mode:

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS;

Example: Setting Up a French Linguistic Index
The following example shows how to set up a French linguistic index. You may

want to set NLS_SORT as a client environment variable instead of using the ALTER
SESSION statement.

ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE;
ALTER SESSION SET NLS_COMP = ANSI;
ALTER SESSION SET NLS_SORT='FRENCH';

See Also: Oracle9i Database Reference for more information about

the QUERY_REWRITE_ENABLED initialization parameter

See Also: "NLS_COMP" on page 3-41

See Also: "NLS_SORT" on page 3-39

See Also: Oracle9i Database Performance Guide and Reference for

more information about the cost-based optimizer
Linguistic Sorting 4-15

Improving Case-Insensitive Searches with a Function-Based Index
ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS;
CREATE INDEX test_idx ON test(NLSSORT(col, 'NLS_SORT=FRENCH'));
SELECT * FROM test ORDER BY col;
SELECT * FROM test WHERE col > 'JJJ';

Improving Case-Insensitive Searches with a Function-Based Index
You can create a function-based index that improves the performance of

case-insensitive searches. For example:

CREATE INDEX case_insensitive_ind ON employees(NLS_UPPER(first_name));
SELECT * FROM employees WHERE NLS_UPPER(first_name) = 'KARL';

Performing a Generic Base Letter Search
You can perform a search that ignores case and diacritics. Enter the following

statements:

ALTER SESSION SET NLS_COMP=ANSI;
ALTER SESSION SET NLS_SORT=GENERIC_BASELETTER;

Then enter a statement similar to the following:

SELECT * FROM emp WHERE ename=’miller’;

This statement can now return names that include the following:

Miller
MILLER
Millér

Note that this is not a linguistic search; that is, it is not based on a specific language.

It uses the base letters only.
4-16 Oracle9i Database Globalization Support Guide

Supporting Multilingual Databases with Un
5

Supporting Multilingual Databases with

Unicode

This chapter illustrates how to use Unicode in an Oracle database environment. It

includes the following topics:

■ Overview of Unicode

■ What is Unicode?

■ Implementing a Unicode Solution in the Database

■ Unicode Case Studies

■ Designing Database Schemas to Support Multiple Languages
icode 5-1

Overview of Unicode
Overview of Unicode
Dealing with many different languages in the same application or database has

been complicated and difficult for a long time. To overcome the limitations of

existing character encodings, several organizations began working on the creation

of a global character set in the late 1980s. The need for this became even greater

with the development of the World Wide Web in the mid-1990s. The Internet has

changed how companies do business, with an emphasis on the global market that

has made a universal character set a major requirement. A global character set

needs to fulfill the following conditions:

■ Contain all major living scripts

■ Support legacy data and implementations

■ Be simple enough that a single implementation of an application is sufficient for

worldwide use

A global character set should also have the following capabilities:

■ Support multilingual users and organizations

■ Conform to international standards

■ Enable worldwide interchange of data

This global character set exists, is in wide use, and is called Unicode.

What is Unicode?
Unicode is a universal encoded character set that enables information from any

language to be stored using a single character set. Unicode provides a unique code

value for every character, regardless of the platform, program, or language.

The Unicode standard has been adopted by many software and hardware vendors.

Many operating systems and browsers now support Unicode. Unicode is required

by standards such as XML, Java, JavaScript, LDAP, and WML. It is also

synchronized with the ISO/IEC 10646 standard.

Oracle Corporation started supporting Unicode as a database character set in

Oracle7. In Oracle9i, Unicode support has been expanded. Oracle9i supports

Unicode 3.1.

See Also: http://www.unicode.org for more information

about the Unicode standard
5-2 Oracle9i Database Globalization Support Guide

What is Unicode?
This section contains the following topics:

■ Supplementary Characters

■ Unicode Encodings

■ Oracle’s Support for Unicode

Supplementary Characters
The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes

to encode each character. This allowed 65,536 characters to be represented.

However, more characters need to be supported, especially additional CJK

ideographs that are important for the Chinese, Japanese, and Korean markets.

Unicode 3.1 defines supplementary characters to meet this need. It uses two 16-bit

code points (also known as supplementary characters) to represent a single

character. This enables an additional 1,048,576 characters to be defined. The

Unicode 3.1 standard added the first group of 44,944 supplementary characters.

Adding supplementary characters increases the complexity of Unicode, but it is less

complex than managing several different encodings in the same configuration.

Unicode Encodings
Unicode 3.1 encodes characters in different ways: UTF-8, UCS-2, and UTF-16.

Conversion between different Unicode encodings is a simple bit-wise operation that

is defined in the Unicode standard.

This section contains the following topics:

■ UTF-8 Encoding

■ UCS-2 Encoding

■ UTF-16 Encoding

■ Examples: UTF-16, UTF-8, and UCS-2 Encoding

UTF-8 Encoding
UTF-8 is the 8-bit encoding of Unicode. It is a variable-width encoding and a strict
superset of ASCII. This means that each and every character in the ASCII character

set is available in UTF-8 with the same code point values. One Unicode character

can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters from the

European scripts are represented in either 1 or 2 bytes. Characters from most Asian
Supporting Multilingual Databases with Unicode 5-3

What is Unicode?
scripts are represented in 3 bytes. Supplementary characters are represented in 4

bytes.

UTF-8 is the Unicode encoding supported on UNIX platforms and used for HTML

and most Internet browsers. Other environments such as Windows and Java use

UCS-2 encoding.

The benefits of UTF-8 are as follows:

■ Compact storage requirement for European scripts because it is a strict superset

of ASCII

■ Ease of migration between ASCII-based characters sets and UTF-8

UCS-2 Encoding
UCS-2 is a fixed-width, 16-bit encoding. Each character is 2 bytes. UCS-2 is the

Unicode encoding used by Java and Microsoft Windows NT 4.0. UCS-2 supports

characters defined for Unicode 3.0, so there is no support for supplementary

characters.

The benefits of UCS-2 over UTF-8 are as follows:

■ More compact storage for Asian scripts because all characters are two bytes

■ Faster string processing because characters are fixed-width

■ Better compatibility with Java and Microsoft clients

UTF-16 Encoding
UTF-16 encoding is the 16-bit encoding of Unicode. UTF-16 is an extension of

UCS-2 because it supports the supplementary characters that are defined in

Unicode 3.1 by using two UCS-2 code points for each supplementary character.

UTF-16 is a strict superset of UCS-2.

One character can be either 2 bytes or 4 bytes in UTF-16. Characters from European

and most Asian scripts are represented in 2 bytes. Supplementary characters are

See Also:

■ "Supplementary Characters" on page 5-3

■ Table B–2, "Unicode Character Code Ranges for UTF-8

Character Codes" on page B-2

See Also: "Supplementary Characters" on page 5-3
5-4 Oracle9i Database Globalization Support Guide

What is Unicode?
represented in 4 bytes. UTF-16 is the main Unicode encoding used by Microsoft

Windows 2000.

The benefits of UTF-16 over UTF-8 are as follows:

■ More compact storage for Asian scripts because most of the commonly used

Asian characters are represented in two bytes.

■ Better compatibility with Java and Microsoft clients

Examples: UTF-16, UTF-8, and UCS-2 Encoding
Figure 5–1 shows some characters and their character codes in UTF-16, UTF-8, and

UCS-2 encoding. The last character is a treble clef (a music symbol), a

supplementary character that has been added to the Unicode 3.1 standard.

Figure 5–1 UTF-16, UTF-8, and UCS-2 Encoding Examples

Oracle’s Support for Unicode
Oracle Corporation started supporting Unicode as a database character set in

Oracle7. Table 5–1 summarizes the Unicode character sets supported by the Oracle

database server.

See Also:

■ "Supplementary Characters" on page 5-3

■ Table B–1, "Unicode Character Code Ranges for UTF-16

Character Codes" on page B-2

0041
0063
00F6
4E9C
D834 DD1E

41
63

C3 B6
E4 BA 9C

F0 9D 84 9E

A
c
Ö

Character UTF-16

0041
0063
00F6
4E9C
N/A

UCS-2UTF-8
Supporting Multilingual Databases with Unicode 5-5

Implementing a Unicode Solution in the Database
Implementing a Unicode Solution in the Database
You can store Unicode characters in an Oracle9i database in two ways.

You can create a Unicode database that enables you to store UTF-8 encoded

characters as SQL CHAR datatypes (CHAR, VARCHAR2, CLOB, and LONG).

If you prefer to implement Unicode support incrementally or if you need to support

multilingual data only in certain columns, then you can store Unicode data in either

the UTF-16 or UTF-8 encoding form in SQL NCHAR datatypes (NCHAR, NVARCHAR2,
and NCLOB). The SQL NCHAR datatypes are called Unicode datatypes because they

are used only for storing Unicode data.

Table 5–1 Unicode Character Sets Supported by the Oracle Database Server

Character Set

Supported
in RDBMS
Release

Unicode
Encoding

Unicode
Version

Database
Character
Set

National
Character
Set

AL24UTFFSS 7.2 - 8i UTF-8 1.1 Yes No

UTF8 8.0 - 9i UTF-8 For Oracle8
release 8.0
through
Oracle8i release
8.1.6: 2.1

For Oracle8i
release 8.1.7 and
later: 3.0

Yes Yes
(Oracle9i
only)

UTFE 8.0 - 9i UTF-8 For Oracle8i
releases 8.0
through 8.1.6:
2.1

For Oracle8i
release 8.1.7 and
later: 3.0

Yes No

AL32UTF8 9i UTF-8 Oracle9i,
Release 1: 3.0

Oracle9i,
Release 2: 3.1

Yes No

AL16UTF16 9i UTF-16 Oracle9i,
Release 1: 3.0

Oracle9i,
Release 2: 3.1

No Yes
5-6 Oracle9i Database Globalization Support Guide

Implementing a Unicode Solution in the Database
The following sections explain how to use the two Unicode solutions and how to

choose between them:

■ Enabling Multilingual Support with Unicode Databases

■ Enabling Multilingual Support with Unicode Datatypes

■ How to Choose Between a Unicode Database and a Unicode Datatype Solution

■ Comparing Unicode Character Sets for Database and Datatype Solutions

Enabling Multilingual Support with Unicode Databases
The database character set specifies the encoding to be used in the SQL CHAR
datatypes as well as the metadata such as table names, column names, and SQL

statements. A Unicode database is a database with a UTF-8 character set as the

database character set. There are three Oracle character sets that implement the

UTF-8 encoding. The first two are designed for ASCII-based platforms while the

third one should be used on EBCDIC platforms.

■ AL32UTF8

The AL32UTF8 character set supports the latest version of the Unicode

standard. It encodes characters in one, two, or three bytes. Supplementary

characters require four bytes. It is for ASCII-based platforms.

■ UTF8

The UTF8 character set encodes characters in one, two, or three bytes. It is for

ASCII-based platforms.

The UTF8 character set has supported Unicode 3.0 since Oracle8i release 8.1.7

and will continue to support Unicode 3.0 in future releases of the Oracle

database server. Although specific supplementary characters were not assigned

code points in Unicode until version 3.1, the code point range was allocated for

supplementary characters in Unicode 3.0. If supplementary characters are

inserted into a UTF8 database, then it does not corrupt the data in the database.

The supplementary characters are treated as two separate, user-defined

characters that occupy 6 bytes. Oracle Corporation recommends that you switch

to AL32UTF8 for full support of supplementary characters in the database

character set.

Note: You can combine a Unicode database solution with a

Unicode datatype solution.
Supporting Multilingual Databases with Unicode 5-7

Implementing a Unicode Solution in the Database
■ UTFE

The UTFE character set is for EBCDIC platforms. It has the same properties as

UTF8 on ASCII platforms.

Example 5–1 Creating a Database with a Unicode Character Set

To create a database with the AL32UTF8 character set, use the CREATE DATABASE
statement and include the CHARACTER SET AL32UTF8 clause. For example:

CREATE DATABASE sample
CONTROLFILE REUSE
LOGFILE

GROUP 1 (’diskx:log1.log’, ’disky:log1.log’) SIZE 50K,
GROUP 2 (’diskx:log2.log’, ’disky:log2.log’) SIZE 50K

MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
DATAFILE

’disk1:df1.dbf’ AUTOEXTEND ON,
’disk2:df2.dbf’ AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp_ts
UNDO TABLESPACE undo_ts
SET TIME_ZONE = ’+02:00’;

Enabling Multilingual Support with Unicode Datatypes
An alternative to storing Unicode data in the database is to use the SQL NCHAR
datatypes (NCHAR, NVARCHAR, NCLOB). You can store Unicode characters into

columns of these datatypes regardless of how the database character set has been

defined. The NCHAR datatype has been redefined in Oracle9i to be a Unicode

datatype exclusively. In other words, it stores data encoded as Unicode.

In releases before Oracle9i, the NCHAR datatype supported fixed-width Asian

character sets that were designed to provide higher performance. Examples of

fixed-width character sets are JA16SJISFIXED and ZHT32EUCFIXED. No Unicode

character set was supported as the national character set before Oracle9i.

Note: Specify the database character set when you create the

database.
5-8 Oracle9i Database Globalization Support Guide

Implementing a Unicode Solution in the Database
You can create a table using the NVARCHAR2 and NCHAR datatypes. The column

length specified for the NCHAR and NVARCHAR2 columns is always the number of

characters instead of the number of bytes:

CREATE TABLE product_information
 (product_id NUMBER(6)
 , product_name NVARCHAR2(100)
 , product_description VARCHAR2(1000));

The encoding used in the SQL NCHAR datatypes is the national character set

specified for the database. You can specify one of the following Oracle character sets

as the national character set:

■ AL16UTF16

This is the default character set for SQL NCHAR datatypes. The character set

encodes Unicode data in the UTF-16 encoding. It supports supplementary

characters, which are stored as four bytes.

■ UTF8

When UTF8 is specified for SQL NCHAR datatypes, the data stored in the SQL

datatypes is in UTF-8 encoding.

You can specify the national character set for the SQL NCHAR datatypes when you

create a database using the CREATE DATABASE statement with the NATIONAL
CHARACTER SET clause. The following statement creates a database with

WE8ISO8859P1 as the database character set and AL16UTF16 as the national

character set.

Example 5–2 Creating a Database with a National Character Set

CREATE DATABASE sample
CONTROLFILE REUSE
LOGFILE

GROUP 1 (’diskx:log1.log’, ’disky:log1.log’) SIZE 50K,
GROUP 2 (’diskx:log2.log’, ’disky:log2.log’) SIZE 50K

MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET WE8ISO8859P1
NATIONAL CHARACTER SET AL16UTF16
DATAFILE

’disk1:df1.dbf’ AUTOEXTEND ON,
Supporting Multilingual Databases with Unicode 5-9

Implementing a Unicode Solution in the Database
’disk2:df2.dbf’ AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp_ts
UNDO TABLESPACE undo_ts
SET TIME_ZONE = ’+02:00’;

How to Choose Between a Unicode Database and a Unicode Datatype Solution
To choose the right Unicode solution for your database, consider the following

questions:

■ Programming environment: What are the main programming languages used

in your applications? How do they support Unicode?

■ Ease of migration: How easily can your data and applications be migrated to

take advantage of the Unicode solution?

■ Performance: How much performance overhead are you willing to accept in

order to use Unicode in the database?

■ Type of data: Is your data mostly Asian or European? Do you need to store

multilingual documents into LOB columns?

■ Type of applications: What type of applications are you implementing: a

packaged application or a customized end-user application?

This section describes some general guidelines for choosing a Unicode database or a

Unicode datatype solution. The final decision largely depends on your exact

environment and requirements. This section contains the following topics:

■ When Should You Use a Unicode Database?

■ When Should You Use Unicode Datatypes?

When Should You Use a Unicode Database?
Use a Unicode database in the situations described in Table 5–2.

Table 5–2 Using a Unicode Database

Situation Explanation

You need easy code
migration for Java or
PL/SQL.

If your existing application is mainly written in Java and
PL/SQL and your main concern is to minimize the code
changes required to support multiple languages, then you may
want to use a Unicode database solution. If the datatypes used
to stored data remain as SQL CHAR datatypes, then the Java
and PL/SQL code that accesses these columns does not need to
change.
5-10 Oracle9i Database Globalization Support Guide

Implementing a Unicode Solution in the Database
When Should You Use Unicode Datatypes?
Use Unicode datatypes in the situations described in Table 5–3.

You have evenly
distributed multilingual
data.

If the multilingual data will be evenly distributed in existing
schema tables and you are not sure which ones will contain
multilingual data, then you should use a Unicode database
because it does not require you to identify the kind of data that
is stored in each column.

Your SQL statements and
PL/SQL code contain
Unicode data.

You must use a Unicode database. SQL statements and
PL/SQL code are converted into the database character set
before being processed. If the SQL statements and PL/SQL
code contain characters that cannot be converted to the
database character set, then those characters will be lost. A
common place to use Unicode data in a SQL statement is in a
string literal.

You want to store
multilingual documents as
BLOBs and use Oracle Text
for content searching.

You must use a Unicode database. The BLOB data is converted
to the database character set before being indexed by Oracle
Text. If your database character set is not UTF8, then data will
be lost when the documents contain characters that cannot be
converted to the database character set.

Table 5–3 Using Unicode Datatypes

Situation Explanation

You want to add
multilingual support
incrementally.

If you want to add Unicode support to the existing database
without migrating the character set, then consider using
Unicode datatypes to store Unicode data. You can add columns
of the SQL NCHAR datatypes to existing tables or new tables to
support multiple languages incrementally.

You want to build a
packaged application.

If you are building a packaged application that will be sold to
customers, then you may want to build the application using
SQL NCHAR datatypes. The SQL NCHAR datatype is a reliable
Unicode datatype in which the data is always stored in
Unicode, and the length of the data is always specified in
UTF-16 code units. As a result, you need to test the application
only once. The application will run on customer databases
with any database character set.

Table 5–2 Using a Unicode Database (Cont.)

Situation Explanation
Supporting Multilingual Databases with Unicode 5-11

Implementing a Unicode Solution in the Database
Comparing Unicode Character Sets for Database and Datatype Solutions
Oracle9i provides two solutions to store Unicode characters in the database: a

Unicode database solution and a Unicode datatype solution. After you select the

Unicode database solution, the Unicode datatype solution or a combination of both,

determine the character set to be used in the Unicode database or the Unicode

datatype.

Table 5–4 contains advantages and disadvantages of different character sets for a

Unicode database solution. The Oracle character sets that can be Unicode database

character sets are AL32UTF8, UTF8, and UTFE.

You want better
performance with
single-byte database
character sets.

If performance is your main concern, then consider using a
single-byte database character set and storing Unicode data in
the SQL NCHAR datatypes. Databases that use a multibyte
database character set such as UTF8 have a performance
overhead.

You require UTF-16
support in Windows
clients.

If your applications are written in Visual C/C++ or Visual
Basic running on Windows, then you may want to use the SQL
NCHAR datatypes. You can store UTF-16 data in SQL NCHAR
datatypes in the same way that you store it in the wchar_t
buffer in Visual C/C++ and string buffer in Visual Basic. You
can avoid buffer overflow in client applications because the
length of the wchar_t and string datatypes match the
length of the SQL NCHAR datatypes in the database.

Note: You can use a Unicode database with Unicode datatypes.

Table 5–3 Using Unicode Datatypes (Cont.)

Situation Explanation
5-12 Oracle9i Database Globalization Support Guide

Implementing a Unicode Solution in the Database
Table 5–4 Character Set Advantages and Disadvantages for a Unicode Database Solution

Database
Character Set Advantages Disadvantages

AL32UTF8 ■ Supplementary characters are
stored in 4 bytes, so there is no
data conversion when
supplementary characters are
retrieved and inserted.

■ The storage for supplementary
characters requires less disk space
in AL32UTF8 than in UTF8.

■ You cannot specify the length of SQL CHAR
types in number of characters (Unicode code
points) for supplementary characters.
Supplementary characters are treated as one
code point rather than the standard two code
points.

■ The binary order for SQL CHAR columns is
different from the binary order of SQL NCHAR
columns when the data consists of
supplementary characters. As a result, CHAR
columns and NCHAR columns do not always
have the same sort for identical strings.

UTF8 ■ You can specify the length of SQL
CHAR types in number of
characters.

■ The binary order of the SQL CHAR
columns is always the same as the
binary order of the SQL NCHAR
columns when the data consists
of the same supplementary
characters. As a result, CHAR
columns and NCHAR columns
have the same sort for identical
strings.

■ Supplementary characters are stored as 6
bytes instead of the 4 bytes defined by
Unicode 3.1. As a result, Oracle has to convert
data for supplementary characters.

UTFE ■ This is the only Unicode character
set for the EBCDIC platform.

■ You can specify the length of SQL
CHAR types in number of
characters.

■ The binary order of the SQL CHAR
columns is always the same as the
binary order of the SQL NCHAR
columns when the data consists
of the same supplementary
characters. As a result, CHAR
columns and NCHAR columns
have the same sort for identical
strings.

■ Supplementary character are stored as 6 bytes
instead of the 4 bytes defined by the Unicode
standard. As a result, Oracle has to convert
data for those supplementary characters.

■ UTFE is not a standard encoding in the
Unicode standard. As a result, clients
requiring standard UTF-8 encoding must
convert data from UTFE to the standard
encoding when data is retrieved and inserted.
Supporting Multilingual Databases with Unicode 5-13

Implementing a Unicode Solution in the Database
Table 5–5 contains advantages and disadvantages of different character sets for a

Unicode datatype solution. The Oracle character sets that can be national character

sets are AL16UTF16 and UTF8.

Table 5–5 Character Set Advantages and Disadvantages for a Unicode Datatype Solution

National
Character Set Advantages Disadvantages

AL16UTF16 ■ Asian data in AL16UTF16 is usually
more compact than in UTF8. As a result,
you save disk space and have less disk
I/O when most of the multilingual data
stored in the database is Asian data.

■ It is usually faster to process strings
encoded in the AL16UTF16 character set
than strings encoded in UTF8 because
Oracle9i processes most characters in an
AL16UTF16 encoded string as
fixed-width characters.

■ The maximum length limits for the
NCHAR and NVARCHAR2 columns are
1000 and 2000 characters, respectively.
Because the data is fixed-width, the
lengths are guaranteed.

■ European ASCII data requires more
disk space to store in AL16UTF16 than
in UTF8. If most of your data is
European data, it uses more disk
space than if it were UTF8 data.

■ The maximum lengths for NCHAR and
NVARCHAR2 are 1000 and 2000
characters, which is less than the
lengths for NCHAR (2000) and
NVARCHAR2 (4000) in UTF8.
5-14 Oracle9i Database Globalization Support Guide

Implementing a Unicode Solution in the Database
UTF8 ■ European data in UTF8 is usually more
compact than in AL16UTF16. As a result,
you will save disk space and have better
response time when most of the
multilingual data stored in the database
is European data.

■ The maximum lengths for the NCHARand
NVARCHAR2 columns are 2000 and 4000
characters respectively, which is more
than those for NCHAR (1000) and
NVARCHAR2 (2000) in AL16UTF16.
Although the maximum lengths of the
NCHAR and NVARCHAR2 columns are
larger in UTF8, the actual storage size is
still bound by the byte limits of 2000 and
4000 bytes, respectively. For example,
you can store 4000 UTF8 characters in an
NVARCHAR2 column if all the characters
are single byte, but only 4000/3
characters if all the characters are three
bytes.

■ Asian data requires more disk space to
store in UTF8 than in AL16UTF16. If
most of your data is Asian data, then
disk space usage is not as efficient as it
is when the character set is
AL16UTF16.

■ Although you can specify larger
length limits for NCHAR and
NVARCHAR, you are not guaranteed to
be able to insert the number of
characters specified by these limits.
This is because UTF8 allows
variable-width characters.

■ It is usually slower to process strings
encoded in UTF8 than strings encoded
in AL16UTF16 because UTF8 encoded
strings consist of variable-width
characters.

Table 5–5 Character Set Advantages and Disadvantages for a Unicode Datatype Solution (Cont.)

National
Character Set Advantages Disadvantages
Supporting Multilingual Databases with Unicode 5-15

Unicode Case Studies
Unicode Case Studies
This section describes typical scenarios for storing Unicode characters in an Oracle9i
database:

■ Example 5–3, "Unicode Solution with a Unicode Database"

■ Example 5–4, "Unicode Solution with Unicode Datatypes"

■ Example 5–5, "Unicode Solution with a Unicode Database and Unicode

Datatypes"

Example 5–3 Unicode Solution with a Unicode Database

An American company running a Java application would like to add German and

French support in the next release of the application. They would like to add

Japanese support at a later time. The company currently has the following system

configuration:

■ The existing database has a database character set of US7ASCII.

■ All character data in the existing database is composed of ASCII characters.

■ PL/SQL stored procedures are used in the database.

■ The database is around 300 GB.

■ There is a nightly downtime of 4 hours.

In this case, a typical solution is to choose UTF8 for the database character set

because of the following reasons:

■ The database is very large and the scheduled downtime is short. Fast migration

of the database to Unicode is vital. Because the database is in US7ASCII, the

easiest and fastest way of enabling the database to support Unicode is to switch

the database character set to UTF8 by issuing the ALTER DATABASE statement.

No data conversion is required because US7ASCII is a subset of UTF8.

■ Because most of the code is written in Java and PL/SQL, changing the database

character set to UTF8 is unlikely to break existing code. Unicode support will be

automatically enabled in the application.

■ Because the application supports French, German, and Japanese, there are few

supplementary characters. Both AL32UTF8 and UTF8 are suitable.
5-16 Oracle9i Database Globalization Support Guide

Unicode Case Studies
Example 5–4 Unicode Solution with Unicode Datatypes

A European company that runs its applications mainly on Windows platforms

wants to add new Windows applications written in Visual C/C++. The new

applications will use the existing database to support Japanese and Chinese

customer names. The company currently has the following system configuration:

■ The existing database has a database character set of WE8ISO8859P1.

■ All character data in the existing database is composed of Western European

characters.

■ The database is around 50 GB.

A typical solution is take the following actions:

■ Use NCHAR and NVARCHAR2 datatypes to store Unicode characters

■ Keep WE8ISO8859P1 as the database character set

■ Use AL16UTF16 as the national character set

The reasons for this solution are:

■ Migrating the existing database to a Unicode database required data conversion

because the database character set is WE8ISO8859P1 (a Latin-1 character set),

which is not a subset of UTF8. As a result, there would be some overhead in

converting the data to UTF8.

■ The additional languages are supported in new applications only. They do not

depend on the existing applications or schemas. It is simpler to use the Unicode

datatype in the new schema and keep the existing schemas unchanged.

■ Only customer name columns require Unicode support. Using a single NCHAR
column meets the customer’s requirements without migrating the entire

database.

■ Because the languages to be supported are mostly Asian languages,

AL16UTF16 should be used as the national character set so that disk space is

used more efficiently.

■ The lengths of the SQL NCHAR datatypes are defined as number of characters.

This is the same as the way they are treated when using wchar_t strings in

Windows C/C++ programs. This reduces programming complexity.

■ Existing applications using the existing schemas are unaffected.
Supporting Multilingual Databases with Unicode 5-17

Designing Database Schemas to Support Multiple Languages
Example 5–5 Unicode Solution with a Unicode Database and Unicode Datatypes

A Japanese company wants to develop a new Java application on Oracle9i. The

company expects that the application will support as many languages as possible in

the long run.

■ In order to store documents as is, the company decided to use the BLOB
datatype to store documents of multiple languages.

■ The company may also want to generate UTF-8 XML documents from the

relational data for business-to-business data exchange.

■ The back-end has Windows applications written in C/C++ using ODBC to

access the Oracle database.

In this case, the typical solution is to create a Unicode database using AL32UTF8 as

the database character set and use the SQL NCHAR datatypes to store multilingual

data. The national character set should be set to AL16UTF16. The reasons for this

solution are as follows:

■ When documents of different languages are stored as BLOBs, Oracle Text

requires the database character set to be one of the UTF-8 character sets.

Because the applications may retrieve relational data as UTF-8 XML format

(where supplementary characters are stored as four bytes), AL32UTF8 should

be used as the database character set to avoid data conversion when UTF-8 data

is retrieved or inserted.

■ Because applications are new and written in both Java and Windows C/C++,

the company should use the SQL NCHAR datatype for its relational data. Both

Java and Windows support the UTF-16 character datatype, and the length of a

character string is always measured in the number of characters.

■ If most of the data is for Asian languages, then AL16UTF16 should be used

with the SQL NCHAR datatypes because AL16UTF16 offers better performance

and storage efficiency.

Designing Database Schemas to Support Multiple Languages
In addition to choosing a Unicode solution, the following issues should be taken

into consideration when the database schema is designed to support multiple

languages:

■ Specifying Column Lengths for Multilingual Data

■ Storing Data in Multiple Languages

■ Storing Documents in Multiple Languages in LOBs
5-18 Oracle9i Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages
■ Creating Indexes for Searching Multilingual Document Contents

Specifying Column Lengths for Multilingual Data
When you use NCHAR and NVARCHAR2 datatypes for storing multilingual data, the

column size specified for a column is defined in number of characters. (The number

of characters means the number of Unicode code units.) Table 5–6 shows the

maximum size of the NCHAR and NVARCHAR2 datatypes for the AL16UTF16 and

UTF8 national character sets.

When you use CHAR and VARCHAR2 datatypes for storing multilingual data, the

maximum length specified for each column is, by default, in number of bytes. If the

database needs to support Thai, Arabic, or multibyte languages such as Chinese

and Japanese, then the maximum lengths of the CHAR, VARCHAR, and VARCHAR2
columns may need to be extended. This is because the number of bytes required to

encode these languages in UTF8 or AL32UTF8 may be significantly larger than the

number of bytes for encoding English and Western European languages. For

example, one Thai character in the Thai character set requires 3 bytes in UTF8 or

AL32UTF8. In addition, the maximum column lengths for CHAR, VARCHAR, and

VARCHAR2 datatypes are 2000 bytes, 4000 bytes, and 4000 bytes respectively. If

applications need to store more than 4000 bytes, they should use the CLOBdatatype.

Storing Data in Multiple Languages
The Unicode character set includes characters of most written languages around the

world, but it does not contain information about the language to which a given

character belongs. In other words, a character such as ä does not contain

information about whether it is a French or German character. In order to provide

information in the language a user desires, data stored in a Unicode database

should accompany the language information to which the data belongs.

There are many ways for a database schema to relate data to a language. The

following sections provide different approaches:

■ Store Language Information with the Data

Table 5–6 Maximum Datatype Size

National Character Set
Maximum Column Size of
NCHAR Datatype

Maximum Column Size of
NVARCHAR2 Datatype

AL16UTF16 1000 characters 2000 characters

UTF8 2000 bytes 4000 bytes
Supporting Multilingual Databases with Unicode 5-19

Designing Database Schemas to Support Multiple Languages
■ Select Translated Data Using Fine-Grained Access Control

Store Language Information with the Data
For data such as product descriptions or product names, you can add a language

column (language_id) of CHAR or VARCHAR2 datatype to the product table to

identify the language of the corresponding product information. This enables

applications to retrieve the information in the desired language. The possible values

for this language column are the 3-letter abbreviations of the valid NLS_LANGUAGE
values of the database.

You can also create a view to select the data of the current language. For example:

ALTER TABLE scott.product_information add (language_id VARCHAR2(50)):

CREATE OR REPLACE VIEW product AS
 SELECT product_id, product_name
 FROM product_information
 WHERE language_id = sys_context('USERENV','LANG');

Select Translated Data Using Fine-Grained Access Control
Fine-grained access control enables you to limit the degree to which a user can view

information in a table or view. Typically, this is done by appending a WHERE clause.

when you add a WHERE clause as a fine-grained access policy to a table or view,

Oracle9i automatically appends the WHERE clause to any SQL statements on the

table at run time so that only those rows satisfying the WHERE clause can be

accessed.

You can use this feature to avoid specifying the desired language of an user in the

WHERE clause in every SELECT statement in your applications. The following

WHERE clause limits the view of a table to the rows corresponding to the desired

language of a user:

WHERE language_id = sys_context('userenv', 'LANG')

Specify this WHERE clause as a fine-grained access policy for product_
information as follows:

create function func1 (sch varchar2 , obj varchar2)
return varchar2(100);
begin

See Also: Appendix A, "Locale Data" for a list of NLS_LANGUAGE
values and their abbreviations
5-20 Oracle9i Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages
return ’language_id = sys_context(’’userenv’’, ’’LANG’’)’;
end
/

DBMS_RLS.ADD_POLICY (’scott’, ’product_information’, ’lang_policy’, ’scott’,
’func1’, ’select’);

Then any SELECT statement on the product_information table automatically

appends the WHERE clause.

Storing Documents in Multiple Languages in LOBs
You can store documents in multiple languages in CLOB, NCLOB, or BLOB datatypes

and set up Oracle Text to enable content search for the documents.

Data in CLOBcolumns is stored as UCS-2 internally when the database character set

is multibyte, such as UTF8 or AL32UTF8. Document contents are converted to

UTF-16 when they are inserted into a CLOB column. This means that the storage

space required for an English document doubles when the data is converted.

Storage for an Asian language document in a CLOB column requires less storage

space than the same document in a LONGcolumn using UTF8, typically around 30%

less, depending on the contents of the document.

Documents in NCLOB are also stored as UTF-16 regardless of the database character

set or national character set. The storage space requirement is the same as for

CLOBs. Document contents are converted to UTF-16 when they are inserted into a

NCLOB column. If you want to store multilingual documents in a non-Unicode

database, then choose NCLOB. However, content search on NCLOB is not yet

supported.

Documents in BLOB format are stored as they are. No data conversion occurs

during insertion and retrieval. However, SQL string manipulation functions (such

as LENGTH or SUBSTR) and collation functions (such as NLS_SORT and ORDER BY)
cannot be applied to the BLOB datatype.

Table 5–7 lists the advantages and disadvantages of the CLOB, NCLOB, and BLOB
datatypes when storing documents:

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about fine-grained access control
Supporting Multilingual Databases with Unicode 5-21

Designing Database Schemas to Support Multiple Languages
Creating Indexes for Searching Multilingual Document Contents
Oracle Text enables you to build indexes for content search on multilingual

documents stored as CLOBs and BLOBs. It uses a language-specific lexer to parse the

CLOB or BLOB data and produces a list of searchable keywords.

Create a multilexer to search multilingual documents. The multilexer chooses a

language-specific lexer for each row, based on a language column. This section

describe the high level steps to create indexes for documents in multiple languages.

It contains the following topics:

■ Creating Multilexers

■ Creating Indexes for Documents Stored as CLOBs

■ Creating Indexes for Documents Stored as BLOBs

Table 5–7 Comparison of LOB Datatypes for Document Storage

Datatypes Advantages Disadvantages

CLOB ■ Content search support

■ String manipulation support

■ Depends on database character set

■ Data conversion is necessary for
insertion

■ Cannot store binary documents

NCLOB ■ Independent of database
character set

■ String manipulation support

■ No content search support

■ Data conversion is necessary for
insertion

■ Cannot store binary documents

BLOB ■ Independent of database
character set

■ Content search support

■ No data conversion, data
stored as is

■ Can store binary documents
such as Microsoft Word or
Microsoft Excel

■ No string manipulation support

See Also: Oracle Text Reference
5-22 Oracle9i Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages
Creating Multilexers
The first step in creating the multilexer is the creation of language-specific lexer

preferences for each language supported. The following example creates English,

German, and Japanese lexers with PL/SQL procedures:

ctx_ddl.create_preference('english_lexer', 'basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.create_preference('german_lexer', 'basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.create_preference('japanese_lexer', 'JAPANESE_VGRAM_LEXER');

After the language-specific lexer preferences are created, they need to be gathered

together under a single multilexer preference. First, create the multilexer preference,

using the MULTI_LEXER object:

ctx_ddl.create_preference('global_lexer','multi_lexer');

Now add the language-specific lexers to the multilexer preference using the add_
sub_lexer call:

ctx_ddl.add_sub_lexer('global_lexer', 'german', 'german_lexer');
ctx_ddl.add_sub_lexer('global_lexer', 'japanese', 'japanese_lexer');
ctx_ddl.add_sub_lexer('global_lexer', 'default','english_lexer');

This nominates the german_lexer preference to handle German documents, the

japanese_lexer preference to handle Japanese documents, and the english_
lexer preference to handle everything else, using DEFAULT as the language.

Creating Indexes for Documents Stored as CLOBs
The multilexer decides which lexer to use for each row based on a language column

in the table. This is a character column that stores the language of the document in a

text column. Use the Oracle language name to identify the language of a document

in this column. For example, if you use CLOBs to store your documents, then add

the language column to the table where the documents are stored:

CREATE TABLE globaldoc
 (doc_id NUMBER PRIMARY KEY,
 language VARCHAR2(30),
 text CLOB);

To create an index for this table, use the multilexer preference and specify the name

of the language column:
Supporting Multilingual Databases with Unicode 5-23

Designing Database Schemas to Support Multiple Languages
CREATE INDEX globalx ON globaldoc(text)
 indextype IS ctxsys.context
 parameters ('lexer
 global_lexer
 language
 column
 language');

Creating Indexes for Documents Stored as BLOBs
In addition to the language column, the character set and format columns must be

added in the table where the documents are stored. The character set column stores

the character set of the documents using the Oracle character set names. The format

column specifies whether a document is a text or binary document. For example,

the CREATE TABLE statement can specify columns called characterset and

format :

CREATE TABLE globaldoc (
 doc_id NUMBER PRIMARY KEY,
 language VARCHAR2(30),
 characterset VARCHAR2(30),
 format VARCHAR2(10),
 text BLOB
);

You can put word-processing or spreadsheet documents into the table and specify

binary in the format column. For documents in HTML, XML and text format,

you can put them into the table and specify text in the format column.

Because there is a column in which to specify the character set, you can store text

documents in different character sets.

When you create the index, specify the names of the format and character set

columns:

CREATE INDEX globalx ON globaldoc(text)
 indextype is ctxsys.context
 parameters ('filter inso_filter
 lexer global_lexer
 language column language
 format column format
 charset column characterset');

You can use the charset_filter if all documents are in text format. The

charset_filter converts data from the character set specified in the charset
column to the database character set.
5-24 Oracle9i Database Globalization Support Guide

Programming with Un
6

Programming with Unicode

This chapter describes how to use Oracle’s database access products with Unicode.

It contains the following topics:

■ Overview of Programming with Unicode

■ SQL and PL/SQL Programming with Unicode

■ OCI Programming with Unicode

■ Pro*C/C++ Programming with Unicode

■ JDBC and SQLJ Programming with Unicode

■ ODBC and OLE DB Programming with Unicode
icode 6-1

Overview of Programming with Unicode
Overview of Programming with Unicode
Oracle9i offers several database access products for inserting and retrieving

Unicode data. Oracle offers database access products for commonly used

programming environments such as Java and C/C++. Data is transparently

converted between the database and client programs, which ensures that client

programs are independent of the database character set and national character set.

In addition, client programs are sometimes even independent of the character

datatype, such as NCHAR or CHAR, used in the database.

To avoid overloading the database server with data conversion operations, Oracle9i
always tries to move them to the client side database access products. In a few

cases, data must be converted in the database, which affects performance. This

chapter discusses details of the data conversion paths.

Database Access Product Stack and Unicode
Oracle Corporation offers a comprehensive set of database access products that

allow programs from different development environments to access Unicode data

stored in the database. These products are listed in Table 6–1.

Figure 6–1 shows how the database access products can access the database.

Table 6–1 Oracle Database Access Products

Programming
Environment Oracle Database Access Products

C/C++ Oracle Call Interface (OCI)
Oracle Pro*C/C++
Oracle ODBC Driver
Oracle OLE DB Driver

Visual Basic Oracle ODBC Driver
Oracle OLE DB Driver

Java Oracle JDBC OCI or thin driver
Oracle SQLJ

PL/SQL Oracle PL/SQL and SQL
6-2 Oracle9i Database Globalization Support Guide

Overview of Programming with Unicode
Figure 6–1 Oracle Database Access Products

The Oracle Call Interface (OCI) is the lowest level API that the rest of the client-side

database access products use. It provides a flexible way for C/C++ programs to

access Unicode data stored in SQL CHAR and NCHAR datatypes. Using OCI, you can

programmatically specify the character set (UTF-8, UTF-16, and others) for the data

to be inserted or retrieved. It accesses the database through Oracle Net.

Oracle Pro*C/C++ enables you to embed SQL and PL/SQL in your programs. It

uses OCI’s Unicode capabilities to provide UTF-16 and UTF-8 data access for SQL

CHAR and NCHAR datatypes.

The Oracle ODBC driver enables C/C++, Visual Basic, and VBScript programs

running on Windows platforms to access Unicode data stored in SQL CHAR and

NCHAR datatypes of the database. It provides UTF-16 data access by implementing

the SQLWCHAR interface specified in the ODBC standard specification.

The Oracle OLE DB driver enables C/C++, Visual Basic, and VBScript programs

running on Windows platforms to access Unicode data stored in SQL CHAR and

NCHAR datatypes. It provides UTF-16 data access through wide string OLE DB

datatypes.

Oracle JDBC drivers are the primary Java programmatic interface for accessing an

Oracle9i database. Oracle provides two client-side JDBC drivers:

■ The JDBC OCI driver that is used by Java applications and requires the OCI

library

Visual Basic Programs
VBScript using ADO C/C++ Programs

OLE DB
ODBC Pro*C/C++

SQLJ

JDBC

Oracle Call Interface (OCI) Thin

Java Programs

Oracle9 i

PL/SQL

SQL

Oracle
Net

Oracle Net on TCP/IP
Programming with Unicode 6-3

SQL and PL/SQL Programming with Unicode
■ The JDBC thin driver, which is a pure Java driver that is primarily used by Java

applets and supports the Oracle Net protocol over TCP/IP

Both drivers support Unicode data access to SQL CHAR and NCHAR datatypes in the

database.

Oracle SQLJ acts like a preprocessor that translates embedded SQL in a Java

program into a Java source file with JDBC calls. It offers you a higher level

programmatic interface to access databases. Like JDBC, SQLJ provides Unicode

data access to SQL CHAR and NCHAR datatypes in the database.

The PL/SQL and SQL engines process PL/SQL programs and SQL statements on

behalf of client-side programs such as OCI and server-side PL/SQL stored

procedures. They allow PL/SQL programs to declare NCHAR and NVARCHAR2
variables and access SQL NCHAR datatypes in the database.

The following sections describe how each of the database access products supports

Unicode data access to an Oracle9i database and offer examples for using those

products:

■ SQL and PL/SQL Programming with Unicode

■ OCI Programming with Unicode

■ Pro*C/C++ Programming with Unicode

■ JDBC and SQLJ Programming with Unicode

■ ODBC and OLE DB Programming with Unicode

SQL and PL/SQL Programming with Unicode
SQL is the fundamental language with which all programs and users access data in

an Oracle database either directly or indirectly. PL/SQL is a procedural language

that combines the data manipulating power of SQL with the data processing power

of procedural languages. Both SQL and PL/SQL can be embedded in other

programming languages. This section describes Unicode-related features in SQL

and PL/SQL that you can deploy for multilingual applications.

This section contains the following topics:

■ SQL NCHAR Datatypes

■ Implicit Datatype Conversion Between NCHAR and Other Datatypes

■ Exception Handling for Data Loss During Datatype Conversion

■ Rules for Implicit Datatype Conversion
6-4 Oracle9i Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode
■ SQL Functions for Unicode Datatypes

■ Other SQL Functions

■ Unicode String Literals

■ Using the UTL_FILE Package with NCHAR Data

SQL NCHAR Datatypes
There are three SQL NCHAR datatypes:

■ The NCHAR Datatype

■ The NVARCHAR2 Datatype

■ The NCLOB Datatype

The NCHAR Datatype
When you define a table column or a PL/SQL variable as the NCHAR datatype, the

length is always specified as the number of characters. For example, the statement

CREATE TABLE table1 (column1 NCHAR(30));

creates a column with a maximum length of 30 characters. The maximum number

of bytes for the column is determined as follows:

maximum number of bytes = (maximum number of characters) x (maximum number of
bytes per character)

For example, if the national character set is UTF8, the maximum byte length is 30

characters times 3 bytes per character, or 90 bytes.

The national character set, which is used for all NCHAR datatypes, is defined when

the database is created. In Oracle9i, the national character set can be either UTF8 or

AL16UTF16. The default is AL16UTF16.

The maximum column size allowed is 2000 characters when the national character

set is UTF8 and 1000 when it is AL16UTF16. The actual data is subject to the

maximum byte limit of 2000. The two size constraints must be satisfied at the same

time. In PL/SQL, the maximum length of NCHARdata is 32767 bytes. You can define

See Also:

■ Oracle9i SQL Reference

■ PL/SQL User’s Guide and Reference
Programming with Unicode 6-5

SQL and PL/SQL Programming with Unicode
an NCHAR variable of up to 32767 characters, but the actual data cannot exceed

32767 bytes. If you insert a value that is shorter than the column length, Oracle pads

the value with blanks to whichever length is smaller: maximum character length or

maximum byte length.

The NVARCHAR2 Datatype
The NVARCHAR2 datatype specifies a variable length character string that uses the

national character set. When you create a table with an NVARCHAR2 column, you

specify the maximum number of characters for the column. Lengths for NVARCHAR2
are always in units of characters, just as for NCHAR. Oracle subsequently stores each

value in the column exactly as you specify it, if the value does not exceed the

column’s maximum length. Oracle does not pad the string value to the maximum

length.

The maximum column size allowed is 4000 characters when the national character

set is UTF8 and 2000 when it is AL16UTF16. The maximum length of an

NVARCHAR2 column in bytes is 4000. Both the byte limit and the character limit

must be met, so the maximum number of characters that is actually allowed in an

NVARCHAR2 column is the number of characters that can be written in 4000 bytes.

In PL/SQL, the maximum length for an NVARCHAR2 variable is 32767 bytes. You

can define NVARCHAR2 variables up to 32767 characters, but the actual data cannot

exceed 32767 bytes.

The following CREATE TABLE statement creates a table with one NVARCHAR2
column of with a maximum length of 2000 characters. If the national character set is

UTF8, the following will create a column with maximum character length of 2000

and maximum byte length of 4000.

CREATE TABLE table2 (column2 NVARCHAR2(2000));

The NCLOB Datatype
NCLOB is a character large object containing multibyte characters, with a maximum

size of 4 gigabytes. Unlike BLOBs, NCLOBs have full transactional support so that

changes made through SQL, the DBMS_LOB package, or OCI participate fully in

transactions.Manipulations of NCLOB value can be committed and rolled back.

Note: UTF8 may affect performance because it is a variable-width

character set. Excessive blank padding of NCHAR fields decreases

performance. Consider using the NVARCHAR datatype or changing

to the AL16UTF16 character set for the NCHAR datatype.
6-6 Oracle9i Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode
Note, however, that you cannot save an NCLOBlocator in a PL/SQL or OCI variable

in one transaction and then use it in another transaction or session.

NCLOB values are stored in the database using the fixed-width AL16UTF16

character set, regardless of the national character set. Oracle translates the stored

Unicode value to the character set requested on the client or on the server, which

can be fixed-width or variable-width. When you insert data into an NCLOB column

using a variable-width character set, Oracle converts the data into AL16UTF16

before storing it in the database.

Implicit Datatype Conversion Between NCHAR and Other Datatypes
Oracle supports implicit conversions between SQL NCHAR datatypes and other

Oracle datatypes, such as CHAR, VARCHAR2, NUMBER, DATE, ROWID, and CLOB. Any

implicit conversions for CHAR and VARCHAR2 datatypes are also supported for SQL

NCHAR datatypes. You can use SQL NCHAR datatypes the same way as SQL CHAR
datatypes.

Keep in mind these points about implicit conversions:

■ Type conversions between SQL CHARdatatypes and SQL NCHARdatatypes may

involve character set conversion when the database and national character sets

are different. Padding with blanks may occur if the target data is either CHAR or

NCHAR.

■ Implicit conversion between CLOB and NCLOB datatypes is not possible. You

can, however, use Oracle’s explicit conversion functions, TO_CLOB and TO_
NCLOB.

Exception Handling for Data Loss During Datatype Conversion
Data loss can occur during datatype conversion when character set conversion is

necessary. If a character in the first character set is not defined in the target character

set, then a replacement character will be used in its place. For example, if you try to

insert NCHAR data into a regular CHAR column and the character data in NCHAR
(Unicode) form cannot be converted to the database character set, the character will

be replaced by a replacement character defined by the database character set. The

NLS_NCHAR_CONV_EXCP initialization parameter controls the behavior of data loss

during character type conversion. When this parameter is set to TRUE, any SQL

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for more information about NCLOBs

See Also: Oracle9i SQL Reference
Programming with Unicode 6-7

SQL and PL/SQL Programming with Unicode
statements that result in data loss return an ORA-12713 error and the

corresponding operation is aborted. When this parameter is set to FALSE, data loss

is not reported and the unconvertible characters are replaced with replacement

characters. The default value is TRUE. This parameter works for both implicit and

explicit conversion.

In PL/SQL, when data loss occurs during conversion of SQL CHAR and NCHAR
datatypes, the LOSSY_CHARSET_CONVERSION exception is raised for both implicit

and explicit conversion.

Rules for Implicit Datatype Conversion
In some cases, conversion between datatypes is possible in only one direction. In

other cases, conversion in both directions is possible. Oracle defines a set of rules for

conversion between datatypes. Table 6–2 contains the rules for conversion between

datatypes.

Table 6–2 Rules for Conversion Between Datatypes

Statement Rule

INSERT/UPDATE
statement

Values are converted to the datatype of the target database column.

SELECT INTO statement Data from the database is converted to the datatype of the target variable.

Variable assignments Values on the right of the equal sign are converted to the datatype of the target
variable on the left of the equal sign.

Parameters in SQL and
PL/SQL functions

CHAR, VARCHAR2, NCHAR, and NVARCHAR2are loaded the same way. An argument
with a CHAR, VARCHAR2, NCHAR or NVARCHAR2 datatype is compared to a formal
parameter of any of the CHAR, VARCHAR2, NCHAR or NVARCHAR2 datatypes. If the
argument and formal parameter datatypes do not match exactly, then implicit
conversions are introduced when data is copied into the parameter on function
entry and copied out to the argument on function exit.

Concatenation ||
operation or CONCAT
function

If one operand is a SQL CHAR or NCHAR datatype and the other operand is a
NUMBER or other non-character datatype, then the other datatype is converted to
VARCHAR2 or NVARCHAR2. For concatenation between character datatypes, see
"SQL NCHAR datatypes and SQL CHAR datatypes" on page 6-9.

SQL CHAR or NCHAR
datatypes and NUMBER
datatype

Character value is converted to NUMBER datatype

SQL CHAR or NCHAR
datatypes and DATE
datatype

Character value is converted to DATE datatype
6-8 Oracle9i Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode
SQL Functions for Unicode Datatypes
SQL NCHAR datatypes can be converted to and from SQL CHAR datatypes and other

datatypes using explicit conversion functions. The examples in this section use the

table created by the following statement:

CREATE TABLE customers
 (id NUMBER, name NVARCHAR2(50), address NVARCHAR2(200), birthdate DATE);

SQL CHAR or NCHAR
datatypes and ROWID
datatype

Character datatypes are converted to ROWID datatype

SQL NCHARand SQL CHAR
datatypes

Character values are converted to NUMBER datatype

SQL CHAR or NCHAR
datatypes and NUMBER
datatype

Character values are converted to NUMBER datatype

SQL CHAR or NCHAR
datatypes and DATE
datatype

Character values are converted to DATE datatype

SQL CHAR or NCHAR
datatypes and ROWID
datatype

Character values are converted to ROWID datatype

SQL NCHAR datatypes and
SQL CHAR datatypes

Comparisons between SQL NCHAR datatypes and SQL CHAR datatypes are more
complex because they can be encoded in different character sets.

When CHAR and VARCHAR2 values are compared, the CHAR values are converted
to VARCHAR2 values.

When NCHAR and NVARCHAR2 values are compared, the NCHAR values are
converted to NVARCHAR2 values.

When there is comparison between SQL NCHAR datatypes and SQL CHAR
datatypes, character set conversion occurs if they are encoded in different
character sets. The character set for SQL NCHAR datatypes is always Unicode and
can be either UTF8 or AL16UTF16 encoding, which have the same character
repertoires but are different encodings of the Unicode standard. SQL CHAR
datatypes use the database character set, which can be any character set that
Oracle supports. Unicode is a superset of any character set supported by Oracle, so
SQL CHAR datatypes can always be converted to SQL NCHAR datatypes without
data loss.

Table 6–2 Rules for Conversion Between Datatypes (Cont.)

Statement Rule
Programming with Unicode 6-9

SQL and PL/SQL Programming with Unicode
Example 6–1 Populating the Customer Table Using the TO_NCHAR Function

The TO_NCHARfunction converts the data at run time, while the N function converts

the data at compilation time.

INSERT INTO customers VALUES (1000,
 TO_NCHAR('John Smith'),N'500 Oracle Parkway',sysdate);

Example 6–2 Selecting from the Customer Table Using the TO_CHAR Function

The following statement converts the values of name from characters in the national

character set to characters in the database character set before selecting them

according to the LIKE clause:

SELECT name FROM customers WHERE TO_CHAR(name) LIKE '%Sm%';

You should see the following output:

NAME

John Smith

Example 6–3 Selecting from the Customer Table Using the TO_DATE Function

Using the N function shows that either NCHAR or CHAR data can be passed as

parameters for the TO_DATE function. The datatypes can mixed because they are

converted at run time.

DECLARE
ndatestring NVARCHAR2(20) := N'12-SEP-1975';
BEGIN
SELECT name into ndstr FROM customers
WHERE (birthdate)> TO_DATE(ndatestring, 'DD-MON-YYYY', N'NLS_DATE_LANGUAGE =
AMERICAN');
END;

As demonstrated in Example 6–3, SQL NCHAR data can be passed to explicit

conversion functions. SQL CHARand NCHARdata can be mixed together when using

multiple string parameters.

See Also: Oracle9i SQL Reference for more information about

explicit conversion functions for SQL NCHAR datatypes
6-10 Oracle9i Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode
Other SQL Functions
Most SQL functions can take arguments of SQL NCHAR datatypes as well as mixed

character datatypes. The return datatype is based on the type of the first argument.

If a non-string datatype like NUMBER or DATE is passed to these functions, it will be

converted to VARCHAR2. The following examples use the customer table created in

"SQL Functions for Unicode Datatypes" on page 6-9.

Example 6–4 INSTR Function

SELECT INSTR(name, N'Sm', 1, 1) FROM customers;

Example 6–5 CONCAT Function

SELECT CONCAT(name,id) FROM customers;

id is converted to NVARCHAR2 and then concatenated with name.

Example 6–6 RPAD Function

SELECT RPAD(name,100,' ') FROM customers;

The following output results:

RPAD(NAME,100,’’)
--
John Smith

Space character ' ' is converted to the corresponding character in the NCHAR
character set and then padded to the right of name until the total display length

reaches 100.

Unicode String Literals
You can input Unicode string literals in SQL and PL/SQL as follows:

■ Put a prefix N in front of a single quote marked string literal. This explicitly

indicates that the following string literal is an NCHARstring literal. For example,

N’12-SEP-1975’ is an NCHAR string literal.

■ Mark a string literal with single quotations. Because Oracle supports implicit

conversions to SQL NCHAR datatypes, a string literal is converted to a SQL

NCHAR datatype wherever necessary.

See Also: Oracle9i SQL Reference
Programming with Unicode 6-11

SQL and PL/SQL Programming with Unicode
■ Use the NCHR(n) SQL function, which returns the character having the binary

equivalent to n in the national character set, which is AL32UTF8 or AL16UTF16.

