Oracle9 j Database

Globalization Support Guide

Release 2 (9.2)

March 2002
Part No. A96529-01

ORACLE

Oracle9i Database Globalization Support Guide, Release 2 (9.2)
Part No. A96529-01

Copyright © 1996, 2002, Oracle Corporation. All rights reserved.
Primary Author: Cathy Baird

Contributors: Dan Chiba, Winson Chu, Jessica Fan, Claire Ho, Simon Law, Geoff Lee, Peter Linsley,
Keni Matsuda, Tamzin Oscroft, Shige Takeda, Linus Tanaka, Makoto Tozawa, Barry Trute, Mayumi
Tsujimoto, Ying Wu, Michael Yau, Tim Yu, Chao Wang, Simon Wong, Weiran Zhang, Lei Zheng, Yan Zhu

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle7, Oracle8, Oracle8i, Oracle9i, Pro*COBOL,
SQL*Plus, PL/SQL, Pro*C, and Pro*C/C++ are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

SENA US YOUI COMIMENTS oo e ettt e et e e ee e et e e s eeeeeeeee e e e e eeseseeeseeeeeseneeens XV
o =) =01 < XVii
What's New in Globalization SUPPOIt? ... XXVii

1 Overview of Globalization Support

Globalization SUPPOIt AFCRITECTUIEoo.oiuiiiieeeeee e 1-2
(o Tor=1 LB BT U= W] o T 5. T=] 1 o T S 1-2
Architecture to Support Multilingual Applications.........ccccccvvieieiine i 14
Using Unicode in a Multilingual Database.............cociiiiiiiiiiiiie e 1-6

Globalization SUPPOIt FEATUIES.........oiiiiiece bbbttt 1-6
(=T o B E=Ta [T B] o] o L0 o AN PP P T PUPPRPRPN 1-7
IR a1 Te] 5 18] o] o o] i ST SRR PRSP 1-7
Date and TimMe FOIMALSocoviiiiiicire ettt a e re e snesre e es 1-8
Monetary and NUMEIIC FOIMALS......c.ccciiiiieiiiciciee sttt st e et snesresre e 1-8
CalENAAIS FEALUIE.......ccuiitiiiiie ettt bbb e et e bt et e et e bt et e st seesbeeas 1-8
LINQUISTIC SOTTING. ...ttt bbbt bbbttt 1-8
(O g T 1= Tod (T g T=1 S]] o] o [0] o AP SS 1-9
CRAraCIEr SEMANTICSeiviitiite ittt bbb ettt s e b et be et et e sbesbeneas 1-9
Customization of Locale and Calendar Data...........cc.ccoovvvrievenienieienieneneeeeeee e se e 1-9
L8]] oo Lo [T U] o] o To] o OSSR 1-9

Choosing a Character Set

Character SEt ENCOAINGcoviiiiieiiieiete ettt ettt sr et r et sr et sb et eb e ene e 2-2
What is an Encoded CharacCter SEU?..........cccooiriiiiiineeniee e 2-2
Which Characters Are ENCOOBAY.........ooiiiieiiec e 2-3
What Characters Does a Character SEt SUPPOIT?........ccooeiieiineiiieinese e 2-5
How are Characters ENCOUEA?..........ccoviiriiiiee et 2-9
Naming Convention for Oracle Character SetS...........ccccovivveiiiieiie i 2-11

LeNGN SEMEANTICS ...t bbb et et bt 2-12

Choosing an Oracle Database Character Set ..o 2-14
Current and Future Language REQUITEMENTS..........ccoiiiriiiiinene e 2-16
Client Operating System and Application Compatibilityccooeoiiiiiiiiii 2-16
Character Set Conversion Between Clients and the Server.........cccoviiiiiniicicieens 2-16
Performance Implications of Choosing a Database Character Setccocooeeviniinnne. 2-17
Restrictions on Database Character SEtS ..o 2-17
Choosing a National CharaCter SEt..........cccvierireieiece e 2-18
Summary of SUPPOIted DAtatyPeS.......cccoiireiirieieie e 2-19

Changing the Character Set After Database Creation ..o 2-20

Monolingual Database SCENAIIO........cccvviiiiieriree e e e ere e eneas 2-20
Character Set Conversion in a Monolingual SCenario..........c.ccccevieviiieni s, 2-21

Multilingual Database SCENAITOS.cciiiiiriiiieiee e 2-23
Restricted MuUltilingual SUPPOIT........covoviieec e 2-24
Unrestricted Multilingual SUPPOTT..........coiiiiiiii s 2-25

Setting Up a Globalization Support Environment

SEHING NLS ParamELErS.....cc.voiiiie ettt et e et e st e st e sbe e b e saeentesaeesreanees 3-2
Choosing a Locale with the NLS_LANG Environment Variableccccoooiiniiiiinens 3-4
Specifying the Value 0f NLS _LANGcccoiiiiiceeces e 3-6
Overriding Language and Territory SPecifiCations..........ccccoviiininiieneneeees e 3-7
Should the NLS_LANG Setting Match the Database Character Set?...........cccoceoveencinnne, 3-8
NLS Database ParamMeLersScceouiiiiiiiiriiiesiees ettt bbbt sttt et 3-9
NLS Data DICLIONAIY VIBWSccieiiiieiecieite ettt se e e et es e ta e esteenvesneenaesneenneanees 3-9
NLS Dynamic PerformManCe VIBWS.........cooiiiiiiiieenieie ettt 3-9
OCINISGELINTO() FUNCLION ...t st ene e 3-10
Language and Territory ParamEtersS.. ..o iviieiiieeie et sttt sre e sre s 3-10
NLS LANGUAGE ..ottt bbbttt sttt bbbt b s sans 3-10

NLS_TERRITORY ..ot e 3-13

Date and TiMeE PAramMELEIScciiiiiiiie ettt sttt s be s s te st s be s e st e enbesteeneesreenes 3-17
[T U 0] 0T PSS 3-18
BT LN 0 1 0= LTRSS 3-21

Calendar DEefiNITIONScooi i ettt e et e s be et e sae e sbesneesreeneas 3-26
(0= 1 =] o I Ui =lo] 5 0 0 - iSSP 3-26
NLS _CALENDAR ...ttt st st e st sttt et st et e s b e e eneeteeteaaeareeeas 3-29

NUMETIC PArAQMELEIS ...ttt ettt st s ae e st e s te e s ee e reesbeesaesbeenbesteenbesreenns 3-30
N L T Tl o] g g - £SO 3-30
NLS NUMERIC_CHARACTERS ..ottt sttt re s 3-30

MONELAIY PAFQMETEIS ..ottt e ar e e 3-32
(LU g] 0 T 0T g T UL 3-32
NLS CURRENCY ...ttt b et be b et st st et et e s et e s b e e eneateetearearenras 3-32
NLS ISO CURRENC Y ..ottt ettt ettt st sttt et ettt ereebeaaeebeanas 3-34
NLS DUAL_CURRENC Y ...ttt ettt sttt e e anaanasseanesnenns 3-35
Oracle SUPPOIT FOr the EUKOcc.oiuiiieceeee et 3-37
NLS MONETARY _CHARACTERS ..ottt ettt sttt ve e ve s 3-38
NLS _CREDIT oottt ettt a ettt e et e e e s en s e e eneanearennennenen 3-38
INLS DEBIT oottt sttt sttt e b e te s be s b e s te s be st et et e e e st esbeseeneebeetesrearenras 3-38

LiNQUISTIC SOMT PAraMETETScuiiiiiiiieiiieieie ettt bbbttt 3-39
I T 1 S 3-39
INLS COMP ...ttt et b et et e b et be s b e st e st e st et et et e st esbeseeneebeetesbearenras 3-41
NLS LIST SEPARATOR ...ttt ettt ettt ettt te st sttt e et eraeteeaeebearas 3-41

Character Set CONVErsion PArameEtercccceviierieieieesiese s snesnens 3-42
NLS NCHAR _CONVY _EXCP ..ottt ettt sttt sttt a e taeteaneane e 3-42

LeNGN SEMANTICSociiice bbbttt 3-42
NLS LENGTH_SEMANTICS. ..ottt st nanre e ane e 3-42

Linguistic Sorting

Overview of Oracle’s Sorting CapabilitiesS.........ccccoviiiiiic e 4-2
(0] [[o T =T 1 g T= U VS T £SO 4-2
USING LINQUISTIC SOTTS.......eiiitiiitiiieiiietiie ettt bbbt 4-3
Monolingual LINQUISTIC SOITS.......cccviiiiiiiie et 4-3
Multilingual LINQUISTIC SOTTScviiiiiiiiie ettt nne s 4-4
Multilingual SOFtING LEVEIS........c.ciiiiiiie s 4-5

vi

LinQUISTIC SOMt EXAMPIEScviiiiiiie ittt 4-7

LINQUISTIC SOMT FEATUIESoviiiitiiiiiiet ettt bttt 4-8
BASE LBTEEIS ...ttt ettt h b r e 4-9
o] lo] =1 o] Ll @ P T Tod (= PSPPSR 4-9
CoNtracting CRATACTEISc.oiiiiiiiic bbbttt 4-9
[T aTe [T aTo T O g T Lo Tod (= SR 4-10
CoNtexXt-SENSITIVE CRAFACTETS ..ot e 4-10
CanoniCal EQUIVAIENCE ..ot 4-10
ReVErse SECONAAIY SOMTINGviviiviiiieieiceee st eenaere e e aneerenrs 4-11
Character Rearrangement for Thai and Laotian Charactersccoccevvvvvevvccein e, 4-11
SPPECTAI LBTEETS. ...ttt bbb btk e bbbt b et eb et r e n e ene e 4-11
Special CombiNAtIoN LELIEISccvcv i 4-11
SPECial UPPEICASE LEIEIS ...ttt bbb 4-12
SPECIAl LOWEICASE LETLEIS.c.ecviieiiiciiieiesteese ettt bbb ene e 4-12
USING LINQUISTIC INAEXES ...ttt st et enaene e e nnennn 4-12
Linguistic Indexes for Multiple LanQUAGEScoieiiiiriiiiiie e 4-13
Requirements for Using LIiNQUISEIC INAEXES..........ccoeiiiiiiiiiiiiieeseee e 4-14
Improving Case-Insensitive Searches with a Function-Based IndeXcc.cccceevevvvvvcivcnnnnn, 4-16
Performing a Generic Base Letter SEarcChc.ccovoiviiiii e 4-16

Supporting Multilingual Databases with Unicode

OVEIrVIEW OF UNICOOE ...ttt b et st sbe 5-2
WAL IS UNTCOAE?..... ettt sttt b et st sb bt e e s e s e e e et e ebesbesbeneas 5-2
SUPPIEMENArY CRArACIEIScvivie et eenesrenne s 5-3
L0 g [T (=T = g oTo T [gV -SSR 5-3
Oracle’s SUPPOIT FOr UNICOOE.c.ciiiiiiiiiiieist ettt 5-5
Implementing a Unicode Solution in the Database..........cc.ccocvvveie i 5-6
Enabling Multilingual Support with Unicode Databases..........c.ccooeiieieieiiiiiiinnenceee 5-7
Enabling Multilingual Support with Unicode Datatypes...........ccocecereereeneieneieneneseneaeneas 5-8
How to Choose Between a Unicode Database and a Unicode Datatype Solution............ 5-10
Comparing Unicode Character Sets for Database and Datatype Solutions....................... 5-12
UNICOAE CASE STUAIES ...ttt ettt bbbttt e et entebeereaneereneas 5-16
Designing Database Schemas to Support Multiple Languagesccocecvveveevieieeivsinninnnnns 5-18
Specifying Column Lengths for Multilingual Dataccccooiiiinneneieicceeeee 5-19
Storing Data in MUltiple LANQUAGEScccoviiiieiiieie et 5-19

Storing Documents in Multiple Languages in LOBS..........ccocviiinineneneneeeeeeeseneiee 5-21
Creating Indexes for Searching Multilingual Document Contents..........ccccoceeverveneennen. 5-22

6 Programming with Unicode

Overview of Programming With UNiCOTE............ccoiiiiiiiiiieee e 6-2
Database Access Product Stack and UNICOE..........c.cvriirniiriiniiiniisesese s 6-2
SQL and PL/SQL Programming With UNICOe.............cceiviiiiiiie e 6-4
SQL NCHAR DALALYES ..ot 6-5
Implicit Datatype Conversion Between NCHAR and Other Datatypes..........ccccoevvevrnrnne 6-7
Exception Handling for Data Loss During Datatype CONVErSioNcccocevieneienieniennens 6-7
Rules for Implicit Datatype CONVEISION..........ccuoueirieirieirieisieeie et 6-8
SQL Functions for UNicode DatatyPes........cccciveverrerieiesisieseseseseeseesie s esesse e e snenes 6-9
(O] 1 g T=T g1 I T T (o1 [0 SRS 6-11
UNICOde STHNG LITEIalSc.ooviiiiiiiiiiii s 6-11
Using the UTL_FILE Package with NCHAR Datacccooevvviinienie i 6-12
OCI Programming With UNICOUE..........c.ccveiiiieiiceee ettt 6-13
OCIEnVNIsCreate() Function for Unicode Programming........c.ccccoeoreinennennenseneennens 6-13
OCI UnNicode Code CONVEISIONcuiuiiriiirieisierisieesieesies ettt sttt snenesnene 6-15
When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCl.........ccccovevvvvecieinnen. 6-18
Binding and Defining SQL CHAR Datatypes in OCI ... 6-18
Binding and Defining SQL NCHAR Datatypes in OClc..ccccvvvviiveneneienceese e 6-20
Binding and Defining CLOB and NCLOB Unicode Data in OCl...........cccccceeveveiveviennenen. 6-21
Pro*C/C++ Programming With UNiCOOE..........cocoiiiiiiiiiiiiic e 6-22
Pro*C/C++ Data Conversion in UNICOTE ..o 6-22
Using the VARCHAR Datatype in Pro*C/CH+ ...t e 6-23
Using the NVARCHAR Datatype in Pro*C/ZCH ...t 6-24
Using the UVARCHAR Datatype in Pro*C/C++ ... 6-24
JDBC and SQLJ Programming With UNICOEccccoviiiiiiiiicce e 6-25
Binding and Defining Java Strings in UNICOAE ..o 6-26
Java Data Conversion iN UNICOAE ..o e 6-27
ODBC and OLE DB Programming With UNICOde............ccccoviiieiiiiiiece e 6-29
Unicode-Enabled Drivers in ODBC and OLE DB...........ccccooiiiiiiniie e 6-30
OCI Dependency iN UNICOAEccceieierieicieiceee ettt ne e e snesnens 6-30
ODBC and OLE DB Code Conversion in UNICOEccoceiiiiriieninieieieeeeeeeiesene e 6-30
ODBC UNICOAE DAALYES. ... cviuiitiriitiieiisieiisieiesteiesie sttt sb ettt 6-32

Vii

OLE DB UNICOOE DAALY[IESccueiieitiiierie sttt ettt sttt st sttt see e 6-33
AADIO ACCESS ...ttt ettt sttt bbbt st b st h e bt bt e bt Re e Rt Re e eRe R e e b e e R e e Ee e Rt e nbe e be bt enbenaeenes 6-34

7 SQL and PL/SQL Programming in a Global Environment

Locale-Dependent SQL Functions with Optional NLS Parametersccccocvveenennennennnn 7-2
Default Values for NLS Parameters in SQL FUNCLIONS..........ccccovvveiieiieiiciececce e 7-3
Specifying NLS Parameters in SQL FUNCLIONScccooiiiiiiiiiiiec e 7-3
Unacceptable NLS Parameters in SQL FUNCLIONSccoiiiiiiiiiiincencesee e 7-5

Other Locale-Dependent SQL FUNCLIONScccieiieiicise e e e 7-5
The CONVERT FUNCHION ..ottt ettt sne 7-6
SQL Functions for Different Length SEMantiCS..........cccoeireiiriiiniiniseseeeee s 7-6
LIKE Conditions for Different Length SEmMantics.........cc.ccoovvviiiieiinine i 7-8
Character Set SQL FUNCLIONS........ciiie ettt sttt esreenes 7-9
The NLSSORT FUNCHION ..ottt sttt be e 7-10

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment........ 7-13
SQL Date FOrmMat MASKSccouiiiiiciiee sttt e esre e sreennes 7-13
Calculating Week NUMDEISc.ociiiiiiieiee et 7-14
SQL NUMETIC FOrMAt IMASKS.......coiiiiiiieieireeiecte ettt st sbe b e enresbeennesbeennes 7-14
The Concatenation OPEIALONcciiiiiriie ettt bbbttt 7-15
Loading External BFILE Data into LOBS........ccccooiiiiiiiiieeees e 7-15

8 OCI Programming in a Global Environment

USING the OCT NLS FUNCLIONSciiiiiiiiice ettt 8-2
Specifying Character SEtS iN OCHcoci it srenne s 8-2
L@ 1O | = gLV AL E O T =T) TSRS 8-2
Getting Locale INformation iN OCHccociiiiiiiiiiieie e 8-6
L@ 1O |] £ =) {0 (S 8-7
OCI_NLS_MAXBURSZcoiititiitiieieieitit sttt bttt e 8-9
Example: Getting Locale Information in OCH ..o 8-10
OCINISCharSEtNAMETOIA()cvvereierirere et re e 8-10
OCINISCharSEtIATONAME() .. veiveieeieieeie et be st et e nresreeeesreennes 8-11
OCINISNUMEFCINTOGET() ...ttt 8-12
OCINISENVironmentVariableGet().........ccovvvierireieiecs e 8-13
Mapping Locale Information Between Oracle and Other Standards...........ccccccoveiininennne 8-14
OCITNISNAMEMEP() +-eveeereietereete ettt bbbt sr bbbt b st sb et eb e ebe e ene e ene e 8-14

viii

Manipulating StringS IN OCHcoiiiiii e 8-15

OCIMUItIBYtETOWIAECNAI() ...cveveiiiieiiieeiseste bbb 8-18
OCIMultiBytelnSize TOWIAECRAI().....ccveiueieieieeee s 8-19
OCIWIdeCharTOMUITIBYTE()ccvviieieiie ettt sttt e st nne e 8-20
OCIWideCharIinSize TOMUITIBYLE()......cvrveiriiiiiiiieisesee e 8-21
OCIWIdECNAITOLOWET()...veveiveiieiiesiisieieieesieieeee et es e e st te sttt st saenaeeesee s eneeseenaenassessesnens 8-22
OCIWIdECNAITOUPPEI() ..veveieeiteie sttt sttt sttt bbb e et s e beebesbesbesnens 8-22
OCIWIdECNAISIFCIMIP() «.vveveeetirieteieteiet sttt b ettt bbb 8-23
(@108 LVAV/To [T @1 o =] 1 g g 1od 1 41 o) TSRS 8-24
(O 104 AV iV A To [0 g T U] £ £ oF- L SRS 8-25
OCIWIdECNAISIINCAL() ...vvveveriritiieteiet ettt bttt bbb 8-26
(@108 LVAVATo [T @1 o=] 1 (o]]) SRS 8-26
(@104 AV AV ATo (1@ g T U gS] g (ol o] () TSRS 8-27
OCIWIAECNAISIFCPY() «euvevevererreieteietinieteste sttt b et sb ettt bbb 8-28
(@108 LVAV/To [T @1 o =] 1 ¢ g 1o] o) Y/ () ISP 8-28
(@104 ViV ATo [0 g T U gS] g [=] o1 SR 8-29
OCIWideCharStrCaseCoONVErSION()cooeireirieirieisieisieeee ettt 8-30
OCIWideCharDisplayLength()........ccoeieieriieieece s sne s 8-31
OCIWideCharMultiByteLength().........cccoviieiiie i 8-31
OCIMUITIBYTESTICIMIP() v evtteeeettet ettt 8-32
OCIMUILIBYLESIINCIMP() cvvvvveiieieiiesiesiese ettt sr e e e e e e s eseeneenesresnennens 8-33
OCIMUILIBYTESTICAL() vvevveiveeieiie ettt te e te e e be s e steenbenreenes 8-34
OCIMUITIBYTESTINCAL() . eveveeetieeteiet ettt 8-35
OCIMUILIBYLESIICPY ()« v veverierierieriestisiesie et eie e e e ettt sre st sae e enae e e e s eneeseaneanenresnesnens 8-35
OCIMUITIBYTESIINCPY () -t veteeterterte sttt sb e bbbt ebe bbb 8-36
OCIMUITIBYTESTIIEN() ...ttt bbb 8-37
OCIMultiByteStrnDisplayLength()cccooevieieiiieeecesies e 8-38
OCIMUItiBYteStrCaseCONVEISION() ...ccueiuveieieeieiiieie st eteste et e e s e e te e besre e sre e 8-38
Example: Manipulating Strings in OCH ... 8-39
Classifying CharacCters iN OC e e re st e snens 8-40
OCIWIAeCharISAINUM() ...ooviiie et re e reenbenne s 8-41
OCIWIdECNANISAIPNA() ...ttt bbbt 8-41
(@108 L VA To [T o = £S04 o1 1 o [SRS 8-42
(@104 AV AV ATo [=T@4 g T U £ o [) SRS 8-42
OCIWIdECNAIISGIAPRN() .veveeeitiiitiieiiiet sttt 8-43

(@104 ViV To (1@ g T U 1Y I 1YLV 1= () TSR 8-43

OCIWIECRNAFISPIINT() ...ttt ettt ettt sr ettt b e eb e b ene e ene e 8-44
(@ 108 L VAV To [T o F= g 1] o U o1 SRS 8-44
OCIWIAECNAITSSPACE() .- v veveeveetirterie ettt sttt ettt bbb e bbb ebe e 8-45
OCIWIdECNANISUPPET (). eeeteeeterieterietesiete sttt ettt et et se et sr et sb et b e eb e b e b e ene e 8-45
(@108 JVAV/To [T @1 o F= T 159, Co I T 1 1 [SR SSR 8-46
OCIWIideCharISSINGIEBYLE()cveieeieieeie sttt sttt sre s 8-47
Example: Classifying Characters in OCl ... 8-47
Converting Character Sets iN OCH ... 8-48
(@ 10d [0 P10 7=] o1 U g [T =T) USSR 8-48
OCIUNICOAETOCNAISEL() .. vttt ettt ettt b e eb e b ene e 8-49
OCINISChArSELCONVEIT() .. cuveuveerereiieerisesesese et sie et e ettt sttt sr et e e e e eneeseeneeneenenres 8-50
OCICharSetConversionlsReplacementUsed().........coeeeerieriiinene e 8-52
Example: Converting Character Sets in OCH ... 8-52
(@10 I8 \Y/ [=TSET: To [g ol U1 Tod € o i 1SS 8-53
OCIMESSAGEOPIEN() - eeueerieieeie ettt ettt bttt sttt b e bbbt st e b b besb et e b et eseeb e e neeneebenees 8-54
O CTMESSAGEGET() -.vvevereereeete etttk ettt b et bbbt bkt ne et sb bt e b bt eb et eb et b e b e ene e 8-55
(@ 1O 1 [=TY Y= o [T [0 TST T SR 8-56
Example: Retrieving a Message from a Text Message File ..., 8-57
IMISPEN UTHTITY ..ttt 8-57

Java Programming in a Global Environment

Overview Of Oracledi Java SUPPOIT.........ccooiiiiiiiiieireeseste et 9-2
Globalization SUPPOrt TOr IDBC DIIVEIS.....c.ccvciciieeeeese et e e e e ssesressesnens 9-3
Accessing SQL CHAR Datatypes USiNg JDBC ..ot 9-4
Accessing SQL NCHAR Datatypes USiNg JDBCccccccoiiiiiiiiiieineesese e 9-7
Using the oracle.SQLCHAR CIaSScoiviieicicreesese st et 9-8
Restrictions on Accessing SQL CHAR Data with JDBCcccocveviiieie i 9-11
Globalization SUPPOIt FOr SQLUJcooiiiiiiiiee e 9-14
Using Unicode Characters in SQLJ ProgramsSccccvcvvivreierieseseseseseesseseeseeseeessesessessesees 9-15
Using the oracle.Sql.NSTING CIASScoiiiiiie s 9-16
Globalization Support for Java Virtual Machine ... 9-16
Globalization Support for Java Stored ProCedUres..........ccovvvvievenieneseneneseeesees e 9-18
Configurations for Multilingual AppliCatioNS...........cccoiiiiiii e 9-20

Configuring a Multilingual Databaseccoieiiiiiiii e 9-20

10

11

Globalization Support for Java Stored ProCedures...........cocviriieieneneieiceeeeeeese e 9-21

Clients with Different LANQUAGESccoeiriiiriiirieisieisiese ettt 9-22
A Multilingual Demo Application in SQLJ ..o 9-23
Database Schema for the Multilingual Demo Application..........c.ccocoeieiiiiicicinieicee, 9-23
Java Stored Procedures for the Multilingual Demo Applicationc.ccocoeineniicinennas 9-24
The SQLJ Client for the Multilingual Demo Application..........ccccccvevevviciciccceeceeee, 9-27
Character Set Migration
Overview of Character SEt MIgration........ccccovvieieiccs e 10-2
DAta TIUNCALIONooviiiiciicte sttt bbbt bbb bttt et et e e b e bbb 10-2
Character Set CONVEISION ISSUEScc.oiuiiiieieiiieicees ettt sttt e e s sresne e 10-4
Changing the Database Character Set of an Existing Databasec.ccocvvvvvveiiiviiiinninnnnne 10-7
Migrating Character Data Using a Full Export and Import ..., 10-8
Migrating Character Data Using the ALTER DATABASE CHARACTER SET
T E= L] 0 0] o | AT TSSO RRTROP 10-8
Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement
oL aTo I T= (=Yoo g o] o o] o €SP S 10-10
Migrating to the Oracle9i NCHAR DatatyPescccociiiririiinine e 10-11
Migrating Oracle8 NCHAR Columns to Oraclegi.........c.cooveriiniinnineenee e 10-11
Changing the National Character Set...........cccovivvieiiieii e 10-12
Migrating CHAR Columns to NCHAR Columns in an Oracle9i Database..................... 10-12
Tasks to Recover Database Schema After Character Set Migrationccccoceeveeneinnnn, 10-16
Character Set Scanner
What is the Character SEt SCANNEI?.........oo oo 11-2
Conversion Tests 0N Character Data ..o e 11-2
AACCESS PIIVIIEOES. ..ottt e e s e st e e s e ste et e eaeenteeneenreanees 11-3
L CEES] € o1 o] LTRSS 11-3
Database Containing Data From Two or More Character Sets.........cccccocvvvreveiciciesieennnn, 114
Database Containing Data Not From the Database Character Set.............cccccevvvviveveienen, 11-4
Scan Modes in the Character SEt SCANNETcc.oooeieie e 11-4
FUTT DALADASE SCAN.....c.ecviiitiiieiirieiiree ettt b bbbttt ettt et 11-4
L0 1T g Tor- 1 TSP P TP PO PPTPRTOPRTRO 11-5
QLI 1] LT oF T o SO SO 11-5
Using The Character SEt SCANNETc.ccoiv e re e renre s 11-5

Xi

Before Using the Character SEt SCANNENcooii e 11-5

Character Set Scanner CompPatiDIlityccoeiiiiiiiii e 11-6
INvoking the Character SEt SCANNENcccviviieieieee e 11-6
Getting Online Help for the Character Set SCANNEr...........cccooiiiiiineieneee e 11-7
The Parameter FIlE ...ttt et et e et et e ear e sbe e e beenees 11-8
Character Set SCANNETr PAramELersScccvvieiieieceeeece e e e renne s 11-9
ARRAY Character Set Scanner Parameter ..o 11-9
BOUNDARIES Character Set Scanner Parameter.........cccccovveiieeiieieeie s 11-10
CAPTURE Character Set SCanner Parameterccccoovcvveiveeeisinsie e seeseseseesseeeseseenens 11-10
EXCLUDE Character Set Scanner Parameterccooviveeieiieiiesie e 11-11
FEEDBACK Character Set Scanner Parameter ... 11-11
FROMCHAR Character Set Scanner Parameter..........ccocooveveeeievnieniesiesieseseseseeseeeeesens 11-12
FROMNCHAR Character Set Scanner Parametercccoovvvevieeieveeie s 11-12
FULL Character Set Scanner PArametercccooeieiiiiiee ittt 11-12
HELP Character Set SCANNer PArameter...........cocveveveiiieisiese s 11-12
LASTRPT Character Set Scanner Parameter...........ccccooviveeieiieeiesiee e 11-13
LOG Character Set SCannNer Parameter ...ttt 11-13
MAXBLOCKS Character Set Scanner Parameter..........ccocvovvvrvnienevenienie e seeseeeeesneens 11-13
PARFILE Character Set Scanner Parameter..........cccocevvivieieiie st 11-14
PRESERVE Character Set Scanner Parametercccccoveieiiciiecic s 11-14
PROCESS Character Set SCanner Parameter..........ccccoeveieieeenneeniese e seseeesneens 11-15
SUPPRESS Character Set Scanner Parameter...........ccccveveiieiieieeie e 11-15
TABLE Character Set Scanner Parameter ..o 11-15
TOCHAR Character Set SCanNer Parameter.........ccocveveveisesiese e sesese e seesseseeseeeesennes 11-16
TONCHAR Character Set Scanner Parameter.........ccocccveeiieieieeie e se e e seeaens 11-16
USER Character Set SCANNEr PArameEter..........ccccoiiieiiiiiee ettt 11-16
USERID Character Set SCanner Parameter..........ccocvcvrereeieieeiesn e sesese s seeeesesneens 11-16
Examples: Character Set SCANNEr SESSIONSc..oiviiiiiiiieieeie st 11-17
Example: FUll Database SCaN ... 11-17
e 10 0] o] LT U LT o T o PP 11-18
Example: Single Table SCaN ... 11-19
Character Set SCANNET REPOITSc.oouiiiiiiriiirieisi et 11-20
Database Scan SUMMAry REPOITcccooeiiiieeecce e 11-20
Individual EXCePLiON REPOIT.........oiiiiiiiiiie et e 11-27
Storage and Performance Considerations in the Character Set Scannercccceevevene. 11-29

Xii

12

0] = o [@0 S [0 [=1 = U [o] o 1= USRS 11-29

Performance CONSIAEIAtIONS.c.cov ittt s e e sre e be e 11-31
Character Set Scanner Views and IMESSAQES.......cccciveirieiuienisiesiesesesesiesseseeseessesseseesesssssessenns 11-31
Character St SCANNET VIBWSccuiiiiiiiieieieieeee ettt et et 11-31
Character Set Scanner Error MESSAJEScoveuvrieiriiirieinieisieesieeeie et snenes 11-34

Customizing Locale Data

Overview of the Oracle Locale Builder ULility ... 12-2
Configuring Unicode Fonts for the Oracle Locale Builder..........c.ccocoeoevevevcciecincieieinannne 12-2
The Oracle Locale Builder User INTErfaCeccviiiiiiiiiiiie e 12-3
Oracle Locale Builder Screens and Dialog BOXES..........ccoovieiierieinieineinesesesse e 12-4

Creating a New Language Definition with the Oracle Locale Builderc.cccoooveeviivinnnne 12-8

Creating a New Territory Definition with the Oracle Locale Buildercccccevveivnen. 12-11
Customizing TiMe ZONe DAta..........ccooiiiiiiiiiieiiee s 12-17
Customizing Calendars with the NLS Calendar Utilityccccoevvvvienieiencicicecee 12-17

Displaying a Code Chart with the Oracle Locale Builderc.ccocooiiiiiiiiiiiiince, 12-18

Creating a New Character Set Definition with the Oracle Locale Builder 12-23
Character Sets with User-Defined Characters. ... 12-24
Oracle Character Set Conversion ArchiteCtUIEccccooireiiiiniie e 12-25
UNICOAE 3.1 PrIVALE USE ATB8ccuiiviieiiiiieie ettt sttt sttt sneens 12-26
User-Defined Character Cross-References Between Character Sets..........ccovevvvviinnns 12-26
Guidelines for Creating a New Character Set from an Existing Character Set................ 12-27
Example: Creating a New Character Set Definition with the Oracle Locale Builder 12-27
Supporting User-Defined Characters in Java ... 12-32

Creating a New Linguistic Sort with the Oracle Locale Builder.........c..ccccocooeviveiviiccnennenn, 12-35
Changing the Sort Order for All Characters with the Same Diacriticccoccovervnnene. 12-38
Changing the Sort Order for One Character with a Diacriticccccoeevvvviereiecicennn, 12-41

Generating and INStalling NLB FIleS.........cccoiiiiiiicceccse e 12-43

Locale Data

(=T T LU F= o =2 SO UPRPRTPR A-2
TraNSIAtEA IMESSAGES......c.ccuiieiirieii ettt et b bbbt bttt ettt A-4
TEITTEOTTES .ottt Rt R ettt r e r et n e A-5
CRATACTEET SES ...ttt bbbt et bt r ettt A-6

Asian Language CharaCter SELS ..ot A-8

Xiii

European Language CharaCter SELS ...t A-9

Middle Eastern Language CharacCter SELScoviieireiineiineiesee s A-15
UNIVErSal CharaCter SELS........cooviiiiiiiiiiiee et sb e A-18
Character Set CONVEISION SUPPOIT.......oiiiiiiiirierienie ettt bbb e A-18
SUDSETS BN SUPEISELS ...ttt A-19
I o T LU T3 o o3 o o o A-22
LOF 1 LT g To =TS V2] =] o £ 1SS SPBSN A-25
(@] 010 [(= Mo Tor: 1 [N B | v SO A-27
AL24UTFFSS Character Set DeSUPPOItEd.........cccoviererierieieieese e A-29
Bengali Language Definition Deprecated ... A-29
Czechoslovakia Territory Definition Deprecated ... A-30
B Unicode Character Code Assignments
UNICOAE COOE RANGESocuiieiiiieiiiteiiit ettt b et bbbt bbbttt B-2
L I I3 = oo Yo 1 o Vo P B-3
(O c I = o Voo T [o o OSSPSR B-4
Glossary
Index

Xiv

Send Us Your Comments

Oracle9 j Database Globalization Support Guide, Release 2 (9.2)
Part No. A96529-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

Preface

This manual describes Oracle’s globalization support and how to use its
capabilities.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

Xvii

Audience

Organization

xViii

Oracle9i Database Globalization Support Guide is intended for database
administrators, system administrators, and database application developers who
perform the following tasks:

« Setup a globalization support environment
« Choose, analyze, or migrate character sets

« Sort data linguistically

» Customize locale data

« Write programs in a global environment

« Use Unicode

To use this document, you need to be familiar with relational database concepts,
basic Oracle server concepts, and the operating system environment under which
you are running Oracle.

This document contains:

Chapter 1, "Overview of Globalization Support”

This chapter contains an overview of globalization and Oracle’s approach to
globalization.

Chapter 2, "Choosing a Character Set"
This chapter describes how to choose a character set.

Chapter 3, "Setting Up a Globalization Support Environment"
This chapter contains sample scenarios for enabling globalization capabilities.

Chapter 4, "Linguistic Sorting"
This chapter describes linguistic sorting.

Chapter 5, "Supporting Multilingual Databases with Unicode"
This chapter describes Unicode considerations for databases.

Chapter 6, "Programming with Unicode"
This chapter describes how to program in a Unicode environment.

Chapter 7, "SQL and PL/SQL Programming in a Global Environment"
This chapter describes globalization considerations for SQL programming.

Chapter 8, "OCI Programming in a Global Environment"
This chapter describes globalization considerations for OCI programming.

Chapter 9, "Java Programming in a Global Environment"
This chapter describes globalization considerations for Java.

Chapter 10, "Character Set Migration"
This chapter describes character set conversion issues and character set migration.

Chapter 11, "Character Set Scanner"

This chapter describes how to use the Character Set Scanner utility to analyze
character data.

Chapter 12, "Customizing Locale Data"

This chapter explains how to use the Oracle Locale Builder utility to customize
locales. It also contains information about time zone files and customizing calendar
data.

Appendix A, "Locale Data"
This chapter describes the languages, territories, character sets, and other locale

data supported by the Oracle server.

Appendix B, "Unicode Character Code Assignments"
This chapter lists Unicode code point values.

Glossary
The glossary contains definitions of globalization support terms.

Related Documentation

For more information, see these Oracle resources:

Xix

Conventions

XX

« Oracle9i SQL Reference
« Oracle9i Application Developer’s Guide - Fundamentals

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/admin/accountimembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index htm

To access the database documentation search engine directly, please visit
http:/tahiti.oracle.com

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace
(fixed-width)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

You can back up the database by using the
BACKURommand.

Query the TABLE_NAMEolumn in the USER _
TABLESdata dictionary view.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name

Connect as oe user.

The JRepUtil
methods.

class implements these

You can specify the parallel_clause

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

XXi

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECIMAL (digits [, precision)
items. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}
which is required. Do not enter the
braces.

| A vertical bar represents a choice of two {ENABLE | DISABLE}

or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

[COMPRESS | NOCOMPRESS]

Horizontal ellipsis points indicate either:

« That we have omitted parts of the CREATE TABLE ... AS subquery ;
code that are not directly related to

the example
« Thatyou can repeat a portion of the SELECT C(,)Il , o2, .., coln FROM
employees;
code
Vertical ellipsis points indicate that we SQL> SELECT NAME FROM V$DATAFILE;
have omitted several lines of code not NAME
directly related to the example.
fislidbsfths _01.dbf
fisl/dbshtbs_02.dbf
fislidbs/tbs 09.dbf
9 rows selected.
Other notation You must enter symbols other than acctbal NUMBER(11,2);

brackets, braces, vertical bars, and ellipsis

boints as shown acct CONSTANT NUMBER(4) = 3;

XXii

Convention

Meaning Example

Italics Italicized text indicates placeholders or CONNECT SYSTEMystem_password
variables for which you must supply _
particular values. DB_NAME = database _name
UPPERCASE Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;
terms in uppercase in ord_er to distinguish SELECT * FROM USER TABLES:
them from terms you define. Unless terms -
appear in brackets, enter them in the DROP TABLE hr.employees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.
lowercase Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names
of tables, columns, or files. salplus hr/hr
Note: Some programmatic elements use a CREATE USER mjones IDENTIFIED BY ty8MUS9;
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.
Convention Meaning Example
Choose Start > How to start a program. To start the Database Configuration Assistant,

choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory File and directory names are not case c:\winnt"\"system32 is the same as

names

sensitive. The following special characters CAWINNT\SYSTEM32
are not allowed: left angle bracket (<),

right angle bracket (>), colon (:), double

quotation marks (), slash (/), pipe (]),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

XXili

Convention Meaning Example

C:\> Represents the Windows command C:\oracle\oradata>
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (©). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

Special characters The backslash (\) special character is C:\>exp scott/tiger TABLES=emp
sometimes required as an escape QUERY=\"WHERE job="SALESMAN’ and
character for the double quotation mark sal<1600\"

(") special character at the Windows C:\>imp SYSTEM/ password

command prompt. Parentheses and the - £\ SER=scott TABLES=(emp, dept)
single quotation mark (’) do not require

an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

HOME_NAME Represents the Oracle home name. The C:\> net start Oracle HOME_
home name can be up to 16 alphanumeric NAMHENSListener
characters. The only special character
allowed in the home name is the
underscore.

XXiV

Convention Meaning Example

ORACLE_HOME In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASEFORACLE
and ORACLE _ when you installed Oracle components, HOM¥Edbms\admin directory.
BASE all subdirectories were located under a

top level ORACLE_HOMfirectory that by

default used one of the following names:

. C:\orant for Windows NT
« C:orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOMtirectory. There is a
top level directory called ORACLE _BASE
that by default is C:\oracle . If you
instal the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE _BASE

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

XXV

XXVi

http/Amwwv.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

What's New in Globalization Support?

This section describes new features of globalization support in Oracle9i release 2
(9.2) and provides pointers to additional information.

The following section describes the new features in Oracle globalization support:

« Oracle9i Release 2 (9.2) New Features in Globalization Support

XXVil

Oracle9j Release 2 (9.2) New Features in Globalization Support

XXViii

Unicode 3.1 support
Oraclegi release 2 (9.2) supports Unicode 3.1.

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode"
ALTER TABLE MODIFY statement

The ALTER TABLE MODIFY statement can be used to change column
definitions from the CHARdatatypes to the NCHARJatatypes. It also converts the
data in the columns from the CHARdatatypes to the NCHARJatatypes.

See Also: "Using the ALTER TABLE MODIFY Statement to
Change CHAR Columns to NCHAR Columns" on page 10-13
Oracle Locale Builder enhancements
You can view and print code charts with Oracle Locale Builder.

Characters with diacritics can now be viewed in collation trees.

See Also:

« "Displaying a Code Chart with the Oracle Locale Builder” on
page 12-18

« "Creating a New Linguistic Sort with the Oracle Locale Builder"
on page 12-35
Character Set Scanner enhancements

Two new parameters have been added to the Character Set Scanner; EXCLUDE
and PRESERVE

The TABLE parameter has been extended to support multiple tables.

Convertible and exceptional data dictionary data are documented in the new
"Data Dictionary Individual Exceptions" of the Individual Exception Report.

See Also:
« "Character Set Scanner Parameters” on page 11-9

« "Individual Exception Report" on page 11-27

Change in euro support

The members of the European Monetary Union (EMU) use the euro as their
currency as of January 1, 2002. Setting NLS_TERRITORMo correspond to a
country in the EMU (Austria, Belgium, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain) results in the
default values for NLS_CURRENCahd NLS_DUAL_CURREN@¥ing set to
EUROBeginning with Oracle9i release 2 (9.2), the value of NLS_ISO_CURRENCY
results in the ISO currency symbol being set to EURfor EMU member countries.

See Also: "Oracle Support for the Euro" on page 3-37

OCIENnvNIsCreate() function

Use the OCIEnvNIsCreate function to specify client-side database and
national character sets when the OCI environment is created.This function
allows users to set character set information dynamically in applications,
independent of the NLS_LANGand NLS_CHARnitialization parameter settings.
In addition, one application can initialize several environment handles for
different client environments in the same server environment.

See Also: "OCIEnvNIsCreate()" on page 8-2

OCINIsCharSetConvert() function

This function converts a string from one character set to another.

See Also: "OCINIsCharSetConvert()" on page 8-50

OCINIsCharSetNameTold() function

This function returns the Oracle character set ID for the specified Oracle
character set name.

See Also: "OCINIsCharSetNameTold()" on page 8-10

OCINIsCharSetldToName() function

This function returns the Oracle character set name from the specified character
set ID.

See Also: "OCINIsCharSetldToName()" on page 8-11

XXiX

XXX

OCINIsNumericlnfoGet() function

This function generates numeric language information specified by item from
the OCI environment handle into an output number variable.

See Also: "OCINIsNumericlnfoGet()" on page 8-12

OCINIsNameMap() function

This function maps Oracle character set names, language names, and territory
names to and from IANA and ISO names.

See Also: "OCINIsNameMap()" on page 8-14
DBMS_LOB.LOADBLOBFROM FILE and DBMS_LOB.LOADCLOBFROM
FILE

These APIs allow the user to specify the character set ID of BFILE data by using
a new parameter. The APIs convert the data from the specified BFILE character
set into the database character set for CLOB or the national character set for
NCLORB.

See Also: "Loading External BFILE Data into LOBs™ on page 7-15

Generic base letter search

You can perform a search that ignores case and diacritics.

See Also: "Performing a Generic Base Letter Search" on page 4-16
Change in Object Types support for NCHAR datatypes and character
semantics

Object Types now support NCHARJatatypes and character semantics.

See Also:
« "Length Semantics" on page 2-2
« "Summary of Supported Datatypes" on page 2-19

« Oracle9i Application Developer’s Guide - Object-Relational Features

1

Overview of Globalization Support

This chapter provides an overview of Oracle globalization support. It includes the
following topics:

« Globalization Support Architecture

« Globalization Support Features

Overview of Globalization Support 1-1

Globalization Support Architecture

Globalization Support Architecture

Oracle's globalization support enables you to store, process, and retrieve data in
native languages. It ensures that database utilities, error messages, sort order, and
date, time, monetary, numeric, and calendar conventions automatically adapt to any
native language and locale.

In the past, Oracle’s globalization support capabilities were referred to as National
Language Support (NLS) features. National Language Support is a subset of
globalization support. National Language Support is the ability to choose a national
language and store data in a specific character set. Globalization support enables
you to develop multilingual applications and software products that can be
accessed and run from anywhere in the world simultaneously. An application can
render content of the user interface and process data in the native users’ languages
and locale preferences.

Locale Data on Demand

Oracle's globalization support is implemented with the Oracle NLS Runtime
Library (NLSRTL). The NLS Runtime Library provides a comprehensive suite of
language-independent functions that allow proper text and character processing
and language convention manipulations. Behavior of these functions for a specific
language and territory is governed by a set of locale-specific data that is identified
and loaded at runtime.

The locale-specific data is structured as independent sets of data for each locale that
Oracle supports. The data for a particular locale can be loaded independent of other
locale data. The advantages of this design are as follows:

=« You can manage the memory consumption of Oracle9i by choosing the set of
locales that you need.

« You can add and customize locale data for a specific locale without affecting
other locales.

Figure 1-1 shows that locale-specific data is loaded at runtime. In this example,
French data and Japanese data are loaded into the multilingual database, but
German data is not.

1-2 Oracle9i Database Globalization Support Guide

Globalization Support Architecture

Figure 1-1 Loading Locale-Specific Data to the Database

Multilingual
Database

(¢
QLU
‘Q}‘\o\)’b

7
s e

German French Japanese
Data Data Data

The locale-specific data is stored in a directory specified by the ORA_NLS*
environment variable. There is a different ORA_NLSdata directory for different
releases of the Oracle database server. For Oracle9i, the ORA_NLS33directory is
used. Table 1-1 shows the environment variable that specifies the location of
locale-specific data for different releases of the Oracle database server.

Table 1-1 Environment Variable that Specifies Location of Locale-Specific Data by
Release

Release Environment Variable
7.2 ORA_NLS

7.3 ORA_NLS32
8.0,8.1,9.0.1,9.2 ORA_NLS33

When the ORA_NLS*environment variable is not defined, then the default value
relative to the Oracle home directory is used to locate the locale-specific data. The
default location of locale data is SORACLE_HOME/ocommon/nis/admin/data in
all releases. In most cases, the default value is sufficient. The ORA_NLS*variable
should be defined only when the system has multiple Oracle homes that share a
single copy of NLS datafiles.

Overview of Globalization Support 1-3

Globalization Support Architecture

A boot file is used to determine the availability of the NLS objects that can be
loaded. Oracle supports both system and user boot files. The user boot file gives
you the flexibility to tailor what NLS locale objects are available for the database.
Also, new locale data can be added and some locale data components can be
customized.

See Also: Chapter 12, "Customizing Locale Data" for more
information about customizing locale data

Architecture to Support Multilingual Applications

The Oracle9i database is implemented to enable multitier applications and
client/server applications to support languages for which the database is
configured.

The locale-dependent operations are controlled by several parameters and
environment variables on both the client and the database server. On the database
server, each session started on behalf of a client may run in the same or a different
locale as other sessions, and have the same or different language requirements
specified.

The database has a set of session-independent NILS parameters that are specified
when the database is created. Two of the parameters specify the database character
set and the national character set, an alternate Unicode character set that can be
specified for NCHARNVARCHAR2Nnd NCLOBdata. The parameters specify the
character set that is used to store text data in the database. Other parameters, like
language and territory, are used to evaluate check constraints.

If the client session and the database server specify different character sets, then the
Oracle9i database converts character set strings automatically.

From a globalization support perspective, all applications are considered to be
clients, even if they run on the same physical machine as the Oracle instance. For
example, when SQL*Plus is started by the UNIX user who owns the Oracle software
from the Oracle home in which the RDBMS software is installed, and SQL*Plus
connects to the database through an adapter by specifying the ORACLE_SID
parameter, SQL*Plus is considered a client. Its behavior is ruled by client-side NLS
parameters.

Another example of an application being considered a client occurs when the
middle tier is an application server. The different sessions spawned by the
application server are considered to be separate client sessions.

1-4 Oracle9i Database Globalization Support Guide

Globalization Support Architecture

When a client application is started, it initializes the client NLS environment from
environment settings. All NLS operations performed locally are executed using
these settings. Examples of local NLS operations are:

« Display formatting in Oracle Developer applications
« User OCI code that executes NLS OCI functions with OCI environment handles

When the application connects to a database, a session is created on the server. The
new session initializes its NLS environment from NLS instance parameters specified
in the initialization parameter file. These settings can be subsequently changed by
an ALTER SESSIONstatement. The statement changes only the session NLS
environment. It does not change the local client NLS environment. The session NLS
settings are used to process SQL and PL/SQL statements that are executed on the
server. For example, use an ALTER SESSIONstatement to set the NLS_LANGUAGE
initialization parameter to Italian:

ALTER SESSION SET NLS_LANGUAGE-talian;

Enter a SELECTstatement:
SQL>SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
Sciara 30-SET97 9625

Uman 07-MAR-98 975

Popp 07-DICQ99 8625

Note that the month name abbreviations are in ltalian.

Immediately after the connection has been established, if the NLS_LANG
environment setting is defined on the client side, then an implicit ALTER SESSION
statement synchronizes the client and session NLS environments.

See Also:
« Chapter 8, "OCI Programming in a Global Environment"

« Chapter 3, "Setting Up a Globalization Support Environment"

Overview of Globalization Support 1-5

Globalization Support Features

Using Unicode in a Multilingual Database

Unicode is a universal encoded character set that enables you to store information
in any language, using a single character set. Unicode provides a unique code value
for every character, regardless of the platform, program, or language.

When Unicode is used in an Oracle9i database, it has the following advantages:

Simplifies character set conversion and linguistic sort functions
Improves performance compared with native multibyte character sets

Supports the Unicode datatype based on the Unicode standard

See Also:
« Chapter 5, "Supporting Multilingual Databases with Unicode"
« Chapter 6, "Programming with Unicode"

« "Enabling Multilingual Support with Unicode Datatypes" on
page 5-8

Globalization Support Features

Oracle's standard features include:

Language Support

Territory Support

Date and Time Formats

Monetary and Numeric Formats

Calendars Feature

Linguistic Sorting

Character Set Support

Character Semantics

Customization of Locale and Calendar Data

Unicode Support

1-6 Oracle9i Database Globalization Support Guide

Globalization Support Features

Language Support

The Oracle9i database enables you to store, process, and retrieve data in native
languages. The languages that can be stored in an Oracle9i database are all
languages written in scripts that are encoded by Oracle-supported character sets.
Through the use of Unicode databases and datatypes, Oracle9i supports most
contemporary languages.

Additional support is available for a subset of the languages. The Oracle9i database
knows, for example, how to display dates using translated month names or how to
sort text data according to cultural conventions.

When this manual uses the term language support, it refers to the additional
language-dependent functionality (for example, displaying dates or sorting text),
not to the ability to store text of a specific language.

For some of the supported languages, Oracle provides translated error messages
and a translated user interface of the database utilities.

See Also:

« Chapter 3, "Setting Up a Globalization Support Environment"

« "Languages" on page A-2 for a complete list of Oracle language
names and abbreviations

« "Translated Messages" on page A-4 for a list of languages into
which Oracle messages are translated

Territory Support

The Oracle9i database supports cultural conventions that are specific to
geographical locations. The default local time format, date format, and numeric and
monetary conventions depend on the local territory setting. By setting different NLS
parameters, the database session can use different cultural settings. For example,
you can set British pound sterling (GBB as the primary currency and the Japanese
yen (JPY) as the secondary currency for a given database session even when the
territory is defined as AMERICA

See Also:
« Chapter 3, "Setting Up a Globalization Support Environment"

« "Territories" on page A-5 for a list of territories that are
supported by the Oracle server

Overview of Globalization Support 1-7

Globalization Support Features

Date and Time Formats

Different conventions for displaying the hour, day, month, and year can be handled
in local formats. For example, in the United Kingdom, the date is displayed using
the DD-MON-YYY Yformat, while Japan commonly uses the YYYY-MM-DDformat.

Time zones and daylight saving support are also available.

See Also:
« Chapter 3, "Setting Up a Globalization Support Environment"
« Oracle9i SQL Reference

Monetary and Numeric Formats

Currency, credit, and debit symbols can be represented in local formats. Radix
symbols and thousands separators can be defined by locales. For example, in the
US, the decimal point is a dot (.), while it is a comma (,) in France. Therefore, the
amount $1,234 has different meanings in different countries.

See Also: Chapter 3, "Setting Up a Globalization Support
Environment"

Calendars Feature

Many different calendar systems are in use around the world. Oracle supports
seven different calendar systems: Gregorian, Japanese Imperial, ROC Official
(Republic of China), Thai Buddha, Persian, English Hijrah, and Arabic Hijrah.

See Also:

« Chapter 3, "Setting Up a Globalization Support Environment"

« "Calendar Systems" on page A-25 for a list of supported
calendars

Linguistic Sorting
Oracle9i provides linguistic definitions for culturally accurate sorting and case
conversion. The basic definition treats strings as sequences of independent
characters. The extended definition recognizes pairs of characters that should be
treated as special cases.

1-8 Oracle9i Database Globalization Support Guide

Globalization Support Features

Strings that are converted to upper case or lower case using the basic definition
always retain their lengths. Strings converted using the extended definition may
become longer or shorter.

See Also: Chapter 4, "Linguistic Sorting"

Character Set Support

Oracle supports a large number of single-byte, multibyte, and fixed-width encoding
schemes that are based on national, international, and vendor-specific standards.

See Also:
« Chapter 2, "Choosing a Character Set"

« "Character Sets" on page A-6 for a list of supported character
sets

Character Semantics

Oracle9i introduces character semantics. It is useful for defining the storage
requirements for multibyte strings of varying widths in terms of characters instead
of bytes.

See Also: "Length Semantics" on page 2-12

Customization of Locale and Calendar Data

You can customize locale data such as language, character set, territory, or linguistic
sort using the Oracle Locale Builder.

You can customize calendars with the NLS Calendar Utility.

See Also:
« Chapter 12, "Customizing Locale Data"

« "Customizing Calendars with the NLS Calendar Utility" on
page 12-17

Unicode Support

You can store Unicode characters in an Oracle9i database in two ways:

=« You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL CHARdatatypes.

Overview of Globalization Support 1-9

Globalization Support Features

« You can support multilingual data in specific columns by using Unicode
datatypes. You can store Unicode characters into columns of the SQL NCHAR
datatypes regardless of how the database character set has been defined. The

NCHARJatatype has been redefined in Oracle9i to be an exclusively Unicode
datatype.

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode"

1-10 Oracle9i Database Globalization Support Guide

2

Choosing a Character Set

This chapter explains how to choose a character set. It includes the following topics:

Character Set Encoding

Length Semantics

Choosing an Oracle Database Character Set
Changing the Character Set After Database Creation
Monolingual Database Scenario

Multilingual Database Scenarios

Choosing a Character Set 2-1

Character Set Encoding

Character Set Encoding

When computer systems process characters, they use numeric codes instead of the
graphical representation of the character. For example, when the database stores the
letter A, it actually stores a numeric code that is interpreted by software as the letter.
These numeric codes are especially important in a global environment because of
the potential need to convert data between different character sets.

This section includes the following topics:

« Whatis an Encoded Character Set?

« Which Characters Are Encoded?

« What Characters Does a Character Set Support?
« How are Characters Encoded?

= Naming Convention for Oracle Character Sets

What is an Encoded Character Set?

You specify an encoded character set when you create a database. Choosing a
character set determines what languages can be represented in the database. It also
affects:

« How you create the database schema

« How you develop applications that process character data
« How the database works with the operating system

« Performance

A group of characters (for example, alphabetic characters, ideographs, symbols,
punctuation marks, and control characters) can be encoded as a character set. An
encoded character set assigns unique numeric codes to each character in the
character repertoire. The numeric codes are called code points or encoded values.
Table 2-1 shows examples of characters that have been assigned a numeric code
value in the ASCII character set.

Table 2-1 Encoded Characters in the ASCIl Character Set

Character Description Code Value
! Exclamation Mark 21
Number Sign 23

2-2 Oracle9i Database Globalization Support Guide

Character Set Encoding

Table 2-1 Encoded Characters in the ASCII Character Set (Cont.)

Character Description Code Value
$ Dollar Sign 24
1 Number 1 31
2 Number 2 32
3 Number 3 33
A Uppercase A 41
B Uppercase B 42
C Uppercase C 43
a Lowercase a 61
b Lowercase b 62
c Lowercase ¢ 63

The computer industry uses many encoded character sets. Character sets differ in
the following ways:

« The number of characters available

« The available characters (the character repertoire)

« The scripts used for writing and the languages they represent

« The code values assigned to each character

« The encoding scheme used to represent a character

Oracle supports most national, international, and vendor-specific encoded character

set standards.

See Also: Appendix A, "Locale Data" for a complete list of
character sets that are supported by Oracle

Which Characters Are Encoded?

The characters that are encoded in a character set depend on the writing systems
that are represented. A writing system can be used to represent a language or group
of languages.Writing systems can be classified into two categories:

« Phonetic Writing Systems
« ldeographic Writing Systems

Choosing a Character Set 2-3

Character Set Encoding

This section also includes the following topics:
« Punctuation, Control Characters, Numbers, and Symbols

« Writing Direction

Phonetic Writing Systems

Phonetic writing systems consist of symbols that represent different sounds
associated with a language. Greek, Latin, Cyrillic, and Devanagari are all examples
of phonetic writing systems based on alphabets. Note that alphabets can represent
more than one language. For example, the Latin alphabet can represent many
Western European languages such as French, German, and English.

Characters associated with a phonetic writing system can typically be encoded in
one byte because the character repertoire is usually smaller than 256 characters.

Ideographic Writing Systems

Ideographic writing systems consist of ideographs or pictographs that represent the
meaning of a word, not the sounds of a language. Chinese and Japanese are
examples of ideographic writing systems that are based on tens of thousands of
ideographs. Languages that use ideographic writing systems may also use a
syllabary. Syllabaries provide a mechanism for communicating additional phonetic
information. For instance, Japanese has two syllabaries: Hiragana, normally used
for grammatical elements, and Katakana, normally used for foreign and
onomatopoeic words.

Characters associated with an ideographic writing system typically must be
encoded in more than one byte because the character repertoire has tens of
thousands of characters.

Punctuation, Control Characters, Numbers, and Symbols

In addition to encoding thescript of a language, other special characters need to be
encoded:

« Punctuation marks such as commas, periods, and apostrophes
« Numbers
« Special symbols such as currency symbols and math operators

« Control characters such as carriage returns and tabs

2-4 Oracle9i Database Globalization Support Guide

Character Set Encoding

Writing Direction

Most Western languages are written left to right from the top to the bottom of the
page. East Asian languages are usually written top to bottom from the right to the
left of the page, although exceptions are frequently made for technical books
translated from Western languages. Arabic and Hebrew are written right to left
from the top to the bottom.

Numbers reverse direction in Arabic and Hebrew. Although the text is written right
to left, numbers within the sentence are written left to right. For example, "I wrote
32 books" would be written as "skoob 32 etorw I". Regardless of the writing
direction, Oracle stores the data in logical order. Logical order means the order that
is used by someone typing a language, not how it looks on the screen.

Writing direction does not affect the encoding of a character.

What Characters Does a Character Set Support?

Different character sets support different character repertoires. Because character
sets are typically based on a particular writing script, they can support more than
one language. When character sets were first developed in the United States, they
had a limited character repertoire. Even now there can be problems using certain
characters across platforms. The following CHARand VARCHARNharacters are
represented in all Oracle database character sets and can be transported to any
platform:

« Uppercase and lowercase English characters A through Z and a through z
« Arabic digits 0 through 9

« Thefollowing punctuation marks: % ‘' () *+-,./\:;<>=1 &~{}|"?$+#

@ " []
« The following control characters: space, horizontal tab, vertical tab, form feed

If you are using characters outside this set, then take care that your data is
supported in the database character set that you have chosen.

Setting the NLS_LANGInitialization parameter properly is essential to proper data
conversion. The character set that is specified by the NLS_LANGinitialization
parameter should reflect the setting for the client operating system. Setting NLS_
LANGcorrectly enables proper conversion from the client operating system code
page to the database character set. When these settings are the same, Oracle
assumes that the data being sent or received is encoded in the same character set as
the database character set, so no validation or conversion is performed. This can
lead to corrupt data if conversions are necessary.

Choosing a Character Set 2-5

Character Set Encoding

During conversion from one character set to another, Oracle expects data to be
encoded in the character set specified by the NLS_LANGnitialization parameter. If
you put other values into the string (for example, by using the CHRor CONVERT
SQL functions), then the values may be corrupted when they are sent to the
database because they are not converted properly. If you have configured the
environment correctly and if the database character set supports the entire
repertoire of character data that may be input into the database, then you do not
need to change the current database character set. However, if your enterprise
becomes more global and you have additional characters or new languages to
support, then you may need to choose a character set with a greater character
repertoire. Oracle Corporation recommends that you use Unicode databases and
datatypes in these cases.

See Also:

« Chapter 5, "Supporting Multilingual Databases with Unicode"

« Oracle9i SQL Reference for more information about the CHRand
CONVERTBQL functions

« "Displaying a Code Chart with the Oracle Locale Builder" on
page 12-18

ASCII Encoding

The ASCII and EBCDIC character sets support a similar character repertoire, but
assign different code values to some of the characters. Table 2-2 shows how ASCII
is encoded. Row and column headings denote hexadecimal digits. To find the
encoded value of a character, read the column number followed by the row number.
For example, the value of the character A is 0x41.

Table 2-2 7-Bit ASCII Character Set

-0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ P P
1 SOH DCl1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 c s c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E Uu e u
6 ACK SYN & 6 F v f v

2-6 Oracle9i Database Globalization Support Guide

Character Set Encoding

Table 2-2 7-Bit ASCII Character Set (Cont.)

- 0 1 2 3 4 5 6 7
7 BEL ETB 7 G W g w
8 BS CAN (8 H X h X
9 TAB EM) 9 | Y i y
A LF SUB * J Z j z
B VT ESC + : K [k {
C FF FS < L \ | |
D CR GS - = M] m }
E SO RS > N n n ~
F Sl us / ? (0] o] DEL

Character sets have evolved to meet the needs of users around the world. New
character sets have been created to support languages besides English. Typically,
these new character sets support a group of related languages based on the same
script. For example, the 1ISO 8859 character set series was created to support
different European languages. Table 2-3 shows the languages that are supported by

the 1SO 8859 character sets.

Choosing a Character Set 2-7

Character Set Encoding

Table 2-3 SO 8859 Character Sets

Standard Languages Supported

1SO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Faeroese,
Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian, Latin, Luxemburgish,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish)

1SO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian, Latin, Polish,
Romanian, Slovak, Slovenian, Serbian)

1SO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, Turkish)

1SO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic, Latin,
Latvian, Lithuanian, Norwegian, Sami, Slovenian, Swedish)

1SO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian, Russian, Serbian,
Ukrainian)

1SO 8859-6 Arabic

1SO 8859-7 Greek

1SO 8859-8 Hebrew

1SO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish, Dutch, English,
Finnish, French, Frisian, Galician, German, Greenlandic, Irish Gaelic, Italian, Latin,
Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish,
Swedish, Turkish)

1SO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German, Greenlandic,
Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sami, Slovenian, Swedish)

1SO 8859-13 Baltic Rim (English, Estonian, Finnish, Latin, Latvian, Norwegian)

1SO 8859-14 Celtic (Albanian, Basque, Breton, Catalan, Cornish, Danish, English, Galician, German,
Greenlandic, Irish Gaelic, Italian, Latin, Luxemburgish, Manx Gaelic, Norwegian,
Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish, Welsh)

1SO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Estonian,

Faroese, Finnish, French, Frisian, Galician, German, Greenlandic, Icelandic, Irish Gaelic,
Italian, Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic,
Spanish, Swedish)

Character sets evolved and provided restricted multilingual support. They were
restricted in the sense that they were limited to groups of languages based on
similar scripts. More recently, universal character sets have been regarded as a more
useful solution to multilingual support. Unicode is one such universal character set
that encompasses most major scripts of the modern world. The Unicode character
set supports more than 94,000 characters.

2-8 Oracle9i Database Globalization Support Guide

Character Set Encoding

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode”

How are Characters Encoded?

Different types of encoding schemes have been created by the computer industry.
The character set you choose affects what kind of encoding scheme is used. This is
important because different encoding schemes have different performance
characteristics. These characteristics can influence your database schema and
application development. The character set you choose uses one of the following
types of encoding schemes:

« Single-Byte Encoding Schemes
« Multibyte Encoding Schemes

Single-Byte Encoding Schemes

Single-byte encoding schemes are the most efficient encoding schemes available.
They take up the least amount of space to represent characters and are easy to
process and program with because one character can be represented in one byte.
Single-byte encoding schemes are classified as one of the following:

« 7-bit encoding schemes

Single-byte 7-bit encoding schemes can define up to 128 characters and
normally support just one language. One of the most common single-byte
character sets, used since the early days of computing, is ASCII (American
Standard Code for Information Interchange).

« 8-bit encoding schemes

Single-byte 8-bit encoding schemes can define up to 256 characters and often
support a group of related languages. One example is ISO 8859-1, which
supports many Western European languages. Figure 2-1 illustrates a typical
8-bit encoding scheme.

Choosing a Character Set 2-9

Character Set Encoding

Figure 2-1 8-Bit Encoding Scheme

0 1 z 3 4 5 6 7 A E C D E F
O MWJL DLE SP 0 @ P * p NBSP® A B & B
1 S0H DC1o | 1 4 Q0 a q | + A B 4 A
2 ST DC2 2 B R b r ¢ 2 4 0 & b
3 ETX DC3 # 3 C S ¢ s f = A 0 & &
4 EOT DC4 % 4 0D T d t x S S R B
5 ENQ NAK % 5 E U e u ¥ u A 0O & 8
6 ACK SYN & 6 F v f v | T &£ 0 & 0
7 BEL ETE ° 7 G W g w 8§ N -
8 BS CAN 8 H % h =x - . E @ & @
9 HT EM)] g I v i vy @ 1 E 0O & U
4 NL SUB ¥ .1 oz 3 9z a o E 0 &
B WT ESC + ;K [k£ o« » E 0 & 0
C NP FS) L Y e R S A U BV
D CR G5 - = M 1 m 3 - (S S R B
E S0 RS > N & n ~ ® % I b i b
FsI US /7 0 _ o DEL" P S TR B

Multibyte Encoding Schemes

Multibyte encoding schemes are needed to support ideographic scripts used in
Asian languages like Chinese or Japanese because these languages use thousands of
characters. These encoding schemes use either a fixed number or a variable number
of bytes to represent each character.

« Fixed-width multibyte encoding schemes

In a fixed-width multibyte encoding scheme, each character is represented by a
fixed number of bytes. The number of bytes is at least two in a multibyte
encoding scheme.

« Variable-width multibyte encoding schemes

A variable-width encoding scheme uses one or more bytes to represent a single
character. Some multibyte encoding schemes use certain bits to indicate the
number of bytes that represents a character. For example, if two bytes is the
maximum number of bytes used to represent a character, the most significant
bit can be used to indicate whether that byte is a single-byte character or the
first byte of a double-byte character.

« Shift-sensitive variable-width multibyte encoding schemes

2-10 Oracle9i Database Globalization Support Guide

Character Set Encoding

Some variable-width encoding schemes use control codes to differentiate
between single-byte and multibyte characters with the same code values. A
shift-out code indicates that the following character is multibyte. A shift-in code
indicates that the following character is single-byte. Shift-sensitive encoding
schemes are used primarily on IBM platforms. Note that ISO-2022 character sets
cannot be used as database character sets, but they can be used for applications

such as a mail server.

Naming Convention for Oracle Character Sets

Oracle uses the following naming convention for character set names:

<language or region><number of bits representing a character><standard character

setname>[S | C]

Note: UTF8 and UTFE are exceptions to the naming convention.

The optional S or Cis used to differentiate character sets that can be used only on

the server (S) or only on the client (C).

Note: Use the server character set (S) on the Macintosh platform.

The Macintosh client character sets are obsolete. On EBCDIC

platforms, use the server character set (S) on the server and the

client character set (C) on the client.

The following are examples of Oracle character set names.

Number of

Oracle Bits Used to Standard
Character Set Represent a Character Set
Name Description Region Character Name
US7ASCII U.S. 7-bit ASCII us 7 ASCII
WES8ISO8859P1 Western European 8-bit WE 8 1SO8859 Part 1

1SO 8859 Part 1 (Western

Europe)

JA16SJIS Japanese 16-bit Shifted JA 16 SIS

Japanese Industrial

Standard

Choosing a Character Set 2-11

Length Semantics

Length Semantics

In single-byte character sets, the number of bytes and the number of characters in a
string are the same. In multibyte character sets, a character or code unit consists of
one or more bytes. Calculating the number of characters based on byte lengths can
be difficult in a variable-width character set. Calculating column lengths in bytes is
called byte semantics, while measuring column lengths in characters is called
character semantics.

Oracle9i introduces character semantics. It is useful for defining the storage
requirements for multibyte strings of varying widths. For example, in a Unicode
database (AL32UTF8), suppose that you need to define a VARCHARZ2olumn that
can store up to five Chinese characters together with five English characters. Using
byte semantics, this column requires 15 bytes for the Chinese characters, which are
three bytes long, and 5 bytes for the English characters, which are one byte long, for
a total of 20 bytes. Using character semantics, the column requires 10 characters.

The following expressions use byte semantics:
« VARCHAR2(20 BYTE)
« SUBSTRBftring |, 1, 20)

Note the BYTEqualifier in the VARCHAR2xpression and the B suffix in the SQL
function name.

The following expressions use character semantics:

« VARCHAR2(10 CHAR)

« SUBSTR(string , 1, 10)

Note the CHARgualifier in the VARCHAR2xpression.

The NLS_LENGTH_SEMANTICHitialization parameter determines whether a new
column of character datatype uses byte or character semantics. The default value of
the parameter is BYTE The BYTEand CHARgualifiers shown in the VARCHAR2
definitions should be avoided when possible because they lead to mixed-semantics
databases. Instead, set NLS _LENGTH_SEMANTICH the initialization parameter file
and define column datatypes to use the default semantics based on the value of
NLS_LENGTH_SEMANTICS

Byte semantics is the default for the database character set. Character length
semantics is the default and the only allowable kind of length semantics for NCHAR
datatypes. The user cannot specify the CHARor BYTEqualifier for NCHAR
definitions.

2-12 Oracle9i Database Globalization Support Guide

Length Semantics

Consider the following example:

CREATE TABLE emp
(empno NUMBER(4)
,ename NVARCHAR2(10)
, job NVARCHAR2(9)
,mgr NUMBER(4)
, hiredate DATE
,sal NUMBER(7,2)

, depno NUMBER(2)

)

When the NCHARharacter set is ALI6UTF16, ename can hold up to 10 Unicode
code units. When the NCHARharacter set is ALI6UTF16, ename can hold up to 20
bytes.

Figure 2-2 shows the number of bytes needed to store different kinds of characters
in the UTF-8 character set. The ASCII characters requires one byte, the Latin and
Greek characters require two bytes, the Asian character requires three bytes, and the
supplementary character requires four bytes of storage.

Figure 2-2 Bytes of Storage for Different Kinds of Characters

ASCII
Latin
ASCII
Asian
Supplementary character
ASCII
Latin
‘ Glreek

Characters |C é|t|ﬁ|§>|d|o|d)|

[N N
[T N =

Byte Storage |63 |C3|01[74 E4|BA|9E: F0|9D|84I9E\|64 C3|\BZS|D5|\A4
for UTF-8 | I

I
[I I [I
1 2 1 3 4 1 2 2
byte bytes byte bytes bytes byte bytes bytes

Choosing a Character Set 2-13

Choosing an Oracle Database Character Set

See Also:

« "SQL Functions for Different Length Semantics" on page 7-6 for
more information about the SUBSTRand SUBSTRHEunctions

« "Length Semantics” on page 3-42 for more information about
the NLS_LENGTH_SEMANTICHhuitialization parameter

« Chapter 5, "Supporting Multilingual Databases with Unicode"
for more information about Unicode and the NCHARJatatype

« Oracle9i SQL Reference for more information about the SUBSTRB
and SUBSTRfunctions and the BYTEand CHARqualifiers for
character datatypes

Choosing an Oracle Database Character Set
Oracle uses the database character set for:
« Data stored in SQL CHARdatatypes (CHARVARCHARZCLOB and LONG)
« ldentifiers such as table names, column names, and PL/SQL variables
« Entering and storing SQL and PL/SQL source code

The character encoding scheme used by the database is defined as part of the
CREATE DATABASS&atement. All SQL CHARdatatype columns (CHARCLOB
VARCHARZand LONG) including columns in the data dictionary, have their data
stored in the database character set. In addition, the choice of database character set
determines which characters can name objects in the database. SQL NCHARJatatype
columns (NCHARNCLOBand NVARCHAR2)se the national character set.

Note: CLOBdata is encoded as UCS-2 if the database character set
is multibyte. If the database character set is single-byte, then CLOB
data is stored in the database character set.

After the database is created, you cannot change the character sets, with some
exceptions, without re-creating the database.

Consider the following questions when you choose an Oracle character set for the
database:

« What languages does the database need to support now?

« What languages will the database need to support in the future?

2-14 Oracle9i Database Globalization Support Guide

Choosing an Oracle Database Character Set

« Is the character set available on the operating system?

« What character sets are used on clients?

« How well does the application handle the character set?

« What are the performance implications of the character set?
« What are the restrictions associated with the character set?

The Oracle character sets are listed in Appendix A, "Locale Data". They are named
according to the languages and regions in which they are used. Some character sets
that are named for a region are also listed explicitly by language.

If you want to see the characters that are included in a character set, then:

« Check national, international, or vendor product documentation or standards
documents

« Use Oracle Locale Builder

This section contains the following topics:

« Current and Future Language Requirements

« Client Operating System and Application Compatibility

« Character Set Conversion Between Clients and the Server

« Performance Implications of Choosing a Database Character Set
« Restrictions on Database Character Sets

« Choosing a National Character Set

« Summary of Supported Datatypes

See Also:
« "UCS-2 Encoding" on page 5-4
« "Choosing a National Character Set" on page 2-18

« "Changing the Character Set After Database Creation" on
page 2-20

« Appendix A, "Locale Data"

« Chapter 12, "Customizing Locale Data"

Choosing a Character Set 2-15

Choosing an Oracle Database Character Set

Current and Future Language Requirements

Several character sets may meet your current language requirements. Consider
future language requirements when you choose a database character set. If you
expect to support additional languages in the future, then choose a character set
that supports those languages to prevent the need to migrate to a different character
set later.

Client Operating System and Application Compatibility

The database character set is independent of the operating system because Oracle
has its own globalization architecture. For example, on an English Windows
operating system, you can create and run a database with a Japanese character set.
However, when the client operating system accesses the database, the client
operating system must be able to support the database character set with
appropriate fonts and input methods. For example, you cannot insert or retrieve
Japanese data on the English Windows operating system without first installing a
Japanese font and input method. Another way to insert and retrieve Japanese data
i to use a Japanese operating system remotely to access the database server.

Character Set Conversion Between Clients and the Server

If you choose a database character set that is different from the character set on the
client operating system, then the Oracle database can convert the operating system
character set to the database character set. Character set conversion has the
following disadvantages:

« Increased overhead
« Potential data loss

Character set conversions can sometimes cause data loss. For example, if you are
converting from character set A to character set B, then the destination character set
B must have the same character set repertoire as A. Any characters that are not
available in character set B are converted to a replacement character. The
replacement character is often specified as a question mark or as a linguistically
related character. For example, & (a with an umlaut) may be converted to a. If you
have distributed environments, consider using character sets with similar character
repertoires to avoid loss of data.

Character set conversion may require copying strings between buffers several times
before the data reaches the client. The database character set should always be a
superset or equivalent of the native character set of the client's operating system.

2-16 Oracle9i Database Globalization Support Guide

Choosing an Oracle Database Character Set

The character sets used by client applications that access the database usually
determine which superset is the best choice.

If all client applications use the same character set, then that character set is usually
the best choice for the database character set. When client applications use different
character sets, the database character set should be a superset of all the client
character sets. This ensures that every character is represented when converting
from a client character set to the database character set.

See Also: Chapter 10, "Character Set Migration"

Performance Implications of Choosing a Database Character Set

For best performance, choose a character set that avoids character set conversion
and uses the most efficient encoding for the languages desired. Single-byte
character sets result in better performance than multibyte character sets, and they
also are the most efficient in terms of space requirements. However, single-byte
character sets limit how many languages you can support.

Restrictions on Database Character Sets

ASCIlI-based character sets are supported only on ASCII-based platforms. Similarly,
you can use an EBCDIC-based character set only on EBCDIC-based platforms.

The database character set is used to identify SQL and PL/SQL source code. In
order to do this, it must have either EBCDIC or 7-bit ASCII as a subset, whichever is
native to the platform. Therefore, it is not possible to use a fixed-width, multibyte
character set as the database character set. Currently, only the AL16UTF16 character
set cannot be used as a database character set.

Restrictions on Character Sets Used to Express Names

Table 2-4 lists the restrictions on the character sets that can be used to express
names.

Table 2-4 Restrictions on Character Sets Used to Express Names

Variable
Name Single-Byte ~ Width Comments
column names Yes Yes -
schema objects Yes Yes -
comments Yes Yes -

Choosing a Character Set 2-17

Choosing an Oracle Database Character Set

Table 2-4 Restrictions on Character Sets Used to Express Names (Cont.)

Variable

Name Single-Byte Width Comments

database link names Yes No -

database names Yes No -

file names (datafile, log file, control Yes No -

file, initialization parameter file)

instance names Yes No -

directory names Yes No -

keywords Yes No Can be expressed in
English ASCII or EBCDIC
characters only

Recovery Manager file names Yes No -

rollback segment names Yes No The ROLLBACK_SEGMENTS
parameter does not support
NLS

stored script names Yes Yes -

tablespace names Yes No -

For a list of supported string formats and character sets, including LOBdata (LOB
BLOB CLOB and NCLOB, see Table 2-6 on page 2-19.

Choosing a National Character Set

A national character set is an alternate character set that enables you to store
Unicode character data in a database that does not have a Unicode database
character set. Other reasons for choosing a national character set are:

« The properties of a different character encoding scheme may be more desirable
for extensive character processing operations

« Programming in the national character set is easier

SQL NCHARNVARCHARZNd NCLOB datatypes have been redefined to support
Unicode data only. You can store the data in either UTF-8 or UTF-16 encodings.

