
Oracle9 i

Advanced Replication

Release 2 (9.2)

March 2002

Part No. A96567-01

Oracle9i Advanced Replication, Release 2 (9.2)

Part No. A96567-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Author: Ted Burroughs

Contributing Authors: Randy Urbano

Graphic Artist: Valarie Moore

Contributors: Nimar Arora, Sukanya Balaraman, Ruth Baylis, Yuen Chan, Al Demers, Alan Downing,
Curt Elsbernd, Yong Feng, Jairaj Galagali, Lewis Kaplan, Jonathan Klein, Anand Lakshminath, Jing Liu,
Edwina Lu, Pat McElroy, Maria Pratt, Arvind Rajaram, Neeraj Shodhan, Wayne Smith, Jim Stamos, Janet
Stern, Mahesh Subramaniam, Lik Wong, David Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, Oracle7, SQL*Net, SQL*Plus, PL/SQL,
and Oracle Store are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

What’s New in Advanced Replication? .. xix

1 Introduction to Advanced Replication

Replication Overview .. 1-2
Applications That Use Replication ... 1-3
Replication Objects, Groups, and Sites.. 1-4

Replication Objects ... 1-4
Replication Groups... 1-5
Replication Sites.. 1-5

Types of Replication Environments .. 1-6
Multimaster Replication .. 1-6
Materialized View Replication ... 1-8
Multimaster and Materialized View Hybrid Configurations .. 1-14

Administration Tools for a Replication Environment ... 1-15
Replication Management Tool in Oracle Enterprise Manager .. 1-16
Replication Management API... 1-17
Replication Catalog .. 1-17
Distributed Schema Management.. 1-17

Replication Conflicts .. 1-18
Other Options for Multimaster Replication.. 1-19
iii

Synchronous Replication ... 1-19
Procedural Replication... 1-19

2 Master Replication Concepts and Architecture

Master Replication Concepts .. 2-2
What is Master Replication?.. 2-2
Why Use Multimaster Replication? ... 2-4
Multimaster Replication Process .. 2-7
Conflict Resolution Concepts.. 2-10
Replication of User-Defined Types .. 2-12

Master Replication Architecture .. 2-18
Master Site Mechanisms .. 2-18
Administrative Mechanisms ... 2-31
Organizational Mechanisms ... 2-37
Propagation Mechanism.. 2-40
Performance Mechanisms.. 2-47
Replication Protection Mechanisms... 2-53
Conflict Resolution Mechanisms.. 2-57

3 Materialized View Concepts and Architecture

Materialized View Concepts... 3-2
What is a Materialized View? ... 3-2
Why Use Materialized Views?.. 3-3
Read-Only, Updatable, and Writeable Materialized Views ... 3-4
Available Materialized Views... 3-7
Required Privileges for Materialized View Operations.. 3-14
Data Subsetting with Materialized Views... 3-17
Determining the Fast Refresh Capabilities of a Materialized View 3-29
Multitier Materialized Views .. 3-30
Materialized Views with User-Defined Types ... 3-36
Materialized View Registration at a Master Site or Master Materialized View Site......... 3-47

Materialized View Architecture ... 3-49
Master Site and Master Materialized View Site Mechanisms .. 3-51
Materialized View Site Mechanisms.. 3-55
Organizational Mechanisms ... 3-58
iv

Refresh Process ... 3-64

4 Deployment Templates Concepts and Architecture

Mass Deployment Challenge ... 4-2
Deployment Templates and the Mass Deployment Goal... 4-2

Oracle Deployment Templates Concepts ... 4-3
Deployment Template Elements .. 4-4
Deployment Template Packaging and Instantiation... 4-9

Deployment Template Architecture .. 4-13
Template Definitions Stored in System Tables... 4-14
Packaging and Instantiation Process ... 4-15
After Instantiation .. 4-18

Deployment Template Design ... 4-20
Column Subsetting with Deployment Templates ... 4-20
Row Subsetting ... 4-22
Data Sets... 4-26
Additional Design Considerations... 4-27

Local Control of Materialized View Creation ... 4-28

5 Conflict Resolution Concepts and Architecture

Conflict Resolution Concepts ... 5-2
Understanding Your Data and Application Requirements.. 5-2
Types of Replication Conflicts .. 5-3
Conflict Detection ... 5-5
Conflict Resolution ... 5-7
Techniques for Avoiding Conflicts .. 5-17

Conflict Resolution Architecture ... 5-22
Support Mechanisms ... 5-22
Common Update Conflict Resolution Methods... 5-24
Additional Update Conflicts Resolution Methods .. 5-28
Uniqueness Conflicts Resolution Methods... 5-37
Delete Conflict Resolution Methods .. 5-39
Performance Mechanisms and Conflict Resolution .. 5-40
v

6 Planning Your Replication Environment

Considerations for Replicated Tables ... 6-2
Primary Keys ... 6-2
Foreign Keys .. 6-2
Datatype Considerations ... 6-2
Row-Level Dependency Tracking .. 6-4

Initialization Parameters ... 6-4
Master Sites and Materialized View Sites ... 6-9

Advantages of Master Sites ... 6-10
Advantages of Materialized View Sites... 6-10
Preparing for Materialized Views .. 6-11
Creating a Materialized View Log ... 6-17
Creating a Materialized View Environment... 6-19
Avoiding Problems When Adding a New Materialized View Site..................................... 6-21

Guidelines for Scheduled Links .. 6-22
Scheduling Periodic Pushes .. 6-23
Scheduling Continuous Pushes .. 6-24

Guidelines for Scheduled Purges of a Deferred Transaction Queue 6-25
Scheduling Periodic Purges... 6-26
Scheduling Continuous Purges .. 6-27

Serial and Parallel Propagation.. 6-28
Deployment Templates .. 6-29

Preparing Materialized View Sites for Instantiation of Deployment Templates 6-29
Conflict Resolution ... 6-32
Security ... 6-32
Designing for Survivability .. 6-33

Oracle Real Application Clusters versus Replication.. 6-34
Designing a Replication Environment for Survivability... 6-35
Implementing a Survivable System ... 6-36

7 Replication Management Tool Introduction

Usage Scenarios for the Replication Management Tool.. 7-2
Logging in to the Replication Management Tool ... 7-3
The Replication Management Tool Interface .. 7-4

Navigator Pane.. 7-5
vi

Right Pane.. 7-9
The Replication Management Tool Wizards ... 7-15

Setup Wizard... 7-16
Materialized View Group Wizard.. 7-19
Deployment Template Wizard ... 7-20
Template Script Generation Wizard .. 7-22
Copy Template Wizard.. 7-23

Flowchart for Creating a Replication Environment ... 7-25

A Troubleshooting Replication Problems

Diagnosing Problems with Database Links .. A-2
Diagnosing Problems with Master Sites.. A-2

Replicated Objects Not Created at New Master Site ... A-3
DDL Changes Not Propagated to Master Site.. A-3
DML Changes Not Asynchronously Propagated to Other Sites ... A-4
DML Cannot be Applied to Replicated Table .. A-4
Bulk Updates and Constraint Violations .. A-4
Recreating a Replicated Object ... A-5
Unable to Generate Replication Support for a Table... A-5
Problems with Replicated Procedures or Triggers .. A-5
Problems With ON DELETE CASCADE and Integrity Constraints..................................... A-6

Diagnosing Problems with the Deferred Transaction Queue.. A-7
Check Jobs for Scheduled Links ... A-7
Distributed Transaction Problems with Synchronous Replication....................................... A-7
Incomplete Database Link Specifications.. A-7
Incorrect Replication Catalog Views.. A-7

Diagnosing Problems with Materialized Views... A-8
Problems Creating Replicated Objects at Materialized View Site... A-8
Problems Performing Offline Instantiation of a Deployment Template A-9
Refresh Problems.. A-9
Advanced Troubleshooting of Refresh Problems.. A-11

B Column Length Semantics and Unicode

Column Length Semantics for Replication Sites and Table Columns B-2
Multimaster Support for Column Length Semantics .. B-3
vii

Column Length Semantics Support for Tables Generated by Advanced Replication B-3
Column Length Semantics Support for Precreated Tables... B-4

Materialized View Support for Column Length Semantics ... B-5
Materialized Views with Prebuilt Container Tables ... B-5
Column Length Semantics Support for Updatable Materialized Views B-6

DDL Propagation and Column Length Semantics ... B-7
Replication Support for Unicode ... B-8

Replication of NCLOB Datatype Columns ... B-9

Index
viii

Send Us Your Comments

Oracle9 i Advanced Replication, Release 2 (9.2)

Part No. A96567-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
ix

x

Preface

Advanced Replication describes the features and functionality of Replication in

Oracle9i. Specifically, Advanced Replication contains conceptual information about

Oracle9i Replication, as well as information about planning your replication

environment and troubleshooting replication problems. Advanced Replication also

contains an introduction to the Replication Management tool in Oracle Enterprise

Manager.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xi

Audience
Advanced Replication is intended for database administrators and application

developers who develop and maintain replication environments. These

administrators and application developers perform one or more of the following

tasks:

■ Plan for a replication environment

■ Configure the following types of replication environments:

– Read-only materialized view

– Updatable materialized view

– Single master replication

– Multimaster replication (requires Oracle Enterprise Edition)

■ Use deployment templates to create a materialized view environment

■ Configure conflict resolution

■ Administer a replication environment

■ Perform troubleshooting activities when necessary

■ Manage job queues

■ Manage deferred transactions

■ Use the Replication Management tool in Oracle Enterprise Manager to create,

monitor, and manage replication environments

To use this document, you need to be familiar with relational database concepts,

distributed database administration, PL/SQL (if using procedural replication), and

the operating system under which you run an Advanced Replication environment.
xii

Organization
This document contains:

Chapter 1, "Introduction to Advanced Replication"
Introduces the concepts and terminology of replication using Oracle9i.

Chapter 2, "Master Replication Concepts and Architecture"
Describes the concepts and architecture of multimaster replication.

Chapter 3, "Materialized View Concepts and Architecture"
Describes the concepts and architecture of materialized view replication. This

chapter also discusses the prerequisites of building a materialized view

environment.

Chapter 4, "Deployment Templates Concepts and Architecture"
Describes the concepts and architecture of deployment templates. This chapter also

discusses designing deployment templates.

Chapter 5, "Conflict Resolution Concepts and Architecture"
Describes the concepts and architecture of conflict resolution. This chapter describes

conflict resolution methods.

Chapter 6, "Planning Your Replication Environment"
Describes planning your replication environment, including information about

setting initialization parameters and preparing your environment for replication.

Chapter 7, "Replication Management Tool Introduction"
Introduces you to the features of Oracle Replication Manager, a Java-based tool for

creating, administering, and monitoring a replication environment.

Appendix A, "Troubleshooting Replication Problems"
Describes diagnosing and solving common replication problems.

Appendix B, "Column Length Semantics and Unicode"
Contains information about replication support for column length semantics and

Unicode.
xiii

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Replication Management API Reference

■ The Replication Management tool online help

■ Oracle9i Database Concepts

■ Oracle9i Database Administrator’s Guide

■ Oracle9i SQL Reference

■ PL/SQL User’s Guide and Reference (if you plan to use procedural replication)

You may find more information about a particular topic in the other documents in

the Oracle9i documentation set.

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com
xiv

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xvi

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME =database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xvii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xviii

What’s New in Advanced Replication?

This section describes the new replication features of Oracle9i release 9.0. New

features information from previous releases is also retained to help those users

migrating or upgrading to the current release.

The following sections describe the new features in replication:

■ Oracle9i New Features in Replication

■ Oracle8i New Features in Replication

■ Oracle8 New Features in Replication
xix

Oracle9 i New Features in Replication
The Oracle9i release 9.0 replication features and enhancements are described in the

following sections. Oracle9i extends availability by reducing the need to quiesce the

replication environment. Replication sites can remain open to users while certain

database administration operations are taking place. Oracle9i also enables you to

replicate user-defined types and create materialized views that are based on other

materialized views. In addition, you can fast refresh more types of materialized

views in Oracle9i.

■ Extended Availability

Advanced Replication extends the availability of your replication databases by

reducing the number of operations that require quiesce of a master group. The

tables in your master group can continue to process transactions while these

administration operations are taking place.

Quiescing means stopping all replication activity for a master group. When a

master group is quiesced, users cannot perform data manipulation language

(DML) statements on any of the tables in the master group. Also, all deferred

transactions must be propagated before you can quiesce a master group.

The following sections describe operations that no longer require quiesce in

release 9.0. In these sections, the replication management API procedures that

correspond to each operation are listed.

■ Adding New Master Sites Without Quiescing the Master Group

You can add new master sites to a master group without quiescing the

group. Use the following procedures in the DBMS_REPCAT package to

complete this operation:

* SPECIFY_NEW_MASTERS

* ADD_NEW_MASTERS

* RESUME_PROPAGATION_TO_MDEF

Note: Currently, the Replication Management tool in Oracle

Enterprise Manager still requires that you quiesce the master group

to perform these operations. Use the replication management API

procedures listed in the following sections if you do not want to

quiesce the master group.
xx

* PREPARE_INSTANTIATED_MASTER

■ Altering a Master Table by Making a Safe Change to It in a Single Master

Environment

You can use the ALTER_MASTER_REPOBJECT procedure in the DBMS_
REPCAT package to make safe changes to a replicated object in a single

master environment. Quiesce is still required for these changes in a

multimaster environment.

■ Support for User-Defined Types

You can replicate user-defined types and the database objects that are based on

them in both a multimaster replication environment and a materialized view

replication environment. The database objects that you can replicate include:

– Tables with column objects

– Object tables

– Tables with nested tables, including the storage tables of nested tables

– Tables with varrays

– Tables with REF columns

– Indextypes

– User-defined operators

Oracle9i also supports replication of multilevel collections.

See Also: Oracle9i Replication Management API Reference for

detailed information about using the procedures described

previously in this section

See Also:

■ "Replication of User-Defined Types" on page 2-12

■ "Materialized Views with User-Defined Types" on page 3-36
xxi

■ Multitier Materialized Views

The multitier materialized view feature enables you to create a materialized

view that is based on another materialized view, instead of on a master table at

a master site. These materialized views function in the same way as

materialized views that are based on master tables, and they can be read-only

or updatable.

■ Fast Refresh Enhancements for Materialized Views

Performance improvements make refreshing materialized views faster in

release 9.0. Also, release 9.0 extends fast refresh capabilities for materialized

views by enabling you to fast refresh the following types of materialized views:

– Materialized views with one to many subqueries

– Materialized views with many to many subqueries

– Materialized views with subqueries and unions

Some restrictions apply.

■ Performance Monitoring in Replication Environments

The following are new dynamic performance views for performance

monitoring:

– V$MVREFRESHcontains information about local materialized views that are

currently being refreshed. This information is visible only on the

materialized view site.

– V$REPLPROPcontains information about the parallel propagation currently

in progress at the replication site.

– V$REPLQUEUE contains statistics about the deferred transactions queue.

In addition, the DEFSCHEDULE data dictionary view is enhanced for

performance monitoring. The following columns are added to the

DEFSCHEDULE data dictionary view:

See Also: "Multitier Materialized Views" on page 3-30

See Also: "Data Subsetting with Materialized Views" on page 3-17
xxii

– TOTAL_TXN_COUNT

– AVG_THROUGHPUT

– AVG_LATENCY

– TOTAL_BYTES_SENT

– TOTAL_BYTES_RECEIVED

– TOTAL_ROUND_TRIPS

– TOTAL_ADMIN_COUNT

– TOTAL_ERROR_COUNT

– TOTAL_SLEEP_TIME

■ Row-Level Dependency Tracking for Parallel Propagation

You can track dependencies between transactions at the row level instead of at

the data block level. This feature enables parallel propagation to track

dependencies and order changes more efficiently when applying the deferred

transaction queue. This increased efficiency improves performance and

provides greater scalability in replication environments.

■ Replication Support for CHAR Column Length Semantics and Unicode

Replication supports CHAR column length semantics and Unicode in both

multimaster environments and materialized view environments.

■ Improvements to the Replication Management Tool

Oracle has improved the Replication Management tool in Oracle9i with the

following features:

See Also: Oracle9i Replication Management API Reference for

detailed information about these views

See Also: "Replication Protection Mechanisms" on page 2-53

See Also: Appendix B, "Column Length Semantics and Unicode"
xxiii

– Reporting capabilities

– Redesigned Deployment Template Wizard and Template Script Generation

Wizard (formerly called the Offline Instantiation Wizard)

In addition, the Replication Management tool is integrated with the Oracle

Enterprise Manager Console in Oracle9i.

See Also: Chapter 7, "Replication Management Tool Introduction"

and the Replication Management tool online help
xxiv

Oracle8 i New Features in Replication
The Oracle8i (release 8.1) replication features and enhancements described in this

section comprise the overall effort to optimize replication performance and make

materialized view environment distribution and security more effective. All of the

features described in the following sections also apply to Oracle9i.

■ Extended Availability for Single Master Replication Environments

Release 8.1.7 and higher reduces the number of operations that require you to

quiesce a master group in a single master replication environment. The

following sections describe operations that no longer require quiesce in single

master environments. In these sections, the replication management API

procedure that corresponds to each operation is listed.

■ Extended Availability in All Single Master Environments

The following table lists the operations that no longer require quiesce in all

single master replication environments. This table also lists the procedure in

the DBMS_REPCATpackage that corresponds to each operation. In addition,

these operations no longer require quiesce when you are using the

Replication Management tool in DBA Studio (in release 8.1.7) or the Oracle

Enterprise Manager Console (in Oracle9i).

Note: The extended availability feature only applies to single

master replication environments, not to multimaster environments.
xxv

Operation DBMS_REPCAT Procedure

Designating a method for resolving a delete conflict ADD_DELETE_RESOLUTION

Adding a member to a priority group ADD_PRIORITY_datatype

Adding a new site to a site priority group ADD_SITE_PRIORITY_SITE

Designating a method for resolving a uniqueness conflict ADD_UNIQUE_RESOLUTION

Designating a method for resolving an update conflict ADD_UPDATE_RESOLUTION

Altering the priority level associated with a specified
priority group member

ALTER_PRIORITY

Altering the value of a member in a priority group ALTER_PRIORITY_datatype

Altering the priority level associated with a specified site ALTER_SITE_PRIORITY

Altering the site associated with a specified priority level ALTER_SITE_PRIORITY_SITE

Specifying whether to compare old column values at each
master site for each nonkey column of a replicated table
when executing updates and deletes

COMPARE_OLD_VALUES

Specifying that an object is a replicated object CREATE_MASTER_REPOBJECT

Creating a priority group for conflict resolution DEFINE_PRIORITY_GROUP

Creating a new site priority group for a replicated master
group for conflict resolution

DEFINE_SITE_PRIORITY

Dropping a delete conflict resolution method DROP_DELETE_RESOLUTION

Dropping a member of a priority group by priority level DROP_PRIORITY

Dropping a member of a priority group by value DROP_PRIORITY_datatype

Dropping a priority group DROP_PRIORITY_GROUP

Dropping a site priority group DROP_SITE_PRIORITY

Dropping a specified site, by name, from a site priority
group

DROP_SITE_PRIORITY_SITE

Dropping a uniqueness conflict resolution method DROP_UNIQUE_RESOLUTION

Dropping an update conflict resolution method DROP_UPDATE_RESOLUTION

Generating the triggers, packages, and procedures needed
to support replication for a specified object

GENERATE_REPLICATION_SUPPORT

Specifying whether to send old column values for each
nonkey column of a replicated table when executing
updates and deletes

SEND_OLD_VALUES
xxvi

■ Extended Availability In Single Master Environments Not Using Minimum

Communication

In a single master environment, if none of the updatable materialized views

use minimum communication in the detection of conflicts, then quiesce is

no longer required for the administration operations to the master group

listed in the following table. This table also lists the procedure in the DBMS_
REPCAT package that corresponds to each operation. In addition, these

operations no longer require quiesce when you are using the Replication

Management tool in DBA Studio (in release 8.1.7) or the Oracle Enterprise

Manager Console (in Oracle9i).

Note: If at least one updatable materialized view is using

minimum communication, then quiesce is not required if you

perform the actions described in "Reduced Quiesce and

Materialized Views in a Single Master Site Environment" on

page 5-41

Operation DBMS_REPCAT Procedure

Adding members to an existing column group ADD_GROUPED_COLUMN

Creating an empty column group DEFINE_COLUMN_GROUP

Dropping a column group DROP_COLUMN_GROUP

Removing members from a column group DROP_GROUPED_COLUMN

Creating a new column group with one or more members MAKE_COLUMN_GROUP

Specifying use of an alternate column or group of columns,
instead of the primary key, to determine which columns of a
table to compare when using row-level replication

SET_COLUMNS

See Also: Oracle9i Replication Management API Reference for

detailed information about using the procedures described

previously in this section
xxvii

■ Performance Improvements

Significant performance gains are realized by the internalization of PL/SQL

replication packages and by optimizations to materialized view refresh.

■ Internal Apply Packages

Continuing the trend started with Oracle8, more replication code has been

moved into the database engine in Oracle8i. The PL/SQL generated

packages used to apply replicated transactions at a remote site have been

internalized. This allows replicated transactions to be more efficiently

applied at remote sites, and, because packages are not generated, a site can

be more quickly instantiated. Internal packages are also more secure

because they are tamper proof.

■ Faster Materialized View Refresh

Materialized view refresh has been optimized to support large refresh

groups. There is improved support for subquery materialized views, and

for null refresh (no changes to the master tables since the last refresh). A

single refresh group can now contain 400 materialized views, and the

number of round-trips required to refresh materialized views in a refresh

group has been reduced.

■ Improved Mass Deployment Support

Oracle has improved replication support for the growing market of front office

applications, in particular mass deployment.

■ Instantiation of Materialized View Sites Using Deployment Templates

Materialized view deployment templates can be instantiated online or

offline. Online instantiation allows a materialized view site to instantiate

the template while connected to the target master site. The advantage to

online instantiation is that the data will be current at instantiation time.

See Also: Chapter 2, "Master Replication Concepts and

Architecture"

See Also: Chapter 3, "Materialized View Concepts and

Architecture"
xxviii

However, this is at the cost of requiring a live connection, possibly of long

duration.

Offline instantiation allows the DBA to package the deployment templates

and required data onto some type of storage media (tape, CD-ROM, and so

on) for distribution to a materialized view site. Instead of connecting to the

master site, instantiation can be done by pulling the template and data from

the storage media. Users can fast refresh immediately after completing an

offline instantiation; a full refresh is not required. Offline instantiation is an

ideal solution for mass deployment situations where many disconnected

laptops are instantiating the target template.

■ Parameterized Materialized View Deployment Templates

Deployment templates facilitate the mass deployment of information to

support such applications as field service and sales force automation. These

templates represent a grouping together of materialized views and other

database objects to be instantiated at a node. They allow a DBA to centrally

package a materialized view environment for easy, custom, and secure

distribution to one or multiple sites. The goal is to create the environment

once, and then deploy the template as often as necessary.

Template parameters allow data subsetting at a remote site without

redefining the template, and a template may be defined as public or private.

Public templates may be instantiated at any site, whereas private ones can

only be instantiated at pre-defined, authorized sites. A Deployment

Template Wizard guides the DBA through the selection of schema objects to

add to the template, the selection of parameters, and defining

authorizations. Deployment templates can be used to create materialized

view environments at the following types of materialized view sites: Oracle

Enterprise Edition, Oracle Standard Edition, and Oracle Personal Edition.

■ Column Subsetting of Updatable Materialized Views

See Also: "Deployment Template Packaging and Instantiation" on

page 4-9

See Also: Chapter 4, "Deployment Templates Concepts and

Architecture"
xxix

Updatable materialized views can now be subsetted by rows and columns.

Previous release allow row subsetting only. Column subsetting allows the

deployment of the minimum amount of data needed by a remote site, thus

reducing connection time. It also protects materialized view sites from

changes to their associated masters. A column can be added to a master site

without impacting the materialized view site, or a column can be deleted

and not impact the materialized view site, if the materialized view site does

not currently reference that column.

■ Improved Security

While the scripts used to instantiate a materialized view site are generated at

the master site and can control access to data, it is still necessary to connect to a

receiver and proxy materialized view administrator to propagate replicated

transactions and to refresh materialized views. Oracle8i enhancements to the

replication security model eliminate certain security deficiencies regarding the

granting of privileges to untrusted sites.

– Object privileges, as required by a receiver of remote procedure calls (RPCs)

at a master site, are now automatically managed. Only required object

privileges are granted to untrusted sites.

– Proxy materialized view administrators now have a way of accessing

objects in replication groups without being granted excessive privileges.

■ The Replication Management Tool

A number of improvements have been made to the Oracle Replication

Management tool. A major enhancement is that it has been rewritten to

conform to the new Java interface of Oracle Enterprise Manager. The

Replication Management tool can now be run from anywhere in the network,

and it is not constrained to Windows platforms. The Replication Management

See Also:

■ "Data Subsetting with Materialized Views" on page 3-17

■ "Column Subsetting with Deployment Templates" on page 4-20

■ "Row Subsetting" on page 4-22

See Also: Oracle9i Replication Management API Reference
xxx

tool can also be run using a standard web browser. In addition, Oracle

Enterprise Manager includes a replication class of events which, for example,

can be used to monitor errors or delinquent materialized view refreshes.

The Replication Management tool has the following new wizards in Oracle8i:

– Deployment Template Wizard for creating deployment templates

– Offline Instantiation Wizard for packaging a deployment template for

offline instantiation

See Also: Chapter 7, "Replication Management Tool Introduction"

and the Replication Management tool online help
xxxi

Oracle8 New Features in Replication
The Oracle8 (release 8.0) replication features and enhancements described in the

following section comprise the overall effort to optimize multimaster replication

performance and make certain types of materialized view subsetting fast

refreshable. LOB support was added for Oracle8. Manageability and security were

also enhanced for Oracle8. All of the features described in the following sections

also apply to Oracle8i and Oracle9i.

■ Performance Enhancements

Oracle8 provides significant performance improvements based on the following

new features.

■ Parallel Propagation of Deferred Transactions

Oracle8 dramatically improves throughput performance by parallelizing

the propagation of a replication transaction stream while maintaining

consistency and transaction dependencies.

■ Internalized Replication Triggers

Oracle8 internalized replication triggers that were external in past releases

are now internalized. Internal triggers:

* Improve response time performance

* Reduce processing overhead

* Require less administration

■ Reduced Data Propagation

Oracle8 reduces the amount of replicated data propagated over the

network. Propagation can be reduced to only the following:

* New values of columns updated

* Old values of columns needed for conflict detection and resolution

See Also: "Guidelines for Scheduled Links" on page 6-22

See Also: Chapter 2, "Master Replication Concepts and

Architecture"
xxxii

* Primary key values

You accomplish this by:

* Using the min_communication parameter in various procedures in

the DBMS_REPCAT package and the DBMS_OFFLINE_SNAPSHOT
package

* Using the SEND_OLD_VALUESand COMPARE_OLD_VALUESprocedures

in the DBMS_REPCAT package

This feature is especially important for performance when replicating LOBs.

■ Data Subsetting Based on Subqueries

Materialized views defined with certain types of subqueries can now be fast

refreshed. This enables subsets of data to be easily defined and maintained. This

feature is important for mass deployment applications, such as sales force

automation and branch automation.

■ Large Object Datatypes (LOBs) Support

Oracle8 supports the replication of the following types of large objects:

– Binary LOBs (BLOBs)

– Character LOBs (CLOBs)

– Globalization Support for character LOBs (NCLOBs)

See Also: "Minimum Communication" on page 2-50

See Also: "Data Subsetting with Materialized Views" on page 3-17

Note: Globalization Support in Oracle9i was formerly known as

National Language Support.

See Also: The Replication Management tool online help for

information on replicating object definitions to master sites and

"Datatype Considerations" on page 6-2
xxxiii

■ Improved Management and Ease of Use

Oracle8 facilitates database management with the following features.

■ Fine Grained Quiesce

Replication master groups can now be individually quiesced without

impacting other replication groups. Master groups can continue to process

updates while other master groups are quiesced.

■ Primary Key Materialized Views

Primary key materialized views allow you to reorganize master tables

while preserving fast refresh capability. Oracle8 adds primary key

materialized views as the default and continues to support ROWID
materialized views.

■ Materialized View Registration at Master Sites

Oracle8 automatically registers information about a materialized view at its

associated master site. This facilitates monitoring and distributed

administration.

■ Reorganizing Tables With Capability of Fast Refresh

Oracle8 provides utilities to enable you to reorganize master tables while

preserving the consistency of materialized view logs.

See Also: "Replication Modes of Operation" on page 2-31

See Also: "Available Materialized Views" on page 3-7. Also, see

Oracle9i Database Migration for information about using ROWID
materialized views in Oracle8 and higher.

See Also: "Materialized View Registration at a Master Site or

Master Materialized View Site" on page 3-47
xxxiv

■ Support for Offline Instantiation Using Export/Import

Offline instantiation of schemas and database using export/import is now

more automatic.

■ Deferred Constraints for Updatable Materialized Views

Updatable materialized views now support declarative referential and

uniqueness constraints.

■ Partitioned Tables and Indexes

Oracle8 supports the replication of partitioned tables and indexes. You can

use this feature if you want the replicated table to have the same partitions

as the table at the master definition site.

■ Enhanced, System-Based Security Model

The Oracle8 system-based security model:

– Improves consistency because a single system-level model operates the

same way in both synchronous and asynchronous environments

– Improves reliability because transactions are less likely to fail due to the

lack of privileges at the receiving sites

– Simplifies links because a single user can act as repadmin user and

repsys user

– Eliminates the need for a “user-level” model

– Allows one or more materialized view owners to perform materialized

view refresh

See Also: Oracle9i Replication Management API Reference for

information about reorganizing master tables

See Also: Oracle9i Replication Management API Reference for more

information about adding new master sites using export/import

See Also: Oracle9i Replication Management API Reference
xxxv

■ New Replication Management Tool Features

The Replication Management tool now includes several wizards to help you

configure your system quickly.

– Setup Wizard for set up of multimaster configurations, including account,

schema, and link creation

– Setup Wizard for set up of materialized view site configurations, including

account, schema, and link creation

– Materialized View Group Wizard for set up of materialized view groups.

The Replication Management tool includes support for most new features of

Oracle8 replication, including:

– Automatic recognition of each site's database version and dynamic

configuration to manage release 9.x, release 8.x, and release 7.3 databases

– Support for managing materialized view logs

– Easy entry of date and interval expressions for jobs, refresh groups, and

scheduled links

– For Oracle8 databases, a flag to indicate that a table requires regeneration of

replication support

– Support for registering a site's replication administrator and propagator

– A database objects folder to display database objects for master groups

– Support for the validation of a master group at all master sites

See Also: Chapter 7, "Replication Management Tool Introduction"

and the Replication Management tool online help
xxxvi

Introduction to Advanced Repli
1

Introduction to Advanced Replication

This chapter explains the basic concepts and terminology related to Advanced

Replication. This chapter contains these topics:

■ Replication Overview

■ Applications That Use Replication

■ Replication Objects, Groups, and Sites

■ Types of Replication Environments

■ Administration Tools for a Replication Environment

■ Replication Conflicts

■ Other Options for Multimaster Replication

Note: If you are using Trusted Oracle, then see your

documentation for Oracle security-related products for information

about using replication in that environment.
cation 1-1

Replication Overview
Replication Overview
Replication is the process of copying and maintaining database objects, such as

tables, in multiple databases that make up a distributed database system. Changes

applied at one site are captured and stored locally before being forwarded and

applied at each of the remote locations. Advanced Replication is a fully integrated

feature of the Oracle server; it is not a separate server.

Replication uses distributed database technology to share data between multiple

sites, but a replicated database and a distributed database are not the same. In a

distributed database, data is available at many locations, but a particular table

resides at only one location. For example, the employees table resides at only the

ny.world database in a distributed database system that also includes the

hk.world and la.world databases. Replication means that the same data is

available at multiple locations. For example, the employees table is available at

ny.world , hk.world , and la.world .

Some of the common reasons for using replication are:

Availability Replication improves the availability of applications because

it provides them with alternative data access options. If one

site becomes unavailable, then users can continue to query or

even update the remaining locations. In other words,

replication provides excellent failover protection.

Performance Replication provides fast, local access to shared data because

it balances activity over multiple sites. Some users can access

one server while other users access different servers, thereby

reducing the load at all servers. Also, users can access data

from the replication site that has the lowest access cost, which

is typically the site that is geographically closest to them.

Disconnected

computing

A materialized view is a complete or partial copy (replica) of

a target table from a single point in time. Materialized views

enable users to work on a subset of a database while

disconnected from the central database server. Later, when a

connection is established, users can synchronize (refresh)

materialized views on demand. When users refresh

materialized views, they update the central database with all

of their changes, and they receive any changes that may have

happened while they were disconnected.
1-2 Oracle9i Advanced Replication

Applications That Use Replication
You can find more detailed descriptions of the uses of replication in later chapters.

Applications That Use Replication
Replication supports a variety of applications that often have different

requirements. Some applications allow for relatively autonomous individual

materialized view sites. For example, sales force automation, field service, retail,

and other mass deployment applications typically require data to be periodically

synchronized between central database systems and a large number of small,

remote sites, which are often disconnected from the central database. Members of a

sales force must be able to complete transactions, regardless of whether they are

connected to the central database. In this case, remote sites must be autonomous.

On the other hand, applications such as call centers and Internet systems require

data on multiple servers to be synchronized in a continuous, nearly instantaneous

manner to ensure that the service provided is available and equivalent at all times.

For example, a retail Web site on the Internet must ensure that customers see the

same information in the online catalog at each site. Here, data consistency is more

important than site autonomy.

Network load

reduction

Replication can be used to distribute data over multiple

regional locations. Then, applications can access various

regional servers instead of accessing one central server. This

configuration can reduce network load dramatically.

Mass deployment Increasingly, organizations need to deploy many applications

that require the ability to use and manipulate data. With

Advanced Replication, deployment templates enable you to

create multiple materialized view environments quickly. You

can use variables to customize each materialized view

environment for its individual needs. For example, you can

use deployment templates for sales force automation. In this

case, the template could contain variables for various sales

regions and salespersons.

See Also: Oracle9i Database Administrator’s Guide for more

information about distributed databases
Introduction to Advanced Replication 1-3

Replication Objects, Groups, and Sites
Advanced Replication can be used for each of the types of applications described in

the previous paragraphs, and for systems that combine aspects of both types of

applications. In fact, Advanced Replication can support both mass deployment and

server-to-server replication, enabling integration into a single coherent

environment. In such an environment, for example, sales force automation and

customer service call centers can share data.

Advanced Replication can replicate data in environments that use different releases

of Oracle and in environments that run Oracle on different operating systems.

Therefore, applications that use data in such an environment can use Advanced

Replication.

Replication Objects, Groups, and Sites
The following sections explain the basic components of a replication system,

including replication objects, replication groups, and replication sites.

Replication Objects
A replication object is a database object existing on multiple servers in a

distributed database system. In a replication environment, any updates made to a

replication object at one site are applied to the copies at all other sites. Advanced

Replication enables you to replicate the following types of objects:

■ Tables

■ Indexes

■ Views and Object Views

■ Packages and Package Bodies

■ Procedures and Functions

■ User-Defined Types and Type Bodies

■ Triggers

■ Synonyms

■ Indextypes

■ User-Defined Operators

Regarding tables, replication supports advanced features such as partitioned tables,

index-organized tables, tables containing columns that are based on user-defined

types, and object tables.
1-4 Oracle9i Advanced Replication

Replication Objects, Groups, and Sites
Replication Groups
In a replication environment, Oracle manages replication objects using replication
groups. A replication group is a collection of replication objects that are logically

related.

By organizing related database objects within a replication group, it is easier to

administer many objects together. Typically, you create and use a replication group

to organize the schema objects necessary to support a particular database

application. However, replication groups and schemas do not need to correspond

with one another. A replication group can contain objects from multiple schemas,

and a single schema can have objects in multiple replication groups. However, each

replication object can be a member of only one replication group.

Replication Sites
A replication group can exist at multiple replication sites. Replication

environments support two basic types of sites: master sites and materialized view
sites. One site can be both a master site for one replication group and a materialized

view site for a different replication group. However, one site cannot be both the

master site and the materialized view site for the same replication group.

The differences between master sites and materialized view sites are the following:

■ A replication group at a master site is more specifically referred to as a master
group. A replication group at a materialized view site is based on a master

group and is more specifically referred to as a materialized view group.

Additionally, every master group has exactly one master definition site. A

replication group's master definition site is a master site serving as the control

center for managing the replication group and the objects in the group.

■ A master site maintains a complete copy of all objects in a replication group,

while materialized views at a materialized view site can contain all or a subset

of the table data within a master group. For example, if the hr_repg master

group contains the tables employees and departments , then all of the master

sites participating in a master group must maintain a complete copy of

employees and departments . However, one materialized view site might

contain only a materialized view of the employees table, while another

materialized view site might contain materialized views of both the

employees and departments tables.
Introduction to Advanced Replication 1-5

Types of Replication Environments
■ All master sites in a multimaster replication environment communicate directly

with one another to continually propagate data changes in the replication

group. Materialized view sites contain an image, or materialized view, of the

table data from a certain point in time. Typically, a materialized view is

refreshed periodically to synchronize it with its master site. You can organize

materialized views into refresh groups. Materialized views in a refresh group

can belong to one or more materialized view groups, and they are refreshed at

the same time to ensure that the data in all materialized views in the refresh

group correspond to the same transactionally consistent point in time.

Types of Replication Environments
Advanced Replication supports the following types of replication environments:

■ Multimaster Replication

■ Materialized View Replication

■ Multimaster and Materialized View Hybrid Configurations

Multimaster Replication
Multimaster replication (also called peer-to-peer or n-way replication) enables

multiple sites, acting as equal peers, to manage groups of replicated database

objects. Each site in a multimaster replication environment is a master site, and each

site communicates with the other master sites.

Applications can update any replicated table at any site in a multimaster

configuration. Oracle database servers operating as master sites in a multimaster

environment automatically work to converge the data of all table replicas and to

ensure global transaction consistency and data integrity.

Asynchronous replication is the most common way to implement multimaster

replication. Other ways include synchronous replication and procedural replication,

which are discussed later in this chapter. When you use asynchronous replication,

information about a data manipulation language (DML) change on a table is stored

in the deferred transactions queue at the master site where the change occurred.

These changes are called deferred transactions. The deferred transactions are

pushed (or propagated) to the other participating master sites at regular intervals.

You can control the amount of time in an interval.
1-6 Oracle9i Advanced Replication

Types of Replication Environments
Using asynchronous replication means that data conflicts are possible because the

same row value might be updated at two different master sites at nearly the same

time. However, you can use techniques to avoid conflicts and, if conflicts occur,

Oracle provides prebuilt mechanisms that can be implemented to resolve them.

Information about unresolved conflicts is stored in an error log.

Figure 1–1 Multimaster Replication

Master Group Quiesce
At times, you must stop all replication activity for a master group so that you can

perform certain administrative tasks on the master group. For example, you must

stop all replication activity for a master group to add a new master group object.

Stopping all replication activity for a master group is called quiescing the group.

When a master group is quiesced, users cannot issue DML statements on any of the

objects in the master group. Also, all deferred transactions must be propagated

before you can quiesce a master group. Users can continue to query the tables in a

quiesced master group.

Master
Site

Master
Site

Master
Site

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group
Introduction to Advanced Replication 1-7

Types of Replication Environments
Materialized View Replication
A materialized view contains a complete or partial copy of a target master from a

single point in time. The target master can be either a master table at a master site or

a master materialized view at a materialized view site. A master materialized view
is a materialized view that functions as a master for another materialized view. A

multitier materialized view is one that is based on another materialized view,

instead of on a master table.

Materialized views provide the following benefits:

■ Enable local access, which improves response times and availability

■ Offload queries from the master site or master materialized view site, because

users can query the local materialized view instead

■ Increase data security by allowing you to replicate only a selected subset of the

target master’s data set

A materialized view may be read-only, updatable, or writeable, and these types of

materialized views provide benefits in addition to those listed previously.

Read-Only Materialized Views
In a basic configuration, materialized views can provide read-only access to the

table data that originates from a master site or master materialized view site.

Applications can query data from read-only materialized views to avoid network

access to the master site, regardless of network availability. However, applications

throughout the system must access data at the master site to perform data

manipulation language changes (DML). Figure 1–2 illustrates basic, read-only

replication. The master tables and master materialized views of read-only

materialized views do not need to belong to a replication group.

Read-only materialized views provide the following benefits:

■ Eliminate the possibility of conflicts because they cannot be updated.

■ Support complex materialized views. Examples of complex materialized views

are materialized views that contain set operations or a CONNECT BY clause.

See Also: "Available Materialized Views" on page 3-7 for more

information about complex materialized views
1-8 Oracle9i Advanced Replication

Types of Replication Environments
Figure 1–2 Read-Only Materialized View Replication

Updatable Materialized Views
In a more advanced configuration, you can create an updatable materialized view
that allows users to insert, update, and delete rows of the target master table or

master materialized view by performing these operations on the materialized view.

An updatable materialized view may also contain a subset of the data in the target

master. Figure 1–3 illustrates a replication environment using updatable

materialized views.

Updatable materialized views are based on tables or other materialized views that

have been set up to support replication. In fact, updatable materialized views must

be part of a materialized view group that is based on another replication group.

Replicate table data

Network

Refresh

Materialized View
(read-only)

Master
database

Master Table
(updatable)

Client applications

Remote update

Local
query

Materialized
View

database
Introduction to Advanced Replication 1-9

Types of Replication Environments
Figure 1–3 Updatable Materialized View Replication

Updatable materialized views have the following properties.

■ They are always based on a single table, although multiple tables can be

referenced in a subquery.

■ They can be incrementally (or fast) refreshed.

■ Oracle propagates the changes made to an updatable materialized view to the

materialized view’s remote master table or master materialized view. The

updates to the master then cascade to all other replication sites.

Replicate table data

Network

Refresh

Materialized
View

database

Materialized View
(updatable)

Master
database

Master Table
(updatable)

Client applications

Remote update

Local
query

Local
update
1-10 Oracle9i Advanced Replication

Types of Replication Environments
Updatable materialized views provide the following benefits:

■ Allow users to query and update a local replicated data set even when

disconnected from the master site or master materialized view site.

■ Require fewer resources than multimaster replication, while still supporting

data updates. Materialized views can reduce the amount of stress placed on

network resources because materialized views can be refreshed on demand,

while multimaster replication propagates changes at regular intervals. In

addition, because materialized views can reside in a database that contains far

less data, the disk space and memory requirements for materialized view clients

can be less than the requirements for an Oracle server containing master sites.

Writeable Materialized Views
You can create a materialized view using the FOR UPDATE clause during creation

but then never add the materialized view to a materialized view group. In this case,

users can perform data manipulation language (DML) changes on the materialized

view, but these changes cannot be pushed back to the master and are lost if the

materialized view refreshes. Such materialized views are called writeable
materialized views.

Row and Column Subsetting with Materialized Views
Both row and column subsetting enable you to create materialized views that

contain a partial copy of the data at a master table or master materialized view.

Such materialized views can be helpful for regional offices or sales forces that do

not require the complete data set.

Row subsetting enables you to include only the rows that are needed from the

masters in the materialized views by using a WHERE clause. Column subsetting

enables you to include only the columns that are needed from the masters in the

materialized views. You do this by specifying particular columns in the SELECT
statement during materialized view creation.
Introduction to Advanced Replication 1-11

Types of Replication Environments
Materialized View Refresh
To ensure that a materialized view is consistent with its master table or master

materialized view, you need to refresh the materialized view periodically. Oracle

provides the following three methods to refresh materialized views:

■ Fast refresh uses materialized view logs to update only the rows that have

changed since the last refresh.

■ Complete refresh updates the entire materialized view.

■ Force refresh performs a fast refresh when possible. When a fast refresh is not

possible, force refresh performs a complete refresh.

Refresh Groups
When it is important for materialized views to be transactionally consistent with

each other, you can organize them into refresh groups. By refreshing the refresh

group, you can ensure that the data in all of the materialized views in the refresh

group correspond to the same transactionally consistent point in time. Both

read-only and updatable materialized views can be included in a refresh group. A

materialized view in a refresh group still can be refreshed individually, but doing so

nullifies the benefits of the refresh group because refreshing the materialized view

individually does not refresh the other materialized views in the refresh group.

Note: Column subsetting of updatable materialized views is

supported only through the use of deployment templates and the

Replication Management tool. This restriction does not apply to

column subsetting of read-only materialized views.

See Also:

■ "Data Subsetting with Materialized Views" on page 3-17

■ "Column Subsetting with Deployment Templates" on page 4-20

for more information about column subsetting with

deployment templates
1-12 Oracle9i Advanced Replication

Types of Replication Environments
Materialized View Log
A materialized view log is a table at the materialized view's master site or master

materialized view site that records all of the DML changes to the master table or

master materialized view. A materialized view log is associated with a single master

table or master materialized view, and each of those has only one materialized view

log, regardless of how many materialized views refresh from the master. A fast

refresh of a materialized view is possible only if the materialized view’s master has

a materialized view log. When a materialized view is fast refreshed, entries in the

materialized view’s associated materialized view log that have appeared since the

materialized view was last refreshed are applied to the materialized view.

Deployment Templates
Deployment templates simplify the task of deploying and maintaining many

remote materialized view sites. Using deployment templates, you can define a

collection of materialized view definitions at a master site, and you can use

parameters in the definitions so that the materialized views can be customized for

individual users or types of users.

For example, you might create one template for the sales force and another template

for field service representatives. In this case, a parameter value might be the sales

territory or the customer support level. When a remote user connects to a master

site, the user can query a list of available templates. When the user instantiates a

template, the materialized views are created and populated at the remote site. The

parameter values can either be supplied by the remote user or taken from a table

maintained at the master site.

Online and Offline Instantiation When a user instantiates a template at a materialized

view site, the object DDL (for example, CREATE MATERIALIZED VIEW or CREATE
TABLE statements) is executed to create the schema objects at the materialized view

site, and the objects are populated with the appropriate data. Users can instantiate

templates while connected to the master site over a network (online instantiation),

or while disconnected from the master site (offline instantiation).

Offline instantiation is often used to decrease server loads during peak usage

periods and to reduce remote connection times. To instantiate a template offline,

you package the template and required data on some type of storage media, such as

tape, CD-ROM, and so on. Then, instead of pulling the data from the master site,

users pull the data from the storage media containing the template and data.
Introduction to Advanced Replication 1-13

Types of Replication Environments
Multimaster and Materialized View Hybrid Configurations
Multimaster replication and materialized views can be combined in hybrid or

"mixed" configurations to meet different application requirements. Hybrid

configurations can have any number of master sites and multiple materialized view

sites for each master.

For example, as shown in Figure 1–4, multimaster (or n-way) replication between

two masters can support full-table replication between the databases that support

two geographic regions. Materialized views can be defined on the masters to

replicate full tables or table subsets to sites within each region.

Figure 1–4 Hybrid Configuration

Materialized
View
Site Replication

Group

Materialized
View
Site Replication

Group

Materialized
View
Site

Master
Site Replication

Group

Master
Site Replication

Group

Replication
Group

or.world pa.world

sf.world ph.world

kc.world
1-14 Oracle9i Advanced Replication

Administration Tools for a Replication Environment
Key differences between materialized views and replicated master tables include

the following:

■ Replicated master tables must contain data for the full table being replicated,

whereas materialized views can replicate subsets of master table data.

■ Multimaster replication enables you to replicate changes for each transaction as

the changes occur. Materialized view refreshes are set oriented, propagating

changes from multiple transactions in a more efficient, batch-oriented

operation, but at less frequent intervals.

■ If conflicts occur because of changes made to multiple copies of the same data,

then detection and resolution of conflicts always occurs at a master site or a

master materialized view site.

Scheduled Links
Both master sites and materialized view sites use scheduled links to propagate data

changes to other sites. A scheduled link is a database link with a user-defined

schedule to push deferred transactions. A scheduled link determines how a master

site propagates its deferred transaction queue to another master site, or how a

materialized view site propagates its deferred transaction queue to its master site.

When you create a scheduled link, Oracle creates a job in the local job queue to push

the deferred transaction queue to another site in the system.

Administration Tools for a Replication Environment
Several tools are available for configuring, administering, and monitoring your

replication environment. The Replication Management tool in Oracle Enterprise

Manager provides a powerful GUI interface to help you manage your environment,

while the replication management application programming interface (API)

provides you with a familiar API to build customized scripts for replication

administration. Additionally, the replication catalog keeps you informed about your

replication environment.
Introduction to Advanced Replication 1-15

Administration Tools for a Replication Environment
Replication Management Tool in Oracle Enterprise Manager
To help configure and administer replication environments, Oracle provides a

sophisticated Replication Management tool in the Oracle Enterprise Manager

Console. Other sections in this book include information and examples for using

this tool, but the Replication Management tool online help is the primary

documentation source for this tool.

Figure 1–5 The Replication Management Tool in Oracle Enterprise Manager

See Also: Chapter 7, "Replication Management Tool Introduction"

for an introduction to the Replication Management tool, and the

Replication Management tool online help for complete instructions

on using the tool.
1-16 Oracle9i Advanced Replication

Administration Tools for a Replication Environment
Replication Management API
The replication management API is a set of PL/SQL packages that encapsulate

procedures and functions that you can use to configure an Advanced Replication

environment. The replication management API is a command-line alternative to the

Replication Management tool. In fact, the Replication Management tool uses the

procedures and functions of the replication management API to perform its work.

For example, when you use the Replication Management tool to create a new

master group, the tool completes the task by making a call to the CREATE_MASTER_
REPGROUP procedure in the DBMS_REPCAT package. The replication management

API makes it easy for you to create custom scripts to manage your replication

environment.

Replication Catalog
Every master site and materialized view site in a replication environment has a

replication catalog. A replication catalog for a site is a distinct set of data dictionary

tables and views that maintain administrative information about replication objects

and replication groups at the site. Every server participating in a replication

environment can automate the replication of objects in replication groups using the

information in its replication catalog.

Distributed Schema Management
In a replication environment, all DDL statements must be issued using either the

Replication Management tool in Oracle Enterprise Manager or the DBMS_REPCAT
package in the replication management API. Specifically, if you use the DBMS_
REPCAT package, then use the CREATE_MASTER_REPOBJECT procedure to add

objects to a master group, and use ALTER_MASTER_REPOBJECT to modify

replicated objects. You can also use the EXECUTE_DDL procedure.

When you use either the Replication Management tool or the DBMS_REPCAT
package, all DDL statements are replicated to all of the sites participating in the

replication environment. In some cases, you can also use export/import to create

replicated objects.

See Also: Oracle9i Replication Management API Reference for more

information about using the replication management API

See Also: Oracle9i Replication Management API Reference for more

information about the replication catalog
Introduction to Advanced Replication 1-17

Replication Conflicts
Replication Conflicts
Asynchronous multimaster and updatable materialized view replication

environments must address the possibility of replication conflicts that may occur

when, for example, two transactions originating from different sites update the

same row at nearly the same time. When data conflicts occur, you need a

mechanism to ensure that the conflict is resolved in accordance with your business

rules and to ensure that the data converges correctly at all sites.

In addition to logging any conflicts that may occur in your replication environment,

Advanced Replication offers a variety of prebuilt conflict resolution methods that

enable you to define a conflict resolution system for your database that resolves

conflicts in accordance with your business rules. If you have a unique situation that

Oracle’s prebuilt conflict resolution methods cannot resolve, then you have the

option of building and using your own conflict resolution methods.

Note: Any DDL statements issued directly using a tool such as

SQL*Plus are not replicated to other sites.

See Also:

■ Chapter 5, "Conflict Resolution Concepts and Architecture" for

information about how to design your database to avoid data

conflicts and how to build conflict resolution methods that

resolve such conflicts when they occur

■ The Replication Management tool online help for instructions

on using the tool to configure conflict resolution methods

■ Oracle9i Replication Management API Reference for a description

of how to build conflict resolution methods using the

replication management API
1-18 Oracle9i Advanced Replication

Other Options for Multimaster Replication
Other Options for Multimaster Replication
Asynchronous replication is the most common way to implement multimaster

replication. However, you have two other options: synchronous replication and

procedural replication.

Synchronous Replication
A multimaster replication environment can use either asynchronous or

synchronous replication to copy data. With asynchronous replication, changes made

at one master site occur at a later time at all other participating master sites. With

synchronous replication, changes made at one master site occur immediately at all

other participating master sites.

When you use synchronous replication, an update of a table results in the

immediate replication of the update at all participating master sites. In fact, each

transaction includes all master sites. Therefore, if one master site cannot process a

transaction for any reason, then the transaction is rolled back at all master sites.

Although you avoid the possibility of conflicts when you use synchronous

replication, it requires a very stable environment to operate smoothly. If

communication to one master site is not possible because of a network problem, for

example, then users can still query replicated tables, but no transactions can be

completed until communication is reestablished. Also, it is possible to configure

asynchronous replication so that it simulates synchronous replication.

Procedural Replication
Batch processing applications can change large amounts of data within a single

transaction. In such cases, typical row-level replication might load a network with

many data changes. To avoid such problems, a batch processing application

operating in a replication environment can use Oracle's procedural replication to

replicate simple stored procedure calls to converge data replicas. Procedural

replication replicates only the call to a stored procedure that an application uses to

update a table. It does not replicate the data modifications themselves.

See Also: "Scheduling Continuous Pushes" on page 6-24 for

information about simulating synchronous replication in an

asynchronous replication environment
Introduction to Advanced Replication 1-19

Other Options for Multimaster Replication
To use procedural replication, you must replicate the packages that modify data in

the system to all sites. After replicating a package, you must generate a wrapper for

the package at each site. When an application calls a packaged procedure at the

local site to modify data, the wrapper ensures that the call is ultimately made to the

same packaged procedure at all other sites in the replication environment.

Procedural replication can occur asynchronously or synchronously.

Conflict Detection and Procedural Replication
When a replicating data using procedural replication, the procedures that replicate

data are responsible for ensuring the integrity of the replicated data. That is, you

must design such procedures to either avoid or detect replication conflicts and to

resolve them appropriately. Consequently, procedural replication is most typically

used when databases are modified only with large batch operations. In such

situations, replication conflicts are unlikely because numerous transactions are not

contending for the same data.

See Also: Oracle9i Replication Management API Reference for more

information about procedural replication
1-20 Oracle9i Advanced Replication

Master Replication Concepts and Archite
2

Master Replication Concepts and

Architecture

This chapter explains the concepts and architecture of Oracle’s master replication

sites in both single master and multimaster replication environments.

This chapter contains these topics:

■ Master Replication Concepts

■ Master Replication Architecture
cture 2-1

Master Replication Concepts
Master Replication Concepts
To understand the architectural details of master replication, you need to

understand concepts of master replication. Knowing how and why replication is

used provides you with a greater understanding of how the individual architectural

elements work together to create a multimaster replication environment.

What is Master Replication?
Oracle has two types of master replication: single master replication and

multimaster replication. Multimaster replication includes multiple master sites,

where each master site operates as an equal peer. In single master replication, a

single master site supporting materialized view replication provides the

mechanisms to support potentially hundreds or thousands of materialized view

sites. A single master site that supports one or more materialized view sites can also

participate in a multiple master site environment, creating a hybrid replication

environment (combination of multimaster and materialized view replication).

Materialized views can be based on master tables at master sites or on materialized

views at materialized view sites. When materialized views are based on

materialized views, you have a multitier materialized view environment. In such an

environment, materialized views that have other materialized views based on them

are called master materialized views.

Multimaster Replication
Multimaster replication, also known as peer-to-peer or n-way replication, is

comprised of multiple master sites equally participating in an update-anywhere

model. Updates made to an individual master site are propagated (sent) to all other

participating master sites. Figure 2–1 illustrates a multimaster replication system.

Oracle database servers operating as master sites in a multimaster replication

environment automatically work to converge the data of all table replicas, and

ensure global transaction consistency and data integrity. Conflict resolution is

independently handled at each of the master sites. Multimaster replication provides

complete replicas of each replicated table at each of the master sites.

See Also: Chapter 3, "Materialized View Concepts and

Architecture" for more information about multitier materialized

views
2-2 Oracle9i Advanced Replication

Master Replication Concepts
If the replication environment is a hybrid environment (it has multiple master sites

supporting one or more materialized view sites), then the target master site

propagates any of the materialized view updates to all other master sites in the

multimaster replication environment. Then each master site propagates changes to

their materialized views when the materialized views refresh.

Figure 2–1 Multimaster Replication

Single Master Replication
A single master site can also function as the target master site for one or more

materialized view sites. Unlike multimaster replication, where updates to a single

site are propagated to all other master sites, materialized views update only their

target master site.

Conflict resolution is handled only at master sites or master materialized view sites.

Materialized view replication can contain complete or partial replicas of the

replicated table.

See Also: Chapter 3, "Materialized View Concepts and

Architecture" for more information about materialized view

replication with a master site

Master
Site

Master
Site

Master
Site

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group
Master Replication Concepts and Architecture 2-3

Master Replication Concepts
Master Sites
A master site can be both a node in a multimaster replication environment and the

master for one or more materialized view sites in a single master or multimaster

replication environment. The replicated objects are stored at the master site and are

available for user access.

Master Definition Site In a multimaster replication environment, one master site

operates as the master definition site for a master group. This particular site

performs many of the administrative and maintenance tasks for the multimaster

replication environment.

Each master group can have only one master definition site, though the master

definition site can be any of the master sites in the multimaster environment.

Additionally, the master definition site can be changed to a different master site if

necessary.

A single master site supporting materialized view replication is by default the

master definition site.

Why Use Multimaster Replication?
From a very basic point of view, replication is used to make sure that data is

available when and where you need it. The following sections describe several

different environments that have different information delivery requirements. Your

replication environment may have one or more of the following requirements.

Failover
Multimaster replication can be used to protect the availability of a mission critical

database. For example, a multimaster replication environment can replicate data in

your database to establish a failover site should the primary site become

unavailable due to system or network outages. Such a failover site also can serve as

a fully functional database to support application access when the primary site is

concurrently operational.

You can use Oracle Net to configure automatic connect-time failover, which enables

Oracle Net to fail over to a different master site if the first master site fails. You

configure automatic connect-time failover in your tnsnames.ora file by setting

the FAILOVER_MODE parameter to on and specifying multiple connect descriptors.