The result of concatenating several NCHR(n) functions is NVARCHAR2 data. In

this way, you can bypass the client and server character set conversions and

create an NVARCHAR2 string directly. For example, NCHR(32) represents a

blank character.

Because NCHR(n) is associated with the national character set, portability of the

resulting value is limited to applications that run in that national character set.

If this is a concern, then use the UNISTR function to remove portability

limitations.

■ Use the UNISTR(string) SQL function. UNISTR(string) takes a string and

converts it to Unicode. The result is in the national character set for the

database. You can embed escape \ bbbb inside the string. The escape

represents the value of a UTF-16 code point with hex number 0xbbbb . For

example, UNISTR('G\0061ry') represents 'Gary' .

The last two methods can be used to encode any Unicode string literals.

Using the UTL_FILE Package with NCHAR Data
The UTL_FILE package has been enhanced in Oracle9i to handle Unicode national

character set data. The following functions and procedures have been added:

■ FOPEN_NCHAR

This function opens a file in Unicode for input or output, with the maximum

line size specified. With this function, you can read or write a text file in

Unicode instead of in the database character set.

■ GET_LINE_NCHAR

This procedure reads text from the open file identified by the file handle and

places the text in the output buffer parameter. With this procedure, you can

read a text file in Unicode instead of in the database character set.

Note: When a string literal is included in a query and the query is

submitted through a client-side tool such as SQL*Plus, all the

queries are encoded in the client’s character set and then converted

to the server’s database character set before processing. Therefore,

data loss can occur if the string literal cannot be converted to the

server database character set.
6-12 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode
■ PUT_NCHAR

This procedure writes the text string stored in the buffer parameter to the open

file identified by the file handle. With this procedure, you can write a text file in

Unicode instead of in the database character set.

■ PUT_LINE_NCHAR

This procedure writes the text string stored in the buffer parameter to the open

file identified by the file handle. With this procedure, you can write a text file in

Unicode instead of in the database character set.

■ PUTF_NCHAR

This procedure is a formatted PUT_NCHAR procedure. With this procedure, you

can write a text file in Unicode instead of in the database character set.

OCI Programming with Unicode
OCI is the lowest-level API for accessing a database, so it offers the best possible

performance. When using Unicode with OCI, consider these topics:

■ OCIEnvNlsCreate() Function for Unicode Programming

■ OCI Unicode Code Conversion

■ When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI

■ Binding and Defining SQL CHAR Datatypes in OCI

■ Binding and Defining SQL NCHAR Datatypes in OCI

■ Binding and Defining CLOB and NCLOB Unicode Data in OCI

OCIEnvNlsCreate() Function for Unicode Programming
The OCIEnvNlsCreate() function is used to specify a SQL CHAR character set

and a SQL NCHAR character set when the OCI environment is created. It is an

enhanced version of the OCIEnvCreate() function and has extended arguments

for two character set IDs. The OCI_UTF16ID UTF-16 character set ID replaces the

Unicode mode introduced in Oracle9i release 1 (9.0.1). For example:

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the UTL_FILE package

See Also: Chapter 8, "OCI Programming in a Global

Environment"
Programming with Unicode 6-13

OCI Programming with Unicode
OCIEnv *envhp;
status = OCIEnvNlsCreate((OCIEnv **)&envhp,
(ub4)0,
(void *)0,
(void *(*) ()) 0,
(void *(*) ()) 0,
(void(*) ()) 0,
(size_t) 0,
(void **)0,
(ub2)OCI_UTF16ID, /* Metadata and SQL CHAR character set */
(ub2)OCI_UTF16ID /* SQL NCHAR character set */);

The Unicode mode, in which the OCI_UTF16 flag is used with the

OCIEnvCreate() function, is deprecated.

When OCI_UTF16ID is specified for both SQL CHAR and SQL NCHAR character sets,

all metadata and bound and defined data are encoded in UTF-16. Metadata

includes SQL statements, user names, error messages, and column names. Thus, all

inherited operations are independent of the NLS_LANG setting, and all metatext

data parameters (text*) are assumed to be Unicode text datatypes (utext*) in

UTF-16 encoding.

To prepare the SQL statement when the OCIEnv() function is initialized with the

OCI_UTF16ID character set ID, call the OCIStmtPrepare() function with a

(utext*) string. The following example runs on the Windows platform only. You

may need to change wchar_t datatypes for other platforms.

const wchar_t sqlstr[] = L"SELECT * FROM ENAME=:ename";
...
OCIStmt* stmthp;
sts = OCIHandleAlloc(envh, (void **)&stmthp, OCI_HTYPE_STMT, 0,
NULL);
status = OCIStmtPrepare(stmthp, errhp,(const text*)sqlstr,
wcslen(sqlstr),
 OCI_NTV_SYNTAX, OCI_DEFAULT);

To bind and define data, you do not have to set the OCI_ATTR_CHARSET_ID
attribute because the OCIEnv() function has already been initialized with UTF-16

character set IDs. The bind variable names must be also UTF-16 strings.

/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (const text*)L":ename",
(sb4)wcslen(L":ename"),
 (void *) ename, sizeof(ename), SQLT_STR, (void
*)&insname_ind,
6-14 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *)0,
OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *)
&ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0,
(ub2*)0,
 (ub4)OCI_DEFAULT);

The OCIExecute() function performs the operation.

OCI Unicode Code Conversion
Unicode character set conversions take place between an OCI client and the

database server if the client and server character sets are different. The conversion

occurs on either the client or the server depending on the circumstances, but usually

on the client side.

Data Integrity
You can lose data during conversion if you call an OCI API inappropriately. If the

server and client character sets are different, you can lose data when the destination

character set is a smaller set than the source character set. You can avoid this

potential problem if both character sets are Unicode character sets (for example,

UTF8 and AL16UTF16).

When you bind or define SQL NCHAR datatypes, you should set the OCI_ATTR_
CHARSET_FORM attribute to SQLCS_NCHAR. Otherwise, you can lose data because

the data is converted to the database character set before converting to or from the

national character set. This occurs only if the database character set is not Unicode.

OCI Performance Implications When Using Unicode
Redundant data conversions can cause performance degradation in your OCI

applications. These conversions occur in two cases:

■ When you bind or define SQL CHAR datatypes and set the OCI_ATTR_
CHARSET_FORM attribute to SQLCS_NCHAR, data conversions take place from

client character set to the national database character set, and from the national

See Also: "OCIEnvNlsCreate()" on page 8-2
Programming with Unicode 6-15

OCI Programming with Unicode
character set to the database character set. No data loss is expected, but two

conversions happen, even though it requires only one.

■ When you bind or define SQL NCHAR datatypes and do not set OCI_ATTR_
CHARSET_FORM, data conversions take place from client character set to the

database character set, and from the database character set to the national

database character set. In the worst case, data loss can occur if the database

character set is smaller than the client’s.

To avoid performance problems, you should always set OCI_ATTR_CHARSET_
FORM correctly, based on the datatype of the target columns. If you do not know the

target datatype, you should set the OCI_ATTR_CHARSET_FORM attribute to

SQLCS_NCHAR when binding and defining.

Table 6–3 contains information about OCI character set conversions.

Table 6–3 OCI Character Set Conversions

Datatypes for
OCI Client Buffer

OCI_ATTR_
CHARSET_
FORM

Datatypes of the
Target Column in
the Database Conversion Between Comments

utext SQLCS_
IMPLICIT

CHAR,
VARCHAR2,
CLOB

UTF-16 and database
character set in OCI

No unexpected data loss

utext SQLCS_
NCHAR

NCHAR,
NVARCHAR2,
NCLOB

UTF-16 and national
character set in OCI

No unexpected data loss

utext SQLCS_
NCHAR

CHAR,
VARCHAR2,
CLOB

UTF-16 and national
character set in OCI

National character set and
database character set in
database server

No unexpected data loss,
but may degrade
performance because the
conversion goes through
the national character set

utext SQLCS_
IMPLICIT

NCHAR,
NVARCHAR2,
NCLOB

UTF-16 and database
character set in OCI

Database character set and
national character set in
database server

Data loss may occur if
the database character set
is not Unicode

text SQLCS_
IMPLICIT

CHAR,
VARCHAR2,
CLOB

NLS_LANG character set
and database character set
in OCI

No unexpected data loss
6-16 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode
OCI Unicode Data Expansion
Data conversion can result in data expansion, which can cause a buffer to overflow.

For binding operations, you need to set the OCI_ATTR_MAXDATA_SIZEattribute to

a large enough size to hold the expanded data on the server. If this is difficult to do,

you need to consider changing the table schema. For defining operations, client

applications need to allocate enough buffer space for the expanded data. The size of

the buffer should be the maximum length of the expanded data. You can estimate

the maximum buffer length with the following calculation:

1. Get the column data byte size.

2. Multiply it by the maximum number of bytes per character in the client

character set.

This method is the simplest and quickest way, but it may not be accurate and can

waste memory. It is applicable to any character set combination. For example, for

UTF-16 data binding and defining, the following example calculates the client

buffer:

ub2 csid = OCI_UTF16ID;
oratext *selstmt = "SELECT ename FROM emp";
counter = 1;

text SQLCS_
NCHAR

NCHAR,
NVARCHAR2,NCLOB

NLS_LANG character set
and national character set
in OCI

No unexpected data loss

text SQLCS_
NCHAR

CHAR,
VARCHAR2,
CLOB

NLS_LANG character set
and national character set
in OCI

National character set and
database character set in
database server

No unexpected data loss,
but may degrade
performance because the
conversion goes through
the national character set

text SQLCS_
IMPLICIT

NCHAR,
NVARCHAR2,NCLOB

NLS_LANG character set
and database character set
in OCI

Database character set and
national character set in
database server

Data loss may occur
because the conversion
goes through the
database character set

Table 6–3 OCI Character Set Conversions (Cont.)

Datatypes for
OCI Client Buffer

OCI_ATTR_
CHARSET_
FORM

Datatypes of the
Target Column in
the Database Conversion Between Comments
Programming with Unicode 6-17

OCI Programming with Unicode
...
OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char*)selstmt),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, (ub4)0, (ub4)0,
 (CONST OCISnapshot*)0, (OCISnapshot*)0,
 OCI_DESCRIBE_ONLY);
OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &myparam, (ub4)counter);
OCIAttrGet((void*)myparam, (ub4)OCI_DTYPE_PARAM, (void*)&col_width,
 (ub4*)0, (ub4)OCI_ATTR_DATA_SIZE, errhp);
...
maxenamelen = (col_width + 1) * sizeof(utext);
cbuf = (utext*)malloc(maxenamelen);
...
OCIDefineByPos(stmthp, &dfnp, errhp, (ub4)1, (void *)cbuf,
 (sb4)maxenamelen, SQLT_STR, (void *)0, (ub2 *)0,
 (ub2*)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfnp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);
...

When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI
You can use UTF8 and AL32UTF8 by setting NLS_LANG for OCI client applications.

If you do not need supplementary characters, then it does not matter whether you

choose UTF8 or AL32UTF8. However, if your OCI applications might handle

supplementary characters, then you need to make a decision. Because UTF8 can

require up to three bytes for each character, one supplementary character is

represented in two code points, totalling six bytes. In AL32UTF8, one

supplementary character is represented in one code point, totalling four bytes.

Do not set NLS_LANG to AL16UTF16, because AL16UTF16 is the national character

set for the server. If you need to use UTF-16, then you should specify the client

character set to OCI_UTF16ID, using the OCIAttrSet() function when binding

or defining data.

Binding and Defining SQL CHAR Datatypes in OCI
To specify a Unicode character set for binding and defining data with SQL CHAR
datatypes, you may need to call the OCIAttrSet() function to set the appropriate

character set ID after OCIBind() or OCIDefine() APIs. There are two typical

cases:
6-18 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode
■ Call OCIBind() or OCIDefine() followed by OCIAttrSet () to specify

UTF-16 Unicode character set encoding. For example:

...
ub2 csid = OCI_UTF16ID;
utext ename[100]; /* enough buffer for ENAME */
...
/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename, sizeof(ename),
 SQLT_STR, (void *)&insname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) 0,
 (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0,
 (ub2*)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
...

If bound buffers are of the utext datatype, you should add a cast (text *)

when OCIBind() or OCIDefine() is called. The value of the OCI_ATTR_
MAXDATA_SIZE attribute is usually determined by the column size of the

server character set because this size is only used to allocate temporary buffer

space for conversion on the server when you perform binding operations.

■ Call OCIBind() or OCIDefine() with the NLS_LANG character set specified

as UTF8 or AL32UTF8.

UTF8 or AL32UTF8 can be set in the NLS_LANG environment variable. You call

OCIBind() and OCIDefine() in exactly the same manner as when you are

not using Unicode. Set the NLS_LANG environment variable to UTF8 or

AL32UTF8 and run the following OCI program:

...
oratext ename[100]; /* enough buffer size for ENAME */
...
/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename, sizeof(ename),
Programming with Unicode 6-19

OCI Programming with Unicode
 SQLT_STR, (void *)&insname_ind, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
 (ub4)OCI_DEFAULT);
...

Binding and Defining SQL NCHAR Datatypes in OCI
Oracle Corporation recommends that you access SQL NCHAR datatypes using

UTF-16 binding or defining when using OCI. Starting from Oracle9i, SQL NCHAR
datatypes are Unicode datatypes with an encoding of either UTF8 or AL16UTF16.

To access data in SQL NCHAR datatypes, set the OCI_ATTR_CHARSET_FORM
attribute to SQLCS_NCHAR between binding or defining and execution so that it

performs an appropriate data conversion without data loss. The length of data in

SQL NCHAR datatypes is always in the number of Unicode code points.

The following program is a typical example of inserting and fetching data against

an NCHAR data column:

...
ub2 csid = OCI_UTF16ID;
ub1 cform = SQLCS_NCHAR;
utext ename[100]; /* enough buffer for ENAME */
...
/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename,
 sizeof(ename), SQLT_STR, (void *)&insname_ind, (ub2 *) 0,
 (ub2 *) 0, (ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
 (ub4)OCI_DEFAULT);
6-20 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &csid, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
...

Binding and Defining CLOB and NCLOB Unicode Data in OCI
In order to write (bind) and read (define) UTF-16 data for CLOB or NCLOB columns,

the UTF-16 character set ID must be specified as OCILobWrite() and

OCILobRead() . When you write UTF-16 data into a CLOB column, call

OCILobWrite() as follows:

...
ub2 csid = OCI_UTF16ID;
err = OCILobWrite (ctx->svchp, ctx->errhp, lobp, &amtp, offset, (void *) buf,
 (ub4) BUFSIZE, OCI_ONE_PIECE, (void *)0,
 (sb4 (*)()) 0, (ub2) csid, (ub1) SQLCS_IMPLICIT);

The amtp parameter is the data length in number of Unicode code points. The

offset parameter indicates the offset of data from the beginning of the data

column. The csid parameter must be set for UTF-16 data.

To read UTF-16 data from CLOB columns, call OCILobRead() as follows:

...
ub2 csid = OCI_UTF16ID;
err = OCILobRead(ctx->svchp, ctx->errhp, lobp, &amtp, offset, (void *) buf,
 (ub4)BUFSIZE , (void *) 0, (sb4 (*)()) 0, (ub2)csid,
 (ub1) SQLCS_IMPLICIT);

The data length is always represented in the number of Unicode code points. Note

one Unicodesupplementary character is counted as two code points, because the

encoding is UTF-16. After binding or defining LOB column, you can measure the

data length stored in the LOB column using OCILobGetLength() . The returning

value is the data length in the number of code points if you bind or define as

UTF-16.

err = OCILobGetLength(ctx->svchp, ctx->errhp, lobp, &lenp);

If you are using an NCLOB, you must set OCI_ATTR_CHARSET_FORM to SQLCS_
NCHAR.
Programming with Unicode 6-21

Pro*C/C++ Programming with Unicode
Pro*C/C++ Programming with Unicode
Pro*C/C++ provides the following ways to insert or retrieve Unicode data into or

from the database:

■ Using the VARCHARPro*C/C++ datatype or the native C/C++ text datatype, a

program can access Unicode data stored in SQL CHAR datatypes of a UTF8 or

AL32UTF8 database. Alternatively, a program could use the C/C++ native

text type.

■ Using the UVARCHAR Pro*C/C++ datatype or the native C/C++ utext
datatype, a program can access Unicode data stored in NCHAR datatypes of a

database.

■ Using the NVARCHAR Pro*C/C++ datatype, a program can access Unicode data

stored in NCHAR datatypes. The difference between UVARCHAR and NVARCHAR
in a Pro*C/C++ program is that the data for the UVARCHARdatatype is stored in

a utext buffer while the data for the NVARCHAR datatype is stored in a text
datatype.

Pro*C/C++ does not use the Unicode OCI API for SQL text. As a result, embedded

SQL text must be encoded in the character set specified in the NLS_LANG
environment variable.

This section contains the following topics:

■ Pro*C/C++ Data Conversion in Unicode

■ Using the VARCHAR Datatype in Pro*C/C++

■ Using the NVARCHAR Datatype in Pro*C/C++

■ Using the UVARCHAR Datatype in Pro*C/C++

Pro*C/C++ Data Conversion in Unicode
Data conversion occurs in the OCI layer, but it is the Pro*C/C++ preprocessor that

instructs OCI which conversion path should be taken based on the datatypes used

in a Pro*C/C++ program. Table 6–4 illustrates the conversion paths:
6-22 Oracle9i Database Globalization Support Guide

Pro*C/C++ Programming with Unicode
Using the VARCHAR Datatype in Pro*C/C++
The Pro*C/C++ VARCHAR datatype is preprocessed to a struct with a length field

and text buffer field. The following example uses the C/C++ text native

datatype and the VARCHAR Pro*C/C++ datatypes to bind and define table columns.

#include <sqlca.h>
main()
{
 ...
 /* Change to STRING datatype: */
 EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
 text ename[20] ; /* unsigned short type */
 varchar address[50] ; /* Pro*C/C++ uvarchar type */

 EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
 /* ename is NULL-terminated */
 printf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len, address.arr);
 ...

Table 6–4 Pro*C/C++ Bind and Define Data Conversion

Pro*C/C++ Datatype SQL Datatype Conversion Path

VARCHAR or text CHAR NLS_LANG character set to and from the database
character set happens in OCI

VARCHAR or text NCHAR NLS_LANG character set to and from database character
set happens in OCI

Database character set to and from national character set
happens in database server

NVARCHAR NCHAR NLS_LANG character set to and from national character
set happens in OCI

NVARCHAR CHAR NLS_LANG character set to and from national character
set happens in OCI

National character set to and from database character set
in database server

UVARCHAR or utext NCHAR UTF-16 to and from the national character set happens in
OCI

UVARCHAR or utext CHAR UTF-16 to and from national character set happens in
OCI

National character set to database character set happens
in database server
Programming with Unicode 6-23

Pro*C/C++ Programming with Unicode
}

When you use the VARCHAR datatype or native text datatype in a Pro*C/C++

program, the preprocessor assumes that the program intends to access columns of

SQL CHAR datatypes instead of SQL NCHAR datatypes in the database. The

preprocessor generates C/C++ code to reflect this fact by doing a bind or define

using the SQLCS_IMPLICIT value for the OCI_ATTR_CHARSET_FORMattribute. As

a result, if a bind or define variable is bound to a column of SQL NCHAR datatypes

in the database, implicit conversion happens in the database server to convert the

data from the database character set to the national database character set and vice

versa. During the conversion, data loss occurs when the database character set is a

smaller set than the national character set.

Using the NVARCHAR Datatype in Pro*C/C++
The Pro*C/C++ NVARCHAR datatype is similar to the Pro*C/C++ VARCHAR
datatype. It should be used to access SQL NCHAR datatypes in the database. It tells

Pro*C/C++ preprocessor to bind or define a text buffer to the column of SQL NCHAR
datatypes. The preprocessor will specify the SQLCS_NCHAR value for the OCI_
ATTR_CHARSET_FORM attribute of the bind or define variable. As a result, no

implicit conversion occurs in the database.

If the NVARCHAR buffer is bound against columns of SQL CHAR datatypes, the data

in the NVARCHAR buffer (encoded in the NLS_LANG character set) is converted to or

from the national character set in OCI, and the data is then converted to the

database character set in the database server. Data can be lost when the NLS_LANG
character set is a larger set than the database character set.

Using the UVARCHAR Datatype in Pro*C/C++
The UVARCHAR datatype is preprocessed to a struct with a length field and utext
buffer field. The following example code contains two host variables, ename and

address . The ename host variable is declared as a utext buffer containing 20

Unicode characters. The address host variable is declared as a uvarchar buffer

containing 50 Unicode characters, the len and arr fields are accessible as fields of a

struct.

#include <sqlca.h>
#include <sqlucs2.h>

main()
{
 ...
6-24 Oracle9i Database Globalization Support Guide

JDBC and SQLJ Programming with Unicode
 /* Change to STRING datatype: */
 EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
 utext ename[20] ; /* unsigned short type */
 uvarchar address[50] ; /* Pro*C/C++ uvarchar type */

 EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
 /* ename is NULL-terminated */
wprintf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len,
address.arr);
...
}

When you use the UVARCHAR datatype or native utext datatype in Pro*C/C++

programs, the preprocessor assumes that the program intends to access SQL NCHAR
datatypes. The preprocessor generates C/C++ code by binding or defining using

the SQLCS_NCHAR value for OCI_ATTR_CHARSET_FORM attribute. As a result, if a

bind or define variable is bound to a column of a SQL NCHAR datatype, an implicit

conversion of the data from the national character set occurs in the database server.

However, there is no data lost in this scenario because the national character set is

always a larger set than the database character set.

JDBC and SQLJ Programming with Unicode
Oracle provides three JDBC drivers for Java programs to access Unicode data in the

database:

■ The JDBC OCI driver

■ The JDBC thin driver

■ The JDBC KPRB driver

Java programs can insert or retrieve Unicode data to and from columns of SQL

CHAR and NCHAR datatypes. Specifically, JDBC enables Java programs to bind or

define Java strings to SQL CHAR and NCHAR datatypes. Because Java’s string
datatype is UTF-16 encoded, data retrieved from or inserted into the database must

be converted from UTF-16 to the database character set or the national character set

and vice versa. The SQLJ preprocessor enables Java programs to embed SQL

statements to simplify database access code. It translates the embedded SQL

statements of a Java program to the corresponding JDBC calls. Similar to JDBC,

SQLJ enables programs to bind or define Java strings to a SQL CHAR or NCHAR
column. JDBC and SQLJ also allow you to specify the PL/SQL and SQL statements

in Java strings so that any non-ASCII schema object names can be referenced in Java

programs.
Programming with Unicode 6-25

JDBC and SQLJ Programming with Unicode
This section contains the following topics:

■ Binding and Defining Java Strings in Unicode

■ Java Data Conversion in Unicode

■ Java Data Conversion in Unicode

Binding and Defining Java Strings in Unicode
Oracle JDBC drivers allow you to access SQL CHAR datatypes in the database using

Java string bind or define variables. The following code illustrates how to bind or

define a Java string to a CHAR column:

int empno = 12345;
String ename = "Joe"
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO" +
 "emp (ename, empno) VALUES (?, ?)");
pstmt.setString(1, ename);
pstmt.setInt(2, empno);
pstmt.execute(); /* execute to insert into first row */
empno += 1; /* next employee number */
ename = "\uFF2A\uFF4F\uFF45"; /* Unicode characters in name */
pstmt.setString(1, ename);
pstmt.setInt(2, empno);
pstmt.execute(); /* execute to insert into second row */

For binding or defining Java string variables to SQL NCHAR datatypes, Oracle

extends the JDBC specification to add the

PreparedStatement .setFormOfUse() method through which you can

explicitly specify the target column of a bind variable to be a SQL NCHAR datatype.

The following code illustrates how to bind a Java string to an NCHAR column:

int empno = 12345;
String ename = "Joe"
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
 conn.prepareStatement("INSERT INTO emp (ename, empno) VALUES (?, ?)");
pstmt.setFormOfUse(1, oracle.jdbc.OraclePreparedStatement.FORM_NCHAR);
pstmt.setString(1, ename);
pstmt.setInt(2, empno);
pstmt.execute(); /* execute to insert into first row */
empno += 1; /* next employee number */

See Also: Chapter 9, "Java Programming in a Global

Environment"
6-26 Oracle9i Database Globalization Support Guide

JDBC and SQLJ Programming with Unicode
ename = "\uFF2A\uFF4F\uFF45"; /* Unicode characters in name */
pstmt.setString(1, ename);
pstmt.setInt(2, empno);
pstmt.execute(); /* execute to insert into second row */

You can bind or define a Java string against an NCHAR column without explicitly

specifying the form of use argument. This implies the following:

■ If you do not specify the argument in the setString() method, JDBC

assumes that the bind or define variable is for the SQL CHAR column. As a

result, it tries to convert them to the database character set. When the data gets

to the database, the database implicitly converts the data in the database

character set to the national character set. During this conversion, data can be

lost when the database character set is a subset of the national character set.

Because the national character set is either UTF8 or AL16UTF16, data loss

would happen if the database character set is not UTF8 or AL32UTF8.

■ Because implicit conversion from SQL CHAR to SQL NCHAR datatypes happens

in the database, database performance is degraded.

In addition, if you bind or define a Java string for a column of SQL CHAR datatypes

but specify the form of use argument, performance of the database will be

degraded. However, data should not be lost because the national character set is

always a larger set than the database character set.

Java Data Conversion in Unicode
Because Java strings are always encoded in UTF-16, JDBC drivers transparently

convert data from the database character set to UTF-16 or the national character

set.The conversion paths taken are different for the three JDBC drivers:

■ Data Conversion for the OCI Driver

■ Data Conversion for the Thin Driver

■ Data Conversion for the JDBC Driver

Data Conversion for the OCI Driver
For the OCI driver, the SQL statements are always converted to the database

character set by the driver before it is sent to the database for processing. For Java

string bind or define variables, Table 6–5 summarizes the conversion paths taken

for different scenarios:
Programming with Unicode 6-27

JDBC and SQLJ Programming with Unicode
Data Conversion for the Thin Driver
For the thin driver, SQL statements are always converted to either the database

character set or to UTF-8 by the driver before they are sent to the database for

processing. The thin driver also notifies the database that a SQL statement requires

further conversion before being processed. The database, in turn, converts the SQL

statement to the database character set. For Java string bind and define variables,

the conversion paths shown in Table 6–6 are taken for the thin driver:

Table 6–5 OCI Driver Conversion Path

Form of Use SQL Datatype Conversion Path

Const.CHAR
(Default)

CHAR Java String to and from database character set
happens in the JDBC driver

Const.CHAR
(Default)

NCHAR Java String to and from database character set
happens in the JDBC driver.

Data in the database character set to and from
national character set happens in the database
server

Const.NCHAR NCHAR Java String to and from national character set
happens in the JDBC driver

Const.NCHAR CHAR Java String to and from national character set
happens in the JDBC driver

Data in national character set to and from
database character set happens in the database
server
6-28 Oracle9i Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode
Data Conversion for the JDBC Driver
The JDBC server-side internal driver runs in the server. All conversions are done in

the database server. SQL statements specified as Java strings are converted to the

database character set. Java string bind or define variables are converted to the

database character sets if the form of use argument is not specified. Otherwise, they

are converted to the national character set.

ODBC and OLE DB Programming with Unicode
You should use Oracle’s ODBC and OLE DB drivers to access Oracle9i when using

a Windows platform. This section describes how these drivers support Unicode. It

includes the following topics:

Table 6–6 Thin Driver Conversion Path

Form of Use SQL Datatype
Database
Character Set Conversion Path

Const.CHAR
(Default)

CHAR US7ASCII or
WE8ISO8859P1

Java String to and from the database character
set happens in the thin driver

Const.CHAR
(Default)

NCHAR US7ASCII or
WE8ISO8859P1

Java String to and from the database character
set happens in the thin driver.

Data in the database character set to and from
the national character set happens in the
database server

Const.CHAR
(Default)

CHAR non-ASCII and
non-WE8ISO8859P1

Java String to and from UTF-8 happens in the
thin driver.

Data in UTF-8 to and from the database
character set happens in the database server

Const.CHAR
(Default)

CHAR non-ASCII and
non-WE8ISO8859P1

Java String to and from UTF-8 happens in the
thin driver.

Data in UTF-8 to and from national character
set happens in the database server

Const.NCHAR CHAR Java String to and from the national character
set happens in the thin driver.

Data in the national character set to and from
the database character set happens in the
database server

Const.NCHAR NCHAR Java String to and from the national character
set happens in the thin driver
Programming with Unicode 6-29

ODBC and OLE DB Programming with Unicode
■ Unicode-Enabled Drivers in ODBC and OLE DB

■ OCI Dependency in Unicode

■ ODBC and OLE DB Code Conversion in Unicode

■ ODBC Unicode Datatypes

■ OLE DB Unicode Datatypes

■ ADO Access

Unicode-Enabled Drivers in ODBC and OLE DB
Oracle’s ODBC and OLE DB drivers can handle Unicode data properly without

data loss. For example, you can run a Unicode ODBC application containing

Japanese data on English Windows if you install Japanese fonts and an input

method editor for entering Japanese characters.

In Oracle9i, Oracle provides Windows platform-specific ODBC and OLE DB drivers

only. For Unix platforms, contact your vendor.

OCI Dependency in Unicode
OCI Unicode binding and defining features are used by the ODBC and OLE DB

drivers to handle Unicode data. OCI Unicode data binding and defining features

are independent from NLS_LANG. This means Unicode data is handled properly,

irrespective of the NLS_LANG setting on the platform.

ODBC and OLE DB Code Conversion in Unicode
In general, no redundant data conversion occurs unless you specify a different

client datatype from that of the server. If you bind Unicode buffer SQL_C_WCHAR
with a Unicode data column like NCHAR, for example, ODBC and OLE DB drivers

bypass it between the application and OCI layer.

If you do not specify datatypes before fetching, but call SQLGetData with the client

datatypes instead, then the conversions in Table 6–7 occur.

See Also: "OCI Programming with Unicode" on page 6-13
6-30 Oracle9i Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode
You must specify the datatype for inserting and updating operations.

The datatype of the ODBC client buffer is given when you call SQLGetData but not

immediately. Hence, SQLFetch does not have the information.

Because the ODBC driver guarantees data integrity, if you perform implicit

bindings, redundant conversion may result in performance degradation. Your

choice is the trade-off between performance with explicit binding or usability with

implicit binding.

Table 6–7 ODBC Implicit Binding Code Conversions

Datatypes of ODBC
Client Buffer

Datatypes of the
Target Column in
the Database Fetch Conversions Comments

SQL_C_WCHAR CHAR,
VARCHAR2,
CLOB

[If the database character
set is a subset of the
NLS_LANG character set,
then the conversions
occur in the following
order:

■ Database character
set

■ NLS_LANG

■ UTF-16 in OCI

■ UTF-16 in ODBC

No unexpected data
loss

May degrade
performance if
database character
set is a subset of the
NLS_LANGcharacter
set

SQL_C_CHAR CHAR,
VARCHAR2,
CLOB

If database character set
is a subset of NLS_LANG
character set:

Database character set to
NLS_LANG in OCI

If database character set
is NOT a subset of NLS_
LANG character set:

Database character set,
UTF-16, to NLS_LANG
character set in OCI and
ODBC

No unexpected data
loss

May degrade
performance if
database character
set is not a subset of
NLS_LANGcharacter
set
Programming with Unicode 6-31

ODBC and OLE DB Programming with Unicode
OLE DB Code Conversions
Unlike ODBC, OLE DB only enables you to perform implicit bindings for inserting,

updating, and fetching data. The conversion algorithm for determining the

intermediate character set is the same as the implicit binding cases of ODBC.

ODBC Unicode Datatypes
In ODBC Unicode applications, use SQLWCHAR to store Unicode data. All standard

Windows Unicode functions can be used for SQLWCHAR data manipulations. For

example, wcslen counts the number of characters of SQLWCHAR data:

SQLWCHAR sqlStmt[] = L"select ename from emp";
len = wcslen(sqlStmt);

Table 6–8 OLE DB Implicit Bindings

Datatypes of OLE_
DB Client Buffer

Datatypes of the
Target Column in the
Database

In-Binding and Out-Binding
Conversions Comments

DBTYPE_WCHAR CHAR,
VARCHAR2,
CLOB

If database character set is a
subset of the NLS_LANG character
set:

Database character set to and from
NLS_LANG character set in OCI.
NLS_LANGcharacter set to UTF-16
in OLE DB

If database character set is NOT a
subset of NLS_LANG character set:

Database character set to and from
UTF-16 in OCI

No unexpected data loss

May degrade performance if
database character set is a
subset of NLS_LANG
character set

DBTYPE_CHAR CHAR,
VARCHAR2,
CLOB

If database character set is a
subset of the NLS_LANG character
set:

Database character set to and from
NLS_LANG in OCI

If database character set is not a
subset of NLS_LANG character set:

Database character set to and from
UTF-16 in OCI. UTF-16 to NLS_
LANG character set in OLE DB

No unexpected data loss

May degrade performance if
database character set is not
a subset of NLS_LANG
character set
6-32 Oracle9i Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode
Microsoft’s ODBC 3.5 specification defines three Unicode datatype identifiers for

the SQL_C_WCHAR, SQL_C_WVARCHAR, and SQL_WLONGVARCHARclients; and three

Unicode datatype identifiers for servers SQL_WCHAR, SQL_WVARCHAR, and SQL_
WLONGVARCHAR.

For binding operations, specify datatypes for both client and server using

SQLBindParameter . The following is an example of Unicode binding, where the

client buffer Name indicates that Unicode data (SQL_C_WCHAR) is bound to the first

bind variable associated with the Unicode column (SQL_WCHAR):

SQLBindParameter(StatementHandle, 1, SQL_PARAM_INPUT, SQL_C_WCHAR,
SQL_WCHAR, NameLen, 0, (SQLPOINTER)Name, 0, &Name);

Table 6–9 represents the datatype mappings of the ODBC Unicode datatypes for the

server against SQL NCHAR datatypes.

According to ODBC specifications, SQL_WCHAR, SQL_WVARCHAR, and SQL_
WLONGVARCHAR are treated as Unicode data, and are therefore measured in the

number of characters instead of the number of bytes.

OLE DB Unicode Datatypes
OLE DB offers the wchar_t *, BSTR, and OLESTR datatypes for the Unicode client

C datatype. In practice, wchar_t is the most common datatype and the others are

for specific purposes. The following example assigns a static SQL statement:

wchar_t *sqlStmt = OLESTR("SELECT ename FROM emp");

The OLESTR macro works exactly like an "L" modifier to indicate the Unicode

string. If you need to allocate Unicode data buffer dynamically using OLESTR, use

the IMalloc allocator (for example, CoTaskMemAlloc). However, using OLESTR
is not the normal method for variable length data; use wchar_t * instead for generic

string types. BSTR is similar. It is a string with a length prefix in the memory

location preceding the string. Some functions and methods can accept only BSTR

Table 6–9 Server ODBC Unicode Datatype Mapping

ODBC Datatype Oracle Datatype

SQL_WCHAR NCHAR

SQL_WVARCHAR NVARCHAR2

SQL_WLONGVARCHAR NCLOB
Programming with Unicode 6-33

ODBC and OLE DB Programming with Unicode
Unicode datatypes. Therefore, BSTR Unicode string must be manipulated with

special functions like SysAllocString for allocation and SysFreeString for

freeing memory.

Unlike ODBC, OLE DB does not allow you to specify the server datatype explicitly.

When you set the client datatype, the OLE DB driver automatically performs data

conversion if necessary.

Table 6–10 illustrates OLE DB datatype mapping.

If DBTYPE_BSTR is specified, it is assumed to be DBTYPE_WCHAR because both are

Unicode strings.

ADO Access
ADO is a high-level API to access database with the OLE DB and ODBC drivers.

Most database application developers use the ADO interface on Windows because

it is easily accessible from Visual Basic, the primary scripting language for Active

Server Pages (ASP) for the Internet Information Server (IIS). To OLE DB and ODBC

drivers, ADO is simply an OLE DB consumer or ODBC application. ADO assumes

that OLE DB and ODBC drivers are Unicode-aware components; hence, it always

attempts to manipulate Unicode data.

Table 6–10 OLE DB Datatype Mapping

OLE DB Datatype Oracle Datatype

DBTYPE_WCHAR NCHAR or NVARCHAR2
6-34 Oracle9i Database Globalization Support Guide

SQL and PL/SQL Programming in a Global Environ
7

SQL and PL/SQL Programming in a Global

Environment

This chapter contains information useful for SQL programming in a globalization

support environment. It includes the following topics:

■ Locale-Dependent SQL Functions with Optional NLS Parameters

■ Other Locale-Dependent SQL Functions

■ Miscellaneous Topics for SQL and PL/SQL Programming in a Global

Environment
ment 7-1

Locale-Dependent SQL Functions with Optional NLS Parameters
Locale-Dependent SQL Functions with Optional NLS Parameters
All SQL functions whose behavior depends on globalization support conventions

allow NLS parameters to be specified. These functions are:

■ TO_CHAR

■ TO_DATE

■ TO_NUMBER

■ NLS_UPPER

■ NLS_LOWER

■ NLS_INITCAP

■ NLSSORT

Explicitly specifying the optional NLS parameters for these functions enables the

functions to be evaluated independently of the session’s NLS parameters. This

feature can be important for SQL statements that contain numbers and dates as

string literals.

For example, the following query is evaluated correctly if the language specified for

dates is AMERICAN:

SELECT last_name FROM employees WHERE hire_date > '01-JAN-1999';

Such a query can be made independent of the current date language by using a

statement similar to the following:

SELECT last_name FROM employees WHERE hire_date >
TO_DATE('01-JAN-1999','DD-MON-YYYY', 'NLS_DATE_LANGUAGE = AMERICAN');

In this way, SQL statements that are independent of the session language can be

defined where necessary. Such statements are necessary when string literals appear

in SQL statements in views, CHECK constraints, or triggers.

All character functions support both single-byte and multibyte characters. Except

where explicitly stated, character functions operate character by character, rather

than byte by byte.

The rest of this section includes the following topics:

■ Default Values for NLS Parameters in SQL Functions

■ Specifying NLS Parameters in SQL Functions

■ Unacceptable NLS Parameters in SQL Functions
7-2 Oracle9i Database Globalization Support Guide

Locale-Dependent SQL Functions with Optional NLS Parameters
Default Values for NLS Parameters in SQL Functions
When SQL functions evaluate views and triggers, default values from the current

session are used for the NLS function parameters. When SQL functions evaluate

CHECK constraints, they use the default values that were specified for the NLS

parameters when the database was created.

Specifying NLS Parameters in SQL Functions
NLS parameters are specified in SQL functions as follows:

' parameter = value '

For example:

’NLS_DATE_LANGUAGE = AMERICAN’

The following NLS parameters can be specified in SQL functions:

■ NLS_DATE_LANGUAGE

■ NLS_NUMERIC_CHARACTERS

■ NLS_CURRENCY

■ NLS_ISO_CURRENCY

■ NLS_SORT

Table 7–1 shows which NLS parameters are valid for specific SQL functions.

Table 7–1 SQL Functions and Their Valid NLS Parameters

SQL Function Valid NLS Parameters

TO_DATE NLS_DATE_LANGUAGE
NLS_CALENDAR

TO_NUMBER NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY

TO_CHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR
SQL and PL/SQL Programming in a Global Environment 7-3

Locale-Dependent SQL Functions with Optional NLS Parameters
The following examples show how to use NLS parameters in SQL functions:

TO_DATE ('1-JAN-99', 'DD-MON-YY',
 'nls_date_language = American')

TO_CHAR (hire_date, 'DD/MON/YYYY',
 'nls_date_language = French')

TO_NUMBER ('13.000,00', '99G999D99',
 'nls_numeric_characters = '',.''')

TO_CHAR (salary, '9G999D99L', 'nls_numeric_characters = '',.''
 nls_currency = '' Dfl''')

TO_CHAR (salary, '9G999D99C', 'nls_numeric_characters = ''.,''
 nls_iso_currency = Japan')

NLS_UPPER (last_name, 'nls_sort = Swiss')

NLSSORT (last_name, 'nls_sort = German')

TO_NCHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

NLS_UPPER NLS_SORT

NLS_LOWER NLS_SORT

NLS_INITCAP NLS_SORT

NLSSORT NLS_SORT

Note: In some languages, some lowercase characters correspond

to more than one uppercase character or vice versa. As a result, the

length of the output from the NLS_UPPER, NLS_LOWER, and NLS_
INITCAP functions can differ from the length of the input.

Table 7–1 SQL Functions and Their Valid NLS Parameters (Cont.)

SQL Function Valid NLS Parameters
7-4 Oracle9i Database Globalization Support Guide

Other Locale-Dependent SQL Functions
Unacceptable NLS Parameters in SQL Functions
The following NLS parameters are not accepted in SQL functions except for

NLSSORT:

■ NLS_LANGUAGE

■ NLS_TERRITORY

■ NLS_DATE_FORMAT

NLS_DATE_FORMAT is not accepted as a parameter because it can interfere with

required format masks. A date format must always be specified if an NLS

parameter is in a TO_CHARor TO_DATEfunction. As a result, NLS_DATE_FORMATis
not a valid NLS parameter for the TO_CHAR or TO_DATE functions.

If NLS_LANGUAGEor NLS_TERRITORYis specified in the TO_CHAR, TO_NUMBER, or

TO_DATE functions, then a format mask must also be specified as the second

parameter of the function. For example, the following specification is legal:

TO_CHAR (hire_date, 'DD/MON/YYYY', 'nls_date_language = French')

The following specification is illegal because there is no format mask:

TO_CHAR (hire_date, 'nls_date_language = French')

The following specification is illegal because the format mask is not specified as the

second parameter of the function:

TO_CHAR (hire_date, 'nls_date_language = French', 'DD/MON/YY')

Other Locale-Dependent SQL Functions
This section includes the following topics:

■ The CONVERT Function

■ SQL Functions for Different Length Semantics

■ LIKE Conditions for Different Length Semantics

■ Character Set SQL Functions

■ The NLSSORT Function

See Also: "Special Uppercase Letters" on page 4-12 and "Special

Lowercase Letters" on page 4-12
SQL and PL/SQL Programming in a Global Environment 7-5

Other Locale-Dependent SQL Functions
The CONVERT Function
The CONVERT function enables conversion of character data between character sets.

The CONVERT function converts the binary representation of a character string in

one character set to another. It uses exactly the same technique as conversion

between database and client character sets. Hence, it uses replacement characters

and has the same limitations.

The syntax for CONVERT is as follows:

CONVERT(char, dest_char_set[, source_char_set])

source_char_set is the source character set and dest_char_set is the

destination character set. If the source_char_set parameter is not specified, then

it defaults to the database character set.

In client/server environments that use different character sets, use the TRANSLATE
...USING function to perform conversions instead of CONVERT. The

TRANSLATE...USING function must be used if either the client or the server has

NCHAR or NVARCHAR2 data.

SQL Functions for Different Length Semantics
Oracle9i provides SQL functions that work in accordance with different length

semantics. There are three groups of such SQL functions: SUBSTR, LENGTH, and

INSTR. Each function in a group is based on a different kind of length semantics

and is distinguished by the character or number appended to the function

name.The members of each group of functions is distinguished by the character or

number that is appended to the function’s name. For example, SUBSTRBis based on

byte semantics.

See Also: "Character Set Conversion Between Clients and the

Server" on page 2-16

See Also:

■ Oracle9i SQL Reference for more information about the CONVERT
function and the TRANSLATE...USING function

■ "Character Set Conversion Support" on page A-18 for character

set encodings that are used only for the CONVERT function
7-6 Oracle9i Database Globalization Support Guide

Other Locale-Dependent SQL Functions
The SUBSTR functions return a requested portion of a substring. The LENGTH
functions return the length of a string. The INSTR functions search for a substring

in a string.

The SUBSTR functions calculate the length of a string differently. Table 7–1

summarizes the calculation methods.

The LENGTH and INSTR functions calculate string length in the same way,

according to the character or number added to the function name.

The following examples demonstrate the differences between SUBSTR and

SUBSTRB on a database whose character set is AL32UTF8.

For the string Fußball, the following statement returns a substring that is 4

characters long, beginning with the second character:

SELECT SUBSTR ('Fußball', 2 , 4) SUBSTR FROM dual;

Table 7–2 How the SUBSTR Functions Calculate the Length of a String

Function Calculation Method

SUBSTR Calculates the length of a string in characters based on the
length semantics associated with the character set of the
datatype. For example, AL32UTF8 characters are calculated in
UCS-4 code units. UTF8 and AL16UTF16 characters are
calculated in UCS-2 code units. A supplementary character is
counted as one character in AL32UTF8 and as two characters
in UTF8 and AL16UTF16. Because VARCHAR and NVARCHAR
may use different character sets, SUBSTR may give different
results for different datatypes even if two strings are identical.
If your application requires consistency, then use SUBSTR2 or
SUBSTR4 to force all semantic calculations to be UCS-2 or
UCS-4, respectively.

SUBSTRB Calculates the length of a string in bytes

SUBSTR2 Calculates the length of a string in UCS-2 code units, which is
compliant with Java strings and Windows client environments.
Characters are represented in UCS-2 or 16-bit Unicode values.
Supplementary characters are counted as two code units.

SUBSTR4 Calculates the length of a string in UCS-4 code units.
Characters are represented in UCS-4 or 32-bit Unicode values.
Supplementary characters are counted as one code unit.

SUBSTRC Calculates the length of a string in Unicode complete
characters. Supplementary characters and composite
characters are counted as one character.
SQL and PL/SQL Programming in a Global Environment 7-7

Other Locale-Dependent SQL Functions
SUBS

ußba

For the string Fußball, the following statement returns a substring 4 bytes long,

beginning with the second byte:

SELECT SUBSTRB ('Fußball', 2 , 4) SUBSTRB FROM dual;

SUB

ußb

LIKE Conditions for Different Length Semantics
The LIKE conditions specify a test that uses pattern-matching. The equality

operator (=) exactly matches one character value to another, but the LIKE
conditions match a portion of one character value to another by searching the first

value for the pattern specified by the second.

LIKE calculates the length of strings in characters using the length semantics

associated with the input character set. The LIKE2 , LIKE4 , and LIKEC conditions

are summarized in Table 7–3.

There is no LIKEB condition.

See Also: Oracle9i SQL Reference for more information about the

SUBSTR, LENGTH, and INSTR functions

Table 7–3 LIKE Conditions

Function Description

LIKE2 Use when characters are represented in UCS-2 semantics. A
supplementary character is considered as two code units.

LIKE4 Use when characters are represented in UCS-4 semantics. A
supplementary character is considered as one code unit.

LIKEC Use when characters are represented in Unicode complete
character semantics. A composed character is treated as one
code unit.
7-8 Oracle9i Database Globalization Support Guide

Other Locale-Dependent SQL Functions
Character Set SQL Functions
Two SQL functions, NLS_CHARSET_NAME and NLS_CHARSET_ID, can convert

between character set ID numbers and character set names. They are used by

programs that need to determine character set ID numbers for binding variables

through OCI.

Another SQL function, NLS_CHARSET_DECL_LEN, returns the length of an NCHAR
column.

This section includes the following topics:

■ Converting from Character Set Number to Character Set Name

■ Converting from Character Set Name to Character Set Number

■ Returning the Length of an NCHAR Column

Converting from Character Set Number to Character Set Name
The NLS_CHARSET_NAME(n) function returns the name of the character set

corresponding to ID number n. The function returns NULL if n is not a recognized

character set ID value.

Converting from Character Set Name to Character Set Number
NLS_CHARSET_ID(text) returns the character set ID corresponding to the name

specified by text . text is defined as a run-time VARCHAR2 quantity, a character

set name. Values for text can be NLSRTL names that resolve to character sets that

are not the database character set or the national character set.

If the value CHAR_CS is entered for text , then the function returns the ID of the

server's database character set. If the value NCHAR_CS is entered for text , then the

function returns the ID of the server's national character set. The function returns

NULL if text is not a recognized name.

See Also: Oracle9i SQL Reference

Note: The value for text must be entered in uppercase

characters.
SQL and PL/SQL Programming in a Global Environment 7-9

Other Locale-Dependent SQL Functions
Returning the Length of an NCHAR Column
NLS_CHARSET_DECL_LEN(BYTECNT, CSID) returns the declaration length in

number of characters for an NCHAR column. BYTECNT is the byte length of the

column. CSID is the character set ID of the column.

The NLSSORT Function
The NLSSORT function enables you to use any linguistic sort for an ORDER BY
clause. It replaces a character string with the equivalent sort string used by the

linguistic sort mechanism so that sorting the replacement strings produces the

desired sorting sequence. For a binary sort, the sort string is the same as the input

string.

The kind of linguistic sort used by an ORDER BY clause is determined by the NLS_
SORT session parameter, but it can be overridden by explicitly using the NLSSORT
function.

Example 7–1 specifies a German sort with the NLS_SORT session parameter.

Example 7–1 Specifying a German Sort with the NLS_SORT Session Parameter

ALTER SESSION SET NLS_SORT = GERMAN;
SELECT * FROM table1
ORDER BY column1;

Example 7–2 Specifying a French Sort with the NLSSORT Function

This example first sets the NLS_SORT session parameter to German, but the

NLSSORT function overrides it by specifying a French sort.

ALTER SESSION SET NLS_SORT = GERMAN;
SELECT * FROM table1
ORDER BY NLSSORT(column1, 'NLS_SORT=FRENCH');

The WHERE clause uses binary comparison rather than linguistic comparison by

default, but this can be overridden by using the NLSSORT function in the WHERE
clause.

Example 7–3 Making a Linguistic Comparison with the WHERE Clause

ALTER SESSION SET NLS_COMP = ANSI;
SELECT * FROM table1
WHERE NLSSORT(column1, 'NLS_SORT=FRENCH')>

NLSSORT(column2, 'NLS_SORT=FRENCH');
7-10 Oracle9i Database Globalization Support Guide

Other Locale-Dependent SQL Functions
Setting the NLS_COMP session parameter to ANSI causes the NLS_SORT value to be

used in the WHERE clause.

The rest of this section contains the following topics:

■ NLSSORT Syntax

■ Comparing Strings in a WHERE Clause

■ Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE

Clause

■ Controlling an ORDER BY Clause

NLSSORT Syntax
There are four ways to use NLSSORT:

■ NLSSORT(), which relies on the NLS_SORT parameter

■ NLSSORT(column1, 'NLS_SORT= xxxx ')

■ NLSSORT(column1, 'NLS_LANG= xxxx ')

■ NLSSORT(column1, 'NLS_LANGUAGE= xxxx ')

The NLS_LANG parameter of the NLSSORT function is not the same as the NLS_
LANG client environment setting. In the NLSSORT function, NLS_LANG specifies the

abbreviated language name, such as US for American or PL for Polish. For example:

SELECT * FROM table1
ORDER BY NLSSORT(column1, 'NLS_LANG=PL');

Comparing Strings in a WHERE Clause
NLSSORT enables applications to perform string matching that follows alphabetic

conventions. Normally, character strings in a WHERE clause are compared by using

the binary values of the characters. One character is considered greater than another

character if it has a greater binary value in the database character set. Because the

sequence of characters based on their binary values might not match the alphabetic

sequence for a language, such comparisons may not follow alphabetic conventions.

For example, if a column (column1) contains the values ABC, ABZ, BCD, and ÄBC

in the ISO 8859-1 8-bit character set, the following query returns both BCD and ÄBC
because Ä has a higher numeric value than B:

SELECT column1 FROM table1 WHERE column1 > 'B';
SQL and PL/SQL Programming in a Global Environment 7-11

Other Locale-Dependent SQL Functions
In German, Ä is sorted alphabetically before B, but in Swedish, Ä is sorted after Z.

Linguistic comparisons can be made by using NLSSORT in the WHERE clause:

WHERE NLSSORT(col) comparison_operator NLSSORT(comparison_string)

Note that NLSSORT must be on both sides of the comparison operator. For example:

SELECT column1 FROM table1 WHERE NLSSORT(column1) > NLSSORT('B');

If a German linguistic sort has been set, then the statement does not return strings

beginning with Ä because Ä comes before B in the German alphabet. If a Swedish

linguistic sort has been set, then strings beginning with Ä are returned because Ä
comes after Z in the Swedish alphabet.

Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE Clause
Comparison in the WHERE clause or PL/SQL blocks is binary by default. Using the

NLSSORT function for linguistic comparison can be tedious, especially when the

linguistic sort has already been specified in the NLS_SORT session parameter. You

can use the NLS_COMP parameter to indicate that the comparisons in a WHERE
clause or in PL/SQL blocks must be linguistic according to the NLS_SORT session

parameter.

Controlling an ORDER BY Clause
If a linguistic sort is in use, then ORDER BY clauses use an implicit NLSSORT on

character data. The sort mechanism (linguistic or binary) for an ORDER BY clause is

transparent to the application. However, if the NLSSORT function is explicitly

specified in an ORDER BY clause, then the implicit NLSSORT is not done.

If a linguistic sort has been defined by the NLS_SORT session parameter, then an

ORDER BY clause in an application uses an implicit NLSSORT function. If you

specify an explicit NLSSORT function, then it overrides the implicit NLSSORT
function.

When the sort mechanism has been defined as linguistic, the NLSSORT function is

usually unnecessary in an ORDER BY clause.

Note: The NLS_COMP parameter does not affect comparison

behavior for partitioned tables. String comparisons that are based

on a VALUES LESS THAN partition are always binary.

See Also: "NLS_COMP" on page 3-41
7-12 Oracle9i Database Globalization Support Guide

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment
When the sort mechanism either defaults or is defined as binary, then a query like

the following uses a binary sort:

SELECT last_name FROM employees
ORDER BY last_name;

A German linguistic sort can be obtained as follows:

SELECT last_name FROM employees
ORDER BY NLSSORT(last_name, 'NLS_SORT = GERMAN');

Miscellaneous Topics for SQL and PL/SQL Programming in a Global
Environment

This section contains the following topics:

■ SQL Date Format Masks

■ Calculating Week Numbers

■ SQL Numeric Format Masks

■ The Concatenation Operator

■ Loading External BFILE Data into LOBs

SQL Date Format Masks
Several format masks are provided with the TO_CHAR, TO_DATE, and TO_NUMBER
functions.

The RM (Roman Month) format element returns a month as a Roman numeral. You

can specify either upper case or lower case by using RM or rm. For example, for the

date 7 Sep 1998, DD-rm-YYYY returns 07-ix-1998 and DD-RM-YYYY returns

07-IX-1998 .

Note that the MON and DY format masks explicitly support month and day

abbreviations that may not be three characters in length. For example, the

abbreviations "Lu" and "Ma" can be specified for the French "Lundi" and "Mardi",

respectively.

See Also: "Improving Case-Insensitive Searches with a

Function-Based Index" on page 4-16

See Also: Oracle9i SQL Reference for a complete description of

format masks
SQL and PL/SQL Programming in a Global Environment 7-13

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment
Calculating Week Numbers
The week numbers returned by the WW format mask are calculated according to the

following algorithm: int(dayOfYear+6)/7 . This algorithm does not follow the

ISO standard (2015, 1992-06-15).

To support the ISO standard, the IW format element is provided. It returns the ISO

week number. In addition, the I , IY , IYY , and IYYY format elements, equivalent in

behavior to the Y, YY, YYY, and YYYY format elements, return the year relating to the

ISO week number.

In the ISO standard, the year relating to an ISO week number can be different from

the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A

week always starts on a Monday and ends on a Sunday. The week number is

determined according the following rules:

■ If January 1 falls on a Friday, Saturday, or Sunday, then the week including

January 1 is the last week of the previous year, because most of the days in the

week belong to the previous year.