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode"

2-18 Oracle9i Database Globalization Support Guide

Choosing an Oracle Database Character Set

Summary of Supported Datatypes

Table 2-5 lists the datatypes that are supported for different encoding schemes.

Table 2-5 SQL Datatypes Supported for Encoding Schemes

Datatype Single Byte Multibyte Non-Unicode Multibyte Unicode
CHAR Yes Yes Yes
VARCHAR2 Yes Yes Yes
NCHAR No No Yes
NVARCHAR2 No No Yes
BLOB Yes Yes Yes
CLOB Yes Yes Yes
LONG Yes Yes Yes
NCLOB No No Yes

Note: BLOBsprocess characters as a series of byte sequences.
The data is not subject to any NLS-sensitive operations.

Table 2-6 lists the SQL datatypes that are supported for abstract datatypes.

Table 2—-6 Abstract Datatype Support for SQL Datatypes

Abstract Datatype CHAR NCHAR BLOB CLOB NCLOB
Object Yes Yes Yes Yes Yes
Collection Yes Yes Yes Yes Yes

You can create an abstract datatype with the NCHARattribute as follows:

SQL> CREATE TYPE tpl AS OBJECT (a NCHAR(10));
Type created.

SQL>CREATE TABLEt1 (atpl);

Table created.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information about objects and collections

Choosing a Character Set 2-19

Changing the Character Set After Database Creation

Changing the Character Set After Database Creation

You may wish to change the database character set after the database has been
created. For example, you may find that the number of languages that need to be
supported in your database has increased. In most cases, you need to do a full
export/import to properly convert all data to the new character set. However, if,
and only if, the new character set is a strict superset of the current character set, it is
possible to use the ALTER DATABASE CHARACTER S#dtement to expedite the
change in the database character set.

See Also:
« Chapter 10, "Character Set Migration”

« Oracle9i Database Migration for more information about
exporting and importing data

« Oracle9i SQL Reference for more information about the ALTER
DATABASE CHARACTER SEStatement

Monolingual Database Scenario

The simplest example of a database configuration is a client and a server that run in
the same language environment and use the same character set. This monolingual
scenario has the advantage of fast response because the overhead associated with
character set conversion is avoided. Figure 2-3 shows a database server and a client
that use the same character set.

Figure 2-3 Monolingual Database Scenario

Japanese
Server
(JA16EUC)

(JAL6EUC)

The Japanese client and the server both use the JAL6EUC character set.

You can also use a multitier architecture. Figure 2—4 shows an application server
between the database server and the client. The application server and the database
server use the same character set in a monolingual scenario.

2-20 Oracle9i Database Globalization Support Guide

Monolingual Database Scenario

Figure 2—4 Multitier Monolingual Database Scenario

°

o

o
o

Japanese
Server
(JA16EUC) m—

Application 'Ja

Server
(JA16EUC)

Il

The server, the application server, and the client use the JAI6EUC character set.

Character Set Conversion in a Monolingual Scenario

Character set conversion may be required in a client/server environment if a client
application resides on a different platform than the server and if the platforms do
not use the same character encoding schemes. Character data passed between client
and server must be converted between the two encoding schemes. Character
conversion occurs automatically and transparently via Oracle Net.

You can convert between any two character sets. Figure 2-5 shows a server and one
client with the JA16EUC Japanese character set. The other client uses the JA16SJIS
Japanese character set.

Choosing a Character Set 2-21

Monolingual Database Scenario

Figure 2-5 Character Set Conversion

Japanese
Server
(JA16EUC)

Unix
(JA16EUC)

Character
Conversion

Windows :IZ

(JA16SJIS)

When a target character set does not contain all of the characters in the source data,
replacement characters are used. If, for example, a server uses US7TASCII and a
German client uses WE8ISO8859P1, the German character B is replaced with ? and
a is replaced with a.

Replacement characters may be defined for specific characters as part of a character
set definition. When a specific replacement character is not defined, a default
replacement character is used. To avoid the use of replacement characters when
converting from a client character set to a database character set, the server
character set should be a superset of all the client character sets.

Figure 2-6 shows that data loss occurs when the database character set does not
include all of the characters in the client character set.

2-22 Oracle9i Database Globalization Support Guide

Multilingual Database Scenarios

Figure 2—6 Data Loss During Character Conversion

American
Database

Server
(US7ASCII)

Character
Conversion

B

German :IZ

Windows
(WEBMSWIN1252)

The database character set is US7TASCII. The client’s character set is
WE8BMSWIN1252, and the language used by the client is German. When the client
inserts a string that contains 3, the database replaces 3 with ?, resulting in lost data.

If German data is expected to be stored on the server, then a database character set
that supports German characters should be used for both the server and the client
to avoid data loss and conversion overhead.

When one of the character sets is a variable-width multibyte character set,
conversion can introduce noticeable overhead. Carefully evaluate your situation
and choose character sets to avoid conversion as much as possible.

Multilingual Database Scenarios

Multilingual support can be restricted or unrestricted. This section contains the
following topics:

« Restricted Multilingual Support
« Unrestricted Multilingual Support

Choosing a Character Set 2-23

Multilingual Database Scenarios

Restricted Multilingual Support

Some character sets support multiple languages because they have related writing
systems or scripts. For example, the WE8ISO8859P1 Oracle character set supports
the following Western European languages:

Catalan
Danish
Dutch
English
Finnish
French
German
Icelandic
Italian
Norwegian
Portuguese
Spanish
Swedish

These languages all use a Latin-based writing script.

When you use a character set that supports a group of languages, your database has
restricted multilingual support.

Figure 2-7 shows a Western European server that used the WE8ISO8850P1 Oracle
character set, a French client that uses the same character set as the server, and a
German client that uses the WEBDEC character set. The German client requires
character conversion because it is using a different character set than the server.

2-24 Oracle9i Database Globalization Support Guide

Multilingual Database Scenarios

Figure 2—7 Restricted Multilingual Support

(WEBISO8859P1)

Western
European
Server

Character
Conversion

French <& German ;@\

(WESBISO8859P1) (WESDEC)

Unrestricted Multilingual Support

If you need unrestricted multilingual support, use a universal character set such as
Unicode for the server database character set. Unicode has two major encoding
schemes:

« UTF-16: Each character is either 2 or 4 bytes long.
« UTF-8: Each character takes 1 to 4 bytes to store.

The Oracle9i database provides support for UTF-8 as a database character set and
both UTF-8 and UTF-16 as national character sets.

Character set conversion between a UTF-8 database and any single-byte character
set introduces very little overhead.

Conversion between UTF-8 and any multibyte character set has some overhead.
There is no data loss from conversion with the following exceptions:

« Some multibyte character sets do not support user-defined characters during
character set conversion to and from UTF-8.

« Some Unicode characters are mapped to more than character in another
character set. For example, one Unicode character is mapped to three characters

Choosing a Character Set 2-25

Multilingual Database Scenarios

in the JA16SJIS character set. This means that a round-trip conversion may not
result in the original JA16SJIS character.

Figure 2-8 shows a server that uses the AL32UTF8 Oracle character set that is based
on the Unicode UTF-8 character set.

Figure 2-8 Unrestricted Multilingual Support Scenario in a Client/Server
Configuration

French &3
Client
(WE8ISO8859P1)

German
Client

(WESDEC)

Character Character
Conversion Conversion

Unicode
Database
(UTF8)

Character Character
Conversion Conversion

Japanese €& Japanese €2
Client Client
(JA16EUC) (JA16SJIS)

There are four clients:

= A French client that uses the WE8ISO8859P1 Oracle character set
» A German client that uses the WEBDEC character set

« Alapanese client that uses the JA1I6EUC character set

2-26 Oracle9i Database Globalization Support Guide

Multilingual Database Scenarios

« AlJapanese client that used the JA16SJIS character set

Character conversion takes place between each client and the server, but there is no
data loss because AL32UTF8 is a universal character set. If the German client tries to
retrieve data from one of the Japanese clients, all of the Japanese characters in the
data are lost during the character set conversion.

Figure 2-9 shows a Unicode solution for a multitier configuration.

Figure 2-9 Multitier Unrestricted Multilingual Support Scenario in a Multitier
Configuration

French
Client

Browser

Client

Unicode UTF8

Database —
(UTF8)

Application
Server
(UTF8) Japanese
UTF8 Client

The database, the application server, and each client use the AL32UTF8 character
set. This eliminates the need for character conversion even though the clients are
French, German, and Japanese.

See Also: Chapter 5, "Supporting Multilingual Databases with
Unicode"

Choosing a Character Set 2-27

Multilingual Database Scenarios

2-28 Oracle9i Database Globalization Support Guide

3

Setting Up a Globalization Support
Environment

This chapter tells how to set up a globalization support environment. It includes the
following topics:

Setting NLS Parameters

Choosing a Locale with the NLS_LANG Environment Variable
NLS Database Parameters

Language and Territory Parameters

Date and Time Parameters

Calendar Definitions

Numeric Parameters

Monetary Parameters

Linguistic Sort Parameters

Character Set Conversion Parameter

Length Semantics

Setting Up a Globalization Support Environment 3-1

Setting NLS Parameters

Setting NLS Parameters

NLS parameters determine the locale-specific behavior on both the client and the
server. NLS parameters can be specified in the following ways:

« Asinitialization parameters on the server

You can include parameters in the initialization parameter file to specify a
default session NLS environment. These settings have no effect on the client
side; they control only the server's behavior. For example:

NLS_TERRITORY ="CZECH REPUBLIC"

« Asenvironment variables on the client

You can use NLS parameters to specify locale-dependent behavior for the client
and also to override the default values set for the session in the initialization
parameter file. For example, on a UNIX system:

% setenvNLS_SORT FRENCH

« With the ALTER SESSIONstatement

NLS parameters that are set in an ALTER SESSIONstatement can be used to
override the default values that are set for the session in the initialization
parameter file or set by the client with environment variables.

ALTER SESSION SETNLS_SORT =FRENCH,;

See Also: Oracle9i SQL Reference for more information about the
ALTER SESSIONstatement

« In SQL functions

NLS parameters can be used explicitly to hardcode NLS behavior within a SQL
function. Doing so will override the default values that are set for the session in
the initialization parameter file, set for the client with environment variables, or
set for the session by the ALTER SESSIONstatement. For example:

TO_CHAR(hiredate, DD/MON/YYYY', nis_date_language = FRENCH)

See Also: Oracle9i SQL Reference for more information about SQL
functions, including the TO_CHARunction

Table 3-1 shows the precedence order of the different methods of setting NLS
parameters. Higher priority settings override lower priority settings. For example, a

3-2 Oracle9i Database Globalization Support Guide

Setting NLS Parameters

default value has the lowest priority and can be overridden by any other method.
Another example is that setting an NLS parameter within a SQL function overrides
all other methods of setting NLS parameters.

Table 3-1 Methods of Setting NLS Parameters and Their Priorities

Priority Method

1 (highest) Explicitly set in SQL functions

2 Set by an ALTER SESSIONstatement

3 Set as an environment variable

4 Specified in the initialization parameter file
5 Default

Table 3-2 lists the NLS parameters available with the Oracle server.

Table 3-2 NLS Parameters

Scope:

| = Initialization Parameter File
E = Environment Variable

Parameter Description Default A = ALTER SESSION
NLS_ CALENDAR Calendar system Gregorian I,E, A
NLS_COMP SQL, PL/SQL operator BINARY ILE A
comparison
NLS_CREDIT Credit accounting symbol Derived from E
NLS_TERRITORY
NLS_ CURRENCY Local currency symbol Derived from ILE, A
NLS_TERRITORY
NLS_DATE_FORMAT Date format Derived from I,E, A
NLS_TERRITORY
NLS_DATE_LANGUAGE Language for day and Derived from ILE, A
month names NLS_LANGUAGE
NLS_DEBIT Debit accounting symbol Derived from E
NLS_TERRITORY
NLS ISO_CURRENCY ISO international currency Derived from ILE A
symbol NLS_TERRITORY

Setting Up a Globalization Support Environment 3-3

Choosing a Locale with the NLS_LANG Environment Variable

Table 3-2 NLS Parameters (Cont.)

Scope:

| = Initialization Parameter File
E = Environment Variable

Parameter Description Default A = ALTER SESSION
NLS_LANG Language, territory, AMERICAN_ E
See Also: "Choosing a character set G,\SAE Eslgﬁ
Locale with the NLS_LANG
Environment Variable" on
page 3-4
NLS_LANGUAGE Language Derived from I, A
NLS_LANG
NLS_LENGTH_SEMANTICS How strings are treated BYTE I, A
NLS_LIST_SEPARATOR Character that separates Derived from E
items in a list NLS_TERRITORY
NLS_MONETARY_ Monetary symbol for Derived from E
CHARACTERS dollar and cents (or their NLS_TERRITORY
equivalents)
NLS_NCHAR_CONV_EXCP Reports data loss duringa FALSE I, A
character type conversion
NLS_NUMERIC_ Decimal character and Derived from ILE A
CHARACTERS group separator NLS_TERRITORY
NLS_SORT Character sort sequence Derived from I,E, A
NLS_LANGUAGE
NLS_ TERRITORY Territory Derived from I, A
NLS_LANG
NLS_TIMESTAMP_FORMAT Timestamp Derived from ILE, A
NLS_TERRITORY
NLS _TIMESTAMP_TZ_ Timestamp with time zone Derived from ILE A
FORMAT NLS_TERRITORY
NLS_DUAL_CURRENCY Dual currency symbol Derived from ILE, A

NLS_TERRITORY

Choosing a Locale with the NLS_LANG Environment Variable

A locale is a linguistic and cultural environment in which a system or program is
running. Setting the NLS_LANGenvironment parameter is the simplest way to
specify locale behavior. It sets the language and territory used by the client

3-4 Oracle9i Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable

application. It also sets the client’s character set, which is the character set for data
entered or displayed by a client program.

The NLS_LANGparameter has three components: language, territory, and character
set. Specify it in the following format, including the punctuation:

NLS_LANG = language _tenitory.charset

For example, if the Oracle Installer does not populate NLS_LANGthen its value is
AMERICAN_AMERICA.US7ASCII The language is AMERICANthe territory is
AMERICA and the character set is US7ASCII .

Each component of the NLS_LANGparameter controls the operation of a subset of
globalization support features:

language

Specifies conventions such as the language used for Oracle messages, sorting,
day names, and month names. Each supported language has a unique name; for
example, AMERICANFRENCHor GERMANTI he language argument specifies
default values for the territory and character set arguments. If the language is
not specified, then the value defaults to AMERICAN

territory

Specifies conventions such as the default date, monetary, and numeric formats.
Each supported territory has a unique name; for example, AMERICA FRANCE
or CANADAIf the territory is not specified, then the value is derived from the
language value.

charset

Specifies the character set used by the client application (normally that of the
user's terminal). Each supported character set has a unique acronym, for
example, US7ASCII , WE8IS0O8859P1, WESBDECWESMSWIN12520r JAI6EUC
Each language has a default character set associated with it.

Note: All components of the NLS_LANGdefinition are optional;
any item left out will default. If you specify territory or character
set, you must include the preceding delimiter [underscore () for
territory, period (.) for character set]. Otherwise, the value will be
parsed as a language name.

Setting Up a Globalization Support Environment 3-5

Choosing a Locale with the NLS_LANG Environment Variable

The three arguments of NLS_LANGcan be specified in many combinations, as in the
following examples:

NLS_LANG = AMERICAN_AMERICAWESMSWIN1252
NLS_LANG =FRENCH_CANADAWESDEC
NLS_LANG =JAPANESE_JAPAN.JA16EUC

Note that illogical combinations can be set but do not work properly. For example,
the following specification tries to support Japanese by using a Western European
character set:

NLS_LANG =JAPANESE_JAPAN.WESDEC

Because the WEBDEC character set does not support any Japanese characters, you
cannot store Japanese data if you use this definition for NLS_LANG

The rest of this section includes the following topics:

« Specifying the Value of NLS_LANG

« Overriding Language and Territory Specifications

See Also: Appendix A, "Locale Data" for a complete list of
supported languages, territories, and character sets

Specifying the Value of NLS_LANG

Set NLS_LANGas an environment variable at the command line. For example, in the
UNIX operating system, specify the value of NLS_LANGhy entering a statement
similar to the following:

% setenvNLS LANG FRENCH_FRANCE.WESDEC
Because NLS_LANGs an environment variable, it is read by the client application at

startup time. The client communicates the information defined by NLS_LANGto the
server when it connects to the database server.

The following examples show how date and number formats are affected by the
NLS_LANGparameter.

Example 3-1 Setting NLS_LANG to American_America. WE8ISO8859P1

Set NLS_LANGso that the language is AMERICANTthe territory is AMERICA and the
Oracle character set is WE8ISO8859P1:

3-6 Oracle9/ Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable

% setenvNLS LANG American America WEBISO8859P1

Enter a SELECTstatement:
SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
Sciarra 30-SEP97 9625
Uman 07-MAR-98 975
Popp 07-DECQ9 8625

Example 3-2 Setting NLS_LANG to French_France.WE8ISO8859P1

Set NLS_LANGso that the language is FRENCHthe territory is FRANCEand the
Oracle character set is WE8ISO8859P1:

% setenv NLS_LANG French_France. WESISO8859P1

Then the query shown in Example 3-1 returns the following output:

LAST_NAME HIRE_DAT SALARY
Sciarra 30/09/97 9625
Uman 07/03/08 975
Popp 07/12/99 8625

Note that the date format and the number format have changed. The numbers have
not changed, because the underlying data is the same.

Overriding Language and Territory Specifications

The NLS_LANG parameter sets the language and territory environment used by
both the server session (for example, SQL command execution) and the client
application (for example, display formatting in Oracle tools). Using this parameter
ensures that the language environments of both the database and the client
application are automatically the same.

The language and territory components of the NLS_LANGparameter determine the
default values for other detailed NLS parameters, such as date format, numeric
characters, and linguistic sorting. Each of these detailed parameters can be set in the
client environment to override the default values if the NLS_LANGparameter has
already been set.

Setting Up a Globalization Support Environment 3-7

Choosing a Locale with the NLS_LANG Environment Variable

If the NLS_LANGparameter is not set, then the server session environment remains
initialized with values of NLS_LANGUAGHELS_ TERRRITORYand other NLS
instance parameters from the initialization parameter file. You can modify these
parameters and restart the instance to change the defaults.

You might want to modify the NLS environment dynamically during the session. To
do so, you can use the ALTER SESSIONstatement to change NLS_LANGUAGHEILS _
TERRITORYand other NLS parameters.

Note: You cannot modify the setting for the client character set
with the ALTER SESSION statement.

The ALTER SESSIONstatement modifies only the session environment. The local
client NLS environment is not modified, unless the client explicitly retrieves the
new settings and modifies its local environment.

See Also:

« "Overriding Default Values for NLS_LANGUAGE and NLS_
TERRITORY During a Session" on page 3-16

« Oracle9i SQL Reference

Should the NLS_LANG Setting Match the Database Character Set?

The NLS_LANGcharacter set should reflect the setting of the operating system
client. For example, if the database character set is UTF8 and the client has a
Windows operating system, you should not set UTF8 as the client character set
because there are no UTF8 WIN32 clients. Instead the NLS_LANGsetting should
reflect the code page of the client.

NLS_LANGIs set as a local environment variable on UNIX platforms.

NLS_LANGIs set in the registry on Windows platforms. For example, on an English
Windows client, the code page is WESBMSWIN1252. An appropriate setting for NLS
LANGis AMERICAN_AMERICA.WE8MSWIN1252

Setting NLS_LANGcorrectly allows proper conversion from the client operating
system code page to the database character set. When these settings are the same,
Oracle assumes that the data being sent or received is encoded in the same
character set as the database character set, so no validation or conversion is
performed. This can lead to corrupt data if the client code page and the database
character set are different and conversions are necessary.

3-8 Oracle9/ Database Globalization Support Guide

NLS Database Parameters

See Also: Oracle9i Database Installation Guide for Windows for more
information about commonly used values of the NLS_LANG
parameter in Windows

NLS Database Parameters

When a new database is created during the execution of the CREATE DATABASE
statement, the NLS database environment is established. The current NLS instance
parameters are stored in the data dictionary along with the database and national
character sets. The NLS instance parameters are read from the initialization
parameter file at instance startup.

You can find the values for NLS parameters by using:

NLS Data Dictionary Views
NLS Dynamic Performance Views
OCINIsGetInfo() Function

NLS Data Dictionary Views

Applications can check the session, instance, and database NLS parameters by
guerying the following data dictionary views:

NLS_SESSION_PARAMETERSBows the NLS parameters and their values for
the session that is querying the view. It does not show information about the
character set.

NLS_INSTANCE_PARAMETERS&ows the current NLS instance parameters that
have been explicitly set and the values of the NLLS instance parameters.

NLS_DATABASE_PARAMETERSows the values of the NLS parameters that
were used when the database was created.

NLS Dynamic Performance Views
Applications can check the following NLS dynamic performance views:

VSNLS VALID_VALUESIists values for the following NLS parameters: NLS
LANGUAGHE\LS SORTNLS TERRITORY, NLS CHARACTERSET

VSNLS PARAMETERShows current values of the following NLS parameters:
NLS_CALENDARNLS_CHARACTERSENLS_CURRENCXLS DATE_FORMAT
NLS_DATE_LANGUAGHELS ISO_CURRENGYLS_ LANGUAGHELS

Setting Up a Globalization Support Environment 3-9

Language and Territory Parameters

NUMERIC_CHARACTERISLS_SORTNLS_TERRITORYNLS_NCHAR_
CHARACTERSENLS_COMMLS_LENGTH_SEMANTICSILS_NCHAR_CONV_
EXP NLS_TIMESTAMP_FORMANLS_TIMESTAMP_TZ_FORMARNLS_TIME_
FORMATINLS_TIME_TZ_FORMAT

See Also: Oracle9i Database Reference

OCINIsGetlnfo() Function

User applications can query client NLS settings with the OCINIsGetInfo()
function.

See Also: Chapter 8, "OCI Programming in a Global
Environment" for the description of OCINIsGetInfo()

Language and Territory Parameters
This section contains information about the following parameters:
« NLS LANGUAGE
« NLS TERRITORY

NLS_LANGUAGE

Parameter type: String

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: Derived from NLS_LANG

Range of values: Any valid language name

NLS_LANGUAGEpecifies the default conventions for the following session
characteristics:

« Language for server messages

« Language for day and month names and their abbreviations (specified in the
SQL functions TO_CHARind TO_DATE

« Symbols for equivalents of AM, PM, AD, and BC. (A.M., PM., AD., and B.C.
are valid only if NLS_LANGUAGIS set to AMERICAN

« Default sorting sequence for character data when ORDER BYs specified.
(GROUP BVYuses a binary sort unless ORDER BYs specified.)

3-10 Oracle9i Database Globalization Support Guide

Language and Territory Parameters

« Writing direction
« Affirmative and negative response strings (for example, YESand NQ

The value specified for NLS_LANGUAGIh the initialization parameter file is the
default for all sessions in that instance. For example, to specify the default session
language as French, the parameter should be set as follows:

NLS_LANGUAGE =FRENCH

When the language is French, the server message
ORA-00942: table or view does not exist

appears as

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in the
$ORACLE_HOMEHroduct_name /mesg directory, or the equivalent for your
operating system. Multiple versions of these files can exist, one for each supported
language, using the following filename convention:

<product id ><language abbrev >MSB

For example, the file containing the server messages in French is called ORAF.MSB
because F is the language abbreviation for French.

Messages are stored in these files in one specific character set, depending on the
language and the operating system. If this character set is different from the
database character set, then message text is automatically converted to the database
character set. If necessary, it will then be converted to the client character set if the
client character set is different from the database character set. Hence, messages will
be displayed correctly at the user's terminal, subject to the limitations of character
set conversion.

The default value of NLS_LANGUAGHay be specific to the operating system. You
can alter the NLS_LANGUAGRarameter by changing its value in the initialization
parameter file and then restarting the instance.

See Also: Your operating system-specific Oracle documentation
for more information about the default value of NLS_LANGUAGE

All messages and text should be in the same language. For example, when you run
an Oracle Developer application, the messages and boilerplate text that you see
originate from three sources:

Setting Up a Globalization Support Environment 3-11

Language and Territory Parameters

« Messages from the server
« Messages and boilerplate text generated by Oracle Forms
« Messages and boilerplate text generated by the application

NLS determines the language used for the first two kinds of text. The application is
responsible for the language used in its messages and boilerplate text.

The following examples show behavior that results from setting NLS_LANGUAGE
different values.

Example 3-3 NLS _LANGUAGE=ITALIAN
Use the ALTER SESSIONstatement to set NLS LANGUAGH lItalian:

ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECTstatement:
SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST NAME HIRE_DATE SALARY
Sciarra 30SET97 9625
Urman 07MARO8 975
Popp 07-DIC99 8625

Note that the month name abbreviations are in Italian.

See Also: "Overriding Default Values for NLS_ LANGUAGE and
NLS_TERRITORY During a Session" on page 3-16 for more
information about using the ALTER SESSIONstatement

Example 3-4 NLS_LANGUAGE=GERMAN
Use the ALTER SESSION statement to change the language to German:

SQL>ALTER SESSION SET NLS_LANGUAGE=Geman;

Enter the same SELECTstatement:
SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:
LAST_NAME HIRE_DATE SALARY

3-12 Oracle9i Database Globalization Support Guide

Language and Territory Parameters

Sciara 30-SEP97 9625
Urman 07-MAR98 975
Popp 07-DEZ99 8625

Note that the language of the month abbreviations has changed.

NLS_TERRITORY

Parameter type: String

Parameter scope: Initialization Parameter and ALTER SESSION
Default value: Derived from NLS_LANG

Range of values: Any valid territory name
NLS_TERRITORYspecifies the conventions for the following default date and
numeric formatting characteristics:

« Date format

« Decimal character and group separator

« Local currency symbol

« ISO currency symbol

« Dual currency symbol

« First day of the week

« Credit and debit symbols

« 1SO week flag

« List separator

The value specified for NLS_ TERRITORYin the initialization parameter file is the
default for the instance. For example, to specify the default as France, the parameter
should be set as follows:

NLS_TERRITORY =FRANCE

When the territory is FRANCEnumbers are formatted using a comma as the
decimal character.

Setting Up a Globalization Support Environment 3-13

Language and Territory Parameters

You can alter the NLS_TERRITORYparameter by changing the value in the
initialization parameter file and then restarting the instance. The default value of
NLS_TERRITORYtan be specific to the operating system.

If NLS_LANGs specified in the client environment, then the value of NLS_
TERRITORYin the initialization parameter file is overridden at connection time.

The territory can be modified dynamically during the session by specifying the new
NLS_TERRITORWalue in an ALTER SESSIONstatement. Modifying NLS
TERRITORYresets all derived NLS session parameters to default values for the new
territory.

To change the territory to France during a session, issue the following ALTER
SESSIONstatement:

ALTER SESSION SET NLS_TERRITORY=France;

The following examples show behavior that results from different settings of NLS
TERRITORYand NLS_LANGUAGE

Example 3-5 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA

Enter the following SELECTstatement:

SQL> SELECT TO_CHAR(salary,1.99G999D99)) salary FROM employees;

When NLS_TERRITORYis set to AMERICAand NLS_LANGUAGIS set to AMERICAN
results similar to the following should appear:

SALARY

$24,000.00

$17,000.00
$17,000.00

Example 3-6 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=GERMANY
Use an ALTER SESSION statement to change the territory to Germany:

ALTER SESSION SET NLS_TERRITORY = Germany;
Session altered.

Enter the same SELECTstatement as before:
SQL>SELECT TO_CHAR(salary,1.99G999D99)) salary FROM employees;

You should see results similar to the following:

3-14 Oracle9i Database Globalization Support Guide

Language and Territory Parameters

SALARY

€24,000,00
€17.000,00
€17.000,00

Note that the currency symbol has changed from $ to € The numbers have not
changed because the underlying data is the same.

See Also: "Overriding Default Values for NLS_LANGUAGE and
NLS_TERRITORY During a Session" on page 3-16 for more
information about using the ALTER SESSION statement

Example 3—-7 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=GERMANY
Use an ALTER SESSION statement to change the language to German:

ALTER SESSION SETNLS_LANGUAGE =German;
Sizungwurdege andert.

Note that the server message now appears in German.
Enter the same SELECTstatement as before:
SQL> SELECT TO_CHAR(salary,.99G999D99)) salary FROM employees;

You should see the same results as in Example 3-6:
SALARY
€24.000,00

€17.000,00
€17.000,00

Example 3-8 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=AMERICA
Use an ALTER SESSIONSstatement to change the territory to America:

ALTER SESSION SET NLS_TERRITORY = America;
Sizungwurdege andert.

Enter the same SELECTstatement as in the other examples:
SQL>SELECT TO_CHAR(salary,1.99G999D99)) salary FROM employees;

You should see output similar to the following:
SALARY

Setting Up a Globalization Support Environment

3-15

Language and Territory Parameters

$24.000,00
$17.000,00
$17.000,00

Note that the currency symbol changed from €to $ because the territory changed
from Germany to America.

Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a
Session

Default values for NLS_LANGUAGENd NLS_TERRITORYtan be overridden during
a session by using the ALTER SESSIONstatement.

Example 3-9 NLS_LANG=ITALIAN_ITALY.WE8DEC

Set the NLS_LANGenvironment variable so that the language is Italian, the territory
is Italy, and the character set is WESDEC:

% setenvNLS_LANG ftalian_ltaly. WESDEC

Enter a SELECTstatement:
SQL>SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see output similar to the following:

LAST_NAME HIRE_DATE SALARY
Sciarra 30-SET97 9625

Urman 07-MAR98 975

Popp 07-DIC99 8625

Note the language of the month abbreviations and the decimal character.

Example 3-10 Change Language, Date Format, and Decimal Character

Use ALTER SESSION statements to change the language, the date format, and the
decimal character:

SQL>ALTER SESSION SET NLS_LANGUAGE=german;
Session wurde gedndert.

SQL>ALTER SESSION SET NLS_DATE_FORMAT=DD.MON.YY",

3-16 Oracle9i Database Globalization Support Guide

Date and Time Parameters

Session wurde gedndert.
SQL>ALTER SESSION SETNLS_NUMERIC_CHARACTERS=.)’,
Session wurde gedndert.

Enter the SELECTstatement shown in Example 3-9:
SQL>SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see output similar to the following:

LAST NAME HIRE_DATE SALARY
Sciarra 30.SEP.97 9625
Uman 07MAR98 975
Popp 07DEZ99 8625

Note the language of the month abbreviations, the date format, and the decimal
character.

The behavior of the NLS_LANGenvironment variable implicitly determines the
language environment of the database for each session. When a session connects to
a database, an ALTER SESSIONstatement is automatically executed to set the
values of the database parameters NLS LANGUAGENnd NLS_TERRITORMo those
specified by the language and territory arguments of NLS_LANGIf NLS LANG
is not defined, no implicit ALTER SESSIONstatement is executed.

When NLS_LANGs defined, the implicit ALTER SESSIONs executed for all
instances to which the session connects, for both direct and indirect connections. If
the values of NLS parameters are changed explicitly with ALTER SESSIONduring a
session, then the changes are propagated to all instances to which that user session
is connected.

Date and Time Parameters

Oracle enables you to control the display of date and time. This section contains the
following topics:

« Date Formats

« Time Formats

Setting Up a Globalization Support Environment 3-17

Date and Time Parameters

Date Formats

Different date formats are shown in Table 3-3.

Table 3-3 Date Formats

Country Description Example
Estonia dd.mm.yyyy 28.02.1998
Germany dd-mme-rr 28-02-98
Japan rr-mm-dd 98-02-28
UK dd-mon-rr 28-Feb-98
(ON] dd-mon-rr 28-Feb-98

This section includes the following parameters:
« NLS_DATE_FORMAT
« NLS_DATE_LANGUAGE

NLS_DATE_FORMAT

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default format for a particular territory

Range of values: Any valid date format mask

The NLS_DATE_FORMAparameter defines the default date format to use with the
TO_CHARind TO_DATEunctions. The NLS_TERRITORYparameter determines the
default value of NLS_DATE_FORMAThe value of NLS_DATE_FORMAGan be any
valid date format mask. The value must be surrounded by quotation marks. For
example:

NLS DATE_FORMAT ="MM/DD/YYYY"

To add string literals to the date format, enclose the string literal with double
guotes. Note that every special character (such as the double quote) must be
preceded with an escape character. The entire expression must be surrounded with
single quotes. For example:

NLS_DATE_FORMAT =\"Today\s date\" MM/DDYYYY'

3-18 Oracle9i Database Globalization Support Guide

Date and Time Parameters

Example 3-11 Setting the Date Format to Display Roman Numerals

To set the default date format to display Roman numerals for the month, include
the following line in the initialization parameter file:

NLS DATE_FORMAT="DDRMYYYY"

Enter the following SELECTstatement:
SELECT TO_CHAR(SYSDATE) currdate FROM dual;

You should see the following output if today’s date is February 12, 1997:
CURRDATE

12111997

The value of NLS_DATE_FORMAIE stored in the internal date format. Each format
element occupies two bytes, and each string occupies the number of bytes in the
string plus a terminator byte. Also, the entire format mask has a two-byte
terminator. For example, "MM/DD/YY" occupies 12 bytes internally because there
are three format elements (month, day, and year), two one-byte strings (the two
slashes), and the two-byte terminator for the format mask. The format for the value
of NLS_DATE_FORMAdannot exceed 24 bytes.

Note: The applications you design may need to allow for a
variable-length default date format. Also, the parameter value must
be surrounded by double quotes. Single quotes are interpreted as
part of the format mask.

You can alter the default value of NLS_DATE_FORMARy:

» Changing its value in the initialization parameter file and then restarting the
instance

« Usingan ALTER SESSION SET NLS_DATE_FORMgtatement
See Also: Oracle9i SQL ReferenceOracle9i SQL Reference for more

information about date format elements and the ALTER SESSION
statement

If a table or index is partitioned on a date column, and if the date format specified
by NLS DATE_FORMAdoes not specify the first two digits of the year, then you
must use the TO_DATEfunction with a 4-character format mask for the year.

Setting Up a Globalization Support Environment 3-19

Date and Time Parameters

For example:
TO_DATE(11-4an-1997, 'dd-mon-yyyy)

See Also: Oracle9i SQL Reference for more information about
partitioning tables and indexes and using TO_DATE

NLS_DATE_LANGUAGE

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_LANGUAGE

Range of values: Any valid language name

The NLS_DATE_LANGUAGRarameter specifies the language for the day and month
names produced by the TO_CHARind TO_DATE functions. NLS_DATE_LANGUAGE
overrides the language that is specified implicitly by NLS LANGUAGEILS DATE_

LANGUAGIas the same syntax as the NLS_LANGUAGRarameter, and all
supported languages are valid values.

NLS DATE_LANGUAGHSso determines the language used for:

« Month and day abbreviations returned by the TO_CHARInd TO_DATE
functions

« Month and day abbreviations used by the default date format (NLS_DATE_
FORMAY

« Abbreviations for AM, PM, AD, and BC

Example 3-12 NLS_DATE_LANGUAGE=FRENCH, Month and Day Names
Set the date language to French:

ALTER SESSIONS SETNLS_DATE L ANGUAGE =FRENCH

Enter a SELECTstatement:
SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy) FROM dual;

You should see output similar to the following:
TO_CHAR(SYSDATE,DAY:DDMONTHYYYY)

3-20 Oracle9i Database Globalization Support Guide

Date and Time Parameters

Time Formats

Vendredi:07 Décembre 2001

When numbers are spelled in words using the TO_CHAHRunction, the English
spelling is always used. For example, enter the following SELECTstatement:

SQL>SELECT TO_CHAR(TO_DATE(12-Oct-2001), Day: ddspth Month) FROM dual;

You should see output similar to the following:
TO_CHAR(TO_DATE(12-OCT-2001),DAY:DDSPTHMONTHY)

Vendredi: twelfth Octobre

Example 3-13 NLS_DATE_LANGUAGE=FRENCH, Month and Day Abbreviations

Month and day abbreviations are determined by NLS DATE_LANGUAGERnNter the
following SELECTstatement:

SELECT TO_CHAR(SYSDATE, Dy:dd Mon yyyy) FROM dual;

You should see output similar to the following:
TO_CHAR(SYSDATE,DY:DDMO

Ve:07 Dec 2001

Example 3-14 NLS DATE_LANGUAGE=FRENCH, Default Date Format

The default date format uses the month abbreviations determined by NLS_DATE_
LANGUAGEH-or example, if the default date format is DD-MON-YYY'Ythen insert a
date as follows:

INSERTINTO tablename VALUES (12-Fév-1997);

See Also: Oracle9i SQL Reference

Different time formats are shown in Table 3-4.

Table 3—-4 Time Formats

Country Description Example
Estonia hh24:mi:ss 13:50:23
Germany hh24:mi:ss 13:50:23

Setting Up a Globalization Support Environment 3-21

Date and Time Parameters

Table 3-4 Time Formats (Cont.)

Country Description Example

Japan hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

us hh:mi:ssxff am 1:50:23.555 PM

This section contains information about the following parameters:
« NLS_TIMESTAMP_FORMAT
« NLS_TIMESTAMP_TZ_FORMAT

NLS_TIMESTAMP_FORMAT

Parameter type: String

Parameter scope: Dynamic, Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid datetime format mask

NLS_TIMESTAMP_FORMAdefines the default timestamp format to use with TO _
CHARand TO_TIMESTAMHunctions. The value must be surrounded by quotation
marks as follows

NLS_TIMESTAMP_FORMAT ="YYYY-MM-DD HH:MI:SS.FF

Example 3-15 Timestamp Format

SQL>SELECT TO_TIMESTAMP(11-nov-2000 01:00:00.336, 'dd-mon-yyyy hh:mi:ss.ff)
FROM dual;

You should see output similar to the following:
TO_TIMESTAMP('11-NOV-200001:00:00.336,DD-MON-YYYYHH:MI:SS.FF)

11-NOV-00 01:00:00.336000000

You can specify the value of NLS_TIMESTAMP_FORMAJy setting it in the
initialization parameter file. You can specify its value for a client as a client
environment variable.

You can also alter the value of NLS_TIMESTAMP_FORMAdy:

3-22 Oracle9i Database Globalization Support Guide

Date and Time Parameters

« Changing its value in the initialization parameter file and then restarting the
instance

« Using the ALTER SESSION SET NLS_TIMESTAMP_FORMsAdtement

See Also: Oracle9i SQL Reference for more information about the
TO_TIMESTAMHunction and the ALTER SESSION statement

NLS_TIMESTAMP_TZ_FORMAT

Parameter type: String

Parameter scope: Dynamic, Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid datetime format mask

NLS_TIMESTAMP_TZ_ FORMAdefines the default format for the timestamp with
time zone. It is used with the TO_CHARnd TO_TIMESTAMP_TZunctions.

You can specify the value of NLS_TIMESTAMP_TZ_FORMAJy setting it in the
initialization parameter file. You can specify its value for a client as a client
environment variable.

Example 3-16 Setting NLS_TIMESTAMP_TZ_FORMAT
The format value must be surrounded by quotation marks. For example:

NLS _TIMESTAMP_TZ FORMAT ="YYYY-MM-DD HH:MI:SS.FF TZHTZM'
The following example of the TO_TIMESTAMP_TZunction uses the format value
that was specified for NLS_TIMESTAMP_TZ FORMAT

SQL>SELECT TO_TIMESTAMP_TZ(2000-08-20, 05:00:00.55 America/Los_Angeles,
yyyy-mm-dd hhimissff TZR) FROM dual;

You should see output similar to the following:
TO_TIMESTAMP_TZ(2000-08-20,05:00:00.44AMERICA/LOS_ANGELES,YYYY-MM-DDHH:M

20-A0U-00 05:00:00.440000000 AMERICALOS_ANGELES

You can change the value of NLS_TIMESTAMP_TZ_ FORMAdy:

Setting Up a Globalization Support Environment 3-23

Date and Time Parameters

« Changing its value in the initialization parameter file and then restarting the
instance

« Using the ALTER SESSIONstatement.

See Also: Oracle9i SQL Reference for more information about the
TO_TIMESTAMP_TZunction and the ALTER SESSION statement

Time Zone Parameters for Databases You can create a database with a specific time
zone by specifying:

« Adisplacement from UTC (Coordinated Universal Time, formerly Greenwich
Mean Time). The following example sets the time zone of the database to Pacific
Standard time (eight hours behind UTC):

CREATE DATABASE ... SET TIME_ZONE =-08:00",

« Atime zone region. The following example also sets the time zone of the
database to Pacific Standard time in the United States:

CREATE DATABASE ... SET TIME_ZONE ="PST;
To see a list of valid region names, query the V$TIMEZONE_NAMES8iew.

The database time zone is relevant only for TIMESTAMP WITH LOCAL TIME ZONE
columns. Oracle normalizes all TIMESTAMP WITH LOCAL TIME ZON#ata to the
time zone of the database when the data is stored on disk. If you do not specify the
SET TIME_ZONElause, then Oracle uses the time zone of the operating system of
the server. If the operating system’s time zone is not a valid Oracle time zone, then
the rdatabase time zone defaults to UTC. Oracle’s time zone information is derived
from the public domain time zone data available at

ftp://elsie.nci.nih.gov/pub/ . Oracle’s time zone information may not
reflect the most recent time zone data available from this site.

After the database has been created, you can change the time zone by issuing the
ALTER DATABASE SET TIME_ZONiatement and then shutting down and starting
up the database. The following example sets the time zone of the database to
London time:

ALTER DATABASE SET TIME_ZONE ="Europe/London’,

To find out the time zone of a database, use the DBTIMEZONHunction as shown in
the following example:

SELECT dbtimezone FROM dual;

3-24 Oracle9i Database Globalization Support Guide

Date and Time Parameters

DBTIME

-08:00
Time Zone Parameters for Sessions ~ You can change the time zone parameter of a user
session by issuing an ALTER SESSIONstatement:
« Operating system local time zone
ALTER SESSION SET TIME_ZONE = local;

« Database time zone
ALTER SESSION SET TIME_ZONE = DBTIMEZONE;

=« An absolute time difference from UTC
ALTER SESSION SET TIME_ZONE ="05:00};

« Time zone for a named region
ALTER SESSION SET TIME_ZONE = ‘America/New_YorK;

You can use the ORA_SDTz2nvironment variable to set the default client session
time zone. This variable takes input like DB_TZ OS_TZ time zone region, or
numerical time zone offset. If ORA_SDT4s set to DB_TZ then the session time zone
will be the same as the database time zone. If it is set to OS_TZ then the session
time zone will be same as the operating system’s time zone. If ORA_SDT4s set to an
invalid Oracle time zone, then Oracle uses the operating system’s time zone as
default session time zone. If the operating system’s time zone is not a valid Oracle
time zone, then the session time zone defaults to UTC. To find out the time zone of a
user session, use the SESSIONTIMEZONEunction as shown in the following
example:

SELECT sessiontimezone FROM dual;
SESSIONTIMEZONE
-08.00

See Also: "Customizing Time Zone Data" on page 12-17

Setting Up a Globalization Support Environment 3-25

Calendar Definitions

Calendar Definitions
This section includes the following topics:
» Calendar Formats
« NLS CALENDAR

Calendar Formats
The following calendar information is stored for each territory:
« First Day of the Week
« First Calendar Week of the Year
« Number of Days and Months in a Year

=« First Year of Era

First Day of the Week

Some cultures consider Sunday to be the first day of the week. Others consider
Monday to be the first day of the week. A German calendar starts with Monday, as
shown in Table 3-5.

Table 3-5 German Calendar Example: March 1998

Mo Di Mi Do Fr Sa So
- - - - - - 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 - - - - -

The first day of the week is determined by the NLS_TERRITORYparameter.

See Also: "NLS_TERRITORY" on page 3-13

3-26 Oracle9i Database Globalization Support Guide

Calendar Definitions

First Calendar Week of the Year

Some countries use week numbers for scheduling, planning, and bookkeeping.
Oracle supports this convention. In the 1SO standard, the week number can be
different from the week number of the calendar year. For example, 1st Jan 1988 is in
ISO week number 53 of 1987. An ISO week always starts on a Monday and ends on
a Sunday.

« IfJanuary 1 falls on a Friday, Saturday, or Sunday, then the ISO week that
includes January 1 is the last week of the previous year, because most of the
days in the week belong to the previous year.

« IfJanuary 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the 1ISO
week is the first week of the new year, because most of the days in the week
belong to the new year.

To support the ISO standard, Oracle provides the IW date format element. It returns
the 1SO week number.

Table 3-6 shows an example in which January 1 occurs in a week that has four or
more days in the first calendar week of the year. The week containing January 1 is
the first ISO week of 1998.

Table 3-6 First ISO Week of the Year: Example 1, January 1998

Mo Tu We Th Fr Sa Su ISO Week

- - - 1 2 3 4 First ISO week of 1998

5 6 7 8 9 10 1 Second ISO week of 1998
12 13 14 15 16 17 18 Third ISO week of 1998
19 20 21 22 23 24 25 Fourth ISO week of 1998
26 27 28 29 30 31 - Fifth ISO week of 1998

Table 3-7 shows an example in which January 1 occurs in a week that has three or
fewer days in the first calendar week of the year. The week containing January 1 is
the 53rd 1SO week of 1998, and the following week is the first ISO week of 1999.

Table 3-7 First ISO Week of the Year: Example 2, January 1999

Mo Tu We Th Fr Sa Su ISO Week
- - - - 1 2 3 Fifty-third 1ISO week of 1998
4 5 6 7 8 9 10 First ISO week of 1999

Setting Up a Globalization Support Environment 3-27

Calendar Definitions

Table 3-7 First ISO Week of the Year: Example 2, January 1999 (Cont.)

Mo Tu We Th Fr Sa Su ISO Week

11 12 13 14 15 16 17 Second 1SO week of 1999
18 19 20 21 22 23 24 Third ISO week of 1999
25 26 27 28 29 30 31 Fourth I1SO week of 1999

The first calendar week of the year is determined by the NLS_TERRITORY
parameter.

See Also: "NLS_TERRITORY" on page 3-13

Number of Days and Months in a Year
Oracle supports six calendar systems in addition to Gregorian, the default:

« Japanese Imperial—uses the same number of months and days as Gregorian,
but the year starts with the beginning of each Imperial Era

« ROC Official—uses the same number of months and days as Gregorian, but the
year starts with the founding of the Republic of China

« Persian—has 31 days for each of the first six months. The next five months have
30 days each. The last month has either 29 days or 30 days (leap year).

« Thai Buddha—uses a Buddhist calendar

« Arabic Hijrah—has 12 months with 354 or 355 days

« English Hijrah—has 12 months with 354 or 355 days

The calendar system is specified by the NLS_CALENDARarameter.

See Also: "NLS_CALENDAR" on page 3-29

First Year of Era
The Islamic calendar starts from the year of the Hegira.

The Japanese Imperial calendar starts from the beginning of an Emperor's reign. For
example, 1998 is the tenth year of the Heisei era. It should be noted, however, that
the Gregorian system is also widely understood in Japan, so both 98 and Heisei 10
can be used to represent 1998.

3-28 Oracle9i Database Globalization Support Guide

Calendar Definitions

NLS_CALENDAR

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and ALTER
SESSION

Default value: Gregorian
Range of values: Any valid calendar format name

Many different calendar systems are in use throughout the world. NLS_CALENDAR
specifies which calendar system Oracle uses.

NLS_CALENDARan have one of the following values:

« Arabic Hijrah

« English Hijrah

« Gregorian

« Japanese Imperial

« Persian

« ROC Official (Republic of China)

« Thai Buddha

See Also: Appendix A, "Locale Data" for a list of calendar
systems, their default date formats, and the character sets in which
dates are displayed

Example 3-17 NLS_CALENDAR='Japanese Imperial"
Set NLS_CALENDAROb Japanese Imperial:

SQL>ALTER SESSIONS SET NLS_CALENDAR=English Hirah’;

Enter a SELECTstatement to display SYSDATE
SELECT SYSDATE FROM dual;

You should see output similar to the following:
SYSDATE

24 Ramadan 1422

Setting Up a Globalization Support Environment 3-29

Numeric Parameters

Numeric Parameters

This section includes the following topics:
« Numeric Formats

« NLS_NUMERIC_CHARACTERS

Numeric Formats

The database must know the number-formatting convention used in each session to
interpret numeric strings correctly. For example, the database needs to know
whether numbers are entered with a period or a comma as the decimal character
(234.00 or 234,00). Similarly, applications must be able to display numeric
information in the format expected at the client site.

Examples of numeric formats are shown in Table 3-8.

Table 3-8 Examples of Numeric Formats

Country Numeric Formats
Estonia 1234 567,89
Germany 1.234.567,89
Japan 1,234,567.89
UK 1,234,567.89
us 1,234,567.89

Numeric formats are derived from the setting of the NLS_TERRITORYparameter,
but they can be overridden by the NLS_NUMERIC_CHARACTERSrameter.

See Also: "NLS_TERRITORY" on page 3-13

NLS_NUMERIC_CHARACTERS

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default decimal character and group separator for a
particular territory

Range of values: Any two valid numeric characters

3-30 Oracle9i Database Globalization Support Guide

Numeric Parameters

This parameter specifies the decimal character and group separator. The group
separator is the character that separates integer groups to show thousands and
millions, for example. The group separator is the character returned by the G
number format mask. The decimal character separates the integer and decimal parts
of a number. Setting NLS_NUMERIC_CHARACTERSerrides the values derived
from the setting of NLS_ TERRITORY

Any character can be the decimal or group separator. The two characters specified
must be single-byte, and the characters must be different from each other. The
characters cannot be any numeric character or any of the following characters: plus
(+), hyphen (-), less than sign (<), greater than sign (>). Either character can be a
space.

The characters are specified in the following format:
NLS_NUMERIC_CHARACTERS =decimal_character group_separator

Example 3-18 Setting NLS_NUMERIC_CHARACTERS

To set the decimal character to a comma and the grouping separator to a period,
define NLS_NUMERIC_CHARACTERSfollows:

Both characters are single-byte and are different from each other.

SQL statements can include numbers represented as numeric or text literals.
Numeric literals are not enclosed in quotes. They are part of the SQL language
syntax and always use a dot as the decimal separator and never contain a group
separator. Text literals are enclosed in single quotes. They are implicitly or explicitly
converted to numbers, if required, according to the current NLS settings.

Enter a SELECTstatement:
SELECT TO_CHAR(4000, '9G999D99) FROM dual;

You should see output similar to the following:
TO CHAR(@

4.000,00

You can change the default value of NLS_NUMERIC_CHARACTERS:

« Changing the value of NLS NUMERIC_CHARACTERSthe initialization
parameter file and then restart the instance

Setting Up a Globalization Support Environment 3-31

Monetary Parameters

« Using the ALTER SESSIONstatement to change the parameter’s value during a
session

See Also: Oracle9i SQL Reference for more information about the
ALTER SESSION statement

Monetary Parameters
This section includes the following topics:
« Currency Formats
« NLS_CURRENCY
« NLS_ISO_CURRENCY
« NLS DUAL_CURRENCY
« NLS _ MONETARY_CHARACTERS
« NLS CREDIT
« NLS _DEBIT

Currency Formats

Different currency formats are used throughout the world. Some typical ones are
shown in Table 3-9.

Table 3-9 Currency Format Examples

Country Example
Estonia 1 234,56 kr
Germany 1.234,56€
Japan ¥1,234.56
UK £1,234.56
us $1,234.56

NLS_CURRENCY

Parameter type: String

3-32 Oracle9i Database Globalization Support Guide

Monetary Parameters

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default local currency symbol for a particular territory

Range of values: Any valid currency symbol string

NLS_CURRENCpecifies the character string returned by the L number format
mask, the local currency symbol. Setting NLS_CURRENCuVerrides the setting
defined implicitly by NLS_TERRITORY

Example 3—-19 Displaying the Local Currency Symbol
Connect to the sample schema order entry schema:
SQL> connect oeloe
Connected.
Enter a SELECTstatement similar to the following:
SQL>SELECT TO_CHAR(order_total, 'L099G999D99) "total’ FROM orders
WHERE order_id > 2450
You should see output similar to the following:
total
$078,279.60
$006,653.40
$014,087.50
$010,474.60
$012,589.00
$000,129.00
$003,87840
$021,586.20
You can change the default value of NLS_ CURRENCHY:

« Changing its value in the initialization parameter file and then restarting the
instance

« Using an ALTER SESSIONstatement

See Also: Oracle9i SQL Reference for more information about the
ALTER SESSION statement

Setting Up a Globalization Support Environment 3-33

Monetary Parameters

NLS_ISO_CURRENCY

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and ALTER
SESSION

Default value: Derived from NLS_TERRITORY
Range of values: Any valid territory name
NLS_ISO_CURRENCHYpecifies the character string returned by the C number

format mask, the 1ISO currency symbol. Setting NLS_ISO_CURRENCWverrides the
value defined implicitly by NLS_TERRITORY

Local currency symbols can be ambiguous. For example, a dollar sign ($) can refer
to US dollars or Australian dollars. 1ISO specifications define unique currency
symbols for specific territories or countries. For example, the 1ISO currency symbol
for the US dollar is USD. For the Australian dollar, it is AUD.

More ISO currency symbols are shown in Table 3-10.

Table 3-10 SO Currency Examples

Country Example

Estonia 1234 567,89 EEK
Germany 1.234.567,89 EUR
Japan 1,234,567.89 JPY
UK 1,234,567.89 GBP
us 1,234,567.89 USD

NLS_ISO_CURRENCHas the same syntax as the NLS_ TERRITORYparameter, and
all supported territories are valid values.

Example 3-20 Setting NLS_ISO_CURRENCY
This example assumes that you are connected as oe/oe in the sample schema.

To specify the 1ISO currency symbol for France, set NLS_ISO_CURRENC¥s follows:
ALTER SESSION SETNLS ISO_CURRENCY =FRANCE;

Enter a SELECTstatement:

3-34 Oracle9i Database Globalization Support Guide

Monetary Parameters

SQL>SELECT TO_CHAR(order_total, 'C099G999D99) "TOTAL" FROM orders
WHERE customer_id = 146;

You should see output similar to the following:

TOTAL

EUR017,848.20

EUR027,455.30

EUR029,249.10

EUR013,824.00

EUR000,086.00

You can change the default value of NLS_ISO_CURRENCy:

« Changing its value in the initialization parameter file and then restarting the
instance

« Using an ALTER SESSIONstatement

See Also: Oracle9i SQL Reference for more information about the
ALTER SESSION statement

NLS_DUAL_CURRENCY

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default dual currency symbol for a particular territory

Range of values: Any valid name

Use NLS DUAL_ CURRENQ¥ override the default dual currency symbol defined
implicitly by NLS_TERRITORY

NLS_ DUAL_CURRENGNas introduced to support the euro currency symbol during
the euro transition period. Table 3-11 lists the character sets that support the euro
symbol.

Setting Up a Globalization Support Environment 3-35

Monetary Parameters

Table 3-11 Character Sets that Support the Euro Symbol

Character Set Name

Description

Code Value of the Euro
Symbol

DSEBCDIC1141
DK8EBCDIC1142
S8EBCDIC1143
IBEBCDIC1144
FSEBCDIC1147
WEBPC858
WEBS8ISO8859P15
EESMSWIN1250
CL8MSWIN1251
WEBMSWIN1252
EL8MSWIN1253
WESEBCDIC1047E
WESEBCDIC1140
WESEBCDIC1140C
WESEBCDIC1145
WESEBCDIC1146
WESEBCDIC1148
WESEBCDIC1148C
EL8ISO8859P7
IW8MSWIN1255
ARSMSWIN1256
TR8MSWIN1254
BLT8MSWIN1257
VN8MSWIN1258
TH8TISASCII
AL32UTF8

UTF8

AL16UTF16

EBCDIC Code Page 1141 8-bit Austrian German
EBCDIC Code Page 1142 8-bit Danish

EBCDIC Code Page 1143 8-bit Swedish

EBCDIC Code Page 1144 8-bit Italian

EBCDIC Code Page 1147 8-bit French

IBM-PC Code Page 858 8-bit West European

1SO 8859-15 West European

MS Windows Code Page 1250 8-bit East European
MS Windows Code Page 1251 8-bit Latin/Cyrillic
MS Windows Code Page 1252 8-bit West European
MS Windows Code Page 1253 8-bit Latin/Greek
Latin 1/Open Systems 1047

EBCDIC Code Page 1140 8-bit West European
EBCDIC Code Page 1140 Client 8-bit West European
EBCDIC Code Page 1145 8-bit West European
EBCDIC Code Page 1146 8-bit West European
EBCDIC Code Page 1148 8-bit West European
EBCDIC Code Page 1148 Client 8-bit West European
I1SO 8859-7 Latin/Greek

MS Windows Code Page 1255 8-bit Latin/Hebrew
MS Windows Code Page 1256 8-Bit Latin/Arabic
MS Windows Code Page 1254 8-bit Turkish

MS Windows Code Page 1257 Baltic

MS Windows Code Page 1258 8-bit Vietnamese
Thai Industrial 620-2533 - ASCII 8-bit

Unicode 3.1 UTF-8 Universal character set
Unicode 3.0 UTF-8 Universal character set

Unicode 3.1 UTF-16 Universal character set

3-36 Oracle9i Database Globalization Support Guide

O0x9F
Ox5A
0x5A
O0x9F
Ox9F
O0xDF
0xA4
0x80
0x88
0x80
0x80
Ox9F
Ox9F
Ox9F
Ox9F
Ox9F
Ox9F
O0x9F
0xA4
0x80
0x80
0x80
0x80
0x80
0x80
E282AC
E282AC
20AC

Monetary Parameters

Table 3-11 Character Sets that Support the Euro Symbol (Cont.)

Code Value of the Euro

Character Set Name Description Symbol

UTFE UTF-EBCDIC encoding of Unicode 3.0 CA4653

ZHT16HKSCS MS Windows Code Page 950 with Hong Kong OxA3E1l
Supplementary Character Set

ZHS32GB18030 GB18030-2000 0xA2E3

WE8BS2000E Siemens EBCDIC.DF.04 8-bit West European 0x9F

Oracle Support for the Euro

The members of the European Monetary Union (EMU) now use the euro as their
currency as of January 1, 2002. Setting NLS_TERRITORMo correspond to a country
in the EMU (Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,
Luxembourg, the Netherlands, Portugal, and Spain) results in the default values for
NLS_CURRENC¥hd NLS_DUAL_CURREN®@}ing set to EUR

During the transition period (1999 through 2001), Oracle support for the euro was
provided in Oracle8i and later as follows:

« NLS_CURRENCWas defined as the primary currency of the country
« NLS_ISO_CURRENCWas defined as the ISO currency code of a given territory

« NLS DUAL_CURRENGNas defined as the secondary currency symbol (usually
the euro) for a given territory

Beginning with Oracle9i release 2 (9.2), the value of NLS_1SO_CURRENCYesults in
the 1SO currency symbol being set to EURfor EMU member countries. For example,
suppose NLS_ISO_CURRENCY¥ set to FRANCEEnter the following SELECT
statement:

SELECT TO_CHAR(TOTAL, 'C099G999D99) "TOTAL" FROM orders WHERE customer_id=585;

You should see output similar to the following:
TOTAL

EUR12.67349

Customers who must retain their obsolete local currency symbol can override the
default for NLS_DUAL_CURRENGX NLS_CURRENCHNY defining them as
parameters in the initialization file on the server and as environment variables on
the client.

Setting Up a Globalization Support Environment 3-37

Monetary Parameters

Note: NLS_LANGmust also be set on the client for NLS_
CURRENCHYr NLS_DUAL_CURRENGQYWY take effect.

It is not possible to override the 1ISO currency symbol that results from the value of
NLS_ISO_CURRENCY

NLS_MONETARY_CHARACTERS

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any valid name

NLS_MONETARY_CHARACTE#Ecifies the character that separates groups of

numbers in monetary expressions. For example, when the territory is America, the
thousands separator is a comma, and the decimal separator is a period.

NLS CREDIT
Parameter type: String
Parameter scope: Environment Variable
Default value: Derived from NLS_TERRITORY
Range of values: Any string, maximum of 9 bytes (not including null)
NLS_CREDITsets the symbol that displays a credit in financial reports. The default
value of this parameter is determined by NLS_TERRITORYFor example, a space is
a valid value of NLS_CREDIT
This parameter can be specified only in the client environment.
It can be retrieved through the OCIGetNIsInfo() function.

NLS DEBIT

Parameter type: String
Parameter scope: Environment Variable

3-38 Oracle9i Database Globalization Support Guide

Linguistic Sort Parameters

Default value: Derived from NLS_TERRITORY
Range of values: Any string, maximum of 9 bytes (not including null)
NLS_DEBIT sets the symbol that displays a debit in financial reports. The default

value of this parameter is determined by NLS TERRITORYFor example, a minus
sign (-) is a valid value of NLS_DEBIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCIGetNIsInfo() function.

Linguistic Sort Parameters

NLS_SORT

You can choose how to sort data by using linguistic sort parameters.
This section includes the following topics:

« NLS_SORT

« NLS COMP

« NLS_LIST SEPARATOR

See Also: Chapter 4, "Linguistic Sorting"

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default character sort sequence for a particular language

Range of values: BINARY or any valid linguistic definition name

NLS_SORTspecifies the type of sort for character data. It overrides the value that is
defined implicitly by NLS_LANGUAGE

The syntax of NLS_SORTis:
NLS SORT=BINARY| sort name

BINARY specifies a binary sort. sort namespecifies a linguistic sort sequence.

Setting Up a Globalization Support Environment 3-39

Linguistic Sort Parameters

Example 3-21 Setting NLS_SORT
To specify the linguistic sort sequence called German, set NLS _SORTas follows:

NLS_SORT =German

The name given to a linguistic sort sequence has no direct connection to language
names. Usually, however, each supported language has an appropriate linguistic
sort sequence that uses the same name. Oracle offers two kinds of linguistic sorts:
monolingual and multilingual. In addition monolingual sorts can be extended to
handle special cases. Extended monolingual sorts usually sort characters differently
than the ASCII values of the characters. For example, ch and Il are treated as only
one character in XSPANISH, the extended Spanish sort. In other words, the
SPANISH sort uses modern Spanish collation rules, while XSPANISH uses
traditional Spanish sorting rules.

Note: When the NLS_SORTparameter is set to BINARY, the
optimizer can, in some cases, satisfy the ORDER Blause without
doing a sort by choosing an index scan.

When NLS_SORTis set to a linguistic sort, a sort is needed to satisfy
the ORDER B¥lause if there is no linguistic index for the linguistic
sort specified by NLS_SORT

If a linguistic index exists for the linguistic sort specified by NLS
SORTthe optimizer can, in some cases, satisfy the ORDER B¥lause
without doing a sort by choosing an index scan.

You can alter the default value of NLS_SORTby:

« Changing its value in the initialization parameter file and then restarting the
instance

« Using an ALTER SESSIONstatement

See Also:
« "Multilingual Linguistic Sorts" on page 4-4

« Oracle9i SQL Reference for more information about the ALTER
SESSIONstatement

« Appendix A, "Locale Data" for a complete list of linguistic sort
definitions

3-40 Oracle9i Database Globalization Support Guide

Linguistic Sort Parameters

NLS_COMP

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable and ALTER
SESSION

Default value: Binary
Range of values: BINARY or ANSI

You can use NLS_COMPRo avoid the cumbersome process of using NLS_SORTin
SQL statements. Normally, comparison in the WHERElause and in PL/SQL blocks
is binary. To use linguistic comparison, you must use the NLSSORTSQL function.
Sometimes this can be tedious, especially when the linguistic sort has already been
specified in the NLS_SORTsession parameter. You can use NLS_COMPo indicate
that the comparisons must be linguistic according to the NLS_SORTsession
parameter. Do this by altering the session:

ALTER SESSION SETNLS_COMP =ANS];

To specify that comparison in the WHERElause is always binary, issue the following
statement:

ALTER SESSION SETNLS_COMP =BINARY;

When NLS_COMBRs set to ANSI, a linguistic index improves the performance of the
linguistic comparison.

To enable a linguistic index, use the following syntax:

CREATE INDEX i ON t(NLSSORT(col, NLS_SORT=FRENCH));

See Also: "Using Linguistic Indexes" on page 4-12

NLS_LIST SEPARATOR

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY
Range of values: Any valid character

NLS_LIST_SEPARATORpecifies the character to use to separate values in a list of
values. Its default value is derived from the value of NLS_TERRITORY

Setting Up a Globalization Support Environment 3-41

Character Set Conversion Parameter

The character specified must be single-byte and cannot be the same as either the
numeric or monetary decimal character, any numeric character, or any of the
following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>),
period (.).

Character Set Conversion Parameter

This section includes the following topic:
« NLS_NCHAR_CONV_EXCP

NLS_NCHAR_CONV_EXCP

Parameter type: String

Parameter scope: Initialization Parameter, ALTER SESSIONALTER SYSTEM
Default value: FALSE

Range of values: TRUE, FALSE

NLS_NCHAR_CONV_EXG@termines whether an error is reported when there is

data loss during an implicit or explicit character type conversion. The default value
results in no error being reported.

See Also: Chapter 10, "Character Set Migration™ for more
information about data loss during character set conversion

Length Semantics

This section includes the following topic:
« NLS LENGTH_SEMANTICS

NLS_LENGTH_SEMANTICS

Parameter type: String

Parameter scope: Dynamic, Initialization Parameter, ALTER SESSIONand
ALTER SYSTEM

Default value: BYTE
Range of values: BYTE] CHAR

3-42 Oracle9i Database Globalization Support Guide

Length Semantics

By default, the character datatypes CHARand VARCHAR2re specified in bytes, not
characters. Hence, the specification CHAR(20) in a table definition allows 20 bytes
for storing character data.

This works well if the database character set uses a single-byte character encoding
scheme because the number of characters will be the same as the number of bytes. If
the database character set uses a multibyte character encoding scheme, then the
number of bytes no longer equals the number of characters because a character can
consist of one or more bytes. Thus, column widths must be chosen with care to
allow for the maximum possible number of bytes for a given number of characters.
You can overcome this problem by switching to character semantics when defining
the column size.

NLS_LENGTH_SEMANTIC&nables you to create CHARVARCHARZ2and LONG
columns using either byte or character length semantics. NCHARNVARCHARZCLOB
and NCLORcolumns are always character-based. Existing columns are not affected.

You may be required to use byte semantics in order to maintain compatibility with
existing applications.

NLS LENGTH_SEMANTIC8oes not apply to tables in SYSand SYSTEMThe data
dictionary always uses byte semantics.

See Also:

« "Length Semantics" on page 2-12

« Oracle9i Database Concepts for more information about length
semantics

Setting Up a Globalization Support Environment 3-43

Length Semantics

3-44 Oracle9i Database Globalization Support Guide

A

Linguistic Sorting

This chapter explains how characters are sorted in an Oracle environment. It
contains the following topics:

« Overview of Oracle’s Sorting Capabilities

« Using Binary Sorts

« Using Linguistic Sorts

« Linguistic Sort Features

« Using Linguistic Indexes

« Improving Case-Insensitive Searches with a Function-Based Index

« Performing a Generic Base Letter Search

Linguistic Sorting 4-1

Overview of Oracle’s Sorting Capabilities

Overview of Oracle’s Sorting Capabilities

Different languages have different sort orders. In addition, different cultures or
countries that use the same alphabets may sort words differently. For example, in
Danish, £ is after Z, while Y and Uare considered to be variants of the same letter.

Sort order can be case-sensitive or case-insensitive. Case refers to the condition of
being uppercase or lowercase. For example, in a Latin alphabet, A is the uppercase
glyph for a, the lowercase glyph.

Sort order can ignore or consider diacritics. A diacritic is a mark near or through a
character or combination of characters that indicates a different sound than the
sound of the character without the diacritic. For example, the cedilla (,) in fagade
is a diacritic. It changes the sound of c.

Sort order can be phonetic or it can be based on the appearance of the character. For
example, sort order can be based on the number of strokes in East Asian
ideographs. Another common sorting issue is combining letters into a single
character. For example, in traditional Spanish, ch is a distinct character that comes
after ¢, which means that the correct order is: cerveza, colorado, cheremoya. This
means that the letter ¢ cannot be sorted until Oracle has checked whether the next
letter is an h.

Oracle provides the following types of sorts:
« Binary sort

« Monolingual linguistic sort

« Multilingual linguistic sort

It can achieve a linguistically correct sort for a single language as well as a sort
based on the multilingual 1SO standard (ISO-14651), which is designed to handle
many languages at the same time.

Using Binary Sorts

One way to sort character data is based on the numeric values of the characters
defined by the character encoding scheme. This is called a binary sort. Binary sorts
are the fastest type of sort. They produce reasonable results for the English alphabet
because the ASCII and EBCDIC standards define the letters A to Z in ascending
numeric value.

4-2 Oracle9i Database Globalization Support Guide

Using Linguistic Sorts

Note: Inthe ASCII standard, all uppercase letters appear before
any lowercase letters. In the EBCDIC standard, the opposite is true:
all lowercase letters appear before any uppercase letters.

When characters used in other languages are present, a binary sort usually does not
produce reasonable results. For example, an ascending ORDER BYuery returns the
character strings ABG ABZ BCDQ ABG when A has a higher numeric value than B in
the character encoding scheme. A binary sort is not usually linguistically
meaningful for Asian languages that use ideographic characters.

Using Linguistic Sorts

To produce a sort sequence that matches the alphabetic sequence of characters,
another sort technique must be used that sorts characters independently of their
numeric values in the character encoding scheme. This technique is called a
linguistic sort. A linguistic sort operates by replacing characters with numeric
values that reflect each character’s proper linguistic order.

Oracle offers two kinds of linguistic sorts: monolingual and multilingual.
This section includes the following topics:

« Monolingual Linguistic Sorts

« Multilingual Linguistic Sorts

« Multilingual Sorting Levels

« Linguistic Sort Examples

Monolingual Linguistic Sorts

Oracle compares character strings in two steps for monolingual sorts. The first step
compares the major value of the entire string from a table of major values. Usually,
letters with the same appearance have the same major value. The second step
compares the minor value from a table of minor values. The major and minor
values are defined by Oracle. Oracle defines letters with diacritic and case
differences as having the same major value but different minor values.

Each major table entry contains the Unicode code point and major value for a
character. The Unicode code point is a 16-bit binary value that represents a
character.

Linguistic Sorting 4-3

Using Linguistic Sorts

Table 4-1 illustrates sample values for sorting a, A, &, A, and b.

Table 4-1 Sample Glyphs and Their Major and Minor Sort Values

Glyph Major Value Minor Value
a 15 5

A 15 10

a 15 15

A 15 20

b 20 5

See Also: "Overview of Unicode" on page 5-2

Multilingual Linguistic Sorts

Oracle9i provides multilingual linguistic sorts so that you can sort data in more
than one language in one sort. This is useful for regions or languages that have
complex sorting rules and for multilingual databases. Oracle9i supports all of the
sort orders defined by previous releases.

For Asian language data or multilingual data, Oracle provides a sorting mechanism
based on the ISO 14651 standard and the Unicode 3.1 standard. Chinese characters
are ordered by the number of strokes, PinYin, or radicals.

In addition, multilingual sorts can handle canonical equivalence and
supplementary characters. Canonical equivalence is a basic equivalence between
characters or sequences of characters. For example, ¢ is equivalent to the
combination of ¢ and , . Supplementary characters are user-defined characters or
predefined characters in Unicode 3.1 that require two code points within a specific
code range. You can define up to 1.1 million code points in one multilingual sort.

For example, Oracle9i supports a monolingual French sort (FRENCH but you can
specify a multilingual French sort (FRENCH_M_Mrepresents the 1ISO 14651
standard for multilingual sorting. The sorting order is based on the GENERIC_M
sorting order and can sort diacritical marks from right to left. Oracle Corporation
recommends using a multilingual linguistic sort if the tables contain multilingual
data. If the tables contain only French, then a monolingual French sort may have
better performance because it uses less memory:. It uses less memory because fewer
characters are defined in a monolingual French sort than in a multilingual French
sort. There is a tradeoff between the scope and the performance of a sort.

4-4 Oracle9i Database Globalization Support Guide

Using Linguistic Sorts

See Also:
« "Canonical Equivalence" on page 4-10

« "Supplementary Characters" on page 5-3

Multilingual Sorting Levels
Oracle evaluates multilingual sorts at three levels of precision:

« Primary Level Sorts
« Secondary Level Sorts

« Tertiary Level Sorts

Primary Level Sorts

A primary level sort distinguishes between base characters, such as the difference
between characters a and b. It is up to individual locales to define if a is before b, b
is before a, or they are equal. The binary representation of the characters is
completely irrelevant. If a character is an ignorable character, then it is assigned a
primary level order (or weight) of zero, which means it is ignored at the primary
level. Characters that are ignorable on other levels are given an order of zero at
those levels.

For example, at the primary level, all variations of bat come before all variations of
bet . The variations of bat can appear in any order, and the variations of bet can
appear in any order:

Bat
bat
BAT

BET
Bet
bet
See Also: "Ignorable Characters" on page 4-9

Secondary Level Sorts

A secondary level sort distinguishes between base characters (the primary level
sort) before distinguishing between diacritics on a given base character. For
example, the character A differs from the character A only because it has a diacritic.
Thus, A and A are the same on the primary level because they have the same base
character (A) but differ on the secondary level.

Linguistic Sorting 4-5

Using Linguistic Sorts

The following list has been sorted on the primary level (resume comes before
resumes) and on the secondary level (strings without diacritics come before strings
with diacritics):

resume
résumé
Résumé
Resumes
resumes
résumés

Tertiary Level Sorts

A tertiary level sort distinguishes between base characters (primary level sort),
diacritics (secondary level sort), and case (upper case and lower case). It can also
include special characters such as +, -, and *.

The following are examples of tertiary level sorts:

« Characters a and A are equal on the primary and secondary levels but different
on the tertiary level because they have different cases.

« Characters & and A are equal on the primary level and different on the
secondary and tertiary levels.

« The primary and secondary level orders for the dash character - is 0. That is, it
is ignored on the primary and secondary levels. If a dash is compared with
another character whose primary level order is nonzero, for example, u, then no
result for the primary level is available because u is not compared with
anything. In this case, Oracle finds a difference between - and u only at the
tertiary level.

The following list has been sorted on the primary level (resume comes before
resumes) and on the secondary level (strings without diacritics come before strings
with diacritics) and on the tertiary level (lower case comes before upper case):

resume
Resume
résumé
Résumé
resumes
résumés
Resumes
Résumés

4-6 Oracle9i Database Globalization Support Guide

Using Linguistic Sorts

Linguistic Sort Examples

The examples in this section demonstrate a binary sort, a monolingual sort, and a
multilingual sort. To prepare for the examples, create and populate a table called
test . Enter the following statements:

SQL> CREATE TABLE test (name VARCHAR2(20));
SQL> INSERT INTO test VALUES(Diet);

SQL> INSERT INTO test VALUES(A voir);

SQL> INSERT INTO test VALUES(Freizeit);

Example 4-1 Binary Sort
The ORDER BYclause uses a binary sort.

SQL> SELECT * FROM test ORDER BY name;

You should see the following output:
Diet

Freizeit

Avoir

Note that a binary sort results in A voir being at the end of the list.

Example 4-2 Monolingual German Sort

Use the NLSSORTfunction with the NLS_SORTparameter set to german to obtain a
German sort.

SQL> SELECT * FROM test ORDER BY NLSSORT(name, 'NLS_SORT=german);

You should see the following output:
Avoir

Diet

Freizeit

Note that A voir is at the beginning of the list in a German sort.

Example 4-3 Comparing a Monolingual German Sort to a Multilingual Sort

Insert the character string shown in Figure 4-1 into test . It is a Dwith a crossbar
followed by A.

Linguistic Sorting 4-7

Linguistic Sort Features

Figure 4-1 Character String

bn

Perform a monolingual German sort by using the NLSSORTfunction with the NLS
SORTparameter set to german .

SQL> SELECT * FROM test ORDER BY NLSSORT(name, 'NLS_SORT=german);

The output from the German sort shows the new character string last in the list of
entries because the characters are not recognized in a German sort.

Perform a multilingual sort by entering the following statement:
SQL> SELECT * FROM test ORDER BY NLSSORT(name, NLS_SORT=genefic_m);

The output shows the new character string after Diet , following I1SO sorting rules.

See Also:
« "The NLSSORT Function" on page 7-10

« "NLS_SORT" on page 3-39 for more information about setting
and changing the NLS_SORTparameter

Linguistic Sort Features

This section contains information about different features that a linguistic sort may
have:

« Base Letters

« Ignorable Characters

« Contracting Characters

« Expanding Characters

« Context-Sensitive Characters

« Canonical Equivalence

« Reverse Secondary Sorting

« Character Rearrangement for Thai and Laotian Characters
« Special Letters

« Special Combination Letters

4-8 Oracle9i Database Globalization Support Guide

Linguistic Sort Features

« Special Uppercase Letters
« Special Lowercase Letters

You can customize linguistic sorts to include the desired characteristics.

See Also: Chapter 12, "Customizing Locale Data"

Base Letters

Base letters are defined in a base letter table, which maps each letter to its base
letter. For example, a, A, &, and A all map to a, which is the base letter. This concept
is particularly relevant for working with Oracle Text.

See Also: Oracle Text Reference

Ignorable Characters

Some characters can be ignored in a linguistic sort. These characters are called
ignorable characters. There are two kinds of ignorable characters: diacritics and
punctuation.

Examples of ignorable diacritics are:
« ", sothatrble is treated the same as role
« The umlaut, so that naive is treated the same as naive

And example of an ignorable punctuation character is the dash character - . If it is
ignored, then multi-lingual can be treated that same as multilingual and
e-mail can be treated the same as email.

Contracting Characters

Sorting elements usually consist of a single character, but in some locales, two or
more characters in a character string must be considered as a single sorting element
during sorting. For example, in traditional Spanish, the string ch is composed of
two characters. These characters are called contracting characters in multilingual
linguistic sorting and special combination letters in monolingual linguistic sorting.

Do not confuse a composed character with a contracting character. A composed
character like & can be decomposed into a and ' , each with their own encoding. The
difference between a composed character and a contracting character is that a
composed character can be displayed as a single character on a terminal, while a

Linguistic Sorting 4-9

Linguistic Sort Features

contracting character is used only for sorting, and its component characters must be
rendered separately.