See Also: Oracle9i Net Services Administrator’s Guide for more

information about configuring connect-time failover
2-4 Oracle9i Advanced Replication

Master Replication Concepts
Load Balancing
Multimaster replication is useful for transaction processing applications that require

multiple points of access to database information for the following purposes:

■ Distributing a heavy application load

■ Ensuring continuous availability

■ Providing more localized data access

Applications that have application load distribution requirements commonly

include customer service oriented applications.

Figure 2–2 Multimaster Replication Supporting Multiple Points of Update Access

CS_DL

CS_SF CS_NY
Master Replication Concepts and Architecture 2-5

Master Replication Concepts
Support for Disconnected Materialized View Environments
Materialized view replication enables users to remotely store all or a subset of

replicated data from a master site in a disconnected environment. This scenario is

typical of sales force automation systems where an individual’s laptop (a

disconnected device) stores a subset of data related to the individual salesperson.

Master sites operate as the target of the materialized view environment. Master site

support can be:

■ A single master site supporting all of the materialized views, which reduces the

possibility of divergent data because conflict resolution is performed only at

master sites or master materialized view sites (in a multitier materialized view

environment).

■ A combination of multimaster and materialized view replication where groups

of materialized views are targeted to different masters of the multimaster

configuration. This configuration distributes the network load across multiple

master nodes, providing improved scalability and availability should one of the

master nodes become unavailable.

Oracle Real Application Clusters Compared With Replication

The two major areas where you may need to consider whether Advanced

Replication or Oracle Real Application Clusters better serves your needs are load

balancing and survivability.

Load Balancing: Advanced Replication provides read load balancing over

multiple databases, while Oracle Real Application Clusters provides read and

write load balancing over multiple instances. Because each write must be

performed at each replication site, replication does not offer write load balancing.

Survivability: Replication provides greater survivability protection with regards

to natural disasters, power outages, or sabotage, or both because the remaining

replication sites may be positioned in a geographically different region. Oracle

Real Application Clusters operates on a cluster or other massively parallel system

and is located in the same physical environment, and thus cannot protect against

the physical problems that replication can protect against.

Interoperability: Advanced Replication can replicate data between different

platforms and operating systems that are running Oracle. The instances in an

Oracle Real Application Clusters environment must run on the same platform.
2-6 Oracle9i Advanced Replication

Master Replication Concepts
Multimaster Replication Process
There are two types of multimaster replication: asynchronous and synchronous.

Asynchronous replication, often referred to as store-and-forward replication,

captures any local changes, stores them in a queue, and, at regular intervals,

propagates and applies these changes at remote sites. With this form of replication,

there is a period of time before all sites achieve data convergence.

Synchronous replication, also known as real-time replication, applies any changes

or executes any replicated procedures at all sites participating in the replication

environment as part of a single transaction. If the data manipulation language

(DML) statement or procedure fails at any site, then the entire transaction rolls back.

Synchronous replication ensures data consistency at all sites in real-time.

You can change the propagation mode from asynchronous to synchronous or vice

versa for a master site. If you change the propagation mode for a master site in a

master group, then you must regenerate replication support for all master group

objects. When you regenerate replication support, Oracle then activates the internal

triggers and regenerates the internal packages to support replication of the objects

at all master sites. Also, a multimaster replication environment may contain a

mixture of both synchronous and asynchronous replication.

Asynchronous Replication
Asynchronous replication independently propagates any DML or replicated

procedure execution to all of the other master sites participating in the multimaster

replication environment. Propagation occurs in a separate transaction after the DML

or replication procedure has been executed locally.

Asynchronous replication is the default mode of replication. Asynchronous

replication requires less networking and hardware resources than does synchronous

replication, resulting in better availability and performance.

Asynchronous replication, however, means that the data sets at the different master

sites in the replication environment may be different for a period of time before the

changes have been propagated. Also, data conflicts may occur in an asynchronous

replication environment.

See Also: "Understanding Mixed-Mode Multimaster Systems" on

page 2-45 for more information
Master Replication Concepts and Architecture 2-7

Master Replication Concepts
The following describes the process of asynchronous replication:

1. A user issues DML statement or executes a wrapper for a replicated procedure.

After a table has been set up for replication, any DML that a user commits on

the table is captured for replication to all other master sites.

For each row that is inserted, updated, or deleted, an internal trigger creates a

deferred remote procedure call (RPC) and places it in the deferred transaction

queue. The deferred transaction queue contains all deferred RPCs.

If a procedure has been replicated and its wrapper is executed at a master site,

then the procedure call is placed in the deferred transaction queue.

2. The deferred transaction queue stores deferred RPCs.

Each transaction in the deferred transaction queue has a list of destinations that

define where the deferred transaction should be propagated; this list contains

all master sites except for the originating site. There is one deferred transaction

queue for each site, and this one queue can be used by multiple replication

groups.

3. Propagation sends deferred transaction queue entry to destination.

At scheduled intervals or on-demand, the deferred transactions in the deferred

transaction queue are propagated to the target destinations. Each destination

may have a different interval.

4. The deferred transaction queue entry applied at a remote destination.

As a deferred transaction is being propagated to a target destination, each

deferred RPC is applied at the destination site by calling an internal package. If

the deferred transaction cannot be successfully applied at the destination site,

then it is resent and placed into the error queue at the destination site, where

the DBA can fix the error condition and re-apply the deferred transaction.

When a deferred transaction queue entry is applied at the remote destination,

Oracle checks for data conflicts. If a conflict is detected, then it is logged at the

remote location and, optionally, a conflict resolution method is invoked.

5. When a deferred transaction has been successfully pushed to all remote master

sites, it is not purged from the deferred transaction queue at the originating site

immediately. It may be purged later by a purge job, which runs at a

user-defined interval.

See Also: Chapter 5, "Conflict Resolution Concepts and

Architecture" for more information
2-8 Oracle9i Advanced Replication

Master Replication Concepts
Synchronous Replication
Synchronous replication propagates any changes made at a local site to other

synchronously linked masters in a replication environment during the same

transaction as the initial change. If the propagation fails at any of the master sites,

then the entire transaction, including the initial change at the local master site, rolls

back. This strict enforcement ensures data consistency across the replication

environment. Unlike asynchronous replication, there is never a period of time when

the data at any of the master sites does not match.

Synchronous replication also ensures that no data conflicts are introduced into the

replication environment. These benefits have the cost of requiring many hardware

and networking resources with no flexibility for downtime. For example, if a single

master site of a six node multimaster environment is unavailable, then a transaction

cannot be completed at any master site.

However, in asynchronous replication, the deferred transaction is held at the

originating site until the downed site becomes available. Meanwhile, the transaction

can be successfully propagated and applied at other replication sites.

Additionally, while query performance remains high because they are performed

locally with synchronous replication, updates are slower because of the two-phase

commit protocol that ensures that any updates are successfully propagated and

applied to the remote destination sites.

The following describes the process of synchronous replication:

1. User issues DML statement or executes a wrapper for a replicated procedure.

After a table has been set up for replication, any DML that a user commits on

the target table is captured for replication to all other master replication sites.

If a procedure has been replicated and its wrapper is executed at a master site,

then the procedure call is captured for replication.

See Also: "Understanding Mixed-Mode Multimaster Systems" on

page 2-45 for a discussion on using both synchronous and

asynchronous replication in a single environment

See Also: Oracle9i Database Administrator’s Guide for more

information about two-phase commit.
Master Replication Concepts and Architecture 2-9

Master Replication Concepts
2. DML or wrapper execution is immediately propagated to destination sites.

The internal trigger captures any DML and immediately propagates these

actions to all other master sites in the replication environment. The internal

trigger applies these actions in the security context of the propagator’s database

link and uses an internal RPC to apply these actions at the destination site.

Like an internal trigger, a wrapper for a replicated procedure immediately

propagates the procedure call to all other master sites in the replication

environment.

If the transaction fails at any one of the master replication sites, then the

transaction is rolled back at all master sites. This methodology ensures data

consistency across all master replication sites. Because of the need to roll back a

transaction if any site fails, synchronous replication is extremely dependent on

highly-available networks, databases, and the associated hardware.

Conflict Resolution Concepts
When Oracle replicates a table, any DML applied to the replicated table at any

replication site (either master or materialized view site) that causes a data conflict at

a destination site is automatically detected by the Oracle server at the destination

site. Any data conflicts introduced by a materialized view site are detected and

resolved at the target master site or master materialized view site of the

materialized view.

For example, if the following master group is scheduled to propagate changes once

an hour, then consider what happens when:

If the time between propagations is considered an interval and two or more sites

update the same row during a single interval, then a conflict occurs.

Time Master Site A Master Site B Status

8:00 AM Propagate Changes to
Master Site B

Propagate Changes to
Master Site A

Data converges.

8:15 AM Updates Row 1 - -

8:30 AM - Updates Row 1 -

9:00 AM Propagate Changes to
Master Site B

Propagate Changes to
Master Site A

Conflict Detected on
Row 1
2-10 Oracle9i Advanced Replication

Master Replication Concepts
In addition to the update conflict described previously, there are insert and delete

conflicts. Consider the following summaries of each type of conflict. Each conflict

occurs when the conflicting actions occur within the same interval.

After a data conflict is detected, the following actions occur:

1. The conflict resolution methods try to resolve the data conflict.

2. If the conflict is not resolved, then the data conflict is logged in the error queue

at the destination site.

When a data conflict is logged in the error queue, then the database administrator is

responsible for resolving the data conflict manually.

If you choose to use Oracle-supplied or user-defined conflict resolution methods,

then the Oracle server automatically tries to resolve the data conflict. The conflict

resolution methods that you implement should conform to the business rules

defined for your replication environment and should work to guarantee data

convergence. You may need to modify tables to meet the needs of the conflict

resolution methods you implement. For example, the latest timestamp conflict

resolution method requires a timestamp column in the table on which it is

implemented.

Conflict Type Summary

Update conflict Two or more DML statements are applied to the same row at
different replication sites before the DML statement can be
propagated to the other sites.

Uniqueness conflict An insert is performed at two or more sites and the primary key
(or other set of unique columns) for each insert contains the
same value, or an update at one site modifies the primary key
(or other set of unique columns), which contains the same value
as an insert at another site.

Delete conflict A row is deleted at one site and an update occurs at another site,
which may result in an attempt to update a row that does not
exist, or the same row is deleted in the same interval at more
than one site.

See Also: Chapter 5, "Conflict Resolution Concepts and

Architecture" for more information about the different types of data

conflicts
Master Replication Concepts and Architecture 2-11

Master Replication Concepts
Replication of User-Defined Types
Oracle object types are user-defined datatypes that make it possible to model

complex real-world entities such as customers and orders as single entities, called

objects, in the database. You create object types using the CREATE TYPE ... AS
OBJECT statement. You can replicate object types and objects between master sites

in a multimaster replication environment.

An Oracle object that occupies a single column in a table is called a column object.
Typically, tables that contain column objects also contain other columns, which may

be built-in datatypes, such as VARCHAR2 and NUMBER. An object table is a special

kind of table in which each row represents an object. Each row in an object table is a

row object.

You can also replicate collections. Collections are user-defined datatypes that are

based on VARRAY and nested table datatypes. You create varrays with the CREATE
TYPE ... AS VARRAY statement, and you create nested tables with the CREATE
TYPE ... AS TABLE statement.

Type Agreement at Replication Sites
User-defined types include all types created using the CREATE TYPE statement,

including object, nested table, and VARRAY. To replicate schema objects based on

user-defined types, the user-defined types themselves must exist, and must be

exactly the same, at all replication sites.

When replicating user-defined types and the schema objects on which they are

based, the following conditions apply:

Note:

■ Master sites must have a compatibility level of 9.0.1 or higher

to replicate user-defined types and any objects on which they

are based. The compatibility level is controlled by the

COMPATIBLE initialization parameter.

■ Advanced Replication does not support type inheritance.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for detailed information about user-defined types, column

objects, object tables, and collections. This section assumes a basic

understanding of the information in that book.
2-12 Oracle9i Advanced Replication

Master Replication Concepts
■ All replication sites must have the same object identifier (OID), schema owner,

and type name for a replicated user-defined type.

■ If the user-defined type is an object type, then all replication sites must agree on

the order and datatype of the attributes in the object type. You establish the

order and datatypes of the attributes when you create the object type. For

example, consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all replication sites, street_address must be the first attribute for this

type and must be VARCHAR2(40), postal_code must be the second attribute

and must be VARCHAR2(10), city must be the third attribute and must be

VARCHAR2(30), and so on.

■ All replication sites must agree on the hashcode of the user-defined type. Oracle

examines a user-defined type and assigns the hashcode. This examination

includes the type attributes, order of attributes, and type name. When all of

these items are the same for two or more types, the types have the same

hashcode. You can view the hashcode for a type by querying the DBA_TYPE_
VERSIONS data dictionary view.

To ensure that a user-defined type is exactly the same at all replication sites, you

must create the user-defined type in one of the following ways:

■ Use the Replication Management API

■ Use a CREATE TYPE Statement

■ Use Export/Import
Master Replication Concepts and Architecture 2-13

Master Replication Concepts
Use the Replication Management API Oracle Corporation recommends that you use the

replication management API to create, modify, or drop any replicated object at a

replication site, including user-defined types. If you do not use the replication

management API for these actions, then replication errors may result. For example,

to add a user-defined type that meets the conditions described previously to all

replication sites in a master group, create the type at the master definition site and

then use the CREATE_MASTER_REPOBJECT procedure in the DBMS_REPCAT
package to add the type to a master group.

Use a CREATE TYPE Statement You can use a CREATE TYPE statement at a replication

site to create the type. It may be necessary to do this if you want to precreate the

type at all replication sites and then add it to a replication group.

If you choose this option, then you must ensure the following:

■ The type is in the same schema at all replication sites.

■ The type has exactly the same attributes in exactly the same order at all

replication sites.

■ The type has exactly the same datatype for each attribute at all replication sites.

■ The type has the same object identifier at all replication sites.

You can find the object identifier for a type by querying the DBA_TYPES data

dictionary view. For example, to find the object identifier (OID) for the cust_
address_typ , enter the following query:

SELECT TYPE_OID FROM DBA_TYPES WHERE TYPE_NAME = 'CUST_ADDRESS_TYP';

TYPE_OID

6F9BC33653681B7CE03400400B40A607

Or, if you are creating a new type at a number of different replication sites, then you

may want to specify the same OID at each site during type creation. In this case,

you can identify a globally unique OID by running the following query:

SELECT SYS_GUID() OID FROM DUAL;

When you know the OID for the type, complete the following steps to create the

type at the replication sites where it does not exist:

1. Log in to the replication site as the user who owns the type. If this user does not

exist at the replication site, then create the user.

See Also: Oracle9i Replication Management API Reference
2-14 Oracle9i Advanced Replication

Master Replication Concepts
2. Issue the CREATE TYPE statement and specify the OID:

CREATE TYPE oe.cust_address_typ OID '6F9BC33653681B7CE03400400B40A607'
 AS OBJECT (
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

The type is now ready for use at the replication site.

Use Export/Import You can use the Export and Import utilities to maintain type

agreement between replication sites. When you export object tables based on

user-defined types, or tables containing column objects based on user-defined

types, the user-defined types are also exported automatically, if the user performing

the export has access to these types. When you import these tables at another

replication site, the user-defined types are exactly the same as the ones at the site

where you performed the export.

Therefore, you can use export/import to precreate your replication tables at new

replication sites, and then specify the use existing object option when you add these

tables to a replication group. This practice will ensure type agreement at your

replication sites.

Object Tables
When you replicate object tables, the following conditions apply:

■ The OID of an object table must be the same at all replication sites.

■ The OID of each row object in an object table must be the same at all replication

sites.

You can meet these conditions by using the replication management API to add

object tables to a replication group, modify object tables, and drop object tables from

a replication group. For example, if you use the CREATE_MASTER_REPOBJECT
procedure in the DBMS_REPCAT package to add an object table to a master group,

See Also: Oracle9i Replication Management API Reference

See Also: Oracle9i Database Utilities for information about

export/import
Master Replication Concepts and Architecture 2-15

Master Replication Concepts
then Oracle ensures that these conditions are met. You can also use export/import

to precreate object tables at replication sites to meet these conditions.

Another option is to specify the OID for an object table when you create the object

table at multiple replication sites. Complete the following steps if you want to use

this option:

1. Query the DUAL view for a globally unique OID:

SELECT SYS_GUID() OID FROM DUAL;

OID

81D98C325D4A45D0E03408002074B239

2. Create the categories_tab object table with the OID returned in Step 1 at

each replication site:

CREATE TABLE categories_tab5 OF category_typ
 OID '81D98C325D4A45D0E03408002074B239'
 (category_id PRIMARY KEY);

Tables with Collection Columns
Collection columns are columns based on VARRAY and nested table datatypes.

Oracle supports the replication of collection columns. When you add a table with a

collection column to a replication group, the data in the collection column is

replicated automatically. If the collection column is a varray, then varrays larger

than four kilobytes are stored as BLOBs.

If the collection column is a nested table, then Oracle performs row-level replication

for each row in the nested table’s storage table. For example, changes in five rows of

a storage table result in five distinct remote procedure calls (RPCs), and five distinct

conflict detection and optional resolution phases. The storage table can be stored as

an index-organized table.

In addition, DML on a row that contains a nested table results in separate RPCs for

the parent table and for each affected row in the nested table’s storage table. Oracle

does not perform referential integrity checks between the rows in the parent table

and the rows in the storage table unless you explicitly specified integrity constraints

during the creation of the parent table. Oracle Corporation recommends that you

specify such constraints for replicated tables to detect all conflicts.
2-16 Oracle9i Advanced Replication

Master Replication Concepts
To ensure conflict detection between a nested table and its storage table, Oracle

Corporation recommends that you define a deferrable foreign key constraint

between them. Without a deferrable foreign key constraint, a conflict may insert

rows in the storage table that cannot be accessed. A deferrable foreign key

constraint causes an error to be raised in these situations so that the conflict is

detected. You use the DEFERRED clause of the SET CONSTRAINTS statement to

defer a constraint.

The following actions are not allowed directly on the storage table of a nested table

in a replicated table:

■ Adding the storage table to a replication group

■ Altering the storage table

■ Dropping the storage table

■ Generating replication support on the storage table

These actions can occur indirectly when they are performed on the parent table of

the storage table. In addition, you cannot replicate a subset of the columns in a

storage table.

Tables with REF Columns
A REF is an Oracle built-in datatype that is a logical "pointer" to a row object in an

object table. A scoped REF is a REF that can only contain references to a specified

object table, while an unscoped REF can contain references to any object table in the

database. A scoped REF requires less storage space and provides more efficient

access than an unscoped REF. Oracle supports the replication of tables with REFs.

Scoped REFs If a table with a scoped REF is replicated and the object table

referenced by a REF is not replicated, then you must create the referenced object

table at the sites where it does not exist before you begin replicating the table

containing the scoped REF. Otherwise, replicating this table results in an error when

the scoped REF cannot find the referenced object table. Typically, in this situation, it

is best to replicate the referenced object table as well because it may become out of

sync at the various replication sites if it is not replicated.

Unscoped REFs If a table with an unscoped REF is replicated and the object table

referenced by the REFis not replicated, then a dangling REFmay result at replicated

sites if the REF cannot find the referenced object. For a replicated REF to be valid,

the referenced object table must exist at each replication site.
Master Replication Concepts and Architecture 2-17

Master Replication Architecture
REFs Created Using the WITH ROWID Option If the WITH ROWID option is specified for a

REFcolumn, then Oracle maintains a hint for the rowid of the row object referenced

in the REF. Oracle can find the object referenced directly using the rowid contained

in the REF, without the need to fetch the rowid from the OID index. The WITH
ROWID option is not supported for scoped REFs.

Replicating a REF created using the WITH ROWID option results in an incorrect

rowid hint at each replication site, except the site where the REF was first created or

modified. The ROWID information in the REF is meaningless at the other sites, and

Oracle does not correct the rowid hint automatically. Invalid rowid hints can cause

performance problems. In this case, you must use the ANALYZE statement to correct

rowid hints at each replication site where they are incorrect.

Master Replication Architecture
Although you can build a replication environment by following the procedures and

examples described in the online help for the Replication Management tool and in

the Oracle9i Replication Management API Reference, understanding the architecture of

replication gives you valuable information for setting up your database

environment to support replication, tuning your replication environment, and

troubleshooting your replication environment when necessary. This section

describes the architecture of replication in terms of mechanisms and processes.

Master Site Mechanisms
To support a replication environment, Oracle uses the following mechanisms at

each master site that is participating in either a multimaster replication or single

master replication environment. Some of the following master site mechanisms are

required only in special circumstances.

Master Site Roles/Users
Depending on your security requirements, the following three roles may be

consolidated into a single replication administrator. In fact, most multimaster

replication environments use a single user to perform the replication

administration, propagation, and receiving roles. If you have more stringent

security requirements, then you may assign the following roles to different users.

See Also: Oracle9i SQL Reference for more information about the

ANALYZE statement
2-18 Oracle9i Advanced Replication

Master Replication Architecture
Replication Administrator The replication administrator performs all of the

administrative functions relating to a master site in a replication environment. In

general, it is preferable to have a single replication administrator for a replication

environment. In addition to preparing a database to support replication, the

replication administrator has the following responsibilities:

■ Building and maintaining the individual master replication groups

■ Adding and removing participating master sites

■ Managing the queues

■ Controlling the state of the replication environment (normal and quiesced)

The default username for this administrator is repadmin , but you can use any

username you wish.

Propagator The propagator performs the task of propagating each transaction

contained in the deferred transaction queue to the transaction’s destinations. There

is a single propagator for the database. In other words, it is possible for you to have

multiple replication administrators to manage different schemas, but there can only

be a single propagator for each database.

Receiver The receiver is responsible for receiving and applying the deferred

transactions from the propagator. If the receiver does not have the appropriate

privileges to apply a call in the deferred transaction, then the entire deferred

transaction is placed in the error queue at the destination. You can register the

receiver by using the REGISTER_USER_REPGROUP procedure in the DBMS_
REPCAT_ADMIN package.

Database Links
Database links provide the conduit to replicate data between master sites and

materialized view sites. In a multimaster environment, there is a database link from

each individual master site to all other master sites. Another way to look at the

configuration of database links is that there are N - 1 database links for each master

site, where N is the total number of master sites.

Note: The term "roles" in this context is not related to the SQL

term "roles." The referenced replication roles are granted using

stored PL/SQL procedures or individual privileges or both.
Master Replication Concepts and Architecture 2-19

Master Replication Architecture
Figure 2–3 Each Arrow Represents a Database Link

In Figure 2–3, each master site has two database links to the other master sites (N-1

or in this case 3 - 1 = 2). This configuration ensures the bi-directional

communication channels between master sites needed for multimaster replication.

Notice that for a materialized view site, only a link from the materialized view site

to the master site is required. The master site does not need a database link to the

materialized view site.

The most basic setup has a database link from the replication administrator at the

individual master site to the replication administrators at the other participating

master replication sites.

A common approach, however, adds an additional set of database links to your

replication environment. Before creating any replication administrator database

links, you create public database links between all of the participating master sites,

without specifying a CONNECT TO clause. The public database links specify the

target of each database link with the USINGclause, which specifies the service name

of a remote database.

After creating the public database links, you can create the private replication

administrator database links. When creating private database links, you specify the

CONNECT TO clause, but the associated public database link eliminates the need to

specify a USING clause.

orc1.world orc2.world

mv1.world orc3.world

Materialized
View
Site

Master
Site

Master
Site

Master
Site
2-20 Oracle9i Advanced Replication

Master Replication Architecture
The approach of using both public and private database links reduces the amount

of administration needed to manage database links. Consider the following

advantages:

■ Multiple sets of private database links can share the same public link, further

simplifying the administration of database links.

■ If the target database of a database link changes but the service name for the

target database remains the same, then you only need to change the

tnsnames.ora file entry for the target database. Remember that the USING
clause specifies the service name for the remote target database. All private

database links for the same target point to the destination defined in the USING
clause in the public database link.

For example, if a database is moved to a different server but keeps the same

service name, then you can update the tnsnames.ora file entry for the remote

database at each replication site, and you do not need to re-create the database

link.

As previously described, the replication administrator usually performs the tasks of

administration and propagation in a multimaster environment. Because a single

user performs these tasks, only one set of private database links must be created for

the replication administrator.

However, in multimaster replication environments where propagation is performed

by users other than the replication administrator, the appropriate set of private

database links must be created for each of these alternate users.

Database Links Created by the Replication Management Tool If you use the Setup Wizard

in the Replication Management tool in Oracle Enterprise Manager to set up your

replication sites, then, by default, the Setup Wizard creates database links with a

USING clause that contains the description of the service name in the

tnsnames.ora file or the Oracle Management Server.

See Also:

■ Oracle9i Database Administrator’s Guide for detailed information

about database links and for information about creating

database links

■ Oracle9i Net Services Administrator’s Guide for information about

service names and the tnsnames.ora file
Master Replication Concepts and Architecture 2-21

Master Replication Architecture
For example, suppose the tnsnames.ora file entry for a site is the following:

HQ.MYCOMPANY.COM =
'(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=server1)(PORT=1521))
 (CONNECT_DATA=(SID=hqdb)(SERVER=DEDICATED)))'

Here, the service name is HQ.MYCOMPANY.COM and the description is the text after

the first equal sign. The following statement shows an example of a database link to

the HQ.MYCOMPANY.COM site created by the Setup Wizard:

CREATE PUBLIC DATABASE LINK "HQ.MYCOMPANY.COM" USING
'(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=server1)(PORT=1521))
 (CONNECT_DATA=(SID=hqdb)(SERVER=DEDICATED)))'

The Setup Wizard uses the description of the service name and not the service name

itself because different sites may have different information in their tnsnames.ora
files. For example, if the Setup Wizard only used the service name and not the

service name description, then the user would be required to ensure that the same

service name exists and has the same information in the tnsnames.ora file at all

sites, because there is no way for the Replication Management tool to check for this

requirement.

By using the description for the service name, the Setup Wizard ensures that the

database link is valid for all replication sites. The drawback to this type of database

link is that, in the rare cases when service name description of a database changes,

you must drop and re-create the database link. If the database link is created only

with the service name and not the description, then you could change the

tnsnames.ora file at all sites and retain the same database link.

Connection Qualifiers Connection qualifiers allow several database links pointing to

the same remote database to establish connections using different paths. For

example, a database named ny can have two public database links named

ny.world that connect to the remote database using different paths.

■ ny.world@ethernet , a link that connects to ny using an ethernet link

■ ny.world@modem , another link that connects to ny using a modem link

Note: You can override the default behavior of the Setup Wizard

by editing the customization screens of the wizard.
2-22 Oracle9i Advanced Replication

Master Replication Architecture
For the purposes of replication, connection qualifiers can also enable you to more

closely control the propagation characteristics for multiple master groups. Consider,

if each master site contains three separate master groups and you are not using

connection qualifiers, then the scheduling characteristics for the propagation of the

deferred transaction queue is the same for all master groups. This may be costly if

one master group propagates deferred transactions once an hour while the other

two master groups propagate deferred transactions once a day.

Associating a connection qualifier with a master group gives you the ability to

define different scheduling characteristics for the propagation of the deferred

transaction queue on a master group level versus on a database level as previously

described.

When you create a new master group, you can indicate that you want to use a

connection qualifier for all scheduled links that correspond to the group. However,

when you use connection qualifiers for a master group, Oracle propagates

information only after you have created database links with connection qualifiers at

every master site. After a master group is created, you cannot remove, add, or

change the connection qualifier for the group.

See Also: Oracle9i Database Administrator’s Guide to learn about

defining connection qualifiers for a database link

Caution: To preserve transaction integrity in a multimaster

environment that uses connection qualified links and multiple

master groups, a transaction cannot manipulate replication objects

in groups with different connection qualifiers.

Note: If you plan to use connection qualifiers, then you probably

need to increase the value of the OPEN_LINKS initialization

parameter at all master sites. The default is four open links for each

process. Estimate the required value based on your usage. See

"Initialization Parameters" on page 6-4, and see the Oracle9i
Database Reference for more information about OPEN_LINKS.
Master Replication Concepts and Architecture 2-23

Master Replication Architecture
Replication Objects
The most visible part of your replication environment is the replicated objects

themselves. Of these replicated objects, replicated tables are the foundation of your

replication environment. The following sections discuss replicating the related

database objects. These discussions highlight the benefits and potential limitations

of replicating the following types of database objects:

■ Tables

■ Indexes

■ Packages and Package Bodies

■ Procedures and Functions

■ User-Defined Types and Type Bodies

■ Triggers

■ Views, Object Views, and Synonyms

■ Indextypes

■ User-Defined Operators

Tables In most cases, replicated tables are the foundation of your replication

environment. After a table is selected for replication and has had replication

support generated, it is monitored by internal triggers to detect any DML applied

to it.

When you replicate a table, you have the option of replicating the table structure

and table data to the remote data sites or just the table structure. Additionally, if a

table of the same name and structure already exists at the target replication site,

then you have the option of using the existing object in your replication

environment.

See Also: "Internal Triggers" on page 2-30
2-24 Oracle9i Advanced Replication

Master Replication Architecture
Indexes Any index that is used to enforce a constraint in a table is automatically

created at the remote destination sites when a table is selected for replication and

created at the remote site. Any index that is used for performance reasons, however,

must be explicitly selected for replication to be created at the other master sites

Note:

■ On tables with self-referential integrity constraints, Advanced

Replication cannot guarantee that the deletes will be performed

in the correct order. To perform deletes on tables with

self-referential integrity constraints, use procedural replication.

See Oracle9i Replication Management API Reference for

information.

■ When adding a master site to a master group that contains

tables with circular dependencies or a table that contains a

self-referential constraint, you must precreate the table

definitions and manually load the data at the new master site.

The following is an example of a circular dependency: Table A

has a foreign key constraint on table B, and table B has a foreign

key constraint on table A.

Alternative Uses for Table Replication

Though replicating a table is intended for replicating any table data changes to all

sites participating in the replication environment, there are other uses for

replicating a table.

Object and Data Transport: After an object has been replicated to a target

destination site, replication support is not automatically generated. You can use

this approach as an easy way to distribute objects and data to remote destinations.

If you do not drop the replication objects and do not generate replication support,

then the table (or other objects) and the data remain at the remote destination site,

and any changes at the remote destination site are not replicated. This approach

enables you to distribute a standard database environment and data set to a new

database environment.

Object Transport: Similarly, you can replicate a table to a target destination site

without copying the data. This approach creates the object at the destination site,

but does not populate it with data. Therefore, you can quickly distribute an empty

database environment.
Master Replication Concepts and Architecture 2-25

Master Replication Architecture
participating in the replication environment. When an index is replicated to other

sites, it operates as if the index was created locally. You do not need to generate

replication support for indexes.

Oracle supports the replication of domain indexes. You can replicate the definition

of storage tables for domain indexes, but you cannot replicate the storage tables

themselves because they typically contain ROWID information.

Packages and Package Bodies Selecting packages and package bodies for replication

and generating the needed replication support gives you the ability to do

procedural replication. Procedural replication can offer performance advantages for

large, batch-oriented operations on large numbers of rows that can be run serially

within a replication environment.

All parameters for a procedure with replication support must be IN parameters.

OUT and IN/OUT modes are not supported. The following datatypes are supported

for these parameters:

■ VARCHAR2

■ NVARCHAR2

■ NUMBER

■ DATE

■ RAW

■ ROWID

■ CHAR

■ NCHAR

■ Binary LOB (BLOB)

■ Character LOB (CLOB)

■ National character LOB (NCLOB)

■ User-defined datatypes

See Also:

■ "Foreign Keys" on page 6-2 for information about replicating

the index on a foreign key column

■ Oracle9i Data Cartridge Developer’s Guide for more information

about extensible indexes
2-26 Oracle9i Advanced Replication

Master Replication Architecture
A replicated procedure must be declared in a package. Standalone procedures

cannot have replication support.

Procedures and Functions Procedures and functions not declared as part of a package

cannot have replication support. Though you cannot create a procedural replication

environment with standalone procedures and functions, you can still use replication

to distribute these standalone procedures and functions to the sites in your

replication environment. When the standalone procedure or function is created at

the remote site using replication, the created object does not have replication

support and operates as though the object was created locally.

User-Defined Types and Type Bodies To replicate schema objects with user-defined

types, the user-defined types must exist on all replication sites and be exactly the

same at all replication sites.

Triggers To make sure that any application or database logic is present at each

master site, you can select triggers for replication. An important example of

replicating a trigger is replicating a trigger that automatically inserts a timestamp

into a table when any DML is applied to the table.

To avoid refiring of the trigger, it is important to insert an API call into the trigger to

detect if the trigger is being fired through a local or remote call. This is to avoid the

situation where the trigger updates a row that causes the trigger to fire again.

Notice line 5 in the following code example:

See Also: Oracle9i Replication Management API Reference for

detailed information about using procedural replication

Note: Similar to the concepts presented in the "Alternative Uses

for Table Replication" sidebar on page 2-25, you can select a

package and package body for replication but not generate

replication support to use replication as an easy way to distribute

the object to a remote site, though any calls made to the package are

not replicated.

See Also: "Replication of User-Defined Types" on page 2-12
Master Replication Concepts and Architecture 2-27

Master Replication Architecture
1) CREATE OR REPLACE TRIGGER hr.insert_time
2) BEFORE
3) INSERT OR UPDATE ON hr.employees FOR EACH ROW
4) BEGIN
5) IF DBMS_REPUTIL.FROM_REMOTE = FALSE THEN
6) :NEW.TIMESTAMP := SYSDATE;
7) END IF;
8) END;

If the DBMS_REPUTIL.FROM_REMOTEfunction determines that the insert or update

was locally initiated, then the defined action (that is, assign timestamp) occurs. If

this function determines that the insert or update is from a remote site, then the

timestamp value is not assigned.

Views, Object Views, and Synonyms When you replicate a view, an object view or a

synonym, you are simply using replication to distribute these objects to the other

master sites that are involved in the replication environment. After the object is

replicated to the other sites, it operates as if the object was created locally. No

internal trigger or package monitors the object to capture any changes. Because it is

a replicated object, though, you can still drop or modify it using either the

Replication Management tool or the replication management API.

Indextypes Oracle supports the replication of indextypes. You must explicitly

replicate the type and type body functions that you use to implement an indextype,

either using the Replication Management tool or the CREATE_MASTER_REPOBJECT
procedure in the DBMS_REPCAT package.

User-Defined Operators Developers of object-oriented applications can extend the list

of built-in relational operators (for example, +, - , / , * , LIKE) with domain specific

operators (for example, Contains , Within_Distance , Similar) called

user-defined operators. When you replicate a user-defined operator, you are simply

using replication to distribute the operator to the other master sites that are

involved in the replication environment. After the object is replicated to the other

sites, it operates as if the operator was created locally. No internal trigger or

package monitors the object to capture any changes. Because it is a replicated object,

though, you can still drop or modify it using the replication management API.

See Also: Oracle9i Replication Management API Reference for more

information about creating replicated triggers

See Also: Oracle9i Data Cartridge Developer’s Guide for more

information about extensible indexes
2-28 Oracle9i Advanced Replication

Master Replication Architecture
Alternatives to Replicating Sequences
Because two sequences at different databases can generate the same value,

replicating sequences is not supported.

Three alternatives to replicating sequences guarantee the generation of unique

values and avoid any uniqueness data conflicts. You can retrieve a unique identifier

by executing the following select statement:

SELECT SYS_GUID() OID FROM DUAL;

This SQL operator returns a 16-byte globally unique identifier. This value is based

on an algorithm that uses time and datestamp and machine identifier to generate a

globally unique identifier. The globally unique identifier appears in a format similar

to the following:

4595EF13AB785E73E03400400B40F58B

An alternate solution to using the sys_guid() function is to create a sequence at

each of the master sites and concatenate the site name (or other globally unique

value) with the local sequence. This approach helps you to avoid any potential

duplicate sequence values and helps in preventing insert conflicts as described in

the "Conflict Resolution Concepts" section on page 2-10.

Additionally, you can create a sequence at each of the master sites so that each site

generates a unique value in your replication environment. You can accomplish this

by using a combination of starting, incrementing, and maximum values in the

CREATE SEQUENCE statement. For example, you might configure the following:

Using a similar approach, you can define different ranges for each master site by

specifying a START WITH and MAXVALUE that would produce a unique range for

each site.

See Also: Oracle9i Data Cartridge Developer’s Guide

Parameter Master Site A Master Site B Master Site C

START WITH 1 3 5

INCREMENT BY 10 10 10

Range Example 1, 11, 21, 31, 41,... 3, 13, 23, 33, 43,... 5, 15, 25, 35, 45,...
Master Replication Concepts and Architecture 2-29

Master Replication Architecture
Internal Triggers
Oracle uses internal triggers to capture and store information about updates to

replicated data. Internal triggers build remote procedure calls (RPCs) to reproduce

data changes made to the local site at remote replication sites. These deferred RPCs

are stored in the deferred transaction queue and are propagated to the other master

sites participating in the replication environment. The internal triggers supporting

data replication are essentially components within the Oracle server executable.

Therefore, Oracle can capture and store updates to replicated data very quickly with

minimal use of system resources.

Deferred Transactions
Oracle forwards data replication information by propagating (that is, sending and

executing) the RPCs that are generated by the internal triggers described previously.

These RPCs are stored in the deferred transaction queue. In addition to containing

the execution command for the internal procedure at the destination site, each RPC

also contains the data to be replicated to the target site. Oracle uses distributed

transaction protocols to protect global database integrity automatically and ensure

data survivability.

Internal Procedure
When a deferred RPC created by an internal trigger is propagated to the other

master sites participating in a replication environment, an internal procedure at the

destination site is used to apply the deferred RPC at the remote site. These internal

procedures are activated automatically when you generate replication support for a

table. These internal procedures are executed based on the RPCs that are received

from the deferred transaction queue of the originating site.

Queues
The following queues manage the transactions that are generated by Advanced

Replication:

Deferred Transaction Queue This queue stores the transactions (for example, DML)

that are bound for another destination in the master group. Oracle stores RPCs

produced by the internal triggers in the deferred transaction queue of a site for later

propagation. Oracle also records information about initiating transactions so that all

RPCs from a transaction can be propagated and applied remotely as a transaction.

Oracle’s replication facility implements the deferred transaction queue using

Oracle’s advanced queuing mechanism.
2-30 Oracle9i Advanced Replication

Master Replication Architecture
Error Queue The error queue stores information about deferred transactions that

could not be applied successfully at the local site. The error queue does not display

information about errors at other master sites in the replication environment. When

the error condition has been resolved, you can either reexecute the transaction or

delete the transaction from the error queue.

Job Queue Oracle manages the propagation process using Oracle's job queue
mechanism and deferred transactions. Each server has a local job queue. A server’s

job queue is a database table storing information about local jobs such as the

PL/SQL call to execute for a job, when to run a job, and so on. Typical jobs in a

replication environment include jobs to push deferred transactions to remote master

sites, jobs to purge applied transactions from the deferred transaction queue, and

jobs to refresh materialized view refresh groups.

Administrative Mechanisms
Several mechanisms are required to handle the administrative tasks that are often

performed to support a replication environment. These mechanisms allow you to

turn on and off a replication environment, as well as monitor the administrative

tasks that are generated when you build or modify a replication environment.

Replication Modes of Operation
There are three modes of operation for a replication environment.

Normal A replication environment in the normal mode allows replication to occur.

The replication environment is "running" in this mode. Any transaction against a

replicated object is allowed and is appropriately propagated.

Quiescing Quiescing is the mode that transfers a replication environment from the

normal mode to the quiesced mode. While a replication environment is quiescing,

the user is no longer able to execute a transaction against a replicated object, but any

existing deferred transactions are propagated. Queries against a quiescing table are

allowed. When all deferred transactions have been successfully propagated to their

respective destinations, the replication environment proceeds to the quiesced mode.

Note: When the restricted session is enabled by the SQL statement

ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause,

deferred transactions are not propagated. When the restricted

session is disabled, they are propogated.
Master Replication Concepts and Architecture 2-31

Master Replication Architecture
Quiesced A quiesced replication environment can be considered disabled for normal

replication use and is used primarily for administrative purposes (such as adding

and removing replicated objects). Replication is "stopped" in this mode. A quiesced

state prevents users from executing any transactions against a replicated object in

the quiesced master group unless they turn off replication, which can result in

divergent data after replication is resumed. Transactions include DML against a

replicated table or the execution of a wrapper for a replicated procedure. If master

tables are quiesced, then materialized views based on those master tables cannot

propagate their changes to the target master tables, but local changes to the

materialized view can continue.

A replication environment is quiesced on a master group level. All master sites

participating in the master group are affected. When a master group reaches a

quiesced state, you can be certain that any transactions in the deferred transaction

queue have been successfully propagated to the other master sites or put into the

error queue. Users can still query tables that belong to a quiesced master group.

Quiescing one master group does not affect other master groups. A master group in

normal mode can continue to process updates while other master groups are

quiesced.

Replication Mode Control
Though there are three modes of replication operation, there are only two

mechanisms to control these modes (recall that the quiescing mode is a transition

from a normal to quiesced mode).

Suspend Executing the suspend mechanism begins the quiescing mode that

transfers the mode of replication operation for a master group from normal to

quiesced. When the deferred transaction queue has no unpropagated deferred

transactions for the master group, the replication environment proceeds to the

quiesced mode.

The suspend mechanism can only be executed when the replication environment is

in normal mode. Execute suspend when you need to modify the replication

environment.

Resume The resume mechanism transfers a master group from the quiesced

replication mode to the normal mode. If you have been performing administrative

work on your replication environment (for example, adding replicated objects), then

you should verify that the administrative request queue (DBA_REPCATLOG) is
empty before executing the resume mechanism.
2-32 Oracle9i Advanced Replication

Master Replication Architecture
Administrative Requests
To configure and manage a replication environment, each participating server uses

Oracle’s replication management API. A server’s replication management API is a

set of PL/SQL packages encapsulating procedures and functions administrators can

use to configure Oracle’s replication features. The Replication Management tool also

uses the procedures and functions of each site’s replication management API to

perform work.

An administrative request is a call to a procedure or function in Oracle's replication

management API. For example, when you use the Replication Management tool to

create a new master group, the tool completes the task by making a call to the

DBMS_REPCAT.CREATE_MASTER_REPGROUP procedure. Some administrative

requests generate additional replication management API calls to complete the

request.

The Administrative Request Mechanisms When you use the Replication Management

tool or make a call to a procedure in the DBMS_REPCAT package to administer a

replication system, Oracle uses its internal mechanisms to broadcast the request

synchronously. If a synchronous broadcast fails for any reason, then Oracle returns

an error message and rolls back the encompassing transaction.

When an Oracle server receives an administrative request, it records the request in

the DBA_REPCATLOGview and the corresponding DDL statement in a child table of

the DBA_REPCATLOG view. When you view administrative requests for a master

group at a master site, you might observe requests that are waiting for a callback

from another master site. These requests are called AWAIT_CALLBACK requests.

Master replication activity cannot resume until all of the administrative requests in

the DBA_REPCATLOG view have been applied and any errors resolved.

Whenever you use the Replication Management tool to create an administrative

request for a replication group, Oracle automatically inserts a job into the local job

queue, if one does not already exist for the group. This job periodically executes the

DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN procedure. Whenever you

synchronously broadcast a request, Oracle attempts to start this job immediately in

order to apply the replicated changes at each master site.

Assuming that Oracle does not encounter any errors, DO_DEFERRED_REPCAT_
ADMIN is run whenever a background process is available to execute the job. Oracle

automatically determines how often the background process wakes up. You may

experience a delay if you do not have enough background processes available to

execute the outstanding jobs.
Master Replication Concepts and Architecture 2-33

Master Replication Architecture
For each call of DO_DEFERRED_REPCAT_ADMIN at a master site, the site checks the

DBA_REPCATLOG view to see if there are any requests that need to be performed.

When one or more administrative requests are present, Oracle applies the request

and updates any local views as appropriate. This event can occur asynchronously at

each master site.

DO_DEFERRED_REPCAT_ADMIN executes the local administrative requests in the

proper order. When DO_DEFERRED_REPCAT_ADMIN is executed at a master that is

not the master definition site, it does as much as possible. Some asynchronous

activities, such as populating a replicated table, require communication with the

master definition site. If this communication is not possible, then DO_DEFERRED_
REPCAT_ADMIN stops executing administrative requests to avoid executing

requests out of order. Some communication with the master definition site, such as

the final step of updating or deleting an administrative request at the master

definition site, can be deferred and will not prevent DO_DEFERRED_REPCAT_
ADMIN from executing additional requests.

The success or failure of an administrative request at each master site is noted in the

DBA_REPCATLOG view at each site. For each master group, the Replication

Management tool displays the corresponding status of each administrative request.

Ultimately, each master site propagates the status of its administrative requests to

the master definition site. If a request completes successfully at a master site, then

Oracle removes the callback for the site from the DBA_REPCATLOG view at the

master definition site.

If a request completes successfully at all sites, then all entries in the DBA_
REPCATLOG view at all sites, including the master definition site, are removed. If a

request at a non master definition site fails, then Oracle removes the request at the

master site and updates the corresponding AWAIT_CALLBACKrequest at the master

definition site with ERROR status and the reason for the failure.

Note: When JOB_QUEUE_PROCESSES is set to zero at a site, you

must apply administrative requests manually for all groups at the

site.

See Also: "Initialization Parameters" on page 6-4 and the Oracle9i
Database Reference for information about JOB_QUEUE_PROCESSES
2-34 Oracle9i Advanced Replication

Master Replication Architecture
By synchronously broadcasting the change, Oracle ensures that all sites are aware of

the change, and thus are capable of remaining synchronized. By allowing the

change to be applied at the site at a future point in time, Oracle provides you with

the flexibility to choose the most appropriate time to apply changes at a site.

If an object requires replication support, then you must regenerate replication

support after altering the object. Oracle then activates the internal triggers and

regenerates the packages to support replication of the altered object at all master

sites.

Any materialized view sites that are affected by a DDL change are updated the next

time you perform a refresh of the materialized view site. While all master sites can

communicate with one another, materialized view sites can communicate only with

their associated master site.

If you must alter the shape of a materialized view as the result of a change to its

master, then you must drop and re-create the materialized view.

Administrative Request Queue
Often referred to as the administrative request queue, the DBA_REPCATLOG view

stores administrative requests that manage and modify your replication

environment. Some DBMS_REPCAT procedures that are executed are listed in the

administrative request queue. For example, if you wanted to add an additional

replicated table to an existing master group, then you would see a request naming

the DBMS_REPCAT.CREATE_MASTER_REPOBJECT procedure.

Note: Although the DDL must be successfully applied at the

master definition site in order for these procedures to complete

without error, this does not guarantee that the DDL is successfully

applied at each master site. The Replication Management tool

displays the status of all administrative requests. Additionally, the

DBA_REPCATLOG view contains interim status and any

asynchronous error messages generated by the request.
Master Replication Concepts and Architecture 2-35

Master Replication Architecture
You can view the administrative request queue by querying the DBA_REPCATLOG
view or view the Administrative Requests dialog box in the Replication

Management tool.

Each request has a status that displays the state of the request. Here are the possible

states:

■ READY: The READY state indicates that the request is ready to be executed. If

you monitor the administrative request queue and a request remains in the

READY state for a long time, then a request in front of the ready request may be

waiting for a callback. Typically, administrative requests in the READY state are

waiting for a job to execute them. You can execute them manually by using the

DO_DEFERRED_REPCAT_ADMIN procedure in the DBMS_REPCAT package.

■ AWAIT_CALLBACK: The AWAIT_CALLBACK state indicates that the request is

waiting for a request to be executed at another site and is waiting for

confirmation of the request execution. After the request receives the callback,

the request is either removed or has its status changed. The request is removed

from the queue if it was applied successfully, or its status is changed to ERRORif
it failed. This state is only possible at the master definition site.

■ ERROR: If a request cannot be successfully executed, then it is placed in the

ERROR state. The error number appears in the ERRNUM column and the error

message appears in the MESSAGE column of the administrative request queue

(it is in the Error column when using the Replication Management tool).

■ DO_CALLBACK: If a request at a master site is in the DO_CALLBACK state, then it

means that the master site must inform the master definition site about the

success or failure of the request. This state is only possible at a master site that is

not the master definition site.

The administrative request queue of each master site lists only the administrative

requests to be performed at that master site. The master definition site for a master

group, however, lists administrative requests to be performed at each of the master

sites. The administrative request queue at the master definition site lets the DBA

monitor administrative requests of all the master sites in the replication

environment

Note: If a request is in the ERROR state, then resolve the error

condition as described by the error number and resubmit the

request.
2-36 Oracle9i Advanced Replication

Master Replication Architecture
Organizational Mechanisms
Oracle uses several organizational mechanisms to organize the previously described

master site and administrative mechanisms to create discrete replication groups.

Most notable of these organizational mechanisms is the master group. An

additional organization mechanism helps to group columns that are used to resolve

conflicts for a replicated table.

Master Group
In a replication environment, Oracle manages replication objects using replication
groups. A replication group is a collection of replication objects that are always

updated in a transactionally consistent manner.

By organizing related database objects within a replication group, it is easier to

administer many objects together. Typically, you create and use a replication group

to organize the schema objects necessary to support a particular database

application. That is not to say that replication groups and schemas must correspond

with one another. Objects in a replication group can originate from several database

schemas, and a schema can contain objects that are members of different replication

groups. The restriction is that a replication object can be a member of only one

group.

In a multimaster replication environment, the replication groups are called master
groups. Corresponding master groups at different sites must contain the same set of

replication objects (see "Replication Objects" on page 2-24). Figure 2–4 illustrates

that master group hr_mg contains an exact replica of the replicated objects at each

master site.

Note: When the restricted session is enabled by the SQL statement

ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause,

administrative requests are not executed. When the restricted

session is disabled, they are executed.
Master Replication Concepts and Architecture 2-37

Master Replication Architecture
Figure 2–4 Master Group hr_mg Contains Same Replication Objects at All Sites

The master group organization at the master site plays an integral role in the

organization of replication objects at a materialized view site.

Additionally, Figure 2–5 illustrates that each site may contain multiple replication

groups, though each group must contain exactly the same set of objects at each

master site.

See Also: "Organizational Mechanisms" on page 3-58 for more

information on the organizational mechanisms at a materialized

view site

orc2.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

orc1.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

orc3.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions
2-38 Oracle9i Advanced Replication

Master Replication Architecture
Figure 2–5 Master Groups Are Identical at Each Master Site

Column Groups
Column groups provide the organizational mechanism to group all columns that

are involved in a conflict resolution routine. If a conflict occurs in one of the

columns of the group, then the remainder of the group’s columns may be used to

resolve the conflict. For example, if a column group for a table contains a min_
price , list_price , cost_price , and timestamp field and a conflict arises for

the list_price field, then the timestamp field may be used to resolve the

conflict, assuming that a timestamp conflict resolution routine has been used.

Initially, you might think that you should put all columns in the table into a single

column group. Although this makes setup and administration easier, it may

decrease the performance of your replicated table and may increase the potential for

data conflicts. As you will learn in the "Performance Mechanisms" section, if a

conflict occurs in one column group of a table, then the minimum communication

feature does not send data from other column groups in the table. Therefore,

placing all columns into a single column group may negate the advantages of the

Master Site 1

hr.employees
hr.departments
hr.jobs
hr.job_history
hr.locations
hr.countries
hr.regions

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

Master Site 2

hr.employees
hr.departments
hr.jobs
hr.job_history
hr.locations
hr.countries
hr.regions

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B
Master Replication Concepts and Architecture 2-39

Master Replication Architecture
minimum communication feature, unless you use the SEND_OLD_VALUES and

COMPARE_OLD_VALUES procedures in the DBMS_REPCAT package.

Propagation Mechanism
Propagation is the essence of replication because it is the mechanism that sends or

distributes any actions to all other master sites in the replication environment.

Propagation Types
As the internal trigger captures any DML applied to a replicated table, the DML

must be propagated (or sent) to the other master sites in the replication

environment. Internal triggers are described in the section "Internal Triggers" on

page 2-30.

Advanced Replication supports both asynchronous and synchronous replication.

Asynchronous Typical replication configurations use asynchronous data replication.

Asynchronous data replication occurs when an application updates a local replica

of a table, stores replication information in a local queue, and then forwards the

replication information to other replication sites at a later time. Consequently,

asynchronous data replication is also called store-and-forward data replication.

As Figure 2–6 shows, Oracle uses its internal triggers, deferred transactions,

deferred transaction queues, and job queues to propagate data-level changes

asynchronously among master sites in a replication environment, as well as from an

updatable materialized view to its master table.

See Also: Chapter 5, "Conflict Resolution Concepts and

Architecture" for more information about column groups
2-40 Oracle9i Advanced Replication

Master Replication Architecture
Figure 2–6 Asynchronous Data Replication Mechanisms

Source Database

Store

ACCTNG Replication Group

Destination Database

ACCTNG Replication Group

Error log

Change

Error log

Internal trigger

Internal
procedure

Employees
replicated table

Deferred transaction
queue

Internal trigger

Employees
replicated table

Internal
procedure

Background
process

Forward using Remote Procdure Call

Deferred transaction
queue

Background
process
Master Replication Concepts and Architecture 2-41

Master Replication Architecture
Synchronous Oracle also supports synchronous data propagation for applications

with special requirements. Synchronous data propagation occurs when an

application updates a local replica of a table, and within the same transaction also

updates at least one other replica of the same table. Consequently, synchronous data

replication is also called real-time data replication. Use synchronous replication

only when applications require that replicated sites remain continuously

synchronized.

Figure 2–7 Synchronous Data Replication Mechanisms

As Figure 2–7 shows, Oracle uses the same internal triggers to generate remote

procedure calls (RPCs) that asynchronously replicate data-level changes to other

replication sites to support synchronous, row-level data replication. However,

Oracle does not defer the execution of such RPCs. Instead, data replication RPCs

execute within the boundary of the same transaction that modifies the local replica.

Consequently, a data-level change must be possible at all synchronously linked sites

that manage a replicated table; otherwise, a transaction rollback occurs.

Source Database

ACCTNG Replication Group

Destination Database

ACCTNG Replication Group

error log

Change

error log

internal trigger

internal
procedure

Employees
replicated table

Employees
replicated table

internal
procedure Remote Procedure Call

internal trigger
2-42 Oracle9i Advanced Replication

Master Replication Architecture
Synchronous Data Propagation
As shown in Figure 2–8, whenever an application makes a DML change to a local

replicated table and the replication group is using synchronous row-level

replication, the change is synchronously propagated to the other master sites in the

replication environment using internal triggers. When the application applies a

local change, the internal triggers issue calls to generated procedures at the remote

master sites in the security context of the replication propagator. Oracle ensures that all

distributed transactions either commit or rollback in the event of a failure.

Figure 2–8 Propagating Changes Using Synchronous Row-Level Replication

See Also: Oracle9i Database Administrator’s Guide for more

information about distributed transactions

UPDATE employees SET department_id=20
 WHERE last_name='Jones';

Site A Site B

Employees table

employee_id last_name department_id

100

101
102

Jones

Braun

20

20
20

Kim

Employees table

employee_id last_name department_id

100

101
102

Jones

Braun

20

20
20

Kim

Package

update(oldargs newargs)
 UPDATE employees ...

insert(newargs)
 INSERT INTO employees ...

delete(oldargs)
 DELETE FROM employees ...

if updating
 update@dbs1(oldargs newargs)

if inserting
 insert@dbs1(newargs)

if deleting
 delete@dbs1(oldargs)

Internal Trigger

 update@dbs2(oldargs newargs)

 insert@dbs2(newargs)

 delete@dbs2(oldargs)
Master Replication Concepts and Architecture 2-43

Master Replication Architecture
Restrictions Because of the locking mechanism used by synchronous replication,

deadlocks can occur when the same row is updated at two different sites at the

same time. When an application performs a synchronous update to a replicated

table, Oracle first locks the local row and then uses an AFTER ROWtrigger to lock the

corresponding remote row. Oracle releases the locks when the transaction commits

at each site.

Destination of Synchronously Replicated Transactions The necessary remote procedure

calls to support synchronous replication are included in the internal trigger for each

object. When you generate replication support for a replicated object, Oracle

activates the triggers at all master sites to add the necessary remote procedure calls

for the new site. Conversely, when you remove a master site from a master group,

Oracle removes the calls from the internal triggers.

Conflict Detection If all sites of a master group communicate synchronously with one

another, then applications should never experience replication conflicts. However, if

even one site is sending changes asynchronously to another site, then applications

can experience conflicts at any site in the replication environment.

If the change is being propagated synchronously, then an error is raised and a

rollback is required. If the change is propagated asynchronously, then Oracle

automatically detects the conflicts and either logs the conflict in the error queue or,

if you designate an appropriate resolution method, resolves the conflict.

Note: A replication system that uses real-time propagation of

replication data is highly dependent on system and network

availability because it can function only when all sites in the system

are concurrently available.

See Also: Chapter 5, "Conflict Resolution Concepts and

Architecture"
2-44 Oracle9i Advanced Replication

Master Replication Architecture
Understanding Mixed-Mode Multimaster Systems
In some situations, you might decide to have a mixed-mode environment in which

some master sites propagate a master group’s changes asynchronously and others

propagate changes synchronously. The order in which you add new master sites to

a group with different data propagation modes can be important.

For example, suppose that you have three master sites: A, B, and C. If you first

create site A as the master definition site, and then add site B with a synchronous

propagation mode, then site A sends changes to site B synchronously and site B

sends changes to site A synchronously. There is no need to concern yourself with

the scheduling of links at either site, because neither site is creating deferred

transactions.

Now suppose that you create master site C with an asynchronous propagation

mode. The propagation modes are now as illustrated in Figure 2–9.

Figure 2–9 Selecting a Propagation Mode

You must now schedule propagation of the deferred transaction queue from site A

to site C, from site B to site C, and from site C to sites A and B.

As another example, consider what would happen if you created site A as the

master definition site, then added site C with an asynchronous propagation mode,

then added site B with a synchronous propagation mode. Now the propagation

modes would be as shown in Figure 2–10.

synch synch

asynch

asynch

asynch asynch

Site
A

Site
B

Site
C

Master Replication Concepts and Architecture 2-45

Master Replication Architecture
Figure 2–10 Ordering Considerations

Each time that you add a new master site to a mixed-mode multimaster system,

consider how the addition affects the data propagation modes to and from existing

sites.