■ If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the

week is the first week of the new year, because most of the days in the week

belong to the new year.

For example, January 1, 1991, is a Tuesday, so Monday, December 31, 1990, to

Sunday, January 6, 1991, is in week 1. Thus, the ISO week number and year for

December 31, 1990, is 1, 1991. To get the ISO week number, use the IW format mask

for the week number and one of the IY formats for the year.

SQL Numeric Format Masks
Several additional format elements are provided for formatting numbers:

■ D (decimal) returns the decimal point character.

■ G (group) returns the group separator.

■ L (local currency) returns the local currency symbol.

■ C (international currency) returns the ISO currency symbol.

■ RN (Roman numeral) returns the number as its Roman numeral equivalent.

For Roman numerals, you can specify either upper case or lower case, using RN or

rn , respectively. The number being converted must be an integer in the range 1 to

3999.
7-14 Oracle9i Database Globalization Support Guide

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment
The Concatenation Operator
If the database character set replaces the vertical bar | with a national character,

then all SQL statements that use the concatenation operator (encoded as ASCII 124)

will fail. For example, creating a procedure fails because it generates a recursive

SQL statement that uses concatenation. When you use a 7-bit replacement character

set such as D7DEC, F7DEC, or SF7ASCII for the database character set, then the

national character which replaces the vertical bar is not allowed in object names

because the vertical bar is interpreted as the concatenation operator.

The user can use a 7-bit replacement character set if the database character set is the

same or compatible, that is, if both character sets replace the vertical bar with the

same national character.

Loading External BFILE Data into LOBs
The DBMS_LOB PL/SQL package can load external BFILE data into LOBs. Previous

releases of Oracle did not perform character set conversion before loading the

binary data into CLOBs or NCLOBs. Thus the BFILE data had to be in the same

character set as the database or national character set to work properly. The APIs

that are introduced in Oracle9i Release 2 (9.2) allow the user to specify the character

set ID of the BFILE data by using a new parameter. The APIs convert the data from

the specified BFILE character set into the database character set for CLOBs or the

national character set for NCLOBs. The loading takes place on the server because

BFILE data is not supported on the client.

■ Use DBMS_LOB.LOADBLOBFROMFILE to load to BLOBs.

■ Use DBMS_LOB.LOADCLOBFROMFILE for load to CLOBs and NCLOBs.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs)
SQL and PL/SQL Programming in a Global Environment 7-15

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment
7-16 Oracle9i Database Globalization Support Guide

OCI Programming in a Global Environ
8

OCI Programming in a Global Environment

This chapter contains information useful for OCI programming. It includes the

following topics:

■ Using the OCI NLS Functions

■ Specifying Character Sets in OCI

■ Getting Locale Information in OCI

■ Mapping Locale Information Between Oracle and Other Standards

■ Manipulating Strings in OCI

■ Classifying Characters in OCI

■ Converting Character Sets in OCI

■ OCI Messaging Functions
ment 8-1

Using the OCI NLS Functions
Using the OCI NLS Functions
Many OCI NLS functions accept either the environment handle or the user session

handle. The OCI environment handle is associated with the client NLS environment

and initialized with the client NLS environment variables. This environment does

not change when ALTER SESSIONstatements are issued to the server. The character

set associated with the environment handle is the client character set. The OCI

session handle (returned by OCISessionBegin) is associated with the server

session environment. Its NLS settings change when the session environment is

modified with an ALTER SESSION statement. The character set associated with the

session handle is the database character set.

Note that the OCI session handle does not have any NLS settings associated with it

until the first transaction begins in the session. SELECT statements do not begin a

transaction.

Specifying Character Sets in OCI
Use the OCIEnvNlsCreate function to specify client-side database and national

character sets when the OCI environment is created.This function allows users to

set character set information dynamically in applications, independent of the NLS_
LANG and NLS_CHAR initialization parameter settings. In addition, one application

can initialize several environment handles for different client environments in the

same server environment.

Any Oracle character set ID except AL16UTF16 can be specified through the

OCIEnvNlsCreate function to specify the encoding of metadata, SQL CHAR data,

and SQL NCHAR data. Use OCI_UTF16ID in the OCIEnvNlsCreate function,

introduced in Oracle 9i Release 2 (9.2), to specify UTF-16 data. Note that the OCI_
UTF16 parameter in the OCIEnvCreate function, which was introduced in

Oracle9i release 1 (9.0.1) and was known as Unicode mode, has been deprecated.

OCIEnvNlsCreate()

Syntax
sword OCIEnvNlsCreate (OCIEnv **envhpp,
 ub4 mode,
 dvoid *ctxp,

See Also: Oracle Call Interface Programmer’s Guide for more

information about the OCIEnvNlsCreate function and the

OCIEnvCreate function
8-2 Oracle9i Database Globalization Support Guide

Specifying Character Sets in OCI
 dvoid *(*malocfp)
 (dvoid *ctxp,
 size_t size),
 dvoid *(*ralocfp)
 (dvoid *ctxp,
 dvoid *memptr,
 size_t newsize),
 void (*mfreefp)
 (dvoid *ctxp,
 dvoid *memptr))
 size_t xtramemsz,
 dvoid **usrmempp
 ub2 charset,
 ub2 ncharset);

Purpose
Creates and initializes an environment handle for OCI functions to work under. It is

an enhanced version of the OCIEnvCreate() function.

Parameters

envhpp (OUT)
A pointer to an environment handle whose encoding setting is specified by mode.

The setting is inherited by statement handles derived from envhpp .

mode (IN)
Specifies initialization of the mode. Valid modes are:

■ OCI_DEFAULT: The default value, which is non-UTF-16 encoding.

■ OCI_THREADED: Uses threaded environment. Internal data structures not

exposed to the user are protected from concurrent accesses by multiple threads.

■ OCI_OBJECT: Uses object features.

■ OCI_UTF16: The environment handle and handles inherited from it assume

UTF-16 encoding. This setting is deprecated. Instead, specify OCI_UTF16ID for

both charset and ncharset .

■ OCI_SHARED: Uses shared data structures.

■ OCI_EVENTS: Uses publish-subscribe notifications.
OCI Programming in a Global Environment 8-3

Specifying Character Sets in OCI
■ OCI_NO_UCB: Suppresses the calling of the OCIEnvCallback dynamic

callback routine. The default behavior is to allow calling of OCIEnvCallback
at the time that the environment is created.

■ OCI_ENV_NO_MUTEX: No mutexing in this mode. All OCI calls done on the

environment handle, or on handles derived from the environment handle, must

be serialized.

ctxp (IN)
Specifies the user-defined context for the memory callback routines.

malocfp (IN)
Specifies the user-defined memory allocation function. If the mode is OCI_
THREADED, then this memory allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory allocation function.

size (IN)
Specifies the size of memory to be allocated by the user-defined memory allocation

function.

ralocfp (IN)
Specifies the user-defined memory re-allocation function. If the mode is OCI_
THREADED, then this memory allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory reallocation function.

memp (IN)
Pointer to memory block.

newsize (IN)
Specifies the new size of memory to be allocated

mfreefp (IN)
Specifies the user-defined memory free function. If the mode is OCI_THREADED,
then this memory-free routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory-free function.

memptr (IN)
Pointer to memory to be freed
8-4 Oracle9i Database Globalization Support Guide

Specifying Character Sets in OCI
xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the

environment.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for

the user.

charset (IN)
The client-side character set for the current environment handle. If it is 0, then the

NLS_LANG setting is used. OCI_UTF16ID is a valid setting. This affects metadata

and CHAR data.

ncharset (IN)
The client-side national character set for the current environment handle. If it is 0,

then the NLS_NCHAR setting is used. OCI_UTF16ID is a valid setting. This affects

NCHAR data.

Returns
OCI_SUCCESS: The environment handle has been successfully created.

OCI_ERROR: An error occurred.

Comments

This function sets nonzero charset and ncharset as client-side database and

national character sets, replacing the ones specified by NLS_LANG and NLS_NCHAR.
When charset and ncharset are 0, it behaves exactly the same as

OCIEnvCreate() . Specifically, charset controls the encoding for metadata and

data with implicit form attribute and ncharset controls the encoding for data with

SQLCS_NCHAR form attribute.

Although OCI_UTF16ID can be set by OCIEnvNlsCreate() , NLS_LANG and

NLS_NCHAR cannot have a UTF-16 setting.

Note: This call should be invoked before any other OCI call and

should be used instead of the OCIInitialize() and

OCIEnvInit() calls. OCIInitialize() and OCIEnvInit()
calls are supported for backward compatibility.
OCI Programming in a Global Environment 8-5

Getting Locale Information in OCI
The character set IDs in NLS_LANG and NLS_NCHAR can be retrieved with

OCINlsEnvironmentVariableGet() .

This call returns an environment handle which is then used by the remaining OCI

functions. There can be multiple environments in OCI, each with its own

environment modes. This function also performs any process-level initialization if

required by any mode. For example, if the user wants to initialize an environment

as OCI_THREADED, then all libraries that are used by OCI are also initialized in

the threaded mode.

If you are writing a DLL or a shared library using OCI library then this call should

be used instead of OCIInitialize() and OCIEnvInit() calls.

Getting Locale Information in OCI
An Oracle locale consists of language, territory, and character set definitions. The

locale determines conventions such as day and month names, as well as date, time,

number, and currency formats. A globalized application obeys a user's locale setting

and cultural conventions. For example, when the locale is set to German, users

expect to see day and month names in German.

You can retrieve the following information with the OCINlsGetInfo() function:

Days of the week (translated)

Abbreviated days of the week (translated)

Month names (translated)

Abbreviated month names (translated)

Yes/no (translated)

AM/PM (translated)

AD/BC (translated)

Numeric format

Debit/credit

Date format

Currency formats

Default language

Default territory

Default character set

Default linguistic sort

Default calendar

This section includes the following topics:

See Also: "OCINlsEnvironmentVariableGet()" on page 8-13
8-6 Oracle9i Database Globalization Support Guide

Getting Locale Information in OCI
■ OCINlsGetInfo()

■ OCI_NLS_MAXBUFSZ

■ Example: Getting Locale Information in OCI

■ OCINlsCharSetNameTold()

■ OCINlsCharSetIdToName()

■ OCINlsNumericInfoGet()

■ OCINlsEnvironmentVariableGet()

OCINlsGetInfo()

Syntax
sword OCINlsGetInfo(dvoid *hndl, OCIError *errhp, OraText *buf, size_t buflen,
ub2 item)

Purpose
This function obtains locale information specified by item from an OCI

environment or user session handle (hndl) into an array pointed to by buf within a

size limitation specified by buflen .

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR

Parameters

hndl(IN/OUT)
The OCI environment or user session handle initialized in object mode

errhp(IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp and the

function returns a NULL pointer. Diagnostic information can be obtained by calling

OCIErrorGet() .

buf(OUT)
Pointer to the destination buffer. Returned strings are terminated by a NULL
character.
OCI Programming in a Global Environment 8-7

Getting Locale Information in OCI
buflen(IN)
The size of the destination buffer. The maximum length for each piece of

information is OCI_NLS_MAXBUFSZ bytes

item(IN)
Specifies which item in the OCI environment handle to return. It can be one of the

following values:

OCI_NLS_DAYNAME1: Native name for Monday

OCI_NLS_DAYNAME2: Native name for Tuesday

OCI_NLS_DAYNAME3: Native name for Wednesday

OCI_NLS_DAYNAME4: Native name for Thursday

OCI_NLS_DAYNAME5: Native name for Friday

OCI_NLS_DAYNAME6: Native name for Saturday

OCI_NLS_DAYNAME7: Native name for Sunday

OCI_NLS_ABDAYNAME1: Native abbreviated name for Monday

OCI_NLS_ABDAYNAME2: Native abbreviated name for Tuesday

OCI_NLS_ABDAYNAME3: Native abbreviated name for Wednesday

OCI_NLS_ABDAYNAME4: Native abbreviated name for Thursday

OCI_NLS_ABDAYNAME5: Native abbreviated name for Friday

OCI_NLS_ABDAYNAME6: Native abbreviated name for Saturday

OCI_NLS_ABDAYNAME7: Native abbreviated name for Sunday

OCI_NLS_MONTHNAME1: Native name for January

OCI_NLS_MONTHNAME2: Native name for February

OCI_NLS_MONTHNAME3: Native name for March

OCI_NLS_MONTHNAME4: Native name for April

OCI_NLS_MONTHNAME5: Native name for May

OCI_NLS_MONTHNAME6: Native name for June

OCI_NLS_MONTHNAME7: Native name for July

OCI_NLS_MONTHNAME8: Native name for August

OCI_NLS_MONTHNAME9: Native name for September

OCI_NLS_MONTHNAME10: Native name for October

OCI_NLS_MONTHNAME11: Native name for November

OCI_NLS_MONTHNAME12: Native name for December

OCI_NLS_ABMONTHNAME1: Native abbreviated name for January

OCI_NLS_ABMONTHNAME2: Native abbreviated name for February

OCI_NLS_ABMONTHNAME3: Native abbreviated name for March

OCI_NLS_ABMONTHNAME4: Native abbreviated name for April

OCI_NLS_ABMONTHNAME5: Native abbreviated name for May

OCI_NLS_ABMONTHNAME6: Native abbreviated name for June

OCI_NLS_ABMONTHNAME7: Native abbreviated name for July

OCI_NLS_ABMONTHNAME8: Native abbreviated name for August
8-8 Oracle9i Database Globalization Support Guide

Getting Locale Information in OCI
OCI_NLS_ABMONTHNAME9: Native abbreviated name for September

OCI_NLS_ABMONTHNAME10: Native abbreviated name for October

OCI_NLS_ABMONTHNAME11: Native abbreviated name for November

OCI_NLS_ABMONTHNAME12: Native abbreviated name for December

OCI_NLS_YES: Native string for affirmative response

OCI_NLS_NO: Native negative response

OCI_NLS_AM: Native equivalent string of AM

OCI_NLS_PM: Native equivalent string of PM

OCI_NLS_AD: Native equivalent string of AD

OCI_NLS_BC: Native equivalent string of BC

OCI_NLS_DECIMAL: Decimal character

OCI_NLS_GROUP: Group separator

OCI_NLS_DEBIT: Native symbol of debit

OCI_NLS_CREDIT: Native symbol of credit

OCI_NLS_DATEFORMAT: Oracle date format

OCI_NLS_INT_CURRENCY: International currency symbol

OCI_NLS_DUAL_CURRENCY: Dual currency symbol

OCI_NLS_LOC_CURRENCY: Locale currency symbol

OCI_NLS_LANGUAGE: Language name

OCI_NLS_ABLANGUAGE: Abbreviation for language name

OCI_NLS_TERRITORY: Territory name

OCI_NLS_CHARACTER_SET: Character set name

OCI_NLS_LINGUISTIC_NAME: Linguistic sort name

OCI_NLS_CALENDAR: Calendar name

OCI_NLS_WRITING_DIR: Language writing direction

OCI_NLS_ABTERRITORY: Territory abbreviation

OCI_NLS_DDATEFORMAT: Oracle default date format

OCI_NLS_DTIMEFORMAT: Oracle default time format

OCI_NLS_SFDATEFORMAT: Local date format

OCI_NLS_SFTIMEFORMAT: Local time format

OCI_NLS_NUMGROUPING: Number grouping fields

OCI_NLS_LISTSEP: List separator

OCI_NLS_MONDECIMAL: Monetary decimal character

OCI_NLS_MONGROUP: Monetary group separator

OCI_NLS_MONGROUPING: Monetary grouping fields

OCI_NLS_INT_CURRENCYSEP: International currency separator

OCI_NLS_MAXBUFSZ
When calling OCINlsGetInfo (), you need to allocate the buffer to store the

returned information. The buffer size depends on which item you are querying and
OCI Programming in a Global Environment 8-9

Getting Locale Information in OCI
what encoding you are using to store the information. Developers should not need

to know how many bytes it takes to store January in Japanese using JA16SJIS

encoding. The OCI_NLS_MAXBUFSZ attribute guarantees that the buffer is big

enough to hold the largest item returned by OCINlsGetInfo ().

Example: Getting Locale Information in OCI
This example code retrieves information and checks for errors.

sword MyPrintLinguisticName(envhp, errhp)
OCIEnv *envhp;
OCIError *errhp;
{
 OraText infoBuf[OCI_NLS_MAXBUFSZ];
 sword ret;

 ret = OCINlsGetInfo(envhp, /* environment handle */
 errhp, /* error handle */
 infoBuf, /* destination buffer */
 (size_t) OCI_NLS_MAXBUFSZ, /* buffer size */
 (ub2) OCI_NLS_LINGUISTIC_NAME); /* item */

 if (ret != OCI_SUCCESS)
 {
 checkerr(errhp, ret, OCI_HTYPE_ERROR);
 ret = OCI_ERROR;
 }
 else
 {
 printf("NLS linguistic: %s\n", infoBuf);
 }
 return(ret);
}

OCINlsCharSetNameTold()

Syntax
 ub2 OCINlsCharSetNameToId(dvoid *hndl, const oratext *name)

Purpose
This function returns the Oracle character set ID for the specified Oracle character

set name.
8-10 Oracle9i Database Globalization Support Guide

Getting Locale Information in OCI
Returns
Character set ID if the specified character set name and the OCI handle are valid.

Otherwise it returns 0.

Parameters

hndl(IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function

returns zero.

name(IN)
Pointer to a null-terminated Oracle character set name. If the character set name is

invalid, then the function returns zero.

OCINlsCharSetIdToName()

Syntax
sword OCINlsCharSetIdToName(dvoid *hndl, oratext *buf, size_t buflen, ub2 id)

Purpose
This function returns the Oracle character set name from the specified character set

ID.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR

Parameters

hndl(IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function

returns OCI_INVALID_HANDLE.

buf(OUT)
Points to the destination buffer. If the function returns OCI_SUCCESS, then the

parameter contains a null-terminated string for the character set name.

buflen(IN)
The size of the destination buffer. The recommended size is OCI_NLS_MAXBUFSZ
to guarantee storage for an Oracle character set name. If the size of the destination
OCI Programming in a Global Environment 8-11

Getting Locale Information in OCI
buffer is smaller than the length of the character set name, the function returns

OCI_ERROR.

id(IN)
Oracle character set ID

OCINlsNumericInfoGet()

Syntax
sword OCINlsNumericInfoGet(dvoid *hndl, OCIError *errhp, sb4 *val, ub2 item)

Purpose
This function obtains numeric language information specified by item from the

OCI environment handle into an output number variable.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR

Parameters

hndl(IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function

returns OCI_INVALID_HANDLE.

errhp(IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp and the

function returns a NULL pointer. Diagnostic information can be obtained by calling

OCIErrorGet() .

val(OUT)
Pointer to the output number variable. If the function returns OCI_SUCCESS, then

the parameter contains the requested NLS numeric information.

item(IN)
It specifies which item to get from the OCI environment handle and can be one of

following values:

■ OCI_NLS_CHARSET_MAXBYTESZ: Maximum character byte size for OCI

environment or session handle character set
8-12 Oracle9i Database Globalization Support Guide

Getting Locale Information in OCI
■ OCI_NLS_CHARSET_FIXEDWIDTH: Character byte size for fixed-width

character set; 0 for variable-width character set

OCINlsEnvironmentVariableGet()

Purpose
Returns the character set ID from NLS_LANG or the national character set id from

NLS_NCHAR.

Syntax
sword OCINlsEnvironmentVariableGet (dvoid *val,
 size_t size,
 ub2 item,
 ub2 charset,
 size_t *rsize);

Parameters

val (IN/OUT)
Returns a value of an NLS environment variable such as the NLS_LANG character

set ID or the NLS_NCHAR character set ID

size (IN)
Specifies the size of the given output value, which is applicable only to string data.

The maximum length for each piece of information is OCI_NLS_MAXBUFSZ bytes.

In the case of numeric data, this argument is ignored.

item (IN)
Specifies one of the following values to get from the NLS environment variable:

■ OCI_NLS_CHARSET_ID: NLS_LANG character set ID in ub2 datatype

■ OCI_NLS_NCHARSET_ID: NLS_NCHAR character set ID in ub2 datatype

charset (IN)
Specifies the character set ID for retrieved string data. If it is 0, then the NLS_LANG
value is used. OCI_UTF16ID is a valid value for this argument. In the case of

numeric data, this argument is ignored.

rsize (OUT)
The length of the return value in bytes
OCI Programming in a Global Environment 8-13

Mapping Locale Information Between Oracle and Other Standards
Returns
OCI_SUCCESS: The function finished successfully.

OCI_ERROR: An error occurred.

Comments
Following NLS convention, the national character set ID is the same as the character

set ID if NLS_NCHAR is not set. If NLS_LANG is not set, tn the default character set

ID is returned.

To allow for future enhancements of this function (to retrieve other values from

environment variables) the datatype of the output val is a pointer to dvoid . String

data is not terminated by NULL.

Note that the function does not take an environment handle, so the character set ID

and the national character set ID that it returns are the values specified in NLS_
LANG and NLS_NCHAR, instead of the values saved in the OCI environment handle.

To get the character set IDs used by the OCI environment handle, call

OCIAttrGet() for OCI_ATTR_ENV_CHARSET and OCI_ATTR_ENV_NCHARSET.

Mapping Locale Information Between Oracle and Other Standards
The OCINlsNameMap function maps Oracle character set names, language names,

and territory names to and from Internet Assigned Numbers Authority (IANA) and

International Organization for Standardization (ISO) names.

OCINlsNameMap()

Syntax
sword OCINlsNameMap(dvoid *hndl, oratext *buf, size_t buflen, const oratext
*srcbuf, uword flag)

Purpose
This function maps Oracle character set names, language names, and territory

names to and from IANA and ISO names.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR
8-14 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
Parameters

hndl(IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function

returns OCI_INVALID_HANDLE.

buf(OUT)
Points to the destination buffer. If the function returns OCI_SUCCESS, then the

parameter contains a null-terminated string for the requested name.

buflen(IN)
The size of the destination buffer. The recommended size is OCI_NLS_MAXBUFSZto
guarantee storage of an NLS name. If the size of the destination buffer is smaller

than the length of the name, then the function returns OCI_ERROR.

srcbuf(IN)
Pointer to a null-terminated NLS name. If it is not a valid name, then the function

returns OCI_ERROR.

flag(IN)
It specifies the direction of the name mapping and can take the following values:

OCI_NLS_CS_IANA_TO_ORA: Map character set name from IANA to Oracle

OCI_NLS_CS_ORA_TO_IANA: Map character set name from Oracle to IANA.

OCI_NLS_LANG_ISO_TO_ORA: Map language name from ISO to Oracle

OCI_NLS_LANG_ORA_TO_ISO: Map language name from Oracle to ISO

OCI_NLS_TERR_ISO_TO_ORA: Map territory name from ISO to Oracle

OCI_NLS_TERR_ORA_TO_ISO: Map territory name from Oracle to ISO

OCI_NLS_TERR_ISO3_TO_ORA: Map territory name from 3-letter ISO abbreviation

to Oracle

OCI_NLS_TERR_ORA_TO_ISO3: Map territory name from Oracle to 3-letter ISO

abbreviation

Manipulating Strings in OCI
Two types of data structures are supported for string manipulation:

■ Multibyte strings

■ Wide character strings

Multibyte strings are encoded in native Oracle character sets. Functions that operate

on multibyte strings take the string as a whole unit with the length of the string
OCI Programming in a Global Environment 8-15

Manipulating Strings in OCI
calculated in bytes. Wide character (wchar) string functions provide more flexibility

in string manipulation. They support character-based and string-based operations

with the length the string calculated in characters.

The wide character datatype is Oracle-specific and should not be confused with the

wchar_t datatype defined by the ANSI/ISO C standard. The Oracle wide character

datatype is always 4 bytes in all platforms, while the size of wchar_t depends on

the implementation and the platform. The Oracle wide character datatype

normalizes multibyte characters so that they have a fixed width for easy processing.

This guarantees no data loss for round-trip conversion between the Oracle wide

character set and the native character set.

String manipulation can be classified into the following categories:

■ Conversion of strings between multibyte and wide character

■ Character classifications

■ Case conversion

■ Calculations of display length

■ General string manipulation, such as comparison, concatenation, and searching

Table 8–1 summarizes the OCI string manipulation functions. They are described in

more detail in the rest of this section.

Table 8–1 OCI String Manipulation Functions

Function Description

OCIMultiByteToWideChar() Converts an entire null-terminated string into the wchar format

OCIMultiByteInSizeToWideChar() Converts part of a string into the wchar format

OCIWideCharToMultiByte() Converts an entire null-terminated wide character string into a
multibyte string

OCIWideCharInSizeToMultiByte() Converts part of a wide character string into the multibyte format

OCIWideCharToLower() Converts the wchar character specified by wc into the
corresponding lowercase character if it exists in the specified locale.
If no corresponding lowercase character exists, then it returns wc
itself.

OCIWideCharToUpper() Converts the wchar character specified by wc into the
corresponding uppercase character if it exists in the specified locale.
If no corresponding uppercase character exists, then it returns wc
itself.

OCIWideCharStrcmp() Compares two wide character strings by binary, linguistic, or
case-insensitive comparison method
8-16 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
OCIWideCharStrncmp() Similar to OCIWideCharStrcmp() . Compares two wide character
strings by binary, linguistic, or case-insensitive comparison
methods. At most len1 bytes form str1 , and len2 bytes form
str2 .

OCIWideCharStrcat() Appends a copy of the string pointed to by wsrcstr . Then it
returns the number of characters in the resulting string.

OCIWideCharStrncat() Appends a copy of the string pointed to by wsrcstr . Then it
returns the number of characters in the resulting string. At most n
characters are appended.

OCIWideCharStrchr() Searches for the first occurrence of wc in the string pointed to by
wstr . Then it returns a pointer to the wchar if the search is
successful.

OCIWideCharStrrchr() Searches for the last occurrence of wc in the string pointed to by
wstr

OCIWideCharStrcpy() Copies the wchar string pointed to by wsrcstr into the array
pointed to by wdststr . Then it returns the number of characters
copied.

OCIWideCharStrncpy() Copies the wchar string pointed to by wsrcstr into the array
pointed to by wdststr . Then it returns the number of characters
copied. At most n characters are copied from the array.

OCIWideCharStrlen() Computes the number of characters in the wchar string pointed to
by wstr and returns this number

OCIWideCharStrCaseConversion() Converts the wide character string pointed to by wsrcstr into the
case specified by a flag and copies the result into the array pointed
to by wdststr

OCIWideCharDisplayLength() Determines the number of column positions required for wc in
display

OCIWideCharMultibyteLength() Determines the number of bytes required for wc in multibyte
encoding

OCIMultiByteStrcmp() Compares two multibyte strings by binary, linguistic, or
case-insensitive comparison methods

OCIMultiByteStrncmp() Compares two multibyte strings by binary, linguistic, or
case-insensitive comparison methods. At most len1 bytes form
str1 and len2 bytes form str2.

OCIMultiByteStrcat() Appends a copy of the multibyte string pointed to by srcstr

OCIMultiByteStrncat() Appends a copy of the multibyte string pointed to by srcstr . At
most n bytes from srcstr are appended to dststr

Table 8–1 OCI String Manipulation Functions (Cont.)

Function Description
OCI Programming in a Global Environment 8-17

Manipulating Strings in OCI
OCIMultiByteToWideChar()

Syntax
sword OCIMultiByteToWideChar(dvoid *hndl, OCIWchar *dst, CONST OraText *src,
size_t *rsize);

Purpose
This routine converts an entire NULL-terminated string into the wchar format. The

wchar output buffer are NULL-terminated. If OCI_UTF16ID is specified for SQL

CHAR data in the OCIEnvNlsCreate function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set of string

dst(OUT)
Destination buffer for wchar

src(IN)
Source string to be converted

OCIMultiByteStrcpy() Copies the multibyte string pointed to by srcstr into an array
pointed to by dststr . It returns the number of bytes copied.

OCIMultiByteStrncpy() Copies the multibyte string pointed to by srcstr into an array
pointed to by dststr . It returns the number of bytes copied. At
most n bytes are copied from the array pointed to by srcstr to the
array pointed to by dststr .

OCIMultiByteStrlen() Returns the number of bytes in the multibyte string pointed to by
str

OCIMultiByteStrnDisplayLength() Returns the number of display positions occupied by the complete
characters within the range of n bytes

OCIMultiByteStrCaseConversion() Converts part of a string from one character set to another

Table 8–1 OCI String Manipulation Functions (Cont.)

Function Description
8-18 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
rsize(OUT)
Number of characters converted including NULL terminator. If it is a NULL pointer,

nothing to return

OCIMultiByteInSizeToWideChar()

Syntax
sword OCIMultiByteInSizeToWideChar(dvoid *hndl, OCIWchar *dst, size_t dstsz,
CONST OraText *src, size_t srcsz, size_t *rsize)

Purpose
This routine converts part of a string into the wchar format. It converts as many

complete characters as it can until it reaches the output buffer size limit or input

buffer size limit or it reaches a NULLterminator in a source string. The output buffer

is NULL-terminated if space permits. If dstsz is zero, then this function returns

only the number of characters not including the ending NULLterminator needed for

a converted string. If OCI_UTF16ID is specified for SQL CHAR data in the

OCIEnvNlsCreate function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set of the string

dst(OUT)
Pointer to a destination buffer for wchar . It can be NULL pointer when dstsz is

zero.

dstsz(IN)
Destination buffer size in number of characters. If it is zero, this function just

returns number of characters needed for the conversion.

src (IN)
Source string to be converted
OCI Programming in a Global Environment 8-19

Manipulating Strings in OCI
srcsz(IN)
Length of source string in bytes

rsize(OUT)
Number of characters written into destination buffer, or number of characters for

converted string if dstsz is zero. If it is a NULL pointer, nothing is returned.

OCIWideCharToMultiByte()

Syntax
sword OCIWideCharToMultiByte(dvoid *hndl, OraText *dst, CONST OCIWchar *src,
size_t *rsize)

Purpose
This routine converts an entire NULL-terminated wide character string into a

multibyte string. The output buffer is NULL-terminated. If OCI_UTF16ID is

specified for SQL CHAR data in the OCIEnvNlsCreate function, then this function

produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set of string

dst(OUT)
Destination buffer for multibyte string

src(IN)
Source wchar string to be converted

srcsz(IN)
Length of source string in characters

rsize(OUT)
Number of bytes written into destination buffer. If it is a NULLpointer, then nothing

is returned.
8-20 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
OCIWideCharInSizeToMultiByte()

Syntax
sword OCIWideCharInSizeToMultiByte(dvoid *hndl, OraText *dst, size_t dstsz,
CONST OCIWchar *src, size_t srcsz, size_t *rsize)

Purpose
This routine converts part of wchar string into the multibyte format. It converts as

many complete characters as it can until it reaches the output buffer size or the

input buffer size or until it reaches a NULL terminator in source string. The output

buffer is NULL-terminated if space permits. If dstsz is zero, the function just

returns the size of byte not including the NULL terminator needed to store the

converted string. If OCI_UTF16ID is specified for SQL CHAR data in the

OCIEnvNlsCreate function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set of string

dst(OUT)
Destination buffer for multibyte. It can be a NULL pointer if dstsz is zero

dstsz(IN)
Destination buffer size in bytes. If it is zero, it returns the size in bytes need for

converted string.

src(IN)
Source wchar string to be converted

srcsz(IN)
Length of source string in characters

rsize(OUT)
Number of bytes written into destination buffer, or number of bytes need to store

the converted string if dstsz is zero. If it is a NULL pointer, nothing is returned.
OCI Programming in a Global Environment 8-21

Manipulating Strings in OCI
OCIWideCharToLower()

Syntax
OCIWchar OCIWideCharToLower(dvoid *hndl, OCIWchar wc)

Purpose
This function converts the wchar character specified by wc into the corresponding

lowercase character if it exists in the specified locale. If no corresponding lowercase

character exists, then it returns wc itself. If OCI_UTF16ID is specified for SQL CHAR
data in the OCIEnvNlsCreate() function, then this function produces an error.

Returns
A wchar

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for lowercase conversion

OCIWideCharToUpper()

Syntax
OCIWchar OCIWideCharToUpper(dvoid *hndl, OCIWchar wc)

Purpose
This function converts the wchar character specified by wc into the corresponding

uppercase character if it exists in the specified locale. If no corresponding uppercase

character exists, then it returns wc itself. If OCI_UTF16ID is specified for SQL CHAR
data in the OCIEnvNlsCreate() function, then this function produces an error.

Returns
A wchar
8-22 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for uppercase conversion

OCIWideCharStrcmp()

Syntax
int OCIWideCharStrcmp(dvoid *hndl, CONST OCIWchar *wstr1, CONST OCIWchar *wstr2,
int flag)

Purpose
It compares two wchar strings by binary (based on wchar encoding value),

linguistic, or case-insensitive comparison methods. If OCI_UTF16ID is specified for

SQL CHAR data in the OCIEnvNlsCreate function, then this function produces an

error.

Returns
■ 0, if wstr1 = wstr2

■ Positive, if wstr1 > wstr2

■ Negative, if wstr1 < wstr2

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wstr1(IN)
Pointer to a NULL-terminated wchar string

wstr2(IN)
Pointer to a NULL-terminated wchar string

flag(IN)
Used to decide the comparison method. It can take one of the following values:
OCI Programming in a Global Environment 8-23

Manipulating Strings in OCI
■ OCI_NLS_BINARY: Binary comparison. This is the default value.

■ OCI_NLS_LINGUISTIC : Linguistic comparison specified in the locale

definition.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive

comparison. For example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_
INSENSITIVE to compare strings linguistically without regard to case.

OCIWideCharStrncmp()

Syntax
int OCIWideCharStrncmp(dvoid *hndl, CONST OCIWchar *wstr1, size_t len1, CONST
OCIWchar *wstr2, size_t len2, int flag)

Purpose
This function is similar to OCIWideCharStrcmp (). It compares two wide character

strings by binary, linguistic, or case-insensitive comparison methods. At most len1
bytes from wstr1 and len2 bytes from wstr2 are compared. The NULL terminator

is used in the comparison. If OCI_UTF16ID is specified for SQL CHAR data in the

OCIEnvNlsCreate function, then this function produces an error.

Returns
■ 0, if wstr1 = wstr2

■ Positive, if wstr1 > wstr2

■ Negative, if wstr1 < wstr2

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wstr1(IN)
Pointer to the first wchar string

len1(IN)
The length for the first string for comparison
8-24 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
wstr2(IN)
Pointer to the second wchar string

len2(IN)
The length for the second string for comparison

flag(IN)
It is used to decide the comparison method. It can take one of the following values:

■ OCI_NLS_BINARY: For the binary comparison, this is default value.

■ OCI_NLS_LINGUISTIC : For the linguistic comparison specified in the locale.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive

comparison. For example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_
INSENSITIVE to compare strings linguistically without regard to case.

OCIWideCharStrcat()

Syntax
size_t OCIWideCharStrcat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr)

Purpose
This function appends a copy of the wchar string pointed to by wsrcstr , including

the NULLterminator to the wchar string pointed to by wdststr . If OCI_UTF16ID is

specified for SQL CHAR data in the OCIEnvNlsCreate function, then this function

produces an error.

Returns
The number of characters in the result string, not including the NULL terminator.

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wdststr(IN/OUT)
Pointer to the destination wchar string for appending
OCI Programming in a Global Environment 8-25

Manipulating Strings in OCI
wsrcstr(IN)
Pointer to the source wchar string to append

OCIWideCharStrncat()

Syntax
size_t OCIWideCharStrncat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr, size_t n)

Purpose
This function is similar to OCIWideCharStrcat (). At most n characters from

wsrcstr are appended to wdststr . Note that the NULL terminator in wsrcstr
stops appending. wdststr is NULL-terminated. If OCI_UTF16ID is specified for

SQL CHAR data in the OCIEnvNlsCreate function, then this function produces an

error.

Returns
The number of characters in the result string, not including the NULL terminator

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wdststr(IN/OUT)
Pointer to the destination wchar string to append

wsrcstr(IN)
Pointer to the source wchar string to append

n(IN)
Number of characters from wsrcstr to append

OCIWideCharStrchr()

Syntax
OCIWchar *OCIWideCharStrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIWchar wc)
8-26 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
Purpose
This function searches for the first occurrence of wc in the wchar string pointed to

by wstr . If OCI_UTF16ID is specified for SQL CHARdata in the OCIEnvNlsCreate
function, then this function produces an error.

Returns
A wchar pointer if successful, otherwise a NULL pointer

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wstr(IN)
Pointer to the wchar string to search

wc(IN)
wchar to search for

OCIWideCharStrrchr()

Syntax
OCIWchar *OCIWideCharStrrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIWchar wc)

Purpose
This function searches for the last occurrence of wc in the wchar string pointed to

by wstr . If OCI_UTF16ID is specified for SQL CHARdata in the OCIEnvNlsCreate
function, then this function produces an error.

Returns
wchar pointer if successful, otherwise a NULL pointer

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set
OCI Programming in a Global Environment 8-27

Manipulating Strings in OCI
wstr(IN)
Pointer to the wchar string to search

wc(IN)
wchar to search for

OCIWideCharStrcpy()

Syntax
size_t OCIWideCharStrcpy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr)

Purpose
This function copies the wchar string pointed to by wsrcstr , including the NULL
terminator, into the array pointed to by wdststr . If OCI_UTF16ID is specified for

SQL CHAR data in the OCIEnvNlsCreate function, then this function produces an

error.

Returns
The number of characters copied not including the NULL terminator

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wdststr(OUT)
Pointer to the destination wchar buffer

wsrcstr(IN)
Pointer to the source wchar string

OCIWideCharStrncpy()

Syntax
size_t OCIWideCharStrncpy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr, size_t n)
8-28 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
Purpose
This function is similar to OCIWideCharStrcpy (), except that at most n characters

are copied from the array pointed to by wsrcstr to the array pointed to by

wdststr . Note that the NULL terminator in wdststr stops copying and the result

string is NULL-terminated. If OCI_UTF16ID is specified for SQL CHAR data in the

OCIEnvNlsCreate function, then this function produces an error.

Returns
The number of characters copied not including the NULL terminator

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wdststr(OUT)
Pointer to the destination wchar buffer

wsrcstr(IN)
Pointer to the source wchar string

n(IN)
Number of characters from wsrcstr to copy

OCIWideCharStrlen()

Syntax
size_t OCIWideCharStrlen(dvoid *hndl, CONST OCIWchar *wstr)

Purpose
This function computes the number of characters in the wchar string pointed to by

wstr , not including the NULL terminator, and returns this number. If OCI_UTF16ID

is specified for SQL CHAR data in the OCIEnvNlsCreate function, then this

function produces an error.

Returns
The number of characters not including the NULL terminator
OCI Programming in a Global Environment 8-29

Manipulating Strings in OCI
Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wstr(IN)
Pointer to the source wchar string

OCIWideCharStrCaseConversion()

Syntax
size_t OCIWideCharStrCaseConversion(dvoid *hndl, OCIWchar *wdststr, CONST
OCIWchar*wsrcstr, ub4 flag)

Purpose
This function converts the wide char string pointed to by wsrcstr into the upper

case or lower case specified by the flag and copies the result into the array pointed

to by wdststr . The result string is NULL-terminated. If OCI_UTF16ID is specified

for SQL CHAR data in the OCIEnvNlsCreate function, then this function produces

an error.

Returns
The number of characters for the result string, not including the NULL terminator

Parameters

hndl(IN/OUT)
OCI environment or user session handle

wdststr(OUT)
Pointer to destination array

wsrcstr(IN)
Pointer to source string

flag(IN)
Specify the case to convert:

■ OCI_NLS_UPPERCASE: Convert to upper case
8-30 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
■ OCI_NLS_LOWERCASE: Convert to lower case

This flag can be used with OCI_NLS_LINGUISTIC to specify that the linguistic

setting in the locale is used for case conversion.

OCIWideCharDisplayLength()

Syntax
size_t OCIWideCharDisplayLength(dvoid *hndl, OCIWchar wc)

Purpose
This function determines the number of column positions required for wc in

display. It returns the number of column positions, or 0 if wc is the NULLterminator.

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate
function, then this function produces an error.

Returns
The number of display positions

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar character

OCIWideCharMultiByteLength()

Syntax
size_t OCIWideCharMultiByteLen(dvoid *hndl, OCIWchar wc)

Purpose
This function determines the number of bytes required for wc in multibyte

encoding. If OCI_UTF16ID is specified for SQL CHAR data in the

OCIEnvNlsCreate function, then this function produces an error.
OCI Programming in a Global Environment 8-31

Manipulating Strings in OCI
Returns
The number of bytes required for wc

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar character

OCIMultiByteStrcmp()

Syntax
int OCIMultiByteStrcmp(dvoid *hndl, CONST OraText *str1, CONST OraText *str2,
int flag)

Purpose
It compares two multibyte strings by binary, linguistic, or case-insensitive

comparison methods. If OCI_UTF16ID is specified for SQL CHAR data in the

OCIEnvNlsCreate function, then this function produces an error.

Returns
■ 0, if str1 = str2

■ Positive, if str1 > str2

■ Negative, if str1 < str2

Parameters

hndl(IN/OUT)
OCI environment or user session handle

str1(IN)
Pointer to a NULL-terminated string

str2(IN)
Pointer to a NULL-terminated string
8-32 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
flag(IN)
It is used to decide the comparison method. It can take one of the following values:

■ OCI_NLS_BINARY: Binary comparison This is the default value.

■ OCI_NLS_LINGUISTIC : Linguistic comparison specified in the locale

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive

comparison. For example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_
INSENSITIVE to compare strings linguistically without regard to case.

OCIMultiByteStrncmp()

Syntax
int OCIMultiByteStrncmp(dvoid *hndl, CONST OraText *str1, size_t len1, OraText
*str2, size_t len2, int flag)

Purpose
This function is similar to OCIMultiByteStrcmp (), except that at most len1 bytes

from str1 and len2 bytes from str2 are compared. The NULL terminator is used

in the comparison. If OCI_UTF16ID is specified for SQL CHAR data in the

OCIEnvNlsCreate function, then this function produces an error.

Returns
■ 0, if str1 = str2

■ Positive, if str1 > str2

■ Negative, if str1 < str2

Parameters

hndl(IN/OUT)
OCI environment or user session handle

str1(IN)
Pointer to the first string

len1(IN)
The length for the first string for comparison
OCI Programming in a Global Environment 8-33

Manipulating Strings in OCI
str2(IN)
Pointer to the second string

len2(IN)
The length for the second string for comparison

flag(IN)
It is used to decide the comparison method. It can take one of the following values:

■ OCI_NLS_BINARY: Binary comparison. This is the default value.

■ OCI_NLS_LINGUISTIC : Linguistic comparison specified in the locale

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive

comparison. For example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_
INSENSITIVE to compare strings linguistically without regard to case.

OCIMultiByteStrcat()

Syntax
size_t OCIMultiByteStrcat(dvoid *hndl, OraText *dststr, CONST OraText *srcstr)

Purpose
This function appends a copy of the multibyte string pointed to by srcstr ,

including the NULL terminator to the end of string pointed to by dststr . If OCI_

UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate function, then

this function produces an error.

Returns
The number of bytes in the result string, not including the NULL terminator

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

dststr(IN/OUT)
Pointer to the destination multibyte string for appending

srcstr(IN)
Pointer to the source string to append
8-34 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
OCIMultiByteStrncat()

Syntax
size_t OCIMultiByteStrncat(dvoid *hndl, OraText *dststr, CONST OraText *srcstr,
size_t n)

Purpose
This function is similar to OCIMultiByteStrcat (). At most n bytes from srcstr
are appended to dststr . Note that the NULL terminator in srcstr stops

appending and the function appends as many character as possible within n bytes.

dststr is NULL-terminated. If OCI_UTF16ID is specified for SQL CHAR data in the

OCIEnvNlsCreate function, then this function produces an error.

Returns
The number of bytes in the result string, not including the NULL terminator

Parameters

hndl(IN/OUT)
Pointer to OCI environment or user session handle

dststr(IN/OUT)
Pointer to the destination multibyte string for appending

srcstr(IN)
Pointer to the source multibyte string to append

n(IN)
The number of bytes from srcstr to append

OCIMultiByteStrcpy()

Syntax
size_t OCIMultiByteStrcpy(dvoid *hndl, OraText *dststr, CONST OraText *srcstr)
OCI Programming in a Global Environment 8-35

Manipulating Strings in OCI
Purpose
This function copies the multibyte string pointed to by srcstr , including the NULL
terminator, into the array pointed to by dststr . If OCI_UTF16ID is specified for

SQL CHAR data in the OCIEnvNlsCreate function, then this function produces an

error.

Returns
The number of bytes copied, not including the NULL terminator

Parameters

hndl(IN/OUT)
Pointer to the OCI environment or user session handle

dststr(OUT)
Pointer to the destination buffer

srcstr(IN)
Pointer to the source multibyte string

OCIMultiByteStrncpy()

Syntax
size_t OCIMultiByteStrncpy(dvoid *hndl, OraText *dststr, CONST OraText *srcstr,
size_t n)

Purpose
This function is similar to OCIMultiByteStrcpy (). At most n bytes are copied

from the array pointed to by srcstr to the array pointed to by dststr . Note that

the NULL terminator in srcstr stops copying and the function copies as many

characters as possible within n bytes. The result string is NULL-terminated. If OCI_
UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate function, then

this function produces an error.

Returns
The number of bytes copied not including the NULL terminator
8-36 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
Parameters

hndl(IN/OUT)
Pointer to OCI environment or user session handle

srcstr(OUT)
Pointer to the destination buffer

dststr(IN)
Pointer to the source multibyte string

n(IN)
The number of bytes from srcstr to copy

OCIMultiByteStrlen()

Syntax
size_t OCIMultiByteStrlen(dvoid *hndl, CONST OraText *str)

Purpose
This function returns the number of bytes in the multibyte string pointed to by str ,

not including the NULL terminator. If OCI_UTF16ID is specified for SQL CHAR data

in the OCIEnvNlsCreate function, then this function produces an error.

Returns
The number of bytes not including the NULL terminator

Parameters

hndl(IN/OUT)
Pointer to the OCI environment or user session handle

str(IN)
Pointer to the source multibyte string
OCI Programming in a Global Environment 8-37

Manipulating Strings in OCI
OCIMultiByteStrnDisplayLength()

Syntax
size_t OCIMultiByteStrnDisplayLength(dvoid *hndl, CONST OraText *str1, size_t n)

Purpose
This function returns the number of display positions occupied by the complete

characters within the range of n bytes. If OCI_UTF16ID is specified for SQL CHAR
data in the OCIEnvNlsCreate function, then this function produces an error.

Returns
The number of display positions

Parameters

hndl(IN/OUT)
OCI environment or user session handle

str(IN)
Pointer to a multibyte string

n(IN)
The number of bytes to examine

OCIMultiByteStrCaseConversion()

Syntax
size_t OCIMultiByteStrCaseConversion(dvoid *hndl, OraText *dststr, CONST OraText
*srcstr, ub4 flag)

Purpose
This function converts the multibyte string pointed to by srcstr into upper case or

lower case as specified by the flag and copies the result into the array pointed to by

dststr . The result string is NULL-terminated. If OCI_UTF16ID is specified for SQL

CHAR data in the OCIEnvNlsCreate function, then this function produces an error.
8-38 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI
Returns
The number of bytes for result string, not including the NULL terminator

Parameters

hndl(IN/OUT)
OCI environment or user session handle

dststr(OUT)
Pointer to destination array

srcstr(IN)
Pointer to source string

flag(IN)
Specify the case to which to convert:

■ OCI_NLS_UPPERCASE: Convert to upper case

■ OCI_NLS_LOWERCASE: Convert to lower case

This flag can be used with OCI_NLS_LINGUISTIC to specify that the linguistic

setting in the locale is used for case conversion.

Example: Manipulating Strings in OCI
The following example shows a simple case of manipulating strings.

size_t MyConvertMultiByteToWideChar(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIWchar *dstBuf;
size_t dstSize;
OraText *srcStr; /* null terminated source string
*/
{
 sword ret;
 size_t dstLen = 0;
 size_t srcLen;

 /* get length of source string */
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 ret = OCIMultiByteInSizeToWideChar(envhp, /* environment handle */
 dstBuf, /* destination buffer */
OCI Programming in a Global Environment 8-39

Classifying Characters in OCI
 dstSize, /* destination buffer size */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen); /* pointer to destination length */

 if (ret != OCI_SUCCESS)
 {
 checkerr(envhp, ret, OCI_HTYPE_ENV);
 }
 return(dstLen);
}

Classifying Characters in OCI
Table 8–2 shows the OCI character classification functions. They are described in

more detail in the rest of this section.

See Also: Oracle Call Interface Programmer’s Guide

Table 8–2 OCI Character Classification Functions

Function Description

OCIWideCharIsAlnum() Tests whether the wide character is a letter or decimal digit

OCIWideCharIsAlpha() Tests whether the wide character is an alphabetic letter

OCIWideCharIsCntrl() Tests whether the wide character is a control character

OCIWideCharIsDigit() Tests whether the wide character is a decimal digital character

OCIWideCharIsGraph() Tests whether the wide character is a graph character

OCIWideCharIsLower() Tests whether the wide character is a lowercase letter

OCIWideCharIsPrint() Tests whether the wide character is a printable character

OCIWideCharIsPunct() Tests whether the wide character is a punctuation character

OCIWideCharIsSpace() Tests whether the wide character is a space character

OCIWideCharIsUpper() Tests whether the wide character is an uppercase character

OCIWideCharIsXdigit() Tests whether the wide character is a hexadecimal digit

OCIWideCharIsSingleByte() Tests whether wc is a single-byte character when converted into multibyte
8-40 Oracle9i Database Globalization Support Guide

Classifying Characters in OCI
OCIWideCharIsAlnum()

Syntax
boolean OCIWideCharIsAlnum(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a letter or decimal digit.

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharIsAlpha()

Syntax
boolean OCIWideCharIsAlpha(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is an alphabetic letter.

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing
OCI Programming in a Global Environment 8-41

Classifying Characters in OCI
OCIWideCharIsCntrl()

Syntax
boolean OCIWideCharIsCntrl(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a control character.

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharIsDigit()

Syntax
boolean OCIWideCharIsDigit(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a decimal digit character.

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set
8-42 Oracle9i Database Globalization Support Guide

Classifying Characters in OCI
wc(IN)
wchar for testing

OCIWideCharIsGraph()

Syntax
boolean OCIWideCharIsGraph(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a graph character. A graph character is a character with a

visible representation and normally includes alphabetic letters, decimal digits, and

punctuation.

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharIsLower()

Syntax
boolean OCIWideCharIsLower(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a lowercase letter.

Returns
TRUE or FALSE
OCI Programming in a Global Environment 8-43

Classifying Characters in OCI
Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharIsPrint()

Syntax
boolean OCIWideCharIsPrint(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a printable character.

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharIsPunct()

Syntax
boolean OCIWideCharIsPunct(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a punctuation character.
8-44 Oracle9i Database Globalization Support Guide

Classifying Characters in OCI
Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharIsSpace()

Syntax
boolean OCIWideCharIsSpace(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a space character. A space character causes white space only in

displayed text (for example, space, tab, carriage return, new line, vertical tab or

form feed).

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharIsUpper()

Syntax
boolean OCIWideCharIsUpper(dvoid *hndl, OCIWchar wc)
OCI Programming in a Global Environment 8-45

Classifying Characters in OCI
Purpose
It tests whether wc is an uppercase letter.

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharIsXdigit()

Syntax
boolean OCIWideCharIsXdigit(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a hexadecimal digit (0-9, A-F, a-f).

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing
8-46 Oracle9i Database Globalization Support Guide

Classifying Characters in OCI
OCIWideCharIsSingleByte()

Syntax
boolean OCIWideCharIsSingleByte(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a single-byte character when converted into multibyte.

Returns
TRUE or FALSE

Parameters

hndl(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

Example: Classifying Characters in OCI
The following example shows how to classify characters in OCI.

boolean MyIsNumberWideCharString(envhp, srcStr)
OCIEnv *envhp;
OCIWchar *srcStr; /* wide char source string */
{
 OCIWchar *pstr = srcStr; /* define and init pointer */
 boolean status = TRUE; /* define and initialize status variable */

 /* Check input */
 if (pstr == (OCIWchar*) NULL)
 return(FALSE);

 if (*pstr == (OCIWchar) NULL)
 return(FALSE);

 /* check each character for digit */
 do
 {
OCI Programming in a Global Environment 8-47

Converting Character Sets in OCI
 if (OCIWideCharIsDigit(envhp, *pstr) != TRUE)
 {
 status = FALSE;
 break; /* non-decimal digit character */
 }
 } while (*++pstr != (OCIWchar) NULL);

 return(status);
}

Converting Character Sets in OCI
Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode

encoding) is supported. Replacement characters are used if a character has no

mapping from Unicode to the Oracle character set. Therefore, conversion back to

the original character set is not always possible without data loss.

Table 8–3 summarizes the OCI character set conversion functions. They are

described in more detail in the rest of this section.

OCICharSetToUnicode()

Syntax
sword OCICharSetToUnicode(dvoid *hndl, ub2 *dst, size_t dstlen, CONST OraText
*src, size_t srclen, size_t *rsize)

Table 8–3 OCI Character Set Conversion Functions

Function Description

OCICharsetToUnicode() Converts a multibyte string pointed to by src to
Unicode into the array pointed to by dst

OCIUnicodeToCharset() Converts a Unicode string pointed to by src to
multibyte into the array pointed to by dst

OCINlsCharSetConvert() Converts a string from one character set to another

OCICharSetConversionIsReplacementUsed() Indicates whether replacement characters were used for
characters that could not be converted in the last
invocation of OCINlsCharsetConvert() or
OCICharSetToUnicode()
8-48 Oracle9i Database Globalization Support Guide

Converting Character Sets in OCI
Purpose
This function converts a multibyte string pointed to by src to Unicode into the

array pointed to by dst . The conversion stops when it reaches the source limitation

or destination limitation. The function returns the number of characters converted

into a Unicode string. If dstlen is 0, then the function scans the string, counts the

number of characters, and returns the number of characters into rsize , but does

not convert the string.

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate
function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndl(IN/OUT)
Pointer to an OCI environment or user session handle

dst(OUT)
Pointer to a destination buffer

dstlen(IN)
The size of the destination buffer in characters

src(IN)
Pointer to a multibyte source string

srclen(IN)
The size of the source string in bytes

rsize(OUT)
The number of characters converted. If it is a NULL pointer, then nothing is

returned.

OCIUnicodeToCharSet()

Syntax
sword OCIUnicodeToCharSet(dvoid *hndl, OraText *dst, size_t dstlen, CONST ub2
*src, size_t srclen, size_t *rsize)
OCI Programming in a Global Environment 8-49

Converting Character Sets in OCI
Purpose
This function converts a Unicode string pointed to by src to a multibyte string into

the array pointed to by dst . The conversion stops when it reaches the source

limitation or destination limitation. The function returns the number of bytes

converted into a multibyte string. If dstlen is zero, it returns the number of bytes

into rsize without conversion.

If a Unicode character is not convertible for the character set specified in OCI

environment or user session handle, a replacement character is used for it. In this

case, OCICharsetConversionIsReplacementUsed () returns TRUE.

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate
function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndl(IN/OUT)
Pointer to an OCI environment or user session handle

dst(OUT)
Pointer to a destination buffer

dstlen(IN)
The size of destination buffer in bytes

src(IN)
Pointer to a Unicode string

srclen(IN)
The size of the source string in characters

rsize(OUT)
The number of bytes converted. If it is a NULL pointer, nothing is returned.