Expanding Characters

In some locales, certain characters must be sorted as if they were character strings.
An example is the German character 3 (sharp s). It is sorted exactly the same as the
string SS. Another example is that 6 sorts as if it were oe, after od and before of .
These characters are known as expanding characters in multilingual linguistic
sorting and special letters in monolingual linguistic sorting. Just as with
contracting characters, the replacement string for an expanding character is
meaningful only for sorting.

Context-Sensitive Characters

In Japanese, a prolonged sound mark that resembles an em dash —represents a
length mark that lengthens the vowel of the preceding character. The sort order
depends on the vowel that precedes the length mark. This is called context-sensitive
sorting. For example, after the character ka, the —ength mark indicates a long a
and is treated the same as a, while after the character ki , the —ength mark
indicates a long i and is treated the same as i . Transliterating this to Latin
characters, a sort might look like this:

kaa

ka— -kaaand ka— are the same
kai - kaifollows ka- because iis after a
kia - kia follows kai because iis after a
ki — kii follows kia because i is after a
ki— — kil and ki— are the same

Canonical Equivalence
One Unicode code point may be equivalent to a sequence of base character code
points plus diacritic code points, regardless of the locale. This is called the Unicode
canonical equivalence. For example, & equals its base letter a and an umlaut. A
linguistic flag, CANONICAL_EQUIVALENCE=TRUdicates that all canonical
equivalence rules defined in Unicode 3.1 need to be applied. You can change this
flag to FALSEto speed up the comparison and ordering functions if all the data is in
its composed form.

4-10 Oracle9i Database Globalization Support Guide

Linguistic Sort Features

See Also: "Creating a New Linguistic Sort with the Oracle Locale
Builder" on page 12-35 for more information about setting the
canonical equivalence flag

Reverse Secondary Sorting

In French, sorting strings of characters with diacritics first compares base characters
from left to right, but compares characters with diacritics from right to left. For
example, by default, a character with a diacritic is placed after its unmarked variant.
Thus Edit comes before Edit in a French sort. They are equal on the primary level,
and the secondary order is determined by examining characters with diacritics from
right to left. Individual locales can request that the characters with diacritics be
sorted with the right-to-left rule. Set the REVERSE_SECONDARMNguistic flag to

TRUEto enable reverse secondary sorting.

See Also: "Creating a New Linguistic Sort with the Oracle Locale
Builder" on page 12-35 for more information about setting the
reverse secondary flag

Character Rearrangement for Thai and Laotian Characters

In Thai and Lao, some characters must first change places with the following
character before sorting. Normally, these types of character are symbols
representing vowel sounds, and the next character is a consonant. Consonants and
vowels must change places before sorting. Set the SWAP_WITH_NEXIinguistic flag

for all characters that must change places before sorting.

See Also: "Creating a New Linguistic Sort with the Oracle Locale
Builder" on page 12-35 for more information about setting the
SWAP_WITH_NEXifllag

Special Letters
Special letters is a term used in monolingual sorts. They are called expanding
characters in multilingual sorts.

See Also: "Expanding Characters" on page 4-10

Special Combination Letters
Special combination letters is the term used in monolingual sorts. They are called
contracting letters in multilingual sorts.

Linguistic Sorting 4-11

Using Linguistic Indexes

See Also: "Contracting Characters" on page 4-9

Special Uppercase Letters

One lowercase letter may map to multiple uppercase letters. For example, in
traditional German, the uppercase letters for 3 are SS.

These case conversions are handled by the NLS_UPPERNLS LOWERand NLS
INITCAP SQL functions, according to the conventions established by the linguistic
sort sequence. The UPPERLOWERand INITCAP SQL functions cannot handle these
special characters.

The NLS_UPPERSQL function returns all uppercase characters from the same
character set as the lowercase string. The following example shows the result of the
NLS_ UPPERunction when NLS_SORTis set to XGERMAN

SELECT NLS UPPER (groRe) "Uppercase” FROM DUAL;

Upper

GROSSE

See Also: Oracle9i SQL Reference

Special Lowercase Letters

Oracle supports special lowercase letters. One uppercase letter may map to multiple
lowercase letters. An example is the Turkish uppercase | becoming a small, dotless
il

Using Linguistic Indexes

Linguistic sorting is language-specific and requires more data processing than
binary sorting. Using a binary sort for ASCII is accurate and fast because the binary
codes for ASCII characters reflect their linguistic order. When data in multiple
languages is stored in the database, you may want applications to sort the data
returned from a SELECT...ORDER BY statement according to different sort
sequences depending on the language. You can accomplish this without sacrificing
performance by using linguistic indexes. Although a linguistic index for a column
slows down inserts and updates, it greatly improves the performance of linguistic
sorting with the ORDER BY¥lause.

You can create a function-based index that uses languages other than English. The
index does not change the linguistic sort order determined by NLS_SORTThe index

4-12 Oracle9i Database Globalization Support Guide

Using Linguistic Indexes

simply improves the performance. The following statement creates an index based
on a German sort:

CREATE TABLE my_table(name VARCHAR(20) NOT NULL)

PNOT NULL ensures that the index will be used */

CREATE INDEX nIs_index ON my_table (NLSSORT(name, NLS_SORT = German));

After the index has been created, enter a SELECTstatement similar to the following:

SELECT * FROM my_table ORDER BY name;

It returns the result much faster than the same SELECTstatement without an index.
The rest of this section contains the following topics:
« Linguistic Indexes for Multiple Languages

« Requirements for Using Linguistic Indexes

See Also:
« Oracle9i Database Concepts

« Oracle9i SQL Reference for more information about
function-based indexes

Linguistic Indexes for Multiple Languages
There are three ways to build linguistic indexes for data in multiple languages:

« Build a linguistic index for each language that the application supports. This
approach offers simplicity but requires more disk space. For each index, the
rows in the language other than the one on which the index is built are collated
together at the end of the sequence. The following example builds linguistic
indexes for French and German.

CREATE INDEX french_index ON employees (NLSSORT(employee_id, NLS
SORT=FRENCH));

CREATE INDEX gemrman_index ON employees (NLSSORT(employee id, NLS_
SORT=GERMAN));

Oracle chooses the index based on the NLS_SORTsession parameter or the
arguments of the NLSSORTunction specified in the ORDER B¥lause. For
example, if the NLS_SORTsession parameter is set to FRENCHOracle uses
french_index . When itis set to GERMANDracle uses german_index

Linguistic Sorting 4-13

Using Linguistic Indexes

Build a single linguistic index for all languages. This requires a language
column (LANG_COlLin "Example: Setting Up a French Linguistic Index" on
page 4-15) to be used as a parameter of the NLSSORTunction. The language
column contains NLS_LANGUAGHEalues for the data in the column on which
the index is built. The following example builds a single linguistic index for
multiple languages. With this index, the rows with the same values for NLS_
LANGUAGre sorted together.

CREATE INDEX i ON t (NLSSORT(col,'NLS_SORT='| LANG_COL));
Queries choose an index based on the argument of the NLSSORTunction
specified in the ORDER BYclause.

Build a single linguistic index for all languages using one of the multilingual
linguistic sorts such as GENERIC_Mr FRENCH_Mrhese indexes sort characters
according to the rules defined in 1ISO 14651. For example:

CREATE INDEX i on t (NLSSORT(col, NLS_SORT=GENERIC_M),

See Also: "Multilingual Linguistic Sorts" on page 4-4 for more
information about Unicode sorts

Requirements for Using Linguistic Indexes
The following are requirements for using linguistic indexes:

Set QUERY_REWRITE_ENABLED to TRUE

Set NLS_COMP to ANSI

Set NLS_SORT Appropriately

Use the Cost-Based Optimizer With the Optimizer Mode Set to FIRST_ROWS

This section also includes:

Example: Setting Up a French Linguistic Index

Set QUERY_REWRITE_ENABLED to TRUE

The QUERY_REWRITE_ENABLHEMDItialization parameter must be set to TRUE This
is required for all function-based indexes. You can use an ALTER SESSION
statement to set QUERY_REWRITE_ENABLE®TRUE For example;

ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE;

4-14 Oracle9i Database Globalization Support Guide

Using Linguistic Indexes

See Also: Oracle9i Database Reference for more information about
the QUERY_REWRITE_ENABLEDItialization parameter

Set NLS_COMP to ANSI
The NLS_COMMParameter should be set to ANSI. There are several ways to set
NLS_COMHRor example:

ALTER SESSION SETNLS_COMP =ANS|

See Also: "NLS_COMP" on page 3-41

Set NLS_SORT Appropriately

The NLS_SORTparameter should indicate the linguistic definition you want to use
for the linguistic sort. If you want a French linguistic sort order, NLS_SORTshould
be set to FRENCHIf you want a German linguistic sort order, NLS_SORTshould be
set to GERMAN

There are several ways to set NLS_SORTYou should set NLS _SORTas a client
environment variable so that you can use the same SQL statements for all
languages. Different linguistic indexes can be used when NLS_SORTis set in the
client environment.

See Also: "NLS_SORT" on page 3-39

Use the Cost-Based Optimizer With the Optimizer Mode Set to FIRST_ROWS

Use the cost-based optimizer with the optimizer mode set to FIRST_ROWShbecause
linguistic indexes are not recognized by the rule-based optimizer. The following is
an example of setting the optimizer mode:

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS;

See Also: Oracle9i Database Performance Guide and Reference for
more information about the cost-based optimizer

Example: Setting Up a French Linguistic Index

The following example shows how to set up a French linguistic index. You may
want to set NLS_SORTas a client environment variable instead of using the ALTER
SESSIONstatement.

ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE;
ALTER SESSION SETNLS_COMP =ANS];
ALTER SESSION SET NLS_SORT=FRENCH;

Linguistic Sorting 4-15

Improving Case-Insensitive Searches with a Function-Based Index

ALTER SESSION SET OPTIMIZER_MODE =FIRST_ROWS,;

CREATE INDEX test_idx ON test(NLSSORT(col, NLS_SORT=FRENCH));
SELECT * FROM test ORDER BY col;

SELECT * FROM test WHERE col >'JJJ;

Improving Case-Insensitive Searches with a Function-Based Index

You can create a function-based index that improves the performance of
case-insensitive searches. For example:

CREATE INDEX case_insensitive_ind ON employees(NLS_UPPER(first_name));
SELECT * FROM employees WHERE NLS_UPPER(first_name) ='KARL;

Performing a Generic Base Letter Search

You can perform a search that ignores case and diacritics. Enter the following
statements:

ALTER SESSION SETNLS_COMP=ANS

ALTER SESSION SETNLS_SORT=GENERIC_BASELETTER,
Then enter a statement similar to the following:
SELECT * FROM emp WHERE ename="miler’;

This statement can now return names that include the following:

Miller
MILLER
Millér

Note that this is not a linguistic search; that is, it is not based on a specific language.
It uses the base letters only.

4-16 Oracle9i Database Globalization Support Guide

D

Supporting Multilingual Databases with

Unicode

This chapter illustrates how to use Unicode in an Oracle database environment. It
includes the following topics:

Overview of Unicode

What is Unicode?

Implementing a Unicode Solution in the Database
Unicode Case Studies

Designing Database Schemas to Support Multiple Languages

Supporting Multilingual Databases with Unicode 5-1

Overview of Unicode

Overview of Unicode

Dealing with many different languages in the same application or database has
been complicated and difficult for a long time. To overcome the limitations of
existing character encodings, several organizations began working on the creation
of a global character set in the late 1980s. The need for this became even greater
with the development of the World Wide Web in the mid-1990s. The Internet has
changed how companies do business, with an emphasis on the global market that
has made a universal character set a major requirement. A global character set
needs to fulfill the following conditions:

« Contain all major living scripts
« Support legacy data and implementations

« Besimple enough that a single implementation of an application is sufficient for
worldwide use

A global character set should also have the following capabilities:
« Support multilingual users and organizations

» Conform to international standards

« Enable worldwide interchange of data

This global character set exists, is in wide use, and is called Unicode.

What is Unicode?

Unicode is a universal encoded character set that enables information from any
language to be stored using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language.

The Unicode standard has been adopted by many software and hardware vendors.
Many operating systems and browsers now support Unicode. Unicode is required
by standards such as XML, Java, JavaScript, LDAP, and WML. It is also
synchronized with the ISO/IEC 10646 standard.

Oracle Corporation started supporting Unicode as a database character set in
Oracle7. In Oracle9i, Unicode support has been expanded. Oracle9i supports
Unicode 3.1.

See Also: http://www.unicode.org for more information
about the Unicode standard

5-2 Oracle9/ Database Globalization Support Guide

What is Unicode?

This section contains the following topics:
« Supplementary Characters
« Unicode Encodings

« Oracle’s Support for Unicode

Supplementary Characters

The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes
to encode each character. This allowed 65,536 characters to be represented.
However, more characters need to be supported, especially additional CIK
ideographs that are important for the Chinese, Japanese, and Korean markets.

Unicode 3.1 defines supplementary characters to meet this need. It uses two 16-bit
code points (also known as supplementary characters) to represent a single
character. This enables an additional 1,048,576 characters to be defined. The
Unicode 3.1 standard added the first group of 44,944 supplementary characters.

Adding supplementary characters increases the complexity of Unicode, but it is less
complex than managing several different encodings in the same configuration.

Unicode Encodings

Unicode 3.1 encodes characters in different ways: UTF-8, UCS-2, and UTF-16.
Conversion between different Unicode encodings is a simple bit-wise operation that
is defined in the Unicode standard.

This section contains the following topics:

« UTF-8 Encoding

« UCS-2 Encoding

« UTF-16 Encoding

« Examples: UTF-16, UTF-8, and UCS-2 Encoding

UTF-8 Encoding

UTF-8 is the 8-bit encoding of Unicode. It is a variable-width encoding and a strict
superset of ASCII. This means that each and every character in the ASCII character
set is available in UTF-8 with the same code point values. One Unicode character
can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters from the
European scripts are represented in either 1 or 2 bytes. Characters from most Asian

Supporting Multilingual Databases with Unicode 5-3

What is Unicode?

scripts are represented in 3 bytes. Supplementary characters are represented in 4
bytes.

UTF-8 is the Unicode encoding supported on UNIX platforms and used for HTML
and most Internet browsers. Other environments such as Windows and Java use
UCS-2 encoding.

The benefits of UTF-8 are as follows:

« Compact storage requirement for European scripts because it is a strict superset
of ASCII

« Ease of migration between ASCII-based characters sets and UTF-8

See Also:
« "Supplementary Characters" on page 5-3

« Table B-2, "Unicode Character Code Ranges for UTF-8
Character Codes" on page B-2

UCS-2 Encoding

UCS-2 is a fixed-width, 16-bit encoding. Each character is 2 bytes. UCS-2 is the
Unicode encoding used by Java and Microsoft Windows NT 4.0. UCS-2 supports
characters defined for Unicode 3.0, so there is no support for supplementary
characters.

The benefits of UCS-2 over UTF-8 are as follows:
« More compact storage for Asian scripts because all characters are two bytes
« [Faster string processing because characters are fixed-width

« Better compatibility with Java and Microsoft clients

See Also: "Supplementary Characters” on page 5-3

UTF-16 Encoding

UTF-16 encoding is the 16-bit encoding of Unicode. UTF-16 is an extension of
UCS-2 because it supports the supplementary characters that are defined in
Unicode 3.1 by using two UCS-2 code points for each supplementary character.
UTF-16 is a strict superset of UCS-2.

One character can be either 2 bytes or 4 bytes in UTF-16. Characters from European
and most Asian scripts are represented in 2 bytes. Supplementary characters are

5-4 Oracle9/ Database Globalization Support Guide

What is Unicode?

represented in 4 bytes. UTF-16 is the main Unicode encoding used by Microsoft
Windows 2000.

The benefits of UTF-16 over UTF-8 are as follows:

« More compact storage for Asian scripts because most of the commonly used
Asian characters are represented in two bytes.

« Better compatibility with Java and Microsoft clients

See Also:
« "Supplementary Characters" on page 5-3

« Table B-1, "Unicode Character Code Ranges for UTF-16
Character Codes" on page B-2

Examples: UTF-16, UTF-8, and UCS-2 Encoding

Figure 5-1 shows some characters and their character codes in UTF-16, UTF-8, and
UCS-2 encoding. The last character is a treble clef (a music symbol), a
supplementary character that has been added to the Unicode 3.1 standard.

Figure 5-1 UTF-16, UTF-8, and UCS-2 Encoding Examples

Character | UTF-16 UTF-8 UCs-2
A 0041 41 | 0041
c 0063 63 | 0063
O O0F6 C3B6 | O0OF6
2] 4E9C E4 BA9C | 4E9C
% D834 DD1E FO 9D 84 9E | N/A

Oracle’s Support for Unicode

Oracle Corporation started supporting Unicode as a database character set in
Oracle7. Table 5-1 summarizes the Unicode character sets supported by the Oracle
database server.

Supporting Multilingual Databases with Unicode 5-5

Implementing a Unicode Solution in the Database

Table 5-1 Unicode Character Sets Supported by the Oracle Database Server

Supported Database National
in RDBMS Unicode Unicode Character Character
Character Set Release Encoding Version Set Set

AL24UTFFSS 7.2-8i UTF-8 11 Yes No

UTF8 8.0-9i UTF-8 For Oracle8 Yes Yes
release 8.0 (Oraclegi
through only)
Oracle8i release
8.1.6:2.1

For Oracle8i
release 8.1.7 and
later: 3.0

UTFE 8.0-9i UTF-8 For Oracle8i Yes No
releases 8.0
through 8.1.6:
21

For Oracle8i
release 8.1.7 and
later: 3.0

AL32UTF8 9i UTF-8 Oracle9i, Yes No
Release 1: 3.0

Oracle9i,
Release 2: 3.1

AL16UTF16 9i UTF-16 Oracle9i, No Yes
Release 1: 3.0

Oracle9i,
Release 2: 3.1

Implementing a Unicode Solution in the Database
You can store Unicode characters in an Oracle9i database in two ways.

You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL CHARdatatypes (CHARVARCHARZCLOB and LONG)

If you prefer to implement Unicode support incrementally or if you need to support
multilingual data only in certain columns, then you can store Unicode data in either
the UTF-16 or UTF-8 encoding form in SQL NCHARJatatypes (NCHARNVARCHAR2
and NCLOB. The SQL NCHARJatatypes are called Unicode datatypes because they
are used only for storing Unicode data.

5-6 Oracle9/ Database Globalization Support Guide

Implementing a Unicode Solution in the Database

Note: You can combine a Unicode database solution with a
Unicode datatype solution.

The following sections explain how to use the two Unicode solutions and how to
choose between them:

« Enabling Multilingual Support with Unicode Databases
« Enabling Multilingual Support with Unicode Datatypes
« How to Choose Between a Unicode Database and a Unicode Datatype Solution

« Comparing Unicode Character Sets for Database and Datatype Solutions

Enabling Multilingual Support with Unicode Databases

The database character set specifies the encoding to be used in the SQL CHAR
datatypes as well as the metadata such as table names, column names, and SQL
statements. A Unicode database is a database with a UTF-8 character set as the
database character set. There are three Oracle character sets that implement the
UTF-8 encoding. The first two are designed for ASClI-based platforms while the

third one should be used on EBCDIC platforms.

AL32UTF8

The AL32UTF8 character set supports the latest version of the Unicode
standard. It encodes characters in one, two, or three bytes. Supplementary
characters require four bytes. It is for ASCll-based platforms.

UTF8

The UTF8 character set encodes characters in one, two, or three bytes. It is for
ASCIlI-based platforms.

The UTF8 character set has supported Unicode 3.0 since Oracle8i release 8.1.7
and will continue to support Unicode 3.0 in future releases of the Oracle
database server. Although specific supplementary characters were not assigned
code points in Unicode until version 3.1, the code point range was allocated for
supplementary characters in Unicode 3.0. If supplementary characters are
inserted into a UTF8 database, then it does not corrupt the data in the database.
The supplementary characters are treated as two separate, user-defined
characters that occupy 6 bytes. Oracle Corporation recommends that you switch
to AL32UTRFS8 for full support of supplementary characters in the database
character set.

Supporting Multilingual Databases with Unicode 5-7

Implementing a Unicode Solution in the Database

« UTFE

The UTFE character set is for EBCDIC platforms. It has the same properties as
UTF8 on ASCII platforms.

Example 5-1 Creating a Database with a Unicode Character Set

To create a database with the AL32UTF8 character set, use the CREATE DATABASE
statement and include the CHARACTER SET AL32UTF8&clause. For example:

CREATE DATABASE sample
CONTROLFILE REUSE
LOGFILE
GROUP 1 ('diskxlogl.log, 'diskylogl.log) SIZE 50K,
GROUP 2 (diskxlog2.log’, 'disky:log2.log)) SIZE 50K
MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
DATAFILE
“disk1:df1.dbf AUTOEXTEND ON,
disk2:df2.dbf AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp_ts
UNDO TABLESPACE undo_ts
SET TIME_ZONE ="+02:00}

Note: Specify the database character set when you create the
database.

Enabling Multilingual Support with Unicode Datatypes

An alternative to storing Unicode data in the database is to use the SQL NCHAR
datatypes (NCHARNVARCHARNCLOB. You can store Unicode characters into
columns of these datatypes regardless of how the database character set has been
defined. The NCHARJatatype has been redefined in Oracle9i to be a Unicode
datatype exclusively. In other words, it stores data encoded as Unicode.

In releases before Oracle9i, the NCHARJatatype supported fixed-width Asian
character sets that were designed to provide higher performance. Examples of
fixed-width character sets are JAL6SJIISFIXED and ZHT32EUCFIXED. No Unicode
character set was supported as the national character set before Oracle9i.

5-8 Oracle9/ Database Globalization Support Guide

Implementing a Unicode Solution in the Database

You can create a table using the NVARCHARand NCHAR]atatypes. The column
length specified for the NCHARind NVARCHARR2olumns is always the number of
characters instead of the number of bytes:

CREATE TABLE product_information
(product_id NUMBER(6)
,product name NVARCHAR2(100)
, product_description VARCHAR2(1000));

The encoding used in the SQL NCHARJatatypes is the national character set
specified for the database. You can specify one of the following Oracle character sets
as the national character set:

« ALI6UTF16

This is the default character set for SQL NCHARJatatypes. The character set
encodes Unicode data in the UTF-16 encoding. It supports supplementary
characters, which are stored as four bytes.

« UTF8

When UTF8 is specified for SQL NCHARJatatypes, the data stored in the SQL
datatypes is in UTF-8 encoding.

You can specify the national character set for the SQL NCHARJatatypes when you
create a database using the CREATE DATABAS§&atement with the NATIONAL
CHARACTER SETlause. The following statement creates a database with
WEB8ISO8859P1 as the database character set and AL16UTF16 as the national
character set.

Example 5-2 Creating a Database with a National Character Set

CREATE DATABASE sample

CONTROLFILE REUSE

LOGFILE
GROUP 1 (diskxlogl.log, disky:logl.log) SIZE 50K,
GROUP 2 (diskxlog2.log’, 'disky:log2.log)) SIZE 50K

MAXLOGFILES 5

MAXLOGHISTORY 100

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

CHARACTER SET WESISO8859P1

NATIONAL CHARACTER SET AL16UTF16

DATAFILE
‘disk1:df1.dbf AUTOEXTEND ON,

Supporting Multilingual Databases with Unicode 5-9

Implementing a Unicode Solution in the Database

‘disk2:df2.dbf AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp _ts
UNDO TABLESPACE undo_ts
SET TIME_ZONE ="+02:00;

How to Choose Between a Unicode Database and a Unicode Datatype Solution

To choose the right Unicode solution for your database, consider the following
guestions:

« Programming environment: What are the main programming languages used
in your applications? How do they support Unicode?

« Ease of migration: How easily can your data and applications be migrated to
take advantage of the Unicode solution?

« Performance: How much performance overhead are you willing to accept in
order to use Unicode in the database?

« Type of data: Is your data mostly Asian or European? Do you need to store
multilingual documents into LOBcolumns?

« Type of applications: What type of applications are you implementing: a
packaged application or a customized end-user application?

This section describes some general guidelines for choosing a Unicode database or a
Unicode datatype solution. The final decision largely depends on your exact
environment and requirements. This section contains the following topics:

« When Should You Use a Unicode Database?
« When Should You Use Unicode Datatypes?

When Should You Use a Unicode Database?
Use a Unicode database in the situations described in Table 5-2.

Table 5-2 Using a Unicode Database

Situation Explanation

You need easy code If your existing application is mainly written in Java and
migration for Java or PL/SQL and your main concern is to minimize the code
PL/SQL. changes required to support multiple languages, then you may

want to use a Unicode database solution. If the datatypes used
to stored data remain as SQL CHARdatatypes, then the Java
and PL/SQL code that accesses these columns does not need to
change.

5-10 Oracle9i Database Globalization Support Guide

Implementing a Unicode Solution in the Database

Table 5-2 Using a Unicode Database (Cont.)

Situation Explanation

You have evenly If the multilingual data will be evenly distributed in existing
distributed multilingual schema tables and you are not sure which ones will contain
data. multilingual data, then you should use a Unicode database

because it does not require you to identify the kind of data that
is stored in each column.

Your SQL statements and You must use a Unicode database. SQL statements and

PL/SQL code contain PL/SQL code are converted into the database character set

Unicode data. before being processed. If the SQL statements and PL/SQL
code contain characters that cannot be converted to the
database character set, then those characters will be lost. A
common place to use Unicode data in a SQL statementisin a
string literal.

You want to store You must use a Unicode database. The BLOBdata is converted

multilingual documents as to the database character set before being indexed by Oracle

BLOB and use Oracle Text Text. If your database character set is not UTF8, then data will

for content searching. be lost when the documents contain characters that cannot be
converted to the database character set.

When Should You Use Unicode Datatypes?
Use Unicode datatypes in the situations described in Table 5-3.

Table 5-3 Using Unicode Datatypes

Situation Explanation

You want to add If you want to add Unicode support to the existing database
multilingual support without migrating the character set, then consider using
incrementally. Unicode datatypes to store Unicode data. You can add columns

of the SQL NCHARdatatypes to existing tables or new tables to
support multiple languages incrementally.

You want to build a If you are building a packaged application that will be sold to

packaged application. customers, then you may want to build the application using
SQL NCHARJatatypes. The SQL NCHARJatatype is a reliable
Unicode datatype in which the data is always stored in
Unicode, and the length of the data is always specified in
UTF-16 code units. As a result, you need to test the application
only once. The application will run on customer databases
with any database character set.

Supporting Multilingual Databases with Unicode 5-11

Implementing a Unicode Solution in the Database

Table 5-3 Using Unicode Datatypes (Cont.)

Situation Explanation

You want better If performance is your main concern, then consider using a

performance with single-byte database character set and storing Unicode data in

single-byte database the SQL NCHARJatatypes. Databases that use a multibyte

character sets. database character set such as UTF8 have a performance
overhead.

You require UTF-16 If your applications are written in Visual C/C++ or Visual

support in Windows Basic running on Windows, then you may want to use the SQL

clients. NCHARdatatypes. You can store UTF-16 data in SQL NCHAR

datatypes in the same way that you store it in the wchar_t
buffer in Visual C/C++ and string buffer in Visual Basic. You
can avoid buffer overflow in client applications because the
length of the wchar_t and string datatypes match the
length of the SQL NCHARJatatypes in the database.

Note: You can use a Unicode database with Unicode datatypes.

Comparing Unicode Character Sets for Database and Datatype Solutions

Oracle9i provides two solutions to store Unicode characters in the database: a
Unicode database solution and a Unicode datatype solution. After you select the
Unicode database solution, the Unicode datatype solution or a combination of both,
determine the character set to be used in the Unicode database or the Unicode
datatype.

Table 5-4 contains advantages and disadvantages of different character sets for a
Unicode database solution. The Oracle character sets that can be Unicode database
character sets are AL32UTF8, UTF8, and UTFE.

5-12 Oracle9i Database Globalization Support Guide

Implementing a Unicode Solution in the Database

Table 5-4 Character Set Advantages and Disadvantages for a Unicode Database Solution

Database

Character Set Advantages Disadvantages

AL32UTF8 « Supplementary characters are =« You cannot specify the length of SQL CHAR
stored in 4 bytes, so there is no types in number of characters (Unicode code
data conversion when points) for supplementary characters.
supplementary characters are Supplementary characters are treated as one
retrieved and inserted. code point rather than the standard two code

« The storage for supplementary points.
characters requires less disk space |« The binary order for SQL CHARcolumns is
in AL32UTF8 than in UTF8. different from the binary order of SQL NCHAR
columns when the data consists of
supplementary characters. As a result, CHAR
columns and NCHARolumns do not always
have the same sort for identical strings.

UTF8 = You can specify the length of SQL |« Supplementary characters are stored as 6
CHARtypes in number of bytes instead of the 4 bytes defined by
characters. Unicode 3.1. As a result, Oracle has to convert

. The binary order of the SQL CHAR data for supplementary characters.
columns is always the same as the
binary order of the SQL NCHAR
columns when the data consists
of the same supplementary
characters. As a result, CHAR
columns and NCHARolumns
have the same sort for identical
strings.
UTFE « Thisisthe only Unicode character |« Supplementary character are stored as 6 bytes

set for the EBCDIC platform.

You can specify the length of SQL
CHARtypes in number of
characters.

The binary order of the SQL CHAR
columns is always the same as the
binary order of the SQL NCHAR
columns when the data consists

of the same supplementary
characters. As a result, CHAR
columns and NCHARolumns
have the same sort for identical
strings.

instead of the 4 bytes defined by the Unicode
standard. As a result, Oracle has to convert
data for those supplementary characters.

UTFE is not a standard encoding in the
Unicode standard. As a result, clients
requiring standard UTF-8 encoding must
convert data from UTFE to the standard
encoding when data is retrieved and inserted.

Supporting Multilingual Databases with Unicode 5-13

Implementing a Unicode Solution in the Database

Table 5-5 contains advantages and disadvantages of different character sets for a
Unicode datatype solution. The Oracle character sets that can be national character
sets are AL16UTF16 and UTFS8.

Table 5-5 Character Set Advantages and Disadvantages for a Unicode Datatype Solution

more compact than in UTF8. As a result,
you save disk space and have less disk
1/0 when most of the multilingual data
stored in the database is Asian data.

It is usually faster to process strings
encoded in the AL16UTF16 character set
than strings encoded in UTF8 because
Oracle9i processes most characters in an
AL16UTF16 encoded string as
fixed-width characters.

The maximum length limits for the
NCHARaind NVARCHARRolumns are
1000 and 2000 characters, respectively.
Because the data is fixed-width, the
lengths are guaranteed.

National
Character Set Advantages Disadvantages
AL16UTF16 « Asian data in AL16UTF16 is usually « European ASCII data requires more

disk space to store in AL16UTF16 than
in UTF8. If most of your data is
European data, it uses more disk
space than if it were UTF8 data.

The maximum lengths for NCHARand
NVARCHARare 1000 and 2000
characters, which is less than the
lengths for NCHAR2000) and
NVARCHAR®4000) in UTFS8.

5-14 Oracle9i Database Globalization Support Guide

Implementing a Unicode Solution in the Database

Table 5-5 Character Set Advantages and Disadvantages for a Unicode Datatype Solution (Cont.)

National
Character Set

Advantages

Disadvantages

UTF8

European data in UTF8 is usually more
compact than in AL16UTF16. As a result,
you will save disk space and have better
response time when most of the
multilingual data stored in the database
is European data.

The maximum lengths for the NCHARand
NVARCHAR2olumns are 2000 and 4000
characters respectively, which is more
than those for NCHAR1000) and
NVARCHARZR000) in AL16UTF16.
Although the maximum lengths of the
NCHARind NVARCHARRolumns are
larger in UTF8, the actual storage size is
still bound by the byte limits of 2000 and
4000 bytes, respectively. For example,
you can store 4000 UTF8 characters in an
NVARCHAR2olumn if all the characters
are single byte, but only 4000/3
characters if all the characters are three
bytes.

Asian data requires more disk space to
store in UTF8 than in AL16UTF16. If
most of your data is Asian data, then
disk space usage is not as efficient as it
is when the character set is
AL16UTF16.

Although you can specify larger
length limits for NCHARand
NVARCHARyou are not guaranteed to
be able to insert the number of
characters specified by these limits.
This is because UTF8 allows
variable-width characters.

It is usually slower to process strings
encoded in UTF8 than strings encoded
in AL16UTF16 because UTF8 encoded
strings consist of variable-width
characters.

Supporting Multilingual Databases with Unicode 5-15

Unicode Case Studies

Unicode Case Studies

This section describes typical scenarios for storing Unicode characters in an Oracle9i
database:

Example 5-3, "Unicode Solution with a Unicode Database"
Example 5-4, "Unicode Solution with Unicode Datatypes"

Example 5-5, "Unicode Solution with a Unicode Database and Unicode
Datatypes"

Example 5-3 Unicode Solution with a Unicode Database

An American company running a Java application would like to add German and
French support in the next release of the application. They would like to add
Japanese support at a later time. The company currently has the following system
configuration;

The existing database has a database character set of US7ASCI|I.

All character data in the existing database is composed of ASCII characters.
PL/SQL stored procedures are used in the database.

The database is around 300 GB.

There is a nightly downtime of 4 hours.

In this case, a typical solution is to choose UTF8 for the database character set
because of the following reasons:

The database is very large and the scheduled downtime is short. Fast migration
of the database to Unicode is vital. Because the database is in US7ASCI|I, the
easiest and fastest way of enabling the database to support Unicode is to switch
the database character set to UTF8 by issuing the ALTER DATABASEtatement.
No data conversion is required because US7ASCI|I is a subset of UTF8.

Because most of the code is written in Java and PL/SQL, changing the database
character set to UTF8 is unlikely to break existing code. Unicode support will be
automatically enabled in the application.

Because the application supports French, German, and Japanese, there are few
supplementary characters. Both AL32UTF8 and UTF8 are suitable.

5-16 Oracle9i Database Globalization Support Guide

Unicode Case Studies

Example 5-4 Unicode Solution with Unicode Datatypes

A European company that runs its applications mainly on Windows platforms
wants to add new Windows applications written in Visual C/C++. The new
applications will use the existing database to support Japanese and Chinese
customer names. The company currently has the following system configuration:

« The existing database has a database character set of WE81SO8859P1.

« All character data in the existing database is composed of Western European
characters.

= The database is around 50 GB.

A typical solution is take the following actions:

« Use NCHARind NVARCHARA®atatypes to store Unicode characters
« Keep WEB8ISO8859P1 as the database character set

« Use AL16UTF16 as the national character set

The reasons for this solution are:

« Migrating the existing database to a Unicode database required data conversion
because the database character set is WE8ISO8859P1 (a Latin-1 character set),
which is not a subset of UTF8. As a result, there would be some overhead in
converting the data to UTF8.

« The additional languages are supported in new applications only. They do not
depend on the existing applications or schemas. It is simpler to use the Unicode
datatype in the new schema and keep the existing schemas unchanged.

« Only customer name columns require Unicode support. Using a single NCHAR
column meets the customer’s requirements without migrating the entire
database.

« Because the languages to be supported are mostly Asian languages,
AL16UTF16 should be used as the national character set so that disk space is
used more efficiently.

« The lengths of the SQL NCHARJatatypes are defined as number of characters.
This is the same as the way they are treated when using wchar_t strings in
Windows C/C++ programs. This reduces programming complexity.

« Existing applications using the existing schemas are unaffected.

Supporting Multilingual Databases with Unicode 5-17

Designing Database Schemas to Support Multiple Languages

Example 5-5 Unicode Solution with a Unicode Database and Unicode Datatypes

A Japanese company wants to develop a new Java application on Oracle9i. The
company expects that the application will support as many languages as possible in
the long run.

« Inorder to store documents as is, the company decided to use the BLOB
datatype to store documents of multiple languages.

« The company may also want to generate UTF-8 XML documents from the
relational data for business-to-business data exchange.

« The back-end has Windows applications written in C/C++ using ODBC to
access the Oracle database.

In this case, the typical solution is to create a Unicode database using AL32UTF8 as
the database character set and use the SQL NCHARJatatypes to store multilingual
data. The national character set should be set to AL16UTF16. The reasons for this
solution are as follows:

« When documents of different languages are stored as BLOBS Oracle Text
requires the database character set to be one of the UTF-8 character sets.
Because the applications may retrieve relational data as UTF-8 XML format
(where supplementary characters are stored as four bytes), AL32UTF8 should
be used as the database character set to avoid data conversion when UTF-8 data
is retrieved or inserted.

« Because applications are new and written in both Java and Windows C/C++,
the company should use the SQL NCHARJatatype for its relational data. Both
Java and Windows support the UTF-16 character datatype, and the length of a
character string is always measured in the number of characters.

« If most of the data is for Asian languages, then AL16UTF16 should be used
with the SQL NCHARJatatypes because AL16UTF16 offers better performance
and storage efficiency.

Designing Database Schemas to Support Multiple Languages

In addition to choosing a Unicode solution, the following issues should be taken
into consideration when the database schema is designed to support multiple
languages:

« Specifying Column Lengths for Multilingual Data
« Storing Data in Multiple Languages

« Storing Documents in Multiple Languages in LOBs

5-18 Oracle9i Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

« Creating Indexes for Searching Multilingual Document Contents

Specifying Column Lengths for Multilingual Data

Storing Data in

When you use NCHARind NVARCHAR#®atatypes for storing multilingual data, the
column size specified for a column is defined in number of characters. (The number
of characters means the number of Unicode code units.) Table 5-6 shows the
maximum size of the NCHARind NVARCHAR#®&atatypes for the AL16UTF16 and
UTF8 national character sets.

Table 5-6 Maximum Datatype Size

Maximum Column Size of Maximum Column Size of

National Character Set NCHAR Datatype NVARCHAR2 Datatype
AL16UTF16 1000 characters 2000 characters
UTF8 2000 bytes 4000 bytes

When you use CHARand VARCHAR2iatatypes for storing multilingual data, the
maximum length specified for each column is, by default, in number of bytes. If the
database needs to support Thai, Arabic, or multibyte languages such as Chinese
and Japanese, then the maximum lengths of the CHARVARCHARand VARCHAR?2
columns may need to be extended. This is because the number of bytes required to
encode these languages in UTF8 or AL32UTF8 may be significantly larger than the
number of bytes for encoding English and Western European languages. For
example, one Thai character in the Thai character set requires 3 bytes in UTF8 or
AL32UTF8. In addition, the maximum column lengths for CHARVARCHARand
VARCHARZ2latatypes are 2000 bytes, 4000 bytes, and 4000 bytes respectively. If
applications need to store more than 4000 bytes, they should use the CLOBdatatype.

Multiple Languages

The Unicode character set includes characters of most written languages around the
world, but it does not contain information about the language to which a given
character belongs. In other words, a character such as & does not contain
information about whether it is a French or German character. In order to provide
information in the language a user desires, data stored in a Unicode database
should accompany the language information to which the data belongs.

There are many ways for a database schema to relate data to a language. The
following sections provide different approaches:

« Store Language Information with the Data

Supporting Multilingual Databases with Unicode 5-19

Designing Database Schemas to Support Multiple Languages

« Select Translated Data Using Fine-Grained Access Control

Store Language Information with the Data

For data such as product descriptions or product names, you can add a language
column (language_id) of CHARor VARCHAR2atatype to the product table to
identify the language of the corresponding product information. This enables
applications to retrieve the information in the desired language. The possible values
for this language column are the 3-letter abbreviations of the valid NLS_LANGUAGE
values of the database.

See Also: Appendix A, "Locale Data" for a list of NLS_LANGUAGE
values and their abbreviations

You can also create a view to select the data of the current language. For example:
ALTER TABLE scottproduct_information add (language_id VARCHAR2(50)):

CREATE OR REPLACE VIEW product AS
SELECT product_id, product_name
FROM product_information
WHERE language_id =sys_context(USERENV,LANGY);

Select Translated Data Using Fine-Grained Access Control

Fine-grained access control enables you to limit the degree to which a user can view
information in a table or view. Typically, this is done by appending a WHERI[Elause.
when you add a WHEREIause as a fine-grained access policy to a table or view,
Oracle9i automatically appends the WHERElause to any SQL statements on the
table at run time so that only those rows satisfying the WHEREIlause can be
accessed.

You can use this feature to avoid specifying the desired language of an user in the
WHEREIlause in every SELECTstatement in your applications. The following
WHEREIlause limits the view of a table to the rows corresponding to the desired
language of a user:

WHERE language_id = sys_context(userenv, LANG)
Specify this WHER[Elause as a fine-grained access policy for product
information as follows:

create function funcl (sch varchar2 , obj varchar2)
retum varchar2(100);

begin

5-20 Oracle9i Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

retum language_id =sys_context("userenv”, "LANG")’;
end
/

DBMS_RLS.ADD_POLICY ('scott, ‘product_information’, ‘lang_policy’, 'scott’,
funcl’, 'select);

Then any SELECTstatement on the product_information table automatically
appends the WHERElause.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about fine-grained access control

Storing Documents in Multiple Languages in LOBs

You can store documents in multiple languages in CLOB NCLOBor BLOBdatatypes
and set up Oracle Text to enable content search for the documents.

Data in CLOBcolumns is stored as UCS-2 internally when the database character set
is multibyte, such as UTF8 or AL32UTF8. Document contents are converted to
UTF-16 when they are inserted into a CLOBcolumn. This means that the storage
space required for an English document doubles when the data is converted.
Storage for an Asian language document in a CLOBcolumn requires less storage
space than the same document in a LONGcolumn using UTF8, typically around 30%
less, depending on the contents of the document.

Documents in NCLOBare also stored as UTF-16 regardless of the database character
set or national character set. The storage space requirement is the same as for
CLOB. Document contents are converted to UTF-16 when they are inserted into a
NCLOBcolumn. If you want to store multilingual documents in a non-Unicode
database, then choose NCLOBHowever, content search on NCLOBs not yet
supported.

Documents in BLOBformat are stored as they are. No data conversion occurs
during insertion and retrieval. However, SQL string manipulation functions (such
as LENGTHr SUBSTR and collation functions (such as NLS_SORTand ORDER BY
cannot be applied to the BLOBdatatype.

Table 5-7 lists the advantages and disadvantages of the CLOB NCLOBand BLOB
datatypes when storing documents:

Supporting Multilingual Databases with Unicode 5-21

Designing Database Schemas to Support Multiple Languages

Table 5-7 Comparison of LOB Datatypes for Document Storage

Datatypes Advantages Disadvantages

CLOB « Content search support « Depends on database character set

« String manipulation support « Data conversion is necessary for
insertion

« Cannot store binary documents

NCLOB « Independent of database « No content search support

character set L
« Data conversion is necessary for

« String manipulation support insertion
« Cannot store binary documents

BLOB « Independent of database « No string manipulation support
character set

= Content search support

. No data conversion, data
stored as is

« Can store binary documents
such as Microsoft Word or
Microsoft Excel

Creating Indexes for Searching Multilingual Document Contents

Oracle Text enables you to build indexes for content search on multilingual
documents stored as CLOB and BLOB:. It uses a language-specific lexer to parse the
CLOBor BLOBdata and produces a list of searchable keywords.

Create a multilexer to search multilingual documents. The multilexer chooses a
language-specific lexer for each row, based on a language column. This section
describe the high level steps to create indexes for documents in multiple languages.
It contains the following topics:

« Creating Multilexers
« Creating Indexes for Documents Stored as CLOBs

« Creating Indexes for Documents Stored as BLOBs

See Also: Oracle Text Reference

5-22 Oracle9i Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

Creating Multilexers

The first step in creating the multilexer is the creation of language-specific lexer
preferences for each language supported. The following example creates English,
German, and Japanese lexers with PL/SQL procedures:

ctx_ddl.create _preference(english_lexer, basic_lexer);
ctx_ddl.set_attribute(english_lexer,index_themes',yes));
ctx_ddl.create_preference(german _lexer, basic_lexer);
ctx_ddl.set_attribute(german_lexer',’composite’, german);
ctx_ddl.set_attribute(german_lexer,‘altemate_speling'/german);
ctx_ddl.set_attribute(german_lexer,mixed_case',yes);

ctx_ddl.create _preference(japanese_lexer, JAPANESE VGRAM _LEXER);

After the language-specific lexer preferences are created, they need to be gathered
together under a single multilexer preference. First, create the multilexer preference,
using the MULTI_LEXERobject:

ctx_ddl.create _preference(global_lexer,multi_lexer);

Now add the language-specific lexers to the multilexer preference using the add_
sub_lexer call;

ctx_ddladd sub_lexer(global_lexer, ‘german’, ‘german_lexer);
ctx_ddl.add_sub_lexer(global _lexer, japanese’, japanese_lexer);
ctx_ddladd sub_lexer('global_lexer, 'default,'english_lexer);

This nominates the german_lexer preference to handle German documents, the
japanese_lexer preference to handle Japanese documents, and the english_
lexer preference to handle everything else, using DEFAULTas the language.

Creating Indexes for Documents Stored as CLOBs

The multilexer decides which lexer to use for each row based on a language column
in the table. This is a character column that stores the language of the document in a
text column. Use the Oracle language name to identify the language of a document
in this column. For example, if you use CLOBsto store your documents, then add
the language column to the table where the documents are stored:

CREATE TABLE globaldoc

(doc_id NUMBER PRIMARY KEY,
language VARCHAR2(30),

text CLOB);

To create an index for this table, use the multilexer preference and specify the name
of the language column:

Supporting Multilingual Databases with Unicode 5-23

Designing Database Schemas to Support Multiple Languages

CREATE INDEX globalx ON globaldoc(text)

indextype IS ctxsys.context
parameters (lexer
global_lexer

language
column
language);

Creating Indexes for Documents Stored as BLOBs

In addition to the language column, the character set and format columns must be
added in the table where the documents are stored. The character set column stores
the character set of the documents using the Oracle character set names. The format
column specifies whether a document is a text or binary document. For example,
the CREATE TABLEstatement can specify columns called characterset and
format

CREATE TABLE globaldoc

doc id NUMBER PRIMARY KEY,
language VARCHAR2(30),
characterset VARCHAR2(30),

fomat VARCHAR2(10),

text BLOB

)

You can put word-processing or spreadsheet documents into the table and specify
binary inthe format column. For documents in HTML, XML and text format,
you can put them into the table and specify text in the format column.

Because there is a column in which to specify the character set, you can store text
documents in different character sets.

When you create the index, specify the names of the format and character set
columns:

CREATE INDEX globalx ON globaldoc(text)
indextype is ctxsys.context
parameters (filter inso_fitter
lexer global_lexer
language column language
format column format

charset column characterset);
You can use the charset_filter if all documents are in text format. The
charset _filter converts data from the character set specified in the charset

column to the database character set.

5-24 Oracle9i Database Globalization Support Guide

6

Programming with Unicode

This chapter describes how to use Oracle’s database access products with Unicode.
It contains the following topics:

Overview of Programming with Unicode

SQL and PL/SQL Programming with Unicode
OCI Programming with Unicode

Pro*C/C++ Programming with Unicode

JDBC and SQLJ Programming with Unicode
ODBC and OLE DB Programming with Unicode

Programming with Unicode 6-1

Overview of Programming with Unicode

Overview of Programming with Unicode

Oracle9i offers several database access products for inserting and retrieving
Unicode data. Oracle offers database access products for commonly used
programming environments such as Java and C/C++. Data is transparently
converted between the database and client programs, which ensures that client
programs are independent of the database character set and national character set.
In addition, client programs are sometimes even independent of the character
datatype, such as NCHARr CHARused in the database.

To avoid overloading the database server with data conversion operations, Oracle9i
always tries to move them to the client side database access products. In a few
cases, data must be converted in the database, which affects performance. This
chapter discusses details of the data conversion paths.

Database Access Product Stack and Unicode

Oracle Corporation offers a comprehensive set of database access products that
allow programs from different development environments to access Unicode data
stored in the database. These products are listed in Table 6-1.

Table 6-1 Oracle Database Access Products

Programming
Environment Oracle Database Access Products

C/C++ Oracle Call Interface (OCI)
Oracle Pro*C/C++
Oracle ODBC Driver
Oracle OLE DB Driver

Visual Basic Oracle ODBC Driver
Oracle OLE DB Driver

Java Oracle JDBC OCI or thin driver
Oracle SQLJ

PL/SQL Oracle PL/SQL and SQL

Figure 6-1 shows how the database access products can access the database.

6-2 Oracle9/ Database Globalization Support Guide

Overview of Programming with Unicode

Figure 6-1 Oracle Database Access Products

Visual Basic Programs
VBScript using ADO C/C++ Programs Java Programs
OLE DB Pro*C/C++ oo
ODBC ro
JDBC
Oracle Call Interface (OCI) Thin
Oracle
Net

Oracle9 |

PL/SQL Oracle Net on TCP/IP

SQL

The Oracle Call Interface (OCI) is the lowest level API that the rest of the client-side
database access products use. It provides a flexible way for C/C++ programs to
access Unicode data stored in SQL CHARand NCHARJatatypes. Using OCI, you can
programmatically specify the character set (UTF-8, UTF-16, and others) for the data
to be inserted or retrieved. It accesses the database through Oracle Net.

Oracle Pro*C/C++ enables you to embed SQL and PL/SQL in your programs. It
uses OCI’s Unicode capabilities to provide UTF-16 and UTF-8 data access for SQL
CHARand NCHARJatatypes.

The Oracle ODBC driver enables C/C++, Visual Basic, and VBScript programs
running on Windows platforms to access Unicode data stored in SQL CHARand
NCHARlatatypes of the database. It provides UTF-16 data access by implementing
the SQLWCHARterface specified in the ODBC standard specification.

The Oracle OLE DB driver enables C/C++, Visual Basic, and VVBScript programs
running on Windows platforms to access Unicode data stored in SQL CHARand
NCHARlatatypes. It provides UTF-16 data access through wide string OLE DB
datatypes.

Oracle JDBC drivers are the primary Java programmatic interface for accessing an
Oracle9i database. Oracle provides two client-side JDBC drivers:

« The JDBC OCI driver that is used by Java applications and requires the OCI
library

Programming with Unicode 6-3

SQL and PL/SQL Programming with Unicode

« The JDBC thin driver, which is a pure Java driver that is primarily used by Java
applets and supports the Oracle Net protocol over TCP/IP

Both drivers support Unicode data access to SQL CHARand NCHARJatatypes in the
database.

Oracle SQLJ acts like a preprocessor that translates embedded SQL in a Java
program into a Java source file with JDBC calls. It offers you a higher level
programmatic interface to access databases. Like JDBC, SQLJ provides Unicode
data access to SQL CHARand NCHAR]atatypes in the database.

The PL/SQL and SQL engines process PL/SQL programs and SQL statements on
behalf of client-side programs such as OCI and server-side PL/SQL stored
procedures. They allow PL/SQL programs to declare NCHARand NVARCHAR?2
variables and access SQL NCHARJatatypes in the database.

The following sections describe how each of the database access products supports
Unicode data access to an Oracle9i database and offer examples for using those
products:

« SQL and PL/SQL Programming with Unicode

« OCI Programming with Unicode

« Pro*C/C++ Programming with Unicode

« JDBC and SQLJ Programming with Unicode

« ODBC and OLE DB Programming with Unicode

SQL and PL/SQL Programming with Unicode

SQL is the fundamental language with which all programs and users access data in
an Oracle database either directly or indirectly. PL/SQL is a procedural language
that combines the data manipulating power of SQL with the data processing power
of procedural languages. Both SQL and PL/SQL can be embedded in other
programming languages. This section describes Unicode-related features in SQL
and PL/SQL that you can deploy for multilingual applications.

This section contains the following topics:

« SQL NCHAR Datatypes

« Implicit Datatype Conversion Between NCHAR and Other Datatypes
« Exception Handling for Data Loss During Datatype Conversion

« Rules for Implicit Datatype Conversion

6-4 Oracle9/ Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

« SQL Functions for Unicode Datatypes

« Other SQL Functions

« Unicode String Literals

« Using the UTL_FILE Package with NCHAR Data

See Also:
« Oracle9i SQL Reference
« PL/SQL User’s Guide and Reference

SQL NCHAR Datatypes
There are three SQL NCHARJatatypes:
« The NCHAR Datatype
« The NVARCHAR?2 Datatype
« The NCLOB Datatype

The NCHAR Datatype

When you define a table column or a PL/SQL variable as the NCHARJatatype, the
length is always specified as the number of characters. For example, the statement

CREATE TABLE tablel (column1 NCHAR(30));

creates a column with a maximum length of 30 characters. The maximum number
of bytes for the column is determined as follows:

maximum number of bytes = (maximum number of characters) x (maximum number of
bytes per character)

For example, if the national character set is UTF8, the maximum byte length is 30
characters times 3 bytes per character, or 90 bytes.

The national character set, which is used for all NCHARJatatypes, is defined when
the database is created. In Oracle9i, the national character set can be either UTF8 or
AL16UTF16. The default is AL16UTF16.

The maximum column size allowed is 2000 characters when the national character
set is UTF8 and 1000 when it is AL16UTF16. The actual data is subject to the
maximum byte limit of 2000. The two size constraints must be satisfied at the same
time. In PL/SQL, the maximum length of NCHAR]ata is 32767 bytes. You can define

Programming with Unicode 6-5

SQL and PL/SQL Programming with Unicode

an NCHARvariable of up to 32767 characters, but the actual data cannot exceed
32767 bytes. If you insert a value that is shorter than the column length, Oracle pads
the value with blanks to whichever length is smaller: maximum character length or
maximum byte length.

Note: UTF8 may affect performance because it is a variable-width
character set. Excessive blank padding of NCHARields decreases
performance. Consider using the NVARCHARatatype or changing
to the AL16UTF16 character set for the NCHARJatatype.

The NVARCHAR2 Datatype

The NVARCHAR®atatype specifies a variable length character string that uses the
national character set. When you create a table with an NVARCHARR2olumn, you
specify the maximum number of characters for the column. Lengths for NVARCHAR?2
are always in units of characters, just as for NCHAROTracle subsequently stores each
value in the column exactly as you specify it, if the value does not exceed the
column’s maximum length. Oracle does not pad the string value to the maximum
length.

The maximum column size allowed is 4000 characters when the national character
set is UTF8 and 2000 when it is AL16UTF16. The maximum length of an
NVARCHARRZolumn in bytes is 4000. Both the byte limit and the character limit
must be met, so the maximum number of characters that is actually allowed in an
NVARCHARRZolumn is the number of characters that can be written in 4000 bytes.

In PL/SQL, the maximum length for an NVARCHAR®ariable is 32767 bytes. You
can define NVARCHARZ®ariables up to 32767 characters, but the actual data cannot
exceed 32767 bytes.

The following CREATE TABLEstatement creates a table with one NVARCHAR?2
column of with a maximum length of 2000 characters. If the national character set is
UTFS8, the following will create a column with maximum character length of 2000
and maximum byte length of 4000.

CREATE TABLE table2 (column2 NVARCHAR2(2000));

The NCLOB Datatype

NCLOBis a character large object containing multibyte characters, with a maximum
size of 4 gigabytes. Unlike BLOBs NCLOBshave full transactional support so that
changes made through SQL, the DBMS_LORpackage, or OCI participate fully in
transactions.Manipulations of NCLOBvalue can be committed and rolled back.

6-6 Oracle9/ Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

Note, however, that you cannot save an NCLOBocator in a PL/SQL or OCI variable
in one transaction and then use it in another transaction or session.

NCLOBvalues are stored in the database using the fixed-width AL16UTF16
character set, regardless of the national character set. Oracle translates the stored
Unicode value to the character set requested on the client or on the server, which
can be fixed-width or variable-width. When you insert data into an NCLOBcolumn
using a variable-width character set, Oracle converts the data into ALI6UTF16
before storing it in the database.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for more information about NCLOB

Implicit Datatype Conversion Between NCHAR and Other Datatypes

Oracle supports implicit conversions between SQL NCHARJatatypes and other
Oracle datatypes, such as CHARVARCHAR2NUMBERDATE ROWIDand CLOB Any
implicit conversions for CHARand VARCHAR2latatypes are also supported for SQL
NCHARJatatypes. You can use SQL NCHARJatatypes the same way as SQL CHAR
datatypes.

Keep in mind these points about implicit conversions:

« Type conversions between SQL CHARdatatypes and SQL NCHARJatatypes may
involve character set conversion when the database and national character sets
are different. Padding with blanks may occur if the target data is either CHARor
NCHAR

« Implicit conversion between CLOBand NCLOBdatatypes is not possible. You
can, however, use Oracle’s explicit conversion functions, TO_CLOBand TO_
NCLOB

See Also: Oracle9i SQL Reference

Exception Handling for Data Loss During Datatype Conversion

Data loss can occur during datatype conversion when character set conversion is
necessary. If a character in the first character set is not defined in the target character
set, then a replacement character will be used in its place. For example, if you try to
insert NCHARJata into a regular CHARcolumn and the character data in NCHAR
(Unicode) form cannot be converted to the database character set, the character will
be replaced by a replacement character defined by the database character set. The
NLS_NCHAR_CONV_EXG@Htialization parameter controls the behavior of data loss
during character type conversion. When this parameter is set to TRUE any SQL

Programming with Unicode 6-7

SQL and PL/SQL Programming with Unicode

statements that result in data loss return an ORA-12713 error and the
corresponding operation is aborted. When this parameter is set to FALSE data loss
is not reported and the unconvertible characters are replaced with replacement
characters. The default value is TRUE This parameter works for both implicit and
explicit conversion.

In PL/SQL, when data loss occurs during conversion of SQL CHARand NCHAR
datatypes, the LOSSY_CHARSET_CONVERSI@k¢eption is raised for both implicit
and explicit conversion.

Rules for Implicit Datatype Conversion

In some cases, conversion between datatypes is possible in only one direction. In
other cases, conversion in both directions is possible. Oracle defines a set of rules for
conversion between datatypes. Table 6-2 contains the rules for conversion between
datatypes.

Table 6-2 Rules for Conversion Between Datatypes

Statement Rule
INSERT/UPDATE Values are converted to the datatype of the target database column.
statement

SELECT INTOstatement

Variable assignments

Parameters in SQL and
PL/SQL functions

Concatenation | |
operation or CONCAT
function

SQL CHARor NCHAR
datatypes and NUMBER
datatype

SQL CHARor NCHAR
datatypes and DATE
datatype

Data from the database is converted to the datatype of the target variable.

Values on the right of the equal sign are converted to the datatype of the target
variable on the left of the equal sign.

CHARVARCHARNCHARand NVARCHARare loaded the same way. An argument
with a CHARVARCHAR2NCHARr NVARCHAR®atatype is compared to a formal
parameter of any of the CHARVARCHARZ2NCHARr NVARCHAR®atatypes. If the
argument and formal parameter datatypes do not match exactly, then implicit
conversions are introduced when data is copied into the parameter on function
entry and copied out to the argument on function exit.

If one operand is a SQL CHARor NCHARJatatype and the other operand is a
NUMBERYTr other non-character datatype, then the other datatype is converted to
VARCHAR®r NVARCHARZor concatenation between character datatypes, see
"SQL NCHAR datatypes and SQL CHAR datatypes" on page 6-9.

Character value is converted to NUMBERIatatype

Character value is converted to DATEdatatype

6-8 Oracle9/ Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

Table 6-2 Rules for Conversion Between Datatypes (Cont.)

Statement

Rule

SQL CHARor NCHAR
datatypes and ROWID
datatype

Character datatypes are converted to ROWIDdatatype

SQL NCHARInd SQL CHAR Character values are converted to NUMBERIatatype

datatypes

SQL CHARor NCHAR
datatypes and NUMBER
datatype

SQL CHARor NCHAR
datatypes and DATE
datatype

SQL CHARor NCHAR
datatypes and ROWID
datatype

SQL NCHARdatatypes and
SQL CHARdatatypes

Character values are converted to NUMBERIatatype

Character values are converted to DATEdatatype

Character values are converted to ROWIDdatatype

Comparisons between SQL NCHARdJatatypes and SQL CHARdatatypes are more
complex because they can be encoded in different character sets.

When CHARand VARCHARZ®alues are compared, the CHARvalues are converted
to VARCHAR®Xalues.

When NCHARaind NVARCHARZ®alues are compared, the NCHARvalues are
converted to NVARCHARZ®alues.

When there is comparison between SQL NCHARJatatypes and SQL CHAR
datatypes, character set conversion occurs if they are encoded in different
character sets. The character set for SQL NCHARJatatypes is always Unicode and
can be either UTF8 or AL16UTF16 encoding, which have the same character
repertoires but are different encodings of the Unicode standard. SQL CHAR
datatypes use the database character set, which can be any character set that
Oracle supports. Unicode is a superset of any character set supported by Oracle, so
SQL CHARdatatypes can always be converted to SQL NCHARJatatypes without
data loss.

SQL Functions for Unicode Datatypes

SQL NCHARdatatypes can be converted to and from SQL CHARdatatypes and other
datatypes using explicit conversion functions. The examples in this section use the
table created by the following statement:

CREATE TABLE customers
(id NUMBER, name NVARCHAR2(50), address NVARCHAR2(200), birthdate DATE);

Programming with Unicode 6-9

SQL and PL/SQL Programming with Unicode

Example 6-1 Populating the Customer Table Using the TO_NCHAR Function

The TO_NCHARunction converts the data at run time, while the N function converts
the data at compilation time.

INSERT INTO customers VALUES (1000,
TO_NCHAR(John Smith),N'500 Oracle Parkway’ sysdate);

Example 6-2 Selecting from the Customer Table Using the TO_CHAR Function

The following statement converts the values of name from characters in the national
character set to characters in the database character set before selecting them
according to the LIKE clause:

SELECT name FROM customers WHERE TO_CHAR(name) LIKE %Sm%;

You should see the following output:
NAME

John Smith

Example 6-3 Selecting from the Customer Table Using the TO_DATE Function

Using the N function shows that either NCHARr CHARdata can be passed as
parameters for the TO_DATEfunction. The datatypes can mixed because they are
converted at run time.

DECLARE

ndatestring NVARCHAR2(20) := N'12-SEP-1975"

BEGIN

SELECT name into ndstr FROM customers

WHERE (birthdate)> TO_DATE(ndatestring, DD-MON-YYYY', NNLS_DATE. LANGUAGE =
AMERICANY);

END;

As demonstrated in Example 6-3, SQL NCHARJata can be passed to explicit
conversion functions. SQL CHARand NCHARJata can be mixed together when using
multiple string parameters.

See Also: Oracle9i SQL Reference for more information about
explicit conversion functions for SQL NCHARJatatypes

6-10 Oracle9i Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

Other SQL Functions

Most SQL functions can take arguments of SQL NCHARJatatypes as well as mixed
character datatypes. The return datatype is based on the type of the first argument.
If a non-string datatype like NUMBERr DATEis passed to these functions, it will be
converted to VARCHARZT he following examples use the customer table created in
"SQL Functions for Unicode Datatypes” on page 6-9.

Example 6-4 INSTR Function
SELECT INSTR(hame, N'Sm), 1, 1) FROM customers;

Example 6-5 CONCAT Function
SELECT CONCAT(name,id) FROM customers;

id is converted to NVARCHARZANd then concatenated with name.

Example 6-6 RPAD Function
SELECT RPAD(hame,100, ') FROM customers;

The following output results:
RPAD(NAME,100,")

John Smith

Space character ' ' is converted to the corresponding character in the NCHAR
character set and then padded to the right of name until the total display length
reaches 100.

See Also: Oracle9i SQL Reference

Unicode String Literals
You can input Unicode string literals in SQL and PL/SQL as follows:
« Puta prefix Nin front of a single quote marked string literal. This explicitly

indicates that the following string literal is an NCHARstring literal. For example,
N'12-SEP-1975" is an NCHARtring literal.

« Mark a string literal with single quotations. Because Oracle supports implicit
conversions to SQL NCHAR]atatypes, a string literal is converted to a SQL
NCHARJatatype wherever necessary.

Programming with Unicode 6-11

SQL and PL/SQL Programming with Unicode

Note: When a string literal is included in a query and the query is
submitted through a client-side tool such as SQL*Plus, all the
gueries are encoded in the client’s character set and then converted
to the server’s database character set before processing. Therefore,
data loss can occur if the string literal cannot be converted to the
server database character set.

Use the NCHR(7) SQL function, which returns the character having the binary
equivalent to n in the national character set, which is AL32UTF8 or AL16UTF16.
The result of concatenating several NCHR{) functions is NVARCHAR®ata. In
this way, you can bypass the client and server character set conversions and
create an NVARCHARZ&tring directly. For example, NCHR(32) represents a
blank character.

Because NCHR({) is associated with the national character set, portability of the
resulting value is limited to applications that run in that national character set.
If this is a concern, then use the UNISTR function to remove portability
limitations.

Use the UNISTR(string) SQL function. UNISTR(string) takes a string and
converts it to Unicode. The result is in the national character set for the
database. You can embed escape \ bbbb inside the string. The escape
represents the value of a UTF-16 code point with hex number Oxbbbb . For
example, UNISTR('G\0061ry") represents ‘Gary'

The last two methods can be used to encode any Unicode string literals.

Using the UTL_FILE Package with NCHAR Data

The UTL_FILE package has been enhanced in Oracle9i to handle Unicode national
character set data. The following functions and procedures have been added:

FOPEN_NCHAR

This function opens a file in Unicode for input or output, with the maximum
line size specified. With this function, you can read or write a text file in
Unicode instead of in the database character set.

GET_LINE_NCHAR

This procedure reads text from the open file identified by the file handle and
places the text in the output buffer parameter. With this procedure, you can
read a text file in Unicode instead of in the database character set.

6-12 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode

PUT_NCHAR

This procedure writes the text string stored in the buffer parameter to the open
file identified by the file handle. With this procedure, you can write a text file in
Unicode instead of in the database character set.

PUT_LINE_NCHAR

This procedure writes the text string stored in the buffer parameter to the open
file identified by the file handle. With this procedure, you can write a text file in
Unicode instead of in the database character set.

PUTF_NCHAR

This procedure is a formatted PUT_NCHARrocedure. With this procedure, you
can write a text file in Unicode instead of in the database character set.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about the UTL_FILE package

OCI Programming with Unicode

OCl is the lowest-level API for accessing a database, so it offers the best possible
performance. When using Unicode with OCI, consider these topics:

OCIEnvNIsCreate() Function for Unicode Programming

OCI Unicode Code Conversion

When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI
Binding and Defining SQL CHAR Datatypes in OCI

Binding and Defining SQL NCHAR Datatypes in OCI

Binding and Defining CLOB and NCLOB Unicode Data in OCI

See Also: Chapter 8, "OCI Programming in a Global
Environment"

OCIEnvNIsCreate() Function for Unicode Programming

The OCIEnvNIsCreate() function is used to specify a SQL CHARcharacter set
and a SQL NCHARharacter set when the OCI environment is created. It is an
enhanced version of the OCIEnvCreate() function and has extended arguments
for two character set IDs. The OCI_UTF16ID UTF-16 character set ID replaces the
Unicode mode introduced in Oracle9i release 1 (9.0.1). For example:

Programming with Unicode 6-13

OCI Programming with Unicode

OCIEnv *envhp;

status = OCIEnvNIsCreate((OCIEnv **)&envhp,
(ub4)0,

(void %0,

(void*() () O,

(void*(*) () O,

(void(*) 0) O,

(size 1) 0,

(void*)0,

(Ub2)OCI_UTF16ID, #* Metadata and SQL CHAR character set*/
(Ub2)OCI_UTF16ID /* SQL NCHAR character set*/);

The Unicode mode, in which the OCI_UTF16 flag is used with the
OCIEnvCreate() function, is deprecated.

When OCI_UTF16ID is specified for both SQL CHARand SQL NCHARharacter sets,
all metadata and bound and defined data are encoded in UTF-16. Metadata
includes SQL statements, user names, error messages, and column names. Thus, all
inherited operations are independent of the NLS_LANGsetting, and all metatext
data parameters (text*) are assumed to be Unicode text datatypes (utext*)in
UTF-16 encoding.

To prepare the SQL statement when the OCIEnv() function is initialized with the
OCI_UTF16ID character set ID, call the OCIStmtPrepare() function with a
(utext®) string. The following example runs on the Windows platform only. You
may need to change wchar_t datatypes for other platforms.

constwehar_t sqlstr] = L"SELECT * FROM ENAME=:ename";

OCISImt* stmthp;
sts = OCIHandleAlloc(envh, (void *)&stmthp, OCl_ HTYPE_STMT, O,
NULL);
status = OCIStmtPrepare(stmthp, errhp,(const text*)sqlstr,
weslen(sqjstr),

OCI_NTV_SYNTAX, OCI_DEFAULT);

To bind and define data, you do not have to set the OCI_ATTR_CHARSET_ID
attribute because the OCIEnv() function has already been initialized with UTF-16
character set IDs. The bind variable names must be also UTF-16 strings.

¥ Inserting Unicode data */
OCIBindByName(stmthpl, &bnd1p, errhp, (const text*)L":ename”,
(sbd)weslen(L":ename"),

(void *) ename, sizeof(ename), SQLT_STR, (void
*&insname_ind,

6-14 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode

(Ub2*) 0, (Ub2*) 0, (Ub4) O, (Ub4 *)0,
OC|_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *)
&ename_col_len,
(Ub4) 0, (Ub4)OCI_ATTR_MAXDATA SIZE, ehp);

F* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfnlp, enhp, (ub4)1, (void *)ename,
(sbd)sizeof(ename), SQLT_STR, (void ¥)0, (ub2 *)0,
(ub2%)0,
(ub4)OCI_DEFAULT);

The OCIExecute() function performs the operation.

See Also: "OCIEnvNIsCreate()" on page 8-2

OCI Unicode Code Conversion

Unicode character set conversions take place between an OCI client and the
database server if the client and server character sets are different. The conversion
occurs on either the client or the server depending on the circumstances, but usually
on the client side.

Data Integrity

You can lose data during conversion if you call an OCI API inappropriately. If the
server and client character sets are different, you can lose data when the destination
character set is a smaller set than the source character set. You can avoid this
potential problem if both character sets are Unicode character sets (for example,
UTF8 and AL16UTF16).

When you bind or define SQL NCHARdJatatypes, you should set the OCI_ATTR_

CHARSET_FORMttribute to SQLCS_NCHARtherwise, you can lose data because
the data is converted to the database character set before converting to or from the
national character set. This occurs only if the database character set is not Unicode.

OCI Performance Implications When Using Unicode
Redundant data conversions can cause performance degradation in your OCI
applications. These conversions occur in two cases:

« When you bind or define SQL CHARdatatypes and set the OCI_ATTR_
CHARSET_FORMttribute to SQLCS_NCHARIJata conversions take place from
client character set to the national database character set, and from the national

Programming with Unicode 6-15

OCI Programming with Unicode

character set to the database character set. No data loss is expected, but two
conversions happen, even though it requires only one.

« When you bind or define SQL NCHARJatatypes and do not set OCI_ATTR_
CHARSET_FORMata conversions take place from client character set to the
database character set, and from the database character set to the national
database character set. In the worst case, data loss can occur if the database
character set is smaller than the client’s.

To avoid performance problems, you should always set OCI_ATTR_CHARSET _
FORMorrectly, based on the datatype of the target columns. If you do not know the
target datatype, you should set the OCI_ATTR_CHARSET_FORA&ttribute to
SQLCS_NCHAR/hen binding and defining.

Table 6-3 contains information about OCI character set conversions.

Table 6-3 OCI Character Set Conversions

OCI_ATTR_ Datatypes of the

Datatypes for CHARSET_ Target Column in
OCI Client Buffer FORM the Database Conversion Between Comments
utext SQLCS_ CHAR, UTF-16 and database No unexpected data loss
IMPLICIT VARCHAR?2, character set in OCI
CLOB
utext SQLCS_ NCHAR, UTF-16 and national No unexpected data loss
NCHAR NVARCHAR?2, character set in OCI
NCLOB
utext SQLCS_ CHAR, UTF-16 and national No unexpected data loss,
NCHAR VARCHAR2, character set in OCI but may degrade
CLOB National character set and ?g;t?gp;ii?]cg obeescil#f;utgﬁ
database character set in the national character set
database server
utext SQLCS_ NCHAR, UTF-16 and database Data loss may occur if
IMPLICIT NVARCHAR?2, character set in OCI the database character set
NCLOB Database character setand ' not Unicode
national character set in
database server
text SQLCS_ CHAR, NLS_LANGCcharacter set No unexpected data loss
IMPLICIT VARCHAR?2, and database character set
CLOB in OClI

6-16 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode

Table 6-3 OCI Character Set Conversions (Cont.)

OCI_ATTR_ Datatypes of the
Datatypes for CHARSET_ Target Column in
OCI Client Buffer FORM the Database Conversion Between Comments
text SQLCS NCHAR, NLS_LANGcharacter set No unexpected data loss
NCHAR NVARCHAR2,NCLOBand national character set
in OClI
text SQLCS_ CHAR, NLS_LANGCcharacter set No unexpected data loss,
NCHAR VARCHAR2, and national character set but may degrade
CLOB in OClI performance because the
database character set in
database server
text SQLCS_ NCHAR, NLS_LANGCcharacter set Data loss may occur
IMPLICIT NVARCHAR2,NCLOB and database character set because the conversion

in OCI

Database character set and
national character set in
database server

goes through the
database character set

OCI Unicode Data Expansion

Data conversion can result in data expansion, which can cause a buffer to overflow.
For binding operations, you need to set the OCI_ATTR_MAXDATA_SIZEattribute to
a large enough size to hold the expanded data on the server. If this is difficult to do,
you need to consider changing the table schema. For defining operations, client
applications need to allocate enough buffer space for the expanded data. The size of
the buffer should be the maximum length of the expanded data. You can estimate
the maximum buffer length with the following calculation:

1. Get the column data byte size.

2. Multiply it by the maximum number of bytes per character in the client
character set.

This method is the simplest and quickest way, but it may not be accurate and can
waste memory. It is applicable to any character set combination. For example, for
UTF-16 data binding and defining, the following example calculates the client
buffer:

ub2 csid=0C|_UTF16ID;
oratext *selstmt = "SELECT ename FROM emp",
counter=1;

Programming with Unicode 6-17

OCI Programming witl

h Unicode

When the NLS

OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strien((char®)selstmt),
OCI_NTV_SYNTAX, OCl_DEFAULT);
OCIStmtExecute (svchp, stmthp, erhp, (ub4)0, (ub4)0,
(CONST OClSnapshoat*)0, (OCISnapshot*)0,
OCI_DESCRIBE_ONLY);
OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &myparam, (ub4)counter);
OClAtrGet((void*)myparam, (ub4)OCl_DTYPE_PARAM, (void*)&col_width,
(ub4%)0, (Ub4)OCI_ATTR_DATA_SIZE, enthp);

maxenamelen = (col_width + 1) * sizeof(utext);
cbuf = (utext’)malloc(maxenamelen);

OCIDefineByPos(stmthp, &dfnp, erhp, (ub4)1, (void *)chuf,
(sb4)maxenamelen, SQLT_STR, (void *)0, (ub2 *)0,
(Ub2%)0, (Ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfnp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
(ub4) O, (Ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);

LANG Character Set is UTF8 or AL32UTF8 in OCI

You can use UTF8 and AL32UTF8 by setting NLS_LANGfor OCI client applications.
If you do not need supplementary characters, then it does not matter whether you
choose UTF8 or AL32UTF8. However, if your OCI applications might handle
supplementary characters, then you need to make a decision. Because UTF8 can
require up to three bytes for each character, one supplementary character is
represented in two code points, totalling six bytes. In AL32UTF8, one
supplementary character is represented in one code point, totalling four bytes.

Do not set NLS_LANGo AL16UTF16, because AL16UTF16 is the national character
set for the server. If you need to use UTF-16, then you should specify the client
character set to OCI_UTF16ID, using the OCIAttrSet() function when binding
or defining data.

Binding and Defining SQL CHAR Datatypes in OCI

To specify a Unicode character set for binding and defining data with SQL CHAR
datatypes, you may heed to call the OCIAttrSet() function to set the appropriate
character set ID after OCIBind() or OCIDefine() APIs. There are two typical
cases:

6-18 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode

Call OCIBind() or OCIDefine() followed by OCIAttrSet () to specify
UTF-16 Unicode character set encoding. For example:

ub2 csid=0OCI_UTF16ID;
utext ename[100]; /* enough buffer for ENAME */

F Inserting Unicode data */

OCIBindByName(stmthpl, &bnd1p, errhp, (oratext*):ENAME",
(sbd)strien((char *ENAME"), (void *) ename, sizeof(ename),
SQLT_STR, (void ¥)&insname_ind, (ub2 *) O, (ub2*) 0, (ub4) O,

(ub4 %0, OCI_DEFAULT);
OClAttrSet((void *) bnd1p, (ub4) OCl_HTYPE_BIND, (void *) &csid,
(ub4) O, (Ub4)OCI_ATTR_CHARSET_ID, erthp);
OClAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
(ub4) 0, (Ub4)OCI_ATTR_MAXDATA _SIZE, erthp);

* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfnlp, emhp, (ub4)1, (void *ename,
(sbd)sizeofename), SQLT_STR, (void *)0, (ub2 *)0,
(ub240, (Ub4)OCI_DEFAULT);
OCIAtrSet((void *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
(ub4) 0, (Ub4)OCI_ATTR_CHARSET_ID, errhp);

If bound buffers are of the utext datatype, you should add a cast (text *)
when OCIBind() or OCIDefine() s called. The value of the OCI_ATTR_
MAXDATA_SIZEattribute is usually determined by the column size of the
server character set because this size is only used to allocate temporary buffer
space for conversion on the server when you perform binding operations.

Call OCIBind() or OCIDefine() with the NLS_LANGcharacter set specified
as UTF8 or AL32UTFS8.

UTF8 or AL32UTF8 can be set in the NLS_LANGenvironment variable. You call
OCIBind() and OCIDefine() in exactly the same manner as when you are
not using Unicode. Set the NLS_LANGenvironment variable to UTF8 or
AL32UTF8 and run the following OCI program:

oratext ename[100]; # enough buffer size for ENAME */
¥ Inserting Unicode data */

OCIBindByName(stmthpl, &bnd1p, errhp, (oratext*):ENAME",
(sbd)strien((char *":ENAME"), (void *) ename, sizeof(ename),

Programming with Unicode 6-19

OCI Programming with Unicode

SQLT_STR, (void *)&nsname_ind, (ub2*) 0, (ub2*) 0,
(ub4) O, (ub4 %0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &name_col_len,
(ub4) O, (Ub4)OCI_ATTR_MAXDATA _SIZE, enhp);

F Retrieving Unicode data */

OCIDefineByPos (stmthp2, &dfnlp, erhp, (ub4)1, (void *)ename,
(sbd)sizeof(ename), SQLT_STR, (void)0, (ub2 *)0, (ub2*)0,
(ub4)OCI_DEFAULT);

Binding and Defining SQL NCHAR Datatypes in OCI

Oracle Corporation recommends that you access SQL NCHAR]Jatatypes using
UTF-16 binding or defining when using OCI. Starting from Oracle9i, SQL NCHAR
datatypes are Unicode datatypes with an encoding of either UTF8 or AL16UTF16.
To access data in SQL NCHARdatatypes, set the OCI_ATTR_CHARSET_FORM
attribute to SQLCS_NCHARBetween binding or defining and execution so that it
performs an appropriate data conversion without data loss. The length of data in
SQL NCHARdatatypes is always in the number of Unicode code points.