Initiating Propagation
When synchronous propagation is used, the propagation of the DML is handled

immediately and is automatically initiated. If asynchronous propagation is used,

then you can use the following methods to propagate the deferred transactions:

■ Scheduled job: In most cases, use a scheduled job to automatically propagate

the deferred transactions at a set interval.

■ Manual propagation: You can also manually propagate the changes by

executing a stored procedure or using the Replication Management tool. You

may occasionally need to manually propagate your deferred transactions if you

do not want to wait for the job queue to automatically propagate the deferred

transactions.

synch synch

synch

synch

asynch asynch

Site
A

Site
B

Site
C

2-46 Oracle9i Advanced Replication

Master Replication Architecture
Performance Mechanisms
As with any enterprise database solution, performance is always an important issue

for the database administrator. Advanced Replication provides several mechanisms

to help increase the performance of your replication environment.

Parallel Propagation
With parallel propagation, Oracle asynchronously propagates replicated

transactions using multiple, parallel transit streams for higher throughput. When

necessary, Oracle orders the execution of dependent transactions to ensure global

database integrity.

Parallel propagation uses the pool of available parallel processes. This is the same

facility Oracle uses for other parallel operations such as parallel query, parallel load,

and parallel recovery. Each server process propagates transactions through a single

stream. A parallel coordinator process controls these server processes. The

coordinator tracks transaction dependencies, allocates work to the server processes,

and tracks their progress.

Parallel processes remain associated with a parallel operation on the server

throughout the execution of that operation. When the operation is complete, those

server processes become available to process other parallel operations. For example,

when Oracle performs a parallel push of the deferred transaction queue to its

destination, all parallel processes used to push the queue remain dedicated to the

push until it is complete.

To configure a pool of parallel processes for a server properly, you must consider

several issues related to the configuration of a replication system.

■ When you configure all scheduled links to use serial propagation, the

replication system does not use parallel processes. Therefore, you do not need

to adjust the size of any server’s pool of parallel processes to account for

replication. Typically, serial propagation is used only for backward

compatibility.
Master Replication Concepts and Architecture 2-47

Master Replication Architecture
■ When you configure one or more scheduled links to use parallel propagation,

you must consider the number of parallel processes that each link uses to push

changes to its destination. Furthermore, you should also consider how long

each push holds parallel servers from being used by other operations. For

example, when you configure a scheduled link for continuous propagation with

a large value for delay seconds, Oracle holds on to the parallel processes used to

push transactions to its destination. Therefore, you should increase the number

of parallel processes for the corresponding database server to ensure that there

is a sufficient number of processes for other parallel operations on the server.

To configure a database server’s pool of parallel query processes, use the following

initialization parameters:

■ PARALLEL_AUTOMATIC_TUNING

■ PARALLEL_MAX_SERVERS

■ PARALLEL_MIN_SERVERS

Implementing Parallel Propagation For most users, setting the parallel propagation

parameter to a value of 1 provides sufficient performance. A setting of 1 enables the

optimized data transfer method discussed in the previous section instead of serial

propagation. However, some users may want to further tune the parallel

propagation value.

The following procedure is the recommended method that should be used to

further tune the parallel propagation value:

1. Set the parallel propagation value to 1.

2. Test your database environment and carefully measure the propagation

throughput.

If you have achieved your performance goals with a parallel propagation value

of 1, then you have implemented parallel propagation, and you do not need to

complete the remaining steps in this procedure.

See Also:

■ "Initialization Parameters" on page 6-4

■ Oracle9i Database Reference

■ Oracle9i Database Migration
2-48 Oracle9i Advanced Replication

Master Replication Architecture
3. If you want to try to achieve greater propagation throughput than with a value

of 1, then set your parallel propagation value to 2.

4. Test your database environment and carefully measure the propagation

throughput.

In many cases, you will experience propagation throughput degradation with a

value of 2. This reduction is due to round-trip delays associated with the

coordinator assigning dependent transactions to available slaves and waiting

for the necessary commit acknowledgments before assigning additional

transactions.

Repeat Steps 3 and 4 with the parallel propagation value set to 4 and again

with 8. If throughput still does not improve, then it suggests that the

transactions in your environment are highly dependent on each other. Reduce

the parallel propagation value to 1 and proceed to Step 5.

If your performance did improve with a value of 2, 4, or 8, then it suggests that

your transactions have a low degree of interdependence. You may even set your

parallel propagation parameter to any value greater than 8. Just be sure to

thoroughly test your environment and remain aware of the trade-offs between

increased parallelism and the necessary resources to support those extra

parallel slaves.

5. Set parallel propagation to the value that offers the best performance in your

environment based on your testing.

Note: As you increase the value of the parallel propagation

parameter, be aware of the trade-offs between increased parallel

propagation and the resources required to support the extra

parallel slaves.

See Also: "Tuning Parallel Propagation" on page 2-50 to learn

about techniques to reduce transaction dependencies
Master Replication Concepts and Architecture 2-49

Master Replication Architecture
Tuning Parallel Propagation To gain the greatest amount of performance benefits from

parallel propagation, reduce the amount of dependent transactions that are created.

Remember that a transaction cannot start until all of its dependent transactions

have been committed.

When trying to reduce the number of dependent transactions:

■ Use smaller transactions if possible (that is, commit more often, without

destroying autonomy).

■ Increase number of freelists for each table that receives inserts.

■ Try to avoid hotspots (a row that is frequently modified - if the same row is

touched, then those transactions are serialized). For example, use an Oracle

sequence instead of using a counter in a row and incrementing it "manually."

■ Consider using row-level dependency tracking.

Minimum Communication
To increase the replication performance for tables, be sure to enable the minimum

communication setting when generating replication support for a replicated table.

To detect and resolve an update conflict for a row, the propagating site must send a

certain amount of data about the new and old versions of the row to the receiving

site. Depending on your environment, the amount of data that Oracle propagates to

support update conflict detection and resolution can vary.

For example, when you create a replicated table and all participating sites are

databases using Oracle release 8.0 or greater, you can choose to minimize the

amount of data that must be communicated to detect conflicts for each changed row

in the table. In this case, Oracle propagates:

■ The primary key value and the old value of each column in each modified

column group (the value before the modification).

■ The new value of each updated column.

See Also: "Use of Row-Level Dependency Tracking to Improve

Parallelism" on page 2-55

Note: For an inserted row, the row has no old value. For a deleted

row, the row has no new value.
2-50 Oracle9i Advanced Replication

Master Replication Architecture
In general, you should choose to minimize data propagation in Oracle release 8.0 or

greater replication environments to reduce the amount of data that Oracle transmits

across the network. As a result, you can help to improve overall system

performance.

Alternatively, when a replication environment uses both Oracle7 and release 8.0 or

greater sites, you cannot minimize the communication of row data for update

conflict detection. In this case, Oracle must propagate the entire old and new

versions of each changed row to perform conflict detection.

Delay Seconds
Though not directly a performance mechanism, properly configuring the delay_
seconds parameter can give you greater control over the timing of your

propagation of deferred transactions.

When you are pushing deferred transactions, you set the delay_seconds
parameter in the SCHEDULE_PUSH procedure or the PUSH function. When you are

purging deferred transactions, you set the delay_seconds parameter in the

SCHEDULE_PURGE procedure or the PURGE function. These procedures and

functions are in the DBMS_DEFER_SYS package.

The delay_seconds parameter controls how long a job remains aware of the

deferred transaction queue. The effects of the delay_seconds parameter can best

be illustrated with the following two examples:

delay_seconds = 0 (default)
If a scheduled job with a 60 minute interval wakes up at 2:30 pm and checks the

deferred transaction queue, then any existing deferred transactions are propagated.

The propagation takes 2 minutes and therefore the job is complete at 2:32 pm.

If a deferred transaction enters the queue at 2:34 pm, then the deferred transaction

is not propagated because the job is complete. In this scenario, the deferred

transaction will be propagated at 3:30 pm.

See Also: "Performance Mechanisms and Conflict Resolution" on

page 5-40 for more information about conflict resolution, minimum

communication, and additional conflict resolution performance

techniques
Master Replication Concepts and Architecture 2-51

Master Replication Architecture
delay_seconds = 300
If a scheduled job with a 60 minute interval wakes up at 2:30 pm and checks the

deferred transaction queue, then any existing deferred transactions are propagated.

The propagation takes 2 minutes and therefore the job is complete at 2:32 pm.

If a deferred transaction enters the queue at 2:34 pm, then the deferred transaction

is propagated because the job remains aware of the deferred transaction queue for

300 seconds (5 minutes) after the job has completed propagating whatever was in

the queue. In this scenario, the deferred transaction is propagated at 2:34 pm.

Why not just set the job to execute more often? Starting and stopping the job has a

greater amount of overhead than starting the job and keeping it aware for a set

period of time. In addition to decreasing the overhead associated with starting and

stopping these jobs, using the delay_seconds parameter can reduce the amount

of redo logging required to support scheduled jobs.

As with most performance features, there is a point of diminishing returns. Keep

the length of the delay_seconds parameter in check for the following reasons:

■ Parallel Propagation: Each parallel process that is used when pushing the

deferred transaction queue is not available for other parallel activities until the

propagation job is complete. A long delay_seconds value may keep the

parallel process unavailable for other operations. To use parallel propagation,

you set the parallelism parameter to 1 or higher in the SCHEDULE_PUSH
procedure or the PUSH function.

■ Serial Propagation: If you are using serial propagation (not parallel

propagation), then the delay_seconds value causes the open session to

"sleep" for the entire length of the delay, providing none of the benefits earlier

described. To use serial propagation, you set the parallelism parameter to 0

(zero) in the SCHEDULE_PUSH procedure or the PUSH function.

■ Precise Purge: If you specify the purge_method_precise method when

using the DBMS_DEFER_SYS.PURGE procedure and you have defined a large

delay_seconds value, then you may experience performance degradation

when performing the specified purge. Using purge_method_precise is more

expensive than the alternative (purge_method_quick), but it ensures that the

deferred transactions and procedure calls are purged after they have been

successfully pushed.

As a general rule of thumb, there are few viewable benefits of setting the delay_
seconds parameter to a value greater than 20 minutes (which is 1200 seconds for

the parameter setting).
2-52 Oracle9i Advanced Replication

Master Replication Architecture
Additionally, if you are using serial propagation by setting the parallelism
parameter to 0, then you probably do not want to set a large delay_seconds
value. Unlike parallel propagation, serial propagation only checks the queue after

the duration of the delay_seconds value has elapsed. If you use serial

propagation and set delay_seconds to 20 minutes, then the scheduled job will

sleep for the entire 20 minutes, and any deferred transactions that enter the deferred

transaction queue during that time are not pushed until 20 minutes have elapsed.

Therefore, if you are using serial propagation, then consider setting delay_
seconds to a value of 60 seconds or lower.

If you set a value of 20 minutes for parallel propagation, then the parallel push

checks once a minute. If you can afford this resource lock, then the relatively high

delay_seconds value of 20 minutes is probably most efficient in your

environment. If, however, you cannot afford this resource lock, then consider setting

the delay_seconds value to 10 or 20 seconds. Although you will need to execute

the jobs more often than if the value was set to 1200 seconds, you still gain many of

the benefits of the delay_seconds feature (versus the default value of 0 seconds).

Replication Protection Mechanisms
In a multimaster replication environment, Oracle ensures that transactions

propagated to remote sites are never lost and never propagated more than once,

even when failures occur. Oracle protects transactions in the following ways:

■ Multiple procedure calls submitted within a single local transaction are

executed within a transaction remotely.

■ If the network or remote database fails during propagation, then the transaction

is rolled back at the remote site and the transaction remains in the local queue at

the originating site until the remote database becomes accessible again and the

transaction can be successfully propagated.

■ A transaction is not removed from the queue at the local site until it is

successfully propagated and applied to all of its destination sites. Even after the

transaction is successfully propagated to all destination sites, it remains in the

queue until the purge job removes it.
Master Replication Concepts and Architecture 2-53

Master Replication Architecture
In the case of parallel propagation, replication uses a special-purpose distributed

transaction protocol optimized for propagation. The remote site keeps track of the

transactions that have been propagated successfully and sends this information

back to the local site when it is requested. The local site records this information and

purges the entries in its local queue that have been propagated to all destination

sites. In case of failures, the local site asks the remote site for information on the

transactions that have been propagated successfully so that propagation can

continue at the appropriate point.

Data Propagation Dependency Maintenance
Oracle maintains dependency ordering when propagating replicated transactions to

remote sites. For example, consider the following transactions:

1. Transaction A cancels an order.

2. Transaction B sees the cancellation and processes a refund.

Transaction B depends on transaction A because transaction B sees the committed

update cancelling the order (transaction A) on the local system.

Oracle propagates transaction B (the refund) after it successfully propagates

transaction A (the order cancellation). Oracle applies the updates that process the

refund after it applies the cancellation.

Note: Successful propagation does not necessarily imply

successful application of the transaction at the remote site. Errors

such as unresolvable conflicts or running out of storage space can

cause the transaction to result in an error, which is logged at the

remote site as an error transaction.

See Also:

■ "Parallel Propagation" on page 2-47

■ The Replication Management tool online help for more

information about viewing and managing error transactions

with the Replication Management tool
2-54 Oracle9i Advanced Replication

Master Replication Architecture
Parallel Propagation Dependency Tracking When Oracle executes a new transaction on

the local system, Oracle completes the following process:

1. Oracle records the system change number (SCN) of the most recent transaction

that updates data that is seen by the new transaction as the dependent SCN.

You can record the SCN either at the data block level or at the row level, as

discussed later in this chapter.

2. Oracle ensures that transactions with SCNs less than or equal to the dependent

SCN propagate successfully to the remote system.

3. Oracle propagates the waiting, dependent transaction.

Parallel propagation maintains data integrity in a manner different from that of

serial propagation. With serial propagation, Oracle applies all transactions in the

same order that they commit on the local system to maintain any dependencies.

With parallel propagation, Oracle tracks dependencies and executes them in

commit order when dependencies can exist and in parallel when dependencies

cannot exist. With both serial and parallel propagation, Oracle preserves the order

of execution within a transaction. The deferred transaction executes every remote

procedure call at each site in the same order as it was executed within the local

transaction.

Use of Row-Level Dependency Tracking to Improve Parallelism When you create a table,

you can specify the following options for tracking system change numbers (SCN)s:

■ NOROWDEPENDENCIES, the default, specifies that the SCN is tracked at the data

block level.

■ ROWDEPENDENCIES specifies that the SCN is tracked for each row in the table.

Note: When there are no possible dependencies between

transactions, Oracle propagates transactions in parallel.

Note: A single coordinator process exists for each database link to

a remote site. Each database link to the same remote site requires a

different connection qualifier.

See Also: "Connection Qualifiers" on page 2-22
Master Replication Concepts and Architecture 2-55

Master Replication Architecture
When you use the NOROWDEPENDENCIES clause for a table, the data block SCN

tracks the most recent update of a row that is stored in the data block. Other rows

that were updated earlier may be stored in the same data block, but information

about when these rows were updated is lost when a new SCN is applied at the data

block level.

When you use the ROWDEPENDENCIES clause for a table, multiple SCNs can be

stored in a single data block. That is, a separate SCN tracks changes for each row

that is stored in the data block. If two rows that are stored in the same data block are

changed by different transactions, then each row has an SCN that tracks the change.

To track the SCN at the row level, each row in the table uses an additional six bytes

of storage space.

Using the ROWDEPENDENCIES clause for a table enables parallel propagation to

track dependencies and order changes more efficiently when applying the deferred

transaction queue. This increased efficiency improves performance and provides

greater scalability in replication environments.

You can use the following query to list the tables that are using the

ROWDEPENDENCIES clause currently:

SELECT OWNER, TABLE_NAME FROM DBA_TABLES
 WHERE DEPENDENCIES = 'ENABLED';

Minimize Transaction Dependencies to Improve Parallelism If you did not use the

ROWDEPENDENCIES clause for some of your replicated tables, then you can

improve the performance of parallel propagation for these tables by minimizing

transaction dependencies.

In this case, certain application conditions can establish dependencies among

transactions that force Oracle to serialize the propagation of deferred transactions.

When several unrelated transactions modify the same data block in a replicated

table, Oracle serializes the propagation of the corresponding transactions to remote

destinations.

Note: Replication sites must have a compatibility level of 9.0.1 or

higher to use the ROWDEPENDENCIES clause. The compatibility

level is controlled by the COMPATIBLE initialization parameter.

See Also: "Row-Level Dependency Tracking" on page 6-4 for

information about creating a table using the ROWDEPENDENCIES
clause
2-56 Oracle9i Advanced Replication

Master Replication Architecture
To minimize transaction dependencies created at the data block level, avoid

situations that concentrate data block modifications into one or a small number of

data blocks. For example, when a replicated table experiences a high degree of

INSERT activity, you can distribute the storage of new rows into multiple data

blocks by creating multiple free lists for the table.

If possible, avoid situations where many transactions all update the same small

table. For example, a poorly designed application might employ a small table that

transactions read and update to simulate sequence number generation for a

primary key. This design forces all transactions to update the same data block. A

better solution is to create a sequence and cache sequence numbers to optimize

primary key generation and improve parallel propagation performance.

Conflict Resolution Mechanisms
The receiving master site in a replication environment detects update, uniqueness,

and delete conflicts as follows:

■ The receiving site detects an update conflict if there is any difference between

the old values of the replicated row, which are the values before the

modification, and the current values of the same row at the receiving site in

either the primary key columns or the columns in an updated column group.

■ The receiving site detects a uniqueness conflict if a uniqueness constraint

violation occurs during an INSERT or UPDATE of a replicated row.

■ The receiving site detects a delete conflict if it cannot find a row for an UPDATE
or DELETE statement because the primary key of the row does not exist.

Note: To detect and resolve an update conflict for a row, the

propagating site must send a certain amount of data about the new

and old versions of the row to the receiving site. For maximum

performance, tune the amount of data that Oracle uses to support

update conflict detection and resolution. For more information, see

"Minimum Communication" on page 5-40.
Master Replication Concepts and Architecture 2-57

Master Replication Architecture
Row Identification During Conflict Detection
To detect replication conflicts accurately, Oracle must be able to uniquely identify

and match corresponding rows at different sites during data replication. Typically,

Oracle’s replication facility uses the primary key of a table to uniquely identify rows

in the table. When a table does not have a primary key, you must designate an

alternate key—a column or set of columns that Oracle can use to uniquely identify

rows in the table during data replication.

Resolution of Data Conflicts
Oracle provides a mechanism that enables you to define a conflict resolution

method that resolves a data conflict when detected. Oracle provides several prebuilt

conflict resolution methods:

■ Latest and Earliest Timestamp

■ Overwrite and Discard

■ Maximum and Minimum

■ Additive and Average

■ Timestamp

■ Priority Group

■ Site Priority

If the prebuilt Oracle conflict resolution methods do not meet the needs of your

replication environment, then you have the option of writing your own conflict

resolution method using PL/SQL and implementing it as a user-defined conflict

resolution method. See Chapter 5, "Conflict Resolution Concepts and Architecture"

to learn how conflict resolution works.

Caution: Do not permit applications to update the primary key or

alternate key columns of a table. This ensures that Oracle can

identify rows and preserve the integrity of replicated data.

See Also: The online help for the Replication Management tool to

learn how to implement conflict resolution with the Replication

Management tool, and see the Oracle9i Replication Management API
Reference to learn how to implement conflict resolution using the

replication management API.
2-58 Oracle9i Advanced Replication

Materialized View Concepts and Archite
3

Materialized View Concepts and

Architecture

This chapter explains the concepts and architecture of Oracle materialized views.

This chapter contains these topics:

■ Materialized View Concepts

■ Materialized View Architecture
cture 3-1

Materialized View Concepts
Materialized View Concepts
Oracle uses materialized views (also known as snapshots in prior releases) to

replicate data to non-master sites in a replication environment and to cache

expensive queries in a data warehouse environment. This chapter, and this Oracle9i
Replication manual in general, discusses materialized views for use in a replication

environment.

What is a Materialized View?
A materialized view is a replica of a target master from a single point in time. The

master can be either a master table at a master site or a master materialized view at

a materialized view site. Whereas in multimaster replication tables are continuously

updated by other master sites, materialized views are updated from one or more

masters through individual batch updates, known as a refreshes, from a single

master site or master materialized view site, as illustrated in Figure 3–1. The arrows

in Figure 3–1 represent database links.

Figure 3–1 Materialized View Connected to a Single Master Site

When a materialized view is fast refreshed, Oracle must examine all of the changes

to the master table or master materialized view since the last refresh to see if any

See Also: Oracle9i Data Warehousing Guide to learn more about

materialized views for data warehousing

orc1.world orc2.world

mv1.world orc3.world

Materialized
View
Site

Master
Site

Master
Site

Master
Site
3-2 Oracle9i Advanced Replication

Materialized View Concepts
apply to the materialized view. Therefore, if any changes where made to the master

since the last refresh, then a materialized view refresh takes some time to apply the

changes to the materialized view. If, however, no changes at all were made to the

master since the last refresh of a materialized view, then the materialized view

refresh should be very quick.

Why Use Materialized Views?
You can use materialized views to achieve one or more of the following goals:

■ Ease Network Loads

■ Create a Mass Deployment Environment

■ Enable Data Subsetting

■ Enable Disconnected Computing

Ease Network Loads
If one of your goals is to reduce network loads, then you can use materialized views

to distribute your corporate database to regional sites. Instead of the entire

company accessing a single database server, user load is distributed across multiple

database servers. Through the use of multitier materialized views, you can create

materialized views based on other materialized views, which enables you to

distribute user load to an even greater extent because clients can access materialized

view sites instead of master sites. To decrease the amount of data that is replicated,

a materialized view can be a subset of a master table or master materialized view.

While multimaster replication also distributes a corporate database among multiple

sites, the networking requirements for multimaster replication are greater than

those for replicating with materialized views because of the transaction by

transaction nature of multimaster replication. Further, the ability of multimaster

replication to provide real-time or near real-time replication may result in greater

network traffic, and might require a dedicated network link.

Materialized views are updated through an efficient batch process from a single

master site or master materialized view site. They have lower network requirements

and dependencies than multimaster replication because of the point in time nature

of materialized view replication. Whereas multimaster replication requires constant

communication over the network, materialized view replication requires only

periodic refreshes.

In addition to not requiring a dedicated network connection, replicating data with

materialized views increases data availability by providing local access to the target
Materialized View Concepts and Architecture 3-3

Materialized View Concepts
data. These benefits, combined with mass deployment and data subsetting (both of

which also reduce network loads), greatly enhance the performance and reliability

of your replicated database.

Create a Mass Deployment Environment
Deployment templates allow you to precreate a materialized view environment

locally. You can then use deployment templates to quickly and easily deploy

materialized view environments to support sales force automation and other mass

deployment environments. Parameters allow you to create custom data sets for

individual users without changing the deployment template. This technology

enables you to roll out a database infrastructure to hundreds or thousands of users.

Enable Data Subsetting
Materialized views allow you to replicate data based on column- and row-level

subsetting, while multimaster replication requires replication of the entire table.

Data subsetting enables you to replicate information that pertains only to a

particular site. For example, if you have a regional sales office, then you might

replicate only the data that is needed in that region, thereby cutting down on

unnecessary network traffic.

Enable Disconnected Computing
Materialized views do not require a dedicated network connection. Though you

have the option of automating the refresh process by scheduling a job, you can

manually refresh your materialized view on-demand, which is an ideal solution for

sales applications running on a laptop. For example, a developer can integrate the

replication management API for refresh on-demand into the sales application.

When the salesperson has completed the day’s orders, the salesperson simply dials

up the network and uses the integrated mechanism to refresh the database, thus

transferring the orders to the main office.

Read-Only, Updatable, and Writeable Materialized Views
A materialized view can be either read-only, updatable, or writeable. Users cannot

perform data manipulation language (DML) statements on read-only materialized

views, but they can perform DML on updatable and writeable materialized views.

Note: For read-only, updatable, and writeable materialized views,

the defining query of the materialized view must reference all of

the primary key columns in the master.
3-4 Oracle9i Advanced Replication

Materialized View Concepts
Read-Only Materialized Views
You can make a materialized view read-only during creation by omitting the FOR
UPDATE clause or disabling the equivalent option in the Replication Management

tool. Read-only materialized views use many of the same mechanisms as updatable

materialized views, except that they do not need to belong to a materialized view

group.

In addition, using read-only materialized views eliminates the possibility of a

materialized view introducing data conflicts at the master site or master

materialized view site, although this convenience means that updates cannot be

made at the remote materialized view site. The following is an example of a

read-only materialized view:

CREATE MATERIALIZED VIEW hr.employees AS
 SELECT * FROM hr.employees@orc1.world;

Updatable Materialized Views
You can make a materialized view updatable during creation by including the FOR
UPDATE clause or enabling the equivalent option in the Replication Management

tool. For changes made to an updatable materialized view to be pushed back to the

master during refresh, the updatable materialized view must belong to a

materialized view group.

Updatable materialized views enable you to decrease the load on master sites

because users can make changes to the data at the materialized view site. The

following is an example of an updatable materialized view:

CREATE MATERIALIZED VIEW hr.departments FOR UPDATE AS
 SELECT * FROM hr.departments@orc1.world;

The following statement creates a materialized view group:

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.world',

See Also:

■ "Materialized View Replication" on page 1-8 for an introduction

to read-only and updatable materialized views

■ "Datatype Considerations" on page 6-2 for information about

datatype considerations for materialized views
Materialized View Concepts and Architecture 3-5

Materialized View Concepts
 propagation_mode => 'ASYNCHRONOUS');
END;
/

The following statement adds the hr.departments materialized view to the

materialized view group, making the materialized view updatable:

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

You can also use the Replication Management tool to create a materialized view

group and add a materialized view to it.

Writeable Materialized Views
A writeable materialized view is one that is created using the FOR UPDATE clause

but is not part of a materialized view group. Users can perform DML operations on

Note:

■ Do not use column aliases when you are creating an updatable

materialized view. Column aliases cause an error when you

attempt to add the materialized view to a materialized view

group using the CREATE_MVIEW_REPOBJECT procedure.

■ An updatable materialized view based on a master table or

master materialized view that has defined column default

values does not automatically use the master’s default values.

■ Updatable materialized views do not support the DELETE
CASCADE constraint.

See Also:

■ "Materialized View Groups" on page 3-59 for more information

■ Oracle9i SQL Reference for more information about column

aliases
3-6 Oracle9i Advanced Replication

Materialized View Concepts
a writeable materialized view, but if you refresh the materialized view, then these

changes are not pushed back to the master and the changes are lost in the

materialized view itself. Writeable materialized views are typically allowed

wherever fast-refreshable read-only materialized views are allowed.

Available Materialized Views
Oracle offers several types of materialized views to meet the needs of many

different replication (and non-replication) situations. The following sections

describe each type of materialized view and also describe some environments for

which they are best suited.

The following sections contain examples of creating different types of materialized

views:

■ Primary Key Materialized Views

■ Object Materialized Views

■ ROWID Materialized Views

■ Complex Materialized Views

Whenever you create a materialized view, regardless of its type, always specify the

schema name of the table owner in the query for the materialized view. For

example, consider the following CREATE MATERIALIZED VIEW statement:

CREATE MATERIALIZED VIEW hr.employees
 AS SELECT * FROM hr.employees@orc1.world;

Here, the schema hr is specified in the query.

Primary Key Materialized Views
Primary key materialized views are the default type of materialized view. They are

updatable if the materialized view was created as part of a materialized view group

and FOR UPDATE was specified when defining the materialized view. An updatable

materialized view must belong to a materialized view group that has the same

name as the replication group at its master site or master materialized view site. In

Note: Most of the documentation about materialized views only

refers to read-only and updatable materialized views because

writeable materialized views are rarely used.
Materialized View Concepts and Architecture 3-7

Materialized View Concepts
addition, an updatable materialized view must reside in a different database than

the master replication group.

Changes are propagated according to the row-level changes that have occurred, as

identified by the primary key value of the row (not the ROWID). The following is an

example of a SQL statement for creating an updatable, primary key materialized

view:

CREATE MATERIALIZED VIEW oe.customers FOR UPDATE AS
 SELECT * FROM oe.customers@orc1.world;

Primary key materialized views may contain a subquery so that you can create a

subset of rows at the remote materialized view site. A subquery is a query

imbedded within the primary query, so that you have more than one SELECT
statement in the CREATE MATERIALIZED VIEWstatement. This subquery may be as

simple as a basic WHEREclause or as complex as a multilevel WHERE EXISTSclause.

Primary key materialized views that contain a selected class of subqueries can still

be incrementally (or fast) refreshed, if each master referenced has a materialized

view log. A fast refresh uses materialized view logs to update only the rows that

have changed since the last refresh.

The following materialized view is created with a WHERE clause containing a

subquery:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.world o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.world c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 10000);

This type of materialized view is called a subquery materialized view.

Note: To create this oe.orders materialized view, credit_
limit must be logged in the master’s materialized view log. See

"Logging Columns in the Materialized View Log" on page 6-17 for

more information.
3-8 Oracle9i Advanced Replication

Materialized View Concepts
Object Materialized Views
If a materialized view is based on an object table and is created using the OFtype
clause, then the materialized view is called an object materialized view. An object

materialized view is structured in the same way as an object table. That is, an object

materialized view is composed of row objects, and each row object is identified by

an object identifier (OID) column.

ROWID Materialized Views
For backward compatibility, Oracle supports ROWID materialized views in addition

to the default primary key materialized views. A ROWID materialized view is based

on the physical row identifiers (rowids) of the rows in a master. ROWIDmaterialized

views should be used only for materialized views based on master tables from an

Oracle7 database, and should not be used when creating new materialized views

based on masters from Oracle8 or higher databases.

The following is an example of a CREATE MATERIALIZED VIEW statement that

creates a ROWID materialized view:

CREATE MATERIALIZED VIEW oe.orders REFRESH WITH ROWID AS
 SELECT * FROM oe.orders@orc1.world;

See Also:

■ "Materialized View Groups" on page 3-59 for more information

about materialized view groups

■ "Materialized Views with Subqueries" on page 3-18 for more

information about materialized views with subqueries

■ "Refresh Types" on page 3-64 for more information about fast

refresh

■ "Materialized View Log" on page 3-52 for more information

about materialized view logs

■ Oracle9i SQL Reference for more information about subqueries

See Also: "Materialized Views Based on Object Tables" on

page 3-40

See Also: "Materialized View Log" on page 3-52 for more

information on the differences between a ROWID and Primary Key

materialized view
Materialized View Concepts and Architecture 3-9

Materialized View Concepts
Complex Materialized Views
To be fast refreshed, the defining query for a materialized view must observe certain

restrictions. If you require a materialized view whose defining query is more

general and cannot observe the restrictions, then the materialized view is complex

and cannot be fast refreshed.

Specifically, a materialized view is considered complex when the defining query of

the materialized view contains:

■ A CONNECT BY clause

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.emp_hierarchy AS
 SELECT LPAD(' ', 4*(LEVEL-1))||email USERNAME
 FROM hr.employees@orc1.world START WITH manager_id IS NULL
 CONNECT BY PRIOR employee_id = manager_id;

■ An INTERSECT, MINUS, or UNION ALL set operation

For example, the following statement creates a complex materialized view

because it has a UNION ALL set operation:

CREATE MATERIALIZED VIEW hr.mview_employees AS
 SELECT employees.employee_id, employees.email
 FROM hr.employees@orc1.world
UNION ALL
 SELECT new_employees.employee_id, new_employees.email
 FROM hr.new_employees@orc1.world;

■ In some cases, the DISTINCT or UNIQUE keyword, although it is possible to

have the DISTINCT or UNIQUE keyword in the defining query and still have a

simple materialized view

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.employee_depts AS
 SELECT DISTINCT department_id FROM hr.employees@orc1.world
 ORDER BY department_id;

■ An aggregate function

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.average_sal AS
 SELECT AVG(salary) "Average" FROM hr.employees@orc1.world;
3-10 Oracle9i Advanced Replication

Materialized View Concepts
■ Joins other than those in a subquery

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.emp_join_dep AS
 SELECT last_name
 FROM hr.employees@orc1.world e, hr.departments@orc1.world d
 WHERE e.department_id = d.department_id;

■ In some cases, a UNION operation. Specifically, a materialized view with a

UNION operation is complex if any one of these conditions is true:

– Any query within the UNION is complex. The previous bullet items specify

when a query makes a materialized view complex.

– The outermost SELECT list columns do not match for the queries in the

UNION. In the following example, the first query only has order_total in

the outermost SELECTlist while the second query has customer_id in the

outermost SELECT list. Therefore, the materialized view is complex.

CREATE MATERIALIZED VIEW oe.orders AS
 SELECT order_total
 FROM oe.orders@orc1.world o
 WHERE EXISTS
 (SELECT cust_first_name, cust_last_name
 FROM oe.customers@orc1.world c
 WHERE o.customer_id = c.customer_id
 AND c.credit_limit > 50)
UNION
 SELECT customer_id
 FROM oe.orders@orc1.world o
 WHERE EXISTS
 (SELECT cust_first_name, cust_last_name
 FROM oe.customers@orc1.world c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

The innermost SELECT list has no bearing on whether a materialized view

is complex. In the previous example, the innermost SELECT list is cust_
first_name and cust_last_name for both queries in the UNION.

■ Clauses that do not comply with the requirements detailed in "Restrictions for

Materialized Views with Subqueries" on page 3-26.
Materialized View Concepts and Architecture 3-11

Materialized View Concepts
A Comparison of Simple and Complex Materialized Views For certain applications, you

may want to consider using a complex materialized view. Figure 3–2 and the

following text discuss some issues that you should consider.

See Also:

■ Oracle9i Data Warehousing Guide for more information about

materialized views with aggregate functions and complex

materialized views

■ Oracle9i SQL Reference for more information about the CONNECT
BY clause, set operations, the DISTINCT keyword, and

aggregate functions

Note: If possible, you should avoid using complex materialized

views because they cannot be fast refreshed, which may degrade

network performance (see "Refresh Process" on page 3-64 for

information).
3-12 Oracle9i Advanced Replication

Materialized View Concepts
Figure 3–2 Comparison of Simple and Complex Materialized Views

■ Complex Materialized View: Method A in Figure 3–2 shows a complex

materialized view. The materialized view in Database II exhibits efficient query

performance because the join operation was completed during the materialized

view’s refresh. However, complete refreshes must be performed because the

materialized view is complex, and these refreshes will probably be slower than

fast refreshes.

■ Simple Materialized Views with a Joined View: Method B in Figure 3–2 shows

two simple materialized views in Database II, as well as a view that performs

the join in the materialized view’s database. Query performance against the

view would not be as good as the query performance against the complex

materialized view in Method A. However, the simple materialized views can be

refreshed more efficiently using fast refresh and materialized view logs.

employees
Table

departments
Table

employees
Table

departments
Table

MLOG$_
employees

MLOG$_
departments

M
eth

o
d

 B

M
eth

o
d

 A

employees
Materialized

View
emp_dept View

SELECT ...
FROM employees e, departments d
WHERE e.department_id =

d.department_id

emp_dept Materialized View

SELECT ...
FROM emp_dept

Faster query
performance

Acceptable query
performance

Database I Database II

departments
Materialized

View

Slower
complete
refreshes

Quicker
fast

refreshes

Quicker
fast

refreshes

SELECT ...
FROM hr.employees@ny e, hr.department@ny d
WHERE e.department_id = d.department_id
Materialized View Concepts and Architecture 3-13

Materialized View Concepts
In summary, to decide which method to use:

■ If you refresh rarely and want faster query performance, then use Method A

(complex materialized view).

■ If you refresh regularly and can sacrifice query performance, then use Method B

(simple materialized view).

Required Privileges for Materialized View Operations
Three distinct types of users perform operations on materialized views:

■ Creator: the user who creates the materialized view

■ Refresher: the user who refreshes the materialized view

■ Owner: the user who owns the materialized view. The materialized view

resides in this user’s schema.

One user may perform all of these operations on a particular materialized view.

However, in some replication environments, different users perform these

operations on a particular materialized view. The privileges required to perform

these operations depend on whether the same user performs them or different users

perform them. The following sections explain the privileges requirements in detail.

Creator Is Owner
If the creator of a materialized view also owns the materialized view, this user must

have the following privileges to create a materialized view, granted either explicitly

or through a role:

■ CREATE MATERIALIZED VIEW or CREATE ANY MATERIALIZED VIEW

■ CREATE TABLE or CREATE ANY TABLE

■ CREATE VIEW or CREATE ANY VIEW if the compatibility level of the database is

lower than 8.1.0

Note: The following sections do not cover the requirements

necessary to create materialized views with query rewrite enabled.

See the Oracle9i SQL Reference for information.

See Also: The following sections discuss database links. See the

Oracle9i Database Administrator’s Guide for more information about

using database links.
3-14 Oracle9i Advanced Replication

Materialized View Concepts
■ SELECT object privilege on the master and the master’s materialized view log

or SELECT ANY TABLE system privilege. If the master site or master

materialized view site is remote, then the SELECT object privilege must be

granted to the user at the master site or master materialized view site to which

the user at the materialized view site connects through a database link.

If the owner of materialized view at the materialized view site has a private

database link to the master site or master materialized view site, then the

database link connects to the owner of the master at the master site or master

materialized view site. Otherwise, the normal rules for connections through

database links apply.

Creator Is Not Owner
If the creator of a materialized view is not the owner, certain privileges must be

granted to the creator and to the owner to create a materialized view. The creator’s

privileges can be granted explicitly or through a role, but the owner’s privileges

must be granted explicitly. That is, the privileges granted to the owner cannot be

granted through a role.

Table 3–1 shows the required privileges when the creator of the materialized view is

not the owner.
Materialized View Concepts and Architecture 3-15

Materialized View Concepts
Refresher Is Owner
If the refresher of a materialized view also owns the materialized view, this user

must have SELECT object privilege on the master and the master’s materialized

view log or SELECT ANY TABLE system privilege. If the master site or master

materialized view site is remote, then the SELECT object privilege must be granted

to the user at the master site or master materialized view site to which the user at

the materialized view site connects through a database link. This privilege can be

granted either explicitly or through a role.

If the owner of materialized view at the materialized view site has a private

database link to the master site or master materialized view site, then the database

link connects to the owner of the master at the master site or master materialized

view site. Otherwise, the normal rules for connections through database links apply.

Table 3–1 Required Privileges for Creating Materialized Views (Creator != Owner)

Creator Owner

CREATE ANY MATERIALIZED VIEW CREATE TABLE or CREATE ANY TABLE

CREATE VIEW or CREATE ANY VIEW if the
compatibility level of the database is lower
than 8.1.0

SELECT object privilege on the master and
the master’s materialized view log or
SELECT ANY TABLE system privilege. If the
master site or master materialized view site
is remote, then the SELECT object privilege
must be granted to the user at the master site
or master materialized view site to which the
user at the materialized view site connects
through a database link.

If the owner of materialized view at the
materialized view site has a private database
link to the master site or master materialized
view site, then the database link connects to
the owner of the master at the master site or
master materialized view site. Otherwise, the
normal rules for connections through
database links apply.

Note: These privileges for the owner must be
granted to the user explicitly, not through a
role.
3-16 Oracle9i Advanced Replication

Materialized View Concepts
Refresher Is Not Owner
If the refresher of a materialized view is not the owner, certain privileges must be

granted to the refresher and to the owner. These privileges can be granted either

explicitly or through a role.

Table 3–2 shows the required privileges when the refresher of the materialized view

is not the owner.

Data Subsetting with Materialized Views
In certain situations, you may want your materialized view to reflect a subset of the

data in the master table or master materialized view. Row subsetting enables you to

include only the rows that are needed from the master in the materialized views by

using a WHERE clause. Column subsetting enables you to include only the columns

that are needed from the master in the materialized views. You do this by specifying

certain select columns in the SELECT statement during materialized view creation.

If you use deployment templates to build your materialized views, then you can

define column subsets on updatable materialized views.

Some reasons to use data subsetting are to:

■ Reduce Network Traffic: In a column-subsetted materialized view, only

changes that satisfy the WHERE clause of the materialized view’s defining query

Table 3–2 Required Privileges for Refreshing Materialized Views (Refresher != Owner)

Refresher Owner

ALTER ANY MATERIALIZED VIEW If the master site or master materialized view
site is local, then SELECT object privilege on
the master and master’s materialized view
log or SELECT ANY TABLE system privilege.

If the master site or master materialized view
site is remote, then the SELECT object
privilege must be granted to the user at the
master site or master materialized view site
to which the user at the materialized view
site connects through a database link. If the
owner of materialized view at the
materialized view site has a private database
link to the master site or master materialized
view site, then the database link connects to
the owner of the master at the master site or
master materialized view site. Otherwise, the
normal rules for connections through
database links apply.
Materialized View Concepts and Architecture 3-17

Materialized View Concepts
are propagated to the materialized view site, thereby reducing the amount of

data transferred and reducing network traffic.

■ Secure Sensitive Data: Users can only view data that satisfies the defining

query for the materialized view.

■ Reduce Resource Requirements: If the materialized view is located on a

laptop, then hard disks are generally significantly smaller than the hard disks

on a corporate server. Subsetted materialized views may require significantly

less storage space.

■ Improve Refresh Times: Because less data is propagated to the materialized

view site, the refresh process is faster, which is essential for those who need to

refresh materialized views using a dial up network connection from a laptop.

For example, the following statement creates a materialized view based on the

oe.orders@orc1.world master table and includes only the rows for the sales

representative with a sales_rep_id number of 173 :

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.world
 WHERE sales_rep_id = 173;

Rows of the orders table with a sales_rep_id number other than 173 are

excluded from this materialized view.

Materialized Views with Subqueries
The previous example works well for individual materialized views that do not

have any referential constraints to other materialized views. But, if you want to

replicate data based on the information in more than one table, then maintaining

and defining these materialized views may be difficult. The following sections

provide examples of situations where a subquery is useful.

Many to One Subqueries Consider a scenario where you have the customers table

and orders table in the oe schema, and you want to create a materialized view of

the orders table based on data in both the orders table and the customers table.

For example, suppose a salesperson wants to see all of the orders for the customers

with a credit limit greater than $10,000. In this case, the CREATE MATERIALIZED

Note: The following sections discuss row subsetting through the

use of subqueries. For more information about column subsetting,

see "Column Subsetting with Deployment Templates" on page 4-20.
3-18 Oracle9i Advanced Replication

Materialized View Concepts
VIEW statement that creates the orders materialized view has a subquery with a

many to one relationship, because there can be many orders for each customer.

Look at the relationships in Figure 3–3, and notice that the customers and orders
tables are related through the customer_id column. The following statement

satisfies the original goal of the salesperson. That is, the following statement creates

a materialized view that contains orders for customers whose credit limit is greater

than $10,000:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.orders@orc1.world o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.world c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 10000);

Figure 3–3 Row Subsetting with Many to One Subqueries

As you can see, the materialized view created by this statement is fast refreshable

and updatable. If new customers are identified that have a credit limit greater than

$10,000, then the new data will be propagated to the materialized view site during

the subsequent refresh process. Similarly, if a customer’s credit limit drops to less

than $10,000, then the customer’s data will be removed from the materialized view

during the subsequent refresh process.

Note: To create this oe.orders materialized view, credit_
limit must be logged in the master’s materialized view log. See

"Logging Columns in the Materialized View Log" on page 6-17 for

more information.

orders Master Table

order_id customer_id . . .

.

.

.

.

.

.

4865
4886
4865
5420
5420
.

900
901
902
903
904
.

Primary Key

customers Master Table

customer_id credit_limit . . .

.

.

.

.

.

50000
7500
12000
35000
.

4865
4872
4886
5420
.

Primary Key

customer_id
Materialized View Concepts and Architecture 3-19

Materialized View Concepts
One to Many Subqueries Consider a scenario where you have the customers table

and orders table in the oe schema, and you want to create a materialized view of

the customers table based on data in both the customers table and the orders
table. For example, suppose a salesperson wants to see all of the customers who

have an order with an order total greater than $20,000, then the most efficient

method is to create a materialized view with a one to many subquery in the

defining query of a materialized view.

Here, the defining query in the CREATE MATERIALIZED VIEW statement on the

customers table has a subquery with a one to many relationship. That is, one

customer can have many orders.

Look at the relationships in Figure 3–4, and notice that the orders table and

customers table are related through the customer_id column. The following

statement satisfies the original goal of the salesperson. That is, this statement creates

a materialized view that contains customers who have an order with an order total

greater than $20,000:

CREATE MATERIALIZED VIEW oe.customers REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.customers@orc1.world c
 WHERE EXISTS
 (SELECT * FROM oe.orders@orc1.world o
 WHERE c.customer_id = o.customer_id AND o.order_total > 20000);

Note: To create this oe.customers materialized view,

customer_id and order_total must be logged in the

materialized view log for the orders table. See "Logging Columns

in the Materialized View Log" on page 6-17 for more information.
3-20 Oracle9i Advanced Replication

Materialized View Concepts
Figure 3–4 Row Subsetting with One to Many Subqueries

The materialized view created by this statement is fast refreshable and updatable. If

new customers are identified that have an order total greater than $20,000, then the

new data will be propagated to the materialized view site during the subsequent

refresh process. Similarly, if a customer cancels an order with an order total greater

than $20,000 and has no other order totals greater than $20,000, then the customer’s

data will be removed from the materialized view during the subsequent refresh

process.

Many to Many Subqueries Consider a scenario where you have the order_items
table and inventories table in the oe schema, and you want to create a

materialized view of the inventories table based on data in both the

inventories table and the order_items table. For example, suppose a

salesperson wants to see all of the inventories with a quantity on hand greater than

0 (zero) for each product whose product_id is in the order_items table. In other

words, the salesperson wants to see the inventories that are greater than zero for all

of the products that customers have ordered. Here, an inventory is a certain

quantity of a product at a particular warehouse. So, a certain product can be in

many order items and in many inventories.

Note: The materialized view site must have a compatibility level

of 9.0.1 or higher because fast refresh of materialized views with

one to many subqueries was not supported prior to release 9.0.1 of

Oracle. The compatibility level is controlled by the COMPATIBLE
initialization parameter.

customers Master Table

customer_id . . .

.

.

.

.

.

4225
4226
4227
4228
.

Primary Key

orders Master Table

order_id customer_id order_total

12229
25650
48239
32155
16000
.

. . .

.

.

.

.

.

4227
4228
4225
4227
4226
.

800
801
802
803
804
.

Primary Key

customer_id
Materialized View Concepts and Architecture 3-21

Materialized View Concepts
To accomplish the salesperson’s goal, you can create a materialized view with a

subquery on the many to many relationship between the order_items table and

the inventories table.

When you create the inventories materialized view, you want to retrieve the

inventories with the quantity on hand greater than zero for the products that appear

in the order_items table. Look at the relationships in Figure 3–5, and note that the

inventories table and order_items table are related through the product_id
column. The following statement creates the materialized view:

CREATE MATERIALIZED VIEW oe.inventories REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.inventories@orc1.world i
 WHERE i.quantity_on_hand > 0 AND EXISTS
 (SELECT * FROM oe.order_items@orc1.world o
 WHERE i.product_id = o.product_id);

Figure 3–5 Row Subsetting with Many to Many Subqueries

The materialized view created by this statement is fast refreshable and updatable. If

new inventories that are greater than zero are identified for products in the order_
items table, then the new data will be propagated to the materialized view site

Note: To create this oe.inventories materialized view, the

product_id column in the order_items table must be logged in

the master’s materialized view log. See "Logging Columns in the

Materialized View Log" on page 6-17 for more information.

inventories Master Table

product_id warehouse_id quantity_on_hand

0
500
250
79
122
0
.

7
9
5
7
8
2
.

3391
3345
3391
3402
3402
3345
.

order_items Master Table

order_id line_item_id product_id

3402
3391
3345
.

. . .

.

.

.

.

100
1005
1252
.

700
701
702
.

Primary Key

product_id

Primary Key
3-22 Oracle9i Advanced Replication

Materialized View Concepts
during the subsequent refresh process. Similarly, if a customer cancels an order for a

product and there are no other orders for the product in the order_items table,

then the inventories for the product will be removed from the materialized view

during the subsequent refresh process.

Materialized Views with Subqueries and Unions In situations where you want a single

materialized view to contain data that matches the complete results of two or more

different queries, you can use the UNION operator. When you use the UNION
operator to create a materialized view, you have two SELECT statements around

each UNION operator, one is above it and one is below it. The resulting materialized

view contains rows selected by either query.

You can use the UNION operator as a way to create fast refreshable materialized

views that satisfy "or" conditions without using the OR expression in the WHERE
clause of a subquery. Under some conditions, using an OR expression in the WHERE
clause of a subquery causes the resulting materialized view to be complex, and

therefore not fast refreshable.

For example, suppose a salesperson wants the product information for the products

in a particular category_id that are either in a warehouse in California or contain

the word "Rouge" in their translated product descriptions (for the French

translation). The following statement uses the UNION operator and subqueries to

capture this data in a materialized view for products in category_id 29:

CREATE MATERIALIZED VIEW oe.product_information REFRESH FAST FOR UPDATE AS
 SELECT * FROM product_information@orc1.world pi
 WHERE pi.category_id = 29 AND EXISTS
 (SELECT * FROM product_descriptions@orc1.world pd

WHERE pi.product_id = pd.product_id AND translated_description LIKE '%Rouge%')
UNION
 SELECT * FROM product_information@orc1.world pi

Note: The materialized view site must have a compatibility level

of 9.0.1 or higher because fast refresh of materialized views with

many to many subqueries was not supported prior to release 9.0.1

of Oracle. The compatibility level is controlled by the COMPATIBLE
initialization parameter.

See Also: "Restrictions for Materialized Views with Subqueries"

on page 3-26 for more information about the OR expressions in

subqueries
Materialized View Concepts and Architecture 3-23

Materialized View Concepts
 WHERE pi.category_id = 29 AND EXISTS
 (SELECT * FROM oe.inventories@orc1.world i
 WHERE pi.product_id = i.product_id AND EXISTS
 (SELECT * FROM oe.warehouses@orc1.world w
 WHERE i.warehouse_id = w.warehouse_id AND EXISTS
 (SELECT * FROM hr.locations@orc1.world l
 WHERE w.location_id = l.location_id
 AND l.state_province = 'California')));

Figure 3–6 shows the relationships of the master tables involved in this statement.

Note: To create the oe.product_information materialized

view, translated_description in the product_
descriptions table and state_province in the locations
table must be logged in each master’s materialized view log. See

"Logging Columns in the Materialized View Log" on page 6-17 for

more information.
3-24 Oracle9i Advanced Replication

Materialized View Concepts
Figure 3–6 Row Subsetting with Subqueries and Unions

product_id

product_information Master Table

product_id category_id . . .

.

.

.

.

.

28
28
29
29
.

3159
3161
3163
3165
.

Primary Key

union

inventories Master Table

product_id warehouse_id . . .

.

.

.

.

.

4
5
7
1
.

3161
3161
3163
3163
.

product_descriptions Master Table

product_id translated_description . . .

.

.

.

.

.

language_id

F
F
F
F
.

.

.

.

.

.

3159
3161
3163
3165
.

Primary Key Primary Key
warehouse_id

warehouses Master Table

warehouse_id location_id . . .

.

.

.

1500
2900
.

1
2
.

Primary Key

locations Master Table

location_id state_province . . .

.

.

.

California
New Jersey
.

1500
1600
.

Primary Key

product_id

product_information Master Table

product_id category_id . . .

.

.

.

.

.

28
28
29
29
.

3159
3161
3163
3165
.

Primary Key

location_id
Materialized View Concepts and Architecture 3-25

Materialized View Concepts
In addition to the UNION operation, this statement contains the following

subqueries:

■ A subquery referencing the product_information table and the product_
descriptions table. This subquery is one to many because one product can

have multiple product descriptions (for different languages).

■ A subquery referencing the product_information table and the

inventories table. This subquery is one to many because a product can be in

many inventories.

■ A subquery referencing the inventories table and the warehouses table.

This subquery is many to one because many inventories can be stored in one

warehouse.

■ A subquery referencing the warehouses table and the locations table. This

subquery is many to one because many warehouses can be in one location.

The materialized view created by this statement is fast refreshable and updatable. If

a new product is added that is stored in a warehouse in California or that has the

string "Rouge" in the translated product description, then the new data will be

propagated to the product_information materialized view during the

subsequent refresh process.

Restrictions for Materialized Views with Subqueries
The defining query of a materialized view with a subquery is subject to several

restrictions to preserve the materialized view’s fast refresh capability.

The following are restrictions for fast refresh materialized views with subqueries:

■ Materialized views must be primary key materialized views.

■ The master’s materialized view log must include certain columns referenced in

the subquery. For information about which columns must be included, see

"Logging Columns in the Materialized View Log" on page 6-17.

Note: The materialized view site must have a compatibility level

of 9.0.1 or higher because fast refresh of materialized views with a

UNION operator was not supported prior to release 9.0.1 of Oracle.

Also, fast refresh of materialized views with many to one

subqueries requires 9.0.1 or higher compatibility. The compatibility

level is controlled by the COMPATIBLE initialization parameter.
3-26 Oracle9i Advanced Replication

Materialized View Concepts
■ If the subquery is many to many or one to many, join columns that are not part

of a primary key must be included in the materialized view log of the master.

This restriction does not apply to many to one subqueries.

■ The subquery must be a positive subquery. For example, you can use EXISTS,

but not NOT EXISTS.

■ The subquery must use EXISTS to connect each nested level (IN is not

allowed).

■ Each table can be in only one EXISTS expression.

■ The join expression must use exact match or equality comparisons (that is,

equi-joins).

■ Each table can be joined only once within the subquery.

■ A primary key must exist for each table at each nested level.

■ Each nested level can only reference the table in the level above it.

■ Subqueries can include ANDoperators, but each ORoperator may only reference

columns contained within one row. Multiple OR operators within a subquery

can be connected with an AND operator.

■ All tables referenced in a subquery must reside in the same master site or

master materialized view site.

Restrictions for Materialized Views with Unions Containing Subqueries
The following are restrictions for fast refresh materialized views with unions

containing subqueries:

Note: If the CREATE MATERIALIZED VIEW statement includes an

ON PREBUILT TABLE clause and a subquery, then the subquery is

treated as many to many. Therefore, in this case, the join columns

must be recorded in the materialized view log. See the Oracle9i SQL
Reference for more information about the ON PREBUILT TABLE
clause in the CREATE MATERIALIZED VIEW statement.

See Also: "Primary Key Materialized Views" on page 3-7 for more

information about primary key materialized views
Materialized View Concepts and Architecture 3-27

Materialized View Concepts
■ All of the restrictions described in the previous section, "Restrictions for

Materialized Views with Subqueries" on page 3-26, apply to the subqueries in

each union block.

■ All join columns must be included in the materialized view log of the master,

even if the subquery is many to one.

■ All of the restrictions described in the previous section, "Complex Materialized

Views" on page 3-10, for clauses with UNIONS.

Examples of Materialized Views with Unions Containing Subqueries The following

statement creates the oe.orders materialized view. This materialized view is fast

refreshable because the subquery in each union block satisfies the restrictions for

subqueries described in "Restrictions for Materialized Views with Subqueries" on

page 3-26.

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.world o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.world c
 WHERE o.customer_id = c.customer_id
 AND c.credit_limit > 50)
UNION
 SELECT *
 FROM oe.orders@orc1.world o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.world c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

Notice that one of the restrictions for subqueries states that each table can be in only

one EXISTS expression. Here, the customers table appears in two EXISTS
expressions, but the EXISTS expressions are in separate UNION blocks. Because the

restrictions described in "Restrictions for Materialized Views with Subqueries" on

page 3-26 only apply to each UNION block, not to the entire CREATE
MATERIALIZED VIEW statement, the materialized view is fast refreshable.

In contrast, the materialized view created with the following statement cannot be

fast refreshed because the orders table is referenced in two different EXISTS
expressions within the same UNION block:

CREATE MATERIALIZED VIEW oe.orders AS
 SELECT * FROM oe.orders@orc1.world o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.world c
3-28 Oracle9i Advanced Replication

Materialized View Concepts
 WHERE o.customer_id = c.customer_id -- first reference to orders table
 AND c.credit_limit > 50
 AND EXISTS
 (SELECT * FROM oe.orders@orc1.world o
 WHERE order_total > 5000
 AND o.customer_id = c.customer_id)) -- second reference to orders table
UNION
 SELECT *
 FROM oe.orders@orc1.world o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.world c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

Determining the Fast Refresh Capabilities of a Materialized View
To determine whether a materialized view’s subquery satisfies the restrictions

detailed in the previous section, create the materialized view with fast refresh.

Oracle returns errors if the materialized view violates any restrictions for subquery

materialized views. If you specify force refresh, then you may not receive any errors

because, when a force refresh is requested, Oracle automatically performs a

complete refresh if it cannot perform a fast refresh.

You can also use the EXPLAIN_MVIEW procedure in the DBMS_MVIEW package to

determine the following information about an existing materialized view or a

proposed materialized view that does not yet exist:

■ The capabilities of a materialized view

■ Whether each capability is possible

■ If a capability is not possible, why it is not possible

This information can be stored in a varray or in the MV_CAPABILITIES_TABLE . If

you want to store the information in the table, then, before you run the EXPLAIN_
MVIEW procedure, you must build this table by running the utlxmv.sql script in

the Oracle_home/rdbms/admin directory.

For example, to determine the capabilities of the oe.orders materialized view,

enter:

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('oe.orders');

Or, if the materialized view does not yet exist, then you can supply the query that

you want to use to create it:
Materialized View Concepts and Architecture 3-29

Materialized View Concepts
BEGIN
 DBMS_MVIEW.EXPLAIN_MVIEW ('SELECT * FROM oe.orders@orc1.world o
 WHERE EXISTS (SELECT * FROM oe.customers@orc1.world c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 500)');
END;
/

Query the MV_CAPABILITIES_TABLE to see the results.

Multitier Materialized Views
The ability to create materialized views that are based on other materialized views

enables you to create multitier materialized views. Materialized views that are

based on other materialized views can be read-only or updatable. The arrows in

Figure 3–7 represent database links.