OCINlsCharSetConvert()

Syntax
sword OCINlsCharSetConvert(dvoid *envhp, OCIError *errhp,ub2 dstid, dvoid *dstp,
8-50 Oracle9i Database Globalization Support Guide

Converting Character Sets in OCI
size_t dstlen,ub2 srcid, CONST dvoid *srcp, size_tsrclen, size_t *rsize);

Purpose
This function converts a string pointed to by src in the character set specified by

srcid to the array pointed to by dst in the character set specified by dstid . The

conversion stops when it reaches the data size limitation of either the source or the

destination. The function returns the number of bytes converted into the destination

buffer. Although either the source or the destination character set ID can be

specified as OCI_UTF16ID , the length of the original and the converted data is

represented in bytes, rather than number of characters. Note that the conversion

does not stop when it encounters null data. To get the character set ID from the

character set name, use OCINlsCharSetNameToId() . To check if derived data in

the destination buffer contains replacement characters, use

OCICharSetConversionIsReplacementUsed() . The buffers should be aligned

with the byte boundaries appropriate for the character sets. For example, the ub2
datatype should be used to hold strings in UTF-16.

Returns
OCI_SUCCESS or OCI_ERROR; number of bytes converted

Parameters

errhp(IN/OUT)
OCI error handle. If there is an error, it is recorded in errhp and the function

returns a NULL pointer. Diagnostic information can be obtained by calling

OCIErrorGet() .

dstid(IN)
Character set ID for the destination buffer

dstp(OUT)
Pointer to the destination buffer

dstlen(IN)
The maximum size in bytes of the destination buffer

srcid(IN)
Character set ID for the source buffer

srcp(IN)
Pointer to the source buffer
OCI Programming in a Global Environment 8-51

Converting Character Sets in OCI
srclen(IN)
The length in bytes of the source buffer

rsize(OUT)
The number of characters converted. If the pointer is NULL, then nothing is

returned.

OCICharSetConversionIsReplacementUsed()

Syntax
boolean OCICharSetConversionIsReplacementUsed(dvoid *hndl)

Purpose
This function indicates whether the replacement character was used for characters

that could not be converted during the last invocation of

OCICharSetToUnicode () or OCICharSetConvert() .

Returns
The function returns TRUE if the replacement character was used when

OCICharSetConvert () or OCICharSetToUnicode() was last invoked.

Otherwise the function returns FALSE.

Parameter

hndl(IN/OUT)
Pointer to an OCI environment or user session handle

Conversion between the Oracle character set and Unicode (16-bit, fixed-width

Unicode encoding) is supported. Replacement characters are used if there is no

mapping for a character from Unicode to the Oracle character set. Thus, not every

character can make a round-trip conversion to the original character. Data loss

occurs with certain characters.

Example: Converting Character Sets in OCI
The following example shows a simple conversion into Unicode.

size_t MyConvertMultiByteToUnicode(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
ub2 *dstBuf;
8-52 Oracle9i Database Globalization Support Guide

OCI Messaging Functions
size_t dstSize;
OraText *srcStr;
{
 sword ret;
 size_t dstLen = 0;
 size_t srcLen;

 /* get length of source string */
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 ret = OCICharSetToUnicode(envhp, /* environment handle */
 dstBuf, /* destination buffer */
 dstSize, /* size of destination buffer */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen); /* pointer to destination length */

 if (ret != OCI_SUCCESS)
 {
 checkerr(envhp, ret, OCI_HTYPE_ENV);
 }
 return(dstLen);
}

OCI Messaging Functions
The user message API provides a simple interface for cartridge developers to

retrieve their own messages as well as Oracle messages.

Table 8–4 summarizes the OCI messaging functions.

See Also: Oracle9i Data Cartridge Developer’s Guide
OCI Programming in a Global Environment 8-53

OCI Messaging Functions
This section contains the following topics:

■ OCIMessageOpen()

■ OCIMessageGet()

■ OCIMessageClose()

■ Example: Retrieving a Message from a Text Message File

■ lmsgen Utility

OCIMessageOpen()

Syntax
sword OCIMessageOpen(dvoid *hndl, OCIError *errhp, OCIMsg **msghp, CONST OraText
*product, CONST OraText *facility, OCIDuration dur)

Purpose
This function opens a message-handling facility in a language pointed to by hndl .

It first tries to open the message file corresponding to hndl . If it succeeds, then it

uses that file to initialize a message handle. If it cannot find the message file that

corresponds to the language, it looks for a primary language file as a fallback. For

example, if the Latin American Spanish file is not found, then it tries to open the

Spanish file. If the fallback fails, then it uses the default message file, whose

language is AMERICAN. The function returns a pointer to a message handle into the

msghp parameter.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR

Table 8–4 OCI Messaging Functions

Function Description

OCIMessageOpen() Opens a message handle in a language pointed to by hndl

OCIMessageGet() Retrieves a message with message number identified by msgno. If the
buffer is not zero, then the function copies the message into the buffer
pointed to by msgbuf .

OCIMessageClose() Closes a message handle pointed to by msgh and frees any memory
associated with this handle
8-54 Oracle9i Database Globalization Support Guide

OCI Messaging Functions
Parameters

hndl(IN/OUT)
Pointer to an OCI environment or user session handle for message language

errhp(IN/OUT)
The OCI error handle. If there is an error, it is recorded in errhp, and the function

returns a NULL pointer. Diagnostic information can be obtained by calling

OCIErrorGet() .

msghp(OUT)
A message handle for return

product(IN)
A pointer to a product name. The product name is used to locate the directory for

messages. Its location depends on the operating system. For example, in Solaris, the

directory of message files for the rdbms product is $ORACLE_HOME/rdbms.

facility(IN)
A pointer to a facility name in the product. It is used to construct a message file

name. A message file name follows the conversion with facility as prefix. For

example, the message file name for the img facility in the American language is

imgus.msb , where us is the abbreviation for the American language and msb is the

message binary file extension.

dur(IN)
The duration for memory allocation for the return message handle. It can have the

following values:

OCI_DURATION_PROCESS
OCI_DURATION_SESSION
OCI_DURATION_STATEMENT

OCIMessageGet()

Syntax
OraText *OCIMessageGet(OCIMsg *msgh, ub4 msgno, OraText *msgbuf, size_t buflen)

Purpose
This function gets a message with the message number identified by msgno. If

buflen is not zero, then the function copies the message into the buffer pointed to
OCI Programming in a Global Environment 8-55

OCI Messaging Functions
by msgbuf . If buflen is zero, then the message is copied into a message buffer

inside the message handle pointed to by msgh.

Returns
It returns the pointer to the NULL-terminated message string. If the translated

message cannot be found, then it tries to return the equivalent English message. If

the equivalent English message cannot be found, then it returns a NULL pointer.

Parameters

msgh(IN/OUT)
Pointer to a message handle which was previously opened by OCIMessageOpen()

msgno(IN)
The message number for getting message

msgbuf(OUT)
Pointer to a destination buffer for the retrieved message. If buflen is zero, then it

can be a NULL pointer.

buflen(IN)
The size of the destination buffer

OCIMessageClose()

Syntax
sword OCIMessageClose(dvoid *hndl, OCIError *errhp, OCIMsg *msgh)

Purpose
This function closes a message handle pointed to by msgh and frees any memory

associated with this handle.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR

Parameters

Table 8–5 OCIMessageClose Keywords/Parameters (Cont.)
8-56 Oracle9i Database Globalization Support Guide

OCI Messaging Functions
Keyword/Parameter

Meaning

hndl(IN/OUT)

Pointer to an OCI environment or user session handle for message language

errhp(IN/OUT)

The OCI error handle. If there is an error, it is recorded in errhp and the function returns a NULL pointer.
Diagnostic information can be obtained by calling OCIErrorGet() .

msgh(IN/OUT)

A pointer to a message handle that was previously opened by OCIMessageOpen()

Example: Retrieving a Message from a Text Message File
This example creates a message handle, initializes it to retrieve messages from

impus.msg , retrieves message number 128, and closes the message handle. It

assumes that OCI environment handles, OCI session handles, product, facility, and

cache size have been initialized properly.

OCIMsg msghnd; /* message handle */
 /* initialize a message handle for retrieving messages from impus.msg*/
err = OCIMessageOpen(hndl,errhp, &msghnd, prod,fac,OCI_DURATION_SESSION);
if (err != OCI_SUCCESS)
 /* error handling */
...
 /* retrieve the message with message number = 128 */
msgptr = OCIMessageGet(msghnd, 128, msgbuf, sizeof(msgbuf));
 /* do something with the message, such as display it */
...
 /* close the message handle when there are no more messages to retrieve */
OCIMessageClose(hndl, errhp, msghnd);

lmsgen Utility

Purpose
The lmsgen utility converts text-based message files (.msg) into binary format

(.msb) so that Oracle messages and OCI messages provided by the user can be

returned to OCI functions in the desired language.

Syntax
LMSGENtext_file product facility [language]
OCI Programming in a Global Environment 8-57

OCI Messaging Functions
text_file is a message text file.

product is the name of the product.

facility is the name of the facility.

language is the optional message language corresponding to the language

specified in the NLS_LANG parameter. The language parameter is required if the

message file is not tagged properly with language.

Text Message Files
Text message files must follow these guidelines:

■ Lines that start with / and // are treated as internal comments and are ignored.

■ To tag the message file with a specific language, include a line similar to the

following:

CHARACTER_SET_NAME= Japanese_Japan.JA16EUC

■ Each message contains 3 fields:

message_number , warning_level , message_text

The message number must be unique within a message file.

The warning level is not currently used. Use 0.

The message text cannot be longer than 76 bytes.

The following is an example of an Oracle message text file:

/ Copyright (c) 2001 by the Oracle Corporation. All rights reserved.
/ This is a test us7ascii message file
CHARACTER_SET_NAME= american_america.us7ascii
/
00000, 00000, "Export terminated unsuccessfully\n"
00003, 00000, "no storage definition found for segment(%lu, %lu)"

Example: Creating a Binary Message File from a Text Message File
The following table contains sample values for the lmsgen parameters:

Parameter Value

product $HOME/myApplication

facility imp
8-58 Oracle9i Database Globalization Support Guide

OCI Messaging Functions
The text message file is found in the following location:

$HOME/myApp/mesg/impus.msg

One of the lines in the text message file is:

00128,2, "Duplicate entry %s found in %s"

The lmsgen utility converts the text message file (impus.msg) into binary format,

resulting in a file called impus.msb :

% lmsgen impus.msg $HOME/myApplication imp AMERICAN

The following output results:

Generating message file impus.msg -->
/home/scott/myApplication/mesg/impus.msb

NLS Binary Message File Generation Utility: Version 9.2.0.0.0 -Production

Copyright (c) Oracle Corporation 1979, 2001. All rights reserved.

CORE 9.2.0.0.0 Production

language AMERICAN

text_file impus.msg

Parameter Value
OCI Programming in a Global Environment 8-59

OCI Messaging Functions
8-60 Oracle9i Database Globalization Support Guide

Java Programming in a Global Environ
9

Java Programming in a Global Environment

This chapter examines globalization support for individual Java components. It

includes the following topics:

■ Overview of Oracle9i Java Support

■ Globalization Support for JDBC Drivers

■ Globalization Support for SQLJ

■ Globalization Support for Java Virtual Machine

■ Globalization Support for Java Stored Procedures

■ Configurations for Multilingual Applications

■ A Multilingual Demo Application in SQLJ
ment 9-1

Overview of Oracle9i Java Support
Overview of Oracle9 i Java Support
Java support is included in all tiers of a multitier computing environment so that

you can develop and deploy Java programs. You can run Java classes as Java stored

procedures on the Java Virtual Machine (Oracle JVM) of the Oracle9i database. You

can develop a Java class, load it into the database, and package it as a stored

procedure that can be called from SQL.

The JDBC driver and SQLJ translator are also provided as programmatic interfaces

that enable Java programs to access the Oracle9i database. You can write a Java

application using JDBC or SQLJ programs with embedded SQL statements to access

the database. Globalization support is provided across these Java components to

ensure that they function properly across databases with different character sets and

language environments, and that they enable the development and deployment of

multilingual Java applications for Oracle9i.

This chapter examines globalization support for individual Java components.

Typical database and client configurations for multilingual application deployment

are discussed, including an explanation of how the Java components are used in the

configurations. The design and implementation of a sample application are used to

demonstrate how Oracle's Java support makes the application run in a multilingual

environment.

Java components provide globalization support and use Unicode as the

multilingual character set. Table 9–1 shows the Java components of Oracle9i.

Table 9–1 Oracle9i Java Components

Java Component Description

JDBC driver Oracle provides JDBC as the core programmatic interface for
accessing Oracle9i databases. There are four JDBC drivers
provided by Oracle: two for client access and two for server
access.

■ The JDBC OCI driver is used by Java applications.

■ The JDBC thin driver is primarily used by Java applets.

■ The Oracle JDBC server-side thin driver offers the same
functionality as the client-side JDBC thin driver and is
used primarily by Java classes running on the Java VM of
the database server to access a remote database.

The JDBC server-side internal driver is a server-side driver that
is used by Java classes running on the Java VM of the database
server.
9-2 Oracle9i Database Globalization Support Guide

Globalization Support for JDBC Drivers
Globalization Support for JDBC Drivers
Oracle JDBC drivers provide globalization support by allowing you to retrieve data

from or insert data into columns of the SQL CHAR and NCHAR datatypes of an

Oracle9i database. Because Java strings are encoded as UTF-16 (16-bit Unicode) for

JDBC programs, the target character set on the client is always UTF-16. For data

stored in the CHAR, VARCHAR2, LONG, and CLOB datatypes, JDBC transparently

converts the data from the database character set to UTF-16. For Unicode data

stored in the NCHAR, NVARCHAR2, and NCLOB datatypes, JDBC transparently

converts the data from the national character set to UTF-16.

The following examples are commonly used Java methods for JDBC that rely

heavily on character set conversion:

■ The getString() method of the java.sql.ResultSet class returns values

from the database as Java strings.

■ The getUnicodeStream() method of the java.sql.ResultSet class

returns values as a stream of Unicode characters.

■ The getSubString() method of the oracle.sql.CLOB class returns the

contents of a CLOB as a Unicode stream.

■ The getString() , toString() , and getStringWithReplacement()
methods of the oracle.sql.CHAR class return values from the object as java

strings.

At database connection time, the JDBC Class Library sets the server NLS_
LANGUAGE and NLS_TERRITORY parameters to correspond to the locale of the Java

VM that runs the JDBC driver. This operation is performed on the JDBC OCI and

JDBC thin drivers only, and ensures that the server and the Java client communicate

SQLJ translator SQLJ acts like a preprocessor that translates embedded SQL in
the SQLJ program file into a Java source file with JDBC calls. It
gives programmers a higher level of programmatic interface
for accessing databases.

Java Virtual Machine
(JVM)

A Java VM based on the JDK is integrated into the database
server that enables the running of Java classes as Java stored
procedures. It comes with a set of supporting services such as
the library manager, which manages Java classes stored in the
database.

Table 9–1 Oracle9i Java Components (Cont.)

Java Component Description
Java Programming in a Global Environment 9-3

Globalization Support for JDBC Drivers
in the same language. As a result, Oracle error messages returned from the server

are in the same language as the client locale.

This section includes the following topics:

■ Accessing SQL CHAR Datatypes Using JDBC

■ Accessing SQL NCHAR Datatypes Using JDBC

■ Using the oracle.sql.CHAR Class

■ Restrictions on Accessing SQL CHAR Data with JDBC

Accessing SQL CHAR Datatypes Using JDBC
To insert a Java string into a database column of a SQL CHAR datatype, you can use

the PreparedStatement.setString () method to specify the bind variable.

Oracle’s JDBC drivers transparently convert the Java string to the database

character set. The following example shows how to bind a Java string last_name
to a VARCHAR2 column last_name .

int employee_id= 12345;
String last_name= "\uFF2A\uFF4F\uFF45";
PreparedStatement pstmt =

conn.prepareStatement ("INSERT INTO employees (employee_id, last_name)
VALUES(?,?)");

pstmt.setInt(1, employee_id);
pstmt.setString(2, last_name);
pstmt.execute();
pstmt.close();

For data stored in SQL CHAR datatypes, the techniques that Oracle's drivers use to

perform character set conversion for Java applications depend on the character set

that the database uses. The simplest case is when the database uses a US7ASCII or

WE8ISO8859P1 character set. In this case, the driver converts the data directly from

the database character set to UTF-16,which is used in Java applications.

If you are working with databases that employ a character set that is not US7ASCII

or WE8ISO8859P1 (for example, JA16SJIS or KO16KSC5601), then the driver

converts the data first to UTF-8, then to UTF-16. The following sections describe the

conversion paths for different JDBC drivers:

■ JDBC Class Library Character Set Conversion

■ JDBC OCI Driver Character Set Conversion

■ JDBC Thin Driver Character Set Conversion
9-4 Oracle9i Database Globalization Support Guide

Globalization Support for JDBC Drivers
■ JDBC Server-Side Internal Driver Character Set Conversion

Figure 9–1 shows how data is converted in JDBC drivers.

Figure 9–1 JDBC Data Conversion

JDBC Class Library Character Set Conversion
The JDBC Class Library is a Java layer that implements the JDBC interface. Java

applications, applets, and stored procedures interact with this layer. The library

always accepts US7ASCII, UTF8, or WE8ISO8859P1 encoded string data from the

Java Stored
Procedures

Oracle9i
Database
Character

Set

Database
Character Set

Database
Character Set

Java strings

Database
Character Set

Server

Java strings

AL32UTF8
UTF8
WE8ISO8859PI
US7ASCII

AL32UTF8
UTF8
WE8ISO8859PI
US7ASCII

Java strings

Database
Character Set

UTF8
WE8ISO8859PI
US7ASCII

Client

SQL Engine or
PL/SQL Engine

Java Applets

JDBC Thin
(Calling Java
Socket in Java)

Java Applications

JDBC OCI
(Calling Oracle
OCI in C)

JDBC Class Library in Java

Oracle
Net

JDBC Server-Side
Internal Driver

AL32UTF8
WE8ISO8859PI
US7ASCII

JDBC Class Library in Java

JDBC Server-Side
Thin Driver

To Remote
Database
Java Programming in a Global Environment 9-5

Globalization Support for JDBC Drivers
input stream of the JDBC drivers. It also accepts AL32UTF8 data for the JDBC thin

driver and database character set data for the JDBC server-side driver. The JDBC

Class Library converts the input stream to UTF-16 before passing it to the client

applications. AL32UTF8 is another character set in addition to UTF8 for encoding

Unicode characters in the UTF-8 encoding. It supports supplemental Unicode

characters. If the input stream is in UTF8 or AL32UTF8, then the JDBC Class Library

converts the UTF8 or AL32UTF8 encoded string to UTF-16 by using the bit-wise

operation defined in the UTF-8 to UTF-16 conversion algorithm. If the input stream

is in US7ASCII or WE8ISO8859P1, then it converts the input string to UTF-16 by

casting the bytes to Java characters. If the input stream is not one of US7ASCII,

WE8ISO8859P1, UTF8 and AL32UTF8, then the JDBC Class Library converts the

input stream by calling the Oracle character set conversion facility. This conversion

path is only used for the JDBC server-side driver.

JDBC OCI Driver Character Set Conversion
In the case of a JDBC OCI driver, there is a client-side character set as well as a

database character set. The client character set is determined at client start time by

the value of the NLS_LANG environment variable on the client. The database

character set is determined at database creation. The character set used by the client

can be different from the character set used by the database on the server. When

performing character set conversion, the JDBC OCI driver has to take three factors

into consideration:

■ The database character set and language

■ The client character set and language

■ The Java application's character set

The JDBC OCI driver transfers the data from the server to the client in the character

set of the database. Depending on the value of the NLS_LANGenvironment variable,

the driver handles character set conversions in one of two ways:

■ If the value of NLS_LANG is not specified, or if it is set to the US7ASCII or

WE8ISO8859P1 character set, then the JDBC OCI driver uses Java to convert the

character set from US7ASCII or WE8ISO8859P1 directly to UTF-16 in the JDBC

Class Library.

■ If the value of NLS_LANG is set to a character set other than US7ASCII or

WE8ISO8859P1, then the driver uses UTF8 as the client character set. This

happens automatically and does not require any user intervention. OCI then

converts the data from the database character set to UTF8. The JDBC OCI driver

then passes the UTF8 data to the JDBC Class Library where the UTF8 data is

converted to UTF-16.
9-6 Oracle9i Database Globalization Support Guide

Globalization Support for JDBC Drivers
JDBC Thin Driver Character Set Conversion
If applications or applets use the JDBC thin driver, then there is no Oracle client

installation. Because of this, the OCI client conversion routines in C are not

available. In this case, the client conversion routines of the JDBC thin driver are

different from conversion routines of the JDBC OCI driver.

If the database character set is US7ASCII, WE8ISO8859P1, UTF8, or AL32UTF8,

then the data is transferred to the client without any conversion. The JDBC Class

Library then converts the data to UTF-16 in Java.

Otherwise, the server first translates the data to UTF8 or AL32UTF8 before

transferring it to the client. On the client, the JDBC Class Library converts the data

to UTF-16 in Java.

JDBC Server-Side Internal Driver Character Set Conversion
For Java classes running in the Java VM of the Oracle9i Server, the JDBC server-side

internal driver is used to talk to the SQL engine or the PL/SQL engine for SQL

processing. Because the JDBC server-side internal driver is running in the same

address space as the Oracle server process, it makes a local function call to the SQL

engine or the PL/SQL engine. Data sent to or returned from the SQL engine or the

PL/SQL engine is encoded in the database character set, No data conversion is

performed in the JDBC server-side internal driver, and the data is passed to or from

the JDBC Class Library as is. Any necessary conversion is delegated to the JDBC

Class Library.

Accessing SQL NCHAR Datatypes Using JDBC
JDBC enables Java programs to access columns of the SQL NCHAR datatypes in an

Oracle9i database. Data conversion for the SQL NCHAR datatypes is different from

data conversion for the SQL CHAR datatypes. All Oracle JDBC drivers convert data

in the SQL NCHAR column from the national character set, which is either UTF8 or

AL16UTF16, directly to UTF-16 encoded Java strings. In the following Java

program, you can bind a Java string last_name to an NVARCHAR2 column last_
name:

int employee_id = 12345;
String ename = "\uFF2A\uFF4F\uFF45";
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
 conn.prepareStatement("INSERT INTO employees (empoyee_id, last_name) VALUES
(?, ?)");
pstmt.setFormOfUse(2, oracle.jdbc.OraclePreparedStatement.FORM_NCHAR);
Java Programming in a Global Environment 9-7

Globalization Support for JDBC Drivers
pstmt.setInt(1, employee_id);
pstmt.setString(2, last_name);
pstmt.execute();
pstmt.close();

Using the oracle.sql.CHAR Class
The oracle.sql.CHAR class has a special functionality for conversion of character

data. The Oracle character set is a key attribute of the oracle.sql.CHAR class. The

Oracle character set is always passed in when an oracle.sql.CHAR object is

constructed. Without a known character set, the bytes of data in the

oracle.sql.CHAR object are meaningless.

The oracle.sql.CHAR class provides the following methods for converting

character data to strings:

■ getString()

Converts the sequence of characters represented by the oracle.sql.CHAR
object to a string, returning a Java String object. If the character set is not

recognized, then getString() returns a SQLException .

■ toString()

Identical to getString() , except that if the character set is not recognized,

then toString() returns a hexadecimal representation of the

oracle.sql.CHAR data and does not returns a SQLException .

■ getStringWithReplacement()

Identical to getString() , except that a default replacement character replaces

characters that have no Unicode representation in the character set of this

oracle.sql.CHAR object. This default character varies among character sets,

but it is often a question mark.

You may want to construct an oracle.sql.CHAR object yourself (to pass into a

prepared statement, for example). When you construct an oracle.sql.CHAR
object, you must provide character set information to the oracle.sql.CHAR object

by using an instance of the oracle.sql.CharacterSet class. Each instance of

the oracle.sql.CharacterSet class represents one of the character sets that

Oracle supports.

See Also: "Binding and Defining Java Strings in Unicode" on

page 6-26 for more information about programming against the

SQL NCHAR datatypes
9-8 Oracle9i Database Globalization Support Guide

Globalization Support for JDBC Drivers
Complete the following tasks to construct an oracle.sql.CHAR object:

1. Create a CharacterSet instance by calling the static CharacterSet.make()
method. This method creates the character set class. It requires as input a valid

Oracle character set (OracleId) . For example:

int OracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set 832
...
CharacterSet mycharset = CharacterSet.make(OracleId);

Each character set that Oracle supports has a unique predefined OracleId .

The OracleId can always be referenced as a character set specified as

Oracle_character_set_name _CHARSET where Oracle_character_
set_name is the Oracle character set.

2. Construct an oracle.sql.CHAR object. Pass to the constructor a string (or the

bytes that represent the string) and the CharacterSet object that indicates

how to interpret the bytes based on the character set. For example:

String mystring = "teststring";
...
oracle.sql.CHAR mychar = new oracle.sql.CHAR(teststring, mycharset);

The oracle.sql.CHAR class has multiple constructors: they can take a string,

a byte array, or an object as input along with the CharacterSet object. In the

case of a string, the string is converted to the character set indicated by the

CharacterSet object before being placed into the oracle.sql.CHAR object.

The server (database) and the client (or application running on the client) can use

different character sets. When you use the methods of this class to transfer data

between the server and the client, the JDBC drivers must convert the data between

the server character set and the client character set.

Inserting and Retrieving Data with the oracle.sql.CHAR Class
When you call the OracleResultSet.getCHAR() method to get a bind variable

as an oracle.sql.CHAR object, JDBC constructs and populates the

oracle.sql.CHAR objects after character data has been read from the database.

Similarly, you can call the OraclePreparedStatement.sql.CHAR() method to

set a bind variable using an oracle.sql.CHAR object. For example:

int employee_id = 12345;
String ename = "\uFF2A\uFF4F\uFF45";
String eaddress = "Address of \uFF2A\uFF4F\uFF45";
/* CharacterSet object for VARCHAR2 column */
CharacterSet dbCharset = CharacterSet.make(CharacterSet.JA16SJIS_CHARSET);
Java Programming in a Global Environment 9-9

Globalization Support for JDBC Drivers
/* CharacterSet object for NVARCHAR2 column */
CharacterSet ncCharset = CharacterSet.make(CharacterSet.AL16UTF16_CHARSET);

/* last_name is in VARCHAR2 and address is in NVARCHAR2 */
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
 conn.prepareStatement("INSERT INTO employees (empoyee_id, last_name,
address)
 VALUES (?, ?, ?)");
pstmt.setFormOfUse(3, oracle.jdbc.OraclePreparedStatement.FORM_NCHAR);
pstmt.setInt(1, employee_id);
pstmt.setCHAR(2, new oracle.sql.CHAR(ename, dbCharset));
pstmt.setCHAR(3, new oracle.sql.CHAR(eaddress, ncCharset));
pstmt.execute();
pstmt.close();

The oracle.sql.CHAR in Oracle Object Types
In Oracle9i, JDBC drivers support Oracle object types. Oracle objects are always

sent from database to client as an object represented in the database character set.

That means the data conversion path in Figure 9–1 does not apply to Oracle object

access. Instead, the oracle.sql.CHAR class is used for passing SQL CHAR and

SQL NCHAR data of an object type from the database to the client. The following is

an example of an object type created using SQL:

CREATE TYPE person_type AS OBJECT (name VARCHAR2(30), address NVARCHAR(256), age
NUMBER);
CREATE TABLE employees (id NUMBER, person PERSON_TYPE);

The Java class corresponding to this object type can be constructed as follows:

public class person implement SqlData
{
 oracle.sql.CHAR name;
 oracle.sql.CHAR address;
 oracle.sql.NUMBER age;
 // SqlData interfaces
 getSqlType() {...}
 writeSql(SqlOutput stream) {...}
 readSql(SqlInput stream, String sqltype) {...}
}

The oracle.sql.CHAR class is used here to map to the NAME attributes of the

Oracle object type, which is of VARCHAR2 datatype. JDBC populates this class with

the byte representation of the VARCHAR2 data in the database and the
9-10 Oracle9i Database Globalization Support Guide

Globalization Support for JDBC Drivers
CharacterSet object corresponding to the database character set. The following

code retrieves a person object from the employees table:

TypeMap map = ((OracleConnection)conn).getTypeMap();
map.put("PERSON_TYPE", Class.forName("person"));
conn.setTypeMap(map);
 . . .
 . . .
ResultSet rs = stmt.executeQuery("SELECT PERSON FROM EMPLOYEES");
rs.next();
person p = (person) rs.getObject(1);
oracle.sql.CHAR sql_name = p.name;
oracle.sql.CHAR sql_address=p.address;
String java_name = sql_name.getString();
String java_name = sql_address.getString();

The getString() method of the oracle.sql.CHAR class converts the byte array

from the database character set to UTF-16 by calling Oracle's Java data conversion

classes and returning a Java string. For the rs.getObject(1) call to work, the

SqlData interface has to be implemented in the class person , and the Typemap
maphas to be set up to indicate the mapping of the object type PERSON_TYPEto the

Java class.

Restrictions on Accessing SQL CHAR Data with JDBC
This section contains the following topics:

■ SQL CHAR Data Size Restriction With the JDBC Thin Driver

■ Character Integrity Issues in a Multibyte Database Environment

SQL CHAR Data Size Restriction With the JDBC Thin Driver
If the database character set is neither ASCII (US7ASCII) nor ISO Latin1

(WE8ISO8859P1), then the JDBC thin driver must impose size restrictions for SQL

CHAR bind parameters that are more restrictive than normal database size

limitations. This is necessary to allow for data expansion during conversion.

The JDBC thin driver checks SQL CHAR bind sizes when a set XXX() method

(except for the setCharacterStream() method) is called. If the data size exceeds

the size restriction, then the driver returns a SQL exception (SQLException:
Data size bigger than max size for this type") from the set XXX()
call. This limitation is necessary to avoid the chance of data corruption when

conversion of character data occurs and increases the length of the data. This

limitation is enforced in the following situations:
Java Programming in a Global Environment 9-11

Globalization Support for JDBC Drivers
■ Using the JDBC thin driver

■ Using binds (not defines)

■ Using SQL CHAR datatypes

■ Connecting to a database whose character set is neither ASCII (US7ASCII) nor

ISO Latin1 (WE8ISO8859P1)

When the database character set is neither US7ASCII nor WE8ISO8859P1, the JDBC

thin driver converts Java UTF-16 characters to UTF-8 encoding bytes for SQL CHAR
binds. The UTF-8 encoding bytes are then transferred to the database, and the

database converts the UTF-8 encoding bytes to the database character set encoding.

This conversion to the character set encoding can result in an increase in the

number of bytes required to store the data. The expansion factor for a database

character set indicates the maximum possible expansion in converting from UTF-8

to the character set. If the database character set is either UTF8 or AL32UTF8, then

the expansion factor (exp_factor) is 1. Otherwise, the expansion factor is equal to

the maximum character size (measured in bytes) in the database character set.

Table 9–2 shows the database size limitations for SQL CHAR data and the JDBC thin

driver size restriction formulas for SQL CHAR binds. Database limits are in bytes.

Formulas determine the maximum allowed size of the UTF-8 encoding in bytes.

The formulas guarantee that after the data is converted from UTF-8 to the database

character set, the size of the data will not exceed the maximum size allowed in the

database.

The number of UTF-16 characters that can be supported is determined by the

number of bytes per character in the data. All ASCII characters are one byte long in

UTF-8 encoding. Other character types can be two or three bytes long.

Table 9–2 Maximum SQL CHAR Bind Sizes

Oracle
Version Datatype

Maximum Bind Size
Allowed by
Database

Formula for Determining the
Maximum Bind Size, Measured in
UTF-8 Bytes

Oracle8 and
later

CHAR 2000 bytes 4000/ exp_factor

Oracle8 and
later

VARCHAR2 4000 bytes 4000/ exp_factor

Oracle8 and
later

LONG 231 - 1 bytes (2 31 - 1)/ exp_factor
9-12 Oracle9i Database Globalization Support Guide

Globalization Support for JDBC Drivers
Table 9–3 lists the expansion factors of some common server character sets. It also

shows the JDBC thin driver maximum bind sizes for CHAR and VARCHAR2 data for

each character set.

Character Integrity Issues in a Multibyte Database Environment
Oracle JDBC drivers perform character set conversions as appropriate when

character data is inserted into or retrieved from the database. The drivers convert

Unicode characters used by Java clients to Oracle database character set characters,

and vice versa. Character data that makes a round trip from the Java Unicode

character set to the database character set and back to Java can suffer some loss of

information. This happens when multiple Unicode characters are mapped to a

single character in the database character set. An example is the Unicode full-width

tilde character (0xFF5E) and its mapping to Oracle's JA16SJIS character set. The

round trip conversion for this Unicode character results in the Unicode character

0x301C, which is a wave dash (a character commonly used in Japan to indicate

range), not a tilde.

Table 9–3 Expansion Factor and Maximum Bind Size for Common Server Character
Sets

Server Character Set Expansion Factor

JDBC Thin Driver
Maximum Bind Size for
SQL CHAR Data,
Measured in UTF-8 Bytes

WE8DEC 1 4000 bytes

JA16SJIS 2 2000 bytes

JA16EUC 3 1333 bytes

AL32UTF8 1 4000 bytes
Java Programming in a Global Environment 9-13

Globalization Support for SQLJ
Figure 9–2 Character Integrity

This issue is not a bug in Oracle's JDBC. It is an unfortunate side effect of the

ambiguity in character mapping specification on different operating systems.

Fortunately, this problem affects only a small number of characters in a small

number of Oracle character sets such as JA16SJIS, JA16EUC, ZHT16BIG5, and

KO16KS5601. The workaround is to avoid making a full round-trip with these

characters.

Globalization Support for SQLJ
SQLJ is a SQL-to-Java translator that translates embedded SQL statements in a Java

program into the corresponding JDBC calls regardless of which JDBC driver is used.

It also provides a callable interface that the Oracle9i database server uses to

transparently translate the embedded SQL in server-side Java programs. SQLJ by

itself is a Java application that reads the SQLJ programs (Java programs containing

embedded SQL statements) and generates the corresponding Java program files

with JDBC calls. There is an option to specify a checker to check the embedded SQL

statements against the database at translation time. The javac compiler is then

used to compile the generated Java program files to regular Java class files.

Figure 9–3 shows how the SQLJ translator works. The figure is described in the

following sections:

■ Using Unicode Characters in SQLJ programs

■ Using the oracle.sql.NString class

Oracle database
Character Set

(JA16SJIS) Java UnicodeJava Unicode

0x8160

0xFF5E

0x301C
0x301C

0xFF5E

...

...

...

...

...
...

...

...
9-14 Oracle9i Database Globalization Support Guide

Globalization Support for SQLJ
Figure 9–3 Using the SQLJ Translator

Using Unicode Characters in SQLJ programs
SQLJ enables multilingual Java application development by allowing SQLJ files

encoded in different encoding schemes (those supported by the JDK). In Figure 9–3,

a UTF-16 encoded SQLJ program is being passed to the SQLJ translator and the Java

program output is also encoded in UTF-16. SQLJ preserves the encoding of the

source in the target. To specify the encoding of the source, use the -encoding
option as follows:

sqlj -encoding Unicode source_file

Unicode notation \uXXXX (which is referred to as a Unicode escape sequence) can

be used in embedded SQL statements for characters that cannot be represented in

the encoding of the SQLJ program file. This enables you to specify multilingual

object names in the SQL statement without using a UTF-16-encoded SQLJ file. The

following SQLJ code shows the use of Unicode escape sequences in embedded SQL

as well as in a string literal.

int employee_id = 12345;
String name last_name = "\uFF2A\uFF4F\uFF45";
double raise = 0.1;

#sql { INSERT INTO E\u006D\u0070 (last_name, employee_id) VALUES (:last_name,
:employee_id)};
#sql { UPDATE employees SET salary = :(getNewSal(raise, last_name))
WHERE last_name = :last_name};

See Also: "A Multilingual Demo Application in SQLJ" on

page 9-23 for an example of SQLJ usage for a multilingual Java

application

Regular Java
class file

SQLJ program
(encoded in
UTF-16)

Java program
with JDBC calls
(encoded in
UTF-16)

Oracle9i

SQLJ translator Java Compiler
JDBC driver
Java Programming in a Global Environment 9-15

Globalization Support for Java Virtual Machine
Using the oracle.sql.NString class
In Oracle9i, the oracle.sql.NString class is introduced in SQLJ to support the

NVARCHAR2, NCHAR, and NCLOB Unicode datatypes. You can declare a bind on

NCHARcolumn using a Java object of the oracle.sql.NString type, and use it in

the embedded SQL statements in SQLJ programs.

int employee_id = 12345;
oracle.sql.NString last_name = new oracle.sql.NString ("\uFF2A\uFF4F\uFF45");
double raise = 0.1;
#sql { INSERT INTO E\u006D\u0070 (last_name, employee_id VALUES (:last_name,
:employee_id)};
#sql { UPDATE employees SET salary = :(getNewSal(raise, last_name)) = :last_
name};

This example binds the last_name object of the oracle.sql.NString datatype

to the last_name database NVARCHAR2 column.

Globalization Support for Java Virtual Machine
The Oracle9i Java Virtual Machine (Java VM) is integrated into the database server

to enable the running of Java classes stored in the database. Oracle9i enables you to

store Java class files, Java or SQLJ source files, and Java resource files into the

database. Then the Java entry points to SQL can be published so that Java can be

called from SQL or PL/SQL and the Java byte code can be run.

In addition to the engine that interprets Java byte code, the Oracle Java VM includes

the core runtime classes of the Java Development Kit (JDK). The components of the

Java VM are depicted in Figure 9–4.

See Also: "Binding and Defining Java Strings in Unicode" on

page 6-26 for more details on the SQL NCHAR datatypes support in

SQLJ
9-16 Oracle9i Database Globalization Support Guide

Globalization Support for Java Virtual Machine
Figure 9–4 Components of Oracle’s Java Virtual Machine

The Java VM provides:

■ An embedded Java class loader that locates, loads, and initializes locally stored

Java classes in the database

■ A Java compiler that translates standard Java programs into standard Java

.class binary representations

A library manager is also included to manage Java program, class, and resource

files as schema objects known as library units. It not only loads and manages these

Java files in the database, but also maps Java name space to library units. For

example:

public class Greeting
{
 public String Hello(String name)
 {
 return ("Hello" + name + "!");
 }
}

After the preceding Java code is compiled, it is loaded into the database as follows:

loadjava Greeting.class

Byte code interpreter
+

run time

Java compiler

Class loader

Object memories
+

garbage collector

Library manager RDBMS
memory manager

Java VM

Oracle Net

loadjava
Java Programming in a Global Environment 9-17

Globalization Support for Java Stored Procedures
As a result, a library unit called Greeting is created as a schema object in the

database.

Class and method names containing characters that cannot be represented in the

database character set are handled by generating a US7ASCII library unit name and

mapping it to the real class name stored in a RAW column. This enables the class

loader to find the library unit corresponding to the real class name when Java

programs run in the server. In other words, the library manager and the class loader

support class names or method names outside the namespace of the database

character set.

Globalization Support for Java Stored Procedures
A Java stored procedure or function requires that the library unit of the Java classes

implementing it already be present in the database. Using the Greeting library

unit example in the previous section, the following call data definition language

(DDL) publishes the method Greeting.Hello() as a Java stored function:

CREATE FUNCTION myhello(name VARCHAR2) RETURN VARCHAR2
 AS LANGUAGE JAVA NAME
'Greeting.Hello(java.lang.String) return java.lang.String';

The DDL maps the Java methods, parameter types and return types to the SQL

counterparts. To the users, the Java stored function has the same calling syntax as

any other PL/SQL stored function. Users can call the Java stored procedures the

same way they call any PL/SQL stored procedures.

Figure 9–5 depicts the runtime environment of a stored function.
9-18 Oracle9i Database Globalization Support Guide

Globalization Support for Java Stored Procedures
Figure 9–5 Running Java Stored Procedures

The locale of the Java VM is Japanese and its encoding is the database character set.

The client’s NLS_LANG environment variable is defined as JAPANESE_
JAPAN.JA16SJIS . Oracle Net converts the JA16SJIS characters in the client to the

database character set characters if the characters are different.

The Java entry point, Greeting.Hello() , is called by invoking the proxy

PL/SQL myhello() from the client. The server process serving the client runs as a

normal PL/SQL stored function and uses the same syntax. The PL/SQL engine

takes a call specification for a Java method and calls the Java VM. Next, it passes the

method name of the Java stored function and the argument to the Java VM for

execution. The Java VM takes control, calls the SQL to Java using code to convert

the VARCHAR2 argument from the database character set to UTF-16, loads the

Greeting class, and runs the Hello() method with the converted argument. The

PL/SQL engine

myhello('Oracle')

Java VM

Greeting.Hello()

Server response
to the Java stored
procedure call

Oracle Net

Database Character Set

g

SQL>CALL
 myhello('Oracle');
SQL>SELECT myhello
 (last_name)FROM employees;

Oracle9i

myhello(VARCHAR2)

Greeting.class

Invoke Java VM to run the
Greeting.Hello() method

Convert the argument from
database Character Set to UTF-16
before passing it to the method.
The Java VM locale is Japanese.
The Java VM encoding is the
database character set.

NLS_LANG=
JAPANESE_JAPAN.JA16SJIS
Java Programming in a Global Environment 9-19

Configurations for Multilingual Applications
string returned by Hello() is then converted back to the database character set

and returned as a VARCHAR2 string to the caller.

The globalization support that enables deployment and development of

internationalized Java stored procedures includes:

■ The strings in the arguments of Java stored procedures are automatically

converted from SQL datatypes in the database character set to UTF-16-encoded

Java strings.

■ The default Java locale of the Java VM follows the language setting of the

current database session derived from the NLS_LANG environment variable of

the client. A mapping of Oracle language and territory names to Java locale

names is in place for this purpose. In additions, the default encoding of the Java

VM follows the database character set.

■ The loadjava utility supports loading of Java and SQLJ source files encoded

in any encoding supported by the JDK. The content of the Java or SQLJ

program is not limited by the database character set. Unicode escape sequences

are also supported in the program files.

Configurations for Multilingual Applications
To develop and deploy multilingual Java applications for Oracle9i, the database

configurations and client environments for the targeted systems must be

determined.

This section contains the following topics:

■ Configuring a Multilingual Database

■ Globalization Support for Java Stored Procedures

■ Clients with Different Languages

Configuring a Multilingual Database
In order to store multilingual data in an Oracle9i database, you need to configure

the database appropriately. There are two ways to store Unicode data into the

database:

Note: The entry method name and class name of a Java stored

procedure must be in the database character set because it must be

published to SQL as DDL.
9-20 Oracle9i Database Globalization Support Guide

Configurations for Multilingual Applications
■ As SQL CHAR datatypes in a Unicode database

■ As SQL NCHAR datatypes in a non-Unicode database

Globalization Support for Java Stored Procedures
For each Oracle9i session, a separate Java VM instance is created in the server for

running the Java stored procedure, and Oracle9i Java support ensures that the locale

of the Java VM instance is the same as that of the client Java VM. Hence the Java

stored procedures always run on the same locale in the database as the client locale.

For non-Java clients, the default locale of the Java VM instance will be the Java

locale that best corresponds to the NLS_LANGUAGE and NLS_TERRITORY session

parameters propagated from the client NLS_LANG environment variable.

Internationalizing Java code
Java stored procedures are server objects which are accessible from clients of

different language preferences. They should be internationalized so that they are

sensitive to the Java locale of the Java VM, which is initialized to the locale of the

client.

With JDK internationalization support, you can specify a Java locale object to any

locale-sensitive methods or use the default Java locale of the Java VM for those

methods. The following are examples of how to internationalize a Java stored

procedure:

■ Externalize all localizable strings or objects from the Java code to resource

bundles and make the resource bundles as part of the procedure. Any messages

returned from the resource bundle will be in the language of the client locale or

whatever locale you specify.

■ Use the Java formatting classes such as DateFormat and NumberFormat to

format the date, time, numbers, and currencies with the assumption that they

will reflect the locale of the calling client.

■ Use Java locale-sensitive string classes such as Character , Collator , and

BreakIterator to check the classification of a character, compare two strings

linguistically, and parse a string character by character.

See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode" for more information about choosing a Unicode solution

and configuring the database for Unicode
Java Programming in a Global Environment 9-21

Configurations for Multilingual Applications
Transferring Multilingual Data
All Java server objects access the database with the JDBC server-side internal driver

and should use either a Java string or oracle.sql.CHAR to represent string data

to and from the database. Java strings are always encoded in UTF-16, and the

required conversion from the database character set to UTF-16 is done

transparently. oracle.sql.CHAR stores the database data in byte array and tags it

with a character set ID. oracle.sql.CHAR should be used when no string

manipulation is required on the data. For example, it is the best choice for

transferring string data from one table to another in the database.

Clients with Different Languages
Clients (or middle tiers) can have different language preferences, database access

mechanisms, and Java runtime environments. The following are several commonly

used client configurations.

■ Java applets running in browsers

Java applets running in browsers can access the Oracle9i database through the

JDBC thin driver. No client-side Oracle library is required. The applets use the

JDBC thin driver to invoke SQL, PL/SQL as well as Java stored procedures. The

JDBC thin driver makes sure that Java stored procedures run in the same locale

as the Java VM running the applets.

■ Dynamic HTML on browsers

HTML pages invoke Java servlets by using URLs over HTTP. The Java servlets

running in the middle tier construct dynamic HTML pages and deliver them

back to the browser. They should determine the locale of a user and construct

the page according to the language and cultural convention preferences of the

user and use JDBC to connect to the database.

■ Java applications running on client Java VMs

Java applications running on the Java VM of the client machine can access the

database through either JDBC OCI or JDBC thin drivers. Java applications can

also be a middle tier servlet running on a Web server. The applications use

JDBC drivers to invoke SQL, PL/SQL as well as Java stored procedures. The

JDBC Thin and JDBC OCI drivers make sure that Java stored procedures will be

running in the same locale as that of the client Java VM.

■ C clients such as OCI, Pro*C/C++, and ODBC

Non-Java clients can call Java stored procedures the same way they call

PL/SQL stored procedures. The Java VM locale is the best match of Oracle's
9-22 Oracle9i Database Globalization Support Guide

A Multilingual Demo Application in SQLJ
language settings NLS_LANGUAGE and NLS_TERRITORY propagated from the

NLS_LANG environment variable of the client. As a result, the client always gets

messages from the server in the language specified by NLS_LANG. Data in the

client are converted to and from the database character set by OCI.

A Multilingual Demo Application in SQLJ
This section contains a simple bookstore application written in SQLJ to demonstrate

a database storing book information in different languages, and how SQLJ and

JDBC are used to access the book information from the database. It also

demonstrates the use of internationalized Java stored procedures to accomplish

transactional tasks in the database server. The sample program consists of the

following components:

■ The SQLJ client Java application that displays a list of books in the store and

allow users to add new books to and remove books from the inventory

■ A Java stored procedure to add a new book to the inventory

■ A Java stored procedure to remove an existing book from the inventory

This section contains the following topics:

■ Database Schema for the Multilingual Demo Application

■ Java Stored Procedures for the Multilingual Demo Application

■ The SQLJ Client for the Multilingual Demo Application

Database Schema for the Multilingual Demo Application
AL32UTF8 is the database character set that is used to store book information, such

as names and authors, in languages around the world.

The book table is described in Table 9–4.

Table 9–4 Columns in the book Table of the Multilingual Demo

Column Name Datatype

ID (primary key) NUMBER(10)

NAME VARCHAR(300)

PUBLISH_DATE DATE

AUTHOR VARCHAR(120)
Java Programming in a Global Environment 9-23

A Multilingual Demo Application in SQLJ
The inventory table is described in Table 9–5.

In addition, indexes are built with the NAME and AUTHOR columns of the book table

to improve performance during book searches. A BOOKSEQ sequence is be created

to generate a unique book ID.

Java Stored Procedures for the Multilingual Demo Application
The Java class called Book is created to implement the methods Book.remove()
and Book.add() that perform the tasks of removing books from and adding books

to the inventory respectively. They are defined according to the following code. In

this class, only the remove() method and the constructor are shown. The resource

bundle BookRes.class is used to store localizable messages. The remove()
method returns a message gotten from the resource bundle according to the current

Java VM locale. There is no JDBC connection required to access the database

because the stored procedure is already running in the context of a database session.

import java.sql.*;
import java.util.*;
import sqlj.runtime.ref.DefaultContext;
/* The book class implementation the transaction logics of the
 Java stored procedures.*/
public class Book
{
 static ResourceBundle rb;
 static int q, id;
 static DefaultContext ctx;
 public Book()
 {

PRICES NUMBER(10,2)

Table 9–5 Columns in the invertory Table of the Multilingual Demo

Column Name Datatype

ID (primary key) NUMBER(10)

LOCATION (primary key) VARCHAR(90)

QUANTITY NUMBER(3)

Table 9–4 Columns in the book Table of the Multilingual Demo (Cont.)

Column Name Datatype
9-24 Oracle9i Database Globalization Support Guide

A Multilingual Demo Application in SQLJ
 try
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 DefaultContext.setDefaultContext(ctx);
 rb = java.util.ResourceBundle.getBundle("BookRes");
 }
 catch (Exception e)
 {
 System.out.println("Transaction failed: " + e.getMessage());
 }
 }
 public static String remove(int id, int quantity, String location) throws
 SQLException
 {
 rb = ResourceBundle.getBundle("BookRes");
 try
 {
 #sql {SELECT QUANTITY INTO :q FROM INVENTORY WHERE ID = :id AND
 LOCATION = :location};
 if (id == 1) return rb.getString ("NotEnough");
 }
 catch (Exception e)
 {
 return rb.getString ("NotEnough");
 }
 if ((q - quantity) == 0)
 {
 #sql {DELETE FROM INVENTORY WHERE ID = :id AND LOCATION = :location};
 try
 {
 #sql {SELECT SUM(QUANTITY) INTO :q FROM INVENTORY WHERE ID = :id};
 }
 catch (Exception e)
 {
 #sql { DELETE FROM BOOK WHERE ID = :id };
 return rb.getString("RemoveBook");
 }
 return rb.getString("RemoveInventory");
 }
 else
 {
 if ((q-quantity) < 0) return rb.getString ("NotEnough");
 #sql { UPDATE INVENTORY SET QUANTITY = :(q-quantity) WHERE ID = :id and
 LOCATION = :location };
 return rb.getString("DecreaseInventory");
Java Programming in a Global Environment 9-25

A Multilingual Demo Application in SQLJ
 }
 }
 public static String add(String bname, String author, String location,
 double price, int quantity, String publishdate) throws SQLException
 {
 rb = ResourceBundle.getBundle("BookRes");
 try
 {
 #sql { SELECT ID into :id FROM BOOK WHERE NAME = :bname AND AUTHOR =
 :author };
 }
 catch (Exception e)
 {
 #sql { SELECT BOOKSEQ.NEXTVAL INTO :id FROM DUAL };
 #sql { INSERT INTO BOOK VALUES (:id, :bname,
 TO_DATE(:publishdate,'YYYY-MM-DD'), :author, :price) };
 #sql { INSERT INTO INVENTORY VALUES (:id, :location, :quantity) };
 return rb.getString("AddBook");
 }
 try
 {
 #sql { SELECT QUANTITY INTO :q FROM INVENTORY WHERE ID = :id
 AND LOCATION = :location };
 }
 catch (Exception e)
 {
 #sql { INSERT INTO INVENTORY VALUES (:id, :location, :quantity) };
 return rb.getString("AddInventory");
 }
 #sql { UPDATE INVENTORY SET QUANTITY = :(q + quantity) WHERE ID = :id
 AND LOCATION = :location };
 return rb.getString("IncreaseInventory");
 }
}

After the Book.remove() and Book.add() methods are defined, they are in turn

published as Java stored functions in the database called REMOVEBOOK() and

ADDBOOK():

CREATE FUNCTION REMOVEBOOK (ID NUMBER, QUANTITY NUMBER,
 LOCATION VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA NAME
 'Book.remove(int, int, java.lang.String) return java.lang.String';
9-26 Oracle9i Database Globalization Support Guide

A Multilingual Demo Application in SQLJ
CREATE FUNCTION ADDBOOK (NAME VARCHAR2, AUTHOR VARCHAR2,
 LOCATION VARCHAR2, PRICE NUMBER, QUANTITY NUMBER, PUBLISH_DATE DATE)
 RETURN VARCHAR2
 AS LANGUAGE JAVA NAME
 'Book.add(java.lang.String, java.lang.String, java.lang.String,
 double, int, java.sql.Date) return java.lang.String';

Note that the Java string returned is first converted to a VARCHAR2 string, which is

encoded in the database character set, before they are passed back to the client. If

the database character set is not AL32UTF8 or UTF8, then any Unicode characters in

the Java strings that cannot be represented in the database character set will be

replaced by a replacement character. Similarly, the VARCHAR2 strings, which are

encoded in the database character set, are converted to Java strings before being

passed to the Java methods.

The SQLJ Client for the Multilingual Demo Application
The SQLJ client is a GUI Java application using either a JDBC Thin or JDBC OCI

driver. It connects the client to a database, displays a list of books given a searching

criterion, removes selected books from the inventory, and adds new books to the

inventory. A class called BookDB is created to accomplish these tasks. It is defined

in the following code.