The following program is a typical example of inserting and fetching data against
an NCHARlata column:

ub2 csid=0CI_UTF16ID;
ubl cform = SQLCS_NCHAR;
utext ename[100]; / enough buffer for ENAME */

F Inserting Unicode data */
OCIBindByName(stmthpl, &bnd1p, errhp, (oratext*):ENAME",
(sbd)strien((char *:ENAME"), (void *) ename,
sizeof(ename), SQLT_STR, (void ¥)&insname_ind, (ub2*) 0,
(ub2%) 0, (ub4) O, (Ub4 *)0, OCI_DEFAULT);
OClAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &cform, (ub4) O,
(Ub4)OCI_ATTR_CHARSET_FORM, erthp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid, (ub4) O,
(Ub4)OCI_ATTR_CHARSET_ID, erthp);
OClAitrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
(ub4) 0, (Ub4)OCI_ATTR_MAXDATA _SIZE, enhp);

F Retrieving Unicode data */

OCIDefineByPos (stmthp2, &dfnlp, errhp, (Ub4)1, (void *)ename,
(sbd)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
(ub4)OCI_DEFAULT);

6-20 Oracle9i Database Globalization Support Guide

OCI Programming with Unicode

OCIAtrSet((void *) dinp, (ub4) OCl HTYPE_DEFINE, (void *) &csid, (Ub4) 0,
(Ub4)OCI ATTR_CHARSET ID, erthp);

OCIAttrSet((void *) dinp, (ub4) OCl_HTYPE_DEFINE, (void *) &cform, (Ub4) 0,
(Ub4)OCI ATTR_CHARSET FORM, erthp);

Binding and Defining CLOB and NCLOB Unicode Data in OCI

In order to write (bind) and read (define) UTF-16 data for CLOBor NCLOBcolumns,
the UTF-16 character set ID must be specified as OCILobWrite() and
OCILobRead() .When you write UTF-16 data into a CLOBcolumn, call
OCILobWrite() as follows:

ub2 csid=OC|_UTF16ID;

err = OCILobWiite (ctx->svchp, cx->erhp, lobp, &amip, offset, (void *) buf,
(ub4) BUFSIZE, OCl_ONE._PIECE, (void %0,
(sb4 (%0) 0, (ub2) csid, (ub1) SQLCS_IMPLICIT);

The amtp parameter is the data length in number of Unicode code points. The
offset parameter indicates the offset of data from the beginning of the data
column. The csid parameter must be set for UTF-16 data.

To read UTF-16 data from CLOBcolumns, call OCILobRead() as follows:

ub2 csid=OC|_UTF16ID;

err = OCILobRead(ctx->svchp, ctx->erthp, lobp, &amip, offset, (void *) buf,
(Ub4)BUFSIZE, (void %) 0, (sb4 (*)() O, (ub2)csid,
(Ub1) SQLCS_IMPLICIT);

The data length is always represented in the number of Unicode code points. Note
one Unicodesupplementary character is counted as two code points, because the
encoding is UTF-16. After binding or defining LOBcolumn, you can measure the
data length stored in the LOBcolumn using OCILobGetLength() . The returning
value is the data length in the number of code points if you bind or define as
UTF-16.

err = OClLobGetlength(ctx->svchp, ctx->errhp, lobp, &lenp);

If you are using an NCLOByou must set OCI_ATTR_CHARSET_ FORtd SQLCS _
NCHAR

Programming with Unicode 6-21

Pro*C/C++ Programming with Unicode

Pro*C/C++ Programming with Unicode

Pro*C/C++ provides the following ways to insert or retrieve Unicode data into or
from the database:

« Using the VARCHARro*C/C++ datatype or the native C/C++text datatype, a
program can access Unicode data stored in SQL CHARdatatypes of a UTF8 or
AL32UTF8 database. Alternatively, a program could use the C/C++ native
text type.

« Using the UVARCHARro*C/C++ datatype or the native C/C++ utext
datatype, a program can access Unicode data stored in NCHARJatatypes of a
database.

« Using the NVARCHARro*C/C++ datatype, a program can access Unicode data
stored in NCHARdJatatypes. The difference between UVARCHARNd NVARCHAR
in a Pro*C/C++ program is that the data for the UVARCHARatatype is stored in
a utext buffer while the data for the NVARCHARatatype is stored in a text
datatype.

Pro*C/C++ does not use the Unicode OCI API for SQL text. As a result, embedded
SQL text must be encoded in the character set specified in the NLS_LANG
environment variable.

This section contains the following topics:

« Pro*C/C++ Data Conversion in Unicode

« Using the VARCHAR Datatype in Pro*C/C++

« Using the NVARCHAR Datatype in Pro*C/C++
« Using the UVARCHAR Datatype in Pro*C/C++

Pro*C/C++ Data Conversion in Unicode

Data conversion occurs in the OCI layer, but it is the Pro*C/C++ preprocessor that
instructs OCI which conversion path should be taken based on the datatypes used
in a Pro*C/C++ program. Table 6-4 illustrates the conversion paths:

6-22 Oracle9i Database Globalization Support Guide

Pro*C/C++ Programming with Unicode

Table 6-4 Pro*C/C++ Bind and Define Data Conversion

Pro*C/C++ Datatype SQL Datatype Conversion Path

VARCHAR text CHAR NLS_LANG character set to and from the database
character set happens in OCI

VARCHARY text NCHAR NLS_LANGcharacter set to and from database character
set happens in OCI

Database character set to and from national character set
happens in database server

NVARCHAR NCHAR NLS_LAdH@racter set to and from national character
set happens in OCI
NVARCHAR CHAR NLS_LAbHaracter set to and from national character

set happens in OCI

National character set to and from database character set
in database server

UVARCHART utext NCHAR UTF-16 to and from the national character set happens in
OocClI

UVARCHART utext CHAR UTF-16 to and from national character set happens in
OcClI

National character set to database character set happens
in database server

Using the VARCHAR Datatype in Pro*C/C++

The Pro*C/C++ VARCHARlatatype is preprocessed to a struct with a length field
and text buffer field. The following example uses the C/C++ text native
datatype and the VARCHARro*C/C++ datatypes to bind and define table columns.

#include <sglca.h>
main()

{

F Change to STRING datatype: */

EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
text ename[20] ; [unsigned short type */
varchar address[50] ; f+ Pro*C/C++ uvarchar type */

EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;

Fename is NULL-terminated */
printf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len, address.ar);

Programming with Unicode 6-23

Pro*C/C++ Programming with Unicode

}

When you use the VARCHARIatatype or native text datatype in a Pro*C/C++
program, the preprocessor assumes that the program intends to access columns of
SQL CHARdatatypes instead of SQL NCHAR]atatypes in the database. The
preprocessor generates C/C++ code to reflect this fact by doing a bind or define
using the SQLCS_IMPLICIT value for the OCI_ATTR_CHARSET_FOR&fttribute. As
a result, if a bind or define variable is bound to a column of SQL NCHARJatatypes
in the database, implicit conversion happens in the database server to convert the
data from the database character set to the national database character set and vice
versa. During the conversion, data loss occurs when the database character set is a
smaller set than the national character set.

Using the NVARCHAR Datatype in Pro*C/C++

The Pro*C/C++ NVARCHARatatype is similar to the Pro*C/C++ VARCHAR
datatype. It should be used to access SQL NCHARJatatypes in the database. It tells
Pro*C/C++ preprocessor to bind or define a text buffer to the column of SQL NCHAR
datatypes. The preprocessor will specify the SQLCS NCHARalue for the OCI_
ATTR_CHARSET_FORAftribute of the bind or define variable. As a result, no
implicit conversion occurs in the database.

If the NVARCHARuffer is bound against columns of SQL CHARdatatypes, the data
in the NVARCHARuffer (encoded in the NLS_LANGcharacter set) is converted to or
from the national character set in OCI, and the data is then converted to the
database character set in the database server. Data can be lost when the NLS_LANG
character set is a larger set than the database character set.

Using the UVARCHAR Datatype in Pro*C/C++

The UVARCHARatatype is preprocessed to a struct with a length field and utext
buffer field. The following example code contains two host variables, ename and
address . The ename host variable is declared as a utext buffer containing 20
Unicode characters. The address host variable is declared as a uvarchar buffer
containing 50 Unicode characters, the len and arr fields are accessible as fields of a
struct.

#include <sglca.h>
#include <sglucs2.h>

main()

{

6-24 Oracle9i Database Globalization Support Guide

JDBC and SQLJ Programming with Unicode

FChange to STRING datatype: */

EXEC ORACLE OPTION (CHAR_MAP=STRING);

utext ename[20] ; F* unsigned short type */
uvarchar address[50] ; F* Pro*C/C++ uvarchar type */

EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
f*ename is NULL-terminated */
wprintf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len,
address.an);

When you use the UVARCHARatatype or native utext datatype in Pro*C/C++
programs, the preprocessor assumes that the program intends to access SQL NCHAR
datatypes. The preprocessor generates C/C++ code by binding or defining using

the SQLCS_NCHARalue for OCI_ATTR_CHARSET_FORA&ttribute. As a result, if a
bind or define variable is bound to a column of a SQL NCHARJatatype, an implicit
conversion of the data from the national character set occurs in the database server.
However, there is no data lost in this scenario because the national character set is
always a larger set than the database character set.

JDBC and SQLJ Programming with Unicode

Oracle provides three JDBC drivers for Java programs to access Unicode data in the
database:

= The JDBC OCI driver
« The JDBC thin driver
= The JDBC KPRB driver

Java programs can insert or retrieve Unicode data to and from columns of SQL
CHARand NCHARJatatypes. Specifically, JDBC enables Java programs to bind or
define Java strings to SQL CHARand NCHARJatatypes. Because Java’s string
datatype is UTF-16 encoded, data retrieved from or inserted into the database must
be converted from UTF-16 to the database character set or the national character set
and vice versa. The SQLJ preprocessor enables Java programs to embed SQL
statements to simplify database access code. It translates the embedded SQL
statements of a Java program to the corresponding JDBC calls. Similar to JDBC,
SQLJ enables programs to bind or define Java strings to a SQL CHARor NCHAR
column. JDBC and SQLJ also allow you to specify the PL/SQL and SQL statements
in Java strings so that any non-ASCII schema object names can be referenced in Java
programs.

Programming with Unicode 6-25

JDBC and SQLJ Programming with Unicode

This section contains the following topics:
« Binding and Defining Java Strings in Unicode
« Java Data Conversion in Unicode

« Java Data Conversion in Unicode

See Also: Chapter 9, "Java Programming in a Global
Environment"

Binding and Defining Java Strings in Unicode

Oracle JDBC drivers allow you to access SQL CHARdatatypes in the database using
Java string bind or define variables. The following code illustrates how to bind or
define a Java string to a CHARcolumn:

intempno =12345;

String ename ="Joe"

PreparedStatement pstmt = conn.prepareStatement('INSERT INTO" +
"emp (ename, empno) VALUES (?, ?)");

pstmt.setSting(1, ename);

pstmt.setint(2, empno);
pstmt.execute(); F* execute to insert into first row */
empno+=1; F next employee number */

ename ="\uFF2AUFF4RUFF45"; /* Unicode characters in name */
pstmt.setSting(1, ename);

pstmt.setint(2, empno);

pstmt.execute(); F* execute to insert into second row */

For binding or defining Java string variables to SQL NCHAR]atatypes, Oracle
extends the JDBC specification to add the

PreparedStatement .setFormOfUse() method through which you can
explicitly specify the target column of a bind variable to be a SQL NCHARJatatype.
The following code illustrates how to bind a Java string to an NCHARolumn:

intempno =12345;
String ename ="Joe"
oracle jdbc.OraclePreparedStatement pstmt =

(oracle jdbc.OraclePreparedStatement)

conn.prepareStatement('INSERT INTO emp (ename, empno) VALUES (?, ?)");
pstmt.setFormOfUse(1, oracle.jdbc.OraclePreparedStatement FORM_NCHARY);
pstmt.setSting(1, ename);

pstmt.setint(2, empno);
pstmt.execute(); F execute to insert into first row */
empno+=1; F next employee number */

6-26 Oracle9i Database Globalization Support Guide

JDBC and SQLJ Programming with Unicode

ename ="\uFF2AUFF4RUFF45"; /* Unicode characters in name */
pstmt.setSting(1, ename);

pstmt.setint(2, empno);
pstmt.execute(); F* execute to insert into second row */

You can bind or define a Java string against an NCHARolumn without explicitly
specifying the form of use argument. This implies the following:

« If you do not specify the argument in the setString() method, JDBC
assumes that the bind or define variable is for the SQL CHARcolumn. As a
result, it tries to convert them to the database character set. When the data gets
to the database, the database implicitly converts the data in the database
character set to the national character set. During this conversion, data can be
lost when the database character set is a subset of the national character set.
Because the national character set is either UTF8 or AL16UTF16, data loss
would happen if the database character set is not UTF8 or AL32UTFS8.

« Because implicit conversion from SQL CHARo SQL NCHARJatatypes happens
in the database, database performance is degraded.

In addition, if you bind or define a Java string for a column of SQL CHARdatatypes
but specify the form of use argument, performance of the database will be
degraded. However, data should not be lost because the national character set is
always a larger set than the database character set.

Java Data Conversion in Unicode

Because Java strings are always encoded in UTF-16, JDBC drivers transparently
convert data from the database character set to UTF-16 or the national character
set.The conversion paths taken are different for the three JDBC drivers:

« Data Conversion for the OCI Driver
« Data Conversion for the Thin Driver

« Data Conversion for the JDBC Driver

Data Conversion for the OCI Driver

For the OCI driver, the SQL statements are always converted to the database
character set by the driver before it is sent to the database for processing. For Java
string bind or define variables, Table 6-5 summarizes the conversion paths taken
for different scenarios:

Programming with Unicode 6-27

JDBC and SQLJ Programming with Unicode

Table 6-5 OCI Driver Conversion Path

Form of Use SQL Datatype Conversion Path

Const.CHAR CHAR Java String to and from database character set
(Default) happens in the JDBC driver

Const.CHAR NCHAR Java String to and from database character set
(Default) happens in the JDBC driver.

Data in the database character set to and from
national character set happens in the database
server

Const.NCHAR NCHAR Java String to and from national character set
happens in the JDBC driver

Const.NCHAR CHAR Java String to and from national character set
happens in the JDBC driver

Data in national character set to and from
database character set happens in the database
server

Data Conversion for the Thin Driver

For the thin driver, SQL statements are always converted to either the database
character set or to UTF-8 by the driver before they are sent to the database for
processing. The thin driver also notifies the database that a SQL statement requires
further conversion before being processed. The database, in turn, converts the SQL
statement to the database character set. For Java string bind and define variables,
the conversion paths shown in Table 6-6 are taken for the thin driver:

6-28 Oracle9i Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode

Table 6-6 Thin Driver Conversion Path

Database
Form of Use SQL Datatype Character Set Conversion Path
Const.CHAR CHAR US7ASCII or Java String to and from the database character
(Default) WE8ISO8859P1 set happens in the thin driver
Const.CHAR NCHAR US7ASCII or Java String to and from the database character
(Default) WEB8ISO8859P1 set happens in the thin driver.
Data in the database character set to and from
the national character set happens in the
database server
Const.CHAR CHAR non-ASCII and Java String to and from UTF-8 happens in the
(Default) non-WE8ISO8859P1 thin driver.
Data in UTF-8 to and from the database
character set happens in the database server
Const.CHAR CHAR non-ASCII and Java String to and from UTF-8 happens in the
(Default) non-WEB8ISO8859P1 thin driver.

Data in UTF-8 to and from national character
set happens in the database server

Const.NCHAR CHAR Java String to and from the national character

set happens in the thin driver.

Data in the national character set to and from
the database character set happens in the
database server

Const.NCHAR NCHAR Java String to and from the national character

set happens in the thin driver

Data Conversion for the JDBC Driver

The JDBC server-side internal driver runs in the server. All conversions are done in
the database server. SQL statements specified as Java strings are converted to the
database character set. Java string bind or define variables are converted to the
database character sets if the form of use argument is not specified. Otherwise, they
are converted to the national character set.

ODBC and OLE DB Programming with Unicode

You should use Oracle’s ODBC and OLE DB drivers to access Oracle9i when using
a Windows platform. This section describes how these drivers support Unicode. It
includes the following topics:

Programming with Unicode 6-29

ODBC and OLE DB Programming with Unicode

« Unicode-Enabled Drivers in ODBC and OLE DB
« OCI Dependency in Unicode

« ODBC and OLE DB Code Conversion in Unicode
« ODBC Unicode Datatypes

« OLE DB Unicode Datatypes

« ADO Access

Unicode-Enabled Drivers in ODBC and OLE DB

Oracle’s ODBC and OLE DB drivers can handle Unicode data properly without
data loss. For example, you can run a Unicode ODBC application containing
Japanese data on English Windows if you install Japanese fonts and an input
method editor for entering Japanese characters.

In Oracle9i, Oracle provides Windows platform-specific ODBC and OLE DB drivers
only. For Unix platforms, contact your vendor.

OCI Dependency in Unicode

OCI Unicode binding and defining features are used by the ODBC and OLE DB
drivers to handle Unicode data. OCI Unicode data binding and defining features
are independent from NLS_LANG This means Unicode data is handled properly,
irrespective of the NLS_LANGsetting on the platform.

See Also: "OCI Programming with Unicode" on page 6-13

ODBC and OLE DB Code Conversion in Unicode

In general, no redundant data conversion occurs unless you specify a different
client datatype from that of the server. If you bind Unicode buffer SQL_C_WCHAR
with a Unicode data column like NCHARfor example, ODBC and OLE DB drivers
bypass it between the application and OCI layer.

If you do not specify datatypes before fetching, but call SQLGetData with the client
datatypes instead, then the conversions in Table 6-7 occur.

6-30 Oracle9i Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode

Table 6-7 ODBC Implicit Binding Code Conversions

Datatypes of the
Datatypes of ODBC Target Column in

Client Buffer the Database Fetch Conversions Comments
SQL_C_WCHAR CHAR, [If the database character No unexpected data
VARCHAR2, set is a subset of the loss
CLOB NLS LANGcharacter set,
— May degrade

then the conversions
occur in the following
order:

performance if

database character

set is a subset of the

« Database character ~ NLS_LANGCcharacter
set set

. NLS_LANG
. UTF-16in OCI
. UTF-16in ODBC

SQL_C_CHAR CHAR, If database character set No unexpected data
VARCHAR2, is a subset of NLS_LANG loss
CLOB character set: May degrade
Database character setto performance if
NLS_LANGin OCI database character

set is not a subset of
NLS_LANGcharacter
If database character set set
is NOT a subset of NLS _
LANGcharacter set:

Database character set,
UTF-16, to NLS_LANG
character set in OCl and
ODBC

You must specify the datatype for inserting and updating operations.

The datatype of the ODBC client buffer is given when you call SQLGetData but not
immediately. Hence, SQLFetch does not have the information.

Because the ODBC driver guarantees data integrity, if you perform implicit
bindings, redundant conversion may result in performance degradation. Your
choice is the trade-off between performance with explicit binding or usability with
implicit binding.

Programming with Unicode 6-31

ODBC and OLE DB Programming with Unicode

OLE DB Code Conversions

Unlike ODBC, OLE DB only enables you to perform implicit bindings for inserting,
updating, and fetching data. The conversion algorithm for determining the
intermediate character set is the same as the implicit binding cases of ODBC.

Table 6-8 OLE DB Implicit Bindings

Datatypes of the
Datatypes of OLE_ Target Columninthe In-Binding and Out-Binding

DB Client Buffer Database Conversions Comments
DBTYPE_WCHAR CHAR, If database character set is a No unexpected data loss
VARCHAR?2, subset of the NLS_LANGcharacter

CLOB set: May degrade performa_nce if
database character set is a
Database character set to and from subset of NLS_LANG
NLS_LANGcharacter set in OCI. character set
NLS_LANCcharacter set to UTF-16
in OLE DB

If database character set is NOT a
subset of NLS_LANGcharacter set:

Database character set to and from

UTF-16 in OCI
DBTYPE_CHAR CHAR, If database character set is a No unexpected data loss
VARCHAR?2, subset of the NLS_LANGCcharacter .
CLOB set: May degrade performance if

database character set is not
Database character set to and from a subset of NLS LANG
NLS_LANGIn OCI character set

If database character set is not a
subset of NLS_LANGcharacter set:

Database character set to and from
UTF-16 in OCI. UTF-16 to NLS _
LANGcharacter set in OLE DB

ODBC Unicode Datatypes

In ODBC Unicode applications, use SQLWCHAR store Unicode data. All standard
Windows Unicode functions can be used for SQLWCHAR&ata manipulations. For
example, weslen counts the number of characters of SQLWCHARata:

SQLWCHAR sqiStmt] = L"select ename from emp";
len =wcslen(sglStmt);

6-32 Oracle9i Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode

Microsoft’s ODBC 3.5 specification defines three Unicode datatype identifiers for
the SQL_C_WCHARQL_C WVARCHA&d SQL_WLONGVARCHAints; and three
Unicode datatype identifiers for servers SQL_ WCHARBQL WVARCHABRhd SQL_
WLONGVARCHAR

For binding operations, specify datatypes for both client and server using
SQLBindParameter . The following is an example of Unicode binding, where the
client buffer Nameindicates that Unicode data (SQL_C_WCHARs bound to the first
bind variable associated with the Unicode column (SQL_WCHAR

SQLBindParameter(StatementHandle, 1, SQL_PARAM _INPUT, SQL_C_WCHAR,
SQL_WCHAR, NameLen, 0, (SQLPOINTER)Name, 0, &Name);

Table 6-9 represents the datatype mappings of the ODBC Unicode datatypes for the
server against SQL NCHARJatatypes.

Table 6-9 Server ODBC Unicode Datatype Mapping

ODBC Datatype Oracle Datatype
SQL_WCHAR NCHAR
SQL_WVARCHAR NVARCHAR2
SQL_WLONGVARCHAR NCLOB

According to ODBC specifications, SQL_ WCHARBQL WVARCHABRhd SQL_
WLONGVARCHAR treated as Unicode data, and are therefore measured in the
number of characters instead of the number of bytes.

OLE DB Unicode Datatypes

OLE DB offers the wchar_t * BSTR and OLESTRdatatypes for the Unicode client
C datatype. In practice, wchar_t is the most common datatype and the others are
for specific purposes. The following example assigns a static SQL statement:

wehar_t*sglStmt= OLESTR("SELECT ename FROM emp");

The OLESTRmacro works exactly like an "L" modifier to indicate the Unicode
string. If you need to allocate Unicode data buffer dynamically using OLESTR use
the IMalloc allocator (for example, CoTaskMemAlloc). However, using OLESTR
is not the normal method for variable length data; use wchar_t * instead for generic
string types. BSTRIis similar. It is a string with a length prefix in the memory
location preceding the string. Some functions and methods can accept only BSTR

Programming with Unicode 6-33

ODBC and OLE DB Programming with Unicode

ADO Access

Unicode datatypes. Therefore, BSTRUnicode string must be manipulated with
special functions like SysAllocString for allocation and SysFreeString for
freeing memory.

Unlike ODBC, OLE DB does not allow you to specify the server datatype explicitly.
When you set the client datatype, the OLE DB driver automatically performs data
conversion if necessary.

Table 6-10 illustrates OLE DB datatype mapping.

Table 6-10 OLE DB Datatype Mapping

OLE DB Datatype Oracle Datatype

DBTYPE_WCHAR NCHAR or NVARCHAR2

If DBTYPE_BSTRs specified, it is assumed to be DBTYPE_WCHAlBcause both are
Unicode strings.

ADO is a high-level API to access database with the OLE DB and ODBC drivers.
Most database application developers use the ADO interface on Windows because
it is easily accessible from Visual Basic, the primary scripting language for Active
Server Pages (ASP) for the Internet Information Server (I1S). To OLE DB and ODBC
drivers, ADO is simply an OLE DB consumer or ODBC application. ADO assumes
that OLE DB and ODBC drivers are Unicode-aware components; hence, it always
attempts to manipulate Unicode data.

6-34 Oracle9i Database Globalization Support Guide

v

SQL and PL/SQL Programming in a Global
Environment

This chapter contains information useful for SQL programming in a globalization
support environment. It includes the following topics:

« Locale-Dependent SQL Functions with Optional NLS Parameters
« Other Locale-Dependent SQL Functions

« Miscellaneous Topics for SQL and PL/SQL Programming in a Global
Environment

SQL and PL/SQL Programming in a Global Environment 7-1

Locale-Dependent SQL Functions with Optional NLS Parameters

Locale-Dependent SQL Functions with Optional NLS Parameters

All SQL functions whose behavior depends on globalization support conventions
allow NLS parameters to be specified. These functions are:

. TO_CHAR
. TO_DATE

. TO_NUMBER
. NLS_UPPER
. NLS_LOWER
. NLS_INITCAP
. NLSSORT

Explicitly specifying the optional NLS parameters for these functions enables the
functions to be evaluated independently of the session’s NLS parameters. This
feature can be important for SQL statements that contain humbers and dates as
string literals.

For example, the following query is evaluated correctly if the language specified for
dates is AMERICAN

SELECT last_name FROM employees WHERE hire_date >'01-JAN-1999;

Such a query can be made independent of the current date language by using a
statement similar to the following:

SELECT last_name FROM employees WHERE hire_date >
TO_DATE(01-JAN-1999,DD-MON-YYYY','NLS_DATE_LANGUAGE = AMERICANY;

In this way, SQL statements that are independent of the session language can be
defined where necessary. Such statements are necessary when string literals appear
in SQL statements in views, CHECkKconstraints, or triggers.

All character functions support both single-byte and multibyte characters. Except
where explicitly stated, character functions operate character by character, rather
than byte by byte.

The rest of this section includes the following topics:
« Default Values for NLS Parameters in SQL Functions
« Specifying NLS Parameters in SQL Functions

« Unacceptable NLS Parameters in SQL Functions

7-2 Oracle9i Database Globalization Support Guide

Locale-Dependent SQL Functions with Optional NLS Parameters

Default Values for NLS Parameters in SQL Functions

When SQL functions evaluate views and triggers, default values from the current
session are used for the NLS function parameters. When SQL functions evaluate
CHECKeonstraints, they use the default values that were specified for the NLS
parameters when the database was created.

Specifying NLS Parameters in SQL Functions

NLS parameters are specified in SQL functions as follows:
' parameter = value '

For example:

'NLS_DATE_LANGUAGE = AMERICAN'

The following NLS parameters can be specified in SQL functions:
« NLS_DATE_LANGUAGE

« NLS_NUMERIC_CHARACTERS

« NLS_CURRENCY

« NLS_ISO_CURRENCY

« NLS_SORT

Table 7-1 shows which NLS parameters are valid for specific SQL functions.

Table 7-1 SQL Functions and Their Valid NLS Parameters
SQL Function Valid NLS Parameters

TO_DATE NLS_DATE_LANGUAGE
NLS_CALENDAR

TO_NUMBER NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY

TO_CHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

SQL and PL/SQL Programming in a Global Environment 7-3

Locale-Dependent SQL Functions with Optional NLS Parameters

Table 7-1 SQL Functions and Their Valid NLS Parameters (Cont.)

SQL Function Valid NLS Parameters

TO_NCHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

NLS_UPPER NLS_SORT
NLS_LOWER NLS_SORT
NLS_INITCAP NLS_SORT

NLSSORT NLS_SORT

The following examples show how to use NLS parameters in SQL functions:

TO_DATE (1-JAN-99, DD-MON-YY',
'nis_date_language = American)

TO_CHAR (hire_date, DD/MON/YYYY',
'nis_date_language = French)

TO_NUMBER (13.000,00, '99G999D99,
'nis_numeric_characters="..")

TO_CHAR (salary, '9G999D99L", 'nis_numeric_characters =""
nls_currency =" Dfi")

TO_CHAR (salary, '9G999D99C), 'nis_numeric_characters=".,"
nis_iso_currency = Japan

NLS_UPPER (last_name, 'nis_sort = Swiss)

NLSSORT (Jlast_name, nis_sort=German)

Note: In some languages, some lowercase characters correspond
to more than one uppercase character or vice versa. As a result, the
length of the output from the NLS_UPPERNLS_LOWERand NLS
INITCAP functions can differ from the length of the input.

7-4 Oracle9i Database Globalization Support Guide

Other Locale-Dependent SQL Functions

See Also: "Special Uppercase Letters" on page 4-12 and "Special
Lowercase Letters" on page 4-12

Unacceptable NLS Parameters in SQL Functions

The following NLS parameters are not accepted in SQL functions except for
NLSSORT

« NLS_LANGUAGE
« NLS_TERRITORY
« NLS_DATE_FORMAT

NLS_DATE_FORMAIFB not accepted as a parameter because it can interfere with
required format masks. A date format must always be specified if an NLS
parameter isin a TO_CHARIr TO_DATEunction. As a result, NLS _DATE_FORMAIB
not a valid NLS parameter for the TO_CHARIr TO_DATEfunctions.

If NLS_LANGUAGEr NLS_TERRITORYis specified in the TO_CHARTO_NUMBERY
TO_DATE functions, then a format mask must also be specified as the second
parameter of the function. For example, the following specification is legal:

TO_CHAR (hire_date, DD/MON/YYYY', 'nis_date _language = French)

The following specification is illegal because there is no format mask:

TO_CHAR (hire_date, nls_date_language = French)

The following specification is illegal because the format mask is not specified as the
second parameter of the function:

TO_CHAR (hire_date, 'nis_date_language = French',' DD/MON/YY’)

Other Locale-Dependent SQL Functions
This section includes the following topics:
« The CONVERT Function
« SQL Functions for Different Length Semantics
« LIKE Conditions for Different Length Semantics
« Character Set SQL Functions
= The NLSSORT Function

SQL and PL/SQL Programming in a Global Environment 7-5

Other Locale-Dependent SQL Functions

The CONVERT Function

The CONVERTunction enables conversion of character data between character sets.

The CONVERTunction converts the binary representation of a character string in
one character set to another. It uses exactly the same technique as conversion
between database and client character sets. Hence, it uses replacement characters
and has the same limitations.

See Also: "Character Set Conversion Between Clients and the
Server" on page 2-16

The syntax for CONVERTs as follows:
CONVERT(char, dest_char_set], source_char_set])

source_char_set is the source character set and dest_char_set isthe
destination character set. If the source_char_set parameter is not specified, then
it defaults to the database character set.

In client/server environments that use different character sets, use the TRANSLATE
...USINGfunction to perform conversions instead of CONVERTThe
TRANSLATE.USING function must be used if either the client or the server has
NCHARr NVARCHAR®ata.

See Also:

« Oracle9i SQL Reference for more information about the CONVERT
function and the TRANSLATE...USING function

« "Character Set Conversion Support” on page A-18 for character
set encodings that are used only for the CONVERTunction

SQL Functions for Different Length Semantics

Oracle9i provides SQL functions that work in accordance with different length
semantics. There are three groups of such SQL functions: SUBSTRLENGTHand
INSTR. Each function in a group is based on a different kind of length semantics
and is distinguished by the character or number appended to the function
name.The members of each group of functions is distinguished by the character or
number that is appended to the function’s name. For example, SUBSTRHs based on
byte semantics.

7-6 Oracle9/ Database Globalization Support Guide

Other Locale-Dependent SQL Functions

The SUBSTRfunctions return a requested portion of a substring. The LENGTH
functions return the length of a string. The INSTR functions search for a substring
in a string.

The SUBSTRfunctions calculate the length of a string differently. Table 7-1
summarizes the calculation methods.

Table 7-2 How the SUBSTR Functions Calculate the Length of a String

Function Calculation Method

SUBSTR Calculates the length of a string in characters based on the
length semantics associated with the character set of the
datatype. For example, AL32UTF8 characters are calculated in
UCS-4 code units. UTF8 and AL16UTF16 characters are
calculated in UCS-2 code units. A supplementary character is
counted as one character in AL32UTF8 and as two characters
in UTF8 and AL16UTF16. Because VARCHARNd NVARCHAR
may use different character sets, SUBSTRmay give different
results for different datatypes even if two strings are identical.
If your application requires consistency, then use SUBSTR2 or
SUBSTR4to force all semantic calculations to be UCS-2 or
UCS-4, respectively.

SUBSTRB Calculates the length of a string in bytes

SUBSTR2 Calculates the length of a string in UCS-2 code units, which is
compliant with Java strings and Windows client environments.
Characters are represented in UCS-2 or 16-bit Unicode values.
Supplementary characters are counted as two code units.

SUBSTR4 Calculates the length of a string in UCS-4 code units.
Characters are represented in UCS-4 or 32-bit Unicode values.
Supplementary characters are counted as one code unit.

SUBSTRC Calculates the length of a string in Unicode complete
characters. Supplementary characters and composite
characters are counted as one character.

The LENGTHand INSTR functions calculate string length in the same way,
according to the character or number added to the function name.

The following examples demonstrate the differences between SUBSTRand
SUBSTRBn a database whose character set is AL32UTFS8.

For the string FuRBball, the following statement returns a substring that is 4
characters long, beginning with the second character:

SELECT SUBSTR (Fuf3ball, 2, 4) SUBSTR FROM dual;

SQL and PL/SQL Programming in a Global Environment 7-7

Other Locale-Dependent SQL Functions

SUBS

ulba

For the string FuBball, the following statement returns a substring 4 bytes long,
beginning with the second byte:

SELECT SUBSTRB (Fuf3ball, 2, 4) SUBSTRB FROM dual;

SuUB

u’b

See Also: Oracle9i SQL Reference for more information about the
SUBSTRLENGTHand INSTR functions

LIKE Conditions for Different Length Semantics

The LIKE conditions specify a test that uses pattern-matching. The equality
operator (=) exactly matches one character value to another, but the LIKE
conditions match a portion of one character value to another by searching the first
value for the pattern specified by the second.

LIKE calculates the length of strings in characters using the length semantics
associated with the input character set. The LIKE2 , LIKE4 , and LIKEC conditions
are summarized in Table 7-3.

Table 7-3 LIKE Conditions

Function Description

LIKE2 Use when characters are represented in UCS-2 semantics. A
supplementary character is considered as two code units.

LIKE4 Use when characters are represented in UCS-4 semantics. A
supplementary character is considered as one code unit.

LIKEC Use when characters are represented in Unicode complete
character semantics. A composed character is treated as one
code unit.

There is no LIKEB condition.

7-8 Oracle9i Database Globalization Support Guide

Other Locale-Dependent SQL Functions

Character Set SQL Functions

Two SQL functions, NLS_CHARSET_NAMiAnd NLS _CHARSET _IDcan convert
between character set ID numbers and character set names. They are used by
programs that need to determine character set ID numbers for binding variables
through OCI.

Another SQL function, NLS_CHARSET_DECL_LEMeturns the length of an NCHAR
column.

This section includes the following topics:
« Converting from Character Set Number to Character Set Name
« Converting from Character Set Name to Character Set Number

« Returning the Length of an NCHAR Column

See Also: Oracle9i SQL Reference

Converting from Character Set Number to Character Set Name

The NLS_CHARSET_NAMA) function returns the name of the character set
corresponding to ID number n. The function returns NULL f n is not a recognized
character set ID value.

Converting from Character Set Name to Character Set Number

NLS_CHARSET IDtext) returns the character set ID corresponding to the name
specified by text . text is defined as a run-time VARCHARZ2juantity, a character
set name. Values for text can be NLSRTLnames that resolve to character sets that
are not the database character set or the national character set.

If the value CHAR_CSs entered for text , then the function returns the ID of the
server's database character set. If the value NCHAR_CS$s entered for text , then the
function returns the ID of the server's national character set. The function returns
NULL if text is not a recognized name.

Note: The value for text must be entered in uppercase
characters.

SQL and PL/SQL Programming in a Global Environment 7-9

Other Locale-Dependent SQL Functions

Returning the Length of an NCHAR Column

NLS CHARSET DECL_LEBYTECNJTCSID) returns the declaration length in
number of characters for an NCHARolumn. BYTECNTis the byte length of the
column. CSID is the character set ID of the column.

The NLSSORT Function

The NLSSORTfunction enables you to use any linguistic sort for an ORDER BY
clause. It replaces a character string with the equivalent sort string used by the
linguistic sort mechanism so that sorting the replacement strings produces the
desired sorting sequence. For a binary sort, the sort string is the same as the input
string.

The kind of linguistic sort used by an ORDER BYclause is determined by the NLS_

SORTsession parameter, but it can be overridden by explicitly using the NLSSORT
function.

Example 7-1 specifies a German sort with the NLS_SORTsession parameter.

Example 7-1 Specifying a German Sort with the NLS_SORT Session Parameter

ALTER SESSION SETNLS_SORT = GERMAN;
SELECT * FROM tablel
ORDER BY columni;

Example 7-2 Specifying a French Sort with the NLSSORT Function

This example first sets the NLS_SORTsession parameter to German, but the
NLSSORTunction overrides it by specifying a French sort.

ALTER SESSION SET NLS_SORT = GERMAN,;
SELECT * FROM tablel
ORDER BY NLSSORT(columnl, 'NLS_SORT=FRENCHY);

The WHERIElause uses binary comparison rather than linguistic comparison by
default, but this can be overridden by using the NLSSORTunction in the WHERE
clause.

Example 7-3 Making a Linguistic Comparison with the WHERE Clause

ALTER SESSION SETNLS_COMP =ANS,

SELECT * FROM tablel

WHERE NLSSORT(columnl, NLS_SORT=FRENCH)>
NLSSORT(column2, NLS_SORT=FRENCH);

7-10 Oracle9i Database Globalization Support Guide

Other Locale-Dependent SQL Functions

Setting the NLS_COMRBession parameter to ANSI causes the NLS_SORTvalue to be
used in the WHEREIlause.

The rest of this section contains the following topics:
« NLSSORT Syntax
« Comparing Strings in a WHERE Clause

« Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE
Clause

« Controlling an ORDER BY Clause

NLSSORT Syntax
There are four ways to use NLSSORT

« NLSSORT(), which relies on the NLS_SORTparameter
« NLSSORT(columnl, 'NLS_SORT= xxxx ')

« NLSSORT(columnl, 'NLS_LANG= xxxx ')

« NLSSORT(columnl, 'NLS_LANGUAGE= xxxx ")

The NLS_LANGparameter of the NLSSORTfunction is not the same as the NLS__
LANGclient environment setting. In the NLSSORTunction, NLS_LANGspecifies the
abbreviated language name, such as USfor American or PL for Polish. For example:

SELECT * FROM tablel
ORDER BY NLSSORT(columnl, NLS_LANG=PL);

Comparing Strings in a WHERE Clause

NLSSORTenables applications to perform string matching that follows alphabetic
conventions. Normally, character strings in a WHERI[Elause are compared by using
the binary values of the characters. One character is considered greater than another
character if it has a greater binary value in the database character set. Because the
sequence of characters based on their binary values might not match the alphabetic
sequence for a language, such comparisons may not follow alphabetic conventions.
For example, if a column (columnl) contains the values ABC, ABZ, BCD, and ABC
in the 1SO 8859-1 8-bit character set, the following query returns both BCDand ABC
because A has a higher numeric value than B:

SELECT columnl FROM tablel WHERE columnl >'B;

SQL and PL/SQL Programming in a Global Environment 7-11

Other Locale-Dependent SQL Functions

In German, A is sorted alphabetically before B, but in Swedish, A is sorted after Z.
Linguistic comparisons can be made by using NLSSORTin the WHERElause:

WHERE NLSSORT(col) comparison_operator NLSSORT(comparison_sting)

Note that NLSSORTmust be on both sides of the comparison operator. For example:
SELECT column1 FROM tablel WHERE NLSSORT(column) > NLSSORT(BY);

If a German linguistic sort has been set, then the statement does not return strings
beginning with A because A comes before B in the German alphabet. If a Swedish
linguistic sort has been set, then strings beginning with A are returned because A
comes after Z in the Swedish alphabet.

Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE Clause

Comparison in the WHERElause or PL/SQL blocks is binary by default. Using the
NLSSORTunction for linguistic comparison can be tedious, especially when the
linguistic sort has already been specified in the NLS_SORTsession parameter. You
can use the NLS_COMBMParameter to indicate that the comparisons in a WHERE
clause or in PL/SQL blocks must be linguistic according to the NLS_SORTsession
parameter.

Note: The NLS_COMparameter does not affect comparison
behavior for partitioned tables. String comparisons that are based
on a VALUES LESS THAN partition are always binary.

See Also: "NLS_COMP" on page 3-41

Controlling an ORDER BY Clause

If a linguistic sort is in use, then ORDER BYclauses use an implicit NLSSORTon
character data. The sort mechanism (linguistic or binary) for an ORDER Blause is
transparent to the application. However, if the NLSSORTunction is explicitly
specified in an ORDER BY¥lause, then the implicit NLSSORTis not done.

If a linguistic sort has been defined by the NLS_SORTsession parameter, then an
ORDER BYclause in an application uses an implicit NLSSORTunction. If you
specify an explicit NLSSORTunction, then it overrides the implicit NLSSORT
function.

When the sort mechanism has been defined as linguistic, the NLSSORTunction is
usually unnecessary in an ORDER B¥Xlause.

7-12 Oracle9i Database Globalization Support Guide

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

When the sort mechanism either defaults or is defined as binary, then a query like
the following uses a binary sort:

SELECT last_name FROM employees

ORDERBY last_name;

A German linguistic sort can be obtained as follows:
SELECT last_name FROM employees

ORDER BY NLSSORT(ast_name, NLS_SORT = GERMAN);

See Also: "Improving Case-Insensitive Searches with a
Function-Based Index" on page 4-16

Miscellaneous Topics for SQL and PL/SQL Programming in a Global
Environment

This section contains the following topics:

« SQL Date Format Masks

« Calculating Week Numbers

« SQL Numeric Format Masks

« The Concatenation Operator

« Loading External BFILE Data into LOBs

See Also: Oracle9i SQL Reference for a complete description of
format masks

SQL Date Format Masks

Several format masks are provided with the TO_CHARTO_DATEand TO_NUMBER
functions.

The RM(Roman Month) format element returns a month as a Roman numeral. You
can specify either upper case or lower case by using RMor rm. For example, for the
date 7 Sep 1998, DD-rm-YYYY returns 07-ix-1998 and DD-RM-YYYYreturns
07-1X-1998

Note that the MONand DY format masks explicitly support month and day
abbreviations that may not be three characters in length. For example, the
abbreviations "Lu" and "Ma" can be specified for the French "Lundi" and "Mardi",
respectively.

SQL and PL/SQL Programming in a Global Environment 7-13

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

Calculating Week Numbers

The week numbers returned by the WWormat mask are calculated according to the
following algorithm: int(dayOfYear+6)/7 . This algorithm does not follow the
ISO standard (2015, 1992-06-15).

To support the 1SO standard, the IW format element is provided. It returns the ISO
week number. In addition, the | , 1Y, 1YY, and IYYY format elements, equivalent in
behavior to the Y, YY, YYY and YYYYformat elements, return the year relating to the
ISO week number.

In the ISO standard, the year relating to an ISO week number can be different from
the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A
week always starts on a Monday and ends on a Sunday. The week number is
determined according the following rules:

« IfJanuary 1 falls on a Friday, Saturday, or Sunday, then the week including
January 1 is the last week of the previous year, because most of the days in the
week belong to the previous year.

« IfJanuary 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the
week is the first week of the new year, because most of the days in the week
belong to the new year.

For example, January 1, 1991, is a Tuesday, so Monday, December 31, 1990, to
Sunday, January 6, 1991, is in week 1. Thus, the ISO week number and year for
December 31, 1990, is 1, 1991. To get the 1SO week number, use the IW format mask
for the week number and one of the IY formats for the year.

SQL Numeric Format Masks
Several additional format elements are provided for formatting numbers:

« D(decimal) returns the decimal point character.

« G(group) returns the group separator.

« L (local currency) returns the local currency symbol.

« C(international currency) returns the ISO currency symbol.

« RN(Roman numeral) returns the number as its Roman numeral equivalent.

For Roman numerals, you can specify either upper case or lower case, using RNor
rn , respectively. The number being converted must be an integer in the range 1 to
3999.

7-14 Oracle9i Database Globalization Support Guide

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

The Concatenation Operator

If the database character set replaces the vertical bar | with a national character,
then all SQL statements that use the concatenation operator (encoded as ASCII 124)
will fail. For example, creating a procedure fails because it generates a recursive
SQL statement that uses concatenation. When you use a 7-bit replacement character
set such as D7DEC, F7TDEC, or SF7ASCII for the database character set, then the
national character which replaces the vertical bar is not allowed in object names
because the vertical bar is interpreted as the concatenation operator.

The user can use a 7-bit replacement character set if the database character set is the
same or compatible, that is, if both character sets replace the vertical bar with the
same national character.

Loading External BFILE Data into LOBs

The DBMS_LOPPL/SQL package can load external BFILE data into LOBs. Previous
releases of Oracle did not perform character set conversion before loading the
binary data into CLOB or NCLOB. Thus the BFILE data had to be in the same
character set as the database or national character set to work properly. The APls
that are introduced in Oracle9i Release 2 (9.2) allow the user to specify the character
set ID of the BFILE data by using a new parameter. The APIs convert the data from
the specified BFILE character set into the database character set for CLOB or the
national character set for NCLORB. The loading takes place on the server because
BFILE data is not supported on the client.

« Use DBMS_LOB.LOADBLOBFROMFILtE load to BLOB.
« Use DBMS_LOB.LOADCLOBFROMFIlfBr load to CLOB and NCLORB.

See Also:
« Oracle9i Supplied PL/SQL Packages and Types Reference
« Oracle9i Application Developer’s Guide - Large Objects (LOBS)

SQL and PL/SQL Programming in a Global Environment 7-15

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

7-16 Oracle9i Database Globalization Support Guide

8

OCI Programming in a Global Environment

This chapter contains information useful for OCI programming. It includes the
following topics:

« Using the OCI NLS Functions

« Specifying Character Sets in OCI

« Getting Locale Information in OCI

« Mapping Locale Information Between Oracle and Other Standards
« Manipulating Strings in OCI

« Classifying Characters in OCI

« Converting Character Sets in OCI

« OCI Messaging Functions

OCI Programming in a Global Environment 8-1

Using the OCI NLS Functions

Using the OCI NLS Functions

Many OCI NLS functions accept either the environment handle or the user session
handle. The OCI environment handle is associated with the client NLS environment
and initialized with the client NLS environment variables. This environment does
not change when ALTER SESSIONstatements are issued to the server. The character
set associated with the environment handle is the client character set. The OCI
session handle (returned by OCISessionBegin) is associated with the server
session environment. Its NLS settings change when the session environment is
modified with an ALTER SESSION statement. The character set associated with the
session handle is the database character set.

Note that the OCI session handle does not have any NLS settings associated with it
until the first transaction begins in the session. SELECTstatements do not begin a
transaction.

Specifying Character Sets in OClI

Use the OCIEnvNIsCreate function to specify client-side database and national
character sets when the OCI environment is created.This function allows users to
set character set information dynamically in applications, independent of the NLS_
LANGand NLS_CHARNitialization parameter settings. In addition, one application
can initialize several environment handles for different client environments in the
same server environment.

Any Oracle character set ID except AL16UTF16 can be specified through the
OCIEnvNIsCreate function to specify the encoding of metadata, SQL CHARdata,
and SQL NCHARdata. Use OCI_UTF16ID in the OCIEnvNIsCreate function,
introduced in Oracle 9i Release 2 (9.2), to specify UTF-16 data. Note that the OCI_
UTF16 parameter in the OCIEnvCreate function, which was introduced in
Oraclegi release 1 (9.0.1) and was known as Unicode mode, has been deprecated.

See Also: Oracle Call Interface Programmer’s Guide for more
information about the OCIEnvNIsCreate function and the
OCIEnvCreate function

OCIEnvNIsCreate()
Syntax
sword OCIEnvNIsCreate (OCIEnv ~ *envhpp,
ub4 mode,
dvoid *ctxp,

8-2 Oracle9i Database Globalization Support Guide

Specifying Character Sets in OCI

dvod *(*malocfp)
(dvoid *ctxp,
size tsize),
dvoid *(ralochp)
(dvoid *ctxp,
dvoid *memptr,
size_tnewsize),
void (*mfreefp)
(dvoid *ctxp,
dvoid *memptr))
size t xtramemsz,
dvod *usmmempp
ub2 charset,
ub2 ncharset);

Purpose

Creates and initializes an environment handle for OCI functions to work under. It is
an enhanced version of the OCIEnvCreate() function.

Parameters

envhpp (OUT)
A pointer to an environment handle whose encoding setting is specified by mode
The setting is inherited by statement handles derived from envhpp .

mode (IN)
Specifies initialization of the mode. Valid modes are:

OCI_DEFAULT The default value, which is non-UTF-16 encoding.

OCI|_THREADEDUSses threaded environment. Internal data structures not
exposed to the user are protected from concurrent accesses by multiple threads.

OCI_OBJECT Uses object features.

OCI_UTF16: The environment handle and handles inherited from it assume
UTF-16 encoding. This setting is deprecated. Instead, specify OCI_UTF16ID for
both charset and ncharset

OCI_SHAREDUses shared data structures.
OCI_EVENTS Uses publish-subscribe notifications.

OCI Programming in a Global Environment 8-3

Specifying Character Sets in OCI

« OCI_NO_UCBSuppresses the calling of the OCIEnvCallback dynamic
callback routine. The default behavior is to allow calling of OCIEnvCallback
at the time that the environment is created.

« OCI_ENV_NO_MUTEMNoO0 mutexing in this mode. All OCI calls done on the
environment handle, or on handles derived from the environment handle, must
be serialized.

ctxp (IN)
Specifies the user-defined context for the memory callback routines.

malocfp (IN)
Specifies the user-defined memory allocation function. If the mode is OCI_
THREADERthen this memory allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory allocation function.

size (IN)
Specifies the size of memory to be allocated by the user-defined memory allocation
function.

ralocfp (IN)
Specifies the user-defined memory re-allocation function. If the mode is OCI_
THREADERhen this memory allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory reallocation function.

memp (IN)
Pointer to memory block.

newsize (IN)
Specifies the new size of memory to be allocated

mfreefp (IN)
Specifies the user-defined memory free function. If the mode is OCI_THREADED
then this memory-free routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory-free function.

memptr (IN)
Pointer to memory to be freed

8-4 Oracle9/ Database Globalization Support Guide

Specifying Character Sets in OCI

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the
environment.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for
the user.

charset (IN)

The client-side character set for the current environment handle. If it is 0, then the
NLS_LANGsetting is used. OCI_UTF16ID is a valid setting. This affects metadata
and CHARdata.

ncharset (IN)
The client-side national character set for the current environment handle. If it is O,
then the NLS_NCHARetting is used. OCI_UTF16ID is a valid setting. This affects
NCHARlJata.

Returns
OCI_SUCCESSThe environment handle has been successfully created.

OCI_ERRORAnN error occurred.

Comments

Note: This call should be invoked before any other OCI call and
should be used instead of the OClInitialize() and
OCIEnvInit() calls. OClInitialize() and OCIEnvInit()
calls are supported for backward compatibility.

This function sets nonzero charset and ncharset as client-side database and
national character sets, replacing the ones specified by NLS LANGand NLS NCHAR
When charset and ncharset are 0, it behaves exactly the same as
OCIEnvCreate() . Specifically, charset controls the encoding for metadata and
data with implicit form attribute and ncharset controls the encoding for data with
SQLCS_NCHARrm attribute.

Although OCI_UTF16ID can be set by OCIEnvNIsCreate() ,NLS_LANGand
NLS_NCHARannot have a UTF-16 setting.

OCI Programming in a Global Environment 8-5

Getting Locale Information in OCI

The character set IDs in NLS_LANGand NLS_NCHARan be retrieved with
OCINIsEnvironmentVariableGet()

This call returns an environment handle which is then used by the remaining OCI
functions. There can be multiple environments in OCI, each with its own
environment modes. This function also performs any process-level initialization if
required by any mode. For example, if the user wants to initialize an environment
as OCI_THREADED, then all libraries that are used by OCI are also initialized in
the threaded mode.

If you are writing a DLL or a shared library using OCI library then this call should
be used instead of OClInitialize() and OCIEnvInit() calls.

See Also: "OCINIsEnvironmentVariableGet()" on page 8-13

Getting Locale Information in OCI

An Oracle locale consists of language, territory, and character set definitions. The
locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application obeys a user's locale setting
and cultural conventions. For example, when the locale is set to German, users
expect to see day and month names in German.

You can retrieve the following information with the OCINIsGetInfo() function:

Days of the week (translated)
Abbreviated days of the week (translated)
Month names (translated)
Abbreviated month names (translated)
Yes/no (translated)

AM/PM (translated)

AD/BC (translated)

Numeric format

Debit/credit

Date format

Currency formats

Default language

Default territory

Default character set

Default linguistic sort

Default calendar

This section includes the following topics:

8-6 Oracle9/ Database Globalization Support Guide

Getting Locale Information in OCI

« OCINIsGetInfo()

« OCI_NLS_MAXBUFSZ

« Example: Getting Locale Information in OCI
« OCINIsCharSetNameTold()

« OCINIsCharSetldToName()

« OCINIsNumericlnfoGet()

« OCINIsEnvironmentVariableGet()

OCINIsGetlInfo()

Syntax

sword OCINIsGetinfo(dvoid *hndl, OCIEmor *errhp, OraText *buf, size_t buflen,
ub2 item)

Purpose

This function obtains locale information specified by item from an OCI
environment or user session handle (hndl) into an array pointed to by buf within a
size limitation specified by buflen

Returns
OCI|_SUCCESSOCI_INVALID_HANDLE, or OCI_ERROR

Parameters

hndI(IN/OUT)
The OCI environment or user session handle initialized in object mode

errhp(IN/OUT)

The OCI error handle. If there is an error, then it is recorded in errhp and the
function returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet()

buf(OUT)
Pointer to the destination buffer. Returned strings are terminated by a NULL
character.

OCI Programming in a Global Environment 8-7

Getting Locale Information in OCI

buflen(IN)
The size of the destination buffer. The maximum length for each piece of
information is OCI_NLS_MAXBUFSbytes

item(IN)
Specifies which item in the OCI environment handle to return. It can be one of the
following values:

OCI_NLS_DAYNAMEINative name for Monday
OCI_NLS_DAYNAMEXNative name for Tuesday
OCI_NLS_DAYNAMEXNative name for Wednesday
OCI_NLS_DAYNAMEA4Native name for Thursday
OCI_NLS_DAYNAMESNative name for Friday
OCI_NLS_DAYNAME@Native name for Saturday
OCI_NLS_DAYNAME™Mative name for Sunday
OCI_NLS_ABDAYNAMENative abbreviated name for Monday
OCI_NLS_ABDAYNAMEative abbreviated name for Tuesday
OCI_NLS_ABDAYNAMENative abbreviated name for Wednesday
OCI_NLS_ABDAYNAMEANative abbreviated name for Thursday
OCI_NLS_ABDAYNAME®MNative abbreviated name for Friday
OCI_NLS_ABDAYNAME#®ative abbreviated name for Saturday
OCI_NLS_ABDAYNAMENative abbreviated name for Sunday
OCI_NLS_MONTHNAMEMative name for January
OCI_NLS_MONTHNAMERIative name for February
OCI_NLS_MONTHNAMERIative name for March
OCI_NLS_MONTHNAMERHIative name for April
OCI_NLS_MONTHNAMEBlative name for May
OCI_NLS_MONTHNAMEBRIative name for June
OCI_NLS_MONTHNAMERative name for July
OCI_NLS_MONTHNAMERIative name for August
OCI_NLS_MONTHNAMEBIative name for September
OCI_NLS_MONTHNAME1DBlative name for October
OCI_NLS_MONTHNAME1MNative name for November
OCI_NLS_MONTHNAME1RIative name for December
OCI_NLS_ABMONTHNAMBYative abbreviated name for January
OCI_NLS_ABMONTHNAMHBSative abbreviated name for February
OCI_NLS_ABMONTHNAMHBSative abbreviated name for March
OCI_NLS_ABMONTHNAMBMative abbreviated name for April
OCI_NLS_ABMONTHNAMHBSative abbreviated name for May
OCI_NLS_ABMONTHNAMHBdative abbreviated name for June
OCI_NLS_ABMONTHNAMHBNMative abbreviated name for July
OCI_NLS_ABMONTHNAMHBSative abbreviated name for August

8-8 Oracle9/ Database Globalization Support Guide

Getting Locale Information in OCI

OCI_NLS_ABMONTHNAMHBYative abbreviated name for September
OCI_NLS_ABMONTHNAMEINative abbreviated name for October
OCI_NLS_ABMONTHNAMEI1Mlative abbreviated name for November
OCI_NLS_ABMONTHNAMEI1RRative abbreviated name for December
OCI_NLS_YES Native string for affirmative response
OCI_NLS_NO Native negative response

OCI_NLS_AM Native equivalent string of AM

OCI_NLS_PM Native equivalent string of PM

OCI_NLS_AD Native equivalent string of AD

OCI_NLS_BC Native equivalent string of BC

OCI_NLS_DECIMAL Decimal character

OCI_NLS_GROURGroup separator

OCI_NLS_DEBIT: Native symbol of debit

OCI_NLS_CREDIT. Native symbol of credit
OCI_NLS_DATEFORMATDracle date format
OCI_NLS_INT_CURRENCMnternational currency symbol
OCI_NLS_DUAL_CURRENCDual currency symbol
OCI_NLS_LOC_CURRENCIocale currency symbol
OCI_NLS_LANGUAGH.anguage name
OCI_NLS_ABLANGUAGHR\bbreviation for language name
OCI_NLS_TERRITORYTerritory name
OCI_NLS_CHARACTER_SETharacter set name
OCI_NLS_LINGUISTIC_NAME: Linguistic sort name
OCI_NLS_CALENDARCalendar name

OCI_NLS_WRITING_DIR: Language writing direction
OCI_NLS_ABTERRITORYTerritory abbreviation
OCI_NLS_DDATEFORMADracle default date format
OCI_NLS_DTIMEFORMAT™racle default time format
OCI_NLS_SFDATEFORMATocal date format
OCI_NLS_SFTIMEFORMATLocal time format
OCI_NLS_NUMGROUPINGIumber grouping fields
OCI_NLS_LISTSEP: List separator
OCI_NLS_MONDECIMALMonetary decimal character
OCI_NLS_MONGROURNIonetary group separator
OCI_NLS_MONGROUPIN®GIonetary grouping fields
OCI_NLS_INT_CURRENCYSERnternational currency separator

OCI_NLS_MAXBUFSZ

When calling OCINIsGetinfo (), you need to allocate the buffer to store the
returned information. The buffer size depends on which item you are querying and

OCI Programming in a Global Environment 8-9

Getting Locale Information in OCI

what encoding you are using to store the information. Developers should not need
to know how many bytes it takes to store January in Japanese using JA16SJIS
encoding. The OCI_NLS_MAXBUFSAttribute guarantees that the buffer is big
enough to hold the largest item returned by OCINIsGetinfo ().

Example: Getting Locale Information in OCI
This example code retrieves information and checks for errors.
sword MyPrintLinguisticName(envhp, errhp)

OCIEnv *envhp;
OCIEnor *erthp;
{
OraText infoBUfOCI_NLS_MAXBUFSZ];
sword ret;
ret = OCINIsGetinfo(envhp, f* environment handle */
enhp, Fx error handle */
infoBUf, F destination buffer */
(size_t) OCI_NLS_MAXBUFSZ, Fbuffer size */
(Ub2) OCI_NLS_LINGUISTIC_NAME); Fitem*

if (ret = OCI_SUCCESS)

checkerr(erhp, ret, OCI_HTYPE_ERROR);
ret=OCI_ERROR;

else

{
printf("NLS linguistic: %s\n", infoBuf);

}

retum(ret);

OCINIsCharSetNameTold()

Syntax
ub2 OCINIsCharSetNameTold(dvoid *hndl, const oratext *name)

Purpose

This function returns the Oracle character set ID for the specified Oracle character
set name.

8-10 Oracle9i Database Globalization Support Guide

Getting Locale Information in OCI

Returns

Character set ID if the specified character set name and the OCI handle are valid.
Otherwise it returns 0.

Parameters

hndI(IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function
returns zero.

name(IN)
Pointer to a null-terminated Oracle character set name. If the character set name is
invalid, then the function returns zero.

OCINIsCharSetldToName()

Syntax
sword OCINIsCharSetidToName(dvoid *hndl, oratext *ouf, size_t bufien, ub2 id)

Purpose

This function returns the Oracle character set name from the specified character set
ID.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE, or OCI_ERROR

Parameters

hndI(IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function
returns OCI_INVALID_HANDLE.

buf(OUT)
Points to the destination buffer. If the function returns OCI_SUCCESSthen the
parameter contains a null-terminated string for the character set name.

buflen(IN)
The size of the destination buffer. The recommended size is OCI_NLS_MAXBUFSZ
to guarantee storage for an Oracle character set name. If the size of the destination

OCI Programming in a Global Environment 8-11

Getting Locale Information in OCI

buffer is smaller than the length of the character set name, the function returns
OCI_ERROR

id(IN)
Oracle character set ID

OCINIsNumericInfoGet()

Syntax
sword OCINIsNumericinfoGet(dvoid *hndl, OCIEmor *errhp, sb4 *val, ub2 item)

Purpose

This function obtains numeric language information specified by item from the
OCI environment handle into an output number variable.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE, or OCI_ERROR

Parameters

hndI(IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function
returns OCI_INVALID_HANDLE.

errhp(IN/OUT)

The OCI error handle. If there is an error, then it is recorded in errhp and the
function returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet()

val(OUT)
Pointer to the output number variable. If the function returns OCI_SUCCESSthen
the parameter contains the requested NLS numeric information.

item(IN)
It specifies which item to get from the OCI environment handle and can be one of
following values:

« OCI_NLS CHARSET_ MAXBYTESKIaximum character byte size for OCI
environment or session handle character set

8-12 Oracle9i Database Globalization Support Guide

Getting Locale Information in OCI

« OCI_NLS CHARSET_FIXEDWIDTHCharacter byte size for fixed-width
character set; O for variable-width character set

OCINIsEnvironmentVariableGet()

Purpose

Returns the character set ID from NLS_LANGor the national character set id from
NLS_NCHAR

Syntax
sword OCINIsEnvironmentVariableGet (dvoid ~ *val,
size t size,
ub2 item,
ub?2 charset,
size t *rsize);

Parameters

val (IN/OUT)
Returns a value of an NLS environment variable such as the NLS_LANGcharacter
set ID or the NLS _NCHARharacter set ID

size (IN)

Specifies the size of the given output value, which is applicable only to string data.
The maximum length for each piece of information is OCI_NLS_MAXBUFSZbytes.
In the case of numeric data, this argument is ignored.

item (IN)
Specifies one of the following values to get from the NLS environment variable;
« OCI_NLS CHARSET_IDNLS_ LANGcharacter set ID in ub2 datatype

« OCI_NLS NCHARSET IDNLS_NCHARharacter set ID in ub2 datatype
charset (IN)
Specifies the character set ID for retrieved string data. If it is 0, then the NLS_LANG

value is used. OCI_UTF16ID is a valid value for this argument. In the case of
numeric data, this argument is ignored.

rsize (OUT)
The length of the return value in bytes

OCI Programming in a Global Environment 8-13

Mapping Locale Information Between Oracle and Other Standards

Returns
OCI_SUCCESSThe function finished successfully.

OCI_ERROR:AnN error occurred.

Comments

Following NLS convention, the national character set ID is the same as the character
set ID if NLS_NCHARs not set. If NLS_LANGs not set, tn the default character set
ID is returned.

To allow for future enhancements of this function (to retrieve other values from
environment variables) the datatype of the output val is a pointer to dvoid . String
data is not terminated by NULL

Note that the function does not take an environment handle, so the character set ID
and the national character set ID that it returns are the values specified in NLS_
LANGand NLS_NCHARinstead of the values saved in the OCI environment handle.
To get the character set IDs used by the OCI environment handle, call

OCIAttrGet() for OCI_ATTR_ENV_CHARSE3nd OCI_ATTR_ENV_NCHARSET

Mapping Locale Information Between Oracle and Other Standards

The OCINIsNameMap function maps Oracle character set names, language names,
and territory names to and from Internet Assigned Numbers Authority (IANA) and
International Organization for Standardization (ISO) names.

OCINIsNameMap()

Syntax

sword OCINIsNameMap(dvoid *hndl, oratext *buf, size_t buflen, const oratext
*srchuf, uword flag)

Purpose
This function maps Oracle character set names, language names, and territory

names to and from IANA and ISO names.

Returns
OCIl_SUCCESSOCI_INVALID_HANDLE, or OCI_ERROR

8-14 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

Parameters

hndI(IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function
returns OCI_INVALID_HANDLE.

buf(OUT)
Points to the destination buffer. If the function returns OCI_SUCCESSthen the
parameter contains a null-terminated string for the requested name.

buflen(IN)

The size of the destination buffer. The recommended size is OCI_NLS MAXBUFSZo
guarantee storage of an NLS name. If the size of the destination buffer is smaller
than the length of the name, then the function returns OCI_ERROR

srcbuf(IN)
Pointer to a null-terminated NLS name. If it is not a valid name, then the function
returns OCI_ERROR

flag(IN)
It specifies the direction of the name mapping and can take the following values:

OCI_NLS_CS_IANA_TO_ORAMap character set name from IANA to Oracle
OCI_NLS_CS _ORA_TO_IANAMap character set name from Oracle to IANA.
OCI_NLS_LANG_ISO_TO_ORAMap language name from 1SO to Oracle
OCI_NLS_LANG_ORA_TO_ISOMap language name from Oracle to 1ISO
OCI_NLS_TERR_ISO_TO_ORAMap territory name from I1SO to Oracle
OCI_NLS_TERR_ORA_TO_ISOMap territory name from Oracle to ISO
OCI_NLS_TERR_ISO3_TO_ORAMap territory name from 3-letter ISO abbreviation
to Oracle

OCI_NLS_TERR_ORA_TO_ISO3Map territory name from Oracle to 3-letter ISO
abbreviation

Manipulating Strings in OCI
Two types of data structures are supported for string manipulation:
« Multibyte strings
« Wide character strings

Multibyte strings are encoded in native Oracle character sets. Functions that operate
on multibyte strings take the string as a whole unit with the length of the string

OCI Programming in a Global Environment 8-15

Manipulating Strings in OCI

calculated in bytes. Wide character (wchar) string functions provide more flexibility
in string manipulation. They support character-based and string-based operations
with the length the string calculated in characters.

The wide character datatype is Oracle-specific and should not be confused with the
wchar_t datatype defined by the ANSI/ZISO C standard. The Oracle wide character
datatype is always 4 bytes in all platforms, while the size of wchar_t depends on
the implementation and the platform. The Oracle wide character datatype
normalizes multibyte characters so that they have a fixed width for easy processing.
This guarantees no data loss for round-trip conversion between the Oracle wide
character set and the native character set.

String manipulation can be classified into the following categories:

« Conversion of strings between multibyte and wide character

« Character classifications

« Case conversion

« Calculations of display length

« General string manipulation, such as comparison, concatenation, and searching
Table 8-1 summarizes the OCI string manipulation functions. They are described in

more detail in the rest of this section.

Table 8-1 OCI String Manipulation Functions

Function Description

OCIMultiByteToWideChar() Converts an entire null-terminated string into the wchar format

OCIMultiBytelnSizeToWideChar() Converts part of a string into the wchar format

OCIWideCharToMultiByte() Converts an entire null-terminated wide character string into a
multibyte string

OCIWideCharlnSizeToMultiByte() Converts part of a wide character string into the multibyte format

OCIWideCharToLower() Converts the wchar character specified by wc into the

corresponding lowercase character if it exists in the specified locale.
If no corresponding lowercase character exists, then it returns wc
itself.

OCIWideCharToUpper() Converts the wchar character specified by wc into the
corresponding uppercase character if it exists in the specified locale.
If no corresponding uppercase character exists, then it returns wc
itself.

OCIWideCharStrcmp() Compares two wide character strings by binary, linguistic, or
case-insensitive comparison method

8-16 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

Table 8-1 OCI String Manipulation Functions (Cont.)

Function

Description

OCIWideCharStrncmp()

OCIWideCharStrcat()

OCIWideCharStrncat()

OCIWideCharStrchr()

OCIWideCharStrrchr()

OCIWideCharStrcpy()

OCIWideCharStrncpy()

OCIWideCharStrlen()

OCIWideCharStrCaseConversion()

OCIWideCharDisplayLength()

OCIWideCharMultibyteLength()

OCIMultiByteStrcmp()

OCIMultiByteStrncmp()

OCIMultiByteStrcat()
OCIMultiByteStrncat()

Similar to OCIWideCharStrcmp() . Compares two wide character
strings by binary, linguistic, or case-insensitive comparison
methods. At most lenl bytes form strl , and len2 bytes form
str2 .

Appends a copy of the string pointed to by wsrcstr . Then it
returns the number of characters in the resulting string.

Appends a copy of the string pointed to by wsrcstr . Then it
returns the number of characters in the resulting string. At most n
characters are appended.

Searches for the first occurrence of wc in the string pointed to by
wstr . Then it returns a pointer to the wchar if the search is
successful.

Searches for the last occurrence of wc in the string pointed to by
wstr

Copies the wchar string pointed to by wsrcstr into the array
pointed to by wdststr . Then it returns the number of characters
copied.

Copies the wchar string pointed to by wsrcstr into the array
pointed to by wdststr . Then it returns the number of characters
copied. At most n characters are copied from the array.

Computes the number of characters in the wchar string pointed to
by wstr and returns this number

Converts the wide character string pointed to by wsrcstr into the
case specified by a flag and copies the result into the array pointed
to by wdststr

Determines the number of column positions required for wc in
display

Determines the number of bytes required for wc in multibyte
encoding

Compares two multibyte strings by binary, linguistic, or
case-insensitive comparison methods

Compares two multibyte strings by binary, linguistic, or
case-insensitive comparison methods. At most lenl bytes form
strl andlen2 bytes form str2.

Appends a copy of the multibyte string pointed to by srcstr

Appends a copy of the multibyte string pointed to by srcstr . At
most n bytes from srcstr are appended to dststr

OCI Programming in a Global Environment 8-17

Manipulating Strings in OCI

Table 8-1 OCI String Manipulation Functions (Cont.)

Function Description

OCIMultiByteStrcpy() Copies the multibyte string pointed to by srcstr into an array
pointed to by dststr . It returns the number of bytes copied.

OCIMultiByteStrncpy() Copies the multibyte string pointed to by srcstr into an array
pointed to by dststr . It returns the number of bytes copied. At
most n bytes are copied from the array pointed to by srcstr to the
array pointed to by dststr

OCIMultiByteStrlen() Returns the number of bytes in the multibyte string pointed to by
str
OCIMultiByteStrnDisplayLength() Returns the number of display positions occupied by the complete
characters within the range of n bytes
OCIMultiByteStrCaseConversion() Converts part of a string from one character set to another
OCIMultiByteToWideChar()
Syntax
sword OCIMultiByte TowideChar(dvoid *hndl, OCIWchar *dst, CONST OraText *src,
size_t*rsize);
Purpose

This routine converts an entire NULL-terminated string into the wchar format. The
wchar output buffer are NULL-terminated. If OCI_UTF16ID is specified for SQL
CHARdata in the OCIEnvNIsCreate function, then this function produces an error.

Returns
OCl_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set of string

dst(OUT)
Destination buffer for wchar

src(IN)
Source string to be converted

8-18 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

rsize(OUT)
Number of characters converted including NULL terminator. If it is a NULL pointer,
nothing to return

OCIMultiBytelnSize ToWideChar()

Syntax

sword OCIMuttiBytelnSize ToWideChar(dvoid *hndl, OCIWchar *dst, size_t dstsz,
CONST OraText *src, size_tsrcsz, size_t*rsize)

Purpose

This routine converts part of a string into the wchar format. It converts as many
complete characters as it can until it reaches the output buffer size limit or input
buffer size limit or it reaches a NULLterminator in a source string. The output buffer
is NULL-terminated if space permits. If dstsz is zero, then this function returns
only the number of characters not including the ending NULL terminator needed for
a converted string. If OCI_UTF16ID is specified for SQL CHARdata in the
OCIEnvNIsCreate function, then this function produces an error.

Returns
OCIl_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set of the string

dst(OUT)
Pointer to a destination buffer for wchar . It can be NULL pointer when dstsz s
zero.

dstsz(IN)
Destination buffer size in number of characters. If it is zero, this function just
returns number of characters needed for the conversion.

src (IN)
Source string to be converted

OCI Programming in a Global Environment 8-19

Manipulating Strings in OCI

srcsz(IN)
Length of source string in bytes

rsize(OUT)
Number of characters written into destination buffer, or number of characters for
converted string if dstsz is zero. If it is a NULL pointer, nothing is returned.

OCIWideCharToMultiByte()

Syntax

sword OCIWideCharToMulttiByte(dvoid *hndl, OraText *dst, CONST OCIW/char *src,
size_t*rsize)

Purpose

This routine converts an entire NULL-terminated wide character string into a
multibyte string. The output buffer is NULL-terminated. If OCI_UTF16ID is
specified for SQL CHARdata in the OCIEnvNIsCreate function, then this function
produces an error.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set of string

dst(OUT)
Destination buffer for multibyte string

src(IN)
Source wchar string to be converted

srcsz(IN)
Length of source string in characters

rsize(OUT)
Number of bytes written into destination buffer. If it is a NULL pointer, then nothing
is returned.

8-20 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

OCIWideCharlnSizeToMultiByte()

Syntax

sword OCIWideCharinSize ToMultiByte(dvoid *hndl, OraText *dst, size_t dstsz,
CONST OCIWCchar *src, size_t srcsz, size_t*rsize)

Purpose

This routine converts part of wchar string into the multibyte format. It converts as
many complete characters as it can until it reaches the output buffer size or the
input buffer size or until it reaches a NULL terminator in source string. The output
buffer is NULL-terminated if space permits. If dstsz is zero, the function just
returns the size of byte not including the NULL terminator needed to store the
converted string. If OCI_UTF16ID is specified for SQL CHARdata in the
OCIEnvNIsCreate function, then this function produces an error.

Returns
OCI_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set of string

dst(OUT)
Destination buffer for multibyte. It can be a NULL pointer if dstsz is zero

dstsz(IN)
Destination buffer size in bytes. If it is zero, it returns the size in bytes need for
converted string.

src(IN)
Source wchar string to be converted

srcsz(IN)
Length of source string in characters

rsize(OUT)
Number of bytes written into destination buffer, or number of bytes need to store
the converted string if dstsz is zero. If it is a NULL pointer, nothing is returned.

OCI Programming in a Global Environment 8-21

Manipulating Strings in OCI

OCIwideCharToLower()

Syntax
OCW(char OCIWideCharToLower(dvoid *hndl, OCIWchar wc)

Purpose

This function converts the wchar character specified by wc into the corresponding
lowercase character if it exists in the specified locale. If no corresponding lowercase
character exists, then it returns wc itself. If OCI_UTF16ID is specified for SQL CHAR
data in the OCIEnvNIsCreate() function, then this function produces an error.

Returns
A wchar

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for lowercase conversion

OCIWideCharToUpper()

Syntax
OCIWchar OCIWideCharToUpper(dvoid *hndl, OCIWchar wc)

Purpose

This function converts the wchar character specified by wc into the corresponding
uppercase character if it exists in the specified locale. If no corresponding uppercase
character exists, then it returns wc itself. If OCI_UTF16ID is specified for SQL CHAR
data in the OCIEnvNIsCreate() function, then this function produces an error.

Returns
A wchar

8-22 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for uppercase conversion

OCIWideCharStrcmp()

Syntax
int OCIWideCharStremp(dvoid *hndl, CONST OCIWchar *wstrl, CONST OCIWCchar *wstr2,
int flag)

Purpose

It compares two wchar strings by binary (based on wchar encoding value),
linguistic, or case-insensitive comparison methods. If OCI_UTF16I1D is specified for
SQL CHARdata in the OCIEnvNIsCreate function, then this function produces an
error.

Returns
« 0, ifwstrl = wstr2

« Positive, if wstrl > wstr2

« Negative, if wstrl < wstr2

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wstrl1(IN)
Pointer to a NULL-terminated wchar string

wstr2(IN)
Pointer to a NULL-terminated wchar string

flag(IN)
Used to decide the comparison method. It can take one of the following values:

OCI Programming in a Global Environment 8-23

Manipulating Strings in OCI

« OCI_NLS_BINARY: Binary comparison. This is the default value.

« OCI_NLS_LINGUISTIC : Linguistic comparison specified in the locale
definition.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive
comparison. For example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_
INSENSITIVE to compare strings linguistically without regard to case.

OCIWideCharStrncmp()

Syntax

int OCIWideCharStmemp(dvoid *hndl, CONST OCIWchar *wstrl, size_tlenl, CONST
OCIWCchar *wstr2, size_tlen2, int flag)

Purpose

This function is similar to OCIWideCharStrcmp (). It compares two wide character
strings by binary, linguistic, or case-insensitive comparison methods. At most lenl
bytes from wstrl and len2 bytes from wstr2 are compared. The NULL terminator
is used in the comparison. If OCI_UTF16ID is specified for SQL CHARdata in the
OCIEnvNIsCreate function, then this function produces an error.

Returns
« 0, ifwstrl = wstr2

« Positive, if wstrl > wstr2

« Negative, if wstrl < wstr2

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wstrl1(IN)
Pointer to the first wchar string

len1(IN)
The length for the first string for comparison

8-24 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

wstr2(IN)
Pointer to the second wchar string

len2(IN)
The length for the second string for comparison

flag(IN)

It is used to decide the comparison method. It can take one of the following values:
« OCI_NLS_BINARY: For the binary comparison, this is default value.

« OCI_NLS_LINGUISTIC : For the linguistic comparison specified in the locale.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive
comparison. For example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_
INSENSITIVE to compare strings linguistically without regard to case.