Figure 3–7 Multitier Materialized Views

When you are using multitier materialized views, the materialized view based on a

master table is called a level 1 materialized view. Then, a materialized view based

on the level 1 materialized view is called a level 2 materialized view. Next is level 3

and so on. Figure 3–8 shows these levels.

See Also: Oracle9i Data Warehousing Guide for more information

about the EXPLAIN_MVIEW procedure

orc1.world orc2.world

mv1.worldmv2.world orc3.world

Materialized
View
Site

Materialized
View
Site

Master
Site

Master
Site

Master
Site
3-30 Oracle9i Advanced Replication

Materialized View Concepts
Figure 3–8 Levels of Materialized Views

A materialized view that is acting as the master for another materialized view is

called a master materialized view. A materialized view at any level can be a master

materialized view, and, as you can see in Figure 3–8, a master materialized view can

have more than one materialized view based on it. In Figure 3–8, two level 2

materialized views are based on one level 1 materialized view. Figure 3–9 illustrates

an example that shows a master materialized view at level 1 (orders_1) and

level 2 (orders_2).

Materialized View

Materialized View

Materialized View

Materialized View

Materialized View

Materialized View

Materialized View

Master Table

Level 1

Level 2

Level 3
Materialized View Concepts and Architecture 3-31

Materialized View Concepts
Figure 3–9 Master Materialized Views

The master for the level 1 materialized view orders_1 is the master table orders
at the master site, but, starting with level 2, each materialized view has a master

orders Master Table
order_id order_date . . .

.

.

.

.

16-AUG-99
19-NOV-99
02-OCT-99
.

2458
2397
2454
.

orders_1 Materialized View
order_id order_date . . .

.

.

.

.

16-AUG-99
19-NOV-99
02-OCT-99
.

2458
2397
2454
.

Level 1 materialized view is
master of orders_2

orders_2 Materialized View
order_id order_date . . .

.

.

.

.

16-AUG-99
19-NOV-99
02-OCT-99
.

2458
2397
2454
.

Level 2 materialized view is
master of orders_3

orders_3 Materialized View
order_id order_date . . .

.

.

.

.

16-AUG-99
19-NOV-99
02-OCT-99
.

2458
2397
2454
.

Level 3 materialized view
that is not a master
3-32 Oracle9i Advanced Replication

Materialized View Concepts
materialized view at the level above it. For example, the master for the level 2

materialized view orders_2 is the level 1 materialized view orders_1 .

A master materialized view functions the same way a master table does at a master

site. That is, changes pushed from a level 2 materialized view to a level 1

materialized view are handled in exactly the same way that changes pushed from a

level 1 materialized view to a master table are handled.

A receiver must be registered at a master materialized view site. The receiver is

responsible for receiving and applying the deferred transactions from the

propagator at multitier materialized view sites that are based on the master

materialized view.

Multitier materialized views offer greater flexibility in the design of a replication

environment. Some materialized view sites may not need to replicate all of the data

in master tables, and, in fact, these sites may not have the storage capacity for all of

the data. In addition, replicating less data means that there is less activity on the

network.

Multitier materialized views are ideal for organizations that are structured on three

or more levels or constrained by limited network resources. For example, consider a

company with international, national, and local offices. This company has many

computers at both the national and local level that replicate data. Here, the

replication environment can be configured with the master site at the international

headquarters and with materialized views at the national level. These materialized

views at the national level only replicate the subset of data from the master tables

that apply to their respective countries. Now, using multitier materialized views,

another level of materialized views at the local level can be based on the

materialized views at the national level. The materialized views at the local level

contain the subset of data from the level 1 materialized views that apply to their

local customers.

Scenario for Using Multitier Materialized Views
Consider a multinational company that maintains all employee information at

headquarters, which is in the in the United States. The company uses the tables in

the hr schema to maintain the employee information. This company has one main

office in 14 countries and many regional offices for cities in these countries.

For example, the company has one main office for all of the United Kingdom, but it

also has an office in the city of London. The United Kingdom office maintains

employee information for all of the employees in the United Kingdom, while the

See Also: "Receiver" on page 2-19
Materialized View Concepts and Architecture 3-33

Materialized View Concepts
London office only maintains employee information for the employees at the

London office. In this scenario, the hr.employees master table is at headquarters

in the United States and each regional office has a an hr.employees materialized

view that only contains the necessary employee information.

The following statement creates the hr.employees materialized view for the

United Kingdom office. The statement queries the master table in the database at

headquarters, which is orc1.world . Notice that the statement uses subqueries so

that the materialized view only contains employees whose country_id is UK.

CREATE MATERIALIZED VIEW hr.employees REFRESH FAST FOR UPDATE AS
 SELECT * FROM hr.employees@orc1.world e
 WHERE EXISTS
 (SELECT * FROM hr.departments@orc1.world d
 WHERE e.department_id = d.department_id
 AND EXISTS
 (SELECT * FROM hr.locations@orc1.world l
 WHERE l.country_id = 'UK'
 AND d.location_id = l.location_id));

The following statement creates the hr.employees materialized view for the

London office based on the level 1 materialized view at the United Kingdom office.

The statement queries the materialized view in the database at the United Kingdom

office, which is reg_uk.world . Notice that the statement uses subqueries so that

the materialized view only contains employees whose city is London .

CREATE MATERIALIZED VIEW hr.employees REFRESH FAST FOR UPDATE AS
 SELECT * FROM hr.employees@reg_uk.world e
 WHERE EXISTS
 (SELECT * FROM hr.departments@reg_uk.world d
 WHERE e.department_id = d.department_id

Note: To create this hr.employees materialized view, the

following columns must be logged:

■ The department_id column must be logged in the

materialized view log for the hr.employees master table at

orc1.world .

■ The country_id must be logged in the materialized view log

for the hr.locations master table at orc1.world .

See "Logging Columns in the Materialized View Log" on page 6-17

for more information.
3-34 Oracle9i Advanced Replication

Materialized View Concepts
 AND EXISTS
 (SELECT * FROM hr.locations@reg_uk.world l
 WHERE l.city = 'London'
 AND d.location_id = l.location_id));

Restrictions for Using Multitier Materialized Views
Both master materialized views and materialized views based on materialized

views must:

■ Be primary key materialized views

■ Reside in a database that is at 9.0.1 or higher compatibility level

Additional Restrictions for Master Materialized Views The following types of materialized

views cannot be masters for updatable materialized views:

■ ROWID materialized views

■ Complex materialized views

■ Read-only materialized views

However, these types of materialized views can be masters for read-only

materialized views.

Note: To create this hr.employees materialized view, the

following columns must be logged:

■ The department_id column must be logged in the

materialized view log for the hr.employees master

materialized view at reg_uk.world .

■ The country_id must be logged in the materialized view log

for the hr.locations master materialized view at reg_
uk.world .

See "Logging Columns in the Materialized View Log" on page 6-17

for more information.

Note: The COMPATIBLE initialization parameter controls a

database’s compatibility level.
Materialized View Concepts and Architecture 3-35

Materialized View Concepts
Additional Restrictions for Updatable Materialized Views Based on Materialized Views
Updatable materialized views based on materialized views must:

■ Belong to a materialized view group that has the same name as the materialized

view group at its master materialized view site

■ Reside in a different database than the materialized view group at its master

materialized view site

■ Be based on another updatable materialized view or other updatable

materialized views, not on a read-only materialized view

■ Be based on a materialized view in a materialized view group that is owned by

PUBLIC at the master materialized view site.

Materialized Views with User-Defined Types
Oracle object types are user-defined datatypes that make it possible to model

complex real-world entities such as customers and orders as single entities, called

objects, in the database. You create object types using the CREATE TYPE ... AS
OBJECT statement. You can replicate object types and objects between master sites

and materialized view sites in a replication environment.

An Oracle object that occupies a single column in a table is called a column object.
Typically, tables that contain column objects also contain other columns, which may

be built-in datatypes, such as VARCHAR2 and NUMBER. An object table is a special

kind of table in which each row represents an object. Each row in an object table is a

row object.

You can also replicate collections. Collections are user-defined datatypes that are

based on VARRAY and nested table datatypes. You create varrays with the CREATE
TYPE ... AS VARRAY statement, and you create nested tables with the CREATE
TYPE ... AS TABLE statement.
3-36 Oracle9i Advanced Replication

Materialized View Concepts
Type Agreement at Replication Sites
User-defined types include all types created using the CREATE TYPE statement,

including object, nested table, VARRAY, and indextype. To replicate schema objects

based on user-defined types, the user-defined types themselves must exist, and

must be exactly the same, at all replication sites. In addition, Oracle Corporation

recommends that you add a user-defined type to the replication group in which it is

used, but doing so is not required.

When replicating user-defined types and the schema objects on which they are

based, the following conditions apply:

■ The user-defined types replicated at the master site and materialized view site

must be created at the materialized view site before you create any materialized

views that depend on these types.

■ All of the masters on which a materialized view is based must be at the same

master site to create a materialized view with user-defined types.

■ A user-defined type must be exactly the same at all replication sites:

– All replication sites must have the same object identifier (OID), schema

owner, and type name for each replicated user-defined type.

Note:

■ Both the master site and the materialized view site must have a

compatibility level of 9.0.1 or higher to replicate user-defined

types and any objects on which they are based. The

compatibility level is controlled by the COMPATIBLE
initialization parameter.

■ You cannot create refresh-on-commit materialized views based

on a master with user-defined types. Refresh-on-commit

materialized views are those created using the ON COMMIT
REFRESH clause in the CREATE MATERIALIZED VIEW
statement.

■ Advanced Replication does not support type inheritance.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for detailed information about user-defined types, Oracle

objects, and collections. This section assumes a basic understanding

of the information in that book.
Materialized View Concepts and Architecture 3-37

Materialized View Concepts
– If the user-defined type is an object type, then all replication sites must

agree on the order and datatype of the attributes in the object type. You

establish the order and datatypes of the attributes when you create the

object type. For example, consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all replication sites, street_address must be the first attribute for this

type and must be VARCHAR2(40), postal_code must be the second

attribute and must be VARCHAR2(10), city must be the third attribute

and must be VARCHAR2(30), and so on.

– All replication sites must agree on the hashcode of the user-defined type.

Oracle examines a user-defined type and assigns the hashcode. This

examination includes the type attributes, order of attributes, and type

name. When all of these items are the same for two or more types, the types

have the same hashcode. You can view the hashcode for a type by querying

the DBA_TYPE_VERSIONS data dictionary view.

To ensure that a user-defined type is exactly the same at all replication sites, you

must create the user-defined type at the materialized view site in one of the

following ways:

■ Use the Replication Management API

■ Use a CREATE TYPE Statement

Use the Replication Management API Oracle Corporation recommends that you use the

replication management API to create, modify, or drop any replicated object at a

materialized view site, including user-defined types. If you do not use the

replication management API for these actions, then replication errors may result.

Specifically, to create a user-defined type that is exactly the same at the master site

and the materialized view site, use the CREATE_MVIEW_REPOBJECT procedure in

the DBMS_REPCAT package. This procedure creates the type and adds it to a

materialized view group. To drop a user-defined type from the materialized view

site, use the DROP_MVIEW_REPOBJECT procedure in the DBMS_REPCAT package.

See Also: Oracle9i Replication Management API Reference
3-38 Oracle9i Advanced Replication

Materialized View Concepts
Use a CREATE TYPE Statement You can use a CREATE TYPE statement at the

materialized view site to create the type. It may be necessary to do this if you want

to create a read-only materialized view that uses the type, and you do not want to

add the read-only materialized view to a materialized view group.

If you choose this option, then you must ensure the following:

■ The type is in the same schema at both the materialized view site and the

master site.

■ The type has exactly the same attributes in exactly the same order at both the

materialized view site and the master site.

■ The type has exactly the same datatype for each attribute at both the

materialized view site and the master site.

■ The type has the same object identifier at both the materialized view site and

the master site.

You can find the object identifier for a type by querying the DBA_TYPES data

dictionary view. For example, to find the object identifier (OID) for the cust_
address_typ , enter the following query:

SELECT TYPE_OID FROM DBA_TYPES WHERE TYPE_NAME = 'CUST_ADDRESS_TYP';

TYPE_OID

6F9BC33653681B7CE03400400B40A607

Now that you know the OID for the type at the master site, complete the following

steps to create the type at the materialized view site:

1. Log in to the materialized view site as the user who owns the type at the master

site. If this user does not exist at the materialized view site, then create the user.

2. Issue the CREATE TYPE statement and specify the OID:

CREATE TYPE oe.cust_address_typ OID '6F9BC33653681B7CE03400400B40A607'
 AS OBJECT (
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

The type is now ready for use at the materialized view site.
Materialized View Concepts and Architecture 3-39

Materialized View Concepts
Column Subsetting of Masters with Column Objects
A read-only materialized view can replicate specific attributes of a column object

without replicating other attributes. For example, using the cust_address_typ
user-defined datatype described in the previous section, suppose a customers
master table is created at master site orc1.world :

CREATE TABLE oe.customers (
 customer_id NUMBER(6),

 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address cust_address_typ);

You can create the following read-only materialized view at a remote materialized

view site:

CREATE MATERIALIZED VIEW oe.customers_mv1 AS
 SELECT customer_id, cust_last_name, c.cust_address.postal_code
 FROM oe.customers@orc1.world c;

Notice that the postal_code attribute is specified in the cust_address column

object.

An updatable materialized view must replicate the entire column object. It cannot

replicate some attributes of a column object but not others. The following statement

is valid because it specifies the entire cust_address column object:

CREATE MATERIALIZED VIEW oe.customers_mv1 FOR UPDATE AS
 SELECT customer_id, cust_last_name, cust_address
 FROM oe.customers@orc1.world;

Materialized Views Based on Object Tables
If a materialized view is based on an object table and is created using the OFtype
clause, then the materialized view is called an object materialized view. An object

materialized view is structured in the same way as an object table. That is, an object

materialized view is composed of row objects. If a materialized view that is based

on an object table is created without using the OFtype clause, then the materialized

view is read-only and is not an object materialized view. That is, such a materialized

view has regular rows, not row objects.

See Also: "Column Subsetting with Deployment Templates" on

page 4-20 for more information about column subsetting with

deployment templates. Column subsetting is supported only

through the use of deployment templates.
3-40 Oracle9i Advanced Replication

Materialized View Concepts
To create a materialized view based on an object table, the types on which the

materialized view depends must exist at the materialized view site, and each type

must have the same object identifier as it does at the master site.

Creation of Object Materialized Views Using the OF type Clause After the required types

are created at the materialized view site, you can create an object materialized view

by specifying the OFtype clause.

For example, suppose the following SQL statements create the categories_tab
object table at the orc1.world master site:

CREATE TYPE category_typ AS OBJECT
 (category_name VARCHAR2(50),
 category_description VARCHAR2(1000),
 category_id NUMBER(2))
NOT FINAL;
/

CREATE TABLE categories_tab OF category_typ
 (category_id PRIMARY KEY);

If you want to create materialized views that can be fast refreshed based on the

categories_tab master table, then create a materialized view log for this table:

CREATE MATERIALIZED VIEW LOG ON categories_tab WITH OBJECT ID;

The WITH OBJECT IDclause is required when you create a materialized view log on

an object table.

After you create the category_typ type at the materialized view site, you can

create an object materialized view based on the categories_tab object table

using the OFtype clause, as in the following SQL statement:

CREATE MATERIALIZED VIEW categories_objmv OF category_typ
 REFRESH FAST FOR UPDATE
 AS SELECT * FROM categories_tab@orc1.world;

Here, type is category_typ .

Note: The types must be exactly the same at the materialized view

site and master site. See "Type Agreement at Replication Sites" on

page 3-37 for more information.
Materialized View Concepts and Architecture 3-41

Materialized View Concepts
Materialized Views Based on Object Tables Created Without Using the OF type Clause If you

create a materialized view based on an object table without using the OFtype clause,

then the materialized view is read-only, and it loses the object properties of the

object table on which it is based. That is, the resulting read-only materialized view

contains one or more of the columns of the master, but each row functions as a row

in a relational table. The rows are not row objects.

For example, you can create a materialized view base on the categories_tab
master by using the following SQL statement:

CREATE MATERIALIZED VIEW categories_relmv
 AS SELECT * FROM categories_tab@orc1.world;

In this case, the categories_relmv materialized view must be read-only, and the

rows in this materialized view function in the same way as rows in a relational

table.

OID Preservation in Object Materialized Views An object materialized view inherits the

object identifier (OID) specifications of its master. If the master has a primary

key-based OID, then the OIDs of row objects in the materialized view are primary

key-based. If the master has a system generated OID, then the OIDs of row objects

in the materialized view are system generated. Also, the OID of each row in the

object materialized view matches the OID of the same row in the master, and the

OIDs are preserved during refresh of the materialized view. Consequently, REFs to

the rows in the object table remain valid at the materialized view site.

Materialized Views with Collection Columns
Collection columns are columns based on varray and nested table datatypes. Oracle

supports the creation of materialized views with collection columns.

If the collection column is a nested table, then you can optionally specify the nested_
table_storage_clause during materialized view creation. The nested_table_storage_
clause lets you specify the name of the storage table for the nested table in the

materialized view. For example, suppose you create the master table people_
reltab at the master site orc1.world that contains the nested table phones_
ntab :

CREATE TYPE phone_typ AS OBJECT (
 location VARCHAR2(15),
 num VARCHAR2(14));
/

CREATE TYPE phone_ntabtyp AS TABLE OF phone_typ;
3-42 Oracle9i Advanced Replication

Materialized View Concepts
/

CREATE TABLE people_reltab (
 id NUMBER(4) CONSTRAINT pk_people_reltab PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(20),
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab
 ((PRIMARY KEY (NESTED_TABLE_ID, location)));

Notice the PRIMARY KEY specification in the last line of the preceding SQL

statement. You must specify a primary key for the storage table if you plan to create

materialized views based on its parent table. In this case, the storage table is

phone_store_ntab and the parent table is people_reltab .

If you want to create materialized views that can be fast refreshed, then create a

materialized view log on both the parent table and the storage table, specifying the

nested table column as a filter column for the parent table’s materialized view log:

CREATE MATERIALIZED VIEW LOG ON people_reltab;

ALTER MATERIALIZED VIEW LOG ON people_reltab ADD(phones_ntab);

CREATE MATERIALIZED VIEW LOG ON phone_store_ntab WITH PRIMARY KEY;

At the materialized view site, create the required types, ensuring that the object

identifier for each type is the same as the object identifier at the master site. Then,

you can create a materialized view based on people_reltab and specify its

storage table using the following statement:

CREATE MATERIALIZED VIEW people_reltab_mv
 NESTED TABLE phones_ntab STORE AS phone_store_ntab_mv
 REFRESH FAST AS SELECT * FROM people_reltab@orc1.world;

In this case, the nested_table_storage_clause is the line that begins with "NESTED
TABLE" in the previous example, and it specifies that the storage table’s name is

phone_store_ntab_mv . The nested_table_storage_clause is optional. If you do not

specify this clause, Oracle automatically names the storage table. To view the name

of a storage table, query the DBA_NESTED_TABLES data dictionary table.

The storage table:

■ Is a separate, secondary materialized view

■ Is refreshed automatically when you refresh the materialized view containing

the nested table
Materialized View Concepts and Architecture 3-43

Materialized View Concepts
■ Is dropped automatically when you drop the materialized view containing the

nested table

■ Inherits the primary key constraint of the master’s storage table

Because the storage table inherits the primary key constraint of the master’s storage

table, do not specify PRIMARY KEY in the STORE AS clause.

The following actions are not allowed directly on the storage table of a nested table

in a materialized view:

■ Refreshing the storage table

■ Adding the storage table to a replication group

■ Altering the storage table

■ Dropping the storage table

■ Generating replication support on the storage table

These actions can occur indirectly when they are performed on the materialized

view that contains the nested table. In addition, you cannot replicate a subset of the

columns in a storage table.

Restrictions for Materialized Views with Collection Columns The following restrictions

apply to materialized views with collection columns:

■ Row subsetting of collection columns is not allowed. However, you can use row

subsetting on the parent table of a nested table and doing so can result in a

subset of the nested tables in the materialized view.

■ Column subsetting of collection columns is not allowed.

■ A nested table’s storage table must have a primary key.

■ For the parent table of a nested table to be fast refreshed, both the parent table

and the nested table’s storage table must have a materialized view log.

Materialized Views with REF Columns
You can create materialized views with REF columns. A REF is an Oracle built-in

datatype that is a logical "pointer" to a row object in an object table. A scoped REFis

a REF that can contain references only to a specified object table, while an unscoped

See Also: Oracle9i SQL Reference for more information about the

nested_table_storage_clause, which is fully documented in the

CREATE TABLE statement
3-44 Oracle9i Advanced Replication

Materialized View Concepts
REF can contain references to any object table in the database that is based on the

corresponding object type. A scoped REF requires less storage space and provides

more efficient access than an unscoped REF.

As you will see in the following section, you can rescope a REF column to a local

materialized view or table at the materialized view site during creation of the

materialized view. If you do not rescope the REF column, then they continue to

point to the remote master. Unscoped REF columns always continue to point to the

master. When a REF column at a materialized view site points to a remote master,

the REFs are considered dangling. In SQL, dereferencing a dangling REF returns a

NULL. Also, PL/SQL only supports dereferencing REFs by using the UTL_OBJECT
package and raises an exception for dangling REFs.

Scoped REF Columns If you are creating a materialized view based on a master that

has a scoped REFcolumn, then you can rescope the REFto a different object table or

object materialized view at the materialized view site. Typically, you would rescope

the REF column to the local object materialized view instead of the original remote

object table. To rescope a materialized view, you can either use the SCOPE FOR
clause in the CREATE MATERIALIZED VIEW statement, or you can use the ALTER
MATERIALIZED VIEW statement after creating the materialized view. If you do not

rescope the REF column, then the materialized view retains the REF scope of the

master.

For example, suppose you create the customers_with_ref master table at the

orc1.world master site using the following statements:

-- Create the user-defined datatype cust_address_typ.
CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

-- Create the object table cust_address_objtab.
CREATE TABLE cust_address_objtab OF cust_address_typ;

-- Create table with REF to cust_address_typ.
CREATE TABLE customers_with_ref (

 customer_id NUMBER(6) PRIMARY KEY,
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address REF cust_address_typ SCOPE IS cust_address_objtab);
Materialized View Concepts and Architecture 3-45

Materialized View Concepts
Assuming the cust_address_typ exists at the materialized view site, you can

create a cust_address_objtab_mv object materialized view using the following

statement:

CREATE MATERIALIZED VIEW cust_address_objtab_mv OF cust_address_typ AS
 SELECT * FROM oe.cust_address_objtab@orc1.world;

Now, you can create a materialized view of the customers_with_ref master

table and rescope the REF to the cust_address_objtab_mv materialized view

using the following statement:

CREATE MATERIALIZED VIEW customers_with_ref_mv
 (SCOPE FOR (cust_address) IS oe.cust_address_objtab_mv)
 AS SELECT * FROM oe.customers_with_ref@orc1.world;

If you want to use the SCOPE FOR clause when you create a materialized view, then

remember to create the materialized view or table specified in the SCOPE FORclause

first. Otherwise, you cannot specify the SCOPE FORclause during materialized view

creation. For example, if you had created the customers_with_ref_mv
materialized view before you created the cust_address_objtab_mv
materialized view, then you could not use the SCOPE FOR clause when you created

the customers_with_ref_mv materialized view. In this case, the REFs are

considered dangling because they point back to the object table at the remote master

site.

However, even if you do not use the SCOPE FOR clause when you are creating a

materialized view, you can alter the materialized view to specify a SCOPE FOR
clause. For example, you can alter the customers_with_ref_mv materialized

view with the following statement:

ALTER MATERIALIZED VIEW customers_with_ref_mv
 MODIFY SCOPE FOR (cust_address) IS oe.cust_address_objtab_mv;

Unscoped REF Columns If you create a materialized view based on a remote master

with an unscoped REF column, then the REF column is created in the materialized

view, but the REFs are considered dangling because they point to a remote

database.

Logging REF Columns in the Materialized View Log If necessary, you can log REF

columns in the materialized view log.

See Also: "Logging Columns in the Materialized View Log" on

page 6-17 for more information
3-46 Oracle9i Advanced Replication

Materialized View Concepts
REFs Created Using the WITH ROWID Clause If the WITH ROWID clause is specified for a

REF column, then Oracle maintains the rowid of the object referenced in the REF.
Oracle can find the object referenced directly using the rowid contained in the REF,
without the need to fetch the rowid from the OID index. Therefore, you use the

WITH ROWID clause to specify a rowid hint. The WITH ROWID clause is not

supported for scoped REFs.

Replicating a REF created using the WITH ROWID clause results in an incorrect

rowid hint at each replication site except the site where the REF was first created or

modified. The ROWID information in the REF is meaningless at the other sites, and

Oracle does not correct the rowid hint automatically. Invalid rowid hints can cause

performance problems. In this case, you must use the ANALYZE statement to correct

rowid hints at each replication site where they are incorrect.

Materialized View Registration at a Master Site or Master Materialized View Site
At the master site and master materialized view site, an Oracle database

automatically registers information about a materialized view based on its master

table(s) or master materialized view(s). The following sections explain more about

Oracle’s materialized view registration mechanism.

Viewing Information about Registered Materialized Views
A level 1 materialized view or materialized view group is registered at its master

site. A level 2 or higher multitier materialized view or materialized view group is

registered at its master materialized view site, not at the master site. You can query

the DBA_REGISTERED_MVIEWS data dictionary view at a master site or master

materialized view site to list the following information about a remote materialized

view:

■ The owner, name, and database that contains the materialized view

■ The materialized view’s defining query

■ Other materialized view characteristics, such as its refresh method

You can also query the DBA_MVIEW_REFRESH_TIMES view at a master site or

master materialized view site to obtain the last refresh times for each materialized

view. Administrators can use this information to monitor materialized view activity

and coordinate changes to materialized view sites if a master table or master

materialized view needs to be dropped, altered, or relocated.

See Also: Oracle9i SQL Reference for more information about the

ANALYZE statement
Materialized View Concepts and Architecture 3-47

Materialized View Concepts
Internal Mechanisms
Oracle automatically registers a materialized view at its master site or master

materialized view site when you create the materialized view, and unregisters the

materialized view when you drop it. The same applies to materialized view groups.

When you drop a master materialized view, Oracle does not automatically drop the

materialized views based on it. You must drop these materialized views manually.

If you do not drop such a materialized view and the materialized view tries to

refresh to a master materialized view that has been dropped, Oracle returns an

error.

For example, suppose a materialized view named orders_lev1 is based on the

oe.orders master table, and a materialized view named orders_lev2 is based

on orders_lev1 . If you drop orders_lev1 , orders_lev2 remains intact.

However, if you try to refresh orders_lev2 , Oracle returns an error because

orders_lev1 no longer exists.

Caution: Oracle cannot guarantee the registration or

unregistration of a materialized view at its master site or master

materialized view site during the creation or drop of the

materialized view, respectively. If Oracle cannot successfully

register a materialized view during creation, then you must

complete the registration manually using the REGISTER_MVIEW
procedure in the DBMS_MVIEW package. If Oracle cannot

successfully unregister a materialized view when you drop the

materialized view, then the registration information for the

materialized view persists in the master site or master materialized

view site until it is manually unregistered. It is possible that

complex materialized views may not be registered.

Note: Oracle7 master sites cannot register materialized views.
3-48 Oracle9i Advanced Replication

Materialized View Architecture
Manual Materialized View Registration
If necessary, you can maintain registration manually. Use the REGISTER_MVIEW
and UNREGISTER_MVIEW procedures of the DBMS_MVIEW package at the master

site or master materialized view site to add, modify, or remove materialized view

registration information.

Materialized View Architecture
The objects used in materialized view replication are depicted in Figure 3–10. Some

of these objects are optional and are used only as needed to support the created

materialized view environment. For example, if you have a read-only materialized

view, then you do not have an updatable materialized view log nor an internal

trigger at the materialized view site. Also, if you have a complex materialized view

that cannot be fast refreshed, then you may not have a materialized view log at the

master site.

See Also: The REGISTER_MVIEW and UNREGISTER_MVIEW
procedures are described in the Oracle9i Replication Management API
Reference
Materialized View Concepts and Architecture 3-49

Materialized View Architecture
Figure 3–10 Materialized View Replication Objects

Master
Database

Materialized
View Log

Master Table
Materialized

View Log

Trigger for
Materialized

View Log

Optional

Updatable
Materialized
Views Only

Always
required

Master
Materialized

View
Database

Updatable
Materialized

View Log

Index

Master Materialized
View

Materialized
View Log

Trigger for
Materialized

View Log

Trigger for
Updatable

Materialized
View Log

Materialized
View

Database

Index

Trigger for
Updatable

Materialized
View Log

Updatable
Materialized

View Log

Materialized View

Network

Network
3-50 Oracle9i Advanced Replication

Materialized View Architecture
Notice that a master materialized view may have both a materialized view log and

an updatable materialized view log. Make sure you account for the extra space

required by these logs when you are planning for your master materialized view

site.

Master Site and Master Materialized View Site Mechanisms
The three mechanisms displayed in Figure 3–11 are required at a master site and at

a master materialized view site to support fast refreshing of materialized views.

Figure 3–11 Master Site and Master Materialized View Site Objects

Master Table or Master Materialized View
The master table or master materialized view is the basis for the materialized view.

A master table is located at the target master site while a master materialized view

is located at a master materialized view site. If the master is a master table, then this

table may be involved in both materialized view replication and multimaster

replication. Remember that a materialized view points to only one master site or

master materialized view site.

Changes made to the master table or master materialized view, as recorded by the

materialized view log, are propagated to the materialized view during the refresh

process.

Note: Master materialized views contain the mechanisms

described in "Materialized View Site Mechanisms" on page 3-55 in

addition to the mechanisms described in this section.

10
20
30
.

Administration
Marketing
Purchasing
.

1500
1500
1500
.

department_id (PK) department_name location_id

30
10
20
.

department_id (PK)

Master Table or Master Materialized View Materialized View Log
Internal trigger
adds rows to
Materialized View
Log
Materialized View Concepts and Architecture 3-51

Materialized View Architecture
Internal Trigger for the Materialized View Log
When changes are made to the master table or master materialized view using

DML, an internal trigger records information about the affected rows in the

materialized view log. This information includes the values of the primary key,

rowid, or object id, or both, as well as the values of the other columns logged in the

materialized view log. This is an internal AFTER ROW trigger that is automatically

activated when you create a materialized view log for the target master table or

master materialized view. It inserts a row into the materialized view log whenever

an INSERT, UPDATE, or DELETE statement modifies the table’s data. This trigger is

always the last trigger to fire.

Materialized View Log
A materialized view log is required on a master if you want to fast refresh

materialized views based on the master. When you create a materialized view log

for a master table or master materialized view, Oracle creates an underlying table as

the materialized view log. A materialized view log can hold the primary keys,

rowids, or object identifiers of rows, or both, that have been updated in the master

table or master materialized view. A materialized view log can also contain other

columns to support fast refreshes of materialized views with subqueries.

The name of a materialized view log's table is MLOG$_master_name. The

materialized view log is created in the same schema as the target master. One

materialized view log can support multiple materialized views on its master table

or master materialized view. As described in the previous section, the internal

trigger adds change information to the materialized view log whenever a DML

transaction has taken place on the target master.

Note: Fast refreshable materialized views can be created based on

master tables and master materialized views only. Materialized

views based on a synonym or a view must be complete refreshed.

Note: When the materialized view contains a subquery, you may

need to log columns referenced in a subquery. See "Data Subsetting

with Materialized Views" on page 3-17 for information on subquery

materialized views and "Logging Columns in the Materialized

View Log" on page 6-17 for more information about the columns

that must be logged.
3-52 Oracle9i Advanced Replication

Materialized View Architecture
Following are the types of materialized view logs:

■ Primary Key: The materialized view records changes to the master table or

master materialized view based on the primary key of the affected rows.

■ Row ID: The materialized view records changes to the master table or master

materialized view based on the rowid of the affected rows.

■ Object ID: The materialized view records changes to the master object table or

master object materialized view based on the object identifier of the affected

row objects.

■ Combination: The materialized view records changes to the master table or

master materialized view based any combination of the three options. It is

possible to record changes based on the primary key, the ROWID, and the object

identifier of the affected rows. Such a materialized view log supports primary

key, ROWID, and object materialized views, which is helpful for environments

that have all three types of materialized views based on a master.

A combination materialized view log works in the same manner as a materialized

view log that tracks only one type of value, except that more than one type of value

is recorded. For example, a combination materialized view log can track both the

primary key and the rowid of the affected row are recorded.

Though the difference between materialized view logs based on primary keys and

rowids is small (one records affected rows using the primary key, while the other

records affected rows using the physical rowid), the practical impact is large. Using

rowid materialized views and materialized view logs makes reorganizing and

truncating your master tables difficult because it prevents your ROWID materialized

views from being fast refreshed. If you reorganize or truncate your master table,

then your rowid materialized view must be COMPLETE refreshed because the

rowids of the master table have changed.
Materialized View Concepts and Architecture 3-53

Materialized View Architecture
Materialized View Logs on Object Tables You can create materialized view logs on object

tables. For example, the following SQL statement creates the categories_typ
user-defined type:

CREATE TYPE category_typ AS OBJECT
 (category_name VARCHAR2(50),
 category_description VARCHAR2(1000),
 category_id NUMBER(2))
NOT FINAL;
/

When you create an object table based on this type, you can either specify that the

object identifier should be system-generated or primary key-based:

CREATE TABLE categories_tab_sys OF category_typ
 (category_id PRIMARY KEY)
 OBJECT ID SYSTEM GENERATED;

CREATE TABLE categories_tab_pkbased OF category_typ
 (category_id PRIMARY KEY)
 OBJECT ID PRIMARY KEY;

When you create a materialized view log on an object table, you must log the object

identifier by specifying the WITH OBJECT ID clause, but you can also specify that

the primary key is logged if the object identifier is primary key-based.

Note:

■ You use the BEGIN_TABLE_REORGANIZATION and END_
TABLE_REORGANIZATION procedures in the DBMS_MVIEW
package to reorganize a master table. See the Oracle9i
Replication Management API Reference for more information.

■ Online redefinition of tables is another possible way to

reorganize master tables, but online redefinition is not allowed

on master tables with materialized view logs, master

materialized views, and materialized views. Online redefinition

is allowed on master tables that do not have materialized view

logs. See the Oracle9i Database Administrator’s Guide for more

information about online redefinition of tables.
3-54 Oracle9i Advanced Replication

Materialized View Architecture
For example, the following statement creates a materialized view log for the

categories_tab_sys object table and specifies that the object identifier column

be logged:

CREATE MATERIALIZED VIEW LOG ON categories_tab_sys
 WITH OBJECT ID;

The following statement creates a materialized view log for the categories_tab_
pkbased object table and specifies that the primary key column be logged along

with the object identifier column:

CREATE MATERIALIZED VIEW LOG ON categories_tab_pkbased
 WITH OBJECT ID, PRIMARY KEY;

Restriction on Import of Materialized Views and Materialized View Logs to a Different Schema
Materialized views and materialized view logs are exported with the schema name

explicitly given in the DDL statements. Therefore, materialized views and

materialized view logs cannot be imported into a schema that is different than the

schema from which they were exported. If you attempt to use the FROM USER and

TO USER import options to import an export dump file that contains materialized

views or materialized view logs, then an error will be written to the import log file

and the items will not be imported.

Materialized View Site Mechanisms
When a materialized view is created, several additional mechanisms are created at

the materialized view site to support the materialized view. Specifically, a base

table, at least one index, and possibly a view are created. If you create an updatable

materialized view, then an internal trigger and a local log (the updatable

materialized view log) are also created at the materialized view site.

Note: If the materialized view site is a master materialized view

site, then it contains the mechanisms described in the previous

section in addition to the mechanisms described in this section. See

"Master Site and Master Materialized View Site Mechanisms" on

page 3-51.

See Also: Figure 3–10, "Materialized View Replication Objects" on

page 3-50
Materialized View Concepts and Architecture 3-55

Materialized View Architecture
Base Table
The way materialized view base tables function depends on the compatibility level

of your materialized view database. The compatibility setting is defined by the

COMPATIBLE initialization parameter in the initialization parameter file.

Base Table with Compatibility at 8.1.0 or Higher If the compatibility setting is 8.1.0 or

higher, the following applies:

■ The base table is the actual materialized view (an additional view is not

required).

■ The size limit for a materialized view name is 30 bytes. If you try to create a

materialized view with a name larger than 30 bytes, Oracle returns an error.

■ The materialized view has the name that you specified during materialized

view creation.

Base Table with Compatibility Lower Than 8.1.0 If the compatibility setting is lower than

8.1.0, the following applies:

■ The base table is the underlying support object for a view, and the view is the

materialized view.

■ Any indexes generated when you create the materialized view are created on

the base table.

■ The size limit for a materialized view name is 30 bytes. If you try to create a

materialized view with a name larger than 30 bytes, Oracle returns an error.

■ The materialized view has the name that you specified during materialized

view creation.

■ When the materialized view name is less than or equal to 19 bytes, the base

table is named SNAP$_materialized_view_name.

■ When the materialized view name is between 20 and 30 bytes, the base table

name is truncated to 20 bytes, prefixed by SNAP$_, and possibly postfixed by a

number. If no other base table at the materialized view site has the same name

as the truncated name, then nothing is added to the truncated name. If another

base table at the materialized view site has the same name as the truncated

name, then the first number postfixed is 1, the second postfixed is 2, and so on

up to 9999. Therefore, the name of the base table is SNAP$_, followed by the

first 20 bytes of the materialized view name, followed by nothing or a one to

four digit number.
3-56 Oracle9i Advanced Replication

Materialized View Architecture
For example, a materialized view named abcdefghijklmnopqrstuvwxyz
has a base table named SNAP$_abcdefghijklmnopqrst , assuming no other

base table has the same name. A subsequently created materialized view at the

same materialized view site named abcdefghijklmnopqrstuvwxy has a

base table named SNAP$_abcdefghijklmnopqrst1 .

View
A view is created only to support materialized view replication with Oracle

release 8.0 and earlier, or if a release 8.1 or higher materialized view site’s

compatibility setting is less than 8.1.0. If a view is created, then the view has the

same name specified in the CREATE MATERIALIZED VIEW statement. For example,

a CREATE MATERIALIZED VIEW sales.mview_customer AS statement

creates a view named mview_customer .

Index
At least one index is created at the remote materialized view site for each primary

key materialized view. This index corresponds to the primary key of the target

master table or master materialized view and has the name I_SNAP$_materialized
view_name. Additional indexes may be created by Oracle at the remote materialized

view site to support fast refreshing of materialized views with subqueries.

Updatable Materialized View Log
An updatable materialized view log (USLOG$_materialized_view_name) is used to

determine which rows must be overwritten or removed from a materialized view

Note: The compatibility setting for Oracle release 8.0 databases

must be lower than 8.1.0.

See Also: "Initialization Parameters" on page 6-4 and Oracle9i
Database Migration for more information about the COMPATIBLE
parameter, and see "View" on page 3-57 for more information about

the view that is created in support of materialized views with a

compatibility level lower than 8.1.0.

Note: When I_SNAP$_materialized view_name exceeds the 32

character limit, the table name is truncated and a sequence number

is appended.
Materialized View Concepts and Architecture 3-57

Materialized View Architecture
during a fast refresh. A read-only materialized view does not create this log, and

Oracle does not use this log during a complete refresh because, in this case, the

entire materialized view is replaced.

If there is a conflict between an updatable materialized view and a master, then,

during a refresh, the conflict may result in an entry in the updatable materialized

view log that is not in the materialized view log at the master site or master

materialized view site. In this case, Oracle uses the updatable materialized view log

to remove or overwrite the row in the materialized view.

The updatable materialized view log is also used when you fast refresh a writeable

materialized view, as illustrated in the following scenario:

1. A user inserts a row into a writeable materialized view that has a remote

master. Because the materialized view is writeable and not updatable, the

transaction is not stored in the deferred transaction queue at the materialized

view site.

2. Oracle logs information about this insert in the updatable materialized view

log.

3. The user fast refreshes the materialized view.

4. Oracle uses the information in the updatable materialized view log and deletes

the inserted row. A materialized view must be an exact copy of the master when

the fast refresh is complete. Therefore, Oracle must delete the inserted row.

Internal Trigger for the Updatable Materialized View Log
Like the internal trigger at the master site or master materialized view site, the

internal trigger at the materialized view site records DML changes applied to an

updatable materialized view in the USLOG$_materialized_view_name log. A

read-only materialized view does not create this trigger.

Organizational Mechanisms
In addition to the materialized view mechanisms described in the previous section,

several other mechanisms organize the materialized views at the materialized view

site. These mechanisms maintain organizational consistency between the

materialized view site and its master site or master materialized view site, as well as

transactional (read) consistency with the target replication group. These

mechanisms are materialized view groups and refresh groups.
3-58 Oracle9i Advanced Replication

Materialized View Architecture
Materialized View Groups
A materialized view group in a replication system maintains a partial or complete

copy of the objects at the target replication group at its master site or master

materialized view site. Materialized view groups cannot span the boundaries of the

replication group at the master site or master materialized view site. Figure 3–12

displays the correlation between Groups A and B at the master site and Groups A

and B at the materialized view site.

Figure 3–12 Materialized View Groups Correspond with Master Groups

Group A at the materialized view site (see Figure 3–12) contains only some of the

objects in the corresponding Group A at the master site. Group B at the materialized

view site contains all objects in Group B at the master site. Under no circumstances,

however, could Group B at the materialized view site contain objects from Group A

at the master site. As illustrated in Figure 3–12, a materialized view group has the

same name as the master group on which the materialized view group is based. For

example, a materialized view group based on a personnel master group is also

named personnel .

Master Site

hr.employees
hr.departments
hr.jobs
hr.job_history
hr.locations
hr.countries

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

Materialized View Site

hr.employees
hr.departments

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B
Materialized View Concepts and Architecture 3-59

Materialized View Architecture
In addition to maintaining organizational consistency between materialized view

sites and their master sites or master materialized view sites, materialized view

groups are required for supporting updatable materialized views. If a materialized

view does not belong to a materialized view group, then it must be a read-only or

writeable materialized view.

Materialized View Group Owners A materialized view group owner enables you to have

multiple materialized view groups based on a single replication group at a master

site or master materialized view site. For example, if you need to support multiple

users within the same database at a materialized view site, then you may want to

create multiple materialized view groups for a target master group. Doing so

enables you to define different subqueries for your materialized view definitions in

each materialized view group, and allows each user to access only his or her subset

of the data.

Defining multiple materialized view groups gives you the ability to control data

sets at a group level. For example, if you create different materialized view groups

named hr , personnel , and manufacturing for these departments, then you can

administer each department as a group, instead of as individual objects. For

example, you can drop the objects as a group.

To accommodate multiple materialized view groups at the same materialized view

site that are based on a single replication group at the master site or master

materialized view site, you can specify a group owner as an additional identifier

when defining your materialized view group.

After you have defined your materialized view group with the addition of a group

owner, you add your materialized view objects to the target materialized view

group by defining the same group owner. When using a group owner, remember

that each materialized view object must have a unique name. If a single

materialized view site has multiple materialized view groups based on the same

replication group at the master site or master materialized view site, then a

materialized view group’s object names cannot have the same name as materialized

view objects in another materialized view group. To avoid conflicting names, you

may want to append the group owner name to the end of your object name. For

example, if you have group owners hr and ac , then you might name the

employees materialized view object as employees_hr and employees_ac ,

respectively.

Additionally, all materialized view groups that are based on the same replication

group at a single materialized view site must "point" to the same master site or

master materialized view site. For example, if the hr_repg materialized view

group owned by hr is based on the associated master group at the orc1.world
3-60 Oracle9i Advanced Replication

Materialized View Architecture
master site, then the hr_repg materialized view group owned by personnel
must also be based on the associated master group at orc1.world , assuming that

the hr and personnel owned groups are at the same materialized view site.

Refresh Groups
To preserve referential integrity and transactional (read) consistency among

multiple materialized views, Oracle has the ability to refresh individual

materialized views as part of a refresh group. After refreshing all of the materialized

views in a refresh group, the data of all materialized views in the group correspond

to the same transactionally consistent point in time.

As illustrated in Figure 3–13, a refresh group can contain materialized views from

more than one materialized view group to maintain transactional (read) consistency

across replication group boundaries.

See Also: Oracle9i Replication Management API Reference for more

information on defining a group owner using the replication

management API
Materialized View Concepts and Architecture 3-61

Materialized View Architecture
Figure 3–13 Refresh Groups May Contain Objects from Multiple Materialized View
Groups

While you may want to define a single refresh group for each materialized view

group, it may be more efficient to use one large refresh group that contains objects

from multiple materialized view groups. Such a configuration reduces the amount

of “overhead” needed to refresh your materialized views. A refresh group can

contain up to 400 materialized views.

One configuration that you want to avoid is using multiple refresh groups to refresh

the contents of a single materialized view group. Using multiple refresh groups to

refresh the contents of a single materialized view group may introduce

inconsistencies in the materialized view data, which may cause referential integrity

problems at the materialized view site. Only use this type of configuration when

you have in-depth knowledge of the database environment and can prevent any

referential integrity problems.

Refresh Group Size
There are a few trade-offs to consider when you are deciding on the size of your

refresh groups. Oracle is optimized for large refresh groups. So, large refresh groups

Master Site

hr.employees
hr.departments
hr.jobs
hr.job_history
hr.locations
hr.countries

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

R
ef

re
sh

 G
ro

u
p

 A

Materialized View Site

hr.employees
hr.departments

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B
3-62 Oracle9i Advanced Replication

Materialized View Architecture
refresh faster than an equal number of materialized views in small refresh groups,

assuming that the materialized views in the groups are similar. For example,

refreshing a refresh group with 100 materialized views is faster than refreshing five

refresh groups with 20 materialized views each. Also, large refresh groups enable

you to refresh a greater number of materialized views with only one call to the

replication management API.

During the refresh of a refresh group, each materialized view in the group is locked

at the materialized view site for the amount of time required to refresh all of the

materialized views in the refresh group. This locking is required to prevent users

from updating the materialized views during the refresh operation, because

updates may make the data inconsistent. Therefore, having smaller refresh groups

means that the materialized views are locked for less time when you perform a

refresh.

Network connectivity must be maintained while performing a refresh. If the

connectivity is lost or interrupted during the refresh, then all changes are rolled

back so that the database remains consistent. Therefore, in cases where the network

connectivity is difficult to maintain, consider using smaller refresh groups.

Advanced Replication includes an optimization for null refresh. That is, if there

were no changes to the master tables or master materialized views since the last

refresh for a particular materialized view, then almost no extra time is required for

the materialized view during materialized view group refresh. However, for

materialized views in a database prior to release 8.1, consider separating

materialized views of master tables that are not updated often into a separate

refresh group of their own. Doing so shortens the refresh time required for other

materialized view groups that contain materialized views of master tables that are

updated frequently.

Table 3–3 summarizes the advantages of large and small refresh groups.

Table 3–3 Large and Small Refresh Groups

Advantages of Large Refresh Groups Advantages of Small Refresh Groups

■ Refreshes faster than an equal number
of materialized views in multiple refresh
groups

■ Materialized views locked for shorter
periods of time

■ Refreshes with single replication
management API call

■ Rollback of refresh changes due to loss
of connectivity is less likely
Materialized View Concepts and Architecture 3-63

Materialized View Architecture
Refresh Process
A materialized view’s data does not necessarily match the current data of its master

table or master materialized view at all times. A materialized view is a

transactionally (read) consistent reflection of its master as the data existed at a

specific point in time (that is, at creation or when a refresh occurs). To keep a

materialized view's data relatively current with the data of its master, the

materialized view must be refreshed periodically. A materialized view refresh is an

efficient batch operation that makes a materialized view reflect a more current state

of its master table or master materialized view.

A refresh of an updatable materialized view first pushes the deferred transactions at

the materialized view site to its master site or master materialized view site. Then,

the data at the master site or master materialized view site is pulled down and

applied to the materialized view.

A row in a master table may be updated many times between refreshes of a

materialized view, but the refresh updates the row in the materialized view only

once with the current data. For example, a row in a master table may be updated 10

times since the last refresh of a materialized view, but the result is still only one

update of the corresponding row in the materialized view during the next refresh.

Decide how and when to refresh each materialized view to make it more current.

For example, materialized views based on masters that applications update often

may require frequent refreshes. In contrast, materialized views based on relatively

static masters usually require infrequent refreshes. In summary, analyze application

characteristics and requirements to determine appropriate materialized view refresh

intervals.

To refresh materialized views, Oracle supports several refresh types and methods of

initiating a refresh.

Refresh Types
Oracle can refresh a materialized view using either a fast, complete, or force refresh.

Complete Refresh To perform a complete refresh of a materialized view, the server

that manages the materialized view executes the materialized view's defining query,

which essentially recreates the materialized view. To refresh the materialized view,

the result set of the query replaces the existing materialized view data. Oracle can

perform a complete refresh for any materialized view. Depending on the amount of

data that satisfies the defining query, a complete refresh can take a substantially

longer amount of time to perform than a fast refresh.
3-64 Oracle9i Advanced Replication

Materialized View Architecture
If you perform a complete refresh of a master materialized view, then the next

refresh performed on any materialized views based on this master materialized

view must be a complete refresh. If a fast refresh is attempted for such a

materialized view after its master materialized view has performed a complete

refresh, then Oracle returns the following error:

ORA-12034 mview log is younger than last refresh

Fast Refresh To perform a fast refresh, the master that manages the materialized

view first identifies the changes that occurred in the master since the most recent

refresh of the materialized view and then applies these changes to the materialized

view. Fast refreshes are more efficient than complete refreshes when there are few

changes to the master because the participating server and network replicate a

smaller amount of data.

You can perform fast refreshes of materialized views only when the master table or

master materialized view has a materialized view log. Also, for fast refreshes to be

faster than complete refreshes, each join column in the CREATE MATERIALIZED
VIEW statement must have an index on it.

After a direct path load on a master table or master materialized view using

SQL*Loader, a fast refresh does not apply the changes that occurred during the

direct path load. Also, fast refresh does not apply changes that result from other

types of bulk load operations on masters. Examples of these operations include

some INSERT statements with an APPEND hint and some INSERT ... SELECT *
FROM statements.

Note: If a materialized view is complete refreshed, then set its

PCTFREE to 0 and PCTUSED to 99 for maximum efficiency.
Materialized View Concepts and Architecture 3-65

Materialized View Architecture
Figure 3–14 Fast Refresh of a Materialized View

If you have updatable multitier materialized views, then DML changes made to the

multitier materialized view may be pulled back to this materialized view multiple

times to ensure data consistency after each refresh of a materialized view. This

behavior is best illustrated through an example. Consider a replication environment

with the following characteristics:

■ Master site orc1.world has the oe.customers table.

■ Level 1 materialized view site ca.us has the oe.customers_region
updatable materialized view based on the oe.customers table at

orc1.world .

■ Level 2 updatable materialized view site sf.ca has the oe.customers_sf
updatable materialized view based on the oe.customers_region
materialized view at ca.us .

No

Is
materialized view

updatable?

Use the materialized
view log to identify
changes made to the
master table.

Propagate identified
changes to the
materialized view.

End Fast
Refresh

Yes

* This step can also be performed separately using
the DBMS_DEFER_SYS.PUSH function.

Start Fast Refresh

Push materialized
view deferred
transaction queue to
update master table.*
3-66 Oracle9i Advanced Replication

Materialized View Architecture
Given these characteristics, the following scenario may follow:

1. The credit_limit for a customer is changed from 3000 to 5000 in the

oe.customers_sf updatable materialized view at sf.ca

2. Oracle enters the change in the deferred transaction queue at sf.ca .

3. A fast refresh of the level 2 materialized view oe.customers_sf pushes the

new value for the credit_limit to oe.customers_region materialized

view at ca.us .

4. The change is applied to the oe.customers_region materialized view at

ca.us .

5. The update for the credit_limit at the ca.us site is recorded in both the

deferred transaction queue and the materialized view log a this level 1

materialized view site.

6. A fast refresh of the level 2 materialized view oe.customers_sf pulls the

credit_limit value of 5000 back down to this materialized view at sf.ca .

7. A fast refresh of the level 1 materialized view oe.customers_region pushes

the new value for the credit_limit to oe.customers master table at

orc1.world .

8. The change is applied to the oe.customers master table at orc1.world .

9. The update for the credit_limit at the orc1.world site is recorded in both

the deferred transaction queue and the materialized view log a this master site.

10. A new fast refresh of the level 1 materialized view oe.customers_region
pulls the credit_limit value of 5000 back down to this materialized view at

ca.us .

11. The update for the credit_limit at the ca.us site is recorded in the

materialized view log a this level 1 materialized view site.

12. A fast refresh of the level 2 materialized view oe.customers_sf pulls the

credit_limit value of 5000 back down to this materialized view at sf.ca
for a second time.

Force Refresh To perform a force refresh of a materialized view, the server that

manages the materialized view attempts to perform a fast refresh. If a fast refresh is

not possible, then Oracle performs a complete refresh. Use the force setting when

you want a materialized view to refresh if a fast refresh is not possible.
Materialized View Concepts and Architecture 3-67

Materialized View Architecture
Initiating a Refresh
When creating a refresh group, you can configure the group so that Oracle

automatically refreshes the group’s materialized views at scheduled intervals.

Conversely, you can omit scheduling information so that the refresh group needs to

be refreshed manually or “on-demand.” Manual refresh is an ideal solution when

the refresh is performed with a dial-up network connection.

Scheduled Refresh When you create a refresh group for automatic refreshing, you

must specify a scheduled refresh interval for the group during the creation process.

When setting a group's refresh interval, consider the following characteristics:

■ The dates or date expressions specifying the refresh interval must evaluate to a

future point in time.

■ The refresh interval must be greater than the length of time necessary to

perform a refresh.

■ Relative date expressions evaluate to a point in time relative to the most recent

refresh date. If a network or system failure interferes with a scheduled group

refresh, then the evaluation of a relative date expression could change

accordingly.

■ Explicit date expressions evaluate to specific points in time, regardless of the

most recent refresh date.

■ Consider your environment’s tolerance for stale data: if there is a low tolerance,

then refresh often; whereas if there is a high tolerance, then refresh less often.

The following are examples of simple date expressions that you can use to specify

an interval:

■ An interval of one hour is specifies as:

SYSDATE + 1/24

■ An interval of seven days is specifies as:

SYSDATE + 7

On-Demand Refresh Scheduled materialized view refreshes may not always be the

appropriate solution for your environment. For example, immediately following a

bulk data load into a master table, dependent materialized views no longer

See Also: Oracle9i Database Administrator’s Guide and Oracle9i SQL
Reference for more information about date arithmetic
3-68 Oracle9i Advanced Replication

Materialized View Architecture
represent the master table’s data. Rather than wait for the next scheduled automatic

group refreshes, you can manually refresh dependent materialized view groups to

immediately propagate the new rows of the master table to associated materialized

views.

You may also want to refresh your materialized views on-demand when your

materialized views are integrated with a sales force automation system located on a

disconnected laptop. Developers designing the sales force automation software can

create an application control, such as a button, that a salesperson can use to refresh

the materialized views when they are ready to transfer the day’s orders to the

server after establishing a dial-up network connection.

The following example illustrates an on-demand refresh of the hr_refg refresh

group:

EXECUTE DBMS_REFRESH.REFRESH('hr_refg');
Materialized View Concepts and Architecture 3-69

Materialized View Architecture
3-70 Oracle9i Advanced Replication

Deployment Templates Concepts and Archite
4

Deployment Templates Concepts and

Architecture

This chapter introduces deployment templates and describes how to use them to

easily and efficiently distribute materialized view environments.

This chapter contains these topics:

■ Mass Deployment Challenge

■ Oracle Deployment Templates Concepts

■ Deployment Template Architecture

■ Deployment Template Design

■ Local Control of Materialized View Creation

Note: Read Chapter 3, "Materialized View Concepts and

Architecture" before you create a deployment template.

Understanding materialized views better prepares you to build

deployment templates.
cture 4-1

Mass Deployment Challenge
Mass Deployment Challenge
Oracle deployment templates provide you with the tools to efficiently deploy and

administer a widely distributed materialized view environment. Before learning

about the concepts, architecture, and use of deployment templates, consider the

challenges of a mass deployment environment.

The need to have accurate information at any time and at any place continues to

grow rapidly. At the same time, information is becoming decentralized and users

are often disconnected from the network, requiring the information to be

distributed to the active points-of-usage.

Consider the mobile sales force. Potentially hundreds, if not thousands, of

professionals need accurate information about their customers on a laptop in a

manner that causes the salesperson very little inconvenience. The challenge,

therefore, is for the database administrator to roll out the data and the database

infrastructure (tables, indexes, constraints, triggers, and so on) to all sites in an

efficient and timely manner.

Traditionally, DBAs have been required to develop a deployment method of their

own. Typically, the DBA was responsible for developing a very complex script to

create the materialized view environment at the remote materialized view site. In

addition to building the script, the DBA was often forced to customize data sets at

the materialized view site. After the DBA completed engineering the script,

deploying the script required manual packaging and implementation, both of

which often required extensive troubleshooting.

The problems encountered in the preceding scenario have spawned technologies

and resources dedicated to the art of efficient mass deployment. Mass deployment is

the term used to describe the process of distributing database infrastructure, data,

and front-end applications to a large number of users. For the purposes of

Advanced Replication, the discussion of mass deployment is limited to the delivery

of data and data infrastructure.

Deployment Templates and the Mass Deployment Goal
Mass deployment tools and technologies should aid the database administrator in

delivering the data and database infrastructure. The goal is to define the

environment once and create as many instances of the deployment template as

necessary, while still maintaining the ability to customize individual sites.

To support this goal, Oracle’s deployment templates enable you to:
4-2 Oracle9i Advanced Replication

Oracle Deployment Templates Concepts
Mass deployment has many applications, such as distributing information to

mobile sales forces, field technicians, retail stores, remote inventory collection sites,

and so on. Such environments use deployment templates to build the database

infrastructure at the remote site, largely because deployment templates support

data subsetting, disconnected replication, and lower resource requirements, making

them ideal for laptops users.

Oracle Deployment Templates Concepts
Oracle offers deployment templates to allow the database administrator to package
a materialized view environment for easy, custom, and secure deployment.