A BookDB object is created when the sample program starts up with the user name,

password, and the location of the database. The methods are called from the GUI

portion of the applications. The removeBook() and addBook() methods call the

corresponding Java stored functions in the database and return the status of the

transaction. The methods searchByName() and searchByAuthor() list books

by name and author respectively, and store the results in the books iterator inside

the BookDB object. (The BookRecs class is generated by SQLJ.) The GUI code in

turn calls the getNextBook() function to retrieve the list of books from the

iterator object until a NULL is returned. The getNextBook() function simply

fetches the next row from the iterator.

package sqlj.bookstore;

import java.sql.*;
import sqlj.bookstore.BookDescription;
import sqlj.runtime.ref.DefaultContext;
import java.util.Locale;
/*The iterator used for a book description when communicating with the server*/
#sql iterator BooksRecs(int ID, String NAME, String AUTHOR, Date PUBLISH_DATE,
 String LOCATION, int QUANTITY, double PRICE);
Java Programming in a Global Environment 9-27

A Multilingual Demo Application in SQLJ
/*This is the class used for connection to the server.*/
class BookDB
{
 static public final String DRIVER = "oracle.jdbc.driver.OracleDriver";
 static public final String URL_PREFIX = "jdbc:oracle:thin:@";
 private DefaultContext m_ctx = null;
 private String msg;
 private BooksRecs books;
 /*Constructor - registers the driver*/
 BookDb()
 {
 try
 {
 DriverManager.registerDriver
 ((Driver) (Class.forName(DRIVER).newInstance()));
 }
 catch (Exception e)
 {
 System.exit(1);
 }
 }
 /*Connect to the database.*/
 DefaultContext connect(String id, String pwd, String userUrl) throws
 SQLException
 {
 String url = new String(URL_PREFIX);
 url = url.concat(userUrl);
 Connection conn = null;
 if (m_ctx != null) return m_ctx;
 try
 {
 conn = DriverManager.getConnection(url, id, pwd);
 }
 catch (SQLException e)
 {
 throw(e);
 }
 if (m_ctx == null)
 {
 try
 {
 m_ctx = new DefaultContext(conn);
 }
 catch (SQLException e)
 {
9-28 Oracle9i Database Globalization Support Guide

A Multilingual Demo Application in SQLJ
 throw(e);
 }
 }
 return m_ctx;
 }
 /*Add a new book to the database.*/
 public String addBook(BookDescription book)
 {
 String name = book.getTitle();
 String author = book.getAuthor();
 String date = book.getPublishDateString();
 String location = book.getLocation();
 int quantity = book.getQuantity();
 double price = book.getPrice();
 try
 {
 #sql [m_ctx] msg = {VALUE (ADDBOOK (:name, :author, :location,
 :price, :quantity, :date))};
 #sql [m_ctx] {COMMIT};
 }
 catch (SQLException e)
 {
 return (e.getMessage());
 }
 return msg;
 }
 /*Remove a book.*/
 public String removeBook(int id, int quantity, String location)
 {
 try
 {
 #sql [m_ctx] msg = {VALUE (REMOVEBOOK (:id, :quantity,
 :location))};
 #sql [m_ctx] {COMMIT};
 }
 catch (SQLException e)
 {
 return (e.getMessage());
 }
 return msg;
 }
 /*Search books by the given author.*/
 public void searchByAuthor(String author)
 {
 String key = "%" + author + "%";
Java Programming in a Global Environment 9-29

A Multilingual Demo Application in SQLJ
 books = null;
 System.gc();
 try
 {
 #sql [m_ctx] books = { SELECT BOOK.ID, NAME, AUTHOR, PUBLISH_DATE,
 LOCATION, QUANTITY, PRICE
 FROM BOOK, INVENTORY WHERE BOOK.ID = INVENTORY.ID AND AUTHOR LIKE
 :key ORDER BY BOOK.ID};
 }
 catch (SQLException e) {}
 }
 /*Search books with the given title.*/
 public void searchByTitle(String title)
 {
 String key = "%" + title + "%";
 books = null;
 System.gc();
 try
 {
 #sql [m_ctx] books = { SELECT BOOK.ID, NAME, AUTHOR, PUBLISH_DATE,
 LOCATION, QUANTITY, PRICE
 FROM BOOK, INVENTORY WHERE BOOK.ID = INVENTORY.ID AND NAME LIKE
 :key ORDER BY BOOK.ID};
 }
 catch (SQLException e) {}
 }
 /*Returns the next BookDescription from the last search, null if at the
 end of the result list.*/
 public BookDescription getNextBook()
 {
 BookDescription book = null;
 try
 {
 if (books.next())
 {

book = new BookDescription(books.ID(), books.AUTHOR(), books.NAME(),
 books.PUBLISH_DATE(), books.PRICE(),
 books.LOCATION(), books.QUANTITY());
 }
 }
 catch (SQLException e) {}
 return book;
 }
}

9-30 Oracle9i Database Globalization Support Guide

Character Set M
10

Character Set Migration

This chapter discusses character set conversion and character set migration. It

includes the following topics:

■ Overview of Character Set Migration

■ Changing the Database Character Set of an Existing Database

■ Migrating to the Oracle9i NCHAR Datatypes

■ Tasks to Recover Database Schema After Character Set Migration
igration 10-1

Overview of Character Set Migration
Overview of Character Set Migration
Choosing the appropriate character set for your database is an important decision.

When you choose the database character set, consider the following factors:

■ The type of data you need to store

■ The languages that the database needs to accommodate now and in the future

■ The different size requirements of each character set and the corresponding

performance implications

A related topic is choosing a new character set for an existing database. Changing

the database character set for an existing database is called character set migration.

Migrating from one database character set to another involves additional

considerations beyond choosing a character set for a new database. Plan character

set migration to minimize data loss from:

■ Data Truncation

■ Character Set Conversion Issues

Data Truncation
When the database is created using byte semantics, the sizes of the CHAR and

VARCHAR2 datatypes are specified in bytes, not characters. For example, the

specification CHAR(20) in a table definition allows 20 bytes for storing character

data. This is acceptable when the database character set uses a single-byte character

encoding scheme because the number of characters is equivalent to the number of

bytes. If the database character set uses a multibyte character encoding scheme,

then the number of bytes no longer equals the number of characters because a

character can consist of one or more bytes.

During migration to a new character set, it is important to verify the column widths

of existing CHAR and VARCHAR2 columns because they might need to be extended

to support an encoding that requires multibyte storage. Truncation of data can

occur if conversion causes expansion of data.

Figure 10–1 shows an example of data expansion when single-byte characters

become multibyte. For example, ä (a with an umlaut) is a single-byte character in

WE8MSWIN1252, but it becomes a two-byte character in UTF8. Also, the Euro

symbol expands from one byte to three bytes.

See Also: Chapter 2, "Choosing a Character Set"
10-2 Oracle9i Database Globalization Support Guide

Overview of Character Set Migration
Figure 10–1 Single-Byte and Multibyte Encoding

The maximum number of bytes for CHAR and VARCHAR2 datatypes is 2000 and

4000, respectively. If the data in the new character set requires columns that are

wider than 2000 and 4000 bytes for CHAR and VARCHAR2 datatypes, then you need

to change your schema.

Additional Problems Caused by Data Truncation
Data truncation can cause the following problems:

■ In the database data dictionary, schema object names cannot exceed 30 bytes in

length. Schema objects are tables, clusters, views, indexes, synonyms,

tablespaces, and usernames. You must rename schema objects if their names

exceed 30 bytes in the new database character set. For example, one Thai

character in the Thai national character set requires 1 byte. In UTF8, it requires 3

bytes. If you have defined a table whose name is 11 Thai characters, then the

table name must be shortened to 10 or fewer Thai characters when you change

the database character set to UTF8.

■ If existing Oracle usernames or passwords are created based on characters that

will change in size in the new character set, users will experience login

difficulties due to authentication failures after the migration to a new character

set. This is because the encrypted usernames and passwords stored in the data

dictionary are not updated during migration to a new character set. For

example, if the current database character set is WE8MSWIN1252 and the new

database character set is UTF8, then the length of the username scött (o with

an umlaut) will change from 5 bytes to 6 bytes. In UTF8, scött will no longer

be able to log in because of the difference in the username. Oracle Corporation

recommends that usernames and passwords be based on ASCII characters. If

See Also: "Length Semantics" on page 2-12

E4
F6
A9
80

C3 A4
C3 B6
C2 A9
E2 82 AC

ä
ö
©

Character WE8MSWIN1252 UTF8
Character Set Migration 10-3

Overview of Character Set Migration
they are not, you must reset the affected usernames and passwords after

migrating to a new character set.

■ When CHAR data contains characters that will be expanded after migration to a

new character set, space padding will not be removed during database export

by default. This means that these rows will be rejected upon import into the

database with the new character set. The workaround is to set the BLANK_
TRIMMING initialization parameter to TRUE before importing the CHAR data.

Character Set Conversion Issues
This section includes the following topics:

■ Replacement Characters that Result from Using the Export and Import Utilities

■ Invalid Data That Results from Setting the Client’s NLS_LANG Parameter

Incorrectly

Replacement Characters that Result from Using the Export and Import Utilities
The Export and Import utilities can convert character sets from the original

database character set to the new database character set. However, character set

conversions can sometimes cause data loss or data corruption. For example, if you

are migrating from character set A to character set B, the destination character set B

should be a superset of character set A. The destination character, B, is a superset if
it contains all the characters defined in character set A. Characters that are not

available in character set B are converted to replacement characters, which are often

specified as ? or ¿ or a character that is related to the unavailable character. For

example, ä (a with an umlaut) can be replaced by a. Replacement characters are

defined by the target character set.

Figure 10–2 shows an example of a character set conversion in which the copyright

and Euro symbols are converted to ? and ä is converted to a.

See Also: Oracle9i Database Reference for more information about

the BLANK_TRIMMING initialization parameter
10-4 Oracle9i Database Globalization Support Guide

Overview of Character Set Migration
Figure 10–2 Replacement Characters in Character Set Conversion

To reduce the risk of losing data, choose a destination character set with a similar

character repertoire. Migrating to Unicode can be an attractive option because UTF8

contains characters from most legacy character sets.

Invalid Data That Results from Setting the Client’s NLS_LANG Parameter
Incorrectly
Another character set migration scenario that can cause the loss of data is migrating

a database that contains invalid data. Invalid data usually occurs in a database

because the NLS_LANG parameter is not set properly on the client. The NLS_LANG
value should reflect the client operating system code page. For example, in an

English Windows environment, the code page is WE8MSWIN1252. When the NLS_
LANG parameter is set properly, the database can automatically convert incoming

data from the client operating system. When the NLS_LANG parameter is not set

properly, then the data coming into the database is not converted properly. For

example, suppose that the database character set is UTF8, the client is an English

Windows operating system, and the NLS_LANG setting on the client is UTF8. Data

coming into the database is encoded in WE8MSWIN1252 and is not converted to

UTF8 data because the NLS_LANG setting on the client matches the database

character set. Thus Oracle assumes that no conversion is necessary, and invalid data

is entered into the database.

This can lead to two possible data inconsistency problems. One problem occurs

when a database contains data from a character set that is different from the

database character set but the same code points exist in both character sets. For

example, if the database character set is WE8ISO8859P1 and the NLS_LANG setting

of the Chinese Windows NT client is SIMPLIFIED CHINESE_

Character Set
A

a
b
c
?

Character Set
B

Character Set Migration 10-5

Overview of Character Set Migration
CHINA.WE8ISO8859P1, then all multibyte Chinese data (from the ZHS16GBK

character set) is stored as multiples of single-byte WE8ISO8859P1 data. This means

that Oracle will treat these characters as single-byte WE8ISO8859P1 characters.

Hence all SQL string manipulation functions such as SUBSTR or LENGTH will be

based on bytes rather than characters. All bytes constituting ZHS16GBK data are

legal WE8ISO8859P1 codes. If such a database is migrated to another character set,

for example, UTF8, character codes will be converted as if they were in

WE8ISO8859P1. This way, each of the two bytes of a ZHS16GBK character will be

converted separately, yielding meaningless values in UTF8. Figure 10–3 shows an

example of this incorrect character set replacement.

Figure 10–3 Incorrect Character Set Replacement

The second possible problem is having data from mixed character sets inside the

database. For example, if the data character set is WE8MSWIN1252, and two

separate Windows clients using German and Greek are both using the NLS_LANG
character set setting as WE8MSWIN1252, then the database will contain a mixture

of German and Greek characters. Figure 10–4 shows how different clients can use

different character sets in the same database.

Simplified Chinese
Windows NT

(WE8ISO8859P1)

Database Server
(WE8ISO8859P1)

0xB1 0xED OxB1ED
10-6 Oracle9i Database Globalization Support Guide

Changing the Database Character Set of an Existing Database
Figure 10–4 Mixed Character Sets

For database character set migration to be successful, both of these cases require

manual intervention because Oracle cannot determine the character sets of the data

being stored.

Changing the Database Character Set of an Existing Database
Database character set migration has two stages: data scanning and data

conversion. Before you change the database character set, you need to identify

possible database character set conversion problems and truncation of data. This

step is called data scanning.

Data scanning identifies the amount of effort required to migrate data into the new

character encoding scheme before changing the database character set. Some

examples of what may be found during a data scan are the number of schema

objects where the column widths need to be expanded and the extent of the data

that does not exist in the target character repertoire. This information helps to

determine the best approach for converting the database character set.

Greek Windows

Database Server
(WE8MSWIN1252)

0xE4 0xF6

 = 0xE4

 = 0xF6

German Windows

 = 0xE4

 = 0xF6
Character Set Migration 10-7

Changing the Database Character Set of an Existing Database
There are three approaches to converting data from one database character set to

another if the database does not contain any of the inconsistencies described in

"Character Set Conversion Issues" on page 10-4. A description of methods to

migrate databases with such inconsistencies is out of the scope of this

documentation. For more information, contact Oracle Consulting Services for

assistance.

The approaches are:

■ Migrating Character Data Using a Full Export and Import

■ Migrating Character Data Using the ALTER DATABASE CHARACTER SET

Statement

■ Migrating Character Data Using the ALTER DATABASE CHARACTER SET

Statement and Selective Imports

Migrating Character Data Using a Full Export and Import
In most cases, a full export and import is recommended to properly convert all data

to a new character set. It is important to be aware of data truncation issues, because

columns with character datatypes may need to be extended before the import to

handle an increase in size. Existing PL/SQL code should be reviewed to ensure that

all byte-based SQL functions such as LENGTHB, SUBSTRB, and INSTRB, and

PL/SQL CHAR and VARCHAR2 declarations are still valid.

Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement
The ALTER DATABASE CHARACTER SET statement is the fastest way to migrate a

character set, but it can be used only under special circumstances. The ALTER
DATABASE CHARACTER SETstatement does not perform any data conversion, so it

can be used if and only if the new character set is a strict superset of the current

character set.

The new character set is a strict superset of the current character set if:

■ Each and every character in the current character set is available in the new

character set.

See Also: Chapter 11, "Character Set Scanner" for more

information about data scanning

See Also: Oracle9i Database Utilities for more information about

the Export and Import utilities
10-8 Oracle9i Database Globalization Support Guide

Changing the Database Character Set of an Existing Database
■ Each and every character in the current character set has the same code point

value in the new character set. For example, US7ASCII is a strict subset of many

character sets.

Another restriction of the ALTER DATABASE CHARACTER SET statement is that it

can be used only when the character set migration is between two single-byte

character sets or between two multibyte character sets. If the planned character set

migration is from a single-byte character set to a multibyte character set, then use

the Export and Import utilities.

This restriction on using the ALTER DATABASE CHARACTER SET statement arises

because of CLOB data. In Oracle9i, some internal fields in the data dictionary are

stored in CLOB columns. Customers may also store data in CLOB fields. When the

database character set is multibyte, CLOB data in Oracle9i is stored as UCS-2 data

(two-byte, fixed-width Unicode). When the database character set is single-byte,

CLOBdata is stored using the database character set. Because the ALTER DATABASE
CHARACTER SET statement does not convert data, CLOB columns remain in the

original database character set encoding when the database character set is

migrated from single-byte to multibyte. This introduces data inconsistency in the

CLOB columns.

The syntax of the ALTER DATABASE CHARACTER SET statement is as follows:

ALTER DATABASE [db_name] CHARACTER SET new_character_set ;

db_name is optional. The character set name should be specified without quotes.

For example:

ALTER DATABASE CHARACTER SET AL32UTF8;

To change the database character set, perform the following steps:

1. Shut down the database, using either a SHUTDOWN IMMEDIATEor a SHUTDOWN
NORMAL statement.

2. Do a full backup of the database because the ALTER DATABASE CHARACTER
SET statement cannot be rolled back.

3. Complete the following statements:

STARTUP MOUNT;
ALTER SYSTEM ENABLE RESTRICTED SESSION;
ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;
ALTER SYSTEM SET AQ_TM_PROCESSES=0;
ALTER DATABASE OPEN;
ALTER DATABASE CHARACTER SETnew_character_set ;
Character Set Migration 10-9

Changing the Database Character Set of an Existing Database
SHUTDOWN IMMEDIATE; -- or SHUTDOWN NORMAL;
STARTUP;

Using the ALTER DATABASE CHARACTER SET Statement in an Oracle9 i Real
Application Clusters Environment
In a Oracle9i Real Application Clusters environment, ensure that no other Oracle

background processes are running, with the exception of the background processes

associated with the instance through which a user is connected, before attempting

to issue the ALTER DATABASE CHARACTER SET statement. Use the following SQL

statement to verify the environment:

SELECT SID, SERIAL#, PROGRAM FROM V$SESSION;

Set the CLUSTER_DATABASE initialization parameter to FALSE to allow the

character set change to be completed. This is required in an Oracle9i Real

Application Cluster environment; an exclusive startup is not sufficient.

Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement
and Selective Imports

Another approach to migrating character data is to perform an ALTER DATABASE
CHARACTER SET statement followed by selective imports. This method is best

suited for a known distribution of convertible data that is stored within a small

number of tables. A full export and import is too expensive in this scenario. For

example, suppose you have a 100GB database with over 300 tables, but only 3 tables

require character set conversions. The rest of the data is of the same encoding as the

destination character set. The 3 tables can be exported and imported back to the

new database after issuing the ALTER DATABASE CHARACTER SET statement.

Incorrect data conversion can lead to data corruption, so perform a full backup of

the database before attempting to migrate the data to a new character set.

See Also:

■ Oracle9i SQL Reference for more information about the ALTER
DATABASE CHARACTER SET statement

■ Appendix A, "Locale Data" for a list of all superset character

sets
10-10 Oracle9i Database Globalization Support Guide

Migrating to the Oracle9i NCHAR Datatypes
Migrating to the Oracle9 i NCHAR Datatypes
In Oracle9i, data that is stored in columns of the NCHAR datatypes is stored

exclusively in a Unicode encoding regardless of the database character set. This

allows users to store Unicode in a database that does not use Unicode as the

database character set.

This section includes the following topics:

■ Migrating Oracle8 NCHAR Columns to Oracle9i

■ Changing the National Character Set

■ Migrating CHAR Columns to NCHAR Columns in an Oracle9i Database

Migrating Oracle8 NCHAR Columns to Oracle9 i
In release 8.0, the Oracle Server introduced a national character datatype (NCHAR)
that allows a second, alternate character set in addition to the database character

set. The NCHAR datatypes support several fixed-width Asian character sets that

were introduced to provide better performance when processing Asian character

data.

In Oracle9i, the SQL NCHARdatatypes are limited to Unicode character set encoding

(UTF8 and AL16UTF16). Any other Oracle8 Server character sets that were

available for the NCHAR datatype, including Asian character sets such as

JA16SJISFIXED are no longer supported.

The steps for migrating existing NCHAR, NVARCHAR2, and NCLOB columns to

Oracle9i NCHAR datatypes are as follows:

1. Export all NCHAR columns from the Oracle8 or Oracle8i database.

2. Drop the NCHAR columns.

3. Upgrade database to Oracle9i.

4. Import the NCHAR columns into Oracle9i.

The Oracle9i migration utility can also convert Oracle8 and Oracle8i NCHAR
columns to 9i NCHAR columns. A SQL NCHAR upgrade script called utlchar.sql
is supplied with the migration utility. Run it at the end of the database migration to

convert Oracle8 and Oracle8i NCHAR columns to the Oracle9i NCHAR columns. After

the script has been executed, the data cannot be downgraded. The only way to

move back to Oracle8 or Oracle8i is to drop all NCHAR columns, downgrade the

database, and import the old NCHAR data from a previous Oracle8 or Oracle8i
Character Set Migration 10-11

Migrating to the Oracle9i NCHAR Datatypes
export file. Ensure that you have a backup (export file) of Oracle8 or Oracle8i NCHAR
data, in case you need to downgrade your database in the future.

Changing the National Character Set
To change the national character set, use the ALTER DATABASE NATIONAL
CHARACTER SET statement. The syntax of the statement is as follows:

ALTER DATABASE [db_name] NATIONAL CHARACTER SET new_NCHAR_character_set ;

db_name is optional. The character set name should be specified without quotes.

You can issue the ALTER DATABASE CHARACTER SET and ALTER DATABASE
NATIONAL CHARACTER SET statements together if desired.

Migrating CHAR Columns to NCHAR Columns in an Oracle9 i Database
You can change a column’s datatype definition using the following methods:

■ The ALTER TABLE MODIFY statement

■ Online table redefinition

The ALTER TABLE MODIFY statement has the following advantages over online

table redefinition:

■ Easier to use

■ Fewer restrictions

Online table redefinition has the following advantages over the ALTER TABLE
MODIFY statement:

■ Faster for columns with a large amount of data

■ Can migrate several columns at one time

■ Table is available for DML during most of the migration process

See Also:

■ Oracle9i Database Utilities for a description of export and import

procedures

■ Oracle9i Database Migration for NCHAR migration information

See Also: Oracle9i SQL Reference for the syntax of the ALTER
DATABASE NATIONAL CHARACTER SET statement
10-12 Oracle9i Database Globalization Support Guide

Migrating to the Oracle9i NCHAR Datatypes
■ Avoids table fragmentation, which saves space and allows faster access to data.

■ Can be used for migration from the CLOB datatype to the NCLOB datatype

This section contains the following topics:

■ Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to

NCHAR Columns

■ Using Online Table Redefinition to Migrate a Large Table to Unicode

Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to
NCHAR Columns
The ALTER TABLE MODIFY statement can be used to change table column

definitions from the CHAR datatypes to NCHAR datatypes. It also converts all of the

data in the column from the database character set to the NCHAR character set. The

syntax of the ALTER TABLE MODIFY statement is as follows:

ALTER TABLE table_name MODIFY (column_name datatype);

If indexes have been built on the migrating column, then dropping the indexes can

improve the performance of the ALTER TABLE MODIFYstatement because indexes

are updated when each row is updated.

The maximum column lengths for NCHAR and NVARCHAR2 columns are 2000 and

4000 bytes. When the NCHAR character set is AL16UTF16, the maximum column

lengths for NCHAR and NVARCHAR2 columns are 1000 and 2000 characters, which

are 2000 and 4000 bytes. If this size limit is violated during migration, consider

changing the column to the NCLOB datatype instead.

Using Online Table Redefinition to Migrate a Large Table to Unicode
It takes significant time to migrate a large table with a large number of rows to

Unicode datatypes. During the migration, the column data is unavailable for both

reading and updating. Online table redefinition can significantly reduce migration

Note: CLOB columns cannot be migrated to NCLOB columns using

the ALTER TABLE MODIFY statement. Use online table

redefinition to change a column from the CLOB datatype to the

NCLOB datatype.

See Also: "Using Online Table Redefinition to Migrate a Large

Table to Unicode" on page 10-13
Character Set Migration 10-13

Migrating to the Oracle9i NCHAR Datatypes
time. Using online table redefinition also allows the table to be accessible to DML

during most of the migration time.

Perform the following tasks to migrate a table to Unicode datatypes using online

table redefinition:

1. Use the DBMS_REDEFINITION.CAN_REDEF_TABLE PL/SQL procedure to

verify that the table can be redefined online. For example, to migrate the

scott.emp table, enter the following command:

DBMS_REDEFINITION.CAN_REDEF_TABLE(’scott’,’emp’);

2. Create an empty interim table in the same schema as the table that is to be

redefined. Create it with NCHAR datatypes as the attributes. For example,

enter a statement similar to the following:

CREATE TABLE int_emp(
empno NUMBER(4),
ename NVARCHAR2(10),
job NVARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
deptno NUMBER(2),
org NVARCHAR2(10));

3. Start the online table redefinition. Enter a command similar to the following:

DBMS_REDEFINITION.START_REDEF_TABLE(’scott’,
’emp’,
’int_emp’,
’empno empno,
to_nchar(ename) ename,
to_nchar(job) job,
mgr mgr,
hiredate hiredate,
sal sal,
deptno deptno,
to_nchar(org) org’);

If you are migrating CLOB columns to NCLOB columns, then use the TO_NCLOB
SQL conversion function instead of the TO_NCHAR SQL function.

4. Create triggers, indexes, grants, and constraints on the interim table. Referential

constraints that apply to the interim table (the interim table is a parent or child

table of the referential constraint) must be created in DISABLED mode. Triggers
10-14 Oracle9i Database Globalization Support Guide

Migrating to the Oracle9i NCHAR Datatypes
that are defined on the interim table are not executed until the online table

redefinition process has been completed.

5. You can synchronize the interim table with the original table. If many DML

operations have been applied to the original table since the online redefinition

began, then execute the DBMS_REDEFINITION.SYNC_INTERIM_TABLE
procedure. This reduces the time required for the DBMS_
REDEFINITION.FINISH_REDEF_TABLE procedure. Enter a command similar

to the following:

DBMS_REDEFINITION.SYNC_INTERIM_TABLE(’scott’, ’emp’, ’int_emp’);

6. Execute the DBMS_REDEFINITION.FINISH_REDEF_TABLEprocedure. Enter a

command similar to the following:

DBMS_REDEFINITION.RINISH_REDEF_TABLE(’scott’, ’emp’, ’int_emp’);

When this procedure has been completed, the following conditions are true:

■ The original table is redefined so that it has all the attributes, indexes,

constraints, grants, and triggers of the interim table.

■ The referential constraints that apply to the interim table apply to the

redefined original table.

7. Drop the interim table. Enter a statement similar to the following:

DROP TABLE int_emp;

The results of the online table redefinition tasks are as follows:

■ The original table is migrated to Unicode columns.

■ The triggers, grants, indexes, and constraints defined on the interim table after

the START_REDEF_TABLEsubprogram and before the FINISH_REDEF_TABLE
subprogram are defined for the redefined original table. Referential constraints

that apply to the interim table now apply to the redefined original table and are

enabled.

■ The triggers, grants, indexes, and constraints defined on the original table

before redefinition are transferred to the interim table and are dropped when

you drop the interim table. Referential constraints that applied to the original

table before redefinition were applied to the interim table and are now disabled.

■ PL/SQL procedures and cursors that were defined on the original table before

redefinition are invalidated. They are automatically revalidated the next time

they are used. Revalidation may fail because the table definition has changed.
Character Set Migration 10-15

Tasks to Recover Database Schema After Character Set Migration
Tasks to Recover Database Schema After Character Set Migration
You may need to perform additional tasks to recover a migrated database schema to

its original state. Consider the issues described in Table 10–1.

See Also: Oracle9i Database Administrator’s Guide for more

information about online table redefinition

Table 10–1 Issues During Recovery of a Migrated Database Schema

Issue Description

Indexes When table columns are changed from CHAR datatypes to
NCHAR datatypes by the ALTER TABLE MODIFY statement,
indexes that are built on the columns are changed
automatically by the database. This slows down performance
for the ALTER TABLE MODIFY statement. If you drop indexes
before issuing the ALTER TABLE MODIFY statement, then
re-create them after migration.

Constraints If you disable constraints before migration, then re-enable
them after migration.

Triggers If you disable triggers before migration, then re-enable them
after migration.

Replication If the columns that are migrated to Unicode datatypes are
replicated across several sites, then the changes should be
executed at the master definition site. Then they will be
propagated to the other sites.

Binary order The migration from CHAR datatypes to NCHAR datatypes
involves character set conversion if the database and NCHAR
data have different character sets. The binary order of the same
data in different encodings can be different. This affects
applications that rely on binary order.
10-16 Oracle9i Database Globalization Support Guide

Character Set S
11

Character Set Scanner

This chapter introduces the Character Set Scanner, a globalization support utility for

checking data before migrating character sets. The topics in this chapter include:

■ What is the Character Set Scanner?

■ Scan Modes in the Character Set Scanner

■ Using The Character Set Scanner

■ Character Set Scanner Parameters

■ Examples: Character Set Scanner Sessions

■ Character Set Scanner Reports

■ Storage and Performance Considerations in the Character Set Scanner

■ Character Set Scanner Views and Messages
canner 11-1

What is the Character Set Scanner?
What is the Character Set Scanner?
The Character Set Scanner provides an assessment of the feasibility and potential

issues in migrating an Oracle database to a new database character set. The

Character Set Scanner checks all character data in the database and tests for the

effects and problems of changing the character set encoding. At the end of the scan,

it generates a summary report of the database scan. This report shows the scope

work required to convert the database to a new character set.

Based on the information in the summary report, you can decide on the most

appropriate method to migrate the database's character set. The methods are:

■ Export and Import utilities

■ ALTER DATABASE CHARACTER SET statement

■ ALTER DATABASE CHARACTER SET statement with selective Export and Import

Conversion Tests on Character Data
The Character Set Scanner reads the character data and tests for the following

conditions on each data cell:

■ Do character code points of the data cells change when converted to the new

character set?

■ Can the data cells be successfully converted to the new character set?

■ Will the post-conversion data fit into the current column size?

The Character Set Scanner reads and tests for data in CHAR, VARCHAR2, LONG,
CLOB, NCHAR, NVARCHAR2, and NCLOB columns only. The Character Set Scanner

Note: If there are conversion exceptions reported by the Character

Set Scanner, these problems must be fixed first before using any of

the described methods to do the conversions. This may involve

modifying the problem data to eliminate those exceptions. In

extreme cases, both database and application might need to be

modified. Oracle Corporation recommends you contact Oracle

Consulting Services for services on database character set

migration.

See Also: "Changing the Database Character Set of an Existing

Database" on page 10-7
11-2 Oracle9i Database Globalization Support Guide

What is the Character Set Scanner?
does not perform post-conversion column size testing for LONG, CLOB, and NCLOB
columns.

Access Privileges
To use the Character Set Scanner, you must have DBA privileges on the Oracle

database.

Restrictions
All the character-based data in CHAR, VARCHAR2, LONG, and CLOBcolumns is stored

in the database character set, which is specified with the CREATE DATABASE
statement when the database was first created. However, in some configurations, it

is possible to store data in a different character set from the database character set

either intentionally or unintentionally. This happens most often when the NLS_
LANG character set is the same as the database character set, because in such cases

Oracle sends and receives data as is, without any conversion or validation. But it

can also happen if one of the two character sets is a superset of the other, in which

case many of the code points appear as if they were not converted. For example, if

NLS_LANG is set to WE8ISO8859P1 and the database character set is

WE8MSWIN1252, all code points except the range 128-159 are preserved through

the client/server conversion.

Although a database that contains data not in its database character set cannot be

converted to another character set by the three methods listed in "What is the

Character Set Scanner?" on page 11-2, you can still use the Character Set Scanner to

test the effect of the conversion that would take place if the data were in the

database character set.

The encoding for different character sets can use the same code point for different

characters.There is no automatic method to detect what the intended character is.

Most European character sets share liberal use of the 8-bit range to encode native

characters, so it is very possible for a cell to be reported as convertible but for the

wrong reasons.

For example, this can occur when the Character Set Scanner is used with the

FROMCHAR parameter set to WE8MSWIN1252. This single-byte character set

encodes a character in every available code point so that no matter what data is

being scanned, the scanner always identifies a data cell as being available in the

source character set.
Character Set Scanner 11-3

Scan Modes in the Character Set Scanner
When you set FROMCHAR, you are assuming that all character data is in that

character set but that the Character Set Scanner is not able to accurately determine

the validity. Set the FROMCHAR parameter carefully.

The Character Set Scanner does not support the scanning of the VARRAY collection

type.

Database Containing Data From Two or More Character Sets
If a database contains data from more than one character set, the Character Set

Scanner cannot accurately test the effects of changing the database character set on

the database because it cannot differentiate character sets easily. If the data can be

divided into two separate tables, one for each character set, then the Character Set

Scanner can perform two single table scans to verify the validity of the data.

For each scan, a different value of the FROMCHAR parameter can be used to tell the

Character Set Scanner to treat all target columns in the table as if they were in the

specified character set.

Database Containing Data Not From the Database Character Set
If a database contains data not in the database character set, but still in only one

character set, the Character Set Scanner can perform a full database scan. Use the

FROMCHARparameter to tell the Character Set Scanner what character set the data is

in.

Scan Modes in the Character Set Scanner
The Character Set Scanner provides three modes of database scan:

■ Full Database Scan

■ User Scan

■ Table Scan

Full Database Scan
The Character Set Scanner reads and verifies the character data of all tables

belonging to all users in the database including the data dictionary (SYS user), and

it reports on the effects of the simulated migration to the new database character

set. It scans all schema objects including stored packages, procedures and functions,

and object names.
11-4 Oracle9i Database Globalization Support Guide

Using The Character Set Scanner
To understand the feasibility of migration to a new database character set, you need

to perform a full database scan.

User Scan
The Character Set Scanner reads and verifies character data of all tables belonging

to the specified user and reports on the effects on the tables of changing the

character set.

The Character Set Scanner does not test for table definitions such as table names

and column names. To see the effects on the schema definitions, you need to

perform a full database scan.

Table Scan
The Character Set Scanner reads and verifies the character data of the specified

table, and reports the effects on the table of changing the character set.

The Character Set Scanner does not test for table definitions such as table name and

column name. To see the effects on the schema definitions, you need to perform a

full database scan.

Using The Character Set Scanner
This section describes how to use the Character Set Scanner, including the steps you

need to perform before scanning and the procedures on how to invoke the

Character Set Scanner. The topics discussed are:

■ Before Using the Character Set Scanner

■ Character Set Scanner Compatibility

■ Invoking the Character Set Scanner

■ Getting Online Help for the Character Set Scanner

■ The Parameter File

Before Using the Character Set Scanner
To use the Character Set Scanner, you must run the csminst.sql script on the

database that you plan to scan. The csminst.sql script needs to be run only once.

The script performs the following tasks to prepare the database for scanning:

■ Creates a user named CSMIG
Character Set Scanner 11-5

Using The Character Set Scanner
■ Assigns the necessary privileges to CSMIG

■ Assigns the default tablespace to CSMIG

■ Connects as CSMIG

■ Creates the Character Set Scanner system tables under CSMIG

The SYSTEM tablespace is assigned to CSMIG by default, so you need to ensure

there is sufficient storage space available in the SYSTEM tablespace before scanning

the database. The amount of space required depends on the type of scan and the

nature of the data in the database.

You can modify the default tablespace for CSMIG by editing the csminst.sql
script. Modify the following statement in csminst.sql to assign your preferred

tablespace to CSMIG as follows:

ALTER USER csmig DEFAULT TABLESPACE tablespace_name ;

Then run csminst.sql using these commands and SQL statements:

% cd $ORACLE_HOME/rdbms/admin
% sqlplus "system/manager as sysdba"
SQL> START csminst.sql

Character Set Scanner Compatibility
The Character Set Scanner is certified with Oracle databases on any platforms

running under the same release except that you cannot mix ASCII-based and

EBCDIC-based platforms. For example, the Oracle9i release 2 (9.2) versions of the

Character Set Scanner on any ASCII-based client platforms are certified to run with

any Oracle9i release 2 (9.2) databases on any ASCII-based platforms, while

EBCDIC-based clients are certified to run with any Oracle9i database on EBCDIC

platforms.

Oracle Corporation recommends that you run the Character Set Scanner in the same

Oracle home as the database when possible.

Invoking the Character Set Scanner
You can invoke the Character Set Scanner by one of these methods:

■ Using the parameter file

See Also: "Storage and Performance Considerations in the

Character Set Scanner" on page 11-29
11-6 Oracle9i Database Globalization Support Guide

Using The Character Set Scanner
csscan system/manager PARFILE= filename

PARFILE is a file containing the Character Set Scanner parameters you typically

use.

■ Using the command line

csscan system/manager full=y tochar=utf8 array=10240 process=3

■ Using an interactive session

csscan system/manager

In an interactive session, the Character Set Scanner prompts you for the

following parameters:

FULL/TABLE/USER
TOCHAR
ARRAY
PROCESS

If you want to specify parameters that are not listed, you need to invoke the

Character Set Scanner using either the parameter file or the command line.

Getting Online Help for the Character Set Scanner
The Character Set Scanner provides online help. Enter csscan help=y on the

command line to invoke the help screen.

You can let the Character Set Scanner prompt you for parameters by entering the

CSSCAN command followed by your username and password. For example:

CSSCAN SYSTEM/MANAGER

Alternatively, you can control how the Character Set Scanner runs by entering the

CSSCAN command followed by various parameters. To specify parameters, use

keywords. For example:

CSSCAN SYSTEM/MANAGER FULL=y TOCHAR=utf8 ARRAY=102400 PROCESS=3

The following is a list of keywords for the Character Set Scanner:

Keyword Default Prompt Description
---------- ------- ------ ---
USERID yes username/password
Character Set Scanner 11-7

Using The Character Set Scanner
FULL N yes scan entire database
USER yes user name of the table to scan
TABLE yes list of tables to scan
EXCLUDE list of tables to exclude from scan
TOCHAR yes new database character set name
FROMCHAR current database character set name
TONCHAR new NCHAR character set name
FROMNCHAR current NCHAR character set name
ARRAY 10240 yes size of array fetch buffer
PROCESS 1 yes number of scan process
MAXBLOCKS split table if larger than MAXBLOCKS
CAPTURE N capture convertible data
SUPPRESS suppress error log by N per table
FEEDBACK feedback progress every N rows
BOUNDARIES list of column size boundaries for summary report
LASTRPT N generate report of the previous database scan
LOG scan base name of log files
PARFILE parameter file name
PRESERVE N preserve existing scan results
HELP N show help screen

The Parameter File
The parameter file enables you to specify Character Set Scanner parameters in a file

where they can be easily modified or reused. Create a parameter file using any flat

file text editor. The command line option PARFILE=filename tells the Character

Set Scanner to read the parameters from a specified file rather than from the

command line. For example:

csscan parfile= filename

or

csscan username/password parfile= filename

The syntax for parameter file specifications is one of the following:

KEYWORD=value
KEYWORD=(value1, value2, ...)

The following is an example of a parameter file:

USERID=system/manager
USER=HR # scan HR's tables
TOCHAR=utf8
ARRAY=40960
11-8 Oracle9i Database Globalization Support Guide

Character Set Scanner Parameters
PROCESS=2 # use two concurrent scan processes
FEEDBACK=1000

You can add comments to the parameter file by preceding them with the pound (#)

sign. All characters to the right of the pound sign are ignored.

Character Set Scanner Parameters
The following topics are included in this section:

ARRAY Character Set Scanner Parameter

BOUNDARIES Character Set Scanner Parameter

CAPTURE Character Set Scanner Parameter

EXCLUDE Character Set Scanner Parameter

FEEDBACK Character Set Scanner Parameter

FROMCHAR Character Set Scanner Parameter

FROMNCHAR Character Set Scanner Parameter

FULL Character Set Scanner Parameter

HELP Character Set Scanner Parameter

LASTRPT Character Set Scanner Parameter

LOG Character Set Scanner Parameter

MAXBLOCKS Character Set Scanner Parameter

PARFILE Character Set Scanner Parameter

PRESERVE Character Set Scanner Parameter

PROCESS Character Set Scanner Parameter

SUPPRESS Character Set Scanner Parameter

TABLE Character Set Scanner Parameter

TOCHAR Character Set Scanner Parameter

TONCHAR Character Set Scanner Parameter

USER Character Set Scanner Parameter

USERID Character Set Scanner Parameter

ARRAY Character Set Scanner Parameter

Default value: 10240

Minimum value: 4096

Maximum value: Unlimited
Character Set Scanner 11-9

Character Set Scanner Parameters
The following formula estimates the number of rows fetched at a time:

(rows in array) =
(ARRAY buffer size) / (sum of the CHAR and VARCHAR2 column sizes of a given table)

If the sum of the CHAR and VARCHAR2 column sizes exceeds the array buffer size,

then the Character Set Scanner fetches only one row at a time. Tables with LONG,
CLOB, or NCLOB columns are fetched only one row at a time.

This parameter affects the duration of a database scan. In general, the larger the size

of the array buffer, the shorter the duration time. Each scan process will allocate the

specified size of array buffer.

BOUNDARIES Character Set Scanner Parameter

For example, if you specify a BOUNDARIES value of (10, 100, 1000), then the

application data conversion summary report produces a breakdown of the CHAR
data into the following groups by their column length, CHAR(1..10) ,

CHAR(11..100) and CHAR(101..1000) . The behavior is the same for the

VARCHAR2, NCHAR, and NVARCHAR2 datatypes.

CAPTURE Character Set Scanner Parameter

Purpose: Specifies the size in bytes of the array buffer used to

fetch data. The size of the array buffer determines the

number of rows fetched by the Character Set Scanner at

any one time.

Default value: None

Purpose: Specifies the list of column boundary sizes that are used for an

application data conversion summary report. This parameter

is used to locate the distribution of the application data for the

CHAR, VARCHAR2, NCHAR, and NVARCHAR2 datatypes.

Default value: N

Range of values: Y or N
11-10 Oracle9i Database Globalization Support Guide

Character Set Scanner Parameters
EXCLUDE Character Set Scanner Parameter

When this parameter is specified, the Character Set Scanner excludes the specified

tables from the scan. You can specify the following when you specify the name of

the table:

■ schemaname specifies the name of the user’s schema from which to exclude the

table

■ tablename specifies the name of the table or tables to be excluded

For example, the following command scans all of the tables that belong to the hr
sample schema except for the employees and departments tables:

cssan system/manager USER=HR EXCLUDE=(HR.EMPLOYEES , HR.DEPARTMENTS) ...

FEEDBACK Character Set Scanner Parameter

For example, if you specify FEEDBACK=1000, then the Character Set Scanner

displays a dot for every 1000 rows scanned. The FEEDBACK value applies to all

tables being scanned. It cannot be set for individual tables.

Purpose: Indicates whether to capture the information on the

individual convertible rows as well as the default of storing

the exception rows. The convertible rows information is

written to the CSM$ERRORStable if the CAPTUREparameter is

set to Y. This information can be used to deduce which records

need to be converted to the target character set by selective

export and import.

Default value: None

Purpose: Specifies the names of the tables to be excluded from the scan

Default value: None

Minimum value: 100

Maximum value: 100000

Purpose: Specifies that the Character Set Scanner should display a

progress meter in the fort of a dot for every N number of rows

scanned
Character Set Scanner 11-11

Character Set Scanner Parameters
FROMCHAR Character Set Scanner Parameter

Use this parameter to override the default database character set definition for

CHAR, VARCHAR2, LONG, and CLOB data in the database.

FROMNCHAR Character Set Scanner Parameter

Use this parameter to override the default database character set definition for

NCHAR, NVARCHAR2, and NCLOB data in the database.

FULL Character Set Scanner Parameter

HELP Character Set Scanner Parameter

Default value: None

Purpose: Specifies the current character set name for CHAR, VARCHAR2,
LONG, and CLOB datatypes in the database. By default, the

Character Set Scanner assumes the character set for these

datatypes to be the database character set.

Default value: None

Purpose: Specifies the current national database character set name for

NCHAR, NVARCHAR2, and NCLOBdatatypes in the database. By

default, the Character Set Scanner assumes the character set

for these datatypes to be the database national character set.

Default value: N

Range of values: Y or N

Purpose: Indicates whether to perform the full database scan (that is, to

scan the entire database including the data dictionary).

Specify FULL=Y to scan in full database mode.

See Also: "Scan Modes in the Character Set Scanner" on page 11-4

for more information about full database scans

Default value: N

Range of values: Y or N
11-12 Oracle9i Database Globalization Support Guide

Character Set Scanner Parameters
LASTRPT Character Set Scanner Parameter

If LASTRPT=Y is specified, then the Character Set Scanner does not scan the

database, but creates the report files using the information left by the previous

database scan session instead.

If LASTRPT=Y is specified, then only the USERID, BOUNDARIES, and LOG
parameters take effect.

LOG Character Set Scanner Parameter

By default, the Character Set Scanner generates the three text files, scan.txt ,

scan.err , and scan.out in the current directory.

MAXBLOCKS Character Set Scanner Parameter

Purpose: Displays a help message with the descriptions of the

Character Set Scanner parameters

See Also: "Getting Online Help for the Character Set Scanner" on

page 11-7

Default value: N

Range of values: Y or N

Purpose: Indicates whether to regenerate the Character Set Scanner

reports based on statistics gathered from the previous

database scan

Default value: scan

Purpose: Specifies a base file name for the following Character Set

Scanner report files:

■ Database Scan Summary Report file, whose extension is

.txt

■ Individual Exception Report file, whose extension is .err

■ Screen log file, whose extension is .out

Default value: None
Character Set Scanner 11-13

Character Set Scanner Parameters
For example, if the MAXBLOCKS parameter is set to 1000 , then any tables that are

greater than 1000 blocks in size will be divided into n chunks, where

n=CEIL(table block size/1000) .

Dividing large tables into smaller pieces will be beneficial only when the number of

processes set with PROCESS is greater than 1. If the MAXBLOCKS parameter is not

set, then the Character Set Scanner attempts to split up large tables based on its own

optimization rules.

PARFILE Character Set Scanner Parameter

PRESERVE Character Set Scanner Parameter

If PRESERVE=Y is specified, then the Character Set Scanner preserves all the

statistics from the previous scan. It adds (if PRESERVE=Y) or overwrites (if

PRESERVE=N) the new statistics for the tables being scanned in the current scan

request.

Minimum value: 1000

Maximum value: Unlimited

Purpose: Specifies the maximum block size for each table, so that large

tables can be split into smaller chunks for the Character Set

Scanner to process

Default value: None

Purpose: Specifies a filename for a file that contains a list of Character

Set Scanner parameters

See Also: "The Parameter File" on page 11-8

Default value: N

Range of values: Y or N

Purpose: Indicates whether to preserve the statistics gathered from the

previous scan session
11-14 Oracle9i Database Globalization Support Guide

Character Set Scanner Parameters
PROCESS Character Set Scanner Parameter

SUPPRESS Character Set Scanner Parameter

The Character Set Scanner inserts individual exceptional record information into the

CSM$ERRORS table when an exception is found in a data cell. The table grows

depending on the number of exceptions reported.

This parameter is used to suppress the logging of individual exception information

after a specified number of exceptions are inserted for each table. For example, if

SUPPRESS is set to 100, then the Character Set Scanner records a maximum of 100

exception records for each table.

TABLE Character Set Scanner Parameter

You can specify the following when you specify the name of the table:

■ schemaname specifies the name of the user’s schema from which to scan the

table

■ tablename specifies the name of the table or tables to be scanned

Default value: 1

Minimum value: 1

Maximum value: 32

Purpose: Specifies the number of concurrent scan processes to utilize

for the database scan

Default value: Unset (results in unlimited number of rows)

Minimum value: 0

Maximum value: Unlimited

Purpose: Specifies the maximum number of data exceptions being

logged for each table

See Also: "Storage Considerations" on page 11-29

Default value: None

Purpose: Specifies the names of the tables to scan
Character Set Scanner 11-15

Character Set Scanner Parameters
For example, the following command scans the employees and departments
tables in the hr sample schema:

csscan system/manager TABLE=(HR.EMPLOYEES , HR.DEPARTMENTS) ...

TOCHAR Character Set Scanner Parameter

TONCHAR Character Set Scanner Parameter

If you do not specify a value for TONCHAR, then the Character Set Scanner does not

scan NCHAR, NVARCHAR2, and NCLOB data.

USER Character Set Scanner Parameter

If the parameter USER is specified, then the Character Set Scanner scans all tables

belonging to the user. For example, the following statement scans all tables

belonging to the user hr :

csscan system/manager USER=hr ...

USERID Character Set Scanner Parameter

Default value: None

Purpose: Specifies a target database character set name for the CHAR,
VARCHAR2, LONG, and CLOB data

Default value: None

Purpose: Specifies a target database character set name for the NCHAR,
NVARCHAR2, and NCLOB data

Default value: None

Purpose: Specifies the owner of the tables to be scanned

Default value: None

Purpose: Specifies the username and password (and optional connect

string) of the user who scans the database. If you omit the

password, then the Character Set Scanner prompts you for it
11-16 Oracle9i Database Globalization Support Guide

Examples: Character Set Scanner Sessions
The following examples are all valid:

username / password
username / password @connect_string
username
username @connect_string

Examples: Character Set Scanner Sessions
The following examples show you how to use the command-line and parameter-file

methods to use Full Database, User, and Table scan modes.

Example: Full Database Scan
The following example shows how to scan the full database to see the effects of

migrating it to UTF8. This example assumes that the current database character set

is WE8ISO8859P1 (or anything other than UTF8).

Parameter-File Method
% csscan system/manager parfile=param.txt

The param.txt file contains the following information:

full=y
tochar=utf8
array=40960
process=4

Command-Line Method
% csscan system/manager full=y tochar=utf8 array=40960 process=4

Scanner Messages
Database Scanner: Release 9.2.0.0 - Production

(c) Copyright 2001 Oracle Corporation. All rights reserved.
Connected to:
Oracle9i Enterprise Edition Release 9.2.0.0 - Production
With the Objects option
PL/SQL Release 9.2.0.0 - Production

Enumerating tables to scan...

. process 1 scanning SYSTEM.REPCAT$_RESOLUTION
Character Set Scanner 11-17

Examples: Character Set Scanner Sessions
. process 1 scanning SYS.AQ$_MESSAGE_TYPES

. process 1 scanning SYS.ARGUMENT$

. process 2 scanning SYS.AUD$

. process 3 scanning SYS.ATTRIBUTE$

. process 4 scanning SYS.ATTRCOL$

. process 2 scanning SYS.AUDIT_ACTIONS

. process 2 scanning SYS.BOOTSTRAP$

. process 2 scanning SYS.CCOL$

. process 2 scanning SYS.CDEF$
 :
 :
. process 3 scanning SYSTEM.REPCAT$_REPOBJECT
. process 1 scanning SYSTEM.REPCAT$_REPPROP
. process 2 scanning SYSTEM.REPCAT$_REPSCHEMA
. process 3 scanning MDSYS.MD$DIM
. process 1 scanning MDSYS.MD$DICTVER
. process 2 scanning MDSYS.MD$EXC
. process 3 scanning MDSYS.MD$LER
. process 1 scanning MDSYS.MD$PTAB
. process 2 scanning MDSYS.MD$PTS
. process 3 scanning MDSYS.MD$TAB

Creating Database Scan Summary Report...

Creating Individual Exception Report...

Scanner terminated successfully.

Example: User Scan
The following example shows how to scan the user tables to see the effects of

migrating them to UTF8. This example assumes the current database character set is

US7ASCII, but the actual data stored is in Western European WE8MSWIN1252

encoding.

Parameter-File Method
% csscan system/manager parfile=param.txt

The param.txt file contains the following information:

user=hr
fromchar=we8mswin1252
tochar=utf8
array=40960
11-18 Oracle9i Database Globalization Support Guide

Examples: Character Set Scanner Sessions
process=1

Command-Line Method
% csscan system/manager user=hr fromchar=we8mswin1252 tochar=utf8 array=40960
process=1

Character Set Scanner Messages
Database Scanner: Release 9.2.0.0 - Production

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.0 - Production
With the Objects option
PL/SQL Release 9.2.0.0 - Production

Enumerating tables to scan...

. process 1 scanning HR.JOBS

. process 1 scanning HR.DEPARTMENTS

. process 1 scanning HR.JOB_HISTORY

. process 1 scanning HR.EMPLOYEES

Creating Database Scan Summary Report...

Creating Individual Exception Report...

Scanner terminated successfully.

Example: Single Table Scan
The following example shows how to scan a single table to see the effects on

migrating it to WE8MSWIN1252. This example assumes the current database

character set is in US7ASCII.

Parameter-File Method
% csscan system/manager parfile=param.txt

The param.txt file contains the following information:

table=employees
tochar=we8mswin1252
Character Set Scanner 11-19

Character Set Scanner Reports
array=40960
process=1
supress=100

Command-Line Method
% csscan system/manager table=employees tochar=we8mswin1252 array=40960
process=1 supress=100

Scanner Messages
Database Scanner: Release 9.2.0.0 - Production

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.0 - Production
With the Objects option
PL/SQL Release 9.2.0.0 - Production

. process 1 scanning HR.EMPLOYEES

Creating Database Scan Summary Report...

Creating Individual Exception Report...

Scanner terminated successfully.

Character Set Scanner Reports
The Character Set Scanner generates two reports for each scan:

■ Database Scan Summary Report

■ Individual Exception Report

Database Scan Summary Report
A Database Scan Summary Report consists of the following sections:

■ Database Parameters for the Character Set Scanner

■ Database Size

■ Scan Summary

■ Data Dictionary Conversion Summary
11-20 Oracle9i Database Globalization Support Guide

Character Set Scanner Reports
■ Application Data Conversion Summary

■ Application Data Conversion Summary for Each Column Size Boundary

■ Distribution of Convertible Data for Each Table

■ Distribution of Convertible Data for Each Column

■ Indexes To Be Rebuilt

The information available for each section depends on the type of scan and the

parameters you select.

Database Parameters for the Character Set Scanner
This section describes the parameters selected and the type of scan you chose. The

following is an example:

Parameter Value
-- ------------------------------
Scan type Full database
Scan CHAR data? YES
Current database character set WE8ISO8859P1
New database character set UTF8
Scan NCHAR data? NO
Array fetch buffer size 102400
Number of processes 4
-- ------------------------------

Database Size
This section describes the current database size. The following is an example:

TABLESPACE Total(MB) Used(MB) Free(MB)
----------------------------- --------------- --------------- ---------------
APPS_DATA 1,340.000 1,331.070 8.926
CTX_DATA 30.000 3.145 26.852
INDEX_DATA 140.000 132.559 7.438
RBS_DATA 310.000 300.434 9.563
SYSTEM_DATA 150.000 144.969 5.027
TEMP_DATA 160.000 159.996
TOOLS_DATA 35.000 22.148 12.848
USERS_DATA 220.000 142.195 77.801
----------------------------- --------------- --------------- ---------------
Total 2,385.000 2,073.742 311.227
Character Set Scanner 11-21

Character Set Scanner Reports
Scan Summary
This report indicates the feasibility of the database character set migration. There

are two basic criteria that determine the feasibility of the character set migration of

the database. One is the condition of the data dictionary and the other is the

condition of the application data.

The Scan Summary section consists of two status lines. The scan mode and the

result determines the status that is printed for the data dictionary and application

data.

The following is sample output:

All character type data in the data dictionary remains the same in the new
character set
All character type application data remains the same in the new character set

When all data remains the same in the new character set, it means that the data

encoding of the original character set is identical to the target character set. In this

case, the character set can be migrated using the ALTER DATABASE CHARACTER
SET statement.

If all the data is convertible to the new character set, it means that the data can be

safely migrated using the Export and Import utilities. However, the migrated data

may or may not have the same encoding as the original character set.

Table 11–1 Scan Summary for the Data Dictionary and Application Data

Possible Data Dictionary Status Possible Application Data Status

All character-type data in the data
dictionary remains the same in the new
character set.

All character-type application data remains
the same in the new character set.

All character-type data in the data
dictionary is convertible to the new
character set.

All character-type application data is
convertible to the new character set.

Some character-type data in the data
dictionary is not convertible to the new
character set.

Some character-type application data is not
convertible to the new character set.
11-22 Oracle9i Database Globalization Support Guide

Character Set Scanner Reports
Data Dictionary Conversion Summary
This section contains the statistics on the conversion summary of the data

dictionary. It reports the statistics by datatype. Table 11–2 describes the types of

status that can be reported.

This information is available only when a full database scan is performed. The

following is sample output:

Datatype Changeless Convertible Exceptional Total
--------- ---------------- ---------------- ---------------- ----------------
VARCHAR2 971,300 1 0 971,301
CHAR 7 0 0 7
LONG 60,325 0 0 60,325
CLOB
--------- ---------------- ---------------- ---------------- ----------------
Total 1,031,632 1 0 1,031,633

If the numbers in both the Convertible and Exceptional columns are zero, it

means that all the data in the data dictionary will remain the same in the new

character set.

See Also:

■ "Individual Exception Report" on page 11-27 for more

information about non-convertible data

■ "Migrating Character Data Using the ALTER DATABASE

CHARACTER SET Statement" on page 10-8

■ "Migrating Character Data Using a Full Export and Import" on

page 10-8

Table 11–2 Data Conversion Summary for the Data Dictionary

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert anyway, some characters will be lost or data will
be truncated
Character Set Scanner 11-23

Character Set Scanner Reports
If the numbers in the Exceptional column are zero and some numbers in the

Convertible columns are not zero, it means that all data in the data dictionary is

convertible to the new character set. During import, the relevant data will be

converted.

If the numbers in the Exceptional column are not zero, it means that there is data

in the data dictionary that is not convertible. Therefore, it is not feasible to migrate

the current database to the new character because the export and import process

cannot convert the data into the new character set. For example, you might have a

table name with invalid characters or a PL/SQL procedure with a comment line

that includes data that cannot be mapped to the new character set. These changes to

schema objects must be corrected manually before migration to a new character set.

Application Data Conversion Summary
This section contains the statistics on conversion summary of the application data.

The statistics are reported by datatype. Table 11–3 describes the types of status that

can be reported.