OCIWideCharStrcat()

Syntax

size_t OCIWideCharStrcat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr)

Purpose

This function appends a copy of the wchar string pointed to by wsrcstr , including
the NULLterminator to the wchar string pointed to by wdststr . If OCI_UTF16ID is
specified for SQL CHARdata in the OCIEnvNIsCreate function, then this function
produces an error.

Returns
The number of characters in the result string, not including the NULL terminator.

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wdststr(IN/OUT)
Pointer to the destination wchar string for appending

OCI Programming in a Global Environment 8-25

Manipulating Strings in OCI

wsrestr(IN)
Pointer to the source wchar string to append

OCIWideCharStrncat()

Syntax

size_t OCIWideCharStmcat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr, size_tn)

Purpose

This function is similar to OCIWideCharStrcat (). At most n characters from
wsrcstr are appended to wdststr . Note that the NULL terminator in wsrcstr
stops appending. wdststr is NULL-terminated. If OCI_UTF16ID is specified for
SQL CHARdata in the OCIEnvNIsCreate function, then this function produces an

error.

Returns

The number of characters in the result string, not including the NULL terminator

Parameters

hndI(IN/OUT)

OCI environment or user session handle to determine the character set

wdststr(IN/OUT)
Pointer to the destination wchar string to append

wsrcstr(IN)
Pointer to the source wchar string to append

n(IN)
Number of characters from wsrcstr to append

OCIWideCharStrchr()

Syntax
OCMW/char *OCIWideCharStrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIM/char we)

8-26 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

Purpose

This function searches for the first occurrence of wc in the wchar string pointed to
by wstr . If OCI_UTF16ID is specified for SQL CHARdata in the OCIEnvNIsCreate
function, then this function produces an error.

Returns
A wchar pointer if successful, otherwise a NULL pointer

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wstr(IN)
Pointer to the wchar string to search

wc(IN)
wchar to search for

OCIWideCharStrrchr()

Syntax
OCMchar *OCIWideCharStrrchr(dvoid *hndl, CONST OCIMWchar *wstr, OCIWchar we)

Purpose

This function searches for the last occurrence of wc in the wchar string pointed to
by wstr . If OCI_UTF16ID is specified for SQL CHARdata in the OCIEnvNIsCreate
function, then this function produces an error.

Returns
wchar pointer if successful, otherwise a NULL pointer

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

OCI Programming in a Global Environment 8-27

Manipulating Strings in OCI

wstr(IN)
Pointer to the wchar string to search

wc(IN)
wchar to search for

OCIWideCharStrcpy()

Syntax

size_t OCIWideCharStrepy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr)

Purpose

This function copies the wchar string pointed to by wsrcstr , including the NULL
terminator, into the array pointed to by wdststr . If OCI_UTF16ID is specified for

SQL CHARdata in the OCIEnvNIsCreate function, then this function produces an
error.

Returns
The number of characters copied not including the NULL terminator

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wdststr(OUT)
Pointer to the destination wchar buffer

wsrcstr(IN)
Pointer to the source wchar string

OCIWideCharStrncpy()

Syntax

size_t OCIWideCharStmcpy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr, size_tn)

8-28 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

Purpose

This function is similar to OCIWideCharStrcpy (), except that at most n characters
are copied from the array pointed to by wsrcstr to the array pointed to by
wdststr . Note that the NULLterminator in wdststr stops copying and the result
string is NULL-terminated. If OCI_UTF16ID is specified for SQL CHARdata in the
OCIEnvNIsCreate function, then this function produces an error.

Returns
The number of characters copied not including the NULL terminator

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wdststr(OUT)
Pointer to the destination wchar buffer

wsrcstr(IN)
Pointer to the source wchar string

n(IN)
Number of characters from wsrcstr to copy

OCIWideCharStrlen()

Syntax
size_t OCIWideCharStrien(dvoid *hndl, CONST OCIWchar *wstr)

Purpose

This function computes the number of characters in the wchar string pointed to by
wstr , not including the NULL terminator, and returns this number. If OCI_UTF161D
is specified for SQL CHARdata in the OCIEnvNIsCreate function, then this
function produces an error.

Returns
The number of characters not including the NULL terminator

OCI Programming in a Global Environment 8-29

Manipulating Strings in OCI

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wstr(IN)
Pointer to the source wchar string

OCIWideCharStrCaseConversion()

Syntax

size_t OCIWideCharStrCaseConversion(dvoid *hndl, OCIWchar *wdststr, CONST
OCIWchar*wsrcstr, ub4 flag)

Purpose

This function converts the wide char string pointed to by wsrcstr into the upper
case or lower case specified by the flag and copies the result into the array pointed
to by wdststr . The result string is NULL-terminated. If OCI_UTF16ID is specified
for SQL CHARdata in the OCIEnvNIsCreate function, then this function produces
an error.

Returns
The number of characters for the result string, not including the NULL terminator
Parameters

hndI(IN/OUT)
OCI environment or user session handle

wdststr(OUT)
Pointer to destination array

wsrcstr(IN)
Pointer to source string

flag(IN)
Specify the case to convert:

« OCI_NLS_UPPERCASEConvert to upper case

8-30 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

« OCI_NLS LOWERCASEoOonvert to lower case

This flag can be used with OCI_NLS_LINGUISTIC to specify that the linguistic
setting in the locale is used for case conversion.

OCIWideCharDisplayLength()

Syntax
size_t OCIWideCharDisplayLength(dvoid *hndl, OCIWchar wc)

Purpose

This function determines the number of column positions required for wc in
display. It returns the number of column positions, or 0 if wc is the NULL terminator.
If OCI_UTF16ID is specified for SQL CHARdata in the OCIEnvNIsCreate

function, then this function produces an error.

Returns
The number of display positions
Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar character

OCIWideCharMultiByteLength()

Syntax
size_t OCIWideCharMultiByteLen(dvoid *hndl, OCIWchar wc)

Purpose

This function determines the number of bytes required for wc in multibyte
encoding. If OCI_UTF16ID is specified for SQL CHARdata in the
OCIEnvNIsCreate function, then this function produces an error.

OCI Programming in a Global Environment 8-31

Manipulating Strings in OCI

Returns
The number of bytes required for wc

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar character

OCIMultiByteStremp()

Syntax
int OCIMultiByteStremp(dvoid *hndl, CONST OraText *str1, CONST OraText *str2,
int flag)

Purpose

It compares two multibyte strings by binary, linguistic, or case-insensitive
comparison methods. If OCI_UTF16ID is specified for SQL CHARdata in the
OCIEnvNIsCreate function, then this function produces an error.

Returns
« 0, ifstrl =str2

« Positive, if strl > str2

« Negative, if strl < str2

Parameters

hndI(IN/OUT)
OCI environment or user session handle

str1(IN)
Pointer to a NULL-terminated string

str2(IN)
Pointer to a NULL-terminated string

8-32 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

flag(IN)
It is used to decide the comparison method. It can take one of the following values:

« OCI_NLS_BINARY: Binary comparison This is the default value.
« OCI_NLS_LINGUISTIC : Linguistic comparison specified in the locale

This flag can be used with OCI_NLS CASE_INSENSITIVE for case-insensitive
comparison. For example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_
INSENSITIVE to compare strings linguistically without regard to case.

OCIMultiByteStrncmp()

Syntax

int OCIMultiByteStmemp(dvoid *hndl, CONST OraText *strl, size_tlenl, OraText
*str2, size_tlen2, intflag)

Purpose

This function is similar to OCIMultiByteStrcmp (), except that at most len1l bytes
fromstrl andlen2 bytes from str2 are compared. The NULL terminator is used
in the comparison. If OCI_UTF16ID is specified for SQL CHARdata in the
OCIEnvNIsCreate function, then this function produces an error.

Returns
« 0, ifstrl =str2

« Positive, if strl > str2

« Negative, if strl <str2

Parameters

hndI(IN/OUT)
OCI environment or user session handle

str1(IN)
Pointer to the first string

len1(IN)
The length for the first string for comparison

OCI Programming in a Global Environment 8-33

Manipulating Strings in OCI

str2(IN)
Pointer to the second string

len2(IN)
The length for the second string for comparison

flag(IN)

It is used to decide the comparison method. It can take one of the following values:
« OCI_NLS_BINARY: Binary comparison. This is the default value.

» OCI_NLS_LINGUISTIC : Linguistic comparison specified in the locale

This flag can be used with OCI_NLS_ CASE_INSENSITIVE for case-insensitive
comparison. For example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_
INSENSITIVE to compare strings linguistically without regard to case.

OCIMultiByteStrcat()

Syntax
size_t OCIMultiByteStrcat(dvoid *hndl, OraText *dststr, CONST OraText *srcstr)

Purpose

This function appends a copy of the multibyte string pointed to by srcstr
including the NULL terminator to the end of string pointed to by dststr . If OCI_
UTF16ID is specified for SQL CHARdata in the OCIEnvNIsCreate function, then
this function produces an error.

Returns
The number of bytes in the result string, not including the NULL terminator

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

dststr(IN/OUT)
Pointer to the destination multibyte string for appending

srcstr(IN)
Pointer to the source string to append

8-34 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

OCIMultiByteStrncat()

Syntax

size_t OCIMultiByteStmcat(dvoid *hndl, OraText *dststr, CONST OraText *srcstr,
size_tn)

Purpose

This function is similar to OCIMultiByteStrcat (). At most n bytes from srcstr
are appended to dststr . Note that the NULL terminator in srcstr stops
appending and the function appends as many character as possible within n bytes.
dststr is NULL-terminated. If OCI_UTF16ID is specified for SQL CHARdata in the
OCIEnvNIsCreate function, then this function produces an error.

Returns
The number of bytes in the result string, not including the NULL terminator

Parameters

hndI(IN/OUT)
Pointer to OCI environment or user session handle

dststr(IN/OUT)
Pointer to the destination multibyte string for appending

srcstr(IN)
Pointer to the source multibyte string to append

n(IN)
The number of bytes from srcstr to append

OCIMultiByteStrcpy()

Syntax
size_t OCIMuliByteStrcpy(dvoid *hndl, OraText *dststr, CONST OraText *srcstr)

OCI Programming in a Global Environment 8-35

Manipulating Strings in OCI

Purpose

This function copies the multibyte string pointed to by srcstr , including the NULL
terminator, into the array pointed to by dststr . If OCI_UTF16ID is specified for
SQL CHARdata in the OCIEnvNIsCreate function, then this function produces an
error.

Returns
The number of bytes copied, not including the NULL terminator

Parameters

hndI(IN/OUT)
Pointer to the OCI environment or user session handle

dststr(OUT)
Pointer to the destination buffer

srcstr(IN)
Pointer to the source multibyte string

OCIMultiByteStrncpy()

Syntax

size_t OCIMuliByteStmcpy(dvoid *hndl, OraText *dststr, CONST OraText *srcstr,
size _tn)

Purpose

This function is similar to OCIMultiByteStrcpy (). At most n bytes are copied
from the array pointed to by srcstr to the array pointed to by dststr . Note that
the NULL terminator in srcstr ~ stops copying and the function copies as many
characters as possible within n bytes. The result string is NULL-terminated. If OCI_
UTF16ID is specified for SQL CHARdata in the OCIEnvNIsCreate function, then
this function produces an error.

Returns
The number of bytes copied not including the NULL terminator

8-36 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

Parameters

hndI(IN/OUT)
Pointer to OCI environment or user session handle

srcstr(OUT)
Pointer to the destination buffer

dststr(IN)
Pointer to the source multibyte string

n(IN)
The number of bytes from srcstr to copy

OCIMultiByteStrlen()

Syntax
size_t OCIMuliByteStrien(dvoid *hndl, CONST OraText *str)

Purpose

This function returns the number of bytes in the multibyte string pointed to by str ,
not including the NULLterminator. If OCI_UTF16ID is specified for SQL CHARdata
in the OCIEnvNIsCreate function, then this function produces an error.

Returns
The number of bytes not including the NULL terminator

Parameters

hndI(IN/OUT)
Pointer to the OCI environment or user session handle

str(IN)
Pointer to the source multibyte string

OCI Programming in a Global Environment 8-37

Manipulating Strings in OCI

OCIMultiByteStrnDisplayLength()

Syntax
size_t OCIMuliByteStmDisplayl_ength(dvoid *hndl, CONST OraText *strl, size_tn)

Purpose

This function returns the number of display positions occupied by the complete
characters within the range of n bytes. If OCI_UTF16ID is specified for SQL CHAR
data in the OCIEnvNIsCreate function, then this function produces an error.

Returns
The number of display positions

Parameters

hndI(IN/OUT)
OCI environment or user session handle

str(IN)
Pointer to a multibyte string

n(IN)
The number of bytes to examine

OCIMultiByteStrCaseConversion()

Syntax

size_t OCIMultiByteStrCaseConversion(dvoid *hndl, OraText *dststr, CONST OraText
*srestr, ub4 flag)

Purpose

This function converts the multibyte string pointed to by srcstr into upper case or
lower case as specified by the flag and copies the result into the array pointed to by
dststr . The result string is NULL-terminated. If OCI_UTF16ID is specified for SQL
CHARdata in the OCIEnvNIsCreate function, then this function produces an error.

8-38 Oracle9i Database Globalization Support Guide

Manipulating Strings in OCI

Returns
The number of bytes for result string, not including the NULL terminator

Parameters

hndI(IN/OUT)
OCI environment or user session handle

dststr(OUT)
Pointer to destination array

srcstr(IN)
Pointer to source string

flag(IN)
Specify the case to which to convert:

« OCI_NLS _UPPERCASEConvert to upper case
« OCI_NLS_LOWERCASEoONnvert to lower case

This flag can be used with OCI_NLS_LINGUISTIC to specify that the linguistic
setting in the locale is used for case conversion.

Example: Manipulating Strings in OCI

The following example shows a simple case of manipulating strings.

size_t MyConvertMultiByte ToWideChar(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCMWchar *dstBuf;
size t dstSize;
OraText *srcStr, F null terminated source sfring
*
{
sword ret;
size tdstLen=0;
size_tsrcLen;

F getlength of source string */
srcLen = OCIMultiByteStrien(envhp, srcSt);

ret= OCIMultiByteInSizeToWideChar(envhp, /* environment handle */
dstBuf, f* destination buffer */

OCI Programming in a Global Environment 8-39

Classifying Characters in OCI

dstSize,
SrcStr,
srcLen,
&dstlen);

* destination buffer size */
* source string */
 length of source string */
 pointer to destination length */

if (et '= OCl_SUCCESS)

checkerr(envhp, ret, OCI_HTYPE_ENV);

}
}

retum(dstLen);

See Also: Oracle Call Interface Programmer’s Guide

Classifying Characters in OCI

Table 8-2 shows the OCI character classification functions. They are described in
more detail in the rest of this section.

Table 82 OCI Character Classification Functions

Function Description

OCIWideCharlsAlnum() Tests whether the wide character is a letter or decimal digit
OCIWideCharlsAlpha() Tests whether the wide character is an alphabetic letter
OCIWideCharlsCntrl() Tests whether the wide character is a control character
OCIWideCharlsDigit() Tests whether the wide character is a decimal digital character
OCIWideCharlsGraph() Tests whether the wide character is a graph character
OCIWideCharlsLower() Tests whether the wide character is a lowercase letter
OCIWideCharlsPrint() Tests whether the wide character is a printable character
OCIWideCharlsPunct() Tests whether the wide character is a punctuation character
OCIWideCharlsSpace() Tests whether the wide character is a space character
OCIWideCharlsUpper() Tests whether the wide character is an uppercase character
OCIWideCharlsXdigit() Tests whether the wide character is a hexadecimal digit
OCIWideCharlsSingleByte() Tests whether wc is a single-byte character when converted into multibyte

8-40 Oracle9i Database Globalization Support Guide

Classifying Characters in OCI

OCIWideCharlsAlnum()

Syntax
boolean OCIWideCharlsAlnum(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a letter or decimal digit.

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharlsAlpha()

Syntax
boolean OCIWideCharlsAlpha(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is an alphabetic letter.

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCI Programming in a Global Environment 8-41

Classifying Characters in OCI

OCIWideCharlsCntrl()

Syntax
boolean OCIWideCharlsCntri(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a control character.

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharlsDigit()

Syntax
boolean OCIWideCharlsDigit(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a decimal digit character.

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

8-42 Oracle9i Database Globalization Support Guide

Classifying Characters in OCI

wc(IN)
wchar for testing

OCIWideCharlsGraph()

Syntax
boolean OCIWideCharlsGraph(dvoid *hndl, OCIWchar wc)

Purpose

It tests whether wc is a graph character. A graph character is a character with a
visible representation and normally includes alphabetic letters, decimal digits, and
punctuation.

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharlsLower()

Syntax
boolean OCIWideCharlsLower(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a lowercase letter.

Returns
TRUEor FALSE

OCI Programming in a Global Environment 8-43

Classifying Characters in OCI

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharlsPrint()

Syntax
boolean OCIWideCharlsPrint(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a printable character.

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharlsPunct()

Syntax
boolean OCIWideCharlsPunct(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a punctuation character.

8-44 Oracle9i Database Globalization Support Guide

Classifying Characters in OCI

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharlsSpace()

Syntax
boolean OCIWideCharlsSpace(dvoid *hndl, OCIWchar wc)

Purpose

It tests whether wc is a space character. A space character causes white space only in
displayed text (for example, space, tab, carriage return, new line, vertical tab or
form feed).

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharlsUpper()

Syntax
boolean OCIWideCharlsUpper(dvoid *hndl, OCIWchar wc)

OCI Programming in a Global Environment 8-45

Classifying Characters in OCI

Purpose
It tests whether wc is an uppercase letter.

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

OCIWideCharlsXdigit()

Syntax
boolean OCIWideCharlsXdigit(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a hexadecimal digit (0-9, A-F, a-f).

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

8-46 Oracle9i Database Globalization Support Guide

Classifying Characters in OCI

OCIWideCharlsSingleByte()

Syntax
boolean OCIWideCharlsSingleByte(dvoid *hndl, OCIWchar wc)

Purpose
It tests whether wc is a single-byte character when converted into multibyte.

Returns
TRUEor FALSE

Parameters

hndI(IN/OUT)
OCI environment or user session handle to determine the character set

wc(IN)
wchar for testing

Example: Classifying Characters in OCI
The following example shows how to classify characters in OCI.

boolean MylsNumberWideCharString(envhp, srcStr)

OCIEnv *envhp;

OCIWchar *srcStr; Fwide char source string */

{
OCIWchar *pstr = srcStr; F define and init pointer */
boolean status = TRUE; * define and initialize status variable */

P Check input*/
if (ostr == (OCIWchar*) NULL)
retum(FALSE);

if (*pstr = (OCIW(char) NULL)
retum(FALSE);
F check each character for digit */

do
{

OCI Programming in a Global Environment 8-47

Converting Character Sets in OCI

if (OCIWideCharlsDigitienvhp, *pstr) = TRUE)

{
status = FALSE;
break; F* non-decimal digit character */
}
}while (*++pstr 1= (OCIWchar) NULL);
retum(status);
}

Converting Character Sets in OCI

Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if a character has no
mapping from Unicode to the Oracle character set. Therefore, conversion back to
the original character set is not always possible without data loss.

Table 8-3 summarizes the OCI character set conversion functions. They are
described in more detail in the rest of this section.

Table 8—3 OCI Character Set Conversion Functions

Function Description

OCICharsetToUnicode() Converts a multibyte string pointed to by src to
Unicode into the array pointed to by dst

OClUnicodeToCharset() Converts a Unicode string pointed to by src to
multibyte into the array pointed to by dst

OCINIsCharSetConvert() Converts a string from one character set to another

OCICharSetConversionlsReplacementUsed() Indicates whether replacement characters were used for
characters that could not be converted in the last
invocation of OCINIsCharsetConvert() or

OCICharSetToUnicode()

OCICharSetToUnicode()

Syntax

sword OCICharSetToUnicode(dvoid *hndl, ub2 *dst, size_tdstien, CONST OraText
*src, size_tsrclen, size_t*rsize)

8-48 Oracle9i Database Globalization Support Guide

Converting Character Sets in OCI

Purpose

This function converts a multibyte string pointed to by src to Unicode into the
array pointed to by dst . The conversion stops when it reaches the source limitation
or destination limitation. The function returns the number of characters converted
into a Unicode string. If dstlen is 0, then the function scans the string, counts the
number of characters, and returns the number of characters into rsize , but does
not convert the string.

If OCI_UTF16ID is specified for SQL CHARdata in the OCIEnvNIsCreate
function, then this function produces an error.

Returns
OCIl_SUCCESSOCI_INVALID_HANDLE or OCI_ERROR

Parameters

hndI(IN/OUT)
Pointer to an OCI environment or user session handle

dst(OUT)
Pointer to a destination buffer

dstlen(IN)
The size of the destination buffer in characters

src(IN)
Pointer to a multibyte source string

srclen(IN)
The size of the source string in bytes

rsize(OUT)
The number of characters converted. If it is a NULL pointer, then nothing is
returned.

OClUnicodeToCharSet()

Syntax

sword OClUnicode ToCharSet(dvoid *hndl, OraText *dst, size_t dstien, CONST ub2
*src, size_tsrclen, size_t*rsize)

OCI Programming in a Global Environment 8-49

Converting Character Sets in OCI

Purpose

This function converts a Unicode string pointed to by src to a multibyte string into
the array pointed to by dst . The conversion stops when it reaches the source
limitation or destination limitation. The function returns the number of bytes
converted into a multibyte string. If dstlen is zero, it returns the number of bytes
into rsize without conversion.

If a Unicode character is not convertible for the character set specified in OCI
environment or user session handle, a replacement character is used for it. In this
case, OCICharsetConversionlsReplacementUsed () returns TRUE

If OCI_UTF16ID is specified for SQL CHARdata in the OCIEnvNIsCreate
function, then this function produces an error.

Returns
OCIl_SUCCESSOCI_INVALID _HANDLE or OCI_ERROR

Parameters

hndI(IN/OUT)
Pointer to an OCI environment or user session handle

dst(OUT)
Pointer to a destination buffer

dstlen(IN)
The size of destination buffer in bytes

src(IN)
Pointer to a Unicode string

srclen(IN)
The size of the source string in characters

rsize(OUT)
The number of bytes converted. If it is a NULL pointer, nothing is returned.

OCINIsCharSetConvert()

Syntax
sword OCINIsCharSetConvert(dvoid *envhp, OCIEmror *errhp,ub2 dstid, dvoid *dstp,

8-50 Oracle9i Database Globalization Support Guide

Converting Character Sets in OCI

size_tdstlen,ub2 srcid, CONST dvoid *srcp, size_tsrclen, size_t*rsize);

Purpose

This function converts a string pointed to by src in the character set specified by
srcid to the array pointed to by dst in the character set specified by dstid . The
conversion stops when it reaches the data size limitation of either the source or the
destination. The function returns the number of bytes converted into the destination
buffer. Although either the source or the destination character set ID can be
specified as OCI_UTF16ID, the length of the original and the converted data is
represented in bytes, rather than number of characters. Note that the conversion
does not stop when it encounters null data. To get the character set ID from the
character set name, use OCINIsCharSetNameTold() . To check if derived data in
the destination buffer contains replacement characters, use
OCICharSetConversionlsReplacementUsed() . The buffers should be aligned
with the byte boundaries appropriate for the character sets. For example, the ub2
datatype should be used to hold strings in UTF-16.

Returns
OCI_SUCCESSr OCI_ERRORnumber of bytes converted

Parameters

errhp(IN/OUT)

OCI error handle. If there is an error, it is recorded in errhp and the function
returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet()

dstid(IN)
Character set ID for the destination buffer

dstp(OUT)
Pointer to the destination buffer

dstlen(IN)
The maximum size in bytes of the destination buffer

srcid(IN)
Character set ID for the source buffer

srcp(IN)
Pointer to the source buffer

OCI Programming in a Global Environment 8-51

Converting Character Sets in OCI

srclen(IN)
The length in bytes of the source buffer

rsize(OUT)
The number of characters converted. If the pointer is NULL, then nothing is
returned.

OCICharSetConversionlsReplacementUsed()

Syntax
boolean OCICharSetConversionlsReplacementUsed(dvoid *hndl)

Purpose

This function indicates whether the replacement character was used for characters
that could not be converted during the last invocation of
OCICharSetToUnicode () or OCICharSetConvert()

Returns

The function returns TRUEIf the replacement character was used when
OCICharSetConvert () or OCICharSetToUnicode() was last invoked.
Otherwise the function returns FALSE

Parameter

hndI(IN/OUT)
Pointer to an OCI environment or user session handle

Conversion between the Oracle character set and Unicode (16-bit, fixed-width
Unicode encoding) is supported. Replacement characters are used if there is no
mapping for a character from Unicode to the Oracle character set. Thus, not every
character can make a round-trip conversion to the original character. Data loss
occurs with certain characters.

Example: Converting Character Sets in OCI
The following example shows a simple conversion into Unicode.

size_t MyConvertMultiByte ToUnicode(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
ub2 *dstBuf;

8-52 Oracle9i Database Globalization Support Guide

OCI Messaging Functions

size t dstSize;
OraText *srcStr,
{
sword ret;
size tdstLen=0;
size_tsrcLen;

* getlength of source string */
srcLen = OCIMultiByteStrien(envhp, srcStr);

ret = OCICharSetToUnicode(envhp, Fenvironment handle */
dstBuf, destination buffer */
dstSize, [* size of destination buffer */
srcStr, source string */
srcLen, length of source string */
&dstlen); pointer to destination length */

if (ret = OC|_SUCCESS)
checkerr(envhp, ret, OCI_HTYPE_ENV);

}
retum(dstLen);

}

OCI Messaging Functions

The user message API provides a simple interface for cartridge developers to
retrieve their own messages as well as Oracle messages.

See Also: Oracle9i Data Cartridge Developer’s Guide

Table 8-4 summarizes the OCI messaging functions.

OCI Programming in a Global Environment 8-53

OCI Messaging Functions

Table 8-4 OCI Messaging Functions

Function Description
OCIMessageOpen() Opens a message handle in a language pointed to by hndl
OCIMessageGet() Retrieves a message with message number identified by msgno. If the

buffer is not zero, then the function copies the message into the buffer
pointed to by msgbuf .

OCIMessageClose() Closes a message handle pointed to by msgh and frees any memory
associated with this handle

This section contains the following topics:

« OCIMessageOpen()

« OCIMessageGet()

« OCIMessageClose()

« Example: Retrieving a Message from a Text Message File

« Imsgen Utility

OCIMessageOpen()

Syntax

sword OCIMessageOpen(dvoid *hndl, OCIError *erhp, OCIMsg *msghp, CONST OraText
*product, CONST OraText *facility, OCIDuration dur)

Purpose

This function opens a message-handling facility in a language pointed to by hndl .
It first tries to open the message file corresponding to hndl . If it succeeds, then it
uses that file to initialize a message handle. If it cannot find the message file that
corresponds to the language, it looks for a primary language file as a fallback. For
example, if the Latin American Spanish file is not found, then it tries to open the
Spanish file. If the fallback fails, then it uses the default message file, whose
language is AMERICANThe function returns a pointer to a message handle into the
msghp parameter.

Returns
OCl_SUCCESSOCI_INVALID_HANDLE, or OClI_ERROR

8-54 Oracle9i Database Globalization Support Guide

OCI Messaging Functions

Parameters

hndI(IN/OUT)
Pointer to an OCI environment or user session handle for message language

errhp(IN/OUT)

The OCI error handle. If there is an error, it is recorded in errhp, and the function
returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet()

msghp(OUT)
A message handle for return

product(IN)

A pointer to a product name. The product name is used to locate the directory for
messages. Its location depends on the operating system. For example, in Solaris, the
directory of message files for the rdbms product is SORACLE_HOME/rdbms

facility(IN)

A pointer to a facility name in the product. It is used to construct a message file
name. A message file name follows the conversion with facility as prefix. For
example, the message file name for the img facility in the American language is
imgus.msb , where us is the abbreviation for the American language and msbis the
message binary file extension.

dur(IN)
The duration for memory allocation for the return message handle. It can have the
following values:

OCI_DURATION_PROCESS
OCI_DURATION_SESSION
OCI_DURATION_STATEMENT

OCIMessageGet()

Syntax
OraText *OCIMessageGet(OCIMsg *msgh, ub4 msgno, OraText *msghbuf, size_t buflen)

Purpose

This function gets a message with the message number identified by msgno. If
buflen is not zero, then the function copies the message into the buffer pointed to

OCI Programming in a Global Environment 8-55

OCI Messaging Functions

by msgbuf . If buflen is zero, then the message is copied into a message buffer
inside the message handle pointed to by msgh.

Returns

It returns the pointer to the NULL-terminated message string. If the translated
message cannot be found, then it tries to return the equivalent English message. If
the equivalent English message cannot be found, then it returns a NULL pointer.

Parameters

msgh(IN/OUT)
Pointer to a message handle which was previously opened by OCIMessageOpen()

msgno(IN)
The message number for getting message

msgbuf(OUT)
Pointer to a destination buffer for the retrieved message. If buflen is zero, then it
can be a NULL pointer.

buflen(IN)
The size of the destination buffer

OCIMessageClose()

Syntax
sword OCIMessageClose(dvoid *hndl, OCIEmor *errhp, OCIMsg *msgh)

Purpose
This function closes a message handle pointed to by msgh and frees any memory

associated with this handle.

Returns
OCI|_SUCCESSOCI_INVALID_HANDLE, or OCI_ERROR

Parameters

Table 8-5 OCIMessageClose Keywords/Parameters (Cont.)

8-56 Oracle9i Database Globalization Support Guide

OCI Messaging Functions

Keyword/Parameter

Meaning
hndI(IN/OUT)

Pointer to an OCI environment or user session handle for message language

errhp(IN/OUT)

The OCI error handle. If there is an error, it is recorded in errhp and the function returns a NULL pointer.
Diagnostic information can be obtained by calling OCIErrorGet()

msgh(IN/OUT)

A pointer to a message handle that was previously opened by OCIMessageOpen()

Example: Retrieving a Message from a Text Message File

Imsgen Utility

This example creates a message handle, initializes it to retrieve messages from
impus.msg , retrieves message number 128, and closes the message handle. It
assumes that OCI environment handles, OCI session handles, product, facility, and
cache size have been initialized properly.

OCIMsg msghnd; Fmessage handle */
F iniialize a message handle for retrieving messages from impus.msg*/
err = OClMessageOpen(hndl,erhp, &msghnd, prod,fac,0CI_DURATION_SESSION);
if (e '=OCI_SUCCESS)
Ferror handiing */

F* retrieve the message with message number = 128 */

msgptr = OCIMessageGet(msghnd, 128, msghbuf, sizeof(msghbuf));
F do something with the message, such as display it */

* close the message handle when there are no more messages to retrieve */
OClIMessageClose(hndl, errhp, msghnd);

Purpose

The Imsgen utility converts text-based message files (.msg) into binary format
(.msb) so that Oracle messages and OCI messages provided by the user can be
returned to OCI functions in the desired language.

Syntax
LMSGENext file product facilty [language]

OCI Programming in a Global Environment 8-57

OCI Messaging Functions

text file is a message text file.
product is the name of the product.
facility is the name of the facility.

language is the optional message language corresponding to the language
specified in the NLS_LANGparameter. The language parameter is required if the
message file is not tagged properly with language.

Text Message Files
Text message files must follow these guidelines:

Lines that start with / and // are treated as internal comments and are ignored.

To tag the message file with a specific language, include a line similar to the
following:

CHARACTER_SET_NAME=Japanese_Japan.JA16EUC

Each message contains 3 fields:
message_number , waming level , message text
The message number must be unique within a message file.

The warning level is not currently used. Use 0.
The message text cannot be longer than 76 bytes.

The following is an example of an Oracle message text file:

/ Copyright (c) 2001 by the Oracle Corporation. All rights reserved.
/ Thisis a test us7ascii message file

#CHARACTER _SET _NAME=american _america.us7asci

/

00000, 00000, "Export terminated unsuccessfuliy\n”

00003, 00000, "no storage definition found for segment(%olu, %olu)"

Example: Creating a Binary Message File from a Text Message File
The following table contains sample values for the Imsgen parameters:

Parameter Value
product $HOME/myApplication
facility imp

8-58 Oracle9i Database Globalization Support Guide

OCI Messaging Functions

Parameter Value
language AMERICAN
text _file impus.msg

The text message file is found in the following location:
SHOME/myApp/mesgimpus.msg

One of the lines in the text message file is:
001282, "Duplicate entry %s found in %s"

The Imsgen utility converts the text message file (impus.msg) into binary format,
resulting in a file called impus.msb :

% Imsgen impus.msg $HOME/myApplication imp AMERICAN

The following output results:

Generating message file impus.msg —
/home/scott/myApplication/mesg/impus.msb

NLS Binary Message File Generation Utlity: Version 9.2.0.0.0 -Production
Copyright () Oracle Corporation 1979, 2001. All rights reserved.

CORE 92000 Production

OCI Programming in a Global Environment 8-59

OCI Messaging Functions

8-60 Oracle9i Database Globalization Support Guide

9

Java Programming in a Global Environment

This chapter examines globalization support for individual Java components. It
includes the following topics:

« Overview of Oracle9i Java Support

« Globalization Support for JDBC Drivers

« Globalization Support for SQLJ

« Globalization Support for Java Virtual Machine

« Globalization Support for Java Stored Procedures
« Configurations for Multilingual Applications

« A Multilingual Demo Application in SQLJ

Java Programming in a Global Environment 9-1

Overview of Oracle9i Java Support

Overview of Oracle9 jJava Support

Java support is included in all tiers of a multitier computing environment so that
you can develop and deploy Java programs. You can run Java classes as Java stored
procedures on the Java Virtual Machine (Oracle JVM) of the Oracle9i database. You
can develop a Java class, load it into the database, and package it as a stored
procedure that can be called from SQL.

The JDBC driver and SQLJ translator are also provided as programmatic interfaces
that enable Java programs to access the Oracle9i database. You can write a Java
application using JDBC or SQLJ programs with embedded SQL statements to access
the database. Globalization support is provided across these Java components to
ensure that they function properly across databases with different character sets and
language environments, and that they enable the development and deployment of
multilingual Java applications for Oracle9i.

This chapter examines globalization support for individual Java components.
Typical database and client configurations for multilingual application deployment
are discussed, including an explanation of how the Java components are used in the
configurations. The design and implementation of a sample application are used to
demonstrate how Oracle's Java support makes the application run in a multilingual
environment.

Java components provide globalization support and use Unicode as the
multilingual character set. Table 9-1 shows the Java components of Oracle9i.

Table 9-1 Oracle9i Java Components

Java Component Description

JDBC driver Oracle provides JDBC as the core programmatic interface for
accessing Oracle9i databases. There are four JDBC drivers
provided by Oracle: two for client access and two for server
access.

« The JDBC OCI driver is used by Java applications.
« The JDBC thin driver is primarily used by Java applets.

« The Oracle JDBC server-side thin driver offers the same
functionality as the client-side JDBC thin driver and is
used primarily by Java classes running on the Java VM of
the database server to access a remote database.

The JDBC server-side internal driver is a server-side driver that
is used by Java classes running on the Java VM of the database
server.

9-2 Oracle9/ Database Globalization Support Guide

Globalization Support for JDBC Drivers

Table 9-1 Oracle9i Java Components (Cont.)

Java Component Description

SQLJ translator SQLJ acts like a preprocessor that translates embedded SQL in
the SQLJ program file into a Java source file with JDBC calls. It
gives programmers a higher level of programmatic interface
for accessing databases.

Java Virtual Machine A Java VM based on the JDK is integrated into the database

VM) server that enables the running of Java classes as Java stored
procedures. It comes with a set of supporting services such as
the library manager, which manages Java classes stored in the
database.

Globalization Support for JDBC Drivers

Oracle JDBC drivers provide globalization support by allowing you to retrieve data
from or insert data into columns of the SQL CHARand NCHARdatatypes of an
Oracle9i database. Because Java strings are encoded as UTF-16 (16-bit Unicode) for
JDBC programs, the target character set on the client is always UTF-16. For data
stored in the CHARVARCHARZLONGand CLOBdatatypes, JDBC transparently
converts the data from the database character set to UTF-16. For Unicode data
stored in the NCHARNVARCHAR2nd NCLOBdatatypes, JDBC transparently
converts the data from the national character set to UTF-16.

The following examples are commonly used Java methods for JDBC that rely
heavily on character set conversion:

« The getString() method of the java.sgl.ResultSet class returns values
from the database as Java strings.

« The getUnicodeStream() method of the java.sgl.ResultSet class
returns values as a stream of Unicode characters.

« The getSubString() method of the oracle.sql.CLOB class returns the
contents of a CLOBas a Unicode stream.

« The getString() , toString() , and getStringWithReplacement()
methods of the oracle.sql. CHAR class return values from the object as java
strings.

At database connection time, the JDBC Class Library sets the server NLS _
LANGUAGENd NLS_TERRITORYparameters to correspond to the locale of the Java
VM that runs the JDBC driver. This operation is performed on the JDBC OCI and
JDBC thin drivers only, and ensures that the server and the Java client communicate

Java Programming in a Global Environment 9-3

Globalization Support for JDBC Drivers

in the same language. As a result, Oracle error messages returned from the server
are in the same language as the client locale.

This section includes the following topics:

« Accessing SQL CHAR Datatypes Using JDBC

« Accessing SQL NCHAR Datatypes Using JDBC

« Using the oracle.sql. CHAR Class

« Restrictions on Accessing SQL CHAR Data with JDBC

Accessing SQL CHAR Datatypes Using JDBC

To insert a Java string into a database column of a SQL CHARdatatype, you can use
the PreparedStatement.setString () method to specify the bind variable.
Oracle’s JDBC drivers transparently convert the Java string to the database
character set. The following example shows how to bind a Java string last_name
to a VARCHARZ2olumn last_name

intemployee_id=12345;
String last_name="\uFF2A\UFF4ARUFF45",

PreparedStatement pstmt =
conn.prepareStatement ('INSERT INTO employees (employee_id, last_name)
VALUES(?,?)");

pstmt.setint(1, employee_id);

pstmt.setString(2, last_name);

pstmt.execute();

pstmt.close();

For data stored in SQL CHARdatatypes, the techniques that Oracle's drivers use to
perform character set conversion for Java applications depend on the character set
that the database uses. The simplest case is when the database uses a US7ASCII or
WEBISO8859P1 character set. In this case, the driver converts the data directly from
the database character set to UTF-16,which is used in Java applications.

If you are working with databases that employ a character set that is not US7ASCII
or WEB8ISO8859P1 (for example, JA16SJIS or KO16KSC5601), then the driver
converts the data first to UTF-8, then to UTF-16. The following sections describe the
conversion paths for different JDBC drivers:

« JDBC Class Library Character Set Conversion
« JDBC OCI Driver Character Set Conversion

« JDBC Thin Driver Character Set Conversion

9-4 Oracle9/ Database Globalization Support Guide

Globalization Support for JDBC Drivers

« JDBC Server-Side Internal Driver Character Set Conversion

Figure 9-1 shows how data is converted in JDBC drivers.

Figure 9-1 JDBC Data Conversion

Client

Java Applications

Java Applets

Java strings

Java strings

JDBC Class Library in Java

Server

Java Stored
Procedures

Java strings

JDBC Class Library in Java

UTF8 AL32UTF8 Database AL32UTF8
WEBISO8859PI UTF8 Character Set WESIS08859P|
US7ASCII WEBISO8859PI
USTASCII UST7ASCII
JDBC OClI JDBC Thin JDBC Server-Side JDBC Server-Side
(Calling Oracle (Calling Java Internal Driver Thin Driver
OClinC) Socket in Java) To Remote
Database
Database >
AL32UTF8 Character Set
UTF8
WEBISO8859PI
US7ASCII ;
SQL Engine or
Database —Z | :
Character Set 7 PL/SQL Engine
Oracle
Net Database

Character Set

Oracle9i

Database
Character
Set

JDBC Class Library Character Set Conversion

The JDBC Class Library is a Java layer that implements the JDBC interface. Java
applications, applets, and stored procedures interact with this layer. The library
always accepts US7ASCII, UTF8, or WE8ISO8859P1 encoded string data from the

Java Programming in a Global Environment 9-5

Globalization Support for JDBC Drivers

input stream of the JDBC drivers. It also accepts AL32UTF8 data for the JDBC thin
driver and database character set data for the JDBC server-side driver. The JDBC
Class Library converts the input stream to UTF-16 before passing it to the client
applications. AL32UTF8 is another character set in addition to UTF8 for encoding
Unicode characters in the UTF-8 encoding. It supports supplemental Unicode
characters. If the input stream is in UTF8 or AL32UTFS8, then the JDBC Class Library
converts the UTF8 or AL32UTF8 encoded string to UTF-16 by using the bit-wise
operation defined in the UTF-8 to UTF-16 conversion algorithm. If the input stream
is in US7ASCII or WEBISO8859P1, then it converts the input string to UTF-16 by
casting the bytes to Java characters. If the input stream is not one of US7ASCII,
WES8ISO8859P1, UTF8 and AL32UTFS8, then the JDBC Class Library converts the
input stream by calling the Oracle character set conversion facility. This conversion
path is only used for the JDBC server-side driver.

JDBC OCI Driver Character Set Conversion

In the case of a JDBC OCI driver, there is a client-side character set as well as a
database character set. The client character set is determined at client start time by
the value of the NLS_LANGenvironment variable on the client. The database
character set is determined at database creation. The character set used by the client
can be different from the character set used by the database on the server. When
performing character set conversion, the JDBC OCI driver has to take three factors
into consideration:

« The database character set and language
« The client character set and language
« TheJava application's character set

The JDBC OCI driver transfers the data from the server to the client in the character
set of the database. Depending on the value of the NLS_LANGenvironment variable,
the driver handles character set conversions in one of two ways:

« If the value of NLS_LANGSs not specified, or if it is set to the US7ASCII or
WES8ISO8859P1 character set, then the JDBC OCI driver uses Java to convert the
character set from US7ASCII or WE8ISO8859P1 directly to UTF-16 in the JDBC
Class Library.

« Ifthe value of NLS_LANGSs set to a character set other than US7ASCII or
WES8ISO8859P1, then the driver uses UTF8 as the client character set. This
happens automatically and does not require any user intervention. OCI then
converts the data from the database character set to UTF8. The JDBC OCI driver
then passes the UTF8 data to the JDBC Class Library where the UTF8 data is
converted to UTF-16.

9-6 Oracle9/ Database Globalization Support Guide

Globalization Support for JDBC Drivers

JDBC Thin Driver Character Set Conversion

If applications or applets use the JDBC thin driver, then there is no Oracle client
installation. Because of this, the OCI client conversion routines in C are not
available. In this case, the client conversion routines of the JDBC thin driver are
different from conversion routines of the JDBC OCI driver.

If the database character set is US7ASCII, WE8ISO8859P1, UTF8, or AL32UTFS8,
then the data is transferred to the client without any conversion. The JDBC Class
Library then converts the data to UTF-16 in Java.

Otherwise, the server first translates the data to UTF8 or AL32UTF8 before
transferring it to the client. On the client, the JDBC Class Library converts the data
to UTF-16 in Java.

JDBC Server-Side Internal Driver Character Set Conversion

For Java classes running in the Java VM of the Oracle9i Server, the JDBC server-side
internal driver is used to talk to the SQL engine or the PL/SQL engine for SQL
processing. Because the JDBC server-side internal driver is running in the same
address space as the Oracle server process, it makes a local function call to the SQL
engine or the PL/SQL engine. Data sent to or returned from the SQL engine or the
PL/SQL engine is encoded in the database character set, No data conversion is
performed in the JDBC server-side internal driver, and the data is passed to or from
the JDBC Class Library as is. Any necessary conversion is delegated to the JDBC
Class Library.

Accessing SQL NCHAR Datatypes Using JDBC

JDBC enables Java programs to access columns of the SQL NCHARJatatypes in an
Oracle9i database. Data conversion for the SQL NCHARdatatypes is different from
data conversion for the SQL CHARdatatypes. All Oracle JDBC drivers convert data
in the SQL NCHAR olumn from the national character set, which is either UTF8 or
AL16UTF16, directly to UTF-16 encoded Java strings. In the following Java
program, you can bind a Java string last_name to an NVARCHARR2olumn last_
name

intemployee_id =12345;
String ename = "\UFF2AUFF4RUFF45",
oracle jdbc.OraclePreparedStatement pstmt =
(oracle jdbc.OraclePreparedStatement)
conn.prepareStatement(INSERT INTO employees (empoyee _id, last_name) VALUES
)
pstmt.setFormOfUse(2, oracle jdbc.OraclePreparedStatement FORM_NCHARY);

Java Programming in a Global Environment 9-7

Globalization Support for JDBC Drivers

pstmt.setint(1, employee_id);
pstmtsetString(2, last_name);
pstmt.execute();
pstmt.close();

See Also: "Binding and Defining Java Strings in Unicode" on
page 6-26 for more information about programming against the
SQL NCHARatatypes

Using the oracle.sql.CHAR Class

The oracle.sql.CHAR class has a special functionality for conversion of character
data. The Oracle character set is a key attribute of the oracle.sql.CHAR class. The
Oracle character set is always passed in when an oracle.sql. CHAR object is
constructed. Without a known character set, the bytes of data in the
oracle.sql.CHAR object are meaningless.

The oracle.sql.CHAR class provides the following methods for converting
character data to strings:

« getString()

Converts the sequence of characters represented by the oracle.sql. CHAR
object to a string, returning a Java String object. If the character set is not
recognized, then getString() returns a SQLEXxception

« toString()

Identical to getString() , except that if the character set is not recognized,
then toString() returns a hexadecimal representation of the
oracle.sql.CHAR data and does not returns a SQLException

« getStringWithReplacement()

Identical to getString() , except that a default replacement character replaces
characters that have no Unicode representation in the character set of this
oracle.sql.CHAR object. This default character varies among character sets,
but it is often a question mark.

You may want to construct an oracle.sql. CHAR object yourself (to pass into a
prepared statement, for example). When you construct an oracle.sql.CHAR

object, you must provide character set information to the oracle.sql. CHAR object
by using an instance of the oracle.sqgl.CharacterSet class. Each instance of
the oracle.sqgl.CharacterSet class represents one of the character sets that
Oracle supports.

9-8 Oracle9/ Database Globalization Support Guide

Globalization Support for JDBC Drivers

Complete the following tasks to construct an oracle.sql.CHAR object:

1. Create a CharacterSet instance by calling the static CharacterSet.make()
method. This method creates the character set class. It requires as input a valid
Oracle character set (Oracleld) . For example:

int Oracleld = CharacterSet JA16SJIS CHARSET; // this is character set 832
CharacterSet mycharset = CharacterSet make(Oracleld);

Each character set that Oracle supports has a unique predefined Oracleld
The Oracleld can always be referenced as a character set specified as
Oracle_character_set_name _CHARSEWhere Oracle_character_
set_name is the Oracle character set.

2. Construct an oracle.sql.CHAR object. Pass to the constructor a string (or the
bytes that represent the string) and the CharacterSet object that indicates
how to interpret the bytes based on the character set. For example:

String mystring ="teststring’;
oracle.sgl.CHAR mychar = new oracle.sgl. CHAR teststring, mycharset);

The oracle.sql.CHAR class has multiple constructors: they can take a string,
a byte array, or an object as input along with the CharacterSet object. In the
case of a string, the string is converted to the character set indicated by the

CharacterSet object before being placed into the oracle.sgql.CHAR object.

The server (database) and the client (or application running on the client) can use
different character sets. When you use the methods of this class to transfer data
between the server and the client, the JDBC drivers must convert the data between
the server character set and the client character set.

Inserting and Retrieving Data with the oracle.sql.CHAR Class

When you call the OracleResultSet.getCHAR() method to get a bind variable
as an oracle.sql.CHAR object, JDBC constructs and populates the
oracle.sql.CHAR objects after character data has been read from the database.
Similarly, you can call the OraclePreparedStatement.sql. CHAR() method to
set a bind variable using an oracle.sgl.CHAR object. For example:

intemployee_id = 12345;

String ename = "\UFF2AUFF4RUFF45",

String eaddress ="Address of WFF2A\UFFARUFF45",

P CharacterSet object for VARCHAR2 column */

CharacterSet dbCharset = CharacterSet make(CharacterSet JA16SJIS_CHARSET);

Java Programming in a Global Environment 9-9

Globalization Support for JDBC Drivers

¥ CharacterSet object for NVARCHAR2 column */
CharacterSet ncCharset = CharacterSet make(CharacterSet AL16UTF16_CHARSET);

Flast_nameisin VARCHARZ and address is in NVARCHAR2 */
oracle jdbc.OraclePreparedStatement pstmt =

(oracle jdbc.OraclePreparedStatement)

conn.prepareStatement('INSERT INTO employees (empoyee_id, last_name,
address)

VALUES (?,?,?)";
pstmt.setFormOfUse(3, oracle jdbc.OraclePreparedStatement FORM_NCHARY);
pstmt.setint(1, employee_id);
pstmt.setCHAR(2, new oracle.sql. CHAR(ename, dbCharset));
pstmt.setCHAR(3, new oracle.sql. CHAR(eaddress, ncCharset));
pstmt.execute();
pstmt.close();

The oracle.sgl.CHAR in Oracle Object Types

In Oracle9i, JDBC drivers support Oracle object types. Oracle objects are always
sent from database to client as an object represented in the database character set.
That means the data conversion path in Figure 9-1 does not apply to Oracle object
access. Instead, the oracle.sql.CHAR class is used for passing SQL CHARand
SQL NCHARdata of an object type from the database to the client. The following is
an example of an object type created using SQL.:

CREATE TYPE person_type AS OBJECT (name VARCHAR2(30), address NVARCHAR(256), age
NUMBERY;
CREATE TABLE employees (id NUMBER, person PERSON_TYPE);

The Java class corresponding to this object type can be constructed as follows:

public class person implement SglData

{
oracle.sgl.CHAR name;

oracle.sgl.CHAR address;

oracle.sg.NUMBER age;

I/ SiData interfaces

getSaType({..}

wiiteSql(SqlOutput stream) {..}

readSql(Sqllnput stream, String sqtype) {...}
}

The oracle.sgl.CHAR class is used here to map to the NAMEattributes of the
Oracle object type, which is of VARCHAR®atatype. JDBC populates this class with
the byte representation of the VARCHARZ2lata in the database and the

9-10 Oracle9i Database Globalization Support Guide

Globalization Support for JDBC Drivers

CharacterSet object corresponding to the database character set. The following
code retrieves a person object from the employees table:

TypeMap map = ((OracleConnection)conn).getTypeMap();
map.put(PERSON_TYPE", Class.forName("person’));
conn.setTypeMap(map);

ResultSet rs = smt.executeQuery("SELECT PERSON FROM EMPLOYEES");
rs.next();

person p = (person) rs.getObject(1);

oracle.sql.CHAR sgl_name =p.name;

oracle.sql.CHAR sql_address=p.address;

String java_name = sgl_name.getString();

String java_name = sgl_address.getString();

The getString() method of the oracle.sql. CHAR class converts the byte array
from the database character set to UTF-16 by calling Oracle's Java data conversion
classes and returning a Java string. For the rs.getObject(1) call to work, the
SglData interface has to be implemented in the class person , and the Typemap
map has to be set up to indicate the mapping of the object type PERSON_TYPEo the
Java class.

Restrictions on Accessing SQL CHAR Data with JDBC

This section contains the following topics:
« SQL CHAR Data Size Restriction With the JDBC Thin Driver

« Character Integrity Issues in a Multibyte Database Environment

SQL CHAR Data Size Restriction With the JDBC Thin Driver

If the database character set is neither ASCII (US7ASCII) nor ISO Latinl
(WE8IS08859P1), then the JDBC thin driver must impose size restrictions for SQL
CHARbind parameters that are more restrictive than normal database size
limitations. This is necessary to allow for data expansion during conversion.

The JDBC thin driver checks SQL CHARbind sizes when a set XXX) method
(except for the setCharacterStream() method) is called. If the data size exceeds
the size restriction, then the driver returns a SQL exception (SQLException:

Data size bigger than max size for this type") from the set XXX)
call. This limitation is necessary to avoid the chance of data corruption when
conversion of character data occurs and increases the length of the data. This
limitation is enforced in the following situations:

Java Programming in a Global Environment 9-11

Globalization Support for JDBC Drivers

« Using the JDBC thin driver
« Using binds (not defines)
« Using SQL CHARdatatypes

« Connecting to a database whose character set is neither ASCII (US7ASCII) nor
ISO Latinl (WE8ISO8859P1)

When the database character set is neither US7ASCII nor WE8ISO8859P1, the JDBC
thin driver converts Java UTF-16 characters to UTF-8 encoding bytes for SQL CHAR
binds. The UTF-8 encoding bytes are then transferred to the database, and the

database converts the UTF-8 encoding bytes to the database character set encoding.

This conversion to the character set encoding can result in an increase in the
number of bytes required to store the data. The expansion factor for a database
character set indicates the maximum possible expansion in converting from UTF-8
to the character set. If the database character set is either UTF8 or AL32UTFS8, then
the expansion factor (exp_factor) is 1. Otherwise, the expansion factor is equal to
the maximum character size (measured in bytes) in the database character set.

Table 9-2 shows the database size limitations for SQL CHARdata and the JDBC thin
driver size restriction formulas for SQL CHARbinds. Database limits are in bytes.
Formulas determine the maximum allowed size of the UTF-8 encoding in bytes.

Table 9-2 Maximum SQL CHAR Bind Sizes

Maximum Bind Size Formula for Determining the

Oracle Allowed by Maximum Bind Size, Measured in
Version Datatype Database UTF-8 Bytes

Oracle8 and CHAR 2000 bytes 4000/ exp_factor

later

Oracle8 and VARCHAR2 4000 bytes 4000/ exp_factor

later

:Dracles and LONG 2%1- 1 bytes (23 -1) exp_factor

ater

The formulas guarantee that after the data is converted from UTF-8 to the database
character set, the size of the data will not exceed the maximum size allowed in the
database.

The number of UTF-16 characters that can be supported is determined by the
number of bytes per character in the data. All ASCII characters are one byte long in
UTF-8 encoding. Other character types can be two or three bytes long.

9-12 Oracle9i Database Globalization Support Guide

Globalization Support for JDBC Drivers

Table 9-3 lists the expansion factors of some common server character sets. It also
shows the JDBC thin driver maximum bind sizes for CHARand VARCHAR2lata for
each character set.

Table 9-3 Expansion Factor and Maximum Bind Size for Common Server Character
Sets

JDBC Thin Driver
Maximum Bind Size for
SQL CHAR Data,

Server Character Set Expansion Factor Measured in UTF-8 Bytes
WESDEC 1 4000 bytes
JA16SJIS 2 2000 bytes
JA16EUC 3 1333 bytes
AL32UTF8 1 4000 bytes

Character Integrity Issues in a Multibyte Database Environment

Oracle JDBC drivers perform character set conversions as appropriate when
character data is inserted into or retrieved from the database. The drivers convert
Unicode characters used by Java clients to Oracle database character set characters,
and vice versa. Character data that makes a round trip from the Java Unicode
character set to the database character set and back to Java can suffer some loss of
information. This happens when multiple Unicode characters are mapped to a
single character in the database character set. An example is the Unicode full-width
tilde character (OxFF5E) and its mapping to Oracle's JA16SJIS character set. The
round trip conversion for this Unicode character results in the Unicode character
0x301C, which is a wave dash (a character commonly used in Japan to indicate
range), not a tilde.

Java Programming in a Global Environment 9-13

Globalization Support for SQLJ

Figure 9-2 Character Integrity

Oracle database
Character Set
Java Unicode (JA16SJIS) Java Unicode

0x301C - < . < .
: / : 0x8160 L—pp , 0x301C

OXFF5E - - OXFF5SE

This issue is not a bug in Oracle's JDBC. It is an unfortunate side effect of the
ambiguity in character mapping specification on different operating systems.
Fortunately, this problem affects only a small number of characters in a small
number of Oracle character sets such as JA16SJIS, JAL6EUC, ZHT16BIG5, and
KO16KS5601. The workaround is to avoid making a full round-trip with these
characters.

Globalization Support for SQLJ

SQLJ is a SQL-to-Java translator that translates embedded SQL statements in a Java
program into the corresponding JDBC calls regardless of which JDBC driver is used.
It also provides a callable interface that the Oracle9i database server uses to
transparently translate the embedded SQL in server-side Java programs. SQLJ by
itself is a Java application that reads the SQLJ programs (Java programs containing
embedded SQL statements) and generates the corresponding Java program files
with JDBC calls. There is an option to specify a checker to check the embedded SQL
statements against the database at translation time. The javac compiler is then
used to compile the generated Java program files to regular Java class files.

Figure 9-3 shows how the SQLJ translator works. The figure is described in the
following sections:

« Using Unicode Characters in SQLJ programs

« Using the oracle.sgl.NString class

9-14 Oracle9i Database Globalization Support Guide

Globalization Support for SQLJ

Figure 9-3 Using the SQLJ Translator

Java program
SQLJ program - Regular Java
) with JDBC calls - gua
EJE{JI(::?F:)d in SQLJ tra_nslator (encoded in Java Compiler class file
JDBC driver UTF-16)

Oracle9i

Using Unicode Characters in SQLJ programs

SQLJ enables multilingual Java application development by allowing SQLJ files
encoded in different encoding schemes (those supported by the JDK). In Figure 9-3,
a UTF-16 encoded SQLJ program is being passed to the SQLJ translator and the Java
program output is also encoded in UTF-16. SQLJ preserves the encoding of the
source in the target. To specify the encoding of the source, use the -encoding

option as follows:

sqj -encoding Unicode source_file

Unicode notation \uXXXX (which is referred to as a Unicode escape sequence) can
be used in embedded SQL statements for characters that cannot be represented in
the encoding of the SQLJ program file. This enables you to specify multilingual
object names in the SQL statement without using a UTF-16-encoded SQLJ file. The
following SQLJ code shows the use of Unicode escape sequences in embedded SQL
as well as in a string literal.

intemployee_id =12345;
String name last_name ="\uFF2AUFFARUFF45";
double raise =0.1;

#s0) { INSERT INTO E\l006D\U0070 (last_name, employee:_id) VALUES (last_name,

:employee_id)};
#sgl{ UPDATE employees SET salary = :(getNewSal(raise, last_name))
WHERE last_name = last_ name};

See Also: "A Multilingual Demo Application in SQLJ" on
page 9-23 for an example of SQLJ usage for a multilingual Java
application

Java Programming in a Global Environment 9-15

Globalization Support for Java Virtual Machine

Using the oracle.sgl.NString class

In Oracle9i, the oracle.sql.NString class is introduced in SQLJ to support the
NVARCHARNCHARand NCLOBUnNicode datatypes. You can declare a bind on
NCHARoolumn using a Java object of the oracle.sql.NString type, and use it in
the embedded SQL statements in SQLJ programs.

intemployee_id =12345;

oracle.sql.NString last_name = new oracle.sgl.NString (\UFF2AWUFFARUFF45");
doubleraise=0.1;

#sgl{ INSERT INTO EW006D\0070 (last_name, employee_id VALUES (last_name,

:employee_id)};

#sql{ UPDATE employees SET salary = :(getNewSal(raise, last_name)) =:last_

name};

This example binds the last_ hame object of the oracle.sqgl.NString datatype

to the last name database NVARCHARRolumn.

See Also: "Binding and Defining Java Strings in Unicode" on
page 6-26 for more details on the SQL NCHARJatatypes support in
SQLJ

Globalization Support for Java Virtual Machine

The Oracle9i Java Virtual Machine (Java VM) is integrated into the database server
to enable the running of Java classes stored in the database. Oracle9i enables you to
store Java class files, Java or SQLJ source files, and Java resource files into the
database. Then the Java entry points to SQL can be published so that Java can be
called from SQL or PL/SQL and the Java byte code can be run.

In addition to the engine that interprets Java byte code, the Oracle Java VM includes
the core runtime classes of the Java Development Kit (JDK). The components of the
Java VM are depicted in Figure 9-4.

9-16 Oracle9i Database Globalization Support Guide

Globalization Support for Java Virtual Machine

Figure 9—4 Components of Oracle’s Java Virtual Machine

Byte code interpreter
+

Oracle Net run time

Object memories
+

Java compiler Java VM

garbage collector

Class loader

loadjava RDBMS

Library manager

memory manager

The Java VM provides:

« Anembedded Java class loader that locates, loads, and initializes locally stored
Java classes in the database

« AlJava compiler that translates standard Java programs into standard Java
.class binary representations

A library manager is also included to manage Java program, class, and resource
files as schema objects known as library units. It not only loads and manages these
Java files in the database, but also maps Java name space to library units. For
example:

public class Greeting

{
public String Hello(String name)

{

retum ("Hello" + name +"1");
}
}

After the preceding Java code is compiled, it is loaded into the database as follows:

loadjava Greeting.class

Java Programming in a Global Environment 9-17

Globalization Support for Java Stored Procedures

As a result, a library unit called Greeting is created as a schema object in the
database.

Class and method names containing characters that cannot be represented in the
database character set are handled by generating a US7ASCII library unit name and
mapping it to the real class name stored in a RAWolumn. This enables the class
loader to find the library unit corresponding to the real class name when Java
programs run in the server. In other words, the library manager and the class loader
support class names or method names outside the namespace of the database
character set.

Globalization Support for Java Stored Procedures

A Java stored procedure or function requires that the library unit of the Java classes
implementing it already be present in the database. Using the Greeting library
unit example in the previous section, the following call data definition language

(DDL) publishes the method Greeting.Hello() as a Java stored function:
CREATE FUNCTION myhello(name VARCHAR?Z) RETURN VARCHAR?
AS LANGUAGE JAVANAME

'Greeting.Hello(java.lang.String) retum java.lang.String’;

The DDL maps the Java methods, parameter types and return types to the SQL
counterparts. To the users, the Java stored function has the same calling syntax as
any other PL/SQL stored function. Users can call the Java stored procedures the
same way they call any PL/SQL stored procedures.

Figure 9-5 depicts the runtime environment of a stored function.

9-18 Oracle9i Database Globalization Support Guide

Globalization Support for Java Stored Procedures

Figure 9-5 Running Java Stored Procedures

SQL>CALL

myhello(‘Oracle’);
SQL>SELECT myhello
(last_name)FROM employees;

NLS_LANG= Server response

JAPANESE_JAPAN.JA16SJIS PL/SQL engine to the Java stored
procedure call

myhello(‘Oracle’)

—— Invoke Java VM to run the
Greeting.Hello() method

Oracle Net

Convert the argument from
Database Character Set database Character Set to UTF-16
Java VM before passing it to the method.
The Java VM locale is Japanese.
The Java VM encoding is the
—+— database character set.

Greeting.Hello()

| myhello(VARCHAR?2) |

| Greeting.class |

The locale of the Java VM is Japanese and its encoding is the database character set.
The client’s NLS_LANGenvironment variable is defined as JAPANESE _
JAPAN.JA16SJIS . Oracle Net converts the JA16SJIS characters in the client to the
database character set characters if the characters are different.

The Java entry point, Greeting.Hello() , is called by invoking the proxy
PL/SQL myhello() from the client. The server process serving the client runs as a
normal PL/SQL stored function and uses the same syntax. The PL/SQL engine
takes a call specification for a Java method and calls the Java VM. Next, it passes the
method name of the Java stored function and the argument to the Java VM for
execution. The Java VM takes control, calls the SQL to Java using code to convert
the VARCHAR2rgument from the database character set to UTF-16, loads the
Greeting class, and runs the Hello() method with the converted argument. The

Java Programming in a Global Environment 9-19

Configurations for Multilingual Applications

string returned by Hello() is then converted back to the database character set
and returned as a VARCHARZ2tring to the caller.

The globalization support that enables deployment and development of
internationalized Java stored procedures includes:

The strings in the arguments of Java stored procedures are automatically
converted from SQL datatypes in the database character set to UTF-16-encoded
Java strings.

The default Java locale of the Java VM follows the language setting of the
current database session derived from the NLS_LANGenvironment variable of
the client. A mapping of Oracle language and territory names to Java locale
names is in place for this purpose. In additions, the default encoding of the Java
VM follows the database character set.

The loadjava utility supports loading of Java and SQLJ source files encoded
in any encoding supported by the JDK. The content of the Java or SQLJ
program is not limited by the database character set. Unicode escape sequences
are also supported in the program files.

Note: The entry method name and class name of a Java stored
procedure must be in the database character set because it must be
published to SQL as DDL.

Configurations for Multilingual Applications

To develop and deploy multilingual Java applications for Oracle9i, the database
configurations and client environments for the targeted systems must be
determined.

This section contains the following topics:

Configuring a Multilingual Database
Globalization Support for Java Stored Procedures

Clients with Different Languages

Configuring a Multilingual Database

In order to store multilingual data in an Oracle9i database, you need to configure
the database appropriately. There are two ways to store Unicode data into the
database:

9-20 Oracle9i Database Globalization Support Guide

Configurations for Multilingual Applications

As SQL CHARdatatypes in a Unicode database
As SQL NCHARatatypes in a non-Unicode database
See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode" for more information about choosing a Unicode solution
and configuring the database for Unicode

Globalization Support for Java Stored Procedures

For each Oracle9i session, a separate Java VM instance is created in the server for
running the Java stored procedure, and Oracle9i Java support ensures that the locale
of the Java VM instance is the same as that of the client Java VM. Hence the Java
stored procedures always run on the same locale in the database as the client locale.

For non-Java clients, the default locale of the Java VM instance will be the Java
locale that best corresponds to the NLS_LANGUAGENnd NLS_TERRITORYsession
parameters propagated from the client NLS_LANGenvironment variable.

Internationalizing Java code

Java stored procedures are server objects which are accessible from clients of
different language preferences. They should be internationalized so that they are
sensitive to the Java locale of the Java VM, which is initialized to the locale of the
client.

With JDK internationalization support, you can specify a Java locale object to any
locale-sensitive methods or use the default Java locale of the Java VM for those
methods. The following are examples of how to internationalize a Java stored
procedure:

Externalize all localizable strings or objects from the Java code to resource
bundles and make the resource bundles as part of the procedure. Any messages
returned from the resource bundle will be in the language of the client locale or
whatever locale you specify.

Use the Java formatting classes such as DateFormat and NumberFormat to
format the date, time, numbers, and currencies with the assumption that they
will reflect the locale of the calling client.

Use Java locale-sensitive string classes such as Character , Collator , and
Breaklterator to check the classification of a character, compare two strings
linguistically, and parse a string character by character.

Java Programming in a Global Environment 9-21

Configurations for Multilingual Applications

Transferring Multilingual Data

All Java server objects access the database with the JDBC server-side internal driver
and should use either a Java string or oracle.sql.CHAR to represent string data
to and from the database. Java strings are always encoded in UTF-16, and the
required conversion from the database character set to UTF-16 is done
transparently. oracle.sql.CHAR stores the database data in byte array and tags it
with a character set ID. oracle.sql.CHAR should be used when no string
manipulation is required on the data. For example, it is the best choice for
transferring string data from one table to another in the database.

Clients with Different Languages

Clients (or middle tiers) can have different language preferences, database access
mechanisms, and Java runtime environments. The following are several commonly
used client configurations.

« Javaapplets running in browsers

Java applets running in browsers can access the Oracle9i database through the
JDBC thin driver. No client-side Oracle library is required. The applets use the
JDBC thin driver to invoke SQL, PL/SQL as well as Java stored procedures. The
JDBC thin driver makes sure that Java stored procedures run in the same locale
as the Java VM running the applets.

« Dynamic HTML on browsers

HTML pages invoke Java servlets by using URLs over HTTP. The Java servlets
running in the middle tier construct dynamic HTML pages and deliver them
back to the browser. They should determine the locale of a user and construct
the page according to the language and cultural convention preferences of the
user and use JDBC to connect to the database.

« Javaapplications running on client Java VMs

Java applications running on the Java VM of the client machine can access the
database through either JDBC OCI or JDBC thin drivers. Java applications can
also be a middle tier servlet running on a Web server. The applications use
JDBC drivers to invoke SQL, PL/SQL as well as Java stored procedures. The
JDBC Thin and JDBC OCI drivers make sure that Java stored procedures will be
running in the same locale as that of the client Java VM.

« Cclients such as OCI, Pro*C/C++, and ODBC

Non-Java clients can call Java stored procedures the same way they call
PL/SQL stored procedures. The Java VM locale is the best match of Oracle's

9-22 Oracle9i Database Globalization Support Guide

A Multilingual Demo Application in SQLJ

language settings NLS LANGUAGEnd NLS_TERRITORYpropagated from the
NLS_LANGenvironment variable of the client. As a result, the client always gets
messages from the server in the language specified by NLS_LANGData in the
client are converted to and from the database character set by OCI.

A Multilingual Demo Application in SQLJ

This section contains a simple bookstore application written in SQLJ to demonstrate
a database storing book information in different languages, and how SQLJ and
JDBC are used to access the book information from the database. It also
demonstrates the use of internationalized Java stored procedures to accomplish
transactional tasks in the database server. The sample program consists of the
following components:

« The SQLJ client Java application that displays a list of books in the store and
allow users to add new books to and remove books from the inventory

« Alava stored procedure to add a new book to the inventory

« Alava stored procedure to remove an existing book from the inventory
This section contains the following topics:

« Database Schema for the Multilingual Demo Application

« Java Stored Procedures for the Multilingual Demo Application

« The SQLJ Client for the Multilingual Demo Application

Database Schema for the Multilingual Demo Application

AL32UTF8 is the database character set that is used to store book information, such
as hames and authors, in languages around the world.

The book table is described in Table 9-4.

Table 9-4 Columns in the book Table of the Multilingual Demo

Column Name Datatype

ID (primary key) NUMBER(10)
NAME VARCHAR(300)
PUBLISH_DATE DATE

AUTHOR VARCHAR(120)

Java Programming in a Global Environment 9-23

A Multilingual Demo Application in SQLJ

Table 9-4 Columns in the book Table of the Multilingual Demo (Cont.)

Column Name Datatype

PRICES NUMBER(10,2)

The inventory table is described in Table 9-5.

Table 9-5 Columns in the invertory Table of the Multilingual Demo

Column Name Datatype

ID (primary key) NUMBER(10)
LOCATION(primary key) VARCHAR(90)
QUANTITY NUMBER(3)

In addition, indexes are built with the NAMEand AUTHORolumns of the book table
to improve performance during book searches. A BOOKSE®equence is be created
to generate a unique book ID.

Java Stored Procedures for the Multilingual Demo Application

The Java class called Book is created to implement the methods Book.remove()

and Book.add() that perform the tasks of removing books from and adding books
to the inventory respectively. They are defined according to the following code. In
this class, only the remove() method and the constructor are shown. The resource
bundle BookRes.class is used to store localizable messages. The remove()
method returns a message gotten from the resource bundle according to the current
Java VM locale. There is no JDBC connection required to access the database
because the stored procedure is already running in the context of a database session.

import java.sql.*;
import java.util.*;
import sqj.runtime.ref. DefaultContext;
F*The book class implementation the transaction logics of the
Java stored procedures.*/
public class Book
{
static ResourceBundle rb;
staticint g, id;
static DefaultContext ctx;
public Book()

{

9-24 Oracle9i Database Globalization Support Guide

A Multilingual Demo Application in SQLJ

try
{
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
DefaultContext.setDefaultContext(ctx);
rb = java.util. ResourceBundle.getBundie('BookRes');
}
catch (Exception €)
{
System.out printin(Transaction falled: " + e.getMessage();
}
}
public static String remove(int id, int quantity, String location) throws
SQLException
{
rb = ResourceBundle.getBundle("BookRes");
try
{
#sql {SELECT QUANTITY INTO :g FROM INVENTORY WHERE ID =:id AND
LOCATION = :location};
if (id == 1) retumn rb.getString ("NotEnough’);

}
catch (Exception €)
{
retum rb.getString (‘NotEnough');
}
Ef ((@-quantity) ==0)

#sgl {DELETE FROM INVENTORY WHERE ID =:id AND LOCATION = :location};
try
{
#s0l {SELECT SUM(QUANTITY) INTO :q FROM INVENTORY WHERE ID =:idl};
}
catch (Exception €)
{
#sql{ DELETE FROM BOOKWHERE ID=:id };
retum rb.getString("RemoveBook');
}
retum rb.getString("Removelnventory”);

else
{
if (q-quantity) < 0) retum rb.getString ("NotEnough');
#sql{ UPDATE INVENTORY SET QUANTITY = :(g-quantity) WHERE ID =:id and
LOCATION = :location };
retum rb.getString('Decreaselnventory’);

Java Programming in a Global Environment 9-25

A Multilingual Demo Application in SQLJ

}
}
public static String add(String bname, String author, String location,
double price, int quantity, String publishdate) throws SQLException
{
rb = ResourceBundle.getBundle("BookRes");
try

{
#s0l{ SELECT ID into :id FROM BOOK WHERE NAME = :bname AND AUTHOR =

:author};

catch (Exception €)

{
#sql{ SELECT BOOKSEQ.NEXTVAL INTO :id FROM DUAL },
#sql { INSERT INTO BOOK VALUES (id, :bname,
TO_DATE(:publishdate, YYYY-MM-DD)), :author, :price) };
#sgl{ INSERT INTO INVENTORY VALUES (id, Jocation, :quanity) };
retum rb.getString("AddBook');

}

try

{
#sgl{ SELECT QUANTITY INTO :qg FROM INVENTORY WHERE ID =id
AND LOCATION = location };

}
catch (Exception €)

#sql { INSERT INTO INVENTORY VALUES (id, :location, :quantity) };
retum rb.getString(‘Addinventory’’);
}
#sql{ UPDATE INVENTORY SET QUANTITY = (g + quantity) WHERE ID =id
AND LOCATION = location };
retum rb.getString(*Increaselnventory’);
}
}

After the Book.remove() and Book.add() methods are defined, they are in turn
published as Java stored functions in the database called REMOVEBOOK@nd
ADDBOOK()

CREATE FUNCTION REMOVEBOOK (ID NUMBER, QUANTITY NUMBER,
LOCATION VARCHAR?2)
RETURN VARCHAR2
AS LANGUAGE JAVA NAME
‘Book.remove(int, int, javalang.String) retum java.lang.String’;

9-26 Oracle9i Database Globalization Support Guide

A Multilingual Demo Application in SQLJ

CREATE FUNCTION ADDBOOK (NAME VARCHAR2, AUTHOR VARCHAR?2,
LOCATION VARCHARZ, PRICE NUMBER, QUANTITY NUMBER, PUBLISH_DATE DATE)
RETURN VARCHAR2
AS LANGUAGE JAVA NAME
‘Book.add(java.lang.String, java.lang.String, java.lang.String,
double, int, java.sgl.Date) retum java.lang.String’;

Note that the Java string returned is first converted to a VARCHARZ2tring, which is
encoded in the database character set, before they are passed back to the client. If
the database character set is not AL32UTF8 or UTF8, then any Unicode characters in
the Java strings that cannot be represented in the database character set will be
replaced by a replacement character. Similarly, the VARCHARZ2trings, which are
encoded in the database character set, are converted to Java strings before being
passed to the Java methods.

The SQLJ Client for the Multilingual Demo Application

The SQLJ client is a GUI Java application using either a JDBC Thin or JDBC OCI
driver. It connects the client to a database, displays a list of books given a searching
criterion, removes selected books from the inventory, and adds new books to the
inventory. A class called BookDB is created to accomplish these tasks. It is defined
in the following code.

A BookDB object is created when the sample program starts up with the user name,
password, and the location of the database. The methods are called from the GUI
portion of the applications. The removeBook() and addBook() methods call the
corresponding Java stored functions in the database and return the status of the
transaction. The methods searchByName() and searchByAuthor() list books
by name and author respectively, and store the results in the books iterator inside
the BookDB object. (The BookRecs class is generated by SQLJ.) The GUI code in
turn calls the getNextBook() ~ function to retrieve the list of books from the
iterator object until a NULL is returned. The getNextBook() function simply
fetches the next row from the iterator.

package sqjj.bookstore;

import java.sql.*;

import sgj.bookstore.BookDescription;

import sqj.runtime.ref.DefaultContext;

import java.util.Locale;

FThe iterator used for a book description when communicating with the server*/

#sq iterator BooksRecs(int ID, String NAME, String AUTHOR, Date PUBLISH_DATE,
String LOCATION, int QUANTITY, double PRICE);

Java Programming in a Global Environment 9-27

A Multilingual Demo Application in SQLJ

FThis is the class used for connection to the server.*/
class BookDB
{
static public final String DRIVER = "oracle jdbc.driver.OracleDriver”,
static public final Sting URL_PREFIX = "jdbc:oracle:thin:@";
private DefauttContext m_ctx = null;
private String msg;
private BooksRecs books;
FConstructor - regjisters the driver*/
BookDb()

{

try
{

DriverManager.registerDriver

((Driver) (Class.forName(DRIVER).newinstance());

}
catch (Exception €)
{

System.exit(1);
}

}
FConnect to the database*/

DefaultContext connect(String id, String pwd, String userUr) throws
SQLException
{

String url = new String(URL_PREFIX);

url = url.concat(userUr);

Connection conn =null;

if (M_ctx = null) retum m_ctx;

try
{ conn = DriverManager.getConnection(url, id, pwd);
E:atch (SQLEXxception €)
{erW(e);
?f (m_ctx==null
{

try

{ m_ctx = new DefaultContext(conn);

];:atch (SQLException €)

9-28 Oracle9i Database Globalization Support Guide

A Multilingual Demo Application in SQLJ

throw(e);
}
}
retumm_ctx;
}
FAdd a new book to the database.*/
public String addBook(BookDescription book)
{
Sting name = book.getTitle();
String author = book.getAuthor();
Sting date = book getPublishDateString();
String location = book.getlocation();
int quantity = book.getQuantity();
double price =book.getPrice();
try
{
#sgl[m_ctx] msg ={VALUE (ADDBOOK (:name, :author, :location,
price, :quantity, :date))};
#sql [m_ctx] {COMMIT;

}
catch (SQLException €)
{

retum (e.getMessage();
];etum msg;
/}‘*Remove abook*/
public String removeBook(int id, int quantity, String location)
{ ry

#sgl [m_ctx] msg ={VALUE (REMOVEBOOX (:id, :quantty,
Jlocation))};
#sql [m_ctx] {COMMITY;
}
catch (SQLException €)
{
retum (e.getMessage();

retum msg;
}
FSearch books by the given author.*/
public void searchByAuthor(String author)
{

String key ="%" + author +"%";

Java Programming in a Global Environment

9-29

A Multilingual Demo Application in SQLJ

books =nul;
System.gc();
try

{
#sq [m_ctx] books ={ SELECT BOOK.ID, NAME, AUTHOR, PUBLISH_DATE,

LOCATION, QUANTITY, PRICE
FROM BOOK, INVENTORY WHERE BOOK.ID = INVENTORY.ID AND AUTHOR LIKE
‘key ORDER BY BOOK.ID};

}
catch (SQLException €) {}

}
F*Search books with the given title.*/
public void searchByTitle(String title)
{
String key ="%" + title +"%0";
books =null;
System.gc();
try

{
#sql [m_ctx] books = { SELECT BOOK.ID, NAME, AUTHOR, PUBLISH_DATE,

LOCATION, QUANTITY, PRICE
FROM BOOK, INVENTORY WHERE BOOK.ID = INVENTORY.ID AND NAME LIKE
‘key ORDER BY BOOK.ID};

}
catch (SQLException €) {}

}

FRetums the next BookDescription from the last search, null if at the
end of the resullt list*/

public BookDescription getNextBook()

{
BookDescription book = null;
try

{

if (books.next()

{

book = new BookDescription(books.ID(), books AUTHOR(), books.NAME(),
books.PUBLISH_DATE(), books.PRICE(),
books.LOCATION(), books. QUANTITY();
}

}

catch (SQLException €) {}

retum book;

}
}

9-30 Oracle9i Database Globalization Support Guide

10

Character Set Migration

This chapter discusses character set conversion and character set migration. It
includes the following topics:

« Overview of Character Set Migration
« Changing the Database Character Set of an Existing Database
« Migrating to the Oracle9i NCHAR Datatypes

« Tasks to Recover Database Schema After Character Set Migration

Character Set Migration 10-1

Overview of Character Set Migration

Overview of Character Set Migration

Choosing the appropriate character set for your database is an important decision.
When you choose the database character set, consider the following factors:

« The type of data you need to store
« The languages that the database needs to accommodate now and in the future

« The different size requirements of each character set and the corresponding
performance implications

A related topic is choosing a new character set for an existing database. Changing
the database character set for an existing database is called character set migration.
Migrating from one database character set to another involves additional
considerations beyond choosing a character set for a new database. Plan character
set migration to minimize data loss from:

=« Data Truncation

« Character Set Conversion Issues

See Also: Chapter 2, "Choosing a Character Set"

Data Truncation

When the database is created using byte semantics, the sizes of the CHARand
VARCHARZ2latatypes are specified in bytes, not characters. For example, the
specification CHAR(20) in a table definition allows 20 bytes for storing character
data. This is acceptable when the database character set uses a single-byte character
encoding scheme because the number of characters is equivalent to the number of
bytes. If the database character set uses a multibyte character encoding scheme,
then the number of bytes no longer equals the number of characters because a
character can consist of one or more bytes.