Packaging a deployment template is the process of defining the materialized view

environment that will be created by the deployment template. Packaging a

deployment template prepares it for instantiation at the remote materialized view

site. Instantiation creates the materialized view site objects and populates the

materialized views with data.

A deployment template can be as simple as a single materialized view with a fixed

data set, or as complex as hundreds of materialized views with a dynamic data set

based on one or more variables. Deployment template features include the

following:

■ Centralized control

■ Ability to repeatedly deploy a materialized view environment

■ Template parameters that allow data subsetting or customization at remote site

■ Authorized user lists to control template instantiation and data access

To prepare a materialized view environment for deployment, create a deployment

template at the master site. This template stores all of the information needed to

deploy a materialized view environment, including the data definition language

(DDL) to create the objects at the remote site and the target refresh group. This

template also maintains links to user security information and template parameters

for custom materialized view creation.

Define the

materialized view

environment once

You define the structure of a materialized view

environment once using a deployment template so that

each user (site) receives the database infrastructure to

support the front-end application.

Customize

materialized view sites

individually

You use deployment template parameters to customize

each materialized view environment so that each user

receives the particular data subset needed.
Deployment Templates Concepts and Architecture 4-3

Oracle Deployment Templates Concepts
Deployment Template Elements
Each deployment template contains the “blueprint” for creating the necessary

materialized views and related objects at a materialized view site. Specifically, you

create the deployment template at the master site, adding the necessary

materialized views, triggers, views, and so on to the template as needed to create

the materialized view environment. You can optionally define template parameters

and authorized users, giving the template greater flexibility and security during the

instantiation process.

Deployment template elements can be divided into the following four categories:

■ General Template Information

■ Template Object Definitions

■ Template Parameters

■ User Authorization

General Template Information
Oracle deployment templates center around the general template information,

which consists of the template name, target refresh group, and private/public

status. As illustrated in Figure 4–1, the REFRESH_TEMPLATE_NAME is used in all

aspects of deployment template data dictionary views. You add the materialized

view environment objects to the template prior to releasing the template for

distribution according to the specified template identification (see Figure 4–2).

A deployment template is defined at a single master site. While you cannot have

two deployment templates at the master site with the same name, you can copy a

deployment template to another site using the same deployment template name.
4-4 Oracle9i Advanced Replication

Oracle Deployment Templates Concepts
Figure 4–1 Deployment Template View Relationships

DBA_REPCAT_USER_PARM_VALUES

REFRESH_TEMPLATE_NAME
OWNER
REFRESH_GROUP_NAME
TEMPLATE_COMMENT
PUBLIC_TEMPLATE
PARAMETER_NAME
DEFAULT_PARM_VALUE
PROMPT_STRING
PARM_VALUE
USER_NAME

DBA_REPCAT_USER_AUTHORIZATIONS

REFRESH_TEMPLATE_NAME
OWNER
REFRESH_GROUP_NAME
TEMPLATE_COMMENT
PUBLIC_TEMPLATE
USER_NAME

DBA_REPCAT_TEMPLATE_SITES

REFRESH_TEMPLATE_NAME
REFRESH_GROUP_NAME
TEMPLATE_OWNER
USER_NAME
SITE_NAME
REPAPI_SITE_NAME
STATUS

DBA_REPCAT_REFRESH_TEMPLATES

REFRESH_TEMPLATE_NAME
OWNER
REFRESH_GROUP_NAME
TEMPLATE_COMMENT
PUBLIC_TEMPLATE

DBA_REPCAT_TEMPLATE_OBJECTS

REFRESH_TEMPLATE_NAME
OBJECT_NAME
OBJECT_TYPE
DDL_TEXT
MASTER_ROLLBACK_SEGMENT
DERIVED_FROM_SNAME
DERIVED_FROM_ONAME
FLAVOR_ID

DBA_REPCAT_TEMPLATE_PARMS

REFRESH_TEMPLATE_NAME
OWNER
REFRESH_GROUP_NAME
TEMPLATE_COMMENT
PUBLIC_TEMPLATE
PARAMETER_NAME
DEFAULT_PARM_VALUE
PROMPT_STRING
USER_OVERRIDE
Deployment Templates Concepts and Architecture 4-5

Oracle Deployment Templates Concepts
Figure 4–2 Deployment Template Elements Added to Template

Template Object Definitions
After the template has been defined, add objects to the template. When the template

is instantiated at the materialized view site, the object DDL (that is, CREATE
MATERIALIZED VIEW, CREATE TABLE, and so on) is executed to create the

appropriate objects at the materialized view site.

You can add objects to a deployment template that are based on a existing master

objects, but if necessary, you can create a new template object by defining DDL to

create the object. Oracle checks any new object DDL to make sure that it is lexically

correct, which prevents the execution of faulty DDL. Updatable materialized views

added to a deployment template must be based on a table in a master group, but

DDL 1
CREATE MATERIALIZED VIEW hr.mv_employees AS
SELECT employee_id, last_name, job_id, manager_id,
hire_date, salary, commission_pct, department_id
FROM hr.employees@:dblink WHERE department_id = :dept;

DDL 2

DDL 3

DDL 4

DT_PERSONNEL
(Template Name)

Template Parameter

:dblink
:dept

User Parameter Values

Authorized Users

Sally, DT_PERSONNEL
Bob, DT_PERSONNEL

USER PARAMETER NAME VALUE

SALLY
SALLY
BOB
BOB

:DBLINK
:DEPT
:DBLINK
:DEPT

HQDB
20
REG2DB
30

CREATE MATERIALIZED VIEW hr.mv_locations AS
SELECT location_id, city, state_provence, country_id
FROM hr.locations@:dblink;

CREATE MATERIALIZED VIEW hr.mv_jobs AS
SELECT job_id, job_title, max_salary
FROM hr.jobs@:dblink;

CREATE MATERIALIZED VIEW hr.mv_departments AS
SELECT department_id, department_name, location_id
FROM hr.departments@:dblink;
4-6 Oracle9i Advanced Replication

Oracle Deployment Templates Concepts
other objects, such as read-only materialized views, can be based on objects that are

not in master groups.

In most cases, you add materialized views to the template, but if necessary, you can

add other objects. For example, constraints can be added to enforce data integrity at

the materialized view site, views can be added for displaying data, or tables can be

added for local data storage. In some cases, you may even want to include all

objects for an application in a deployment template. Materialized views created

using a deployment template are automatically added to the refresh group defined

for the template.

You cannot use deployment templates to instantiate the following types of objects:

■ User-defined types

■ User-defined type bodies

■ User-defined operators

■ Indextypes

Nor can you use deployment templates to instantiate any objects based on these

types of objects.

Template Parameters
If each target materialized view site requires a data set unique to its site, then you

can define variables in the object DDL. These variables create a parameterized

template that allows for custom data sets when the template is instantiated,

allowing different materialized view sites to have different data sets. These

parameters are embedded in the object DDL. During template instantiation, the

individual user values for these parameters are substituted.

Oracle enables you to specify default values and user-specific parameter values for

a template. You can enter the parameter values during the creation of the

deployment template or after the template is created, but you must enter the

parameter values before the template is instantiated. Users cannot enter values for

parameters during instantiation.

See Also: "General Template Information" on page 4-4 for more

information about the refresh group
Deployment Templates Concepts and Architecture 4-7

Oracle Deployment Templates Concepts
If user-specific parameter values exist, then these values are automatically used

when the specified user instantiates the template. For example, consider the

variable region . Suppose you establish the following user-specific parameter

values for template sales_temp :

The defining SELECT statement for the materialized view is the following:

SELECT cust_id, sales_to_date, status FROM table_x WHERE region_id=:region;

When users fay and baer instantiate template sales_temp , their resulting

materialized view data sets are the following:

Template Parameters in the WHERE Clause and Security
In addition to creating customized data subsets, you can use template parameters in

the WHEREclause of a CREATE MATERIALIZED VIEWstatement to securely limit the

materialized view site to viewing and changing only the data that satisfies the

WHERE clause. For example, suppose you have specified the following for the

region parameter in the user specific parameters list:

User Region

fay east

baer west

User fay - User baer

cust_id region - cust_id region

a123 east - b123 west

a234 east - b234 west

a345 east - b345 west

a456 east - b456 west

User Region

fay east

baer west
4-8 Oracle9i Advanced Replication

Oracle Deployment Templates Concepts
Users accessing the materialized view instantiated by user fay only see data for

region east and can only view, update, or delete data that complies with this

WHERE clause. In other words, a user of this materialized view cannot view, update,

or delete data for region west , because the materialized view only contains data for

region east .

User Authorization
Deployment templates can be either public or private. You set this when you create

the template. If a template is public, then any user with access to the master site can

instantiate the template.

If a template has been created for private use, then only authorized users can

instantiate the target template. To enforce private use, create a list of authorized

users at the master site. If an unauthorized user attempts to instantiate the target

template, then the instantiation process fails.

Deployment Sites
Maintaining the emphasis on centralized control, you can monitor and manage

certain characteristics of the instantiated environment at the remote materialized

view site. Specifically, you have the ability to view the sites that have instantiated a

deployment template, which includes the deployment template name, authorized

user, and status of the instantiated environment.

Deployment Template Packaging and Instantiation
When you have completed defining your deployment template, the template needs

to be packaged to prepare it for instantiation at the remote materialized view site.

When the packaged deployment template is instantiated at a materialized view site,

the materialized view site objects are created and the materialized views are

populated with data. Remote materialized view sites can be created either through

online or offline instantiation.

Online Instantiation
Online instantiation allows a materialized view site to instantiate a deployment

template while connected to the target master site. During the online instantiation

process, the structure of the materialized view site is created, and the specified data

subset is pulled from the master site and stored in the appropriate materialized

views.
Deployment Templates Concepts and Architecture 4-9

Oracle Deployment Templates Concepts
Figure 4–3 Online Instantiation

For Oracle Enterprise Edition, Oracle Standard Edition, or Oracle Personal Edition

materialized view clients, packaging a deployment template for online instantiation

means generating a script file that, when run at the materialized view site, creates

the materialized view objects and connects to the master site to populate the

materialized views with data. SQL statements such as CREATE MATERIALIZED
VIEW ... AS SELECT are used to populate the materialized views with data over a

network from the master site.

One of the benefits of online instantiation is that the data subset is current as of the

instantiation process. This data currency, however, comes at a cost. Online

instantiation requires a “live” connection between the materialized view and master

sites, which, depending on the size of the materialized view environment created,

may increase network traffic.

Furthermore, laptop users connected by a modem may need to stay connected for a

long time. The duration of the connection depends on the number of objects

created, the complexity of the materialized view subqueries, and the amount of data

transmitted, especially over low bandwidth modem lines.

Offline Instantiation
To decrease server loads during peak usage periods and reduce remote connection

times, you may choose offline instantiation of the template for your environment.

Packaging a template for offline instantiation means generating a script or a binary

file that contains the DDL and data manipulation language (DML) to build the

materialized view environment defined in the deployment template and populate

the environment with data. You package the script or binary file and save the file to

some type of storage media (such as tape, CD-ROM, and so on), and then provide a

means of transferring the script or binary file to the materialized view site. Each

materialized view site requires a separate offline instantiation script.

Materialized View Site

Online template instantiation
using dedicated database link.

Master
Site
4-10 Oracle9i Advanced Replication

Oracle Deployment Templates Concepts
When you package a template for instantiation, the materialized view logs for each

master table on which a materialized view is based in the template begin to log

changes. The materialized view log for a particular master table does not clear these

changes until every materialized view based on the master table refreshes after

instantiation. Therefore, to prevent the materialized view log from growing large,

the template should be instantiated, and the materialized views should be refreshed

as soon as possible after packaging.

During instantiation, the template and data are pulled from the storage media,

instead of being pulled from the master site. This operation has the benefit of

reducing network traffic and eliminating the need for a constant network

connection. However, after instantiation, the data in the materialized view site

reflects the master site data at packaging time and must be made current by a

refresh.

Figure 4–4 Offline Instantiation

Offline instantiation is an ideal solution for mass deployment situations where

many laptops and other disconnected computers are instantiating the target

template.

Offline Instantiation of Multitier Materialized Views When you use deployment templates

to create a materialized view site using offline instantiation, the conflict resolution

methods defined on the master tables are not pulled down to the materialized view

site. These conflict resolution methods may be required to ensure data consistency if

you plan to create materialized views based on this materialized view site (multitier

materialized views). If you use online instantiation, then the conflict resolution

methods are pulled down during instantiation.

Materialized View Site Storage Media

Offline template instantiation
using packaged storage media.
Deployment Templates Concepts and Architecture 4-11

Oracle Deployment Templates Concepts
Scenarios for Instantiating a Deployment Template
The target instantiation site must run one of the following database clients:

■ Oracle Enterprise Edition

■ Oracle Standard Edition

■ Oracle Personal Edition

Table 4–1 summarizes the scenarios for instantiating of a deployment template.

Either you (the DBA) or the target user can package the deployment template.

Either use the Replication Management tool’s Template Script Generation Wizard to

package a template for offline instantiation, or the replication management API to

package a template for offline or online instantiation. End-users use the public API

to package a deployment template, while DBAs generally use the private API for

packaging.

Typically, when a deployment template will be instantiated offline, the DBA

performs the packaging, but when the deployment template will be instantiated

online, the user may perform the packaging. However, there are no restrictions on

users or DBAs performing either online or offline packaging, other than the use of

different API calls.

Table 4–1 Scenarios for Instantiating of a Deployment Template

Type of Instantiation
Type of Materialized
View Client Description

Offline Oracle Enterprise Edition

Oracle Standard Edition

Oracle Personal Edition

The user runs the offline instantiation script
with SQL*Plus. The offline instantiation script
contains both CREATE statements to create
materialized view site objects and INSERT
statements to populate the materialized views
with data.

Online Oracle Enterprise Edition

Oracle Standard Edition

Oracle Personal Edition

The user runs the online instantiation script
with SQL*Plus. The online instantiation script
contains CREATE statements to create
materialized view site objects. When
materialized view objects are created, the online
instantiation script connects to the master site
and uses CREATE MATERIALIZED VIEW ... AS
SELECT statements to create the materialized
views and populate them with data.
4-12 Oracle9i Advanced Replication

Deployment Template Architecture
The following replication management API functions can be used to package a

deployment template.

Private functions (DBA only):

■ DBMS_REPCAT_RGT.INSTANTIATE_OFFLINE

■ DBMS_REPCAT_RGT.INSTANTIATE_ONLINE

Public functions:

■ DBMS_REPCAT_INSTANTIATE.INSTANTIATE_OFFLINE

■ DBMS_REPCAT_INSTANTIATE.INSTANTIATE_ONLINE

Deployment Template Architecture
Oracle uses standard materialized view architecture with deployment templates to

distribute materialized view environments quickly and effectively. Deployment

templates use the same methods in creating materialized view definitions, refresh

characteristics, conflict resolution, and grouping as used when manually building a

materialized view environment. The distinction to remember is that instead of

executing the DDL to create the object immediately, the object DDL is simply

contained in a deployment template and is executed when the template is

instantiated.

See Also: "Preparing Materialized View Sites for Instantiation of

Deployment Templates" on page 6-29, and see Oracle9i Replication
Management API Reference for information about the functions

Note: When you package a deployment template for offline

instantiation, the related materialized view logs begin logging for

the materialized views that were packaged in the template. This

immediate logging enables the remote materialized view site to

perform a fast refresh after completing the offline instantiation

process. Monitor the materialized view logs to make sure that

remote materialized view sites refresh in a timely manner after

performing an offline instantiation. Remote materialized view sites

that have not refreshed cause the materialized view log to grow

quite large, because logging begins when the template is packaged.
Deployment Templates Concepts and Architecture 4-13

Deployment Template Architecture
Template Definitions Stored in System Tables
Instead of executing DDL at the materialized view site to immediately create a

materialized view environment, the materialized view and other related object

definitions are stored within the deployment template. After all of the object

definitions have been added to the deployment template, the template can be

instantiated to execute all of the stored DDL at the remote materialized view site,

which creates the necessary materialized view environment.

All of these object definitions are stored in system tables maintained at the

deployment template definition site, keyed on the deployment template name.

When the deployment template is packaged, the stored object DDL is pulled from

these system tables to create the instantiation script of binary file.

Use of Standard DDL
Template object definitions are created using the same DDL that is used to create the

objects locally at the materialized view site. For example, you can issue the

following statement to create a materialized view:

CREATE MATERIALIZED VIEW hr.departments_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 department_id, department_name, manager_id, location_id
 FROM hr.departments@orc1.world;

To add this same materialized view to a deployment template, you can use the

Replication Management tool’s Deployment Template Wizard, or execute the

CREATE_TEMPLATE_OBJECT function, as shown in the following example:

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.departments_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 department_id, department_name, manager_id, location_id
 FROM hr.departments@orc1.world';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'departments_mv',
 object_type => 'SNAPSHOT',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

4-14 Oracle9i Advanced Replication

Deployment Template Architecture
Executing the preceding function adds the materialized view definition to the

deployment template named dt_mviewenv . When this particular materialized

view is instantiated, the materialized view mview_test is created. In addition to

creating materialized views, you can add table, trigger, procedure, index, and other

object definitions to the deployment template.

Whenever you create a materialized view, always specify the schema name of the

table owner in the query for the materialized view. In the preceding example, hr is

specified as the owner of the employees table.

Packaging and Instantiation Process
When a deployment template is packaged in preparation for remote materialized

view site instantiation, the template is being prepared for online or offline

instantiation. The instantiation procedure creates the remote materialized view

environment and populates the environment with data.

Packaging a Deployment Template for Online Instantiation
When a deployment template is packaged for online instantiation, the resulting

DDL that is required to create the remote materialized view environment is

generated and all template parameter substitutions are performed. Where this

generated DDL is stored depends on the type of materialized view client.

The online instantiation script is stored locally on the hard drive of the computer

from which replication management API is executed to package the template. If this

computer is not the materialized view site computer, then the online instantiation

file must be transferred to the materialized view site for online instantiation.

Packaging a Deployment Template for Offline Instantiation
When a deployment template is packaged for offline instantiation, the DDL that is

required to create the remote materialized view environment and the DML that is

Note: Do not place a terminating semi-colon in the DDL statement

inside the single quotation marks for the ddl_text parameter.

See Also: DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT in

the Oracle9i Replication Management API Reference for information

about using this function
Deployment Templates Concepts and Architecture 4-15

Deployment Template Architecture
required to populate the environment with the data are both stored in a generated

file. Also, during packaging, all template parameter substitutions are performed.

When a template is packaged, a script or binary file is created for offline

instantiation and is saved to a storage device, such as hard disk, CD-ROM, tape,

and so on. Either the Replication Management tool’s Template Script Generation

Wizard or the replication management API can be used to package a deployment

template for offline instantiation.

The offline instantiation script is stored locally on the hard drive of the computer

from which the request is made to package the template. If this computer is not the

materialized view site computer, then the offline instantiation file must be

transferred to the materialized view site for offline instantiation.

When the remote materialized view site instantiates the template, the script or

binary file is executed from the storage media or from the local hard drive. This

execution creates the materialized view environment and populates the

environment according to the data set defined during the packaging process. Recall

that any template parameters that define the data set for individual sites are defined

during the packaging process.

Online Instantiation
During the online instantiation process, the structure of the materialized view site is

created, and the specified data subset is pulled from the master site and stored in

the appropriate materialized views. Also, after the remote materialized view site

begins the online instantiation process, Oracle evaluates the parameters that have

been defined for the deployment template. Any values defined for these parameters

are used when the object DDL in the template is executed so that custom data sets

can be installed at the remote materialized view site. At the same time, the

materialized views are registered at the master site, and the materialized view logs

begin logging the changes to the master tables.

Two possible methods can be used to define template parameter values: default

parameter values and user parameter values. Oracle checks to see if these

parameter values exist and then uses them according to the hierarchy:

1. User Parameter Values

2. Default Parameter Values

If user parameter values have been defined and a listed user is instantiating the

template, then the user parameter values are used when instantiating the template.

If no user parameter values have been defined, then Oracle uses the default

parameter values. Figure 4–5 shows the parameter checking process.
4-16 Oracle9i Advanced Replication

Deployment Template Architecture
Figure 4–5 Checking for Parameters During Online Instantiation

After the parameters are checked, the objects created by the template are added to

the refresh group specified when the template was created.

Offline Instantiation
In a mass deployment environment, most materialized view environments use the

offline instantiation method to create the necessary materialized view environment.

When you package the deployment template, a script or binary file is created to

store the DDL needed to create the materialized view environment, the parameter

values used during the instantiation process, and the DML necessary to populate

the materialized view environment with data.

The script or binary file can be copied to a CD-ROM, floppy disk, or other storage

media or can be posted on a Web or FTP site to be downloaded to the remote

materialized view site. The flexibility in delivery mechanisms allows you and your

users to choose the most effective method for instantiating a deployment template.

Packaging and Instantiation Options
A number of possibilities for deployment template packaging and instantiation are

available. Table 4–2 illustrates the possibilities, identifies the mechanism for

packaging and instantiation, and lists the documentation to use when you perform

an operation.

no

Do
template

parameters
exist?

Do
user

parameters
exist?

no

yes yes

Instantiate Template

Pull user values from
DBA_REPCAT_
USER_PARM_
VALUES view.

Use default values.

Build materialized
view environment.
Deployment Templates Concepts and Architecture 4-17

Deployment Template Architecture
After Instantiation
After instantiating a deployment template at a remote materialized view site, the

structure created is exactly the same as if you had created the materialized view

environment locally at the materialized view site. Specifically, Oracle creates the

materialized view, with the specified name, and an index based on the primary key

to maintain constraint consistency. Other objects in the template are also created as

if they were created manually at the materialized view site.

With respect to offline instantiations, the longer the duration between the packaging

at the server and the instantiation at the remote site, the longer it takes for the first

refresh after instantiation at the remote materialized view site. The materialized

view site uses the materialized view log at the master site to perform the fast refresh

from the time that the template was packaged. Recall that changes made to the

master table are logged to the materialized view log as soon as you package the

deployment template.

Table 4–2 Packaging and Instantiation Options

Type of
Instantiation

Type of Client for
Instantiation

Package Template
Using

Packaging
Documentation

Instantiate
Template Using

Instantiating
Documentation

Offline Oracle Enterprise
Edition

Oracle Standard
Edition

Oracle Personal
Edition

Replication
Management tool
Template Script
Generation Wizard

See the Replication
Management tool’s
online help topic
"Package for Offline
Instantiation:
Overview" under
"Deployment
Templates" >
"Packaging and
Instantiation" in the
the Help Contents.

Offline
Instantiation
Script and
SQL*Plus

See the Replication
Management tool’s
online help topic
"Instantiate at
Remote Materialized
View Site" under
"Deployment
Templates" >
"Packaging and
Instantiation" in the
the Help Contents.

Offline Oracle Enterprise
Edition

Oracle Standard
Edition

Oracle Personal
Edition

The Replication
Management API
(PL/SQL Packages
and SQL*Plus)

See the instructions
for packaging in
Oracle9i Replication
Management API
Reference.

Offline
Instantiation
Script and
SQL*Plus

See the instructions
for instantiating a
deployment
template in Oracle9i
Replication
Management API
Reference.

Online Oracle Enterprise
Edition

Oracle Standard
Edition

Oracle Personal
Edition

The Replication
Management API
(PL/SQL Packages
and SQL*Plus)

See the instructions
for packaging in
Oracle9i Replication
Management API
Reference.

Online
Instantiation
Script and
SQL*Plus

See the instructions
for instantiating a
deployment
template in Oracle9i
Replication
Management API
Reference.
4-18 Oracle9i Advanced Replication

Deployment Template Architecture
Materialized View Groups
Objects created by an instantiated deployment template are added automatically to

a materialized view group with the same name as the object’s master group. For

example, if you instantiated the dt_mviewenv deployment template, which

contains objects from the personnel and technical master groups, then your

template objects are added to materialized view groups personnel and

technical , respectively. Remember that a materialized view group helps to

maintain organizational consistency with the target master group and, more

importantly, is required for updatable materialized views.

Refresh Groups
When you first begin building a deployment template, you define the name of the

refresh group to which the template’s materialized view objects will be added. After

the instantiation process is finished, you can specify that the materialized views in

the refresh group be refreshed automatically at set intervals, assuming a constant

network connection to the master site.

For Oracle Enterprise Edition, Oracle Standard Edition, or Oracle Personal Edition,

the Replication Management tool, or DBMS_REFRESH.CHANGE procedure can be

used to change the refresh interval and next refresh data of a refresh group. To

change these settings in the Replication Management tool, select the refresh group

and edit the Next Date and Interval fields. To change these settings with the DBMS_
REFRESH.CHANGE procedure, set the interval and next_date parameters

appropriately. If materialized view sites do not have a constant network connection

to the master site, then they can refresh their refresh groups on-demand.

The following are examples of simple date expressions that you can use to specify

next_date and interval:

■ A next_date or interval of one hour is specifies as:

SYSDATE + 1/24

■ A next_date or interval of seven days is specifies as:

SYSDATE + 7

See Also: "Materialized View Architecture" on page 3-49 for more

information

See Also: "Materialized View Groups" on page 3-59 for more

information
Deployment Templates Concepts and Architecture 4-19

Deployment Template Design
Deployment Template Design
The combination of deployment template parameters and subquery subsetting

gives the database administrator a powerful tool to administer a widely distributed

database environment using subqueries and row-subsetted data. Additional design

consideration must be given to column subsetting requirements and data sets

needed for a replication environment.

Materialized view data sets are defined based on the materialized view's query,

meaning that the user only sees data that complies with the materialized view’s

defining query. Both row and column subsetting enable you to create materialized

views that contain customized data sets. Such materialized views can be helpful for

regional offices or sales forces that do not require the complete corporate data set.

Column Subsetting with Deployment Templates
Column subsetting enables you to exclude columns that are in master tables from

materialized views. You do this by specifying certain select columns in the SELECT
statement during materialized view creation. Column subsetting is only possible

through the use of deployment templates. Before you begin assembling your

deployment template, consider how to build your templates.

For example, in a mass deployment environment with many “lightweight” clients,

you may need to replicate tables that contain LOB data without actually replicating

the LOB data itself. This goal can be achieved by excluding the LOB column from

the selected columns to be replicated when defining the column subset.

You can select any subset of columns in a read-only materialized view. For an

updatable materialized view, the subset of columns must contain the following

columns:

■ Primary key column(s)

■ All columns used for conflict resolution for the replicated columns (see

Figure 4–6)

See Also: Oracle9i Database Administrator’s Guide and Oracle9i SQL
Reference for more information about date arithmetic

See Also: "Data Subsetting with Materialized Views" on page 3-17

for more information on data subsetting
4-20 Oracle9i Advanced Replication

Deployment Template Design
Figure 4–6 Replicate Column-Subsetted Data

If you are adding a materialized view that replicates columns pk , empid , salary ,

and level (illustrated in Figure 4–6), then you also need to include the Time
Stamp column because it is used for conflict resolution for columns contained in

Column Group A.

Note: While it is possible to configure column subsetting within a

column group, it is not recommended because it can result in data

inconsistencies between sites. When using column subsetting, you

should eliminate columns at the column group level.

Sales
History
(LOB)

Territory Priority
Site*

SalaryEmpIDPK Level Time
Stamp*

Replicated Data

Column Group A Column Group B

*Denotes conflict resolution
column for column group.
Deployment Templates Concepts and Architecture 4-21

Deployment Template Design
Row Subsetting
Row subsetting enables you to exclude rows that are in master tables from

materialized views by using a WHERE clause. For example, the following statement

creates a materialized view based on the oe.orders@orc1.world master table

and includes only the rows for the sales representative with a sales_rep_id
number of 173 :

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.orders@orc1.world
 WHERE sales_rep_id = 173;

Rows of the orders table with a sales_rep_id number other than 173 are

excluded from this materialized view.

Row Subsetting with an Assignment Table
In some situations, you may benefit from using row subsetting with an assignment
table. An assignment table lets you relate one entity to another entity in your

database, without storing the assignment information in either of the tables for the

two entities. This technique is best illustrated through an example.

In the oe schema, the product_id column is the primary key in the product_
information table, and the warehouse_id column is the primary key in the

warehouses table. In this schema, the inventories table functions as an

assignment table because it assigns a product to a warehouse using the product_
id column and the warehouse_id column. These two columns form the primary

key of the inventories table.

Note:

■ Column subsetting is only available when you add a

materialized view to a deployment template using the

Replication Management tool. Column subsetting is not

available when using the replication management API.

■ The master definition site must be available when defining a

column subset. If your deployment template contains

column-subsetted materialized views from multiple master

groups, then the master definition site for each group must be

available.
4-22 Oracle9i Advanced Replication

Deployment Template Design
With these three tables in oe schema (inventories , product_information ,

and warehouses), you can track which products are in which warehouses without

storing the product_id information in the warehouses table, nor the

warehouse_id information in the product_information table. To illustrate

why this is important, consider what would happen if the inventories table did

not exist and the warehouse_id column was a foreign key in the product_
information table.

In this case, if a salesperson wants to store product information for the nearest

warehouse, then the sales person would need to specify the warehouse_id for the

warehouse in the WHEREclause of the CREATE MATERIALIZED VIEWstatement. For

example, the salesperson might create the materialized view using the following

statement:

CREATE MATERIALIZED VIEW oe.product_information REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.product_information@orc1.world
 WHERE warehouse_id = 1;

The drawback to this configuration is that the warehouse_id is "hard coded" into

the materialized view definition. If the company closes warehouse 1 or opens a new

warehouse that is even closer to the salesperson, then the preceding materialized

view definitions would need to be altered or re-created. With this in mind, if you

use assignment tables in conjunction with row subsetting in a subquery, then you

can easily control changes to a materialized view environment.

In the oe schema, the warehouse_id column is not part of the product_
information table. Instead, a product is assigned to a warehouse through the

inventories table. This relationship between products and warehouses is

illustrated in Figure 4–7.
Deployment Templates Concepts and Architecture 4-23

Deployment Template Design
Figure 4–7 Product/Warehouse Relationship

warehouse_id

inventories Master Table

product_id warehouse_id quantity_on_hand

870
788
882
870
788
.

1
2
3
1
2
.

1844
1844
1844
1845
1845
.

Primary Key

product_information Master Table

product_id . . .

.

.

.

1844
1845
.

location_id

locations Master Table

location_id postal_code . . .

.

.

.

26192
99236
50090

1400
1500
1600

Primary Key

Primary Key

warehouses Master Table

warehouse_id location_id

1400
1500
1600
.

. . .

.

.

.

.

1
2
3
.

Primary Key

product_id
4-24 Oracle9i Advanced Replication

Deployment Template Design
If new warehouses are built or other warehouses are closed, then you can use the

inventories table to assign products to different warehouses. Besides creating a

single point of administration, assignment tables, such as the inventories table,

used in conjunction with row subsetting in subqueries, can ensure security. For

example, if necessary, you can limit a certain salesperson to see data for some

warehouses but not others.

If we assume that each salesperson is responsible for a particular location and only

requires product information for products that are stored in a warehouse in that

location, then we can use the inventories table as an assignment table along with

row subsetting in subqueries to create the product_information materialized view

that contains only the relevant information for a particular salesperson. The

following statement provides a salesperson with the proper data:

CREATE MATERIALIZED VIEW oe.product_information REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.product_information@orc1.world pi
 WHERE EXISTS
 (SELECT * FROM oe.inventories@orc1.world inv
 WHERE pi.product_id = inv.product_id
 AND EXISTS
 (SELECT * FROM oe.warehouses@orc1.world w
 WHERE inv.warehouse_id = w.warehouse_id
 AND EXISTS
 (SELECT * FROM hr.locations@orc1.world loc
 WHERE w.location_id = loc.location_id
 AND loc.postal_code = :p_code)));

The product_information materialized view is populated with product

information for the products that are stored in the warehouse located at the postal

code specified with the p_code variable. Notice the p_code variable in the last line of

the CREATE MATERIALIZED VIEW statement.

With this flexibility, managers can easily control materialized view data sets by

making simple changes to the inventories table, without requiring modification

of the SQL for the materialized view creation statements. For example, if a new

product is added to a particular warehouse, then the manager would simply add a

Note: To create this oe.product_information materialized

view, postal_code in must be logged in the materialized view log

for the hr.locations table. See "Logging Columns in the

Materialized View Log" on page 6-17 for more information.
Deployment Templates Concepts and Architecture 4-25

Deployment Template Design
row to the inventories table that assigns the product to the warehouse. After the

next materialized view refresh, the data for the product is added to the materialized

view site that tracks product information for the warehouse.

Data Sets
When designing your deployment templates, consider the different sets of users

that need to access the target data. For example, both salespersons and technicians

need customer information, but the technicians may not need sales information.

You do not want users to instantiate deployment templates that may contain

extraneous data, because it will require extra storage space and incur longer refresh

time.

On the other hand, if you have users that require both sales and customer support

information, then you do not want users to have to instantiate multiple deployment

templates that may share redundant data. Instantiating multiple templates may

cause data consistency problems. Each deployment template uses a different refresh

group, which means that data in the two deployment templates may be refreshed at

different times, possibly causing data consistency problems.

In this case, the best solution would be to have one deployment template for

salespersons, one for customer service technicians, and one for users that require

both sets of data.

To save time and effort, the best way to create these three templates is to create the

template with both sets of data first, copy the template twice, deleting unneeded

items to create the other deployment templates.

Figure 4–8 The Different Needs of Salespersons and Customer Support Technicians

order_lines

orders

Order Tables

products

customers

Product Tables

Customer Tables

Sales Application Tables

support_lines

support_hdr

Support Tables

products

customers

Product Tables

Customer Tables

Customer Support Tables
4-26 Oracle9i Advanced Replication

Deployment Template Design
Another design consideration is the usage of parameters. If many of the tables in

Figure 4–8 use the customer_id field, then you could define the same parameter

in each of the template objects. By using the same parameter, you would only need

to define the default parameter value once, and it would be used for all objects

during the instantiation process.

Using a single template parameter is even more useful when used with

materialized views that use subquery subsetting. One parameter allows a user to

receive only the data for the customers that the user needs. Consider the following

CREATE MATERIALIZED VIEW statements:

CREATE MATERIALIZED VIEW sales.orders AS
 SELECT * FROM sales.orders@orc1.world o
 -- conditions for customers
 WHERE EXISTS
 (SELECT c_id FROM sales.customer@orc1.world c
 WHERE o.c_id = c.c_id
 AND EXISTS
 (SELECT * FROM sales.assignment@orc1.world a
 WHERE a.c_id = c.c_id
 AND EXISTS
 (SELECT * FROM sales.salesperson@orc1.world s
 WHERE s.s_id = :salesperson_id)));

CREATE MATERIALIZED VIEW sales.customer AS
SELECT c_id FROM sales.customer@orc1.world c

-- conditions for customers
 WHERE EXISTS

(SELECT * FROM sales.assignment@orc1.world a
 WHERE a.c_id = c.c_id
 AND EXISTS
 (SELECT * FROM sales.salesperson@orc1.world s
 WHERE s.s_id = :salesperson_id)));

Even though the two materialized views being created do not explicitly contain the

salesperson_id field, using subquery subsetting makes using parameters very

effective for instantiating only required data sets. Using a single parameter

(:salesperson_id) makes managing and instantiating these materialized views easier

for both the DBA and the user instantiating the deployment template.

Additional Design Considerations
Finally, consider what other objects need to be created at the remote materialized

view site. Consider the following questions:
Deployment Templates Concepts and Architecture 4-27

Local Control of Materialized View Creation
■ Do you need to include the DDL to create the necessary database links from the

materialized view site to the master site?

■ What triggers or procedures does the materialized view environment require?

■ Do any tables need to be created that store non-replicated data?

■ Are any extra indexes required?

Local Control of Materialized View Creation
A deployment template is the most effective method of building and distributing a

materialized view environment. Even if distribution is limited to only two or three

sites, you still significantly reduce the amount of steps needed to build a

materialized view environment by using deployment templates as opposed to

individually creating the materialized view environment at those two or three sites.

With deployment templates, you build once and distribute as needed.

However, one question remains: If a deployment template is the most effective

means for building and distributing a materialized view environment, then when

should you locally build the materialized view environment at the remote

materialized view site? In most cases, you should build a materialized view

environment using the Materialized View Group Wizard or locally at the

materialized view site when local control must be maintained at the materialized

view site.

One scenario where you might find local control of materialized view creation

helpful is when it is desirable for the materialized view site to control what data it

receives. For example, this is especially true of decision support sites (DSS), which

are typically read-only materialized view sites. A DSS site may occasionally need to

run complex queries and they do not want to slow the OLTP site, or bother the DBA

at the OLTP site.

Local Materialized View Control
One of the major benefits of deployment templates is that control is maintained

centrally by the DBA building the deployment template. In some cases, however,

the materialized view site must retain some control.

Local control may be required if the materialized view site:

■ Has an experienced DBA

■ Is considered a trusted site
4-28 Oracle9i Advanced Replication

Local Control of Materialized View Creation
■ Is a materialized view instead of a master site because of row subsetting

requirements

Because materialized view groups are created with the Replication Management

tool’s Materialized View Group Wizard locally at the materialized view site by its

DBA, or perhaps a systems analyst with SQL knowledge, control can also be

maintained at the materialized view site.

Consider the following as a perfect example for maintaining local control. Because

multimaster replication does not allow for row and column data subsetting,

updatable materialized view sites are sometimes created primarily for their ability

to subset data. These sites are typically secure, have experienced DBAs, and require

the ability to maintain control locally to meet user and application requirements.

Materialized view groups created with the Materialized View Group Wizard or

with the replication management API allow for the localized control necessary to

meet the requirements of the secure updatable materialized view sites.

Also, remember that when a materialized view environment is created with a

deployment template, all objects in the materialized view environment are added to

the same refresh group. While this might be fine for most installations, certain

situations may require that the objects in a materialized view group are assigned to

several different refresh groups.
Deployment Templates Concepts and Architecture 4-29

Local Control of Materialized View Creation
4-30 Oracle9i Advanced Replication

Conflict Resolution Concepts and Archite
5

Conflict Resolution Concepts and

Architecture

Some replication environments must create conflict resolution methods to resolve

possible data conflicts that can result from replicating data between multiple sites.

This chapter contains these topics:

■ Conflict Resolution Concepts

■ Conflict Resolution Architecture
cture 5-1

Conflict Resolution Concepts
Conflict Resolution Concepts
Replication conflicts can occur in a replication environment that permits concurrent

updates to the same data at multiple sites. For example, when two transactions

originating from different sites update the same row at nearly the same time, a

conflict can occur. When you configure a replication environment, you must

consider whether replication conflicts can occur. If your system design permits

replication conflicts and a conflict occurs, then the system data does not converge

until the conflict is resolved in some way.

In general, your first choice should always be to design a replication environment

that avoids the possibility of conflicts. Using several techniques, most system

designs can avoid conflicts in all or a large percentage of the data that is replicated.

However, many applications require that some percentage of data be updatable at

multiple sites at any time. If this is the case, then you must address the possibility of

replication conflicts.

The next few sections introduce the following topics relating to replication conflicts:

■ How to design a replication system with replication conflicts in mind

■ How to determine the types of conflicts that are possible in your replication

environment

■ How you can avoid replication conflicts in designing your replication

environment

■ How Oracle can detect and resolve conflicts in designs where conflict avoidance

is not possible

Understanding Your Data and Application Requirements
When you design any type of database application and its supporting database, it is

critical that you understand the requirements of the application before you begin to

build the database or the application itself. For example, each application should be

modular, with clearly defined functional boundaries and dependencies, such as

order-entry, shipping, billing, and so on. Furthermore, you should normalize

supporting database data to reduce the amount of hidden dependencies between

modules in the application system.

In addition to basic database design practices, you must investigate additional

requirements when building a database that operates in a replication environment.

Start by considering the general requirements of the applications that will work

with the replicated data. For example, some applications might work fine with

read-only materialized views, and as a result, can avoid the possibility of replication

conflicts altogether. Other applications might require that most of the replicated
5-2 Oracle9i Advanced Replication

Conflict Resolution Concepts
data be read-only and a small fraction of the data (for example, one or two tables or

even one or two columns in a specific table) be updatable at all replication sites. In

this case, you must determine how to resolve replication conflicts when they occur

so that the integrity of replicated data remains intact.

Examples of Conflict Detection and Resolution
To better understand how to design a replicated database system with conflicts in

mind, consider the following environments where conflict detection and resolution

is feasible in some cases but not possible in others:

■ Conflict resolution is often not possible in reservation systems where multiple

bookings for the same item are not allowed. For example, when reserving

specific seats for a concert, different agents accessing different replicas of the

reservation system cannot book the same seat for multiple customers because

there is no way to resolve such a conflict.

■ Conflict resolution is often possible in customer management systems. For

example, salespeople can maintain customer address information at different

databases in a replication environment. Should a conflict arise, the system can

resolve the conflicting updates by applying the most recent update to a record.

Types of Replication Conflicts
You may encounter these types of data conflicts in a replicated database

environment:

■ Update Conflicts

■ Uniqueness Conflicts

■ Delete Conflicts

You will most likely encounter update conflicts in your replication environment,

although you should always prepare to handle uniqueness and delete conflicts.

Oracle Corporation recommends that your database design works to avoid these

types of conflicts.

Update Conflicts
An update conflict occurs when the replication of an update to a row conflicts with

another update to the same row. Update conflicts can happen when two

transactions originating from different sites update the same row at nearly the same

time.
Conflict Resolution Concepts and Architecture 5-3

Conflict Resolution Concepts
Uniqueness Conflicts
A uniqueness conflict occurs when the replication of a row attempts to violate

entity integrity, such as a PRIMARY KEY or UNIQUE constraint. For example,

consider what happens when two transactions originate from two different sites,

each inserting a row into a respective table replica with the same primary key value.

In this case, replication of the transactions causes a uniqueness conflict.

Delete Conflicts
A delete conflict occurs when two transactions originate from different sites, with

one transaction deleting a row and another transaction updating or deleting the

same row, because in this case the row does not exist to be either updated or

deleted.
5-4 Oracle9i Advanced Replication

Conflict Resolution Concepts
Conflict Detection
Each master site in a replication system automatically detects and resolves

replication conflicts when they occur. For example, when a master site pushes its

deferred transaction queue to another master site in the system, the remote

procedures being called at the receiving site can automatically detect if any

replication conflicts exist.

When a materialized view site pushes deferred transactions to its corresponding

master site or master materialized view site, the receiving site performs conflict

detection and resolution. A materialized view site refreshes its data by performing

materialized view refreshes. The refresh mechanism ensures that, upon completion,

Data Conflicts and Transaction Ordering

Conflicts

Ordering conflicts can occur in replication environments with three or more master
sites. If propagation to master site X is blocked for any reason, then updates to
replicated data can continue to be propagated among other master sites. When
propagation resumes, these updates may be propagated to site X in a different order
than they occurred on the other masters, and these updates may conflict. By default,
the resulting conflicts are recorded in the error log and can be re-executed after the
transactions they depend upon are propagated and applied. See Table 5–1 on page 5-21
to see an example of an ordering conflict.

To guarantee data convergence in replication environments with three or more master
sites, you must select a conflict resolution method that can guarantee data convergence
with any number of master sites (latest timestamp, minimum, maximum, priority
group, additive).

The minimum, maximum, priority group, and additive conflict resolution methods
guarantee data convergence with any number of master sites, as long as certain
conditions exist. See the appropriate conflict resolution method in the "Conflict
Resolution Architecture" section on page 5-22 for more information

Referential Integrity

In addition to receiving a data conflict, replicated transactions that are applied
out-of-order might experience referential integrity problems at a remote site if
supporting data was not successfully propagated to that site. Consider the scenario
where a new customer calls an order department; a customer record is created and an
order is placed. If the order data is propagated to a remote site before the customer
data, then a referential integrity error is raised because the customer that the order
references does not exist at the remote site.

If a referential integrity error is encountered, then you can easily resolve the situation
by re-executing the transaction in error after the supporting data has been propagated
to the remote site.
Conflict Resolution Concepts and Architecture 5-5

Conflict Resolution Concepts
the data at a materialized view is the same as the data at the corresponding master

table or master materialized view, including the results of any conflict resolution.

Therefore, it is not necessary for a materialized view site to perform work to detect

or resolve replication conflicts.

How Oracle Detects Different Types of Conflicts
The receiving master site or master materialized view site in a replication system

detects update, uniqueness, and delete conflicts as follows:

■ The receiving site detects an update conflict if there is any difference between

the old values of the replicated row (the values before the modification) and the

current values of the same row at the receiving site.

■ The receiving site detects a uniqueness conflict if a uniqueness constraint

violation occurs during an INSERT or UPDATE of a replicated row.

■ The receiving site detects a delete conflict if it cannot find a row for an UPDATE
or DELETE statement because the primary key of the row does not exist.

Identifying Rows During Conflict Detection
To detect replication conflicts accurately, Oracle must be able to uniquely identify

and match corresponding rows at different sites during data replication. Typically,

Advanced Replication uses the primary key of a table to uniquely identify rows in

the table. When a table does not have a primary key, you must designate an

alternate key—a column or set of columns that Oracle can use to uniquely identify

rows in the table during data replication.

Note: To detect and resolve an update conflict for a row, the

propagating site must send a certain amount of data about the new

and old versions of the row to the receiving site. For maximum

performance, tune the amount of data that Oracle uses to support

update conflict detection and resolution. For more information, see

"Performance Mechanisms and Conflict Resolution" on page 5-40.

Caution: Do not permit applications to update the primary key or

alternate key columns of a table. This precaution ensures that

Oracle can identify rows and preserve the integrity of replicated

data.
5-6 Oracle9i Advanced Replication

Conflict Resolution Concepts
Conflict Resolution
After a conflict has been detected, resolve the conflict with the goal of data

convergence across all sites. Oracle provides several prebuilt conflict resolution

methods to resolve update conflicts and in many situations can guarantee data

convergence across a variety of replication environments. Oracle also offers several

conflict resolution methods to handle uniqueness conflicts, though these methods

cannot guarantee data convergence.

Oracle does not provide any prebuilt conflict resolution methods to handle delete or

ordering conflicts. Oracle does, however, allow you to build your own conflict

resolution method to resolve data conflicts specific to your business rules. If you do

build a conflict resolution method that cannot guarantee data convergence, which is

likely for uniqueness and delete conflicts, then you should also build a notification

facility to notify the database administrator so that data convergence can be

manually achieved.

Whether you use an Oracle prebuilt or user-defined conflict resolution method, it is

applied as soon as the conflict is detected. If the defined conflict resolution method

cannot resolve the conflict, then the conflict is logged in the error queue.

To avoid a single point of failure for conflict resolution, you can define additional

conflict resolution methods to backup the primary method. For example, in the

unlikely event that the latest timestamp conflict resolution method cannot resolve a

conflict because the timestamps are identical, you may want to define a site priority

conflict resolution method, which breaks the timestamp tie and resolves the data

conflict.

Multitier Materialized Views and Conflict Resolution
When you have a master table and an updatable materialized view based on that

master table, a refresh of the materialized view pushes its changes to the master site,

where the master site handles any conflicts resulting from the push with its

configured conflict resolution methods. Then, the materialized view pulls changes

at the master down when the materialized view completes the refresh. The refresh

is always initiated at the materialized view site.

Similarly, the master materialized view of an updatable materialized view behaves

in the same way as a master table. However, to handle conflicts resulting from a

See Also: Oracle9i Replication Management API Reference for

information about modifying tables without replicating the

modifications, which may be necessary when you manually resolve

a conflict that could not be resolved automatically
Conflict Resolution Concepts and Architecture 5-7

Conflict Resolution Concepts
push from a materialized view, the master materialized view uses conflict

resolution methods that it has pulled from its master. Here, the master can either be

a master table at a master site or a master materialized view at another materialized

view site. Conflict resolution methods cannot be configured directly at a

materialized view site. Instead, the conflict resolution methods are pulled down

from the immediate master automatically when you create an updatable

materialized view and when you generate replication support for a materialized

view. A read-only materialized view does not pull-down conflict resolution

methods from its master.

For example, suppose a level 3 materialized view pushes its changes to its level 2

master materialized view. This push may cause a conflict at the level 2 materialized

view. To handle the conflict, the level 2 materialized view uses the conflict

resolution methods that it previously pulled from its level 1 master materialized

view. Similarly, the level 1 materialized view handles conflicts with the conflict

resolution methods that it previously pulled from its master site. Figure 5–1

illustrates this configuration.
5-8 Oracle9i Advanced Replication

Conflict Resolution Concepts
Figure 5–1 Conflict Resolution and Multitier Materialized Views

Notice that each updatable materialized view pulls-down conflict resolution

methods from its master, even if the updatable materialized view does not have any

materialized views based on it. Notice also that a read-only materialized view does

not pull-down conflict resolution methods from its master.

Conflict
Resolution
Methods

Updatable
Materialized View

Conflict
Resolution
Methods

Conflict
Resolution
Methods

Conflict
Resolution
Methods

Updatable
Materialized View

Read-Only
Materialized View

Updatable
Materialized View

Updatable
Materialized View

Read Only
Materialized View

Master Table

Pulled from
level 1
materialized
view

Pulled from
level 1
materialized
view

Conflict
Resolution
Methods

Pulled from
level 2
materialized
view

Pulled from
master

Pulled from
master

Conflict
Resolution
Methods

Updatable
Materialized View
Conflict Resolution Concepts and Architecture 5-9

Conflict Resolution Concepts
If you plan to change the conflict resolution methods for a master table in an

environment with multitier materialized views, then complete the following

general procedure:

1. If you are modifying either column groups or key columns and you are using

minimum communication for any of the updatable materialized views based on

the master table, then complete the following sub-steps:

a. Refresh the materialized views that are the farthest removed from the

master table you are altering. By refreshing, you push all the deferred

transactions from each materialized view to its master. For example, if you

have three levels of materialized views, then refresh the level 3 materialized

views.

b. Stop all data manipulation language (DML) changes at the materialized

views you refreshed in Step a.

c. Repeat Step a and Step b for each materialized view level until you

complete these steps for the level 1 materialized views, which are based on

a master table at a master site.

2. If necessary, then quiesce the master group. See "What’s New in Advanced

Replication?" at the beginning of this book for more information about when

quiesce is necessary.

3. Change the conflict resolution configuration at the master definition site.

4. Regenerate replication support for the affected objects at the master definition

site using either the GENERATE_REPLICATION_SUPPORT procedure in the

DBMS_REPCAT package or the Replication Management tool.

5. If you quiesced the master group in Step 2, then resume replication activity for

the master group.

6. Regenerate replication support for the materialized views with the smallest

level number that have not yet regenerated replication support. The current

conflict resolution methods are pulled down from the immediate master during

regeneration. The first time you complete this step, it is for the level 1

materialized views, the second time for the level 2 materialized views, and so

on. You regenerate replication support for a materialized view using either the

GENERATE_MVIEW_SUPPORT procedure in the DBMS_REPCAT package or the

Replication Management tool

7. If you completed the sub-steps in Step 1, then allow DML changes at the

materialized views with the smallest level number that do not currently allow

DML changes. The first time you complete this step, it is for the level 1
5-10 Oracle9i Advanced Replication

Conflict Resolution Concepts
materialized views, the second time for the level 2 materialized views, and so

on.

8. Repeat Step 6 and Step 7 for each level of materialized views until you complete

these steps for the materialized views that are farthest removed from the master

table. For example, if you have three levels of materialized views, then the last

time you complete these steps it is for the level 3 materialized views.

This regeneration of replication support is not performed automatically. In an

environment where different database administrators administer master sites and

materialized view sites, the database administrator at the master sites must notify

the database administrators at all of the affected materialized view sites of the

changes in conflict resolution methods. Then, it is the responsibility of all of the

database administrators to coordinate the previous procedure.

Column Subsetting of Updatable Materialized Views and Conflict Resolution
Column subsetting enables you to exclude columns in master tables from

materialized views by identifying specific columns in the SELECT statement during

materialized view creation. If only a subset of the columns in a column group are

included in an updatable materialized view, then do not create a conflict resolution

method on this column group, unless the conflict resolution method is either

discard or site priority. If the conflict resolution method is site priority, then column

subsetting should only be used in single master replication environments where the

master site has a higher priority number than the materialized view site.

For any type of conflict resolution method other than discard and the variant of site

priority described previously, the updatable materialized view sends information

about changes for some of the columns in the column group but not others, causing

Oracle to return an error when it tries to apply the conflict resolution method.

Because discard and this variant of site priority do not depend on column

information, you can use these methods along with column subsetting.

For example, suppose the employees master table has a column group that

contains the employee_id , manager_id , department_id , and timestamp
columns. You define a latest timestamp conflict resolution method on the column

group at the master site. Then, you create an updatable materialized view called

employees_mv based on the employees master table, but you use column

subsetting to exclude the department_id column from the materialized view.

When an update is made to the employee_id or manager_id column at the

materialized view, information about these changes are sent to the master site

during a subsequent refresh. An error is returned at the master site because no
Conflict Resolution Concepts and Architecture 5-11

Conflict Resolution Concepts
information about the remaining column in the column group, department_id , is

found when Oracle tries to apply the conflict resolution method.

Keep this in mind if you are using multitier materialized views. Because the conflict

resolution methods are pulled down from the master site to a master materialized

view, the same rules apply to master materialized view sites and updatable

materialized views based on them.

Nested Tables and Conflict Resolution
For each nested table column, Oracle creates a hidden column in the table called the

NESTED_TABLE_ID column. Oracle also creates a separate table called a storage

table to store the elements of the nested table. The storage table stores a row for

each element of the nested table for each parent table row. The storage table also

contains a NESTED_TABLE_ID column, which corresponds to the parent table’s

NESTED_TABLE_ID column and is used to identify the elements of the nested table

for a particular parent row. Nested table columns require special consideration in

Advanced Replication.The underlying storage tables require as much consideration

for conflict resolution as the parent table, and there are additional issues to consider.

Replication handles data manipulation language (DML) statements on nested tables

as separate DML statements on the parent table and storage table. When DML

statements are executed on nested table columns, the actions performed by Oracle

depend on the type of DML statement. The following table shows the actions

performed by Oracle for each type of DML statement.

See Also: "Column Subsetting with Deployment Templates" on

page 4-20

Insert Statements Delete Statements Update Statements

■ Inserts new rows into
storage table (assuming
nested table value is
neither null nor empty)

■ Inserts new row into
parent table, with the
NESTED_TABLE_ID
value referring to
previously inserted
storage rows.

■ Deletes any storage table
rows associated with the
parent table being
deleted.

■ Deletes parent table row.

■ Inserts new rows into
storage table (assuming
the nested table column
is set to a value that is
neither null nor an
empty table).

■ Updates the parent table
row.

■ Deletes old storage table
rows.
5-12 Oracle9i Advanced Replication

Conflict Resolution Concepts
Example of Nested Table Conflicts The following example illustrates how DML

statements on nested table columns can lead to conflicts that are difficult to resolve.

Following the example is information about ways to minimize conflicts.

Suppose there is a university which stores information about its departments in a

department table containing a nested table column that stores information about

each department’s courses:

CREATE TYPE Course AS OBJECT (
 course_no NUMBER(4),
 title VARCHAR2(35),
 credits NUMBER(1));
/

CREATE TYPE CourseList AS TABLE OF Course;
/

CREATE TABLE department (
 name VARCHAR2(20) primary key,
 director VARCHAR2(20),
 office VARCHAR2(20),
 courses CourseList)
 NESTED TABLE courses STORE AS courses_tab(
 (PRIMARY KEY(nested_table_id,course_no)));

The university has campuses across the United States and uses multimaster

replication to support its different locations. Each location can update the

department table, which is replicated. On univ1.world , one of the master sites,

information is inserted about the Psychology department.

INSERT INTO department
 VALUES('Psychology', 'Irene Friedman', 'Fulton Hall 133',
 CourseList(Course(1000, 'General Psychology', 5),
 Course(2100, 'Experimental Psychology', 4),
 Course(2200, 'Psychological Tests', 3),
 Course(2250, 'Behavior Modification', 4),
 Course(3540, 'Groups and Organizations', 3),
 Course(3552, 'Human Factors in Business', 4),
 Course(4210, 'Theories of Learning', 4)));

Advanced Replication propagates the insert to all masters.
Conflict Resolution Concepts and Architecture 5-13

Conflict Resolution Concepts
Then, change information arrives about the Psychology class offerings. That is, a

class is added. The information is updated on univ1.world .

UPDATE department SET courses = CourseList(
 Course(1000, 'General Psychology', 5),
 Course(2100, 'Experimental Psychology', 4),
 Course(2200, 'Psychological Tests', 3),
 Course(2250, 'Behavior Modification', 4),
 Course(3540, 'Groups and Organizations', 3),
 Course(3552, 'Human Factors in Business', 4),
 Course(4210, 'Theories of Learning', 4),
 Course(4320, 'Cognitive Processes', 4))
 WHERE name = 'Psychology';

After univ1.world has committed the update, but before the change is

propagated to other master sites, another master site, univ2.world , receives

information that two more class have been added, both 4320 and 4410 .

UPDATE department SET courses = CourseList(
 Course(1000, 'General Psychology', 5),
 Course(2100, 'Experimental Psychology', 4),
 Course(2200, 'Psychological Tests', 3),
 Course(2250, 'Behavior Modification', 4),
 Course(3540, 'Groups and Organizations', 3),
 Course(3552, 'Human Factors in Business', 4),
 Course(4210, 'Theories of Learning', 4),
 Course(4320, 'Cognitive Processes', 4),
 Course(4410, 'Abnormal Psychology', 4))
 WHERE name = 'Psychology';

Both the update on univ1.world and the update on univ2.world are pushed.

There will be an update conflict on department table. Each user who made an

update expects that it is the first update since the insert statement. But actually, the

local update has taken place first, and therefore the NESTED_TABLE_ID has

changed, because these are updates on the parent table. It is only updates on the

nested table column (changing the storage table rows and NESTED_TABLE_ID)

which are problematic. There is no problem updating other columns in the parent

table.

Suppose this conflict is resolved by keeping the local table update. Delete conflict

resolution would be required on the storage table to ignore the missing rows, which

were already deleted by the local update. The new rows inserted into the storage

table, due to the update at the remote site, now have no reference in the parent

table. These new storage table rows must also be dealt with. Otherwise, they will be
5-14 Oracle9i Advanced Replication

Conflict Resolution Concepts
orphaned. The storage table would grow with course rows which are not accessible

from the department table.