The following is sample output:

Datatype Changeless Convertible Exceptional Total
---------- ---------------- ---------------- ---------------- ----------------
VARCHAR2 23,213,745 1,324 0 23,215,069
CHAR 423,430 0 0 423,430
LONG 8,624 33 0 8,657
CLOB 58,839 11,114 28 69,981
---------- ---------------- ---------------- ---------------- ----------------
Total 23,704,638 12,471 28 23,717,137

Table 11–3 Data Conversion Summary for Application Data

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert anyway, some characters will be lost or data will
be truncated
11-24 Oracle9i Database Globalization Support Guide

Character Set Scanner Reports
Application Data Conversion Summary for Each Column Size Boundary
This section contains the conversion summary of the CHAR and VARCHAR2
application data. The statistics are reported by column size boundaries specified by

the BOUNDARIES parameter. Table 11–4 describes the types of status available.

This information is available only when the BOUNDARIES parameter is specified.

The following is sample output:

Datatype Changeless Convertible Exceptional Total
------------------- ------------- ------------- --------------- ----------------
VARCHAR2(1..10) 1,474,825 0 0 1,474,825
VARCHAR2(11..100) 9,691,520 71 0 9,691,591
VARCHAR2(101..4000) 12,047,400 1,253 0 12,048,653
------------------- ------------- ------------- --------------- ----------------
CHAR(1..10) 423,413 0 0 423,413
CHAR(11..100) 17 0 0 17
CHAR(101..4000)
------------------- ------------- ------------- --------------- ----------------
Total 23,637,175 1,324 0 23,638,499

Distribution of Convertible Data for Each Table
This report shows how Convertible and Exceptional data is distributed

within the database. The statistics are reported by table. If the list contains only a

few rows, it means the Convertible data is localized. If the list contains many

rows, it means the Convertible data occurs throughout the database.

The following is sample output:

USER.TABLE Convertible Exceptional
-- ---------------- ----------------
SMG.SOURCE 1 0
SMG.HELP 12 0
SMG.CLOSE_LIST 16 0

Table 11–4 Data Conversion Summary for Columns in Application Data

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert, some characters will be lost or data will be
truncated
Character Set Scanner 11-25

Character Set Scanner Reports
SMG.ATTENDEES 8 0
SGT.DR_010_I1T1 7 0
SGT.DR_011_I1T1 7 0
SGT.MRK_SRV_PROFILE 2 0
SGT.MRK_SRV_PROFILE_TEMP 2 0
SGT.MRK_SRV_QUESTION 3 0
-- ---------------- ----------------

Distribution of Convertible Data for Each Column
This report shows how Convertible and Exceptional data is distributed

within the database. The statistics are reported by column. The following is an

example:

USER.TABLE|COLUMN Convertible Exceptional
--- ---------------- ----------------
SMG.SOURCE|SOURCE 1 0
SMG.HELP|INFO 12 0
SMG.CLOSE_LIST|FNAME 1 0
SMG.CLOSE_LIST|LNAME 1 0
SMG.CLOSE_LIST|COMPANY 1 0
SMG.CLOSE_LIST|STREET 8 0
SMG.CLOSE_LIST|CITY 4 0
SMG.CLOSE_LIST|STATE 1 0
SMG.ATTENDEES|ATTENDEE_NAME 1 0
SMG.ATTENDEES|ADDRESS1 3 0
SMG.ATTENDEES|ADDRESS2 2 0
SMG.ATTENDEES|ADDRESS3 2 0
SGT.DR_010_I1T1|WORD_TEXT 7 0
SGT.DR_011_I1T1|WORD_TEXT 7 0
SGT.MRK_SRV_PROFILE|FNAME 1 0
SGT.MRK_SRV_PROFILE|LNAME 1 0
SGT.MRK_SRV_PROFILE_TEMP|FNAME 1 0
SGT.MRK_SRV_PROFILE_TEMP|LNAME 1 0
SGT.MRK_SRV_QUESTION|ANSWER 3 0

Indexes To Be Rebuilt
This generates a list of all the indexes that are affected by the database character set

migration. These can be rebuilt after the data has been imported. The following is

an example:

USER.INDEX on USER.TABLE(COLUMN)
--
CD2000.COMPANY_IX_PID_BID_NNAME on CD2000.COMPANY(CO_NLS_NAME)
CD2000.I_MASHINE_MAINT_CONT on CD2000.MACHINE(MA_MAINT_CONT#)
CD2000.PERSON_NEWS_SABUN_CONT_CONT on
CD2000.PERSON_NEWS_SABUN_CONT(CONT_BID)
CD2000.PENEWSABUN3_PEID_CONT on CD2000.PE_NEWS_SABUN_3(CONT_BID)
11-26 Oracle9i Database Globalization Support Guide

Character Set Scanner Reports
PMS2000.CALLS_IX_STATUS_SUPPMGR on PMS2000.CALLS(SUPPMGR)
PMS2000.MAILQUEUE_CHK_SUB_TOM on PMS2000.MAIL_QUEUE(TO_MAIL)
PMS2000.MAILQUEUE_CHK_SUB_TOM on PMS2000.MAIL_QUEUE(SUBJECT)
PMS2000.TMP_IX_COMP on PMS2000.TMP_CHK_COMP(COMP_NAME)
--

Individual Exception Report
An Individual Exception Report consists of the following summaries:

■ Database Scan Parameters

■ Data Dictionary Individual Exceptions

■ Application Data Individual Exceptions

Database Scan Parameters
This section describes the parameters and the type of scan chosen. The following is

an example:

Parameter Value
-- ------------------------------
Scan type Full database
Scan CHAR data? YES
Current database character set we8mswin1252
New database character set utf8
Scan NCHAR data? NO
Array fetch buffer size 102400
Number of rows to heap up for insert 10
Number of processes 1
-- ------------------------------

Data Dictionary Individual Exceptions
This section identifies the data dictionary data that is either convertible or has

exceptions. There are two types of exceptions:

■ exceed column size

■ lossy conversion

The following is an example of output about a data dictionary that contains

convertible data:

User : SYS
Table : METASTYLESHEET
Column: STYLESHEET
Character Set Scanner 11-27

Character Set Scanner Reports
Type : CLOB
Number of Exceptions : 0
Max Post Conversion Data Size: 0

ROWID Exception Type Size Cell Data(first 30 bytes)
------------------ ------------------ ----- ------------------------------
AAAAHMAABAAAAs+AAA convertible
AAAAHMAABAAAAs+AAB convertible
------------------ ------------------ ----- ------------------------------

Application Data Individual Exceptions
This report identifies the data that has exceptions so that this data can then be

modified if necessary.

There are two types of exceptions:

■ exceed column size

The column size should be extended if the maximum column width has been

surpassed. If not, data truncation occurs.

■ lossy conversion

The data must be corrected before migrating to the new character set, or else the

invalid characters will be converted to a replacement character. Replacement

characters are usually specified as ? or ¿ or as a character that is linguistically

similar.

The following is an example of an individual exception report that illustrates some

possible problems when changing the database character set from WE8ISO8859P1

to UTF8:

User: HR
Table: EMPLOYEES
Column: LAST_NAME
Type: VARCHAR2(10)
Number of Exceptions: 2
Max Post Conversion Data Size: 11

ROWID Exception Type Size Cell Data(first 30 bytes)
------------------ ------------------ ----- ------------------------------
AAAA2fAAFAABJwQAAg exceed column size 11 Ährenfeldt
AAAA2fAAFAABJwQAAu lossy conversion órâclë8™

See Also: "Application Data Individual Exceptions" on page 11-28

for more information about exceptions
11-28 Oracle9i Database Globalization Support Guide

Storage and Performance Considerations in the Character Set Scanner
AAAA2fAAFAABJwQAAu exceed column size 11 órâclë8™
------------------ ------------------ ----- ------------------------------

The values Ährenfeldt and órâclë8 ™ exceed the column size (10 bytes) because

each of the characters Ä, ó, â, and ë occupies one byte in WE8ISO8859P1 but two

bytes in UTF8. The value órâclë8 ™ has lossy conversion to UTF8 because the

trademark sign ™ (code 153) is not a valid WE8ISO8859P1 character. It is a

WE8MSWIN1252 character, which is a superset of WE8ISO8859P1.

You can view the data that has an exception by issuing a SELECT statement:

SELECT last_name FROM hr.employees
WHERE ROWID='AAAA2fAAFAABJwQAAu';

You can modify the data that has the exception by issuing an UPDATE statement:

UPDATE hr.employees SET last_name = 'Oracle8 TM'
WHERE ROWID='AAAA2fAAFAABJwQAAu';

Storage and Performance Considerations in the Character Set Scanner
This section describes storage and performance issues in the Character Set Scanner.

It contains the following topics:

■ Storage Considerations

■ Performance Considerations

Storage Considerations
This section describes the size and the growth of the Character Set Scanner's system

tables, and explains the approach to maintain them. There are three system tables

that can increase rapidly depending on the nature of the data stored in the database.

You may want to assign a large tablespace to the user CSMIG by amending the

csminst.sql script. By default, the SYSTEM tablespace is assigned to the user

CSMIG.

This section includes the following topics:

See Also:

■ "Data Truncation" on page 10-2

■ "Character Set Conversion Issues" on page 10-4
Character Set Scanner 11-29

Storage and Performance Considerations in the Character Set Scanner
■ CSM$TABLES

■ CSM$COLUMNS

■ CSM$ERRORS

CSM$TABLES
The Character Set Scanner enumerates all tables that need to be scanned into the

CSM$TABLES table.

You can look up the number of tables (to get an estimate of how large CSM$TABLES
can become) in the database by issuing the following SQL statement:

SELECT COUNT(*) FROM DBA_TABLES;

CSM$COLUMNS
The Character Set Scanner stores statistical information for each column scanned

into the CSM$COLUMNS table.

You can look up the number of character type columns (to get an estimate of how

large CSM$COLUMNS can become) in the database by issuing the following SQL

statement:

SELECT COUNT(*) FROM DBA_TAB_COLUMNS
WHERE DATA_TYPE IN ('CHAR', 'VARCHAR2', 'LONG', 'CLOB');

CSM$ERRORS
When exceptions are detected with cell data, the Character Set Scanner inserts

individual exception information into the CSM$ERRORStable. This information then

appears in the Individual Exception Report and facilitates identifying records to be

modified if necessary.

If your database contains a lot of data that is signaled as Exceptional or

Convertible (when the parameter CAPTURE=Y is set), then the CSM$ERRORS
table can grow very large. You can prevent the CSM$ERRORS table from growing

unnecessarily large by using the SUPPRESS parameter.

The SUPPRESS parameter applies to all tables. The Character Set Scanner

suppresses inserting individual Exceptional information after the specified

number of exceptions is inserted. Limiting the number of exceptions to be recorded

may not be useful if the exceptions are spread over different tables.
11-30 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages
Performance Considerations
This section describes ways to increase performance when scanning the database.

Using Multiple Scan Processes
If you plan to scan a relatively large database, for example, over 50GB, you might

want to consider using multiple scan processes. This shortens the duration of

database scans by using hardware resources such as CPU and memory available on

the machine. A guideline for determining the number of scan processes to use is to

set the number equal to the CPU_COUNT initialization parameter.

Array Fetch Buffer Size
The Character Set Scanner fetches multiple rows at a time when an array fetch is

allowed. Generally, you will improve performance by letting the Character Set

Scanner use a bigger array fetch buffer. Each process allocates its own fetch buffer.

Suppressing Exception and Convertible Log
The Character Set Scanner inserts individual Exceptional and Convertible
(when CAPTURE=Y) information into the CSM$ERRORS table. In general, insertion

into the CSM$ERRORS table is more costly than data fetching. If your database has a

lot of data that is signaled as Exceptional or Convertible , then the Character

Set Scanner issues many insert statements, causing performance degradation.

Oracle Corporation recommends setting a limit on the number of exception rows to

be recorded using the SUPRESS parameter.

Character Set Scanner Views and Messages
This section contains the following reference material:

■ Character Set Scanner Views

■ Character Set Scanner Error Messages

Character Set Scanner Views
The Character Set Scanner uses the following views.

CSMV$COLUMNS
This view contains statistical information about columns that were scanned.
Character Set Scanner 11-31

Character Set Scanner Views and Messages
CSMV$CONSTRAINTS
This view contains statistical information about columns that were scanned.

Column Datatype NULL Description

OWNER_ID NUMBER NOT NULL Userid of the table owner

OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner

TABLE_ID NUMBER NOT NULL Object ID of the table

TABLE_NAME VARCHAR2(30) NOT NULL Object name of the table

COLUMN_ID NUMBER NOT NULL Column ID

COLUMN_INTID NUMBER NOT NULL Internal column ID (for abstract datatypes)

COLUMN_NAME VARCHAR2(30) NOT NULL Column name

COLUMN_TYPE VARCHAR2(9) NOT NULL Column datatype

TOTAL_ROWS NUMBER NOT NULL Number of rows in this table

NULL_ROWS NUMBER NOT NULL Number of NULL data cells

CONV_ROWS NUMBER NOT NULL Number of data cells that need to be converted

ERROR_ROWS NUMBER NOT NULLNumber of data cells that have exceptions

EXCEED_SIZE_ROWS NUMBER NOT NULL Number of data cells that have exceptions

DATA_LOSS_ROWS NUMBER - Number of data cells that undergo lossy conversion

MAX_POST_CONVERT_
SIZE

NUMBER - Maximum post-conversion data size

Column Datatype NULL Description

OWNER_ID NUMBER NOT NULL Userid of the constraint owner

OWNER_NAME VARCHAR2(30) NOT NULL User name of the constraint owner

CONSTRAINT_ID NUMBER NOT NULL Object ID of the constraint

CONSTRAINT_NAME VARCHAR2(30) NOT NULL Object name of the constraint

CONSTRAINT_TYPE# NUMBER NOT NULL Constraint type number

CONSTRAINT_TYPE VARCHAR2(11) NOT NULL Constraint type name

TABLE_ID NUMBER NOT NULL Object ID of the table

TABLE_NAME VARCHAR2(30) NOT NULL Object name of the table

CONSTRAINT_RID NUMBER NOT NULL Root constraint ID

CONSTRAINT_LEVEL NUMBER NOT NULL Constraint level
11-32 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages
CSMV$ERRORS
This view contains individual exception information for cell data and object

definitions.

CSMV$INDEXES
This view contains individual exception information for indexes.

Column Datatype NULL Description

OWNER_ID NUMBER NOT NULL Userid of the table owner

OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner

TABLE_ID NUMBER NOT NULL Object ID of the table

TABLE_NAME VARCHAR2(30) - Object name of the table

COLUMN_ID NUMBER - Column ID

COLUMN_INTID NUMBER - Internal column ID (for abstract datatypes)

COLUMN_NAME VARCHAR2(30) - Column name

DATA_ROWID VARCHAR2(1000) - The rowid of the data

COLUMN_TYPE VARCHAR2(9) - Column datatype of object type

ERROR_TYPE VARCHAR2(11) - Type of error encountered

Column Datatype NULL Description

INDEX_OWNER_ID NUMBER NOT NULL Userid of the index owner

INDEX_OWNER_NAME VARCHAR2(30) NOT NULL User name of the index owner

INDEX_ID NUMBER NOT NULL Object ID of the index

INDEX_NAME VARCHAR2(30) - Object name of the index

INDEX_STATUS# NUMBER - Status number of the index

INDEX_STATUS VARCHAR2(8) - Status of the index

TABLE_OWNER_ID NUMBER - Userid of the table owner

TABLE_OWNER_NAME VARCHAR2(30) - User name of the table owner

TABLE_ID NUMBER - Object ID of the table

TABLE_NAME VARCHAR2(30) - Object name of the table

COLUMN_ID NUMBER - Column ID

COLUMN_INTID NUMBER - Internal column ID (for abstract datatypes)

COLUMN_NAME VARCHAR2(30) - Column name
Character Set Scanner 11-33

Character Set Scanner Views and Messages
CSMV$TABLES
This view contains information about database tables to be scanned. The Character

Set Scanner enumerates all tables to be scanned into this view.

Character Set Scanner Error Messages
The Character Set Scanner has the following error messages:

CSS-00100 failed to allocate memory size of number
An attempt was made to allocate memory with size 0 or bigger than the maximum size.
This is an internal error. Contact Oracle Customer Support.

CSS-00101 failed to release memory
An attempt was made to release memory with invalid pointer.
This is an internal error. Contact Oracle Customer Support.

CSS-00102 failed to release memory, null pointer given
An attempt was made to release memory with null pointer.
This is an internal error. Contact Oracle Customer Support.

CSS-00105 failed to parse BOUNDARIES parameter
BOUNDARIES parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00106 failed to parse SPLIT parameter
SPLIT parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00107 Character set migration utility schem not installed

Column Datatype NULL Description

OWNER_ID NUMBER NOT NULL Userid of the table owner

OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner

TABLE_ID NUMBER - Object ID of the table

TABLE_NAME VARCHAR2(30) - Object name of the table

MIN_ROWID VARCHAR2(18) - Minimum rowid of the split range of the table

MAX_ROWID VARCHAR2(18) - Maximum rowid of the split range of the table

BLOCKS NUMBER - Number of blocks in the split range

SCAN_COLUMNS NUMBER - Number of columns to be scanned

SCAN_ROWS NUMBER - Number of rows to be scanned

SCAN_START VARCHAR2(8) - Time table scan started

SCAN_END VARCHAR2(8) - Time table scan completed
11-34 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages
CSM$VERSION table not found in the database.
Run CSMINST.SQL on the database.

CSS-00108 Character set migration utility schema not compatible
Incompatible CSM$* tables found in the database.
Run CSMINST.SQL on the database.

CSS-00110 failed to parse userid
USERID parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00111 failed to get RDBMS version
Failed to retrieve the value of the Version of the database.
This is an internal error. Contact Oracle Customer Support.

CSS-00112 database version not supported
The database version is older than release 8.0.5.0.0.
Upgrade the database to release 8.0.5.0.0 or later, then try again.

CSS-00113 user %s is not allowed to access data dictionary
The specified user cannot access the data dictionary.
Set O7_DICTIONARY_ACCESSIBILITY parameter to TRUE, or use SYS user.

CSS-00114 failed to get database character set name
Failed to retrieve value of NLS_CHARACTERSET or NLS_NCHAR_CHARACTERSET parameter from NLS_
DATABASE_PARAMETERS view.
This is an internal error. Contact Oracle Customer Support.

CSS-00115 invalid character set name %s
The specified character set is not a valid Oracle character set.

CSS-00116 failed to reset NLS_LANG/NLS_NCHAR parameter
Failed to force NLS_LANG character set to be same as database character set.
This is an internal error. Contact Oracle Customer Support.

CSS-00117 failed to clear previous scan log
Failed to delete all rows from CSM$* tables.
This is an internal error. Contact Oracle Customer Support.

CSS-00118 failed to save command parameters
Failed to insert rows into CSM$PARAMETERS table.
This is an internal error. Contact Oracle Customer Support.

CSS-00119 failed to save scan start time
Failed to insert a row into CSM$PARAMETERS table.
This is an internal error. Contact Oracle Customer Support.

See Also: Appendix A, "Locale Data" for the correct character set

name
Character Set Scanner 11-35

Character Set Scanner Views and Messages
CSS-00120 failed to enumerate tables to scan
Failed to enumerate tables to scan into CSM$TABLES table.
This is an internal error. Contact Oracle Customer Support.

CSS-00121 failed to save scan complete time
Failed to insert a row into CSM$PARAMETERS table.
This is an internal error. Contact Oracle Customer Support.

CSS-00122 failed to create scan report
Failed to create database scan report.
This is an internal error. Contact Oracle Customer Support.

CSS-00123 failed to check if user %s exist
Select statement that checks if the specified user exists in the database failed.
This is an internal error. Contact Oracle Customer Support.

CSS-00124 user %s not found
The specified user does not exist in the database.
Check the user name.

CSS-00125 failed to check if table %s.%s exist
Select statement that checks if the specified table exists in the database failed.
This is an internal error. Contact Oracle Customer Support.

CSS-00126 table %s.%s not found
The specified table does not exist in the database.
Check the user name and table name.

CSS-00127 user %s does not have DBA privilege
The specified user does not have DBA privileges, which are required to scan the database.
Choose a user with DBA privileges.

CSS-00128 failed to get server version string
Failed to retrieve the version string of the database.
None.

CSS-00130 failed to initialize semaphore
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00131 failed to spawn scan process %d
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00132 failed to destroy semaphore
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00133 failed to wait semaphore
11-36 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00134 failed to post semaphore
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00140 failed to scan table (tid=%d, oid=%d)
Data scan on this particular table failed.
This is an internal error. Contact Oracle Customer Support.

CSS-00141 failed to save table scan start time
Failed to update a row in the CSM$TABLES table.
This is an internal error. Contact Oracle Customer Support.

CSS-00142 failed to get table information
Failed to retrieve various information from user id and object id of the table.
This is an internal error. Contact Oracle Customer Support.

CSS-00143 failed to get column attributes
Failed to retrieve column attributes of the table.
This is an internal error. Contact Oracle Customer Support.

CSS-00144 failed to scan table %s.%s
Data scan on this particular table was not successful.
This is an internal error. Contact Oracle Customer Support.

CSS-00145 failed to save scan result for columns
Failed to insert rows into CSM$COLUMNS table.
This is an internal error. Contact Oracle Customer Support.

CSS-00146 failed to save scan result for table
Failed to update a row of CSM$TABLES table.
This is an internal error. Contact Oracle Customer Support.

CSS-00147 unexpected data truncation
Scanner allocates the exactly same size of memory as the column byte size for fetch
buffer, resulting in unexpected data truncation.
This is an internal error. Contact Oracle Customer Support.

CSS-00150 failed to enumerate table
Failed to retrieve the specified table information.
This is an internal error. Contact Oracle Customer Support.

CSS-00151 failed to enumerate user tables
Failed to enumerate all tables that belong to the specified user.
This is an internal error. Contact Oracle Customer Support.

CSS-00152 failed to enumerate all tables
Character Set Scanner 11-37

Character Set Scanner Views and Messages
Failed to enumerate all tables in the database.
This is an internal error. Contact Oracle Customer Support.

CSS-00153 failed to enumerate character type columns
Failed to enumerate all CHAR, VARCHAR2, LONG, and CLOB columns of tables to scan.
This is an internal error. Contact Oracle Customer Support.

CSS-00154 failed to create list of tables to scan
Failed to enumerate the tables into CSM$TABLES table.
This is an internal error. Contact Oracle Customer Support.

CSS-00155 failed to split tables for scan
Failed to split the specified tables.
This is an internal error. Contact Oracle Customer Support.

CSS-00156 failed to get total number of tables to scan
Select statement that retrieves the number of tables to scan failed.
This is an internal error. Contact Oracle Customer Support.

CSS-00157 failed to retrieve list of tables to scan
Failed to read all table ids into the scanner memory.
This is an internal error. Contact Oracle Customer Support.

CSS-00158 failed to retrieve index defined on column
Select statement that retrieves index defined on the column fails.
This is an internal error. Contact Oracle Customer Support.

CSS-00160 failed to open summary report file
File open function returned error.
Check if you have create/write privilege on the disk and check if the file name specified
for the LOG parameter is valid.

CSS-00161 failed to report scan elapsed time
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00162 failed to report database size information
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00163 failed to report scan parameters
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00164 failed to report Scan summary
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00165 failed to report conversion summary
Unknown.
11-38 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages
This is an internal error. Contact Oracle Customer Support.

CSS-00166 failed to report convertible data distribution
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00167 failed to open exception report file
File open function returned error.
Check if you have create/write privilege on the disk and check if the file name specified
for LOG parameter is valid.

CSS-00168 failed to report individual exceptions
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00170 failed to retrieve size of tablespace %
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00171 failed to retrieve free size of tablespace %s
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00172 failed to retrieve total size of tablespace %s
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00173 failed to retrieve used size of the database
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00174 failed to retrieve free size of the database
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00175 failed to retrieve total size of the database
Unknown.
This is an internal error. Contact Oracle Customer Support.

CSS-00176 failed to enumerate user tables in bitmapped tablespace
Failed to enumerate tables in bitmapped tablespace.
This is an internal error. Contact Oracle Customer Support.
Character Set Scanner 11-39

Character Set Scanner Views and Messages
11-40 Oracle9i Database Globalization Support Guide

Customizing Loca
12

Customizing Locale Data

This chapter shows how to customize locale data. It includes the following topics:

■ Overview of the Oracle Locale Builder Utility

■ Creating a New Language Definition with the Oracle Locale Builder

■ Creating a New Territory Definition with the Oracle Locale Builder

■ Displaying a Code Chart with the Oracle Locale Builder

■ Creating a New Character Set Definition with the Oracle Locale Builder

■ Creating a New Linguistic Sort with the Oracle Locale Builder

■ Generating and Installing NLB Files
le Data 12-1

Overview of the Oracle Locale Builder Utility
Overview of the Oracle Locale Builder Utility
The Oracle Locale Builder offers an easy and efficient way to customize locale data.

It provides a graphical user interface through which you can easily view, modify,

and define locale-specific data. It extracts data from the text and binary definition

files and presents them in a readable format so that you can process the information

without worrying about the formats used in these files.

The Oracle Locale Builder handles four types of locale definitions: language,

territory, character set, and linguistic sort. It also supports user-defined characters

and customized linguistic rules. You can view definitions in existing text and binary

definition files and make changes to them or create your own definitions.

This section contains the following topics:

■ Configuring Unicode Fonts for the Oracle Locale Builder

■ The Oracle Locale Builder User Interface

■ Oracle Locale Builder Screens and Dialog Boxes

Configuring Unicode Fonts for the Oracle Locale Builder
The Oracle Locale Builder uses Unicode characters in many of its functions. For

example, it shows the mapping of local character code points to Unicode code

points.Therefore, Oracle Corporation recommends that you use a Unicode font to

fully support the Oracle Locale Builder. If a character cannot be rendered with your

local fonts, then it will probably be displayed as an empty box.

Font Configuration on Windows
There are many Windows TrueType and OpenType fonts that support Unicode.

Oracle Corporation recommends using the Arial Unicode MS font from Microsoft,

because it includes about 51,000 glyphs and supports most of the characters in

Unicode 3.1.

After installing the Unicode font, add the font to the Java Runtime

font.properties file so it can be used by the Oracle Locale Builder. The

font.properties file is located in the $JAVAHOME/lib directory. For example,

for the Arial Unicode MS font, add the following entries to the font.properties
file:

dialog. n=Arial Unicode MS, DEFAULT_CHARSET
dialoginput. n=Arial Unicode MS, DEFAULT_CHARSET
serif. n=Arial Unicode MS, DEFAULT_CHARSET
sansserif. n=Arial Unicode MS, DEFAULT_CHARSET
12-2 Oracle9i Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility
n is the next available sequence number to assign to the Arial Unicode MS font in

the font list. Java Runtime searches the font mapping list for each virtual font and

use the first font available on your system.

After you edit the font.properties file, restart the Oracle Locale Builder.

Font Configuration on Other Platforms
There are fewer choices of Unicode fonts for non-Windows platforms than for

Windows platforms. If you cannot find a Unicode font with satisfactory character

coverage, then use multiple fonts for different languages. Install each font and add

the font entries into the font.properties file using the steps described for the

Windows platform.

For example, to display Japanese characters on Sun Solaris using the font

ricoh-hg mincho , add entries to the existing font.properties file in

$JAVAHOME/lib in the dialog , dialoginput , serif , and sansserif sections.

For example:

serif.plain.3=-ricoh-hg mincho l-medium-r-normal--*-%d-*-*-m-*-jisx0201.1976-0

The Oracle Locale Builder User Interface
Ensure that the ORACLE_HOME initialization parameter is set before starting the

Builder.

Start the Oracle Locale Builder by changing into the $ORACLE_
HOME/ocommon/nls/lbuilder directory and issuing the following command:

% lbuilder

After you start the Oracle Locale Builder, the screen shown in Figure 12–1 appears.

See Also: Sun’s internationalization website for more information

about the font.properties file

See Also: Your platform-specific documentation for more

information about available fonts
Customizing Locale Data 12-3

Overview of the Oracle Locale Builder Utility
Figure 12–1 Oracle Locale Builder Utility

Oracle Locale Builder Screens and Dialog Boxes
Before using Oracle Locale Builder for a specific task, you should become familiar

with screens and dialog boxes that include the following:

■ Existing Definitions Dialog Box

■ Session Log Dialog Box

■ Preview NLT Screen

■ Open File Dialog Box

Note: Oracle Locale Builder includes online help.
12-4 Oracle9i Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility
Existing Definitions Dialog Box
When you choose New Language, New Territory, New Character Set, or New

Linguistic Sort, the first screen you see is labelled General. Click Show Existing

Definitions to see the Existing Definitions dialog box.

The Existing Definitions dialog box enables you to open locale objects by name. If

you know a specific language, territory, linguistic sort (collation), or character set

that you want to start with, click its displayed name. For example, you can open the

AMERICAN language definition file as shown in Figure 12–2.

Figure 12–2 Existing Definitions Dialog Box

Choosing AMERICAN opens the lx00001.nlb file.

Language and territory abbreviations are for reference only and cannot be opened.

Session Log Dialog Box
In the Tools menu, choose View Log to see the Session Log dialog box. The Session

Log dialog box shows what actions have been taken in the current session. The Save

Log button enables you to keep a record of all changes. Figure 12–3 shows an

example of a session log.
Customizing Locale Data 12-5

Overview of the Oracle Locale Builder Utility
Figure 12–3 Session Log Dialog Box

Preview NLT Screen
The NLT file is a text file with the file extension .nlt that shows the settings for a

specific language, territory, character set, or linguistic sort. The Preview NLT screen

presents a readable form of the file so that you can see whether the changes you

have made look correct. You cannot modify the NLT file from the Preview NLT

screen. You must use the specific elements of the Oracle Locale Builder to modify

the NLT file.

Figure 12–4 shows an example of the Preview NLT screen for a user-defined

language called AMERICAN FRENCH.
12-6 Oracle9i Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility
Figure 12–4 Previewing the NLT File

Open File Dialog Box
You can see the Open File dialog box by going to the File menu, choosing Open, and

choosing By File Name. Then choose the NLB file that you want to modify or use as

a template. An NLB file is a binary file with the file extension .nlb that contains the

binary equivalent of the information in the NLT file. Figure 12–5 shows the Open

File dialog box with the lx00001.nlb file selected. The Preview panel shows that

this NLB file is for the AMERICAN language.
Customizing Locale Data 12-7

Creating a New Language Definition with the Oracle Locale Builder
Figure 12–5 Open File Dialog Box

Creating a New Language Definition with the Oracle Locale Builder
This section shows how to create a new language based on French. This new

language is called AMERICAN FRENCH. First, open FRENCH from the Existing

Definitions dialog box. Then change the language name to AMERICAN FRENCH and

the Language Abbreviation to AF in the General dialog box. Leave the default

values for the other settings. Figure 12–6 shows the resulting General dialog box.
12-8 Oracle9i Database Globalization Support Guide

Creating a New Language Definition with the Oracle Locale Builder
Figure 12–6 Language General Information

The following restrictions apply when choosing names for locale objects such as

languages:

■ Names must contain only ASCII characters

■ Names must start with a letter

■ Language, territory, and character set names cannot contain underscores

The valid range for the language ID field for a user-defined language is 1,000 to

10,000. You can accept the value provided by Oracle Locale Builder or you can

specify a value within the range.
Customizing Locale Data 12-9

Creating a New Language Definition with the Oracle Locale Builder
Figure 12–7 shows how to set month names using the Month Names tab.

Figure 12–7 Language Definition Month Information

All names are shown as they appear in the NLT file. If you choose Yes for

capitalization, the month names are capitalized in your application, but they do not

appear capitalized in the Month Names screen.

Figure 12–8 shows the Day Names screen.

Note: Only certain ID ranges are valid values for user-defined

LANGUAGE, TERRITORY, CHARACTER SET, MONOLINGUAL
COLLATION, and MULTILINGUAL COLLATION definitions. The

ranges are specified in the sections of this chapter that concern each

type of user-defined locale object.
12-10 Oracle9i Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder
Figure 12–8 Language Definition Type Information

You can choose day names for your user-defined language. All names are shown as

they appear in the NLT file. If you choose Yes for capitalization, the day names are

capitalized in your application, but they do not appear capitalized in the Day

Names screen.

Creating a New Territory Definition with the Oracle Locale Builder
This section shows how to create a new territory called REDWOOD SHORES and use

RSas a territory abbreviation. The new territory is not based on an existing territory

definition.

The basic tasks are to assign a territory name and choose formats for the calendar,

numbers, date and time, and currency. Figure 12–9 shows the General screen with

REDWOOD SHORES set as the Territory Name, 1001 set as the Territory ID, and RS
set as the Territory Abbreviation.
Customizing Locale Data 12-11

Creating a New Territory Definition with the Oracle Locale Builder
Figure 12–9 Defining a New Territory

The valid range for a territory ID for a user-defined territory is 1,000 to 10,000.

Figure 12–10 shows settings for calendar formats.
12-12 Oracle9i Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder
Figure 12–10 Choosing a Calendar Format

Tuesday is set as the first day of the week, and the first week of the calendar year is

set as an ISO week. The screen displays a sample calendar.

Figure 12–11 shows date and time settings.

See Also:

■ "Calendar Formats" on page 3-26 for more information about

choosing the first day of the week and the first week of the

calendar year

■ "Customizing Calendars with the NLS Calendar Utility" on

page 12-17 for information about customizing calendars

themselves
Customizing Locale Data 12-13

Creating a New Territory Definition with the Oracle Locale Builder
Figure 12–11 Choosing Date and Time Formats

Sample formats are displayed when you choose settings from the drop-down

menus. In this case, the Short Date Format is set to YY/MM/DD. The Short Time

Format is set to HH24:MI:SS . The Long Date Format is set to YYYY/MM/DD DAY.
The Long Time Format is set to HH12:MI:SS AM .

You can also enter your own formats instead of using the selection from the

drop-down menus.

Figure 12–12 shows settings for number formats.

See Also:

■ "Date Formats" on page 3-18

■ "Time Formats" on page 3-21

■ "Customizing Time Zone Data" on page 12-17
12-14 Oracle9i Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder
Figure 12–12 Choosing Number Formats

A period has been chosen for the Decimal Symbol. The Negative Sign Location is

set to be on the left of the number. The Numeric Group Separator is a comma. The

Number Grouping is set to 4 digits. The List Separator is a comma. The

Measurement System is metric. The Rounding Indicator is 4.

You can enter your own values instead of using the drop-down menus.

Sample formats are displayed when you choose settings from the drop-down

menus.

Figure 12–13 shows settings for currency formats in the Monetary dialog box.

See Also: "Numeric Formats" on page 3-30
Customizing Locale Data 12-15

Creating a New Territory Definition with the Oracle Locale Builder
Figure 12–13 Choosing Currency Formats

The Local Currency Symbol is set to $. The Alternative Currency Symbol is the Euro

symbol. The Currency Presentation shows one of several possible sequences of the

local currency symbol, the debit symbol, and the number. The Decimal Symbol is

the period. The Group Separator is the comma. The Monetary Number Grouping is

3. The Monetary Precision, or number of digits after the decimal symbol, is 3. The

Credit Symbol is +. The Debit Symbol is - . The International Currency Separator is

a blank space, so it is not visible in the screen. The International Currency Symbol

(ISO currency symbol) is USD. Sample currency formats are displayed, based on the

values you have selected.

You can enter your own values instead of using the drop-down menus.

The rest of this section contains the following topics:

See Also: "Currency Formats" on page 3-32
12-16 Oracle9i Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder
■ Customizing Time Zone Data

■ Customizing Calendars with the NLS Calendar Utility

Customizing Time Zone Data
The time zone files contain the valid time zone names. The following information is

included for each time zone:

■ Offset from Coordinated Universal Time (UTC)

■ Transition times for daylight savings time

■ Abbreviations for standard time and daylight savings time. The abbreviations

are used with the time zone names.

Two time zone files are included in the Oracle home directory. The default file is

oracore/zoneinfo/timezone.dat . It contains the most commonly used time

zones. A larger set of time zones is included in

oracore/zoneinfo/timezlrg.dat . Unless you need the larger set of time

zones, use the default time zone file because database performance is better.

To use the larger time zone file, complete the following tasks:

1. Shut down the database.

2. Set the ORA_TZFILE environment variable to the full path name of the

timezlrg.dat file.

3. Restart the database.

After you have used the timezlrg.dat file, you must continue to use it unless

you are sure that none of the additional time zones are used for data that is stored

in the database. Also, all databases that share information must use the same time

zone file.

To view the time zone names, enter the following statement:

SQL> SELECT * FROM V$TIMEZONE_NAMES;

Customizing Calendars with the NLS Calendar Utility
Oracle supports several calendars. All of them are defined with data derived from

Oracle’s globalization support, but some of them may require the addition of ruler

eras or deviation days in the future. To add this information without waiting for a

new release of the Oracle database server, you can use an external file that is

automatically loaded when the calendar functions are executed.
Customizing Locale Data 12-17

Displaying a Code Chart with the Oracle Locale Builder
Calendar data is first defined in a text file. The text definition file must be converted

into binary format. You can use the NLS Calendar Utility (lxegen) to convert the

text definition file into binary format.

The name of the text definition file and its location are hard-coded and depend on

the platform. On UNIX platforms, the file name is lxecal.nlt . It is located in the

$ORACLE_HOME/ocommon/nls directory. A sample text definition file is included

in the directory.

The lxegen utility produces a binary file from the text definition file. The name of

the binary file is also hard-coded and depends on the platform. On UNIX platforms,

the name of the binary file is lxecal.nlb . The binary file is generated in the same

directory as the text file and overwrites an existing binary file.

After the binary file has been generated, it is automatically loaded during system

initialization. Do not move or rename the file.

Invoke the calendar utility from the command line as follows:

% lxegen

Displaying a Code Chart with the Oracle Locale Builder
You can display and print the code charts of character sets with the Oracle Locale

Builder.

Figure 12–14 shows the opening screen for Oracle Locale Builder.

See Also:

■ Platform-specific documentation for the location of the files on

your system

■ "Calendar Systems" on page A-25
12-18 Oracle9i Database Globalization Support Guide

Displaying a Code Chart with the Oracle Locale Builder
Figure 12–14 Opening Screen for Oracle Locale Builder

In the File menu, choose New. In the New menu, choose Character Set. Figure 12–15

shows the resulting screen.
Customizing Locale Data 12-19

Displaying a Code Chart with the Oracle Locale Builder
Figure 12–15 General Character Set Screen

Click Show Existing Definitions. Highlight the character set you wish to display.

Figure 12–16 shows the Existing Definitions dialog box with US7ASCII highlighted.

Figure 12–16 Choosing US7ASCII in the Existing Definitions Dialog Box
12-20 Oracle9i Database Globalization Support Guide

Displaying a Code Chart with the Oracle Locale Builder
Click Open to choose the character set. Figure 12–17 shows the General screen when

US7ASCII has been chosen.

Figure 12–17 General Screen When US7ASCII Has Been Loaded

Click the Character Data Mapping tab. Figure 12–18 shows the Character Data

Mapping screen for US7ASCII.
Customizing Locale Data 12-21

Displaying a Code Chart with the Oracle Locale Builder
Figure 12–18 Character Data Mapping for US7ASCII

Click View CodeChart. Figure 12–19 shows the code chart for US7ASCII.
12-22 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder
Figure 12–19 US7ASCII Code Chart

It shows the encoded value of each character in the local character set, the glyph

associated with each character, and the Unicode value of each character in the local

character set.

If you want to print the code chart, then click Print Page.

Creating a New Character Set Definition with the Oracle Locale Builder
You can customize a character set to meet specific user needs. In Oracle9i, you can

extend an existing encoded character set definition. User-defined characters are

often used to encode special characters that represent the following:

■ Proper names

■ Historical Han characters that are not defined in an existing character set

standard
Customizing Locale Data 12-23

Creating a New Character Set Definition with the Oracle Locale Builder
■ Vendor-specific characters

■ New symbols or characters that you define

This section describes how Oracle supports user-defined characters. It includes the

following topics:

■ Character Sets with User-Defined Characters

■ Oracle Character Set Conversion Architecture

■ Unicode 3.1 Private Use Area

■ User-Defined Character Cross-References Between Character Sets

■ Guidelines for Creating a New Character Set from an Existing Character Set

■ Example: Creating a New Character Set Definition with the Oracle Locale

Builder

■ Supporting User-Defined Characters in Java

Character Sets with User-Defined Characters
User-defined characters are typically supported within East Asian character sets.

These East Asian character sets have at least one range of reserved code points for

user-defined characters. For example, Japanese Shift-JIS preserves 1880 code points

for user-defined characters. They are shown in Table 12–1.

Table 12–1 Shift JIS User-Defined Character Ranges

Japanese Shift JIS User-Defined Character Range
Number of Code
Points

F040-F07E, F080-F0FC 188

F140-F17E, F180-F1FC 188

F240-F27E, F280-F2FC 188

F340-F37E, F380-F3FC 188

F440-F47E, F480-F4FC 188

F540-F57E, F580-F5FC 188

FF640-F67E, F680-F6FC 188

F740-F77E, F780-F7FC 188

F840-F87E, F880-F8FC 188
12-24 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder
The Oracle character sets listed in Table 12–2 contain predefined ranges that support

user-defined characters.

Oracle Character Set Conversion Architecture
The code point value that represents a particular character can vary among different

character sets. A Japanese kanji character is shown in Figure 12–20.

Figure 12–20 Japanese Kanji Character

The following table shows how the character is encoded in different character sets.

F940-F97E, F980-F9FC 188

Table 12–2 Oracle Character Sets with User-Defined Character Ranges

Character Set Name
Number of Code Points Available for User-Defined
Characters

JA16DBCS 4370

JA16EBCDIC930 4370

JA16SJIS 1880

JA16SJISYEN 1880

KO16DBCS 1880

KO16MSWIN949 1880

ZHS16DBCS 1880

ZHS16GBK 2149

ZHT16DBCS 6204

ZHT16MSWIN950 6217

Table 12–1 Shift JIS User-Defined Character Ranges (Cont.)

Japanese Shift JIS User-Defined Character Range
Number of Code
Points
Customizing Locale Data 12-25

Creating a New Character Set Definition with the Oracle Locale Builder
In Oracle, all character sets are defined in terms of Unicode 3.1 code points. That is,

each character is defined as a Unicode 3.1 code value. Character conversion takes

place transparently to users by using Unicode as the intermediate form. For

example, when a JA16SJIS client connects to a JA16EUC database, the character

shown inFigure 12–20 has the code point value 889F when it is entered from the

JA16SJIS client. It is internally converted to Unicode (with code point value 4E9C)

and then converted to JA16EU (code point value B0A1).

Unicode 3.1 Private Use Area
Unicode 3.1 reserves the range E000-F8FF for the Private Use Area (PUA). The PUA

is intended for private use character definition by end users or vendors.

User-defined characters can be converted between two Oracle character sets by

using Unicode 3.1 PUA as the intermediate form, the same as standard characters.

User-Defined Character Cross-References Between Character Sets
User-defined character cross-references between Japanese character sets, Korean

character sets, Simplified Chinese character sets and Traditional Chinese character

sets are contained in the following distribution sets:

${ORACLE_HOME}/ocommon/nls/demo/udc_ja.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_ko.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_zhs.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_zht.txt

These cross-references are useful when registering user-defined characters across

operating systems. For example, when registering a new user-defined character on

both a Japanese Shift-JIS operating system and a Japanese IBM Host operating

system, you may want to use F040 on the Shift-JIS operating system and 6941 on

IBM Host operating system for the new user-defined character so that Oracle can

convert correctly between JA16SJIS and JA16DBCS. You can find out that both

Shift-JIS UDC value F040 and IBM Host UDC value 6941 are mapped to the same

Unicode PUA value E000 in the user-defined character cross-reference.

Unicode
Encoding

JA16SJIS
Encoding

JA16EUC
Encoding

JA16DBCS
Encoding

4E9C 889F B0A1 4867

See Also: Appendix B, "Unicode Character Code Assignments"
12-26 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder
Guidelines for Creating a New Character Set from an Existing Character Set
By default, the Oracle Locale Builder generates the next available character set

name for you. You can also generate your own character set name. Use the

following format for naming character set definition NLT files:

lx2 dddd.nlt

dddd is the 4-digit Character Set ID in hex.

When you modify a character set, observe the following guidelines:

■ Do not remap existing characters.

■ All character mappings must be unique.

■ New characters should be mapped into the Unicode private use range e000 to

f4ff. (Note that the actual Unicode 3.1 private use range is e000-f8ff. However,

Oracle reserves f500-f8ff for its own private use.)

■ No line in the character set definition file can be longer than 80 characters.

If a character set is derived from an existing Oracle character set, Oracle

Corporation recommends using the following character set naming convention:

<Oracle_character_set_name ><organization_name >EXT<version >

For example, if a company such as Sun Microsystems adds user-defined characters

to the JA16EUC character set, the following character set name is appropriate:

JA16EUCSUNWEXT1

The character set name contains the following parts:

■ JA16EUC is the character set name defined by Oracle

■ SUNW represents the organization name (company stock trading abbreviation

for Sun Microsystems)

■ EXT specifies that this character set is an extension to the JA16EUC character set

■ 1 specifies the version

Example: Creating a New Character Set Definition with the Oracle Locale Builder
This section shows how to create a new character set called MYCHARSET with

10001 for its Character Set ID. The example starts with the US7ASCII character set

and adds 10 Chinese characters. Figure 12–21 shows the General screen.
Customizing Locale Data 12-27

Creating a New Character Set Definition with the Oracle Locale Builder
Figure 12–21 Character Set General Information

Click Show Existing Definitions and choose the US7ASCII character set from the

Existing Definitions dialog box.

The ISO Character Set ID and Base Character Set ID fields are optional. The Base

Character Set ID is used for inheriting values so that the properties of the base

character set are used as a template. The Character Set ID is automatically

generated, but you can override it. The valid range for a user-defined character set

ID is 10,000 to 20,000. The ISO Character Set ID field remains blank for user-defined

character sets.

Figure 12–22 shows the Type Specification screen.
12-28 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder
Figure 12–22 Character Set Type Specification

The Character Set Category is ASCII_BASED. The BYTE_UNIQUE flag is checked.

When you have chosen an existing character set, the fields for the Type Specification

screen should already be set to appropriate values. You should keep these values

unless you have a specific reason for changing them. If you need to change the

settings, use the following guidelines:

■ FIXED_WIDTH is to identify character sets whose characters have a uniform

length.

■ BYTE_UNIQUE means the single-byte range of code points is distinct from the

multibyte range. The code in the first byte indicates whether the character is

single-byte or multibyte. An example is JA16EUC.

■ DISPLAY identifies character sets that are used only for display on clients and

not for storage. Some Arabic, Devanagari, and Hebrew character sets are

display character sets.
Customizing Locale Data 12-29

Creating a New Character Set Definition with the Oracle Locale Builder
■ SHIFT is for character sets that require extra shift characters to distinguish

between single-byte characters and multibyte characters.

Figure 12–23 shows how to add user-defined characters.

Figure 12–23 Importing User-Defined Character Data

Open the Character Data Mapping screen. Highlight the character that you want to

add characters after in the character set. In this example, the 0xfe local character

value is highlighted.

You can add one character at a time or use a text file to import a large number of

characters. In this example, a text file is imported. The first column is the local

See Also: "Variable-width multibyte encoding schemes" on

page 2-10 for more information about shift-in and shift-out

character sets
12-30 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder
character value. The second column is the Unicode value. The file contains the

following character values:

88a2 963f

88a3 54c0

88a4 611b

88a5 6328

88a6 59f6

88a7 9022

88a8 8475

88a9 831c

88aa 7a50

88ab 60aa

In the File menu, choose Import User-Defined Customers Data.

Figure 12–24 shows that the imported characters are added after 0xfe in the

character set.
Customizing Locale Data 12-31

Creating a New Character Set Definition with the Oracle Locale Builder
Figure 12–24 New Characters in the Character Set

Supporting User-Defined Characters in Java
If you have Java products such as JDBC or SQLJ in your applications and want

them to support user-defined characters, then customize your character set as

desired. Then generate and install a special Java zip file (gss_custom.zip) into

your Oracle home directory.

On UNIX, enter a command similar to the following:

$ORACLE_HOME/JRE/bin/jre -classpath $ORACLE_HOME/jlib/gss-1_1.zip:
$ORACLE_HOME/jlib/gss_charset-1_2.zip Ginstall lx22710.nlt

On Windows, enter a command similar to the following:

%JREHOME%\bin\jre.exe -classpath %ORACLE_HOME%\jlib\gss-1_1.zip:
%ORACLE_HOME%\jlib\gss_charset-1_2.zip Ginstall lx22710.nlt
12-32 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder
%JREHOME% is the C:\Program Files\Oracle\jre\version_num directory.

lx22710.nlt is an example of an NLT file created by customizing a character set

using the Oracle Locale Builder.

These commands generate a gss_custom.zip file in the current directory. If you

need to add support for more than one customized character set, you can append

their definitions to the same gss_custom.zip file by re-issuing the command for

each of the additional customized character sets. For example, enter the following

commands on UNIX:

$ORACLE_HOME/JRE/bin/jre -classpath $ORACLE_HOME/jlib/gss-1_1.zip:
 $ORACLE_HOME/jlib/gss_charset-1_2.zip Ginstall lx22710.nlt

$ORACLE_HOME/JRE/bin/jre -classpath $ORACLE_HOME/jlib/gss-1_1.zip:
 $ORACLE_HOME/jlib/gss_charset-1_2.zip Ginstall lx22711.nlt

$ORACLE_HOME/JRE/bin/jre -classpath $ORACLE_HOME/jlib/gss-1_1.zip:
 $ORACLE_HOME/jlib/gss_charset-1_2.zip Ginstall lx22712.nlt

lx22710.nlt , lx22711.nlt and lx22712.nlt are contained in gss_
custom.zip .

After gss_custom.zip has been created, store it in the

$ORACLE_HOME/ocommon/nls/admin/data directory. Enter the following

command:

% cp gss_custom.zip $ORACLE_HOME/ocommon/nls/admin/data

Adding the Custom Zip File to Java Components
You may want to add the gss_custom.zip file to the following Java components:

■ Java Virtual Machine

■ Oracle HTTP Server

■ JDBC on the Client

Java Virtual Machine Load the zip file into the database.

Enter the following command on UNIX:

%loadjava -u sys/ passwd -grant EXECUTE -synonym -r -r -v gss_custom.zip

Enter the following command on Windows:
Customizing Locale Data 12-33

Creating a New Character Set Definition with the Oracle Locale Builder
loadjava -u sys/ passwd -grant EXECUTE -synonym -r -r -v gss_custom.zip

Replace passwd by the password for SYS.

Oracle HTTP Server Edit the jserv.properties file.

On UNIX, add the following line:

wrapper.classpath = $ORACLE_HOME/ocommon/nls/admin/data/gss_custom.zip

On Windows, add the following line:

wrapper.classpath = %ORA_HOME%\ocommon\nls\admin\data\gss_custom.zip

JDBC on the Client Modify the CLASSPATH.

Enter the following command on UNIX:

% setenv CLASSPATH $ORACLE_HOME/ocommon/nls/admin/data/gss_custom.zip

On Windows, add %ORACLE_HOME%\ocommon\nls\admin\data\gss_
custom.zip to the existing CLASSPATH.
12-34 Oracle9i Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder
Creating a New Linguistic Sort with the Oracle Locale Builder
This section shows how to create a new multilingual linguistic sort called MY_
GENERIC_M with a Collation ID of 10001 . The GENERIC_M linguistic is used as the

basis for the new linguistic sort. Figure 12–25 shows how to begin.

Figure 12–25 Collation General Information

Settings for the flags are automatically derived. SWAP_WITH_NEXT is relevant for

Thai and Lao sorts. REVERSE_SECONDARY is for French sorts. CANONICAL_
EQUIVALENCE determines whether canonical rules will be used. In this example,

CANONICAL_EQUIVALENCE is checked.

The valid range for Collation ID (sort ID) for a user-defined sort is 1,000 to 2,000 for

monolingual collation and 10,000 to 11,000 for multilingual collation.
Customizing Locale Data 12-35

Creating a New Linguistic Sort with the Oracle Locale Builder
Figure 12–26 shows the Unicode Collation Sequence screen.

Figure 12–26 Unicode Collation Sequence

This example customizes the character set by moving digits so that they sort after

letters. Complete the following steps:

1. Highlight the Unicode value that you want to move. In Figure 12–26, the x0034
Unicode value is highlighted. Its location in the Unicode Collation Sequence is

called a node.

2. Click Cut. Select the location where you want to move the node.

3. Click Paste. Clicking Paste opens the Paste Node dialog box, shown in

Figure 12–27.

See Also:

■ Figure 12–29, "Canonical Rules" for more information about

canonical rules

■ Chapter 4, "Linguistic Sorting"
12-36 Oracle9i Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder
Figure 12–27 Paste Node Dialog Box

4. The Paste Node dialog box enables you to choose whether to paste the node

after or before the location you have selected. It also enables you to choose the

level (Primary, Secondary, or Tertiary) of the node in relation to the node that

you want to paste it next to.

Select the position and the level at which you want to paste the node.

In Figure 12–27, the After button and the Primary button are selected.

5. Click OK to paste the node.

Use similar steps to move other digits to a position after the letters a through z .

Figure 12–28 shows the resulting Unicode Collation Sequence after the digits 0
through 4 were moved to a position after the letters a through z .
Customizing Locale Data 12-37

Creating a New Linguistic Sort with the Oracle Locale Builder
Figure 12–28 Unicode Collation Sequence After Modification

The rest of this section contains the following topics:

■ Changing the Sort Order for All Characters with the Same Diacritic

■ Changing the Sort Order for One Character with a Diacritic

Changing the Sort Order for All Characters with the Same Diacritic
This example shows how to change the sort order for characters with diacritics. You

can do this by changing the sort for all characters containing a particular diacritic or

by changing one character at a time. This example changes the sort of all characters

with a circumflex (for example, û) to be after all characters containing a tilde.

Verify the current sort order by choosing Canonical Rules in the Tools menu. This

opens the Canonical Rules dialog box, shown in Figure 12–29.
12-38 Oracle9i Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder
Figure 12–29 Canonical Rules

Figure 12–29 shows how characters are decomposed into their canonical

equivalents and their current sorting orders. For example, û is represented as u plus

^ .

In the main Oracle Locale Builder window, click the Non-Spacing Characters tab. If

you use the Non-Spacing Characters screen, then changes for diacritics apply to all

characters. Figure 12–30 shows the Non-Spacing Characters screen.

See Also: Chapter 4, "Linguistic Sorting" for more information

about canonical rules
Customizing Locale Data 12-39

Creating a New Linguistic Sort with the Oracle Locale Builder
Figure 12–30 Changing the Sort Order for All Characters with the Same Diacritic

Select the circumflex and click Cut. Click Yes in the Removal Confirmation dialog

box. Select the tilde and click Paste. Choose After and Secondary in the Paste Node

dialog box and click OK.

Figure 12–31 illustrates the new sort order.
12-40 Oracle9i Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder
Figure 12–31 The New Sort Order for Characters with the Same Diacritic

Changing the Sort Order for One Character with a Diacritic
To change the order of a specific character with a diacritic, insert the character

directly into the appropriate position. Characters with diacritics do not appear in

the Unicode Collation screen, so you cannot cut and paste them into the new

location.

This example changes the sort order for ä so that it sorts after Z.