During migration to a new character set, it is important to verify the column widths
of existing CHARand VARCHARZ2olumns because they might need to be extended
to support an encoding that requires multibyte storage. Truncation of data can
occur if conversion causes expansion of data.

Figure 10-1 shows an example of data expansion when single-byte characters
become multibyte. For example, & (a with an umlaut) is a single-byte character in
WEBMSWIN1252, but it becomes a two-byte character in UTF8. Also, the Euro
symbol expands from one byte to three bytes.

10-2 Oracle9i Database Globalization Support Guide

Overview of Character Set Migration

Figure 10-1 Single-Byte and Multibyte Encoding

Character WEBSMSWIN1252 UTF8

5

5
©
€

E4 C3 A4
F6 C3 B6
A9 C2 A9
80 E2 82 AC

The maximum number of bytes for CHARand VARCHAR2latatypes is 2000 and
4000, respectively. If the data in the new character set requires columns that are
wider than 2000 and 4000 bytes for CHARand VARCHAR2latatypes, then you need
to change your schema.

See Also: "Length Semantics" on page 2-12

Additional Problems Caused by Data Truncation
Data truncation can cause the following problems:

In the database data dictionary, schema object names cannot exceed 30 bytes in
length. Schema objects are tables, clusters, views, indexes, synonymes,
tablespaces, and usernames. You must rename schema objects if their names
exceed 30 bytes in the new database character set. For example, one Thai
character in the Thai national character set requires 1 byte. In UTFS8, it requires 3
bytes. If you have defined a table whose name is 11 Thai characters, then the
table name must be shortened to 10 or fewer Thai characters when you change
the database character set to UTF8.

If existing Oracle usernames or passwords are created based on characters that
will change in size in the new character set, users will experience login
difficulties due to authentication failures after the migration to a new character
set. This is because the encrypted usernames and passwords stored in the data
dictionary are not updated during migration to a new character set. For
example, if the current database character set is WESBMSWIN1252 and the new
database character set is UTF8, then the length of the username scétt (o with
an umlaut) will change from 5 bytes to 6 bytes. In UTF8, scott will no longer
be able to log in because of the difference in the username. Oracle Corporation
recommends that usernames and passwords be based on ASCII characters. If

Character Set Migration 10-3

Overview of Character Set Migration

they are not, you must reset the affected usernames and passwords after
migrating to a new character set.

« When CHARdata contains characters that will be expanded after migration to a
new character set, space padding will not be removed during database export
by default. This means that these rows will be rejected upon import into the
database with the new character set. The workaround is to set the BLANK _
TRIMMINGinitialization parameter to TRUEbefore importing the CHARdata.

See Also: Oracle9i Database Reference for more information about
the BLANK_TRIMMINGNnitialization parameter

Character Set Conversion Issues
This section includes the following topics:

« Replacement Characters that Result from Using the Export and Import Utilities

« Invalid Data That Results from Setting the Client’s NLS_LANG Parameter
Incorrectly

Replacement Characters that Result from Using the Export and Import Utilities

The Export and Import utilities can convert character sets from the original
database character set to the new database character set. However, character set
conversions can sometimes cause data loss or data corruption. For example, if you
are migrating from character set A to character set B, the destination character set B
should be a superset of character set A. The destination character, B, is a superset if
it contains all the characters defined in character set A. Characters that are not
available in character set B are converted to replacement characters, which are often
specified as ? or ¢, or a character that is related to the unavailable character. For
example, & (a with an umlaut) can be replaced by a. Replacement characters are
defined by the target character set.

Figure 10-2 shows an example of a character set conversion in which the copyright
and Euro symbols are converted to ? and & is converted to a.

10-4 Oracle9i Database Globalization Support Guide

Overview of Character Set Migration

Figure 10-2 Replacement Characters in Character Set Conversion

Character Set Character Set
A B
a ad—
b b
C C
€ ?
-a
©

To reduce the risk of losing data, choose a destination character set with a similar
character repertoire. Migrating to Unicode can be an attractive option because UTF8
contains characters from most legacy character sets.

Invalid Data That Results from Setting the Client's NLS_LANG Parameter
Incorrectly

Another character set migration scenario that can cause the loss of data is migrating
a database that contains invalid data. Invalid data usually occurs in a database
because the NLS_LANGparameter is not set properly on the client. The NLS_LANG
value should reflect the client operating system code page. For example, in an
English Windows environment, the code page is WESMSWIN1252. When the NLS_
LANGparameter is set properly, the database can automatically convert incoming
data from the client operating system. When the NLS_LANGparameter is not set
properly, then the data coming into the database is not converted properly. For
example, suppose that the database character set is UTF8, the client is an English
Windows operating system, and the NLS_LANGsetting on the client is UTF8. Data
coming into the database is encoded in WEBMSWIN1252 and is not converted to
UTF8 data because the NLS_LANGsetting on the client matches the database
character set. Thus Oracle assumes that no conversion is necessary, and invalid data
is entered into the database.

This can lead to two possible data inconsistency problems. One problem occurs
when a database contains data from a character set that is different from the
database character set but the same code points exist in both character sets. For
example, if the database character set is WE8ISO8859P1 and the NLS_LANGsetting
of the Chinese Windows NT client is SIMPLIFIED CHINESE_

Character Set Migration 10-5

Overview of Character Set Migration

CHINA.WES8IS08859P1, then all multibyte Chinese data (from the ZHS16GBK
character set) is stored as multiples of single-byte WE8ISO8859P1 data. This means
that Oracle will treat these characters as single-byte WE8ISO8859P1 characters.
Hence all SQL string manipulation functions such as SUBSTRor LENGTHwill be
based on bytes rather than characters. All bytes constituting ZHS16GBK data are
legal WE8ISO8859P1 codes. If such a database is migrated to another character set,
for example, UTF8, character codes will be converted as if they were in
WES8ISO8859P1. This way, each of the two bytes of a ZHS16GBK character will be
converted separately, yielding meaningless values in UTF8. Figure 10-3 shows an
example of this incorrect character set replacement.

Figure 10-3 Incorrect Character Set Replacement

Database Server

(WEBISO8859P1) Simplified Chinese

Windows NT
(WE8ISO8859P1)

< >B

The second possible problem is having data from mixed character sets inside the
database. For example, if the data character set is WESMSWIN1252, and two
separate Windows clients using German and Greek are both using the NLS_LANG
character set setting as WEBMSWIN1252, then the database will contain a mixture
of German and Greek characters. Figure 10-4 shows how different clients can use
different character sets in the same database.

10-6 Oracle9i Database Globalization Support Guide

Changing the Database Character Set of an Existing Database

Figure 10-4 Mixed Character Sets

Database Server
(WESMSWIN1252)

/ " OxE4 | OxFo. \

German Windows Greek Windows

For database character set migration to be successful, both of these cases require
manual intervention because Oracle cannot determine the character sets of the data
being stored.

Changing the Database Character Set of an Existing Database

Database character set migration has two stages: data scanning and data
conversion. Before you change the database character set, you need to identify
possible database character set conversion problems and truncation of data. This
step is called data scanning.

Data scanning identifies the amount of effort required to migrate data into the new
character encoding scheme before changing the database character set. Some
examples of what may be found during a data scan are the number of schema
objects where the column widths need to be expanded and the extent of the data
that does not exist in the target character repertoire. This information helps to
determine the best approach for converting the database character set.

Character Set Migration 10-7

Changing the Database Character Set of an Existing Database

There are three approaches to converting data from one database character set to
another if the database does not contain any of the inconsistencies described in
"Character Set Conversion Issues" on page 10-4. A description of methods to
migrate databases with such inconsistencies is out of the scope of this
documentation. For more information, contact Oracle Consulting Services for
assistance.

The approaches are:
« Migrating Character Data Using a Full Export and Import

« Migrating Character Data Using the ALTER DATABASE CHARACTER SET
Statement

« Migrating Character Data Using the ALTER DATABASE CHARACTER SET
Statement and Selective Imports

See Also: Chapter 11, "Character Set Scanner” for more
information about data scanning

Migrating Character Data Using a Full Export and Import

In most cases, a full export and import is recommended to properly convert all data
to a new character set. It is important to be aware of data truncation issues, because
columns with character datatypes may need to be extended before the import to
handle an increase in size. Existing PL/SQL code should be reviewed to ensure that
all byte-based SQL functions such as LENGTHBSUBSTRBand INSTRB, and
PL/SQL CHARand VARCHARZ2leclarations are still valid.

See Also: Oracle9i Database Utilities for more information about
the Export and Import utilities

Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement

The ALTER DATABASE CHARACTER SETtatement is the fastest way to migrate a
character set, but it can be used only under special circumstances. The ALTER
DATABASE CHARACTER SHatement does not perform any data conversion, so it
can be used if and only if the new character set is a strict superset of the current
character set.

The new character set is a strict superset of the current character set if;

« Each and every character in the current character set is available in the new
character set.

10-8 Oracle9i Database Globalization Support Guide

Changing the Database Character Set of an Existing Database

« Each and every character in the current character set has the same code point
value in the new character set. For example, US7ASCII is a strict subset of many
character sets.

Another restriction of the ALTER DATABASE CHARACTER SHEatement is that it
can be used only when the character set migration is between two single-byte
character sets or between two multibyte character sets. If the planned character set
migration is from a single-byte character set to a multibyte character set, then use
the Export and Import utilities.

This restriction on using the ALTER DATABASE CHARACTER SE%tatement arises
because of CLOBdata. In Oracle9i, some internal fields in the data dictionary are
stored in CLOBcolumns. Customers may also store data in CLOBfields. When the
database character set is multibyte, CLOBdata in Oracle9i is stored as UCS-2 data
(two-byte, fixed-width Unicode). When the database character set is single-byte,
CLOBdata is stored using the database character set. Because the ALTER DATABASE
CHARACTER SETBtatement does not convert data, CLOBcolumns remain in the
original database character set encoding when the database character set is

migrated from single-byte to multibyte. This introduces data inconsistency in the
CLOBcolumns.

The syntax of the ALTER DATABASE CHARACTER SET$tatement is as follows:
ALTER DATABASE [db_name] CHARACTER SET new character set |

db_name is optional. The character set name should be specified without quotes.
For example:

ALTER DATABASE CHARACTER SET AL32UTFS;

To change the database character set, perform the following steps:

1. Shut down the database, using either a SHUTDOWN IMMEDIATE a SHUTDOWN
NORMALtatement.

2. Do afull backup of the database because the ALTER DATABASE CHARACTER
SET statement cannot be rolled back.

3. Complete the following statements:

STARTUP MOUNT;
ALTER SYSTEM ENABLE RESTRICTED SESSION;

ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;
ALTER SYSTEM SET AQ TM_PROCESSES=0;

ALTER DATABASE OPEN:

ALTER DATABASE CHARACTER SEThew character set |

Character Set Migration 10-9

Changing the Database Character Set of an Existing Database

SHUTDOWN IMMEDIATE; - or SHUTDOWN NORMAL;
STARTUP;

See Also:

« Oracle9i SQL Reference for more information about the ALTER
DATABASE CHARACTER SEStatement

« Appendix A, "Locale Data" for a list of all superset character
sets

Using the ALTER DATABASE CHARACTER SET Statement in an Oracle9 j Real
Application Clusters Environment

In a Oracle9i Real Application Clusters environment, ensure that no other Oracle
background processes are running, with the exception of the background processes
associated with the instance through which a user is connected, before attempting
to issue the ALTER DATABASE CHARACTER Sftement. Use the following SQL
statement to verify the environment:

SELECT SID, SERIAL#, PROGRAM FROM V$SESSION,;

Set the CLUSTER_DATABASHitialization parameter to FALSEto allow the
character set change to be completed. This is required in an Oracle9i Real
Application Cluster environment; an exclusive startup is not sufficient.

Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement
and Selective Imports

Another approach to migrating character data is to perform an ALTER DATABASE
CHARACTER SEStatement followed by selective imports. This method is best
suited for a known distribution of convertible data that is stored within a small
number of tables. A full export and import is too expensive in this scenario. For
example, suppose you have a 100GB database with over 300 tables, but only 3 tables
require character set conversions. The rest of the data is of the same encoding as the
destination character set. The 3 tables can be exported and imported back to the
new database after issuing the ALTER DATABASE CHARACTER SE$tatement.

Incorrect data conversion can lead to data corruption, so perform a full backup of
the database before attempting to migrate the data to a new character set.

10-10 Oracle9i Database Globalization Support Guide

Migrating to the Oracle9i NCHAR Datatypes

Migrating to the Oracle9 i NCHAR Datatypes

In Oracle9i, data that is stored in columns of the NCHARJatatypes is stored
exclusively in a Unicode encoding regardless of the database character set. This
allows users to store Unicode in a database that does not use Unicode as the
database character set.

This section includes the following topics:

« Migrating Oracle8 NCHAR Columns to Oracle9i

« Changing the National Character Set

« Migrating CHAR Columns to NCHAR Columns in an Oracle9i Database

Migrating Oracle8 NCHAR Columns to Oracle9 i

In release 8.0, the Oracle Server introduced a national character datatype (NCHAR
that allows a second, alternate character set in addition to the database character
set. The NCHARJatatypes support several fixed-width Asian character sets that
were introduced to provide better performance when processing Asian character
data.

In Oracle9i, the SQL NCHARJatatypes are limited to Unicode character set encoding
(UTF8 and AL16UTF16). Any other Oracle8 Server character sets that were
available for the NCHARdatatype, including Asian character sets such as
JA16SJISFIXED are no longer supported.

The steps for migrating existing NCHARNVARCHARZNd NCLOBcolumns to
Oracle9i NCHARJatatypes are as follows:

1. Export all NCHARolumns from the Oracle8 or Oracle8i database.
2. Drop the NCHARolumns.

3. Upgrade database to Oracle9i.

4. Import the NCHARolumns into Oracle9i.

The Oracle9i migration utility can also convert Oracle8 and Oracle8i NCHAR
columns to 9i NCHARolumns. A SQL NCHARupgrade script called utlchar.sql

is supplied with the migration utility. Run it at the end of the database migration to
convert Oracle8 and Oracle8i NCHARolumns to the Oracle9i NCHAR olumns. After
the script has been executed, the data cannot be downgraded. The only way to
move back to Oracle8 or Oracle8i is to drop all NCHARolumns, downgrade the
database, and import the old NCHARJata from a previous Oracle8 or Oracle8i

Character Set Migration 10-11

Migrating to the Oracle9i NCHAR Datatypes

export file. Ensure that you have a backup (export file) of Oracle8 or Oracle8i NCHAR
data, in case you need to downgrade your database in the future.
See Also:

« Oracle9i Database Utilities for a description of export and import
procedures

» Oracle9i Database Migration for NCHARmigration information

Changing the National Character Set

To change the national character set, use the ALTER DATABASE NATIONAL
CHARACTER SEStatement. The syntax of the statement is as follows:

ALTER DATABASE [db_name] NATIONAL CHARACTER SET new NCHAR_character_set

db_name is optional. The character set name should be specified without quotes.
You can issue the ALTER DATABASE CHARACTER SE&@nd ALTER DATABASE
NATIONAL CHARACTER SETtatements together if desired.

See Also: Oracle9i SQL Reference for the syntax of the ALTER
DATABASE NATIONAL CHARACTER SHEdtement

Migrating CHAR Columns to NCHAR Columns in an Oracle9 j Database

You can change a column’s datatype definition using the following methods:
« The ALTER TABLE MODIFY statement
= Online table redefinition

The ALTER TABLE MODIFY statement has the following advantages over online
table redefinition:

« Easier to use
« Fewer restrictions

Online table redefinition has the following advantages over the ALTER TABLE
MODIFYstatement:

« Faster for columns with a large amount of data
« Can migrate several columns at one time

« Table is available for DML during most of the migration process

10-12 Oracle9i Database Globalization Support Guide

Migrating to the Oracle9i NCHAR Datatypes

« Avoids table fragmentation, which saves space and allows faster access to data.
« Can be used for migration from the CLOBdatatype to the NCLOBdatatype
This section contains the following topics:

« Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to
NCHAR Columns

« Using Online Table Redefinition to Migrate a Large Table to Unicode

Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to
NCHAR Columns

The ALTER TABLE MODIFY statement can be used to change table column
definitions from the CHARdatatypes to NCHARJatatypes. It also converts all of the
data in the column from the database character set to the NCHARharacter set. The
syntax of the ALTER TABLE MODIFY statement is as follows:

ALTER TABLE table_ name MODIFY (column_name datatype);

If indexes have been built on the migrating column, then dropping the indexes can
improve the performance of the ALTER TABLE MODIF$tatement because indexes
are updated when each row is updated.

The maximum column lengths for NCHARind NVARCHARRZolumns are 2000 and
4000 bytes. When the NCHARharacter set is AL16UTF16, the maximum column
lengths for NCHARind NVARCHAR2olumns are 1000 and 2000 characters, which
are 2000 and 4000 bytes. If this size limit is violated during migration, consider
changing the column to the NCLOBdatatype instead.

Note: CLOBcolumns cannot be migrated to NCLOBcolumns using
the ALTER TABLE MODIFY statement. Use online table
redefinition to change a column from the CLOBdatatype to the
NCLOBRdatatype.

See Also: "Using Online Table Redefinition to Migrate a Large
Table to Unicode" on page 10-13

Using Online Table Redefinition to Migrate a Large Table to Unicode

It takes significant time to migrate a large table with a large number of rows to
Unicode datatypes. During the migration, the column data is unavailable for both
reading and updating. Online table redefinition can significantly reduce migration

Character Set Migration 10-13

Migrating to the Oracle9i NCHAR Datatypes

time. Using online table redefinition also allows the table to be accessible to DML
during most of the migration time.

Perform the following tasks to migrate a table to Unicode datatypes using online
table redefinition:

1. Use the DBMS_REDEFINITION.CAN_REDEF_TABLPL/SQL procedure to
verify that the table can be redefined online. For example, to migrate the
scott.emp table, enter the following command:

DBMS_REDEFINITION.CAN_REDEF_TABLE(scott,emp);

2. Create an empty interim table in the same schema as the table that is to be
redefined. Create it with NCHAR datatypes as the attributes. For example,
enter a statement similar to the following:

CREATE TABLE int_emp(
empno NUMBER(4),
ename NVARCHAR2(10),
job NVARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
salNUMBER(7,2),
deptno NUMBER(2),
org NVARCHAR2(10));

3. Start the online table redefinition. Enter a command similar to the following:

DBMS_REDEFINITION.START_REDEF_TABLE(scott,
‘emp’,

int_emp),

'empno empno,
to_nchar(ename) ename,
to_nchar(job) job,

mgr mg,

hiredate hiredate,

salsal,

deptno deptno,
to_nchar(org) org);

If you are migrating CLOBcolumns to NCLOBcolumns, then use the TO_NCLOB
SQL conversion function instead of the TO_NCHARBQL function.

4. Create triggers, indexes, grants, and constraints on the interim table. Referential
constraints that apply to the interim table (the interim table is a parent or child
table of the referential constraint) must be created in DISABLED mode. Triggers

10-14 Oracle9i Database Globalization Support Guide

Migrating to the Oracle9i NCHAR Datatypes

that are defined on the interim table are not executed until the online table
redefinition process has been completed.

You can synchronize the interim table with the original table. If many DML
operations have been applied to the original table since the online redefinition
began, then execute the DBMS_REDEFINITION.SYNC_INTERIM_TABLE
procedure. This reduces the time required for the DBMS_
REDEFINITION.FINISH_REDEF_TABLE procedure. Enter acommand similar
to the following:

DBMS_REDEFINITION.SYNC_INTERIM_TABLE(scott, 'emp’, int_emp);
Execute the DBMS_REDEFINITION.FINISH_REDEF_TABLE procedure. Enter a
command similar to the following:

DBMS_REDEFINITION.RINISH_REDEF_TABLE(scott, 'emp’, int_emp);

When this procedure has been completed, the following conditions are true:

« The original table is redefined so that it has all the attributes, indexes,
constraints, grants, and triggers of the interim table.

« The referential constraints that apply to the interim table apply to the
redefined original table.

Drop the interim table. Enter a statement similar to the following:
DROP TABLE int_emp;

The results of the online table redefinition tasks are as follows:

The original table is migrated to Unicode columns.

The triggers, grants, indexes, and constraints defined on the interim table after
the START_REDEF_TABLEubprogram and before the FINISH_REDEF_TABLE
subprogram are defined for the redefined original table. Referential constraints
that apply to the interim table now apply to the redefined original table and are
enabled.

The triggers, grants, indexes, and constraints defined on the original table
before redefinition are transferred to the interim table and are dropped when
you drop the interim table. Referential constraints that applied to the original
table before redefinition were applied to the interim table and are now disabled.

PL/SQL procedures and cursors that were defined on the original table before
redefinition are invalidated. They are automatically revalidated the next time
they are used. Revalidation may fail because the table definition has changed.

Character Set Migration 10-15

Tasks to Recover Database Schema After Character Set Migration

See Also: Oracle9i Database Administrator’s Guide for more
information about online table redefinition

Tasks to Recover Database Schema After Character Set Migration

You may need to perform additional tasks to recover a migrated database schema to
its original state. Consider the issues described in Table 10-1.

Table 10-1 Issues During Recovery of a Migrated Database Schema

Issue Description

Indexes When table columns are changed from CHARdatatypes to
NCHARatatypes by the ALTER TABLE MODIFY statement,
indexes that are built on the columns are changed
automatically by the database. This slows down performance
for the ALTER TABLE MODIFY statement. If you drop indexes
before issuing the ALTER TABLE MODIFY statement, then
re-create them after migration.

Constraints If you disable constraints before migration, then re-enable
them after migration.

Triggers If you disable triggers before migration, then re-enable them
after migration.

Replication If the columns that are migrated to Unicode datatypes are
replicated across several sites, then the changes should be
executed at the master definition site. Then they will be
propagated to the other sites.

Binary order The migration from CHARdatatypes to NCHARJatatypes
involves character set conversion if the database and NCHAR
data have different character sets. The binary order of the same
data in different encodings can be different. This affects
applications that rely on binary order.

10-16 Oracle9i Database Globalization Support Guide

11

Character Set Scanner

This chapter introduces the Character Set Scanner, a globalization support utility for
checking data before migrating character sets. The topics in this chapter include:

What is the Character Set Scanner?

Scan Modes in the Character Set Scanner

Using The Character Set Scanner

Character Set Scanner Parameters

Examples: Character Set Scanner Sessions

Character Set Scanner Reports

Storage and Performance Considerations in the Character Set Scanner

Character Set Scanner Views and Messages

Character Set Scanner 11-1

What is the Character Set Scanner?

What is the Character Set Scanner?

The Character Set Scanner provides an assessment of the feasibility and potential
issues in migrating an Oracle database to a new database character set. The
Character Set Scanner checks all character data in the database and tests for the
effects and problems of changing the character set encoding. At the end of the scan,
it generates a summary report of the database scan. This report shows the scope
work required to convert the database to a new character set.

Based on the information in the summary report, you can decide on the most
appropriate method to migrate the database's character set. The methods are:

« Exportand Import utilities
« ALTER DATABASE CHARACTER Sfatement
« ALTER DATABASE CHARACTER Sfatement with selective Export and Import

Note: If there are conversion exceptions reported by the Character
Set Scanner, these problems must be fixed first before using any of
the described methods to do the conversions. This may involve
modifying the problem data to eliminate those exceptions. In
extreme cases, both database and application might need to be
modified. Oracle Corporation recommends you contact Oracle
Consulting Services for services on database character set
migration.

See Also: "Changing the Database Character Set of an Existing
Database" on page 10-7

Conversion Tests on Character Data

The Character Set Scanner reads the character data and tests for the following
conditions on each data cell:

« Do character code points of the data cells change when converted to the new
character set?

« Can the data cells be successfully converted to the new character set?
« Will the post-conversion data fit into the current column size?

The Character Set Scanner reads and tests for data in CHARVARCHARZ2LONG
CLOB NCHARNVARCHAR2ZNnd NCLOBcolumns only. The Character Set Scanner

11-2 Oracle9i Database Globalization Support Guide

What is the Character Set Scanner?

does not perform post-conversion column size testing for LONGCLOB and NCLOB
columns.

Access Privileges

Restrictions

To use the Character Set Scanner, you must have DBA privileges on the Oracle
database.

All the character-based data in CHARVARCHARZ2.ONGand CLOBcolumns is stored
in the database character set, which is specified with the CREATE DATABASE
statement when the database was first created. However, in some configurations, it
is possible to store data in a different character set from the database character set
either intentionally or unintentionally. This happens most often when the NLS_
LANGcharacter set is the same as the database character set, because in such cases
Oracle sends and receives data as is, without any conversion or validation. But it
can also happen if one of the two character sets is a superset of the other, in which
case many of the code points appear as if they were not converted. For example, if
NLS_LANGIs set to WE8ISO8859P1 and the database character set is
WEBMSWIN1252, all code points except the range 128-159 are preserved through
the client/server conversion.

Although a database that contains data not in its database character set cannot be
converted to another character set by the three methods listed in "What is the
Character Set Scanner?" on page 11-2, you can still use the Character Set Scanner to
test the effect of the conversion that would take place if the data were in the
database character set.

The encoding for different character sets can use the same code point for different
characters.There is no automatic method to detect what the intended character is.
Most European character sets share liberal use of the 8-bit range to encode native

characters, so it is very possible for a cell to be reported as convertible but for the

wrong reasons.

For example, this can occur when the Character Set Scanner is used with the
FROMCHAPRarameter set to WEBMSWIN1252. This single-byte character set
encodes a character in every available code point so that no matter what data is
being scanned, the scanner always identifies a data cell as being available in the
source character set.

Character Set Scanner 11-3

Scan Modes in the Character Set Scanner

When you set FROMCHARyou are assuming that all character data is in that
character set but that the Character Set Scanner is not able to accurately determine
the validity. Set the FROMCHARarameter carefully.

The Character Set Scanner does not support the scanning of the VARRAYtollection
type.

Database Containing Data From Two or More Character Sets

If a database contains data from more than one character set, the Character Set
Scanner cannot accurately test the effects of changing the database character set on
the database because it cannot differentiate character sets easily. If the data can be
divided into two separate tables, one for each character set, then the Character Set
Scanner can perform two single table scans to verify the validity of the data.

For each scan, a different value of the FROMCHAPRarameter can be used to tell the
Character Set Scanner to treat all target columns in the table as if they were in the
specified character set.

Database Containing Data Not From the Database Character Set

If a database contains data not in the database character set, but still in only one
character set, the Character Set Scanner can perform a full database scan. Use the
FROMCHAPRarameter to tell the Character Set Scanner what character set the data is
in.

Scan Modes in the Character Set Scanner
The Character Set Scanner provides three modes of database scan:
» Full Database Scan
= User Scan

= Table Scan

Full Database Scan

The Character Set Scanner reads and verifies the character data of all tables
belonging to all users in the database including the data dictionary (SYSuser), and
it reports on the effects of the simulated migration to the new database character
set. It scans all schema objects including stored packages, procedures and functions,
and object names.

11-4 Oracle9i Database Globalization Support Guide

Using The Character Set Scanner

User Scan

Table Scan

To understand the feasibility of migration to a new database character set, you need
to perform a full database scan.

The Character Set Scanner reads and verifies character data of all tables belonging
to the specified user and reports on the effects on the tables of changing the
character set.

The Character Set Scanner does not test for table definitions such as table names
and column names. To see the effects on the schema definitions, you need to
perform a full database scan.

The Character Set Scanner reads and verifies the character data of the specified
table, and reports the effects on the table of changing the character set.

The Character Set Scanner does not test for table definitions such as table name and
column name. To see the effects on the schema definitions, you need to perform a
full database scan.

Using The Character Set Scanner

This section describes how to use the Character Set Scanner, including the steps you
need to perform before scanning and the procedures on how to invoke the
Character Set Scanner. The topics discussed are:

« Before Using the Character Set Scanner

» Character Set Scanner Compatibility

« Invoking the Character Set Scanner

« Getting Online Help for the Character Set Scanner

=« The Parameter File

Before Using the Character Set Scanner

To use the Character Set Scanner, you must run the csminst.sql script on the
database that you plan to scan. The csminst.sql script needs to be run only once.
The script performs the following tasks to prepare the database for scanning:

« Creates a user named CSMIG

Character Set Scanner 11-5

Using The Character Set Scanner

« Assigns the necessary privileges to CSMIG

« Assigns the default tablespace to CSMIG

« Connects as CSMIG

« Creates the Character Set Scanner system tables under CSMIG

The SYSTEMablespace is assigned to CSMIGby default, so you need to ensure
there is sufficient storage space available in the SYSTEMablespace before scanning
the database. The amount of space required depends on the type of scan and the
nature of the data in the database.

See Also: "Storage and Performance Considerations in the
Character Set Scanner" on page 11-29

You can modify the default tablespace for CSMIGby editing the csminst.sql
script. Modify the following statement in csminst.sql to assign your preferred
tablespace to CSMIGas follows:

ALTER USER csmig DEFAULT TABLESPACE tablespace name

Then run csminst.sql using these commands and SQL statements:

% cd $ORACLE_HOME/rdbms/admin

% sqplus "system/manager as sysdba”
SQL> START csminst.sql

Character Set Scanner Compatibility

The Character Set Scanner is certified with Oracle databases on any platforms
running under the same release except that you cannot mix ASClII-based and
EBCDIC-based platforms. For example, the Oracle9i release 2 (9.2) versions of the
Character Set Scanner on any ASCIlI-based client platforms are certified to run with
any Oracle9i release 2 (9.2) databases on any ASCIlI-based platforms, while
EBCDIC-based clients are certified to run with any Oracle9i database on EBCDIC
platforms.

Oracle Corporation recommends that you run the Character Set Scanner in the same
Oracle home as the database when possible.

Invoking the Character Set Scanner
You can invoke the Character Set Scanner by one of these methods:

« Using the parameter file

11-6 Oracle9i Database Globalization Support Guide

Using The Character Set Scanner

csscan system/manager PARFILE= flename
PARFILE is a file containing the Character Set Scanner parameters you typically
use.
« Using the command line
csscan system/manager full=y tochar=utf8 array=10240 process=3

« Using an interactive session
csscan system/manager
In an interactive session, the Character Set Scanner prompts you for the
following parameters:

FULL/TABLE/USER
TOCHAR

ARRAY

PROCESS

If you want to specify parameters that are not listed, you need to invoke the
Character Set Scanner using either the parameter file or the command line.

Getting Online Help for the Character Set Scanner

The Character Set Scanner provides online help. Enter csscan help=y on the
command line to invoke the help screen.

You can let the Character Set Scanner prompt you for parameters by entering the
CSSCANommand followed by your username and password. For example:

CSSCAN SYSTEM/MANAGER
Alternatively, you can control how the Character Set Scanner runs by entering the

CSSCANommand followed by various parameters. To specify parameters, use
keywords. For example:

CSSCAN SYSTEM/MANAGER FULL~y TOCHAR=utf8 ARRAY=102400 PROCESS=3

The following is a list of keywords for the Character Set Scanner:

Keyword Default Prompt Description

USERID yes usemame/password

Character Set Scanner 11-7

Using The Character Set Scanner

FULL N yes scanentredatabase

USER yes user name of the table to scan

TABLE yes listof tables to scan

EXCLUDE list of tables to exclude from scan
TOCHAR yes new database character set name
FROMCHAR current database character set name
TONCHAR new NCHAR character set name
FROMNCHAR current NCHAR character set name

ARRAY 10240 yes size of array fetch buffer
PROCESS 1 yes numberofscan process

MAXBLOCKS split table if larger than MAXBLOCKS
CAPTURE N capture convertible data

SUPPRESS suppress error log by N per table

FEEDBACK feedback progress every N rows

BOUNDARIES list of column size boundaries for summary report

LASTRPT N generate report of the previous database scan
LOG scan base name of log files

PARFILE parameter file name

PRESERVE N preserve existing scan results

HELP N show help screen

The Parameter File

The parameter file enables you to specify Character Set Scanner parameters in a file
where they can be easily modified or reused. Create a parameter file using any flat
file text editor. The command line option PARFILE=filename tells the Character
Set Scanner to read the parameters from a specified file rather than from the
command line. For example:

csscan parfile= flename

or
csscan usemamefpassword parfle= flename

The syntax for parameter file specifications is one of the following:

KEYWORD=value
KEYWORD=(valuel, value2, ...)

The following is an example of a parameter file:

USERID=system/manager
USER=HR # scan HR's tables
TOCHAR=Ut8
ARRAY=40960

11-8 Oracle9i Database Globalization Support Guide

Character Set Scanner Parameters

PROCESS=2 # use two concurrent scan processes
FEEDBACK=1000

You can add comments to the parameter file by preceding them with the pound (#)
sign. All characters to the right of the pound sign are ignored.

Character Set Scanner Parameters
The following topics are included in this section:

ARRAY Character Set Scanner Parameter
BOUNDARIES Character Set Scanner Parameter
CAPTURE Character Set Scanner Parameter
EXCLUDE Character Set Scanner Parameter
FEEDBACK Character Set Scanner Parameter
FROMCHAR Character Set Scanner Parameter
FROMNCHAR Character Set Scanner Parameter
FULL Character Set Scanner Parameter

HELP Character Set Scanner Parameter
LASTRPT Character Set Scanner Parameter
LOG Character Set Scanner Parameter
MAXBLOCKS Character Set Scanner Parameter
PARFILE Character Set Scanner Parameter
PRESERVE Character Set Scanner Parameter
PROCESS Character Set Scanner Parameter
SUPPRESS Character Set Scanner Parameter
TABLE Character Set Scanner Parameter
TOCHAR Character Set Scanner Parameter
TONCHAR Character Set Scanner Parameter
USER Character Set Scanner Parameter
USERID Character Set Scanner Parameter

ARRAY Character Set Scanner Parameter

Default value: 10240
Minimum value: 4096
Maximum value: Unlimited

Character Set Scanner 11-9

Character Set Scanner Parameters

Purpose: Specifies the size in bytes of the array buffer used to
fetch data. The size of the array buffer determines the
number of rows fetched by the Character Set Scanner at
any one time.

The following formula estimates the number of rows fetched at a time:

(rows inarray) =
(ARRAY buffer size) / (sum of the CHAR and VARCHAR2 column sizes of a given table)

If the sum of the CHARand VARCHARZ2o0lumn sizes exceeds the array buffer size,
then the Character Set Scanner fetches only one row at a time. Tables with LONG
CLOB or NCLOBcolumns are fetched only one row at a time.

This parameter affects the duration of a database scan. In general, the larger the size
of the array buffer, the shorter the duration time. Each scan process will allocate the
specified size of array buffer.

BOUNDARIES Character Set Scanner Parameter

Default value: None

Purpose: Specifies the list of column boundary sizes that are used for an
application data conversion summary report. This parameter
is used to locate the distribution of the application data for the
CHARVARCHARZNCHARand NVARCHAR®atatypes.

For example, if you specify a BOUNDARIESalue of (10, 100, 1000), then the
application data conversion summary report produces a breakdown of the CHAR
data into the following groups by their column length, CHAR(1..10) ,
CHAR(11..100) and CHAR(101..1000) . The behavior is the same for the
VARCHARZ2NCHARand NVARCHAR®atatypes.

CAPTURE Character Set Scanner Parameter

Default value: N
Range of values: YorN

11-10 Oracle9iDatabase Globalization Support Guide

Character Set Scanner Parameters

Purpose: Indicates whether to capture the information on the
individual convertible rows as well as the default of storing
the exception rows. The convertible rows information is
written to the CSM$ERRORI&ble if the CAPTURBparameter is
set to Y. This information can be used to deduce which records
need to be converted to the target character set by selective
export and import.

EXCLUDE Character Set Scanner Parameter

Default value: None
Purpose: Specifies the names of the tables to be excluded from the scan

When this parameter is specified, the Character Set Scanner excludes the specified
tables from the scan. You can specify the following when you specify the name of

the table:
« schemaname specifies the name of the user’s schema from which to exclude the
table

« tablename specifies the name of the table or tables to be excluded

For example, the following command scans all of the tables that belong to the hr
sample schema except for the employees and departments tables:

cssan system/manager USER=HR EXCLUDE=(HR EMPLOYEES , HR. DEPARTMENTS) ...

FEEDBACK Character Set Scanner Parameter

Default value: None
Minimum value: 100
Maximum value: 100000

Purpose: Specifies that the Character Set Scanner should display a
progress meter in the fort of a dot for every N number of rows
scanned

For example, if you specify FEEDBACK=1000then the Character Set Scanner
displays a dot for every 1000 rows scanned. The FEEDBACHKalue applies to all
tables being scanned. It cannot be set for individual tables.

Character Set Scanner 11-11

Character Set Scanner Parameters

FROMCHAR Character Set Scanner Parameter

Default value:

Purpose:

None

Specifies the current character set name for CHARVARCHAR?2
LONGand CLOBdatatypes in the database. By default, the
Character Set Scanner assumes the character set for these
datatypes to be the database character set.

Use this parameter to override the default database character set definition for
CHARVARCHARZ2.ONGand CLOBdata in the database.

FROMNCHAR Character Set Scanner Parameter

Default value:

Purpose:

None

Specifies the current national database character set name for
NCHARNVARCHAR2Nd NCLOBdatatypes in the database. By
default, the Character Set Scanner assumes the character set
for these datatypes to be the database national character set.

Use this parameter to override the default database character set definition for
NCHARNVARCHAR2nd NCLOBdata in the database.

FULL Character Set Scanner Parameter

Default value:
Range of values:

Purpose:

See Also:

N
YorN

Indicates whether to perform the full database scan (that is, to
scan the entire database including the data dictionary).
Specify FULL=Y to scan in full database mode.

"Scan Modes in the Character Set Scanner" on page 11-4

for more information about full database scans

HELP Character Set Scanner Parameter

Default value:

Range of values:

N
YorN

11-12 Oracle9i Database Globalization Support Guide

Character Set Scanner Parameters

Purpose: Displays a help message with the descriptions of the
Character Set Scanner parameters

See Also: "Getting Online Help for the Character Set Scanner” on
page 11-7

LASTRPT Character Set Scanner Parameter

Default value: N
Range of values: YorN

Purpose: Indicates whether to regenerate the Character Set Scanner
reports based on statistics gathered from the previous
database scan

If LASTRPT=Yis specified, then the Character Set Scanner does not scan the
database, but creates the report files using the information left by the previous
database scan session instead.

If LASTRPT=Yis specified, then only the USERID, BOUNDARIESand LOG
parameters take effect.

LOG Character Set Scanner Parameter

Default value: scan

Purpose: Specifies a base file name for the following Character Set
Scanner report files:

« Database Scan Summary Report file, whose extension is
Ixt

« Individual Exception Report file, whose extension is .err

« Screen log file, whose extension is .out

By default, the Character Set Scanner generates the three text files, scan.txt
scan.err , and scan.out in the current directory.

MAXBLOCKS Character Set Scanner Parameter

Default value: None

Character Set Scanner 11-13

Character Set Scanner Parameters

Minimum value: 1000
Maximum value: Unlimited

Purpose: Specifies the maximum block size for each table, so that large
tables can be split into smaller chunks for the Character Set
Scanner to process

For example, if the MAXBLOCK$®arameter is set to 1000, then any tables that are
greater than 1000 blocks in size will be divided into n chunks, where
n=CEIL(table block size/1000)

Dividing large tables into smaller pieces will be beneficial only when the number of
processes set with PROCESS$s greater than 1. If the MAXBLOCK$®arameter is not
set, then the Character Set Scanner attempts to split up large tables based on its own
optimization rules.

PARFILE Character Set Scanner Parameter

Default value: None

Purpose: Specifies a filename for a file that contains a list of Character
Set Scanner parameters

See Also: "The Parameter File" on page 11-8

PRESERVE Character Set Scanner Parameter

Default value: N
Range of values: YorN

Purpose: Indicates whether to preserve the statistics gathered from the
previous scan session

If PRESERVE=YSs specified, then the Character Set Scanner preserves all the
statistics from the previous scan. It adds (if PRESERVE=)or overwrites (if
PRESERVE=Nhe new statistics for the tables being scanned in the current scan
request.

11-14 Oracle9i Database Globalization Support Guide

Character Set Scanner Parameters

PROCESS Character Set Scanner Parameter

Default value: 1
Minimum value: 1
Maximum value: 32

Purpose: Specifies the number of concurrent scan processes to utilize
for the database scan

SUPPRESS Character Set Scanner Parameter

Default value: Unset (results in unlimited number of rows)

Minimum value: 0

Maximum value: Unlimited

Purpose: Specifies the maximum number of data exceptions being
logged for each table

The Character Set Scanner inserts individual exceptional record information into the
CSM$ERROR@ble when an exception is found in a data cell. The table grows
depending on the number of exceptions reported.

This parameter is used to suppress the logging of individual exception information
after a specified number of exceptions are inserted for each table. For example, if
SUPPRESSs set to 100, then the Character Set Scanner records a maximum of 100
exception records for each table.

See Also: "Storage Considerations” on page 11-29

TABLE Character Set Scanner Parameter

Default value: None
Purpose: Specifies the names of the tables to scan

You can specify the following when you specify the name of the table:

« schemaname specifies the name of the user’s schema from which to scan the
table

« tablename specifies the name of the table or tables to be scanned

Character Set Scanner 11-15

Character Set Scanner Parameters

For example, the following command scans the employees and departments
tables in the hr sample schema:

csscan system/manager TABLE=(HR.EMPLOYEES , HR DEPARTMENTS) ...

TOCHAR Character Set Scanner Parameter

Default value: None

Purpose: Specifies a target database character set name for the CHAR
VARCHARZ2LONGand CLOBdata

TONCHAR Character Set Scanner Parameter

Default value: None

Purpose: Specifies a target database character set name for the NCHAR
NVARCHARZNd NCLOBdata

If you do not specify a value for TONCHARhen the Character Set Scanner does not
scan NCHARNVARCHARZNnd NCLOBdata.

USER Character Set Scanner Parameter

Default value: None
Purpose: Specifies the owner of the tables to be scanned
If the parameter USERIs specified, then the Character Set Scanner scans all tables

belonging to the user. For example, the following statement scans all tables
belonging to the user hr :

csscan system/manager USER=hr ...

USERID Character Set Scanner Parameter

Default value: None

Purpose: Specifies the username and password (and optional connect
string) of the user who scans the database. If you omit the
password, then the Character Set Scanner prompts you for it

11-16 Oracle9iDatabase Globalization Support Guide

Examples: Character Set Scanner Sessions

The following examples are all valid:

usemame | password

usemame | password @onnect_stiing
usemarme

usemame @onnect_sting

Examples: Character Set Scanner Sessions

The following examples show you how to use the command-line and parameter-file
methods to use Full Database, User, and Table scan modes.

Example: Full Database Scan

The following example shows how to scan the full database to see the effects of
migrating it to UTF8. This example assumes that the current database character set
is WEBISO8859P1 (or anything other than UTFS8).

Parameter-File Method
% csscan system/manager parfile=param.txt

The param.txt file contains the following information:

full=y
tochar=utf8
array=40960
process=4

Command-Line Method
% csscan system/manager full=y tochar=utf8 array=40960 process=4

Scanner Messages
Database Scanner: Release 9.2.0.0 - Production

() Copyright 2001 Oracle Corporation. All rights reserved.
Connected to:

Oracle9i Enterprise Edition Release 9.2.0.0 - Production
With the Objects option

PL/SQL Release 9.2.0.0 - Production

Enumerating tables to scan...

. process 1 scanning SYSTEM.REPCAT$ RESOLUTION

Character Set Scanner 11-17

Examples: Character Set Scanner Sessions

. process 1 scanning SYS.AQ$ MESSAGE_TYPES
. process 1 scanning SYSARGUMENTS$

. process 2 scanning SYS.AUD$

. process 3 scanning SYS ATTRIBUTES

. process 4 scanning SYSATTRCOL$

. process 2 scanning SYS.AUDIT_ACTIONS

. process 2 scanning SYS.BOOTSTRAP$

. process 2 scanning SYS.CCOL$

. process 2 scanning SYS.CDEF$

. process 3 scanning SYSTEM.REPCAT$ REPOBJECT

. process 1 scanning SYSTEM.REPCAT$_REPPROP

. process 2 scanning SYSTEM.REPCAT$_REPSCHEMA
. process 3 scanning MDSYS.MD$DIM

. process 1 scanning MDSYS.MD$DICTVER

. process 2 scanning MDSYS.MD$EXC

. process 3 scanning MDSYS.MD$LER

. process 1 scanning MDSYS.MD$PTAB

. process 2 scanning MDSYS.MD$PTS

. process 3 scanning MDSYS.MD$TAB

Creating Database Scan Summary Report...
Creating Individual Exception Report...

Scanner terminated successfully.

Example: User Scan

The following example shows how to scan the user tables to see the effects of
migrating them to UTF8. This example assumes the current database character set is
US7ASCII, but the actual data stored is in Western European WESMSWIN1252
encoding.

Parameter-File Method
% csscan system/manager parfile=param.txt

The param.txt file contains the following information:

user=hr
fromchar=we8mswin1252
tochar=utf8

array=40960

11-18 Oracle9i Database Globalization Support Guide

Examples: Character Set Scanner Sessions

process=1

Command-Line Method

% csscan system/manager user=hr fromchar=we8mswin1252 tochar=utf8 array=40960
process=1

Character Set Scanner Messages
Database Scanner: Release 9.2.0.0 - Production

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to:

Oracle9i Enterprise Edition Release 9.2.0.0 - Production
With the Objects option

PL/SQL Release 9.2.0.0 - Production

Enumerating tables to scan...

. process 1 scanning HR.JOBS

. process 1 scanning HR.DEPARTMENTS
. process 1 scanning HR.JOB_HISTORY

. process 1 scanning HR EMPLOYEES
Creating Database Scan Summary Report...
Creating Individual Exception Report...

Scanner terminated successfully.

Example: Single Table Scan

The following example shows how to scan a single table to see the effects on
migrating it to WESBMSWIN1252. This example assumes the current database
character set is in US7ASCII.

Parameter-File Method
% csscan system/manager parfile=param.txt

The param.txt file contains the following information:

table=employees
tochar=we8mswin1252

Character Set Scanner 11-19

Character Set Scanner Reports

aray=40960
process=1
supress=100

Command-Line Method

% csscan system/manager table=employees tochar=we8mswin1252 array=40960
process=1 supress=100

Scanner Messages
Database Scanner: Release 9.2.0.0 - Production

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to:

Oracle9i Enterprise Edition Release 9.2.0.0 - Production
With the Objects option

PL/SQL Release 9.2.0.0 - Production

. process 1 scanning HR EMPLOYEES
Creating Database Scan Summary Report...
Creating Individual Exception Report...

Scanner terminated successfully.

Character Set Scanner Reports
The Character Set Scanner generates two reports for each scan:
« Database Scan Summary Report

« Individual Exception Report

Database Scan Summary Report
A Database Scan Summary Report consists of the following sections:

« Database Parameters for the Character Set Scanner
« Database Size
« Scan Summary

« Data Dictionary Conversion Summary

11-20 Oracle9i Database Globalization Support Guide

Character Set Scanner Reports

« Application Data Conversion Summary

« Application Data Conversion Summary for Each Column Size Boundary
« Distribution of Convertible Data for Each Table

« Distribution of Convertible Data for Each Column

= Indexes To Be Rebuilt

The information available for each section depends on the type of scan and the
parameters you select.

Database Parameters for the Character Set Scanner

This section describes the parameters selected and the type of scan you chose. The
following is an example:

Parameter Value

Scantype Ful database

Scan CHAR data? YES

Current database character set WESBISO8859P1
New database character set UTF8

Scan NCHAR data? NO

Array fetch buffer size 102400

Number of processes 4

Database Size
This section describes the current database size. The following is an example:

TABLESPACE Towl(MB) Used(MB) Free(VIB)
APPS_DATA 1340000 1331070 8926
CTX_DATA 30000 3145 26852
INDEX_DATA 140000 132559 7438
RBS DATA 310000 300434 9563
SYSTEM_DATA 150000 144969 5027
TEMP_DATA 160.000 159.996
TOOLS DATA 35000 22148 12848
USERS_DATA 220000 142195 77.801
Total 2385000 2073742 311227

Character Set Scanner 11-21

Character Set Scanner Reports

Scan Summary

This report indicates the feasibility of the database character set migration. There
are two basic criteria that determine the feasibility of the character set migration of
the database. One is the condition of the data dictionary and the other is the
condition of the application data.

The Scan Summary section consists of two status lines. The scan mode and the
result determines the status that is printed for the data dictionary and application
data.

Table 11-1 Scan Summary for the Data Dictionary and Application Data

Possible Data Dictionary Status Possible Application Data Status

All character-type data in the data All character-type application data remains
dictionary remains the same in the new the same in the new character set.
character set.

All character-type data in the data All character-type application data is
dictionary is convertible to the new convertible to the new character set.
character set.

Some character-type data in the data Some character-type application data is not
dictionary is not convertible to the new convertible to the new character set.

character set.

The following is sample output:

All character type data in the data dictionary remains the same in the new
character set
All character type application data remains the same in the new character set

When all data remains the same in the new character set, it means that the data
encoding of the original character set is identical to the target character set. In this
case, the character set can be migrated using the ALTER DATABASE CHARACTER
SET statement.

If all the data is convertible to the new character set, it means that the data can be
safely migrated using the Export and Import utilities. However, the migrated data
may or may not have the same encoding as the original character set.

11-22 Oracle9i Database Globalization Support Guide

Character Set Scanner Reports

See Also:

« "Individual Exception Report” on page 11-27 for more
information about non-convertible data

« "Migrating Character Data Using the ALTER DATABASE
CHARACTER SET Statement"” on page 10-8

« "Migrating Character Data Using a Full Export and Import” on
page 10-8

Data Dictionary Conversion Summary

This section contains the statistics on the conversion summary of the data
dictionary. It reports the statistics by datatype. Table 11-2 describes the types of
status that can be reported.

Table 11-2 Data Conversion Summary for the Data Dictionary

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert anyway, some characters will be lost or data will
be truncated

This information is available only when a full database scan is performed. The
following is sample output:

Datatype Changeless Convertble Exceptional Total

VARCHAR2 971,300 1 0 971,301
CHAR 7 0 0 7

LONG 60,325 0 0 60,325
CLOB

Total 1,031,632 1 0 1031633

If the numbers in both the Convertible and Exceptional columns are zero, it
means that all the data in the data dictionary will remain the same in the new
character set.

Character Set Scanner 11-23

Character Set Scanner Reports

If the numbers in the Exceptional column are zero and some numbers in the
Convertible columns are not zero, it means that all data in the data dictionary is
convertible to the new character set. During import, the relevant data will be
converted.

If the numbers in the Exceptional ~ column are not zero, it means that there is data
in the data dictionary that is not convertible. Therefore, it is not feasible to migrate
the current database to the new character because the export and import process
cannot convert the data into the new character set. For example, you might have a
table name with invalid characters or a PL/SQL procedure with a comment line
that includes data that cannot be mapped to the new character set. These changes to
schema objects must be corrected manually before migration to a new character set.

Application Data Conversion Summary

This section contains the statistics on conversion summary of the application data.
The statistics are reported by datatype. Table 11-3 describes the types of status that
can be reported.

Table 11-3 Data Conversion Summary for Application Data

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert anyway, some characters will be lost or data will
be truncated

The following is sample output:
Datatype Changeless Convertble Exceptional Total

VARCHAR2 23213745 1324 0 23215069
CHAR 423430 0 0 423430

LONG 8,624 33 0 8,657

CLOB 58,839 11114 28 69,981

Total 23,704,638 12471 28 23717137

11-24 Oracle9i Database Globalization Support Guide

Character Set Scanner Reports

Application Data Conversion Summary for Each Column Size Boundary

This section contains the conversion summary of the CHARand VARCHAR?2
application data. The statistics are reported by column size boundaries specified by
the BOUNDARIE$arameter. Table 11-4 describes the types of status available.

Table 11-4 Data Conversion Summary for Columns in Application Data

Status Description

Changeless Number of data cells that remain the same in the new
character set

Convertible Number of data cells that will be successfully converted to
the new character set

Exceptional Number of data cells that cannot be converted. If you choose
to convert, some characters will be lost or data will be
truncated

This information is available only when the BOUNDARIE$arameter is specified.

The following is sample output:

Datatype Changeless Convertible Exceptional Total
VARCHAR2(1..10) 1,474,825 0 0 1474825
VARCHAR2(11.100) 9,691,520 71 0 9691591
VARCHAR2(101.4000) 12,047400 1253 0 12,048653
CHAR(1..10) 423413 0 0 423413
CHAR(11..100) 17 0 0 17
CHAR(101..4000)

Total 23637175 1324 0 23638499

Distribution of Convertible Data for Each Table

This report shows how Convertible ~ and Exceptional data is distributed
within the database. The statistics are reported by table. If the list contains only a
few rows, it means the Convertible data is localized. If the list contains many
rows, it means the Convertible data occurs throughout the database.

The following is sample output:

USERTABLE Convertible Exceptional
SMG.SOURCE 1 0
SMG.HELP 12 0
SMG.CLOSE_LIST 16 0

Character Set Scanner 11-25

Character Set Scanner Reports

SMG.ATTENDEES 8 0

SGT.DR 010 [1T1 7 0

SGTDR 011 11T1 7 0
SGTMRK_SRV_PROFILE 2 0
SGTMRK_SRV_PROFILE_TEMP 2 0
SGTMRK_SRV_QUESTION 3 0

Distribution of Convertible Data for Each Column

This report shows how Convertible ~ and Exceptional data is distributed
within the database. The statistics are reported by column. The following is an
example:

USER.TABLE|COLUMN Convertible Exceptional

SMG.SOURCE|SOURCE 1 0
SMG.HELP|INFO 12 0
SMG.CLOSE._LISTIFNAME 1 0
SMG.CLOSE_LISTILNAME 1 0
SMG.CLOSE_LISTICOMPANY 1 0
SMG.CLOSE _LIST|STREET 8 0
SMG.CLOSE_LISTICITY 4 0
SMG.CLOSE _LIST|STATE 1 0

SMG ATTENDEES|ATTENDEE_NAME 1 0
SMG ATTENDEES|ADDRESS1
SMG.ATTENDEES|ADDRESS?
SMG ATTENDEES|ADDRESS3
SGTDR_010_[1TWORD_TEXT
SGTDR_011_I1T1WORD_TEXT
SGTMRK_SRV_PROFILE[FNAME 1 0
SGTMRK_SRV_PROFILEJLNAME 1 0
SGTMRK_SRV_PROFILE_TEMP|FNAME 1 0
SGTMRK_SRV_PROFILE_TEMP|LNAME 1 0
SGTMRK_SRV_QUESTIONJANSWER 3 0

N NN W
OO OoOo

Indexes To Be Rebuilt

This generates a list of all the indexes that are affected by the database character set
migration. These can be rebuilt after the data has been imported. The following is
an example:

USER.INDEX on USER. TABLE(COLUMN)

CD2000.COMPANY_[X_PID_BID_NNAME on CD2000.COMPANY(CO_NLS NAME)
CD2000._ MASHINE_MAINT_CONT on CD2000.MACHINE(MA MAINT_CONT#)
CD2000.PERSON_NEWS_SABUN_CONT_CONT on
CD2000.PERSON_NEWS_SABUN_CONT(CONT BID)
CD2000.PENEWSABUN3_PEID_CONT on CD2000.PE_NEWS_SABUN_3(CONT_BID)

11-26 Oracle9i Database Globalization Support Guide

Character Set Scanner Reports

PMS2000.CALLS _[X_STATUS_SUPPMGR on PMS2000.CALLS(SUPPMGR)
PMS2000.MAILQUEUE_CHK_SUB_TOM on PMS2000.MAIL_QUEUE(TO_MAIL)
PMS2000.MAILQUEUE_CHK_SUB_TOM on PMS2000MAIL_QUEUE(SUBJECT)
PMS2000.TMP_[X_COMP on PMS2000.TMP_CHK_COMP(COMP_NAME)

Individual Exception Report
An Individual Exception Report consists of the following summaries:

« Database Scan Parameters
«» Data Dictionary Individual Exceptions

« Application Data Individual Exceptions

Database Scan Parameters
This section describes the parameters and the type of scan chosen. The following is

an example:

Parameter Value
Scantype Full database
Scan CHAR data? YES

Current database character set we8mswin1252
New database character set utf8

Scan NCHAR data’? NO
Array fetch buffer size 102400
Number of rows to heap up forinsert 10
Number of processes 1

Data Dictionary Individual Exceptions

This section identifies the data dictionary data that is either convertible or has
exceptions. There are two types of exceptions:

« exceed column size
« lossy conversion

The following is an example of output about a data dictionary that contains
convertible data:

User :SYS
Table : METASTYLESHEET
Column: STYLESHEET

Character Set Scanner 11-27

Character Set Scanner Reports

Type :CLOB
Number of Exceptions ~ :0
Max Post Conversion Data Size: 0

ROWID Exception Type Size Cell Data(first 30 bytes)

AAAAHMAABAAAASHAAA convertible
AAAAHMAABAAAAS+AAB convertible

See Also: "Application Data Individual Exceptions” on page 11-28
for more information about exceptions

Application Data Individual Exceptions

This report identifies the data that has exceptions so that this data can then be
modified if necessary.

There are two types of exceptions:
« exceed column size

The column size should be extended if the maximum column width has been
surpassed. If not, data truncation occurs.

« lossy conversion

The data must be corrected before migrating to the new character set, or else the
invalid characters will be converted to a replacement character. Replacement
characters are usually specified as ? or ¢, or as a character that is linguistically
similar.

The following is an example of an individual exception report that illustrates some
possible problems when changing the database character set from WE8ISO8859P1
to UTFS:

User: HR

Table: EMPLOYEES

Column: LAST_NAME

Type: VARCHAR2(10)

Number of Exceptions: 2

Max Post Conversion Data Size: 11

ROWID Exception Type Size Cell Data(first 30 bytes)

AAAAIAAFAABIWQAAG exceed column size 11 Ahrenfelott
AAAAIAAFAABIWQAAU lossy conversion Oraclé8™

11-28 Oracle9i Database Globalization Support Guide

Storage and Performance Considerations in the Character Set Scanner

AAAAZIAAFAABIWQAAU exceed columnsize 11 6raclé8™

The values Ahrenfeldt and 6raclé8 ™ exceed the column size (10 bytes) because
each of the characters A, 6, &, and & occupies one byte in WE81SO8859P1 but two
bytes in UTF8. The value 6raclé8 ™ has lossy conversion to UTF8 because the
trademark sign ™ (code 153) is not a valid WE8ISO8859P1 character. It is a
WEBMSWIN1252 character, which is a superset of WE8ISO8859P1.

You can view the data that has an exception by issuing a SELECTstatement:

SELECT last_name FROM hr.employees
WHERE ROWID=AAAA2IAAFAABIWQAAU;

You can modify the data that has the exception by issuing an UPDATEstatement:
UPDATE hr.employees SET last_name = 'Oracle8 TM'
WHERE ROWID=AAAA2IAAFAABIWQAAU;

See Also:

« "Data Truncation" on page 10-2

« "Character Set Conversion Issues" on page 10-4

Storage and Performance Considerations in the Character Set Scanner

This section describes storage and performance issues in the Character Set Scanner.
It contains the following topics:

« Storage Considerations

« Performance Considerations

Storage Considerations

This section describes the size and the growth of the Character Set Scanner's system
tables, and explains the approach to maintain them. There are three system tables
that can increase rapidly depending on the nature of the data stored in the database.

You may want to assign a large tablespace to the user CSMIGby amending the
csminst.sql script. By default, the SYSTEMablespace is assigned to the user
CSMIG

This section includes the following topics:

Character Set Scanner 11-29

Storage and Performance Considerations in the Character Set Scanner

« CSMS$TABLES
= CSM$COLUMNS
=« CSMS$ERRORS

CSMS$TABLES

The Character Set Scanner enumerates all tables that need to be scanned into the
CSM$TABLESable.

You can look up the number of tables (to get an estimate of how large CSM$TABLES
can become) in the database by issuing the following SQL statement:

SELECT COUNT(*) FROM DBA_TABLES,

CSM$COLUMNS

The Character Set Scanner stores statistical information for each column scanned
into the CSM$COLUMNS&ble.

You can look up the number of character type columns (to get an estimate of how
large CSM$COLUMNSEN become) in the database by issuing the following SQL
statement:

SELECT COUNT(*) FROMDBA_TAB_COLUMNS
WHERE DATA TYPE IN (CHAR', VARCHARZ, 'LONG, 'CLOBY);

CSM$ERRORS

When exceptions are detected with cell data, the Character Set Scanner inserts
individual exception information into the CSM$ERROREble. This information then
appears in the Individual Exception Report and facilitates identifying records to be
modified if necessary.

If your database contains a lot of data that is signaled as Exceptional or
Convertible (when the parameter CAPTURE=YSs set), then the CSM$ERRORS
table can grow very large. You can prevent the CSM$ERROR&ble from growing
unnecessarily large by using the SUPPRES$arameter.

The SUPPRES$®arameter applies to all tables. The Character Set Scanner
suppresses inserting individual Exceptional information after the specified
number of exceptions is inserted. Limiting the number of exceptions to be recorded
may not be useful if the exceptions are spread over different tables.

11-30 Oracle9iDatabase Globalization Support Guide

Character Set Scanner Views and Messages

Performance Considerations
This section describes ways to increase performance when scanning the database.

Using Multiple Scan Processes

If you plan to scan a relatively large database, for example, over 50GB, you might
want to consider using multiple scan processes. This shortens the duration of
database scans by using hardware resources such as CPU and memory available on
the machine. A guideline for determining the number of scan processes to use is to
set the number equal to the CPU_COUNinitialization parameter.

Array Fetch Buffer Size

The Character Set Scanner fetches multiple rows at a time when an array fetch is
allowed. Generally, you will improve performance by letting the Character Set
Scanner use a bigger array fetch buffer. Each process allocates its own fetch buffer.

Suppressing Exception and Convertible Log

The Character Set Scanner inserts individual Exceptional ~ and Convertible

(when CAPTURE=Yinformation into the CSM$ERRORble. In general, insertion
into the CSM$ERROR@ble is more costly than data fetching. If your database has a
lot of data that is signaled as Exceptional or Convertible , then the Character
Set Scanner issues many insert statements, causing performance degradation.
Oracle Corporation recommends setting a limit on the number of exception rows to
be recorded using the SUPRESS$arameter.

Character Set Scanner Views and Messages
This section contains the following reference material:
« Character Set Scanner Views

« Character Set Scanner Error Messages

Character Set Scanner Views
The Character Set Scanner uses the following views.

CSMV$COLUMNS
This view contains statistical information about columns that were scanned.

Character Set Scanner 11-31

Character Set Scanner Views and Messages

Column Datatype NULL Description
OWNER_ID NUMBER NOT NULL Userid of the table owner
OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner
TABLE_ID NUMBER NOT NULL Object ID of the table
TABLE_NAME VARCHAR2(30) NOT NULL Object name of the table
COLUMN_ID NUMBER NOT NULL Column ID
COLUMNL_INTID NUMBER NOT NULL Internal column ID (for abstract datatypes)
COLUMN_NAME VARCHAR2(30) NOT NULL Column name
COLUMN_TYPE VARCHAR2(9) NOT NULL Column datatype
TOTAL_ROWS NUMBER NOT NULL Number of rows in this table
NULL_ROWS NUMBER NOT NULL Number of NULL data cells
CONV_ROWS NUMBER NOT NULL Number of data cells that need to be converted
ERROR_ROWS NUMBER NOT NULL Number of data cells that have exceptions
EXCEED_SIZE_ROWS NUMBER NOT NULL Number of data cells that have exceptions
DATA_LOSS_ROWS NUMBER - Number of data cells that undergo lossy conversion
MAX_POST_CONVERT_ NUMBER - Maximum post-conversion data size
SIZE

CSMV$CONSTRAINTS

This view contains statistical information about columns that were scanned.
Column Datatype NULL Description
OWNER_ID NUMBER NOT NULL Userid of the constraint owner
OWNER_NAME VARCHAR2(30) NOT NULL User name of the constraint owner
CONSTRAINT_ID NUMBER NOT NULL Object ID of the constraint
CONSTRAINT_NAME VARCHAR2(30) NOT NULL Object name of the constraint
CONSTRAINT_TYPE# NUMBER NOT NULL Constraint type number
CONSTRAINT_TYPE VARCHAR2(11) NOT NULL Constraint type name
TABLE_ID NUMBER NOT NULL Object ID of the table
TABLE_NAME VARCHARZ2(30) NOT NULL Object name of the table
CONSTRAINT_RID NUMBER NOT NULL Root constraint ID
CONSTRAINT_LEVEL NUMBER NOT NULL Constraint level

11-32 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages

CSMV$ERRORS

This view contains individual exception information for cell data and object
definitions.

Column Datatype NULL Description
OWNER_ID NUMBER NOT NULL Userid of the table owner
OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner
TABLE_ID NUMBER NOT NULL Obiject ID of the table
TABLE_NAME VARCHAR2(30) - Object name of the table
COLUMN_ID NUMBER - Column ID
COLUMN_INTID NUMBER - Internal column ID (for abstract datatypes)
COLUMN_NAME VARCHAR2(30) - Column name
DATA_ROWID VARCHAR2(1000) - The rowid of the data
COLUMN_TYPE VARCHAR2(9) - Column datatype of object type
ERROR_TYPE VARCHAR2(11) - Type of error encountered
CSMVSINDEXES
This view contains individual exception information for indexes.
Column Datatype NULL Description
INDEX_OWNER_ID NUMBER NOT NULL Userid of the index owner
INDEX_OWNER_NAME VARCHAR2(30) NOT NULL User name of the index owner
INDEX_ID NUMBER NOT NULL Object ID of the index
INDEX_NAME VARCHAR2(30) - Object name of the index
INDEX_STATUSH# NUMBER - Status number of the index
INDEX_STATUS VARCHAR2(8) - Status of the index
TABLE_OWNER_ID NUMBER - Userid of the table owner
TABLE_OWNER_NAME VARCHAR2(30) - User name of the table owner
TABLE_ID NUMBER - Object ID of the table
TABLE_NAME VARCHAR2(30) - Object name of the table
COLUMN_ID NUMBER - Column ID
COLUMN_INTID NUMBER - Internal column ID (for abstract datatypes)
COLUMN_NAME VARCHAR2(30) - Column name

Character Set Scanner

11-33

Character Set Scanner Views and Messages

CSMVS$TABLES

This view contains information about database tables to be scanned. The Character
Set Scanner enumerates all tables to be scanned into this view.

Column Datatype NULL Description

OWNER_ID NUMBER NOT NULL Userid of the table owner

OWNER_NAME VARCHAR2(30) NOT NULL User name of the table owner

TABLE_ID NUMBER - Object ID of the table

TABLE_NAME VARCHAR2(30) - Object name of the table

MIN_ROWID VARCHAR2(18) - Minimum rowid of the split range of the table
MAX_ROWID VARCHAR2(18) - Maximum rowid of the split range of the table
BLOCKS NUMBER - Number of blocks in the split range
SCAN_COLUMNS NUMBER - Number of columns to be scanned
SCAN_ROWS NUMBER - Number of rows to be scanned
SCAN_START VARCHAR2(8) - Time table scan started

SCAN_END VARCHAR2(8) - Time table scan completed

Character Set Scanner Error Messages

The Character Set Scanner has the following error messages:

CSS-00100 failed to allocate memory size of number
An attempt was made to allocate memory with size 0 or bigger than the maximum size.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00101 failed to release memory
An attempt was made to release memory with invalid pointer.
This is an intemal error. Contact Oracle Customer Support.

CSS-00102 failed to release memory, null pointer given
An attempt was made to release memory with null pointer.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00105 failed to parse BOUNDARIES parameter
BOUNDARIES parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00106 failed to parse SPLIT parameter
SPLIT parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00107 Character set migration utility schem not installed

11-34 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages

CSMS$VERSION table not found in the database.
Run CSMINST.SQL on the database.

CSS-00108 Character set migration utility schema not compatible
Incompatible CSM$* tables found in the database.
Run CSMINST.SQL on the database.

CSS-00110 failed to parse userid
USERID parameter was specified in an invalid format.
Refer to the manual for the correct syntax.

CSS-00111 failed to get RDBMS version
Failed to retrieve the value of the Version of the database.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00112 database version not supported
The database version is older than release 8.0.5.0.0.
Upgrade the database to release 8.0.5.0.0 or later, then try again.

CSS-00113 user %s is not allowed to access data dictionary
The specified user cannot access the data dictionary.
SetO7_DICTIONARY_ACCESSIBILITY parameter to TRUE, or use SYS user.

CSS-00114 failed to get database character set name

Failed to refrieve value of NLS CHARACTERSET orNLS_NCHAR_CHARACTERSET parameter from NLS
DATABASE_PARAMETERS view.

Thisis anintemal error. Contact Oracle Customer Support.

CSS-00115 invalid character set name %s
The specified character setis not a valid Oracle character set.

See Also: Appendix A, "Locale Data" for the correct character set
name

CSS-00116 failed to reset NLS_LANG/NLS_NCHAR parameter
Failed to force NLS_LANG character set to be same as database character set.
This is an intemal emor. Contact Oracle Customer Support.

CSS-00117 failed to clear previous scan log
Failed to delete all rows from CSM$* tables.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00118 failed to save command parameters
Failed to insert rows into CSM$PARAMETERS table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00119 failed to save scan start time

Failed to insert a row into CSM$PARAMETERS table.
This is an intemal emor. Contact Oracle Customer Support.

Character Set Scanner

11-35

Character Set Scanner Views and Messages

CSS-00120 failed to enumerate tables to scan
Failed to enumerate tables to scan into CSM$TABLES table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00121 failed to save scan complete time
Failed to insert a row into CSM$PARAMETERS table.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00122 failed to create scan report
Failed to create database scan report.
This is an intemal emror. Contact Oracle Customer Support.

CSS-00123 failed to check if user %os exist
Select statement that checks if the specified user exists in the database failed.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00124 user %s not found
The specified user does not exist in the database.
Check the user name.

CSS-00125 failed to check if table %6s.%6s exist
Select statement that checks if the specified table exists in the database failed.
This is an intemal error. Contact Oracle Customer Support.

CSS-00126 table %s.%s not found
The specified table does not exist in the database.
Check the user name and table name.

CSS-00127 user %s does not have DBA priviege
The specified user does not have DBA privileges, which are required to scan the database.
Choose a user with DBA privileges.

CSS-00128 failed to get server version string
Failed to retrieve the version string of the database.
None.

CSS-00130 failed to initialize semaphore
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00131 failed to spawn scan process %d

Unknown.

Thisis anintemal emror. Contact Oracle Customer Support.
CSS-00132 failed to destroy semaphore

Unknown.

This is an intemal error. Contact Oracle Customer Support.

CSS-00133 failed to wait semaphore

11-36 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages

Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00134 failed to post semaphore
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00140 failed to scan table (tid=%od, oid=%d)
Data scan on this particular table failed.
This is an intemal error. Contact Oracle Customer Support.

CSS-00141 failed to save table scan start ime
Failed to update a row in the CSM$TABLES table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00142 failed to get table information

Failed to retrieve various information from user id and object id of the table.

Thisis anintemal error. Contact Oracle Customer Support.

CSS-00143 failed to get column attributes
Failed to refrieve column atfributes of the table.
This is an intemal error. Contact Oracle Customer Support.

CSS-00144 failed to scan table %6s.%6s
Data scan on this particular table was not successful.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00145 failed to save scan result for columns
Failed to insert rows into CSM$COLUMNS table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00146 failed to save scan resullt for table
Failed to update a row of CSM$TABLES table.
This is an intemal error. Contact Oracle Customer Support.

CSS-00147 unexpected data truncation

Scanner allocates the exactly same size of memory as the column byte size for fetch

buffer, resutting in unexpected data truncation.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00150 failed to enumerate table
Failed to refrieve the specified table information.
This is an intemal error. Contact Oracle Customer Support.

CSS-00151 failed to enumerate user tables

Failed to enumerate all tables that belong to the specified user.

Thisis anintemal error. Contact Oracle Customer Support.

CSS-00152 failed to enumerate all tables

Character Set Scanner

11-37

Character Set Scanner Views and Messages

Failed to enumerate all tables in the database.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00153 failed to enumerate character type columns
Failed to enumerate all CHAR, VARCHAR2, LONG, and CLOB columns of tables to scan.
This is an intemal eror. Contact Oracle Customer Support.

CSS-00154 failed to create list of tables to scan
Failed to enumerate the tables into CSM$TABLES table.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00155 failed to spiit tables for scan
Failed to split the specified tables.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00156 failed to get total number of tables to scan
Select statement that retrieves the number of tables to scan failed.
This is an intemal error. Contact Oracle Customer Support.

CSS-00157 failed to retrieve list of tables to scan
Failed to read all table ids into the scanner memory.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00158 failed to refrieve index defined on column
Select statement that retrieves index defined on the column fails.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00160 failed to open summary report file

File open function retumed error.

Check if you have createiwrite privilege on the disk and check if the file name specified
for the LOG parameter is valid.

CSS-00161 failed to report scan elapsed time
Unknown.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00162 failed to report database size information
Unknown.
This is an intemal error. Contact Oracle Customer Support.

CSS-00163 failed to report scan parameters
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00164 failed to report Scan summary
Unknown.
Thisis anintemal emror. Contact Oracle Customer Support.

CSS-00165 failed to report conversion summary
Unknown.

11-38 Oracle9i Database Globalization Support Guide

Character Set Scanner Views and Messages

This is an intemal error. Contact Oracle Customer Support.

CSS-00166 failed to report convertible data distribution
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00167 failed to open exception report file

File open function retumed error.

Check if you have createfrite privilege on the disk and check if the file name specified
for LOG parameter is valid.

CSS-00168 failed to report individual exceptions
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00170 failed to retrieve size of tablespace %
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00171 failed to retrieve free size of tablespace %s
Unknown.
This is an intemal error. Contact Oracle Customer Support.

CSS-00172 failed to retrieve total size of tablespace %s
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00173 failed to retrieve used size of the database
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00174 failed to retrieve free size of the database
Unknown.
This is an intemal error. Contact Oracle Customer Support.

CSS-00175 failed to retrieve total size of the database
Unknown.
Thisis anintemal error. Contact Oracle Customer Support.

CSS-00176 failed to enumerate user tables in bitmapped tablespace

Failed to enumerate tables in bitmapped tablespace.
Thisis anintemal error. Contact Oracle Customer Support.

Character Set Scanner

11-39

Character Set Scanner Views and Messages

11-40 Oracle9i Database Globalization Support Guide

12

Customizing Locale Data

This chapter shows how to customize locale data. It includes the following topics:

Overview of the Oracle Locale Builder Utility

Creating a New Language Definition with the Oracle Locale Builder
Creating a New Territory Definition with the Oracle Locale Builder
Displaying a Code Chart with the Oracle Locale Builder

Creating a New Character Set Definition with the Oracle Locale Builder
Creating a New Linguistic Sort with the Oracle Locale Builder

Generating and Installing NLB Files

Customizing Locale Data 12-1

Overview of the Oracle Locale Builder Utility

Overview of the Oracle Locale Builder Utility

The Oracle Locale Builder offers an easy and efficient way to customize locale data.
It provides a graphical user interface through which you can easily view, modify,
and define locale-specific data. It extracts data from the text and binary definition
files and presents them in a readable format so that you can process the information
without worrying about the formats used in these files.

The Oracle Locale Builder handles four types of locale definitions: language,
territory, character set, and linguistic sort. It also supports user-defined characters
and customized linguistic rules. You can view definitions in existing text and binary
definition files and make changes to them or create your own definitions.