Resolving conflicts by manipulating the storage table rows while updating the

parent table is very difficult with two master sites in a multimaster replication

environment and becomes nearly impossible as the number of master sites

increases. If this type of update is necessary, then it may be best to not define any

conflict resolution methods on the nested table and resolve conflicts manually.

Incorrect conflict resolution could lead to divergence. That is, tables on different

masters may no longer match.

Recommendations for Avoiding Problematic Updates The following recommendations

enable you to avoid the problematic updates described in the preceding section:

■ Use a foreign key constraint, initially deferred, on the nested table. This

constraint prevents dangling rows in the storage table. The following is an

example of such a foreign key constraint:

ALTER TABLE courses_tab add CONSTRAINT courses_fk
 FOREIGN KEY(NESTED_TABLE_ID) REFERENCES department(courses)
 INITIALLY DEFERRED;

■ Make sure all inserts on the parent table insert an empty nested table. Do not

use a null nested table value. This practice helps to create a reusable NESTED_
TABLE_ID . The following is an example of an insert that included an empty

nested table:

INSERT INTO department (name, director, office, courses)
 VALUES('Psychology', 'Irene Friedman', 'Fulton Hall 133', CourseList());

■ Make sure all inserts, deletes, and updates are performed directly on the nested

table rather than through DML on the parent table. This practice helps to reuse

the present NESTED_TABLE_ID value.

The following is an example of deleting rows directly from a nested table:

DELETE FROM TABLE
 (SELECT courses FROM department WHERE name = 'Psychology');

Consider an example where the following rows are inserted directly into the

nested table on univ1.world :

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5000, 'Social Psychology', 5));
Conflict Resolution Concepts and Architecture 5-15

Conflict Resolution Concepts
INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5100, 'Psychology of Personality', 4));

Then, the following rows are inserted directly into the nested table on

univ2.world before the preceding inserts on univ1.world are pushed:

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5000, 'Social Psychology', 5));

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5100, 'Psychology of Personality', 4));

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5500, 'Cognitive Neuroscience', 5));

Here, primary key conflicts will occur on the inserted rows in the storage table

for courses 5000 and 5100), but a conflict resolution on the storage table which

allows the inserts from one site to fail should provide the proper results.

However, these inserts will not result in the more complicated problem

involving multiple tables described in "Example of Nested Table Conflicts" on

page 5-13, but the NESTED_TABLE_ID value is not lost, because this value has

not changed.

■ Consider using a trigger on the parent table that prevents inserts and updates

that include manipulation of the nested table column. The following is an

example of such a trigger:

CREATE OR REPLACE TRIGGER depart_trig
 AFTER INSERT OR UPDATE ON department
 FOR EACH ROW
 DECLARE
 new_ntid raw(100);
 old_ntid raw(100);
 BEGIN
-- obtain the nested table ids
 SELECT sys_op_tosetid(:new.courses) INTO new_ntid from dual;
 SELECT _tosetid(:old.courses) INTO old_ntid from dual;
 IF INSERTING THEN
-- raise error on insert of a null nested table column
 IF :new.courses IS NULL THEN
 raise_application_error(-20011, 'inserting null nested table ref');
5-16 Oracle9i Advanced Replication

Conflict Resolution Concepts
 END IF;
-- raise error if new rows are inserted in the storage table
-- this is not strictly necessary, but it does enforce DML access
-- semantics of separate DMLS on parent table and storage table
 IF :new.courses.count != 0 THEN
 raise_application_error(-20012,
 'inserting rows into storage table while inserting parent table row');
 END IF;
 ELSE
-- raise error if update has caused the NESTED_TABLE_ID to change
 IF new_ntid != old_ntid THEN
 raise_application_error(-20013,
 'updating storage table reference while updating parent table row');
 END IF;
 END IF;
END;
/

These recommendations continue to apply with multilevel nesting, where the

storage table row becomes a parent to another storage table’s rows. All of these

recommendations are good strategies at each level of nesting.

Techniques for Avoiding Conflicts
Although Oracle provides powerful methods for resolving data conflicts, one of

your highest priorities when designing a replicated database and front-end

application should be to avoid data conflicts. The next few sections briefly suggest

several techniques that you can use to avoid some or all replication conflicts.

Use Column Groups
Column groups can help you avoid conflicts even if you do not apply any conflict

resolution methods to the column groups. When your replicated table contains

multiple column groups, each group is viewed independently when analyzing

updates for conflicts.

For example, consider a replicated table with column group a_cg and column

group b_cg . Column group a_cg contains the following columns: a1 , a2 , and a3 .

Column group b_cg contains the following columns: b1 , b2 , and b3 . The following

updates occur at replication sites sf.world and la.world :

■ User wsmith updates column a1 in a row at sf.world .

■ At exactly the same time, user mroth updates column b2 in the same row at

la.world .
Conflict Resolution Concepts and Architecture 5-17

Conflict Resolution Concepts
In this case, no conflicts result because Oracle analyzes the updates separately in

column groups a_cg and b_cg. If, however, column groups a_cg and b_cg did not

exist, then all of the columns in the table would be in the same column group, and a

conflict would have resulted. Also, with the column groups in place, if user mroth
had updated column a3 instead of column b2 , then a conflict would have resulted,

because both a1 and a3 are in the a_cg column group.

Use Primary Site and Dynamic Site Ownership Data Models
One way that you can avoid the possibility of replication conflicts is to limit the

number of sites in the system with simultaneous update access to the replicated

data. Two replicated data ownership models support this approach: primary site

ownership and dynamic site ownership.

Primary Site Ownership Primary ownership is the replicated data model that the

read-only replication environments support. Primary ownership prevents all

replication conflicts, because only a single server permits update access to a set of

replicated data.

Rather than control the ownership of data at the table level, applications can

employ row and column subsetting to establish more granular static ownership of

data. For example, applications might have update access to specific columns or

rows in a replicated table on a site-by-site basis.

Dynamic Site Ownership The dynamic ownership replicated data model is less

restrictive than primary site ownership. With dynamic ownership, capability to

update a data replica moves from site to site, still ensuring that only one site

provides update access to specific data at any given point in time. A workflow

system clearly illustrates the concept of dynamic ownership. For example, related

departmental applications can read the status code of a product order, for example,

enterable , shippable , billable , to determine when they can and cannot

update the order.

See Also: "Column Groups" on page 5-22 for more information

about column groups

See Also: Oracle9i Replication Management API Reference for more

information about using dynamic ownership data models
5-18 Oracle9i Advanced Replication

Conflict Resolution Concepts
Avoiding Specific Types of Conflicts
When both primary site ownership and dynamic ownership data models are too

restrictive for your application requirements, you must use a shared ownership data

model. Even so, typically you can use some simple strategies to avoid specific types

of conflicts.

Avoiding Uniqueness Conflicts It is quite easy to configure a replication environment

to prevent the possibility of uniqueness conflicts. For example, you can create

sequences at each site so that each sequence at each site generates a mutually

exclusive set of sequence numbers. This solution, however, can become problematic

as the number of sites increase or the number of entries in the replicated table

grows.

Alternatively, you can append a unique site identifier as part of a composite

primary key.

Finally, you can select a globally unique value using the SYS_GUID function. Using

the selected value as the primary key (or unique) value will globally avoid

uniqueness conflicts.

Avoiding Delete Conflicts Always avoid delete conflicts replicated data environments.

In general, applications that operate within an asynchronous, shared ownership

data model should not delete rows using DELETE statements. Instead, applications

should mark rows for deletion and then configure the system to periodically purge

logically deleted rows using procedural replication.

Note: Sequences are not valid replication object types and you

must therefore create the sequence at each site.

See Also: "Alternatives to Replicating Sequences" on page 2-29

for more information about sequences and Oracle9i SQL Reference
for more information about the SYS_GUID function

See Also: The instructions for creating conflict avoidance

methods for delete conflicts in the Oracle9i Replication Management
API Reference to learn how to prepare a table for delete avoidance

and build a replicated procedure to purge marked rows
Conflict Resolution Concepts and Architecture 5-19

Conflict Resolution Concepts
Avoiding Update Conflicts After trying to eliminate the possibility of uniqueness and

delete conflicts in a replication system, you should also try to limit the number of

update conflicts that are possible. However, in a shared ownership data model,

update conflicts cannot be avoided in all cases. If you cannot avoid all update

conflicts, then you must understand exactly what types of replication conflicts are

possible and then configure the system to resolve conflicts when they occur.

Avoiding Ordering Conflicts Whenever possible, avoid or automatically resolve

ordering conflicts. For example, select conflict resolution methods that ensure

convergence in multimaster configurations where ordering conflicts are possible.

The example in Table 5–1 shows how having three master sites can lead to ordering

conflicts. Master Site A has priority 30; Master Site B has priority 25; and Master Site

C has priority 10; x is a column of a particular row in a column group that is

assigned the site-priority conflict resolution method. The highest priority is given

to the site with the highest priority value. Priority values can be any Oracle number

and do not have to be consecutive integers.
5-20 Oracle9i Advanced Replication

Conflict Resolution Concepts
Table 5–1 Example: Ordering Conflicts With Site Priority Conflict Resolution

Time Action Site A Site B Site C

1 All sites are up and agree that x = 2. 2 2 2

2 Site A updates x = 5. 5 2 2

3 Site C becomes unavailable. 5 2 down

4 Site A pushes update to Site B.
Site A and Site B agree that x = 5.

Site C is still unavailable.
The update transaction remains in the queue at Site A.

5 5 down

5 Site C becomes available with x = 2.
Sites A and B agree that x = 5.

5 5 2

6 Site B updates x = 5 to x = 7. 5 7 2

7 Site B pushes the transaction to Site A.
Sites A and B agree that x = 7.
Site C still says x = 2.

7 7 2

8 Site B pushes the transaction to Site C.
Site C says the old value of x = 2;
Site B says the old value of x = 5.
Oracle detects a conflict and resolves it by applying the update from Site
B, which has a higher priority level (25) than Site C (10).
All site agree that x = 7.

7 7 7

9 Site A successfully pushes its transaction (x = 5) to Site C.
Oracle detects a conflict because the current value at
Site C (x = 7) does not match the old value at Site A (x = 2).

Site A has a higher priority (30) than Site C (10).
Oracle resolves the conflict by applying the outdated update from Site A
(x = 5).

Because of this ordering conflict, the sites no longer converge.

7 7 5
Conflict Resolution Concepts and Architecture 5-21

Conflict Resolution Architecture
Conflict Resolution Architecture
Very few architectural mechanisms and processes are visible when implementing

conflict resolution into your replication environment. This section describes the few

supporting mechanisms involved in conflict resolution and describes different

aspects of Oracle’s prebuilt conflict resolution methods.

Support Mechanisms
The most important mechanism involved in Oracle conflict resolution is the column

group because it is the basis for all update conflict detection and resolution.

Additionally, the error queue can provide you with important information to

monitor the conflict detection activity of your replication environment.

Column Groups
Oracle uses column groups to detect and resolve update conflicts. A column group

is a logical grouping of one or more columns in a replicated table. Every column in

a replicated table is part of a single column group. When configuring replicated

tables at the master definition site, you can create column groups and then assign

columns and corresponding conflict resolution methods to each group.

Column groups have the following characteristics:

■ A column can belong only to one column group.

■ A column group can consist of one or more columns of a table.

■ Conflict resolution is applicable only to columns in a column group.

Ensuring Data Integrity with Multiple Column Groups Having column groups enables you

to designate different methods of resolving conflicts for different types of data. For

example, numeric data is often suited for an arithmetical resolution method, and

character data is often suited for a timestamp resolution method. However, when

selecting columns for a column group, it is important to group columns wisely. If

two or more columns in a table must remain consistent with respect to each other,

then place the columns within the same column group to ensure data integrity.

See Also: "Use Column Groups" on page 5-17 for information

about using column groups to avoid conflicts
5-22 Oracle9i Advanced Replication

Conflict Resolution Architecture
For example, if the postal code column in a customer table uses one resolution

method while the city column uses a different resolution method, then the sites

could converge on a postal code that does not match the city. Therefore, all

components of an address should typically be within a single column group so that

conflict resolution is applied to the address as a unit.

Shadow Column Groups By default, every replicated table has a shadow column

group. The shadow column group of a table contains all columns that are not within

a specific column group. You cannot assign conflict resolution methods to a table's

shadow group. Therefore, make sure to include a column in a column group when

conflict resolution is necessary for the column. Oracle detects conflicts that involve

columns in the shadow column group but does not attempt to apply any conflict

resolution methods to resolve these conflicts.

Column Objects and Column Groups An Oracle object based on a user-defined type that

occupies a single column in a table is a column object. A column object cannot span

column groups. That is, given a column group and a column object, either the

column object and all of its attributes must be within the column group, or the

column object and all of its attributes must be excluded from a column group.

Oracle’s prebuilt conflict resolution methods cannot resolve conflicts based on

undefined column object attribute values. If a column object is NULL, then its

attributes are undefined.

Object Tables and Column Groups An object table is a special kind of table in which

each row represents an object based on a user-defined type. You can specify column

groups that include a subset of the columns in an object table.

Nested Tables and Column Groups A nested table’s storage table is treated as an

independent table in conflict resolution. Therefore, you can create a column group

based on a subset of the columns in a storage table.

Error Queue
If a conflict resolution method fails to resolve a data conflict, or if you have not

defined any conflict resolution methods, then the error queue contains information

about the data conflict.

See Also: "Error Queue" on page 2-31 for more information about

the error queue
Conflict Resolution Concepts and Architecture 5-23

Conflict Resolution Architecture
Common Update Conflict Resolution Methods
Although Oracle provides eight prebuilt update conflict resolution methods, the

latest timestamp and the overwrite conflict resolution methods are the most

commonly implemented resolution methods.

These methods are the most common because they are easy to use and, in the

proper environments, can guarantee data convergence. The latest timestamp and

the overwrite conflict resolution methods are described in detail in the following

two sections.

Latest Timestamp
The latest timestamp method resolves a conflict based on the most recent update, as

identified by the timestamp of when the update occurred.

The following example demonstrates an appropriate application of the latest

timestamp update conflict resolution method:

1. A customer in Phoenix calls the local salesperson and updates her address

information.

2. After hanging up the phone, the customer realizes that she gave the local

salesperson the wrong postal code.

3. The customer tries to call the local salesperson with the correct postal code, but

the salesperson cannot be reached.

4. The customer calls the headquarters, which is located in New York. The New

York site, rather than the Phoenix site, correctly updates the address

information.

Table 5–2 Convergence Properties of Common Update Conflict Resolution Methods

Resolution Methods Convergence with Multiple Master Sites

Latest timestamp YES
(with backup method)

Overwrite NO

Note: All of Oracle’s prebuilt conflict resolution methods provide

convergence in an environment with a single master site that has

one or more materialized view sites.
5-24 Oracle9i Advanced Replication

Conflict Resolution Architecture
5. The network connecting New York headquarters with the local Phoenix sales

site goes down temporarily.

6. When the New York/Phoenix network connection comes back up, Oracle sees

two updates for the same address, and detects a conflict at each site.

7. Using the latest timestamp method, Oracle selects the most recent update, and

applies the address with the correct postal code.

Target Environments The latest timestamp conflict resolution method works to

converge replication environments with two or more master sites. Because time is

always increasing, it is one of the few conflict resolution methods that can

guarantee data convergence with multiple master sites. This resolution also works

well with any number of materialized views.

Support Mechanisms To use the timestamp method, you must designate a

column in the replicated table of type DATE. When an application updates any

column in a column group, the application must also update the value of the

designated timestamp column with the local SYSDATE. For a change applied from

another site, the timestamp value should be set to the timestamp value from the

originating site.

Note: When you use a timestamp conflict resolution method, you

should designate a backup method, such as site priority, to be

called if two sites have the same timestamp.
Conflict Resolution Concepts and Architecture 5-25

Conflict Resolution Architecture
Implement Latest Timestamp See the Replication Management tool’s online help

to learn how to define a latest timestamp conflict resolution method with the

Replication Management tool.

Overwrite
The overwrite method replaces the current value at the destination site with the

new value from the originating site, and therefore can never guarantee convergence

with more than one master site. This method is designed to be used by a single

master site and multiple materialized view sites. You can also use this form of

conflict resolution with multiple master sites, though it does not guarantee data

convergence and should be used with some form of a user-defined notification

facility.

Timestamp Configuration Issues

When you use timestamp resolution, you must carefully consider how time is
measured on the different sites managing replicated data. For example, if a replication
environment crosses time zones, then applications that use the system should convert
all timestamps to a common time zone such as Greenwich Mean Time (GMT).
Furthermore, if two sites in a system do not have their system clocks synchronized
reasonably well, then timestamp comparisons might not be accurate enough to satisfy
application requirements.

You can maintain timestamp columns if you use the EARLIEST or LATEST timestamp
update conflict resolution methods in the following ways:

■ Each application can include logic to synchronize timestamps.

■ You can create a trigger for a replicated table to synchronize timestamps
automatically for all applications.

A clock counts seconds as an increasing value. Assuming that you have properly
designed your timestamping mechanism and established a backup method in case two
sites have the same timestamp, the latest timestamp method (like the maximum value
method) guarantees convergence. The earliest timestamp method, however, cannot
guarantee convergence for more than one master site.

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API
5-26 Oracle9i Advanced Replication

Conflict Resolution Architecture
For example, if you have a single master site that you expect to be used primarily

for queries, with all updates being performed at the materialized view sites, then

you might select the overwrite method. The overwrite method is also useful if:

■ Your primary concern is data convergence.

■ You have a single master site.

■ No particular business rule exists for selecting one update over the other.

■ You have multiple master sites and you supply a notification facility to notify

the person who ensures that data is correctly applied, instead of logging the

conflict in the DEFERROR data dictionary view and leaving the resolution to

your local database administrator.

Target Environments The overwrite conflict resolution method ensures data

convergence for replication environments that have a single master site with any

number of materialized views. With this in mind, the overwrite conflict resolution

method is ideal for mass deployment environments.

If a conflict is detected, then the value originating from the materialized view site is

used, which means that priority is given to the most recently refreshed materialized

views.

Support Mechanisms No additional support mechanisms are required for the

overwrite conflict resolution method.

Implement Overwrite See the Replication Management tool’s online help to learn

how to define an overwrite conflict resolution method with the Replication

Management tool.

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API
Conflict Resolution Concepts and Architecture 5-27

Conflict Resolution Architecture
Additional Update Conflicts Resolution Methods
If the latest timestamp or the overwrite conflict resolution methods do not meet

your needs to resolve data conflicts that are encountered in your replication

environment, then Oracle offers six additional prebuilt update conflict resolution

methods.

Additive
The additive method works with column groups consisting of a single numeric

column only. If a conflict arises, instead of choosing one value over another, then the

difference of the two values is added to the current value.

The additive method adds the difference between the old and new values at the

originating site to the current value at the destination site according to this formula:

current value = current value + (new value - old value)

The additive conflict resolution method provides convergence for any number of

master sites and materialized view sites.

Table 5–3 Convergence Properties of Additional Update Conflict Resolution Methods

Resolution Methods Convergence with Multiple Master Sites

Additive YES

Average NO

Discard NO

Earliest timestamp NO

Maximum YES
(column values must always increase)

Minimum YES
(column values must always decrease)

Priority group YES
(with ordered update values)

Site priority NO
5-28 Oracle9i Advanced Replication

Conflict Resolution Architecture
Target Environments The additive conflict resolution method is designed to

conserve data rather than choose the most appropriate data. This method might be

useful in a financial environment where deposits and withdrawals happen so

frequently that conflicts may arise; with a balance, it is important to conserve data

rather than choose one value over another (though we might wish that deposits

would always be chosen over withdrawals).

Support Mechanisms No additional support mechanisms are required for the

additive conflict resolution method.

Implement Additive See the Replication Management tool’s online help to learn

how to define an additive conflict resolution method with the Replication

Management tool.

Average
Like the additive method, the average method works with column groups

consisting of a single numeric column only. Instead of adding the difference to the

current value, the average method resolves the conflict by computing the average of

the current and the new value.

The average conflict resolution method averages the new column value from the

originating site with the current value at the destination site.

current value = (current value + new value)/2

The average method cannot guarantee convergence if your replication environment

has more than one master site.

Target Environments Because the average method cannot guarantee data

convergence for replication environments with more than one master site, the

average method is ideally implemented in mass deployment environment with a

single master site and any number of updatable materialized views.

The average method might be useful for scientific applications that would rather

average two values than choose one value over another (for example, to compute

the average temperature or weight).

Support Mechanisms No additional support mechanisms are required for the

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API
Conflict Resolution Concepts and Architecture 5-29

Conflict Resolution Architecture
average conflict resolution method.

Implement Average See the Replication Management tool’s online help to learn

how to define an average conflict resolution method with the Replication

Management tool.

Discard
The discard method ignores the values from the originating site and therefore can

never guarantee convergence with more than one master site. The discard method

ignores the new value from the originating site and retains the value at the

destination site. This method is designed to be used by a single master site and

multiple materialized view sites, or with some form of a user-defined notification

facility.

For example, if you have a single master site and multiple materialized view sites

based on it, and you expect the materialized view sites to be used primarily for

queries with all updates being performed at the master site, then you might select

the discard method. The discard methods is also useful if:

■ Your primary concern is data convergence.

■ You have a single master site.

■ There is no particular business rule for selecting one update over the other.

■ You have multiple master sites and you supply a notification facility to notify

the person who ensures that data is correctly applied, instead of logging the

conflict in the DEFERRORview and leaving the resolution to your local database

administrator.

Target Environments The discard conflict resolution method is best suited for a

mass deployment model having a single master site with any number of

materialized view sites. If a conflict is detected, then the value originating from the

materialized view site is ignored, which means that priority is given to materialized

views that refresh first.

Support Mechanisms No additional support mechanisms are required for the dis-

card conflict resolution method.

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API
5-30 Oracle9i Advanced Replication

Conflict Resolution Architecture
Implement Discard See the Replication Management tool’s online help to learn

how to define a discard conflict resolution method with the Replication

Management tool.

Earliest Timestamp
The earliest timestamp methods resolves a conflict based on the earliest (oldest)

update, as identified by the timestamp of when the update occurred.

Target Environments The earliest timestamp conflict resolution method works to

converge replication environments with a single master site and any number of

materialized views. Because time is always increasing, the earliest timestamp

conflict resolution cannot guarantee data convergence in replication environments

with more than one master site. This resolution also works well with any number of

materialized views, if you have a backup conflict resolution method in the event

that two transactions have the same timestamp.

Support Mechanisms To use the timestamp method, you must designate a

column in the replicated table of type DATE. When an application updates any

column in a column group, the application must also update the value of the

designated timestamp column with the local SYSDATE. For a change applied from

another site, the timestamp value should be set to the timestamp value from the

originating site. Be sure to review the "Timestamp Configuration Issues" discussion

on page 5-26.

Implement Earliest Timestamp See the Replication Management tool’s online help

to learn how to define an earliest timestamp conflict resolution method with the

Replication Management tool.

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API

Note: When you use a timestamp conflict resolution method, you

should designate a backup method, such as site priority, to be

called if two sites have the same timestamp.

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API
Conflict Resolution Concepts and Architecture 5-31

Conflict Resolution Architecture
Maximum
When Advanced Replication detects a conflict with a column group and calls the

maximum value conflict resolution method, it compares the new value from the

originating site with the current value from the destination site for a designated

column in the column group. You must designate this column when you select the

maximum value conflict resolution method.

If the new value of the designated column is greater than the current value, then the

column group values from the originating site are applied at the destination site,

assuming that all other errors were successfully resolved for the row. If the new

value of the designated column is less than the current value, then the conflict is

resolved by leaving the current values of the column group unchanged.

There are no restrictions on the datatypes of the columns in the column group.

Convergence for more than one master site is only guaranteed if the column value

is always increasing.

Target Environments If you have defined the maximum conflict resolution

method and the target column that is used to resolve the conflict is always

increasing across all sites, then this method guarantees data convergence with any

number of master sites and materialized view sites.

Support Mechanisms No additional support mechanisms are required for the

maximum conflict resolution method.

Note: If the two values for the designated column are the same

(for example, if the designated column was not the column causing

the conflict), then the conflict is not resolved, and the values of the

columns in the column group remain unchanged. Designate a

backup conflict resolution method to be used for this case.

Note: You should not enforce an always-increasing restriction by

using a CHECK constraint because the constraint could interfere

with conflict resolution.
5-32 Oracle9i Advanced Replication

Conflict Resolution Architecture
Implement Maximum See the Replication Management tool’s online help to learn

how to define a maximum conflict resolution method with the Replication

Management tool.

Minimum
When Advanced Replication detects a conflict with a column group and calls the

minimum value conflict resolution method, it compares the new value from the

originating site with the current value from the destination site for a designated

column in the column group. You must designate this column when you select the

minimum value conflict resolution method.

If the new value of the designated column is less than the current value, then the

column group values from the originating site are applied at the destination site,

assuming that all other errors were successfully resolved for the row. If the new

value of the designated column is greater than the current value, then the conflict is

resolved by leaving the current values of the column group unchanged.

There are no restrictions on the datatypes of the columns in the column group.

Convergence for more than one master site is only guaranteed if the column value

is always decreasing.

Target Environments If you have defined the minimum conflict resolution method

and the target column that is used to resolve the conflict is always decreasing across

all sites, then this method guarantees data convergence with any number of master

sites and materialized view sites.

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API

Note: If the two values for the designated column are the same

(for example, if the designated column was not the column causing

the conflict), then the conflict is not resolved, and the values of the

columns in the column group remain unchanged. Designate a

backup conflict resolution method to be used for this case.

Note: You should not enforce an always-decreasing restriction by

using a CHECK constraint because the constraint could interfere

with conflict resolution.
Conflict Resolution Concepts and Architecture 5-33

Conflict Resolution Architecture
Support Mechanisms No additional support mechanisms are required for the

minimum conflict resolution method.

Implement Minimum See the Replication Management tool’s online help to learn

how to define a minimum conflict resolution method with the Replication

Management tool. Or, see the information on the minimum and maximum methods

in Oracle9i Replication Management API Reference book to learn how to define this

type of conflict resolution method with the replication management API.

Priority Groups
Priority groups allow you to assign a priority level to each possible value of a

particular column. If Oracle detects a conflict, then Oracle updates the table whose

"priority" column has a lower value using the data from the table with the higher

priority value. Therefore, a higher value means a higher priority.

You can guarantee convergence with more than one master site when you are using

priority groups if the value of the priority column is always increasing. That is, the

values in the priority column correspond to an ordered sequence of events; for

example: ordered, shipped, billed.

As shown in Figure 5–2, the DBA_REPPRIORITY view displays the priority level

assigned to each priority group member (value that the "priority" column can

contain). You must specify a priority for all possible values of the "priority" column.
5-34 Oracle9i Advanced Replication

Conflict Resolution Architecture
Figure 5–2 Using Priority Groups

The DBA_REPPRIORITY view displays the values of all priority groups defined at

the current location. In the example shown in Figure 5–2, there are two different

priority groups: site-priority and order-status. The customer table is using the

site-priority priority group. In the order-status priority group in this example,

billed (priority 3) has a higher priority than shipped (priority 2), and shipped
has a higher priority than ordered (priority 1).

Before you use the Replication Management tool to select the priority group method

of update conflict resolution, you must designate which column in your table is the

priority column.

Target Environments The priority group conflict resolution method is useful for

replication environments that have been designed for a work flow environment. For

example, once an order has reached the shipping status, updates from the order
entry department are always over-written.

customer Table

custno

153
118
121
204
.
.
.

name

Kelly
Klein
Lee
Potter
.
.
.

addr1

104 First St.
22 Iris Ln.
71 Blue Ct.
181 First Av.
.
.
.

addr2

Jones, NY
Planes, NE
Aspen, CO
Aspen, CO
.
.
.

site

new_york.world
houston.world
houston.world
houston.world
.
.
.

DBA_REPPRIORITY Data Dictionary View

... PRIORITY_GROUP

site-priority
site-priority
order-status
order-status
order-status
...

PRIORITY

1
2
1
2
3
...

... VARCHAR2_VALUE

houston.world
new_york.world
ordered
shipped
billed
...
Conflict Resolution Concepts and Architecture 5-35

Conflict Resolution Architecture
Support Mechanisms You need to define the priority of the values contained in

the target column. This priority definition is required so that Oracle knows how to

resolve a conflict based on the priority of the column value that has been designated

to resolve a conflict. The priority definitions are stored in a priority group.

Implement Priority Groups See the Replication Management tool’s online help to

learn how to define a priority group conflict resolution method with the Replication

Management tool.

Site Priority
Site priority is a special kind of priority group. With site priority, the priority

column you designate is automatically updated with the global database name of

the site where the update originated. The DBA_REPPRIORITY view displays the

priority level assigned to each database site.

Site priority can be useful if one site is considered to be more likely to have the most

accurate information. For example, in Figure 5–2 on page 5-35, the new_
york.world site (priority value = 2) is corporate headquarters, while the

houston.world site (priority value = 1) is an updatable materialized view at a

sales office. Therefore, the headquarters office is considered more likely than the

sales office to have the most accurate information about the credit that can be

extended to each customer.

When you are using site priority alone, convergence with more than one master site

is not guaranteed, but site priority can be a good backup method in a multimaster

environment, especially for breaking latest timestamp ties.

Similar to priority groups, you must complete several preparatory steps before

using the Replication Management tool to select site priority conflict resolution for a

column group.

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API

Note: The priority-group column of the DBA_REPPRIORITYview

shows both the site-priority group and the order-status group.
5-36 Oracle9i Advanced Replication

Conflict Resolution Architecture
Target Environments As with priority groups, site priority conflict resolution is

commonly implemented in a work-flow environment. Additionally, when the site

priority conflict resolution method is used in a mass deployment environment

(which is a single master site and any number of materialized views), data

convergence can be guaranteed.

The site priority conflict resolution method is also a good backup conflict resolution

method should a primary conflict resolution method fail in a multimaster

environment.

Support Mechanisms A column must be designated to store site information

when a row is updated. Additionally, you need to create a trigger that populates

this site column with the global name of the updating site when a row is either

updated or inserted. A sample of this trigger is contained in the Replication

Management tool’s online help and in the Oracle9i Replication Management API
Reference book.

You also need to define the priority of the sites that participate in your replication

environment. This priority definition is required so that Oracle knows how to

resolve a conflict based on the priority of the site that performed the update/insert.

The site priority definitions are stored in a priority group.

Implement Site Priority See the Replication Management tool’s online help to

learn how to define a site priority conflict resolution method with the Replication

Management tool.

Uniqueness Conflicts Resolution Methods
Oracle provides three prebuilt methods for resolving uniqueness conflicts:

■ Append the global site name of the originating site to the column value from

the originating site.

■ Append a generated sequence number to the column value from the originating

site.

■ Discard the row value from the originating site.

The following sections explain each uniqueness conflict resolution method in detail.

See Also: Oracle9i Replication Management API Reference to learn

how to define this type of conflict resolution method with the

replication management API
Conflict Resolution Concepts and Architecture 5-37

Conflict Resolution Architecture
Append Site Name
The append site name method works by appending the global database name of

the site originating the transaction to the replicated column value that is generating

a dup_val_on_index exception. Although this method allows the column to be

inserted or updated without violating a unique integrity constraint, it does not

provide any form of convergence between multiple master sites. The resulting

discrepancies must be manually resolved; therefore, this method is meant to be

used with some form of a notification facility.

This method can be useful when the availability of the data may be more important

than the complete accuracy of the data. To allow data to be available as soon as it is

replicated

■ Select append site name.

■ Use a notification scheme to alert the appropriate person to resolve the

duplication, instead of logging a conflict.

When a uniqueness conflict occurs, the append site name method appends the

global database name of the site originating the transaction to the replicated column

value. The name is appended to the first period (.). For example, houston.world
becomes houston .

Note: Oracle’s prebuilt uniqueness conflict resolution methods do

not actually converge the data in a replication environment; they

simply provide techniques for resolving constraint violations.

When you use one of Oracle’s uniqueness conflict resolution

methods, you should also use a notification mechanism to alert you

to uniqueness conflicts when they happen and then manually

converge replicated data, if necessary.

Note: To add unique conflict resolution method for a column, the

name of the unique index on the column must match the name of

the unique or primary key constraint.

Note: Both append site name and append sequence can be used

on character columns only.
5-38 Oracle9i Advanced Replication

Conflict Resolution Architecture
Append Sequence
The append sequence methods works by appending a generated sequence number

to the column value that is generating a dup_val_on_index exception. Although

this method allows the column to be inserted or updated without violating a unique

integrity constraint, it does not provide any form of convergence between multiple

master sites. The resulting discrepancies must be manually resolved; therefore, this

method is meant to be used with some form of a notification facility.

This method can be useful when the availability of the data may be more important

than the complete accuracy of the data. To allow data to be available as soon as it is

replicated:

■ Select append sequence.

■ Use a notification scheme to alert the appropriate person to resolve the

duplication, instead of logging a conflict.

The append sequence method appends a generated sequence number to the column

value. The column value is truncated as needed. If the generated portion of the

column value exceeds the column length, then the conflict method does not resolve

the error.

Discard
The discard uniqueness conflict resolution method resolves uniqueness conflicts by

simply discarding the row from the originating site that caused the error. This

method does not guarantees convergence with multiple master sites and should be

used with a notification facility.

Unlike the append methods, the discard uniqueness method minimizes the

propagation of data until data accuracy can be verified.

Delete Conflict Resolution Methods
Oracle does not provide any prebuilt methods for resolving delete conflicts. As

discussed in the "Avoiding Delete Conflicts" section on page 5-19, you should

design your database and front-end application to avoid delete conflicts. You can

achieve this goal by marking rows for deletion and at regular intervals, using

procedural replication to purge such marked rows.

Note: Both append site name and append sequence can be used

on character columns only.
Conflict Resolution Concepts and Architecture 5-39

Conflict Resolution Architecture
Performance Mechanisms and Conflict Resolution
To detect and resolve an update conflict for a row, the propagating site must send a

certain amount of data about the new and old versions of the row to the receiving

site. Depending on your environment, the amount of data that Oracle propagates to

support update conflict detection and resolution can be different.

Minimum Communication
When you create a replicated table and all participating sites are Oracle8 or higher

databases, you can choose to minimize the amount of data that must be

communicated to determine conflicts for each changed row in the table by enabling

the minimum communication feature. When minimum communication is enabled,

Oracle propagates:

■ The old value of the primary key and each column in the column group (the

value before the modification)

■ The new value of each updated column in the column group

In general, you should choose to minimize data propagation in Oracle8 or higher

replication environments to reduce the amount of data that Oracle transmits across

the network. As a result, you can help to improve overall system performance.

Alternatively, when a replication environment uses both Oracle7 and Oracle8 or

higher sites, you cannot minimize the communication of row data for update

See Also:

■ "Avoiding Delete Conflicts" on page 5-19 to learn how to avoid

encountering delete conflicts

■ Oracle9i Replication Management API Reference to learn how to

build conflict avoidance into your replication environment

Note: For an inserted row, the row has no old value. For a deleted

row, the row has no new value.

Note: A nested table’s storage table is treated as an independent

column group.
5-40 Oracle9i Advanced Replication

Conflict Resolution Architecture
conflict resolution. In this case, Oracle must propagate the entire old and new

versions of each changed row to perform conflict resolution.

Reduced Quiesce and Materialized Views in a Single Master Site Environment In a single

master site environment, if all of the updatable materialized views do not use

minimum communication in the detection of conflicts, then quiesce is no longer

required for certain administration operations to the master group.

If at least one updatable materialized view uses minimum communication to detect

conflicts, quiesce is not required if you:

■ Propagate all of the deferred transactions at the databases containing updatable

materialized views using minimum communication before you perform the

administration operations to the master group.

■ Do not allow any database manipulation language (DML) changes on the

updatable materialized views that use minimum communication until you have

finished the administration operation on the master site and regenerated

replication support for the materialized view.

If you do not perform these actions, then quiesce the master group before you

perform the administration operations on it.

Send and Compare Old Values
If you have minimized propagation using the method described previously, then

you can further reduce data propagation in some cases by using the DBMS_
REPCAT.SEND_OLD_VALUES procedure and the DBMS_REPCAT.COMPARE_OLD_
VALUES procedure to send old values only if they are needed to detect and resolve

conflicts. For example, the latest timestamp conflict detection and resolution

method does not require old values for nonkey and non timestamp columns.

See Also: "Extended Availability In Single Master Environments

Not Using Minimum Communication" in the "What’s New in

Advanced Replication?" section at the front of the book for a list of

these operations

Suggestion: Further minimizing propagation of old values is

particularly valuable if you are replicating LOB datatypes and do

not expect conflicts on these columns.
Conflict Resolution Concepts and Architecture 5-41

Conflict Resolution Architecture
To further reduce data propagation, execute the following procedures:

DBMS_REPCAT.SEND_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 send IN BOOLEAN := true);

DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 compare IN BOOLEAN := true);

After executing these procedures, you must use the DBMS_REPCAT.GENERATE_
REPLICATION_SUPPORT procedure to generate replication support with min_
communication set to true for this change to take effect.

The specified behavior for old column values is exposed in two columns in the

DBA_REPCOLUMN data dictionary view: COMPARE_OLD_ON_DELETE (Y or N) and

COMPARE_OLD_ON_UPDATE (Y or N).

Note: You must ensure that the appropriate old values are

propagated to detect and resolve anticipated conflicts.

User-supplied conflict resolution procedures must deal properly

with NULL old column values that are transmitted. Using the

SEND_OLD_VALUES and COMPARE_OLD_VALUES procedures to

further reduce data propagation reduces protection against

unexpected conflicts.

Note: The operation parameter enables you to decide whether

or not to transmit old values for nonkey columns when rows are

deleted or when nonkey columns are updated or both. If you do

not send the old value, Oracle sends a NULL in place of the old

value and assumes the old value is equal to the current value of the

column at the target side when the update or delete is applied.
5-42 Oracle9i Advanced Replication

Conflict Resolution Architecture
The following example shows how you can further reduce data propagation by

using these procedures. Consider a table called rsmith.reports with three

columns. Column 1 is the primary key and is in its own column group (column

group 1). Column 2 and column 3 are in a second column group (column group 2).

Figure 5–3 Column Groups and Data Propagation

The conflict resolution strategy for the second column group is site priority.

Column 2 is a VARCHAR2 column containing the site name. Column 3 is a LOB

column. Whenever you update the LOB, you must also update column 2 with the

global name of the site at which the update occurs. Because there are no triggers for

piecewise updates to LOBs, you must explicitly update column 2 whenever you do

a piecewise update on the LOB.

Suppose you use the DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT
procedure to generate replication support for rsmith.reports with min_
communication set to true and then use an UPDATE statement to modify column

2 (the site name) and column 3 (the LOB). The deferred remote procedure call (RPC)

contains the new value of the site name and the new value of the LOB because they

were updated. The deferred RPC also contains the old value of the primary key

(column 1), the old value of the site name (column 2), and the old value of the LOB

(column 3).

Note: The conflict detection and resolution strategy does not

require the old value of the LOB. Only column C2 (the site name) is

required for both conflict detection and resolution. Sending the old

value for the LOB could add significantly to propagation time.

Column 1 Column 2 Column 3

primary
key

site LOB

column
group 1

column
group 2
Conflict Resolution Concepts and Architecture 5-43

Conflict Resolution Architecture
To ensure that the old value of the LOB is not propagated when either column C2 or

column C3 is updated, make the following calls:

BEGIN
 DBMS_REPCAT.SEND_OLD_VALUES(
 sname => 'rsmith',
 oname => 'reports'
 column_list => 'c3',
 operation => 'UPDATE',
 send => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname => 'rsmith',
 oname => 'reports'
 column_list => 'c3',
 operation => 'UPDATE',
 compare => FALSE);
END;
/

You must use the DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT procedure

to generate replication support for rsmith.reports with min_communication
set to true for this change to take effect. Suppose you subsequently use an UPDATE
statement to modify column 2 (the site name) and column 3 (the LOB). The deferred

RPC contains the old value of the primary key (column 1), the old and new values

of the site name (column 2), and just the new value of the LOB (column 3). The

deferred RPC contains nulls for the new value of the primary key and the old value

of the LOB.

Send and Compare When Using Column Objects You can specify leaf attributes of a

column object when you send and compare old values if the attributes are not

replication key columns. For example, suppose you create the following cust_
address_typ object type.

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),

Note: Oracle conflict resolution does not support piecewise

updates of LOBs.
5-44 Oracle9i Advanced Replication

Conflict Resolution Architecture
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

You create the customers table using this type as a column object:

CREATE TABLE customers
 (customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address cust_address_typ,
 phone_numbers phone_list_typ);

If you want to send and compare old values for the street_address attribute of

the cust_address_typ type in the customers table, then you run the following

procedures to specify that you do want to send or compare the attribute value:

BEGIN
 DBMS_REPCAT.SEND_OLD_VALUES(
 sname => 'oe',
 oname => 'customers',
 column_list => 'cust_address.street_address', -- object attribute
 operation => 'UPDATE',
 send => true);
END;
/

BEGIN
 DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname => 'oe',
 oname => 'customers',
 column_list => 'cust_address.street_address', -- object attribute
 operation => 'UPDATE',
 compare => true);
END;
/

Note: If you have multiple levels of object attributes in one

column object, then you can only specify the final (or leaf) attribute

for the column_list parameter. You cannot specify middle

attributes.
Conflict Resolution Concepts and Architecture 5-45

Conflict Resolution Architecture
You can also specify that you want to send and compare an entire column object.

For example, the following procedures specify the entire cust_address column

object:

BEGIN
 DBMS_REPCAT.SEND_OLD_VALUES(
 sname => 'oe',
 oname => 'customers',
 column_list => 'cust_address', -- entire column object
 operation => 'UPDATE',
 send => true);
END;
/

BEGIN
 DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname => 'oe',
 oname => 'customers',
 column_list => 'cust_address', -- entire column object
 operation => 'UPDATE',
 compare => true);
END;
/

See Also: The Oracle9i Replication Management API Reference for

details about the DBMS_REPCAT.SEND_OLD_VALUES procedure

and the DBMS_REPCAT.COMPARE_OLD_VALUES procedure
5-46 Oracle9i Advanced Replication

Planning Your Replication Environ
6

Planning Your Replication Environment

Before you begin to plan your replication environment, it is important to

understand the replication concepts and architecture described in the previous

chapters of this book. After you understand replication concepts and architecture,

this chapter presents important considerations for planning a replication

environment.

This chapter contains these topics:

■ Considerations for Replicated Tables

■ Initialization Parameters

■ Master Sites and Materialized View Sites

■ Guidelines for Scheduled Links

■ Guidelines for Scheduled Purges of a Deferred Transaction Queue

■ Serial and Parallel Propagation

■ Deployment Templates

■ Conflict Resolution

■ Security

■ Designing for Survivability
ment 6-1

Considerations for Replicated Tables
Considerations for Replicated Tables
The following sections discuss considerations for tables you plan to use in a

replication environment.

Primary Keys
If possible, each replicated table should have a primary key. Where a primary key is

not possible, each replicated table must have a set of columns that can be used as a

unique identifier for each row of the table. If the tables that you plan to use in your

replication environment do not have a primary key or a set of unique columns, then

alter these tables accordingly. In addition, if you plan to create any primary key

materialized views based on a master table or master materialized view, then that

master must have a primary key.

Foreign Keys
When replicating tables with foreign key referential constraints, Oracle Corporation

recommends that you always index foreign key columns and replicate these

indexes, unless no updates and deletes are allowed in the parent table. Indexes are

not replicated automatically. To replicate an index, add it to the master group

containing its table using either the Replication Management tool or the CREATE_
MASTER_REPOBJECT procedure in the DBMS_REPCAT package.

Datatype Considerations
Advanced Replication supports the replication of tables and materialized views

with columns that use the following datatypes:

■ VARCHAR2

■ NVARCHAR2

■ NUMBER

■ DATE

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP LOCAL TIME ZONE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

■ RAW
6-2 Oracle9i Advanced Replication

Considerations for Replicated Tables
■ ROWID

■ CHAR

■ NCHAR

■ User-defined datatypes

Oracle also supports the replication of tables and materialized views with columns

that use the following large object types:

■ Binary LOB (BLOB)

■ Character LOB (CLOB)

■ National character LOB (NCLOB)

The deferred and synchronous remote procedure call mechanism used for

multimaster replication propagates only the piece-wise changes to the supported

LOB datatypes when piece-wise updates and appends are applied to these LOB

columns. Also, you cannot reference LOB columns in a WHERE clause of a

materialized view’s defining query.

You can replicate tables and materialized views that use user-defined types,

including column objects, object tables, REFs, varrays, and nested tables.

Oracle does not support the replication of columns that use the LONGand LONG RAW
datatypes. Oracle simply omits columns containing these datatypes from replicated

tables. You should convert LONG datatypes to LOBs.

Oracle also does not support the replication of external or file-based LOBs

(BFILE s). Attempts to configure tables containing columns of this datatype as

master tables return an error message.

Oracle also does not support the replication of UROWID columns in master tables or

updatable materialized views. However, UROWID columns are allowed in read-only

materialized views.

Note: Oracle does not support replication of LOB datatypes in

replication environments where some sites are running Oracle7

release 7.3.
Planning Your Replication Environment 6-3

Initialization Parameters
Row-Level Dependency Tracking
When you create a table, you can specify the following options for tracking system

change numbers (SCN)s:

■ NOROWDEPENDENCIES, the default, specifies that the SCN is tracked at the data

block level.

■ ROWDEPENDENCIES specifies that the SCN is tracked for each row in the table.

Using the ROWDEPENDENCIES option improves performance and scalability when

using parallel propagation, but this option also requires six bytes of additional

storage space for each row.

The following SQL statement creates a table with the ROWDEPENDENCIES option:

CREATE TABLE order_items
 (order_id NUMBER(12),
 line_item_id NUMBER(3) NOT NULL,
 product_id NUMBER(6) NOT NULL,
 unit_price NUMBER(8,2),
 quantity NUMBER(8)
) ROWDEPENDENCIES;

Oracle tracks the SCN for each row in this order_items table. You can also use the

ROWDEPENDENCIES option in a CREATE CLUSTER statement if your tables are part

of a cluster.

Initialization Parameters
Table 6–1 lists initialization parameters that are important for the operation,

reliability, and performance of a replication environment.

See Also:

■ Oracle9i Replication Management API Reference for information

about converting a LONG column into a LOB column in a

replicated table

■ Oracle9i SQL Reference for information about datatypes

See Also: "Data Propagation Dependency Maintenance" on

page 2-54 for more information about the ROWDEPENDENCIES
option
6-4 Oracle9i Advanced Replication

Initialization Parameters
See Also: Oracle9i Database Reference for more information about

these initialization parameters
Planning Your Replication Environment 6-5

Initialization Parameters
Table 6–1 Initialization Parameters Important for Replication (Page 1 of 3)

Parameter Values Description Recommendation

COMPATIBLE Default: 8.1.0

Range: 8.1.0 to Current
Release Number

Lets you use a new
release, while at the
same time guaranteeing
backward compatibility
with an earlier release.
This ability is helpful in
case it becomes
necessary to revert to
the earlier release.

This parameter specifies
the release with which
the Oracle server must
maintain compatibility.
Oracle servers with
different compatibility
levels can interoperate.

If you want to use any
of the new replication
features available in
Oracle9i, then set this
parameter to 9.0.1 or
higher.

GLOBAL_NAMES Default: false

Range: true or false

Specifies whether a
database link is required
to have the same name
as the database to which
it connects.

GLOBAL_NAMES must
be set to true at each
database that is
participating in your
replication
environment,
including both master
sites and materialized
view sites.

JOB_QUEUE_PROCESSES Default: 0

Range: 0 to 1000

Specifies the number of
Jn job queue processes
for each instance (J000
... J999). Job queue
processes handle
requests created by
DBMS_JOB.

When JOB_QUEUE_
PROCESSESis set to 0 at
a site, you must apply
administrative requests
manually for all groups
at the site, and you must
manually push and
purge the deferred
transaction queue.

You can change the
setting for JOB_QUEUE_
PROCESSES
dynamically by using
the ALTER SYSTEM
statement.

This parameter should
be set to at least 1, and
should be set to the
same value as the
maximum number of
jobs that can run
simultaneously plus
one.
6-6 Oracle9i Advanced Replication

Initialization Parameters
OPEN_LINKS Default: 4

Range: 0 to 255

Specifies the maximum
number of concurrent
open connections to
remote databases in one
session. These
connections include the
schema objects called
database links, as well
as external procedures
and cartridges, each of
which uses a separate
process.

If you are using
synchronous
replication, OPEN_
LINKS must be set to
at least the number of
master sites. For
example, an
environment with five
master sites requires
that OPEN_LINKS be
set to at least 5.

PARALLEL_AUTOMATIC_TUNING Default: false

Range: true or false

When set to true ,
Oracle determines the
default values for
initialization parameters
that control parallel
execution.

See Oracle9i Database
Reference and Oracle9i
Database Migration for
details about using
this initialization
parameter.

PARALLEL_MAX_SERVERS Default: Derived from the values
of the following parameters:

CPU_COUNT
PARALLEL_AUTOMATIC_TUNING
PARALLEL_ADAPTIVE_MULTI_USER

Range: 0 to 3599

Specifies the maximum
number of parallel
execution processes and
parallel recovery
processes for an
instance. As demand
increases, Oracle will
increase the number of
processes from the
number created at
instance startup up to
this value.

If you use parallel
propagation, then
make sure the value of
this parameter is set
high enough to
support it.

PARALLEL_MIN_SERVERS Default: 0

Range: 0 to Value of
PARALLEL_MAX_SERVERS

Specifies the minimum
number of parallel
execution processes for
the instance. This value
is the number of parallel
execution processes
Oracle creates when the
instance is started.

If you use parallel
propagation, then
make sure you have at
least one process for
each stream.

PROCESSES Default: Derived from
PARALLEL_MAX_SERVERS

Range: 6 to operating
system dependent limit

Specifies the maximum
number of operating
system user processes
that can simultaneously
connect to Oracle.

Make sure the value of
this parameter allows
for all background
processes, such as
locks, job queue
processes, and parallel
execution processes.

Table 6–1 Initialization Parameters Important for Replication (Page 2 of 3)

Parameter Values Description Recommendation
Planning Your Replication Environment 6-7

Initialization Parameters
REPLICATION_DEPENDENCY_TRACKINGDefault: true

Range: true or false

Enables or disables
dependency tracking for
read/write operations to
the database.
Dependency tracking is
essential for
propagating changes in
a replication
environment in parallel.

true : enables
dependency tracking.

false : allows
read/write operations to
the database to run
faster, but does not
produce dependency
information for Oracle
to perform parallel
propagation.

Typically, specify
true . Do not specify
false unless you are
sure that your
application will
perform no read/write
operations to the
replicated tables.

SHARED_POOL_SIZE Default: 16 MB
(64 MB if 64 bit)

Range: 300 KB to Operating
System Dependent Limit

Specifies in bytes the
size of the shared pool.
The shared pool
contains shared cursors,
stored procedures,
control structures, and
other structures. Larger
values improve
performance in
multiuser systems.
Smaller values use less
memory.

Typically, the shared
pool should be larger
for an Oracle server in
a replication
environment than in a
non-replication
environment.

You can monitor
utilization of the
shared pool by
querying the view
V$SGASTAT.

UTL_FILE_DIR Default: None

Range: Any valid directory
path.

Specifies the default
location for generated
files. These files may be
generated by the
Replication
Management tool or by
the replication
management API.

For example, an offline
instantiation file for a
deployment template
can be placed in the
directory specified by
this initialization
parameter.

Specify a valid
directory.

Table 6–1 Initialization Parameters Important for Replication (Page 3 of 3)

Parameter Values Description Recommendation
6-8 Oracle9i Advanced Replication

Master Sites and Materialized View Sites
Master Sites and Materialized View Sites
When you are planning your replication environment, you need to decide whether

the sites participating in the replication environment will be master sites or

materialized view sites. Consider the characteristics and advantages of both types

of replication sites when you are deciding whether a particular site in your

replication environment should be a master site or a materialized view site. One

replication environment can support both master sites and materialized view sites.

Table 6–2 Characteristics of Master Sites and Materialized View Sites

Master Sites Materialized View Sites

■ Typically communicate with a small
number of other master sites, and may
communicate with a large number of
materialized view sites

■ Communicate with one master site or
one master materialized view site

■ Contain large amounts of data that are
full copies of the other master sites’ data

■ Contain small amounts of data that can
be subsets of the master site’s or master
materialized view site’s data

■ Typically communicate continuously
with short intervals between data
propagation

■ Communicate periodically with longer
intervals between bulk data transfers

Note: Master sites require either Oracle Enterprise Edition or

Oracle Standard Edition. Oracle Standard Edition supports only

single master site configurations. Materialized view sites running

Oracle require one of the following: Oracle Enterprise Edition,

Oracle Standard Edition, or Oracle Personal Edition. In addition,

replication must be installed on all master sites and materialized

view sites.
Planning Your Replication Environment 6-9

Master Sites and Materialized View Sites
Advantages of Master Sites
Master sites have the following advantages:

■ Support for highly available data access by remote sites

■ Provide better support for frequent data manipulation language (DML) changes

because changes are propagated automatically and, typically, at short intervals

■ Allow simultaneous DML changes and data propagation without locking tables

■ Can provide failover protection

To set up a master site, use either the Replication Management tool’s Setup Wizard

or the replication management API.

Advantages of Materialized View Sites
Materialized view sites have the following advantages:

■ Support disconnected computing

■ Can contain a subset of its master site’s or master materialized view site’s data

To set up a materialized view site, you can use either the Replication Management

tool’s Setup Wizard or the replication management API.

See Also:

■ The Replication Management tool’s online help for instructions

on using the Setup Wizard to set up a master site

■ The Oracle9i Replication Management API Reference for

instructions on using the replication management API to set up

a master site

■ "Designing for Survivability" on page 6-33 for information

about designing your replication environment for failover

protection

See Also:

■ The the Replication Management tool’s online help for

instructions on using the Setup Wizard to set up a materialized

view site

■ Oracle9i Replication Management API Reference for instructions

on using the replication management API to set up a

materialized view site
6-10 Oracle9i Advanced Replication

Master Sites and Materialized View Sites
Preparing for Materialized Views
Most problems encountered with materialized view replication result from not

preparing the environment properly. There are four essential tasks that you must

perform before you begin creating your materialized view environment:

■ Create the necessary schema.

■ Create the necessary database links.

■ Assign the appropriate privileges.

■ Allocate sufficient job processes.

The Replication Management tool’s Setup Wizard automatically performs these

tasks. The following discussion is provided to help you understand the replication

environment and to help those who use the replication management API. After

running Setup Wizard, create the necessary materialized view logs. See the

Replication Management tool’s online help for instructions on using tool to set up

your materialized view site.

If you are not able to use the Replication Management tool, then review the "Set Up

Materialized View Sites" section in Chapter 2 of the Oracle9i Replication Management
API Reference for detailed instructions on setting up your materialized view site

using the replication management API.

The following sections describe what the Replication Management tool’s Setup

Wizard or the script in the Oracle9i Replication Management API Reference does to set

up your materialized view site.

Create Materialized View Site Users
Each materialized view site needs several users to perform the administrative and

refreshing activities at the materialized view site. You must create and grant the

necessary privileges to the materialized view administrator and to the refresher.

Create Master Site Users
You need equivalent proxy users at the target master site to perform tasks on behalf

of the materialized view site users. Usually, a proxy materialized view

administrator and a proxy refresher are created.

Create Schemas at Materialized View Site
A schema containing a materialized view in a remote database must correspond to

the schema that contains the master table in the master database. Therefore, identify

See Also: "Creating a Materialized View Log" on page 6-17
Planning Your Replication Environment 6-11

Master Sites and Materialized View Sites
the schemas that contain the master tables that you want to replicate with

materialized views. After you have identified the target schemas at the master

database, create the corresponding accounts with the same names at the remote

database. For example, if all master tables are in the sales schema of the

ny.world database, then create a corresponding sales schema in the materialized

view database sf.world .

Create Database Links
The defining query of a materialized view may use one or more database links to

reference remote table data. Before creating materialized views, the database links

you plan to use must be available. Furthermore, the account that a database link

uses to access a remote database defines the security context under which Oracle

creates and subsequently refreshes a materialized view.

To ensure proper behavior, a materialized view’s defining query must use a

database link that includes an embedded user name and password in its definition;

you cannot use a public database link when creating a materialized view. A

database link with an embedded name and password always establishes

connections to the remote database using the specified account. Additionally, the

remote account that the link uses must have the SELECT privileges necessary to

access the data referenced in the materialized view’s defining query.

Before creating your materialized views, you need to create several administrative

database links. Specifically, you should create a PUBLIC database link from the

materialized view site to the master site. Doing so makes defining your private

database links easier because you do not need to include the USING clause in each

link. You also need private database links from the materialized view administrator

to the proxy administrator and from the propagator to the receiver, but, if you use

the Replication Management tool’s Setup Wizard, then these database links are

created for you automatically.

See Also: If you are reviewing the steps in Oracle9i Replication
Management API Reference, then the necessary schemas are created

as part of the script described in the instructions for creating a

materialized view group

See Also: The information about security options in Oracle9i
Replication Management API Reference for more information
6-12 Oracle9i Advanced Replication

Master Sites and Materialized View Sites
After the administrative database links have been created, a private database link

must be created connecting each replicated materialized view schema at the

materialized view database to the corresponding schema at the master database. Be

sure to embed the associated master database account information in each private

database link at the materialized view database. For example, the hr schema at a

materialized view database should have a private database link to the master

database that connects using the hr username and password.

Figure 6–1 Recommended Schema and Database Link Configuration

Assign Privileges
Both the creator and the owner of the materialized view must be able to issue the

defining SELECT statement of the materialized view. The owner is the schema that

contains the materialized view. If a user other than the replication or materialized

view administrator creates the materialized view, then that user must have the

CREATE MATERIALIZED VIEW privilege and the appropriate SELECT privileges to

execute the defining SELECT statement.

See Also: Oracle9i Database Administrator’s Guide for more

information about database links

Materialized
View

Database

Master
Database

Database Link
SnapshotsMaterialized
Views

SnapshotsMaster
Tables

SnapshotsSnapshotsMaster
Tables

CONNECT TO hr
INDENTIFIED BY . . .