Select the Unicode Collation tab. Highlight the character, Z, that you want to put ä
next to. Click Add. The Insert New Node dialog box appears, as shown in

Figure 12–32.
Customizing Locale Data 12-41

Creating a New Linguistic Sort with the Oracle Locale Builder
Figure 12–32 Changing the Sort Order of One Character with a Diacritic

Choose After and Primary in the Insert New Node dialog box. Enter the Unicode

code point value of ä. The code point value is \x00e4 . Click OK.

Figure 12–33 shows the resulting sort order.
12-42 Oracle9i Database Globalization Support Guide

Generating and Installing NLB Files
Figure 12–33 New Sort Order After Changing a Single Character

Generating and Installing NLB Files
After you have defined a new language, territory, character set, or linguistic sort,

generate new NLB files from the NLT files:

1. Back up the NLS installation boot file (lx0boot.nlb) and the NLS system boot

file (lx1boot.nlb) in the ORA_NLS33 directory. On a UNIX platform, enter

commands similar to the following:

% cd $ORA_NLS33
% cp lx0boot.nlb lx0boot.nlb.orig
% cp lx1boot.nlb lx1boot.nlb.orig
Customizing Locale Data 12-43

Generating and Installing NLB Files
2. In Oracle Locale Builder, choose Tools > Generate NLB or click the Generate

NLB icon in the left side bar.

3. Click Browse to find the directory where the NLT file is located. The location

dialog box is shown in Figure 12–34.

Figure 12–34 Location Dialog Box

Do not try to specify an NLT file. Oracle Locale Builder generates an NLB file

for each NLT file.

4. Click OK to generate the NLB files.

Figure 12–35 illustrates the final notification that you have successfully

generated NLB files for all NLT files in the directory.

Figure 12–35 NLB Generation Success Dialog Box

5. Copy the lx1boot.nlb file into the path that is specified by the ORA_NLS33
initialization parameter, typically $ORACLE_
HOME/OCOMMON/nls/admin/data . For example, on a UNIX platform, enter a

command similar to the following:

% cp / directory_name /lx1boot.nlb $ORA_NLS33/lx1boot.nlb
12-44 Oracle9i Database Globalization Support Guide

Generating and Installing NLB Files
6. Copy the new NLB files into the ORA_NLS33 directory. For example, on a

UNIX platform, enter commands similar to the following:

% cp / directory_name /lx22710.nlb $ORA_NLS33
% cp / directory_name /lx52710.nlb $ORA_NLA33

7. Repeat the preceding steps on each hardware platform. NLB files are

platform-specific binary files. You must compile and install the new NLB files

on both the server and the client machines.

8. Restart the database to use the newly created locale data.

9. To use the new locale data on the client side, exit the client and re-invoke the

client after installing the NLB files.

Note: Oracle Locale Builder generates NLB files in the directory

where the NLT files reside.
Customizing Locale Data 12-45

Generating and Installing NLB Files
12-46 Oracle9i Database Globalization Support Guide

Locale
A

Locale Data

This appendix lists the languages, territories, character sets, and other locale data

supported by the Oracle server. It includes these topics:

■ Languages

■ Translated Messages

■ Territories

■ Character Sets

■ Linguistic Sorting

■ Calendar Systems

■ Obsolete Locale Data

You can also obtain information about supported character sets, languages,

territories, and sorting orders by querying the V$NLS_VALID_VALUES dynamic

performance view.

See Also: Oracle9i Database Reference for more information about

the data that can be returned by this view
 Data A-1

Languages
Languages
Table A–1 lists the languages supported by the Oracle server.

Table A–1 Oracle Supported Languages

Name Abbreviation

AMERICAN us

ARABIC ar

ASSAMESE as

BANGLA bn

BRAZILIAN PORTUGUESE ptb

BULGARIAN bg

CANADIAN FRENCH frc

CATALAN ca

CROATIAN hr

CZECH cs

DANISH dk

DUTCH nl

EGYPTIAN eg

ENGLISH gb

ESTONIAN et

FINNISH sf

FRENCH f

GERMAN DIN din

GERMAN d

GREEK el

GUJARATI gu

HEBREW iw

HINDI hi

HUNGARIAN hu
A-2 Oracle9i Database Globalization Support Guide

Languages
ICELANDIC is

INDONESIAN in

ITALIAN i

JAPANESE ja

KANNADA kn

KOREAN ko

LATIN AMERICAN SPANISH esa

LATVIAN lv

LITHUANIAN lt

MALAY ms

MALAYALAM ml

MARATHI mr

MEXICAN SPANISH esm

NORWEGIAN n

ORIYA or

POLISH pl

PORTUGUESE pt

PUNJABI pa

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

SLOVENIAN sl

SPANISH e

SWEDISH s

TAMIL ta

TELUGU te

Table A–1 Oracle Supported Languages (Cont.)

Name Abbreviation
Locale Data A-3

Translated Messages
Translated Messages
Oracle error messages have been translated into the languages which are listed in

Table A–2.

THAI th

TRADITIONAL CHINESE zht

TURKISH tr

UKRAINIAN uk

VIETNAMESE vn

Table A–2 Oracle Supported Messages

Name Abbreviation

ARABIC ar

BRAZILIAN PORTUGUESE ptb

CANADIAN FRENCH frc

CATALAN ca

CZECH cs

DANISH dk

DUTCH nl

FINNISH sf

FRENCH f

GERMAN d

GREEK el

HEBREW iw

HUNGARIAN hu

ITALIAN i

JAPANESE ja

KOREAN ko

Table A–1 Oracle Supported Languages (Cont.)

Name Abbreviation
A-4 Oracle9i Database Globalization Support Guide

Territories
Territories
Table A–3 lists the territories supported by the Oracle server.

LATIN AMERICAN SPANISH esa

NORWEGIAN n

POLISH pl

PORTUGUESE pt

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

SPANISH e

SWEDISH s

THAI th

TRADITIONAL CHINESE zht

TURKISH tr

Table A–3 Oracle Supported Territories

Name Name Name

ALGERIA HONG KONG PERU

AMERICA HUNGARY POLAND

AUSTRALIA ICELAND PORTUGAL

AUSTRIA INDIA PUERTO RICO

BAHRAIN INDONESIA QATAR

BANGLADESH IRAQ ROMANIA

BELGIUM IRELAND SAUDI ARABIA

BRAZIL ISRAEL SINGAPORE

BULGARIA ITALY SLOVAKIA

Table A–2 Oracle Supported Messages (Cont.)

Name Abbreviation
Locale Data A-5

Character Sets
Character Sets
Oracle-supported character sets are listed in the following sections according to

three broad language groups.

■ Asian Language Character Sets

■ European Language Character Sets

CANADA JAPAN SLOVENIA

CATALONIA JORDAN SOMALIA

CHILE KAZAKHSTAN SOUTH AFRICA

CHINA KOREA SPAIN

CIS KUWAIT SUDAN

COLOMBIA LATVIA SWEDEN

COSTA RICA LEBANON SWITZERLAND

CROATIA LIBYA SYRIA

CYPRUS LITHUANIA TAIWAN

CZECH REPUBLIC LUXEMBOURG THAILAND

DENMARK MACEDONIA THE NETHERLANDS

DJIBOUTI MALAYSIA TUNISIA

EGYPT MAURITANIA TURKEY

EL SALVADOR MEXICO UKRAINE

ESTONIA MOROCCO UNITED ARAB EMIRATES

FINLAND NEW ZEALAND UNITED KINGDOM

FRANCE NICARAGUA UZBEKISTAN

GUATEMALA NORWAY VENEZUELA

GERMANY OMAN VIETNAM

GREECE PANAMA YEMEN

- - YUGOSLAVIA

Table A–3 Oracle Supported Territories (Cont.)

Name Name Name
A-6 Oracle9i Database Globalization Support Guide

Character Sets
■ Middle Eastern Language Character Sets

In addition, common subset/superset combinations are listed.

Note that some character sets may be listed under multiple language groups

because they provide multilingual support. For instance, Unicode spans the Asian,

European, and Middle Eastern language groups because it supports most of the

major scripts of the world.

The comment section indicates the type of encoding used:

SB = Single-byte encoding

MB = Multibyte encoding

FIXED = Fixed-width multibyte encoding

As mentioned in Chapter 3, "Setting Up a Globalization Support Environment", the

type of encoding affects performance, so use the most efficient encoding that meets

your language needs. Also, some encoding types can only be used with certain data

types. For instance, the AL16UTF16 character set can only be used as an NCHAR
character set, and not as a database character set.

Also documented in the comment section are other unique features of the character

set that may be important to users or your database administrator. For instance,

whether the character set supports the new Euro currency symbol, whether

user-defined characters are supported for character set customization, and whether

the character set is a strict superset of ASCII (which will allow you to make use of

the ALTER DATABASE [NATIONAL] CHARACTER SET statement in case of

migration.)

EURO = Euro symbol supported

UDC = User-defined characters supported

ASCII = Strict superset of ASCII

Oracle does not document individual code page layouts. For specific details about a

particular character set, its character repertoire, and code point values, you should

refer to the actual national, international, or vendor-specific standards.
Locale Data A-7

Character Sets
Asian Language Character Sets
Table A–4 lists the Oracle character sets that can support Asian languages.

Table A–4 Asian Language Character Sets

Name Description Comments

BN8BSCII Bangladesh National Code 8-bit BSCII SB, ASCII

ZHT16BIG5 BIG5 16-bit Traditional Chinese MB, ASCII

ZHT16HKSCS MS Windows Code Page 950 with Hong Kong
Supplementary Character Set

MB, ASCII, EURO

ZHS16CGB231280 CGB2312-80 16-bit Simplified Chinese MB, ASCII

ZHS32GB18030 GB18030-2000 MB, ASCII, EURO

JA16EUC EUC 24-bit Japanese MB, ASCII

JA16EUCTILDE The same as JA16EUC except for the way that the wave dash
and the tilde are mapped to and from Unicode.

MB, ASCII

JA16EUCYEN EUC 24-bit Japanese with '\' mapped to the Japanese yen
character

MB

ZHT32EUC EUC 32-bit Traditional Chinese MB, ASCII

ZHS16GBK GBK 16-bit Simplified Chinese MB, ASCII, UDC

ZHT16CCDC HP CCDC 16-bit Traditional Chinese MB, ASCII

JA16DBCS IBM EBCDIC 16-bit Japanese MB, UDC

JA16EBCDIC930 IBM DBCS Code Page 290 16-bit Japanese MB, UDC

KO16DBCS IBM EBCDIC 16-bit Korean MB, UDC

ZHS16DBCS IBM EBCDIC 16-bit Simplified Chinese MB, UDC

ZHT16DBCS IBM EBCDIC 16-bit Traditional Chinese MB, UDC

KO16KSC5601 KSC5601 16-bit Korean MB, ASCII

KO16KSCCS KSCCS 16-bit Korean MB, ASCII

JA16VMS JVMS 16-bit Japanese MB, ASCII

ZHS16MACCGB231280 Mac client CGB2312-80 16-bit Simplified Chinese MB

JA16MACSJIS Mac client Shift-JIS 16-bit Japanese MB

TH8MACTHAI Mac Client 8-bit Latin/Thai SB

TH8MACTHAIS Mac Server 8-bit Latin/Thai SB, ASCII
A-8 Oracle9i Database Globalization Support Guide

Character Sets
European Language Character Sets
Table A–5 lists the Oracle character sets that can support European languages.

TH8TISEBCDICS Thai Industrial Standard 620-2533-EBCDIC Server 8-bit SB

ZHT16MSWIN950 MS Windows Code Page 950 Traditional Chinese MB, ASCII, UDC

KO16MSWIN949 MS Windows Code Page 949 Korean MB, ASCII, UDC

VN8MSWIN1258 MS Windows Code Page 1258 8-bit Vietnamese SB, ASCII, EURO

IN8ISCII Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

SB, ASCII

JA16SJIS Shift-JIS 16-bit Japanese MB, ASCII, UDC

JA16SJISTILDE The same as JA16SJIS except for the way that the wave dash
and the tilde are mapped to and from Unicode.

MB, ASCII, UDC

JA16SJISYEN Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen
character

MB, UDC

ZHT32SOPS SOPS 32-bit Traditional Chinese MB, ASCII

ZHT16DBT Taiwan Taxation 16-bit Traditional Chinese MB, ASCII

TH8TISASCII Thai Industrial Standard 620-2533 - ASCII 8-bit SB, ASCII, EURO

TH8TISEBCDIC Thai Industrial Standard 620-2533 - EBCDIC 8-bit SB

ZHT32TRIS TRIS 32-bit Traditional Chinese MB, ASCII

AL16UTF16 See "Universal Character Sets" on page A-18 for details MB, EURO, FIXED

AL32UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO

UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO

UTFE See "Universal Character Sets" on page A-18 for details MB, EURO

VN8VN3 VN3 8-bit Vietnamese SB, ASCII

Table A–4 Asian Language Character Sets (Cont.)

Name Description Comments
Locale Data A-9

Character Sets
Table A–5 European Language Character Sets

Name Description Comments

US7ASCII ASCII 7-bit American SB, ASCII

SF7ASCII ASCII 7-bit Finnish SB

YUG7ASCII ASCII 7-bit Yugoslavian SB

RU8BESTA BESTA 8-bit Latin/Cyrillic SB, ASCII

EL8GCOS7 Bull EBCDIC GCOS7 8-bit Greek SB

WE8GCOS7 Bull EBCDIC GCOS7 8-bit West European SB

EL8DEC DEC 8-bit Latin/Greek SB

TR7DEC DEC VT100 7-bit Turkish SB

TR8DEC DEC 8-bit Turkish SB, ASCII

TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB

TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB

TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII

TR8MACTURKISH MAC Client 8-bit Turkish SB

TR8MACTURKISHS MAC Server 8-bit Turkish SB, ASCII

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish SB, ASCII, EURO

WE8BS2000L5 Siemens EBCDIC.DF.L5 8-bit West European/Turkish SB

WE8DEC DEC 8-bit West European SB, ASCII

D7DEC DEC VT100 7-bit German SB

F7DEC DEC VT100 7-bit French SB

S7DEC DEC VT100 7-bit Swedish SB

E7DEC DEC VT100 7-bit Spanish SB

NDK7DEC DEC VT100 7-bit Norwegian/Danish SB

I7DEC DEC VT100 7-bit Italian SB

NL7DEC DEC VT100 7-bit Dutch SB

CH7DEC DEC VT100 7-bit Swiss (German/French) SB

SF7DEC DEC VT100 7-bit Finnish SB

WE8DG DG 8-bit West European SB, ASCII
A-10 Oracle9i Database Globalization Support Guide

Character Sets
WE8EBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB

WE8EBCDIC37 EBCDIC Code Page 37 8-bit West European SB

D8EBCDIC273 EBCDIC Code Page 273/1 8-bit Austrian German SB

DK8EBCDIC277 EBCDIC Code Page 277/1 8-bit Danish SB

S8EBCDIC278 EBCDIC Code Page 278/1 8-bit Swedish SB

I8EBCDIC280 EBCDIC Code Page 280/1 8-bit Italian SB

WE8EBCDIC284 EBCDIC Code Page 284 8-bit Latin American/Spanish SB

WE8EBCDIC285 EBCDIC Code Page 285 8-bit West European SB

WE8EBCDIC924 Latin 9 EBCDIC 924 SB, EBCDIC

WE8EBCDIC1047 EBCDIC Code Page 1047 8-bit West European SB

WE8EBCDIC1047E Latin 1/Open Systems 1047 SB, EBCDIC, EURO

WE8EBCDIC1140 EBCDIC Code Page 1140 8-bit West European SB, EURO

WE8EBCDIC1140C EBCDIC Code Page 1140 Client 8-bit West European SB, EURO

WE8EBCDIC1145 EBCDIC Code Page 1145 8-bit West European SB, EURO

WE8EBCDIC1146 EBCDIC Code Page 1146 8-bit West European SB, EURO

WE8EBCDIC1148 EBCDIC Code Page 1148 8-bit West European SB, EURO

WE8EBCDIC1148C EBCDIC Code Page 1148 Client 8-bit West European SB, EURO

F8EBCDIC297 EBCDIC Code Page 297 8-bit French SB

WE8EBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB

WE8EBCDIC500 EBCDIC Code Page 500 8-bit West European SB

EE8EBCDIC870 EBCDIC Code Page 870 8-bit East European SB

EE8EBCDIC870C EBCDIC Code Page 870 Client 8-bit East European SB

EE8EBCDIC870S EBCDIC Code Page 870 Server 8-bit East European SB

WE8EBCDIC871 EBCDIC Code Page 871 8-bit Icelandic SB

EL8EBCDIC875 EBCDIC Code Page 875 8-bit Greek SB

EL8EBCDIC875R EBCDIC Code Page 875 Server 8-bit Greek SB

CL8EBCDIC1025 EBCDIC Code Page 1025 8-bit Cyrillic SB

Table A–5 European Language Character Sets (Cont.)

Name Description Comments
Locale Data A-11

Character Sets
CL8EBCDIC1025C EBCDIC Code Page 1025 Client 8-bit Cyrillic SB

CL8EBCDIC1025R EBCDIC Code Page 1025 Server 8-bit Cyrillic SB

CL8EBCDIC1025S EBCDIC Code Page 1025 Server 8-bit Cyrillic SB

CL8EBCDIC1025X EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic SB

BLT8EBCDIC1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual SB

BLT8EBCDIC1112S EBCDIC Code Page 1112 8-bit Server Baltic Multilingual SB

D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German SB, EURO

DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish SB, EURO

S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish SB, EURO

I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian SB, EURO

F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French SB, EURO

EEC8EUROASCI EEC Targon 35 ASCI West European/Greek SB

EEC8EUROPA3 EEC EUROPA3 8-bit West European/Greek SB

LA8PASSPORT German Government Printer 8-bit All-European Latin SB, ASCII

WE8HP HP LaserJet 8-bit West European SB

WE8ROMAN8 HP Roman8 8-bit West European SB, ASCII

HU8CWI2 Hungarian 8-bit CWI-2 SB, ASCII

HU8ABMOD Hungarian 8-bit Special AB Mod SB, ASCII

LV8RST104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic) SB, ASCII

US8PC437 IBM-PC Code Page 437 8-bit American SB, ASCII

BG8PC437S IBM-PC Code Page 437 8-bit (Bulgarian Modification) SB, ASCII

EL8PC437S IBM-PC Code Page 437 8-bit (Greek modification) SB, ASCII

EL8PC737 IBM-PC Code Page 737 8-bit Greek/Latin SB

LT8PC772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic) SB, ASCII

LT8PC774 IBM-PC Code Page 774 8-bit Lithuanian (Latin) SB, ASCII

BLT8PC775 IBM-PC Code Page 775 8-bit Baltic SB, ASCII

WE8PC850 IBM-PC Code Page 850 8-bit West European SB, ASCII

Table A–5 European Language Character Sets (Cont.)

Name Description Comments
A-12 Oracle9i Database Globalization Support Guide

Character Sets
EL8PC851 IBM-PC Code Page 851 8-bit Greek/Latin SB, ASCII

EE8PC852 IBM-PC Code Page 852 8-bit East European SB, ASCII

RU8PC855 IBM-PC Code Page 855 8-bit Latin/Cyrillic SB, ASCII

WE8PC858 IBM-PC Code Page 858 8-bit West European SB, ASCII, EURO

WE8PC860 IBM-PC Code Page 860 8-bit West European SB. ASCII

IS8PC861 IBM-PC Code Page 861 8-bit Icelandic SB, ASCII

CDN8PC863 IBM-PC Code Page 863 8-bit Canadian French SB, ASCII

N8PC865 IBM-PC Code Page 865 8-bit Norwegian SB. ASCII

RU8PC866 IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII

EL8PC869 IBM-PC Code Page 869 8-bit Greek/Latin SB, ASCII

LV8PC1117 IBM-PC Code Page 1117 8-bit Latvian SB, ASCII

US8ICL ICL EBCDIC 8-bit American SB

WE8ICL ICL EBCDIC 8-bit West European SB

WE8ISOICLUK ICL special version ISO8859-1 SB

WE8ISO8859P1 ISO 8859-1 West European SB, ASCII

EE8ISO8859P2 ISO 8859-2 East European SB, ASCII

SE8ISO8859P3 ISO 8859-3 South European SB, ASCII

NEE8ISO8859P4 ISO 8859-4 North and North-East European SB, ASCII

CL8ISO8859P5 ISO 8859-5 Latin/Cyrillic SB, ASCII

AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII

EL8ISO8859P7 ISO 8859-7 Latin/Greek SB, ASCII, EURO

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew SB, ASCII

NE8ISO8859P10 ISO 8859-10 North European SB, ASCII

BLT8ISO8859P13 ISO 8859-13 Baltic SB, ASCII

CEL8ISO8859P14 ISO 8859-13 Celtic SB, ASCII

WE8ISO8859P15 ISO 8859-15 West European SB, ASCII, EURO

LA8ISO6937 ISO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

Table A–5 European Language Character Sets (Cont.)

Name Description Comments
Locale Data A-13

Character Sets
IW7IS960 Israeli Standard 960 7-bit Latin/Hebrew SB

AR8ARABICMAC Mac Client 8-bit Latin/Arabic SB

EE8MACCE Mac Client 8-bit Central European SB

EE8MACCROATIAN Mac Client 8-bit Croatian SB

WE8MACROMAN8 Mac Client 8-bit Extended Roman8 West European SB

EL8MACGREEK Mac Client 8-bit Greek SB

IS8MACICELANDIC Mac Client 8-bit Icelandic SB

CL8MACCYRILLIC Mac Client 8-bit Latin/Cyrillic SB

AR8ARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII

EE8MACCES Mac Server 8-bit Central European SB, ASCII

EE8MACCROATIANS Mac Server 8-bit Croatian SB, ASCII

WE8MACROMAN8S Mac Server 8-bit Extended Roman8 West European SB, ASCII

CL8MACCYRILLICS Mac Server 8-bit Latin/Cyrillic SB, ASCII

EL8MACGREEKS Mac Server 8-bit Greek SB, ASCII

IS8MACICELANDICS Mac Server 8-bit Icelandic SB

BG8MSWIN MS Windows 8-bit Bulgarian Cyrillic SB, ASCII

LT8MSWIN921 MS Windows Code Page 921 8-bit Lithuanian SB, ASCII

ET8MSWIN923 MS Windows Code Page 923 8-bit Estonian SB, ASCII

EE8MSWIN1250 MS Windows Code Page 1250 8-bit East European SB, ASCII, EURO

CL8MSWIN1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic SB, ASCII, EURO

WE8MSWIN1252 MS Windows Code Page 1252 8-bit West European SB, ASCII, EURO

EL8MSWIN1253 MS Windows Code Page 1253 8-bit Latin/Greek SB, ASCII, EURO

BLT8MSWIN1257 MS Windows Code Page 1257 8-bit Baltic SB, ASCII, EURO

BLT8CP921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic SB, ASCII

LV8PC8LR Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII

WE8NCR4970 NCR 4970 8-bit West European SB, ASCII

WE8NEXTSTEP NeXTSTEP PostScript 8-bit West European SB, ASCII

Table A–5 European Language Character Sets (Cont.)

Name Description Comments
A-14 Oracle9i Database Globalization Support Guide

Character Sets
Middle Eastern Language Character Sets
Table A–6 lists the Oracle character sets that can support Middle Eastern languages.

CL8ISOIR111 ISOIR111 Cyrillic SB

CL8KOI8R RELCOM Internet Standard 8-bit Latin/Cyrillic SB, ASCII

CL8KOI8U KOI8 Ukrainian Cyrillic SB

US8BS2000 Siemens 9750-62 EBCDIC 8-bit American SB

DK8BS2000 Siemens 9750-62 EBCDIC 8-bit Danish SB

F8BS2000 Siemens 9750-62 EBCDIC 8-bit French SB

D8BS2000 Siemens 9750-62 EBCDIC 8-bit German SB

E8BS2000 Siemens 9750-62 EBCDIC 8-bit Spanish SB

S8BS2000 Siemens 9750-62 EBCDIC 8-bit Swedish SB

DK7SIEMENS9780X Siemens 97801/97808 7-bit Danish SB

F7SIEMENS9780X Siemens 97801/97808 7-bit French SB

D7SIEMENS9780X Siemens 97801/97808 7-bit German SB

I7SIEMENS9780X Siemens 97801/97808 7-bit Italian SB

N7SIEMENS9780X Siemens 97801/97808 7-bit Norwegian SB

E7SIEMENS9780X Siemens 97801/97808 7-bit Spanish SB

S7SIEMENS9780X Siemens 97801/97808 7-bit Swedish SB

EE8BS2000 Siemens EBCDIC.DF.04 8-bit East European SB

WE8BS2000 Siemens EBCDIC.DF.04 8-bit West European SB

WE8BS2000E Siemens EBCDIC.DF.04 8-bit West European SB, EURO

CL8BS2000 Siemens EBCDIC.EHC.LC 8-bit Cyrillic SB

AL16UTF16 See "Universal Character Sets" on page A-18 for details MB, EURO, FIXED

AL32UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO

UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO

UTFE See "Universal Character Sets" on page A-18 for details MB, EURO

Table A–5 European Language Character Sets (Cont.)

Name Description Comments
Locale Data A-15

Character Sets
Table A–6 Middle Eastern Character Sets

Name Description Comments

AR8APTEC715 APTEC 715 Server 8-bit Latin/Arabic SB, ASCII

AR8APTEC715T APTEC 715 8-bit Latin/Arabic SB

AR8ASMO708PLUS ASMO 708 Plus 8-bit Latin/Arabic SB, ASCII

AR8ASMO8X ASMO Extended 708 8-bit Latin/Arabic SB, ASCII

AR8ADOS710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic SB, ASCII

AR8ADOS710T Arabic MS-DOS 710 8-bit Latin/Arabic SB

AR8ADOS720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic SB, ASCII

AR8ADOS720T Arabic MS-DOS 720 8-bit Latin/Arabic SB

TR7DEC DEC VT100 7-bit Turkish SB

TR8DEC DEC 8-bit Turkish SB

WE8EBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB

IW8EBCDIC424 EBCDIC Code Page 424 8-bit Latin/Hebrew SB

IW8EBCDIC424S EBCDIC Code Page 424 Server 8-bit Latin/Hebrew SB

WE8EBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB

IW8EBCDIC1086 EBCDIC Code Page 1086 8-bit Hebrew SB

AR8EBCDIC420S EBCDIC Code Page 420 Server 8-bit Latin/Arabic SB

AR8EBCDICX EBCDIC XBASIC Server 8-bit Latin/Arabic SB

TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB

TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB

AR8HPARABIC8T HP 8-bit Latin/Arabic SB

TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII

IW8PC1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew SB, ASCII

AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew SB, ASCII

WE8ISO8859P9 ISO 8859-9 West European & Turkish SB, ASCII

LA8ISO6937 ISO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

IW7IS960 Israeli Standard 960 7-bit Latin/Hebrew SB
A-16 Oracle9i Database Globalization Support Guide

Character Sets
IW8MACHEBREW Mac Client 8-bit Hebrew SB

AR8ARABICMAC Mac Client 8-bit Latin/Arabic SB

AR8ARABICMACT Mac 8-bit Latin/Arabic SB

TR8MACTURKISH Mac Client 8-bit Turkish SB

IW8MACHEBREWS Mac Server 8-bit Hebrew SB, ASCII

AR8ARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII

TR8MACTURKISHS Mac Server 8-bit Turkish SB, ASCII

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish SB, ASCII, EURO

IW8MSWIN1255 MS Windows Code Page 1255 8-bit Latin/Hebrew SB, ASCII, EURO

AR8MSWIN1256 MS Windows Code Page 1256 8-Bit Latin/Arabic SB. ASCII, EURO

IN8ISCII Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

SB

AR8MUSSAD768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic SB, ASCII

AR8MUSSAD768T Mussa'd Alarabi/2 768 8-bit Latin/Arabic SB

AR8NAFITHA711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic SB, ASCII

AR8NAFITHA711T Nafitha Enhanced 711 8-bit Latin/Arabic SB

AR8NAFITHA721 Nafitha International 721 Server 8-bit Latin/Arabic SB, ASCII

AR8NAFITHA721T Nafitha International 721 8-bit Latin/Arabic SB

AR8SAKHR706 SAKHR 706 Server 8-bit Latin/Arabic SB, ASCII

AR8SAKHR707 SAKHR 707 Server 8-bit Latin/Arabic SB, ASCII

AR8SAKHR707T SAKHR 707 8-bit Latin/Arabic SB

AR8XBASIC XBASIC 8-bit Latin/Arabic SB

WE8BS2000L5 Siemens EBCDIC.DF.04.L5 8-bit West European/Turkish SB

AL16UTF16 See "Universal Character Sets" on page A-18 for details MB, EURO, FIXED

AL32UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO

UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO

UTFE See "Universal Character Sets" on page A-18 for details MB, EURO

Table A–6 Middle Eastern Character Sets (Cont.)

Name Description Comments
Locale Data A-17

Character Sets
Universal Character Sets
Table A–7 lists the Oracle character sets that provide universal language support.

They attempt to support all languages of the world, including, but not limited to,

Asian, European, and Middle Eastern languages.

Character Set Conversion Support
The following character set encodings are supported for conversion only. They

cannot be used as the database or national character set:

■ AL16UTF16LE

■ ISO2022-CN

■ ISO2022-JP

■ ISO2022-KR

■ HZ-GB-2312

You can use these character sets as the source_char_set or dest_char_set in

the CONVERT function.

Table A–7 Universal Character Sets

Name Description Comments

AL16UTF16 Unicode 3.1 UTF-16 Universal character set MB, EURO, FIXED

AL32UTF8 Unicode 3.1 UTF-8 Universal character set MB, ASCII, EURO

UTF8 Unicode 3.0 UTF-8 Universal character set, CESU-8 compliant MB, ASCII, EURO

UTFE EBCDIC form of Unicode 3.0 UTF-8 Universal character set MB, EURO

Note: CESU-8 defines an encoding scheme for Unicode that is

identical to UTF-8 except for its representation of supplementary

characters. In CESU-8, supplementary characters are represented as

six-byte sequences that result from the transformation of each

UTF-16 surrogate code unit into an eight-bit form that is similar to

the UTF-8 transformation, but without first converting the input

surrogate pairs to a scalar value. See Unicode Technical Report #26.

See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode"
A-18 Oracle9i Database Globalization Support Guide

Character Sets
Subsets and Supersets
Table A–8 lists common subset/superset relationships.

See Also:

■ Oracle9i SQL Reference for more information about the CONVERT
function

■ "The CONVERT Function" on page 7-6

Table A–8 Subset-Superset Pairs

Subset Superset

AR8ADOS710 AR8ADOS710T

AR8ADOS720 AR8ADOS720T

AR8ADOS720T AR8ADOS720

AR8APTEC715 AR8APTEC715T

AR8ARABICMACT AR8ARABICMAC

AR8ISO8859P6 AR8ASMO708PLUS

AR8ISO8859P6 AR8ASMO8X

AR8MUSSAD768 AR8MUSSAD768T

AR8MUSSAD768T AR8MUSSAD768

AR8NAFITHA711 AR8NAFITHA711T

AR8NAFITHA721 AR8NAFITHA721T

AR8SAKHR707 AR8SAKHR707T

AR8SAKHR707T AR8SAKHR707

BLT8CP921 BLT8ISO8859P13

BLT8CP921 LT8MSWIN921

D7DEC D7SIEMENS9780X

D7SIEMENS9780X D7DEC

DK7SIEMENS9780X N7SIEMENS9780X

I7DEC I7SIEMENS9780X

I7SIEMENS9780X IW8EBCDIC424
Locale Data A-19

Character Sets
US7ASCII is a special case because so many other character sets are supersets of it.

Table A–9 lists supersets for US7ASCII.

IW8EBCDIC424 IW8EBCDIC1086

KO16KSC5601 KO16MSWIN949

LT8MSWIN921 BLT8ISO8859P13

LT8MSWIN921 BLT8CP921

N7SIEMENS9780X DK7SIEMENS9780X

US7ASCII See Table A–9, "US7ASCII Supersets".

WE16DECTST WE16DECTST2

WE16DECTST2 WE16DECTST

WE8DEC TR8DEC

WE8DEC WE8NCR4970

WE8ISO8859P1 WE8MSWIN1252

WE8ISO8859P9 TR8MSWIN1254

WE8NCR4970 TR8DEC

WE8NCR4970 WE8DEC

WE8PC850 WE8PC858

ZHS16GBK ZHS32GB18030

Table A–9 US7ASCII Supersets

Supersets Supersets Supersets

AL24UTFFSS EE8MACCES NEE8ISO8859P4

AL32UTF8 EE8MACCROATIANS RU8BESTA

AR8ADOS710 EE8MSWIN1250 RU8PC855

AR8ADOS710T EE8PC852 RU8PC866

AR8ADOS720 EL8DEC SE8ISO8859P3

AR8ADOS720T EL8ISO8859P7 TH8MACTHAIS

Table A–8 Subset-Superset Pairs (Cont.)

Subset Superset
A-20 Oracle9i Database Globalization Support Guide

Character Sets
AR8APTEC715 EL8MACGREEKS TH8TISASCII

AR8APTEC715T EL8MSWIN1253 TR8DEC

AR8ARABICMACS EL8PC437S TR8MACTURKISHS

AR8ASMO708PLUS EL8PC851 TR8MSWIN1254

AR8ASMO8X EL8PC869 TR8PC857

AR8HPARABIC8T ET8MSWIN923 US8PC437

AR8ISO8859P6 HU8ABMOD UTF8

AR8MSAWIN HU8CWI2 VN8MSWIN1258

AR8MUSSAD768 IN8ISCII VN8VN3

AR8MUSSAD768T IS8PC861 WE8DEC

AR8NAFITHA711 IW8ISO8859P8 WE8DG

AR8NAFITHA711T IW8MACHEBREWS WE8ISO8859P1

AR8NAFITHA721 IW8MSWIN1255 WE8ISO8859P15

AR8NAFITHA721T IW8PC1507 WE8ISO8859P9

AR8SAKHR706 JA16EUC WE8MACROMAN8S

AR8SAKHR707 JA16SJIS WE8MSWIN1252

AR8SAKHR707T JA16TSTSET WE8NCR4970

BG8MSWIN JA16TSTSET2 WE8NEXTSTEP

BG8PC437S JA16VMS WE8PC850

BLT8CP921 KO16KSC5601 WE8PC858

BLT8ISO8859P13 KO16KSCCS WE8PC860

BLT8MSWIN1257 KO16MSWIN949 WE8ROMAN8

BLT8PC775 KO16TSTSET ZHS16CGB231280

BN8BSCII LA8ISO6937 ZHS16GBK

CDN8PC863 LA8PASSPORT ZHT16BIG5

CEL8ISO8859P14 LT8MSWIN921 ZHT16CCDC

CL8ISO8859P5 LT8PC772 ZHT16DBT

Table A–9 US7ASCII Supersets (Cont.)

Supersets Supersets Supersets
Locale Data A-21

Linguistic Sorting
Linguistic Sorting
Oracle offers two kinds of linguistic sorts, monolingual and multilingual. In

addition, monolingual sorts can be extended to handle special cases. These special

cases (represented with a prefix X) typically mean that the characters will be sorted

differently from their ASCII values. For example, ch and ll are treated as a single

character in XSPANISH.

Table A–10 lists the monolingual linguistic sorts supported by the Oracle server.

CL8KOI8R LT8PC774 ZHT16HKSCS

CL8KOI8U LV8PC1117 ZHT16MSWIN950

CL8ISOIR111 LV8PC8LR ZHT32EUC

CL8MACCYRILLICS LV8RST104090 ZHT32SOPS

CL8MSWIN1251 N8PC865 ZHT32TRIS

EE8ISO8859P2 NE8ISO8859P10 ZHS32GB18030

ZHT32EUCTST - -

Table A–10 Monolingual Linguistic Sorts

Basic Name Extended Name Special Cases

ARABIC - -

ARABIC_MATCH - -

ARABIC_ABJ_SORT - -

ARABIC_ABJ_MATCH - -

ASCII7 - -

BENGALI - -

BIG5 - -

BINARY - -

BULGARIAN - -

CANADIAN FRENCH - -

CATALAN XCATALAN æ, AE, ß

Table A–9 US7ASCII Supersets (Cont.)

Supersets Supersets Supersets
A-22 Oracle9i Database Globalization Support Guide

Linguistic Sorting
CROATIAN XCROATIAN D, L, N, d, l, n, ß

CZECH XCZECH ch, CH, Ch, ß

CZECH_PUNCTUTION XCZECH_
PUNCTUATION

ch, CH, Ch, ß

DANISH XDANISH A, ß, Å, å

DUTCH XDUTCH ij, IJ

EBCDIC - -

EEC_EURO - -

EEC_EUROPA3 - -

ESTONIAN - -

FINNISH - -

FRENCH XFRENCH -

GERMAN XGERMAN ß

GERMAN_DIN XGERMAN_DIN ß, ä, ö, ü, Ä, Ö, Ü

GBK - -

GREEK - -

HEBREW - -

HKSCS - -

HUNGARIAN XHUNGARIAN cs, gy, ny, sz, ty, zs, ß, CS, Cs, GY,
Gy, NY, Ny, SZ, Sz, TY, Ty, ZS, Zs

ICELANDIC - -

INDONESIAN - -

ITALIAN - -

JAPANESE - -

LATIN - -

LATVIAN - -

LITHUANIAN - -

MALAY - -

Table A–10 Monolingual Linguistic Sorts (Cont.)

Basic Name Extended Name Special Cases
Locale Data A-23

Linguistic Sorting
Table A–11 lists the multilingual linguistic sorts available in Oracle. All of them

include GENERIC_M (an ISO standard for sorting Latin-based characters) as a base.

Multilingual linguistic sorts are used for a specific primary language together with

Latin-based characters. For example, KOREAN_M will sort Korean and Latin-based

characters, but it will not collate Chinese, Thai, or Japanese characters.

NORWEGIAN - -

POLISH - -

PUNCTUATION XPUNCTUATION -

ROMANIAN - -

RUSSIAN - -

SLOVAK XSLOVAK dz, DZ, Dz, ß (caron)

SLOVENIAN XSLOVENIAN ß

SPANISH XSPANISH ch, ll, CH, Ch, LL, Ll

SWEDISH - -

SWISS XSWISS ß

THAI_DICTIONARY - -

THAI_TELEPHONE - -

TURKISH XTURKISH æ, AE, ß

UKRAINIAN - -

UNICODE_BINARY - -

VIETNAMESE - -

WEST_EUROPEAN XWEST_EUROPEAN ß

Table A–11 Multilingual Linguistic Sorts

Basic Name Explanation

CANADIAN_M Canadian French sort supports reverse secondary, special
expanding characters

DANISH_M Danish sort supports sorting lower case characters before
upper case characters

Table A–10 Monolingual Linguistic Sorts (Cont.)

Basic Name Extended Name Special Cases
A-24 Oracle9i Database Globalization Support Guide

Calendar Systems
Calendar Systems
By default, most territory definitions use the Gregorian calendar system. Table A–12

lists the other calendar systems supported by the Oracle server.

FRENCH_M French sort supports reverse sort for secondary

GENERIC_M Generic sorting order which is based on ISO14651 and
Unicode canonical equivalence rules but excluding
compatible equivalence rules

JAPANESE_M Japanese sort supports SJIS character set order and EUC
characters which are not included in SJIS

KOREAN_M Korean sort: Hangul characters are based on Unicode binary
order. Hanja characters based on pronunciation order. All
Hangul characters are before Hanja characters

SPANISH_M Traditional Spanish sort supports special contracting
characters

THAI_M Thai sort supports swap characters for some vowels and
consonants

SCHINESE_RADICAL_M Simplified Chinese sort based on radical as primary order
and number of strokes order as secondary order

SCHINESE_STROKE_M Simplified Chinese sort uses number of strokes as primary
order and radical as secondary order

SCHINESE_PINYIN_M Simplified Chinese PinYin sorting order

TCHINESE_RADICAL_M Traditional Chinese sort based on radical as primary order
and number of strokes order as secondary order

TCHINESE_STROKE_M Traditional Chinese sort uses number of strokes as primary
order and radical as secondary order. It supports
supplementary characters.

Table A–11 Multilingual Linguistic Sorts (Cont.)

Basic Name Explanation
Locale Data A-25

Calendar Systems
Figure A–1 shows how March 20, 1998 appears in ROC Official:

Figure A–1 ROC Official Example

Table A–12 Supported Calendar Systems

Name Default Date Format
Character Set Used
For Default Date Format

Japanese Imperial EEYYMMDD JA16EUC

ROC Official EEyymmdd ZHT32EUC

Thai Buddha dd month EE yyyy TH8TISASCII

Persian DD Month YYYY AR8ASMO8X

Arabic Hijrah DD Month YYYY AR8ISO8859P6

English Hijrah DD Month YYYY AR8ISO8859P6
A-26 Oracle9i Database Globalization Support Guide

Obsolete Locale Data
Figure A–2 shows how March 27, 1998 appears in Japanese Imperial:

Figure A–2 Japanese Imperial Example

Obsolete Locale Data
Before Oracle server release 7.2, when a character set was renamed, the old name

was usually supported along with the new name for several releases after the

change. Beginning with release 7.2, the old names are no longer supported.

Table A–13 lists the affected character sets. If you reference any of these character

sets in your code, replace them with their new name:

Table A–13 New Names for Obsolete Character Sets

Old Name New Name

AL24UTFSS UTF8, AL32UTF8
Locale Data A-27

Obsolete Locale Data
AR8MSAWIN AR8MSWIN1256

CL8EBCDIC875S CL8EBCDIC875R

EL8EBCDIC875S EL8EBCDIC875R

JVMS JA16VMS

JEUC JA16EUC

SJIS JA16SJIS

JDBCS JA16DBCS

KSC5601 KO16KSC5601

KDBCS KO16DBCS

CGB2312-80 ZHS16CGB231280

CNS 11643-86 ZHT32EUC

JA16EUCFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

ZHS32EUCFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

ZHS16GBKFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

JA16DBCSFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

KO16DBCSFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

ZHS16DBCSFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

ZHS16CGB231280
FIXED

None. Replaced by new national character set. UTF8 and
AL16UTF16.

ZHT16DBCSFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

KO16KSC5601FIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

JA16SJISFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

Table A–13 New Names for Obsolete Character Sets (Cont.)

Old Name New Name
A-28 Oracle9i Database Globalization Support Guide

Obsolete Locale Data
Character set CL8MSWINDOW31 has been desupported. The newer character set

CL8MSWIN1251 is actually a duplicate of CL8MSWINDOW31 and includes some

characters omitted from the earlier version. Change any usage of

CL8MSWINDOW31 to CL8MSWIN1251 instead.

AL24UTFFSS Character Set Desupported
The Unicode Character Set AL24UTFFSS has been desupported in Oracle9i.
AL24UTFFSS was introduced with Oracle7 as the Unicode character set supporting

UTF-8 encoding scheme based on the Unicode standard 1.1, which is now obsolete.

In Oracle9i, Oracle now offers the Unicode database character set AL32UTF8 and

UTF8, which includes the Unicode enhancements based on the Unicode standard

3.1.

The migration path for an existing AL24UTFFSS database is to upgrade to UTF8

prior to upgrading to Oracle9i. As with all migrations to a new database character

set, Oracle Corporation recommends that you use the Character Set Scanner for

data analysis before attempting to migrate your existing database character set to

UTF8.

Bengali Language Definition Deprecated
The Bengali language definition is not compatible with Unicode standards. Oracle

Corporation recommends that customers use the Bangla language definition

instead. Bangla was introduced in Oracle9i Database Release 1 (9.0.1).

The Bengali language definition is supported in Oracle9i Database Release 2 (9.2),

but it may be desupported in a future release.

ZHT16BIG5FIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

ZHT32TRISFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

See Also: Chapter 11, "Character Set Scanner"

Table A–13 New Names for Obsolete Character Sets (Cont.)

Old Name New Name
Locale Data A-29

Obsolete Locale Data
Czechoslovakia Territory Definition Deprecated
Oracle Corporation recommends that customers use either Czech Republic or

Slovakia territory definitions in Oracle9i Database Release 2 (9.2). The

Czechoslovakia territory definition is supported in Oracle9i Database Release 2

(9.2), but it may be desupported in a future release.
A-30 Oracle9i Database Globalization Support Guide

Unicode Character Code Assignm
B

Unicode Character Code Assignments

This appendix offers an introduction to how Unicode assigns characters. This

appendix contains:

■ Unicode Code Ranges

■ UTF-16 Encoding

■ UTF-8 Encoding
ents B-1

Unicode Code Ranges
Unicode Code Ranges
Table B–1 contains code ranges that have been allocated in Unicode for UTF-16

character codes.

Table B–2 contains code ranges that have been allocated in Unicode for UTF-8

character codes.

Table B–1 Unicode Character Code Ranges for UTF-16 Character Codes

Types of Characters First 16 Bits Second 16 Bits

ASCII 0000-007F -

European (except ASCII),
Arabic, Hebrew

0080-07FF -

indic, Thai, certain
symbols (such as the euro
symbol), Chinese,
Japanese, Korean

0800-0FFF

1000 - CFFF

D000 - D7FF

F900 - FFFF

-

Private Use Area #1 E000 - EFFF

F000 - F8FF

-

Supplementary characters:
Additional Chinese,
Japanese, and Korean
characters; historic
characters; musical
symbols; mathematical
symbols

D800 - D8BF

D8CO - DABF

DAC0 - DB7F

DC00 - DFFF

DC00 - DFFF

DC00 - DFFF

rivate Use Area #2 DB80 - DBBF

DBC0 - DBFF

DC00 - DFFF

DC00 - DFFF

Table B–2 Unicode Character Code Ranges for UTF-8 Character Codes

Types of Characters First Byte Second Byte Third Byte Fourth Byte

ASCII 00 - 7F - - -

European (except ASCII),
Arabic, Hebrew

C2 - DF 80 - BF - -
B-2 Oracle9i Database Globalization Support Guide

UTF-16 Encoding
UTF-16 Encoding
As shown in Table B–1, UTF-16 character codes for some characters (Additional

Chinese/Japanese/Korean characters and Private Use Area #2) are represented in

two units of 16-bits. These are supplementary characters. A supplementary

character consists of two 16-bit values. The first 16-bit value is encoded in the range

from 0xD800 to 0xDBFF. The second 16-bit value is encoded in the range from

0xDC00 to 0xDFFF. With supplementary characters, UTF-16 character codes can

represent more than one million characters. Without supplementary characters,

only 65,536 characters can be represented. Oracle’s AL16UTF16 character set

supports supplementary characters.

Iindic, Thai, certain
symbols (such as the euro
symbol), Chinese,
Japanese, Korean

E0

E1 - EC

ED

EF

A0 - BF

80 - BF

80 - 9F

A4 - BF

80 - BF

80 - BF

80 - BF

80 - BF

-

Private Use Area #1 EE

EF

80 - BF

80 - A3

80 - BF

80 - BF

-

Supplementary characters:
Additional Chinese,
Japanese, and Korean
characters; historic
characters; musical
symbols; mathematical
symbols

F0

F1 - F2

F3

90 - BF

80 - BF

80 - AF

80 - BF

80 - BF

80 - BF

80 - BF

80 - BF

80 - BF

Private Use Area #2 F3

F4

B0 - BF

80 - 8F

80 - BF

80 - BF

80 - BF

80 - BF

Note: Blank spaces represent non-applicable code assignments.

Character codes are shown in hexadecimal representation.

See Also: "Supplementary Characters" on page 5-3

Table B–2 Unicode Character Code Ranges for UTF-8 Character Codes (Cont.)

Types of Characters First Byte Second Byte Third Byte Fourth Byte
Unicode Character Code Assignments B-3

UTF-8 Encoding
UTF-8 Encoding
The UTF-8 character codes in Table B–2 show that the following conditions are true:

■ ASCII characters use 1 byte

■ European (except ASCII), Arabic, and Hebrew characters require 2 bytes

■ Indic, Thai, Chinese, Japanese, and Korean characters as well as certain symbols

such as the euro symbol require 3 bytes

■ Characters in the Private Use Area #1 require 3 bytes

■ Supplementary characters require 4 bytes

■ Characters in the Private Use Area #2 require 4 bytes

Oracle’s AL32UTF8 character set supports 1-byte, 2-byte, 3-byte, and 4-byte values.

Oracle’s UTF8 character set supports 1-byte, 2-byte, and 3-byte values, but not

4-byte values.
B-4 Oracle9i Database Globalization Support Guide

Glossary

AL16UTF16

The default Oracle character set for the SQL NCHAR data type, which is used for

the national character set. It encodes Unicode data in the UTF-16 encoding.

AL32UTF8

An Oracle character set for the SQL CHAR data type, which is used for the database

character set. It encodes Unicode data in the UTF-8 encoding.

ASCII

American Standard Code for Information Interchange. A common encoded 7-bit

character set for English. ASCII includes the letters A-Z and a-z, as well as digits,

punctuation symbols, and control characters. The Oracle character set name is

US7ASCII.

binary sorting

Ordering character strings based on their binary coded values.

byte semantics

Treatment of strings as a sequence of bytes.

See Also: national character set

See Also: database character set

See Also: character semantics and length semantics
Glossary-1

canonical equivalence

A basic equivalence between characters or sequences of characters. For example, ç
is equivalent to the combination of c and , . They cannot be distinguished when

they are correctly rendered.

case

Refers to the condition of being uppercase or lowercase. For example, in a Latin

alphabet, A is the uppercase glyph for a, the lowercase glyph.

case conversion

Changing a character from uppercase to lowercase or vice versa.

character

A character is an abstract element of text. A character is different from a glyph,

which is a specific representation of a character. For example, the first character of

the English upper-case alphabet can be displayed as A, A, A, and so on. These forms

are different glyphs that represent the same character. A character, a character code,

and a glyph are related as follows:

character --(encoding)--> character code --(font)--> glyph

For example, the first character of the English uppercase alphabet is represented in

computer memory as a number. The number is called the encoding or the character
code. The character code for the first character of the English uppercase alphabet is

0x41 in the ASCII encoding scheme. The character code is 0xc1 in the EBCDIC

encoding scheme.

You must choose a font to display or print the character. The available fonts depend

on which encoding scheme is being used. The character can be printed or displayed

as A, A, or A, for example. The forms are different glyphs that represent the same

character.

character code

A character code is a number that represents a specific character. The number

depends on the encoding scheme. For example, the character code of the first

character of the English uppercase alphabet is 0x41 in the ASCII encoding scheme,

but it is 0xc1 in the EBCDIC encoding scheme.

See Also: character code and glyph

See Also: character
Glossary-2

character semantics

Treatment of strings as a sequence of characters.

character set

A collection of elements that represent textual information for a specific language or

group of languages. One language can be represented by more than one character

set.

A character set does not always imply a specific character encoding scheme. A

character encoding scheme is the assignment of a character code to each character in

a character set.

In this manual, a character set usually does imply a specific character encoding

scheme. Therefore, a character set is the same as an encoded character set in this

manual.

character set migration

Changing the character set of an existing database.

character string

An ordered group of characters.

A character string can also contain no characters. In this case, the character string is

called a null string. The number of characters in a null string is 0 (zero).

character classification

Character classification information provides details about the type of character

associated with each character code. For example, a character can uppercase,

lowercase, punctuation, or control character.

character encoding scheme

A rule that assigns numbers (character codes) to all characters in a character set.

Encoding scheme, encoding method, and encoding also mean character encoding
scheme.

client character set

The encoded character set used by the client. A client character set can differ from

the server character set. The server character set is called the database character set.

See Also: byte semantics and length semantics
Glossary-3

If the client character set is different from the database character set, then character

set conversion must occur.

code point

The numeric representation of a character in a character set. For example, the code

point of A in the ASCII character set is 0x41. The code point of a character is also

called the encoded value of a character.

collation

Ordering of character strings according to rules about sorting characters that are

associated with a language in a specific locale. Also called linguistic sort.

data scanning

The process of identifying potential problems with character set conversion and

truncation of data before migrating the database character set.

database character set

The encoded character set that is used to store text in the database. This includes

CHAR, VARCHAR2, LONG, and fixed-width CLOB column values and all SQL and

PL/SQL text.

diacritic

A mark near or through a character or combination of characters that indicates a

different sound than the sound of the character without the diacritical mark. For

example, the cedilla in façade is a diacritic. It changes the sound of c .

EBCDIC

Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded

character sets used mostly on IBM systems.

See Also: database character set

See Also: Unicode code point

See Also:

■ linguistic sort

■ monolingual linguistic sort

■ multilingual linguistic sort
Glossary-4

encoded character set

A character set with an associated character encoding scheme. An encoded

character set specifies the number (character code) that is assigned to each character.

encoded value

The numeric representation of a character in a character set. For example, the code

point of A in the ASCII character set is 0x41. The encoded value of a character is also

called the code point of a character.

font

An ordered collection of character glyphs that provides a graphical representation

of characters in a character set.

globalization

The process of making software suitable for different linguistic and cultural

environments. Globalization should not be confused with localization, which is the

process of preparing software for use in one specific locale.

glyph

A glyph (font glyph) is a specific representation of a character. A character can have

many different glyphs. For example, the first character of the English uppercase

alphabet can be printed or displayed as A, A, A, and so on.

These forms are different glyphs that represent the same character.

ideograph

A symbol that represents an idea. Chinese is an example of an ideographic writing

system.

ISO

International Organization for Standards. A worldwide federation of national

standards bodies from 130 countries. The mission of ISO is to develop and promote

standards in the world to facilitate the international exchange of goods and services.

See Also: character encoding scheme

See Also: character
Glossary-5

ISO 8859

A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also

known as ISO Latin1), and is used for Western European languages.

ISO 14651

A multilingual linguistic sort standard that is designed for almost all languages of

the world.

ISO/IEC 10646

A universal character set standard that defines the characters of most major scripts

used in the modern world. In 1993, ISO adopted Unicode version 1.1 as ISO/IEC

10646-1:1993. ISO/IEC 10646 has two formats: UCS-2 is a 2-byte fixed-width format,

and UCS-4 is a 4-byte fixed-width format. There are three levels of implementation,

all relating to support for composite characters:

■ Level 1 requires no composite character support.

■ Level 2 requires support for specific scripts (including most of the Unicode

scripts such as Arabic and Thai).

■ Level 3 requires unrestricted support for composite characters in all languages.

ISO currency

The 3-letter abbreviation used to denote a local currency, based on the ISO 4217

standard. For example, USD represents the United States dollar.

ISO Latin1

The ISO 8859-1 character set standard. It is an 8-bit extension to ASCII that adds 128

characters that include the most common Latin characters used in Western Europe.

The Oracle character set name is WE8ISO8859P1.

length semantics

Length semantics determines how you treat the length of a character string. The

length can be treated as a sequence of characters or bytes.

See Also: multilingual linguistic sort

See Also: ISO 8859

See Also: character semantics and byte semantics
Glossary-6

linguistic index

An index built on a linguistic sort order.

linguistic sort

A ordering of strings based on requirements from a locale instead of the binary

representation of the strings.

locale

A collection of information about the linguistic and cultural preferences from a

particular region. Typically, a locale consists of language, territory, character set,

linguistic, and calendar information defined in NLS data files.

localization

The process of providing language-specific or culture-specific information for

software systems. Translation of an application's user interface is an example of

localization. Localization should not be confused with globalization, which is the

making software suitable for different linguistic and cultural environments.

monolingual linguistic sort

An Oracle sort that has two levels of comparison for strings. Most European

languages can be sorted with a monolingual sort, but it is inadequate for Asian

languages.

monolingual support

Support for only one language.

multibyte

Two or more bytes.

When character codes are assigned to all characters in a specific language or a

group of languages, one byte (8 bits) can represent 256 different characters. Two

bytes (16 bits) can represent up to 65,536 different characters. Two bytes are not

enough to represent all the characters for many languages. Some characters require

3 or 4 bytes.