This section contains the following topics:
« Configuring Unicode Fonts for the Oracle Locale Builder
« The Oracle Locale Builder User Interface

« Oracle Locale Builder Screens and Dialog Boxes

Configuring Unicode Fonts for the Oracle Locale Builder

The Oracle Locale Builder uses Unicode characters in many of its functions. For
example, it shows the mapping of local character code points to Unicode code
points.Therefore, Oracle Corporation recommends that you use a Unicode font to
fully support the Oracle Locale Builder. If a character cannot be rendered with your
local fonts, then it will probably be displayed as an empty box.

Font Configuration on Windows

There are many Windows TrueType and OpenType fonts that support Unicode.
Oracle Corporation recommends using the Arial Unicode MS font from Microsoft,
because it includes about 51,000 glyphs and supports most of the characters in

Unicode 3.1.

After installing the Unicode font, add the font to the Java Runtime

font.properties file so it can be used by the Oracle Locale Builder. The
font.properties file is located in the $JAVAHOME/lib directory. For example,
for the Arial Unicode MS font, add the following entries to the font.properties

file:

dialog. r=Arial Unicode MS, DEFAULT _CHARSET
diaoginput n=Avial Unicode MS, DEFAULT_CHARSET
serif. n=Avial Unicode MS, DEFAULT_CHARSET
sansserf. n=Avial Unicode MS, DEFAULT_CHARSET

12-2 Oracle9i Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility

n is the next available sequence number to assign to the Arial Unicode MS font in
the font list. Java Runtime searches the font mapping list for each virtual font and
use the first font available on your system.

After you edit the font.properties file, restart the Oracle Locale Builder.

See Also: Sun’s internationalization website for more information
about the font.properties file

Font Configuration on Other Platforms

There are fewer choices of Unicode fonts for non-Windows platforms than for
Windows platforms. If you cannot find a Unicode font with satisfactory character
coverage, then use multiple fonts for different languages. Install each font and add
the font entries into the font.properties file using the steps described for the
Windows platform.

For example, to display Japanese characters on Sun Solaris using the font

ricoh-hg mincho , add entries to the existing font.properties file in
$JAVAHOME/lib inthe dialog , dialoginput , serif ,and sansserif sections.
For example:

serif. plain.3=-icoh-hg mincho Fmedium--nomal—*-%6d-*-*-m-*-jisx0201.1976-0

See Also: Your platform-specific documentation for more
information about available fonts

The Oracle Locale Builder User Interface
Ensure that the ORACLE_HOMiRitialization parameter is set before starting the

Builder.

Start the Oracle Locale Builder by changing into the SORACLE _
HOME/ocommon/nls/Ibuilder directory and issuing the following command:
% lbuilder

After you start the Oracle Locale Builder, the screen shown in Figure 12-1 appears.

Customizing Locale Data 12-3

Overview of the Oracle Locale Builder Utility

Figure 12-1 Oracle Locale Builder Utility

File Edit Tools Help

ORACLE LOCALE BUILDER

Oracle Locale Builder is a convenient tool
for customizing locale data definitions.
Use Oracle Locale Builder to view or create:

- Languages, including local month and
day names, writing directions, etc.

- Territories, including calendar convention,
date and time formats, number and
monetary systems, etc.

- Character Sets, including character set type,
character mappings and classifications, etc.

- Collations, including linguistic sort order,
special collation rules, etc.

_Filename: None

Oracle Locale Builder Screens and Dialog Boxes

Before using Oracle Locale Builder for a specific task, you should become familiar
with screens and dialog boxes that include the following:

« Existing Definitions Dialog Box
« Session Log Dialog Box
« Preview NLT Screen

« Open File Dialog Box

Note: Oracle Locale Builder includes online help.

12-4 Oracle9i Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility

Existing Definitions Dialog Box

When you choose New Language, New Territory, New Character Set, or New
Linguistic Sort, the first screen you see is labelled General. Click Show Existing
Definitions to see the Existing Definitions dialog box.

The Existing Definitions dialog box enables you to open locale objects by name. If
you know a specific language, territory, linguistic sort (collation), or character set
that you want to start with, click its displayed name. For example, you can open the
AMERICANanguage definition file as shown in Figure 12-2.

Figure 12-2 EXxisting Definitions Dialog Box

Language(|C) Language Ahhreviation Territory (10}

& |ALGERIA(Z7) =

= _|AMERICA{1) =5

ASSAMESE(SS) EN ALSTRALIAED)

BANGLA(SS) [of:} ALUSTRIA(SO)

RE NCAL () s B&HRA NP R =
1] | on wt | K L IC
Tarritory abhreviation Character Set{iD) Linguistic SortfiD)

AE A [ALTEUTF1G(2000) ~ |ARABICIZ21) =

AT I ALZAUTFRSS(BTO) - ARABIC_ABJ_MATCHIEZ) -

Al ALI2UTFB(B73) ARABIC_AB)_SORTIET)

BD ARBADOST10(557) BRABIC_MATCH(ED

EE ARABNOSFINTISO7 T ASCIIT 4

T8 at | K | 3 1] [I

Corresponding File Name: [x00001.nlb
Open | Close }

Choosing AMERICANbpens the Ix00001.nlb file.

Language and territory abbreviations are for reference only and cannot be opened.

Session Log Dialog Box

In the Tools menu, choose View Log to see the Session Log dialog box. The Session
Log dialog box shows what actions have been taken in the current session. The Save
Log button enables you to keep a record of all changes. Figure 12-3 shows an
example of a session log.

Customizing Locale Data 12-5

Overview of the Oracle Locale Builder Utility

Figure 12-3 Session Log Dialog Box

IC

=====Mew Character Set Definition

-—-Added row [0x30,,W30] into Character Data table

-—-Added row [0x31,,W31] into Character Data table

---Deleted row [1x30, ,W30] from Character Data table

---Muodified row 1 from [0x31, W31] to [0x33, ,W33]in Character Data table
====z=5gved agx22712.nlt

==rr=Qpened 31001000

---Deleted codepoint w0032 frorm Unicode Collation Rules sequence

---Inzerted codepoint w0032 at prirnary level diference aftter codepoint w005a in Unico) |

---Deleted codepoint w0058 frormn Unicode Collation Rules sequence

———inserted codepoint w0058 at tertiary level difference after cc-dlenc-intbcDDSa inLlnicog ™
[l 3

Save Log... /l Qk /l

Preview NLT Screen

The NLT file is a text file with the file extension .nlt that shows the settings for a
specific language, territory, character set, or linguistic sort. The Preview NLT screen
presents a readable form of the file so that you can see whether the changes you
have made look correct. You cannot modify the NLT file from the Preview NLT
screen. You must use the specific elements of the Oracle Locale Builder to modify
the NLT file.

Figure 12—4 shows an example of the Preview NLT screen for a user-defined
language called AMERICAN FRENCH

12-6 Oracle9i Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility

Figure 12-4 Previewing the NLT File

File Edit Tools Help

Preview NLT

Copyright () 1996 - 2000 by Oracle Comporation. All Rights Reserved.

*

#

MNAME

100003.nit

DESCRIPTION

Language definition for AMERICAN FREMCH

MOTES

#

WERSION=2.1.0.0.0

IMFO=""

DEFIME LAMGUAGE

General
Marme="AMERICAMN FRENCH"
ID=3
I5CAbbreviation="u0041w0046"
DefaultTerritony D=4
DefaultChar3stiD=31
DefaultlinguisticlD=12
MNurrberSoellingld=0

Month

_Filename: | 2.nlhb Locale Category: Language Status: Editing

Open File Dialog Box

You can see the Open File dialog box by going to the File menu, choosing Open, and
choosing By File Name. Then choose the NLB file that you want to modify or use as
a template. An NLB file is a binary file with the file extension .nlb that contains the
binary equivalent of the information in the NLT file. Figure 12-5 shows the Open
File dialog box with the Ix00001.nlb file selected. The Preview panel shows that
this NLB file is for the AMERICANanguage.

Customizing Locale Data 12-7

Creating a New Language Definition with the Oracle Locale Builder

Figure 12-5 Open File Dialog Box

Files: @ @

-

[wooooz.nib — Language;
[k00003l
D [x00004.nlb
D [x00005.nlb
[wO0006.nik
[®00007.nlb =

AMERICAN

File Marne: |I}{DDDD1.nIb

[w* Preyisw

Creating a New Language Definition with the Oracle Locale Builder

This section shows how to create a new language based on French. This new
language is called AMERICAN FRENCHFirst, open FRENCHrom the Existing
Definitions dialog box. Then change the language name to AMERICAN FRENCHnd
the Language Abbreviation to AF in the General dialog box. Leave the default
values for the other settings. Figure 12-6 shows the resulting General dialog box.

12-8 Oracle9i Database Globalization Support Guide

Creating a New Language Definition with the Oracle Locale Builder

Figure 12-6 Language General Information

General

Language Mame: AMERICAMN FREMCH

Language IO |1EID1

Language Abbreviation: AF

Default definitions for this language:

Default Territory: IFHANCE

Default Character Set: |WEEIISOEIEISQP1

Default Linguistic Definition: FREMCH

Show Existing Definitions...]

Filename: i Locale Category: Language | Status: Editing
The following restrictions apply when choosing names for locale objects such as
languages:
« Names must contain only ASCII characters
« Names must start with a letter
« Language, territory, and character set names cannot contain underscores

The valid range for the language ID field for a user-defined language is 1,000 to
10,000. You can accept the value provided by Oracle Locale Builder or you can
specify a value within the range.

Customizing Locale Data 12-9

Creating a New Language Definition with the Oracle Locale Builder

Note: Only certain ID ranges are valid values for user-defined
LANGUAGETERRITORYCHARACTER SETMONOLINGUAL
COLLATION and MULTILINGUAL COLLATION definitions. The
ranges are specified in the sections of this chapter that concern each
type of user-defined locale object.

Figure 12—7 shows how to set month names using the Month Names tab.

Figure 12-7 Language Definition Month Information

File Edit Toocls Help
Manth Mames

® Yeg T N f(or non—applicable)

F:apitalize initial letter of month names:

Full Month Mares Abbreviated Month Mames

Month 01: |january jan
Maonth 02: [fEvrier ferw

Month 03: |mars =1
Maonth 04:
Maonth 05! |rai
Month OB: |juin
Maonth 07 |juillet
Month 08! |aoot
Month 09: septermore

Maonth 108 |lociobre
Manth 11: |noveriare
Month 12! décembre

.__Filen:a. me .nlb Locale Category: Language Status: Editing

All names are shown as they appear in the NLT file. If you choose Yes for
capitalization, the month names are capitalized in your application, but they do not
appear capitalized in the Month Names screen.

Figure 12-8 shows the Day Names screen.

12-10 Oracle9iDatabase Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder

Figure 12-8 Language Definition Type Information

File Edit Toocls Help

Day Marmes

(Canitalize initial letter of day names:

® Yeg N (ar non—applicable)

Full Day Names Ahbreviated Day Names

Sunday: sunday sun

Monday: lundi Iu

Tuesdaw rrardi A,

wWednesday: |mercredi me

Thursday: |jeudi je

Friday: vendredi e

Saturday: samedi =3

Locale Category: Language Status: Editing

You can choose day names for your user-defined language. All names are shown as
they appear in the NLT file. If you choose Yes for capitalization, the day names are
capitalized in your application, but they do not appear capitalized in the Day
Names screen.

Creating a New Territory Definition with the Oracle Locale Builder

This section shows how to create a new territory called REDWOOD SHORESd use
RSas a territory abbreviation. The new territory is not based on an existing territory
definition.

The basic tasks are to assign a territory name and choose formats for the calendar,

numbers, date and time, and currency. Figure 12-9 shows the General screen with

REDWOOD SHORES& as the Territory Name, 1001 set as the Territory ID, and RS
set as the Territory Abbreviation.

Customizing Locale Data 12-11

Creating a New Territory Definition with the Oracle Locale Builder

Figure 12-9 Defining a New Territory

File Edit T

REDWOOD SHORES

e Untitled ity Status: Editing

The valid range for a territory ID for a user-defined territory is 1,000 to 10,000.

Figure 12-10 shows settings for calendar formats.

12-12 Oracle9i Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder

Figure 12-10 Choosing a Calendar Format

File Edit Tools Help ORACLE

Calendar

CrSun 1 Maon ® Tue Cowled T Thu Fri " Sat

(First day of a calendar week |

First week of a calendar vear
(@ IS0 week (first more than half—full week) © Non-150 week (first full week) |

Calendar Sample;

Tue wed Thu Fri Sat Sun Mon
1 2 3 4 5 E
7 g 3 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 23 2B 27
28 29 30 21
Filename: Untitled Locale Category: Territory Status: Editing

Tuesday is set as the first day of the week, and the first week of the calendar year is
set as an 1SO week. The screen displays a sample calendar.
See Also:

« "Calendar Formats" on page 3-26 for more information about
choosing the first day of the week and the first week of the
calendar year

« "Customizing Calendars with the NLS Calendar Utility" on
page 12-17 for information about customizing calendars
themselves

Figure 12-11 shows date and time settings.

Customizing Locale Data 12-13

Creating a New Territory Definition with the Oracle Locale Builder

Figure 12-11 Choosing Date and Time Formats

Eile Edit Teecls Help
Date&Time

Shert Date Format — [vv/MM/DD

Short Date Sample: [oos10,24

Short Time Format: [HH24:MI:SS

Short Time Sarmple: [18:23:55

Combined short date&time sample

00/10/24 18:23:55

Long Date Format MM DD DAY

Long Date Sample: [2000 10 24 Tuesday]

Long Time Format. [HH12:M1:SS AM =

Long Time Sample: [0E:23:55 PM]

Combined long date&time sample

2000 10 24 Tuesday 06:23:55 PM

_Filename: Untitled Locale Category: Territory | Status: Editing

Sample formats are displayed when you choose settings from the drop-down
menus. In this case, the Short Date Format is set to YY/MM/DD. The Short Time
Format is set to HH24:MI:SS . The Long Date Format is set to YYYY/MM/DD DAY
The Long Time Format is set to HH12:MI:SS AM .

You can also enter your own formats instead of using the selection from the
drop-down menus.

See Also:
« "Date Formats" on page 3-18
« "Time Formats" on page 3-21

« "Customizing Time Zone Data" on page 12-17

Figure 12-12 shows settings for number formats.

12-14 Oracle9i Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder

Figure 12-12 Choosing Number Formats

File Edit Tools Help

Nurmber

Decimal Symbol: | =]

Negative Sign Location: w =100 C 100-—

Numeric Group Seperator: , M

Number Grouping:

Number Samplae

-1,2345.12

List Separatorn L =]

Measurement System:

Reunding Indicator (value greater than which to round up):

Rounding Sample

104 is rounded fo 10 and 10.5 is rounded to 11

_Filename: Untitled Locale Category: Territory _ Status: Editing

A period has been chosen for the Decimal Symbol. The Negative Sign Location is
set to be on the left of the number. The Numeric Group Separator is a comma. The
Number Grouping is set to 4 digits. The List Separator is a comma. The
Measurement System is metric. The Rounding Indicator is 4.

You can enter your own values instead of using the drop-down menus.

Sample formats are displayed when you choose settings from the drop-down
menus.

See Also: "Numeric Formats" on page 3-30

Figure 12-13 shows settings for currency formats in the Monetary dialog box.

Customizing Locale Data 12-15

Creating a New Territory Definition with the Oracle Locale Builder

Figure 12-13 Choosing Currency Formats

File Edit Tools Help

Monetary

Local Currency symbol;

Alternative Currency Symbhbol:

Currency Presentation:

Cecimal symbol:

Croup Separator:

Manetary Mumber Grouping:

Maonetary Precision:
Credit symbol;

Dehit symbaol;

Credit: + % 1,234.123 Debit: — % 1,234.123

Internatienal Currency Separator: | [=]

Internatienal Currency Symbol: [USD [=]

1,234 USD

_Filename: Untitled Locale Category: Territory | Status: Editing

The Local Currency Symbol is set to $. The Alternative Currency Symbol is the Euro
symbol. The Currency Presentation shows one of several possible sequences of the
local currency symbol, the debit symbol, and the number. The Decimal Symbol is
the period. The Group Separator is the comma. The Monetary Number Grouping is
3. The Monetary Precision, or number of digits after the decimal symbol, is 3. The
Credit Symbol is +. The Debit Symbol is - . The International Currency Separator is
a blank space, so it is not visible in the screen. The International Currency Symbol
(I1SO currency symbol) is USD Sample currency formats are displayed, based on the
values you have selected.

You can enter your own values instead of using the drop-down menus.

See Also: "Currency Formats" on page 3-32

The rest of this section contains the following topics:

12-16 Oracle9i Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder

« Customizing Time Zone Data

« Customizing Calendars with the NLS Calendar Utility

Customizing Time Zone Data

The time zone files contain the valid time zone names. The following information is
included for each time zone:

« Offset from Coordinated Universal Time (UTC)
« Transition times for daylight savings time

« Abbreviations for standard time and daylight savings time. The abbreviations
are used with the time zone names.

Two time zone files are included in the Oracle home directory. The default file is

oracore/zoneinfo/timezone.dat . It contains the most commonly used time
zones. A larger set of time zones is included in
oracore/zoneinfo/timezirg.dat . Unless you need the larger set of time

zones, use the default time zone file because database performance is better.
To use the larger time zone file, complete the following tasks:
1. Shut down the database.

2. Setthe ORA_TZFILE environment variable to the full path name of the
timezlrg.dat file.

3. Restart the database.

After you have used the timezlrg.dat file, you must continue to use it unless
you are sure that none of the additional time zones are used for data that is stored
in the database. Also, all databases that share information must use the same time
zone file.

To view the time zone names, enter the following statement:
SQL> SELECT * FROM V$TIMEZONE_NAMES;

Customizing Calendars with the NLS Calendar Utility

Oracle supports several calendars. All of them are defined with data derived from
Oracle’s globalization support, but some of them may require the addition of ruler
eras or deviation days in the future. To add this information without waiting for a
new release of the Oracle database server, you can use an external file that is
automatically loaded when the calendar functions are executed.

Customizing Locale Data 12-17

Displaying a Code Chart with the Oracle Locale Builder

Calendar data is first defined in a text file. The text definition file must be converted
into binary format. You can use the NLS Calendar Utility (Ixegen) to convert the
text definition file into binary format.

The name of the text definition file and its location are hard-coded and depend on
the platform. On UNIX platforms, the file name is Ixecal.nlt . Itis located in the
$ORACLE_HOME/ocommon/nls directory. A sample text definition file is included
in the directory.

The Ixegen utility produces a binary file from the text definition file. The name of
the binary file is also hard-coded and depends on the platform. On UNIX platforms,
the name of the binary file is Ixecal.nlb . The binary file is generated in the same
directory as the text file and overwrites an existing binary file.

After the binary file has been generated, it is automatically loaded during system
initialization. Do not move or rename the file.

Invoke the calendar utility from the command line as follows:

% Ixegen

See Also:

« Platform-specific documentation for the location of the files on
your system

« "Calendar Systems" on page A-25

Displaying a Code Chart with the Oracle Locale Builder

You can display and print the code charts of character sets with the Oracle Locale
Builder.

Figure 12-14 shows the opening screen for Oracle Locale Builder.

12-18 Oracle9i Database Globalization Support Guide

Displaying a Code Chart with the Oracle Locale Builder

Figure 12-14 Opening Screen for Oracle Locale Builder

ORACLE LOCALE BUILDER

Oracle Locale Builder is a convenient tool
for customizing locale data definitions.
Use Oracle Locale Builder to view or create:

- Languages, including local month and
day ggm%.:wming ggrecmns etc.

- Territories, including calendar convention,
date and time formats, number and
monetary systems, etc.

- Character Sets, including character set ik
character mappings and classifications, &

- Collations. including linguistic sort order,
special collation rules, etc.

SOFTWARE POWERS THE INTERNET =

Copyright (c) 2000 Oracle Corporation. All Rights Reserved.

_Filename: None

In the File menu, choose New. In the New menu, choose Character Set. Figure 12-15
shows the resulting screen.

Customizing Locale Data 12-19

Displaying a Code Chart with the Oracle Locale Builder

Figure 12-15 General Character Set Screen

File Edit Tools Help
General

Character Set Narme: |

Character Set ID:

IS0 Character Set ID: |

Base Character Set ID:|

Show Existing Definitions..

_Filename: Untitled | Locale Category: Character Set | Status: Editing

Click Show Existing Definitions. Highlight the character set you wish to display.
Figure 12-16 shows the Existing Definitions dialog box with US7ASCII highlighted.

Figure 12-16 Choosing US7ASCII in the Existing Definitions Dialog Box

Character Set{|D)

TREPCEST(15E) =
US1ETSTFIXED(1001)

US7ASCIIT)

US8B52000(221)
USBICLE2Z7T)

USBPCA37(4) L~

Carresponding File Name: 120001, nlb
Cpen) Close)

12-20 Oracle9i Database Globalization Support Guide

Displaying a Code Chart with the Oracle Locale Builder

Click Open to choose the character set. Figure 12-17 shows the General screen when
US7ASCII has been chosen.

Figure 12-17 General Screen When US7ASCII Has Been Loaded

File Edit T

US7ASCH

haracter Set | Status:

_Filename

Click the Character Data Mapping tab. Figure 12-18 shows the Character Data
Mapping screen for US7ASCII.

Customizing Locale Data 12-21

Displaying a Code Chart with the Oracle Locale Builder

Figure 12-18 Character Data Mapping for US7ASCII

File Edit Tools Help

LocalChar Yalue Unicode Yalue
Oxdd 004 d

Oxde WOode
Oxdf SUoo4f
0=50 WUOOE0
0x51 “UO0ET
=52 WUO0S2

0x=4 Su0054
Ox55 “UOOSS
0x=6 0056
Ox=7 RVlelelow

[LocalChar Yalue Glyph Unicode Yalue
Ox53 S SUO0S3

Mew) £ dld) Modify) Delete) Search)
View CodeChart)

Click View CodeChart. Figure 12-19 shows the code chart for US7ASCII.

12-22 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

Figure 12-19 US7ASCII Code Chart

uls a0l ule unlf w0 a0l a2 w0 a0) 026G w0y

(] (=] (=) rab ez had [Craaf b bl (b2 b3
() * + s - ! 0 1 2 3
WX | W02 | w0k | w0dh | w0k | w0 | w0l | 0N | w080 | w0l | wie2 | w0
bt nb5 (b b7 | O [nita (b b b ke bt
4 5 o 7 8 9 : < = > T
wiiBd | W05 | wi0B6 | w0087 | wiiBS | w089 | wilBa | w0Eb | wilBc | w0Bd | wiiBe | uiEf
) sl 52 [=) [st D7 | Cooch (=] (= [

O Chocd. O Croct CredC Cred1 Ced 2 Ched® Crodd Ched5 Cred Ood 7

e . e 0 as0 sl s 2 L] 54 u0ss Rt s T

Oaod Oaod Oaeda Oaodb Oeode Oodd Oaode Oaodf 21 Ozl e e’
X Y Z [! 1 A _ : a b c
w0ss u0ss w052 wl5h LT w054 LT w05t w060 w061 w062]
et e et e 7 el e Oea Oaeh e Oeed Do Oied
d e f < h i i k 1 m n 0
0 w065 w066 w067 w06] w0 w06k w06 u06d 06 “w0sf
s a1 a2 i O Ot Oefh O T [} i) Oaefa O
p q r] i n v w X ¥ F] i
w0 w07 w02] w0 LI L w07y wW0E w0s w0A w0
et Ol et et

| } ~

W0E | Cw0A | Ce0E | Cwn®
Print Page Close

It shows the encoded value of each character in the local character set, the glyph
associated with each character, and the Unicode value of each character in the local
character set.

If you want to print the code chart, then click Print Page.

Creating a New Character Set Definition with the Oracle Locale Builder

You can customize a character set to meet specific user needs. In Oracle9i, you can
extend an existing encoded character set definition. User-defined characters are
often used to encode special characters that represent the following:

« Proper names

« Historical Han characters that are not defined in an existing character set
standard

Customizing Locale Data 12-23

Creating a New Character Set Definition with the Oracle Locale Builder

Vendor-specific characters

New symbols or characters that you define

This section describes how Oracle supports user-defined characters. It includes the
following topics:

Character Sets with User-Defined Characters

Oracle Character Set Conversion Architecture

Unicode 3.1 Private Use Area

User-Defined Character Cross-References Between Character Sets
Guidelines for Creating a New Character Set from an Existing Character Set

Example: Creating a New Character Set Definition with the Oracle Locale
Builder

Supporting User-Defined Characters in Java

Character Sets with User-Defined Characters

User-defined characters are typically supported within East Asian character sets.
These East Asian character sets have at least one range of reserved code points for
user-defined characters. For example, Japanese Shift-JIS preserves 1880 code points
for user-defined characters. They are shown in Table 12-1.

Table 12-1 Shift JIS User-Defined Character Ranges

Number of Code

Japanese Shift JIS User-Defined Character Range Points
F040-FO7E, F080-FOFC 188
F140-F17E, F180-F1FC 188
F240-F27E, F280-F2FC 188
F340-F37E, F380-F3FC 188
F440-F4T7E, F480-F4FC 188
F540-F57E, F580-F5FC 188
FF640-F67E, F680-F6FC 188
F740-F77E, F780-F7FC 188
F840-F87E, F880-F8FC 188

12-24 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

Table 12-1 Shift JIS User-Defined Character Ranges (Cont.)

Number of Code
Japanese Shift JIS User-Defined Character Range Points

F940-F97E, FO980-FOFC 188

The Oracle character sets listed in Table 12-2 contain predefined ranges that support
user-defined characters.

Table 12-2 Oracle Character Sets with User-Defined Character Ranges

Number of Code Points Available for User-Defined

Character Set Name Characters
JA16DBCS 4370
JA16EBCDIC930 4370
JA16SIIS 1880
JA16SJISYEN 1880
KO16DBCS 1880
KO16MSWIN949 1880
ZHS16DBCS 1880
ZHS16GBK 2149
ZHT16DBCS 6204
ZHT16MSWIN950 6217

Oracle Character Set Conversion Architecture
The code point value that represents a particular character can vary among different
character sets. A Japanese kanji character is shown in Figure 12-20.

Figure 12-20 Japanese Kanji Character

[:3

The following table shows how the character is encoded in different character sets.

Customizing Locale Data 12-25

Creating a New Character Set Definition with the Oracle Locale Builder

Unicode JA16SJIS JA16EUC JA16DBCS
Encoding Encoding Encoding Encoding
4E9C 889F BOA1 4867

In Oracle, all character sets are defined in terms of Unicode 3.1 code points. That is,
each character is defined as a Unicode 3.1 code value. Character conversion takes
place transparently to users by using Unicode as the intermediate form. For
example, when a JA16SJIS client connects to a JAI6EUC database, the character
shown inFigure 12-20 has the code point value 889F when it is entered from the
JA16SIIS client. It is internally converted to Unicode (with code point value 4E9C)
and then converted to JA16EU (code point value BOA1).

Unicode 3.1 Private Use Area

Unicode 3.1 reserves the range E000-F8FF for the Private Use Area (PUA). The PUA
is intended for private use character definition by end users or vendors.

User-defined characters can be converted between two Oracle character sets by
using Unicode 3.1 PUA as the intermediate form, the same as standard characters.

User-Defined Character Cross-References Between Character Sets

User-defined character cross-references between Japanese character sets, Korean
character sets, Simplified Chinese character sets and Traditional Chinese character
sets are contained in the following distribution sets:

HORACLE_HOME}ocommon/nis/demofudc_ja.txt
$HORACLE_HOME}ocommon/nis/demofudc_ko.txt
$HORACLE_HOME}Yocommon/nis/demo/udc_zhs.txt
$HORACLE_HOME}ocommon/nis/demoludc_zht.txt

These cross-references are useful when registering user-defined characters across
operating systems. For example, when registering a new user-defined character on
both a Japanese Shift-JIS operating system and a Japanese IBM Host operating
system, you may want to use F040 on the Shift-JIS operating system and 6941 on
IBM Host operating system for the new user-defined character so that Oracle can
convert correctly between JA16SJIS and JA16DBCS. You can find out that both
Shift-JIS UDC value F040 and IBM Host UDC value 6941 are mapped to the same
Unicode PUA value EOOQO in the user-defined character cross-reference.

See Also: Appendix B, "Unicode Character Code Assignments"

12-26 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

Guidelines for Creating a New Character Set from an Existing Character Set

By default, the Oracle Locale Builder generates the next available character set
name for you. You can also generate your own character set name. Use the
following format for naming character set definition NLT files:

X2 dddd .nit

dddd is the 4-digit Character Set ID in hex.

When you modify a character set, observe the following guidelines:
« Do not remap existing characters.

= All character mappings must be unique.

« New characters should be mapped into the Unicode private use range €000 to
faff. (Note that the actual Unicode 3.1 private use range is e000-f8ff. However,
Oracle reserves f500-f8ff for its own private use.)

= No line in the character set definition file can be longer than 80 characters.

If a character set is derived from an existing Oracle character set, Oracle
Corporation recommends using the following character set naming convention:

<Oracle_character set name ><organizaton name >EXT<version >

For example, if a company such as Sun Microsystems adds user-defined characters
to the JA16EUC character set, the following character set name is appropriate:
JA16EUCSUNWEXT1

The character set name contains the following parts:
« JAL6EUCIs the character set name defined by Oracle

« SUNWepresents the organization name (company stock trading abbreviation
for Sun Microsystems)

« EXTspecifies that this character set is an extension to the JA16EUC character set

« 1 specifies the version

Example: Creating a New Character Set Definition with the Oracle Locale Builder

This section shows how to create a new character set called MYCHARSEWith
10001 for its Character Set ID. The example starts with the US7ASCII character set
and adds 10 Chinese characters. Figure 12-21 shows the General screen.

Customizing Locale Data 12-27

Creating a New Character Set Definition with the Oracle Locale Builder

Figure 12-21 Character Set General Information

File Edit Tools Help
General

Character Set Mame: lIUIYCHAHSET

Character Set ID: ~ |10001]

SO Character Set ID: |

Base Character Set ID:I

Shew Existing Definitions..

Locale Category: Character Set | Status: Editing

Click Show Existing Definitions and choose the US7ASCII character set from the
Existing Definitions dialog box.

The ISO Character Set ID and Base Character Set ID fields are optional. The Base
Character Set ID is used for inheriting values so that the properties of the base
character set are used as a template. The Character Set ID is automatically
generated, but you can override it. The valid range for a user-defined character set
ID is 10,000 to 20,000. The ISO Character Set ID field remains blank for user-defined
character sets.

Figure 12-22 shows the Type Specification screen.

12-28 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

Figure 12-22 Character Set Type Specification

File Edit Tools Help
Type Specificati...

~Character Set Category
T EBCDIC_BASED T FIXED _WIDTH

~addtional Flags
[DISPLAY [SHIFT v B%TE_UMICIUE

~Special Characters (when FIXED_WIDTH is sef)
LocalC har Walue Glyph

Pad Character:

Underscore Character:

Percent Character:

~Shift Characters (when SHIFT is set)
LocalChar Value

Shift Qut:
Shift Im:

~7 bit (when DISPLAY iz sef)
CITRUE 8 Ef ISE

Locale Category: Character Set | Status: Editing

The Character Set Category is ASCIl_BASED. The BYTE_UNIQUHlag is checked.

When you have chosen an existing character set, the fields for the Type Specification
screen should already be set to appropriate values. You should keep these values
unless you have a specific reason for changing them. If you need to change the
settings, use the following guidelines:

« FIXED_WIDTHis to identify character sets whose characters have a uniform
length.

« BYTE_UNIQUEmMeans the single-byte range of code points is distinct from the
multibyte range. The code in the first byte indicates whether the character is
single-byte or multibyte. An example is JAI6EUC.

« DISPLAY identifies character sets that are used only for display on clients and
not for storage. Some Arabic, Devanagari, and Hebrew character sets are
display character sets.

Customizing Locale Data 12-29

Creating a New Character Set Definition with the Oracle Locale Builder

« SHIFT is for character sets that require extra shift characters to distinguish
between single-byte characters and multibyte characters.

See Also: "Variable-width multibyte encoding schemes" on
page 2-10 for more information about shift-in and shift-out
character sets

Figure 12-23 shows how to add user-defined characters.

Figure 12-23 Importing User-Defined Character Data

File Edit Tools Help

harvalue Unicode VYalue
RUTIIFE

Wwina74
Wio7s
Wio7e
Wwiaary
Wio7E
wiary
\waava
W07k
wiaave
Wwio7d

LocalZharWalue Unicode Walue
pre Wwioo7e

Mew) Delete) Search...)

Filename 001.nlb | Locale Category: Character Set Status: Viewing

Open the Character Data Mapping screen. Highlight the character that you want to
add characters after in the character set. In this example, the Oxfe local character
value is highlighted.

You can add one character at a time or use a text file to import a large number of
characters. In this example, a text file is imported. The first column is the local

12-30 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

character value. The second column is the Unicode value. The file contains the
following character values:

88a2 963f
88a3 54c0
88a4 611b
88a5 6328
88a6 596
88a7 9022
88a8 8475
88a9 83l1c
88aa 7ab0
88ab 60aa

In the File menu, choose Import User-Defined Customers Data.

Figure 12-24 shows that the imported characters are added after Oxfe in the
character set.

Customizing Locale Data 12-31

Creating a New Character Set Definition with the Oracle Locale Builder

Figure 12-24 New Characters in the Character Set

File Edit Tools Help

LocalZhar Walue Unicode VYalue
Uxrd wgdyd

Oxfe widve

OxB5a3 Wsdco
OxB8ad WwE11h
OxB8as \WE32E
xB8ak WISArE
OxBBa7 3 w022
OxB5ab WB47E
Ox33a9 WB3cC
OxB5aa W7as0
OxB8ab E Wwedaa

| LocalCharWalue Glyph Unicode Walue

OxB3Baz W96 3f
M e) M odify) Delete)(Search... jl

01.nlk Locale Category: Character Set Status: Editing

Supporting User-Defined Characters in Java

If you have Java products such as JDBC or SQLJ in your applications and want
them to support user-defined characters, then customize your character set as
desired. Then generate and install a special Java zip file (gss_custom.zip) into
your Oracle home directory.

On UNIX, enter a command similar to the following:

$ORACLE_HOME/JREDinjre -classpath $ORACLE_HOME/libigss-1_1.zip:
$ORACLE_HOME/jiblgss_charset-1_2.zip Ginstall x22710.nlt

On Windows, enter a command similar to the following:

%JIJREHOMEY0\bin\re.exe -classpath %6ORACLE_HOMEYo\lib\gss-1_1.zip:
%ORACLE_HOME%\lib\gss _charset-1 2.zip Ginstall x22710.nlt

12-32 Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

%JREHOMERothe C:\Program Files\Oracle\jre\version_num directory.

[x22710.nlt is an example of an NLT file created by customizing a character set
using the Oracle Locale Builder.

These commands generate a gss_custom.zip file in the current directory. If you
need to add support for more than one customized character set, you can append
their definitions to the same gss_custom.zip file by re-issuing the command for
each of the additional customized character sets. For example, enter the following
commands on UNIX:

$ORACLE _HOME/JREMinjre -classpath SORACLE_HOME/ib/gss-1_1.zip:
$ORACLE _HOME/lib/gss _charset-1_2.zip Ginstall x22710.nlt

$ORACLE_HOME/JRE/injre -classpath $ORACLE_HOME/lib/igss-1_1.zip:
$ORACLE HOME/liblgss _charset-1_2.zip Ginstall x22711.nlt

$ORACLE_HOME/JREMinjre -classpath SORACLE_HOME/jib/gss-1_1.zip:
$ORACLE HOME/libigss _charset-1_2.zip Ginstall x22712.nlt

x22710.nlt | Ix22711.nlt and Ix22712.nlt are contained in gss_
custom.zip

After gss_custom.zip has been created, store it in the
$ORACLE_HOME/ocommon/nis/admin/data directory. Enter the following
command:

% cpgss_custom.zip SORACLE_HOME/ocommon/nis/admin/data

Adding the Custom Zip File to Java Components
You may want to add the gss_custom.zip file to the following Java components:

=« Java Virtual Machine
=« Oracle HTTP Server
= JDBC on the Client

Java Virtual Machine Load the zip file into the database.
Enter the following command on UNIX:
Yloadjava -u sys/ passwd -grant EXECUTE -synonym -f + -v gss_custom.zip

Enter the following command on Windows:

Customizing Locale Data 12-33

Creating a New Character Set Definition with the Oracle Locale Builder

loadjava -u sys/ passwd -grant EXECUTE -synonym -r -+ -v gss_custom.zip
Replace passwd by the password for SYS
Oracle HTTP Server Edit the jserv.properties file.

On UNIX, add the following line:
wrapper.classpath = $ORACLE_HOME/ocommon/nis/admin/data/gss_custom.zip

On Windows, add the following line:
wrapper.classpath = %60ORA_HOME%s\ocommon\nis\admin\data\gss_custom.zip

JDBC on the Client Modify the CLASSPATH
Enter the following command on UNIX:
% setenv CLASSPATH $ORACLE_HOME/ocommonvnis/admin/data/gss _custom.zip

On Windows, add %ORACLE_HOME%\ocommon\nis\admin\data\gss__
custom.zip to the existing CLASSPATH

12-34 Oracle9i Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder

Creating a New Linguistic Sort with the Oracle Locale Builder

This section shows how to create a new multilingual linguistic sort called MY _
GENERIC_Mwith a Collation ID of 10001 . The GENERIC_Minguistic is used as the
basis for the new linguistic sort. Figure 12-25 shows how to begin.

Figure 12-25 Collation General Information

File Edit Tools Help
Ceneral

Collation Mame: |MIY_GENE RIC_M

Collation ID: |10001

[_Show Existing Definitions..,

Defined Collation Flags
(@ CAMOMICAL_EQUIMALEMCE [| REVERSE_SECOMDARY [SWaAP_WITH_MEXT

.__Filen:a.rrm: 31001, nlb | Locale Cateqory: Multilingual Linguistic Sort | Status: Editing

Settings for the flags are automatically derived. SWAP_WITH_NEXIE relevant for
Thai and Lao sorts. REVERSE_SECONDARYfor French sorts. CANONICAL _
EQUIVALENCHIetermines whether canonical rules will be used. In this example,
CANONICAL_EQUIVALENCE checked.

The valid range for Collation ID (sort ID) for a user-defined sort is 1,000 to 2,000 for
monolingual collation and 10,000 to 11,000 for multilingual collation.

Customizing Locale Data 12-35

Creating a New Linguistic Sort with the Oracle Locale Builder

See Also:

« Figure 12-29, "Canonical Rules" for more information about
canonical rules

« Chapter 4, "Linguistic Sorting"

Figure 12-26 shows the Unicode Collation Sequence screen.

Figure 12-26 Unicode Collation Sequence

REUREL
w03z
WaD03E
REEUER
w0 O
RERLAE |
w0 5
Sacondary
= Tertary
YO0
O |
O Secondary
E-Tartiany
A
Y EOCh

=T o

luﬂll

FilFrame: T T rical Culrgory M uSilrgusl Limintc Sort Shahipg EERIM

5
b
7
3
]
L
"
%

This example customizes the character set by moving digits so that they sort after
letters. Complete the following steps:

1. Highlight the Unicode value that you want to move. In Figure 12-26, the x0034
Unicode value is highlighted. Its location in the Unicode Collation Sequence is
called a node.

2. Click Cut. Select the location where you want to move the node.

3. Click Paste. Clicking Paste opens the Paste Node dialog box, shown in
Figure 12-27.

12-36 Oracle9j Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 12-27 Paste Node Dialog Box

whould pog ke 1o gate the node mfter or before the selected nods?

& Al Balirw

Sat Collation Lavel DiMerancs Bobwesn W Hoda And Salectad Ho e

& Primary Eecondary Tertry

P b i o pe v Wi e DS

aF CHRCEL

4. The Paste Node dialog box enables you to choose whether to paste the node
after or before the location you have selected. It also enables you to choose the
level (Primary, Secondary, or Tertiary) of the node in relation to the node that
you want to paste it next to.

Select the position and the level at which you want to paste the node.
In Figure 12-27, the After button and the Primary button are selected.
5. Click OK to paste the node.
Use similar steps to move other digits to a position after the letters a through z.

Figure 12-28 shows the resulting Unicode Collation Sequence after the digits 0
through 4 were moved to a position after the letters a through z.

Customizing Locale Data 12-37

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 12-28 Unicode Collation Sequence After Modification

Fils [dd Teuh Hes
E Lirdoode Coflatlen
VELILES
SEOOL T W
O Serondary
E-Tartiarny
Y= TE
RN T L
Z-hecondany
0 Teriary
S EOTe
BR[N]
S Sacondary
- Teriany
SxO0Ta
S5 a
w03 O
w0031 1
w3 2

i:l.-I:II:I33- 3 |

Add wedify Search Fullvias

FilFrame [TT00T.nlh rical Calrgary M ulilrgusl Limiunts Sort Shahip:- EEfim

The rest of this section contains the following topics:
« Changing the Sort Order for All Characters with the Same Diacritic
« Changing the Sort Order for One Character with a Diacritic

Changing the Sort Order for All Characters with the Same Diacritic

This example shows how to change the sort order for characters with diacritics. You
can do this by changing the sort for all characters containing a particular diacritic or
by changing one character at a time. This example changes the sort of all characters
with a circumflex (for example, Q) to be after all characters containing a tilde.

Verify the current sort order by choosing Canonical Rules in the Tools menu. This
opens the Canonical Rules dialog box, shown in Figure 12-29.

12-38 Oracle9i Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 12-29 Canonical Rules

B CanonicalRules [
FreComposed Farm Glwph Decomposed Farm Glyph
WO0fa U 007 HW0301 u+ =
Wo0fb 0 wWOO75W0302 u+ " =
o169 i WOO7HW0303 u+
FreComposed Form Glyph Decomposed Form Glyph
[l FAdd I ify [elete Search...
Ok

Figure 12-29 shows how characters are decomposed into their canonical
equivalents and their current sorting orders. For example, G is represented as u plus
N

See Also: Chapter 4, "Linguistic Sorting" for more information
about canonical rules

In the main Oracle Locale Builder window, click the Non-Spacing Characters tab. If
you use the Non-Spacing Characters screen, then changes for diacritics apply to all
characters. Figure 12-30 shows the Non-Spacing Characters screen.

Customizing Locale Data 12-39

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 12-30 Changing the Sort Order for All Characters with the Same Diacritic

& Dracle Locale Builder - 1x31001 nilt
File Edit Tools Help

Mon-Spaci...

& Removal Confirmation

Are you sure you want to
" remove the node w0302
—w030c

frormn the collation
—w030a " SEqUEncE?

—w0308 -
344
—w030b
w303 "
0307 -
%0338 /
w0327
0328
w0304 -
Add | Modity | Ccut Paste | Seamh |

| Locale Category: Multilingual Linguistic Sort | Status: Editing

Select the circumflex and click Cut. Click Yes in the Removal Confirmation dialog
box. Select the tilde and click Paste. Choose After and Secondary in the Paste Node
dialog box and click OK.

Figure 12-31 illustrates the new sort order.

12-40 Oracle9i Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 12-31 The New Sort Order for Characters with the Same Diacritic

& Dracle Locale Builder - Ix31001 nlt
File Edit Toaols Help
MNon-Spaci...

0307 -
0338 /
w0327
0328
00304 -

Add Modify | cut | Pasts JISearch

Locale Category: Multilingual Linguistic Sart Status: Editing

Changing the Sort Order for One Character with a Diacritic

To change the order of a specific character with a diacritic, insert the character
directly into the appropriate position. Characters with diacritics do not appear in
the Unicode Collation screen, so you cannot cut and paste them into the new
location.

This example changes the sort order for a so that it sorts after Z.

Select the Unicode Collation tab. Highlight the character, Z, that you want to put &
next to. Click Add. The Insert New Node dialog box appears, as shown in
Figure 12-32.

Customizing Locale Data 12-41

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 12-32 Changing the Sort Order of One Character with a Diacritic

& Dracle Locale Builder - 1x31001 nilt
File Edit Tools Help
Unicode Caoll...

F-Secondary

é—Tertiary i& Insert New Node
w07 T w ould you like to insert the new node after or before the selected node?
w0057 W o

G-Secondary

é—Temary Set Callation Lewel Difference Between Mew Mode And Selected Maode
w0078 x
w058 ¥ @ Primary " Secondary " Terdiary
G-Secondary

é‘-Tertiary Codepaint Yalue |1}<uue4|

w0073

w0059 0K CANCEL)
G-Secondary

é—Tertiary

After " Before

(Modiy | | Cut | [Pasle | | Search |

Filename Locale Categaory: Multilingual Linguistic Sort Status: Yiewing

Choose After and Primary in the Insert New Node dialog box. Enter the Unicode
code point value of &. The code point value is \x00e4 . Click OK.

Figure 12-33 shows the resulting sort order.

12-42 Oracle9i Database Globalization Support Guide

Generating and Installing NLB Files

Figure 12-33 New Sort Order After Changing a Single Character

& Dracle Locale Builder - Ix31001 . nlt
File Edit Toaols Help
Unicode Coll...
TWOUDE
-Secondary
@J—Tertiary
w007 w
—w005T W
G-Secondary
é—Ter‘[iaw
w0078
w0053
G-Secondary
é—Tertiary
—w0079
w0059
G-Secondary
é‘—Tertiary
—w007a

Wodify)]) Search J

Filename: [x31001 nit | Locale Categary: Multilingual Linguistic Sort Status: Wiewing

Generating and Installing NLB Files

After you have defined a new language, territory, character set, or linguistic sort,
generate new NLB files from the NLT files:

1. Back up the NLS installation boot file (IxOboot.nlb) and the NLS system boot
file (Ix1boot.nlb) in the ORA_NLS33 directory. On a UNIX platform, enter
commands similar to the following:

% cd SORA_NLS33
% cp IxOboot.nlb IxOboot.nlb.orig
% cp x1bootnlb x1bootnlb.orig

Customizing Locale Data 12-43

Generating and Installing NLB Files

2. In Oracle Locale Builder, choose Tools > Generate NLB or click the Generate
NLB icon in the left side bar.

3. Click Browse to find the directory where the NLT file is located. The location
dialog box is shown in Figure 12-34.

Figure 12-34 Location Dialog Box

Please enter the pathname where the nlt files are located:

Directory: |-::‘-rrrynlt Browse..,

oK J CANCEL)

Do not try to specify an NLT file. Oracle Locale Builder generates an NLB file
for each NLT file.

4. Click OK to generate the NLB files.

Figure 12-35 illustrates the final notification that you have successfully
generated NLB files for all NLT files in the directory.

Figure 12-35 NLB Generation Success Dialog Box

& MLB Generation Success E

i MLB generation has
completed successfullyl Far
the changes to take effect,

please copy the nevwly-
generated nlb files and the

updated boot file to your
ORA_MLS33 directany.

5. Copy the Ix1boot.nlb file into the path that is specified by the ORA_NLS33

initialization parameter, typically SORACLE_
HOME/OCOMMON/nlIs/admin/data . For example, on a UNIX platform, enter a

command similar to the following:
%cp/ directory name fxlbootnlb $ORA NLS33/x1bootnlb

12-44 Oracle9i Database Globalization Support Guide

Generating and Installing NLB Files

Copy the new NLB files into the ORA_NLS33 directory. For example, on a
UNIX platform, enter commands similar to the following:

%cp/ diectory name x22710.nb SORA NLS33
%cp/ diectory name X52710.nb SORA NLA33

Note: Oracle Locale Builder generates NLB files in the directory
where the NLT files reside.

Repeat the preceding steps on each hardware platform. NLB files are
platform-specific binary files. You must compile and install the new NLB files
on both the server and the client machines.

Restart the database to use the newly created locale data.

To use the new locale data on the client side, exit the client and re-invoke the
client after installing the NLB files.

Customizing Locale Data 12-45

Generating and Installing NLB Files

12-46 Oracle9i Database Globalization Support Guide

A

Locale Data

This appendix lists the languages, territories, character sets, and other locale data
supported by the Oracle server. It includes these topics:

Languages
Translated Messages
Territories
Character Sets
Linguistic Sorting
Calendar Systems

Obsolete Locale Data

You can also obtain information about supported character sets, languages,
territories, and sorting orders by querying the VSNLS_VALID_VALUESdynamic
performance view.

See Also: Oracle9i Database Reference for more information about
the data that can be returned by this view

Locale Data A-1

Languages

Languages
Table A-1 lists the languages supported by the Oracle server.

Table A-1 Oracle Supported Languages

Name Abbreviation
AMERICAN us
ARABIC ar
ASSAMESE as
BANGLA bn
BRAZILIAN PORTUGUESE ptb
BULGARIAN bg
CANADIAN FRENCH frc
CATALAN ca
CROATIAN hr
CZECH cs
DANISH dk
DUTCH nl
EGYPTIAN eg
ENGLISH gb
ESTONIAN et
FINNISH sf
FRENCH f
GERMAN DIN din
GERMAN d
GREEK el
GUIJARATI gu
HEBREW iw
HINDI hi
HUNGARIAN hu

A-2 Oracle9i Database Globalization Support Guide

Languages

Table A-1 Oracle Supported Languages (Cont.)

Name Abbreviation
ICELANDIC is
INDONESIAN in
ITALIAN i
JAPANESE ja
KANNADA kn
KOREAN ko
LATIN AMERICAN SPANISH esa
LATVIAN v
LITHUANIAN It
MALAY ms
MALAYALAM ml
MARATHI mr
MEXICAN SPANISH esm
NORWEGIAN n
ORIYA or
POLISH pl
PORTUGUESE pt
PUNJABI pa
ROMANIAN ro
RUSSIAN ru
SIMPLIFIED CHINESE zhs
SLOVAK sk
SLOVENIAN sl
SPANISH e
SWEDISH S
TAMIL ta
TELUGU te

Locale Data

A-3

Translated Messages

Table A-1 Oracle Supported Languages (Cont.)

Name Abbreviation
THAI th
TRADITIONAL CHINESE zht
TURKISH tr
UKRAINIAN uk
VIETNAMESE vn

Translated Messages

Oracle error messages have been translated into the languages which are listed in

Table A-2.

Table A-2 Oracle Supported Messages

Name Abbreviation
ARABIC ar
BRAZILIAN PORTUGUESE ptb
CANADIAN FRENCH frc
CATALAN ca
CZECH cs
DANISH dk
DUTCH nl
FINNISH sf
FRENCH f
GERMAN d
GREEK el
HEBREW iw
HUNGARIAN hu
ITALIAN i
JAPANESE ja
KOREAN ko

A-4 Oracle9i Database Globalization Support Guide

Territories

Table A-2 Oracle Supported Messages (Cont.)

Name Abbreviation
LATIN AMERICAN SPANISH esa
NORWEGIAN n
POLISH pl
PORTUGUESE pt
ROMANIAN ro
RUSSIAN ru
SIMPLIFIED CHINESE zhs
SLOVAK sk
SPANISH e
SWEDISH S
THAI th
TRADITIONAL CHINESE zht
TURKISH tr

Territories

Table A-3 lists the territories supported by the Oracle server.

Table A-3 Oracle Supported Territories

Name Name Name

ALGERIA HONG KONG PERU
AMERICA HUNGARY POLAND
AUSTRALIA ICELAND PORTUGAL
AUSTRIA INDIA PUERTO RICO
BAHRAIN INDONESIA QATAR
BANGLADESH IRAQ ROMANIA
BELGIUM IRELAND SAUDI ARABIA
BRAZIL ISRAEL SINGAPORE
BULGARIA ITALY SLOVAKIA

Locale Data A-5

Character Sets

Table A-3 Oracle

Supported Territories (Cont.)

Name Name Name

CANADA JAPAN SLOVENIA
CATALONIA JORDAN SOMALIA

CHILE KAZAKHSTAN SOUTH AFRICA
CHINA KOREA SPAIN

CIS KUWAIT SUDAN
COLOMBIA LATVIA SWEDEN
COSTARICA LEBANON SWITZERLAND
CROATIA LIBYA SYRIA

CYPRUS LITHUANIA TAIWAN

CZECH REPUBLIC LUXEMBOURG THAILAND
DENMARK MACEDONIA THE NETHERLANDS
DJIBOUTI MALAYSIA TUNISIA

EGYPT MAURITANIA TURKEY

EL SALVADOR MEXICO UKRAINE
ESTONIA MOROCCO UNITED ARAB EMIRATES
FINLAND NEW ZEALAND UNITED KINGDOM
FRANCE NICARAGUA UZBEKISTAN
GUATEMALA NORWAY VENEZUELA
GERMANY OMAN VIETNAM

GREECE PANAMA YEMEN

- - YUGOSLAVIA

Character Sets

Oracle-supported character sets are listed in the following sections according to

A-6 Oracle9i Database Globalization Support Guide

three broad language groups.
« Asian Language Character Sets

« European Language Character Sets

Character Sets

« Middle Eastern Language Character Sets
In addition, common subset/superset combinations are listed.

Note that some character sets may be listed under multiple language groups
because they provide multilingual support. For instance, Unicode spans the Asian,
European, and Middle Eastern language groups because it supports most of the
major scripts of the world.

The comment section indicates the type of encoding used:
SB = Single-byte encoding
MB = Multibyte encoding
FIXED = Fixed-width multibyte encoding

As mentioned in Chapter 3, "Setting Up a Globalization Support Environment”, the
type of encoding affects performance, so use the most efficient encoding that meets
your language needs. Also, some encoding types can only be used with certain data
types. For instance, the AL16UTF16 character set can only be used as an NCHAR
character set, and not as a database character set.

Also documented in the comment section are other unique features of the character
set that may be important to users or your database administrator. For instance,
whether the character set supports the new Euro currency symbol, whether
user-defined characters are supported for character set customization, and whether
the character set is a strict superset of ASCII (which will allow you to make use of
the ALTER DATABASE [NATIONAL] CHARACTER SEfatement in case of
migration.)

EURO = Euro symbol supported
UDC = User-defined characters supported
ASCII = Strict superset of ASCII

Oracle does not document individual code page layouts. For specific details about a
particular character set, its character repertoire, and code point values, you should
refer to the actual national, international, or vendor-specific standards.

Locale Data A-7

Character Sets

Asian Language Character Sets
Table A—4 lists the Oracle character sets that can support Asian languages.

Table A—4 Asian Language Character Sets

Name Description Comments
BN8BSCII Bangladesh National Code 8-bit BSCII SB, ASCII
ZHT16BIG5 BIG5 16-bit Traditional Chinese MB, ASCII
ZHT16HKSCS MS Windows Code Page 950 with Hong Kong MB, ASCII, EURO

Supplementary Character Set
CGB2312-80 16-bit Simplified Chinese MB, ASCII
GB18030-2000

ZHS16CGB231280
ZHS32GB18030 MB, ASCII, EURO
JA16EUC EUC 24-bit Japanese MB, ASCII

JA16EUCTILDE The same as JAL6EUC except for the way that the wave dash MB, ASCII

and the tilde are mapped to and from Unicode.

JAL16EUCYEN EUC 24-bit Japanese with "\' mapped to the Japanese yen MB
character
ZHT32EUC EUC 32-bit Traditional Chinese MB, ASCII
ZHS16GBK GBK 16-bit Simplified Chinese MB, ASCII, UDC
ZHT16CCDC HP CCDC 16-bit Traditional Chinese MB, ASCII
JA16DBCS IBM EBCDIC 16-bit Japanese MB, UDC
JA16EBCDIC930 IBM DBCS Code Page 290 16-bit Japanese MB, UDC
KO16DBCS IBM EBCDIC 16-bit Korean MB, UDC
ZHS16DBCS IBM EBCDIC 16-bit Simplified Chinese MB, UDC
ZHT16DBCS IBM EBCDIC 16-bit Traditional Chinese MB, UDC
KO16KSC5601 KSC5601 16-bit Korean MB, ASCII
KO16KSCCS KSCCS 16-bit Korean MB, ASCII
JA16VMS JVMS 16-bit Japanese MB, ASCII
ZHS16MACCGB231280 Mac client CGB2312-80 16-bit Simplified Chinese MB
JA1I6MACSIIS Mac client Shift-JIS 16-bit Japanese MB
TH8MACTHAI Mac Client 8-bit Latin/Thai SB
TH8MACTHAIS Mac Server 8-bit Latin/Thai SB, ASCII

A-8 Oracle9i Database Globalization Support Guide

Character Sets

Table A-4 Asian Language Character Sets (Cont.)

Name

Description

Comments

TH8TISEBCDICS

ZHT16MSWIN950

KO16MSWIN949
VN8MSWIN1258
INSISCII

JA16SJIS
JAL16SJISTILDE

JAL16SIISYEN

ZHT32SOPS
ZHT16DBT
THSTISASCII
THS8TISEBCDIC
ZHT32TRIS
AL16UTF16
AL32UTF8
UTF8

UTFE

VNB8VN3

Thai Industrial Standard 620-2533-EBCDIC Server 8-bit
MS Windows Code Page 950 Traditional Chinese

MS Windows Code Page 949 Korean

MS Windows Code Page 1258 8-bit Vietnamese

Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

Shift-JIS 16-bit Japanese

The same as JA16SJIS except for the way that the wave dash
and the tilde are mapped to and from Unicode.

Shift-JIS 16-bit Japanese with "\' mapped to the Japanese yen
character

SOPS 32-bit Traditional Chinese

Taiwan Taxation 16-bit Traditional Chinese

Thai Industrial Standard 620-2533 - ASCII 8-bit

Thai Industrial Standard 620-2533 - EBCDIC 8-bit
TRIS 32-bit Traditional Chinese

See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details

VN3 8-bit Vietnamese

SB

MB, ASCII, UDC
MB, ASCII, UDC
SB, ASCII, EURO
SB, ASCII

MB, ASCII, UDC
MB, ASCII, UDC

MB, UDC

MB, ASCII

MB, ASCII

SB, ASCII, EURO
SB

MB, ASCII

MB, EURO, FIXED
MB, ASCII, EURO
MB, ASCII, EURO
MB, EURO

SB, ASCII

European Language Character Sets

Table A-5 lists the Oracle character sets that can support European languages.

Locale Data A-9

Character Sets

Table A-5 European Language Character Sets

Name Description Comments
US7ASCII ASCII 7-bit American SB, ASCII
SF7ASCII ASCII 7-bit Finnish SB
YUG7ASCII ASCII 7-bit Yugoslavian SB
RUBSBESTA BESTA 8-bit Latin/Cyrillic SB, ASCII
EL8GCOS7 Bull EBCDIC GCOST7 8-bit Greek SB
WESGCOS7 Bull EBCDIC GCOS7 8-bit West European SB
ELS8DEC DEC 8-bit Latin/Greek SB
TR7DEC DEC VT100 7-bit Turkish SB
TR8DEC DEC 8-bit Turkish SB, ASCII
TRBEBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB
TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB
TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII
TR8MACTURKISH MAC Client 8-bit Turkish SB
TR8BMACTURKISHS MAC Server 8-bit Turkish SB, ASCII
TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish SB, ASCII, EURO
WES8BS2000L5 Siemens EBCDIC.DF.L5 8-bit West European/Turkish SB
WESDEC DEC 8-bit West European SB, ASCII
D7DEC DEC VT100 7-bit German SB
F7DEC DEC VT100 7-bit French SB
STDEC DEC VT100 7-bit Swedish SB
E7DEC DEC VT100 7-bit Spanish SB
NDK7DEC DEC VT100 7-bit Norwegian/Danish SB

I7DEC DEC VT100 7-bit Italian SB
NL7DEC DEC VT100 7-bit Dutch SB
CH7DEC DEC VT100 7-bit Swiss (German/French) SB
SF7DEC DEC VT100 7-bit Finnish SB
WESDG DG 8-bit West European SB, ASCII

A-10 Oracle9i Database Globalization Support Guide

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
WESEBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB
WESEBCDIC37 EBCDIC Code Page 37 8-bit West European SB
D8EBCDIC273 EBCDIC Code Page 27371 8-bit Austrian German SB
DK8EBCDIC277 EBCDIC Code Page 277/1 8-bit Danish SB
S8EBCDIC278 EBCDIC Code Page 278/1 8-bit Swedish SB
IBEBCDIC280 EBCDIC Code Page 280/1 8-bit Italian SB
WESEBCDIC284 EBCDIC Code Page 284 8-bit Latin American/Spanish SB
WESEBCDIC285 EBCDIC Code Page 285 8-bit West European SB
WESEBCDIC924 Latin 9 EBCDIC 924 SB, EBCDIC
WESEBCDIC1047 EBCDIC Code Page 1047 8-bit West European SB

WESEBCDIC1047E
WESEBCDIC1140
WESEBCDIC1140C
WESEBCDIC1145
WESEBCDIC1146
WESEBCDIC1148
WESEBCDIC1148C
FSEBCDIC297
WESEBCDIC500C
WESEBCDIC500
EES8EBCDIC870
EES8EBCDIC870C
EESEBCDIC870S
WESEBCDIC871
ELS8EBCDIC875
ELS8EBCDICS875R
CL8EBCDIC1025

Latin 1/0pen Systems 1047

EBCDIC Code Page 1140 8-bit West European
EBCDIC Code Page 1140 Client 8-bit West European
EBCDIC Code Page 1145 8-bit West European
EBCDIC Code Page 1146 8-bit West European
EBCDIC Code Page 1148 8-bit West European
EBCDIC Code Page 1148 Client 8-bit West European
EBCDIC Code Page 297 8-bit French

EBCDIC Code Page 500 8-bit Oracle/c

EBCDIC Code Page 500 8-bit West European
EBCDIC Code Page 870 8-bit East European
EBCDIC Code Page 870 Client 8-bit East European
EBCDIC Code Page 870 Server 8-bit East European
EBCDIC Code Page 871 8-bit Icelandic

EBCDIC Code Page 875 8-bit Greek

EBCDIC Code Page 875 Server 8-bit Greek

EBCDIC Code Page 1025 8-bit Cyrillic

SB, EBCDIC, EURO
SB, EURO
SB, EURO
SB, EURO
SB, EURO
SB, EURO
SB, EURO

SB
SB
SB
SB
SB
SB
SB
SB
SB
SB

Locale Data A-11

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
CL8EBCDIC1025C EBCDIC Code Page 1025 Client 8-bit Cyrillic SB
CL8EBCDIC1025R EBCDIC Code Page 1025 Server 8-bit Cyrillic SB
CL8EBCDIC1025S EBCDIC Code Page 1025 Server 8-bit Cyrillic SB
CL8EBCDIC1025X EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic SB
BLT8EBCDIC1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual SB
BLT8EBCDIC1112S EBCDIC Code Page 1112 8-bit Server Baltic Multilingual SB
DSEBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German SB, EURO
DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish SB, EURO
S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish SB, EURO
ISEBCDIC1144 EBCDIC Code Page 1144 8-bit Italian SB, EURO
FSEBCDIC1147 EBCDIC Code Page 1147 8-bit French SB, EURO
EEC8EUROASCI EEC Targon 35 ASCI West European/Greek SB
EECS8EUROPA3 EEC EUROPAZ3 8-bit West European/Greek SB
LABPASSPORT German Government Printer 8-bit All-European Latin SB, ASCII
WESHP HP LaserJet 8-bit West European SB
WEBROMANS HP Roman8 8-bit West European SB, ASCII
HU8CWI2 Hungarian 8-bit CWI-2 SB, ASCII
HUSABMOD Hungarian 8-bit Special AB Mod SB, ASCII
LV8RST104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic) SB, ASCII
US8PC437 IBM-PC Code Page 437 8-bit American SB, ASCII
BG8PC437S IBM-PC Code Page 437 8-bit (Bulgarian Modification) SB, ASCII
EL8PC437S IBM-PC Code Page 437 8-bit (Greek modification) SB, ASCII
EL8PC737 IBM-PC Code Page 737 8-bit Greek/Latin SB
LT8PC772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic) SB, ASCII
LT8PC774 IBM-PC Code Page 774 8-bit Lithuanian (Latin) SB, ASCII
BLT8PC775 IBM-PC Code Page 775 8-bit Baltic SB, ASCII
WESPC850 IBM-PC Code Page 850 8-bit West European SB, ASCII

A-12 Oracle9i Database Globalization Support Guide

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
EL8PC851 IBM-PC Code Page 851 8-bit Greek/Latin SB, ASCII
EE8PC852 IBM-PC Code Page 852 8-bit East European SB, ASCII
RUBPC855 IBM-PC Code Page 855 8-bit Latin/Cyrillic SB, ASCII
WESPC858 IBM-PC Code Page 858 8-bit West European SB, ASCII, EURO
WESPC860 IBM-PC Code Page 860 8-bit West European SB. ASCII
1ISBPC861 IBM-PC Code Page 861 8-bit Icelandic SB, ASCII
CDNB8PC863 IBM-PC Code Page 863 8-bit Canadian French SB, ASCII
N8PC865 IBM-PC Code Page 865 8-bit Norwegian SB. ASCII
RUBPC866 IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII
EL8PC869 IBM-PC Code Page 869 8-bit Greek/Latin SB, ASCII
LV8PC1117 IBM-PC Code Page 1117 8-bit Latvian SB, ASCII
US8ICL ICL EBCDIC 8-bit American SB

WESICL ICL EBCDIC 8-bit West European SB
WESISOICLUK ICL special version 1SO8859-1 SB
WEB8ISO8859P1 ISO 8859-1 West European SB, ASCII
EE81SO8859P2 1SO 8859-2 East European SB, ASCII
SE8ISO8859P3 1SO 8859-3 South European SB, ASCII
NEE8ISO8859P4 1SO 8859-4 North and North-East European SB, ASCII
CL81SO8859P5 I1SO 8859-5 Latin/Cyrillic SB, ASCII
AR8ISO8859P6 I1SO 8859-6 Latin/Arabic SB, ASCII
EL8ISO8859P7 ISO 8859-7 Latin/Greek SB, ASCII, EURO
IW81S08859P8 ISO 8859-8 Latin/Hebrew SB, ASCII
NE8ISO8859P10 1SO 8859-10 North European SB, ASCII
BLT8ISO8859P13 1SO 8859-13 Baltic SB, ASCII
CEL8I1S08859P14 I1SO 8859-13 Celtic SB, ASCII
WEBISO8859P15 1SO 8859-15 West European SB, ASCII, EURO
LA8ISO6937 I1SO 6937 8-bit Coded Character Set for Text Communication ~ SB, ASCI|

Locale Data A-13

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
IW71S960 Israeli Standard 960 7-bit Latin/Hebrew SB
ARBARABICMAC Mac Client 8-bit Latin/Arabic SB
EESMACCE Mac Client 8-bit Central European SB
EESMACCROATIAN Mac Client 8-bit Croatian SB
WESMACROMANS Mac Client 8-bit Extended Roman8 West European SB
ELSMACGREEK Mac Client 8-bit Greek SB
ISSMACICELANDIC Mac Client 8-bit Icelandic SB
CL8BMACCYRILLIC Mac Client 8-bit Latin/Cyrillic SB
ARBARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII
EESBMACCES Mac Server 8-bit Central European SB, ASCII
EESBMACCROATIANS Mac Server 8-bit Croatian SB, ASCII
WESBMACROMANSS Mac Server 8-bit Extended Roman8 West European SB, ASCII
CLS8MACCYRILLICS Mac Server 8-bit Latin/Cyrillic SB, ASCII
EL8BMACGREEKS Mac Server 8-bit Greek SB, ASCII
ISSMACICELANDICS Mac Server 8-bit Icelandic SB
BG8MSWIN MS Windows 8-bit Bulgarian Cyrillic SB, ASCII
LT8MSWIN921 MS Windows Code Page 921 8-bit Lithuanian SB, ASCII
ET8MSWIN923 MS Windows Code Page 923 8-bit Estonian SB, ASCII

EESBMSWIN1250
CL8MSWIN1251
WEBMSWIN1252
EL8MSWIN1253
BLT8MSWIN1257
BLT8CP921
LV8PC8LR
WESBNCRA4970
WESBNEXTSTEP

MS Windows Code Page 1250 8-bit East European

MS Windows Code Page 1251 8-bit Latin/Cyrillic

MS Windows Code Page 1252 8-bit West European

MS Windows Code Page 1253 8-bit Latin/Greek

MS Windows Code Page 1257 8-bit Baltic

Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic
Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic
NCR 4970 8-bit West European

NeXTSTEP PostScript 8-bit West European

A-14 Oracle9i Database Globalization Support Guide

SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII
SB, ASCII
SB, ASCII
SB, ASCII

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
CL8ISOIR111 ISOIR111 Cyrillic SB

CL8KOI8R RELCOM Internet Standard 8-bit Latin/Cyrillic SB, ASCII
CL8KOI8U KOI8 Ukrainian Cyrillic SB

US8BS2000 Siemens 9750-62 EBCDIC 8-bit American SB

DK8BS2000 Siemens 9750-62 EBCDIC 8-bit Danish SB

F8BS2000 Siemens 9750-62 EBCDIC 8-bit French SB

D8BS2000 Siemens 9750-62 EBCDIC 8-bit German SB

E8BS2000 Siemens 9750-62 EBCDIC 8-bit Spanish SB

S8BS2000 Siemens 9750-62 EBCDIC 8-bit Swedish SB
DK7SIEMENS9780X Siemens 97801/97808 7-bit Danish SB
F7SIEMENS9780X Siemens 97801/97808 7-bit French SB
D7SIEMENS9780X Siemens 97801/97808 7-bit German SB
I7SIEMENS9780X Siemens 97801797808 7-bit Italian SB
N7SIEMENS9780X Siemens 97801/97808 7-bit Norwegian SB
E7SIEMENS9780X Siemens 97801/97808 7-bit Spanish SB
S7SIEMENS9780X Siemens 97801/97808 7-bit Swedish SB

EE8BS2000 Siemens EBCDIC.DF.04 8-bit East European SB

WES8BS2000 Siemens EBCDIC.DF.04 8-bit West European SB

WE8BS2000E Siemens EBCDIC.DF.04 8-bit West European SB, EURO
CL8BS2000 Siemens EBCDIC.EHC.LC 8-bit Cyrillic SB

AL16UTF16 See "Universal Character Sets" on page A-18 for details MB, EURO, FIXED
AL32UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO
UTF8 See "Universal Character Sets" on page A-18 for details MB, ASCII, EURO
UTFE See "Universal Character Sets" on page A-18 for details MB, EURO

Middle Eastern Language Character Sets

Table A-6 lists the Oracle character sets that can support Middle Eastern languages.

Locale Data A-15

Character Sets

Table A—-6 Middle Eastern Character Sets

Name Description Comments
ARBAPTEC715 APTEC 715 Server 8-bit Latin/Arabic SB, ASCII
ARBAPTECT715T APTEC 715 8-bit Latin/Arabic SB
ARBASMO708PLUS ASMO 708 Plus 8-bit Latin/Arabic SB, ASCII
ARBASMO8X ASMO Extended 708 8-bit Latin/Arabic SB, ASCII
ARSADOS710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic SB, ASCII
ARBADOS710T Arabic MS-DOS 710 8-bit Latin/Arabic SB
ARBADOS720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic SB, ASCII
ARBADOS720T Arabic MS-DOS 720 8-bit Latin/Arabic SB
TR7DEC DEC VT100 7-bit Turkish SB
TR8DEC DEC 8-bit Turkish SB
WESEBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB
IWBEBCDIC424 EBCDIC Code Page 424 8-bit Latin/Hebrew SB
IWBEBCDIC424S EBCDIC Code Page 424 Server 8-bit Latin/Hebrew SB
WESBEBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB
IWBEBCDIC1086 EBCDIC Code Page 1086 8-bit Hebrew SB
AR8EBCDIC420S EBCDIC Code Page 420 Server 8-bit Latin/Arabic SB
ARBEBCDICX EBCDIC XBASIC Server 8-bit Latin/Arabic SB
TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB
TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB
ARBHPARABICST HP 8-bit Latin/Arabic SB
TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII
IW8PC1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew SB, ASCII
ARB8ISO8859P6 I1SO 8859-6 Latin/Arabic SB, ASCII
IW8ISO8859P8 I1SO 8859-8 Latin/Hebrew SB, ASCII
WE8ISO8859P9 1SO 8859-9 West European & Turkish SB, ASCII
LA8ISO6937 1SO 6937 8-bit Coded Character Set for Text Communication SB, ASCI|
IW71S960 Israeli Standard 960 7-bit Latin/Hebrew SB

A-16 Oracle9i Database Globalization Support Guide

Character Sets

Table A-6 Middle Eastern Character Sets (Cont.)

Name Description Comments
IWBMACHEBREW Mac Client 8-bit Hebrew SB
ARBARABICMAC Mac Client 8-bit Latin/Arabic SB
ARBARABICMACT Mac 8-bit Latin/Arabic SB
TR8MACTURKISH Mac Client 8-bit Turkish SB
IW8MACHEBREWS Mac Server 8-bit Hebrew SB, ASCII
ARBARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII
TRBMACTURKISHS Mac Server 8-bit Turkish SB, ASCII

TR8MSWIN1254
IW8MSWIN1255
AR8BMSWIN1256
INSISCII

AR8BMUSSAD768
ARBMUSSAD768T
ARSNAFITHAT711
ARSNAFITHAT711T
ARBNAFITHAT721
ARSNAFITHAT721T
ARBSAKHR706
ARBSAKHR707
ARBSAKHR707T
ARBXBASIC
WEB8BS2000L5
AL16UTF16
AL32UTF8

UTF8

UTFE

MS Windows Code Page 1254 8-bit Turkish
MS Windows Code Page 1255 8-bit Latin/Hebrew
MS Windows Code Page 1256 8-Bit Latin/Arabic

Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic
Mussa'd Alarabi/2 768 8-bit Latin/Arabic

Nafitha Enhanced 711 Server 8-bit Latin/Arabic
Nafitha Enhanced 711 8-bit Latin/Arabic

Nafitha International 721 Server 8-bit Latin/Arabic
Nafitha International 721 8-bit Latin/Arabic

SAKHR 706 Server 8-bit Latin/Arabic

SAKHR 707 Server 8-bit Latin/Arabic

SAKHR 707 8-bit Latin/Arabic

XBASIC 8-bit Latin/Arabic

Siemens EBCDIC.DF.04.L5 8-bit West European/Turkish
See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details
See "Universal Character Sets" on page A-18 for details

See "Universal Character Sets" on page A-18 for details

SB, ASCII, EURO
SB, ASCII, EURO
SB. ASCII, EURO
SB

SB, ASCII

SB

SB, ASCII

SB

SB, ASCII

SB

SB, ASCII

SB, ASCII

SB

SB

SB

MB, EURO, FIXED
MB, ASCII, EURO
MB, ASCII, EURO
MB, EURO

Locale Data A-17

Character Sets

Universal Character Sets

Table A-7 lists the Oracle character sets that provide universal language support.
They attempt to support all languages of the world, including, but not limited to,

Asian, European, and Middle Eastern languages.

Table A-7 Universal Character Sets

Name Description Comments
AL16UTF16 Unicode 3.1 UTF-16 Universal character set MB, EURO, FIXED
AL32UTF8 Unicode 3.1 UTF-8 Universal character set MB, ASCII, EURO
UTF8 Unicode 3.0 UTF-8 Universal character set, CESU-8 compliant MB, ASCIl, EURO
UTFE EBCDIC form of Unicode 3.0 UTF-8 Universal character set MB, EURO

Note: CESU-8 defines an encoding scheme for Unicode that is
identical to UTF-8 except for its representation of supplementary
characters. In CESU-8, supplementary characters are represented as
six-byte sequences that result from the transformation of each
UTF-16 surrogate code unit into an eight-bit form that is similar to
the UTF-8 transformation, but without first converting the input
surrogate pairs to a scalar value. See Unicode Technical Report #26.

See Also: Chapter 5, "Supporting Multilingual Databases with

Unicode"

Character Set Conversion Support

The following character set encodings are supported for conversion only. They

cannot be used as the database or national character set:
« ALI6UTFI16LE

« 1SO2022-CN

« 1SO2022-JP

« 1SO2022-KR

« HZ-GB-2312

You can use these character sets as the source_char_set
the CONVERTunction.

A-18 Oracle9i Database Globalization Support Guide

ordest_char_set in

Character Sets

See Also:

« Oracle9i SQL Reference for more information about the CONVERT
function

« "The CONVERT Function” on page 7-6

Subsets and Supersets
Table A-8 lists common subset/superset relationships.

Table A-8 Subset-Superset Pairs

Subset Superset
ARSADOS710 ARSADOS710T
ARBADOS720 ARBADOS720T
ARBADOS720T ARBADOS720
ARBAPTECT715 ARBAPTECT715T
ARBARABICMACT ARBARABICMAC
ARB8ISO8859P6 ARBASMO708PLUS
ARB81S08859P6 ARBASMO8X
ARBMUSSAD768 ARBMUSSAD768T
ARBMUSSAD768T ARBMUSSAD768

ARSNAFITHAT711
ARBNAFITHAT721
ARBSAKHR707
AR8BSAKHR707T
BLT8CP921
BLT8CP921
D7DEC
D7SIEMENS9780X
DK7SIEMENS9780X
I7TDEC
I7SIEMENS9780X

ARSNAFITHA711T
ARSNAFITHAT721T
ARSSAKHR707T
AR8BSAKHR707
BLT8ISO8859P13
LT8MSWIN921
D7SIEMENS9780X
D7DEC
N7SIEMENS9780X
I7SIEMENS9780X
IWBEBCDIC424

Locale Data A-19

Character Sets

Table A-8 Subset-Superset Pairs (Cont.)

Subset Superset
IWBEBCDIC424 IWBEBCDIC1086
KO16KSC5601 KO16MSWIN949

LT8MSWIN921
LT8MSWIN921

N7SIEMENS9780X

BLT8ISO8859P13
BLT8CP921
DK7SIEMENS9780X

US7ASCII See Table A-9, "US7ASCII Supersets".
WE16DECTST WE16DECTST?2

WE16DECTST?2 WE16DECTST

WESDEC TR8DEC

WESDEC WESBNCR4970

WE8ISO8859P1
WE8I1SO8859P9

WESMSWIN1252
TR8MSWIN1254

WESNCR4970 TR8DEC
WESNCR4970 WESDEC
WEB8PC850 WEB8PC858
ZHS16GBK ZHS32GB18030

US7ASCII is a special case because so many other character sets are supersets of it.

Table A-9 lists supersets for US7ASCII.

Table A-9 US7ASCII Supersets

Supersets Supersets Supersets
AL24UTFFSS EESBMACCES NEES8ISO8859P4
AL32UTF8 EESMACCROATIANS RUSBESTA
ARSADOS710 EES8MSWIN1250 RUBPCB855
ARBADOS710T EE8PC852 RUBPC866
ARBADOS720 ELSDEC SE8ISO8859P3
ARBADOST720T EL8ISO8859P7 TH8MACTHAIS

A-20 Oracle9i Database Globalization Support Guide

Character Sets

Table A-9 US7ASCII Supersets (Cont.)