CONNECT TO oe
IDENTIFIED BY . . .

Database Link

Snapshots
SnapshotsMaterialized
Views

hr Schema hr Schema

oe Schemaoe Schema
Planning Your Replication Environment 6-13

Master Sites and Materialized View Sites
Schedule Purge at Master Site
To keep the size of the deferred transaction queues in check, schedule a purge

operation to remove all successfully completed deferred transactions from the

deferred transaction queue. This operation may have already been performed at the

master site. Scheduling the purge operation again does not harm the master site,

but may change the purge scheduling characteristics.

Schedule Push
Scheduling a push at the materialized view site automatically propagates the

deferred transactions at the materialized view site to the associated target master

site using a database link. These types of database links are called scheduled links.

Typically, there is only a single scheduled link for each materialized view group at a

materialized view site, because a materialized view group only has a single target

master site.

Allocate Job Queue Processes
It is important that you have allocated sufficient job queue processes to handle the

automation of your replication environment. The job queue processes automatically

propagate the deferred transaction queue, purge the deferred transaction queue,

refresh materialized views, and so on.

For multimaster replication, each site has a scheduled link to each of the other

master sites. For example, if you have six master sites, then each site has scheduled

links to the other five sites. You typically need one process for each scheduled link.

You may also want to add additional job processes for purging the deferred

transaction queue and other user-defined jobs.

By the nature of materialized view replication, each materialized view site typically

has one scheduled link to the master database and requires at least one job process.

Materialized view sites typically require between one and three job processes,

depending on purge scheduling, user-defined jobs, and the scheduled link. Also,

you need at least one job queue process for each degree of parallelism.

See Also: If you are reviewing the steps in Oracle9i Replication
Management API Reference, then the necessary privileges are granted

as part of the script described in instructions for creating a

materialized view group. Privilege requirements are also described

in "Required Privileges for Materialized View Operations" on

page 3-14
6-14 Oracle9i Advanced Replication

Master Sites and Materialized View Sites
Alternatively, if your users are responsible for manually refreshing the materialized

view through an application interface, then you do not need to create a scheduled

link and your materialized view site requires one less job process.

The job queue processes are defined using the JOB_QUEUE_PROCESSES
initialization parameter in the initialization parameter file for your database. You

can set up your job queue processes in any of the following ways:

■ Dynamically Altering the JOB_QUEUE_PROCESSES Setting

■ Editing Initialization Parameters Using Instance Management Tool

■ Manually Editing the Initialization Parameter File

Oracle automatically determines the interval for job queue processes. That is, Oracle

determines when the job queue processes should "wake up" to execute jobs.

Dynamically Altering the JOB_QUEUE_PROCESSES Setting The JOB_QUEUE_PROCESSES
initialization parameter is dynamic. Therefore, it can be modified using the ALTER
SYSTEM command while an instance is running.

The following statement dynamically sets JOB_QUEUE_PROCESSES to 50:

ALTER SYSTEM SET JOB_QUEUE_PROCESSES = 50;

Whenever a dynamic parameter is modified using the ALTER SYSTEM command,

Oracle records in the alert log the command that modifies the parameter. The

ALTER SYSTEM command in the previous example modifies the global value of the

parameter for all sessions in the instance, for the duration of the instance (until the

database is shut down). If you shut down and restart the database, then Oracle uses

the setting for JOB_QUEUE_PROCESSES in the initialization parameter file.

Editing Initialization Parameters Using Instance Management Tool You can use the Edit

Database dialog box of the Instance Management tool to configure the job queue

processes at the materialized view site if you have a dedicated network link to the

materialized view site or if you are able to schedule the network link. This

operation is required because the Instance Management tool is not installed at the

materialized view site in most cases, which means that the configuration must be

done remotely from the master site. If remote configuration is not possible, then see

the next section.

See Also: "Initialization Parameters" on page 6-4 and the Oracle9i
Database Reference for information about JOB_QUEUE_PROCESSES
Planning Your Replication Environment 6-15

Master Sites and Materialized View Sites
Complete the following to set your job processes using Instance Manager:

1. Start Oracle Enterprise Manager Console.

2. Select the database in the Navigator pane.

3. Log in as a user with SYSDBA privileges.

4. Expand the Instance Management tool.

5. Select Configuration.

6. On the General tab in the right pane, click the All Initialization Parameters

button. The Edit Database dialog box.

7. Edit the settings for the initialization parameters.

8. Click the OK button.

You can save this configuration, which is helpful if you use Instance Manager to

manage your database.

Manually Editing the Initialization Parameter File If you do not have access to the Instance

Management tool, then you can manually edit the initialization parameter file. Use

a text editor to modify the contents of your initialization parameter file.

In most cases, all of the initialization parameters used in replication are grouped

together under an "Advanced Replication" heading in your initialization parameter

file. After you have modified the contents of your initialization parameter file,

restart your database with these new settings.

See Also: Oracle Enterprise Manager Administrator’s Guide and the

Instance Management tool’s online help for more information on

using the Instance Management tool

See Also: "Initialization Parameters" on page 6-4 and the Oracle9i
Database Reference for more information about initialization

parameters important for Advanced Replication, and see Oracle9i
Database Administrator’s Guide for information on restarting your

database.
6-16 Oracle9i Advanced Replication

Master Sites and Materialized View Sites
Creating a Materialized View Log
Before creating materialized view groups and materialized views for a remote

materialized view site, make sure you create the necessary materialized view logs at

the master site or master materialized view site. A materialized view log is

necessary for every master table or master materialized view that supports at least

one materialized view with fast refreshes.

To create a materialized view log, you need the following privileges:

■ CREATE ANY TABLE

■ CREATE ANY TRIGGER

■ SELECT (on the materialized view log’s master)

■ COMMENT ANY TABLE

Logging Columns in the Materialized View Log
When you create a materialized view log, you can add columns to the log when

necessary. To fast refresh a materialized view, the following types of columns must

be added to the materialized view log:

■ A column referenced in the WHERE clause of a subquery that is not part of an

equi-join and is not a primary key column. These columns are called filter

columns.

■ A column in an equi-join that is not a primary key column, if the subquery is

either many to many or one to many. If the subquery is many to one, then you

do not need to add the join column to the materialized view log.

A collection column cannot be added to a materialized view log. Also, materialized

view logs are not required for materialized views that are complete refreshed.

See Also: The "Creating Materialized View Logs" topic in the

Replication Management tool’s online help for detailed information

about creating materialized view logs at the master site or master

materialized view site with the Replication Management tool. To

access this topic in the online help, open Materialized View

Replication in the Help Contents.
Planning Your Replication Environment 6-17

Master Sites and Materialized View Sites
For example, consider the following DDL:

1) CREATE MATERIALIZED VIEW oe.customers REFRESH FAST AS
2) SELECT * FROM oe.customers@orc1.world c
3) WHERE EXISTS
4) (SELECT * FROM oe.orders@orc1.world o
5) WHERE c.customer_id = o.customer_id AND o.order_total > 20000);

Notice in line 5 of the preceding DDL that three columns are referenced in the

WHERE clause. Columns orders.customer_id and customers.customer_id
are referenced as part of the equi-join clause. Because customers.customer_id
is a primary key column, it is logged by default, but orders.customer_id is not

a primary key column and so must be added to the materialized view log. Also, the

column orders.order_total is an additional filter column and so must be

logged.

Therefore, add orders.customer_id and orders.order_total the

materialized view log for the oe.orders table.

To create the materialized view log with these columns added, issue the following

statement:

CREATE MATERIALIZED VIEW LOG ON oe.orders
 WITH PRIMARY KEY (customer_id,order_total);

If a materialized view log already exists on the oe.customers table, you can add

these columns by issuing the following statement:

ALTER MATERIALIZED VIEW LOG ON oe.orders ADD (customer_id,order_total);

If you are using user-defined datatypes, then the attributes of column objects can be

logged in the materialized view log. For example, the oe.customers table has the

cust_address.postal_code attribute, which can be logged in the materialized

view log by issuing the following statement:

ALTER MATERIALIZED VIEW LOG ON oe.customers ADD (cust_address.postal_code);

You are encouraged to analyze the defining queries of your planned materialized

views and identify which columns must be added to your materialized view logs. If

you try to create or refresh a materialized view that requires an added column

without adding the column to the materialized view log, then your materialized

view creation or refresh may fail.
6-18 Oracle9i Advanced Replication

Master Sites and Materialized View Sites
Creating a Materialized View Environment
Materialized view environments can be created in several different ways and from

several different locations. In most cases, you should use deployment templates at

the master site to locally precreate a materialized view environment that will be

individually deployed to the target materialized view site.

You can also individually create the materialized view environment by establishing

a connection to the materialized view site and building the materialized view

environment directly.

Creating a Materialized View Environment Using the Replication
Management Tool
See the Replication Management tool’s online help for information on using

deployment templates to centrally create a materialized view environment using

the Replication Management tool.

See the Replication Management tool’s online help for information on individually

creating the materialized view environment with a direct connection to the remote

materialized view site using the Replication Management tool.

Note: To fast refresh a materialized view, you must add join

columns in subqueries to the materialized view log if the join

column is not a primary key and the subquery is either many to

many or one to many. If the subquery is many to one, then you do

not need to add the join column to the materialized view log.

See Also:

■ "Data Subsetting with Materialized Views" on page 3-17 for

information about materialized views with subqueries

■ "Restrictions for Materialized Views with Subqueries" on

page 3-26 for additional information about materialized views

with subqueries

■ "Creating a Materialized View Log" on page 6-17 for

information about creating a materialized view log
Planning Your Replication Environment 6-19

Master Sites and Materialized View Sites
Figure 6–2 Flowchart for Creating Materialized Views

Creating a Materialized View Environment Using the Replication
Management API
The instructions for creating a deployment template in the Oracle9i Replication
Management API Reference manual for information on using deployment templates

to centrally pre-create a materialized view environment using the replication

management API.

The instructions for creating a materialized view group the Oracle9i Replication
Management API Reference manual for information on individually creating the

materialized view environment with a direct connection to the remote materialized

view site using the replication management API.

Deployment
Template

Type
of materialized
view creation

Start
Create materialized
view logs at
master site

Set up materialized
view site

End

Create
deployment
template

Package
template and
distribute

Instantiate template
at materialized
view site

Connect to remote
materialized
view site

Create materialized
views

Individually
6-20 Oracle9i Advanced Replication

Master Sites and Materialized View Sites
Avoiding Problems When Adding a New Materialized View Site
After you have created a materialized view environment with one or more

materialized view sites, you may need to add new materialized view sites. You may

encounter problems when you try to fast refresh the materialized views you create

at a new materialized view site if both of the following conditions are true:

■ Materialized views at the new materialized view site and existing materialized

views at other materialized view sites are based on the same master table or

master materialized view.

■ Existing materialized views can be refreshed while you create the new

materialized views at the new materialized view site.

The problem arises when the materialized view logs for the masters are purged

before a new materialized view can perform its first fast refresh. If this happens and

you try to fast refresh the materialized views at the new materialized view site, then

you may encounter the following errors:

ORA-12004 REFRESH FAST cannot be used for materialized view materialized_view_
name
ORA-12034 materialized view log on materialized_view_name younger than last
refresh

If you receive these errors, then the only solution is to perform a complete refresh of

the new materialized view.

To avoid this problem, choose one of the following options:

■ Use deployment templates to create the materialized view environment at

materialized view sites. You will not encounter this problem if you use

deployment templates.

■ Create a dummy materialized view at the new materialized view site before

you create your production materialized views. The dummy materialized view

ensures that the materialized view log will not be purged while your

production materialized views are being created.

See Also: Chapter 4, "Deployment Templates Concepts and

Architecture" for information about deployment templates
Planning Your Replication Environment 6-21

Guidelines for Scheduled Links
If you choose to create a dummy materialized view at the materialized view site,

complete the following steps:

1. Create a dummy materialized view called dummy_mview based on the master

table or master materialized view. For example, to create a dummy materialized

view based on a master table named sales , issue the following statement at

the new materialized view site:

CREATE MATERIALIZED VIEW dummy_mview REFRESH FAST AS
 SELECT * FROM pr.sales@orc1.world WHERE 1=0;

2. Create your production materialized views at the new materialized view site.

3. Perform fast refresh of your production materialized views at the new

materialized view site.

4. Drop the dummy materialized view.

Guidelines for Scheduled Links
A scheduled link determines how a master site propagates its deferred transaction

queue to another master site, or how a materialized view site propagates its

deferred transaction queue to its master site or master materialized view site. When

you create a scheduled link, Oracle creates a job in the local job queue to push the

deferred transaction queue to another site in the system. When Oracle propagates

deferred transactions to a remote master site, it does so within the security context

of the replication propagator.

You can configure a scheduled link to push information using serial or parallel

propagation. In general, you should use parallel propagation, even if you set the

parallelism parameter to 1.

Before creating the scheduled links for a replication environment, carefully consider

how you want replication to occur globally throughout the system. For example,

you may choose to propagate deferred transactions at intervals, with time in

between these intervals when the deferred transactions are not propagated. In this

case, you must decide how often and when to schedule pushes. Alternatively, if you

want to simulate real-time (or synchronous) replication, then you may want to have

each scheduled link continuously push a master site’s deferred transaction queue to

its destination.
6-22 Oracle9i Advanced Replication

Guidelines for Scheduled Links
Also, you may want to schedule pushes at a time of the day when connectivity is

guaranteed or when communications costs are lowest, such as during evening

hours. Furthermore, you may want to stagger the scheduling for links among all

master sites to distribute the load that replication places on network resources.

Scheduling Periodic Pushes
You can schedule periodic intervals between pushes of a site’s deferred transaction

queue to a remote destination. Examples of periodic intervals are once an hour or

once a day. To do so, you can use the DBMS_DEFER_SYS.SCHEDULE_PUSH
procedure and specify the settings shown in Table 6–3.

You can also use the Replication Management tool to schedule periodic pushes. To

do so, set Delay Seconds to the default value of 0 when configuring a scheduled link

in any of the following places:

■ The Replication Management tool’s Setup Wizard

■ The Edit Push Schedule dialog box

Then configure the interval (the "then push every" control) to push the deferred

transaction queue periodically.

The following is an example that schedules a periodic push once an hour:

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc2.world',
 interval => 'SYSDATE + (1/24)',
 next_date => SYSDATE,
 delay_seconds => 0);
END;
/

See Also: "Serial and Parallel Propagation" on page 6-28 for more

information about issues related to serial and parallel propagation

Table 6–3 Settings to Schedule Periodic Pushes

SCHEDULE_PUSH Procedure Parameter Value

delay_seconds 0

interval An appropriate date expression; for
example, to specify an interval of one
hour, use 'sysdate + 1/24'
Planning Your Replication Environment 6-23

Guidelines for Scheduled Links
Scheduling Continuous Pushes
Even when using Oracle’s asynchronous replication mechanisms, you can configure

a scheduled link to simulate continuous, real-time replication. To do so, use the

DBMS_DEFER_SYS.SCHEDULE_PUSH procedure and specify the settings shown in

Table 6–4.

With this configuration, Oracle continues to push transactions that enter the

deferred transaction queue for the duration of the entire interval. If the deferred

transaction queue has no transactions to propagate for the amount of time specified

by the delay_seconds parameter, then Oracle releases the resources used by the

job and starts fresh when the next job queue process becomes available.

If you are using serial propagation by setting the parallelism parameter to 0

(zero), then you can simulate continuous push by reducing the settings of the

delay_seconds and interval parameters to an appropriate value for your

environment. However, if you are using serial propagation, simulating continuous

push is costly when the push job must initiate often.

See Also:

■ "Delay Seconds" on page 2-51 for more information about

setting delay seconds

■ Oracle9i Replication Management API Reference for information

about the DBMS_DEFER_SYS.SCHEDULE_PUSH procedure

■ The Replication Management tool online help for information

about using this tool

Table 6–4 Settings to Simulate Continuous Push

SCHEDULE_PUSH Procedure Parameter Value

delay_seconds 1200

interval Lower than the delay_seconds setting

parallelism 1 or higher

execution_seconds Higher than the delay_seconds setting
6-24 Oracle9i Advanced Replication

Guidelines for Scheduled Purges of a Deferred Transaction Queue
The following is an example that simulates continual pushes:

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc2.world',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

Guidelines for Scheduled Purges of a Deferred Transaction Queue
A scheduled purge determines how a master site or materialized view site purges

applied transactions from its deferred transaction queue. When you use the

Replication Management tool’s Setup Wizard to set up a master site or materialized

view site, Oracle creates a job in each site’s local job queue to purge the local

deferred transaction queue on a regular basis. Carefully consider how you want

purging to occur before configuring the sites in a replication environment. For

example, consider the following options:

■ You can synchronize the pushing and purging of a site’s deferred transaction

queue. For example, you can configure continuous pushing and purging of the

transaction queue. This type of configuration can offer performance advantages

because it is likely that information about recently pushed transactions is

already in the server’s buffer cache for the corresponding purge operation.

■ When a server is not CPU bound, you can schedule continuous purging of the

deferred transaction queue to keep the size of the queue as small as possible.

See Also:

■ "Delay Seconds" on page 2-51 for more information about

setting delay seconds

■ "Serial and Parallel Propagation" on page 6-28 for more

information about issues related to serial and parallel

propagation

■ Oracle9i Replication Management API Reference for information

about the DBMS_DEFER_SYS.SCHEDULE_PUSH procedure
Planning Your Replication Environment 6-25

Guidelines for Scheduled Purges of a Deferred Transaction Queue
■ For servers that experience a high-volume of transaction throughput during

normal business hours, you can schedule purges to occur during off-peak hours

if you can store an entire day’s deferred transactions.

Scheduling Periodic Purges
You can schedule periodic purges of a site’s deferred transaction queue. Examples

of periodic purges are purges that occur once a day or once a week. To do so, you

can use the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure and specify the

settings shown in Table 6–5.

You can also use the Replication Management tool’s Setup Wizard, or the Purge sub

tab of the Schedule tab on the Administration property sheet to schedule periodic

purges. To do so, set Delay Seconds to the default value of 0 (zero). Then configure

the interval (the "then purge every" control) to purge the deferred transaction

queue.

The following is an example that schedules a periodic purge once a day:

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + 1',
 delay_seconds => 0);
END;
/

Table 6–5 Settings to Schedule Periodic Purges

SCHEDULE_PURGE Procedure Parameter Value

delay_seconds 0

interval An appropriate date expression; for
example, to specify an interval of one day,
use 'sysdate + 1'

See Also:

■ Oracle9i Replication Management API Reference for information

about the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure

■ The Replication Management tool online help for information

about using this tool
6-26 Oracle9i Advanced Replication

Guidelines for Scheduled Purges of a Deferred Transaction Queue
Scheduling Continuous Purges
To configure continuous purging of a site’s deferred transaction queue, you can use

the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure and specify the settings

shown in Table 6–6.

You can also use the Replication Management tool to configure continuous purge.

To do so, on the Purge sub tab of the Schedule tab on the Administration property

sheet, set Delay Seconds to 500,000 and set interval (the "then purge every" control)

to a value less than the Delay Seconds setting.

The following is an example that simulates continuous purges:

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + (1/144)',
 purge_method => dbms_defer_sys.purge_method_quick,
 delay_seconds => 500000);
END;
/

Table 6–6 Settings to Schedule Periodic Purges

SCHEDULE_PURGE
Procedure Parameter Value

delay_seconds 500000

interval Lower than the delay_seconds setting

purge_method dbms_defer_sys.purge_method_quick

See Also:

■ "Delay Seconds" on page 2-51 for more information about

setting delay seconds

■ Oracle9i Replication Management API Reference for information

about the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure

■ The Replication Management tool online help for information

about using this tool
Planning Your Replication Environment 6-27

Serial and Parallel Propagation
Serial and Parallel Propagation
When you create the scheduled links for a replication environment, each link can

asynchronously propagate changes to a destination using either serial or parallel

propagation. Before you configure your replication environment, decide whether

you want to use serial propagation or parallel propagation.

■ With serial propagation, Oracle propagates replicated transactions one at a time

in the same order that they are committed on the source system. To configure a

scheduled link with serial propagation, set the parallelism parameter to 0

(zero) in the DBMS_DEFER_SYS.SCHEDULE_PUSH procedure. Or, using the

Replication Management tool, set the Parallel Propagation Processes control to 0

in the Edit Push Schedule dialog box. Typically, you should use serial

propagation only when the destination is an Oracle7 site.

■ With parallel propagation, Oracle propagates replicated transactions using

multiple parallel streams for higher throughput. When necessary, Oracle orders

the execution of dependent transactions to preserve data integrity. To configure

a scheduled link with parallel propagation, set the parallelism parameter to

1 or higher in the DBMS_DEFER_SYS.SCHEDULE_PUSH procedure. Or, using

the Replication Management tool, set the Parallel Propagation Processes control

to 1 or higher in the Edit Push Schedule dialog box.

See Also:

■ "Parallel Propagation" on page 2-47

■ Oracle9i Replication Management API Reference for information

about the DBMS_DEFER_SYS package

■ The Replication Management tool online help for information

about using this tool
6-28 Oracle9i Advanced Replication

Deployment Templates
Deployment Templates
If you plan to include materialized view sites in your replication environment, then

consider using deployment templates to create the replicated objects at the

materialized view sites.

Preparing Materialized View Sites for Instantiation of Deployment Templates
If you decide to use deployment templates, then you need to prepare your

materialized view sites for instantiation. If a deployment template has been

designed well, then little preparation is necessary at the remote materialized view

site. This section describes the most common preparations that must be performed

at the remote materialized view site. After any required preparations have been

completed, you are ready to perform either an online or offline instantiation.

Use the following questions to assess which actions are necessary to prepare the

remote materialized view site for instantiation:

■ Does the remote materialized view site have network connectivity to the target

master site?

■ Does the materialized view site have an Oracle Enterprise Edition, Oracle

Standard Edition, or Oracle Personal Edition release 8.1.5 or higher database?

■ Has the remote materialized view site been set up to support materialized view

replication?

■ Do the schemas required by the deployment template exist at the materialized

view site?

■ If required database links are not part of the deployment template, then do the

required database links from the materialized view site to the master site exist?

■ Will you use online instantiation or offline instantiation to instantiate the

deployment template at the materialized view sites?

■ Do the rollback segments required by the deployment template exist at the

materialized view site and are they online?

The following sections provide guidance for the issues raised by each of these

questions.

See Also: Chapter 4, "Deployment Templates Concepts and

Architecture" for information about deployment templates
Planning Your Replication Environment 6-29

Deployment Templates
Network Connectivity
As with all replication environments, network connectivity is a key component in

Advanced Replication. For Oracle Enterprise Edition, Oracle Standard Edition, and

Oracle Personal Edition, verify that the remote materialized view site has a proper

SQL*Net, Net8, or Oracle Net connection to the target master site.

Database Version
The materialized view site must have an Oracle8i release 8.1.5 or higher database to

instantiate a deployment template. If your materialized view site does not meet the

database version requirements, then you need to upgrade your database at the

materialized view site before instantiating a deployment template.

Materialized View Site Setup
Each materialized view site needs several users that have special privileges to

support a materialized view site. In addition to having the administrative

privileges, these users also participate in the propagation and refreshing of data.

Materialized view site setup also includes scheduling several automated jobs to

handle the automatic refreshing of the materialized view (optional) and the purging

of the deferred transaction queue.

You can set up your materialized view site with:

■ Replication Management Tool: You can connect to the remote materialized

view site with the Replication Management tool and use the Setup Wizard.

■ Replication Management API: Using the replication management API to setup

your materialized view site is an ideal solution when you are not able to

connect to the remote materialized view site with the Replication Management

tool. When you build a SQL script containing the API calls to setup your

materialized view site, you can also add the DDL and API calls to complete the

remaining preparation (such as creating necessary schema, database links, and

rollback segments, as described in the following three sections). The script that

See Also: Oracle9i Net Services Administrator’s Guide for

information about setting up an Oracle network connection

See Also: The Replication Management tool’s online help for

instructions on setting up your materialized view site with the

Replication Management tool
6-30 Oracle9i Advanced Replication

Deployment Templates
you create should be distributed with the offline instantiation file and executed

before the offline instantiation file.

Create Necessary Schema
If the deployment template that you are instantiating creates objects in multiple

schemas, then make sure that all of the necessary schemas have been created.

Additionally, the user instantiating the deployment template must have the

appropriate CREATE privileges on that schema. For example, if the deployment

template will create a procedure in schema oe and the user hr is instantiating the

template, then hr must have the CREATE ANY PROCEDURE privilege on schema oe .

Create Database Links
While it is advantageous to include the DDL to create all necessary database links

for a remote materialized view site in the deployment template, it is not required. If

the database link DDL is not in the deployment template, then manually create the

database links to the target master site prior to instantiating the deployment

template. The database links are required to populate the materialized view base

tables during an online instantiation and are required for the proper maintenance of

the materialized view environment.

Online or Offline Instantiation
You have the option of performing online or offline instantiation of deployment

templates at materialized view sites. With online instantiation, the data in your

materialized views is pulled from the master site during instantiation. With offline

instantiation, the data in your materialized views is packaged in the template itself

and is applied locally when you instantiate the template. In general, if your

materialized views will contain a large amount of data, then offline instantiation is

preferred to minimize utilization of your network resources.

See Also: Oracle9i Replication Management API Reference for

instructions on setting up your materialized view site with the

replication management API

See Also: "Deployment Template Packaging and Instantiation" on

page 4-9 for more information about online and offline instantiation
Planning Your Replication Environment 6-31

Conflict Resolution
Create Necessary Rollback Segment
If the deployment template that you are instantiating will use specific rollback

segments that do not currently exist at the remote materialized view site, then create

the necessary rollback segments. To see if your template objects use the default

rollback segment or a specific rollback segment, query the DBA_REPCAT_
TEMPLATE_OBJECTS data dictionary view.

Conflict Resolution
Asynchronous multimaster and updatable materialized view replication

environments must address the possibility of replication conflicts that may occur

when, for example, two transactions originating from different sites update the

same row at nearly the same time. If possible, plan your replication environment to

avoid the possibility of conflicts. If data conflicts may occur in your replication

environment, then you need a mechanism to ensure that the conflict is resolved in

accordance with your business rules and to ensure that the data converges correctly

at all sites.

Security
Security may be a concern in both multimaster and materialized view replication

environments. You should plan your security strategy before you configure your

replication environment.

See Also: Oracle9i Replication Management API Reference for

information about data dictionary views related to replication

See Also: Chapter 5, "Conflict Resolution Concepts and

Architecture", for more information about avoiding conflicts and

for information about the conflict resolution methods available to

you if conflicts may occur

See Also: Oracle9i Replication Management API Reference for

information about security options in a replication environment
6-32 Oracle9i Advanced Replication

Designing for Survivability
Designing for Survivability
Survivability is the capability to continue running applications despite system or

site failures. Survivability enables you to run applications on a fail over system,

accessing the same, or very nearly the same, data as these systems accessed on the

primary system when it failed. As shown in Figure 6–3, the Oracle server provides

two different technologies for accomplishing survivability: multimaster replication

and Oracle Real Application Clusters.

Figure 6–3 Survivability Methods: Replication Or Oracle Real Application Clusters

database

Oracle Server

Primary
Database

Replication
Features

database

Oracle Server

Fail–over
Database

Replication
Features

Primary

database

Failover

Oracle
Real Application

Clusters

Oracle
Real Application

Clusters

Multi-Master Replication
Planning Your Replication Environment 6-33

Designing for Survivability
Oracle Real Application Clusters versus Replication
Oracle Real Application Clusters supports fail over to surviving systems when a

system supporting an instance of the Oracle server fails. Oracle Real Application

Clusters requires a cluster or massively parallel hardware platform, and thus is

applicable for protection against processor system failures in the local environment

where the cluster or massively parallel system is running.

In these environments, the Oracle Real Application Clusters is a good solution for

survivability — supporting high transaction volumes with no lost transactions or

data inconsistencies in the event of an instance failure. If an instance fails, then a

surviving instance of the Oracle Real Application Clusters automatically recovers

any incomplete transactions. Applications running on the failed system can execute

on the fail over system, accessing all data in the database.

The Oracle Real Application Clusters does not, however, provide survivability for

site failures (such as power outages, flood, fire, or sabotage) that render an entire

site, and thus the entire cluster or massively parallel system, inoperable. To provide

survivability for site failures, you can use the multimaster replication to maintain a

replica of a database at a geographically remote location. In addition, you can use

multimaster replication to replicate data between sites running different operating

systems or different releases of Oracle or both.

Should the local system fail, the application can continue to execute at the remote

site. Using multimaster replication, some administrative procedures may be

necessary to recover transactions at the failed site and to prevent data

inconsistencies when restarting the failed site.

Note: You can also configure standby database to protect an

Oracle database from site failures.

See Also:

■ Oracle9i Real Application Clusters Concepts

■ Oracle9i Data Guard Concepts and Administration for more

information about standby database
6-34 Oracle9i Advanced Replication

Designing for Survivability
Designing a Replication Environment for Survivability
If you choose to use the replication facility for survivability, then consider the

following issues:

■ The replication facility must be able to keep up with the transaction volume of

the primary system.

■ If a failure occurs at the primary site, then recently committed transactions at

the primary site may not have been asynchronously propagated to the failover

site yet. These transactions appear to be lost.

These "lost" transactions must be dealt with when the primary site is recovered.

Suppose, for example, you are running an order-entry system that uses

replication to maintain a remote fail over order-entry system, and the primary

system fails.

At the time of the failure, there were two transactions recently executed at the

primary site that did not have their changes propagated and applied at the

failover site. The first of these was a transaction that entered a new order, and

the second was a transaction that cancelled an existing order.

In the first case, someone may notice the absence of the new order when

processing continues on the fail over system, and re-enter it. In the second case,

the cancellation of the order may not be noticed, and processing of the order

may proceed; that is, the canceled item may be shipped and the customer billed.

What happens when you restore the primary site? If you simply push all of the

changes executed on the failover system back to the primary system, then you

will encounter conflicts.

Specifically, duplicate orders exist for the item originally ordered at the primary

system just before it failed. Additionally, data changes result from the

transactions to ship and bill the order that was originally canceled on the

primary system.

You must carefully design your system to deal with these situations. The next

section explains this process.
Planning Your Replication Environment 6-35

Designing for Survivability
Implementing a Survivable System
Advanced Replication provides survivability against site failures by using multiple

replicated master sites. You must configure your system using one of the following

methods, which are listed in order of increasing implementation difficulty:

■ The failover site is used for read access only. That is, no updates are allowed at

the failover site, even when the primary site fails.

■ After a failure, the primary site is restored from the fail over site using

export/import, or through full backup.

■ Full conflict resolution is employed for all data/transactions. This requires

careful design and implementation. You must ensure proper resolution of

conflicts that can occur when the primary site is restored, such as duplicate

transactions.

■ Provide your own special applications-level routines and procedures to deal

with the inconsistencies that occur when the primary site is restored, and the

queued transactions from the active fail over system are propagated and

applied to the primary site.

You can use Oracle Net to configure automatic connect-time failover, which enables

Oracle Net to fail over to a different master site if the first master site fails. You

configure automatic connect-time failover in your tnsnames.ora file by setting

the FAILOVER option to on and specifying multiple connect descriptors.

Database Backup and Recovery in Replication Systems
Databases using replication are distributed databases. Follow the guidelines for

distributed database backups outlined in the Oracle9i Backup and Recovery Concepts
when creating backups of replicated databases. Follow the guidelines for

coordinated distributed recovery in the Oracle9i User-Managed Backup and Recovery
Guide when recovering a replication database.

If you fail to follow the coordinated distributed recovery guidelines, then there is no

guarantee that your replication databases will be consistent. For example, a restored

master site may have propagated different transactions to different masters. You

may need to perform extra steps to correct for an incorrect recovery operation. One

such method is to drop and re-create all replicated objects in the recovered database.

See Also: Oracle Net Services Administrator’s Guide for more

information about configuring connect-time failover
6-36 Oracle9i Advanced Replication

Designing for Survivability
Performing Checks on Imported Data After performing an export/import of a replicated

object or an object used by Advanced Replication, such as the DBA_REPSITES data

dictionary view, you should run the REPCAT_IMPORT_CHECK procedure in the

DBMS_REPCAT package.

In the following example, the procedure checks the objects in the acct replication

group at a materialized view site to ensure that they have the appropriate object

identifiers and status values:

BEGIN
DBMS_REPCAT.REPCAT_IMPORT_CHECK(gname => 'hr_repg',
 master => FALSE);
END;
/

Recommendation: Remove pending deferred transactions and

deferred error records from the restored database, and resolve any

outstanding distributed transactions before dropping and

re-creating replicated objects. If the restored database was a master

definition site for some replication environments, then you should

designate a new master definition site before dropping and creating

objects. Any materialized views mastered at the restored database

should be fully refreshed, as well as any materialized views in the

restored database.

To provide continued access to your data, you may need to change

master definition sites (assuming the database being recovered was

the master definition site), or change the master site of materialized

view sites (assuming their master site is being recovered).

See Also: The REPCAT_IMPORT_CHECK procedure in Oracle9i
Replication Management API Reference
Planning Your Replication Environment 6-37

Designing for Survivability
6-38 Oracle9i Advanced Replication

Replication Management Tool Introd
7

Replication Management Tool Introduction

The Replication Management tool is part of Oracle Enterprise Manager and

provides a graphical user interface (GUI) for setting up, managing, and monitoring

a replication environment. The Replication Management tool includes wizards that

guide you through many important operations. You can use the Replication

Management tool to manage both multimaster and materialized view replication

environments.

This chapter introduces you to the features of the Replication Management tool.

However, the primary documentation for using this tool is the Replication

Management tool online help. This chapter contains the following topics:

■ Usage Scenarios for the Replication Management Tool

■ Logging in to the Replication Management Tool

■ The Replication Management Tool Interface

■ The Replication Management Tool Wizards

■ Flowchart for Creating a Replication Environment

See Also:

■ The Replication Management tool online help for detailed

instructions about using the Replication Management tool

■ The Oracle Enterprise Manager documentation set and online

help for information about using Oracle Enterprise Manager
uction 7-1

Usage Scenarios for the Replication Management Tool
Usage Scenarios for the Replication Management Tool
Using the Replication Management tool, you can:

■ Set up master sites and materialized view sites

■ Add master sites to and remove master sites from a replication environment

■ Create and manage master groups

■ Monitor master sites and materialized view sites with a topology view, reports,

and statistics

■ Create and manage materialized view logs

■ Create and manage materialized view groups

■ Create and manage individual materialized views

■ Create and manage refresh groups for materialized views

■ Create and manage deployment templates

■ Package deployment templates for offline instantiation. Note that you must use

the replication management API to package deployment templates for online

instantiation.

■ Configure conflict resolution methods

■ Create, monitor, and manage scheduled links

■ Monitor and manage administrative requests

■ Monitor and manage deferred transactions

■ Monitor and manage error transactions

■ Create, monitor, and manage local jobs
7-2 Oracle9i Advanced Replication

Logging in to the Replication Management Tool
Logging in to the Replication Management Tool
Assuming Oracle Enterprise Manager is configured to show the databases in your

replication environment, complete the following steps to log in to the Replication

Management tool:

1. Open Oracle Enterprise Manager.

2. Expand a database node. The Database Connect Information dialog box

appears.

3. Enter the username and password for the database in the Database Connect

Information dialog box.

If you have an established replication environment, then log in as the

replication administrator. If you have not set up a replication environment, then

log in as SYSTEM or SYS user. Next, use the Setup Wizard to set up your master

definition site and, if you want a multimaster replication environment, your

other master sites.

When setup is complete, log in to the Replication Management tool as the

replication administrator you specified in the Setup Wizard. If you follow

convention, then the username of the replication administrator is repadmin .

You should only log in to the Replication Management tool as the replication

administrator, not as any other user, after setup is complete.

4. Select Replication in the navigator pane.

See Also: The Oracle Enterprise Manager documentation set for

information about configuring and opening Oracle Enterprise

Manager
Replication Management Tool Introduction 7-3

The Replication Management Tool Interface
The Replication Management Tool Interface
The Replication Management tool interface in Oracle Enterprise Manager includes a

toolbar on the far left and two panes: the navigator pane on the left and the right

pane. The navigator pane displays a tree structure for your databases, and the right

pane displays property sheets.

Figure 7–1 The Replication Management Tool in Oracle Enterprise Manager
7-4 Oracle9i Advanced Replication

The Replication Management Tool Interface
Navigator Pane
The navigator pane in the Oracle Enterprise Manager functions the same way as it

does in other Oracle Enterprise Manager applications. That is, the navigator pane

lets you:

■ Access all of the nodes in your replication environment

■ Expand and collapse objects and folders so that you can navigate to the object

you want to monitor or manage. Examples of objects are master groups,

materialized view groups, materialized views, materialized view logs,

deployment templates, and so on.

■ Right-click a folder or object to create a new object or perform operations on an

existing object

Oracle completely redesigned the navigator tree structure in the Replication

Management tool in a recent release. You begin many replication administration

operations by selecting the correct object or folder in the navigator tree of the

Replication Management tool.

Figure 7–2 Replication Management Tool Navigator Tree

The following sections describe the contents of each object and folder in the tree

structure.
Replication Management Tool Introduction 7-5

The Replication Management Tool Interface
Administration Object
The Administration object enables you to manage the entire replication site. Select

the Administration object to display the following tabs in the right pane:

■ Topology: Displays a graphical view of the replication environment for the

selected site.

■ Errors: Displays and lets you manage local errors at the selected site.

■ Transactions: Displays and lets you manage the deferred transactions at the

selected site.

■ Schedule: Displays and lets you manage the push schedules for the database

links at the selected site. Also, displays and lets you manage the purge schedule

for successfully propagated deferred transactions at the selected site.

■ Configuration: Displays and lets you manage configuration information at the

selected site, including initialization parameters important for replication and

administrative requests.

■ DBMS Jobs: Displays and lets you manage the jobs created with the DBMS_
JOBS package. Many of these jobs perform important replication functions,

such as pushing deferred transactions and purging the deferred transactions

queue.

Multimaster Replication Object
If your replication environment is configured for multimaster replication, then you

use the Multimaster Replication object to set up your master sites and manage your

master groups. To set up master sites with the Setup Wizard, right-click the

Multimaster Replication object and select Setup Master Sites.

Note: Oracle Enterprise Edition is required for multimaster

replication. If your installation is Oracle Standard Edition, then you

can have only one master site for each master group.
7-6 Oracle9i Advanced Replication

The Replication Management Tool Interface
Master Groups Folder The Master Groups folder contains the master groups at the

selected site. When you select a master group, you can:

■ Start or stop (quiesce) the master group

■ View and apply administrative requests for the master group

■ Purge administrative requests for the master group

■ Perform DDL operations on objects in the master group

■ Manage the replicated objects in a master group

■ Manage the replication sites participating in the master group

To create a new master group, right-click the Master Groups folder and select

Create.

Materialized View Replication Object
The Materialized View Replication object lets you administer the replication site as

it relates to materialized view replication. You can administer sites that are master

sites of materialized view sites, and you can administer materialized view sites

themselves. To set up master sites or materialized view sites with the Setup Wizard,

right-click the Materialized View Replication object and select Setup Sites.

The Materialized View Replication object contains the following objects:

■ Master Site Object

■ Materialized View Site Object

Note: A replication site can be:

■ A master site only, if it contains master groups but no

materialized views. In this case, use the Master Site object to

manage the site.

■ A materialized view site only, if it contains materialized views

but no master groups. In this case, use the Materialized View

Site object to manage the site.

■ Both a master site and a materialized view site, if it contains

both master groups and materialized views. In this case, use

both the Master Site object and the Materialized View Site

object to manage the site.
Replication Management Tool Introduction 7-7

The Replication Management Tool Interface
Master Site Object This object lets you manage the master groups at the replication

site, and lets you manage sites that are master sites of materialized view sites.

Specifically, this object lets you create, manage, and package deployment templates,

and lets you create and manage materialized view logs. To set up master sites with

the Setup Wizard, right-click the Master Site object and select Setup Master Sites.

The Master Site object has the following folders:

■ Master Groups Folder: This folder provides the same functions as the Master

Groups folder under the Multimaster Replication object. See the description of

the Master Groups folder in "Multimaster Replication Object" on page 7-6 for

information.

■ Materialized View Logs Folder: This folder lets you create and manage

materialized view logs at the master site. To create a new materialized view log,

right-click the Materialized View Logs folder and select Create.

■ Templates Folder: This folder lets you create, manage, and package

deployment templates at the master site. Right-click the Templates folder and

select:

– Create Using Wizard if you want to create a new deployment template with

the Deployment Template Wizard

– Copy if you want to create a local or remote copy of a deployment template

with the Copy Template Wizard

– Compare if you want to compare two local deployment templates

– Template Script Generation if you want to package a deployment template

for offline instantiation with the Template Script Generation Wizard

Materialized View Site Object This object lets you manage materialized view sites.

Specifically, this object lets you create and manage materialized view groups,

materialized views, and refresh groups. To set up materialized view sites with the

Setup Wizard, right-click the Materialized View Site object and select Setup

Materialized View Sites.
7-8 Oracle9i Advanced Replication

The Replication Management Tool Interface
The Materialized View Site object has the following folders:

■ Materialized View Groups Folder: This folder lets you create and manage

materialized view groups at the materialized view site. To create a new

materialized view group with the Materialized View Group Wizard, right-click

the Materialized View Groups folder and select Create Using Wizard.

■ Materialized Views Folder: This folder lets you create and manage individual

materialized views at the materialized view site. To create a new materialized

view, right-click the Materialized Views folder and select Create.

■ Refresh Groups Folder: This folder lets you create and manage refresh groups

at the materialized view site. To create a new refresh group, right-click the

Refresh Groups folder and select Create.

Right Pane
The right pane of the Replication Management tool enables you to monitor and

manage your replication environment. Figure 7–3 shows an example of the General

tab in the Master Group property sheet.
Replication Management Tool Introduction 7-9

The Replication Management Tool Interface
Figure 7–3 Example Property Sheet

When you are working with a property sheet, you may click a button that opens a

dialog box. For example, if you click the View Administrative Request button on the

General property sheet for a master group, then the Administrative Requests dialog

box appears, as shown in Figure 7–4.
7-10 Oracle9i Advanced Replication

The Replication Management Tool Interface
Figure 7–4 Example Dialog Box

Topology Tab
You can use the right pane of the Replication Management tool to monitor your

replication environment. The Topology tab of the Administration property sheet is

an example of a monitoring tool that is available to you. This tab displays a

graphical representation of the nodes in your replication environment and the links

between them.

Specifically, the Topology tab provides the following information:

■ All of the master sites participating in replication activity for the master groups

of the selected site

■ The number of deferred transactions at each master site

■ The destination site for deferred transactions

■ The number of administrative requests at each master site

■ Whether local errors exist at a master site and the number of errors
Replication Management Tool Introduction 7-11

The Replication Management Tool Interface
■ The total number of the materialized views or materialized view groups

connected to the selected master site

■ Whether the master site is also functioning as a materialized view site

The Topology tab only displays values if they are greater than zero. For example, if

there are zero administrative requests at a master site, then the number of

administrative requests is not displayed. If you are connected to a replication site

that is running Oracle9i or higher, then the Topology tab also displays a Statistics

button. Click this button to view performance statistics for the replication site.

The Topology tab displays the following icons and images:

Note: If you have not created at least one master group,

materialized view group, or materialized view at the selected site,

the Topology tab displays a message stating that replication must

be configured.

Icon/Image Description

Indicates a master site.

Shows the current number of administrative requests being
processed at the site with which it is associated.

Indicates a master site with deferred transaction errors or
administrative request errors or both.

Shows the current number of deferred transactions to be applied
at the site to which the associated arrow is pointing.

Shows the number of deferred transaction errors at the site with
which it is associated.
7-12 Oracle9i Advanced Replication

The Replication Management Tool Interface
Indicates a site that is functioning as both a master site and a
materialized view site (a dual site).

Indicates a dual site with deferred transaction errors or
administrative request errors or both.

When you are connected to a master site, indicates that the
master site has materialized view sites. Materialized views or
materialized view groups or both may be registered at the
master site.

When you are connected to a materialized view site, indicates
the materialized view site.

Indicates a materialized view site with errors.

(Solid black arrow)

Indicates a working database link from the current master site to
the remote master site.

Note: The Replication Management tool does not test the
database link at the remote site. Therefore, the database link
from the remote site to the current site may be working or
broken. To find out, connect to the remote site in Oracle
Enterprise Manager and view the Topology tab.

(Dashed red arrow)

Indicates a broken database link from the current master site to
the remote master site.

Note: If you are not logged in as the replication administrator
(typically repadmin user), then a database link may appear
broken even though the link is working normally between the
two sites. The link appears broken because the current user does
not have a private database link between the sites, while the
replication administrator does have a private database link. In
this case, log in to the site as the replication administrator to see
if the link is broken.

(One way black arrow)

When you are connected to a materialized view site, indicates a
database link between the materialized view site and a master
site. There may or may not be a network connection currently
between the two sites.

Icon/Image Description
Replication Management Tool Introduction 7-13

The Replication Management Tool Interface
Figure 7–5 Example Topology Tab in the Replication Management Tool

When connected to the master database orc1.world , this example Topology tab

provides the following information:

■ The databases orc1.world and orc2.world are master sites in the same

replication environment.

■ The database orc1.world is functioning only as a master site and not as a

materialized view site, based on the icon for the database. The other master

database (orc2.world) may be functioning only as a master site, or it may be

functioning as a dual site. To find out, you can connect to orc2.world .

■ The master database orc1.world has two administrative requests to process.

(Dashed black line)

Indicates one or more database links between materialized view
sites and a master site. There may or may not be a network
connection currently between the sites.

Icon/Image Description
7-14 Oracle9i Advanced Replication

The Replication Management Tool Wizards
■ The master database orc1.world has no local deferred transaction errors and

no local administrative request errors.

■ The master database orc2.world has no administrative requests to process.

■ The master database orc2.world has no local deferred transaction errors and

no local administrative request errors.

■ The master database orc1.world has eight deferred transactions in its

deferred transaction queue that will be applied at orc2.world .

■ The master database orc2.world has three deferred transactions in its

deferred transaction queue that will be applied at orc1.world .

■ The master database orc1.world is the master site for one registered

materialized view group and 15 registered materialized views. These registered

materialized views may be spread over several materialized view sites.

The other master databases in this replication environment may also have

materialized view sites, but they are only visible on the Topology tab when you are

connected to those other databases. For example, to see if the master database

orc2.world has any materialized view sites, connect to the orc2.world database

in Oracle Enterprise Manager and open the Topology tab.

The Replication Management Tool Wizards
The Replication Management tool wizards provide step-by-step guidance for tasks

that require many steps. The wizards simplify complex tasks by guiding you

through the task in manageable steps. The following sections describe the

Replication Management tool wizards:

■ Setup Wizard

■ Materialized View Group Wizard

■ Deployment Template Wizard

■ Template Script Generation Wizard

■ Copy Template Wizard
Replication Management Tool Introduction 7-15

The Replication Management Tool Wizards
Setup Wizard
The Setup Wizard guides you through setting up master sites and materialized

view sites for replication. Preparing sites for replication is a simple process using

the Setup Wizard. At each site that you specify, the Setup Wizard performs the

following steps:

■ Creates a database account to serve as a replication administrator. By default,

the Setup Wizard creates this account to serve also as the replication propagator

and receiver. The default username for the replication administrator at a master

site is repadmin , and the default username at a materialized view site is

mvadmin . However, you can change these usernames if you wish.

■ Grants the necessary privileges to the replication administrator account.

■ Creates database links to correspond to new replication administrator accounts

at each replication site.

■ For master sites and optionally for materialized view sites, schedules a job to

push changes from the master site to each other master site.

■ Schedules a job to purge the deferred transaction queue of completed

transactions for all sites in the system.

The Setup Wizard is slightly different for master sites than for materialized view

sites. To open the Setup Wizard to set up master sites, right-click the Multimaster

Replication object in the navigator pane and select Setup Master Sites.
7-16 Oracle9i Advanced Replication

The Replication Management Tool Wizards
Figure 7–6 Opening Screen of Setup Wizard for Master Sites

To open the Setup Wizard to set up materialized view sites, right-click the

Materialized View Site object in the navigator pane and select Setup Materialized

View Sites.

See Also: The "Setup Master Sites: Overview" topic in the

Replication Management tool online help for detailed information

about using the Setup Wizard to set up a master site. To access this

topic in the online help, open Replication > Set Up Replication

Sites > Master Site in the Help Contents.

Note: The Setup Wizard sets up materialized view sites with

untrusted security. Oracle9i Replication Management API Reference for

more information about untrusted security.
Replication Management Tool Introduction 7-17

The Replication Management Tool Wizards
Figure 7–7 Opening Screen of Setup Wizard for Materialized View Sites

See Also: The "Set Up Materialized View Sites: Overview" topic

in the Replication Management tool online help for detailed

information about using the Setup Wizard to set up a materialized

view site. To access this topic in the online help, open Replication >

Set Up Replication Sites > Materialized View Site in the Help

Contents.

See Also:

■ Chapter 2, "Master Replication Concepts and Architecture" for

more information about master sites

■ Chapter 3, "Materialized View Concepts and Architecture" for

more information about materialized view sites.
7-18 Oracle9i Advanced Replication

The Replication Management Tool Wizards
Materialized View Group Wizard
The Materialized View Group Wizard guides you through creating a group of

materialized views based on a master group. Each materialized view can be a

partial or complete copy of the master tables in its source master group.

Materialized view groups are located at remote materialized view sites and are

based on a single, target master group at a master site.

Run the Materialized View Group Wizard at the materialized view site where you

want to create the materialized view group. To open the Materialized View Group

Wizard, right-click the Materialized View Groups folder in the navigator pane and

select Create Using Wizard.

Figure 7–8 Opening Screen of the Materialized View Group Wizard
Replication Management Tool Introduction 7-19

The Replication Management Tool Wizards
Deployment Template Wizard
Deployment templates simplify the task of deploying and maintaining many

remote materialized view sites. Using deployment templates, you can define a

collection of materialized view definitions at a master site and use parameters in

these definitions to customize the materialized views for individual users or types

of users.

For example, you might create one template for the sales force and another template

for field service representatives. In this case, a parameter value might be the sales

territory or the customer support level. When a user instantiates a template by

running a SQL script, the appropriate materialized views are created and populated

at the remote site.

The Deployment Template Wizard guides you through creating a deployment

template. Individual screens in the Deployment Template Wizard let you:

■ Name the deployment template and specify whether it is public or private. If it

is private, then you can specify authorized users.

■ Add objects to the deployment template

■ Specify parameters for the deployment template

Run the Deployment Template Wizard from the master site where you want to

create the deployment template. To open the deployment template wizard,

right-click the Templates folder in the navigator pane and select Create Using

Wizard.

See Also: The "Create Materialized View Group: Overview" topic

in the Replication Management tool online help for detailed

information about using the Materialized View Group Wizard to

create a materialized view group. To access this topic in the online

help, open Replication > Materialized View Replication > Create in

the Help Contents.

See Also: "Materialized View Groups" on page 3-59 for more

information about materialized view groups
7-20 Oracle9i Advanced Replication

The Replication Management Tool Wizards
Figure 7–9 Opening Screen of the Deployment Template Wizard

See Also: The "Overview of Creating a Deployment Template"

topic in the Replication Management tool online help for detailed

information about using the Deployment Template Wizard to create

a deployment template. To access this topic in the online help, open

Replication > Deployment Templates > Create in the Help

Contents.

See Also: Chapter 4, "Deployment Templates Concepts and

Architecture" for more information about deployment templates
Replication Management Tool Introduction 7-21

The Replication Management Tool Wizards
Template Script Generation Wizard
Offline instantiation allows an end user to use a generated file to instantiate a

template without being connected to the master site through a network. The

Template Script Generation Wizard enables you to write all of the necessary DDL

and data to a file that you then transfer and run at your materialized view site. This

solution is best suited for laptop users with low-speed WAN connections, or in

other cases where connectivity is unstable or slow.

The Template Script Generation Wizard guides you through packaging a

deployment template for offline instantiation. The Template Script Generation

Wizard generates offline instantiation files that you use to build materialized views

and other objects at your materialized view sites.

Run the Template Script Generation Wizard at the master site that contains the

template for which you want to generate the offline instantiation files. To run the

Template Script Generation Wizard, right-click the Templates folder in the navigator

pane and select Template Script Generation.

Figure 7–10 Opening Screen of the Template Script Generation Wizard
7-22 Oracle9i Advanced Replication

The Replication Management Tool Wizards
Copy Template Wizard
The Copy Template Wizard guides you through copying a deployment template.

You may need to copy them to multiple master sites for various reasons. For

example, you may want to:

■ Distribute network load: Before allowing users to instantiate the template, you

need to locate the template at the master site of the target materialized view

sites. If you have a large network, then you may want to copy the template

definition to multiple master sites, thereby distributing the network load of

multiple materialized view sites.

■ Make changes to a template: After building a template, you may need to create

another template that has many of the same characteristics of the first template.

Instead of building an entirely new template, copy the template and modify it

as necessary.

Run the Copy Template Wizard from the master site that contains the deployment

template. To open the Copy Template Wizard, right-click the Templates folder in the

navigator pane and select Copy.

Note: To generate online instantiation files, you must use the

replication management API. See Oracle9i Replication Management
API Reference for information about generating online instantiation

files.

See Also: The "Package for Offline Instantiation: Overview" topic

in the Replication Management tool online help for detailed

information about using the Template Script Generation Wizard to

package a deployment template for offline instantiation. To access

this topic in the online help, open Replication > Deployment

Templates > Packaging and Instantiation in the Help Contents.

See Also: "Packaging and Instantiation Process" on page 4-15 for

more information on packaging and instantiating deployment

templates
Replication Management Tool Introduction 7-23

The Replication Management Tool Wizards
Figure 7–11 Copy Template Wizard

See Also: The "Copying a Template" topic in the Replication

Management tool online help for detailed information about using

the Copy Template Wizard to copy a deployment template. To

access this topic in the online help, open Replication > Deployment

Templates > Manage in the Help Contents.
7-24 Oracle9i Advanced Replication

Flowchart for Creating a Replication Environment
Flowchart for Creating a Replication Environment
The flowchart in Figure 7–12 displays the major decisions and tasks that are

involved when you create a replication environment using the Replication

Management tool. The flowchart shows the major decisions and steps for building

both multimaster and materialized view environments. Each task in the flowchart

includes a cross reference to a section in this book that provides more information

about the task. Detailed instructions about completing these tasks are in the

Replication Management tool online help.
Replication Management Tool Introduction 7-25

Flowchart for Creating a Replication Environment
Figure 7–12 Create a Replication Environment Using the Replication Management Tool

What type
of replication

site?

No

Yes

Use Setup Wizard to Set Up Master Sites
(Right-click Multimaster Replication object)

1

Configure Conflict Resolution Methods
on Master Tables
(See Chapter 5)

3

Create Master Group at Master Sites
(Right-click Master Groups folder)

2

Master
Materialized

View

1

Are
data conflicts

possible?

No

Yes

Does
the master site for
the materialized view

exist?

How do
you want to build the

environment?

At Master Site with
Deployment
Template

At Materialized
View
Site

3

4

Use Materialized View Group Wizard
to Create materialized view Group
(Right-click Materialized View
Groups folder)

Use Deployment Template Wizard
to Create Deployment Template
(Right-click Templates folder)

Package and Instantiate Deployment
Template
(See Chapter 4)

3

START

END

Use Setup Wizard to Set Up Materialized View Sites
(Right-click Materialized View Site object)

1

1
Create Materialized View Log at Master Site for Fast
Refresh (Right-click Materialized View Logs folder)

2

7-26 Oracle9i Advanced Replication

Troubleshooting Replication Prob
A

Troubleshooting Replication Problems

This appendix contains troubleshooting guidelines for managing a replication

environment. This appendix contains the following topics:

■ Diagnosing Problems with Database Links

■ Diagnosing Problems with Master Sites

■ Diagnosing Problems with the Deferred Transaction Queue

■ Diagnosing Problems with Materialized Views
lems A-1

Diagnosing Problems with Database Links
Diagnosing Problems with Database Links
If you think a database link is not functioning properly, then you can drop and

re-create it using Oracle Enterprise Manager, SQL*Plus, or another tool.

■ Make sure that the database link name is the same as the global name of the

target database.

■ Make sure that the scheduled interval is what you want.

■ Make sure that the scheduled interval is not shorter than the required execution

time.

If you used a connection qualifier in a database link to a given site, then the other

sites that link to that site must have the same connection qualifier. For example,

suppose you create a database link as follows:

CREATE DATABASE LINK dbs1.world@myethernet CONNECT TO repadmin
 IDENTIFIED BY secret USING ' connect_string_myethernet '

All the sites, whether masters or materialized views, associated with

dbs1.world@myethernet must include myethernet as the connection qualifier.

Diagnosing Problems with Master Sites
Problems can arise in a multimaster replication system. The following sections

discuss some problems and ways to solve them:

■ Replicated Objects Not Created at New Master Site

■ DDL Changes Not Propagated to Master Site

■ DML Changes Not Asynchronously Propagated to Other Sites

■ DML Cannot be Applied to Replicated Table

■ Bulk Updates and Constraint Violations

■ Recreating a Replicated Object

■ Unable to Generate Replication Support for a Table

■ Problems with Replicated Procedures or Triggers

■ Problems With ON DELETE CASCADE and Integrity Constraints

See Also: Oracle9i Database Administrator’s Guide for more

information database links and connection qualifiers
A-2 Oracle9i Advanced Replication

Diagnosing Problems with Master Sites
Replicated Objects Not Created at New Master Site
If you add a new master site to a master group, and the appropriate objects are not

created at the new site, then try the following:

■ Ensure that the necessary private database links exist between the new master

site and the existing master sites. If you used the Replication Management

tool’s Setup Wizard to setup your sites, then you should not have any problems.

You must have links both to the new site from each existing site, and from the

new site to each existing site.

■ Make sure that the administrative requests at all sites have completed

successfully. If requests have not been executed yet, then you can manually

execute pending administrative requests to complete the operation

immediately.