See Also: multilingual linguistic sort and monolingual linguistic

sort

See Also: multilingual linguistic sort
Glossary-7

One example is the UTF8 Unicode encoding. In UTF8, there are many 2-byte and

3-byte characters.

Another example is Traditional Chinese, used in Taiwan. It has more than 80,000

characters. Some character encoding schemes that are used in Taiwan use 4 bytes to

encode characters.

multibyte character

A character whose character code consists of two or more bytes under a certain

character encoding scheme.

Note that the same character may have different character codes under different

encoding schemes. Oracle cannot tell if a character is a multibyte character without

knowing which character encoding scheme is being used. For example, Japanese

Hankaku-Katakana (half-width Katakana) characters are one byte in the JA16SJIS

encoded character set, two bytes in JA16EUC, and three bytes in UTF8.

multibyte character string

A character string that consists of one of the following:

■ No characters (called a null string)

■ One or more single-byte characters

■ A mixture of one or more single-byte characters and one or more multibyte

characters

■ One or more multibyte characters

multilingual linguistic sort

An Oracle sort that uses evaluates strings on three levels. Asian languages require a

multilingual linguistic sort even if data exists in only one language. Multilingual

linguistic sorts are also used when data exists in several languages.

national character set

An alternate character set from the database character set that can be specified for

NCHAR, NVARCHAR2, and NCLOB columns. National character sets are in Unicode

only.

See Also: single byte

See Also: single-byte character
Glossary-8

NLB files

Binary files used by the Locale Builder to define locale-specific data. They define all

of the locale definitions that are shipped with a specific release of the Oracle

database server. You can create user-defined NLB files with Oracle Locale Builder.

NLS

National Language Support. NLS allows users to interact with the database in their

native languages. It also allows applications to run in different linguistic and

cultural environments. The term is somewhat obsolete because Oracle supports

global users at one time.

NLSRTL

National Language Support Runtime Library. This library is responsible for

providing locale-independent algorithms for internationalization. The

locale-specific information (that is, NLSDATA) is read by the NLSRTL library

during run-time.

NLT files

Text files used by the Locale Builder to define locale-specific data. Because they are

in text, you can view the contents.

null string

A character string that contains no characters.

Oracle Locale Builder

A GUI utility that offers a way to view, modify, or define locale-specific data. You

can also create your own formats for language, territory, character set, and linguistic

sort.

replacement character

A character used during character conversion when the source character is not

available in the target character set. For example, ? is often used as Oracle's default

replacement character.

restricted multilingual support

Multilingual support that is restricted to a group of related languages.Western

European languages can be represented with ISO 8859-1, for example. If

multilingual support is restricted, then Thai could not be added to the group.

See Also: Oracle Locale Builder and NLT files
Glossary-9

SQL CHAR datatypes

Includes CHAR, VARCHAR, VARCHAR2, CLOB, and LONG datatypes.

SQL NCHAR datatypes

Includes NCHAR, NVARCHAR, NVARCHAR2, and NCLOB datatypes.

script

A collection of related graphic symbols that are used in a writing system. Some

scripts can represent multiple languages, and some languages use multiple scripts.

Example of scripts include Latin, Arabic, and Han.

single byte

One byte. One byte usually consists of 8 bits. When character codes are assigned to

all characters for a specific language, one byte (8 bits) can represent 256 different

characters.

single-byte character

A single-byte character is a character whose character code consists of one byte

under a specific character encoding scheme. Note that the same character may have

different character codes under different encoding schemes. Oracle cannot tell

which character is a single-byte character without knowing which encoding scheme

is being used. For example, the euro currency symbol is one byte in the

WE8MSWIN1252 encoded character set, two bytes in AL16UTF16, and three bytes

in UTF8.

single-byte character string

A single-byte character string is a character string that consists of one of the

following:

■ No character (called a null string)

■ One or more single-byte characters

See Also: multibyte

See Also: multibyte character
Glossary-10

supplementary characters

The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes

to encode each character. This allowed 65,536 characters to be represented.

However, more characters need to be supported because of the large number of

Asian ideograms.

Unicode 3.1 defines supplementary characters to meet this need. It uses two 16-bit

code points (also known as surrogate pairs) to represent a single character. This

allows an additional 1,048,576 characters to be defined. The Unicode 3.1 standard

added the first group of 44,944 supplementary characters.

surrogate pairs

syllabary

Provide a mechanism for communicating phonetic information along with the

ideographic characters used by languages such as Japanese.

UCS-2

A 1993 ISO/IEC standard character set. It is a fixed-width, 16-bit Unicode character

set. Each character occupies 16 bits of storage. The ISO Latin1 characters are the first

256 code points, so it can be viewed as a 16-bit extension of ISO Latin1.

UCS-4

A fixed-width, 32-bit Unicode character set. Each character occupies 32 bits of

storage. The UCS-2 characters are the first 65,536 code points in this standard, so it

can be viewed as a 32-bit extension of UCS-2. This is also sometimes referred to as

ISO-10646.

Unicode

Unicode is a universal encoded character set that allows you information from any

language to be stored by using a single character set. Unicode provides a unique

code value for every character, regardless of the platform, program, or language.

Unicode database

A database whose database character set is UTF-8.

See Also: supplementary characters
Glossary-11

Unicode code point

A 16-bit binary value that can represent a unit of encoded text for processing and

interchange. Every point between U+0000 and U+FFFF is a code point.

Unicode datatype

A SQL NCHAR datatype (NCHAR, NVARCHAR2, and NCLOB). You can store Unicode

characters in columns of these datatypes even if the database character set is not

Unicode.

unrestricted multilingual support

The ability to use as many languages as desired. A universal character set, such as

Unicode, helps to provide unrestricted multilingual support because it supports a

very large character repertoire, encompassing most modern languages of the world.

UTFE

A Unicode 3.0 UTF-8 Oracle database character set with 6-byte supplementary

character support. It is used only on EBCDIC platforms.

UTF8

The UTF8 Oracle character set encodes characters in one, two, or three bytes. It is

for ASCII-based platforms. The UTF8 character set supports Unicode 3.0. Although

specific supplementary characters were not assigned code points in Unicode until

version 3.1, the code point range was allocated for supplementary characters in

Unicode 3.0. Supplementary characters are treated as two separate, user-defined

characters that occupy 6 bytes.

UTF-8

The 8-bit encoding of Unicode. It is a variable-width encoding. One Unicode

character can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters

from the European scripts are represented in either 1 or 2 bytes. Characters from

most Asian scripts are represented in 3 bytes. Supplementary characters are

represented in 4 bytes.

UTF-16

The 16-bit encoding of Unicode. It is an extension of UCS-2 and supports the

supplementary characters defined in Unicode 3.1 by using a pair of UCS-2 code

points. One Unicode character can be 2 bytes or 4 bytes in UTF-16 encoding.

Characters (including ASCII characters) from European scripts and most Asian

scripts are represented in 2 bytes. Supplementary characters are represented in 4

bytes.
Glossary-12

wide character

A fixed-width character format that is useful for extensive text processing because it

allows data to be processed in consistent, fixed-width chunks. Wide characters are

intended to support internal character processing.
Glossary-13

Glossary-14

Index

Numerics
7-bit encoding schemes, 2-9

8-bit encoding schemes, 2-9

A
abbreviations

languages, A-2

abstract datatype

creating as NCHAR, 2-19

ADO interface and Unicode, 6-34

AL16UTF16 character set, 5-6, A-18

AL24UTFFSS character set, 5-6

AL32UTF8 character set, 5-6, 5-7, A-18

ALTER DATABASE CHARACTER SET

statement, 10-10

migrating character sets in Oracle9i Real

Application Clusters, 10-10

migrating data, 10-8

using with selective imports, 10-10

ALTER DATABASE NATIONAL CHARACTER

SET statement, 10-10, 10-12

ALTER SESSION statement

SET NLS_CURRENCY clause, 3-33, 3-35

SET NLS_DATE_FORMAT clause, 3-19

SET NLS_LANGUAGE clause, 3-16

SET NLS_NUMERIC_CHARACTERS

clause, 3-32

SET NLS_TERRITORY clause, 3-16

ALTER TABLE MODIFY statement

migrating from CHAR to NCHAR, 10-12, 10-13

Arial Unicode MS font, 12-2

array parameter

Character Set Scanner, 11-10

ASCII encoding, 2-6

B
base characters, 4-5

base letter, 4-9

BFILE data

loading into LOBs, 7-15

binary sort, 4-2

example, 4-7

binding and defining CLOB and NCLOB data in

OCI, 6-21

binding and defining SQL CHAR datatypes in

OCI, 6-18

binding and defining SQL NCHAR datatypes in

OCI, 6-20

BLANK_TRIMMING parameter, 10-4

BLOBs

creating indexes, 5-24

boundaries parameter

Character Set Scanner, 11-10

byte semantics, 2-12, 3-43

C
C number format mask, 3-34

Calendar Utility, 12-17

calendars

customizing, 12-17

parameter, 3-26

supported, A-25

canonical equivalence, 4-4, 4-10

capture parameter
 Index-1

Character Set Scanner, 11-10

case, 4-2

case-insensitive search, 4-16

CESU-8 compliance, A-18

changing the national character set, 10-12

CHAR columns

migrating to NCHAR columns, 10-12

character data

converting with CONVERT SQL function, 7-6

character data conversion

database character set, 10-8

character data scanning

before character set migration, 10-7

character rearrangement, 4-11

character repertoire, 2-3

character semantics, 2-12, 3-43

character set

changing after database creation, 2-20

conversion, 2-16, 12-25

customizing, 12-23

data loss during conversion, 2-16

encoding, 2-2

national, 2-18, 5-9, 6-5, 6-6

character set conversion

between OCI client and database server, 6-15

for Java applications, 9-4

for JDBC thin drivers, 9-7

parameters, 3-42

character set definition

customizing, 12-27

guidelines for editing files, 12-27

naming files, 12-27

character set migration

from single-byte to multibyte, 10-9

identifying character data conversion

problems, 10-7

postmigration tasks, 10-16

scanning character data, 10-7

Character Set Scanner, 11-1, 11-12

array parameter, 11-10

boundaries parameter, 11-10

capture parameter, 11-10

CSM$COLUMNS table, 11-30

CSM$ERRORS table, 11-30

CSM$TABLES table, 11-30

CSMV$COLUMNS view, 11-31

CSMV$CONSTRAINTS view, 11-32

CSMV$ERROR view, 11-33

CSMV$INDEXES view, 11-33

CSMV$TABLES view, 11-34

Database Scan Summary Report, 11-20

error messages, 11-34

exclude parameter, 11-11

feedback parameter, 11-11

fromnchar parameter, 11-12

full parameter, 11-12

help parameter, 11-13

Individual Exception Report, 11-27

invoking, 11-6

lastrpt parameter, 11-13

maxblocks parameter, 11-14

online help, 11-7

parameter file, 11-8

parameters, 11-9

performance, 11-31

platform compatibility, 11-6

preserve parameter, 11-14

scan modes, 11-4

suppress parameter, 11-15

table parameter, 11-15

tochar parameter, 11-16

user parameter, 11-16

userid parameter, 11-17

views, 11-31

character sets

AL16UTF16, 5-6

AL24UTFFSS, 5-6

AL32UTF8, 5-6

Asian, A-8

choosing, 10-2

choosing a character set for a Unicode

database, 5-12

choosing a national character set, 5-14

conversion, 2-21, 7-6

conversion using OCI, 8-48

data loss, 10-4

European, A-9

ISO 8859 series, 2-7

Middle Eastern, A-15

migration, 10-2
Index-2

migration from single-byte to multibyte, 10-9

naming, 2-11

restrictions on character sets used to express

names, 2-17

supersets and subsets, A-19

supported, A-6

supporting different character repertoires, 2-5

universal, A-18

UTFE, 5-6

character type conversion

error reporting, 3-42

characters

available in all Oracle database character

sets, 2-5

context-sensitive, 4-10

contracting, 4-9

user-defined, 12-24

choosing a character set, 10-2

choosing between a Unicode database and Unicode

datatypes, 5-10

client operating system

character set compatibility with

applications, 2-16

CLOB and NCLOB data

binding and defining in OCI, 6-21

CLOBs

creating indexes, 5-23

code chart

displaying and printing, 12-18

code point, 2-2

collation

customizing, 12-35

compatibility

client operating system and application character

sets, 2-16

composed characters, 4-9

concatenation operator, 7-15

context-sensitive characters, 4-10

contracting characters, 4-9

contracting letters, 4-11

control characters, encoding, 2-4

conversion

between character set ID number and character

set name, 7-9

CONVERT SQL function, 7-6

character sets, A-18

converting character data

CONVERT SQL function, 7-6

converting character data between character

sets, 7-6

cost-based optimizer, 4-15

creating a database with Unicode datatypes, 5-8

creating a Unicode database, 5-8

CSM$COLUMNS table, 11-30

CSM$ERRORS table, 11-30

CSM$TABLES table, 11-30

CSMIG user, 11-5

csminst.sql script

running, 11-6

CSMV$COLUMNS view, 11-31

CSMV$CONSTRAINTS view, 11-32

CSMV$ERROR view, 11-33

CSMV$INDEXES view, 11-33

CSMV$TABLES view, 11-34

currencies

formats, 3-32

customizing time zone data, 12-17

D
data conversion

in Pro*C/C++, 6-22

JDBC driver, 6-29

OCI driver, 6-27

ODBC and OLE DB drivers, 6-30

thin driver, 6-28

Unicode Java strings, 6-27

data dictionary views

NLS_DATABASE_PARAMETERS, 3-9

NLS_INSTANCE_PARAMETERS, 3-9

NLS_SESSION_PARAMETER, 3-9

data expansion

during data conversion, 6-17

data expansion during character set

migration, 10-2

data expansion during conversion

JDBC thin driver, 9-12

data inconsistencies causing data loss, 10-5

data loss

caused by data inconsistencies, 10-5
 Index-3

during character set migration, 10-4

during OCI Unicode character set

conversion, 6-15

from mixed character sets, 10-6

data loss during character set conversion, 2-16

data loss during datatype conversion

exceptions, 6-7

data truncation, 10-2

restrictions, 10-3

database character set

character data conversion, 10-8

choosing, 2-14

compatibility between client operating system

and applications, 2-16

performance, 2-17

Database Scan Summary Report, 11-20

database schemas

designing for multiple languages, 5-18

datatype conversion

data loss and exceptions, 6-7

implicit, 6-8

SQL functions, 6-9

datatypes

abstract, 2-19

supported, 2-19

date and time parameters, 3-17

date formats, 3-18, 7-13

and partition bound expressions, 3-19

dates

ISO standard, 3-27, 7-14

NLS_DATE_LANGUAGE parameter, 3-20

days

format element, 3-21

language of names, 3-21

DBMS_LOB PL/SQL package, 7-15

DBMS_LOB.LOADBLOBFROMFILE

procedure, 7-15

DBMS_LOB.LOADCLOBFROMFILE

procedure, 7-15

DBMS_REDEFINITION.CAN_REDEF_TABLE

procedure, 10-14

decimal character restrictions, 3-31

dest_char_set parameter, A-18

diacritic, 4-2

dynamic performance views

V$NLS_PARAMETERS, 3-9

V$NLS_VALID_VALUES, 3-9

E
encoding

control characters, 2-4

ideographic writing systems, 2-4

numbers, 2-4

phonetic writing systems, 2-4

punctuation, 2-4

symbols, 2-4

encoding schemes

7-bit, 2-9

8-bit, 2-9

fixed-width, 2-10

multibyte, 2-10

shift-sensitive variable-width, 2-10

shift-sensitive variable-width multibyte, 2-10

single-byte, 2-9

variable-width, 2-10

variable-width multibyte, 2-10

error messages

languages, A-4

translation, A-4

euro

Oracle support, 3-37

exclude parameter

Character Set Scanner, 11-11

expanding characters, 4-11

characters

expanding, 4-10

F
features, new, xxvii

feedback parameter

Character Set Scanner, 11-11

fixed-width multibyte encoding schemes, 2-10

fonts

Unicode, 12-2

Unicode for UNIX, 12-3

Unicode for Windows, 12-2

format elements, 7-14

C, 7-14
Index-4

D, 7-14

day, 3-21

G, 7-14

IW, 7-14

IY, 7-14

L, 7-14

month, 3-21

RM, 7-13

RN, 7-14

format masks, 3-31, 7-13

formats

currency, 3-32

date, 3-18

numeric, 3-30

time, 3-21

fromchar parameter, 11-12

Character Set Scanner, 11-12

fromnchar parameter

Character Set Scanner, 11-12

full parameter

Character Set Scanner, 11-12

G
generic base letter search, 4-16

getString() method, 9-3, 9-8

getStringWithReplacement() method, 9-3, 9-8

getSubString() method, 9-3

getUnicodeStream() method, 9-3

globalization features, 1-6

globalization support

architecture, 1-2

H
help parameter

Character Set Scanner, 11-13

I
ideographic writing systems, encoding, 2-4

ignorable characters, 4-9

implicit datatype conversion, 6-8

indexes

creating for documents stored as CLOBs, 5-23

creating for multilingual document search, 5-22

creating indexes for documents stored as

BLOBs, 5-24

partitioned, 7-12

Individual Exception Report, 11-27

INSTR SQL function, 6-11

INSTR SQL functions, 7-6, 7-7

ISO 8859 character sets, 2-7

ISO standard

date format, 7-14

ISO standard date format, 3-27, 7-14

ISO week number, 7-14

IW format element, 7-14

IY format element, 7-14

J
Java

Unicode data conversion, 6-27

Java runtime environment, 9-3

Java Stored Procedures

globalization support, 9-18

Java stored procedures, 9-18

Java strings

binding and defining in Unicode, 6-26

Java Virtual Machine, 9-16

globalization support, 9-16

java.sql.ResultSet class, 9-3

JDBC class library

character set conversion, 9-5

JDBC drivers

character set conversion, 9-4

globalization support, 9-2, 9-3

JDBC OCI driver, 9-2

and Unicode, 6-3

character set conversion, 9-6

JDBC programming

Unicode, 6-25

JDBC server-side internal driver, 9-2

character set conversion, 9-7

JDBC server-side thin driver, 9-2

JDBC thin driver, 9-2

and Unicode, 6-4

character set conversion, 9-7

data expansion during conversion, 9-12
 Index-5

SQL CHAR data size restriction, 9-11

JVM, 9-16

globalization support, 9-16

L
language abbreviations, A-2

language definition

customizing, 12-8

overriding, 3-7

language support, 1-7

languages

error messages, A-4

lastrpt parameter

Character Set Scanner, 11-13

length semantics, 2-12, 3-42

LENGTH SQL functions, 7-6, 7-7

LIKE conditions in SQL statements, 7-8

LIKE2 SQL condition, 7-8

LIKE4 SQL condition, 7-8

LIKEC SQL condition, 7-8

linguistic sort definitions

supported, A-22

linguistic sorts

controlling, 7-12

customizing, 12-35

characters with diacritics, 12-38, 12-41

levels, 4-5

parameters, 3-39

lmsgen utility, 8-57

loading external BFILE data into LOBs, 7-15

LOBs

loading external BFILE data, 7-15

storing documents in multiple languages, 5-21

locale, 3-4

locale information

mapping between Oracle and other

standards, 8-14

lxegen utility, 12-18

M
maxblocks parameter

Character Set Scanner, 11-14

migrating character sets in Oracle9i Real

Application Clusters, 10-10

migration

CHAR columns to NCHAR columns, 10-12

character sets, 10-2

from a single-byte character set to a multibyte

character set, 10-9

Oracle8 NCHAR columns to Oracle9i, 10-11

to NCHAR datatypes, 10-11

mixed character sets

causing data loss, 10-6

monetary parameters, 3-32

monolingual linguistic sort

example, 4-7

monolingual linguistic sorts

supported, A-22

months

format element, 3-21

language of names, 3-21

multibyte encoding schemes, 2-10

fixed-width, 2-10

shift-sensitive variable-width, 2-10

variable-width, 2-10

multilexers

creating, 5-23

multilingual data

specifying column lengths, 5-19

multilingual demo, 9-23

multilingual document search

creating indexes, 5-22

multilingual linguistic sort

example, 4-7

multilingual linguistic sorts

supported, A-24

multilingual support

restricted, 2-24

unrestricted, 2-25

multiple languages

designing database schemas, 5-18

storing data, 5-19

storing documents in LOBs, 5-21

N
N SQL function, 6-10

national character set, 2-18, 5-9, 6-5, 6-6
Index-6

before Oracle9i, 5-8

NCHAR

creating abstract datatype, 2-19

NCHAR columns

migrating from Oracle8 to Oracle9i, 10-11

NCHAR datatype, 6-5

migrating, 10-11

migration, 10-11

NCHR SQL function, 6-12

NCLOB datatype, 6-6

new features, xxvii

NLB files, 12-2

generating and installing, 12-43

NLS Calendar Utility, 12-17

NLS parameters

default values in SQL functions, 7-3

list, 3-3

setting, 3-2

specifying in SQL functions, 7-3

unacceptable in SQL functions, 7-5

using in SQL functions, 7-2

NLS Runtime Library, 1-2

NLS_CALENDAR parameter, 3-29

NLS_CHARSET_DECL_LEN SQL function, 7-10

NLS_CHARSET_ID SQL function, 7-9

NLS_CHARSET_NAME SQL function, 7-9

NLS_COMP parameter, 3-41, 4-15, 7-12

NLS_CREDIT parameter, 3-38

NLS_CURRENCY parameter, 3-32

NLS_DATABASE_PARAMETERS data dictionary

view, 3-9

NLS_DATE_FORMAT parameter, 3-18

NLS_DATE_LANGUAGE parameter, 3-20

NLS_DEBIT parameter, 3-38

NLS_DUAL_CURRENCY parameter, 3-35

NLS_INITCAP SQL function, 4-12, 7-2

NLS_INSTANCE_PARAMETERS data dictionary

view, 3-9

NLS_ISO_CURRENCY parameter, 3-34

NLS_LANG environment variable

JDBC OCI driver, 9-6

NLS_LANG parameter, 3-4

choosing a locale, 3-4

client setting, 3-8

examples, 3-6

OCI client applications, 6-18

specifying, 3-6

UNIX client, 3-8

Windows client, 3-8

NLS_LANGUAGE parameter, 3-10

NLS_LENGTH_SEMANTICS parameter, 2-12

NLS_LIST_SEPARATOR parameter, 3-41

NLS_LOWER SQL function, 4-12, 7-2

NLS_MONETARY_CHARACTERS

parameter, 3-38

NLS_NCHAR_CONV_EXCP parameter, 3-42

NLS_NUMERIC_CHARACTERS parameter, 3-30

NLS_SESSION_PARAMETERS data dictionary

view, 3-9

NLS_SORT parameter, 3-39, 4-15

NLS_TERRITORY parameter, 3-13

NLS_TIMESTAMP_FORMAT parameter

parameters

NLS_TIMESTAMP_FORMAT, 3-22

NLS_TIMESTAMP_TZ_FORMAT parameter, 3-23

NLS_UPPER SQL function, 4-12, 7-2

NLSRTL, 1-2

NLSSORT SQL function, 7-2, 7-10

syntax, 7-11

NLT files, 12-2

numbers, encoding, 2-4

numeric formats, 3-30

SQL masks, 7-14

numeric parameters, 3-30

NVARCHAR datatype

Pro*C/C++, 6-24

NVARCHAR2 datatype, 6-6

O
obsolete locale data, A-27

OCI

binding and defining CLOB and NCLOB data in

OCI, 6-21

binding and defining SQL NCHAR

datatypes, 6-20

setting the character set, 8-2

SQL CHAR datatypes, 6-18

OCI and Unicode, 6-3

OCI character set conversion, 6-16
 Index-7

data loss, 6-15

performance, 6-15

OCI client applications

using Unicode character sets, 6-18

OCI data conversion

data expansion, 6-17

OCI_ATTR_CHARSET_FORM attribute, 6-15

OCI_ATTR_MAXDATA_SIZE attribute, 6-17

OCI_NLS_MAXBUFSZ, 8-9, 8-13

OCI_UTF16ID character set ID, 6-13

OCI_UTF16ID mode, 8-2

OCIBind() function, 6-18

OCICharSetConversionIsReplacementUsed(), 8-48,

8-52

OCICharSetConvert(), 8-48

OCICharSetToUnicode(), 8-48

OCICharsetToUnicode(), 8-48

OCIDefine() function, 6-18

OCIEnvCreate(), 8-2

OCIEnvNlsCreate function, OCI

setting the character set, xxix

OCIEnvNlsCreate(), 6-13, 8-2

OCILobRead() function, 6-21

OCILobWrite() function, 6-21

OCIMessageClose(), 8-54, 8-56

OCIMessageGet(), 8-54, 8-55

OCIMessageOpen(), 8-54

OCIMultiByteInSizeToWideChar(), 8-16, 8-19

OCIMultiByteStrCaseConversion(), 8-18, 8-38

OCIMultiByteStrcat(), 8-17, 8-34

OCIMultiByteStrcmp(), 8-17, 8-32

OCIMultiByteStrcpy(), 8-18, 8-35

OCIMultiByteStrlen(), 8-18, 8-37

OCIMultiByteStrncat(), 8-17, 8-38

OCIMultiByteStrncmp(), 8-17, 8-33

OCIMultiByteStrncpy(), 8-18, 8-38

OCIMultiByteStrnDisplayLength(), 8-18, 8-38

OCIMultiByteToWideChar(), 8-16, 8-18

OCINlsCharSetConvert(), 8-50

OCINlsCharSetIdToName(), 8-11

OCINlsCharSetNameTold(), 8-10

OCINlsGetInfo(), 8-7

OCINlsNameMap(), 8-14

OCINlsNumericInfoGet(), 8-12

OCISessionBegin(), 8-2

OCIUnicodeToCharSet(), 8-49

OCIUnicodeToCharset(), 8-48

OCIWideCharDisplayLength(), 8-17, 8-31

OCIWideCharInSizeToMultiByte(), 8-16, 8-21

OCIWideCharIsAlnum(), 8-40, 8-41

OCIWideCharIsAlpha(), 8-40, 8-41

OCIWideCharIsCntrl(), 8-40, 8-42

OCIWideCharIsDigit(), 8-40, 8-42

OCIWideCharIsGraph(), 8-40, 8-43

OCIWideCharIsLower(), 8-40, 8-43

OCIWideCharIsPrint(), 8-40, 8-44

OCIWideCharIsPunct(), 8-40, 8-44

OCIWideCharIsSingleByte(), 8-40, 8-47

OCIWideCharIsSpace(), 8-40, 8-45

OCIWideCharIsUpper(), 8-40, 8-45

OCIWideCharIsXdigit(), 8-40, 8-46

OCIWideCharMultiByteLength(), 8-31

OCIWideCharMultibyteLength(), 8-17

OCIWideCharStrCaseConversion(), 8-17, 8-30

OCIWideCharStrcat(), 8-17, 8-25

OCIWideCharStrchr(), 8-17, 8-26

OCIWideCharStrcmp(), 8-16, 8-23

OCIWideCharStrcpy(), 8-17, 8-28

OCIWideCharStrlen(), 8-17, 8-29

OCIWideCharStrncat(), 8-17, 8-30

OCIWideCharStrncmp(), 8-17, 8-24

OCIWideCharStrncpy(), 8-17, 8-28

OCIWideCharStrrchr(), 8-17, 8-30

OCIWideCharToLower(), 8-16, 8-22

OCIWideCharToMultiByte(), 8-16, 8-20

OCIWideCharToUpper(), 8-16, 8-22

ODBC Unicode applications, 6-32

OLE DB Unicode datatypes, 6-33

online table redefinition

migrating from CHAR to NCHAR, 10-12, 10-13

operating system

character set compatibility with

applications, 2-16

ORA_NLS33 directory, 1-3

ORA_TZFILE environment variable, 12-17

Oracle Call Interface and Unicode, 6-3

Oracle Locale Builder

choosing a calendar format, 12-12

choosing currency formats, 12-15

choosing date and time formats, 12-13
Index-8

displaying code chart, 12-18

Existing Definitions dialog box, 12-5

fonts, 12-2, 12-3

Open File dialog box, 12-7

Preview NLT screen, 12-6

restrictions on names for locale objects, 12-9

Session Log dialog box, 12-5

starting, 12-3

Oracle ODBC driver and Unicode, 6-3

Oracle OLE DB driver and Unicode, 6-3

Oracle Pro*C/C++ and Unicode, 6-3

Oracle Real Application Clusters

during database character set migration, 10-10

Oracle SQLJ and Unicode, 6-4

Oracle8 NCHAR columns

migrating to Oracle9i, 10-11

oracle.sql.CHAR class, 9-3

character set conversion, 9-8

getString() method, 9-8

getStringWithReplacement() method, 9-8

toString() method, 9-8

oracle.sql.CLOB class, 9-3

oracle.sql.NString class, 9-16

ORDER BY clause, 7-12

overriding language and territory definitions, 3-7

P
parameters

BLANK_TRIMMING, 10-4

calendar, 3-26

character set conversion, 3-42

linguistic sorts, 3-39

methods of setting, 3-3

monetary, 3-32

NLS_CALENDAR, 3-29

NLS_COMP, 3-41

NLS_CREDIT, 3-38

NLS_CURRENCY, 3-32

NLS_DATE_FORMAT, 3-18

NLS_DATE_LANGUAGE, 3-20

NLS_DEBIT, 3-38

NLS_DUAL_CURRENCY, 3-35

NLS_ISO_CURRENCY, 3-34

NLS_LANG, 3-4

NLS_LANGUAGE, 3-10

NLS_LIST_SEPARATOR, 3-41

NLS_MONETARY_CHARACTERS, 3-38

NLS_NCHAR_CONV_EXCP, 3-42

NLS_NUMERIC_CHARACTERS, 3-30

NLS_SORT, 3-39

NLS_TERRITORY, 3-13

NLS_TIMESTAMP_TZ_FORMAT, 3-23

numeric, 3-30

setting, 3-2

time and date, 3-17

time zone, 3-22

partitioned

indexes, 7-12

tables, 7-12

performance

choosing a database character set, 2-17

during OCI Unicode character set

conversion, 6-15

phonetic writing systems, encoding, 2-4

PL/SQL and SQL and Unicode, 6-4

preserve parameter

Character Set Scanner, 11-14

primary level sort, 4-5

Private Use Area, 12-26

Pro*C/C++

data conversion, 6-22

NVARCHAR datatype, 6-24

UVARCHAR datatype, 6-24

VARCHAR datatype, 6-23

punctuation, encoding, 2-4

Q
QUERY_REWRITE_ENABLED initialization

parameter, 4-14

R
replacement characters

CONVERT SQL function, 7-6

restricted multilingual support, 2-24

restrictions

data truncation, 10-3

passwords, 10-3
 Index-9

space padding during export, 10-4

usernames, 10-3

reverse secondary sorting, 4-11

RPAD SQL function, 6-11

S
scan modes

Character Set Scanner, 11-4

full database scan, 11-4

single table scan, 11-5

user tables scan, 11-5

search, generic base letter, 4-16

searching multilingual documents, 5-22

secondary level sort, 4-5

shift-sensitive variable-width multibyte encoding

schemes, 2-10

single-byte encoding schemes, 2-9

sorting

reverse secondary, 4-11

specifying nondefault linguistic sorts, 3-39, 3-41

source_char_set parameter, A-18

space padding

during export, 10-4

special combination letters, 4-9, 4-11

special letters, 4-10, 4-11

special lowercase letters, 4-12

special uppercase letters, 4-12

SQL CHAR datatypes, 2-14

inserting a Java string, 9-4

OCI, 6-18

SQL conditions

LIKE2, 7-8

LIKE4, 7-8

LIKEC, 7-8

SQL functions

CONVERT, 7-6

datatype conversion, 6-9

default values for NLS parameters, 7-3

INSTR, 6-11, 7-6, 7-7

LENGTH, 7-6, 7-7

N, 6-10

NCHR, 6-12

NLS_CHARSET_DECL_LEN, 7-10

NLS_CHARSET_ID, 7-9

NLS_CHARSET_NAME, 7-9

NLS_INITCAP, 4-12, 7-2

NLS_LOWER, 4-12, 7-2

NLS_UPPER, 4-12, 7-2

NLSSORT, 7-2, 7-10

RPAD, 6-11

specifying NLS parameters, 7-3

SUBSTR, 7-6, 7-7

SUBSTR2, 7-7

SUBSTR4, 7-7

SUBSTRB, 7-7

SUBSTRC, 7-7

TO_CHAR, 7-2

TO_DATE, 6-10, 7-2

TO_NCHAR, 6-10

TO_NUMBER, 7-2

unacceptable NLS parameters, 7-5

UNISTR, 6-12

using NLS parameters, 7-2

SQL NCHAR datatypes

binding and defining in OCI, 6-20

using JDBC, 9-7

SQL statements

LIKE conditions, 7-8

SQLJ

globalization support, 9-14

multilingual demo application, 9-23

programming with Unicode, 6-25

translators, 9-3

using Unicode characters, 9-15

stored procedures

Java, 9-18

strict superset, 5-3

string comparisons

WHERE clause, 7-11

string literals

Unicode, 6-11

string manipulation using OCI, 8-15

SUBSTR SQL function, 7-7

SUBSTR SQL functions, 7-6, 7-7

SUBSTR, 7-7

SUBSTR2, 7-7

SUBSTR4, 7-7

SUBSTRB, 7-7

SUBSTRC, 7-7
Index-10

SUBSTR4 SQL function, 7-7

SUBSTRB SQL function, 7-7

SUBSTRC SQL function, 7-7

superset, strict, 5-3

supersets and subsets, A-19

supplementary characters, 4-4, 5-3

linguistic sort support, A-25

supported datatypes, 2-19

supported territories, A-5

suppress parameter

Character Set Scanner, 11-15

surrogate pairs, 5-3

syllabary, 2-4

symbols, encoding, 2-4

T
table parameter

Character Set Scanner, 11-15

tables

partitioned, 7-12

territory definition, 3-13

customizing, 12-11

overriding, 3-7

territory support, 1-7, A-5

tertiary level sort, 4-6

Thai and Laotian character rearrangement, 4-11

tilde, 9-13

time and date parameters, 3-17

time zone information

Oracle’s source, 3-24

time zone parameters, 3-22

changing during a session, 3-25

creating a database, 3-24

time zones

customizing, 12-17

timestamp format, 3-22

timestamp with time zone, 3-23

timezlrg.dat file, 12-17

timezone.dat file, 12-17

TO_CHAR SQL function, 7-2

default date format, 3-18

format masks, 7-13

group separator, 3-31

language for dates, 3-20

spelling of days and months, 3-20

TO_DATE SQL function, 6-10, 7-2

default date format, 3-18

format masks, 7-13

language for dates, 3-20

spelling of days and months, 3-20

TO_NCHAR SQL function, 6-10

TO_NUMBER SQL function, 7-2

format masks, 7-13

tochar parameter

Character Set Scanner, 11-16

toString() method, 9-3, 9-8

translators

SQLJ, 9-3

U
UCS-2 encoding, 5-4

Unicode, 5-2

binding and defining Java strings, 6-26

character code assignments, B-2

character set conversion between OCI client and

database server, 6-15

code ranges for UTF-16 characters, B-2

code ranges for UTF-8 characters, B-2

data conversion in Java, 6-27

JDBC and SQLJ programming, 6-25

JDBC OCI driver, 6-3

JDBC thin driver, 6-4

ODBC and OLE DB programming, 6-29

Oracle Call Interface, 6-3

Oracle ODBC driver, 6-3

Oracle OLE DB driver, 6-3

Oracle Pro*C/C++, 6-3

Oracle SQLJ, 6-4

Oracle support, 5-5

PL/SQL and SQL, 6-4

Private Use Area, 12-26

programming, 6-2

string literals, 6-11

UCS-2 encoding, 5-4

UTF-16 encoding, 5-4

UTF-8 encoding, 5-3

Unicode database, 5-7

case study, 5-16
 Index-11

choosing a character set, 5-12

using with Unicode datatypes (case study), 5-18

when to use, 5-10

Unicode datatypes, 5-8

case study, 5-17

choosing a national character set, 5-14

using with a Unicode database (case

study), 5-18

when to use, 5-11

Unicode encoding, 5-3

Unicode escape sequence, 9-15

Unicode fonts, 12-2

Unicode mode, 6-13, 8-2

UNISTR SQL function, 6-12

unrestricted multilingual support, 2-25

US7ASCII

supersets, A-20

user parameter

Character Set Scanner, 11-16

user-defined characters, 12-24

adding to a character set definition, 12-30

cross-references between character sets, 12-26

supporting in Java, 12-32

userid parameter

Character Set Scanner, 11-17

UTF-16 encoding, 5-4, B-3

UTF8 character set, 5-7, A-18

UTF-8 encoding, 5-3, B-4

UTFE character set, 5-6, 5-8, A-18

UTL_FILE package, using with NCHAR, 6-12

UVARCHAR datatype

Pro*C/C++, 6-24

V
V$NLS_PARAMETERS dynamic performance

view, 3-9

V$NLS_VALID_VALUES dynamic performance

view, 3-9

V$TIMEZONE_NAMES view, 12-17

VARCHAR datatype

Pro*C/C++, 6-23

variable-width multibyte encoding schemes, 2-10

W
wave dash, 9-13

WHERE clause

string comparisons, 7-11
Index-12

	Contents
	Send Us Your Comments
	Preface
	What’s New in Globalization Support?
	1 Overview of Globalization Support
	Globalization Support Architecture
	Locale Data on Demand
	Architecture to Support Multilingual Applications
	Using Unicode in a Multilingual Database

	Globalization Support Features
	Language Support
	Territory Support
	Date and Time Formats
	Monetary and Numeric Formats
	Calendars Feature
	Linguistic Sorting
	Character Set Support
	Character Semantics
	Customization of Locale and Calendar Data
	Unicode Support

	2 Choosing a Character Set
	Character Set Encoding
	What is an Encoded Character Set?
	Which Characters Are Encoded?
	Phonetic Writing Systems
	Ideographic Writing Systems
	Punctuation, Control Characters, Numbers, and Symbols
	Writing Direction

	What Characters Does a Character Set Support?
	ASCII Encoding

	How are Characters Encoded?
	Single-Byte Encoding Schemes
	Multibyte Encoding Schemes

	Naming Convention for Oracle Character Sets

	Length Semantics
	Choosing an Oracle Database Character Set
	Current and Future Language Requirements
	Client Operating System and Application Compatibility
	Character Set Conversion Between Clients and the Server
	Performance Implications of Choosing a Database Character Set
	Restrictions on Database Character Sets
	Restrictions on Character Sets Used to Express Names

	Choosing a National Character Set
	Summary of Supported Datatypes

	Changing the Character Set After Database Creation
	Monolingual Database Scenario
	Character Set Conversion in a Monolingual Scenario

	Multilingual Database Scenarios
	Restricted Multilingual Support
	Unrestricted Multilingual Support

	3 Setting Up a Globalization Support Environment
	Setting NLS Parameters
	Choosing a Locale with the NLS_LANG Environment Variable
	Specifying the Value of NLS_LANG
	Overriding Language and Territory Specifications
	Should the NLS_LANG Setting Match the Database Character Set?

	NLS Database Parameters
	NLS Data Dictionary Views
	NLS Dynamic Performance Views
	OCINlsGetInfo() Function

	Language and Territory Parameters
	NLS_LANGUAGE
	NLS_TERRITORY
	Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a Session

	Date and Time Parameters
	Date Formats
	NLS_DATE_FORMAT
	NLS_DATE_LANGUAGE

	Time Formats
	NLS_TIMESTAMP_FORMAT
	NLS_TIMESTAMP_TZ_FORMAT
	Time Zone Parameters for Databases
	Time Zone Parameters for Sessions

	Calendar Definitions
	Calendar Formats
	First Day of the Week
	First Calendar Week of the Year
	Number of Days and Months in a Year
	First Year of Era

	NLS_CALENDAR

	Numeric Parameters
	Numeric Formats
	NLS_NUMERIC_CHARACTERS

	Monetary Parameters
	Currency Formats
	NLS_CURRENCY
	NLS_ISO_CURRENCY
	NLS_DUAL_CURRENCY
	Oracle Support for the Euro
	NLS_MONETARY_CHARACTERS
	NLS_CREDIT
	NLS_DEBIT

	Linguistic Sort Parameters
	NLS_SORT
	NLS_COMP
	NLS_LIST_SEPARATOR

	Character Set Conversion Parameter
	NLS_NCHAR_CONV_EXCP

	Length Semantics
	NLS_LENGTH_SEMANTICS

	4 Linguistic Sorting
	Overview of Oracle’s Sorting Capabilities
	Using Binary Sorts
	Using Linguistic Sorts
	Monolingual Linguistic Sorts
	Multilingual Linguistic Sorts
	Multilingual Sorting Levels
	Primary Level Sorts
	Secondary Level Sorts
	Tertiary Level Sorts

	Linguistic Sort Examples

	Linguistic Sort Features
	Base Letters
	Ignorable Characters
	Contracting Characters
	Expanding Characters
	Context-Sensitive Characters
	Canonical Equivalence
	Reverse Secondary Sorting
	Character Rearrangement for Thai and Laotian Characters
	Special Letters
	Special Combination Letters
	Special Uppercase Letters
	Special Lowercase Letters

	Using Linguistic Indexes
	Linguistic Indexes for Multiple Languages
	Requirements for Using Linguistic Indexes
	Set QUERY_REWRITE_ENABLED to TRUE
	Set NLS_COMP to ANSI
	Set NLS_SORT Appropriately
	Use the Cost-Based Optimizer With the Optimizer Mode Set to FIRST_ROWS
	Example: Setting Up a French Linguistic Index

	Improving Case-Insensitive Searches with a Function-Based Index
	Performing a Generic Base Letter Search

	5 Supporting Multilingual Databases with Unicode
	Overview of Unicode
	What is Unicode?
	Supplementary Characters
	Unicode Encodings
	UTF-8 Encoding
	UCS-2 Encoding
	UTF-16 Encoding
	Examples: UTF-16, UTF-8, and UCS-2 Encoding

	Oracle’s Support for Unicode

	Implementing a Unicode Solution in the Database
	Enabling Multilingual Support with Unicode Databases
	Enabling Multilingual Support with Unicode Datatypes
	How to Choose Between a Unicode Database and a Unicode Datatype Solution
	When Should You Use a Unicode Database?
	When Should You Use Unicode Datatypes?

	Comparing Unicode Character Sets for Database and Datatype Solutions

	Unicode Case Studies
	Designing Database Schemas to Support Multiple Languages
	Specifying Column Lengths for Multilingual Data
	Storing Data in Multiple Languages
	Store Language Information with the Data
	Select Translated Data Using Fine-Grained Access Control

	Storing Documents in Multiple Languages in LOBs
	Creating Indexes for Searching Multilingual Document Contents
	Creating Multilexers
	Creating Indexes for Documents Stored as CLOBs
	Creating Indexes for Documents Stored as BLOBs

	6 Programming with Unicode
	Overview of Programming with Unicode
	Database Access Product Stack and Unicode

	SQL and PL/SQL Programming with Unicode
	SQL NCHAR Datatypes
	The NCHAR Datatype
	The NVARCHAR2 Datatype
	The NCLOB Datatype

	Implicit Datatype Conversion Between NCHAR and Other Datatypes
	Exception Handling for Data Loss During Datatype Conversion
	Rules for Implicit Datatype Conversion
	SQL Functions for Unicode Datatypes
	Other SQL Functions
	Unicode String Literals
	Using the UTL_FILE Package with NCHAR Data

	OCI Programming with Unicode
	OCIEnvNlsCreate() Function for Unicode Programming
	OCI Unicode Code Conversion
	Data Integrity
	OCI Performance Implications When Using Unicode
	OCI Unicode Data Expansion

	When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI
	Binding and Defining SQL CHAR Datatypes in OCI
	Binding and Defining SQL NCHAR Datatypes in OCI
	Binding and Defining CLOB and NCLOB Unicode Data in OCI

	Pro*C/C++ Programming with Unicode
	Pro*C/C++ Data Conversion in Unicode
	Using the VARCHAR Datatype in Pro*C/C++
	Using the NVARCHAR Datatype in Pro*C/C++
	Using the UVARCHAR Datatype in Pro*C/C++

	JDBC and SQLJ Programming with Unicode
	Binding and Defining Java Strings in Unicode
	Java Data Conversion in Unicode
	Data Conversion for the OCI Driver
	Data Conversion for the Thin Driver
	Data Conversion for the JDBC Driver

	ODBC and OLE DB Programming with Unicode
	Unicode-Enabled Drivers in ODBC and OLE DB
	OCI Dependency in Unicode
	ODBC and OLE DB Code Conversion in Unicode
	OLE DB Code Conversions

	ODBC Unicode Datatypes
	OLE DB Unicode Datatypes
	ADO Access

	7 SQL and PL/SQL Programming in a Global Environment
	Locale-Dependent SQL Functions with Optional NLS Parameters
	Default Values for NLS Parameters in SQL Functions
	Specifying NLS Parameters in SQL Functions
	Unacceptable NLS Parameters in SQL Functions

	Other Locale-Dependent SQL Functions
	The CONVERT Function
	SQL Functions for Different Length Semantics
	LIKE Conditions for Different Length Semantics
	Character Set SQL Functions
	Converting from Character Set Number to Character Set Name
	Converting from Character Set Name to Character Set Number
	Returning the Length of an NCHAR Column

	The NLSSORT Function
	NLSSORT Syntax
	Comparing Strings in a WHERE Clause
	Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE Clause
	Controlling an ORDER BY Clause

	Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment
	SQL Date Format Masks
	Calculating Week Numbers
	SQL Numeric Format Masks
	The Concatenation Operator
	Loading External BFILE Data into LOBs

	8 OCI Programming in a Global Environment
	Using the OCI NLS Functions
	Specifying Character Sets in OCI
	OCIEnvNlsCreate()

	Getting Locale Information in OCI
	OCINlsGetInfo()
	OCI_NLS_MAXBUFSZ
	Example: Getting Locale Information in OCI
	OCINlsCharSetNameTold()
	OCINlsCharSetIdToName()
	OCINlsNumericInfoGet()
	OCINlsEnvironmentVariableGet()

	Mapping Locale Information Between Oracle and Other Standards
	OCINlsNameMap()

	Manipulating Strings in OCI
	OCIMultiByteToWideChar()
	OCIMultiByteInSizeToWideChar()
	OCIWideCharToMultiByte()
	OCIWideCharInSizeToMultiByte()
	OCIWideCharToLower()
	OCIWideCharToUpper()
	OCIWideCharStrcmp()
	OCIWideCharStrncmp()
	OCIWideCharStrcat()
	OCIWideCharStrncat()
	OCIWideCharStrchr()
	OCIWideCharStrrchr()
	OCIWideCharStrcpy()
	OCIWideCharStrncpy()
	OCIWideCharStrlen()
	OCIWideCharStrCaseConversion()
	OCIWideCharDisplayLength()
	OCIWideCharMultiByteLength()
	OCIMultiByteStrcmp()
	OCIMultiByteStrncmp()
	OCIMultiByteStrcat()
	OCIMultiByteStrncat()
	OCIMultiByteStrcpy()
	OCIMultiByteStrncpy()
	OCIMultiByteStrlen()
	OCIMultiByteStrnDisplayLength()
	OCIMultiByteStrCaseConversion()
	Example: Manipulating Strings in OCI

	Classifying Characters in OCI
	OCIWideCharIsAlnum()
	OCIWideCharIsAlpha()
	OCIWideCharIsCntrl()
	OCIWideCharIsDigit()
	OCIWideCharIsGraph()
	OCIWideCharIsLower()
	OCIWideCharIsPrint()
	OCIWideCharIsPunct()
	OCIWideCharIsSpace()
	OCIWideCharIsUpper()
	OCIWideCharIsXdigit()
	OCIWideCharIsSingleByte()
	Example: Classifying Characters in OCI

	Converting Character Sets in OCI
	OCICharSetToUnicode()
	OCIUnicodeToCharSet()
	OCINlsCharSetConvert()
	OCICharSetConversionIsReplacementUsed()
	Example: Converting Character Sets in OCI

	OCI Messaging Functions
	OCIMessageOpen()
	OCIMessageGet()
	OCIMessageClose()
	Example: Retrieving a Message from a Text Message File
	lmsgen Utility
	Text Message Files
	Example: Creating a Binary Message File from a Text Message File

	9 Java Programming in a Global Environment
	Overview of Oracle9i Java Support
	Globalization Support for JDBC Drivers
	Accessing SQL CHAR Datatypes Using JDBC
	JDBC Class Library Character Set Conversion
	JDBC OCI Driver Character Set Conversion
	JDBC Thin Driver Character Set Conversion
	JDBC Server-Side Internal Driver Character Set Conversion

	Accessing SQL NCHAR Datatypes Using JDBC
	Using the oracle.sql.CHAR Class
	Inserting and Retrieving Data with the oracle.sql.CHAR Class
	The oracle.sql.CHAR in Oracle Object Types

	Restrictions on Accessing SQL CHAR Data with JDBC
	SQL CHAR Data Size Restriction With the JDBC Thin Driver
	Character Integrity Issues in a Multibyte Database Environment

	Globalization Support for SQLJ
	Using Unicode Characters in SQLJ programs
	Using the oracle.sql.NString class

	Globalization Support for Java Virtual Machine
	Globalization Support for Java Stored Procedures
	Configurations for Multilingual Applications
	Configuring a Multilingual Database
	Globalization Support for Java Stored Procedures
	Internationalizing Java code
	Transferring Multilingual Data

	Clients with Different Languages

	A Multilingual Demo Application in SQLJ
	Database Schema for the Multilingual Demo Application
	Java Stored Procedures for the Multilingual Demo Application
	The SQLJ Client for the Multilingual Demo Application

	10 Character Set Migration
	Overview of Character Set Migration
	Data Truncation
	Additional Problems Caused by Data Truncation

	Character Set Conversion Issues
	Replacement Characters that Result from Using the Export and Import Utilities
	Invalid Data That Results from Setting the Client’s NLS_LANG Parameter Incorrectly

	Changing the Database Character Set of an Existing Database
	Migrating Character Data Using a Full Export and Import
	Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement
	Using the ALTER DATABASE CHARACTER SET Statement in an Oracle9i Real Application Clusters Environ...

	Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement and Selective Imports

	Migrating to the Oracle9i NCHAR Datatypes
	Migrating Oracle8 NCHAR Columns to Oracle9i
	Changing the National Character Set
	Migrating CHAR Columns to NCHAR Columns in an Oracle9i Database
	Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to NCHAR Columns
	Using Online Table Redefinition to Migrate a Large Table to Unicode

	Tasks to Recover Database Schema After Character Set Migration

	11 Character Set Scanner
	What is the Character Set Scanner?
	Conversion Tests on Character Data
	Access Privileges
	Restrictions
	Database Containing Data From Two or More Character Sets
	Database Containing Data Not From the Database Character Set

	Scan Modes in the Character Set Scanner
	Full Database Scan
	User Scan
	Table Scan

	Using The Character Set Scanner
	Before Using the Character Set Scanner
	Character Set Scanner Compatibility
	Invoking the Character Set Scanner
	Getting Online Help for the Character Set Scanner
	The Parameter File

	Character Set Scanner Parameters
	ARRAY Character Set Scanner Parameter
	BOUNDARIES Character Set Scanner Parameter
	CAPTURE Character Set Scanner Parameter
	EXCLUDE Character Set Scanner Parameter
	FEEDBACK Character Set Scanner Parameter
	FROMCHAR Character Set Scanner Parameter
	FROMNCHAR Character Set Scanner Parameter
	FULL Character Set Scanner Parameter
	HELP Character Set Scanner Parameter
	LASTRPT Character Set Scanner Parameter
	LOG Character Set Scanner Parameter
	MAXBLOCKS Character Set Scanner Parameter
	PARFILE Character Set Scanner Parameter
	PRESERVE Character Set Scanner Parameter
	PROCESS Character Set Scanner Parameter
	SUPPRESS Character Set Scanner Parameter
	TABLE Character Set Scanner Parameter
	TOCHAR Character Set Scanner Parameter
	TONCHAR Character Set Scanner Parameter
	USER Character Set Scanner Parameter
	USERID Character Set Scanner Parameter

	Examples: Character Set Scanner Sessions
	Example: Full Database Scan
	Parameter-File Method
	Command-Line Method

	Example: User Scan
	Parameter-File Method
	Command-Line Method
	Character Set Scanner Messages

	Example: Single Table Scan
	Parameter-File Method
	Command-Line Method

	Character Set Scanner Reports
	Database Scan Summary Report
	Database Parameters for the Character Set Scanner
	Database Size
	Scan Summary
	Data Dictionary Conversion Summary
	Application Data Conversion Summary
	Application Data Conversion Summary for Each Column Size Boundary
	Distribution of Convertible Data for Each Table
	Distribution of Convertible Data for Each Column
	Indexes To Be Rebuilt

	Individual Exception Report
	Database Scan Parameters
	Data Dictionary Individual Exceptions
	Application Data Individual Exceptions

	Storage and Performance Considerations in the Character Set Scanner
	Storage Considerations
	CSM$TABLES
	CSM$COLUMNS
	CSM$ERRORS

	Performance Considerations
	Using Multiple Scan Processes
	Array Fetch Buffer Size
	Suppressing Exception and Convertible Log

	Character Set Scanner Views and Messages
	Character Set Scanner Views
	CSMV$COLUMNS
	CSMV$CONSTRAINTS
	CSMV$ERRORS
	CSMV$INDEXES
	CSMV$TABLES

	Character Set Scanner Error Messages

	12 Customizing Locale Data
	Overview of the Oracle Locale Builder Utility
	Configuring Unicode Fonts for the Oracle Locale Builder
	Font Configuration on Windows
	Font Configuration on Other Platforms

	The Oracle Locale Builder User Interface
	Oracle Locale Builder Screens and Dialog Boxes
	Existing Definitions Dialog Box
	Session Log Dialog Box
	Preview NLT Screen
	Open File Dialog Box

	Creating a New Language Definition with the Oracle Locale Builder
	Creating a New Territory Definition with the Oracle Locale Builder
	Customizing Time Zone Data
	Customizing Calendars with the NLS Calendar Utility

	Displaying a Code Chart with the Oracle Locale Builder
	Creating a New Character Set Definition with the Oracle Locale Builder
	Character Sets with User-Defined Characters
	Oracle Character Set Conversion Architecture
	Unicode 3.1 Private Use Area
	User-Defined Character Cross-References Between Character Sets
	Guidelines for Creating a New Character Set from an Existing Character Set
	Example: Creating a New Character Set Definition with the Oracle Locale Builder
	Supporting User-Defined Characters in Java
	Adding the Custom Zip File to Java Components
	Java Virtual Machine
	Oracle HTTP Server
	JDBC on the Client

	Creating a New Linguistic Sort with the Oracle Locale Builder
	Changing the Sort Order for All Characters with the Same Diacritic
	Changing the Sort Order for One Character with a Diacritic

	Generating and Installing NLB Files

	A Locale Data
	Languages
	Translated Messages
	Territories
	Character Sets
	Asian Language Character Sets
	European Language Character Sets
	Middle Eastern Language Character Sets
	Universal Character Sets
	Character Set Conversion Support
	Subsets and Supersets

	Linguistic Sorting
	Calendar Systems
	Obsolete Locale Data
	AL24UTFFSS Character Set Desupported
	Bengali Language Definition Deprecated
	Czechoslovakia Territory Definition Deprecated

	B Unicode Character Code Assignments
	Unicode Code Ranges
	UTF-16 Encoding
	UTF-8 Encoding

	Glossary
	Index