Supersets Supersets Supersets
ARBAPTEC715 EL8MACGREEKS THS8TISASCII
ARSAPTEC715T EL8MSWIN1253 TR8DEC
ARBARABICMACS EL8PC437S TR8MACTURKISHS
ARBASMO708PLUS EL8PCS851 TR8MSWIN1254
ARBASMO8X EL8PC869 TR8PC857
ARBHPARABICST ET8MSWIN923 US8PC437
ARB8ISO8859P6 HUSABMOD UTF8
ARSMSAWIN HU8CWI2 VN8MSWIN1258
ARBMUSSAD768 INSISCII VN8VN3
ARBMUSSAD768T IS8PC861 WESDEC
ARSBNAFITHAT711 IW8ISO8859P8 WESDG
ARSNAFITHATILT IWBMACHEBREWS WES8ISO8859P1
ARSNAFITHAT721 IW8MSWIN1255 WE8ISO8859P15
ARSNAFITHA721T IW8PC1507 WE81SO8859P9
ARBSAKHR706 JAL6EUC WESMACROMANSS
ARBSAKHR707 JA16SJIS WE8MSWIN1252
ARBSAKHR707T JAL16TSTSET WE8SNCRA4970
BGSMSWIN JAL16TSTSET2 WESNEXTSTEP
BG8PC437S JAL6VMS WESPC850
BLT8CP921 KO16KSC5601 WEBPC858
BLT81SO8859P13 KO16KSCCS WEBPCB860
BLT8MSWIN1257 KO16MSWIN949 WESROMANS
BLT8PC775 KO16TSTSET ZHS16CGB231280
BN8BSCII LA8ISO6937 ZHS16GBK
CDNB8PC863 LA8BPASSPORT ZHT16BIG5
CEL8ISO8859P14 LT8MSWIN921 ZHT16CCDC
CL8ISO8859P5 LT8PC772 ZHT16DBT

Locale Data A-21

Linguistic Sorting

Table A-9 US7ASCII Supersets (Cont.)

Supersets Supersets Supersets
CL8KOI8R LT8PC774 ZHT16HKSCS
CL8KOI8U LV8PC1117 ZHT16MSWIN950
CL8ISOIR111 LV8PCSLR ZHT32EUC
CLBMACCYRILLICS LV8RST104090 ZHT32S0PS
CL8MSWIN1251 N8PC865 ZHT32TRIS
EE81SO8859P2 NE8ISO8859P10 ZHS32GB18030
ZHT32EUCTST - -

Linguistic Sorting

Oracle offers two kinds of linguistic sorts, monolingual and multilingual. In
addition, monolingual sorts can be extended to handle special cases. These special
cases (represented with a prefix X) typically mean that the characters will be sorted
differently from their ASCII values. For example, ch and Il are treated as a single
character in XSPANISH.

Table A-10 lists the monolingual linguistic sorts supported by the Oracle server.

Table A-10 Monolingual Linguistic Sorts

Basic Name Extended Name Special Cases

ARABIC - -
ARABIC_MATCH - -
ARABIC_ABJ_SORT - -
ARABIC_ABJ]_MATCH
ASCII7 - -
BENGALI - -
BIG5 - -

BINARY - -
BULGARIAN - -
CANADIAN FRENCH - -
CATALAN XCATALAN &, AE, R

A-22 Oracle9i Database Globalization Support Guide

Linguistic Sorting

Table A-10 Monolingual Linguistic Sorts (Cont.)

Basic Name

Extended Name

Special Cases

CROATIAN
CZECH

CZECH_PUNCTUTION

DANISH
DUTCH
EBCDIC
EEC_EURO
EEC_EUROPA3
ESTONIAN
FINNISH
FRENCH
GERMAN
GERMAN_DIN
GBK

GREEK
HEBREW
HKSCS
HUNGARIAN

ICELANDIC
INDONESIAN
ITALIAN
JAPANESE
LATIN
LATVIAN
LITHUANIAN
MALAY

XCROATIAN
XCZECH

XCZECH_
PUNCTUATION

XDANISH
XDUTCH

XFRENCH
XGERMAN
XGERMAN_DIN

XHUNGARIAN

D,L,N,d,I,nR
ch,CH, Ch,B
ch, CH, Ch, R

AR A A&
ij, 1J

R
B,&06uAO0U

cs, gy, ny, sz, ty, zs, B, CS, Cs, GY,
Gy, NY, Ny, SZ, Sz, TY, Ty, ZS, Zs

Locale Data A-23

Linguistic Sorting

Table A-10 Monolingual Linguistic Sorts (Cont.)

Basic Name Extended Name Special Cases
NORWEGIAN - -

POLISH - -

PUNCTUATION XPUNCTUATION -

ROMANIAN - -

RUSSIAN - -

SLOVAK XSLOVAK dz, DZ, Dz, B (caron)
SLOVENIAN XSLOVENIAN 3

SPANISH XSPANISH ch, Il, CH, Ch, LL, LI
SWEDISH - -

SWISS XSWISS B3

THAI_DICTIONARY - -
THAI_TELEPHONE - -

TURKISH XTURKISH &, AE, R
UKRAINIAN - -
UNICODE_BINARY - -
VIETNAMESE - -
WEST_EUROPEAN XWEST_EUROPEAN f3

Table A-11 lists the multilingual linguistic sorts available in Oracle. All of them
include GENERIC_Man ISO standard for sorting Latin-based characters) as a base.
Multilingual linguistic sorts are used for a specific primary language together with
Latin-based characters. For example, KOREAN_M will sort Korean and Latin-based
characters, but it will not collate Chinese, Thai, or Japanese characters.

Table A-11 Multilingual Linguistic Sorts

Basic Name Explanation

CANADIAN_M Canadian French sort supports reverse secondary, special
expanding characters

DANISH_M Danish sort supports sorting lower case characters before
upper case characters

A-24 Oracle9i Database Globalization Support Guide

Calendar Systems

Table A-11 Multilingual Linguistic Sorts (Cont.)

Basic Name Explanation
FRENCH_M French sort supports reverse sort for secondary
GENERIC_M Generic sorting order which is based on 1SO14651 and

Unicode canonical equivalence rules but excluding
compatible equivalence rules

JAPANESE_M Japanese sort supports SJIS character set order and EUC
characters which are not included in SJIS

KOREAN_M Korean sort: Hangul characters are based on Unicode binary
order. Hanja characters based on pronunciation order. All
Hangul characters are before Hanja characters

SPANISH_M Traditional Spanish sort supports special contracting
characters

THAIL_M Thai sort supports swap characters for some vowels and
consonants

SCHINESE_RADICAL_M Simplified Chinese sort based on radical as primary order
and number of strokes order as secondary order

SCHINESE_STROKE_M Simplified Chinese sort uses number of strokes as primary
order and radical as secondary order

SCHINESE_PINYIN_M Simplified Chinese PinYin sorting order

TCHINESE_RADICAL_M Traditional Chinese sort based on radical as primary order
and number of strokes order as secondary order

TCHINESE_STROKE_M Traditional Chinese sort uses number of strokes as primary
order and radical as secondary order. It supports
supplementary characters.

Calendar Systems

By default, most territory definitions use the Gregorian calendar system. Table A-12
lists the other calendar systems supported by the Oracle server.

Locale Data A-25

Calendar Systems

Table A-12 Supported Calendar Systems

Character Set Used

Name Default Date Format For Default Date Format
Japanese Imperial EEYYMMDD JA16EUC

ROC Official EEyymmdd ZHT32EUC

Thai Buddha dd month EE yyyy THB8TISASCII

Persian DD Month YYYY ARBASMO8X

Arabic Hijrah DD Month YYYY ARB8ISO8859P6

English Hijrah DD Month YYYY AR8ISO8859P6

Figure A-1 shows how March 20, 1998 appears in ROC Official:

Figure A-1 ROC Official Example

A-26 Oracle9iDatabase Globalization Support Guide

Obsolete Locale Data

Figure A-2 shows how March 27, 1998 appears in Japanese Imperial:

Figure A-2 Japanese Imperial Example

Obsolete Locale Data

Before Oracle server release 7.2, when a character set was renamed, the old name
was usually supported along with the new name for several releases after the
change. Beginning with release 7.2, the old names are no longer supported.

Table A-13 lists the affected character sets. If you reference any of these character
sets in your code, replace them with their new name:

Table A-13 New Names for Obsolete Character Sets

Old Name New Name

AL24UTFSS UTF8, AL32UTF8

Locale Data A-27

Obsolete Locale Data

Table A-13 New Names for Obsolete Character Sets (Cont.)

Old Name

New Name

ARSMSAWIN
CL8EBCDIC875S
EL8EBCDICS875S
JVMS

JEUC

SJIS

JDBCS

KSC5601

KDBCS
CGB2312-80
CNS 11643-86
JAL6EUCFIXED

ZHS32EUCFIXED

ZHS16GBKFIXED

JA16DBCSFIXED

KO16DBCSFIXED

ZHS16DBCSFIXED

ZHS16CGB231280

FIXED

ZHT16DBCSFIXED

KO16KSC5601FIXED

JAL16SJISFIXED

ARSMSWIN1256
CL8EBCDIC875R
ELS8EBCDICS875R
JAL6VMS
JAL16EUC
JAL16SJIS
JA16DBCS
KO16KSC5601
KO16DBCS
ZHS16CGB231280
ZHT32EUC

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

None. Replaced by new national character set.

AL16UTF16.

A-28 Oracle9i Database Globalization Support Guide

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

UTF8 and

Obsolete Locale Data

Table A-13 New Names for Obsolete Character Sets (Cont.)

Old Name New Name

ZHT16BIG5FIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

ZHT32TRISFIXED None. Replaced by new national character set. UTF8 and
AL16UTF16.

Character set CLBMSWINDOW?31 has been desupported. The newer character set
CL8MSWIN1251 is actually a duplicate of CLBMSWINDOW?31 and includes some
characters omitted from the earlier version. Change any usage of
CL8MSWINDOWS31 to CL8MSWIN1251 instead.

AL24UTFFSS Character Set Desupported

The Unicode Character Set AL24UTFFSS has been desupported in Oracle9i.
AL24UTFFSS was introduced with Oracle7 as the Unicode character set supporting
UTF-8 encoding scheme based on the Unicode standard 1.1, which is now obsolete.
In Oracle9i, Oracle now offers the Unicode database character set AL32UTF8 and
UTF8, which includes the Unicode enhancements based on the Unicode standard
3.1

The migration path for an existing AL24UTFFSS database is to upgrade to UTF8
prior to upgrading to Oracle9i. As with all migrations to a new database character
set, Oracle Corporation recommends that you use the Character Set Scanner for
data analysis before attempting to migrate your existing database character set to
UTFS8.

See Also: Chapter 11, "Character Set Scanner”

Bengali Language Definition Deprecated

The Bengali language definition is not compatible with Unicode standards. Oracle
Corporation recommends that customers use the Bangla language definition
instead. Bangla was introduced in Oracle9i Database Release 1 (9.0.1).

The Bengali language definition is supported in Oracle9i Database Release 2 (9.2),
but it may be desupported in a future release.

Locale Data A-29

Obsolete Locale Data

Czechoslovakia Territory Definition Deprecated

Oracle Corporation recommends that customers use either Czech Republic or
Slovakia territory definitions in Oracle9i Database Release 2 (9.2). The
Czechoslovakia territory definition is supported in Oracle9i Database Release 2
(9.2), but it may be desupported in a future release.

A-30 Oracle9i Database Globalization Support Guide

B

Unicode Character Code Assignments

This appendix offers an introduction to how Unicode assigns characters. This
appendix contains:

« Unicode Code Ranges
« UTF-16 Encoding
« UTF-8 Encoding

Unicode Character Code Assignments B-1

Unicode Code Ranges

Unicode Code Ranges

Table B-1 contains code ranges that have been allocated in Unicode for UTF-16
character codes.

Table B-1 Unicode Character Code Ranges for UTF-16 Character Codes

Types of Characters First 16 Bits Second 16 Bits
ASCII 0000-007F -
European (except ASCII), 0080-07FF -
Arabic, Hebrew
indic, Thai, certain 0800-0FFF -
symbols (sugh as the euro 1000 - CEEF
symbol), Chinese,
Japanese, Korean D000 - D7FF
F900 - FFFF
Private Use Area #1 EO00 - EFFF -
FO000 - F8FF
Supplementary characters: D800 - D8BF DCO00 - DFFF
Additional Chinese,
Japanese, and Korean D8CO - DABF DCO00 - DFFF
characters; historic DACO - DB7F DCO00 - DFFF
characters; musical
symbols; mathematical
symbols
rivate Use Area #2 DB80 - DBBF DCO00 - DFFF
DBCO - DBFF DCO00 - DFFF

Table B-2 contains code ranges that have been allocated in Unicode for UTF-8
character codes.

Table B-2 Unicode Character Code Ranges for UTF-8 Character Codes

Types of Characters First Byte Second Byte Third Byte Fourth Byte
ASCII 00-7F - - -
European (except ASCII), C2-DF 80 - BF - -

Arabic, Hebrew

B-2 Oracle9i Database Globalization Support Guide

UTF-16 Encoding

Table B-2 Unicode Character Code Ranges for UTF-8 Character Codes (Cont.)

Types of Characters First Byte Second Byte Third Byte Fourth Byte

lindic, Thai, certain EO A0 - BF 80 - BF -
symbols (such as the euro

symbol), Chinese, El1-EC 80 - BF 80 - BF
Japanese, Korean ED 80 - 9F 80 - BF
EF A4 -BF 80 - BF
Private Use Area #1 EE 80 - BF 80 - BF -
EF 80- A3 80 - BF
Supplementary characters: FO 90 - BF 80 - BF 80 - BF
Additional Chinese,
Japanese, and Korean F1-F2 80 - BF 80 - BF 80 - BF
characters; historic F3 80 - AF 80 - BF 80 - BF
characters; musical
symbols; mathematical
symbols
Private Use Area #2 F3 BO - BF 80 - BF 80 - BF
Fa 80 - 8F 80 - BF 80 - BF

Note: Blank spaces represent non-applicable code assignments.
Character codes are shown in hexadecimal representation.

UTF-16 Encoding

As shown in Table B-1, UTF-16 character codes for some characters (Additional
Chinese/Japanese/Korean characters and Private Use Area #2) are represented in
two units of 16-bits. These are supplementary characters. A supplementary
character consists of two 16-bit values. The first 16-bit value is encoded in the range
from 0xD800 to 0xDBFF. The second 16-bit value is encoded in the range from
0xDCO00 to OxDFFF. With supplementary characters, UTF-16 character codes can
represent more than one million characters. Without supplementary characters,
only 65,536 characters can be represented. Oracle’s AL16UTF16 character set
supports supplementary characters.

See Also: "Supplementary Characters” on page 5-3

Unicode Character Code Assignments B-3

UTF-8 Encoding

UTF-8 Encoding

The UTF-8 character codes in Table B-2 show that the following conditions are true:
« ASCII characters use 1 byte
« European (except ASCII), Arabic, and Hebrew characters require 2 bytes

« Indic, Thai, Chinese, Japanese, and Korean characters as well as certain symbols
such as the euro symbol require 3 bytes

« Characters in the Private Use Area #1 require 3 bytes
« Supplementary characters require 4 bytes
« Characters in the Private Use Area #2 require 4 bytes

Oracle’s AL32UTF8 character set supports 1-byte, 2-byte, 3-byte, and 4-byte values.
Oracle’s UTF8 character set supports 1-byte, 2-byte, and 3-byte values, but not
4-byte values.

B-4 Oracle9i Database Globalization Support Guide

Glossary

AL16UTF16
The default Oracle character set for the SQL NCHAR data type, which is used for
the national character set. It encodes Unicode data in the UTF-16 encoding.

See Also: national character set

AL32UTF8
An Oracle character set for the SQL CHAR data type, which is used for the database
character set. It encodes Unicode data in the UTF-8 encoding.

See Also: database character set

ASCII

American Standard Code for Information Interchange. A common encoded 7-bit
character set for English. ASCII includes the letters A-Z and a-z, as well as digits,
punctuation symbols, and control characters. The Oracle character set name is
US7ASCII.

binary sorting
Ordering character strings based on their binary coded values.

byte semantics
Treatment of strings as a sequence of bytes.

See Also: character semantics and length semantics

Glossary-1

Glossary-2

canonical equivalence

A basic equivalence between characters or sequences of characters. For example, ¢
is equivalent to the combination of ¢ and , . They cannot be distinguished when
they are correctly rendered.

case

Refers to the condition of being uppercase or lowercase. For example, in a Latin
alphabet, Ais the uppercase glyph for a, the lowercase glyph.

case conversion
Changing a character from uppercase to lowercase or vice versa.

character

A character is an abstract element of text. A character is different from a glyph,
which is a specific representation of a character. For example, the first character of
the English upper-case alphabet can be displayed as A, A, A, and so on. These forms
are different glyphs that represent the same character. A character, a character code,
and a glyph are related as follows:

character --(encoding)--> character code --(font)--> glyph

For example, the first character of the English uppercase alphabet is represented in
computer memory as a number. The number is called the encoding or the character
code. The character code for the first character of the English uppercase alphabet is
0x41 in the ASCII encoding scheme. The character code is Oxcl in the EBCDIC
encoding scheme.

You must choose a font to display or print the character. The available fonts depend
on which encoding scheme is being used. The character can be printed or displayed
as A, A, or A, for example. The forms are different glyphs that represent the same
character.

See Also: character code and glyph

character code

A character code is a number that represents a specific character. The number
depends on the encoding scheme. For example, the character code of the first
character of the English uppercase alphabet is 0x41 in the ASCII encoding scheme,
but it is Oxcl in the EBCDIC encoding scheme.

See Also: character

character semantics
Treatment of strings as a sequence of characters.

See Also: byte semantics and length semantics

character set

A collection of elements that represent textual information for a specific language or
group of languages. One language can be represented by more than one character
set.

A character set does not always imply a specific character encoding scheme. A
character encoding scheme is the assignment of a character code to each character in
a character set.

In this manual, a character set usually does imply a specific character encoding
scheme. Therefore, a character set is the same as an encoded character set in this
manual.

character set migration
Changing the character set of an existing database.

character string
An ordered group of characters.

A character string can also contain no characters. In this case, the character string is
called a null string. The number of characters in a null string is 0 (zero).

character classification

Character classification information provides details about the type of character
associated with each character code. For example, a character can uppercase,
lowercase, punctuation, or control character.

character encoding scheme

A rule that assigns numbers (character codes) to all characters in a character set.
Encoding scheme, encoding method, and encoding also mean character encoding
scheme.

client character set

The encoded character set used by the client. A client character set can differ from
the server character set. The server character set is called the database character set.

Glossary-3

Glossary-4

If the client character set is different from the database character set, then character
set conversion must occur.

See Also: database character set

code point

The numeric representation of a character in a character set. For example, the code
point of Ain the ASCII character set is 0x41. The code point of a character is also
called the encoded value of a character.

See Also: Unicode code point

collation

Ordering of character strings according to rules about sorting characters that are
associated with a language in a specific locale. Also called linguistic sort.

See Also:
« linguistic sort
= monolingual linguistic sort

« multilingual linguistic sort

data scanning

The process of identifying potential problems with character set conversion and
truncation of data before migrating the database character set.

database character set

The encoded character set that is used to store text in the database. This includes
CHARVARCHAR2.ONGand fixed-width CLOBcolumn values and all SQL and
PL/SQL text.

diacritic
A mark near or through a character or combination of characters that indicates a

different sound than the sound of the character without the diacritical mark. For
example, the cedilla in facade is a diacritic. It changes the sound of c.

EBCDIC

Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded
character sets used mostly on IBM systems.

encoded character set

A character set with an associated character encoding scheme. An encoded
character set specifies the number (character code) that is assigned to each character.

See Also: character encoding scheme

encoded value

The numeric representation of a character in a character set. For example, the code
point of Aiin the ASCII character set is 0x41. The encoded value of a character is also
called the code point of a character.

font

An ordered collection of character glyphs that provides a graphical representation
of characters in a character set.

globalization

The process of making software suitable for different linguistic and cultural
environments. Globalization should not be confused with localization, which is the
process of preparing software for use in one specific locale.

glyph

A glyph (font glyph) is a specific representation of a character. A character can have
many different glyphs. For example, the first character of the English uppercase
alphabet can be printed or displayed as A, A, A, and so on.

These forms are different glyphs that represent the same character.

See Also: character

ideograph

A symbol that represents an idea. Chinese is an example of an ideographic writing
system.

ISO

International Organization for Standards. A worldwide federation of national
standards bodies from 130 countries. The mission of 1SO is to develop and promote
standards in the world to facilitate the international exchange of goods and services.

Glossary-5

Glossary-6

ISO 8859

A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also
known as ISO Latinl), and is used for Western European languages.

ISO 14651

A multilingual linguistic sort standard that is designed for almost all languages of
the world.

See Also: multilingual linguistic sort

ISO/IEC 10646

A universal character set standard that defines the characters of most major scripts
used in the modern world. In 1993, ISO adopted Unicode version 1.1 as ISO/IEC
10646-1:1993. ISO/IEC 10646 has two formats: UCS-2 is a 2-byte fixed-width format,
and UCS-4 is a 4-byte fixed-width format. There are three levels of implementation,
all relating to support for composite characters:

« Level 1 requires no composite character support.

« Level 2 requires support for specific scripts (including most of the Unicode
scripts such as Arabic and Thai).

« Level 3 requires unrestricted support for composite characters in all languages.

ISO currency

The 3-letter abbreviation used to denote a local currency, based on the 1SO 4217
standard. For example, USDrepresents the United States dollar.

ISO Latinl

The ISO 8859-1 character set standard. It is an 8-bit extension to ASCII that adds 128
characters that include the most common Latin characters used in Western Europe.
The Oracle character set name is WE8ISO8859P1.

See Also: 1SO 8859

length semantics

Length semantics determines how you treat the length of a character string. The
length can be treated as a sequence of characters or bytes.

See Also: character semantics and byte semantics

linguistic index
An index built on a linguistic sort order.

linguistic sort

A ordering of strings based on requirements from a locale instead of the binary
representation of the strings.

See Also: multilingual linguistic sort and monolingual linguistic
sort

locale

A collection of information about the linguistic and cultural preferences from a
particular region. Typically, a locale consists of language, territory, character set,
linguistic, and calendar information defined in NLS data files.

localization

The process of providing language-specific or culture-specific information for
software systems. Translation of an application's user interface is an example of
localization. Localization should not be confused with globalization, which is the
making software suitable for different linguistic and cultural environments.

monolingual linguistic sort

An Oracle sort that has two levels of comparison for strings. Most European
languages can be sorted with a monolingual sort, but it is inadequate for Asian
languages.

See Also: multilingual linguistic sort

monolingual support
Support for only one language.

multibyte
Two or more bytes.

When character codes are assigned to all characters in a specific language or a
group of languages, one byte (8 bits) can represent 256 different characters. Two
bytes (16 bits) can represent up to 65,536 different characters. Two bytes are not
enough to represent all the characters for many languages. Some characters require
3 or 4 bytes.

Glossary-7

Glossary-8

One example is the UTF8 Unicode encoding. In UTF8, there are many 2-byte and
3-byte characters.

Another example is Traditional Chinese, used in Taiwan. It has more than 80,000
characters. Some character encoding schemes that are used in Taiwan use 4 bytes to
encode characters.

See Also: single byte

multibyte character

A character whose character code consists of two or more bytes under a certain
character encoding scheme.

Note that the same character may have different character codes under different
encoding schemes. Oracle cannot tell if a character is a multibyte character without
knowing which character encoding scheme is being used. For example, Japanese
Hankaku-Katakana (half-width Katakana) characters are one byte in the JA16SJIS
encoded character set, two bytes in JAI6EUC, and three bytes in UTF8.

See Also: single-byte character

multibyte character string
A character string that consists of one of the following:

« No characters (called a null string)
« One or more single-byte characters

« A mixture of one or more single-byte characters and one or more multibyte
characters

« One or more multibyte characters

multilingual linguistic sort

An Oracle sort that uses evaluates strings on three levels. Asian languages require a
multilingual linguistic sort even if data exists in only one language. Multilingual
linguistic sorts are also used when data exists in several languages.

national character set

An alternate character set from the database character set that can be specified for
NCHARNVARCHAR2Nd NCLOBcolumns. National character sets are in Unicode
only.

NLB files

Binary files used by the Locale Builder to define locale-specific data. They define all
of the locale definitions that are shipped with a specific release of the Oracle
database server. You can create user-defined NLB files with Oracle Locale Builder.

See Also: Oracle Locale Builder and NLT files

NLS

National Language Support. NLS allows users to interact with the database in their
native languages. It also allows applications to run in different linguistic and
cultural environments. The term is somewhat obsolete because Oracle supports
global users at one time.

NLSRTL

National Language Support Runtime Library. This library is responsible for
providing locale-independent algorithms for internationalization. The
locale-specific information (that is, NLSDATA) is read by the NLSRTL library
during run-time.

NLT files

Text files used by the Locale Builder to define locale-specific data. Because they are
in text, you can view the contents.

null string
A character string that contains no characters.

Oracle Locale Builder

A GUI utility that offers a way to view, modify, or define locale-specific data. You
can also create your own formats for language, territory, character set, and linguistic
sort.

replacement character

A character used during character conversion when the source character is not
available in the target character set. For example, ? is often used as Oracle's default
replacement character.

restricted multilingual support

Multilingual support that is restricted to a group of related languages.Western
European languages can be represented with 1SO 8859-1, for example. If
multilingual support is restricted, then Thai could not be added to the group.

Glossary-9

Glossary-10

SQL CHAR datatypes
Includes CHARVARCHARVARCHARZCLOB and LONGdatatypes.

SQL NCHAR datatypes
Includes NCHARNVARCHARNVARCHAR2Nnd NCLORBdatatypes.

script

A collection of related graphic symbols that are used in a writing system. Some
scripts can represent multiple languages, and some languages use multiple scripts.
Example of scripts include Latin, Arabic, and Han.

single byte

One byte. One byte usually consists of 8 bits. When character codes are assigned to
all characters for a specific language, one byte (8 bits) can represent 256 different
characters.

See Also: multibyte

single-byte character

A single-byte character is a character whose character code consists of one byte
under a specific character encoding scheme. Note that the same character may have
different character codes under different encoding schemes. Oracle cannot tell
which character is a single-byte character without knowing which encoding scheme
is being used. For example, the euro currency symbol is one byte in the
WE8BMSWIN1252 encoded character set, two bytes in AL16UTF16, and three bytes
in UTF8.

See Also: multibyte character

single-byte character string

A single-byte character string is a character string that consists of one of the
following:

« No character (called a null string)

« One or more single-byte characters

supplementary characters

The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes
to encode each character. This allowed 65,536 characters to be represented.
However, more characters need to be supported because of the large number of
Asian ideograms.

Unicode 3.1 defines supplementary characters to meet this need. It uses two 16-bit
code points (also known as surrogate pairs) to represent a single character. This
allows an additional 1,048,576 characters to be defined. The Unicode 3.1 standard
added the first group of 44,944 supplementary characters.

surrogate pairs

See Also: supplementary characters

syllabary

Provide a mechanism for communicating phonetic information along with the
ideographic characters used by languages such as Japanese.

UCs-2

A 1993 ISO/IEC standard character set. It is a fixed-width, 16-bit Unicode character
set. Each character occupies 16 bits of storage. The ISO Latin1 characters are the first
256 code points, so it can be viewed as a 16-bit extension of ISO Latin1.

ucs-4

A fixed-width, 32-bit Unicode character set. Each character occupies 32 bits of
storage. The UCS-2 characters are the first 65,536 code points in this standard, so it
can be viewed as a 32-bit extension of UCS-2. This is also sometimes referred to as
ISO-10646.

Unicode

Unicode is a universal encoded character set that allows you information from any
language to be stored by using a single character set. Unicode provides a unique
code value for every character, regardless of the platform, program, or language.

Unicode database
A database whose database character set is UTF-8.

Glossary-11

Glossary-12

Unicode code point

A 16-bit binary value that can represent a unit of encoded text for processing and
interchange. Every point between U+0000 and U+FFFF is a code point.

Unicode datatype

A SQL NCHARdatatype (NCHARNVARCHARZNnd NCLOB. You can store Unicode
characters in columns of these datatypes even if the database character set is not
Unicode.

unrestricted multilingual support

The ability to use as many languages as desired. A universal character set, such as
Unicode, helps to provide unrestricted multilingual support because it supports a
very large character repertoire, encompassing most modern languages of the world.

UTFE

A Unicode 3.0 UTF-8 Oracle database character set with 6-byte supplementary
character support. It is used only on EBCDIC platforms.

UTF8

The UTF8 Oracle character set encodes characters in one, two, or three bytes. It is
for ASCII-based platforms. The UTF8 character set supports Unicode 3.0. Although
specific supplementary characters were not assigned code points in Unicode until
version 3.1, the code point range was allocated for supplementary characters in
Unicode 3.0. Supplementary characters are treated as two separate, user-defined
characters that occupy 6 bytes.

UTF-8

The 8-bit encoding of Unicode. It is a variable-width encoding. One Unicode
character can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters
from the European scripts are represented in either 1 or 2 bytes. Characters from
most Asian scripts are represented in 3 bytes. Supplementary characters are
represented in 4 bytes.

UTF-16

The 16-bit encoding of Unicode. It is an extension of UCS-2 and supports the
supplementary characters defined in Unicode 3.1 by using a pair of UCS-2 code
points. One Unicode character can be 2 bytes or 4 bytes in UTF-16 encoding.
Characters (including ASCII characters) from European scripts and most Asian
scripts are represented in 2 bytes. Supplementary characters are represented in 4
bytes.

wide character

A fixed-width character format that is useful for extensive text processing because it
allows data to be processed in consistent, fixed-width chunks. Wide characters are
intended to support internal character processing.

Glossary-13

Glossary-14

Index

Numerics Character Set Scanner, 11-10
ASCIl encoding, 2-6

7-bit encoding schemes, 2-9
8-bit encoding schemes, 2-9

B
A base characters, 4-5
bbreviati base letter, 4-9
al Irewatlons s BFILE data
b angugges, : loading into LOBs, 7-15
abstract datatype binary sort, 4-2
creating as NCHAR, 2-19 example, 4-7
ADO interface and Unicode, 6-34 binding and defining CLOB and NCLOB data in
AL16UTF16 character set, 5-6, A-18 oCl. 6-21
AL24UTFFSS character set, 5-6 oo o ;
' binding and defining SQL CHAR datatypes in
AL32UTF8 character set, 5-6,5-7, A-18 ! é)cg:l 6-18I ng 5Q ypest
ALTER DATABASE CHARACTER SET binding and defining SQL NCHAR datatypes in
statement, 10-10 OCl. 6-20
mlgratlng_cha}racter sets in Oracle9i Real BLANK_TRIMMING parameter, 10-4
Application Clusters, 10-10 BLOBs

migrating data, 10-8
using with selective imports, 10-10
ALTER DATABASE NATIONAL CHARACTER
SET statement, 10-10, 10-12
ALTER SESSION statement
SET NLS_CURRENCY clause, 3-33, 3-35

creating indexes, 5-24
boundaries parameter

Character Set Scanner, 11-10
byte semantics, 2-12, 3-43

SET NLS_DATE_FORMAT clause, 3-19 C

SET NLS_LANGUAGE clause, 3-16 C number format mask, 3-34

SET NLS_NUMERIC_CHARACTERS Calendar Utility, 12-17

clause, 3-32 calendars

SET NLS_TERRITORY clause, 3-16 customizing, 12-17
ALTER TABLE MODIFY statement parameter, 3-26

migrating from CHAR to NCHAR, 10-12, 10-13 supported, A-25
Arial Unicode MS font, 12-2 canonical equivalence, 4-4,4-10
array parameter capture parameter

Index-1

Character Set Scanner, 11-10
case, 4-2
case-insensitive search, 4-16
CESU-8 compliance, A-18

changing the national character set, 10-12

CHAR columns
migrating to NCHAR columns, 10-12
character data

converting with CONVERT SQL function,

character data conversion

database character set, 10-8
character data scanning

before character set migration, 10-7
character rearrangement, 4-11
character repertoire, 2-3
character semantics, 2-12, 3-43
character set

changing after database creation, 2-20

conversion, 2-16, 12-25

customizing, 12-23

data loss during conversion, 2-16

encoding, 2-2

national, 2-18, 5-9, 6-5, 6-6
character set conversion

between OCI client and database server,

for Java applications, 9-4
for JDBC thin drivers, 9-7
parameters, 3-42
character set definition
customizing, 12-27
guidelines for editing files, 12-27
naming files, 12-27
character set migration
from single-byte to multibyte, 10-9
identifying character data conversion
problems, 10-7
postmigration tasks, 10-16
scanning character data, 10-7
Character Set Scanner, 11-1, 11-12
array parameter, 11-10
boundaries parameter, 11-10
capture parameter, 11-10
CSM$COLUMNS table, 11-30
CSMS$ERRORS table, 11-30
CSMS$TABLES table, 11-30

Index-2

CSMV$COLUMNIS view, 11-31
CSMV$CONSTRAINTS view, 11-32
CSMV$ERROR view, 11-33
CSMVS$INDEXES view, 11-33
CSMVS$TABLES view, 11-34
Database Scan Summary Report, 11-20
error messages, 11-34

exclude parameter, 11-11
feedback parameter, 11-11
fromnchar parameter, 11-12

full parameter, 11-12

help parameter, 11-13

Individual Exception Report, 11-27
invoking, 11-6

lastrpt parameter, 11-13
maxblocks parameter, 11-14
online help, 11-7

parameter file, 11-8

parameters, 11-9

performance, 11-31

platform compatibility, 11-6
preserve parameter, 11-14

scan modes, 11-4

suppress parameter, 11-15

table parameter, 11-15

tochar parameter, 11-16

user parameter, 11-16

userid parameter, 11-17

views, 11-31

character sets

AL16UTF16, 5-6

AL24UTFFSS, 5-6

AL32UTF8, 5-6

Asian, A-8

choosing, 10-2

choosing a character set for a Unicode
database, 5-12

choosing a national character set, 5-14

conversion, 2-21,7-6

conversion using OCI, 8-48

data loss, 10-4

European, A-9

ISO 8859 series, 2-7

Middle Eastern, A-15

migration, 10-2

migration from single-byte to multibyte, 10-9
naming, 2-11
restrictions on character sets used to express
names, 2-17

supersets and subsets,
supported, A-6
supporting different character repertoires, 2-5
universal, A-18
UTFE, 5-6

character type conversion
error reporting, 3-42

A-19

characters
available in all Oracle database character
sets, 2-5

context-sensitive, 4-10
contracting, 4-9
user-defined, 12-24
choosing a character set, 10-2
choosing between a Unicode database and Unicode
datatypes, 5-10
client operating system
character set compatibility with
applications, 2-16
CLOB and NCLOB data
binding and defining in OCI, 6-21
CLOBs
creating indexes, 5-23
code chart
displaying and printing,
code point, 2-2
collation
customizing,
compatibility
client operating system and application character
sets, 2-16
composed characters, 4-9
concatenation operator, 7-15
context-sensitive characters, 4-10
contracting characters, 4-9
contracting letters, 4-11
control characters, encoding, 2-4
conversion
between character set ID number and character
set name, 7-9
CONVERT SQL function, 7-6

12-18

12-35

character sets, A-18
converting character data

CONVERT SQL function, 7-6
converting character data between character

sets, 7-6

cost-based optimizer, 4-15
creating a database with Unicode datatypes,
creating a Unicode database, 5-8

CSM$COLUMNS table, 11-30
CSMS$ERRORS table, 11-30
CSM$TABLES table, 11-30

CSMIG user, 11-5
csminst.sql script

running, 11-6
CSMV$COLUMNS view, 11-31
CSMVS$CONSTRAINTS view, 11-32
CSMVS$ERROR view, 11-33
CSMVS$INDEXES view, 11-33
CSMVS$TABLES view, 11-34
currencies

formats, 3-32

customizing time zone data, 12-17

D

5-8

data conversion
in Pro*C/C++, 6-22
JDBC driver, 6-29
OClI driver, 6-27
ODBC and OLE DB drivers, 6-30
thin driver, 6-28
Unicode Java strings, 6-27
data dictionary views
NLS_DATABASE_PARAMETERS, 3-9
NLS_INSTANCE_PARAMETERS, 3-9
NLS_SESSION_PARAMETER, 3-9
data expansion
during data conversion, 6-17
data expansion during character set
migration, 10-2
data expansion during conversion
JDBC thin driver, 9-12
data inconsistencies causing data loss, 10-5
data loss
caused by data inconsistencies, 10-5

Index-3

during character set migration, 10-4
during OCI Unicode character set
conversion, 6-15
from mixed character sets, 10-6
data loss during character set conversion, 2-16
data loss during datatype conversion
exceptions, 6-7
data truncation, 10-2
restrictions, 10-3
database character set
character data conversion, 10-8
choosing, 2-14
compatibility between client operating system
and applications, 2-16
performance, 2-17
Database Scan Summary Report, 11-20
database schemas
designing for multiple languages, 5-18
datatype conversion
data loss and exceptions, 6-7

implicit, 6-8
SQL functions, 6-9
datatypes

abstract, 2-19
supported, 2-19
date and time parameters, 3-17
date formats, 3-18, 7-13
and partition bound expressions, 3-19
dates
ISO standard, 3-27,7-14
NLS_DATE_LANGUAGE parameter, 3-20
days
format element, 3-21
language of names, 3-21
DBMS_LOB PL/SQL package, 7-15
DBMS_LOB.LOADBLOBFROMFILE
procedure, 7-15
DBMS_LOB.LOADCLOBFROMFILE
procedure, 7-15
DBMS_REDEFINITION.CAN_REDEF_TABLE
procedure, 10-14
decimal character restrictions, 3-31
dest_char_set parameter, A-18
diacritic, 4-2
dynamic performance views

Index-4

V$NLS_PARAMETERS, 3-9
V$NLS_VALID_VALUES, 3-9

E

encoding
control characters, 2-4
ideographic writing systems, 2-4
numbers, 2-4
phonetic writing systems, 2-4
punctuation, 2-4
symbols, 2-4
encoding schemes
7-bit, 2-9
8-bit, 2-9
fixed-width, 2-10
multibyte, 2-10
shift-sensitive variable-width, 2-10
shift-sensitive variable-width multibyte, 2-10
single-byte, 2-9
variable-width, 2-10
variable-width multibyte, 2-10
error messages
languages, A-4
translation, A-4
euro
Oracle support, 3-37
exclude parameter
Character Set Scanner, 11-11
expanding characters, 4-11
characters
expanding, 4-10

F

features, new, xxvii
feedback parameter
Character Set Scanner, 11-11
fixed-width multibyte encoding schemes, 2-10
fonts
Unicode, 12-2
Unicode for UNIX, 12-3
Unicode for Windows, 12-2
format elements, 7-14
C, 7-14

D, 7-14
day, 3-21
G, 7-14
Iw, 7-14
Yy, 7-14
L, 7-14
month, 3-21
RM, 7-13
RN, 7-14
format masks,
formats
currency,
date, 3-18
numeric, 3-30
time, 3-21
fromchar parameter,
Character Set Scanner,
fromnchar parameter
Character Set Scanner,
full parameter
Character Set Scanner,

3-31,7-13

3-32

11-12
11-12

11-12

11-12

G

generic base letter search, 4-16
getString() method, 9-3,9-8

getStringWithReplacement() method, 9-3,9-8

getSubString() method, 9-3
getUnicodeStream() method, 9-3
globalization features, 1-6
globalization support
architecture, 1-2

H

help parameter

Character Set Scanner, 11-13

ideographic writing systems, encoding, 2-4
ignorable characters, 4-9
implicit datatype conversion, 6-8
indexes
creating for documents stored as CLOBS,

5-23

creating for multilingual document search,
creating indexes for documents stored as
BLOBs, 5-24

partitioned, 7-12
Individual Exception Report,
INSTR SQL function, 6-11
INSTR SQL functions, 7-6, 7-7
ISO 8859 character sets, 2-7
I1SO standard

date format, 7-14
ISO standard date format,
1ISO week number, 7-14
IW format element, 7-14
Y format element, 7-14

11-27

3-27,7-14

J

5-22

Java

Unicode data conversion, 6-27
Java runtime environment, 9-3
Java Stored Procedures

globalization support,
Java stored procedures,
Java strings

binding and defining in Unicode,
Java Virtual Machine, 9-16

globalization support, 9-16
java.sql.ResultSet class, 9-3
JDBC class library

character set conversion, 9-5
JDBC drivers

character set conversion, 9-4

globalization support, 9-2,9-3
JDBC OCl driver, 9-2

and Unicode, 6-3

character set conversion, 9-6
JDBC programming

Unicode, 6-25
JDBC server-side internal driver, 9-2

character set conversion, 9-7
JDBC server-side thin driver, 9-2
JDBC thin driver, 9-2

and Unicode, 6-4

character set conversion, 9-7

data expansion during conversion,

9-18
9-18

6-26

9-12

Index-5

SQL CHAR data size restriction, 9-11 Application Clusters, 10-10

JVM, 09-16 migration
globalization support, 9-16 CHAR columns to NCHAR columns, 10-12
character sets, 10-2
L from a single-byte character set to a multibyte
character set, 10-9
language abbreviations, A-2 Oracle8 NCHAR columns to Oracle9i, 10-11
language definition to NCHAR datatypes, 10-11
customizing, 12-8 mixed character sets
overriding, 3-7 causing data loss, 10-6
language support, 1-7 monetary parameters, 3-32
languages monolingual linguistic sort
error messages, A-4 example, 4-7
lastrpt parameter monolingual linguistic sorts
Character Set Scanner, 11-13 supported, A-22
length semantics, 2-12, 3-42 months
LENGTH SQL functions, 7-6, 7-7 format element, 3-21
LIKE conditions in SQL statements, 7-8 language of names, 3-21
LIKE2 SQL condition, 7-8 multibyte encoding schemes, 2-10
LIKE4 SQL condition, 7-8 fixed-width, 2-10
LIKEC SQL condition, 7-8 shift-sensitive variable-width, 2-10
linguistic sort definitions variable-width, 2-10
supported, A-22 multilexers
linguistic sorts creating, 5-23
controlling, 7-12 multilingual data
customizing, 12-35 specifying column lengths, 5-19
characters with diacritics, 12-38, 12-41 multilingual demo, 9-23
levels, 4-5 multilingual document search
parameters, 3-39 creating indexes, 5-22
Imsgen utility, 8-57 multilingual linguistic sort
loading external BFILE data into LOBs, 7-15 example, 4-7
LOBs multilingual linguistic sorts
loading external BFILE data, 7-15 supported, A-24
storing documents in multiple languages, 5-21 multilingual support
locale, 3-4 restricted, 2-24
locale information unrestricted, 2-25
mapping between Oracle and other multiple languages
standards, 8-14 designing database schemas, 5-18
Ixegen utility, 12-18 storing data, 5-19
storing documents in LOBs, 5-21
M
maxblocks parameter N
Character Set Scanner, 11-14 N SQL function, 6-10
migrating character sets in Oracle9i Real national character set, 2-18, 5-9, 6-5, 6-6

Index-6

before Oracle9i, 5-8
NCHAR

creating abstract datatype, 2-19
NCHAR columns

migrating from Oracle8 to Oracle9i, 10-11
NCHAR datatype, 6-5

migrating, 10-11

migration, 10-11
NCHR SQL function, 6-12
NCLOB datatype, 6-6
new features, Xxxvii
NLB files, 12-2

generating and installing, 12-43
NLS Calendar Utility, 12-17
NLS parameters

default values in SQL functions, 7-3

list, 3-3

setting, 3-2

specifying in SQL functions, 7-3

unacceptable in SQL functions, 7-5

using in SQL functions, 7-2
NLS Runtime Library, 1-2
NLS_CALENDAR parameter, 3-29
NLS _CHARSET_DECL_LEN SQL function, 7-10
NLS_CHARSET_ID SQL function, 7-9
NLS_CHARSET_NAME SQL function, 7-9
NLS_COMP parameter, 3-41, 4-15, 7-12
NLS_CREDIT parameter, 3-38
NLS_CURRENCY parameter, 3-32
NLS_DATABASE_PARAMETERS data dictionary

view, 3-9
NLS_DATE_FORMAT parameter, 3-18
NLS DATE_LANGUAGE parameter, 3-20
NLS_DEBIT parameter, 3-38
NLS_DUAL_CURRENCY parameter, 3-35
NLS_INITCAP SQL function, 4-12,7-2
NLS_INSTANCE_PARAMETERS data dictionary
view, 3-9

NLS_ISO_CURRENCY parameter, 3-34
NLS_LANG environment variable

JDBC OCI driver, 9-6
NLS_LANG parameter, 3-4

choosing a locale, 3-4

client setting, 3-8

examples, 3-6

OCIl client applications, 6-18

specifying, 3-6

UNIX client, 3-8

Windows client, 3-8
NLS_LANGUAGE parameter, 3-10
NLS_LENGTH_SEMANTICS parameter, 2-12
NLS_LIST_SEPARATOR parameter, 3-41
NLS_LOWER SQL function, 4-12,7-2
NLS_MONETARY_CHARACTERS

parameter, 3-38
NLS_NCHAR_CONV_EXCP parameter, 3-42
NLS_NUMERIC_CHARACTERS parameter, 3-30
NLS_SESSION_PARAMETERS data dictionary
view, 3-9

NLS_SORT parameter, 3-39, 4-15
NLS_TERRITORY parameter, 3-13
NLS_TIMESTAMP_FORMAT parameter

parameters

NLS TIMESTAMP_FORMAT, 3-22

NLS_TIMESTAMP_TZ_FORMAT parameter, 3-23
NLS_UPPER SQL function, 4-12,7-2
NLSRTL, 1-2
NLSSORT SQL function, 7-2,7-10

syntax, 7-11
NLT files, 12-2
numbers, encoding, 2-4
numeric formats, 3-30

SQL masks, 7-14
numeric parameters, 3-30
NVARCHAR datatype

Pro*C/C++, 6-24
NVARCHAR?2 datatype, 6-6

@)
obsolete locale data, A-27
OcClI
binding and defining CLOB and NCLOB data in

OClI, 6-21
binding and defining SQL NCHAR
datatypes, 6-20
setting the character set, 8-2
SQL CHAR datatypes, 6-18
OCI and Unicode, 6-3
OCI character set conversion, 6-16

Index-7

data loss, 6-15

performance, 6-15
OCI client applications

using Unicode character sets, 6-18
OCI data conversion

data expansion, 6-17
OCI_ATTR_CHARSET_FORM attribute, 6-15
OCI_ATTR_MAXDATA_SIZE attribute, 6-17
OCI_NLS_MAXBUFSZ, 8-9,8-13
OCI_UTF16ID character set ID, 6-13
OCI_UTF161D mode, 8-2
OCIBind() function, 6-18
OClICharSetConversionlsReplacementUsed(),

8-52
OCICharSetConvert(), 8-48
OCICharSetToUnicode(), 8-48
OClICharsetToUnicode(), 8-48
OCIDefine() function, 6-18
OCIEnvCreate(), 8-2
OCIEnvNIsCreate function, OCI

setting the character set, xxix
OCIEnvNIsCreate(), 6-13, 8-2
OCIlLobRead() function, 6-21
OCILobWrite() function, 6-21
OCIMessageClose(), 8-54, 8-56
OCIMessageGet(), 8-54, 8-55
OCIMessageOpen(), 8-54
OCIMultiBytelnSizeToWideChar(), 8-16, 8-19
OCIMultiByteStrCaseConversion(), 8-18, 8-38
OCIMultiByteStrcat(), 8-17, 8-34
OCIMultiByteStrcemp(), 8-17, 8-32
OCIMultiByteStrcpy(), 8-18, 8-35
OCIMultiByteStrlen(), 8-18, 8-37
OCIMultiByteStrncat(), 8-17, 8-38
OCIMultiByteStrncmp(), 8-17, 8-33
OCIMultiByteStrncpy(), 8-18, 8-38
OCIMultiByteStrnDisplayLength(), 8-18, 8-38
OCIMultiByteToWideChar(), 8-16, 8-18
OCINIsCharSetConvert(), 8-50
OCINIsCharSetldToName(), 8-11
OCINIsCharSetNameTold(), 8-10
OCINIsGetInfo(), 8-7
OCINIsNameMap(), 8-14
OCINIsNumericinfoGet(), 8-12
OCIlSessionBegin(), 8-2

Index-8

OClUnicodeToCharSet(), 8-49
OClUnicodeToCharset(), 8-48
OCIWideCharDisplayLength(), 8-1
OCIWideCharlInSizeToMultiByte(),

7,8-31
8-16, 8-21

OCIWideCharlsAlnum(), 8-40, 8-41

OCIWideCharlsAlpha(), 8-40, 8-41
OCIWideCharlsCntrl(), 8-40, 8-42
OCIWideCharlsDigit(), 8-40, 8-42
OCIWideCharlsGraph(), 8-40, 8-43
OCIWideCharlsLower(), 8-40, 8-43
OCIWideCharlsPrint(), 8-40, 8-44
OCIWideCharlsPunct(), 8-40, 8-44

OCIWideCharlsSingleByte(), 8-40, 8-47

OCIWideCharlsSpace(), 8-40, 8-45
OCIWideCharlsUpper(), 8-40, 8-45
OCIWideCharlsXdigit(), 8-40, 8-46

OCIWideCharMultiByteLength(), 8-31
OCIwideCharMultibyteLength(), 8-17

OCIWideCharStrCaseConversion(),
OCIWideCharStrcat(), 8-17, 8-25
OCIWideCharStrchr(), 8-17, 8-26
OCIWideCharStrcmp(), 8-16, 8-23
OCIWideCharStrcpy(), 8-17, 8-28
OCIWideCharStrlen(), 8-17, 8-29
OCIWideCharStrncat(), 8-17, 8-30
OCIWideCharStrncmp(), 8-17,8-24
OCIWideCharStrncpy(), 8-17, 8-28
OCIWideCharStrrchr(), 8-17, 8-30

8-17, 8-30

OCIwideCharToLower(), 8-16, 8-22

OCIWideCharToMultiByte(), 8-16,

8-20

OCIWideCharToUpper(), 8-16, 8-22

ODBC Unicode applications, 6-32
OLE DB Unicode datatypes, 6-33
online table redefinition

migrating from CHAR to NCHAR, 10-12, 10-13

operating system
character set compatibility with
applications, 2-16
ORA_NLS33 directory, 1-3
ORA_TZFILE environment variable,
Oracle Call Interface and Unicode,
Oracle Locale Builder

12-17
6-3

choosing a calendar format, 12-12

choosing currency formats, 12-1
choosing date and time formats,

5
12-13

displaying code chart, 12-18
Existing Definitions dialog box, 12-5
fonts, 12-2,12-3

Open File dialog box, 12-7

Preview NLT screen, 12-6

restrictions on names for locale objects, 12-9

Session Log dialog box, 12-5
starting, 12-3
Oracle ODBC driver and Unicode, 6-3
Oracle OLE DB driver and Unicode, 6-3
Oracle Pro*C/C++ and Unicode, 6-3
Oracle Real Application Clusters
during database character set migration,
Oracle SQLJ and Unicode, 6-4
Oracle8 NCHAR columns
migrating to Oracle9i, 10-11
oracle.sql.CHAR class, 9-3
character set conversion, 9-8
getString() method, 9-8
getStringWithReplacement() method, 9-8
toString() method, 9-8
oracle.sql.CLOB class, 9-3
oracle.sql.NString class, 9-16
ORDER BY clause, 7-12
overriding language and territory definitions,

P

parameters
BLANK_TRIMMING, 10-4
calendar, 3-26
character set conversion, 3-42
linguistic sorts, 3-39
methods of setting, 3-3
monetary, 3-32
NLS CALENDAR, 3-29
NLS COMP, 3-41
NLS_CREDIT, 3-38
NLS_CURRENCY, 3-32
NLS_DATE_FORMAT, 3-18
NLS DATE_LANGUAGE, 3-20
NLS DEBIT, 3-38
NLS DUAL_CURRENCY, 3-35
NLS_ISO_CURRENCY, 3-34
NLS_LANG, 3-4

NLS_LANGUAGE, 3-10
NLS_LIST_SEPARATOR, 3-41
NLS_MONETARY_CHARACTERS, 3-38
NLS_NCHAR_CONV_EXCP, 3-42
NLS_NUMERIC_CHARACTERS, 3-30
NLS_SORT, 3-39
NLS _TERRITORY, 3-13
NLS _TIMESTAMP_TZ_FORMAT, 3-23
numeric, 3-30
setting, 3-2
time and date, 3-17
time zone, 3-22
partitioned
indexes, 7-12
tables, 7-12
performance
choosing a database character set, 2-17
during OCI Unicode character set
conversion, 6-15
phonetic writing systems, encoding, 2-4
PL/SQL and SQL and Unicode, 6-4
preserve parameter
Character Set Scanner, 11-14
primary level sort, 4-5
Private Use Area, 12-26
Pro*C/C++
data conversion, 6-22
NVARCHAR datatype, 6-24
UVARCHAR datatype, 6-24
VARCHAR datatype, 6-23
punctuation, encoding, 2-4

Q

QUERY_REWRITE_ENABLED initialization
parameter, 4-14

R

replacement characters

CONVERT SQL function, 7-6
restricted multilingual support, 2-24
restrictions

data truncation, 10-3

passwords, 10-3

Index-9

space padding during export, 10-4
usernames, 10-3
reverse secondary sorting, 4-11
RPAD SQL function, 6-11

S

scan modes
Character Set Scanner, 11-4
full database scan, 11-4
single table scan, 11-5
user tables scan, 11-5
search, generic base letter, 4-16
searching multilingual documents, 5-22
secondary level sort, 4-5
shift-sensitive variable-width multibyte encoding
schemes, 2-10
single-byte encoding schemes, 2-9
sorting
reverse secondary, 4-11
specifying nondefault linguistic sorts, 3-39, 3-41
source_char_set parameter, A-18
space padding
during export, 10-4
special combination letters, 4-9, 4-11
special letters, 4-10, 4-11
special lowercase letters, 4-12
special uppercase letters, 4-12
SQL CHAR datatypes, 2-14
inserting a Java string, 9-4
OClI, 6-18
SQL conditions
LIKE2, 7-8
LIKE4, 7-8
LIKEC, 7-8
SQL functions
CONVERT, 7-6
datatype conversion, 6-9
default values for NLS parameters, 7-3
INSTR, 6-11,7-6, 7-7
LENGTH, 7-6,7-7
N, 6-10
NCHR, 6-12
NLS_CHARSET_DECL_LEN, 7-10
NLS_CHARSET_ID, 7-9

Index-10

NLS CHARSET_NAME, 7-9
NLS_INITCAP, 4-12,7-2
NLS_LOWER, 4-12,7-2
NLS_UPPER, 4-12,7-2
NLSSORT, 7-2,7-10
RPAD, 6-11
specifying NLS parameters, 7-3
SUBSTR, 7-6,7-7
SUBSTR2, 7-7
SUBSTR4, 7-7
SUBSTRB, 7-7
SUBSTRC, 7-7
TO_CHAR, 7-2
TO_DATE, 6-10,7-2
TO_NCHAR, 6-10
TO_NUMBER, 7-2
unacceptable NLS parameters, 7-5
UNISTR, 6-12
using NLS parameters, 7-2
SQL NCHAR datatypes
binding and defining in OCI, 6-20
using JDBC, 9-7
SQL statements
LIKE conditions, 7-8
SQLJ
globalization support, 9-14
multilingual demo application, 9-23
programming with Unicode, 6-25
translators, 9-3
using Unicode characters, 9-15
stored procedures
Java, 9-18
strict superset, 5-3
string comparisons
WHERE clause, 7-11
string literals
Unicode, 6-11
string manipulation using OCI, 8-15
SUBSTR SQL function, 7-7
SUBSTR SQL functions, 7-6, 7-7
SUBSTR, 7-7
SUBSTR2, 7-7
SUBSTR4, 7-7
SUBSTRB, 7-7
SUBSTRC, 7-7

SUBSTR4 SQL function, 7-7
SUBSTRB SQL function, 7-7
SUBSTRC SQL function, 7-7
superset, strict, 5-3
supersets and subsets, A-19
supplementary characters, 4-4,5-3
linguistic sort support, A-25
supported datatypes, 2-19
supported territories, A-5
suppress parameter
Character Set Scanner, 11-15
surrogate pairs, 5-3
syllabary, 2-4
symbols, encoding, 2-4

T

table parameter
Character Set Scanner, 11-15
tables
partitioned, 7-12
territory definition, 3-13
customizing, 12-11
overriding, 3-7
territory support, 1-7, A-5
tertiary level sort, 4-6
Thai and Laotian character rearrangement,
tilde, 9-13
time and date parameters, 3-17
time zone information
Oracle’s source, 3-24
time zone parameters, 3-22
changing during a session, 3-25
creating a database, 3-24
time zones
customizing, 12-17
timestamp format, 3-22
timestamp with time zone, 3-23
timezlrg.dat file, 12-17
timezone.dat file, 12-17
TO_CHAR SQL function, 7-2
default date format, 3-18
format masks, 7-13
group separator, 3-31
language for dates, 3-20

spelling of days and months, 3-20
TO_DATE SQL function, 6-10, 7-2

default date format, 3-18

format masks, 7-13

language for dates, 3-20

spelling of days and months, 3-20
TO_NCHAR SQL function, 6-10
TO_NUMBER SQL function, 7-2

format masks, 7-13
tochar parameter

Character Set Scanner, 11-16
toString() method, 9-3,9-8
translators

SQLJ, 9-3
U
UCS-2 encoding, 5-4
Unicode, 5-2

binding and defining Java strings, 6-26
character code assignments, B-2

character set conversion between OCI client and

database server, 6-15
code ranges for UTF-16 characters, B-2
code ranges for UTF-8 characters, B-2
data conversion in Java, 6-27
JDBC and SQLJ programming, 6-25
JDBC OCI driver, 6-3
JDBC thin driver, 6-4

ODBC and OLE DB programming, 6-29

Oracle Call Interface, 6-3
Oracle ODBC driver, 6-3
Oracle OLE DB driver, 6-3
Oracle Pro*C/C++, 6-3
Oracle SQLJ, 6-4
Oracle support, 5-5
PL/SQL and SQL, 6-4
Private Use Area, 12-26
programming, 6-2
string literals, 6-11
UCS-2 encoding, 5-4
UTF-16 encoding, 5-4
UTF-8 encoding, 5-3
Unicode database, 5-7
case study, 5-16

Index-11

choosing a character set, 5-12 W

using with Unicode datatypes (case study), 5-18
wheg touse, 5-10 ypes! & wave dash, 9-13
Unicode datatypes, 5-8 WHERE clause .
case study, 5-17 string comparisons, 7-11
choosing a national character set, 5-14
using with a Unicode database (case
study), 5-18
when to use, 5-11
Unicode encoding, 5-3
Unicode escape sequence, 9-15
Unicode fonts, 12-2
Unicode mode, 6-13, 8-2
UNISTR SQL function, 6-12
unrestricted multilingual support, 2-25
US7ASCII
supersets, A-20
user parameter
Character Set Scanner, 11-16
user-defined characters, 12-24
adding to a character set definition, 12-30
cross-references between character sets, 12-26
supporting in Java, 12-32
userid parameter
Character Set Scanner, 11-17
UTF-16 encoding, 5-4, B-3
UTF8 character set, 5-7, A-18
UTF-8 encoding, 5-3,B-4
UTFE character set, 5-6, 5-8, A-18
UTL_FILE package, using with NCHAR, 6-12
UVARCHAR datatype
Pro*C/C++, 6-24

\Y

V$NLS_PARAMETERS dynamic performance
view, 3-9

V$NLS_VALID_VALUES dynamic performance
view, 3-9

V$TIMEZONE_NAMES view, 12-17

VARCHAR datatype

Pro*C/C++, 6-23
variable-width multibyte encoding schemes, 2-10

Index-12

	Contents
	Send Us Your Comments
	Preface
	What’s New in Globalization Support?
	1 Overview of Globalization Support
	Globalization Support Architecture
	Locale Data on Demand
	Architecture to Support Multilingual Applications
	Using Unicode in a Multilingual Database

	Globalization Support Features
	Language Support
	Territory Support
	Date and Time Formats
	Monetary and Numeric Formats
	Calendars Feature
	Linguistic Sorting
	Character Set Support
	Character Semantics
	Customization of Locale and Calendar Data
	Unicode Support

	2 Choosing a Character Set
	Character Set Encoding
	What is an Encoded Character Set?
	Which Characters Are Encoded?
	Phonetic Writing Systems
	Ideographic Writing Systems
	Punctuation, Control Characters, Numbers, and Symbols
	Writing Direction

	What Characters Does a Character Set Support?
	ASCII Encoding

	How are Characters Encoded?
	Single-Byte Encoding Schemes
	Multibyte Encoding Schemes

	Naming Convention for Oracle Character Sets

	Length Semantics
	Choosing an Oracle Database Character Set
	Current and Future Language Requirements
	Client Operating System and Application Compatibility
	Character Set Conversion Between Clients and the Server
	Performance Implications of Choosing a Database Character Set
	Restrictions on Database Character Sets
	Restrictions on Character Sets Used to Express Names

	Choosing a National Character Set
	Summary of Supported Datatypes

	Changing the Character Set After Database Creation
	Monolingual Database Scenario
	Character Set Conversion in a Monolingual Scenario

	Multilingual Database Scenarios
	Restricted Multilingual Support
	Unrestricted Multilingual Support

	3 Setting Up a Globalization Support Environment
	Setting NLS Parameters
	Choosing a Locale with the NLS_LANG Environment Variable
	Specifying the Value of NLS_LANG
	Overriding Language and Territory Specifications
	Should the NLS_LANG Setting Match the Database Character Set?

	NLS Database Parameters
	NLS Data Dictionary Views
	NLS Dynamic Performance Views
	OCINlsGetInfo() Function

	Language and Territory Parameters
	NLS_LANGUAGE
	NLS_TERRITORY
	Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a Session

	Date and Time Parameters
	Date Formats
	NLS_DATE_FORMAT
	NLS_DATE_LANGUAGE

	Time Formats
	NLS_TIMESTAMP_FORMAT
	NLS_TIMESTAMP_TZ_FORMAT
	Time Zone Parameters for Databases
	Time Zone Parameters for Sessions

	Calendar Definitions
	Calendar Formats
	First Day of the Week
	First Calendar Week of the Year
	Number of Days and Months in a Year
	First Year of Era

	NLS_CALENDAR

	Numeric Parameters
	Numeric Formats
	NLS_NUMERIC_CHARACTERS

	Monetary Parameters
	Currency Formats
	NLS_CURRENCY
	NLS_ISO_CURRENCY
	NLS_DUAL_CURRENCY
	Oracle Support for the Euro
	NLS_MONETARY_CHARACTERS
	NLS_CREDIT
	NLS_DEBIT

	Linguistic Sort Parameters
	NLS_SORT
	NLS_COMP
	NLS_LIST_SEPARATOR

	Character Set Conversion Parameter
	NLS_NCHAR_CONV_EXCP

	Length Semantics
	NLS_LENGTH_SEMANTICS

	4 Linguistic Sorting
	Overview of Oracle’s Sorting Capabilities
	Using Binary Sorts
	Using Linguistic Sorts
	Monolingual Linguistic Sorts
	Multilingual Linguistic Sorts
	Multilingual Sorting Levels
	Primary Level Sorts
	Secondary Level Sorts
	Tertiary Level Sorts

	Linguistic Sort Examples

	Linguistic Sort Features
	Base Letters
	Ignorable Characters
	Contracting Characters
	Expanding Characters
	Context-Sensitive Characters
	Canonical Equivalence
	Reverse Secondary Sorting
	Character Rearrangement for Thai and Laotian Characters
	Special Letters
	Special Combination Letters
	Special Uppercase Letters
	Special Lowercase Letters

	Using Linguistic Indexes
	Linguistic Indexes for Multiple Languages
	Requirements for Using Linguistic Indexes
	Set QUERY_REWRITE_ENABLED to TRUE
	Set NLS_COMP to ANSI
	Set NLS_SORT Appropriately
	Use the Cost-Based Optimizer With the Optimizer Mode Set to FIRST_ROWS
	Example: Setting Up a French Linguistic Index

	Improving Case-Insensitive Searches with a Function-Based Index
	Performing a Generic Base Letter Search

	5 Supporting Multilingual Databases with Unicode
	Overview of Unicode
	What is Unicode?
	Supplementary Characters
	Unicode Encodings
	UTF-8 Encoding
	UCS-2 Encoding
	UTF-16 Encoding
	Examples: UTF-16, UTF-8, and UCS-2 Encoding

	Oracle’s Support for Unicode

	Implementing a Unicode Solution in the Database
	Enabling Multilingual Support with Unicode Databases
	Enabling Multilingual Support with Unicode Datatypes
	How to Choose Between a Unicode Database and a Unicode Datatype Solution
	When Should You Use a Unicode Database?
	When Should You Use Unicode Datatypes?

	Comparing Unicode Character Sets for Database and Datatype Solutions

	Unicode Case Studies
	Designing Database Schemas to Support Multiple Languages
	Specifying Column Lengths for Multilingual Data
	Storing Data in Multiple Languages
	Store Language Information with the Data
	Select Translated Data Using Fine-Grained Access Control

	Storing Documents in Multiple Languages in LOBs
	Creating Indexes for Searching Multilingual Document Contents
	Creating Multilexers
	Creating Indexes for Documents Stored as CLOBs
	Creating Indexes for Documents Stored as BLOBs

	6 Programming with Unicode
	Overview of Programming with Unicode
	Database Access Product Stack and Unicode

	SQL and PL/SQL Programming with Unicode
	SQL NCHAR Datatypes
	The NCHAR Datatype
	The NVARCHAR2 Datatype
	The NCLOB Datatype

	Implicit Datatype Conversion Between NCHAR and Other Datatypes
	Exception Handling for Data Loss During Datatype Conversion
	Rules for Implicit Datatype Conversion
	SQL Functions for Unicode Datatypes
	Other SQL Functions
	Unicode String Literals
	Using the UTL_FILE Package with NCHAR Data

	OCI Programming with Unicode
	OCIEnvNlsCreate() Function for Unicode Programming
	OCI Unicode Code Conversion
	Data Integrity
	OCI Performance Implications When Using Unicode
	OCI Unicode Data Expansion

	When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI
	Binding and Defining SQL CHAR Datatypes in OCI
	Binding and Defining SQL NCHAR Datatypes in OCI
	Binding and Defining CLOB and NCLOB Unicode Data in OCI

	Pro*C/C++ Programming with Unicode
	Pro*C/C++ Data Conversion in Unicode
	Using the VARCHAR Datatype in Pro*C/C++
	Using the NVARCHAR Datatype in Pro*C/C++
	Using the UVARCHAR Datatype in Pro*C/C++

	JDBC and SQLJ Programming with Unicode
	Binding and Defining Java Strings in Unicode
	Java Data Conversion in Unicode
	Data Conversion for the OCI Driver
	Data Conversion for the Thin Driver
	Data Conversion for the JDBC Driver

	ODBC and OLE DB Programming with Unicode
	Unicode-Enabled Drivers in ODBC and OLE DB
	OCI Dependency in Unicode
	ODBC and OLE DB Code Conversion in Unicode
	OLE DB Code Conversions

	ODBC Unicode Datatypes
	OLE DB Unicode Datatypes
	ADO Access

	7 SQL and PL/SQL Programming in a Global Environment
	Locale-Dependent SQL Functions with Optional NLS Parameters
	Default Values for NLS Parameters in SQL Functions
	Specifying NLS Parameters in SQL Functions
	Unacceptable NLS Parameters in SQL Functions

	Other Locale-Dependent SQL Functions
	The CONVERT Function
	SQL Functions for Different Length Semantics
	LIKE Conditions for Different Length Semantics
	Character Set SQL Functions
	Converting from Character Set Number to Character Set Name
	Converting from Character Set Name to Character Set Number
	Returning the Length of an NCHAR Column

	The NLSSORT Function
	NLSSORT Syntax
	Comparing Strings in a WHERE Clause
	Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE Clause
	Controlling an ORDER BY Clause

	Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment
	SQL Date Format Masks
	Calculating Week Numbers
	SQL Numeric Format Masks
	The Concatenation Operator
	Loading External BFILE Data into LOBs

	8 OCI Programming in a Global Environment
	Using the OCI NLS Functions
	Specifying Character Sets in OCI
	OCIEnvNlsCreate()

	Getting Locale Information in OCI
	OCINlsGetInfo()
	OCI_NLS_MAXBUFSZ
	Example: Getting Locale Information in OCI
	OCINlsCharSetNameTold()
	OCINlsCharSetIdToName()
	OCINlsNumericInfoGet()
	OCINlsEnvironmentVariableGet()

	Mapping Locale Information Between Oracle and Other Standards
	OCINlsNameMap()

	Manipulating Strings in OCI
	OCIMultiByteToWideChar()
	OCIMultiByteInSizeToWideChar()
	OCIWideCharToMultiByte()
	OCIWideCharInSizeToMultiByte()
	OCIWideCharToLower()
	OCIWideCharToUpper()
	OCIWideCharStrcmp()
	OCIWideCharStrncmp()
	OCIWideCharStrcat()
	OCIWideCharStrncat()
	OCIWideCharStrchr()
	OCIWideCharStrrchr()
	OCIWideCharStrcpy()
	OCIWideCharStrncpy()
	OCIWideCharStrlen()
	OCIWideCharStrCaseConversion()
	OCIWideCharDisplayLength()
	OCIWideCharMultiByteLength()
	OCIMultiByteStrcmp()
	OCIMultiByteStrncmp()
	OCIMultiByteStrcat()
	OCIMultiByteStrncat()
	OCIMultiByteStrcpy()
	OCIMultiByteStrncpy()
	OCIMultiByteStrlen()
	OCIMultiByteStrnDisplayLength()
	OCIMultiByteStrCaseConversion()
	Example: Manipulating Strings in OCI

	Classifying Characters in OCI
	OCIWideCharIsAlnum()
	OCIWideCharIsAlpha()
	OCIWideCharIsCntrl()
	OCIWideCharIsDigit()
	OCIWideCharIsGraph()
	OCIWideCharIsLower()
	OCIWideCharIsPrint()
	OCIWideCharIsPunct()
	OCIWideCharIsSpace()
	OCIWideCharIsUpper()
	OCIWideCharIsXdigit()
	OCIWideCharIsSingleByte()
	Example: Classifying Characters in OCI

	Converting Character Sets in OCI
	OCICharSetToUnicode()
	OCIUnicodeToCharSet()
	OCINlsCharSetConvert()
	OCICharSetConversionIsReplacementUsed()
	Example: Converting Character Sets in OCI

	OCI Messaging Functions
	OCIMessageOpen()
	OCIMessageGet()
	OCIMessageClose()
	Example: Retrieving a Message from a Text Message File
	lmsgen Utility
	Text Message Files
	Example: Creating a Binary Message File from a Text Message File

	9 Java Programming in a Global Environment
	Overview of Oracle9i Java Support
	Globalization Support for JDBC Drivers
	Accessing SQL CHAR Datatypes Using JDBC
	JDBC Class Library Character Set Conversion
	JDBC OCI Driver Character Set Conversion
	JDBC Thin Driver Character Set Conversion
	JDBC Server-Side Internal Driver Character Set Conversion

	Accessing SQL NCHAR Datatypes Using JDBC
	Using the oracle.sql.CHAR Class
	Inserting and Retrieving Data with the oracle.sql.CHAR Class
	The oracle.sql.CHAR in Oracle Object Types

	Restrictions on Accessing SQL CHAR Data with JDBC
	SQL CHAR Data Size Restriction With the JDBC Thin Driver
	Character Integrity Issues in a Multibyte Database Environment

	Globalization Support for SQLJ
	Using Unicode Characters in SQLJ programs
	Using the oracle.sql.NString class

	Globalization Support for Java Virtual Machine
	Globalization Support for Java Stored Procedures
	Configurations for Multilingual Applications
	Configuring a Multilingual Database
	Globalization Support for Java Stored Procedures
	Internationalizing Java code
	Transferring Multilingual Data

	Clients with Different Languages

	A Multilingual Demo Application in SQLJ
	Database Schema for the Multilingual Demo Application
	Java Stored Procedures for the Multilingual Demo Application
	The SQLJ Client for the Multilingual Demo Application

	10 Character Set Migration
	Overview of Character Set Migration
	Data Truncation
	Additional Problems Caused by Data Truncation

	Character Set Conversion Issues
	Replacement Characters that Result from Using the Export and Import Utilities
	Invalid Data That Results from Setting the Client’s NLS_LANG Parameter Incorrectly

	Changing the Database Character Set of an Existing Database
	Migrating Character Data Using a Full Export and Import
	Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement
	Using the ALTER DATABASE CHARACTER SET Statement in an Oracle9i Real Application Clusters Environ...

	Migrating Character Data Using the ALTER DATABASE CHARACTER SET Statement and Selective Imports

	Migrating to the Oracle9i NCHAR Datatypes
	Migrating Oracle8 NCHAR Columns to Oracle9i
	Changing the National Character Set
	Migrating CHAR Columns to NCHAR Columns in an Oracle9i Database
	Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to NCHAR Columns
	Using Online Table Redefinition to Migrate a Large Table to Unicode

	Tasks to Recover Database Schema After Character Set Migration

	11 Character Set Scanner
	What is the Character Set Scanner?
	Conversion Tests on Character Data
	Access Privileges
	Restrictions
	Database Containing Data From Two or More Character Sets
	Database Containing Data Not From the Database Character Set

	Scan Modes in the Character Set Scanner
	Full Database Scan
	User Scan
	Table Scan

	Using The Character Set Scanner
	Before Using the Character Set Scanner
	Character Set Scanner Compatibility
	Invoking the Character Set Scanner
	Getting Online Help for the Character Set Scanner
	The Parameter File

	Character Set Scanner Parameters
	ARRAY Character Set Scanner Parameter
	BOUNDARIES Character Set Scanner Parameter
	CAPTURE Character Set Scanner Parameter
	EXCLUDE Character Set Scanner Parameter
	FEEDBACK Character Set Scanner Parameter
	FROMCHAR Character Set Scanner Parameter
	FROMNCHAR Character Set Scanner Parameter
	FULL Character Set Scanner Parameter
	HELP Character Set Scanner Parameter
	LASTRPT Character Set Scanner Parameter
	LOG Character Set Scanner Parameter
	MAXBLOCKS Character Set Scanner Parameter
	PARFILE Character Set Scanner Parameter
	PRESERVE Character Set Scanner Parameter
	PROCESS Character Set Scanner Parameter
	SUPPRESS Character Set Scanner Parameter
	TABLE Character Set Scanner Parameter
	TOCHAR Character Set Scanner Parameter
	TONCHAR Character Set Scanner Parameter
	USER Character Set Scanner Parameter
	USERID Character Set Scanner Parameter

	Examples: Character Set Scanner Sessions
	Example: Full Database Scan
	Parameter-File Method
	Command-Line Method

	Example: User Scan
	Parameter-File Method
	Command-Line Method
	Character Set Scanner Messages

	Example: Single Table Scan
	Parameter-File Method
	Command-Line Method

	Character Set Scanner Reports
	Database Scan Summary Report
	Database Parameters for the Character Set Scanner
	Database Size
	Scan Summary
	Data Dictionary Conversion Summary
	Application Data Conversion Summary
	Application Data Conversion Summary for Each Column Size Boundary
	Distribution of Convertible Data for Each Table
	Distribution of Convertible Data for Each Column
	Indexes To Be Rebuilt

	Individual Exception Report
	Database Scan Parameters
	Data Dictionary Individual Exceptions
	Application Data Individual Exceptions

	Storage and Performance Considerations in the Character Set Scanner
	Storage Considerations
	CSM$TABLES
	CSM$COLUMNS
	CSM$ERRORS

	Performance Considerations
	Using Multiple Scan Processes
	Array Fetch Buffer Size
	Suppressing Exception and Convertible Log

	Character Set Scanner Views and Messages
	Character Set Scanner Views
	CSMV$COLUMNS
	CSMV$CONSTRAINTS
	CSMV$ERRORS
	CSMV$INDEXES
	CSMV$TABLES

	Character Set Scanner Error Messages

	12 Customizing Locale Data
	Overview of the Oracle Locale Builder Utility
	Configuring Unicode Fonts for the Oracle Locale Builder
	Font Configuration on Windows
	Font Configuration on Other Platforms

	The Oracle Locale Builder User Interface
	Oracle Locale Builder Screens and Dialog Boxes
	Existing Definitions Dialog Box
	Session Log Dialog Box
	Preview NLT Screen
	Open File Dialog Box

	Creating a New Language Definition with the Oracle Locale Builder
	Creating a New Territory Definition with the Oracle Locale Builder
	Customizing Time Zone Data
	Customizing Calendars with the NLS Calendar Utility

	Displaying a Code Chart with the Oracle Locale Builder
	Creating a New Character Set Definition with the Oracle Locale Builder
	Character Sets with User-Defined Characters
	Oracle Character Set Conversion Architecture
	Unicode 3.1 Private Use Area
	User-Defined Character Cross-References Between Character Sets
	Guidelines for Creating a New Character Set from an Existing Character Set
	Example: Creating a New Character Set Definition with the Oracle Locale Builder
	Supporting User-Defined Characters in Java
	Adding the Custom Zip File to Java Components
	Java Virtual Machine
	Oracle HTTP Server
	JDBC on the Client

	Creating a New Linguistic Sort with the Oracle Locale Builder
	Changing the Sort Order for All Characters with the Same Diacritic
	Changing the Sort Order for One Character with a Diacritic

	Generating and Installing NLB Files

	A Locale Data
	Languages
	Translated Messages
	Territories
	Character Sets
	Asian Language Character Sets
	European Language Character Sets
	Middle Eastern Language Character Sets
	Universal Character Sets
	Character Set Conversion Support
	Subsets and Supersets

	Linguistic Sorting
	Calendar Systems
	Obsolete Locale Data
	AL24UTFFSS Character Set Desupported
	Bengali Language Definition Deprecated
	Czechoslovakia Territory Definition Deprecated

	B Unicode Character Code Assignments
	Unicode Code Ranges
	UTF-16 Encoding
	UTF-8 Encoding

	Glossary
	Index