DDL Changes Not Propagated to Master Site
If you create a new master group object or alter the definition of a master group

object at the master definition site and the modification is not propagated to a

master site, then first ensure that the administrative requests at all sites have

completed successfully. If requests are pending execution, then you can manually

execute them to complete the operation immediately.

When you execute DDL statements through the replication API, Oracle executes the

statements on behalf of the user who submits the DDL. When a DDL statement

applies to an object in a schema other than the submitter’s schema, the submitter

needs appropriate privileges to execute the statement. In addition, the statement

must explicitly name the schema. For example, assume that you supply the

following as the ddl_text parameter to the DBMS_REPCAT.CREATE_MASTER_
REPOBJECT procedure:

CREATE TABLE oe.new_employees AS SELECT * FROM hr.employees WHERE ...;

Because each table name contains a schema name, this statement works whether the

replication administrator is oe , hr , or another user, as long as the administrator has

the required privileges.

Note: Qualify the name of every schema object with the

appropriate schema.
Troubleshooting Replication Problems A-3

Diagnosing Problems with Master Sites
DML Changes Not Asynchronously Propagated to Other Sites
If you make an update to your data at a master site, and that change is not

asynchronously propagated to the other sites in your replication environment, then

try the following:

■ Use the Replication Management tool in Oracle Enterprise Manager to check

whether the corresponding deferred transaction has been pushed to the

destination. If not, then you can also check to see how much longer it will be

before the scheduled link pushes the queue to the destination site. If you do not

want to wait for the next scheduled push across a link, then you can execute

deferred transaction manually.

■ If a scheduled link’s interval has passed and corresponding deferred

transactions have not been pushed, then check the corresponding job for the

link.

■ Even after propagating a deferred transaction to a destination, it may not

execute because of an error. Check the DEFERROR data dictionary view at the

destination site for errors.

DML Cannot be Applied to Replicated Table
If you receive the deferred_rpc_quiesce exception when you attempt to

modify a replicated table, then the master group to which your replicated object

belongs is quiescing or quiesced. To proceed, your replication administrator must

resume replication activity for the master group.

Bulk Updates and Constraint Violations
A single update statement applied to a replicated table can update zero or more

rows. The update statement causes zero or more update requests to be queued for

deferred execution, one for each row updated. This distinction is important when

constraints are involved, because Oracle effectively performs constraint checking at

the end of each statement. While a bulk update may not violate a uniqueness

constraint, for example, some equivalent sequence of individual updates may

violate uniqueness.

See Also: Oracle9i Replication Management API Reference for

information about modifying tables without replicating the

modifications, which may be necessary when you need to manually

synchronize the data in replicated tables
A-4 Oracle9i Advanced Replication

Diagnosing Problems with Master Sites
If the ordering of updates is important, then update one row at a time in an

appropriate order. This lets you define the order of update requests in the deferred

transactions queue.

Recreating a Replicated Object
If you add an object such as a package, procedure, or view to a master group, then

the status of the object must be valid. If the status of an object is invalid, then

recompile the object or drop and re-create the object before adding it to a master

group. Check the DBA_REPOBJECTdata dictionary view for the status of replication

objects.

Unable to Generate Replication Support for a Table
When you generate replication support for a table, Oracle activates an internal

trigger at the local site. EXECUTE privileges for most of the packages involved with

replication, such as DBMS_REPCAT and DBMS_DEFER, need to be granted to

replication administrators and users that own replicated objects. The Replication

Management tool’s Setup Wizard and the DBMS_REPCAT_ADMIN package both

perform the grants needed by the replication administrators for many typical

replication scenarios. When the owner of a replicated object is not a replication

administrator, however, you must explicitly grant EXECUTE privilege on DBMS_
DEFER to the object owner.

Problems with Replicated Procedures or Triggers
If you discover an unexpected unresolved conflict, and you were mixing procedural

and row-level replication on a table, then carefully review the procedure to ensure

that the replicated procedure did not cause the conflict. Complete the following

checks:

❏ Ensure that ordering conflicts between procedural and row-level updates are

not possible.

❏ Check if the replicated procedure locks the table in EXCLUSIVE mode before

performing updates or uses some other mechanism of avoiding conflicts with

row-level updates.

❏ Check that row-level replication is disabled at the start of the replicated

procedure and re-enabled at the end.
Troubleshooting Replication Problems A-5

Diagnosing Problems with Master Sites
❏ Ensure that row-level replication is re-enabled even if exceptions occur when

the procedure executes.

❏ Check to be sure that the replicated procedure executed at all master sites.

You should perform similar checks on any replicated triggers that you have defined

on replicated tables.

Problems With ON DELETE CASCADE and Integrity Constraints
ON DELETE CASCADE is not supported for replicated tables with a configuration

similar to the following example. This example assumes there are three tables

named A, B, and C.

■ Table B contains a record dependent on a record in Table A because of a foreign

key constraint.

■ Table C contains a record dependent on a record in Table B because of a foreign

key constraint.

■ Table C also contains a record dependent on a record in Table A because of a

foreign key constraint.

If you use ON DELETE CASCADEin such a configuration, then the deletes may not be

propagated in the correct order when you delete a record. In these cases, the

following error is returned:

ORA-02292: integrity constraint (HR.DEPT_MGR_FK) violated - child record found

If you encounter this error, then create triggers that are aware of replication to

perform this functionality instead of using ON DELETE CASCADE.
A-6 Oracle9i Advanced Replication

Diagnosing Problems with the Deferred Transaction Queue
Diagnosing Problems with the Deferred Transaction Queue
If deferred transactions at a site are not being pushed to their destinations, then the

following sections explain some possible causes for the problem:

■ Check Jobs for Scheduled Links

■ Distributed Transaction Problems with Synchronous Replication

■ Incomplete Database Link Specifications

■ Incorrect Replication Catalog Views

Check Jobs for Scheduled Links
When you create a scheduled link, Oracle adds a corresponding job to the site’s job

queue. If you have scheduled a link to push deferred transactions at a periodic

interval, and you encounter a problem, then you should first be certain that you are

not experiencing a problem with the job queue.

Distributed Transaction Problems with Synchronous Replication
When you use synchronous replication, Oracle uses a distributed transaction to

ensure that the transaction has been properly committed at the remote site.

Distributed transactions use two-phase commit. Asynchronous replication does not

use two-phase commit.

Incomplete Database Link Specifications
If you notice that transactions are not being pushed to a given remote site, then you

may have a problem with how you have specified the destination for the

transaction. When you create a scheduled link, you must provide the full database

link name.

Incorrect Replication Catalog Views
Having the wrong view definitions can lead to erroneous deferred transaction

behavior. The DEFCALLDEST and DEFTRANDEST views are defined differently in

catdefer.sql and catrepc.sql . The definitions in catrepc.sql should be

used whenever replication is used. If catdefer.sql is ever (re)loaded, then

ensure that the view definitions in catrepc.sql are subsequently loaded.

See Also: Oracle9i Database Administrator’s Guide for information

on diagnosing problems with distributed transactions
Troubleshooting Replication Problems A-7

Diagnosing Problems with Materialized Views
Diagnosing Problems with Materialized Views
There are a number of problems that might happen with materialized view sites in a

replication system. The following sections discuss some problems and ways to

troubleshoot them:

■ Problems Creating Replicated Objects at Materialized View Site

■ Refresh Problems

■ Advanced Troubleshooting of Refresh Problems

Problems Creating Replicated Objects at Materialized View Site
If you unsuccessfully attempt to create a new object at a materialized view site, then

try the following:

■ For an updatable materialized view, check that the associated master table or

master materialized view has a materialized view log.

■ Make sure that you have the necessary privileges to create the object. For a

materialized view, you need SELECT privilege on the master table or master

materialized view and its materialized view log. See "Assign Privileges" on

page 6-13 for more information.

■ If you are trying to add an existing materialized view to a materialized view

group, then try re-creating the materialized view when you add it to the group.

■ If you are trying to create a fast refresh primary key or subquery materialized

view, then make sure that the materialized view log on the master table or

master materialized view logs primary keys.

■ If you are trying to create a fast refresh rowid materialized view, then make sure

that the materialized view log on the master table logs rowids.

■ Check if the materialized view log has the required columns added for

subquery materialized views. See "Logging Columns in the Materialized View

Log" on page 6-17 for information.

■ Check if the materialized view log exists for all tables that are involved in a fast

refresh materialized view. If the materialized view contains a subquery, then

each table referenced in the subquery should have a materialized view log.
A-8 Oracle9i Advanced Replication

Diagnosing Problems with Materialized Views
Problems Performing Offline Instantiation of a Deployment Template
If you receive and error stating that Oracle is unable to initialize the extent in the

temporary tablespace when you try to instantiate a deployment template offline,

then you may need to adjust the datafile for the temporary database so that it auto

extends.

For example, issue the following statement to adjust the datafile:

ALTER DATABASE TEMPFILE '/u02/oracle/rbdb1/temp.dbf'
 AUTOEXTEND ON
 NEXT 10M;

After you have made this adjustment, instantiate the deployment template offline at

the materialized view site.

Refresh Problems
The following sections explain several common materialized view refresh problems.

Common Problems
Several common factors can prevent the automatic refresh of a group of material-

ized views:

■ The lack of a job queue process at the materialized view database

■ An intervening network or server failure

■ An intervening server shutdown

When a materialized view refresh group is experiencing problems, ensure that none

of the preceding situations is preventing Oracle from completing group refreshes.

Automatic Refresh Retries
When Oracle fails to refresh a group automatically, the group remains due for its

refresh to complete. Oracle will retry an automatic refresh of a group with the fol-

lowing behavior:

■ Oracle retries the group refresh first one minute later, then two minutes later,

four minutes later, and so on, with the retry interval doubling with each failed

attempt to refresh the group.

■ Oracle does not allow the retry interval to exceed the refresh interval itself.

■ Oracle retries the automatic refresh up to sixteen times.
Troubleshooting Replication Problems A-9

Diagnosing Problems with Materialized Views
If after 16 attempts to refresh a refresh group Oracle continues to encounter errors,

then Oracle considers the group broken. The General page of the Refresh Group

property sheet in Schema Manager indicates when a refresh group is broken. You

can also query the BROKEN column of the USER_REFRESH and USER_REFRESH_
CHILDREN data dictionary views to see the current status of a refresh group.

The errors causing Oracle to consider a materialized view refresh group broken are

recorded in a trace file. After you correct the problems preventing a refresh group

from refreshing successfully, you must refresh the group manually. Oracle then

resets the broken flag so that automatic refreshes can happen again.

Fast Refresh Errors at New Materialized View Sites
In some cases, a materialized view log for a master table or master materialized

view might be purged during the creation of a materialized view at a new

materialized view site. When this happens, you may encounter the following errors:

ORA-12004 REFRESH FAST cannot be used for materialized view materialized_view_
name
ORA-12034 materialized view log on materialized_view_name younger than last
refresh

Materialized Views Continually Refreshing
If you encounter a situation where Oracle continually refreshes a group of material-

ized views, then check the group’s refresh interval. Oracle evaluates a group’s auto-

matic refresh interval before starting the refresh. If a group’s refresh interval is less

than the amount of time it takes to refresh all materialized views in the group, then

Oracle continually starts a group refresh each time the job queue process checks the

queue of outstanding jobs.

See Also: The name of the materialized view trace file is of the

form jn, where n is operating system specific. See the Oracle

documentation for your operating system for the name on your

system.

See Also: "Avoiding Problems When Adding a New Materialized

View Site" on page 6-21 for a complete description of how to avoid

this problem.
A-10 Oracle9i Advanced Replication

Diagnosing Problems with Materialized Views
Materialized View Logs Growing Too Large
If a materialized view log at a master site or master materialized view site is

growing too large, then check to see whether a network or site failure has prevented

the master site or master materialized view site from becoming aware that a

materialized view has been dropped. You may need to purge part of the

materialized view log or unregister the unused materialized view site.

Advanced Troubleshooting of Refresh Problems
If you have a problem refreshing a materialized view, then try the following:

■ Check the NEXT_DATE value in the DBA_REFRESH_CHILDREN view to

determine if the refresh has been scheduled.

■ If the refresh interval has passed, then check the DBA_REFRESH view for the

associated job number for the materialized view refresh and then diagnose the

problem with job queues.

■ Check if there are job queue process running. Check the JOB_QUEUE_
PROCESSES initialization parameter, query the DBA_JOBS_RUNNING view, and

use your operating system to check if the job queue processes are still running.

■ You may also encounter an error if you attempt to define a master detail

relationship between two materialized views. You should define master detail

relationships only on the master tables by using declarative referential integrity

constraints. The related materialized views should then be placed in the same

refresh group to preserve this relationship. However, you can define deferred

(or deferrable) constraints on materialized views.

■ If there are any outstanding conflicts recorded at the master site or master

materialized view site for the materialized views, then you can only refresh the

materialized views by setting the parameter REFRESH_AFTER_ERRORS to

true . This parameter can be set when you create or alter a materialized view

refresh group. There is a corresponding parameter for the Replication

Management tool’s property sheets.

See Also: Oracle9i Replication Management API Reference for more

information about managing materialized view logs
Troubleshooting Replication Problems A-11

Diagnosing Problems with Materialized Views
■ Materialized views in the same refresh groups have their rows updated in a

single transaction. Such a transaction can be very large, requiring either a large

rollback segment at the materialized view site, with the rollback segment

specified to be used during refresh, or more frequent refreshes to reduce the

transaction size.

■ If Oracle error ORA-12004 occurs, then the master site or master materialized

view site may have run out of rollback segments when trying to maintain the

materialized view log, or the materialized view log may be out of date. For

example, the materialized view log may have been purged or re-created.

■ Complete refreshes of a single materialized view internally use the TRUNCATE
feature to increase speed and reduce rollback segment requirements. However,

until the materialized view refresh is complete, users may temporarily see no

data in the materialized view. Refreshes of multiple materialized views (for

example, refresh groups) do not use the TRUNCATE feature.

■ Reorganization of the master table (for example, to reclaim system resources)

should TRUNCATE the master table to force rowid materialized views to do

complete refreshes. Otherwise, the materialized views have incorrect references

to master table rowids. You use the BEGIN_TABLE_REORGANIZATION and

END_TABLE_REORGANIZATION procedures in the DBMS_MVIEW package to

reorganize a master table. See the Oracle9i Replication Management API Reference
for more information.

■ If while refreshing you see an ORA-942 (table or view does not exist), then

check your database links and make sure you still have the required privileges

on the master table or master materialized view and the materialized view log.

■ If a fast refresh was succeeding but then fails, then check whether:

■ The materialized view log was truncated, purged, or dropped

■ You still have the required privileges on the materialized view log

■ If a force refresh takes an inordinately long time, then check if the materialized

view log used by the refresh has been dropped.

■ If the materialized view was created with BUILD DEFERRED, and its first fast

refresh fails, then make sure a previous complete refresh was done successfully

before checking for other problems.

See Also: Oracle9i Replication Management API Reference for

information about managing materialized view logs
A-12 Oracle9i Advanced Replication

Column Length Semantics and Un
B

Column Length Semantics and Unicode

This appendix contains information about replication support for column length

semantics and Unicode. This appendix contains the following topics:

■ Column Length Semantics for Replication Sites and Table Columns

■ Multimaster Support for Column Length Semantics

■ Materialized View Support for Column Length Semantics

■ DDL Propagation and Column Length Semantics

■ Replication Support for Unicode

See Also: The following documents contain more information

about length semantics and Unicode:

■ Oracle9i Database Globalization Support Guide

■ Oracle9i SQL Reference
icode B-1

Column Length Semantics for Replication Sites and Table Columns
Column Length Semantics for Replication Sites and Table Columns
Column length semantics determine whether the length of a column is specified in

bytes or in characters. You use BYTE to specify that the length is in bytes, and you

use CHAR to specify that the length is in characters. CHAR length semantics is also

known as codepoint length semantics.

Because some character sets require more than one byte for each character, a

specification of 10 BYTE for a column might actually store less than 10 characters

for certain character sets, but a 10 CHAR specification ensures that the column can

store 10 characters, regardless of the character set. Only Oracle9i databases can

specify CHAR length semantics.

You set the length semantics for an Oracle database using the NLS_LENGTH_
SEMANTICS initialization parameter, and all VARCHAR2 and CHAR columns use the

setting specified for this initialization parameter as the default. If this initialization

parameter is not set, then the default setting is BYTE.

An individual column can override the length semantics for the database. For

example, if the length semantics for a site is CHAR, then you can still specify BYTE
for the length semantics of an individual column using the CREATE TABLE or

ALTER TABLE statement.

The following statement creates a table and specifies the column length in bytes:

CREATE TABLE byte_col (a VARCHAR2(10 BYTE));

The following statement creates a table and specifies the column length in

characters:

CREATE TABLE char_col (a VARCHAR2(10 CHAR));

Note: A database must have a compatibility level of 9.0.1 or

higher to have CHAR length semantics. The compatibility level is

controlled by the COMPATIBLE initialization parameter.
B-2 Oracle9i Advanced Replication

Multimaster Support for Column Length Semantics
Multimaster Support for Column Length Semantics
All master sites in a master group must have the same length semantics, and the

individual columns of a master table must have the same length semantics at all

master sites. When you have a table in a master group at a master definition site

and you want to replicate that table to a new master site, you can create the table at

the new site in one of the following ways:

■ Specify that Advanced Replication generate the table at the new master site

when adding the new master site to the master group.

■ Manually precreate the table at the new master site before adding the master

site to the master group.

The following sections describe column length semantics support for each table

creation method.

Column Length Semantics Support for Tables Generated by Advanced Replication
When you specify that Advanced Replication generate the table at the new master

site, and you are using CHAR length semantics, then both the master definition site

and the new master site must be running Oracle9i. If you specify BYTE length

semantics, then these sites can be running a previous Oracle release.

This support is summarized in Table B–1.

Table B–1 Column Length Semantics Support for Generated Tables

Master Definition
Site Release

Master Definition
Site Column
Semantics

New Master Site
Release

Resulting Column
Semantics at New
Master Site

9.0 or higher CHAR 9.0 or higher CHAR

9.0 or higher CHAR Prior to 9.0 Not supported

Any release BYTE Any release BYTE
Column Length Semantics and Unicode B-3

Multimaster Support for Column Length Semantics
Column Length Semantics Support for Precreated Tables
When you precreate the table at the new master site, and you are using CHARlength

semantics, then both the master definition site and the new master site must be

running Oracle9i. If you specify BYTE length semantics, then these sites can be

running a previous Oracle release.

Also, because you precreated the table manually, it is possible that you specified a

different length semantics for a column in the new master table than was specified

for the column in the table at the master definition site. If so, Oracle raises an error

because a column in a master table must be using the same length semantics at each

master site.

This support is summarized in Table B–2.

Table B–2 Column Length Semantics Support for Precreated Tables

Master Definition
Site Release

Master Definition
Site Column
Semantics

New Master Site
Release

New Master
Site Column
Semantics Supported?

9.0 or higher CHAR 9.0 or higher CHAR Yes

9.0 or higher CHAR 9.0 or higher BYTE No

9.0 or higher BYTE 9.0 or higher CHAR No

9.0 or higher

(Multibyte
character set)

CHAR Prior to 9.0 BYTE No

9.0 or higher

(Single-byte
character set)

CHAR Prior to 9.0 BYTE Yes

Prior to 9.0 BYTE 9.0 or higher

(Multibyte
character set)

CHAR No

Prior to 9.0 BYTE 9.0 or higher

(Single-byte
character set)

CHAR Yes

Any release BYTE Any release BYTE Yes
B-4 Oracle9i Advanced Replication

Materialized View Support for Column Length Semantics
Materialized View Support for Column Length Semantics
When you create a materialized view, Oracle determines the length semantics of the

columns in the materialized view in the following way:

■ If the master column is explicitly specified as either BYTE or CHAR, then the

column in the materialized view retains that specification. In the following

example, CHAR length semantics is explicitly specified for the a column:

CREATE TABLE char_col (a VARCHAR2(10 CHAR));

■ If the master column is not explicitly specified, then the column in the

materialized view uses the default length semantics of the materialized view

site. In the following example, length semantics is not explicitly specified for the

a column:

CREATE TABLE char_col (a VARCHAR2(10));

Materialized view creation fails if an Oracle9i master has a column with an explicit

CHAR specification and a materialized view site running a release prior to Oracle9i
attempts to create a materialized view based on this master.

Materialized Views with Prebuilt Container Tables
If you prebuild a container table at a materialized view site before you create the

materialized view, then the length semantics of the columns in the container table

must match the length semantics of the columns in the master. If the length

semantics do not match, then an Oracle returns an ORA-12060 error during

materialized view creation. You use the ON PREBUILT TABLE clause of the CREATE
MATERIALIZED VIEW statement to prebuild a table for a materialized view.

See Also: The Oracle9i SQL Reference for more information about

the ON PREBUILT TABLE clause in the CREATE MATERIALIZED
VIEW statement
Column Length Semantics and Unicode B-5

Materialized View Support for Column Length Semantics
Column Length Semantics Support for Updatable Materialized Views
The following operations are always supported if the length semantics of the

columns of an updatable materialized view matches the length semantics of the

columns of the materialized view’s master:

■ Refreshing the updatable materialized view

■ Pushing DML changes made at the materialized view to the master

If, however, the length semantics do not match and the master is Oracle9i, then

Oracle raises an error when you try to add the materialized view to a materialized

view group. To be updatable, a materialized view must belong to a materialized

view group. If you use the replication management API, then you run the CREATE_
MVIEW_REPOBJECT procedure in the DBMS_REPCAT package to add the

materialized view to a materialized view group.

Table B–3 summarizes the length semantics support for updatable materialized

views.

Table B–3 Column Length Semantics Support for Updatable Materialized Views

Master Site
Release

Master Site
Column
Semantics

Materialized
View Site
Release

Materialized View
Site Column
Semantics

Updatable
Materialized View
Supported?

9.0 or higher CHAR 9.0 or higher CHAR Yes

9.0 or higher CHAR 9.0 or higher BYTE No

9.0 or higher BYTE 9.0 or higher CHAR No

9.0 or higher

(Multibyte
character set)

CHAR Prior to 9.0 BYTE No

9.0 or higher

(Single-byte
character set)

CHAR Prior to 9.0 BYTE Yes

Prior to 9.0 BYTE 9.0 or higher CHAR Yes

Any release BYTE Any release BYTE Yes

Note: The master site in Table B–3 can be either a master site in a

multimaster replication environment or a master materialized view

site.
B-6 Oracle9i Advanced Replication

DDL Propagation and Column Length Semantics
DDL Propagation and Column Length Semantics
You can use the DBMS_REPCAT package to propagate a data definition language

(DDL) statement that creates a new replicated table or adds columns to an existing

replicated table. If you want any of the new columns created by these DDL

statements to use CHAR column length semantics, then make sure you specify CHAR
column length semantics explicitly. Otherwise, the column always has BYTE length

semantics, even if the replication site itself has CHAR column length semantics set as

the default.

The following procedures in the DBMS_REPCAT package enable you to propagate

DDL statements:

■ ALTER_MASTER_REPOBJECT

■ CREATE_MASTER_REPOBJECT

■ EXECUTE_DDL

See Also: "Column Length Semantics for Replication Sites and

Table Columns" on page B-2 for more information about specifying

CHAR column length semantics explicitly
Column Length Semantics and Unicode B-7

Replication Support for Unicode
Replication Support for Unicode
Unicode is a universal encoded character set that enables you to store information

from any language using a single character set. Unicode provides a unique code

value for every character, regardless of the platform, program, or language. Unicode

is supported in both multimaster and materialized view replication environments.

In Oracle9i, all columns specified as NCHAR or NVARCHAR2 datatype are stored in

Unicode format.

For both master sites and materialized view sites, replication is possible in an

environment with different releases of Oracle using an NCHAR or NVARCHAR2
datatype. However, replication is not recommended when one of the replication

sites is a release prior to Oracle9i and uses a variable width character set because, in

this case, there is a possibility of data loss.

Table B–4 summarizes when replication is recommended.

Table B–4 Replication Support for Globalization Support Character Sets

Release of Local Database
with NCHAR or
NVARCHAR2 Columns

Release of Remote
Database with NCHAR and
NVARCHAR2 Columns

Replication
Recommended?

9.0 or higher

(Stored in Unicode format)

9.0 or higher

(Stored in Unicode format)

Yes

Prior to 9.0

(Fixed or variable width
national character set format)

Prior to 9.0

(Fixed or variable width
national character set format)

Yes

9.0 or higher

(Stored in Unicode format)

Prior to 9.0

(Variable width national
character set format)

Not Recommended

9.0 or higher

(Stored in Unicode format)

Prior to 9.0

(Fixed width national
character set format)

Yes

Prior to 9.0

(Variable width national
character set format)

9.0 or higher

(Stored in Unicode format)

Not Recommended

Prior to 9.0

(Fixed width national
character set format)

9.0 or higher

(Stored in Unicode format)

Yes
B-8 Oracle9i Advanced Replication

Replication Support for Unicode
Replication of NCLOB Datatype Columns
NCLOB datatype columns are always fixed width. Therefore, replication of NCLOB
datatype columns is supported without restrictions.

Caution: Where Table B–4 specifies that replication is not

supported, Oracle does not detect an error when you set up

replication between the two sites, but data loss may occur later. If

data loss occurs, then an error is raised.
Column Length Semantics and Unicode B-9

Replication Support for Unicode
B-10 Oracle9i Advanced Replication

Index

A
accounts

creating for materialized views, 6-11

additive conflict resolution method, 5-28

administrative request queue, 2-35

administrative requests, 2-33

states, 2-36

AWAIT_CALLBACK, 2-36

DO_CALLBACK, 2-36

ERROR, 2-36

READY, 2-36

aliases

for columns

updatable materialized views, 3-6

AND operator

for simple subquery materialized views, 3-27

append sequence conflict resolution method, 5-39

append site name conflict resolution method, 5-38

assignment tables, 4-22

asynchronous replication, 1-6, 2-40

availability

extended, 5-41

average conflict resolution method, 5-29

B
backups

for replication, 6-36

bulk updates, A-4

BYTE character semantics, B-2

C
CHAR character semantics, B-2

character sets

replication, B-1

collections

materialized views, 3-42

restrictions, 3-44

replication, 2-16, 3-42

column groups, 5-22

column objects, 5-23

nested tables, 5-23

object tables, 5-23

shadow, 5-23

column objects

column groups, 5-23

conflict resolution

compare old values, 5-44

send old values, 5-44

materialized views, 3-36

column subsetting, 3-40

replication, 2-12, 3-36

column subsetting, 1-11

deployment templates, 4-20

materialized views

column objects, 3-40

updatable materialized views

conflict resolution, 5-11

columns

character semantics, B-2

column groups, 2-39, 5-22

column objects, 5-23

ensuring data integrity with multiple, 5-22

nested tables, 5-23
Index-1

object tables, 5-23

shadow, 5-23

COMPATIBLE initialization parameter, 6-6

complete refresh, 1-12, 3-64

complex materialized views, 3-10, 3-12

value for PCTFREE, 3-65

value for PCTUSED, 3-65

conflict resolution, 2-58

additive method, 5-28

append sequence method, 5-39

append site name method, 5-38

architecture, 5-22

average method, 5-29

avoiding conflicts, 5-17

column groups, 5-22

column objects, 5-23

data integrity, 5-22

nested tables, 5-23

object tables, 5-23

shadow, 5-23

column subsetting

updatable materialized views, 5-11

concepts, 5-2

configuring without quiesce, 5-41

convergence properties of methods, 5-28

data requirements, 5-2

delete conflicts, 5-4

detecting conflicts, 5-5

discard method, 5-30, 5-39

dynamic site ownership, 5-18

earliest timestamp method, 5-31

error queue, 5-23

in synchronous propagation, 2-44

latest timestamp method, 5-24

maximum method, 5-32

methods for delete conflicts, 5-39

methods for uniqueness conflicts, 5-37

methods for update conflicts, 5-24

minimum method, 5-33

multitier materialized views, 5-7

nested tables, 5-12

overwrite method, 5-26

performance, 5-40

compare old values, 5-41

minimum communication, 5-40

send old values, 5-41

prebuilt methods, 5-7

primary site ownership, 5-18

priority groups method, 5-34

replication, 1-18, 2-10

site priority method, 5-36

as backup, 5-25, 5-31

transaction ordering, 5-5

types of conflicts, 5-3

uniqueness conflicts, 5-4

updatable materialized views

column subsetting, 5-11

update conflicts, 5-3

conflicts

avoiding, 5-17

delete, 5-4

avoiding, 5-19

detecting, 2-44, 2-57, 5-5

identifying rows, 2-58, 5-6

error queue, 5-23

ordering

avoiding, 5-20

procedural replication, 1-20

uniqueness, 5-4

avoiding, 5-19

update, 5-3

avoiding, 5-20

connection qualifiers, 2-22

diagnosing problems with, A-2

constraint violations, A-4

constraints

referential

self-referencing, 2-25

continuous purges

scheduling, 6-27

continuous pushes

scheduling, 6-24

Copy Template Wizard, 7-23

CREATE TYPE statement

OID clause, 2-14, 3-39

D
data dictionary

replication, 1-17
Index-2

data integrity

parallel propagation, 2-55

serial propagation, 2-55

data propagation

and dependency maintenance, 2-54

asynchronous, 2-40

synchronous, 2-42

database links

connection qualifiers, 2-22

diagnosing problems with, A-2

incomplete specifications, A-7

materialized view sites, 6-12, 6-31

replication, 2-19

Replication Management tool, 2-21

scheduled links, 1-15

datatypes

allowed in replicated tables, 6-2

date expressions, 3-68, 4-19

DBA_MVIEW_REFRESH_TIMES view, 3-47

DBA_REGISTERED_MVIEWS view, 3-47

DBA_REPCATLOG view, 2-33

DBA_TYPE_VERSIONS

replication, 2-13, 3-38

DBMS_DEFER_SYS package

SCHEDULE_PUSH procedure, 6-23, 6-25

DBMS_MVIEW package

EXPLAIN_MVIEW procedure, 3-29

REGISTER_MVIEW procedure, 3-49

UNREGISTER_MVIEW procedure, 3-49

DBMS_REFRESH package

CHANGE procedure, 4-19

DBMS_REPCAT package, 2-33, 2-35

COMPARE_OLD_VALUES procedure

conflict resolution, 5-41

CREATE_MVIEW_REPGROUP procedure, 3-5

CREATE_MVIEW_REPOBJECT procedure, 3-6

DO_DEFERRED_REPCAT_ADMIN

procedure, 2-33, 2-34, 2-36

REPCAT_IMPORT_CHECK procedure, 6-37

SEND_OLD_VALUES procedure

conflict resolution, 5-41

DDL statements

replication, 1-17

troubleshooting problems, A-3

deadlocks

resolving

in synchronous propagation, 2-44

deferred transaction queues, 1-6, 2-30

diagnosing problems with, A-7

purging propagated transactions, 6-25

pushing, 2-31

scheduled purge, 6-14

scheduled push, 6-14

DELAY_SECONDS parameter, 2-51

dependencies

minimizing, 2-56

dependency

ordering

replicated transactions, 2-54

tracking

parallel propagation, 2-55

dependency tracking

row level, 2-55, 6-4

Deployment Template Wizard, 7-20

deployment templates, 1-13, 4-1

adding materialized views to, 4-14

after instantiation, 4-18

architecture, 4-13

column subsetting, 4-20

concepts, 4-3

data sets, 4-26

DDL statements, 4-14

definition storage, 4-14

design, 4-20

elements, 4-4

general template information, 4-4

instantiation, 1-13, 4-9

offline, 4-10, 4-17

online, 4-9, 4-16

options, 4-17

process, 4-15

scenarios, 4-12

troubleshooting, A-9

local control, 4-28

materialized view groups, 4-19

materialized view logs, 4-13

materialized view sites, 4-9

objects

definitions, 4-6, 4-14

packaging, 4-9
Index-3

for offline instantiation, 4-15

for online instantiation, 4-15

options, 4-17

procedures, 4-13

process, 4-15

parameters, 4-7

security, 4-8

preparing materialized view sites for, 6-29

refresh groups, 4-19

row subsetting, 4-22

user authorization, 4-9

user-defined types, 4-7

WHERE clause, 4-8

direct path load

fast refresh, 3-65

discard conflict resolution method, 5-30, 5-39

distributed schema management, 1-17

distributed transactions

problems with, A-7

DML statements

replication

troubleshooting problems, A-4

domain indexes

replication, 2-25

dynamic sites

ownership, 5-18

E
earliest timestamp conflict resolution method, 5-31

errors

error queues, 2-31

conflicts, 5-23

EXISTS operator

materialized views with subqueries, 3-27

EXPLAIN_MVIEW procedure, 3-29

extended availability, 5-41

F
failover sites

implementing using FAILOVER option, 6-36

fast refresh, 1-12, 3-65

avoiding problems, 6-21

determining possibility of, 3-29

direct path load, 3-65

multitier materialized views, 3-66

features, new, xix

filter columns, 6-17

force refresh, 1-12, 3-67

foreign keys

replicated tables, 6-2

functions

replicating, 2-27

G
GLOBAL_NAMES initialization parameter, 6-6

group owner

materialized view groups, 3-60

H
horizontal partitioning. See row subsetting

I
Import

materialized view logs, 3-55

materialized views, 3-55

replication check, 6-37

indexes

materialized view sites, 3-57

on foreign keys, 6-2

replication, 2-25

indextypes

replication, 2-28

initialization parameters

COMPATIBLE, 6-6

editing, 6-14

GLOBAL_NAMES, 6-6

JOB_QUEUE_PROCESSES, 2-34, 6-6

NLS_LENGTH_SEMANTICS, B-2

OPEN_LINKS, 2-23, 6-7

PARALLEL_AUTOMATIC_TUNING, 2-48, 6-7

PARALLEL_MAX_SERVERS, 2-48, 6-7

PARALLEL_MIN_SERVERS, 2-48

PROCESSES, 6-7

replication, 6-4

REPLICATION_DEPENDENCY_
Index-4

TRACKING, 6-8

SHARED_POOL_SIZE, 6-8

UTL_FILE_DIR, 6-8

INIT.ORA parameters. See initialization parameters

instantiation

deployment templates, 1-13, 4-9

J
job queue processes

replication, 6-14

job queues, 2-31

JOB_QUEUE_PROCESSES initialization

parameter, 2-34, 6-6, 6-14

jobs

checking for scheduled links, A-7

replication, 2-33

L
latest timestamp

conflict resolution method, 5-24

length semantics

replication, B-2

levels

multitier materialized views, 3-30

LOBs

allowed in replicated tables, 6-2

replication support for, 6-3

M
many to many subqueries

materialized views, 3-21

many to one subqueries

materialized views, 3-18

mass deployment, 3-4, 4-2

master definition site, 1-5, 2-4

master groups, 1-5, 2-37

master materialized view sites, 3-51

master materialized views, 1-8, 3-31, 3-51

materialized view logs, 3-52

master sites, 1-5

adding

circular dependencies, 2-25

self-referential constraints, 2-25

advantages of, 6-10

bulk updates, A-4

compared with materialized view sites, 6-9

constraints

violations, A-4

DDL changes not propagated, A-3

diagnosing problems with, A-2

DML changes not propagated, A-4

internal triggers, 3-52

length semantics, B-3

precreated tables, B-4

materialized view registration, 3-47

materialized views, 3-51

replicated objects not created at new, A-3

replication, 2-18

roles, 2-18

scheduled links for

guidelines, 6-22

scheduled purges for, 6-14

guidelines, 6-25

users, 2-18

master tables

materialized view logs, 3-52

materialized views, 3-51

redefining online, 3-54

reorganizing, 3-53

Materialized View Group Wizard, 7-19

materialized view groups, 1-5, 3-36, 3-59

deployment templates, 4-19

group owner, 3-60

ownership, 3-36

updatable materialized views, 3-60

materialized view logs, 1-13, 3-52

adding columns to, 6-18

column logging, 3-26

many to many subqueries, 3-27

many to one subqueries, 3-27

ON PREBUILT TABLE clause, 3-27

one to many subqueries, 3-27

combination, 3-53

creating, 6-17

deployment templates, 4-13

filter columns, 6-17

Import, 3-55
Index-5

join columns, 6-17

logging columns, 6-17

object ID, 3-53

object tables, 3-54

primary key, 3-53

privileges required to create, 6-17

REFs, 3-46

ROWID, 3-53

trigger, 3-52

troubleshooting, A-11

underlying table for, 3-52

materialized view sites, 1-5

adding

avoiding problems, 6-21

advantages of, 6-10

compared with master sites, 6-9

database links, 6-12, 6-31

database version, 6-30

deferred transaction queues

scheduled push, 6-14

deployment templates, 4-9

length semantics, B-5

prebuilt container tables, B-5

local creation, 4-28

network connectivity, 6-30

preparing for deployment templates, 6-29

rollback segments, 6-32

schedule purge

guidelines, 6-25

scheduled links for

guidelines, 6-22

schemas, 6-31

setup, 6-30

materialized views, 1-2, 1-8, 3-1

architecture, 3-49

base table, 3-56

BUILD DEFERRED

troubleshooting, A-12

capabilities, 3-29

collection columns, 3-42

restrictions, 3-44

column objects

column subsetting, 3-40

column subsetting, 1-11

column objects, 3-40

complex, 3-10, 3-12

value for PCTFREE, 3-65

value for PCTUSED, 3-65

concepts, 3-2

creating, 6-19

creating schemas for, 6-11

creator, 3-14

data subsetting, 3-4, 3-17

deployment templates, 1-13, 4-1

user-defined types, 4-7

disconnected computing, 3-4

Import, 3-55

index, 3-57

length semantics, B-5

prebuilt container tables, B-5

LOBs, 6-3

local control, 4-28

mass deployment, 3-4

master materialized view sites, 3-51

master materialized views, 3-51

master sites, 3-51

master tables, 3-51

materialized view groups, 3-59

materialized view logs, 1-13, 3-52

multitier, 1-8, 3-30, 3-36

conflict resolution, 5-7

fast refresh, 3-66

levels, 3-30

master materialized views, 3-31

restrictions, 3-35

nested tables, 3-42

restrictions, 3-44

network loads, 3-3

object materialized views, 3-41

OID preservation, 3-42

object tables, 3-40

owner, 3-14

preparing for, 6-11

primary key, 3-7, 3-26

privileges, 3-14, 6-13

read-only, 1-8, 3-5

registration, 3-49

unregistering, 3-49

refresh groups, 1-12, 3-61

size, 3-62
Index-6

refresher, 3-14

refreshing, 1-12, 3-64

complete, 3-64

failures, A-9

fast, 3-29, 3-65

force, 3-67

initiating, 3-68

interval, 3-68

on-demand, 3-68

querying for last refresh time, 3-47

retries, A-9

troubleshooting, A-9, A-10

REFs, 3-44

logging, 3-46

scoped, 3-45

unscoped, 3-46

WITH ROWID clause, 3-47

registration, 3-47

reorganizing, 3-53

row subsetting, 1-11, 3-17

rowid, 3-9

simple, 3-12

simple subquery

AND operator, 3-27

subqueries, 3-18

column logging, 3-26

EXISTS operator, 3-27

joins, 3-27

many to many, 3-21

many to one, 3-18

one to many, 3-20

OR operators, 3-27

primary key materialized views, 3-26

restrictions, 3-26

trace file, A-10

troubleshooting, A-8

types of, 3-7

unions with subqueries, 3-23

restrictions, 3-27

updatable, 1-9, 3-5

column aliases, 3-6

length semantics, B-6

materialized view groups, 3-60

updatable materialized view logs, 3-57

trigger for, 3-58

user-defined datatypes, 3-36

ON COMMIT REFRESH clause, 3-37

uses for, 3-3

varrays, 3-42

restrictions, 3-44

views, 3-57

writeable, 3-6

maximum conflict resolution method, 5-32

minimum communication, 2-50

conflict resolution, 5-40

quiesce, 5-41

minimum conflict resolution method, 5-33

multimaster replication, 1-6, 2-1

architecture, 2-18

asynchronous, 2-7

concepts, 2-2

disconnected materialized views, 2-6

failover, 2-4

load balancing, 2-5

synchronous, 2-7, 2-9

transaction propagation protection, 2-53

uses for, 2-4

multitier materialized views, 1-8, 3-30

conflict resolution, 5-7

fast refresh, 3-66

levels, 3-30

master materialized views, 3-31

restrictions, 3-35

materialized view groups

ownership, 3-36

restrictions, 3-35

N
NCHAR datatype

Unicode, B-8

NCLOB datatype

length semantics, B-9

nested tables

column groups, 5-23

conflict resolution, 5-12

materialized views, 3-42

restrictions, 3-44

replication, 2-16, 3-42

network
Index-7

FAILOVER option, 6-36

new features, xix

NLS_LENGTH_SEMANTICS initialization

parameter, B-2

NOROWDEPENDENCIES clause, 2-55

NVARCHAR datatype

Unicode, B-8

n-way replication. See multimaster replication

O
object identifiers

agreement for replication, 2-12, 3-37

object materialized views, 3-41

OID preservation, 3-42

object tables

column groups, 5-23

materialized view logs, 3-54

materialized views, 3-40

replication, 2-15

object-relational model

materialized views, 3-36

replication, 2-12, 3-36

objects

replicated

recreating, A-5

OF object_type clause

object materialized views, 3-41

OID clause

CREATE TYPE statement, 2-14, 3-39

ON COMMIT REFRESH clause

of CREATE MATERIALIZED VIEW, 3-37

ON DELETE CASCADE clause

troubleshooting replication problems, A-6

ON PREBUILT TABLE clause, 3-27

length semantics, B-5

one to many subqueries

materialized views, 3-20

online redefinition of tables, 3-54

OPEN_LINKS initialization parameter, 2-23, 6-7

OPS. See Oracle Real Application Clusters

OR operators

materialized views with subqueries, 3-27

Oracle Parallel Server. See Oracle Real Application

Clusters

Oracle Real Application Clusters

compared to replication, 2-6, 6-34

Oracle Replication Management tool, 1-16, 7-1

first login, 7-3

interface, 7-4

Navigator pane, 7-5

right pane, 7-9

Topology tab, 7-11

usage scenarios, 7-2

wizards, 7-15

Copy Template, 7-23

Deployment Template, 7-20

Materialized View Group, 7-19

Setup, 7-16

Template Script Generation Wizard, 7-22

overwrite conflict resolution method, 5-26

P
packages

replication, 2-26

packaging deployment templates, 4-9

parallel propagation, 2-47

configuring for replication environments, 2-47

dependency

tracking, 2-55

implementing, 2-48

planning for, 6-28

replication environment, 6-28

row level SCN, 2-55

tuning, 2-50

Parallel Server. See Oracle Real Application Clusters

PARALLEL_AUTOMATIC_TUNING initialization

parameter, 2-48, 6-7

PARALLEL_MAX_SERVERS initialization

parameter, 2-48, 6-7

PARALLEL_MIN_SERVERS, 6-7

PARALLEL_MIN_SERVERS initialization

parameter, 2-48, 6-7

parameters

deployment templates, 4-7

PCTFREE parameter

value for complex materialized views, 3-65

PCTUSED parameter

value for complex materialized views, 3-65
Index-8

peer-to-peer replication. See multimaster replication

performance

replication, 2-47

periodic purges

scheduling, 6-26

periodic pushes

scheduling, 6-23

planning

for replication, 6-1

PRIMARY KEY constraints

materialized views, 3-7, 3-26

replicated tables, 6-2

primary sites

ownership, 5-18

priority groups conflict resolution method, 5-34

privileges

materialized views, 3-14, 6-13

procedural replication, 1-19

detecting conflicts, 1-20

restrictions, 2-26

wrapper, 1-20

procedures

replicating, 2-27

PROCESSES initialization parameter, 6-7

propagation, 2-40

initiating, 2-46

modes, 2-45

parallel, 2-47

implementing, 2-48

tuning, 2-50

security context of propagator, 2-43

propagator

replication, 2-19

purges

deferred transaction queue

scheduling continuous, 6-27

scheduling periodic, 6-26

pushes

deferred transaction queue

scheduling continuous, 6-24

scheduling periodic, 6-23

Q
quiescing, 1-7, 2-31

configuring conflict resolution methods

without, 5-41

minimum communication, 5-41

R
read-only materialized views, 1-8, 3-5

registration

manual, 3-49

unregistering, 3-49

receiver

replication, 2-19

recovery

for replication, 6-36

redefining tables

online

replication, 3-54

referential integrity

self-referential constraints, 2-25

refresh

automatic, 3-68

complete, 3-64

DBMS_REFRESH package

CHANGE procedure, 4-19

failures, A-9

fast, 3-65

determining possibility of, 3-29

force, 3-67

group, 3-68

initiating, 3-68

interval, 3-68

manual, 3-68

materialized views, 1-12, 3-64

on-demand, 3-68

retries, A-9

rollback segments

troubleshooting, A-12

scheduling, 3-68

troubleshooting, A-11

troubleshooting

ORA-12004 error, A-12

ORA-942 error, A-12

truncating materialized views

troubleshooting, A-12

refresh groups, 1-6, 1-12, 3-61
Index-9

deployment templates, 4-19

size considerations, 3-62

troubleshooting, A-9

REFs

materialized views, 3-44

replication, 2-17, 3-44

replication

administration, 1-15, 2-31

administrative request queue, 2-35

administrative requests, 2-33

states, 2-36

applications that use, 1-3

assignment tables, 4-22

asynchronous propagation, 1-6, 2-40

availability, 6-33

backup and recovery for, 6-36

character sets, B-1

checking imported data, 6-37

column groups, 2-39

column subsetting, 1-11

compared to Oracle Real Application

Clusters, 2-6, 6-34

conflict resolution, 1-18, 2-10, 2-58

conflicts

detecting, 2-57

procedural replication, 1-20

connection qualifiers, 2-22

constraints

troubleshooting, A-6

creating an environment, 7-25

data requirements, 5-2

database links, 2-19

CONNECT TO clause, 2-20

Replication Management tool, 2-21

USING clause, 2-20

DDL statements, 1-17

deferred transaction queues, 2-30

diagnosing problems with, A-7

deferred transactions, 1-6, 2-30

defined, 1-2

DELAY_SECONDS parameter, 2-51

dependencies

minimizing, 2-56

dependency tracking, 2-55

deployment templates, 1-13, 4-1

user-defined types, 4-7

distributed schema management, 1-17

error queues, 2-31

failover, 6-36

filter columns, 6-17

flowchart for creating environment, 7-25

groups, 1-5, 2-37

hybrid configurations, 1-14

Import check, 6-37

indextypes, 2-28

initialization parameters, 6-4

internal procedures, 2-30

internal triggers, 2-30

introduction, 1-2

job queue processes, 6-14

job queues, 2-31

jobs, 2-33

LOBs, 6-3

mass deployment, 4-2

master, 1-8

master definition site, 1-5

master groups, 1-5, 2-37

master materialized views, 1-8

master sites, 1-5, 2-18

advantages, 6-10

materialized view groups, 1-5

materialized view logs, 1-13

materialized view sites

advantages, 6-10

materialized views, 1-8, 3-1

minimum communication, 2-50

modes, 2-31

multimaster, 1-6, 2-1

multitier materialized views, 1-8

objects, 2-24

performance, 2-47

planning for, 6-1

problems

troubleshooting, A-1

procedural replication, 1-19

procedures

troubleshooting, A-5

propagation, 2-40

propagator, 2-19

quiesce, 1-7, 2-31
Index-10

real-time replication. See synchronous replication

receiver, 2-19

refresh, 1-12

refresh groups, 1-6, 1-12

replication administrator (REPADMIN

user), 2-19

replication management API, 1-17

resuming, 2-32

row subsetting, 1-11

scheduled links, 1-15

See Also materialized views

single master, 2-3

sites, 1-5

choosing, 6-9

survivability, 6-33

suspending, 2-32

synchronous, 1-19, 2-42

tables, 6-2

and DML incompatibility, A-4

datatypes allowed, 6-2

dependency tracking, 6-4

DML incompatibility, A-4

transaction propagation protection, 2-53

transactions

dependency ordering, 2-54

triggers

troubleshooting, A-5

troubleshooting, A-1

Unicode, B-8

unsupported datatypes

BFILE, 6-2

LONG, 6-2

user-defined datatypes, 2-12, 3-36

uses of, 1-2

replication catalog, 1-17

DBA_MVIEW_REFRESH_TIMES, 3-47

DBA_REGISTERED_MVIEWS, 3-47

DBA_REPCATLOG, 2-33

incorrect views, A-7

USER_REFRESH, A-10

USER_REFRESH_CHILDREN, A-10

replication management API, 1-17, 2-33

Replication Management tool. See Oracle Replication

Management tool

replication objects, 1-4, 2-28

at materialized view sites

problems creating, A-8

functions, 2-27

indexes, 2-25

on foreign keys, 6-2

packages, 2-26

procedures, 2-27

recreating, A-5

sequences, 2-29

tables, 2-24, 6-2

datatypes allowed, 6-2

dependency tracking, 6-4

DML incompatibility, A-4

foreign keys, 6-2

primary keys, 6-2

unable to generate support for, A-5

triggers, 2-27

REPLICATION_DEPENDENCY_TRACKING

initialization parameter, 6-8

restrictions

procedural replication, 2-26

rollback segments

materialized view sites, 6-32

row subsetting, 1-11

deployment templates, 4-22

materialized views, 3-17

ROWDEPENDENCIES clause, 2-55

creating tables, 6-4

rowids

rowid materialized views, 3-9

rows

identifying during conflict detection, 2-58

S
scheduled links, 1-15, 6-14

continuous pushes, 6-24

guidelines, 6-22

parallel propagation, 6-28

periodic pushes, 6-23

serial propagation, 6-28

scheduled purges

guidelines, 6-25

periodic purges, 6-26

schemas
Index-11

creating for materialized views, 6-11

security

deployment templates, 4-8

sequences

replication, 2-29

Setup Wizard, 7-16

shadow column groups, 5-23

SHARED_POOL_SIZE initialization

parameter, 6-8

simple materialized views, 3-12

site priority conflict resolution method, 5-36

as a backup method, 5-25, 5-31

snapshots. See materialized views

store-and-forward replication. See asynchronous

replication

subqueries

in unions

materialized views, 3-23

materialized views, 3-18

AND operator, 3-27

column logging, 3-26

EXISTS operator, 3-27

joins, 3-27

many to many, 3-21

many to one, 3-18

one to many, 3-20

OR operators, 3-27

primary key, 3-26

restrictions, 3-26

subsetting

materialized views, 3-17

column objects, 3-40

survivability, 6-33

design considerations, 6-35

implementing, 6-36

Oracle Real Application Clusters and, 6-34

synchronous replication, 1-19, 2-42

of destination of transactions, 2-44

synonyms, 2-28

replication, 2-28

system change numbers

row level, 2-55, 6-4

T
tables

length semantics, B-3

precreated

length semantics, B-4

problems generating replication support

for, A-5

redefining online

replication, 3-54

replicating, 2-24, 6-2

datatypes allowed, 6-2

dependency tracking, 6-4

DML incompatibility, A-4

Template Script Generation Wizard, 7-22

trace files

materialized views, A-10

transactions

propagation

protection mechanisms, 2-53

triggers

for materialized view log, 3-52

for updatable materialized view logs, 3-58

replicating, 2-27

troubleshooting

replication problems, A-1

U
Unicode

NCHAR datatype, B-8

NVARCHAR datatype, B-8

replication, B-8

unions

with subqueries

materialized views, 3-23

restrictions for materialized views, 3-27

updatable materialized view logs, 3-57

trigger for, 3-58

updatable materialized views, 1-9, 3-5

column subsetting, 5-11

conflict resolution, 5-11

length semantics, B-6

materialized view groups, 3-60

USER_REFRESH view, A-10
Index-12

USER_REFRESH_CHILDREN view, A-10

user-defined datatypes

materialized views, 3-36

collections, 3-42

column objects, 3-36, 3-40

object tables, 3-40

ON COMMIT REFRESH clause, 3-37

REFs, 3-44

type agreement, 3-37

replication, 2-12, 3-36

collections, 2-16, 3-42

column objects, 2-12, 3-36

object tables, 2-15

REFs, 2-17, 3-44

type agreement, 2-12, 3-37

USLOG$_, 3-57

UTL_FILE_DIR initialization parameter, 6-8

V
varrays

materialized views, 3-42

restrictions, 3-44

replication, 2-16, 3-42

vertical partitioning. See column subsetting

views, 2-28

materialized view sites, 3-57

replication, 2-28

W
WHERE clause

deployment templates, 4-8

WITH ROWID clause

REFs, 3-47

wrapper

procedural replication, 1-20

writeable materialized views, 3-6
Index-13

Index-14

	Contents
	Send Us Your Comments
	Preface
	What’s New in Advanced Replication?
	1 Introduction to Advanced Replication
	Replication Overview
	Applications That Use Replication
	Replication Objects, Groups, and Sites
	Replication Objects
	Replication Groups
	Replication Sites

	Types of Replication Environments
	Multimaster Replication
	Materialized View Replication
	Multimaster and Materialized View Hybrid Configurations

	Administration Tools for a Replication Environment
	Replication Management Tool in Oracle Enterprise Manager
	Replication Management API
	Replication Catalog
	Distributed Schema Management

	Replication Conflicts
	Other Options for Multimaster Replication
	Synchronous Replication
	Procedural Replication

	2 Master Replication Concepts and Architecture
	Master Replication Concepts
	What is Master Replication?
	Why Use Multimaster Replication?
	Multimaster Replication Process
	Conflict Resolution Concepts
	Replication of User-Defined Types

	Master Replication Architecture
	Master Site Mechanisms
	Administrative Mechanisms
	Organizational Mechanisms
	Propagation Mechanism
	Performance Mechanisms
	Replication Protection Mechanisms
	Conflict Resolution Mechanisms

	3 Materialized View Concepts and Architecture
	Materialized View Concepts
	What is a Materialized View?
	Why Use Materialized Views?
	Read-Only, Updatable, and Writeable Materialized Views
	Available Materialized Views
	Required Privileges for Materialized View Operations
	Data Subsetting with Materialized Views
	Determining the Fast Refresh Capabilities of a Materialized View
	Multitier Materialized Views
	Materialized Views with User-Defined Types
	Materialized View Registration at a Master Site or Master Materialized View Site

	Materialized View Architecture
	Master Site and Master Materialized View Site Mechanisms
	Materialized View Site Mechanisms
	Organizational Mechanisms
	Refresh Process

	4 Deployment�Templates Concepts and Architecture
	Mass Deployment Challenge
	Deployment Templates and the Mass Deployment Goal

	Oracle Deployment Templates Concepts
	Deployment Template Elements
	Deployment Template Packaging and Instantiation

	Deployment Template Architecture
	Template Definitions Stored in System Tables
	Packaging and Instantiation Process
	After Instantiation

	Deployment Template Design
	Column Subsetting with Deployment Templates
	Row Subsetting
	Data Sets
	Additional Design Considerations

	Local Control of Materialized View Creation

	5 Conflict Resolution Concepts and Architecture
	Conflict Resolution Concepts
	Understanding Your Data and Application Requirements
	Types of Replication Conflicts
	Conflict Detection
	Conflict Resolution
	Techniques for Avoiding Conflicts

	Conflict Resolution Architecture
	Support Mechanisms
	Common Update Conflict Resolution Methods
	Additional Update Conflicts Resolution Methods
	Uniqueness Conflicts Resolution Methods
	Delete Conflict Resolution Methods
	Performance Mechanisms and Conflict Resolution

	6 Planning Your Replication Environment
	Considerations for Replicated Tables
	Primary Keys
	Foreign Keys
	Datatype Considerations
	Row-Level Dependency Tracking

	Initialization Parameters
	Master Sites and Materialized View Sites
	Advantages of Master Sites
	Advantages of Materialized View Sites
	Preparing for Materialized Views
	Creating a Materialized View Log
	Creating a Materialized View Environment
	Avoiding Problems When Adding a New Materialized View Site

	Guidelines for Scheduled Links
	Scheduling Periodic Pushes
	Scheduling Continuous Pushes

	Guidelines for Scheduled Purges of a Deferred Transaction Queue
	Scheduling Periodic Purges
	Scheduling Continuous Purges

	Serial and Parallel Propagation
	Deployment Templates
	Preparing Materialized View Sites for Instantiation of Deployment Templates

	Conflict Resolution
	Security
	Designing for Survivability
	Oracle Real Application Clusters versus Replication
	Designing a Replication Environment for Survivability
	Implementing a Survivable System

	7 Replication Management Tool Introduction
	Usage Scenarios for the Replication Management Tool
	Logging in to the Replication Management Tool
	The Replication Management Tool Interface
	Navigator Pane
	Right Pane

	The Replication Management Tool Wizards
	Setup Wizard
	Materialized View Group Wizard
	Deployment Template Wizard
	Template Script Generation Wizard
	Copy Template Wizard

	Flowchart for Creating a Replication Environment

	A Troubleshooting Replication Problems
	Diagnosing Problems with Database Links
	Diagnosing Problems with Master Sites
	Replicated Objects Not Created at New Master Site
	DDL Changes Not Propagated to Master Site
	DML Changes Not Asynchronously Propagated to Other Sites
	DML Cannot be Applied to Replicated Table
	Bulk Updates and Constraint Violations
	Recreating a Replicated Object
	Unable to Generate Replication Support for a Table
	Problems with Replicated Procedures or Triggers
	Problems With ON DELETE CASCADE and Integrity Constraints

	Diagnosing Problems with the Deferred Transaction Queue
	Check Jobs for Scheduled Links
	Distributed Transaction Problems with Synchronous Replication
	Incomplete Database Link Specifications
	Incorrect Replication Catalog Views

	Diagnosing Problems with Materialized Views
	Problems Creating Replicated Objects at Materialized View Site
	Problems Performing Offline Instantiation of a Deployment Template
	Refresh Problems
	Advanced Troubleshooting of Refresh Problems

	B Column Length Semantics and Unicode
	Column Length Semantics for Replication Sites and Table Columns
	Multimaster Support for Column Length Semantics
	Column Length Semantics Support for Tables Generated by Advanced Replication
	Column Length Semantics Support for Precreated Tables

	Materialized View Support for Column Length Semantics
	Materialized Views with Prebuilt Container Tables
	Column Length Semantics Support for Updatable Materialized Views

	DDL Propagation and Column Length Semantics
	Replication Support for Unicode
	Replication of NCLOB Datatype Columns

	Index

